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CHAPTER 1

Introduction to DAX
The aim of this book is to help you learn how you can use the DAX language to improve 

your data modelling capability using tools such as Microsoft Power BI, Excel Power 

Pivot, and SSAS Tabular. This book will be particularly useful if you already have a good 

knowledge of T-SQL, although this is not essential.

Throughout the book, I present and solve a variety of scenarios using DAX and 

provide equivalent T-SQL statements primarily as a comparative reference to help 

clarify each solution. My personal background is as someone who has spent many 

years building solutions using T-SQL, and I would like to share the tips and tricks I have 

acquired on my journey learning DAX with those who have a similar background. It’s 

not crucial for you to be familiar with T-SQL to get the best out of this book because the 

examples will still be useful to someone who isn’t. I find it can be helpful to sometimes 

describe an answer multiple ways to help provide a better understanding of the solution.

In this book, I use Power BI Desktop as my primary DAX engine and most samples 

use data from the WideWorldImportersDW database, which is freely available for 

download from Microsoft’s website. This database can be restored to an instance of 

Microsoft SQL Server 2016 or later. I am using the Developer edition of SQL Server 2016.

I recommend you download and install the latest version of Power BI Desktop to 

your local Windows PC. The download is available from powerbi.microsoft.com/

desktop, or you can find it via a quick internet search. The software is free to install 

and allows you to load data and start building DAX-based data models in a matter of 

minutes.

The WideWorldImportersDW database is clean, well-organized, and an ideal starting 

point from which to learn to data model using DAX.

The aim of this first chapter is to cover high-level fundamentals of DAX without 

drilling into too much detail. Later chapters explore the same fundamentals in much 

more depth.
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 What Is DAX?
Data Analysis Expressions (DAX) is both a query and functional language. It made its 

first appearance back in 2009 as part of an add-in to Microsoft Excel 2010. The primary 

objective of DAX is to help organize, analyze, understand, and enhance data for analytics 

and reporting.

DAX is not a full-blown programing language and does not provide some of 

the flow- control or state-persistence mechanisms you might expect from other 

programming languages. It has been designed to enhance data modeling, reporting, 

and analytics. DAX is constantly evolving with new functions being added on a 

regular basis.

DAX is described as a functional language, which means calculations primarily 

use functions to generate results. A wide variety of functions are provided to help 

with arithmetic, string manipulation, date and time handling, and more. Functions 

can be nested but you cannot create your own. Functions are classified into the 

following categories:

• DateTime

• Filter

• Info

• Logical

• Mathtrig

• ParentChild

• Statistical

• Text

There are over 200 functions in DAX. Every calculation you write will use one or 

more of these. Each function produces an output with some returning a single value and 

others returning a table. Functions use parameters as input. Functions can be nested so 

the output of one function can be used as input to another function.

Unlike T-SQL, there is no concept of INSERT, UPDATE, or DELETE for manipulating 

data in a data model. Once a physical table exists in a Power BI, SSAS Tabular, or Excel 

PowerPivot data model, DAX cannot add, change, or remove data from that table. Data 

can only be filtered or queried using DAX functions.

Chapter 1  IntroduCtIon to daX
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 What Is a Data Model?
A data model is a collection of data, calculations, and formatting rules that combine to 

create an object that can be used to explore, query, and better understand an existing 

dataset. This can include data from many sources.

Power BI Desktop, SSAS Tabular, and PowerPivot for Excel can import data from 

a wide variety of data sources including databases and flat files or directly from many 

source systems. Once imported, calculations can be added to the model to help explore 

and make sense of the data.

Data is organized and stored into tables. Tables are two dimensional and share many 

characteristics with databases tables. Tables have columns and rows, and relationships 

can be defined between tables to assist calculations that use data from multiple tables. 

Calculations can be as simple as providing a row count over a table or providing a sum of 

values in a column. Well-considered calculations should enhance your data model and 

support the process of building reports and performing analytical tasks known as measures.

It’s the combination of data and measures that become your data model.

The Power BI Desktop user interface consists of three core components. First, the 

Report View provides a canvas that lets you create a visual layer of your data model 

using charts and other visuals. Report View also lets you control the layout by dragging, 

dropping, and resizing elements on the report canvas. It’s the canvas that is presented to 

the end user when they access the report.

The second component is the Data View, which provides the ability to see raw 

data for each table in the model. Data View can show data for one table at a time and is 

controlled by clicking the name of a table from the list of tables in the right-hand panel. 

Columns can be sorted in this view, but sorting here has no impact on any sorting by 

visuals on the report canvas. Columns can be renamed, formatted, deleted, hidden, or 

have their datatype defined using the Report View. A hidden column will always appear 

in the Report View but not in any field list in the report.

It’s possible to add or change calculations from both Report and Data View.

The last component of the Power BI Desktop user interface is the Relationship View. 

This section shows every table in the data model and allows you to add, change, or 

remove relationships between tables.

Chapter 1  IntroduCtIon to daX
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 Components of a DAX Data Model
The DAX data modeling engine is made up of six key components.

 Data
The first step of building a data model is importing data. A wide variety of data sources 

are available, and once they are imported, they will be stored in two-dimensional tables. 

Sources that are not two dimensional can be used, but these will need to be converted 

to a two-dimensional format before or during import. The query editor provides a rich 

array of functions that help with this type of transformation.

 Tables
Tables are objects used to store and organize data. Tables consist of columns that are 

made up of source data or results of DAX calculations.

 Columns
Each table can have one or more columns. The underlying data engine stores data from 

the same column in its own separate index. Unlike T-SQL, DAX stores data in columns 

rather than in rows. Once data has been loaded to a column, it is considered static and 

cannot be changed. Columns can also be known as fields.

 Relationships
Two tables can be connected via a relationship defined in the model. A single column 

from each table is used to define the relationship. Only one-to-many and one-to-one 

relationships are supported. Many-to-many relationships cannot be created. In DAX, 

the most common use of relationships is to provide filtering rather than to mimic 

normalization of data optimized for OLTP operations.

 Measures
A measure is a DAX calculation that returns a single value that can be used in visuals in 

reports or as part of calculations in other measures. A measure can be as simple as a row 

count of a table or sum over a column. Measures react and respond to user interaction 

Chapter 1  IntroduCtIon to daX
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and recalculate as a report is being used. Measures can return new values based on 

updates to the selection of filters and slicers.

 Hierarchies
Hierarchies are groupings of two or more columns into levels that can be drilled up/

down through by interactive visuals and charts. A common hierarchy might be over 

date data that creates a three-level hierarchy over year, month, and day. Other common 

hierarchies might use geographical data (country, city, suburb), or structures that reflect 

organizational groupings in HR or Product data.

 Your First DAX Calculation
It’s possible to import data and have no need to write in DAX. If data is clean and simple 

and report requirements are basic, you can create a model that needs no user-created 

calculations. Numeric fields dragged to the report canvas will produce a number.

If you then drag a non-numeric field to the same visual, it automatically assumes you 

would like to group your numeric field by the distinct values found in your nonnumeric 

field. The default aggregation over your numeric field will be SUM. This can be changed 

to another aggregation type using the properties of your visual. Other aggregation types 

include AVERAGE, COUNT, MAX, MIN and so on.

In this approach, the report creates a DAX-calculated measure on your behalf. These 

are known as implicit measures. Dragging the ‘Fact Sale’[Quantity] field to the canvas 

automatically generates the following DAX statement for you:

CALCULATE(SUM('Fact Sale'[Quantity]))

This calculation recomputes every time a slicer or filter is changed and should show 

values relevant for any filter settings in your report.

Most real-world scenarios require at least some basic enhancements to raw data, and 

this is where adding DAX calculations can improve your model. When you specifically 

create calculated measures, these are known as explicit measures.

Some of the most common enhancements are to provide the ability to show a count 

of the number of records in a table or to sum values in a column.

Other enhancements might be to create a new column using values from other 

columns in the same row, or from elsewhere in the model. A simple example is a 

column that multiplies values from columns such as Price and Qty together to produce 
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a total. A more complicated example might use data from other tables in a calculation to 

provide a value that has meaning to that row and table.

Once basic count or sum calculations have been added, more sophisticated 

calculations that provide cumulative totals, period comparisons, or ranking can be added.

These are the three types of calculations in DAX:

• Calculated columns

• Calculated measures

• Calculated tables

We explore each of these calculations in more detail later in this book and I include 

hints on how and when you might choose one type over another.

Note Calculated tables (tables that are the result of a daX calculation) can only 
be created in the daX engine used by power BI desktop and SSaS tabular.

 Your First Calculation
The first example I cover creates a simple calculated measure using data from the 

WideWorldImportersDW database (Figure 1-1). The dataset has a table called ‘Fact Sale’ 

that has a column called [Total Including Tax]. The calculation produces a value that 

represents a sum using values stored in this column.

Figure 1-1. A sample of data from the ‘Fact Sale’ table
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When viewing this table in Data View, we see the unsummarized value for each row 

in the [Total Including Tax] column. A calculated measure is required to show a single 

value that represents a sum of every row in this column.

In Power BI, you can create a calculated measure using the ribbon, or by right- 

clicking the table name in the Report View or Data View. This presents an area below the 

ribbon where you can type the DAX code for your calculation. The text for this calculated 

measure should be

Sum of Total including Tax = SUM('Fact Sales'[Total Including Tax])

This should look as it does in Figure 1-2.

The structure of the formula can be broken down as follows: starting from the left, 

the first part of the text sets the name of the calculated measure. In this case, the name is 

determined by all text to the left of the = operator. The name of this calculated measure is 

[Sum of Total including Tax]. Names of calculated measures should be unique across the 

model including column names.

This name is how you will see the measure appear in the field list as well as how it 

may show in some visuals and charts.

Note Spaces between words are recommended when creating names for 
calculated measures and columns. avoid naming conventions that use the 
underscore character or remove spaces altogether. use natural language as much 
as possible. use names that are brief and descriptive. this will be especially helpful 
for power BI features such as Q&a.

Figure 1-2. DAX for the first calculated measure. This calculation uses the SUM 
function to return a single value anywhere the calculated measure is used in the 
report. When dragged and dropped to the report canvas using a visual with no 
other fields or filters, the value should show as $198,043,493.45.
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The = sign separates the calculation name from the calculation itself. A calculated 

measure can only return a single value and never a list or table of values. In more 

advanced scenarios, steps involving groups of values can be used, but the result must be 

a single value.

All text after the = sign is the DAX code for the calculated measure. This calculation 

uses the SUM function and a single parameter, which is a reference to a column. The 

single number value that is returned by the SUM function represents values from every 

row from the [Total Including Tax] column added together. The datatype for the column 

passed to the SUM function needs to be numeric and cannot be either the Text or 

DateTime datatypes.

The notation for the column reference is fully qualified, meaning it contains both 

the name of the table and name of the column. The table name is encapsulated inside 

single quotations (‘ ’). This is optional when your table name doesn’t contain spaces. The 

column name is encapsulated inside square brackets ([ ]).

Calculated measures belong to a single table but you can move them to a new home 

table using the Home Table option on the Modeling tab. Calculated measures produce 

the same result regardless of which home table they reside on.

Note When making references to other calculated measures in calculations, 
never prefix them with the table name. however, you should always include the 
name of a table when referencing a column.

 IntelliSense
IntelliSense is a form of predictive text for programmers. Most modern programming 

development environments offer some form of IntelliSense to help guide you as you 

write your code. If you haven’t encountered this before, it is an incredibly useful way to 

help avoid syntax errors and keep calculations well-formed.

DAX is no different, and as you start typing your calculation, you should notice 

suggestions appearing as to what you might type next. Tooltips provide short 

descriptions about functions along with details on what parameters might be required.
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IntelliSense also helps you ensure you have symmetry with your brackets, although 

this can sometimes be confusing if you are not aware it is happening.

IntelliSense suggestions can take the form of relevant functions, or tables or columns 

that can be used by the current function. IntelliSense is smart enough to only offer 

suggestions valid for the current parameter. It does not offer tables to a parameter that 

only accepts columns.

In the case of our formula, when we type in the first bracket of the SUM function, 

IntelliSense offers suggestions of columns that can be used. It does not offer tables or 

calculated measures as options because the SUM function is only designed to work with 

columns.

 Formatting
As with T-SQL and pretty much any programming language, making practical use of line 

spacing, carriage returns, and tabs greatly improves readability and, more importantly, 

understanding of the code used in the calculation. Although it’s possible to construct a 

working calculation using complex code on just a single line, it is difficult to maintain. 

Single-line calculations also lead to issues playing the bracket game.

Note the bracket game is where you try to correctly pair open/close brackets in 
your formula to produce the correct result. Failure to pair properly means you lose 
the game and your formula doesn’t work.

A good tip is to extend the viewable area where you edit your calculation before you 

start by repeating the Shift-Enter key combination multiple times or by clicking the down 

arrow on the right-hand side.

 Comments
Comments can also be added to any DAX calculation using any of the techniques in 

Table 1-1.
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Examples of ways you can add comments are shown in Figure 1-3 as is an example of 

how spacing DAX over multiple lines helps increase readability.

By formatting code and adding comments you help to make the logic and 

intent of the function easier to understand and interpret for anyone looking at the 

calculation later.

A nice alternative to the formula bar in Power BI Desktop and SSAS Tabular, is DAX 

Studio, which is a free product full of features designed to help you develop and debug 

your calculations. I provide a more detailed look at DAX Studio in Chapter 8.

Table 1-1. How to Add Comments

Comment 
Characters

Effect

// text to the right is ignored by daX until the next carriage return.

-- text to the right is ignored by daX until the next carriage return.

/* */ text between the two stars is ignored by daX and comments can span multiple lines.

Figure 1-3. Commented text styles and usage of line breaks
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 Your Second DAX Calculation
In this second example, I create a calculated column as opposed to a calculated measure.  

A Chapter 9 provides more detailed advice on when you should consider using a 

calculated column instead of a calculated measure, but in short, a calculated column adds 

a column in an existing table in which the values are generated using a DAX formula.

A simple calculation might use values from other columns in the same row. This 

example uses two columns from the ‘Fact Sale’ table to perform a simple division to 

return a value that represents an average unit price.

To add this calculation to your data model, select the ‘Fact Sale’ table in the Fields 

menu so it is highlighted. Then use the New Column button on the Modeling tab and 

enter the text shown in Figure 1-4.

Note this formula works without the table name preceding each column name; 
however, it is highly recommended that whenever you reference a column, you 
always include the table name. this makes it much easier to differentiate between 
columns and measures when you are debugging longer daX queries.

The code in Figure 1-4 adds a new column to the ‘Fact Sale’ table called [Average 

Item Price]. The value in each cell of the new column (see Figure 1-5) is the output of this 

calculation when it is executed once for every row in the table.

Figure 1-4. A calculated column for [Average Item Price]
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 Your Third DAX Calculation
This last example creates a calculated table. This option is only available in Power BI 

Desktop and SSAS Tabular, not in PowerPivot for Excel 2016 (or earlier).

You can create calculated tables using any DAX function that returns a table or by 

simply referencing another table in the model. The simplest syntax allows you to create 

a clone of another DAX table. The example shown in Figure 1-6 creates a new calculated 

table called ‘Dates2’, which is a full copy of the ‘Dates’ table. Modifications made to the 

‘Dates’ table, such as adding or modifying columns, automatically flow through to the 

‘Dates2’ table.

Figure 1-5. Sample of data for new calculated column

Figure 1-6. Creating a calculated table
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Filters, measures, columns, and relationships can be added to the ‘Dates2’ table 

without effecting ‘Dates’ table. The beauty of this is that because the base table (‘Dates’) 

is reading from a physical data source, any changes to data in the ‘Dates’ table are 

reflected in the ‘Dates2’ table.

To extend the example so the new table only shows some rows from the original 

table, you can use the FILTER function as shown in Figure 1-7.

The ‘Dates2’ calculated table still has the same number of columns as ‘Dates’, but it 

only has rows that match the filter expression. This results in the ‘Dates2’calculated table 

having 365 rows that represent a row per day for the calendar year of 2016.

It is common to use calculated tables to create summary tables that can be used 

as faster alternatives for calculated measures. Using calculated tables to produce an 

aggregated version of a sales table can provide considerable performance gains for any 

calculation using the aggregated version.

 The CALENDARAUTO Function
A handy DAX function that generates a calculated table without using an existing table is 

the CALENDARAUTO function. This function returns a table with a single column called 

[Date]. When called, the CALENDARAUTO function inspects every table in the model 

looking for columns that use either the Date or DateTime datatype.

The oldest and newest date values that appear in any column using these datatypes 

are used to generate a row for every day between the oldest and newest values. The dates 

are rounded to the start and end of the calendar year.

Date tables are invaluable for data models, particularly when you add measures 

designed to show period comparison and running totals accurately. There are several DAX 

functions that allow you to add time-intelligence logic to your model. These often rely on 

a date table that has contiguous dates to work properly. In the WideWorldImportersDW 

dataset, no rows exist in the ‘Fact Sale’ table with an [Invoice Date Key] that falls on a 

Figure 1-7. Calculated table created using FILTER
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Sunday. This might cause problems for some functions when they are processing period 

comparison logic. Date/Calendar tables help make calculations behave more reliably 

when there are gaps in dates in non-date table data.

Once you create a calculated table using the CALENDARAUTO function as shown in 

Figure 1-8, you can start adding calculated columns and measures to it. You can also start 

creating one-to- many relationships to other tables in your model.

 Datatypes
In DAX, it is possible to define datatypes for individual columns. The different datatypes 

are listed momentarily in Table 1-2 and fall into three main categories, with the 

exception of True/False (Boolean).

• Text

• Numeric

• DateTime

By select the best datatype, you help reduce the size of your model as well as improve 

performance when refreshing data and using your report.

When importing new data, the data modeling engine guesses at what the datatype 

for each column should be. This is something worth checking on as there may be 

opportunities to adjust to make sure that appropriate data types are used for each column.

Figure 1-8. A sample output of the CALENDARAUTO function
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Another factor to be aware of is that although your data source may produce numeric 

data at the time you author your model, at some point in the future, it may start to 

include nonnumeric data that will cause errors during a data refresh. This is more likely 

to happen when a data source provides few suggestions as to the best datatype (for 

example, CSV format).

 The Whole Number Datatype
The Whole Number datatype, as the name suggests, allows you to store and manipulate 

data in the form of positive or negative integers. Any decimal component is removed 

and arithmetic using whole number values returns a whole number and not a value of 

another datatype.

VAR WholeNumberA = 3

VAR WholeNumberB = 2

RETURN DIVIDE( WholeNumberA, WholeNumberB ) // will be stored as 1.5

Table 1-2. Datatypes in DAX

Datatype Stored As Valid Values

Whole number 64-bit integer Signed integer between –9,223,372,036,854, 

755,808 and + 9,223,372,036,854,755,808.

decimal number 64-bit real number a mixture of real and decimal numbers ranging 

between –1.79e + 308 and –2.23e –308. only 

15 significant digits return a precise result. 

Values outside these calculate and return 

approximate results.

Fixed decimal/Currency 64-bit real number the same as for decimal number but fixed to 

four decimal places.

date/time 64-bit double-floating 1st January 100ad to 31st december 9999ad.

true/False

text unicode (two bytes 

per character)

the maximum string length is 268,435,456 

unicode characters.
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Note When performing a division calculation, use the dIVIde function rather than 
the / operator. use dIVIde (3, 2) instead of 3 / 2. this handles cases with a divide- 
by- zero error more elegantly.

 The Decimal and Fixed Decimal Number Datatype
Decimal numbers use 64 bits of storage per value and can represent a wide range of 

values that either represent a large integer component with a small decimal component 

or vice versa.

You can store extremely large or small numbers using this datatype and then 

perform calculations. However, when using this datatype, be aware that with extremely 

large values, results can be imprecise (not exact).

The following exercise shows values that are stored but not displayed, except for the 

15 most significant digits.

 Calculations on REAL Numbers

The first example creates a calculated measure using the following code:

Measure1 = 100000000000000000 + 50

In this code, 17 zeros following the 1 and the calculation returns the value of 

100000000000000000. Note that nothing has changed despite the addition of the 

value of 50. I understand that the considerable number of zeros might make you go 

cross-eyed, but let me assure that there are 17 zeros.

Now create a second calculated measure that makes a reference to the first as 

follows:

Measure2 = [Measure1] + 50

This returns 100000000000000100—a 1, 14 zeros, a 1, and then two more zeros.

If your number has a large integer component, such as the top rows shown in 

Figure 1-9, DAX allows less precision on the fractional side. The maximum number of 

digits total on either side of the decimal point is 15.
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The integer side takes priority, so if you have a value with 12 integer places and 12 

decimal places, DAX will automatically round the decimal to 3 places.

Fixed Decimal (or Currency) uses the Decimal datatype, however the fractional 

component is locked to 4 places. You should show preference for this datatype when 

you are working with money or currency data. Arithmetic performed using this datatype 

should yield results that are acceptable for financial reports, particularly regarding 

rounding and truncation.

 Date and DateTime
There are two date-based datatypes available to choose from when you are working with 

date-based data. The difference between Date and DateTime is, as the names suggest, 

that DateTime can represent values that include hour, minute, second, and millisecond, 

whereas Date does not.

Figure 1-9. Data formatting
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It is possible to compare and match values that are both Date and DateTime, however, 

only values of DateTime that are midnight can match a value of Date from the same day. 

This can sometimes trip up inexperienced users when they are creating relationships 

between tables in which one side of the relationship uses a Date datatype while the other 

uses DateTime. If the table using DateTime has a value such as ‘2018- 01- 01 10:30:00’, it 

never finds a matching record in the table using the Date datatype. No error is thrown.

If you need to generate a specific date in DAX, you can use the DATE function, 

which takes three parameters (year, month, day). DATE( 2018, 5, 1) returns a date that 

represents May 1, 2018.

 Time
You can use the Time datatype to represent specific points in time in a day. These values 

can be “2:37 pm” or “10:30 am” and can be added or combined to make time-based 

calculations.

TIME(1,0,0) + "03:00:00"

The preceding calculation shows two different notations of a Time value being 

added. It is adding 1 hour to a value that represents 3 am. The result is4 am.

Values that use the Time datatype are still stored as a full DateTime and use 

December 30, 1899, for the year, month, and day components. Functions that use Time 

typically ignore the year, month, and day.

 Operators
These are the four sets of operators in DAX:

• Arithmetic

• Comparison

• Concatenation

• Logical

There are no bitwise operators in DAX. Bitwise calculations can be performed using 

functions rather than operators.
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 Arithmetic Operators
Table 1-3 shows the arithmetic operators available in DAX.

 Comparison Operators
The operators in Table 1-4 return true or false when used to compare two values. Values 

on either side of the operator can be Text, Numeric, or DateTime.

If you compare a number to a text value, for example, 1 = “1”, you receive an error. In 

this case, you can convert the numeric 1 to a string using the FORMAT function, or you 

can convert the “1” value to a number using the VALUE function.

Table 1-3. DAX Atrithmetic Operators

Operator Effect Example

+ addition 2 + 2 = 4

– Subtraction 10 – 4 = 6

* Multiplication 4 * 5 = 20

/ division 8 / 2 = 4

^ exponents 2 ^ 4 = 16

Table 1-4. DAX Comparison Operators

Operator Effect Example

= equal to Sales[Qty] = 10

< Less than Sales[Qty] < 10

> Greater than Sales[price] > 20

<= Less than or equal to dates[date] <= todaY ()

>= Greater than or equal to [total] >= 200

<> not equal to [animal] <> “Cat”
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 Concatenation Operator
The operator used for concatenating text values is shown (Table 1-5).

In the “1 & 2” example, both values are implicitly converted to text with the output 

being a text value.

 Logical Operators
Table 1-6 show logical operators in DAX.

 Operator Precedence
Once you have the correct operator, you also need to consider the order in which to 

apply operators. Table 1-7 shows the order of operator precedence in DAX.

Table 1-6. DAX Logical Operators

Operator Effect Example

&& Logical and (1=1) && (2=2) = true

((1=1) && (2=3) = false

|| Logical or (1=1) || (2=2) = true 

(1=1) || (2=3) = true 

(1=2) || (2=3) = false

In Logical or Location[Country] In (“uK”,“uSa”,“Canada”)

Table 1-5. DAX Concatenation Operator

Operator Effect Examples

& Concatenates values “aBC” & “deF” = “aBCdeF”

1 & 2 = “12”
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You can use parentheses to override the operator precedence if you need to as shown 

in the examples in Table 1-8. In the example on the second row, the addition takes place 

before the multiplication, producing a different result than the first row. In the example 

on the bottom row, the parentheses make the sign operator take precedence over the 

exponent operator.

DAX attempts to implicitly convert two sides of an operator to the same datatype 

where possible. This cannot be guaranteed in all cases. So, for instance, 1 + “2” results in 

an error whereas 1 & “2” results in the text value of “12”.

Table 1-7. Operator Precedence

Operator Effect

^ exponent

– Sign (positive or negative)

* / Multiplication and division

! not

+ – addition and subtraction

& Concatenation

= < > <= >= <> Comparison

Table 1-8. Examples of Operator Precedence

Calculation Result

2 * 3 + 4 10

2 * (3 + 4) 14

–2 ^ 2 –4

(–2) ^ 2 4
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 Relationships
Relationships are rules in DAX that define how two tables can be associated. There are 

two main reasons to create relationships. The first is to allow filter selections made on 

one table to automatically filter rows on another table via the relationship. The other is 

to allow calculations to use values from rows in different tables and to understand how 

rows should be connected.

 Types of Relationships
Relationships can be defined as one-to-many or one-to-one but always use a single 

column from each table in the relationship. When you add a relationship between two 

tables, the column involved on one side of the relationship must have unique values. If 

duplicate data is detected during a data load or refresh, an error occurs telling you that 

you can’t create a relationship between the two columns because the columns must 

have unique values.

 Relationships for Filtering

The WideWorldImportersDW dataset contains several fact tables that each have one or 

more date-based columns. The dataset also contains a table called Dimension.Date, 

which has one row per day between January 1, 2013, and December 31, 2016. The date 

table contains 14 columns useful for grouping and filtering.

Once you import these tables to the model, you can add relationships between pairs 

of tables that allow report-based filters to make any selection on the table on the one side 

flow through and filter rows on the related table.

Filters only flow across relationships in one direction. A filter selection made to a 

column in a table on the many side of a relationship will not filter rows in the table on 

the one side. Filters can flow down through multiple sets of relationships, but always in 

the direction of one to many.

This means that if you add any field from the date table to a report visual or filter, any 

selection you make using these visuals or filters propagates to related tables and triggers 

measures to recalculate using the new filter settings.

Figure 1-10 shows a relationship between the ‘Dimension Date’ table and the ‘Fact 

Sale’ table. The column used on the ‘Dimension Date’ (one) side is [Date], whereas the 

column used on the ‘Fact Sale’ (many) side is [Invoice Date Key]. Both columns use the 

Date datatype.
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With this relationship in effect, drag the [Calendar Year] column from ‘Dimension 

Date’ to the report canvas and turn it into a slicer visual. The slicer shows distinct 

values from the column, which are 2013, 2014, 2015, and 2016. Any selection of one 

or more of these values flows down and is applied to any related table. If 2014 is 

selected in the slicer, calculations used by visuals based on columns in related tables 

automatically recompute and produce new values that consider the updated filtering 

on the ‘Dimension Date’ table.

Power BI Desktop has a feature that can automatically detect relationships when 

you add new tables to your model. If a new table contains a column that shares the same 

name and datatype to a column in another table, a relationship may be added for you. 

This can be helpful, but it is always good to double check what relationships have been 

added for you and if these are indeed useful.

Figure 1-10. The relationship between ‘Dimension Date’ and ‘Fact Sale’
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A good tip I picked up from my good friend Matt Allington is to organize tables in 

the Relationship View so tables on the one side are positioned higher than tables on 

the many side. This helps visually reinforce the trickle-down nature of filtering through 

relationships. It becomes harder when you have many tables in your data model, but it’s 

a tip well worth applying for smaller models.

 Relationships in Calculations

The other way you can take advantage of relationships is through the DAX functions 

RELATED and RELATEDTABLE. These functions allow calculations to use data from 

rows from different, but related tables. This means you can add a calculated column to a 

table that shows a value using data from a parent or child table. The RELATED function 

allows calculations to tunnel up to data in a table on the one side from the many side, 

whereas RELATEDTABLE provides access to data from a table on the many side to a 

calculation on the one side.

A pair of tables can have more than one relationship defined, but only one can 

be marked as the active relationship at any one time. Active relationships are used 

by default by filters and calculations. Relationships that are not active can be used in 

calculations, but they need to be specifically referenced using the USERELATIONSHIP 

filter function.

Although it is possible to make your table/relationship mirror that of an OLTP, it is far 

better to study and learn some BI methodology, such as using a star schema to organize 

your data. This is especially useful once the row counts in your tables grow to large values.

It’s also possible to define multiple relationships between two tables and control the 

cross-filter direction. These concepts are covered in more detail in the chapter on DAX 

relationships (Chapter 5).

 Hierarchies
Hierarchies combine two or more columns from a table together as a level-based 

grouping. These can be added to your model by dragging a field and dropping it on 

another field from the same table. This creates a new entry in the field list with a special 

icon to show it is a hierarchy. The fields that represent the levels in the hierarchy appear 

slightly indented and can be reordered by dragging and dropping.

You can rename a hierarchy as well as individual levels. Renaming these has no 

impact on the columns used as source columns for the hierarchy.
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In the example in Figure 1-11, the [Calendar Month Label] field has been dragged 

and dropped onto the [Calendar Year] field, which creates a new hierarchy. The two 

levels and the hierarchy are then renamed, making each name shorter. Finally, a third 

level is added to the hierarchy by the [Day] field being dragged and dropped onto the 

hierarchy name. This adds the field as a new third level. It’s possible to reorder by 

dragging individual levels up or down the list.

Not all Power BI visuals understand hierarchies, but most of the native visuals allow 

hierarchies to be used on an X or Y axis to provide drill-down functionality. You can 

obtain the same experience by dropping multiple individual fields to the same axis 

fields, but you have less ability to rename and customize the levels.

Figure 1-11. A hierarchy in the ‘Dimension Date’ table
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CHAPTER 2

Variables
This chapter looks at how you can use DAX variables to make calculations easier to 

understand and, in some cases, perform faster. Variables are used to store results from 

DAX expressions. These variables can be as simple as assigning a hardcoded value or the 

result of a complex DAX equation. 

You can use variables in any type of DAX calculation including calculated columns, 

measures, and tables. Variables are not strictly typed and can represent any type of 

object in DAX. Variables automatically assume the type of the object being assigned. 

You must use a RETURN statement to close a layer of variable scope. You can declare 

multiple variables within the same layer of scope and you can use them with a single 

RETURN statement. Nested variables can initialize a new layer of scope when you use 

them anywhere within an expression, but all layers of scope are ended when you use a 

RETURN statement.

This is the basic structure of creating and using a variable in your DAX expression:

VAR varname = expression

RETURN expression

You can only assign variables once and cannot reassign them. The following code 

produces an error:

VAR myVar = 1

myVar = myVar + 1

The following example shows the basic structure of a formula using multiple DAX 

variables:

VAR myVar1 = 1

VAR myVar2 = myVar1 + 2

RETURN myVar2 * 2
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 Variable Structure
The keyword VAR denotes a new variable being declared. This is followed by the name 

of the variable. You cannot use spaces or encapsulate the variable name with square 

brackets or apostrophes to allow spaces like you can elsewhere in DAX. Another 

limitation on variable names is that you cannot use the names of tables or DAX keywords.

Finally, a DAX expression follows the = operator.

VAR myVar1 = 1

VAR myVar2 = myVar1 + 2

The first line of this example assigns the numeric value of 1 to a variable called 

myVar. The myVar variable is used in an expression on the following line to assign 

a value to the variable called myVar2. At this point, the variable myVar2 carries the 

number 3 because of the expression (1 + 2).

RETURN myVar2 * 2

The RETURN keyword must be used to output the result and can also use an 

expression. In this case, the result is the whole number 6. The RETURN keyword can 

only be used once per variable scope.

Note The RETURN keyword is used to return the value of any variable in the 
current scope. This can be useful when you’re debugging calculations with multiple 
variables. It does not have to return the last variable in the series.

A major benefit of using variables in DAX is code readability. In plenty of cases, you 

can simplify complex DAX formulas by adding variables. The following example shows 

an unformatted DAX expression that doesn’t use variables.

Table = 
    NATURALINNERJOIN(
    'Sales',
    TOPN(
      10,
      SUMMARIZECOLUMNS(
        'Sales'[Product],
        "Sum of Revenue", SUM('Sales'[Total])
        ),
    [Sum of Revenue],
    DESC))
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In the following code, the DAX expression is now formatted and rewritten to make 

use of variables. It produces the same result as the preceding code.

Table =

VAR InnerGroup =

    SUMMARIZECOLUMNS(

        -- Group BY --

        'Sales'[Product],

        -- Aggregation Column --

        "Sum of Revenue", SUM('Sales'[Total])

        )

VAR Top10PRoducts =

    TOPN(

        10,

        InnerGroup,

        [Sum of Revenue],

        DESC

        )

RETURN

    NATURALINNERJOIN(

        'Sales',

        Top10PRoducts

        )

Although this example is longer, breaking the code into smaller steps and formatting 

it makes it much easier to read and understand its logic.

 Using Variables with Text
Variables can store text as well as numeric data. The variable inherits the type of the 

expression being assigned. This example joins the text from textVar1 and textVar2 to 

produce a new value that returns “Hello World”.

My Measure =

VAR textVar1 = "Hello "

VAR textVar2 = "World"

RETURN CONCATENATE(textVar1,textVar2)
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You can use this technique with other DAX functions to create dynamic text-based 

measures that may change depending on the current filter context. Consider the 

following calculated measure:

Sales Text =

VAR SalesQty = SUM('Fact Sale'[Quantity])

VAR Text1 = "This month we sold "

VAR Text2 = " Items"

VAR Result = IF(

                   SalesQty > 0,

                   -- THEN --

                   Text1 & SalesQty & Text2,

                   -- ELSE --

                   "No sales this month"

                   )

RETURN Result

Here you assign the DAX SUM expression to the SalesQty variable. This is used later 

in the IF function to test for the existence of sales to determine the output message. Note 

the use of comments in the IF function to help clarify which code is being used to update 

the Result variable.

This also shows how you can use variables to improve performance. The SalesQty 

variable is potentially used twice in the IF function. If this formula was written without 

using variables, the IF function would make two calls to the underlying column and 

therefore take longer to arrive at the same result.

A similar function using text-based variables is one that generates a greeting 

calculated measure. Creating a calculated measure using the code in Listing 2-1 tests 

the current time of day and stores the hour of the day in the CurrentHour variable. 

This is then used in a SWITCH function to generate appropriate text to be stored in the 

GreetingText variable. This is then combined with other text to produce a measure that 

you can use as a dynamic greeting on your report.
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Listing 2-1. Generating a Greeting Calculated Measure

Greeting =

VAR CurrentHour = HOUR(NOW())

VAR GreetingText =

    SWITCH(

        TRUE(),

        CurrentHour<12,"Morning",

        CurrentHour<17,"Afternoon",

        "Evening"

        )

RETURN

    "Good " & GreetingText & ", " & USERNAME()

 Using Variables in Calculated Columns
When you are using variables inside calculated columns, variables automatically 

have access to values in any column from the same row. When you use the 

‘tablename’[columnname] notation during the assignment, the assumption is that the 

value used is from the same row.

This example uses variables to help create a new column that combines separate 

location values into a single piece of text in the new column. This type of column can be 

useful for some visuals that try to plot using text-based address data.

In this case, the DAX expression for the calculated column might look like this:

City and Country =

VAR city = 'Dimension City'[City]

VAR country = 'Dimension City'[Country]

RETURN

    city & ", " & country

In this block of code, you have declared two variables, city and country. The datatype 

inherited for these variables is Text and uses the & operator to concatenate the variables 

together in the RETURN statement. A sample of the output once the calculated column 

has been added is shown in Figure 2-1.
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The result of the preceding code is a new column added to the table called [City 

and Country]. The values for each row are the result of concatenating text using other 

values from the same row. This is similar to what you’d expect when you are creating 

new columns in a table in Excel, or when you are creating a new column in a SELECT 

statement in SQL based on other values from the same row.

When you use variables in calculated columns, the final RETURN statement must 

return a single value. It cannot return a column or a table.

 Using Variables in Calculated Measures
You can use variables to make calculations in calculated measures more readable and, in 

some cases, perform faster.

A difference between variables used in calculated measures compared with 

calculated columns is that variables in calculated measures do not have a connection 

with individual rows like they do with calculated columns. This means variables used in 

calculated measure cannot be assigned a column-based value.

Figure 2-1. Sample output of new calculated column using variables
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Using the same DAX code as in the previous section, a new calculated measure 

called [City and Country] would encounter errors similar to this:

A single value for column 'City' in table 'Dimension City' cannot be determined

This is more the nature of the difference between calculated measures and 

calculated columns, which are covered in Chapter 9. So, for now, let’s create a calculated 

measure using variables that work.

Say you have a report requirement to understand how many sales have a  

[Total Including Tax] value that is greater than or equal to $100.

One way to write this as a calculated measure using variables shown in Listing 2-2.

Listing 2-2. Writing Code as a Calculated Measure Using Variables

Total Sales > $100 =

VAR SalesAbove100 =

               FILTER(

                      -- Filter Table --

                      'Fact Sale',

                      -- Filter Condition --

                      'Fact Sale'[Total Including Tax]>=100

                      )

RETURN COUNTROWS(SalesAbove100)

In this calculated measure, a variable called SalesAbove100 is used to assign the 

output of the FILTER function. The FILTER function returns a table that cannot be used 

as the final output for the RETURN function because you are defining a calculated 

measure and calculated measures must return a single value.

The RETURN statement uses the COUNTROWS function to return a single value 

based on the table passed to it as the argument. This calculated measure shows how you 

can use the COUNTROWS function over a table expression stored in a variable and that 

is not limited to physical tables in the model.

 Using Variables in Calculated Tables
You can also use variables in DAX calculations to create new calculated tables. You may 

find this useful when you are creating new tables as summary or aggregated versions of 

existing tables that require additional processing or manipulation.
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This technique can improve the performance of some report pages, although it will 

have an impact on the time it takes to load data as well as the overall memory footprint 

of your data model.

The example in Listing 2-3 uses variables to help create a table showing who the top 

ten customers from ‘Fact Sale’ are based on amounts in the [Total Including Tax] column.

Listing 2-3. Using Variables to Create a Table

Sales Summary =

VAR SalesTableWithCustKey = 

      FILTER(

                      -- Filter Table --

                      'Fact Sale',

                      -- Fitler Condition --

                      'Fact Sale'[Customer Key]>0

                       )

VAR SalesTableGrouped =

      SUMMARIZE(

                              -- Table to Summarize --

                       SalesTableWithCustKey,

                       -- Columns to Group By --

                       'Fact Sale'[Customer Key],

                       -- Aggretated Column Name & Expression --

                       "Total Spend",SUM('Fact Sale'[Total Including Tax])

                            )

VAR SummaryTableFiltered =

      TOPN(

               -- Number of rows to return

                       10,

                       -- Table to filter --

                       SalesTableGrouped,

                       -- Order by Expression

                       [Total Spend]

                       )  

RETURN SummaryTableFiltered
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The first variable in the DAX calculation is SalesTableWithCustKey, which is assigned 

the output of the FILTER function used to remove rows of data that have a [Customer Key] 

of zero.

The SalesTableGrouped variable is assigned a table that is the output of the 

SUMMARIZE function. The SUMMARIZE function takes the SalesTableWithCustKey 

variable and groups by the [Customer Key] column. A new column called [Total Spend] 

is added, which calculates the SUM values for all rows belonging to each [Customer Key] 

to one value.

Finally, the SummaryTableFiltered variable is assigned the output of the TOPN filter 

function that filters a table with all customers down to a table showing just the top ten. 

This variable is eventually returned to the calculated table (Figure 2-2).

Unlike with the calculated column and calculated measure examples, you can return 

a calculated table to the data model when you’re using calculated tables.

The equivalent T-SQL using #tablenames that match the variables for the earlier DAX 

at Listing 2-3 would look like Listing 2-4.

Figure 2-2. Sample output of the ‘Sales Summary’ calculated table
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Listing 2-4. Equivalent T-SQL to Match the DAX Variables

SELECT

     *

INTO #SalesTableWithCustKey

FROM Fact.Sale

WHERE

    [Customer Key] > 0

SELECT

    [Customer Key],

    SUM([Total Including Tax]) AS [Total Spend]

INTO #SalesTableGrouped

FROM #SalesTableWithCustKey

GROUP BY

      [Customer Key]

SELECT TOP 10

      *

INTO #SummaryTableFiltered

FROM #SalesTableGrouped

ORDER BY

      [Total Spend] DESC

SELECT * FROM #SummaryTableFiltered

 Debugging Using Variables
A common technique used in SQL Stored Procedures is to create a series of temporary 

tables that are refined versions of a previous table. You can use variables in DAX in an 

equivalent way that can make it easier to follow and debug the processing of your data.

The final RETURN statement does not always have to return the most recent 

variable. It can be useful to output any variable so you can visually inspect the values 

contained by that variable. This is a form of manual debugging.
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 Nesting Variables
Variables can be nested and multiple layers of variable scope can exist within the same 

calculation.

Each layer of variable scope begins with a VAR statement and ends with a matching 

RETURN statement and can only reference other variables declared in the same level or 

higher.

Listing 2-5 is a simple example of a calculated measure that returns the value of 30. 

Two layers of variable scope are being used in this calculation.

Listing 2-5. An Example of a Calculated Measure

Nested Measure =

VAR Level1a = 10

VAR Level1b =

        VAR level2a = Level1a

        VAR Leval2b = level2a * 3

        RETURN Leval2b

RETURN Level1b

The first VAR statement begins the outermost layer of variable scope. The highlighted 

code shows the start and finish of the inner layer of variable scope and ends by returning 

a single value to be assigned to the Level1b variable.

The code in the inner layer of scope can access variables that have been created in 

the outer layer. This is shown by the Level2a variable being assigned the same value as 

Level1a. This cannot happen the other way around. Level2a should have a value of 10. 

Level2b should have a value of 30.

Listing 2-6 shows a slightly more complex version with multiple levels of nesting.

Listing 2-6. Complex Version with Multiple Nested Levels

Nested Measure 2 =

VAR Level1a = 10

VAR Level1b =

        VAR level2a = 20

        VAR level2b =
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            VAR Leve3a = Level2a + Level1a

            RETURN Level1a

        RETURN level2b

VAR Level1c =

        VAR Level4a =  Level1b * 5

        RETURN Level4a

RETURN Level1c

This calculated measure returns a value of 50. There are three layers of nesting below 

the Level1b variable. The innermost layer can access variables declared at all higher 

levels. The innermost level doesn’t return a variable declared in the same level.

The layer of scope opened beneath the Level1c variable cannot access any variables 

declared by the layers that were opened (and closed) during the expression to assign a 

value to Level1b.

 Nested Variables (Complex)
Rather than using hardcoded values to demonstrate variable nesting, Listing 2-7 shows 

how you can use variables in other types of calculations.

Listing 2-7. Example with Variables in Other Types of Calculations

Demo Table =

VAR Level1 =

    SUMMARIZE(

        FILTER(

            'Fact Sale',

            [Quantity] >

                    VAR Level2 = DAY(TODAY())

                    RETURN IF(

                              Level2 > 10,

                               -- Then --

                               20,

                              -- Else --

                              30

                              )
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            ),

            -- Group by Columns --

            [City],

            -- Aggregations Columns --

            "Sum of Quantity",sum('Fact Sale'[Quantity]))

RETURN

    TOPN(

        VAR Level2 = 5

        RETURN Level2,

        Level1,

        [City]

        )

This calculated table uses nested variables to help control the parameters used in the 

filter expression of the FILTER function. The Level2 variable can be assigned different 

values depending on the day of the month. If the current day of the month is between  

1 and 10, this layer of scope returns a value of 30, otherwise it returns a value of 20 to be 

used in the filter expression.

Another nested level of scope that safely uses the same name previously is assigned 

a hardcoded value of 5 to be returned as a parameter to the TOPN function that also uses 

the Level1 variable as a parameter.

This is not the most useful calculation, but it does demonstrate how you can use 

variables throughout longer calculations.
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CHAPTER 3

Context
Some say that once you have mastered the concept of context in DAX, you have mastered 

DAX. This is mostly true, and if you have indeed mastered context, you are a long way up 

the learning curve.

Context can seem a little daunting at first, but once you understand the effect that 

types of context have on calculations, hopefully DAX starts to make more sense. Context 

is how DAX applies layers of filtering to tables used in your calculations so that they 

return results that are relevant for every value.

Most context is automatic, but some context allows you to control the underlying 

data passed to your DAX calculations. This chapter mostly uses pivot tables to describe 

the order and effect of the different types of context. Other visuals and charts apply 

the context logic the same way pivot tables do, but I think pivot tables do a good job of 

showing the effect.

There are two types of context in DAX: filter context and row context. Depending on 

your calculation, one or both can apply at the same time to affect the result of your DAX 

calculation.

Context is the layer of filtering that is applied to calculations, often dynamically 

to produce a result specific to every value in a pivot table or visual, including row and 

column totals.

 Filter Context
Filter context is a set of column-based filters applied on the fly to the underlying data 

for every DAX calculation. It is helpful to think of every value cell in a pivot table as its 

own separate computation. Each value cell treats its measure as a function and passes 

relevant filters to the function to be applied to the calculation.



42

It might also be helpful to think of filter context as a container. The container can 

be empty or have one or more column filter rules. A column filter rule simply specifies 

which rows in a given column in a table return true to a Boolean test.

Although examples in this chapter are mostly single-column filters, you should not 

assume that all filters in a filter context are single-column filters. In general, each filter 

in the filter context is a table that can have more than one column. This is important 

because a two-column filter establishes a correlation between the two columns. For 

example, a filter of two rows { (2016, US), (2017, UK) } is different from two independent 

column filters { 2016, 2017 } and { US, UK }.

Each execution of a calculation starts by having access to every row of every table in 

the data model, but before the core calculation is executed, a filter context is established 

to determine the most relevant set of column filters for that specific execution. Once the 

filter context is finalized, the column filter rules contained inside the context are applied 

across the data and calculations such as SUM execute using remaining data in the 

columns they have been coded to use. Once the calculation is complete, the filter context 

is destroyed and is not used by any other process.

Column-based filters can be added to the filter context implicitly, in that they are 

added automatically to the filter context because of another field in the same visual, 

such as a row or column header. They can also be added to the filter context using 

filters external to the visual, such as slicer selections or other report, page, or visual 

filters.

Column-based filters can also be added to, or removed from, the filter context 

explicitly. This is where filter-based rules are added into DAX calculations.

Unlike T-SQL, in which you must write specific code to filter and aggregate using 

JOIN, WHERE, GROUP BY, and HAVING clauses in SELECT statements, DAX can 

dynamically construct predicate conditions per computation for you.

Let’s start with a very basic DAX measure that uses the SUM function to return a 

value that represents all the values added together for an individual column.

Sales Qty = SUM('Fact Sale'[Quantity])

This calculated measure returns a number that represents the sum of every value in 

the [Quantity] column in the ‘Fact Sale’ table. Dropping this calculated measure onto 

a suitable visual on a report with no additional fields or filters applied should display a 

value of 8,950,628 using the WideWorldImportersDW dataset.
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In this example, the single value displayed on the report represents a single 

execution of the calculated measure. The [Sales Qty] calculated measure uses the SUM 

function that is passed to the column reference of ‘Fact Sale’[Quantity], meaning it adds 

every value from every row in the [Quantity] column to produce a value. It has access to 

every value in the [Quantity] column because there are no column-based filters in the 

filter context.

The following would be the equivalent T-SQL statement to this DAX:

SELECT

    SUM(Quantity) AS [Sales Qty]

FROM Fact.Sale;

 Implicit Filter Context
When a calculated measure is added to a pivot table using other fields from ‘Fact Sale’ 

(or from tables related to ‘Fact Sale’) in the rows and columns, we don’t see the value 

8,950,628 repeated over and over in every cell; instead we see other values that represent 

the calculation filtered according to the intersecting points of our column and row 

headers (Figure 3-1).

This is the effect of filter context on the calculated measure. DAX is implicitly adding 

a set of column-based filters to the filter context for every one of the 20 cells in the 

pivot table, and a different result is showing in every value cell. This pivot table is using 

the simple [Sales Qty] calculation that contains no DAX code to say how to group or 

aggregate the [Quantity] column to produce each value.

Figure 3-1. The [Sales Qty] calculated measure in a pivot table
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Consider Figure 3-1, which uses the [Sales Qty] calculated measure. The pivot table 

has five rows and four columns. There are four calendar years in the dataset, which is 

why you are seeing five rows (including a row at the bottom for the total). The Sales 

Territory has been filtered to show just three of the ten actual Sales Territories in the data 

for this example. The right-most column is a grand total for each row.

The values in each cell are different and none are the same as the grand total value 

of 8,950,628. Every execution of the calculated measure in this pivot table uses a unique 

filter context.

The DAX expression is a simple SUM calculation and makes no mention of any 

filtering by Calendar Year, or Sales Territory region, or any other grouping instruction for 

that matter. So why do we have the value of 277,812 in the top-left cell, and 298,948 in the 

cell immediately below that?

This is the effect of filter context in DAX. The pivot table has 20 value cells to be 

calculated, so the DAX engine performs 20 separate logical calculations, one logical 

computation for every cell in the pivot table. This includes the calculations required to 

determine the values for each of the row and column totals.

To produce a value of 277,812 for the top-left cell, the calculated measure begins 

by having access to every value in the ‘Fact Sale’[Quantity] column. The filter context 

for this calculation starts empty but has two sets of column filters implicitly added to 

it. One of the column filters is that rows in the [Calendar Year] field must have a value 

of 2013; the other column filter is that rows in the [Sales Territory] column must have a 

value of “Far West”.

All filters in a filter context are based on a logical AND, so only rows in the ‘Fact 

Sale’[Quantity] column that can meet both criteria are passed to the SUM function.

The T-SQL equivalent to generate the value for this cell is like adding the INNER 

JOIN and WHERE clauses in Listing 3-1 to the T-SQL statement.

Listing 3-1. T-SQL of the [Sales Qty] Calculated Measure with Filters to Produce 

Value for Top-Left Cell in Figure 3-1

SELECT

      SUM([Quantity]) AS [Sales Qty]

FROM FACT.Sale AS S

       INNER JOIN Dimension.City AS C

             ON C.[City Key] = S.[City Key]
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       INNER JOIN Dimension.Date AS D

             ON D.Date = S.[Invoice Date Key]

WHERE

       C.[Sales Territory] = 'Far West'

       AND D.[Calendar Year] = 2013

The WHERE clause in T-SQL is like the filter context. The two statements inside the 

WHERE clause represent each of the column filters that were implicitly added to the 

filter context.

Let’s now look at what the DAX engine is doing to produce the value for the second 

row of the first column (298,948). The filter context for this computation again starts 

empty but has two sets of column filters implicitly added to it. One column filter is that 

rows in the [Calendar Year] field must now have a value of 2014; the other column filter 

is that rows in the [Sales Territory] column must have a value of “Far West”. Listing 3-2 

shows the equivalent T-SQL for the computation used for this cell.

Listing 3-2. T-SQL of the [Sales Qty] Calculated Measure with Different Filter 

Context

SELECT

      SUM([Quantity]) AS [Sales Qty]

FROM FACT.Sale AS S

      INNER JOIN Dimension.City AS C

             ON C.[City Key] = S.[City Key]

      INNER JOIN Dimension.Date AS D

             ON D.Date = S.[Invoice Date Key]

WHERE

      C.[Sales Territory] = 'Far West'

      AND D.[Calendar Year] = 2014

The only difference between the T-SQL statements in Listing 3-1 and Listing 3-2 is 

the final predicate that specifies that the value for D.[Calendar Year] is now 2014 rather 

than 2013. Each cell has its own filter context and each filter context has its own set of 

column filters.

This is repeated over and over in any order because no cell in a pivot table relies on 

the output of another cell.
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Let’s jump to the bottom row of the first column and look at what the DAX engine is 

doing to produce a value of 1,028,670 for the grand total of the first column. DAX does 

not keep a running total of the previous calculations in the same column. Logically the 

engine starts from scratch and arrives at a value for the total independent of the other 

19 cell calculations in the pivot table.

DAX once again starts with an empty filter context but in this case, just one column 

filter is implicitly added to the filter context. This time the column filter is that the [Sales 

Territory] column must have a value of “Far West”. This filter context restricts the rows 

in the ‘Fact Sales’[Quantity] column that are passed to the SUM function. More rows are 

passed in this case than from the previous two examples.

Listing 3-3 shows the T-SQL code for this cell.

Listing 3-3. T-SQL Equivalent for Basic DAX Query to Produce the Total Value 

for the First Column of Figure 3-1

SELECT

      SUM([Quantity]) AS [Sales Qty]

FROM FACT.Sale AS S

      INNER JOIN Dimension.City AS C

             ON C.[City Key] = S.[City Key]

WHERE

      C.[Sales Territory] = 'Far West'

The difference between this and the earlier examples is you no longer need an inner 

join to the Dimension.Date table and you have one less predicate in your WHERE clause, 

so no filtering is taking place on the date table.

You can use this to your advantage in more complex scenarios where it’s possible 

to specify an altogether different calculation for the grand total cell than the calculation 

used in the cells filtered by a calendar year. In fact, it’s possible to use functions to 

instruct DAX to return completely different calculations altogether for any cell you want 

to produce the SCOPE-like behavior available in multidimensional data models.

The calculated measure in Listing 3-4 applies a test to see if any column filter rules 

are inside the filter context that ‘Dimension Date’[Calendar Year] must match 2014. If 

there are, the SUM function is bypassed and the text value of “overridden” is returned.
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Listing 3-4. Using SELECTEDVALUE to Help Override output

Sum of Quantity =

    IF(

        SELECTEDVALUE('Dimension Date'[Calendar Year])=2014,

        -- THEN --

        "overridden",

        -- ELSE --

        FORMAT(

            SUM('Fact Sale'[Quantity]),"#,000"

            )

        )

Any cell that uses the [Sum of Quantity] calculated measure that has a column filter 

for [Calendar Year] = 2014 inside its filter context now returns the “overridden” text 

instead of running the SUM function (Figure 3-2). 

Notice the row totals still produce the same totals as before and have not been 

reduced by the missing values in the 2014 row. This is because the calculations for 

the row totals have independent filter context and can still use the data belonging to 

[Calendar Year] = 2014.

Column filters can be implicitly added to the filter context from sources other 

than row and column headers of a visual. They can be driven from external sources, 

such as selections on slicers or other visuals, or they can be specific report, page, or 

visual filter rules.

Figure 3-2. Output of the [Sum of Quantity] calculated measure
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If a report-level filter specifies that the ‘Dimension City’[Country] field must be 

“United States”, this column filter rule is added implicitly to the filter context for every 

execution of a calculated measure used in the report.

 Another Example

Let’s look at filter context that uses a simpler dataset. Consider the dataset in Table 3-1.

Using data from Table 3-1 in a pivot table would produce the results shown in 

Figure 3-3.

Table 3-1. Dataset to Demonstrate Filter Context

Person Pet Value

andrew Cat 10

andrew Dog 20

andrew Dog 30

Bradley Cat 40

Bradley Cat 50

Bradley Dog 60

Charles Cat 70

Charles Bird 80

Charles Dog 90

Figure 3-3. Dataset from Table 3-1 used in a pivot table
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Here is the calculated measure used in the pivot table to generate these values:

Sum of Value = SUM( Table1[Value] )

Let’s walk through an example of filter context. Let’s start by using the highlighted 

cell (Figure 3-3) in the top row of the data that shows a value of 50. This is the value that 

is the intersection of Andrew and Dog.

The calculation starts with an empty filter context that contains no column-based 

filters. If the filter context remains like this, the SUM function has access to every row in 

the [Value] column of Table 3-1 and an output 450.

The calculated measure is on a pivot table that has one field on the row header 

[Person] and one on the column header [Pet], so two column-based filters are added to 

the filter context before the calculation executes the SUM function. The first column- 

based filter is that the Table1[Person] must be “Andrew” (see Figure 3-4). This means the 

filter context now has a column-based filter rule.

Figure 3-4. Showing implict column filter rule of “Andrew”

Table 3-2. Dataset from Table 3-1 with Filter Applied 

to [Person] Column

Person Pet Value

andrew Cat 10

andrew Dog 20

andrew Dog 30

The effect of the filter context on the data is that the [Value] column has now been 

reduced to just three rows of data as shown in Table 3-2, and if left like this, the SUM 

function will return 60.
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The second column-based filter to be added to the filter context is that the 

Table1[Pet] must be “Dog”. This now means the filter context has two column-based 

filter rules (see Figure 3-5). This reduces the rows in the Value column to just two rows 

(Table 3-3).

The filter context is complete, and the SUM function can now add all the values 

in the [Value] column. This results in a value of 50, which is the number that was 

highlighted back in Figure 3-3.

Column-based filters can also be added or removed from the filter context by code in 

a DAX calculation. These are known as explicit filter context and we look at them next.

 Explicit Filter Context
Explicit filter context refers to code in calculations that specifically adds or removes 

column filter rules to and from the filter context. Explicit filter context is applied after 

implicit and row context and allows you to customize and sometimes completely 

override the default behavior of your measures in a way the row and query context can’t. 

You can apply filter context using DAX functions such as FILTER.

Figure 3-5. Showing implict column filter rule of “Andrew” and “Dog”

Table 3-3. Dataset from Table 3-1 with Filter Applied to 

[Person] and [Pet] Columns

Person Pet Value

andrew Dog 20

andrew Dog 30
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Several functions allow you to control the data that is ultimately exposed to your 

calculations and therefore impact the result. These functions, such as ALL, ALLEXCEPT, 

and ALLSELECTED are covered in Chapter 6, which is dedicated to filter functions. You 

can use these to apply or ignore any combination of outside filters already in place to 

provide fine-grained control over what data is used by your DAX expressions.

Let’s start with a simple example that uses WorldWideImportersDW data. Let’s  

create a calculation that shows the SUM of [Quantity] but only for stock items that are the 

color red.

You can approach this in two ways. You can create a calculated column or a 

calculated measure. Both exhibit different behaviors, which you see here.

The DAX for the calculated column might look like this:

Filter on Red as Column = CALCULATE(

                          SUM('Fact Sale'[Quantity]),

                          'Dimension Stock Item'[Color]="Red"

                          )

Whereas the DAX for the calculated measure might look like this:

Filter on Red as Measure = CALCULATE(

                          SUM('Fact Sale'[Quantity]),

                          'Dimension Stock Item'[Color] = "Red"

                          )

Apart from the name and type of calculation, the expression used for both is 

identical. However, the calculations do not behave the same and that is due to different 

context.

Both calculations are created on the ‘Fact Sale’ table and specify a filter condition 

on a column in a different table. This works because you have defined a relationship 

between the ‘Fact Sale’ table and ‘Dimension Stock Item’ table in the data model.

Both calculations use the CALCULATE function to invoke the filter function as one of 

the easiest ways to apply a filter.

Both calculations are added to a pivot table (Figure 3-6) along with a nonfiltered 

implicit measure showing the sum of the quantity column.
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The first column called Quantity is the [Quantity] field from the ‘Fact Sale’. This is not 

one of our calculations; instead it’s the field added to the pivot table to provide a baseline 

value as a reference for the two calculations.

Because this column uses a numeric datatype, a default summarization behavior of 

SUM is implicitly applied to these results, and the only context being applied to these 

results is query context from the row and column headers of the pivot table.

No DAX is required to generate this behavior. A column property of the data model 

allows you to define a default summarization for numeric columns. If no default is 

defined, the data model assumes that SUM should be the default behavior.

The next column in the pivot table is an implicit measure using the calculated 

column called [Filter on Red as Column], which only shows a value on the line where 

the row header is Red. The last column is the [Filter on Red as Measure] column, which 

shows the value of 29,033 repeated over and over, including on the last line, which is a 

Total row that is not filtered by a color.

Figure 3-6. Pivot table showing output using [Filter on Red as Column] and [Filter 
on Red as Measure]
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 Calculated Column
Let’s look at what is happening with the [Filter on Red as Column] calculated column. 

In this case, we use the CALCULATE function. Let’s use an explicit filter expression with 

this function to specify a rule that the ‘Dimension Stock Item’[Color] must be “Red”.

The SUM function doesn’t understand row context, so the CALCULATE function 

automatically converts the row context into a filter context that allows the SUM function 

to access the data it needs to complete. See “Context Transition” at the end of this 

chapter, which explains this in more detail.

The calculation is evaluated at the point data is read into the data model, and for 

every row in the ‘Fact Sales’ table, the calculation is computed and the result is returned 

as the value for the new column. The explicit rule that ‘Dimension Stock Item’[Color] 

must be “Red” is added to the filter context for each execution of the calculation.

The ‘Fact Sales’ table has 228,265 rows, so logically, this calculation is computed 

228,265 times with each computation only having access to information from its current, 

or related, row.

Nothing else is added to, or removed from, the filter context, so if a row in the ‘Fact 

Sales’ table happens to be a red stock item, the calculation returns the SUM of the 

[Quantity] column, otherwise the calculation returns a blank.

The SUM function requires a column to be passed to it to produce a value. For each 

computation of all 228,265 rows, the SUM function uses a ‘Fact Sale’[Quantity] column 

that is filtered by the filter context.

Once the calculated column has been added to the model, the data is visible in the 

Data View. This shows that only some rows have a value in the [Filter on Red as Column] 

column. These are rows that belong to stock items that are “Red”. Most rows in this 

dataset will have blank values.

In Figure 3-7, two highlighted rows show values in the final column, whereas other 

rows show a blank cell. This is the only time the calculated column is computed and it 

explains why, when the column is added to the pivot table, the result shown in the table 

is only for data where the row header is “Red”.
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Note Setting a default summarization on a calculated column that uses the 
CaLCULate function has no effect. the expression used in the CaLCULate function 
determines the result for each cell, including totals.

The [Filter on Red as Column] calculated column only applies a very basic filter. An 

array of filter functions in DAX allows you to set more sophisticated filter behavior, which 

I cover in later chapters.

When you drag the calculated column to the pivot table, an implicit calculated 

measure is generated and used by the pivot table.

 Calculated Measure
Let’s look at the final column of the pivot table in Figure 3-8, which uses the [Filter on 

Red as Measure] calculated measure. This now returns values on rows with row headers 

for values other than “Red”, and the very bottom row returns the same value as those 

higher in the column. You might expect the value shown in the final column to at least be 

the total of the values for that column.

Figure 3-7. Sample of ‘Fact Sale’ table with new [Filter on Red as Column] 
calculated column
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Even though the formulas used for the calculated measure and calculated columns 

are identical, the difference is context. When the calculated column is computed, each 

individual calculation has row context and is logically computed 228,625 times.

The calculated measure is computed only ten times for this visual: once for each cell 

in the pivot table that has a row header (the nine different colors), and once for the total 

row at the bottom. When the calculated measures are evaluated, there is no row context. 

Each calculation starts with an empty filter context.

How does DAX arrive at the value of 29,033 for each execution of this calculated 

measure?

For the top nine rows, an implicit column filter-based rule is added to the empty 

filter context for each execution. This implicit filter rule comes from the first column in 

the table and states that the value in the ‘Dimension Stock Item’[Color] column must 

match the value in the relevant row header.

However, an explicit column filter rule is also coded into the calculated measure 

using the same column. This replaces the implicit filter rule, meaning the filter context 

still has a single-column filter rule on this column but now uses the rule defined 

explicitly.

The calculation on the bottom row does not have an implicit column-based rule 

added to its filter context, but it still adds the explicit column filter to its filter context 

before it runs its SUM function. Therefore, it returns the same value as those above it.

Figure 3-8. Pivot table showing output using [Filter on Red as Column] and [Filter 
on Red as Measure]
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Once the filter context is finalized, it contains a single-column filter rule over the 

‘Dimension Stock Item’[Color] column. The SUM function now returns 29,033 using 

the surviving values in the [Quantity] column. When this is repeated for every cell in the 

pivot table column, you get the same result, even for the grand total line.

This may seem odd, but hopefully it helps you understand how filter context is 

affecting the core calculation.

In case you are interested, Listing 3-5 shows the T-SQL equivalent of our calculated 

measure.

Listing 3-5. T-SQL Version of DAX Calculated Measure

SELECT

       SUM ( F.[Quantity] ) AS [Filter on Red as Measure]

FROM FACT.Sale AS F

       LEFT OUTER JOIN Dimension.[Stock Item] AS D

             ON F.[Stock Item Key]=D.[Stock Item Key]

WHERE

       D.[Color] = 'Red';

If you run this T-SQL query ten times (once for every cell), you get the same 29,033 

result every time.

The T-SQL in Listing 3-5 uses a LEFT OUTER JOIN. This is also the join type that 

DAX would use in this particular case. Be aware that depending on the filters and DAX, 

sometimes this might be INNER JOIN.

 Hardcoded Example
Another example of filter context is to hardcode both a calculated column and a 

calculated measure to return a value of 1.

Consider the following two calculations. The first is a calculated column while the 

second is a calculated measure:

Hardcoded Calculated Column = 1

Hardcoded Calculated Measure = 1

When we add these two calculations to the same pivot table we get the result shown 

in Figure 3-9.
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As expected, the calculated column executes 228,265 times and returns the value of 1 

to every row. When added to the pivot table, an implicit calculated measure is generated 

using the default summarization behavior of SUM. The filter context for this implicit 

measure receives a column filter rule from the first column of the pivot table. This is a 

roundabout way of producing a ROWCOUNT measure.

The hardcoded calculated measure has ten cells to produce a value for, so logically, 

it computes the simple calculation ten times. The result as shown is the hardcoded value 

for 1 appearing in each cell—including the Total.

 Row Context
Row context is effective when you create calculated columns or execute code inside an 

iterator function. Just as calculated measures perform a logical computation for each cell 

in a pivot table or report visual, calculated columns perform a logical computation to 

generate a value for every row in your calculated column. If you add a calculated column 

to a table with 250 rows, the calculation is executed 250 times. Each execution has a 

slightly different row context.

A key difference between calculated columns and calculated measures is the point in 

time the calculation takes place. Calculated columns are computed at the point they are 

created or modified and after data has been physically loaded or refreshed into the data 

model, whereas calculated measures recompute any time a filter is changed that might 

affect the value.

Figure 3-9. Pivot table showing calculations using hardcoded values
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Row context allows the calculation to quickly access value from the same row in the 

current table or from values that might exist in rows in related tables via relationships.

A simple example of row context using the WideWorldImportersDW dataset 

(Figure 3-10) is to create a calculated column that returns a value based on multiplying 

the [Unit Price] and [Quantity] columns together.

Figure 3-10 shows a new calculated column called [Total Price] that uses the [Unit 

Price] and [Quantity] columns from the same row in its calculation to produce each result.

The top row of in Figure 3-10 generates a value of 256 in the [Total Price] column, 

which is the result of 8 * 32.

Once the data has been loaded or refreshed, the value cannot be changed. If you 

have lots of calculated columns and many rows, your data load/refreshing takes longer. 

Another impact of adding calculated columns to the model is that additional memory is 

needed to store the computed results. Any additional calculation created that uses data 

from a calculated column treats the values as if they have been provided by the external 

data source.

If you have relationships defined in your data model, you can use the RELATED 

function to access columns from other tables to use in formulas in your calculated column.

An example of this is adding a calculated column to the ‘Fact Sale’ table that 

estimates the weight of each row based on the quantity information from the ‘Fact Sale’ 

table and combines this with the [Typical Weight Per Unit] column from the ‘Dimension 

Stock Item’ table. The formula for the calculated column uses data from two tables to 

produce the result.

Figure 3-10. Sample of ‘Fact Sale’ with new calculated column
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Figure 3-11 highlights the relationship between the [Stock Item Key] columns from 

each table.

When the following calculated column is added to the ‘Fact Sale’ table, it 

demonstrates row context:

Estimated Weight =

        'Fact Sale'[Quantity] *

                    RELATED(

                        'Dimension Stock Item'[Typical Weight Per Unit]

                        )

You can see the new calculated column in the Data View in Figure 3-12.

Figure 3-11. Relationship View between ‘Dimension Stock Item’ and ‘Fact Sale’

Figure 3-12. Sample output of 'Fact Sale' with the new calculated column
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IntelliSense only suggests columns in the ‘Dimension Stock Item’ table once you use 

the RELATED function. Relationships in the data model help control objects offered by 

IntelliSense.

The T-SQL equivalent of this calculation is issuing the following command for each 

row, although the S.[Stock Item Key] would be hardcoded to the value from the column 

defined in the relationship:

SELECT TOP 1

      S.[Quantity] * D.[Typical Weight Per Unit] AS [Estimated Weight]

FROM FACT.Sale AS S

      LEFT OUTER JOIN Dimension.[Stock Item] AS D

             ON D.[Stock Item Key] = S.[Stock Item Key]

Note Calculated columns cannot access data from the row above or below the 
current row using a current row +/-1 instruction.

Although this note is not entirely true, it’s not as straightforward as what you might 

encounter in other languages. You can access data from other rows in your table in 

calculations that use explicit DAX functions, such as FILTER, which I cover in Chapter 6 

as a more advanced scenario.

Assume there is no concept of ordering when loading tables, so the previous/next 

row cannot be guaranteed. As soon as a row has been read and broken apart to populate 

the various column indexes during the data load process, it is discarded.

It is possible to logically reconstruct rows when you are required to, but this can be 

computationally expensive, especially if the table has many columns.

 Iterators
Several DAX functions rebuild rows based on information stored in the column indexes. 

These are known as iterators, or X functions, because these functions typically have an X 

as the last character of the function name. Here are some of the iterator functions:

• AVERAGEX: Calculates the average (arithmetic mean) of a set of 

expressions evaluated over a table.

• COUNTAX: Counts the number of values that result from evaluating 

an expression for each row of a table.
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• COUNTX: Counts the number of values that result from evaluating 

an expression for each row of a table.

• GEOMEANX: Returns the geometric mean of an expression value in 

a table.

• MAXX: Returns the largest numeric value that results from evaluating 

an expression for each row of a table.

• MEDIANX: Returns the 50th percentile of an expression value  

in a table.

• MINX: Returns the smallest numeric value that results from 

evaluating an expression for each row of a table.

• PRODUCTX: Returns the product of an expression value in a table.

• RANKX: Returns the rank of an expression that is evaluated in the 

current context in the list of values for each row in the specified table.

• SUMX: Returns the sum of an expression evaluated for each row in 

a table.

• FILTER: Returns a table that has been filtered.

Iterators are functions that process once for every row over any table passed to the 

function. A process can be a calculation, or in the case of FILTER, it applies a set of 

Boolean rules to filter the table it uses to return a filtered table.

Iterators can be nested many times. Each instance of an iterator keeps its own set of 

row context. Expressions in a nested iterator can access values from a row context from 

an outer iterator. These are often described as being the equivalent of the inner and 

outer loops you might see in other languages:

foreach (row outer in TableA)

{

       foreach (row inner in TableB)

       {

             return expression;

       }

}
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Iterators allow you to solve sophisticated data problems that can’t easily be solved 

using functions like SUM, COUNT, or AVERAGE, but they can cause an extra load on 

CPU processing.

Note SUM/CoUnt/aVeraGe are just syntax sugar for SUMx/CoUntx/
aVeraGex. In the case of a single column, there is no performance advantage to 
using SUM(‘table’[Column]) instead of SUMx(‘table’, [Column]).

 How Data Is Stored in DAX
Another way to think about context in DAX is to consider how the underlying engine 

stores data once it has imported it. Looking at context in this way may help you 

appreciate the order and effect different types of context have on your calculations.

Your source data is typically stored in rows or batches of rows. Each row may have 

many columns, fields, or properties. When you import data to a DAX model, the data 

source is read into the data model row by row.

Table 3-4 is an example dataset based on US population estimates from the 

US Census Bureau. The raw dataset used here is only nine rows and has not been 

aggregated.

Table 3-4. US Population Estimates

US State Age Band 2015 Population 2016 Population

California Less than 25 25,947,866 25,748,276

California Less than 50 26,922,326 27,188,676

California 50 or over 24,805,956 25,245,954

Florida Less than 25 11,676,422 11,729,046

Florida Less than 50 12,627,122 12,853,344

Florida 50 or over 16,049,448 16,501,676

texas Less than 25 19,885,656 20,033,802

texas Less than 50 18,700,892 19,046,066

texas 50 or over 16,036,504 16,412,550
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When this dataset is imported into DAX, the import engine reads and processes 

the data row by row. A calculated column added to this dataset determines what the 

differences between the 2015 and 2016 population might look like:

Population Difference = 

'Population by Age'[2016 Population] - 'Population by Age'[2015 Population]

When the first row is imported, the calculation can be computed easily because the 

engine has access to every value in the row, including the [2016 Population] and [2015 

Population] columns used in the formula. The single-value result of the calculation is 

then stored in a new column on this row.

The calculation does not use any filter statements, so the filter context is empty. 

Each row is read in isolation, so you have no access to any information in any other rows 

(except through data model relationships with other tables).

 Column Indexes
The next step of the import process is to break apart each of the columns into its own 

data structure. DAX keeps and maintains a separate storage structure for every value in 

the [US State] column, maintains a separate data structure for the [Age Band] column, 

and so on. I call these data structures column indexes. The data model applies several 

types of compression algorithms to each of the column indexes, which I will not detail 

here, but the key point is that each column index retains enough information to allow it 

to understand the original row number each value belonged to.

As I mentioned, the column indexes contain a reference to original row numbers, so 

although it is possible for the engine to stitch rows back together at runtime, it becomes 

an expensive operation in terms of performance. The DAX engine can compute most 

calculations very quickly using just a few column indexes without needing to reconstruct 

large numbers of complete rows.

Let’s look at an example of how DAX uses the column indexes to generate a result. 

Say you would like to create a pivot table that uses the nine rows of population estimates 

and focus on the [2015 Population] broken down by [Age Band]. A pivot table would look 

like Figure 3-13. The top value of 57,509,944 has been highlighted; it is the combined 

total of three underlying rows that originally belonged to California, Florida, and Texas.
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The formula for the calculated measure is simple enough. This is the DAX to create 

this as an explicit measure:

2015 Population = SUM('Population by Age'[2015 Population])

The SUM function is passed a reference to the [2015 Population] column. The filter 

context in effect is that SUM should only consider rows where the [Age Band] has a value 

of “Less than 25”.

Before the SUM function can begin, the engine first needs to scan the [Age Band] 

column index to obtain the original row numbers for all values it has for “Less than 25”. 

These are likely to be sorted and grouped together, so the scan will quickly return a list of 

row numbers, which in this case are rows 1, 4, and 7 (Table 3-5). The next step is to allow 

the SUM function to proceed, but only for values that have these three numbers as row 

numbers.

Once you have the [2015 Population] for rows 1, 4, and 7, the engine can return a 

value of 57,509,944 to the appropriate cell (Figure 3-14).

This is repeated for the second row, but in this case the row numbers retrieved from 

the [Age Band] column index for “Less than 50” are rows 2, 5, and 8.

The calculation then identifies that rows 3, 6, and 9 are required for the “50 or Over” 

values.

Figure 3-13. Pivot table using the [2015 Population] calculated measure

Table 3-5. Rows Used by SUM Function Filtered by [Age Band]

Row Number Age Band Row Number 2015 Population

1 Less than 25 1 25,947,866

4 Less than 25 4 11,676,422

7 Less than 25 7 19,885,656
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For the final row, there is no need to scan the [Age Band] column index, so all values 

from the [2015 Population] column are passed to the SUM function for the output of 

172,652,192.

In summary, to compute the numbers for all but the total row, the engine needed 

to access two column indexes and no more. It did not need to scan or read the column 

indexes for [US State] or [2016 Population]. The value returned for the final row could be 

determined by reading just the [2015 Population]. The only context that was in effect was 

query context.

The underlying query engine may approach these steps in a way that is more 

efficient, but if you think about what is logically required by the engine to produce the 

final value for each cell, it may help to understand the effect of the three types of context.

 Context Transition
On occasion, you need to convert a row context to a filter context. This is because some 

DAX functions do not understand row context.

The row context example from earlier in the chapter used the following formula:

Estimated Weight =

      'Fact Sale'[Quantity] *

                    RELATED(

                        'Dimension Stock Item'[Typical Weight Per Unit]

                        )

This calculation doesn’t use DAX functions such as SUM or AVERAGE, so it can 

compute a result that is meaningful and expected.

Figure 3-14. Pivot table using the [2015 Population] calculated measure
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Let’s look at what happens when you use a DAX function that does not understand 

row context by adding the following two calculated columns to the ‘Fact Sale’ table.

New Quantity Column 1 = SUM ( 'Fact Sale'[Quantity] )

New Quantity Column 2 = CALCULATE( SUM( 'Fact Sale'[Quantity] ) )

Both calculated columns use the SUM function and the same column reference 

is used for both. The only difference is the second calculated column is using the 

CALCULATE function around the SUM function. The results are shown in the two  

right- hand columns in Figure 3-15.

For the [New Quantity Column 1] column, you can see the value 8,950,628 repeated 

in every row of the table for this column. The filter context is empty for each execution of 

this version of the calculation, so the SUM function has access to every row in the ‘Fact 

Sale’[Quantity] column.

The [New Quantity Column 2] column produces a different result that highlights 

the effect of context transition. The CALCULATE function knows it is being used in a 

calculated column, so it converts the existing row context for each line into a column- 

based filter rule that is then added to the filter context. This time around, each execution 

of the SUM function runs using a heavily filtered version of the ‘Fact Sale’[Quantity] 

column.

Context transition can only convert row context to filter context. Context is never 

converted the other way.

Figure 3-15. Sample of ‘Fact Sale’ showing new calculated columns
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CHAPTER 4

Summarizing 
and Aggregating
When it comes to data modeling, a common requirement is to generate summary versions 

of existing tables. This chapter explores some of the options available to you in DAX.

There are plenty of reasons why you might consider adding a summary table to 

your data model. Used well, summary tables can greatly improve performance. A large 

table made up of millions of transactions with thousands of rows per day can be a 

great candidate for a summary table that may only have one row per day. Metrics can 

be calculated while aggregating and stored as columns to provide most of the same 

reporting that might otherwise take place over the raw data. Visuals that use such a 

summary table are much faster as long as you only need to plot by day, month, or year.

It’s important to be aware that when you create a summary table like this, you lose 

the ability to cross filter on any level of aggregation not included in the summary table. 

But with some thought and planning, you can optimize a Power BI report to provide a 

much better experience for your end users.

Other uses of a summary table may revolve around helping you understand some 

behavioral features in your dataset; for instance, when was the first and/or last time 

a customer made a purchase using the MIN and MAX functions over a purchase date 

column? You can join the resultant summary table back to the original table as a smart 

way of filtering records dynamically based on the first/last purchase date, which may 

be different for each customer. You can also use a summary table to find the top ten 

products based on sales using grouping and ranking together.

These are the main DAX functions that provide the ability to create summary tables:

• SUMMARIZE

• SUMMARIZECOLUMNS

• GROUPBY
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This chapter looks at these functions in more detail and covers the differences 

between each with suggestions as to when you might choose one over the other. For 

simple examples over small sets of data, they are practically interchangeable. However, 

for more complex scenarios using larger datasets, choosing the right function can make 

a significant difference.

The summarization functions all return a new table as their output. They are often 

used as the main function in part of a calculate table expression as well as part of 

complex working logic inside a calculated measure.

The functions are similar in that you can specify columns to be used to group by. If 

no columns are specified, the function only returns a single-row table. If one column is 

used to group by, the number of rows reflect the total number of unique values in that 

column. The number of rows may grow as additional columns are added, but not always. 

Adding a calendar month column to a summarization function that is already grouping 

by calendar day does not add any rows to the final output.

The columns used to group can exist across multiple tables, as long as you have 

defined relationships appropriately. These are typically “upstream” tables that can also 

be referred to as tables on the “one side” of a DAX relationship.

I use the same example to demonstrate each of the summarization functions. These 

all use the WideWorldImportersDW dataset and create a summary over the 228,265-row 

‘Fact Sale’ table and group by the [State Province] and [Calendar Month] columns. An 

aggregation column that carries a sum over the ‘Fact Sale’[Quantity] column is added to 

each summary table.

Listing 4-1 shows what the T-SQL-equivalent statement for this looks like:

Listing 4-1. T-SQL Baseline Example

SELECT

      [Date].[Calendar Month Label],

      [City].[State Province],

      SUM(Sale.Quantity) AS [Sum of Qty]

FROM [Fact].[Sale] AS [Sale]

      INNER JOIN [Dimension].[Date] AS [Date]

             ON [Date].[Date] = Sale.[Delivery Date Key]

      INNER JOIN [Dimension].[City] AS [City]

             ON [City].[City Key] = Sale.[City Key]
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GROUP BY

      [Date].[Calendar Month Label],

      [City].[State Province]

The resulting table contains 2,008 rows, down from nearly quarter of a million rows, 

which is a ratio of 111:1, or is a new table that is less than 1% the size of the original.

Any visual using this summary table has less work to do to generate values when 

used in a report. If the report only ever filters by the [Calendar Month Label] or [State 

Province] fields, then this is a good thing. However, if you need to represent other levels 

of filtering, then consider modifying the summary table or creating additional summary 

tables.

 The SUMMARIZE Function
The first function we look at is the SUMMARIZE function. The syntax for calling this 

function is as follows:

SUMMARIZE (<table>, <groupBy_columnName1>..., <name1>, <expression1> ...)

The first parameter required is a value for <table>. This can be the name of any 

table that exists in your model, which can include other calculated tables. It can also be 

a function that returns a table, or a table expression stored in a variable. You can only 

provide one table.

Note You cannot use aggregation functions in a Summarize function over 
the output of another Summarize function in the same statement. if you need 
to perform a multilayer aggregation, you need to use the grOupBY function, 
otherwise create two table statements.

The second parameter can be the name of any column from the table specified 

as the first parameter or a column from any table with a relationship defined in your 

data model. You can continue to pass column references as the third, fourth, and fifth 

parameters (and so on). The DAX engine is smart enough to be able to figure out what to 

do based on the type of value you are passing to the function. As long as you continue to 

pass table columns, the function knows that these are the columns you wish to group by.
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You are not required to pass any column references to the function if you don’t want 

to. If your intention is to simply group your base table to a single line, you can start to 

provide <name> and <expression> pairs immediately after the first argument.

Once you stop passing table columns, you can start adding pairs of parameters to the 

function. These pairs exist in the form of a text value and a DAX expression. The <name> 

value is text that you use to set the name of the column. You need to encapsulate the text 

in double quotes. The other parameter in the pair is the <expression> value, which is a 

valid DAX calculation. This is the aggregation component of the summary table. This 

example uses a single pair of <name>/<expression> parameters, but like the <groupBy_

columnName> arguments, it’s possible to pass additional parameters as long as they 

match the <name>/<expression> signature.

The example in Listing 4-2 has been formatted in a way that makes it easier to follow.

Listing 4-2. DAX Example Using the SUMMARIZE Function

Summary Table using SUMMARIZE =

    SUMMARIZE(

        -- Table to Summarize --

        'Fact Sale',

        -- Columns to Group by --

        'Dimension Date'[Calendar Month Label],

        'Dimension City'[State Province],

        -- Aggregation Columns --

        "Sum of Qty",SUM('Fact Sale'[Quantity])

        )

Let’s map the parameters in this example back to the syntax specification so you can 

see how the function works (Table 4-1).

Table 4-1. Syntax Mapping of the SUMMARIZE Function

Syntax Example

<table> ‘Fact Sale’

<groupBy_columnname1> ‘dimension date’[Calendar month Label]

<groupBy_columnname2> ‘dimension City’[State province]

<name1>, <expression1> “Sum of Qty” Sum(‘Fact Sale’[Quantity])
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The SUMMARIZE function returns a new table that otherwise has the appearance 

of any other table in your data model. You can use this table for visuals and filters and 

can relate it to other tables. You can add calculated columns and calculated measures. 

You can also now create calculated tables using the table created by the output of 

a SUMMARIZE function as your base table if you want to create a second layer of 

aggregation over your additional data.

Figure 4-1 has a blank value in the top-left row of the results. This means that there 

are records in the ‘Fact Sale’ table that have no value in the [Delivery Date Key] column 

or there are values in this column that don’t exist in the ‘Date Dimension’[Date] column. 

These are kept in the result set, and in this figure you can see the SUM of the original 

Quantity column add to 790.

One way to better understand the rows involved that have no date is by adding an 

additional aggregation column to the summary table using the <name>/<expression> 

pair like this: 

"Count of Rows", COUNTROWS('Fact Sale')

This adds a fourth column to the calculated table that carries a value that shows the 

number of rows for each grouping, potentially providing extra insight as to many records 

may be affected by the mismatch.

Figure 4-1. Sample output using the SUMMARIZE function
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Alternately, you can use the FILTER function to generate a calculated table showing 

every value in the ‘Fact Sale’[Invoice Date Key] column that doesn’t have a corresponding 

value in the ‘Dimension Date’[Date] column. The code for this might look like

Table of Missing Data =

    FILTER(

        'Fact Sale',

        ISBLANK(

            RELATED('Dimension Date'[Date])

               )

           )

This generates a new calculated table in the model that is a filtered copy of ‘Fact Sale’ 

and only has rows where there are no matching rows in the ‘Dimension Date’ table.

The results of this useful debugging technique are 284 records in ‘Fact Sale’ that have 

a blank value in the [Delivery Date Key] column. These probably represent recent sales 

that have yet to be delivered.

The provides a DAX equivalent to a T-SQL LEFT JOIN query that is used to identify the 

values/rows from the left table that have no matching values/rows from the right query.

This calculated table that has been created can be removed once the data issue 

investigation work is complete.

 Relationships
This example does not provide the SUMMARIZE function with any information on how 

to join the ‘Fact Sale’ table to the ‘Dimension Date’ and ‘Dimension City’ tables, yet 

the function is still able to group the data accurately the way we want using columns 

spanning three tables. In T-SQL statements, we provide hints on how to join tables using 

the ON and WHERE clauses, whereas the DAX engine uses the Relationship mechanism 

to determine how to connect the tables at query time.

In this case, the data model has an existing relationship defined between the ‘Fact 

Sales’ table and the ‘Dimension Date’ table. This relationship specifies that the [Delivery 

Date Key] column from the ‘Fact Sale’ table relates to the [Date] column from the 

‘Dimension Date’ table.

The other relationship in play for this calculation is between the ‘Fact Sale’ table and 

the ‘Dimension City’ table using the [City Key] column on both sides. The SUMMARIZE 

function automatically uses the active relationships to construct the query required.
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In DAX, it’s possible to define multiple relationships between the same two tables. 

Only one can be active at any time, and the decision as to which relationship is active 

needs to be manually set by the author of the data model. It is the active relationship that 

is used by default that, in this case, joins the ‘Fact Sale’ table to the ‘Dimension Date’ 

table using the [Invoice Date Key] column. 

 Alternative Relationships

If you want to create a summary table using the same columns but you want to aggregate 

‘Fact Sale’ data using a using a different date column, such as [Invoice Date Key], you 

can either manually edit the existing relationships between ‘Fact Sales’ and ‘Dimension 

Date’ to specify the appropriate relationship to be the active relationship or you can 

write your calculated table formula a different way to take advantage of an alternative 

relationship. Remember that in DAX, the relationship that is marked as ‘Active’ is the one 

used by default when you are writing formulas that involve multiple tables.

Listing 4-3 shows what the calculated table looks like if you want to use one of the 

inactive relationships. Your data model has an inactive relationship between ‘Fact Sale’ 

[Invoice Date Key] and ‘Dimension Date’[Date].

Listing 4-3. SUMMARIZE Using the USERELATIONSHIP Function

Summary Table using SUMMARIZE =

    CALCULATETABLE(

        SUMMARIZE(

            -- Table to Summarize

            'Fact Sale',

            -- Columns to Group by

            'Dimension Date'[Calendar Month Label],

            'Dimension City'[State Province],

            -- Aggregation Columns

            "Sum of Qty",SUM('Fact Sale'[Quantity])

            ),

        USERELATIONSHIP(

            'Fact Sale'[Invoice Date Key],

            'Dimension Date'[Date])

        )
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Here you have encapsulated your original DAX expression inside a CALCULATETABLE 

function. This allows a filter function to be used. The first parameter is the same as 

in the calculation you used earlier. The second parameter of the CALCULATETABLE 

function is the USERELATIONSHIP filter function that instructs the DAX engine to 

connect ‘Fact Sale’ to ‘Dimension Date’ using the [Invoice Date Key] column.

The result of this query shows the same three columns, but this time the [Sum of Qty] 

column has results that represent the date of the invoice rather than the date of delivery. 

This approach does rely on a relationship to exist, even if it is inactive. If there is no 

relationship between ‘Fact Sale’ and ‘Dimension Date’ via [Invoice Date Key], the calculated 

table is not loaded to the table.

It might be useful to incorporate this into the name of the new calculated table in some 

way to make it easier for end users to understand how the data has been aggregated.

 SUMMARIZE with a Filter
In Listing 4-4, let’s extend this example by incorporating a filter into the logic of the 

calculated table.

The addition of a filter restricts the underlying data used for the summary table to a 

specific sales territory. Another enhancement adds a column to the output that performs 

a basic calculation to represent an average quantity.

Listing 4-4. SUMMARIZE Function Using a Filter

Summary Table using SUMMARIZE (Southwest) =

        SUMMARIZE(

            -- Table to Summarize

             FILTER('Fact Sale',RELATED('Dimension City'[Sales Territory]) = 

"Southwest"),

            -- Columns to Group by

            'Dimension Date'[Calendar Month Label],

            'Dimension City'[State Province],

            -- Aggregation Columns

            "Sum of Qty",SUM('Fact Sale'[Quantity]),

            "Average Qty", DIVIDE(

                                SUM('Fact Sale'[Quantity]),

                                COUNTROWS('Fact Sale')

                                )

            )
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To incorporate a filter into the calculation, the ‘Fact Sale’ table used in the first 

parameter is wrapped in a FILTER function. The FILTER function uses the RELATED 

function to apply a hardcoded filter to the ‘Dimension City’[Sales Territory] column. The 

other enhancement is the additional <name>/<expression> to the aggregation columns 

that shows how you can use multiple aggregation functions (SUM and COUNTROWS) 

within the expression to achieve a slightly more complex result.

Another way to incorporate an explicit filter predicate is to use the 

CALCULATETABLE function as shown in Listing 4-5.

Listing 4-5. SUMMARIZE Using CALCULATETABLE to Filter

Summary Table using SUMMARIZE (Southwest) =

    CALCULATETABLE(

        SUMMARIZE(

            -- Table to Summarize

            'Fact Sale',

            -- Columns to Group by --

            'Dimension Date'[Calendar Month Label],

            'Dimension City'[State Province],

            -- Aggregation Columns --

            "Sum of Qty",SUM('Fact Sale'[Quantity]),

            "Average Qty", DIVIDE(

                                                    SUM('Fact 

Sale'[Quantity]),

                                                   COUNTROWS('Fact Sale')

                                                   )

            ),

    'Dimension City'[Sales Territory] = "Southwest"

     )

To incorporate a filter into this calculation, the CALCULATETABLE function is used. 

The first argument is the SUMMARIZE function we used in Listing 4-4. The second 

argument passed to the CALCULATETABLE function is a basic filter statement. This 

filter means the calculation only uses data that matches this predicate; this is much like 

including a similar statement in the WHERE clause of a T-SQL query.
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 The SUMMARIZECOLUMNS Function
Another function you can use to aggregate tables in DAX is the SUMMARIZECOLUMNS 

function. This newer function has a slightly different signature in terms of syntax. The 

syntax is as follows:

SUMMARIZECOLUMNS(

    <groupBy_columnName1>...,

    <filterTable>...,

    <name1>,<expression1> ...

    )

Just as with the SUMMARIZE function, you can pass a dynamic number of 

parameters to this function. If the first parameter is a reference to a column, the 

SUMMARIZECOLUMNS function understands that this is a column you would like 

to group by. If you continue to pass column references, the function treats these as 

additional group by instructions.

Once you pass a FILTER function (or string value), the function understands that 

these references are instructions to either apply a filter to the aggregation or to start 

adding columns that will be the result of a DAX expression such as SUM, COUNT, MIN, 

and so on.

Using this syntax, the DAX you would use create the scenario using 

SUMMARIZECOLUMNS is shown in Listing 4-6.

Listing 4-6. DAX Example Using SUMMARIZECOLUMNS

Summary Table using SUMMARIZECOLUMNS =

    SUMMARIZECOLUMNS(

        -- Columns to Group by

        'Dimension Date'[Calendar Month Label],

        'Dimension City'[State Province],

        -- Aggregation Columns

        "Sum of Qty",SUM('Fact Sale'[Quantity])

        )

The difference between the SUMMARIZE example in Listing 4-4 and the 

SUMMARIZECOLUMNS function in this example is the absence of the first parameter 

in the SUMMARIZE function. This function does not need to pass a base table; however, 
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the results are the same. The function can also group using columns from different, but 

related, tables. The DAX engine can use the active relationships between the ‘Fact Sales’ 

table and the two-dimensional tables to return the results required.

 SUMMARIZECOLUMNS with a Filter
Another difference between SUMMARIZE and SUMMARIZECOLUMNS is in the latter, you 

can incorporate a filter as one of the parameters. Using the same requirement as earlier, 

Listing 4-7 summarizes and aggregates, but only data where the [Sales Territory] is “SouthWest”.

Listing 4-7. The SUMMARIZECOLUMNS Function Using a Filter

Summary Table using SUMMARIZECOLUMNS (Southwest) =

    SUMMARIZECOLUMNS(

        -- Columns to Group by --

        'Dimension Date'[Calendar Month Label],

        'Dimension City'[State Province],

      -- Filter condition --

      FILTER(

            ALL(

                'Dimension City'[Sales Territory]),

                'Dimension City'[Sales Territory] = "Southwest"

                ),

        -- Aggregation Columns

        "Sum of Qty",SUM('Fact Sale'[Quantity])

        )

The calculation produces the same 164-row result as the example used with 

the SUMMARIZE function (Listing 4-4); however, there is no need to use the 

CALCULATETABLE function as a means of incorporating a filter. You can still wrap the 

SUMMARIZE function inside a CALCULATETABLE function if you prefer, and if you are 

using the data provided in the WideWorldImportersDW dataset, there is very little to 

separate the various approaches in terms of query runtime.

Under the cover, the SUMMARIZETABLE function appears to be doing fewer steps than 

the SUMMARIZE function; we will explore this type of analysis in more detail in Chapter 8.
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 The GROUP BY Function
The final aggregation function to look at is the GROUPBY function. This is its syntax:

GROUPBY(<table>, <groupBy_columnName1>..., <name1>,<expression1> ...)

GROUPBY is like the SUMMARIZE function in terms of syntax, and again, once 

you provide a single table reference as the first argument, you can pass any number of 

column references to let the GROUPBY function know the columns define the level of 

summarization.

Where GROUPBY differs from SUMMARIZE and SUMMARIZECOLUMNS is in the 

code passed to the function as part of any of the <expression> arguments. GROUPBY only 

works with the DAX iterator functions—so it uses SUMX rather than SUM and AVERAGEX 

rather than AVERAGE. This makes the GROUPBY function useful in specific scenarios.

If you wanted a calculated table to use the GROUPBY function to produce the same 

output as the SUMMARIZE and SUMMARIZECOLUMNS examples, you could write it as 

shown in Listing 4-8.

Listing 4-8. DAX Example Using the GROUPBY Function

Summary Table using GROUPBY =

    GROUPBY(

        -- Table to Group --

        'Fact Sale',

        -- Columns to Group By --

        'Dimension Date'[Calendar Month Label],

        'Dimension City'[State Province],

        -- Aggregation columns --

        "Sum of Qty",SUMX( CURRENTGROUP(),'Fact Sale'[Quantity] )

        )

The code is nearly identical to SUMMARIZE up to the final line, which adds the 

aggregation column. The DAX expression here is using the SUMX function instead of the 

SUM function. The SUMX function normally requires a table reference to be passed as 

the first argument, but here a CURRENTGROUP function is being passed instead. When 

the GROUPBY function was introduced to DAX, it came with a helper function called 

CURRENTGROUP(), which can be used in place of the original table.
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 The CURRENTGROUP( ) Function
The DAX iterator functions generally require a table reference to be passed as the first 

parameter. However, when used inside a GROUPBY function as is done here, the SUMX 

function must be passed to the CURRENTGROUP() function; any other value produces 

an error.

Think of the placement of the CURRENTGROUP() function as a mapping back to 

the table that was passed as the first parameter of the GROUPBY function. In this case, 

the table passed was ‘Fact Sale’, so the SUMX function, in effect, processes rows from the 

‘Fact Sale’ table.

The earlier query at Listing 4-8 produces the same output as the previous examples 

using SUMMARIZE and SUMMARIZECOLUMNS; however, the results of running these 

three DAX functions side by side in a speed test are shown in Table 4-2.

Table 4-2. Time in Milliseconds of Example Using 

Summary Functions

DAX Function Average Time (ms)

Summarize 40

SummarizeCOLumnS 35

grOup BY 130

These results are based on the same input and output, and with this very simple 

example, they show that SUMMARIZECOLUMNS is slightly quicker than SUMMARIZE, 

whereas GROUPBY is quite a bit slower.

This suggests that, for small and simple operations, the three functions are 

practically interchangeable, and you are unlikely to need to worry about which might be 

the best to use. However, you may prefer to use SUMMARIZE or SUMMARIZECOLUMNS 

simply for the slightly easier syntax and because you will not need to work with the 

iterator/CURRENTGROUP requirement.

You may be wondering what to use GROUPBY for given that it is likely to be slower 

and has a more complex syntax.

Two examples I focus on are its iterators and its ability to perform multiple groupings 

in the same operation. 
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 GROUPBY Iterators
Because the GROUPBY function uses the DAX iterator functions, such as SUMX, 

AVERAGEX, MINX, and so on, it can unlock advantages these functions have over 

standard aggregation functions that allow you to perform calculations that involve other 

data from the same row.

An example that demonstrates this is extending the aggregation so it is a calculation 

involving multiple columns. This version multiplies the [Quantity] and [Unit Price] 

values together to produce a value for [Total Price], which can then be summed up.

The modified code is shown in Listing 4-9.

Listing 4-9. The SUMX Function Used Inside a GROUPBY Function

Summary Table using GROUPBY =

    GROUPBY(

        -- Table to Group --

        'Fact Sale',

        -- Columns to Group By --

        'Dimension Date'[Calendar Month Label],

        'Dimension City'[State Province],

        -- Aggregation columns --

        "Sum of Total Price",SUMX(

                         CURRENTGROUP(),

                         'Fact Sale'[Quantity] * 'Fact Sale'[Unit Price])

                         )

Without much change, the function now produces a result that allows you to sum 

multiple columns from each row. The only change has been to the last line of code. The 

<name> value has been changed to now show “Sum of Total Price”. This has no impact 

on the calculation and is only good housekeeping. The main change is within the SUMX 

function; you can now write DAX expressions that include multiple columns from the 

same row—in this case, * 'Fact Sale'[Unit Price] is added to the <expression>. So, 

with a minor change to the calculation, you can unlock some interesting scenarios, and 

in this case, the change to the overall query time is undetectable.

SUMMARIZE and SUMMARIZECOLUMNS can also use the iterator functions to 

calculate over multiple columns from the same row. The equivalent calculation using 

SUMMARIZECOLUMNS is shown in Listing 4-10.
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Listing 4-10. Example of Using the SUMX Function with SUMMARIZECOLUMNS

Summary Table using SUMMARIZECOLUMNS and SUMX =

    SUMMARIZECOLUMNS(

              -- Columns to Group By --

        'Dimension Date'[Calendar Month Label],

        'Dimension City'[State Province],

              -- Aggregation columns --

        "Sum of Total Price",SUMX(

                                        'Fact Sale',

                                         'Fact Sale'[Quantity] * 'Fact 

Sale'[Unit Price])

                                        )

Note Be aware of the trap of thinking that SumX (col1 * col2) is the same as 
Sum(col1) * Sum(col2). these produce quite different results. this is a common 
cause of confusion on internet help forums, particularly around sub/grand total lines.

This example can be extended to use columns from related tables in the same 

calculation. If the ‘Dimension City’ table has a column called [Weighting] that might 

carry a multiplier for each city, then as long as you have a valid and active relationship 

between the ‘Fact Sale’ and ‘Dimension City’ tables, you can extend the SUMX function 

to look more like this:

            SUMX(

                CURRENTGROUP(),

                 'Fact Sale'[Quantity] * 'Fact Sale'[Unit Price] * 

RELATED('Dimension City'[Weighting])

                )

Note the use of the RELATED function to allow the calculation to find and use values 

from the [Weighting] column as part of the calculation.

 The GROUPBY Double Aggregation
Another feature of GROUPBY is the ability to perform multiple layers of aggregation in a 

single statement. For the first look at this, let’s use the dataset in Table 4-3.
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The challenge is to take the data in Table 4-3, find only the highest value for each 

category, and then add these together to produce a single output for the table. The 

result should be 3 + 5 + 7 = 15 because the max value for Category A is 3, the max value 

for Category B is 5, and the max value for Category C is 7. This involves two layers of 

aggregation. The first is to find a MAX value for a group, and the second is a SUM over 

the results of the MAX operation.

The SUMMARIZE, SUMMARIZECOLUMNS, and GROUPBY functions can all easily 

perform the first part of the requirement, which is to generate a three-row aggregation 

showing the maximum value for each of the categories.

It is the next step that trips the SUMMARIZE and SUMMARIZECOLUMNS functions 

up because it’s not possible to layer or nest these functions in the same statement, 

whereas you can with GROUPBY.

The calculation using GROUPBY to meet this requirement is shown in Listing 4-11.

Listing 4-11. Calculated Table Using Two Layers of Summarization

Table =

GROUPBY (

        GROUPBY (

            'table1',

            Table1[Category],

            "My Max", MAXX ( CURRENTGROUP (), 'Table1'[Value] )

        )

        "Sum of Max values", SUMX ( CURRENTGROUP (), [My Max] )

    )

Table 4-3. Simple Dataset to Help Demonstrate Double Grouping

Category Value

a 1

a 2

a 3

B 4

B 5

C 6

C 7
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There are two GROUPBY statements in this calculation. I refer to the first GROUPBY 

as the outer GROUPBY, whereas the second GROUPBY highlighted in Listing 4-11 is 

referred to as the inner GROUPBY.

In this example, the inner GROUPBY is computed first, which returns a table as 

output. The outer GROUPBY uses this output as the first parameter that is going to 

perform the second level of aggregation over the dataset.

The CURRENTGROUP() function appears twice in this calculation and this double 

grouping example provides a clearer example of the behavior of this function. Each 

instance of CURRENTGROUP() is paired with a relevant GROUPBY function. The 

CURRENTGROUP() in the highlighted section is used along with the MAXX iterator 

function as a reference to ‘Table1’, whereas the CURRENTGROUP() function in the final 

line is a reference to the output of the inner GROUPBY function.

The example could have used either the SUMMARIZE or SUMMARIZECOLUMNS 

function in place of the inner GROUPBY, however, only GROUPBY can be used as the 

outer level of summarization.

It would be better to use SUMMARIZE or SUMMARIZECOLUMNS as the inner layer 

of summarization in this example since you can meet this requirement without needing 

an iterator function. 

Introducing variables to the computation also helps make the code more readable; 

one way you can write this is shown in Listing 4-12.

Listing 4-12. Improved Version of Calculated Table Using Two Layers of 

Summarization

Table =

    VAR myInnerGroup =

        SUMMARIZECOLUMNS (

            Table1[Category],

            "My Max",

            MAX ('table1'[Value])

            )

    RETURN

        GROUPBY(

            myInnerGroup,

            "Sum of max values",

            SUMX (
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                CURRENTGROUP (), [My Max]

                )

            )

When you mix the power of iterator-based functions with the multilayer grouping 

ability of GROUPBY, you soon find it to be a useful summarization function for more 

complex scenarios despite the extra time it might take in some scenarios.

 GROUPBY with a Filter
As with the earlier functions, let’s look at how you might apply a filter to the GROUPBY 

function. Unlike with SUMMARIZECOLUMNS, there is no natural place in the parameter 

signature to pass a filter. Listing 4-13 shows the first of a pair of examples that restrict the 

standing example to where ‘Dimension City’[Sales Territory] = “Southwest”.

Listing 4-13. GROUPBY Function Using a Filter

GROUPBY(

    -- Table to Group --

     FILTER('Fact Sale',RELATED('Dimension City'[Sales Territory])="Southwest"),

    -- Columns to Group By --

    'Dimension Date'[Calendar Month Label],

    'Dimension City'[State Province],

    -- Aggregation columns --

    "Sum of Qty",SUMX(CURRENTGROUP(),'Fact Sale'[Quantity])

    )

Listing 4-13 uses the FILTER function as the first parameter of the GROUPBY function. 

The FILTER function returns a table, which is why this can still work in place of a specific 

table.

Listing 4-14 shows an alternative notation that uses the CALCULATETABLE function.

Listing 4-14. Example Using CALCULATETABLE to Filter a GROUPBY

CALCULATETABLE(

    GROUPBY(

        -- Table to Group --

            'Fact Sale',

            -- Columns to Group By --
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            'Dimension Date'[Calendar Month Label],

            'Dimension City'[State Province],

            -- Aggregation columns --

            "Sum of Qty",SUMX(CURRENTGROUP(),'Fact Sale'[Quantity])

            ),

    FILTER('Dimension City',[Sales Territory]="Southwest")

    )

Here the filter is applied outside the GROUPBY function and is used as a parameter 

of CALCULATETABLE. This differs slightly from the first example in that you do not 

need to use the RELATED function for the cross-table filter to take effect. Both queries 

produce the same output and on the data volumes used in the WideWorldImportersDW, 

there was little to separate the two approaches in terms of performance, mostly due to 

the simple nature of the aggregation functions used.

Note Both these examples use grOupBY over a physical table. You should show 
preference to Summarize and SummarizeCOLumnS when you are using physical 
tables. these examples are intended to show how you might apply a filter with the 
grOupBY function if you need to.

 Subtotal and Total Lines
A slightly more advanced use of these summarization functions is being able to inject 

additional rows into the output in the form of subtotals and grand totals. This is not 

generally a requirement when writing DAX calculations in Microsoft Power BI because 

Power BI takes advantage of these functions to generate totals when it is generating the 

dynamic DAX behind visuals.

If you are writing a DAX statement using the SUMMARIZE function using SQL 

Server Management Studio (SSMS), DAX Studio, SQL Server Reporting Services (SSRS), 

or other client tools, you can add the ROLLUP, ROLLUPGROUP, and ISSUBTOTAL 

functions to inject additional rows and information to the output. These queries work in 

Power BI, but you may need to filter them so as not to confuse the additional code that 

Power BI might add.
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Let’s use the same table from earlier, shown again here with a new column called 

Sub Category. This time you are going to group this data by Category and/or Sub 

Category and show a value that is a sum of the Value column. Additionally, you’ll include 

subtotal and overall total lines as part of the output.

Table 4-4. Simple Dataset to Help Demonstrate Double Grouping

Category Sub Category Value

a a1 1

a a1 2

a A2 3

B B1 4

B B2 5

C C1 6

C C2 7

This example uses the SUMMARIZE function to group the data using the Category 

column and includes an instruction to add an additional line to the output to carry a line 

for the overall total.

The first version of this query is as follows:

SUMMARIZE (

    table1,

    ROLLUP ( 'table1'[Category]),

    "Sum of Value", SUM ( 'table1'[Value] )

    )
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The output from this calculation is shown in Table 4-5.

Table 4-5. Output of the SUMMARIZE Function

[Category] [Sum of Value]

a 6

B 9

C 13

28

Table 4-6. The Output of SUMMARIZE with ROLLUP

[Category] [Sum of Value] [Max of Value] [Average of Value]

a 6 3 2.0

B 9 5 4.5

C 13 7 6.5

28 7 4.0

The bottom row has no value in the Category column and shows the sum value of the 

other rows. This is the extra row added because the ROLLUP function was added to the 

calculation.

The value shown in the final line is influenced by the aggregation function used by 

the column, which in this case was a SUM. Adding two columns that use the MAX and 

AVERAGE aggregation functions helps show the behavior (Listing 4-15) and output 

(Table 4-6) of the ROLLUP row.

Listing 4-15. Using SUMMARIZE with ROLLUP

SUMMARIZE (

    table1,

    ROLLUP ( 'table1'[Category]),

    "Sum of Value", SUM ( 'table1'[Value] ),

    "Max of Value", MAX ( 'table1'[Value] ),

    "Average of Value", FIXED ( AVERAGE ( 'table1'[Value] ), 1 )

     )
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The value of 7 in the bottom cell in the [Max of Value] column is not the result 

of a SUM function; rather, it inherits the default aggregation behavior used in the 

expression for the column. In this case, it shows the highest value from the underlying 

‘Table1’[Value] column.

The value in the bottom row of the [Average of Value] column shows that the 

ROLLUP function is running an aggregation over the raw data rather than an average of 

the three values shown above it. If it were performing an average of an average, the value 

would be 4.3.

The FIXED function around the AVERAGE function in the expression specifies that 

the output should be displayed with a specified number of decimal points. This example 

uses one decimal place.

 The ISSUBTOTAL Function
You can add a column to the calculation to help identify which lines have been added 

using the ROLLUP function. Do this by adding the ISSUBTOTAL function to the 

expression of an aggregation column as follows:

SUMMARIZE (

    table1,

    ROLLUP ( 'table1'[Category]),

    "Sum of Value", SUM ( 'table1'[Value] ),

     "Is Category Subtotal", ISSUBTOTAL('table1'[Category])

    )

The output of this calculation is shown in Table 4-7.

Table 4-7. Output of the SUMMARIZE Function Using ISSUBTOTAL

[Category] [Sum of Value] [Is Category Subtotal]

a 6 False

B 9 False

C 13 False

28 True
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This calculation now includes a column with true/false values that help identify 

which rows have been added to the output because of the ROLLUP function. In this 

example, only the bottom row carries a value of true in this column as shown in Table 4-7.

The ISSUBTOTAL function becomes more useful when extra layers of grouping are 

introduced to a SUMMARIZE function using ROLLUP. Listing 4-16 uses the SUMMARIZE 

function to create a summary table (Table 4-8) that is grouped by two columns.

Listing 4-16. SUMMARIZE Using an Additional ROLLUP Parameter

SUMMARIZE (

    table1,

    ROLLUP ( 'table1'[Category], 'table1'[Sub Category] ),

    "Sum of Value", SUM ( 'table1'[Value] ),

    -----------

    "Is Cat SubTotal", ISSUBTOTAL('table1'[Category]),

    "Is Sub Cat SubTotal", ISSUBTOTAL('table1'[Sub Category])

    )

Table 4-8. Output of SUMMARIZE Using an Additional ROLLUP Parameter

[Category] [Sub Category] [Sum of Value] [Is Cat Sub Total] [Is Sub Cat Subtotal]

a a1 3 False False

a a2 3 False False

B B1 4 False False

B B2 5 False False

C C1 6 False False

C C2 7 False False

a 6 False True

B 9 False True

C 13 False True

28 True True
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Here you have introduced an additional parameter to the ROLLUP function, which 

tells the SUMMARIZE function to now group by two columns rather than one. This 

adds a [Sub Category] column but also adds three additional lines of subtotal over the 

groupings of Category.

An additional aggregation column called [Is Sub Cat Subtotal] has been added using 

the ISSUBTOTAL function in the expression over the [Sub Category] column to show a true 

or false value. If the value in this column is false, the row is not a subtotal line of the [Sub 

Category] column. If the value is true, the line has been added for providing subtotal values.

Each subtotal line of [Category] has the following characteristics:

• The [Category] column is populated with a value.

• The [Sub Category] column is blank.

• The [Sum of Value] column carries the default aggregation result for 

the underlying rows for that category.

• The [Is Cat Subtotal] column is false.

• The [Is Sub Cat Subtotal] column is true.

The final line of the output happens to be the grand total line. It has the same 

characteristics as the subtotals over [Category] except

• The [Category] column is blank.

• The [Is Cat Subtotal] column is true.

This shows it is possible, with a combination of ROLLUP and ISSUBTOTAL, to 

enhance your output with additional information that can be useful in some scenarios. 

You can add additional functionality when using SUMMARIZE with the ROLLUPGROUP 

function, which when combined with ROLLUP, can be used to combine subtotals to 

achieve finer control over the final output.

The ROLLUP and ISSUBTOTAL functions are designed to work with the 

SUMMARIZE function only. The SUMMARIZECOLUMNS function uses a separate set of 

functions when you are adding lines to the output for showing totals. The main function 

to highlight is the ROLLUPADDISSUBTOTAL function that is designed to work with 

SUMMARIZECOLUMNS.
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Listing 4-17 uses SUMMARIZECOLUMNS to yield the same output as in Listing 4-16.

Listing 4-17. Using SUMMARIZECOLUMNS with ROLLUPADDISSUBTOTAL

SUMMARIZECOLUMNS (

    ROLLUPADDISSUBTOTAL (

        Table1[Category], "Is Cat Sub Total",

        Table1[Sub Category], "Is Sub Cat SubTotal"

        ),

    "Sum of Value", SUM ( Table1[Value] )

    )

Note that the syntax is simpler than with SUMMARIZE even though you get the same 

number of rows and columns. In addition, the ROLLUPADDISSUBTOTAL can be used 

multiple times and combined with the ROLLUPGROUP function to provide rich control 

over subtotal and subtotal groupings.
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CHAPTER 5

Joins
 Joins in DAX
This chapter looks at options for using and combining data from different tables in 

calculations without necessarily using the relationship mechanism.

It’s common for calculations to use data from multiple tables. Most scenarios can be 

covered automatically through the standard table relationship defined in the data model, 

but not in every case. If you need more flexibility, several DAX functions are available 

that support joining tables. Some of these provide an experience that should be familiar 

to you if you are used to writing T-SQL queries. I highlight the similarities and differences 

in this chapter.

Here are the functions that I cover:

• GENERATE and CROSSJOIN

• NATURALINNERJOIN

• NATURALLEFTOUTERJOIN

• UNION

• LOOKUPVALUE

 Standard Relationship
If your data model contains more than one table, it’s possible to define rule based links 

between tables using the standard DAX relationship mechanism. DAX relationships 

are a link between two tables that define rules on how the relationship should work. 

Calculations take advantage of these predefined relationships automatically, which can 

simplify how much code you need when you’re writing most calculations.

There are some limitations in the standard DAX relationship mechanism that do not 

work for some scenarios.
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Relationships must conform to the following rules:

• The relationship can only be one-to-one, or one-to-many.

• Only a single column from each table can be used.

• The match criteria must be an exact match equivalent of the = operator 

and cannot be based on other operators such as >, >=,<, or <= and so on.

• Self joins cannot be used. The two tables must be different.

 The relationship can only be one-to-one, or one-to-many

This means that for at least one of the tables involved in the relationship, unique values 

must exist across every row in the table in the column used for the relationship. This is 

referred to as “the table on the one side of the relationship.”

Values that are the same and exist in more than one row in the table are considered 

duplicates and generate an error. This is something to be mindful of for future data loads. 

A successfully created relationship confirms that the current dataset conforms. However, 

future data loads may introduce duplicated data and therefore generate an error during 

the refresh.

A common example of one-to-many relationships is between dimension and fact 

tables such as ‘Dimension Date’ and ‘Fact Sale’. The date table contains a single row 

for every day, which carries a unique value in the [Date] column. This satisfies the 

requirement for the table on the one side of a relationship, whereas the ‘Fact Sale’ table 

can have many rows that carry the same date in the column used in the relationship.

This is a common pattern in data modeling. Fact (or event) tables often have 

relationships defined to dimension (or lookup) tables. The fact table can have many 

rows for the same date, customer, or location, with separate tables that contain a single 

row for every date, customer, or location. These tables typically sit on the one side of any 

relationship.

You can also consider the tables on the one side of the relationship as filter tables. 

These are ideal tables to use as the basis for slicers and filters in reports. Selections 

made on these slicers propagate via relationships to any related tables connected on 

the many side and filter fact data appropriately. This approach works well for analytics 

and reporting, and the pattern is often described as applying a star schema to your data. 

Relationships can be created between dimension tables to multiple fact tables. This 

allows filter selections to apply across large sections of data in the model.
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Filters only apply in the direction of the one table to the many table. This means a 

slicer using a column in the ‘Fact Sale’ table does not automatically apply to calculations 

using data from the ‘Dimension Date’ table.

One-to-one relationships differ from one-to-many in that the column involved in 

each table must have unique values. This type of relationship effectively creates a single 

logical table, or in T-SQL, a full outer join across the two tables.

 Only a single column from each table can be used

It’s not possible to define a relationship using anything more than one column per table. 

If you have a scenario in your data in which you need to enforce a relationship that needs 

to use data from multiple columns, you can create a new column that concatenates these 

columns to a single value that you can then use in the relationship, as long as the new 

column still satisfies the rule of having unique values for any table being used on the one 

side.

When you’re using this approach, be careful to avoid a key collision from two 

separate values combining to produce the same result. Combining values “AB” and 

“CDE” results in the same value as combining “ABC” and “DE”. In this case, an unusual 

delimiter should reduce the risk of a key collision, for example, “AB” and “#” and “CDE” 

would now be different than “ABC” and “#” and “DE”.

 The match criteria must be an exact match

The default operator used between the tables involved in a relationship is the = operator. 

This means that for rows to be matched, the relationship only pairs rows from either 

table where there is an exact match in the values of the two columns involved. This can 

be a trap when you’re working with similar-looking values.

It’s possible to create a one-to-many (or one-to-one) relationship between a table 

that uses the Date datatype for the column on one side of the relationship and uses 

DateTime on the other. Only values at midnight in the column using the DateTime 

datatype can possibly match values from the column using the Date datatype. This can 

be confusing when you have two tables that appear to have data that should be matched 

and, although no errors appear, visuals show less data than you expect.

In this event, consider converting the column in the table that is using the DateTime 

datatype to use Date instead. If the time component is important, you can use a second 

column that carries just the time component to satisfy most reporting requirements.
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Another common solution is to create a calculated column that only contains the 

date portion and then create a relationship using the calculated column.

This behavior works well for most scenarios, but occasionally you may want to create 

a match between tables using more than just the = operator. Sometimes using the >= 

or <= operators can be useful when you need to join rows that span a range of values. 

An example of this might be when, for each row in a table, you need to find rows in a 

separate table that are within a period of the first row, such as the prior 14 days.

 Self joins cannot be used

You cannot create a relationship from a table connected back to itself. This type of 

relationship can be useful to represent hierarchies such as employee/manager scenarios 

in a table that contains employee data.

The employee and manager can exist as different rows in the same table with values 

in columns such as EmployeeID and ManagerID being used to help link the two rows. 

The PATH and PATHITEM functions are available in DAX to help provide a flattened 

view of these types of data structures inside calculated columns.

This was described to me once as a Pigs-Ear relationship. Not because it was 

considered a messy data modelling technique, but rather because of the way you might 

draw the line/arrow in any table relationship diagram. The arrow would look like an ear 

when drawn around the top corner of the box representing the table.

Other self-join relationships might be useful for finding rows from a table prior to or 

following a specific row to be used in comparison scenarios.

 How to Join Tables Without a Relationship
Now that you understand some of the limitations of the built-in relationship mechanism, 

let’s explore some of the functions provided in DAX to help us in scenarios where the 

standard relationship can’t help.

 The CROSSJOIN and GENERATE Functions
Probably my favorite and most used functions for joining tables are the GENERATE and 

CROSSJOIN functions. They have the feel and exhibit a behavior like an INNER JOIN in 

T-SQL when you combine them with the DAX FILTER function.
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 CROSSJOIN
The base syntax of the CROSSJOIN function is as follows.

CROSSJOIN ( <table>, <table> [, <table>]...)

The minimum requirement is for two tables to be passed, but you can add additional 

tables. The result is a cartesian effect in which every row from the first table is matched 

with every row from the second table. Then every row from joining the first two tables is 

matched with every row in the third table. This can quickly generate output that is a table 

with many rows.

The output of the CROSSJOIN function is a table. You can use this table as a 

calculated table if you are using a version of DAX that supports the use of calculated 

tables or as a table expression within a DAX calculation.

If the table you use in the first argument has 10 rows, and the second table also has 

10 rows, the unfiltered output is 100 rows. If an additional table also has 10 rows, then the 

unfiltered output is now 1,000 rows. This is equivalent to the following T-SQL statement:

SELECT

      *

FROM TableA

      CROSS JOIN TableB

Or for those who are old school reading this book

SELECT * FROM TableA, TableB

These T-SQL statements yield the same result. Neither has a WHERE clause to filter the 

number of rows for the final output down so it returns the number of rows in TableA × the 

number of rows in TableB.

 GENERATE
The base syntax for GENERATE is as follows:

GENERATE ( <table1>, <table3> )

This differs from CROSSJOIN in that only two tables can be used, otherwise 

the output is the full cartesian product of the tables passed as parameters. The two 

parameters must be different tables.
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Note Use Generate, and not CrossJoin, when you are planning to use the 
FiLter function.

Let me use the following unrelated tables (Table 5-1 and 5-2) to demonstrate the 

behavior of the GENERATE function.

Let’s start with a simple query. A calculated measure to show the total number of 

rows from the result of the GENERATE function would look like this:

My Count of Rows =

      COUNTROWS(

             GENERATE('TableA','TableB')

             )

This returns the value of 18, which is the result of three rows from TableA multiplied 

by the six rows of TableB.

This calculation can be updated to apply a join criteria on the [Make] columns as 

shown in Listing 5-1.

Table 5-1. Dataset to Be Used as TableA

ID Make Model Value

1 toyota Corolla 10

2 hyundai elantra 20

3 Ford Focus 30

Table 5-2. Dataset to Be Used as TableB

Make Model Year Index

toyota Corolla 2018 100

toyota Corolla 2018 200

hyundai elantra 2019 300

hyundai elantra 2019 400

Ford Focus 2018 500

Ford Focus 2019 600
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Listing 5-1. Using GENERATE in a Calculated Measure with a Filter

My Count of Rows =

      COUNTROWS(

                   GENERATE(

                   'TableA',

                   FILTER(

                               'TableB',

                               'TableA'[Make] = 'TableB'[Make]

                               )

                   )

               )

The GENERATE function now uses a FILTER function as the second parameter that 

is applying the join criteria. This is the DAX equivalent of providing predicates in the ON 

or WHERE clauses in a T-SQL statement. The filter expression specifies that only rows 

between TableA and TableB that have matching values in the [Make] column should be 

returned. The result of this calculated measure is 6.

This could have been achieved using a standard DAX relationship. Let’s now include 

a second column in the match requirement using [Model] as well as an additional 

criterion—that the value in the year column should be earlier than 2019.

The new calculation with the additional filter criterion is shown in Listing 5-2.

Listing 5-2. Using Additional Filter Criterion in a GENERATE Function

My Count of Rows =

      COUNTROWS(

                   GENERATE(

                   'TableA',

                   FILTER(

                               'TableB',

                               'TableA'[Make] = 'TableB'[Make] &&

                               'TableA'[Model] = 'TableB'[Model] &&

                               'TableB'[Year] < 2019

                               )

                   )

             )
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The FILTER function allows for rules that are more sophisticated than those you 

can use with standard DAX relationships. The result of this calculated measure over the 

sample data should be 3. I could have used 'TableB'[Year] = 2018 in this dataset to 

arrive at the same result, but I wanted to highlight the ability to use an operator other 

than = for the matching criteria.

The same output could also be generated using a relationship and the following 

calculated measure:

My Count of Rows =

    CALCULATE(

        COUNTROWS('TableA'),

        'TableB'[Year] < 2019

        )

 Unique Column Names

So far, the examples using GENERATE have all worked because they passed the output to 

the COUNTROWS function, which simply returned a count of the number of rows.

If you intend to use the output of a GENERATE function as a calculated table, you 

soon encounter a problem regarding column names. In DAX, column names in physical 

and virtual tables must be unique. The output of the GENERATE function includes all 

columns from all tables passed to the function. Inevitably some of these tables have the 

same column names.

If you try to create the following calculated table

My Table = GENERATE('TableA','TableB')

you encounter an error such as “The Column with the name [Make] already exists in the 

‘Table’ table.” In this example, the error refers to the clash over the [Make] column but 

also has an issue with the [Model] column that exists in both tables.

In T-SQL, you control the name and number of columns returned using the SELECT 

clause in a query. In DAX, you can use the SELECTCOLUMNS function to provide 

similar functionality. The primary use of this function is to allow you to partially select 

some columns from a table, but a side feature that’s useful here is that it also allows you 

to rename, or alias, columns along the way.

Using the SELECTCOLUMNS function, you can rename the [Make] and [Model] columns 

in either table, or because you are using the = operator, you can choose to simply drop these 

columns from one of the tables, since their values should match and you only need to see one.
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Listings 5-3 and 5-4 show two examples that use the SELECTCOLUMNS function to 

return an error-free result.

Listing 5-3. Using SELECTCOLUMNS with GENERATE

My Table =

      GENERATE(

                'TableA',

                SELECTCOLUMNS(

                    'TableB',

                    "My Make", [Make],

                    "My Model", [Model],

                    "Year", [Year],

                    "Index", [Index]

                )

             )

Listing 5-4. Alternate Use of SELECTCOLUMNS with GENERATE

My Table =

      GENERATE(

                'TableA',

                SELECTCOLUMNS(

                    'TableB',

                    "Year", [Year],

                    "Index", [Index]

                )

             )

In both examples, the second parameter of the GENERATE function is no longer 

just ‘TableB’; rather, it has been wrapped using the SELECTCOLUMNS function. This 

function outputs a table that it shapes based on the rule you pass to it. In the first case, 

you instruct SELECTCOLUMNS to use ‘TableB’ and return four columns that are defined 

as <name>/<expression> pairs. This is how you can rename columns to avoid an error in 

the output of the GENERATE function.

The second example (Listing 5-4) simply omits the columns altogether for a cleaner 

effect and returns a table showing 18 rows, which is the full cartesian product of the two 

tables.
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A more realistic requirement might be to combine this with the earlier example at 

Listing 5-4 to return a calculated table with unique column names for rows that matched 

on [Make] and [Model] for years before 2019.

The DAX for this is shown in Listing 5-5.

Listing 5-5. Combining GENERATE with FILTER and SELECTCOLUMNS

My Table =

    FILTER(

        GENERATE(

                'TableA',

                SELECTCOLUMNS(

                    'TableB',

                    "My Make", [Make],

                    "My Model", [Model],

                    "Year", [Year],

                    "Index", [Index]

                )

             ),

             [Make] = [My Make] &&

             [Model] = [My Model] &&

             [Year] < 2019

             )

Here GENERATE is wrapped with the FILTER function to allow the calculation 

to define the rules used when you’re matching rows between the tables. The inner 

SELECTCOLUMNS must return an alias for both the [Make] and [Model] columns in 

‘TableB’ so the outer FILTER function can work with the table.

This highlights that the filtering doesn’t take place during the join process; rather, it 

takes place over the single table output of the GENERATE function.

The T-SQL equivalent of this DAX statement including the renaming of the columns 

from ‘TableB’ is shown in Listing 5-6.

Listing 5-6. T-SQL Equivalent of DAX Example

SELECT

      A.[ID],

      A.[Make],
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      A.[Model],

      A.[Value],

      B.[Make] AS [My Make],

      B.[Model] AS [My Model],

      B.[Year],

      B.[Index]

FROM TableA AS A

      INNER JOIN TableB AS B

             ON  A.Make = B.Make

             AND A.Model = B.Model

             AND B.Year < 2019

Both the DAX and T-SQL statements produce the output shown in Table 5-3.

To remove the unnecessary [My Make] and [My Model] columns that were needed 

for the FILTER function, you can modify the calculation by wrapping the entire 

statement with another SELECTCOLUMNS statement. This is shown in Listing 5-7 using 

variables that can enhance readability.

Listing 5-7. Enhanced Version of Example Removing Unwanted Columns

My Table =

VAR ModifiedTableB =

    SELECTCOLUMNS(

        'TableB',

        "My Make", [Make],

        "My Model", [Model],

        "Year", [Year],

Table 5-3. The Output of the DAX and T-SQL Example 

ID Make Model Value My Make My Model Year Index

1 toyota Corolla 10 toyota Corolla 2018 100

2 hyundai elantra 20 hyundai elantra 2018 300

3 Ford Focus 30 Ford Focus 2018 500
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        "Index", [Index]

        )

VAR FilteredGENERATE =

    FILTER(

        GENERATE( 'TableA', ModifiedTableB ),

             [Make] = [My Make] &&

             [Model] = [My Model] &&

             [Year] < 2019

             )

RETURN

      SELECTCOLUMNS(

                   FilteredGENERATE,

                   "ID",[ID],

                   "Make",[Make],

                   "Model",[Model],

                   "Year",[Year],

                   "Index",[Index]

                   )

This calculation introduces a SELECTCOLUMNS function at the final RETURN step 

that effectively drops the [My Make] and [My Model] columns by omitting these from the 

<name>/<expression> pairs.

If you need to, you can use more sophisticated expressions with the 

SELECTCOLUMNS function other than simply the name of a column.

 Using GENERATE to Multiply Rows

Another way to take advantage of the GENERATE/FILTER functions is to use them 

to expand the number of rows you have in an existing table to solve a visualization 

problem.

A topic that arises from time to time on internet forums is how to take a table of 

entities that has a mixture of start/end dates and plot how many are active at any one 

time between their start/end dates.

Consider the dataset in Table 5-4 of hotel room occupancies. In this table, the date 

format is YYYY-MM-DD.
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To have a visual that shows how many of the rooms are occupied each night, one 

solution is to expand the data from the original table to carry a row that represents every 

room/night combination. For the occupancy with an ID of 4, the room is occupied for 

three nights (from January 2 to January 4), so the task of plotting this on a visual is easier 

if this table has three rows for ID = 4, rather than the single row in this table.

If there is a Date or Calendar table in the model with one row per day, including the 

days involved in the sample, you can use this to help create the rows you need. Listing 5-8  

uses a dynamically created table as an alternative.

Listing 5-8. Using GENERATE with the CALENDAR Function

Table for Visual =

    SELECTCOLUMNS(

            FILTER(

                GENERATE(

                    'Occupancies',

                    CALENDAR("2019-01-01","2019-01-05")

                    ),

                [Date] >= [Check In] &&

                [Date] < [Check out]

            ),

            "ID", [ID],

            "Room", [Room],

            "Date", [Date]

        )

This returns the three-column dataset in Table 5-5.

Table 5-4. Dataset to Be Used as an Occupancies Table

ID Room Check In Check Out

1 101 2019-01-01 2019-01-02

2 102 2019-01-03 2019-01-04

3 103 2019-01-02 2019-01-05

4 101 2019-01-02 2019-01-05
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As you can see, the row from the original Occupancy table with the ID of 4 now 

occurs three times in the new calculated table. This is the behavior you want and when 

plotted using the Ribbon Chart, it allows the visual to plot value for dates other than the 

original [Check In] and [Check Out] dates (Figure 5-1).

Table 5-5. The Output of the Code from Listing 5-8.

ID Room Date

1 101 2019-01-01

3 103 2019-01-02

4 101 2019-01-02

2 102 2019-01-03

3 103 2019-01-03

4 101 2019-01-03

3 103 2019-01-04

4 101 2019-01-04

Figure 5-1. Output from Listing 5-8 plotted using the Ribbon Chart visual
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You can apply this technique to a table that represents employees and is used with 

hire/leaving dates or any dataset that contains multiple rows of overlapping start/end 

values.

Before we dive in and break down the individual components, let’s look at what the 

equivalent T-SQL statement might look like (Listing 5-9).

Listing 5-9. The T-SQL Equivalent of the Code in Listing 5-8

SELECT

      Occupancy.[ID],

      Occupancy.[Room],

      Dates.[Date]

FROM Occupancy AS O    

      INNER JOIN Dates AS D

             ON  D.[Date] >= O.[Check In]

             AND D.[Date] < O.[Check Out]

Jumping back to the DAX calculation, let’s break this apart to look at what each 

section is doing. Let’s start with the parameters passed to the GENERATE function. The 

first parameter is straightforward in that you are simply passing your ‘Occupancy’ table. 

The second parameter is the DAX function CALENDAR. This handy function produces a 

single column table of dates between the two date parameters passed to it.

GENERATE(

    'Occupancies',

    CALENDAR("2019-01-01","2019-01-05")

),

In this case the two parameters are “2019-01-01” and “2019-01-05”, which represent 

the values between January 1, 2019, and January 5, 2019. This results in a table with 

five rows and just a single column called [Date]. You could rename this column 

using SELECTCOLUMNS, but in this case, there is no column-name collision in the 

GENERATE function, so you can leave it as it is.

You could use a bigger range of dates, but doing so will not affect the result of the 

calculation, other than by possibly causing it to take slightly longer to generate data that 

will inevitably be ignored later in the calculation.
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The output of the GENERATE function at this point is a 20-row table. This is the 

cartesian product of 4 rows from the ‘Occupancies’ table matched with all 5 rows from 

the table expression output of the CALENDAR function.

This is then wrapped with the FILTER function (Listing 5-10), which specifies rules 

involving multiple columns to help decide which rows to keep and which to disregard. 

You don’t need dates that fall outside each occupancy for this requirement, but it could 

be interesting if you want to show when rooms are empty.

Listing 5-10. The FILTER Section from Listing 5-8

FILTER(

                GENERATE(

                    'Occupancies',

                    CALENDAR("2019-01-01","2019-01-05")

                    ),

                [Date] >= [Check In] &&

                [Date] < [Check out]

            ),

The filter function accepts the table expression output of the GENERATE function 

as its first parameter. Filter rules are then applied to help reduce the dataset to only the 

rows you need.

This example highlights one of the other benefits of using the GENERATE function 

over standard table relationships. The FILTER function uses an operator other than = 

instead of using the >= and < operators to allow a match over a range of rows for each 

occupancy.

Finally, the FILTER function is wrapped inside a SELECTCOLUMNS function to 

control and name the columns returned to the calculated table.

 Multiplying Rows Using a Numbers Table

A similar use of the GENERATE table to help multiply rows is to join to a table containing 

numbers. A numbers table is a general-purpose utility table that contains a single 

column of sequential numbers starting at zero and going up to a value that makes sense 

for your data model.

Let’s say you want to expand the Table 5-6 to produce a copy of each row, with the 

number of copies controlled by the value in the Factor column.
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Listing 5-11 shows the DAX calculation table to expand this data.

Listing 5-11. Using GENERATESERIES to Create Rows

New Table =

    ADDCOLUMNS(

        FILTER(

            GENERATE(

                'Table1',

                GENERATESERIES(1,3)

                )

                ,[Factor] <= [Value]

            ),

            "New Col", [Factor] * [Value]

    )

This produces the output in Table 5-7.

Table 5-6. Dataset to Be Used as Table1 Table

Item Factor

a 1

B 2

C 3

Table 5-7. Output from the Code in Listing 5-11

Item Factor Value New Col

a 1 1 1

B 2 1 2

B 2 2 4

C 3 1 3

C 3 2 6

C 3 3 9
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To break apart this calculation, start with the inner GENERATE function. This is 

similar to the previous occupancy example, only instead of passing the CALENDAR 

function, it uses the GENERATESERIES function. This function generates a single row 

table with a range of whole numbers. This is the syntax for GENERATESERIES:

GENERATESERIES (<startValue>, <endValue> [, <incrementValue>])

The first and second parameters control the start and end values of the number 

range. This example creates a table with just three rows. The third parameter is optional 

and if it is not supplied, as in this example, it defaults to 1. The GENERATESERIES 

function is essentially creating a dynamic numbers table.

GENERATESERIES was introduced in October 2017 and is not currently available in 

all DAX environments. To replicate this functionally in earlier versions of DAX, use the 

CALENDAR function as follows:

GENERATE(

    'Table1',

    SELECTCOLUMNS(CALENDAR(1,3),"Value",INT([Date]))

)

The table expression output from the GENERATE function is passed to the FILTER 

function, which then applies the rule [Factor] <= [Value] to determine which rows to 

return.

Finally, the ADDCOLUMNS function is used as an alternative to 

SELECTCOLUMNS. In this example, you don’t need to handle any column name 

collisions for the GENERATE function, so you can use ADDCOLUMNS to append a new 

column to all the existing output. This example also uses an expression that involves 

a calculation over multiple values to demonstrate how to include a more meaningful 

calculation if you need to.

 Using GENERATE to Self-Join

The last example uses GENERATE to perform a self-join and uses a simplified ‘Sales’ 

table that shows dates on which a customer has made a purchase. For each purchase, the 

requirement here is to understand how long it has it been since that customer previously 

made a purchase.
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The example uses the dataset in Table 5-8.

The calculated table is shown in Listing 5-12.

Listing 5-12. The Calculated Table to Find Last Purchases Using Self-Join

New Table =

VAR SelfJoin =

    FILTER(

        GENERATE(

                    'Sales',

                    SELECTCOLUMNS(

                        'Sales',

                        "xCustomer",[Customer],

                        "xPurchase Date",[Purchase Date]

                    )

                ),

                [xPurchase Date] < [Purchase Date] &&

                [Customer] = [xCustomer]

                )

Table 5-8. Dataset to Be Used as a Sales Table

Customer Purchase Date

1 2019-01-01

1 2019-01-07

1 2019-01-21

1 2019-01-25

2 2019-01-05

2 2019-01-12

2 2019-01-17

2 2019-01-22
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VAR LastPurchases =

    GROUPBY(

            SelfJoin,

            Sales[Customer],

            Sales[Purchase Date],

            "Last Purchase",MAXX(

                                CURRENTGROUP(),

                                [xPurchase Date]

                                )

            )

RETURN

    ADDCOLUMNS(

        NATURALLEFTOUTERJOIN('Sales',  LastPurchases),

        "Days since last purchase",

                                     VAR DaysSince = INT([Purchase Date] - 

[Last Purchase])

                                    RETURN IF (

                                            NOT ISBLANK([Last Purchase]),

                                            DaysSince

                                            )

                   )

The output of this calculation is Table 5-9, which shows the original table 

(Table 5- 8) with two new columns. The new columns show the date the Customer 

made their previous purchase and a value that represents the number of days it has 

been since that purchase.
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You can use the [Days Since Purchase] column in a variety of calculated measures 

to help you understand customer behavior such as the average time between purchases 

and the minimum and maximum gaps in time between purchases.

To understand the calculation, you can easily break the code in Listing 5-12 into 

three blocks made up of the two variables declarations and the final return.

The objective of the first variable is to create a table expression that joins every row 

from the eight-row ‘Sales’ table joined back to itself matching every row, but applying a 

filter that will match on CustomerID and for any previous purchase. 

The T-SQL equivalent of this VAR statement is shown in Listing 5-13.

Listing 5-13. T-SQL Equivalent of the First Variable from Listing 5-12

SELECT

      L.Customer,

      L.[Purchase Date],

      R.Customer AS [xCustomer],

      R.[Purchase Date] AS [xPurchase Date]

INTO #SelfJoin

FROM Sales AS L

      INNER JOIN Sales AS R

             ON  R.Customer = L.Customer

             AND R.[Purchase Date] < L.[Purchase Date]

Table 5-9. Dataset Showing Output of the Code in Listing 5-12

Customer Purchase Date Last Purchase Days Since Purchase

1 2019-01-01

1 2019-01-07 2019-01-01 6

1 2019-01-21 2019-01-07 14

1 2019-01-25 2019-01-21 4

2 2019-01-05

2 2019-01-12 2019-01-05 7

2 2019-01-17 2019-01-12 5

2 2019-01-22 2019-01-17 5
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This produces a 12-row result that, for some transactions, finds multiple matches 

because at this point, the query is looking for ALL previous purchases. The very first 

purchase for each customer is missing because there are no prior purchases. The 

pattern of this query is similar to Listing 5-7 because it has used multiple columns in the 

join criteria, it uses an operator other than =, and finally, it uses SELECTCOLUMNS to 

rename columns to avoid a column-name collision.

At this point, the final RETURN statement could simply return the SelfJoin variable, 

which allows inspection of the data for correctness. The table expression produced by 

this variable is not intended as the final output; it is intended as a data-preparation step 

for the next variable.

The VAR LastPurchases statement summarizes the SelfJoin variable to a single line 

per [Customer] and [Purchase Date] combination. An aggregation column called “Last 

Purchase” is added, which finds the latest value in the [xPurchase Date] column. This 

identifies the date needed for the previous purchase.

Because the intention is to summarize a table expression rather than a physical 

table, the SUMMARIZE or SUMMARIZECOLUMNS functions are not available. However, 

the GROUPBY is available and can use the SelfJoin variable as its first parameter. The 

second and third parameters name the columns to group by. The final parameter is 

a DAX expression using the MAXX iterator function to find the latest value for each 

combination. The CURRENTGROUP() function is used to help the MAXX function make 

use of the table expression stored in the SelfJoin variable.

At this point the result is a six-row table (Table 5-10). This is not intended as the final 

result, nor does it carry any information about the first-ever purchase by each customer. 

This result set needs to be added back to the original data, which happens in the next step.

Table 5-10. Dataset Output of First Variable from Listing 5-12

Customer Purchase Date Last Purchase

1 2019-01-07 2019-01-01

1 2019-01-21 2019-01-07

1 2019-01-25 2019-01-21

2 2019-01-12 2019-01-05

2 2019-01-17 2019-01-12

2 2019-01-22 2019-01-17
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The T-SQL equivalent of this statement is shown in Listing 5-14.

Listing 5-14. T-SQL Equivalent of Second Variable from Listing 5-12

SELECT

      [Customer],

      [Purchase Date],

      MAX([xPurchase Date]) AS [Last Purchase]

INTO #LastPurchases

FROM #SelfJoin

GROUP BY

      [Customer],

      [Purchase Date]

The last step is to take the table expression stored in the LastPurchases variable and 

join it back to the original table. This needs to be an outer semi join so you keep the row 

that represents the initial purchase by each customer.

The intention is to match every row from the original ‘Sales’ table with rows from 

the LastPurchases table expression, joining them where there is a match in both the 

[Customer] and [Purchase Date] columns. Rows in the ‘Sales’ table that cannot be 

matched to rows in the LastPurchases table expression need to be retained.

The GENERATE function does not easily provide “left join” functionality between 

tables. You can do this in a roundabout way by using multiple steps involving FILTER 

and further GROUPBY functions, or you can use the NATURALLEFTOUTERJOIN 

function to obtain the desired result.

In the final RETURN statement, the NATURALLEFTOUTERJOIN is passed two tables. 

The first is the original eight-row ‘Sales’ table. The second is the six-row table expression 

stored in the LastPurchases variables. The function checks every column in both tables 

and automatically matches any column that shares the same name and datatype, as well 

as the same lineage (more about this later).

NATURALLEFTOUTERJOIN('Sales',  LastPurchases)

In this example, both the ‘Sales’ and LastPurchases tables passed to 

NATURALLEFTOUTERJOIN have [Customer] and [Purchase Date] columns that also 

share the same datatype. This returns a three-column table (Table 5-11) that still has one 

more requirement to fill.
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The final requirement is to have a column that carries a number that shows, for 

each customer purchase, how many days have passed since their last purchase. This is 

achieved by wrapping the NATURALLEFTOUTERJOIN function with an ADDCOLUMNS 

function (Listing 5-15).

Listing 5-15. The Final RETURN Statement from Listing 5-12

RETURN

    ADDCOLUMNS(

        NATURALLEFTOUTERJOIN('Sales',  LastPurchases),

        "Days since last purchase",

                                     VAR DaysSince = INT([Purchase Date] - 

[Last Purchase])

                                    RETURN IF (

                                            NOT ISBLANK([Last Purchase]),

                                            DaysSince

                                            )

                   )

The ADDCOLUMNS function appends a single column to the output of the 

NATURALLEFTOUTERJOIN function. The “Days since last purchase” parameter 

provides a name for the new column, while the last parameter starting with a nested VAR 

statement is a DAX expression that returns the difference between the [Purchase Date] 

and [Last Purchase] columns.

Table 5-11. Output of NATURALLEFTOUTERJOIN from Listing 5-12

Customer Purchase Date Last Purchase

1 2019-01-01

1 2019-01-07 2019-01-01

1 2019-01-21 2019-01-07

1 2019-01-25 2019-01-21

2 2019-01-05

2 2019-01-12 2019-01-05

2 2019-01-17 2019-01-12

2 2019-01-22 2019-01-17
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The INT function is used to convert the DateTime output of the subtraction to a 

whole number. You can use the DATEDIFF function at this point as long as the [Last 

Purchase] values are always the same or earlier than values in the [Purchase column].

This calculation returns the expected values for each row except for the customers’ 

initial purchases. For these rows, it returns values such as 43,466 and 43,470, which 

could skew subsequent usage of this column in further calculations.

To address these high numbers, an IF function tests to see if the [Last Purchase] 

column carries a value. In the event that there is no value, it returns a blank, otherwise it 

returns the value showing the difference between the purchase dates.

For reference, the T-SQL equivalent of the final RETURN statement is shown in 

Listing 5-16.

Listing 5-16. T-SQL Equivalent of Final RETURN Statement from Listing 5-12

SELECT

      L.Customer,

      L.[Purchase Date],

      R.[Last Purchase],

       DATEDIFF(DAY,R.[Last Purchase],L.[Purchase Date]) AS [Days since last 

purchase]

FROM #Sales AS L

      LEFT OUTER JOIN #LastPurchases AS R

            ON  L.Customer = R.Customer

            AND L.[Purchase Date] = R.[Purchase Date]

A simpler alternative version of the calculated table that produces the same result 

but doesn’t use a self-join technique is shown in Listing 5-17.

Listing 5-17. Simpler Alternative for Listing 5-12

New Table =

    ADDCOLUMNS(

        ADDCOLUMNS(

            'Sales',

            "Last Purchase", MAXX(

                                FILTER(

                                    'Sales',

                                    [Customer] = EARLIER([Customer]) &&
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                                     [Purchase Date] < EARLIER([Purchase 

Date])

                                    ),

                                 [Purchase Date]

                                 )

                          ),

    "Days since last purchase", IF(

                                    NOT ISBLANK([Last Purchase]),

                                     DATEDIFF([Last Purchase], [Purchase 

Date],DAY)

                                    )

    )

 NATURALINNERJOIN and NATURALLEFTOUTERJOIN
The NATURALINNERJOIN function allows you to join two tables using the following 

syntax:

 NATURALINNERJOIN ( <leftTable>, <rightTable>)

This function matches every row from the first table with every row from the second 

table that has matching values in any column that shares the same column name and 

datatype.

If a row from either table cannot be matched to a row in the other table, it is dropped 

from the result. The additional requirement is that both tables must be derived from the 

same physical source table. This is known as having the same lineage.

Once matching rows are found, the columns used in the match are returned once 

along with any additional columns from the left and right tables that were not used as 

part of the matching exercise.

The NATURALLEFTOUTERJOIN function has the same two-parameter requirement, 

only it keeps rows from the table passed as the first parameter that find no matching 

rows from the table passed as the second parameter.

As the names suggest, these functions are like the INNER JOIN and LEFT OUTER 

JOIN statements in T-SQL.
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 Lineage
A lineage requirement exists for both the NATURALINNERJOIN and 

NATURALLEFTOUTERJOIN functions, which tends to limit the number of scenarios in 

which they might be useful.

In the WideWorldImportersDW dataset, the ‘Fact Sale’ table contains a column 

called [City Key], which uses the whole number datatype. The ‘Dimension City’ table has 

a column with the same name and datatype, but because these are separate tables, the 

following DAX produces an error.

New Table = NATURALINNERJOIN('Fact Sale','Dimension City')

Wrapping the NATURALINNERJOIN with a FILTER in the same way you 

did earlier with GENERATE does not get around this error. It is the same with 

NATURALLEFTOUTERJOIN. The most common use of these functions is similar to the 

previous example to look for previous purchases as shown at Listing 5-17.

Typically a single table is used as a starting point in a multistatement DAX 

calculation that involves variables. One or more table expressions are generated from 

the source table and stored in variables. These table expressions may be summarized or 

filtered to manipulate the source data to then join back to the original table. In this case, 

the DAX engine knows that although you may be working with a column that has been 

aggregated or renamed many times, it can still trace the value back to the same source 

table involved in the join.

One way to work around this limitation is to use the SELECTCOLUMNS function. 

Tables 5-12 and 5-13 demonstrate this.

Table 5-12. Dataset to Be Used as the Table1 Table

ID Value1

a 1

B 2

C 3

D 4
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The following calculation to join these tables fails with an error.

New Table = NATURALINNERJOIN('Table1','Table2')

This is despite the calculation meeting two of the requirements of having a column 

in each table using the same name and datatype. NATURALLEFTOUTERJOIN produces 

the same error. To get around this, use SELECTCOLUMNS as shown in Listing 5-18. 

Table 5-14 shows the output from this code.

Listing 5-18. Calculated Table Using NATURALINNERJOIN

New Table =

VAR LeftTable  =

      SELECTCOLUMNS(

                            'Table1',

                            "ID",[ID] & "",

                            "Value1",[Value1]

                            )

VAR RightTable =

      SELECTCOLUMNS(

                            'Table2',

                            "ID",[ID] & "",

                            "Value2",[Value2]

                            )

RETURN

      NATURALINNERJOIN(

                   LeftTable,

                   RightTable

                   )

Table 5-13. Dataset to Be Used as the Table2 Table

ID Value2

C 3

D 4

e 5

F 6
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An approach to take here is to append an empty text value to the column name of 

each column you intend to use to join by the NATURALINNERJOIN function. The same 

technique works for NATURALLEFTOUTERJOIN and matches on multiple columns that 

share the same name and datatype. There are probably good reasons why the lineage 

requirement exists for these functions, particularly in terms of performance over larger 

datasets, so be mindful of this when you are using this technique.

The output of the same query using NATURALLEFTOUTERJOIN is shown in 

Table 5- 15.

 UNION
The join functions covered so far allow tables to be joined horizontally. If you need to 

join two or more vertically, you can use the UNION function. This operates the same way 

UNION ALL works in T-SQL. The syntax for UNION is as follows:

UNION ( <table1>, <table2> [, <tableN>...])

The function expects each table passed to have the same number of columns, 

otherwise, an error is produced. SELECTCOLUMNS and ADDCOLUMNS are useful 

functions to help you shape tables to the point where they have the same number of 

columns for UNION to work.

Table 5-15. The Output of Code from Listing 5-18 

Using NATURALLEFTOUTERJOIN

ID Value1 Value2

a 1

B 2

C 3 3

D 4 4

Table 5-14. The Output of the Code in Listing 5-18

ID Value1 Value2

C 3 3

D 4 4
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An effective use case for UNION is in conjunction with NATURALLEFTOUTERJOIN 

over a base table that is missing data. You can use the NATURALLEFTOUTERJOIN to 

help identify the gaps and then generate a table with dummy values that can be joined 

vertically back to the base table using the UNION function for a more complete table.

If you use the UNION function with the Table1 and Table2 datasets (see Tables 5-12 

and 5-13) from the previous example, the output is shown in Table 5-16.

Note that the rows from Table1 and Table2 that are identical still return as separate 

rows and you don’t have an option to perform a DISTINCT style T-SQL during the 

UNION. If you want to do this, you can wrap the UNION with a DISTINCT function to 

remove duplicate rows:

Table =

      DISTINCT(

            UNION('Table1',Table2)

            )

Columns are matched in the order in which they appear in the tables passed to the 

UNION function. If there is a difference in the datatype for a column between columns 

that are being connected, the DAX engine falls back to the datatype that can carry both 

sets of data; for example, if a whole number column is aligned with a text column, the 

resulting column has a datatype of Text.

Table 5-16. The Output of the UNION of Table1 and Table2

ID Value1

a 1

B 2

C 3

D 4

C 3

D 4

e 5

F 6
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It’s also possible to union a table onto itself as a technique to quickly double or triple 

your source table. The following code returns a table that has three times the number of 

rows as Table1.

Union Table = UNION(Table1,Table1,Table1)

 LOOKUPVALUE
The last function I cover in this chapter is one that may be more familiar to power users 

of EXCEL than T-SQL. The function is not so much a tool to join tables as it is a function 

to allow you to retrieve values from other tables without using a DAX relationship.

The syntax for LOOKUPVALUE is as follows:

LOOKUPVALUE ( <resultColumnNAme>, <searchColumnName>, <searchValue>

                                                                   

[, <searchColumnName>, <searchValue>]...)

The first parameter specifies the value to be returned by the function. When you use 

this in a calculated column, this is the value that ultimately shows in the new column. 

The column can be any column from any table including the table you may be adding to 

the calculated column.

The second and third parameters are <search>/<value> pairs. The 

<searchColumnName> parameter needs to be a column from the same table as the first 

parameter. The <searchValue> carries either a column to be used for values to search for, 

or it can be a hardcoded value.

The function needs to return a single result, so the LOOKUPVALUE function 

generates an error if it finds more than one distinct value. A common use of 

LOOKUPVALUE is between a table that might normally exist on the many side of a one- 

to- many relationship and the LOOKUPTABLE being used to search the table on the one 

side of the relationship for a value.

An example that uses the WideWorldImportersDW data might be to add a column to 

the ‘Fact Sales’ table that carries a value that it finds from the ‘Dimension City’ table. This 

does not need a relationship to be defined between these tables.

Listing 5-19 adds a column that shows the [Continent] for each sale.
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Listing 5-19. Calculated Column Using LOOKUPVALUE Function

New Column =

      LOOKUPVALUE(

                        -- Value to be returned for this new column --

                        'Dimension City'[Continent],

                        -- Column to search --

                        'Dimension City'[City Key],

                        -- Value in column to search --

                        'Fact Sale'[City Key]

                        )

The first parameter ‘Dimension City’[Continent] specifies the column that is used to 

find a value that eventually returns to the new calculated column. 

The row used to return the value for [Continent] is determined by the next two 

parameters. ‘Dimension City’[City key] tells LOOKUPVALUE this is the column you want 

to use when you are looking for rows, and the ‘Fact Sale’[City Key] tells LOOKUPVALUE 

the exact value to look for. This case uses the value from the [City Key] column in the 

‘Fact Sale’ table.

The <searchValue> parameter can be hardcoded or the result of a calculation. If it is 

hardcoded, it means you have the same value in every row of the new column.

Additional <searchColumnName> and <searchValue> sets of criteria can be passed 

to the LOOKUPVALUE function, which might provide more flexibility over a standard 

relationship, however this is likely to be inefficient over larger datasets on top of the 

requirement to ensure the LOOKUPVALUE function returns a single value for each 

search.
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CHAPTER 6

Filtering
 Implicit Filtering
Filtering data is inevitable in modern reporting solutions. It is rare these days when you 

need to create a report that simply counts the rows or performs simple calculations over 

every row in a table.

One of the many excellent features of interactive tools such as Power BI is how they 

can apply filters interactively over the underlying data. If you click around on visuals 

in a report page, other visuals react and respond dynamically to show you new values 

representative of the selection you just made.

This is mostly implicit filtering that happens automatically due to rules in the 

underlying data model. Selecting from a slicer, filter, or visual not only filters the table 

the data has comes from but propagates down through to tables that have relationships 

defined to the table you have just filtered, and not just to tables directly related, but 

to intergenerational tables, as long as they are on the many side of one-to-many 

relationships.

Filters can propagate from the many side through to the table on the one side as long 

as the cross-filtering property of the relationship is set to both.

For simple examples, it’s possible to meet your requirements by importing data into 

a data model and creating appropriate relationships. Implicit measures can be used in 

your report, meaning you can get away with writing no code and still produce a useful 

report.

Using the WideWorldImportersDW example to help you understand, let’s focus on 

three tables and walk through how filtering works using standard relationships and then 

look at how you can use some of the filter functions provided in DAX for extra control 

and flexibility.
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The three tables are ‘Dimension Date’, ‘Dimension Stock Item’, and ‘Fact Sale’, with 

the relationships in Figure 6-1 defined in the data model. ‘Dimension Date’ has a one- 

to- many relationship to ‘Fact Sale’, with the ‘Dimension Date’ table on the one side. The 

column on the ‘Fact Sale’ table is [Invoice Date Key], whereas the column used in the 

‘Dimension Date’ table is [Date]. Both these columns use the Date datatype.

The ‘Dimension Stock Item’ table also has a one-to-many relationship to the ‘Fact 

Sale’ table with [Stock Item Key] used as the column for each table.

Figure 6-1. The relationships between three tables in the model
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Tip in the relationship View, try to put the tables on the one side of one-to-many 
relationships above the tables on the many side. this helps to visually reinforce the 
trickle-down effect of filters. Selecting a column in a table on the one side filters 
rows in the table on the many side, but not the other way around.

This is a common pattern in data modelling for analytics and reporting. The table 

on the one side is generally a list of items you might like to slice and dice from the rows 

of the table on the many side. As the table name suggests, these are often referred to as 

dimension tables.

Dimension tables typically have one row per entity that represents the lowest level 

of detail to group by. The column that represents the lowest grain should be unique and 

contains the value that appears in your related table on the many side.

The tables on the many side can have multiple rows with the same value in the 

column used in the relationship. These are often referred to as fact tables. Hopefully 

your ‘Fact Sales’ table has many rows for any given date. Equally, it’s possible and quite 

normal for the table on the many side to have no rows that match a column on the one 

side. If trading doesn’t take place on weekends or holidays, there may not be rows for 

these days, and this is important to remember when you design your data model.

Fact tables often represent actions, events, or transactions, and usually they have a 

time component. A good rule of thumb to help decide which data should be shaped into 

a Fact table versus a Dimension table is this: if you would like to count, sum, or show a 

trend of the data over time, then consider using a fact table. If the data is how you might 

like to slice and dice, then it is probably a suitable candidate to use as a dimension table.

In the WideWorldImportersDW dataset, the lowest grain for the ‘Dimension Date’ 

table is a specific day and does not contain columns or rows that represent hours, 

minutes, or seconds.

Additional columns in the ‘Dimension Date’ table allow you to group days in useful 

ways, such as by calendar month. These additional columns do not have to be unique 

and can be customized to suit your organization’s reporting requirements.

The ‘Dimension Date’ table in this dataset allows rows to be grouped into calendar 

and fiscal ranges such as months and years. Additional columns provide alternative 

formatting such as [Short Month] (Jan, Feb, Mar, . . . ), and the [Month] column (January, 

February, March, . . . ).
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Any column used from ‘Dimension Date’ in any part of your report automatically 

sends filtering information to the related ‘Fact Sale’ table via the columns used in the 

relationship. There is no need to only use the columns defined in the relationship in 

slicers, filters, or in the axis areas of your visuals.

Starting with a very simple reporting requirement to show a count of the number of 

sales by invoice date, we can add the following calculated measure to the data model:

Count of Sales = COUNTROWS('Fact Sale')

When this measure is dropped onto the reporting canvas using a table visual, it 

shows a value of 228,265. This happens to be the same number of rows as are in the ‘Fact 

Sale’ table. No filtering has taken place in the calculation of this value; the COUNTROWS 

function has simply run a single pass over the ‘Fact Sale’ table counting every row.

If the [Invoice Date Key] field from the ‘Fact Sale’ table is added to the same visual—

note that this is the field from the ‘Fact Sale’ table, not the ‘Dimension Date’ table—you 

should see what appears in Figure 6-2.

Figure 6-2 shows the first few rows of a result set that has 1,069 rows. Each cell in the 

[Count of Sales] column has effectively run the calculated measure, but now an implicit 

filter context is being applied (also known as query context).

This means the value of 89 in the top row of the Count of Sales column has effectively 

run the following calculation.

Figure 6-2. Sample of table visual using [Invoice Date Key] and implicit measure

Chapter 6  Filtering



129

Count of Sales = COUNTROWS(

                               FILTER('Fact Sale',

                                        'Fact Sale'[Invoice Date 

Key]=DATE(2013,1,1)

                                     )

                               )

The DAX engine has dynamically applied a filter condition to the original 

calculation, which is specific to that specific cell.

Note remember that every value shown in your report is the result of its own 
unique calculation and does not rely on the order or output of other calculations. 
this includes totals and subtotals.

The row for Wednesday, January 2, 2013, returned a value for a Count of Sales 

measure of 207. This is the result of DAX applying a slightly different automatic filter 

to the original calculation. In this case, the filter applied has the effect of asking the 

calculation engine to count every row in the ‘Fact Sales’ table that meets the criteria that 

the value in the [Invoice Date Key] table must equal January 2, 2013.

This first example used the [Invoice Date Key] from the ‘Fact Sale’ table. Now let’s 

use the [Date] column from a related table instead and have a look at what happens 

(Figure 6-3).

Figure 6-3. Sample of table visual using [Date] column from ‘Dimension Date’ table
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The calculations produce the same result, only this time we used a column from a 

different table. The DAX engine automatically applies a filter to every calculation in the 

Count of Sales column (except, in this case, for the very bottom total). The difference 

here is that the filtering is taking place in the ‘Dimension Date’ table, which then makes 

its way down through the one-to-many relationship and is applied to the data in the 

‘Fact Sale’ table.

To generate a value of 89 for the top row, the DAX engine knows you want to filter 

the data for rows associated with the January 1, 2013. The [Date] column is unique in 

the ‘Dimension Date’ table and is also the column specified in the active relationship 

between ‘Dimension Date’ and ‘Fact Sale’.

Information contained in the relationship is required because you are using columns 

from two tables to generate the value for the calculated measure. So, the DAX engine 

finds every row in the ‘Fact Sale’[Invoice Date Key] column that has an exact match with 

the filtered value from the ‘Dimension Date’[Date] column. It’s these rows that are used 

by the [Count of Sales] calculated measure to generate a value for the relevant cells.

A good question to ask at this point is why you should use the column from the 

‘Dimension Date’ table when it produces the same result as using the [Invoice Date Key] 

column from the actual ‘Fact Sales’ table. Surely it is more efficient to use a column from 

the same table to filter the rows in which the data is being used in the calculations?

Some advantages of using filters from related tables include the following:

Dimension tables can be used to filter multiple fact-style tables. This 

example contains a single fact table. If you also had report visuals 

that used data from other fact tables, such as ‘Fact Purchase’ 

or ‘Fact Order’, these probably have relationships to the same 

‘Dimension Date’ table. Any slicer or filter based on a column 

from the ‘Dimension Date’ table automatically propagates down 

through multiple one-to-many relationships to be applied to 

calculations using columns in each of the related fact tables.

Dimension tables allow you to include columns that group rows 

together in meaningful ways. The ‘Date’ table contains a unique 

row for every day. A [Calendar Year] column can carry the value 

of "2019" for all 365 rows in ‘Dimension Date’ that have a value 

between January 1, 2019, and December 31, 2019. Equally, 

columns in the ‘Dimension Date’ table can carry values that help 

identify and filter rows for specific months, quarters, working 
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days, holidays, specific events, and so on. Storing these “useful 

columns to group by” in a single table makes for a more efficient 

and easier-to-maintain data model.

Dimension tables typically guarantee one row per entity that they 

represent and are not prone to the same gaps and duplication that 

you may see in a fact table. In the simple case I have used here, 

there is no data for Sunday, January 6, 2013. This probably reflects 

the way this organizations works. By using the [Date] column 

from the ‘Dimension Date’ table, you can use the guaranteed 

availability of all days to your advantage in some calculations—

particularly time intelligence DAX functions designed to assume 

the column being used contains no gaps.

In Figure 6-4, both visuals use the ‘Dimension Date’ [Date] column rather than the 

‘Fact Sale’ [Invoice Date Key] column. These both clearly show no rows for January 6. 

This gap could be important and easily lost if you were using the [Invoice Date Key] 

column in the row header or axis.

Let’s go back to the original example for just one more tweak. Rather than using 

the ‘Dimension Date’[Date] column in the visual, let’s use another column from the 

‘Dimension Date’ table along with the [Count of Rows] calculated measure. Remember 

Figure 6-4. Table and bar chart visuals using the [Date] column with a gap for a 
day with no data
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the [Date] column is guaranteed to be unique because it is being used as the column on 

the one side of a one-to-many relationship, so for every row in the example used so far, 

only one value is being passed through the relationship to the ‘Fact’ table as part of the 

filter context.

This time let’s use the [Calendar Year] column from the ‘Dimension Dates’ table in 

the visual. This should produce the result shown in Figure 6-5.

Figure 6-5 shows five values being generated by the [Count of Sales] calculated 

measure. Four of these are being filtered by the [Calendar Year] column, while the 

very bottom value of 228,265 is not affected by any filtering. The result of 60,968  

for the top row starts by applying a filter over the ‘Dimension Date’ table looking for 

all rows in the which the [Calendar Year] column has a value of 2013. This should 

find exactly 365 rows that the DAX engine then uses to find every associated [Date] 

value. This group of [Date] values filters through the one-to-many relationship  

down to the ‘Fact Sale’ table to help identify which rows can be used by the 

calculated measure.

The DAX used in the [Count of Sales] calculated measure only mentions the ‘Fact 

Sale’ table, which is passed to the COUNTROWS function. There is no mention in the 

calculation about specific columns, how matching is to take place, or anything about 

other tables in the data model. All this filtering happens implicitly, with a little bit of help 

from a predefined relationship between two tables. DAX provides a FILTER function, but 

it is not needed to satisfy this requirement.

Figure 6-5. The table visual using the [Calendar Year] field and implicit measure
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 Explicit Filtering
All the filters in the preceding example Figure 6-5 were used in implicit filtering, 

meaning no DAX filter functions were used in the calculation itself. This allows basic 

reports to be created, but inevitably, you need more sophisticated filtering logic to meet 

more sophisticated reporting requirements.

DAX provides several filter functions and this section examines some common and 

useful examples using these functions. Filter functions in DAX not only allow you to 

provide additional layers of filtering to the implicit filtering for calculations, but they also 

allow you to specifically override the current filter context, allowing your calculations to 

use data from rows they might not otherwise have access to.

 The FILTER Function
The first filter function we look at is the FILTER function. The syntax for this function is 

as follows:

FILTER ( <table>, <filter expression> )

The first parameter is a reference to the table you would like the filter to be applied 

to. The second parameter needs to be a valid DAX expression that results in a Boolean 

true or false that is logically applied to every row in the table used as the first parameter. 

The output of the FILTER function is a table. This is important to know when you’re 

using the FILTER function nested inside other DAX functions. It may be used as 

parameter for any function that accepts a table as a reference.

Sticking with the [Count of Sales] measure, let’s add the FILTER function with a 

simple expression to see what happens to the calculation.

Consider the calculated measure in Listing 6-1.

Listing 6-1. Using the FILTER Function with COUNTROWS

Count of Sales (10 or more) =

                        COUNTROWS(

                            FILTER(

                                'Fact Sale',

                                'Fact Sale'[Quantity] > 10

                                )

                               )
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The difference between this and the earlier calculation is this version uses a FILTER 

function in place of the original ‘Fact Sale’ table reference. The result of this change is 

shown in Figure 6-6.

The new calculated measure is added to the table visual as a third column. To 

understand how we arrived at a value of 30,588 for the top row, let’s look at what is 

happening. In this example, there are two layers of filtering taking place. The first layer is 

the implicit filter (query context), which is being driven from the [Calendar Year] column. 

The second layer is the explicit rule used in the FILTER function for Listing 6-1 over the 

‘Fact Sale’[Quantity] column.

The implicit filter context restricts the number of rows visible to the COUNTROWS 

function to 60,968 rows. Then for each of these rows, a Boolean test is applied to 

determine if the value from the [Quantity] column is higher than 10. This test effectively 

discards any of the remaining 60,968 rows that have a value lower than 11. The result 

is a DAX table returned from the FILTER function to the COUNTROWS function that 

happens to have 30,588 rows to be counted.

The key thing to remember is filtering is ordered, applied in layers, and is not a single 

operation. This allows for additional flexibility when you are creating DAX for more 

sophisticated reporting requirements.

You can extend the DAX used as the filter expression to include more specific 

requirements, as shown in Listing 6-2.

Figure 6-6. Adding a [Count of Sales (10 or more)] measure to a table visual
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Listing 6-2. Calculated Measure Using Filter Criteria from a Related Table

Count of Sales (10 or more) =

                        COUNTROWS(

                            FILTER(

                                'Fact Sale',

                                'Fact Sale'[Quantity] >= 10

                                && RELATED('Dimension Stock Item'[Size]) = "M"

                                )

                               )

This example applies an additional rule that limits the number of rows from the ‘Fact 

Sale’ table still further to use the implicit filter (query context) being passed down from 

the ‘Dimension Date’ table due to the use of the [Calendar Year] column in the visual. 

Then in addition to the original explicit filter requirement to only consider rows that 

have a value of 10 or higher, an extra rule has been added that applies a filter to another 

related table. Because a relationship exists between ‘Dimension Stock Item’ and ‘Fact 

Sales’, this filter requirement is also applied to ultimately restrict the number of rows 

from ‘Fact Sales’ that are eventually passed to the COUNTROWS function to be counted.

The result is now a smaller value for the calculated measure in the third column of 

Figure 6-7.

Figure 6-7. Output using the code from Listing 6-2

Chapter 6  Filtering



136

Using the FILTER function in this way allows you to apply additional restrictions on 

top of any implicit filter (query context) that happens to be in effect. This means you 

can create calculations that have some rules hardcoded into the calculation but can still 

use the measures in many visuals, each with their own implicit filter context that can be 

combined with the explicit filters to generate useful dynamic results.

 Overriding Filters

So far, the filtering has been cumulative, meaning different layers of filtering have 

simply been discarding rows at various points in the calculation. In DAX, there are filter 

functions that provide the ability to override filtering applied by the implicit filter layer. 

These are the functions we will look at that allow this:

• CALCULATE and CALCULATETABLE

• ALL

• ALLEXCEPT

• ALLSELECTED

There are several scenarios in which these functions can be useful. Examples include 

their ability to perform period comparisons, running totals, and percentage of total 

calculations, to name a few. In each of these scenarios, a calculation may need access to 

values stored in rows that have been disregarded by the implicit filter.

 Percentage of Total

Starting with a percentage of total measure, you can use the count of rows by year 

example to demonstrate how to override the implicit filter context. By default, any 

calculated measure used in a visual has a layer of automatic filtering applied to it driven 

by other columns used in the same visual.

Count of Sales = COUNTROWS('Fact Sale')

The [Count of Sales] calculated measure, when used in the same visual as the 

‘Dimension Date’[Calendar Year] column, has a layer of implicit filtering that means the 

COUNTROWS function can only consider a portion of the actual rows from ‘Fact Sales’.

If the requirement is to understand what proportion each year is of the overall total, 

you need a way to instruct the DAX engine to ignore the implicit filter context. DAX 

provides CALCULATE and CALCULATETABLE to help manage this.
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Figure 6-8 demonstrates this using the following calculated measure:

Count of all Sales = CALCULATE(

                               COUNTROWS('Fact Sale'),

                         ALL('Fact Sale')

                         )

Let’s break this down and explain the calculation in more detail.

First, the inner COUNTROWS function is the same as what was used in the [Count of 

Sales] calculated measure. It counts the number of all rows in the ‘Fact Sale’ table that it 

can see. This is normally a version of the table filtered by the query context. In this case, 

the COUNTROWS function is wrapped inside a CALCULATE function.

The CALCULATE function has the following syntax:

CALCUALTE ( <expression>, <filter1>, <filter2> ... )

The function executes the expression provided in the first parameter in the context 

of the filters supplied by the additional parameters. As the syntax for the CALCULATE 

function suggests, there can be any number of filter expressions. In the [Count of all 

Sales] example, the parameter being passed to the CALCULATE function is the ALL 

function. The effect of using the ALL function here is to remove any implicit filter context 

that may be in effect on the ‘Fact Sale’ table, which is the table specified as the parameter 

of the ALL function.

Figure 6-8. Output using the ALL function
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Note the use of CalCUlate and all in this way removes all filter context 
including any hardcoded explicit filter rules you may have used elsewhere such as 
a report, page, or Visual filter.

This now allows for a calculation to be written that combines the [Count of Sales] 

with [Count of all Sales] to generate a value that shows a percentage of total for each row. 

The output of this calculation is shown in Figure 6-9.

Count of Sales % = 

               DIVIDE(

                    [Count of Sales],

                    [Count of all Sales]

                    )

In this example in Figure 6-9, the table passed to the ALL function was ‘Fact Sales’. 

The function removed any implicit filter context from the ‘Fact Sales’ table, which was 

the query context being generated by the ‘Dimension Date’[Calendar Year] column. 

If the ‘Dimension Date’ table was used in place of ‘Fact Sale’, the filter context would 

instead be removed from the ‘Dimension Date’ table. This subtle change doesn’t end up 

changing the values of the visual used in this example.

Figure 6-9. Output with an additional calculated measure
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The net effect of the overall filtering still passes the same rows to the COUNTROWS 

function. There may be a small difference in performance, but we look at that in Chapter 8 

when I cover optimizing DAX.

If you include some additional columns to the table visual, this will demonstrate 

the difference when you specify which table to use in the ALL function with calculated 

measures.

Consider the two calculated measures in Listings 6-3 and 6-4.

Listing 6-3. Calculated Measure Using ALL with the ‘Dimension Date’ Table

Count of all (Dim Date) Sales =

                    CALCULATE(

                        COUNTROWS('Fact Sale'),

                        ALL('Dimension Date')

                        )

Listing 6-4. Calculated Measure Using ALL with the 'Fact Sale' Table

Count of all (Fact Sales) Sales =

                    CALCULATE(

                        COUNTROWS('Fact Sale'),

                        ALL('Fact Sale')

                        )

The only difference between these calculated measures is the table used in the ALL 

function. These yield the same results via two separate paths when you use them in a 

visual with just the ‘Dimension Date’[Calendar Year] column. However, if you introduce 

a filter from a table other than ‘Dimension Date’, you will see a difference. This case 

(shown in Figure 6-10) uses the ‘Fact Sale’[Package] column, in which all rows have just 

one of the following four values: Bag, Each, Packet, or Pair.
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For each cell/computation in the third, fourth, and fifth columns of Figure 6-10, the 

calculated measure starts with an automatic filter context that is relevant for the row in 

question. The [Count of Sales] measure doesn’t remove any of the implicit filter context, 

so the values reflect the true number of rows in the ‘Fact Sale’ table that happen to match 

the [Calendar Year] and [Package] columns.

However, for the [Count of all (Dim Date) Sales] calculated measure, the only filter 

context being removed is any that exists on the ‘Dimension Date’ table and not any filter 

context being applied to the ‘Fact Sale’ table. This explains why you see different values 

between the rows where the value for [Package] is Bag and rows with a different value for 

[Package].

What is happening here is the implicit filter being driven by the [Calendar Year] 

column is being removed, while the implicit filter being driven by the [Package] column 

is not being removed.

For the [Count of all (Fact Sales) Sales] calculated measure, the ALL function is 

clearing all implicit filters from the ‘Fact Sales’ table, which includes any implicit filters 

being passed down from related tables; therefore, the COUNTROWS function can now 

use every row in the ‘Fact Sale’ table to generate a value.

Figure 6-10. Output using code from Listings 6-3 and 6-4
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The implied filter context is not just driven from other columns used in the same 

visual. Implied filter context can be driven from filters external to the current visual. 

These can take the form of selections made to slicers on the same report, or other  

non- DAX- based external filter settings.

Explicit Filters

Functions that allow the removal of implicit filter context have no effect on explicit 

filters. This means that if you use a specific filter rule in a calculated measure, this filter 

condition cannot be removed by a downstream calculation.

Consider the two calculated measures in Listings 6-5 and 6-6.

Listing 6-5. Calculated Measure Applying Filter to [Quantity] Column

Count of Sales (10 or more) =

                        COUNTROWS(

                            FILTER(

                                'Fact Sale',

                                'Fact Sale'[Quantity] >= 10

                                )

                               )

Listing 6-6. Calculated Measure Showing the effect of the ALL Function with the 

Calcuated Measure from Listing 6-5

Count of all (Explicit) Sales =

                        CALCULATE(

                            [Count of Sales (10 or more)],

                            ALL('Fact Sale')

                            )

When the calculation is used in the table visual, you get the output shown in 

Figure 6-11.
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In Figure 6-11, the fourth column uses the [Count of all (Explicit) Sales] calculated 

measure. The value shown in each cell is the result of a mixture of implicit filter context 

and explicit filtering. The value of 30,588 represents the number of rows from ‘Fact Sales’ 

that belong to the [Calendar Year] of 2013, which is the implicit filter context, along with 

the additional restriction to only count rows where the ‘Fact Sale’[Quantity] is greater 

than or equal to 10. You end up with five different values, including the Total row at the 

bottom.

However, for the [Count of all (Explicit) Sales] calculated measure in the final 

column, the ALL function is being used to specify that all implicit filter context that 

may exist on the ‘Fact Sale’ table should be removed. The result is the same value of 

114,687, because the implicit filtering on [Calendar Year] is being removed using the 

ALL function. This shows that the query context has been removed by the ALL function, 

while the upstream filtering that ‘Fact Sale’[Quantity] >=10 remains.

Perhaps a more meaningful name for the ALL function might have been 

REMOVEALLIMPLICITFILTERS, which perhaps is a better indication of the objective 

of the function. I have used the term implicit throughout this chapter. The key point is 

although it is effective at removing all inherited filters, an explicit filter, as used here to 

limit the result to rows where the [Quantity] is greater than or equal to 10, is not affected.

The ALL Function

The previous section introduced the powerful ALL function. Let’s take a closer look at 

this function. The syntax is as follows:

ALL (  <table> | <column> [, <column> ...]  )

The | symbol between the <table> and the first <column> value signifies an “or.” 

This means the first parameter can be a table OR a column. If the first parameter is a 

table, there is no option for a second parameter. In this case, all implicit filter context 

is removed from the specified table, which effectively returns all rows from the table. 

Figure 6-11. Output using code from Listings 6-5 and 6-6

Chapter 6  Filtering



143

If a column is used as the first parameter, then additional columns can be used as the 

second and third parameters as long as all the columns come from the same table.

A more efficient use of the [Count of all (Explicit) Sales] calculated measure from the 

previous section would be

Count of all (Explicit) Sales =

                        CALCULATE(

                            [Count of Sales (10 or more)],

                            ALL('Dimension Date'[Calendar Year])

                            )

The change to the calculated measure is that the ALL function is now using a column 

instead of a table as its parameter. More importantly, the column being passed to the 

ALL function is the same column being used to drive the implicit filtering. The values 

produced by this updated version are the same as the version that used the ‘Fact Sales’ 

table as a parameter.

In this example, different values are produced for each cell if any other column is 

used by the ALL function. The query plan generated for both versions of these calculated 

measures was the same, so swapping a <table> for a <column> here has no effect on 

performance. In other cases, swapping a <table> for a <column> can provide faster 

performance.

The ALLEXCEPT Function

Another DAX function that provides the ability to override implicit filters is the 

ALLEXCEPT function. This is similar to the ALL function in the way it can be used to 

clear filters, however, with this function, the parameters are used to specify which filters 

retain implicit filters.

This is the syntax of the ALLEXCEPT function:

ALLEXCEPT ( <table>, <column> [, <column> ...] )

With ALLEXCEPT, the minimum requirement is to pass both a table and a column. 

One or more columns can be used as additional parameters. This function provides a 

handy alternative to the ALL function when used on tables with lots of columns.

If you have a table with 30 columns and a calculation that needs to clear implicit 

filters on 28 of these, using the ALL function requires 28 parameters to be passed. 

However, using the ALLEXCEPT function only requires 3 columns to be passed.
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Consider the Table 6-1.

The calculated measures in Listings 6-7 and 6-8 have the same net effect.

Listing 6-7. A Calculated Measure Using the ALL Function with Specific Columns

ALL Measure =

               CALCULATE(

                    SUM('Table1'[ColumnE]),

                    ALL(

                        Table1[ColumnA],

                        Table1[ColumnB],

                        Table1[ColumnC]

                        )

                )

Listing 6-8. A Calculated Measure Using the ALLEXCEPT Function with Specific 

Columns

ALLEXEPT Measure =

               CALCULATE(

                    SUM('Table1'[ColumnE]),

                    ALLEXCEPT(

                        Table1,

                        Table1[ColumnD]

                        )

                )

Table 6-1. Dataset to Be Used as Table1 Table

ColumnA ColumnB ColumnC ColumnD ColumnE

a apple australia athletics 10

B Banana Brazil athletics 15

C Cherry Canada Cricket 30
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The result of adding both calculated measures to a table visual is shown in Figure 6- 12.

The two right-hand columns in Figure 6-12 show the output of both versions of 

the calculated measure. In each case, implicit filters being generated by the first three 

columns are being cleared leaving only implicit filters from ColumnD to be considered 

by the SUM function inside CALCULATE.

What this also shows is that you can perform Percentage of Total calculations against 

subcategories within your data. Using either the ALL or ALLEXCEPT function in this 

way, you can generate a value showing the sum of values in ColumnE, grouped by 

ColumnD. You can then use this in a calculation that shows the proportion of ColumnE 

that is Brazil over every row that has Athletics in ColumnD.

The calculated measure in Listing 6-9 returns a value that represents a percentage of 

a subcategory. The results are shown in Figure 6-13.

Listing 6-9. A Calculated Measure Incorporating a Calculated Measure from 

Listing 6-7

ColumnD Ratio =

            DIVIDE(

                SUM('Table1'[ColumnE]),

                [ALL Measure],

                0

                )

Figure 6-12. Output using code from Listings 6-7 and 6-8

Figure 6-13. Output of code from Listing 6-9 when formatted as a percent
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The ALLSELECTED Function

The final function to look at in this section is the ALLSELECTED function. Like ALL and 

ALLEXCEPT, the purpose of this function is to remove implicit or inherited filtering 

from the current calculation to allow access to rows of data that would otherwise be 

unavailable. The difference between ALLSELECTED and the earlier functions is that 

ALLSELECTED only removes implicit filters that are generated within the same query.

This is especially useful in Power BI where each value on a visual can be influenced 

by filters from many places. Values can be filtered explicitly through hardcoded DAX 

or implicitly through other fields in the same visual such as column or row headers (or 

fields used on an axis). Lastly, filters can be inherited from selections made external to 

the current visual. It is the distinction between implicit filters generated by filters on 

fields in the current visual and external filters where ALLSELECTED is most useful.

To get a feel for using all of these functions with WideWorldImportersDW data, 

consider the Listings 6-10, 6-11, and 6-12.

Listing 6-10. Calculated Measure Using SUM

Sum of Quantity = SUM('Fact Sale'[Quantity])

Listing 6-11. Calculated Measure Using the ALL Function to Manage Filter 

Context

ALL Quantity =

    CALCULATE(

        SUM('Fact Sale'[Quantity]),

        ALL('Fact Sale')

        )

Listing 6-12. Calculated Measure Using the ALLSELECTED to Manage Filter 

Context

ALLSELECTED Quantity =

    CALCULATE(

        SUM('Fact Sale'[Quantity]),

        ALLSELECTED('Fact Sale')

        )
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When these measures are used in a table visual along with the ‘Dimension 

Date’[Calendar Year] column, you get the result in Figure 6-14.

There is no difference between the values in the [ALL Quantity] and [ALLSELECTED 

Quantity] columns. The assumption here is that no other visuals or external filters 

are being used to generate this result. Both the ALL and ALLSELECTED functions are 

removing the implicit filtering being driven from the [Calendar Year] column.

However, when an external filter is added to the report, such as a slicer over a field in 

a related table, you can see how the values are affected (Figure 6-15).

In this case, a slicer has been added using the ‘Dimension Stock Item’[Buying 

Package] field and a selection of Each has been made. The three calculated measures 

now react differently to this external filter.

Figure 6-14. Output using code from Listings 6-10, 6-11, and 6-12

Figure 6-15. Output of the code from Listings 6-10, 6-11, and 6-12 with filtering 
from a slicer
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The [Quantity] calculated measure now generates a sum over the Quantity field, 

and it inherits two layers of implied filter context. The value of 1,725,397 for the top row 

is first influenced by the [Calendar Year] field filtering rows in the ‘Fact Sale’ table that 

are relevant to 2013, while the second layer of filtering that comes from the slicer is set 

to Each. Both layers accumulate to leave the SUM function to only use rows that match 

both criteria. No filters are overridden for this calculated measure.

The [ALL Quantity] calculated measure uses the ALL function to remove any implied 

filter context from the calculation. This removes filtering from both the internal layer 

being driven by the [Calendar Year] field and the external layer of implicit filtering being 

driven by the slicer. The net result is every cell has the same value including the total. 

This also happens to be the sum of every ‘Fact Sale’[Quantity] column.

The [ALLSELECTED Quantity] calculated measure now shows a different value 

than the [ALL Quantity] column. This is because the ALLSELECTED function removes 

the internal layer of filtering being driven by the [Calendar Year] column, but it doesn’t 

remove any filtering coming from the slicer. If a different selection is now made to the 

slicer, the [ALLSELECTED Quantity] measure updates with new values, while the [ALL 

Quantity] measure remains unchanged.

The three calculated measures in this example can be used as the basis for additional 

measures that highlight data in interesting ways. All are potentially useful in your report. 

Hopefully these examples show the intent and approach of the different filter functions. 

It’s possible to target a very fine grain of row selection using these functions to provide 

extensive flexibility.

 Running Totals

The ability to remove implicit filters from calculations is also useful when used to 

generate running totals. To create a calculated measure that shows the running total of 

the ‘Fact Sale’[Quantity] column, start with a core DAX expression such as this:

SUM('Fact Sale'[Quantity])

The challenge is that when you use this expression in a visual, the calculation only 

considers values in the ‘Fact Sale’[Quantity] column that are implicitly filtered by other 

fields. If the ‘Dimension Date’[Calendar Year] field is also used in the query, the result 

produced for this calculation correctly shows the SUM for each specific calendar year 

but does not have access to data relating to other years to provide a running total effect. 

This is where the ALL, ALLEXCEPT, and ALLSELECTED functions can help.
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To see a demonstration of running totals using WideWorldImportersDW data, 

consider the following calculated measures in Listings 6-13 and 6-14.

Listing 6-13. A Calculated Measure Using SUM

Sum of Quantity = SUM('Fact Sale'[Quantity])

Listing 6-14. A Calculated Measure Using the FILTER Function to Generate a 

Running Total

Running Total =

    CALCULATE(

        SUM('Fact Sale'[Quantity]),

        FILTER(

            ALL('Dimension Date'[Calendar Year]),

             MAX('Dimension Date'[Calendar Year]) >= 'Dimension 

Date'[Calendar Year])

            )    

When these calculated columns are added to a visual that also uses the ‘Dimension 

Date’[Calendar Year] column, the results in Figure 6-16 are produced.

The values in the [Sum of Quantity] column all show the result of the calculation 

being run with the relevant implicit filter being driven from the [Calendar Year] 

column. The bottom value of 8,950,628 in this column has no implicit filter context, so it 

calculates over every row in the ‘Fact Sale’ table.

Figure 6-16. Output of the code from Listings 6-13 and 6-14
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For the [Running Total] calculation, the SUM function is wrapped inside a 

CALCULATE function that allows additional filtering instructions to be defined, in this 

case, the targeted removal of some implicit filtering. For the result of 4,969,058 for 2014, 

the SUM function needs to have access to rows that relate to 2013.

The first parameter of the FILTER function uses the ALL function to remove any 

implicit filtering from the [Calendar Year] column. This has the effect of exposing every 

row from the ‘Fact Sale’ table to the SUM function. If you stopped here, you would simply 

see the value of 8,950,628 repeated in every cell.

The second parameter of the FILTER function specifies MAX ('Dimension 

Date'[Calendar Year]) >= 'Dimension Date'[Calendar Year]), which defines a 

filtering rule that now reduces rows from the ‘Fact Sale’ table to only those that mean this 

Boolean condition. For the first row in the table visual, this means only rows that related 

to 2013. For the second row, this includes all rows that relate to 2013 as well as 2014. This 

is the magic that provides the effect of a running total.

Each cell in the [Running Total] column is an independent calculation that does not 

rely on, or use, the output from any previous calculation in the visual. The calculations 

can run in any order and will only consider rows that survive the multiple layers of 

filtering being applied.

DAX can perform these calculations very quickly due to the in-memory, column- 

based nature of the xVelocity engine, so the extra flexibility provided through the 

independent nature of cell-based calculations generally outweighs any downsides of 

read duplication. It is good to keep this in mind if you are building running totals over 

many calculations. In this example, the [Running Total] calculation executes five times.

If the ‘Dimension Date’[Date] column was used in place of ‘Dimension 

Date’[Calendar Year] for both the calculated measure and the visual, there would be 

1,462 executions of the calculated measure (one for each row at the [Date] level and then 

one for the total). Any values in rows related to January 1, 2013, would be used by every 

one of the 1,462 executions.

ALLSELECTED on Running Total

The [Running Total] calculated measure shown previously in Listing 6-14 used the ALL 

function to remove any implicit filters being driven by the ‘Dimension Date’[Calendar 

Year] column. When employed in this manner, other slicers and filters used external to 

the visual that are based on columns other than ‘Dimension Date’[Calendar Year] filter 

through to the SUM calculation. This means they give a running total from the start of 
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the first record in the [Calendar Year] column, but the rows also have an additional filter 

applied that is relevant to the selection of the slicer.

The exception to this is if a slicer or external filter is based on the ‘Dimension 

Date’[Calendar Year] column. In this case, the value produced if the slicer is filtered to 2015 

is still 7,709,324. All rows that relate to 2013 and 2014 are still considered by the SUM.

If the calculation is changed to use the ALLSELECTED function in place of the ALL 

function, any slicer or external filter based on ‘Dimension Date’[Calendar Year] now only 

considers rows that relate to selections in the slicer.

This can be demonstrated using the three calculated measures in Listings 6-15, 6-16, 

and 6-17.

Listing 6-15. A Calculated Measure Using SUM

Sum of Quantity = SUM('Fact Sale'[Quantity])

Listing 6-16. Running a Total Calculated Measure Using the ALL Function to 

Manage the Filter Context

Running Total ALL =

    CALCULATE(

        SUM('Fact Sale'[Quantity]),

        FILTER(

            ALL('Dimension Date'[Calendar Year]),

             MAX('Dimension Date'[Calendar Year]) >= 'Dimension 

Date'[Calendar Year])

            )   

Listing 6-17. Running a Total Calculated Measure Using the ALLSELECTED 

Function to Manage Filter Context

Running Total ALLSELECTED =

    CALCULATE(

        SUM('Fact Sale'[Quantity]),

        FILTER(

            ALLSELECTED('Dimension Date'[Calendar Year]),

             MAX('Dimension Date'[Calendar Year]) >= 'Dimension 

Date'[Calendar Year])

            )   
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Figure 6-17 shows the result when a selection has been made to a slicer using the 

‘Dimension Date’[Calendar Year] column. In this example, two selections are made to 

the slicer for 2015 and 2016.

The difference between the two running total calculated measures is the way each 

reacts to the slicer. The version that uses ALL removes all filtering over the ‘Dimension 

Date’[Calendar Year] column, regardless of where the filter originated, whereas the 

version using ALLSELECTED retains the filtering context from the slicer. This means the 

calculation using ALLSELECTED cannot access rows from ‘Fact Sale’ that relate to 2013 

or 2014, so the running total is started from 2015 rather than from 2013.

Either approach may suit your reporting requirements. Sometimes you need to use 

one approach, other times you need the other. This example hopefully demonstrates 

how you can use the different filter functions to achieve what you need.

Resetting Running Totals

A slight variation on the running total measure is to provide a running total over a value 

for a subcategory that resets between categories. For instance, this can be demonstrated 

using the ‘Dimension Date’ table, where the category is Calendar Year and the 

subcategory is Calendar Month.

The following calculated column is first added to the ‘Dimension Date’ table:

Calendar Month = STARTOFMONTH('Dimension Date'[Date])

Figure 6-17. Output of code from Listings 6-15, 6-16, and 6-17 with filtering from 
slicer using two selections
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This generates a new column that carries a value that shows the first day of every 

relevant month.

A modified version of the [Running Total ALL] calculated measure with differences 

highlighted is shown in Listing 6-18.

Listing 6-18. Running Total Calculated Measure That Resets Each Year

Running Total ALL =

    CALCULATE(

        SUM('Fact Sale'[Quantity]),

        FILTER(

            ALL(

                'Dimension Date'[Calendar Month],

                'Dimension Date'[Calendar Year]

                ),

             MAX('Dimension Date'[Calendar Month]) >= 'Dimension 

Date'[Calendar Month] &&

             MAX('Dimension Date'[Calendar Year]) = 'Dimension 

Date'[Calendar Year])

            )   

When used in a Matrix visual with the ‘Dimension Date’[Calendar Year] and the 

new ‘Dimension Date’[Calendar Month] columns, the calculated measure produces the 

result in Figure 6-18.
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In this calculation, the FILTER function uses more sophisticated rules to determine 

which filters should be removed or applied to decide which rows can be considered by 

the SUM function.

The ALL function removes any implied filtering from the [Calendar Year] and 

[Calendar Month] columns. At this point, the SUM calculation returns the value of 

8,950,628 for every cell in the [Running Total ALL] column.

However, additional filtering is being applied by rules in the FILTER function. Two 

conditions need to be met according to these rules.

Figure 6-18. Output using code from Listing 6-18. Running totals are reset for 2014
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The first condition is that rows in the ‘Fact Sale’ table related to each ‘Dimension 

Date’[Calendar Month] must be the same, or lower (earlier) than the Calendar Month 

from the row header. This is the condition that provides the running total effect.

This is a confusing notation. There appear to be two references to the same 

‘Dimension Date’[Calendar Month] object. These are not the same objects. One refers to 

the version of ‘Dimension Date’ in the query context, while the other refers to the version 

of ‘Dimension Date’ used in the filter context.

The ‘Dimension Date’[Calendar Month] wrapped in the MAX function on the 

left-hand side of the >= operator is referring to the query context. The MAX function 

guarantees just one value to be used in the comparison.

The ‘Dimension Date’[Calendar Month] on the right-hand side of the >= operator 

refers to the filter context. It is these records, including downstream rows in ‘Fact Sale’ 

that are used and passed to the SUM function.

The other criteria in the filter expression is to specify only rows from ‘Fact Sale’ that 

have a relationship to ‘Dimension Date’[Calendar Year] that matches the value from the 

Calendar Year row header. This is the part of the code that resets the running total.

This requirement could also be satisfied using the following calculated measure:

Running Total YTD =

    TOTALYTD(

            [Sum of Quantity],

            'Dimension Date'[Date]

            )

The TOTALYTD function provides a running total for each Calendar Month as well 

as resetting each year. Although this is simpler, it is only designed to work with date- 

based columns and it provides less flexibility around your running total. The [Running 

Total ALL] version uses a pattern that you can apply to different types of data, with more 

control over the rules around when to reset the running total (if at all).

Running Totals as a Rank (Calculated Column)

An alternative use of the running total pattern is to provide a ranking over a set of data 

with the output being a column rather than a measure. This calculated column provides 

a version that establishes a ranking from 1 to 403 for customers based on overall sales 

(Listing 6-19). The calculation relies on a one-to-many relationship existing between the 

‘Dimension Customer’ and ‘Fact Sale’ tables.
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Listing 6-19. A Calculated Column Using RANKX Over a Relationship

Customer Rank Column =

    RANKX(

        'Dimension Customer',

        CALCULATE(

            SUM('Fact Sale'[Total Excluding Tax])

            )

         )

An interesting feature to point out about this DAX statement is the use of 

CALCULATE. This is required to convert the current row context to a filter context 

to allow the SUM function to correctly generate the correct value for each row using 

information across the relationship. If the CALCULATE statement is removed, the SUM 

function simply returns the same value over and over. The value returned is the sum of 

every row in the ‘Fact Sale’ table.

This calculation only computes when data is being refreshed into the model because 

it is a calculated column. Filters and slicers have no effect on the number returned.

To help understand the approach of the DAX formula, take a look at the T-SQL 

equivalent (Listing 6-20).

Listing 6-20. The T-SQL Equivalent of the DAX Code in Listing 6-19

WITH Ranking (

      [Customer Key],

      [Total Excluding Tax]

      )

      AS

      (

      SELECT

             D.[Customer Key],

             SUM(F.[Total Excluding Tax]) AS [Total Excluding Tax]

      FROM Dimension.Customer AS D

             INNER JOIN Fact.Sale AS F

                   ON F.[Customer Key] = D.[Customer Key]

      GROUP BY

             D.[Customer Key]

             )
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      SELECT

             L.[Customer Key],

             COUNT(*) AS [Final Ranking]

               FROM Ranking AS L

             INNER JOIN Ranking AS R

                   ON L.[Total Excluding Tax] <= R.[Total Excluding Tax]

      GROUP BY

             L.[Customer Key]

      ORDER BY

             COUNT(*)

The final select statement performs a self-join back to the predicate on the INNER 

JOIN filtering out rows with a higher value for [Total Excluding Tax]. You can obtain a 

ranking by counting the number or rows after the INNER JOIN. You can achieve this in 

other ways using T-SQL, but this version is useful to help you understand the approach 

taken by the DAX formula.

The FILTER function takes a similar approach to a T-SQL self-join, which you can 

tailor to suit different requirements by using different filtering rules.

Period Comparison

A common requirement is to compare a value for one period to a previous period. This 

allows further calculations to show variation percentages, among other things. One 

example is showing a value for a measure for a specific month next to a value of the same 

measure for the previous month (or the same month from a previous year).

Consider the example of comparing to a previous month when you take a look at the 

four calculated measures in Listings 6-21–6-24.

Listing 6-21. A Period Comparison Calculated Measure Using the ALL Function 

to Manage Filter Context

Using Filter =

    CALCULATE(

        [Sum of Quantity],

        FILTER(

            ALL('Dimension Date'[Calendar Month]),

Chapter 6  Filtering



158

             MAX('Dimension Date'[Calendar Month]) =  

EDATE('Dimension Date'[Calendar Month],1)

            )

           )

Listing 6-22. A Period Comparison Calculated Measure Using PARALLELPERIOD

Using Parallel Period =

    CALCULATE(

        [Sum of Quantity],

        PARALLELPERIOD('Dimension Date'[Date],-1,MONTH)

        )

Listing 6-23. A Period Comparison Calculated Measure Using DATEADD

Using Date Add =

    CALCULATE(

        [Sum of Quantity],

        DATEADD('Dimension Date'[Date],-1,MONTH)

        )

Listing 6-24. A Period Comparison Calculated Measure Using 

PREVIOUSMONTH

Using Previous Month =

    CALCULATE(

        [Sum of Quantity],

        PREVIOUSMONTH('Dimension Date'[Date])

        )

All four calculated measures produce the same result, which you can see in Figure 6- 19 

as the columns on the right-hand side.
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For the February 2013 row, all four calculated measures return the value of 46,176, 

which happens to be the value of [Sum of Quantity] for January 2013. Aside from the 

fact that two of the measures also provide a value in the [Total] column, they all react to 

external slicers and filters.

The [Using Filter] measure, is the most complex to write; however, it allows the most 

flexibility for customizing the filtering rules. It is easy to add and apply additional layers 

of explicit filtering in this instance. You can also configured the [Using Filter] measure to 

always look at a specific month rather than a relative month.

The [Using Parallel Period] and [Using Date Add] versions take advantage of 

functions that don’t require the ALL or ALLSELECTED functions to access out-of-context 

data. These functions also provide the ability to customize to suit other time periods. 

Perhaps the requirement is to always compare the current month with one that is always 

two months prior, or twelve months prior. Both the PARALLELPERIOD and DATEADD 

functions allow QUARTER and YEAR as options to return. You can also use them with 

positive numbers and negative numbers for the interval.

Finally, the [Using Previous Month] measure provides the simplest format of the four 

measures but the least flexibility.

In this case, all four calculated measures are evaluating an expression over a column 

in the ‘Fact Sale’ table, but they use a column in the ‘Dimension Date’ table to determine 

the date period. These use the rule determined by the active relationship between 

these tables, which in this case is based on the ‘Fact Sale’[Invoice Date key]. If the 

calculation should be grouped using a different column in ‘Fact Sale’, then you can add 

USERELATIONSHIP as additional parameter to the CALCULATE function. This allows a 

visual to show values that represent measures by delivery date if that is what you require.

Figure 6-19. Output of code from Listings 6-21–6-24

Chapter 6  Filtering



160

The ‘Dimension Date’[Date] column also features in each of these calculated 

measures. This column exists in a table where contiguous dates are guaranteed. Some 

of the time intelligence–based measures rely on this to work. If a date column from ‘Fact 

Sale’ is used, unexpected results may occur that may not initially be obvious.

I analyze a breakdown of the individual performance of these measures in Chapter 8. 

Calculated Columns and the EARLIER Function

A handy function to use when you are writing calculated columns is the EARLIER 

function. This function provides a logical equivalent of a T-SQL self-join, which allows 

calculations to access data from rows other than the current row. This can include data 

from rows in related tables. The name of this function doesn’t clearly explain how it 

works; perhaps an alternative name might be more useful.

To see how this function can be used, add a calculated column to the ‘Fact Sale’ 

table. This column should carry values that show, for each transaction, the date of the 

previous transaction for that customer. You can then use this calculation as the basis for 

determining the number of days since last purchase and it can then be averaged and 

plotted over time in a way that helps you understand changes to the frequency of visits 

by customers.

The DAX calculated column is shown in Listing 6-25.

Listing 6-25. A Calculated Column Using EARLIER

Last Purchase Date =  

    CALCULATE(

        LASTDATE(' Fact Sale'[Invoice Date Key]),

        FILTER(

            'Fact Sale',

            'Fact Sale'[Customer Key] = EARLIER('Fact Sale'[Customer Key])

             && 'Fact Sale'[Invoice Date Key] < EARLIER('Fact Sale'[Invoice 

Date Key])

        )

    )

When this calculation is added to the ‘Fact Sale’ table, a new column shows for each 

row the last time that specific customer was invoiced.

The T-SQL equivalent is shown in Listing 6-26.
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Listing 6-26. The T-SQL Equivalent of the DAX code in Listing 6-25

SELECT

       [Current].[Sale Key],

       [Current].[Customer Key],

       [Current].[Invoice Date Key],

       MAX([EARLIER].[Invoice Date Key]) AS [Last Purchase Date]

FROM Fact.Sale AS [Current]

       LEFT JOIN FACT.Sale AS [EARLIER]

             ON  [Earlier].[Customer Key] = [Current].[Customer Key]

              AND [Earlier].[Invoice Date Key] < [Current].[Invoice Date 

Key]

WHERE

       [Current].[Customer Key] = 10

GROUP BY

       [Current].[Sale Key],

       [Current].[Customer Key],

       [Current].[Invoice Date Key]

In order for each row in ‘Fact Sale’ to find the correct value to use as the last purchase 

date, it needs access to information that isn’t contained in its row. It needs a way to look 

at other rows from the table. The EARLIER function allows a form of logical self-join that, 

when used in the FILTER function, allows the calculation to find the relevant rows.

In this case, a single row in the ‘Fact Sale’ table first finds every row from the self- 

join table that is a match on [Customer Key]. This includes rows that have an [Invoice 

Date Key] after the value from the current row. Then the additional filter requirement 

that limits rows from the outer [Invoice Date Key] so they have a smaller value than the 

[Invoice Date Key] of the current row is applied.

This can still produce multiple values so the LASTDATE function is used in the 

expression to pick a single date that happens to be the oldest of the remaining dates. You 

could also use the MAX function in place of LASTDATE in this case.

This calculated column produces a value that is relevant for every row in the table, 

and because it is a calculated column rather than a calculated measure, it cannot be 

changed using report slicers or filters.
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The name of the EARLIER function implies that it may provide functionality that 

looks for a previous row based on ordering. This is not the case, and perhaps a name like 

OUTERTABLE would be more meaningful.

Variables provide an alternative notation for the EARLIER function. The calculated 

column in Listing 6-27 does the same job using VAR instead of EARLIER.

Listing 6-27. A Calculated Column Using Variables in Place of EARLIER per 

Listing 6-25

Last Purchase Date =

VAR CustomerKey = 'Fact Sale'[Customer Key]

VAR InvoiceDateKey = 'Fact Sale'[Invoice Date Key]

RETURN

    CALCULATE(

        LASTDATE('Fact Sale'[Invoice Date Key]),

        FILTER(

            'Fact Sale',

            'Fact Sale'[Customer Key] = CustomerKey

            && 'Fact Sale'[Invoice Date Key] < InvoiceDateKey

        )

    )

The differences between this and the original version using EARLIER have been 

highlighted and they make the CALCULATE code a little easier to read.

 Filters and Calculated Tables
If you are using a version of DAX that allows the use of calculated tables, a simple use of 

the FILTER function can be to create copies of tables filtered to certain conditions. This 

might be useful for debugging, or if you need to solve performance challenges in your 

data model.

If your dataset is large and you have some calculations that you know will only ever 

run over a subset of the same data, then you can use DAX to create calculated tables 

from existing tables with explicit filters defined.

An example of this might be if you need to create a smaller version of the ‘Dimension 

Customer’ table that only includes the top ten customers defined by the ‘Customer Rank’ 

calculation at Listing 6-19.
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You might find this useful for scenarios in which you need a mixture of behavior for 

customer-based slicers in your report page.

The DAX for the calculated table using the FILTER function is shown in Listing 6-28.

Listing 6-28. A Calculated Table Using FILTER

Top 10 Customers =

    FILTER(

        'Dimension Customer',

        'Dimension Customer'[Customer Rank] <= 10

        )

If a new customer generates enough activity to jump into the top ten based on the 

rules defined in the calculated column, this calculated table will dynamically reflect that.
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CHAPTER 7

Dates
Most data models involve an element of date or time. I can’t remember the last time I 

worked on a data model that didn’t involve date values anywhere in the data.

Business data invariably involves tables of transactions that include a point-in- time 

value. Sometimes a row of data might carry multiple DateTime fields to represent different 

actions relevant to that transaction. In the case of a customer order, there may be values 

to show the point in time of the original order, the pick-up date, the delivery date, and the 

invoice date. Downstream reporting requirements may need to group data by any of these 

DateTime values to provide a perspective relevant to different parts of the business.

Sensor log data may include a field that identifies the sensor, another that shows 

the point in time of the reading (possibly down to a microsecond), and the value for the 

reading itself.

Other types of data inevitably have at least one component that records a DateTime 

value that represents a point in time that is relevant for the other data in the row or 

batch.

For reporting and analytics, data models often need to organize raw data using the 

following three types of questions:

• What has happened: For example, “Where have we come from?”

• The current state: For example, “Where are we now?”

• The future: For example, “Where are we going?”

To answer each of the questions will require the ability to organize data by date or 

time. The first helps show values for facts and events that have taken place historically. 

This might illustrate patterns for a metric that ebb and flow historically. For instance, 

recent data can be trending up or down. Or cyclic or seasonal trends might appear and 

be useful when you are grouping, sorting, and plotting data over time. Being able to 

group and sort historic data into time buckets makes the job of understanding what has 

happened much easier.
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It can be useful to show the current state of data in short-term planning. To know 

how much money is currently available in an account, or how many items are currently 

in stock, or the current location of a vehicle or item can provide useful insights that help 

you when you are developing short-term plans.

Finally, being able to forecast likely values for upcoming points in time satisfies 

a separate set of reporting requirements. Using forecast data to help accurately size 

and optimize future staff and stock levels can save an organization valuable time and 

resources. This information can lead to improvements in overall efficiency.

All three requirements depend on date and time data in some shape or form. 

Organizing data into buckets and groups that are sorted chronologically makes the task 

of creating useful reports much easier.

 Date
In DAX, the term Date often refers to individual days or groupings of days where there is 

no detail of hours, minutes, or seconds. Even if the underlying data carries a value that 

represents hours, minutes, or seconds, Date likely indicates the value without hours, 

minutes, or seconds. Dates can then be organized into many group types. Obvious groups 

are calendar year or month, or fiscal year or month. Other useful groupings can include 

weeks, or days of the week, month, or year. There are many ways to group Dates. Some are 

common to diverse types of data, whereas others can be highly unique to your organization.

Plenty of meaningful reports can be generated using data where the lowest 

granularty is Date. Even if the raw data happens to carry information regarding the point 

in time to the second a transaction happened, stripping out hours, minutes, and seconds 

to show the number of sales per day, month, or year, is often more useful than reports 

that represent the finer level of detail.

 Time
In data modelling, Time is often used to refer to a point in time that includes a value 

for the hour, minute, and second (sometimes millisecond). This may or may not have 

a value for year, month, and day. Sometimes a Time value can be perfectly meaningful 

with a value such as 10:37 am and it does not matter which day it belongs to. This value 

can be broken up into groupings such as 10 am, or Morning (or Late Morning), with data 

aggregated and used to show or compare.

Chapter 7  Dates



167

 Date/Calendar Tables
A useful data structure for most data models is to include a table that carries a set of rows 

that covers a range of individual days. This table is often referred to as a Date or Calendar 

table. Sometimes these tables cover a very wide range of time. In other variations, the 

earliest date in this table may only be around the time of the earliest day found anywhere 

in your data model. These tables can also have rows that represent days a long way into 

the future.

A key characteristic of a Date table is that each day is represented by a single row. 

There should be no duplicate rows for any individual day, and more importantly, there 

should be no gaps in the data. So, every day that occurs in between the dates that happen 

to be the oldest and newest values in the table should be represented by a single row in 

the table.

Time tables have similar characteristics to Date tables. First, they have a row to 

represent the lowest level of granularty, starting with the lowest value and ending with 

the highest value. The decision of what granularty should be the lowest for a Time table 

depends on your reporting requirements. The lowest level of granularty for a Time table 

can be hours or minutes (or lower). In the case of minutes, the table should have 1,440 

rows that individually represent every minute between midnight and 11:59 pm. If the 

lowest granularty happens to be hour, only 24 rows are required.

When creating a relationship between a Date (or Time) table and other tables in 

your data model, place the Date table on the one side of the relationship. The column 

involved in the relationship needs to be unique and can be any datatype. Ideally the 

column in the related table is the same datatype and only has values that can be exactly 

matched to values from the column in your Date table. It’s perfectly fine to have rows in 

your Date table that have no matching rows in the related table, but you have a problem 

if the mismatch is the other way around.

Note If the column used in a relationship from your Date table does not contain 
hours, minutes, or seconds, whereas the column from the related table does, many 
rows may not match. If this is the case, visuals that use fields from the Date table 
on an axis will report lower-than-expected values. No error will be generated, so 
this is potentially easy to miss.
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For Date tables, I typically like to use the column that uses the Date datatype, 

although integer values such as 20190101 work just as well. The main thing is to make 

sure that the values in each column involved in the relationship use the same data 

format.

Date tables can have relationships to multiple tables at the same time. This allows 

selections made using a slicer (or filter) that uses the Date table to propagate through to 

all related tables.

It’s possible to create multiple relationships between a Date table and another 

table in the model. As mentioned earlier, a sales table may have columns that represent 

various stages of an order. The order date, delivery date, and invoice date may all 

have different values on the same row. Figure 7-1 shows two relationships between 

‘Dimension Date’ and ‘Fact Sale’. The solid line between the two tables represents the 

active relationship. Calculations using data from tables will use this relationship by 

default. If a calculation needs to use rules from an inactive relationship, it can use the 

USERELATIONSHIP function as part of the calculation.

Figure 7-1. Relationships between ‘Dimension Date’ and ‘Fact Sale’
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In this diagram, the active relationship between ‘Dimension Date’ and ‘Fact Sale’ 

is based on the [Invoice Date Key], whereas the inactive relationship uses the [Delivery 

Date Key].

The calculations shown in Listings 7-1 and 7-2 show how relationships can be used. 

The [Count of Invoice Rows] calculated measure only contains an expression about data 

from ‘Fact Sale’. When this measure is used in a visual that has fields from ‘Dimension 

Date’, query context will automatically filter groups of rows from ‘Fact Sale’ according to 

[Invoice Date Key].

The [Count of Delivery Rows] measure uses the USERELATIONSHIP to override the 

default behavior in order to generate a value that can be used to plot the number of rows 

where a delivery was made for a given group of ‘Dimension Date’ values.

Listing 7-1. Calculated Measure Using COUNTROWS

Count of Invoice Rows =

    COUNTROWS('Fact Sale')

Listing 7-2. Calculated Measure Using USERELATIONSHIP over Inactive 

Relationship

Count of Delivery Rows =

    CALCULATE(

        COUNTROWS('Fact Sale'),

        USERELATIONSHIP(

                'Dimension Date'[Date],

                'Fact Sale'[Delivery Date Key]

                )

    )

Figure 7-2 shows both these calculated measures over the first six calendar months 

of the WideWorldImportersDW dataset.
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Multiple Date tables are perfectly normal in a data model and allow you to use 

multiple date ranges in a report. Some calculations can use selections made using a 

slicer with one Date table, whereas other calculations can produce values that consider 

selections made using a slicer over another Date table. These are not common, but you 

can use them to solve trickier reporting scenarios.

The bare minimum requirement of a Date table is having a single column that 

represents a day. Usually additional columns in the Date table allow for the grouping 

and ordering of days. Obvious groupings are Year, Quarter, and Month. Some Date tables 

have dozens of additional columns to suit various date groupings.

Later in this chapter I show you an example of how you can generate a Date table 

using DAX functions without using external data. Often an organization has an external 

dataset that you can import into your data model that already contains the rows and 

columns that will be useful. The query editor also provides you with the ability to 

generate data for a Date table that you can customized to suit your purposes.

Figure 7-2. A clustered column chart visual using code from Listings 7-1 and 7-2
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 Automatic Date Tables
There is a feature in Power BI Desktop that automatically creates hidden Date tables for 

your model. If this is enabled, Power BI creates a hidden Date table for every column in 

every table that uses a Date/DateTime datatype (and is not already involved in one side 

of a relationship). If your model has five Date/DateTime columns, Power BI Desktop 

adds five hidden Date tables to the model. The intention of these hidden tables is to help 

provide an automatic layer of time intelligence to your model.

If you import a table of data to your model and one of the columns in the table uses 

a Date datatype, Power BI adds a table with seven columns (Table 7-1) that is populated 

with enough days to cover the data in your imported table, rounded out to the start and 

end of each year.

Table 7-1. The Structure and Sample Data from the Power BI Autocreated  

Date Table

Date Year MonthNo Month QuarterNo Quarter Day

2019-01-01 2019 1 January 1 Qtr 1 1

2019-01-03 2019 1 January 1 Qtr 1 2

2019-01-03 2019 1 January 1 Qtr 1 3

… … … … … … …

The structure of this table can be a good starting template for any Date table you 

design. The first column is unique and used in the relationship. The other columns 

simply provide grouping values. In Power BI, by default, if the Date field from your 

table is dropped onto a visual, you have the option of using a hierarchy based on this 

automatic table or simply using the values from your actual table.

This table quickly provides you with the ability to slice and dice by year, quarter, 

month, or day of month.

If you have a good handle on using Date tables and have a quality dataset of your 

own to use, you can turn this feature off in the options and settings.
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 Quick Measures
In 2017, Power BI introduced a feature called Quick Measures. This feature allows report 

authors to quickly create calculated measures using a dialog box instead of writing DAX 

by hand. These measures cover a variety of common scenarios such as year-to-date totals 

and rolling averages. However, at the time of this writing, Quick Measures only uses data 

from an automatically provided Date table and cannot be used with columns from your 

own Date table. Once the Quick Measure has been created and you have the pattern for the 

calculation, you can then modify and tweak it to use other Date tables if you need to.

If you examine the DAX code for a calculated measure created by the Quick 

Measures feature, you may notice a slightly different syntax is used to reference the 

column from the automatic Date table. The core expression in a Year-To-Date calculated 

measure created as a Quick Measures might look like this:

TOTALYTD(

        SUM('Table1'[Quantity]),

        'Table1'[My Date Col].[Date]

        )

The highlighted part of the preceding code shows a special syntax that only works 

with automatic Date tables provided by Power BI. There are three parts to this syntax. 

The first is ‘Table1’, which is a reference to the table being used. The second is [My Date 

Col], which is a reference to the column to be used from Table1. The third is the [Date] 

column reference. This is the name of the column from the automatic Date table. Values 

from this column will be used by the SUM expression, rather than values from the [My 

Date Col] column, which might have gaps or other date-based issues.

 Sorting by Columns
The structure of the automatic Date table highlights another frequent problem you 

are apt to encounter when working with Date tables. This has to do with the default 

sort order of text-based columns. By default, Power BI sorts text-based columns 

alphabetically. The automatic table has two text-based columns: [Month] and [Quarter]. 

If either of these columns are used in a visual, the values are sorted alphabetically. In 

the case of the [Month] column, values like April, August, and December are at the start, 

while November, October, and September are at the end.
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This is a list of the calendar months using the default sort ordering:

April

August

December

February

January

July

June

March

May

Novenber

October

September

It’s highly unlikely that you will ever need to deliberately organize data in this 

way, however. To override this behavior, use the Sort by Column feature, which allows 

a column to be sorted using another column. Typically, the nominated column is 

numeric, but it doesn’t have to be. A common pattern in a Date table is that for every 

text-based column in the table, a numeric equivalent column exists, purely for sorting 

the text column. The numeric column used for sorting can be used by multiple columns. 

For instance, you could use [MonthNo] to sort [Long Month Description] as well as [Sort 

Month Description]. You could also hide the [MonthNo] column to help tidy the model.

The Sort by Column feature is not limited to sorting dates; you can also use it to 

arrange values like Low, Medium, and High in an order that makes sense for your 

visuals. Not only does it sort the order of values used in visuals, it also controls the order 

they appear in legends and filters/slicers. You can also use it to control the order in 

which categories might appear in the bars of a stacked bar chart.

It’s a useful feature, but it requires values in the [Sort By] column to have a many- 

to- one match with values in the column being sorted. For every row with a value of 

[January] in the [Month] column, only one distinct value can appear in any of the values 

used in the [Sort By] column. In this case, every value for “January” would be 1.
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 Including the Year When Using Month
When planning a Date table, consider including information about the year in any 

month label or identifier, particularly when the dataset covers more than a year. Rather 

than converting a date of January 1, 2019, into a value of [January], use [January 2019]. 

If you don’t, calculations may combine data associated with this date with January data 

from other years.

A good format to use for the numeric version of a month is YYYYMM. This keeps 

data from the same months, but different years, apart, but it also provides a good column 

to sort by. Using two uppercase M characters adds a leading zero for months one 

through nine.

 Time Intelligence
A term used regularly when building data models in DAX is time intelligence. This 

essentially refers to the concept of combining calculations/measures with the element 

of time. It is the ability to not only group and organize data into periods of time, but also 

to understand how each period sits in relation to any other grouping chronologically. 

Reporting requirements, such as showing comparisons between related time periods 

or building periods to date measures, are commonplace when you’re designing a data 

model that is intended to be used for reporting and analytics.

Data grouped into categories such as Year, Month, and Day share similar 

characteristics to non-time-bound groupings of data. Calculations, such as count, 

sum, average, and so on, are just as meaningful to time-based groupings as they are to 

non-time-based groups. However, a key difference between time-based groups and 

non-time-based (such as Size, Color, and Weight), is that calculations using time-based 

groups often need to reflect and show how data in your model sits in relation to other 

data in your model with respect to time.

When you look at this in more detail, counts, sums, and other calculations that 

are sliced by the product colors Red, Green, Yellow, and Blue, often have no strong 

relationship with each other. You might display them in any order on a visual and just as 

happily compare values between Red and Blue as you would Green and Yellow.

With dates however, it is more likely that you’ll need to keep categories for Jan 2019, 

Feb 2019, Mar 2019, and Apr 2019 in sequential order to be able to compare them. 

Calculations that produce values for Feb 2019 data are more likely to be compared with 
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calculations based on the previous or preceding months. It is still possible to organize 

DateTime categories in any order, as you might do with the example of using categories 

based on color, but this is not likely to be a common requirement.

An additional element of time-based reporting is that it can be just as important to 

show periods where you have no data as it can be to show time periods with data. When 

you’re grouping by color using data that has no values for red, omitting a placeholder 

for red on the axis of a visual can be quite normal. However, if you have no data for a 

day, or a date period, you may still want to represent this fact by making sure there is a 

placeholder for the period on the axis.

DAX provides a series of time-intelligence functions that are aware of chronological 

relationships and how they relate to each other. You can add these functions to your 

calculations that take care of common time-based tasks through the minimal use of 

DAX.

 Year to Date
If you need to show the cumulative value of a measure over time since the start of each 

calendar year, there are several ways you can write this type of calculation. One approach 

is to create a calculated measure that uses CALCULATE and ALL or ALLSELECTED to 

clear implicit filters; this allows SUM to access data outside the current query context in 

order to produce a value since the start of the year. 

Another option is to use a calculation to meet this requirement that you can build 

using a time-intelligence function. With the TOTALYTD function, you can add a 

calculated measure (Listing 7-3) to your data model that represents a cumulative value 

of your expression over a calendar year. Figure 7-3 shows the output of this calculation.

Listing 7-3. Year-to-Date Calculated Measure Using TOTALYTD

My Year to Date (Date Table) =

    TOTALYTD (

        SUM('Fact Sale'[Quantity]),

        'Dimension Date'[Date]

        )
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The chart in Figure 7-3 shows a bar for each calendar month over a period of two 

years. Each calculation includes a value that is a sum of the current month and all 

months since the start of the calendar year. The cumulative values reset each year.

The function requires only two parameters. The first is the expression to be used for a 

calculation. The SUM function in this calculation uses data from the ‘Fact Sale’[Quantity] 

column. You could also use another calculated measure in place of a DAX expression.

The second parameter needs to be a reference to a date column.

The example doesn’t use a date column from the same table as the column passed 

to the SUM function; instead, it uses a value from a table that conforms to the rules of 

a classic date table (one row per day with no gaps or overlaps). In this case, the data 

is automatically grouped by [Invoice Date Key] because this is the column used in an 

active relationship. To override the default relationship, it’s possible to pass a filter an 

additional rule. This might take the form of using USERELATIONSHIP or another explicit 

filter that you would like to apply over the top of the DAX expression for extra flexibility.

Figure 7-3. Output of the code from Listing 7-3 resetting each calendar year
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The CALCULATE function is not required, nor has there been any use of functions 

to clear implicit filters. The filter context is being overridden automatically by the 

TOTALYTD function, allowing the SUM function to see all data it needs to produce a 

cumulative value.

When this calculated measure is used in a visual that uses other fields from the 

‘Dimension Date’ table, not only does the measure show the appropriately accumulated 

value for each point in time, it resets back to zero for each year. There is no code in 

the calculation to instruct the function on how to order the data. This is taken care of 

automatically because this is a time-intelligence function.

Note always note which table any date field you use for the axis on your visual 
comes from. Using date columns from different tables has an impact on the 
implicit filters passed to your calculated measures and therefore can help you get 
the right (or wrong) result.

If you want to use this function but have data to accumulate from a month other than 

January, you can add an optional parameter. This makes the function useful for fiscal 

periods that don’t start on January 1 each year. If your organization has a fiscal year that 

ends on the last day of each June, add the value “6/30” as a third parameter. This tells the 

function to use the 30th day of the 6th month to reset the cumulative measure.

My Year to Date (Date Table) =

    TOTALYTD (

        SUM('Fact Sale'[Quantity]),

        'Dimension Date'[Date],

      "6/30"

        )

Some functions that are similar TOTALYTD are TOTALMTD and TOTALQTD. These 

allow you to add calculations that help provide Month-to-Date and Quarter-to-Date 

totals to your data model.
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 Period Comparisons
You can use other time-intelligence functions to help make period comparison 

calculations easier. On a report, it is often helpful to show the value for the same metric 

for a month immediately prior, or perhaps to show the same calendar month from the 

previous year next to the value for the current month. These can be extended show 

values based on the difference—for example, this month is 2 percent up from the 

previous month or 5 percent down from the same time last year.

Like with the TOTALYTD example, it’s possible to build a period comparison 

calculation that uses the CALCULATE function along with explicit filtering rules, but 

using a time-intelligence function can make this task easier.

The calculated measure in Listing 7-4 generates a value that shows the value of an 

expression for the previous month.

Listing 7-4. Previous Month Calculated Measure Using PREVIOUSMONTH

QTY for Previous Month =

    CALCULATE(

        [Sum of Quantity],

        PREVIOUSMONTH('Dimension Date'[Date])

        )

The calculated measure passes the PREVIOUSMONTH function as a filter to the 

CALCULATE function to control the data used by the [Sum of Quantity] measure. The 

PREVIOUSMONTH function returns a table of dates that represents a list of values for 

each day of the previous calendar month. The function handles any quirks that occur 

due to consecutive months having a different number of days.

You can now add a simple calculated measure (Listing 7-5) to show a percentage 

difference between the current and previous month.

Listing 7-5. Percentage Difference Calculated Measure Incorporating the Code 

in Listing 7-4

QTY % Diff to Prev Month =

    DIVIDE(

        [Sum of Quantity] - [QTY for Previous Month],

        [QTY for Previous Month]

        )
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Figure 7-4 shows these measures added to a table visual in Power BI using the 

Calendar month field from the ‘Date Dimension’ table.

Figure 7-4. Output of code in Listings 7-4 and 7-5

The [Sum of Quantity] column shows a value relevant to the calendar month 

for that row. The [QTY for Previous Month] column is a calculation that uses the 

PREVIOUSMONTH function, whereas the [QTY % Diff to Prev Month] column shows the 

variation using a percentage.

The [QTY % Diff to Previous Month] calculation could incorporate the logic for both 

steps in one using variables as is shown in Listing 7-6.

Listing 7-6. Condensed Version of Listings 7-4 and 7-5 Using Variables

VAR PrevMonth =

     CALCULATE(

        [Sum of Quantity],

        PREVIOUSMONTH('Dimension Date'[Date])

        )

RETURN

    DIVIDE(

        [Sum of Quantity] - PrevMonth,

        PrevMonth

        )
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This version stores the result of the CALCULATE function that is using 

PREVIOUSMONTH as a filter in the PrevMonth variable, which is then used multiple 

times in the final RETURN statement. Using the output of a variable multiple times can 

help improve performance.

These are other-time intelligence functions that can be used as filters with 

CALCULATE:

• PREVIOUSDAY/NEXTDAY

• PREVIOUSQUARTER/NEXTQUARTER

• PREVIOUSYEAR/NEXTYEAR

• SAMEPERIODLASTYEAR

Each of these functions return a table of dates that can be used as a filter 

parameter for the CALCULATE function. Substituting PREVIOUSMONTH with 

SAMEPERIODLASTYEAR produces a value from the expression that is filtered to the 

same calendar month for the previous year.

The DATEADD and PARALLELPERIOD functions also return a table of dates that 

can be used as a filter in a CALCULATE function. These provide more flexibility than 

functions such as PREVIOUSMONTH in that they can be configured to jump multiple 

steps forward or backward to help achieve other reporting requirements.

The calculations in Listings 7-7 and 7-8 use the DATEADD and PARALLELPERIOD 

functions to produce a value using data going back three months. Both functions have 

the same parameter signature.

Listing 7-7. Calculated Measure Using PARALLELPERIOD to Look Back Three 

Months

QTY (Month -3) =

    CALCULATE(

        SUM('Fact Sale'[Quantity]),

        PARALLELPERIOD(

            'Dimension Date'[Date],

            -3

            ,MONTH)

        )
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Listing 7-8. Calculated Measure Using DATEADD to Look Back Three Months

QTY (Month -3) =

    CALCULATE(

        SUM('Fact Sale'[Quantity]),

        DATEADD(

            'Dimension Date'[Date],

            -3

            ,MONTH)

        )

 The Rolling Average
Another common requirement is to show calculations that use data spanning a period 

relative to the current value, such as a rolling sum/average of the previous n number of 

days, weeks, or months. These measures help provide a smoother view of trends and can 

eliminate some of the fluctuation noise created by more granular time periods.

For these types of measures to work, the calculations need to override the default 

filter context with a new filter that is eventually used by the core DAX expression. The 

objective is to create a table of days that covers the period intended for the calculation.

There are multiple ways to approach this in DAX. Here are a couple of suggestions 

for creating a calculated measure that shows the rolling average of a daily sum over ‘Fact 

Sale’[Quantity].

The first version is Listing 7-9, which looks back seven days.

Listing 7-9. Rolling Average Calculated Measure Looking Back Seven Days

Avg Qty Last 7 Days (Date Table) =

VAR DateFilter =

    DATESINPERIOD(

        'Dimension Date'[Date],

        MAX('Dimension Date'[Date]),

        -7,

        DAY

        )
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VAR RollingSUM =

    CALCULATE(

        [Sum of Quantity],

        DateFilter

        )

RETURN

    DIVIDE( RollingSUM, COUNTROWS( DateFilter) )

The DateFilter variable uses the DATESINPERIOD function to create a table that 

contains the previous seven days including the current day. The MAX function helps 

to select a single date from what might be many days depending on the context of the 

calculation when it is executed.

If the calculation is being used on a visual that uses ‘Dimension Date’[Date] on an 

axis, row, or column header, the MAX function only ever needs to pick from a single 

date. However, if the calculation is being used on a visual that uses the ‘Dimension 

Date’[Calendar Month] on an axis, row, or column header, there will be multiple days 

for each month. The MAX function simply selects one of the dates, which in this case, 

is the last day of each calendar month. You could use other functions, such as MIN, 

LASTDATE, and FIRSTDATE, here in place of MAX.

The table returned by the DATESINPERIOD used in this calculation should never 

carry more than seven rows.

The next step performs a sum over data in the ‘Fact Sale’ table that is filtered 

using the dates stored in the DateFilter variable. Finally, the RETURN statement uses 

the DIVIDE function to output the final value. The COUNTROWS function uses the 

number of rows in the DateFilter variable to ensure the six days at the beginning return 

appropriate averages, rather than simply dividing by seven. However, the COUNTROWS 

function does not account for days that have no values. The preceding version simply 

sums all the data it sees in a seven-day period and divides that by seven. In this dataset, 

there are no invoices generated on Sundays, so a more desirable approach could be to 

divide the sum of quantity for the period by the number of days with data.

The final RETURN statement for the previous example can be enhanced with an 

additional step to filter days with no data (Listing 7-10).
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Listing 7-10. Updated RETURN Statement Using FILTER for Code in Listing 7-9

RETURN

    DIVIDE(

        RollingSUM,

        COUNTROWS(

            FILTER(DateFilter,

                [Sum of Quantity]>0)

                )

               )

Or you can use the AVERAGEX function to apply the same effect (Listing 7-11).

Listing 7-11. Alternative Version of Listing 7-9 Using AVERAGEX

Avg Qty Last 7 Days (Date Table) =

VAR DateFilter =

    DATESINPERIOD(

        'Dimension Date'[Date],

        MAX('Dimension Date'[Date]),

        -7,

        DAY

        )

RETURN

    AVERAGEX(

        DateFilter,

        [Sum of Quantity]

        )

In this case, the AVERAGEX function is an iterator, so the DateFilter variable is 

passed as the first argument. Remember this variable only contains a single column 

table of dates with just seven rows. The AVERAGEX function considers that some days 

have no data and only divides the sum by a divisor appropriate to the underlying data.

Another variation of this uses the DATESBETWEEN function to generate a list of 

dates to be used to override the calculation (Listing 7-12).
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Listing 7-12. Alternative Version of Listing 7-11 Using DATESBETWEEN

Avg Qty Last 7 Days (Date Table) =

VAR DateFilter =

    DATESBETWEEN(

        'Dimension Date'[Date],

        LASTDATE('Dimension Date'[Date])-6,

        LASTDATE('Dimension Date'[Date])

        )

RETURN

    AVERAGEX(

        DateFilter,

        [Sum of Quantity]

        )

The DATESBETWEEN function differs from DATESINPERIOD in that it uses two 

fixed dates to determine the date range rather than using a single date with a relative 

offset. The DATESINPERIOD function has the advantage of being able to specify offset 

periods such as year, quarter, and month as well as day.

 Rolling Your Own Table
Having a dedicated, centralized date table in your data model is not only useful for 

filtering and grouping data across multiple tables in unison, but it can also help you 

provide a stable set of dates for time intelligence functions to make use of.

There are multiple ways to add a date table to a data model. You can import date 

data from an existing data source that already carries one row per day for a date range 

that covers all the data in your model, or you can generate your own date table using the 

query editor or DAX.

This section shows you how to build a data table from scratch using DAX functions 

without needing to rely on an external data source. You do not need to have a version of 

DAX that supports calculated tables.

The starting point is a DAX function that can generate a table with the appropriate 

number of rows. The two functions that help with this are CALENDAR and 

CALENDARAUTO. Both generate a contiguous series of dates in a single column table.
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 CALENDAR
You can use the CALENDAR function when you know the start and end dates for the 

date range required for your model.

The syntax for this function is

CALENDAR ( <startDate>, <endDate> )

Some suggested variations for using this function are as follows:

Dates = CALENDAR("2016-01-01", "2019-12-31" )

Dates = CALENDAR(DATE(2016,1,1), TODAY())

Dates = CALENDAR(

            FIRSTDATE('Fact Sale'[Invoice Date Key]),

            LASTDATE('Fact Sale'[Invoice Date Key])

            )

Dates = CALENDAR(

            STARTOFYEAR( 'Fact Sale'[Invoice Date Key] ),

            ENDOFYEAR( 'Fact Sale'[Invoice Date Key] )

            )

The output for each of these statements is a table with a single column called [Date] 

that you can use as the basis for adding columns using additional DAX expressions.

 CALENDARAUTO
A handy alternative to the CALENDAR function is CALENDARAUTO. The 

CALENDARAUTO function does not require parameters. To generate its own start 

and end dates, it looks at existing tables in the data model for columns that use Date 

or DateTime datatypes. If it finds them, it finds the newest and oldest values before 

rounding out to the start and end of each calendar year.

Any calculation using CALENDARAUTO is re-executed each time data is refreshed, 

so if new data arrives in your data model that falls outside the existing date boundary, 

rows in a table using this function are added automatically.
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 Expanding the Date Table
The first columns I normally add to a date table provide the ability to slice and dice by 

calendar month. You can add these using the ADDCOLUMNS function, which adds 

columns to a base table, each as a pair of parameters that specifies the name of the new 

column along with the DAX expression to be used to generate the value for each row of 

that column (Listing 7-13).

Listing 7-13. Calculated Table Using ADDCOLUMNS to Build on CALENDAR

Dates =

VAR BaseTable = CALENDAR("2016-01-01",TODAY())

RETURN

    ADDCOLUMNS(

        BaseTable,

        "MonthID", FORMAT([Date],"YYYYMM"),

        "Calendar Month", FORMAT([Date],"MMMM YY")

        )

Let’s call this calculated table Dates. The CALENDAR function is used to generate 

a single column table that has a contiguous sequence of dates beginning on January 1, 

2016, that run to the current day and is assigned to the BaseTable variable. This table 

grows by one row each day.

Two columns named MonthID and Calendar Month are added using the 

ADDCOLUMNS function. The MonthID column is added so the text-based Calendar 

Month column can be sorted chronologically. Both columns use the FORMAT function 

to convert the intrinsic date value stored in the [Date] column to a value useful for each 

column.

The FORMAT function converts numbers or dates into text values. Characters, 

symbols, and other text can be added as part of the conversion. The FORMAT function 

can be used with format string rules to help enforce the number of decimals to be 

displayed.

FORMAT can also convert date values to text using predefined or custom formatting 

rules. In this case, both columns added to the Date table opt for custom strings. 

Uppercase M characters represent the underlying month. Two M characters return a 

two-character number padded with a leading zero. A date that falls in January returns 

“01”, whereas a date that falls in December returns “12”. The uppercase Y represents a 

Chapter 7  Dates



187

year component. Four Y characters signify that the full year including the century should 

be generated as text. Two Y characters return the two least significant values from the 

year, so 1918 and 2018 both return “18”.

The FORMAT function used for the MonthID column uses a format string of 

“YYYYMM”. When this format string is applied to a date such as the January 5, 2019, the 

output is “201901”. The output for July 4, 2019, is “201907”. The text data in this column is 

now sorted chronologically for date. This means that “202008” always appears later than 

“199910”, so you can use this column to control the sort order of the Calendar Month 

column.

The format string used by the FORMAT function for Calendar Month is “MMMM YY”. 

Four uppercase M characters signify that the month name should be used in full. The 

space character used in the format string also flows through to the final output. Hyphens 

and other dashes or separators can also be used here. Finally, the two uppercase Y 

characters are used to ensure that data across years is not grouped together. The output 

of this function for January 5, 2019, would be “January 19”, whereas July 4, 2019, would be 

“July 19”.

Note When using text to represent a calendar month, it is good practice to 
include extra text to also uniquely identify the year. Otherwise you risk having 
January 2019 data merged with January 2020 in the same calculation.

Once the calculated table has been added to the model, the Calendar Month column 

can be set to use the MonthID as its Sort By column. You can hide the MonthID column 

and create relationships between this table and other tables in the model.

An alternative version of the MonthID column involves using a DateTime value 

rather than an integer datatype (Listing 7-14). When DateTime fields are used on the 

axis of many of the visuals in Power BI, labels are dynamically scaled so no scrolling 

is required. This also allows the column to use date-based functions in additional 

calculations. The code shown in Listing 7-14 ensures every value for the “Calendar 

Month” column still only has one unique value rows for the MonthID column. The 

[Date] value for the “Month” column is converted to be the first day for each month 

using the DATE, YEAR, and MONTH functions.
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Listing 7-14. Using a [Date] Value in Place of Text for the Code in Listing 7-13

RETURN

    ADDCOLUMNS(

        BaseTable,

        "Month", DATE(YEAR([Date]),MONTH([Date]),1),

        "Calendar Month", FORMAT([Date],"MMMM YY")

        )

 Adding the Year
To add a column for the calendar year, use the parameters with the ADDCOLUMNS 

function (Listing 7-15).

Listing 7-15. Adding a Year Column to the Calculated Table

RETURN

    ADDCOLUMNS(

        BaseTable,

        "Month", DATE(YEAR([Date]),MONTH([Date]),1),

        "Calendar Month", FORMAT([Date],"MMMM YY"),

        "Year", FORMAT( [Date], "YYYY" )

        )

This adds a text column called “Year” that is already sorted chronologically so it has 

no need for another column to be generated to fix sorting issues. I have come across an 

interesting requirement to force the sorting of years to be in reverse. This was to control 

the order in which values in this column appear when they are used as a column header 

on a matrix. The requirement was to show later years on the left with older values on the 

right. To solve this issue, you can add the following helper column to the model:

"YearSortID-", 0 - YEAR( [Date] )

This produces a negative version of the year, meaning that when a Year column is 

sorted by this column, the order is flipped so 2019 appears after 2020.

Chapter 7  Dates



189

 Fiscal Year
To add a column to carry a value for the fiscal year, one approach is to add the expression 

in Listing 7-16 to the ADDCOLUMNS statement.

Listing 7-16. Name and Expression to Add a Column Called “Fiscal Year” to the 

ADDCOLUMNS Function

        "Fiscal Year",

            VAR FY_Month_Starts = 6

                        RETURN YEAR([Date]) - IF(

                                                  MONTH([Date]) < FY_Month_

Starts,

                                                  -- Then Add a 1 to the 

year --

                                                 1,

                                                 -- Else leave as is  --

                                                 0  )

This statement creates a column named “Fiscal Year”. The expression declares a 

variable called FY_Month_Starts, which is assigned an integer between 2 and 12. A fiscal 

year starting in June would use 6. The RETURN statement begins with a value for the 

current calendar year and then subtracts a year depending on the logic in the IF statement.

This calculation outputs the same value for both Fiscal and Calendar year for dates 

after June 1. Dates between January 1 and the end of May would automatically retain the 

value for the previous year.

To create a column that shows a month number based on a fiscal calendar, you can 

add the calculation in Listing 7-17.

Listing 7-17. Name and Expression to Add a Column Called “Fiscal Month No” 

to the ADDCOLUMNS Function

        "Fiscal Month No",

            VAR FY_Month_Starts = 6

            RETURN MOD(

                MONTH([Date]) - FY_Month_Starts,

                12

                )+1
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The value assigned to the FY_Month_Starts variable represents the calendar month 

number to use as a starting point. This calculation produces a value of 1 for June, 2 for 

July, 3 for August, through to 12 for May.

 Days from Today
A handy column to have in any date table is one that carries a number, negative or 

positive, that shows how many days each row is in relation to the current day. This 

column can then be used to provide date-based filters that are relative and dynamic.  

A suggested calculation for this is

       "Days from Today",INT( [Date] - TODAY())

This column carries a value of 0 for the row that has a value in the [Date] column that 

matches the current day. Values in rows that have future values have positive numbers, 

whereas date values in the past have negative numbers.

To use this column to enforce a dynamic view of the last 14 days of data, add this field 

to a Report, Page, or Visual filter and assign an advanced rule saying it should only show 

values between –14 and 0. Once set, the filter setting can be left alone, and the report 

always shows the most recent 14 days.

 Weekly Buckets
Weeks can be tricky columns to work with and generally they don’t play nicely with other 

date-based groups such as months and years. It’s common for weeks to be split across 

the boundaries of month or year buckets so often that they need to be used in isolation 

from other types of date groupings.

Weeks are still a useful way to organized dates in a model, however. An effective way 

to do this is to group batches of seven days using a value that is either the first or last date 

of the week. The WEEKDAY function is useful to help achieve this because it assigns each 

[Date] a value between 1 and 7 depending on which day of the week it is. The calculation 

for a week starting column might look like this:

       "Week Starting Sunday", [Date] -  ( WEEKDAY( [Date] ) -1 )

By default, the WEEKDAY function assumes a week begins on a Sunday, so it assigns 

the value of 1 to any date that happens to be a Sunday, 2 to Monday, 3 to Tuesday, and 

so on until Saturday which is assigned 7. The calculation then offsets each value by 1 so 
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it becomes zero based. The new value is then subtracted from [Dates], which now aligns 

all dates to the closest Sunday they follow.

A calculation that uses Monday instead of Sunday as the basis for a week starting 

column is the following:

"Week Starting Monday", [Date] -  WEEKDAY( [Date], 3 )

The WEEKDAY function now has a second parameter that instructs the function to 

return a value between 0 and 6 with Monday being 0, Tuesday being 1, Wednesday being 

2, and so on through to Sunday which is 6. This output is already zero based so you no 

longer need to subtract 1 from the result.

A slightly trickier scenario is one in which the week needs to start or finish based on 

a day other than a Sunday or Monday. In this case you can add the code in Listing 7-18.

Listing 7-18. Name and Expression to Add a Column Called “Week Starting 

Wednesday” to the ADDCOLUMNS Function

       "Week Starting Wednesday",

                   VAR myWeekDay = WEEKDAY( [Date], 3 )

                                       VAR offset = 2 – 0=Mon, 1=Tues, 

2=Wed, 3=Thur, 4=Fri 5=Sat, 6=Sun

                                       RETURN [Date] – MOD( myWeekDay – 

offset, 7 )

You can configure this expression so any day can be the starting day for the week. 

The value assigned to the offset variable controls which day to use. In this case, it has 

been set to 2, which means Wednesday is the starting day for each week. For Saturday, 

you would assign a value of 5 to the offset variable.

Once these DateTime columns are in place, you can add additional columns that 

count the number of weeks to or from a milestone. The current day is again a good 

milestone to work from, so a column that shows “Weeks from today” might look like this:

       "Weeks from today",

            DIVIDE(

                   INT(

                         ([Date] -  WEEKDAY([Date],3)) - TODAY()

                         ),

                   7)
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This calculation includes the same logic used in the “Week starting Monday” 

column, but it extends to find the number of actual days between the starting date for 

the week and the current day (TODAY). The calculation then divides by seven to provide 

a zero-based index that shows negative numbers for dates in the past and positive 

numbers for future dates.

 Is Working Day
Two columns that can help represent working days can be a simple column that shows 

just 1 or 0 values that reflect if the specific row happens to be a working day or not and a 

column that shows the number of working days from a point (such as the current day).

The first example (Listing 7-19) assumes that Monday through Friday should be 

marked as 1 to represent a working day, while Saturday and Sunday should be marked 

with a 0 to represent a weekend date. You can reverse this if you intend to show 

weekends as 1 and weekdays as 0.

Listing 7-19. Name and Expression to Add a Column Called “Is Work Day” to the 

ADDCOLUMNS Function

       "Is Work Day",

             IF(  -- Zero based index with Monday being 0 is less than 5

                            WEEKDAY( [Date], 3 ) < 5,

                            -- THEN --

                            1,

                            -- ELSE --

                            0

                            )

The WEEKDAY function returns a value between 0 and 6 to each [Date] when used 

with the optional second parameter of 3. Mondays = 0, Tuesdays = 1, and on through to 

Sunday, which is 6. The IF statement simply tests the output of the WEEKDAY function 

and assigns the appropriate value.

A second useful column (Listing 7-20) is one that shows the number of working days 

since a specific point in time. This example uses the current day as the point to count 

from and dynamically updates each day.
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Listing 7-20. Calculated Column Showing the Number of Working Days from the 

Current Date.

Working Days From Today =

VAR ColDate = 'Dates'[Date]

RETURN

    IF( ColDate < TODAY(),

      -- THEN --

        0-CALCULATE(

            SUM('Dates'[Is Working Day]),

            ALL(Dates),

            'Dates'[Date] >= ColDate &&  'Dates'[Date] < TODAY()

            )

       -- ELSE --

            ,

        CALCULATE(

            SUM('Dates'[Is Working Day]),

            ALL(Dates),

            'Dates'[Date] <= ColDate &&  'Dates'[Date] > TODAY()

            )

            )+0

This calculation can only be added to an existing physical Date table. It cannot be 

added as part of the ADDCOLUMN function used in a create table statement since the 

ALL function relies on a table that must already exist.

The calculation also relies on having a column called [Is Working Day] that already 

exists on the table. I included a suggested version of this earlier in the “Is Working Day” 

section. The calculation stores the value from the 'Date' column in a variable called 

ColDate. This can only ever be one value at a time. The IF statement then decides which 

of the two CALCULATE statements should be used. The first is designed to handle all 

the rows older than the current date, while the second CALCULATE applies a slightly 

different logic to calculate the value for rows newer than the current date. Only one of 

the two CALCULATE functions runs per row.

You could compress this into a single CALCULATE statement, but I have presented 

it like this to show you the general approach. Both CALCULATE statements use the ALL 

function to unlock rows other than the specific row being calculated. The SUM function 

can then use data from a wider range of rows to produce the result.
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These calculations do not take public holidays into account since holidays can vary 

wildly from region to region and even year to year. A suggested approach to handling 

public holidays is to keep a separate table that carries a row for every instance. This can 

be maintained manually or be sourced from various local datasets. You can then use 

data from such a table in calculations to help determine if a row in your actual date table 

falls on a public holiday.

 Weekday Name
You can use the FORMAT function to show a column that simply carries the name of the 

day of the week. The DAX code for adding this using ADDCOLUMNS follows:

       "Weekday name", FORMAT([Date],"DDDD")

There are four uppercase D characters used here in the format string to specify 

that the weekday should be shown in full, such as “Monday” or “Tuesday”. Using three 

uppercase D characters returns an abbreviated version such as “Mon” or “Tue”.

 Rolling Your Own—Summary
It is easy enough to generate a Date table for your model using only DAX. You can use 

a mixture of these suggestions to form the basis of a date table suitable for your data 

model. The examples are designed to give you an idea of how you might approach 

creating columns that you can tweak to suit your own organization’s requirements.

 Optimizing Dates
Raw data from source systems often carries data to represent a value that points to a 

specific date and time. This is quite common when you’re dealing with sensor, Internet 

of Things (IOT), or transactional datasets. These may carry a field that shows the year, 

month, day, hour, minute, and second. A good practice to follow when using this type of 

data is to split the value into two or more columns.

One column should be Date only, so it should be truncated to only show the year, 

month, and day. The second column (if you need it at all) can carry a version of the time. 

The time can be truncated to just a number between 0 and 23 to represent the hour of 
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the day, or it can be a number between 0 and 1,440, which represents the specific minute 

of the day the event took place.

The reason for doing this is to help optimize the data model for speed. When the 

DAX engine imports data, it splits tables of data to individual columns. The data in each 

column is then compressed to unique values. If you have a field in your raw data that 

carries a DateTime field down to the second (or microsecond), the column is highly 

unique and therefore does not compress much.

If your raw data is an output from an IOT sensor that creates five readings every 

second, and you import this data “as is” to your model, it has the potential to create  

157 million unique values per year that cannot be compressed (5 readings per second * 

60 seconds * 60 minutes * 24 hours * 365 days = 157,680,000).

If the same sensor data is split into two columns, one column for the Date 

component and the other column for showing a value for the minute of the day, the Date 

column will have just 365 unique values whereas the column representing the minute 

will have just 1,440. This approach means the raw data can be highly compressed when 

imported and it is still possible to perform the same calculations using this much smaller 

and faster data model.

Chapter 7  Dates



197
© Philip Seamark 2018 
P. Seamark, Beginning DAX with Power BI, https://doi.org/10.1007/978-1-4842-3477-8_8

CHAPTER 8

Debugging and Optimizing
 Debugging in DAX
A good question in any language is, “How can I debug the code?” Some languages have 

sophisticated tools that provide the programmer with the ability to walk step by step 

through execution of the code as the application runs. These debug tools often allow you 

to pause at various points to inspect all nature of useful properties and values so you get 

a clearer idea on the actual flow of logic as it pans out. This is not always the path the you 

expect, but at least being able to debug can help you identify sections of code you need 

to improve.

Unfortunately, DAX doesn’t have such a sophisticated tool available to debug with, 

but fortunately it also doesn’t have the same degree of logical pathways that you might 

expect in even a simple application. Calculations in DAX are often single-line statements 

that are as simple as passing just one parameter to a function.

Step debugging the following calculated measure probably won’t provide you with 

much useful information, but the output is quick to generate and enough to help you 

understand the reason behind the result.

Count of Table = COUNTROWS( 'Table' )

Given that calculated measures can be executed many times inside a report page, it 

can be difficult to isolate the execution of a specific instance to understand what filter 

context may or may not be at play for that case.

That said, although you can’t start debugging or step and run through your code, 

you can apply several types of manual techniques to your code while you’re building 

calculations. This is what I like to think of as old-school debugging.
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The general principal is to break calculations out into separate, smaller versions 

and use the output of each smaller calculation to help understand the values being 

generated. By reducing the logic down to smaller baby steps, you can inspect each value 

to see which ones match your expectations and which may be different. Tracing the baby 

steps through to the first point where they generate unexpected results should be the 

fasted way to show which aspect of code needs your attention.

If you have a calculation generating unexpected results, make a copy and change the 

core expression to something simpler, such as a COUNTROWS function. Doing this can 

often help you figure out how many rows are being considered for the calculation.

In the case of a tricky calculated column that consists of several nested functions, 

create some temporary columns that are subsets of each function.

To walk through an example, take a look at the calculated column in Listing 8-1; this 

calculation shows a percentage ratio for each product sold per day.

Listing 8-1. Calculated Column Creating a Ratio of Sales Against a Grand Total

Product Ratio of Daily Sales =

DIVIDE (

    CALCULATE (

            SUM('Fact Sale'[Total Amount]),

            ALL('Fact Sale'),

             'Fact Sale'[Invoice Date Key]=EARLIER('Fact Sale'[Invoice Date Key]),

            'Fact Sale'[Stock Item Key]=EARLIER('Fact Sale'[Stock Item Key])

        )

       ,    

        CALCULATE (

            SUM('Fact Sale'[Total Amount]),

            ALL('Fact Sale'),

            'Fact Sale'[Invoice Date Key]=EARLIER('Fact Sale'[Invoice Date Key])

            )

        )

The first CALCULATE in this statement attempts to determine the total value for the 

specific product for each day. Because there may be other transactions on the same day 

for the same product, the calculation needs to check to see if there are other rows in the 

same table with the same [Stock Item Key] and [Invoice Date Key]. If it can’t find any, 
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and there is only one transaction per day for the product, this value should exactly match 

the value in the [Total Amount] column. If other rows are found for the same [Stock Item 

Key] and [Invoice Date Key], the SUM function should generate the correct value for all 

transactions combined and then assign that value to each instance of that product.

The only values that can be seen are the numbers returned as the final output of 

the entire calculated column. Intermediate values such as those generated by the first 

CALCULATE function are lost.

The second CALCULATE attempts to derive a total value for sales for each day. 

This daily total is used with the first value to derive a percentage for each product/day 

combination. Once again, the way the calculation has been written, you do not see these 

intermediate values. How can we you sure the values used in the DIVIDE calculation are 

the values you think they should be?

The easiest way to break this calculation down is to create a separate observable 

entity for each of the CALCULATE functions. This can take the form of several new 

calculated columns, or you can use variables and control which variable is returned via 

the RETURN statement.

 Debugging Using Columns
Using the calculated column approach, you can add the three calculated columns in 

Listings 8-2, 8-3, and 8-4.

Listing 8-2. Calculated Column Showing the Sub Category Total

Product Sub Total =

    CALCULATE (

            SUM('Fact Sale'[Total Amount]),

            ALL('Fact Sale'),

            'Fact Sale'[Invoice Date Key]=EARLIER('Fact Sale'[Invoice Date Key]),

            'Fact Sale'[Stock Item Key]=EARLIER('Fact Sale'[Stock Item Key])

        )

Chapter 8  Debugging anD Optimizing



200

Listing 8-3. Calculated Column Showing the Overall Total

Daily Sub Total =

        CALCULATE (

            SUM('Fact Sale'[Total Amount]),

            ALL('Fact Sale'),

            'Fact Sale'[Invoice Date Key]=EARLIER('Fact Sale'[Invoice Date Key])

            )

Listing 8-4. Calculated Column Incorporating Listings 8-2 and 8-3

Divide Test =

    DIVIDE(

        'Fact Sale'[Product Sub Total],

        'Fact Sale'[Daily Sub Total]

        )

In these listings, the two CALCULATE functions from Listing 8-1 have been 

separated into their own calculated columns while a third calculated column uses 

the DIVIDE function that incorporates the other calculated columns. You can visually 

inspect this in the Data View as a form of debugging. You can use these three new 

calculated columns in addition to the original version of the calculated column.

Figure 8-1 shows a sample of the table with the three new “debug” columns. The 

table has been filtered to only show data for January 1, 2016, and it is ordered by the 

[Stock Item Key] column.

Figure 8-1. Output of the code in Listings 8-2, 8-3, and 8-4
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The [Product Sub Total] value of 750 for the first row seems to match the [Total 

Amount] column. There is only one row for [Stock Item Key] = 1, so this looks good. 

The next two rows have been highlighted in a box. This shows that there were two 

transactions on this day for [Stock Item Key] = 9. The individual totals of 49.2 and 12.3 

combine for a total of 61.5. This is the value repeated for both rows in the [Product Sub 

Total] column, which is the desired result. The number still to be tested is the value of 

13,888 that is repeated in every row of the [Daily Sub Total] column.

One approach to testing this is to first create a calculated measure that uses SUM of 

the [Total Amount] column and then use this calculation in a visual where a filter is set 

to the same day as the test data. If the source system is a SQL database, another option is 

to write a query to help reconcile this value. Ideally T-SQL queries should be kept simple, 

otherwise the test can be compromised by errors in the T-SQL statement, so avoid joins 

and stick to simple SUM and COUNT functions with just the bare minimum of code in 

any WHERE clause.

 Debugging Using Variables
An alternative to the preceding approach is to make use of variables. The object is to 

break the calculation into smaller chunks of code wherever practical. The same code 

split up into variables might look like Listing 8-5.

Listing 8-5. Calculated Measure Using RETURN to Control the Final Output Variable

Product Ratio of Daily Sales =

VAR InvoiceDateKeyCol = 'Fact Sale'[Invoice Date Key]

VAR StockItemKeyCol = 'Fact Sale'[Stock Item Key]

VAR ProductSubTotal =

    CALCULATE (

            SUM('Fact Sale'[Total Amount]),

            ALL('Fact Sale'),

            'Fact Sale'[Invoice Date Key]=InvoiceDateKeyCol,

            'Fact Sale'[Stock Item Key]=StockItemKeyCol

        )
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VAR DailySubTotal =

    CALCULATE (

        SUM('Fact Sale'[Total Amount]),

        ALL('Fact Sale'),

        'Fact Sale'[Invoice Date Key]=InvoiceDateKeyCol

        )

VAR ReturnValue =

    DIVIDE (

        ProductSubTotal,

        DailySubTotal

        )

RETURN  ProductSubTotal

In Figure 8-5, I have modified the original calculated measure to use variables to 

store the various sections of code. Apart from the fact that this is now more readable, the 

final RETURN statement is not obliged to return the last variable to be declared.

The RETURN statement here returns the ProductSubTotal and not the ReturnValue 

variable, meaning once this calculated column is executed, numbers visible in this 

column in the Data View represent the output of the first CALCULATE function and not 

the output of the final DIVIDE statement.

When these values have been checked and confirmed to be as expected, you can 

update the final RETURN statement so it returns the DailySubTotal variable. When this 

has been confirmed as being correct, you can set the RETURN statement to use the 

ReturnValue column.

The downside of this approach is that only one variable can be returned at any 

one time. You can take a hybrid approach if one of the calculated columns used earlier 

produces a value that might be useful in several other calculations, however. You can 

use the [Daily Sub Total] column to create similar “percentage of”–type calculations that 

involve other columns in the table.

 Debugging Calculated Measures
When it comes to calculated measures, the principle is the same. The calculated 

measure in Listing 8-6 meets the same product ratio of daily sales requirement in a 

single calculation.
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Listing 8-6. Calculated Measure to Be Debugged

Product Ratio of Daily Sales as Measure =
    DIVIDE (
        CALCULATE (
                SUM('Fact Sale'[Total Amount]),
                FILTER(
                ALLSELECTED('Fact Sale'),
                 'Fact Sale'[Invoice Date Key]=MAX('Fact Sale'[Invoice Date 

Key]) &&
                    'Fact Sale'[Stock Item Key]=MAX('Fact Sale'[Stock Item Key])
                    )
                )
                ,    
            CALCULATE (
                SUM('Fact Sale'[Total Amount]),
                FILTER(
                    ALLSELECTED('Fact Sale'),
                     'Fact Sale'[Invoice Date Key]=MAX('Fact Sale'[Invoice 

Date Key])
                    )
                )

            )

Listings 8-7, 8-8, and 8-9 show how to debug this DAX by breaking it into three 

separate calculated measures.

Listing 8-7. Calculated Measure Showing Total for Sub Category

Product Sub Total as Measure =
        CALCULATE (
                SUM('Fact Sale'[Total Amount]),
                FILTER(
                ALLSELECTED('Fact Sale'),
                     'Fact Sale'[Invoice Date Key]=MAX('Fact Sale'[Invoice 

Date Key]) &&
                    'Fact Sale'[Stock Item Key]=MAX('Fact Sale'[Stock Item Key])
                    )
                )
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Listing 8-8. Calculated Measure Showing Overall Total

Product Sub Total as Measure =

        CALCULATE (

                SUM('Fact Sale'[Total Amount]),

                FILTER(

                ALLSELECTED('Fact Sale'),

                     'Fact Sale'[Invoice Date Key]=MAX('Fact Sale'[Invoice 

Date Key]) &&

                    'Fact Sale'[Stock Item Key]=MAX('Fact Sale'[Stock Item Key])

                    )

                )

Listing 8-9. Calculated Column Incorporating Listings 8-7 and 8-8

Product Ratio as Measure =

    DIVIDE(

        [Product Sub Total as Measure],

        [Daily Sub Total as Measure]

        )

Because these are calculated measures, you need to add them to a visual such as 

the table visual in Figure 8-2 in order for the values to be inspected. In this figure, the 

[Invoice Date Key], [Stock Item Key], and [Total Amount] columns have been added to 

the same visual to provide the calculated measures with some query context.

Figure 8-2. Output of the code in Listings 8-7, 8-8, and 8-9

Chapter 8  Debugging anD Optimizing



205

The final three columns in Figure 8-2 show the results of each calculated measure. 

You can use this format to help reconcile against the value for [Total Amount]. The rows in 

which [Stock Item Key] = 9 add up correctly for the [Product Sub Total as Measure] values.

Keeping the calculation as a single statement but using the RETURN statement 

to control which variable to return works just as well. The advantage of splitting 

out to separate calculated measures is that you can then use each measure in other 

calculations. This introduces a degree of code fragmentation when you are trying to 

follow code that uses multiple calculated measures, however.

A common reason why calculated measures generate unexpected results is incorrect 

filtering. As calculated measures grow in complexity, particularly those that mix the 

use of clearing or applying layers of filtering of the data, this means the core expression 

doesn’t use the data as you expect it to.

Sometimes this becomes obvious when each component is broken out into smaller 

chucks in the way as shown earlier in this chapter at Listing 8-6. If this still doesn’t clarify 

why a value might be different than what you are expecting, using alternative functions 

in your core expression may help shed light on the issue.

Taking a copy of your calculated measure and substituting SUM ('Fact Sale'[Total 

Amount]) with COUNTROWS ('Fact Sale') can sometimes be enough to help identify a 

filter-related issue. Otherwise substituting with other expressions to show the MIN or 

MAX of a column, such as MAX ('Fact Sale'[Invoice Date Key]), might be enough 

to help clarify any issues with filtering.

Some additional functions that can be useful when debugging manually are these:

• HASONEFILTER: Returns true when the specified column has one 

and only one direct filter value.

• HASONEVALUE: Returns true when there’s only one value in the 

specified column after it is cross filtered.

• ISCROSSFILTERED: Returns true when the specified table or column 

is cross filtered.

• ISFILTERED: Returns true when there are direct filters on the 

specified column.

These functions produce true/false outputs and can be useful when you add them to new 

calculated measures and to the same table visual you are using to debug with. These provide 

useful information about the level of filtering that the engine is applying. When you are happy 

your code is running as expected, you can remove these temporary calculated measures.
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A final tip is to use a blank report page for debugging and start with just the data 

you need. If you try to debug measures on a busy report page that has other visuals and 

filters, it can be tricky to isolate an issue. Once the calculation is working as you expect it 

to, you can remove or hide the report page you used to debug.

 External Tools
Whether you are writing DAX calculations in Power BI, Excel, or SSAS, there are several 

useful tools that you can use to help produce better calculations. These are three that we 

will look at in this chapter:

• DAX Studio

• SSMS (SQL Server Management Studio)

• SQL Server Profiler

These tools are all free, and if you are already working with Microsoft SQL Server 

databases, you probably already have SSMS and SSMS Profiler installed. This section 

shows you how to get started and highlights key ways each tool can be helpful.

 DAX Studio

The first tool to look at is the highly recommended DAX Studio, which describes itself 

as the ultimate tool for working with DAX queries. You can find documentation on DAX 

Studio including a link to download from daxstudio.org.

Once DAX Studio is downloaded and installed, you can create connections to data 

models hosted by the following engines:

• PowerPivot in Excel

• Power BI Desktop

• Azure Analysis Services

• Azure Analysis Services Tabular

This means that if you have a copy of Power BI Desktop open with a data model 

loaded with data, you can open DAX Studio and create a connection to the Power BI 

Desktop model and start issuing queries.

The first dialog you encounter when opening DAX Studio is one that asks which data 

model you would like to connect to (Figure 8-3). If you have multiple copies of Power BI 

Desktop, you can select which one you would like to connect to from a drop-down list.
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Once connected to a model, the application should appear as it does in Figure 8-4.

Figure 8-3. The connection dialog in DAX Studio

Figure 8-4. The main screen of DAX Studio
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 1. The ribbon across the top is loaded with features you can use for 

editing and optimizing your DAX; you can hide this to provide 

more space to write DAX.

 2. The Metadata panel allows you to explore the structure of your 

model. You can drag tables and columns to the query editor to 

save yourself from having to type longer object names. Every DAX 

function is listed in this panel along with some interesting DMV 

(dynamic management views) queries.

 3. The query editor is where you can write and edit your DAX 

queries. This features full IntelliSense that suggest functions, 

tables, columns, and measures as you type.

 4. The Output bar consists of several tabs that contain information 

regarding any query that has been run. The Results tab shows the 

output of the query. You can enable other tabs to see query plans 

and internal server timings.

 5. The Status bar along the bottom shows information about the 

current connection.

Once you connect to a data model, you can start writing DAX in the query editor. 

When you are ready to run your query, click the Run button on the ribbon or press F5. As 

long as your query has no errors, you can see the output in a grid in the Results tab of the 

Output panel. There is an option on the ribbon to output the results to a file, which can 

be a handy way to manually extract data from your data model.

Note every DaX query run in DaX Studio must begin with the keyword eVaLuate 
and must output a table.

Taking the code from a calculated measure and running it in DAX Studio produces 

an error. The following statements will both fail to run:

My Measure = COUNTROWS('Fact Sale')

COUNTROWS('Fact Sale')
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Even adding the EVALUATE keyword in front of both statements produces an error 

because the output of the COUNTROWS function is not a table.

EVALUATE

    COUNTROWS('Fact Sale')

To get a query like this using the COUNTROWS function to work, you need to wrap it 

in a function that can output to a table such as ROW.

EVALUATE

    ROW(

        "My Value",

        COUNTROWS('Fact Sale')

        )

This statement produces the following (Figure 8-5) in the Results tab of the Output 

panel.

One of the simplest queries to run in DAX Studio is to use EVALUATE with the name 

of a table in the model.

EVALUATE

    'Dimension Date'

Figure 8-5. Simple query in DAX Studio including results
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This is the equivalent of SELECT * FROM [Dimension Date] and shows every row and 

every column of the ‘Dimension Date’ table. To reduce the number of rows in the output, 

you can use filter functions with the table.

EVALUATE

    FILTER(

         'Dimension Date',

        'Dimension Date'[Calendar Year]=2016

        )

The preceding calculation returns all columns from the ‘Dimension Date’ table but 

only rows that belong to [Calendar Year] = 2016.

The following calculation is the equivalent of SELECT TOP 10 * FROM [Dimension 

Date] ORDER BY [Date] Desc:

EVALUATE

    TOPN(

        10,

        'Dimension Date',

        'Dimension Date'[Date],

        DESC

        )

If you want to develop and test how a calculated column might look, you can use 

syntax such as this:

EVALUATE

    SELECTCOLUMNS(

        'Fact Sale',

        "My Test Column",

        'Fact Sale'[Unit Price] * 'Fact Sale'[Quantity]

        )

The SELECTCOLUMNS function used in this example means the output only contains 

one column; however, it produces as many rows as there are in the ‘Fact Sale’ table. You 

can add additional columns as needed, or, if it is more useful to see every column from 

your base table including your additional calculation, using the ADDCOLUMNS function 

might be better (Listing 8-10).
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Listing 8-10. DAX Query with an Additional Column Using Nested Variables

EVALUATE

VAR DoubleMe = 2

RETURN

    SELECTCOLUMNS(

        'Fact Sale',

        "My Test Column",

        'Fact Sale'[Unit Price] * 'Fact Sale'[Quantity],

        "My Test Column 2",

         VAR X = COUNTROWS('Fact Sale') * DoubleMe

        RETURN X

        )

Expanding the logic to include additional columns can be done as shown in Listing 8-10.  

This also demonstrates how you can use variables both before and inside a query. 

Figure 8-6 shows the results of Listing 8-10.

An option to help test calculated measures is to use the DEFINE MEASURE 

statement to keep DAX logic for the measure separate from the EVALUATE query.

Listing 8-11 creates a new calculated measure that exists only in the scope of this 

query and is not visible to anyone else using the data model.

Figure 8-6. Output of the code in Listing 8-10
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Listing 8-11. DAX Query Using DEFINE MEASURE to Create Query-Scope 

Calculated Measure

DEFINE MEASURE

    'FACT Sale'[My test measure] = COUNTROWS('Fact Sale')

EVALUATE

    SUMMARIZECOLUMNS(

        'Dimension Date'[Calendar Year],

        "Column Name here",

         [My test measure]

        )

    ORDER BY

        'Dimension Date'[Calendar Year] DESC

The DEFINE MEASURE statement creates an area where you can add multiple 

measures. Each measure must have the full notation of ‘tablename’[measure name] = 

preceding the DAX expression. The code used in the expression is the same as what you 

use when creating a calculated measure directly in the data model. The measure name 

must include a table.

The measure can then be used in the EVALUATE query with the results visible in the 

results tab when it is run (Figure 8-7). Syntax error messages appear in the Output tab of 

the Results panel if there are errors in the code.

Another element of running queries in a client tool such as DAX Studio is that you 

can add an ORDER BY statement to the query; this is also shown in Listing 8-11.

Figure 8-7. Output of code from Listing 8-11 using DEFINE MEASURE

Chapter 8  Debugging anD Optimizing



213

These are the basics for getting queries to run in DAX Studio. Additional features are 

useful for optimizing queries and we look at these in more detail later in this chapter.

In addition to having a larger area for the query editor and a host of tools that are 

useful when you’re editing longer DAX queries, you can save and store your queries as 

separate files. Doing so can help you back up and provide source control over individual 

queries.

The Format Query (F6) feature allows you to tidy queries by adding tabs and carriage 

returns at key places to help improve query readability.

You can run multiple queries at the same time, as shown here:

DEFINE MEASURE 'Fact Sale'[Right Now] = FORMAT(NOW(),"hh:mm:ss.ms")

EVALUATE

 ROW("Q1",[Right Now])

EVALUATE

 ROW("Q3",[Right Now])

EVALUATE

 SAMPLE(10000,'Fact Sale','Fact Sale'[Invoice Date Key])

When you run this query, it returns three datasets to the Results panel.

You can view the results for each EVALUATE statement by clicking the numbered 

vertical tabs. The result of the third and final EVALUATE query from the batch is shown 

in Figure 8-8. Note that two of the queries used the calculated measure from the DEFINE 

MEASURE section. The final query uses the SAMPLE function to perform a random filter 

over 1,000 rows from the ‘Fact Sale’ table.

Figure 8-8. The last result set from three queries run simultanously
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 SSMS (SQL Server Management Studio) 

Another tool to help develop and debug your DAX calculations is Microsoft SSMS. If you 

are working with Microsoft SQL databases, you probably already have this tool. If you 

don’t, a quick internet search will point you to the correct download location for this on 

the Microsoft site. It is a large download because it contains features useful for working 

with the entire Microsoft SQL suite of products and not just DAX models.

Just like DAX Studio, you can use SSMS to connect to DAX data models such as 

Power BI Desktop and SSAS Tabular. However, to connect to Power BI Desktop, you 

need to know the port number on your local machine being used by the instance you 

want to connect to. This number changes each time you open Power BI Desktop. DAX 

Studio shows the port number once you are connected on the Status bar in the format of 

localhost:nnnn where nnnn is the port number. So, if you have DAX Studio, you can use 

this as a quick way to identify the port number you need if you also want to use SSMS to 

connect to your model.

Note You can start power bi Desktop on a specific port by navigating to the 
folder where the Desktop executable is located and running this command from 
the console: 

PBIDesktop /diagnosticsport:XXXX
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Another way to find the current port number is via the Resource Monitor (Figure 8- 9) 

for your operating system (or a similar tool); look for any listening network ports using 

the msmdsrv.exe executable. This is easier if you only have one instance of Power BI 

Desktop open.

Figure 8-9. Using Windows 10 Resource Monitor to find a listening port for Power 
BI Desktop
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In this case, the Resource Monitor is showing that port number 57310 is a listening 

port by msmdsrv.exe, so you can use it when connecting from SSMS using the properties 

in Figure 8-10.

Note the Server type needs to be set to analysis Services. this might not be the 
default value of this property.

Once connected, DAX queries must conform to the same requirements as those you 

use for DAX Studio. These include that you need to use the EVALUATE keyword for every 

query and that all results should be in a DAX table.

Otherwise SSMS provides IntelliSense and a host of other features to help you build 

DAX calculations. All the query examples used in this chapter to demonstrate DAX 

Studio work in SSMS except for multiple EVALUATE statements in the same batch.

 Other Client Tools

Once you know the server and port number for the DAX engine you wish to query, you 

can use any tool that has the ability connect to an instance of SSAS Tabular. You can even 

connect Power BI Desktop to another instance of Power BI Desktop. This is probably not 

Figure 8-10. Example connect dialog for SSMS for connecting to the Power BI 
Desktop
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so useful for developing DAX queries, but doing so can help optimize your data model 

by allowing DMV queries to be issued with the results plotted using the fantastic array of 

visuals in Power BI.

 Optimizing
Optimization is a broad and potentially advanced topic—enough to justify a book on its 

own, in fact. In this section, I try to cover some of the more useful techniques that you 

can used to improve the performance of your model. I have split the suggestions into 

two sections. The first section is for optimizing data models and the second focuses on 

optimizing DAX queries and also covers how to take advantage of tools such as DAX 

Studio and SSMS to improve performance.

 Optimizing Data Models
Let’s begin by removing unused data.

 Removing Unused Data

The first tip is to make sure you only include data you need in the model. The larger the 

model, the more work calculations you need to do, and surplus data, even if it’s not used 

in any calculation, can still have a detrimental effect on compression and performance 

of the model.

Although it might be initially useful to import every row and every column from 

various tables in your source system for data exploration purposes, make sure you allow 

time to review and remove unused columns and rows from your data model before you 

publish your report to a production environment.

Highly unique data sitting in unused columns can have a negative effect on the 

compression used by the DAX engine to store the data. Good columns to target to find 

such unused data are IDENTITY or Autonumber columns that are useful to have in 

an OLTP source system but that often have little value in an OLAP data model. Unless 

you need to display values from these columns in your report, removing them can help 

considerably reduce the size of your data model.

You can use a free tool called Power BI Helper to help identify columns that aren’t 

being used in a model. You should remove any column that it highlights from the data 

model and only add them back if you need them for the report. You can download the 

Power BI Helper from http://radacad.com/power-bi-helper.
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If you are comfortable using DMV, then issuing the following DMV query against 

your data model using DAX Studio or SSMS, once sorted, can provide you with useful 

insight into which objects (columns) in your model are using the most memory.

Select * from $System.discover_object_memory_usage

These columns are good ones to check to see if they can be removed.

Removing unused columns is one technique, but also consider the number of rows 

you import into your model. If the data model only needs to support a certain range of 

time, then consider importing just enough data to cover the period required.

Also consider compressing data as part of the import process. If a dataset from a 

source system has many rows per day, such as the kind you might find in some IOT 

Sensor data, group the data before or during the import. It may be possible to satisfy 

reporting requirements using data that has been presummarized down to a single row 

per day that also contains a value for the COUNT, MIN, MAX, and AVERAGE of the rows 

that have been compressed.

These suggestions are helpful to reduce the overall size of the data model. If you try 

these out using a Power BI Desktop model, make a note of the file size of the saved PBIX 

file before and after the changes. I have seen instances where the file size was reduced 

from over 800 MB down to less than 40 MB without breaking any visuals in the report. 

This was mainly a combination of running the suggested DMV against the data model, 

identifying column objects using the most memory, and removing them from the model. 

In this case, most columns removed were IDENTITY columns sitting in tables with 

several hundreds of millions of rows.

Note hiding a column in the model does not affect performance. remove unused 
columns from the data import logic.

Creating Summary Tables

Another technique that doesn’t address the overall size of the model is to create 

additional summary tables inside your model. You can generate these tables either in 

DAX or as part of the import process in the query editor.

If you have a large table with many rows that you need kept in its original form to meet 

some reporting requirements, consider creating summary tables you can use in visuals 

and calculations that don’t need to drill down to the finest detail of the original table.
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Take the example of the ‘Fact Sale’ table in the WideWorldImportersDW dataset. This 

contains 228,265 rows with detail on every sale.

Creating a summary version of this table by Calendar Month and Customer in 

this dataset would reduce this down to 5,239 rows. Such a summary table can support 

any visual or calculation that requires this level of detail and it is 1/50th of the size. 

Performance improvements using this approach are amplified when you are creating 

reports using tables that have many hundreds of millions of rows.

You can create dozens of summary tables from a single large table to provide a highly 

customized level of performance tuning. In this event, I recommend a good naming 

convention to help you keep track.

Precalculating Data

Consider using calculated columns instead of calculated measures for metrics that 

are not required to be dynamic. An example of this might be a ranking measure that 

determines who are the best customers or sales people based on data in a large table. 

It’s possible to perform these types of calculations as calculated measures or calculated 

columns. However, if you don’t need to dynamically recalculate the metric to respect 

changing slicer or filter selections, then depending on the size of the data, using a 

calculated column will probably improve the performance of your model.

Splitting Up Unique Columns

If you have a column in your dataset that has highly unique values, such as a DateTime 

column that includes detail from year to millisecond, or an IDENTITY or Autonumber 

column, then consider splitting it into multiple columns.

The DateTime example is straightforward in that it can be split neatly into one 

column that carries a value for day, while other columns carry values for hours, minutes, 

or seconds. If you don’t need to report to a level of detail finer than day, then remove this 

information from the data model altogether.

Look for other opportunities to split columns where the data can have multiple 

meanings. These might include values that represent the make and model of a car, or 

address data that includes a level of detail that isn’t useful for the reports, such as suburb 

or street.
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Simplifying Table Structure

DAX data models can provide accurate calculations using a table structure that mirrors 

the table structure of your source system. This includes calculations that span many 

generations of a set of table relationships. However, your model will probably perform 

much faster if you flatten your data structures to reduce the number of relationships that 

need to be used per calculation.

A good model to follow is to organize your data into fact and dimension tables. This 

is commonly known as a star schema and it has been proven to work well for reporting 

and analytic workloads.

Fact Tables

Start by identifying entities in your data that you would like to count, sum, and generally 

visualize over time. These entities should form the basis of fact tables in your model. Each 

row in a fact table should be an instance, activity, event, or transaction that the fact table 

represents. If you have 100 sales, then ideally a ‘Fact Sales’ table should have 100 rows.

Do not try and mix multiple facts in a single table. If you need to report and analyze 

sales and payments, avoid the temptation of combining both sets of data in the same fact 

table. Have a fact table for sales and another fact table for payments.

Avoid creating relationships between fact tables. Many useful calculations can be 

performed over unrelated fact tables that share a common dimension table.

Once you have identified the fact tables you need, bring as many columns of data 

from other source system tables into the fact table as you can to satisfy known reporting 

needs, but be careful to still retain the 1 row = 1 fact rule. If you can make the fact table 

100-percent self-sufficient, you will get the best performance. Only make exceptions 

for columns that might be useful in a dimension table that are connected to other fact 

tables—for example, rather than replicate a month, quarter, and year table in every fact 

table, move these to a dimension table.

Try to avoid data models that involve calculations that use data using relationships 

that span three or more levels.

Dimension Tables

Think of dimension tables as filter/slicer tables that are only useful for slicing and dicing 

your fact tables. They generally don’t contain data you intend to count, sum, or use 

in calculations. If they do, consider if this data should be used in a fact table instead. 
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Dimension tables are most useful for providing a single place for filter selections to apply 

across relationships to multiple fact tables. 

The first dimension table you add to any model will probably be a date table. If you 

have multiple fact tables, then this likely has a relationship to each of these with a value 

that represents a single day. Any filter/slicer selection made to any column in this table 

propagates down through to filter any connected fact table.

If you have a dimension table that is only related to one table, consider combining 

the two into a single table.

 Optimizing DAX Queries

It’s possible to write a query many ways and get the same result. Five people may 

produce five different approaches that each have unique performance characteristics. 

In this section, I cover some of the more useful tips and techniques for making DAX 

calculations more efficient. Some of these are enough to help you solve a performance 

issue you may encounter. Other solutions are a mix of improvements made to DAX 

calculations and enhancements to the underlying data structures.

In this section, I also show you how you can use tools such as DAX Studio and SQL 

Server Profiler to help optimize your DAX queries.

Storage Engine vs. Formula Engine

DAX queries use two engines when running calculations: the storage engine (SE) and 

the formula engine (FE).

The storage engine is the faster of the two and has the primary objective of retrieving 

all the data it needs to compute the query from the in-memory data stores. The storage 

engine is multithreaded, so it can complete multiple operations in parallel. The storage 

engine can perform simple calculations while retrieving data, but these need to be 

calculations that don’t rely on any other storage engine task that might be happening in 

parallel as part of the same query.

Results from storage engine activity can be stored in the cache to help speed up 

subsequent queries. In the case where you have a calculated measure that is executed 

many times by the same visual to produce a value for each data point, this caching can 

play a role in helping speed up all the calculations used in a visual.

The formula engine is single-threaded and capable of more sophisticated logic 

including calculations in which the order of the steps involved is important to the result. 

Results from formula engine activity are not cached so they must be recalculated each time.
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When a query is passed to the DAX engine, the storage engine starts by retrieving 

relevant data and the formula engine completes the job.

A good approach to use to optimize a slow DAX query is to try and understand which 

components of the query are being completed by the storage engine and which are being 

completed by the formula engine; then see if some of the work being handled by the 

formula engine can be moved to the storage engine.

A quick way to tell how much of your query is using the storage engine instead of the 

formula engine is by using DAX Studio. There is an option on the ribbon (Figure 8-11) to 

enable server timings as well as the query plan.

With these options enabled, any individual query run in DAX Studio now generates 

additional information that shows how long the engine took to complete the query. 

This also shows the breakdown of how much of the overall time was used by the storage 

engine instead of the formula engine (Figure 8-12).

Figure 8-11. Options on the DAX Studio ribbon for turning on additional debug 
options

Figure 8-12. Example output of server timings for a query run in DAX Studio
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Figure 8-12 show an example of a query that took a total of 15 milliseconds to 

complete. The first 3 milliseconds were spent by the storage engine, which ran two 

parallel processes to collect all the data required. When the storage engine finished, the 

formula engine took over and needed 12 milliseconds to finish the query. The formula 

engine was active for 80 percent of this query, and the storage engine did not benefit 

from the storage engine cache.

This information doesn’t explain which parts of your DAX query were handled by the 

storage engine vs. the formula engine, but it does give you a baseline for understanding 

how other versions of the same query behave.

When optimizing, it is important to clear the cache each time you run an updated 

version of your query. If you don’t, you may get the impression that your newer version 

is better because the overall time is faster, where in fact it could be taking advantage of 

cached data from a previous query. This is easy to do in DAX Studio by setting an option 

on the Run button to clear the cache each time.

To understand which components of a query are being handled by the storage 

engine or the formula engine, you need to dive down into a query plan generated by 

a trace over the server. Just as you can run traces on a Microsoft SQL server to analyze 

T-SQL queries, SSAS engines can provide the same ability to capture events that show 

various subcomponents of individual queries. Because Power BI Desktop uses an SSAS 

engine, you can use tools such as SQL Server Profiler to capture interesting events while 

a query is run to show exactly how the DAX engine went about the task of completing 

the query. Certain events show as being activities completed by the storage engine, while 

others show up as belonging to the formula engine.

This is quite an advanced topic, so apart from showing you how to run a trace over a 

DAX query later in this chapter and from showing you that it is this underlying trace data 

that DAX Studio uses to obtain the server timings, I do not dig deeper. DAX Studio shows 

both the physical and logical query plans used by the query in a Query Plan tab along 

with some pseudo-T-SQL generated by the underlying trace to show the work of each 

storage engine subquery.

Filtering Early and Appropriately

If you are tasked with producing a handwritten list of all the words in a dictionary that 

began with the letter X, one approach is to start by making a list of every word in the 

dictionary from A to Z and then cross out all the words that don’t begin with the X. Or 

you and five friends can each take a copy of the same dictionary and start writing words 
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from different pages that have words starting with the letter X. The second approach is 

much faster due to the fact that less work is required and that it is shared.

You can apply the same approach to DAX calculations. The earlier you can apply a 

filter without affecting the result, the bigger the impact doing so has on the overall time 

the calculation takes.

The two DAX calculations in Listings 8-12 and 8-13 demonstrate this nicely. Both 

calculations return identical results. The first query shows a sum of a quantity column 

along with a year-to-date calculation. The data is being filtered to a specific sales 

territory and month of the year.

Listing 8-12. A DAX Query Using FILTER After SUMMARIZE

EVALUATE

    FILTER(

        SUMMARIZE(

            'Fact Sale',

            'Dimension Date'[Date],

            'Dimension Date'[Calendar Month Number],

            'Dimension City'[Sales Territory],

            "SUM Qty", SUM('Fact Sale'[Quantity]),

             "YTD Qty", TOTALYTD(SUM('Fact Sale'[Quantity]),'Dimension 

Date'[Date])

            )

        ,

        'Dimension City' [Sales Territory] = "Southeast"

        && 'Dimension Date'[Calendar Month Number] =11

        )

    ORDER BY

        'Dimension Date'[Date]
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This query produces 77 rows along with the output in Figure 8-13 in the Server 

Timing window in DAX Studio.

The query took 301 milliseconds in total and spent a considerable amount of that 

time in the formula engine. This query was executed multiple times over a cold cache 

and this timing is typical.

Listing 8-13 shows another query that produces the same output.

Listing 8-13. Alternate Version of Listing 8-12 Applying a Filter Earlier in the Logic

EVALUATE

VAR PreFilteredTable =

    CALCULATETABLE(

            SUMMARIZE(

                'Fact Sale',

                'Dimension Date'[Date],

                'Dimension Date'[Calendar Month Number],

                'Dimension City'[Sales Territory]

            ),

            'Dimension City'[Sales Territory] = "Southeast",

            'Dimension Date'[Calendar Month Number] =11

            )

Figure 8-13. The server timing output for the code in Listing 8-12 using DAX 
Studio
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RETURN

    ADDCOLUMNS(

            PreFilteredTable,    

            "SUM Qty", CALCULATE(SUM('Fact Sale'[Quantity])),

             "YTD Qty", TOTALYTD(SUM('Fact Sale'[Quantity]),'Dimension 

Date'[Date])

            )

ORDER BY

    'Dimension Date'[Date]            

This version also produces 77 rows and the output of the Server Timing window is 

shown in Figure 8-14.

The updated version took a total of 44 milliseconds. Both versions used five storage 

engine queries to retrieve the data, but in the updated query, filtering took place before 

the results were passed to the SUM and TOTALYTD functions. The storage engine 

returned smaller batches to the formula engine. None of the storage engine queries had 

more than 1,464 rows, whereas the previous query had storage engine results of over 

19,000 rows passed to the formula engine for extra processing.

Figure 8-14. The server timing output for faster code in Listing 8-13 using DAX 
Studio
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Hopefully this example shows you how you might take advantage of some very 

helpful information that is available in DAX Studio. You do not need to run every query 

through this process, but isolating slower calculations to be tuned and optimized in DAX 

Studio is an effective use of time.

Another useful tip regarding filters in DAX, particularly the use of filter functions, 

is that that these functions, such as the ALL function, can often operate over tables or 

columns. If you can achieve the same result by using a specific column rather than an 

entire table, you will probably enjoy some performance gains. Passing an entire table 

can cause unnecessary work, especially if passing just a table column can achieve the 

same result.

SQL Server Profiler

To run a trace using Profiler, start Profiler directly or via SSMS. Make a connection to an 

instance of Analysis Services using a server name that your DAX engine is listening on. 

If you are connecting to an instance of Power BI Desktop, you need to know the port 

number being used by that instance. This changes each time you stop and start Power 

BI Desktop. DAX Studio shows the port number in use on the Status bar, otherwise you 

can get this information using process monitoring tools such as Resource Monitor or the 

Windows Sysinternals version of Process Explorer.

These are some useful events to enable for each trace:

• Query Begin

• DAX Query Plan

• Query Subcube

• VertiPaq SE Query End

Start the trace, then run your DAX query, then stop or pause the trace at a point 

where you can review the results.
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The diagram in Figure 8-15 shows events captured by Profiler when it was used to 

trace the second version of the previous query. More detail is available when you click on 

individual rows in the trace window.

It’s also possible to enable tracing in Power BI Desktop by turning on the Enable 

Tracing option in the settings under diagnostics (Figure 8-16). This creates *.trc files that 

you can open and analyze using Profiler. The *.trc files are stored in the folder shown in 

the same setting window.

Figure 8-15. Sample of output for code in Listing 8-12 using Profiler

Chapter 8  Debugging anD Optimizing



229

Figure 8-16. Option in Power BI Desktop settings that allows trace files to be 
generated

There often plenty of options available to help your queries run faster. Some involve 

you modifying the data model itself, and you can achieve others through changes to DAX 

calculations. In general, if you remember that calculations using the storage engine are 

good, and that it is also preferable to have data models that are small and simple, you are 

probably going to end up with a well-optimized model (and happy end users).

Remember to also make effective use of online material. DAX has been around since 

2009 and there is a fantastic community of users that share interesting ways to approach 

common problems.
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CHAPTER 9

Practical DAX
This chapter focuses on building a model using DAX and without using external data 

sources. In this chapter, you build your own dataset. All data is generated using step-by- 

step examples that showcase various tips and techniques you may find useful.

The final model has a structure resembling what you might use for a small 

organization with tables for sales, dates, and products. Because the number of rows for 

each table is automatically generated, you can use the final model for optimizing DAX 

calculations over a large dataset. By changing a few numbers here and there, you can 

generate a sales table with 5, 50, or 500 million rows of data with which to test different 

approaches to optimizing calculations.

These step-by-step exercises rely on you using a version of DAX that can create 

calculated tables. This includes Power BI Desktop and SSAS Tabular but not PowerPivot 

for Excel 2016 (or earlier).

 Creating a Numbers Table
The first step is to create a numbers table, in this case, a single-column table with a 

sequence of numbers starting at 0 and running to 1,000. You will be able to use this 

utility table to join to other tables using range-based conditions, such as when the value 

in this table is less than 5. In this exercise, the numbers table is used to multiply a single 

row from a table into many rows.

To create a numbers table you have several options. Before the GENERATESERIES 

function became available, the only way to create this type of table was to take advantage 

of the CALENDAR function. Not all versions of DAX have the GENERATESERIES 

function. Dates in DAX are stored as integer values, so you can use the CALENDAR 

function to generate rows of dates that you can then convert back to integer values. In 

Power BI Desktop, the date December 30, 1899, is stored as 0. The value of 1 belongs to 

the December 31, 1899, and 2 is January 1, 1900. Interestingly, the value of –1 belongs to 
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December 29, 1899, so if you need to represent data back in the 1600s with DAX, you can, 

but you need to use numbers that are in the vicinity of –100,000.

Here is how you can create a numbers calculated table (see Figure 9-1) using the 

CALENDAR function:

Numbers =

    SELECTCOLUMNS(

        CALENDAR(0,1000),

        "N", INT ( [Date] )

    )

To achieve the same result using the GENERATESERIES function, the code you use 

to create the calculated table is

 Numbers =

   SELECTCOLUMNS(

       GENERATESERIES( 0,1000 ),

       "N", [Value]

     )

Both examples produce a table with 1,001 rows called Numbers with a single column 

called N. The SELECTCOLUMNS function is used in both cases to rename the column to N. 

The INT function in the example using the CALENDAR function is used to convert the date 

output to its underlying number.

Figure 9-1. A sample of the Numbers table
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 Adding a Date Table
The next step is to add a date table to the data model. You can use the DAX in Listing 9-1 

to generate this.

Listing 9-1. Calculated Table to Create a Simple Date Table

Dates =

VAR BaseTable =

    CALENDAR (  DATE(2016, 1, 1), TODAY () )

VAR AddYears =

    ADDCOLUMNS (

        BaseTable,

        "Year", YEAR ( [Date] )

        )

VAR AddMonths =

    ADDCOLUMNS (

        AddYears,

        "Month", DATE(YEAR([Date]),MONTH([Date]),1),

        "Month label", FORMAT ( [Date], "MMM YY" )

    )

VAR AddDay =

    ADDCOLUMNS (

        AddMonths,

        "Day Label", FORMAT ( [Date], "DDD d MMM YY" )

        )

RETURN

    AddDay

This statement begins with the single column output of the CALENDAR function, 

which is then assigned to the BaseTable variable. The virtual table has one row per day 

starting on January 1, 2016, and running sequentially through until the current date.

You can use additional variables to incrementally add columns throughout the 

calculation. In this code, the AddYears variable takes the table represented by the 

BaseTable variable and appends a column called “Year” using the YEAR function to 

extract a value from the [Date] column.
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The AddMonths variable uses ADDCOLUMNS to append two additional columns. 

These allow rows to be grouped into calendar months. The “Month” column uses the 

DateTime datatype and converts each date value back to be the first date for the month 

it represents. The “Month label” column uses the FORMAT function to convert dates 

to text. The format string notation of MMM YY means dates such as July 4, 2018, are 

converted to a text value of “Jul 18”. You need to set the Sort by Column property of the 

“Month label” column to use the “Month” column, otherwise values in this column 

appear alphabetically when used in visuals.

The final AddDay variable uses the ADDCOLUMNS function to add a column called 

“Day Label”. This uses the FORMAT function to convert the date from each row into a text 

value using the format string, “DDD d MMM YY”. This format string converts July 4, 2018, 

to “Wed 4 Jul 18”. This text-based column needs to have its Sort by Column property set 

to the "Date" column to ensure sensible sorting when used in visuals. Figure 9-2 shows 

the first few rows generated by the date table.

Figure 9-2. Sample output of the date table created by Listing 9-1

 Creating the Sales Table
The next table you need to create is a sales table. The objective is to generate a table that 

shows sales over a timespan that you can use to build a sales report. This section covers 

each step you need to use showing the DAX and explaining the code.

The first task is to generate a random number of sales for each day. The DAX for this 

is shown in Listing 9-2.
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Listing 9-2. Excerpt from a Calculated Table to Create a Sales Table

Sales =

VAR FirstTable =

      SELECTCOLUMNS(

             FILTER (

                         GENERATE (

                         Dates,

                         Numbers

                               ),

                         [N] < RANDBETWEEN ( 2, 7 )

                   ),

             "Date",[Date])

The output of this statement is a table with a single column of dates. Each date 

occurs anywhere from two to six times and effectively creates a placeholder row that you 

can use to add columns. The CROSSJOIN and FILTER functions are used to combine the 

existing date and numbers tables you created earlier. Without the FILTER function, the 

CROSSJOIN matches each row from the date table to all 1,001 rows in the numbers table. 

It’s unlikely that a real sales table would have exactly 1,001 sales per day, so the FILTER 

function uses the RANDBETWEEN function to create a more randomized number 

of sales per day. In this case, each day has somewhere between two and seven sales 

transactions.

You can set the lower boundary to zero so you have some days with no sales, and you 

can increase the upper bound as one way of generating a larger set of sales.

You can use the SELECTCOLUMNS function to ensure that only the columns you 

need from the date and numbers tables flow through to the output, which is assigned as 

a virtual table to the FirstTable variable in Listing 9-2.

The next task is to add a column called “Product” (Listing 9-3) that carries a value to 

represent the product that was sold.

Listing 9-3. Adding a Product Column to Listing 9-2

VAR AddPRoduct =

ADDCOLUMNS (

    FirstTable,

    "Product",
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    VAR myMake =

        RANDBETWEEN ( 65, 90 )

    VAR myModel =

        FORMAT ( RANDBETWEEN ( 1, 5 ), "-#" )

    RETURN

        REPT ( UNICHAR ( myMake ), 3 ) & myModel

)

This code starts by using the FirstTable variable as input for the ADDCOLUMNS 

function. A nested variable called Make begins a new level of variable scope. This scope 

is separated from the layer being used by the FirstTable and AddProduct variables, 

and the RETURN function is used to drop a single value back as the third parameter of 

the ADDCOLUMNS function. You can achieve the same result without using a nested 

variable, but it would be harder to read.

The myMake variable uses the RANDBETWEEN function to generate a random 

number between 65 and 90. These numbers are used because they represent the range 

on the ASCII table for the uppercase letters of the alphabet. The value of 65 represents 

the letter “A,” 66 is “B,” and this continues to 90, which is the uppercase “Z.” The random 

number is stored in the myMake variable.

The myModel variable uses the RANDBETWEEN function to generate a random 

number between 1 and 5. This is then converted to text using the FORMAT function with 

a format string of “-#”. The hyphen in the format string is preserved while the hashtag 

placeholder tells FORMAT where the number should go. This creates a string such as 

“-1” or “-5”.

The final RETURN statement concatenates the myMake and myModel variables 

together to produce a text value that looks like a product code. The number stored in 

myMake is first converted to an uppercase letter between A and Z using the UNICHAR 

function. The output of the UNICHAR function is then repeated three times using the 

REPT function. This turns a value of “A” into “AAA”, and when combined with the text in 

the myMake variable, it produces a result such as “AAA-4” or “DDD-1”.

At this point the output of the calculated table looks like Figure 9-3.
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UNICHAR is a great function that you can use to add KPI indicators, such as trend 

arrows or emoji pictures, to reports to emphasize a point.

The next column that is added represents a quantity sold (Listing 9-4). This builds 

on the existing code by passing the AddProduct variable as the first parameter of the 

ADDCOLUMNS function.

Listing 9-4. Adding the Qty Column to the Sales Table

VAR AddQuantity =

    ADDCOLUMNS (

        AddProduct,

        "Qty",

            VAR Q = RANDBETWEEN ( 1, 1000 )

            RETURN 5 - INT ( LOG ( Q, 4 ) )

    )

The ADDCOLUMNS function appends a single column called “Qty”. A nested variable 

scope begins here in the third parameter. The intention is not only to generate a random 

number between 1 and 5, but to make sure the distribution of random values is not even. 

In a real-life sales table, it’s likely that most transactions will involve a quantity of 1. The 

next most common is 2 and the number of purchases reduces as the quantity increases.

The LOG function used here applies a logarithmic distribution for quantities 

between 1 and 5. When this code is added to the calculated table statement and plotted 

on a visual using the count of each value in the Qty column (Figure 9-4), it shows 

Figure 9-3. Sample output of the sales table including Listing 9-3
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most transactions are single-quantity transactions. The number of transactions with a 

quantity of 2 is nearly half that of 1, whereas transactions using a quantity of 3 drop off by 

more than half.

Figure 9-4. Chart showing distribution of quantity values

Figure 9-5. Sample of the sales table including the QTY column

This is the desired effect of the calculation and you can tweak it further to suit your 

needs.

The output of the sales calculated table using the code so far is similar to Figure 9-5.
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The next column added is for Price. The code for this column is shown in Listing 9-5.

Listing 9-5. Adding a Price Column to the Sales Table

VAR AddPrice =

    ADDCOLUMNS (

        AddQuantity,

        "Price", DIVIDE (

                         RANDBETWEEN ( 1, 1e5 ),

                         100 )

                         )  

The ADDCOLUMNS function appends a column to the table stored in the 

AddQuantity variable. The new column is called “Price” and the formula uses the 

RANDBETWEEN function to generate a number between 1 and 100,000. The notation 

of 1e5 shows that scientific notation can be used as an option. The value of 1e5 is 

shorthand for 1 × 105 (or 1 × 10 to the power of 5), which equals 100,000.

Once this random number is generated, the DIVIDE function is used to convert this 

to a value that represents a value of 1,000 or less, with two decimal places. A feature of 

the DIVIDE function is that it handles “divide by zero” errors better than the / operator; 

however, the / operator performs better and you should give it preference if there is no 

chance of a “divide by zero” error. Here is an example:

RANDBETWEEN( 1, 1e5) / 100

In Listing 9-5, there is no attempt to align prices across product codes. If having price 

values consistent across products is important for your testing, you can shift the logic 

shown here to generate a random price to a product calculated table and add it to the 

sales table via a relationship.

The final column that needs to be added combines [Price] and [Qty] to create a 

[Total] column. This demonstrates that a new column can use values derived from 

earlier parts of the same code.

Listing 9-6 is the full version of the code that creates the sales calculated table.
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Listing 9-6. The Complete Calculated Table for the Sales Table

Sales =

VAR FirstTable =

SELECTCOLUMNS(

    FILTER (

        GENERATE (

            Dates,

            Numbers

        ),

        [N] < RANDBETWEEN ( 2, 7 )

    ),

    "Date",[Date]) 

VAR AddPRoduct =

    ADDCOLUMNS (

        FirstTable,

        "Product",

        VAR Make =

            RANDBETWEEN ( 65, 90 )

        VAR myModel =

            FORMAT ( RANDBETWEEN ( 1, 5 ), "-#" )

        RETURN

            REPT ( UNICHAR ( MAke ), 3 ) & myModel

    )    

VAR AddQuantity =

    ADDCOLUMNS (

        AddPRoduct,

        "Qty",

            VAR Q = RANDBETWEEN ( 1, 1000 )

            RETURN 5 - INT ( LOG ( Q, 4 ) )

    )

VAR AddPrice =

    ADDCOLUMNS (

        AddQuantity,
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        "Price", DIVIDE (

                    RANDBETWEEN ( 1, 1e5 ),

                    100 )

                    )       

VAR AddTotal =

    ADDCOLUMNS ( AddPrice, "Total", [Price] * [Qty] )

RETURN

    AddTotal    

Figure 9-6 shows a sample of the table that uses this code.

Figure 9-6. Sample output of the sales table including the Total column

The table now has five columns and potentially hundreds of millions of rows. 

You can control the number of rows with the calculation that is used to generate the 

numbers table along with the FILTER criteria for the FirstTable variable. Bear in mind 

that each change you make to the any part of any of the calculated tables causes the 

data to recalculate for every table in the model. This generates new values each time but 

could take a long time to calculate if you have it configured to generate extremely large 

datasets.

The sales table can now be related to the date table using the [Date] column in  

each table.
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 Optimizing Sales
The data model now has a detailed sales table with rows that represent individual 

transactions. This table could grow to be very large. The sales table could have the same 

product appear in multiple rows for the same day. This is more likely to happen if the 

code to generate the sales table is deliberately set to generate a very large table. When it 

comes to building reports using tables in the dataset, not all report visuals need to use 

the finest level of detail available in the larger tables.

For instance, if you have a visual that only needs to show the sum of the Qty column 

by day and never by product, using the sales table can be quite an inefficient approach.

An alternative is to generate a summarized version of the sales table grouped by day, 

but have no ability to slice and dice by product.

The code to generate a calculated table for this is shown in Listing 9-7.

Listing 9-7. Summary of the Calculated Table of the Sales Table in Listing 9-6

Daily Summary =

    SUMMARIZECOLUMNS(

        'Sales'[Date],

        "Sum of Items Sold", SUM('Sales'[Qty]),

        "Sum of Revenue", SUM('Sales'[Total])     

    )

This creates a three-column table that summarizes multiple lines per ‘Sales’[Date] 

down to a single line while generating a value for each row using the SUM function to 

provide aggregate totals over the Qty and Total columns.

A visual using this table is going to be faster than one using the sales table, especially 

if the sales table ends up with a very large number of rows.

A downside of creating summary tables such as this is that they increase the memory 

footprint of the overall data model and make the data refresh process take longer. The 

other obvious downside is that any visual using the summary table can only be sliced 

and diced by the grain in the table, which in this case is [Date] and not [Product].

If you have a report that is slow to interact with and does not use summary tables, 

this is a strategy well worth considering.
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 Calculated Columns vs. Calculated Measures
A common question asked by people new to data modelling with DAX (and some not 

so new) is along the lines of “When should I use a calculated measure and when should 

I use a calculated column?” This is a fair question and confusion can be caused by the 

fact that usage of these can overlap. It’s possible to show the same value in a report that 

comes from a calculated column as comes from a calculated measure.

The main difference between calculated columns and calculated measures is the 

point in time the calculation is executed and how the result of the calculation is stored.

 Calculated Columns
With calculated columns, the DAX expression used by the calculation is only executed 

when data for the table is refreshed. The expression is calculated once for every row 

in the table, and the single value generated by the calculation is stored as the value in 

the column for that row and it cannot be changed. It’s as if the value generated by the 

calculated column existed in the source data that was used to import for the table.

Consider calculated columns as part of the data-load process. These calculations 

execute as one of the very last steps of the data-load process and no user interaction 

is involved.

Complex calculated columns over larger data sets make data refreshing take longer. 

If the data model is configured to refresh once a day in the early hours of the morning, 

however, this should have only a minor impact on users of your reports.

The values generated by calculated columns are stored physically in the data model, 

which means columns added to very large tables may have a noticeable effect on the 

memory size of the data model.

Calculated columns are row based, meaning they can quickly perform calculations 

if all the information required is contained within the same row. Calculations can still 

use data from rows other than the current row.

 Calculated Measures
With calculated measures, the DAX expression could be executed every time a page 

loads or when a user changes a filter or slicer selection. The DAX expression contained 

within the calculated measure is executed once for every value that uses it in a report. 

If a calculated measure is used in a table or matrix visual, it is executed as many times 
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as there are cells in the grid that use it to show a value. When one is used on a line 

chart visual with 100 points in a series, it executes 100 times for each point, with each 

execution having a slightly different filter context.

Calculated measures are dynamic and respond to user interaction. They recalculate 

quickly and often but do not store output in the data model, so they have no impact on 

the physical size of the data model. Increasing the number of calculated measures in 

your data model has no impact on speed or size of the model at rest.

Calculated measures are quick to process calculations using a single column over 

many rows, but you can still write them in a way that allows row-based data processing 

using iterators.

To better understand the difference between a calculated column and a calculated 

measure, let’s look at how a report requirement might be handled using both options. In 

Listing 9-8 the requirement is to show a cumulative sum over the ‘Daily Summary’ 

[Sum of Revenue] column from the recently created calculated table in Listing 9-7.

Listing 9-8. Cumulative Sum as Calculated Column Is Added to the Calculated 

Table in Listing 9-7

Calculate Revenue as Column =

      CALCULATE(

            SUM('Daily Summary'[Sum of Revenue]),

                   FILTER(

                   ALL('Daily Summary'),

                   'Daily Summary'[Date]<=EARLIER('Daily Summary'[Date])

                   )   

            )

This calculation executes as many times as there are rows in the ‘Daily Summary’ 

table. The FILTER function allows each execution of the SUM function to use a different 

set of values each time. The execution for the row on the oldest day (January 1, 2016) 

only presents one row to the SUM function. The execution of the SUM expression for 

the row for January 2, 2012, uses two values. These two executions can take place in any 

order and still produce the same result.

Once the calculated column has been added, the data model is now larger. In this 

case, all values in the new column are unique, so there is very little data compression.

Now consider the same calculation but as a calculated measure (Listing 9-9).
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Listing 9-9. Cumulative Sum as a Calculated Measure Added to the Calculated 

Table in Listing 9-7

Calculate Revenue as Measure =

      CALCULATE(

            SUM('Daily Summary'[Sum of Revenue]),

            FILTER(

                   ALLSELECTED('Daily Summary'[Date]),

                   'Daily Summary'[Date]<=MAX('Daily Summary'[Date])

                   )

            )

In this case, adding the calculated measure to the model doesn’t execute the code. 

The calculated measure remains dormant until it is used in a visual. Once the calculated 

measure is used in a visual, it is executed once for every value it needs to generate for a 

visual. Typically this is the number of items in an axis, row, or column header.

The syntax of the calculated measure and column are very similar. Both use the 

CALCULATE function and the same core SUM expression over the [Sum of Revenue] 

column. Both apply an instruction to tell the DAX engine what data can be used by the 

SUM function.

Finally, when both are added to a table visual along with the ‘Daily Summary’[Date] 

field, you see the result in Figure 9-7.

Figure 9-7. Output of the code from Listings 9-8 and 9-9
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The two columns produce an identical result for each row in the table. The [Calculate 

Revenue as Column] simply retrieves data directly from the column in memory and 

no DAX computations are required. Each cell in the [Calculate Revenue as Measure] 

column runs the code in the calculated measure. Each execution of the measure has 

a slightly different query context. In this case the query context is from the row header 

filtering on each [Date].

If you analyze both approaches using DAX Studio, you start to see how the two differ 

in terms of overall performance.

The first test uses the calculated column to see how much work was required by 

the model to produce values for the visual. The option to clear the cache on each run is 

turned on as is the ability to view the server timings and query plan (Listing 9-10).

Listing 9-10. DAX Query to Test the Performance of Listing 9-8 Using DAX Studio

EVALUATE

      SELECTCOLUMNS(

             'Daily Summary'

             , "Date", 'Daily Summary'[Date]

              , "Calculate Revenue as Column", 'Daily Summary'[Calculate 

Revenue as Column]

             ) ORDER BY [Date]

Running this calculation ten times over a cold cache yields an average total 

execution of around 12 milliseconds. As you can see in Figure 9-8, the majority of that 

output time (usually 90 percent) was spent in the formula engine with a very small 

amount being spent in the storage engine.

Figure 9-8. Server timing output of code from Listing 9-10
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Listing 9-11 shows the same test using the calculated measure instead of the 

calculated column. Once again, DAX Studio is used to capture the server timings of the 

query over a cold cache.

Listing 9-11. DAX Query Testing the Performance of Listing 9-9 Using DAX Studio

EVALUATE

    SELECTCOLUMNS(

        'Daily Summary'

        , "Date", 'Daily Summary'[Date]

        , "Calculate Revenue as Measure", [Calculate Revenue as Measure]

        ) ORDER BY [Date]

This code produces identical output except it uses a calculated measure instead of a 

calculated column. Running the query many times yielded average query times around 

the 1.4 second mark (1,400 milliseconds), usually with 99 percent of that being spent in 

the formula engine (Figure 9-9).

Figure 9-9. Server timing output of the code from Listing 9-11

Although this is slower, it is no surprise. The calculated column has the advantage 

of being precalculated. The time spent by the calculated column to generate the data for 

the column in the first place is around the same as what we see here with the calculated 

measure.

Let’s look at the two calculations and compare them on the flexibility front. After 

adding a relationship between the ‘Dates’ and ‘Daily Summary’ tables, a slicer is added 

to the same report page that uses the ‘Dates’[Year] column. When this slicer is set to 

2017, the result in Figure 9-10 can be observed using two visuals.
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First, the table visual shows that the calculated measure is now showing different 

values to the calculated column. The reason for this is the values being generated by 

each new execution of the calculated measure now have a different filter context than 

they did before. The SUM expression within the calculated measure no longer considers 

rows that belong to 2016 and 2018. The effect of this additional filtering means the values 

have been reset and are now only cumulative from the start of 2017.

The column simply outputs the same precalculated values as before. Nothing has 

changed except the slicer simply stops the visuals from plotting values for dates other 

than those in 2017.

So, let’s revisit the question I posed at the beginning of this section: “When should I 

use a calculated column vs. a calculated measure?”

If you want the fastest result and have little need to slice and dice data in different 

ways, a calculated column is a good choice. If you want to have values that react and 

respond to user interaction, then calculated measures are a good choice.

If you have a problem with the speed and performance of an interactive report, the 

best place to start looking is probably the code used in your calculated measures rather 

than the code from your calculated columns.

 Show All Sales for the Top Ten Products
To extend on the data you’ve built so far, let’s look at a few examples of how to build 

some additional summary tables using different techniques. The first example creates a 

table that holds every sale record but just displays the top ten products by revenue. The 

first step is to identify which products should be considered top-ten products. Then, 

using this list, a new table is created that uses all sales filtered for just these products.

Figure 9-10. Table and line chart visual showing the results from Listing 9-8 and 
9-9 with the slicer set to 2017
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The DAX for the calculated table is shown in Listing 9-12.

Listing 9-12. Calculated Table Showing Sales for the Best Ten Products

All Sales for Top 10 Products =

VAR InnerGroup =

    SUMMARIZECOLUMNS(

        -- Group BY --

        'Sales'[Product],

        -- Aggregation Column --

        "Sum of Revenue", SUM('Sales'[Total])

        )

VAR Top10PRoducts =

    TOPN(

        10,

        InnerGroup,

        [Sum of Revenue],

        DESC

        )

RETURN

    NATURALINNERJOIN (

        'Sales',

        Top10PRoducts

        )

The first variable in this calculation uses the SUMMARIZECOLUMNS function to 

create a table expression aggregated over the ‘Sales’[Product] column. This produces an 

unsorted working table with one row per product. Each product carries a value in the 

“Sum of Revenue” column that shows an aggregate of total sales over all time. This might 

be an opportunity to tweak the filtering so it only considers a date range that is recent 

and relative to the current period—for example, you might revise it so it only considers 

sales for the last three months.

The second step uses the TOPN function to identify and return the top ten rows 

from the InnerGroup table expression when they are sorted by [Sum of Revenue] in 

descending order. The TOPN function is a filter function, so it returns a table with the 
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same number of columns as in the InnerGroup variable to the Top10Products variable 

but in this case only ten rows.

You can tweak this function to look for a different number of products at the top or 

bottom using the ordered table. To find the products with the least sales, simply change 

the order by parameter from DESC to ASC.

An alternative to using the TOPN function is to assign a ranking column to the 

InnerGroup variable, which can then use the value in the ranking column to filter the 

table. You could use the DAX example in Listing 9-13 as an alternative. Figure 9-11 shows 

the output from this listing.

Listing 9-13. Alternative DAX That Could Be Used in Listing 9-12 in Place of the 

TOPN Function

VAR AddRankColumn =  

    ADDCOLUMNS(

        InnerGroup,

        "My Rank",RANKX( InnerGroup, [Sum of Revenue] )

        )

VAR Top10PRoducts =

    FILTER(

        AddRankColumn,

        [My Rank]<=10

        )

Figure 9-11. Sample output of the code in Listing 9-12 using the rank column 
added in Listing 9-13
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An advantage of adding a rank column like the one in Figure 9-11 instead of the 

TOPN function is that you can use the data in additional calculations such as for 

performing comparisons of ranking between periods. For instance, you could create 

two working tables that show an aggregation and ranking of sales for products over 

contiguous periods. You could then generate a filtered table to show products that have 

improved (or deteriorated) between the two periods.

This variation uses the FILTER function over the AddRankColumn table expression. 

If you want to identify the bottom items, the RANKX function takes an optional 

parameter to sort the data DESC or ASC. This allows the FILTER function to use the <=10 

predicate to find the products with the lowest values for sales.

At this point, both versions have a table expression with just ten rows that should 

represent the products with the best sales.

The last step is to return a copy of the raw sales data filtered for just the products 

contained in the Top10Products variable. The NATURALINNERJOIN function works well 

for this with the final RETURN statement performing the equivalent of a T-SQL INNER 

JOIN between the 'Sales' table and the table expression contained in the Top10Products 

variable.

The NATURALINNERJOIN function automatically creates join criteria using 

columns that exist in both tables that have the same name, datatype, and lineage. 

Multiple column can be used in the join, but in this case, only the [Product] column 

meets all three requirements. Because the [Product] column in the Top10Products 

variable can be traced back to the sales table as its origin (via several working variables), 

it meets the lineage requirement.

The CALCULATETABLE function can be used in place of NATURALINNERJOIN. The 

parameter signature is the same for both functions. NATURALINNERJOIN is performed 

in the formula engine, while CALCULATETABLE (‘Sales’, Top10Products) pushes the 

filtering operation to the storage engine.

Columns other than [Product] from both tables used in the join are retained. The 

SELECTCOLUMNS function can be used to control which columns are returned by 

removing or renaming any unwanted columns.

A sample of the final table should look something like Figure 9-12.
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The values in these columns are all based on random numbers so it’s the structure 

that should match your version rather than values.

This calculated table is rebuilt each time your data model is refreshed. Once built, 

it provides you with a smaller and faster table to use with visuals that only need to work 

with the bestselling products. This is especially useful if the number of rows in the 'Sales' 

table grows to be very large.

 Double Grouping
A more complex scenario might involve a requirement to perform two or more layers of 

summarization over data using multiple working tables to generate a new summary table.

Consider a requirement to show a summary table with one row for every product 

in the sales table, along with the average value for the best ten days for each value. The 

challenge here is that the best ten days involve different days for each product. Once the 

best ten days are known for each product, an average can then be generated.

The following technique makes use of these:

• SUMMARIZECOLUMNS

• GENERATE

• GROUPBY and CURRENTGROUP

• MAXX iterator function

• An interesting technique to derive a RANK

Figure 9-12. Sample output of the calculated table in Listing 9-12
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The first step of several is to create a working table (Listing 9-14) that will be used 

as a summary of the daily sales for each product. The raw data may contain multiple 

transactions for the same product on the same day. This will be the first layer of 

summarization performed.

Listing 9-14. Summary Calculated Table of the Sales Table in Listing 9-6

VAR InnerGroup =

      SUMMARIZECOLUMNS(

                -- Group BY --

                'Sales'[Product],

                'Sales'[Date],

                -- Aggregation Column --

                "Daily Revenue", SUM('Sales'[Total])

                )

The InnerGroup variable stores a three-column table showing daily sales for every 

product for every day it has sales. The next step is to identify which days happen to be 

the best ten days for each product. This normally involves applying a product-specific 

ranking value over the [Daily Revenue] column. The RANKX iterator would provide a 

way to add a column to the table at this point that ranks each row in relation to every 

other row in the table. But what you need here is a way to have a column that ranks each 

day of sales per product.

One technique is to apply the three steps in Listing 9-15 to the calculation.

Listing 9-15. Additional DAX for the Code in Listing 9-14

VAR CopyOfSummaryTable =

       SELECTCOLUMNS(

                    InnerGroup,

                    "ProductA",[Product],

                    "DateA",[Date],

                    "Daily RevenueA",[Daily Revenue],

                    "RowCounter", 1

                    )
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VAR CrossJoinTables =

      FILTER(

                   GENERATE( CopyOfSummaryTable, InnerGroup ),

                   [Product] = [ProductA] &&

            [Daily Revenue]<=[Daily RevenueA]

                   )

VAR ProductByDateRanking =

      GROUPBY(

                   CrossJoinTables,

                   [Product],

                   [Date],

                   "Daily Revenue", MAXX(

                                      CURRENTGROUP(),

                                      [Daily Revenue]

                                      ),

                   "Rank",      SUMX(

                                      CURRENTGROUP(),

                                      [RowCounter]

                                      )

                    )  

In this code, the CopyOfSummaryTable variable is used to store a copy of the 

InnerGroup variable. The [Product], [Date], and [Daily Revenue] columns are renamed 

using SELECTCOLUMNS to avoid a clash over column names when this version of the 

table is joined back to the InnerGroup table in the next step. The columns are simply 

renamed to have the “A” character appended.

A new column called [RowCounter] is also added at this step and it is hardcoded to 

be 1. This column is going to provide the basis for the ranking calculation. Each row is 

duplicated for every row found for the same product that has a higher value for [Daily 

Revenue]. Once the duplication has happened, a SUM over the [RowCounter] generates 

a value that represents the rank.

The next step applies a cartesian join between the InnerGroup and the 

CrossJoinTables table variables. A FILTER function makes sure that only rows from 

InnerGroup are matched with rows from CopyOfSummaryTable that have the same 
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value for [Product]. The [Daily Revenue] <= [Daily RevenueA] logic allows for as 

many rows from the CopyOfSummaryTable variable that have the same or higher value 

for [Daily Revenue] from the InnerGroup variable.

For any given product in the InnerGroup table variable, the row that happens to 

have the highest value for [Daily Revenue] for that product only finds one matching row 

from CopyOfSummaryTable (it finds itself). The InnerGroup row for the same product 

with the next highest value finds two matching rows, and so on, until the row from 

InnerGroup with the lowest value for the same product is the only row left unmatched. 

This row is then matched with every other row from CopyOfSummaryTable for the same 

product, meaning a SUM over the [RowCounter] column returns a number that has the 

highest number (lowest ranking).

The last step in this section is to group the cartesian output of the previous 

step back to a single row per product and day. Neither the SUMMARIZE nor the 

SUMMARIZECOLUMNS functions can be used over a table expression stored in a variable. 

Both functions only work with a physical table. Fortunately, the GROUPBY function can 

be used, but aggregation expressions must use iterator functions. This creates a summary 

table over the CrossJoinTables variable grouping by [Product] and [Date].

There is no COUNTROWSX iterator function in DAX; if it existed, it could be used 

to count the number of rows belonging to each [Product] and [Date] while they were 

being summarized to provide a value for rank. In this case, the [RowCounter] column 

introduced in the first step allows an equivalent approach to be taken by performing a 

SUMX over the hardcoded values in this column.

If no BLANK values are in the column, an alternative is to simply 

COUNTAX(CURRENTGROUP(), [Column]) to avoid introducing the column that has 

a value of 1 in every row.

The CURRENTGROUP() function used in both the MAXX and SUMX functions is a 

reference back to the table used as the first parameter in the GROUPBY function.

Here the MAXX function is being used to allow the daily sales total for each day to 

be stored in the [Daily Revenue] column. This helps reduce duplicated instances of the 

same value back to a single instance for each product/day. This value does not reflect 

the max of individual transactions, rather it represents the combined sales total for the 

product across each day. This is not the step that performs the aggregation; instead it 

helps preserve the daily sales data through to the next step.

The output of the ProductByDateRanking variable would look something like 

Figure 9-13.
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When sorted by product and rank, the daily revenue data appears as expected. 

Notice the dates for each row jump around. Each product has different days that make 

up the different ranking positions.

This table carries a ranking value for any day in which the product registers a sale. 

The next step is to filter this data down to be just the top ten rows by rank for each 

product. Listing 9-16 shows this straightforward use of the FILTER function.

Listing 9-16. Additional Step to the Code in Listing 9-15

VAR TopTenDaysPerPRoduct =

      FILTER(

             ProductByDateRanking,

             [Rank]<=10

             )

Now you have a set of data that only covers the ten best days by product. The last step 

to meet the initial requirements is to create an average over the [Daily Sales] per product. 

Again, remember that SUMMARIZE and SUMMARIZECOLUMNS cannot be used here 

because they do not work with table expressions stored in variables. So, the last step 

(Listing 9-17) uses the GROUPBY function to perform the average.

Figure 9-13. Sample output of the cod in Listings 9-14 and 9-15 ordered by rank
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Listing 9-17. Final RETURN Statement Added to the Code in Listing 9-16

RETURN OuterGroup =

            GROUPBY(

                    TopTenDaysPerProduct,

                    -- Group BY --

                    [Product],

                    -- Aggregation Column --

                    "Average of Top 10 Best Days",

                   AVERAGEX(

                                         CURRENTGROUP(), [Daily Revenue]

                                        )

                   )

The step now aggregates the working data from the previous step using the 

TopTenDaysPerProduct variable down to just one row per product. All products will have 

a row in this table. Then the AVERAGEX iterator function is used in conjunction with the 

CURRENTGROUP() function to perform an average over the [Daily Revenue] data for 

each product.

The final output is a two-column table (Figure 9-14) that meets the unusual reporting 

requirement. I didn’t choose this scenario because it is likely to be a frequent problem 

you encounter. Instead, I chose it because it showcases a variety of techniques that you 

can use in DAX to address scenarios that have an extra degree of complexity.

Figure 9-14. Sample of accumated code in Listings 9-14–9-17

Chapter 9  praCtiCal DaX



259
© Philip Seamark 2018 
P. Seamark, Beginning DAX with Power BI, https://doi.org/10.1007/978-1-4842-3477-8

Index

A
ADDCOLUMNS function, 236
Arithmetic operators, 19

B
Bracket game, 9

C
Calculated column, 11–12
Calculated measure

fact sale table, 6
fully qualified, 8
SUM function, 7–8

Calculated table, 12–13
CALCULATE function, 53, 66
CALENDARAUTO function, 13
Comparison operators, 19
Concatenation operator, 20
Container, 42
Context

defined, 41
filter (see Filter context)

COUNTROWS function, 33
CROSSJOIN function, 95
CURRENTGROUP()  

function, 79

D
Data analysis expressions (DAX)

calculated column, 11–12
calculated measure, 6–7
calculated table, 12–13
comments, 9–10
defined, 2
functions, 2
relationships (see Relationships)

Data models
ADDCOLUMNS function, 186
adding year, 188
automatic date tables, 171
CALENDAR function, 185
components

columns, 4
data, 4
hierarchies, 5
measures, 4
relationships, 4
tables, 4

defined, 3
date/calendar tables, 166–170
DateTime fields, 165
Days from Today, 190
fiscal year, 189
FORMAT function, 186–187
MonthID column, 187

https://doi.org/10.1007/978-1-4842-3477-8


260

optimizing dates, 194–195
period comparison  

calculations, 178–181
point-in-time value, 165
quick measures, 172
rolling average, 181–183
sorting by columns, 172–173
time, 166
time intelligence, 174–175
weekday name, 194
weekly buckets, 190–191
working days, 192–194
Year to Date, 175–177

Datatypes
calculations on REAL numbers, 16
categories, 14
date-based, 17
in DAX, 15
decimal and fixed decimal number, 16
time, 18
whole number, 15

Date tables, 13
DAX Studio

application, 207
calculated columns, 243
calculated measures

Best Ten Products, 249
Calculate Revenue as Column, 246
CALCULATETABLE function, 251
‘Dates’ and ‘Daily Summary’  

tables, 244, 245, 247
DAX query testing, 247
FILTER function, 244, 251
InnerGroup table expression, 249
iterators, 244
NATURALINNERJOIN function, 251
SELECTCOLUMNS function, 251

server timing output, 246–247
SUMMARIZECOLUMNS  

function, 249
table and line chart, 248
table/matrix visual, 243
TOPN function, 249–251

client tool, 212
column indexes, 63–65
connection dialog, 207
COUNTROWS function, 209
data models, 206
date table, 233–234
DEFINE MEASURE statement, 212
double grouping

AVERAGEX iterator function, 257
CopyOfSummaryTable  

variable, 254
COUNTROWSX iterator  

function, 255
CURRENTGROUP()  

function, 255, 257
InnerGroup variable, 253–255
MAXX function, 255
ProductByDateRanking  

variable, 255
RANKX iterator, 253
RETURN Statement, 257
SUMMARIZECOLUMNS  

functions, 255
summary calculated table, 253
TopTenDaysPerProduct  

variable, 257
EVALUATE keyword, 209, 213
Format Query (F6), 213
nested variables, 211
numbers table, 231–232
optimizing sales, 242
Power BI Desktop, 206

Data models (cont.)

Index



261

sales table, 234–241
SELECTCOLUMNS function, 210
store data, 62–65
US Census Bureau, 62–65

Debugging
calculated measures, 202–205
client tools, 216
column approach, 199–201
DAX, 197–198
variables, 201–202

Decimal numbers datatype, 16
Dimension.Date

hierarchy in, 25
relationship, fact sale table and, 22–23

E
Explicit filtering

ALLEXCEPT function, 143–145
ALL function, 142–143
ALLSELECTED function, 146–148, 

151–152
Columns and EARLIER  

function, 160–162
‘Fact Sale’ table, 142
filter function, 133–134, 136
filters and calculated tables, 162
measurement, 141
overriding filters, 136
percentage of total, 136–141
period comparison, 157–159
running totals

ALLSELECTED, 150–152
calculated measures, 149–150
rank, 155, 157
resetting, 152–155

table visual, 141
Explicit measures, 5

F
Filter context

calculated column, 53–54
calculated measure, 42–43, 54–56
column filters, 42
container, 42
defined, 41
effect of, 43–44
explicit, 50–52
hardcode, 56–57
iterators, 60–61
overriden output, 47
row context, 57–58, 60
simpler dataset, 48–50
transition, 65–66
T-SQL

calculated measure, 44–45
for basic DAX Query, 46

FILTER function, 13, 33, 75
Formula engine (FE), 221–223

G
GENERATE function

behavior of, 98
filter, 98–100
numbers table

ADDCOLUMNS function, 110
dataset, 109
GENERATESERIES, 109–110
output, 109

occupancies, hotel room (see Hotel 
room occupancies)

query, 98
removal, unwanted columns, 103–105
sales table

dataset, 111
find last purchases, 111–112

Index



262

NATURALLEFTOUTERJOIN, 
115–116

output, 112–113
RETURN statement, 115–117
SelfJoin variable, 114–115
T-SQL equivalent, 113–114

SELECTCOLUMNS  
function, 100–101

syntax, 97
T-SQL equivalent, 102–103

GROUPBY function
CALCULATETABLE, 84–85
CURRENTGROUP() function, 79
double aggregation, 81–84
filter, 84
SUMX function, 79–81
syntax, 77

H
Hierarchies, 24–25
Hotel room occupancies

CALENDAR function, 105
dataset, 104–105
FILTER function, 108
occupancy table, 107
output, 105–106
Ribbon Chart, 106–107
T-SQL equivalent, 107

I
Implicit filtering

advantages, 130
Count of Sales, 128
cross-filtering property, 125
DAX engine, 130

‘Dimension Date’ table, 127, 130–132
‘Dimension Stock Item’  

table, 126
dimension tables, 127
‘Fact Sale’ table, 127–129
intergenerational tables, 125
Power BI, 125
query context, 128
WideWorldImportersDW  

dataset, 125, 127
Implicit measures, 5
IntelliSense, 8
ISSUBTOTAL function, 88–90
Iterators, 60–61

J, K
Joining tables

CROSSJOIN, 97
GENERATE (see GENERATE function)
LOOKUPVALUE, 123–124
NATURALINNERJOIN  

function, 118, 120
NATURALLEFTOUTERJOIN  

function, 118, 120–121
UNION function, 121–122

L, M
Logical operators, 20
LOOKUPVALUE function, 123–124

N
NATURALINNERJOIN  

function, 118, 120
NATURALLEFTOUTERJOIN  

function, 118, 120–121

GENERATE function (cont.)

Index



263

Nested variables
calculated measure, 37
complex, 38–39
defined, 27
multiple levels, 37–38

Numbers table
ADDCOLUMNS function, 110
dataset, 109
GENERATESERIES, 109–110
output, 109

O
Operators

arithmetic, 19
comparison, 19
concatenation, 20
logical, 20
precedence, 20–21

Optimization
dimension tables, 220
fact tables, 220
filtering, 223, 225–226
precalculating data, 219
removing unused data, 217–218
SE vs. FE, 221–223
simplifying table structure, 220
splitting up unique columns, 219
SSMS Profiler, 227, 229
summary tables, 218–219

P
Pigs-Ear relationship, 96
Power BI Desktop

Data View, 3
relationships, 23
Relationship View, 3
Report View, 3

Q
Quick Measures, 172

R
RANDBETWEEN function, 235
REAL numbers, 16
Relationships

active, 24
defined, 22, 24
filter tables, 94
for filtering, 22–23
join tables without, 96
one column per table, 95
one-to-many relationships, 94–95
= operator, 95–96
Pigs-Ear, 96
rules, 94
table on the one side of, 94
types of, 22

RETURN keyword, 28
ROLLUP function, 87–88
Row context, 57–58, 60

S
Sales table

dataset, 111
NATURALLEFTOUTERJOIN, 115–116
output, 112–113
purchases, 111–112
RETURN statement, 115–117
SelfJoin variable, 114–115
T-SQL equivalent, 113–114

SELECTCOLUMNS function, 235
SQL Server Management Studio  

(SSMS), 214, 216
Storage engine (SE), 221–223
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SUMMARIZE function, 35
Summary table

create, 67
GROUPBY function

CALCULATETABLE, 84–85
CURRENTGROUP() function, 79
double aggregation, 81–84
filter, 84
SUMX function, 80–81
syntax, 78
time in milliseconds, 79

SUMMARIZECOLUMNS  
function, 76–77

SUMMARIZE function
alternative relationships, 73–74
calculated table, 72
filter, 74–75
ISSUBTOTAL function, 88–90
output, 87
relationship, 72
ROLLUP function, 87–88
sample output, 71
Sub Category column, 86
syntax, 69, 71

T-SQL-equivalent statement, 68–69
uses of, 67

SUMX function, 80–81

T
Time datatype, 18

U
UNION function, 121–122

V
Variables

basic structure, 27
calculated columns, 31–32
calculated measure, 30–33
calculated tables, 33–36
debugging, 36
defined, 27
equivalent T-SQL to match DAX, 36
error code, 27
multiple DAX variables, 27
nested (see Nested variables)
other types of calculations, 38–39
RETURN keyword, 28
structure, 28
VAR keyword, 28
with text, 29–31

W
Whole Number datatype, 15
WideWorldImportersDW  

dataset, 22

X, Y, Z
X functions, (see Iterators)
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