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From the Foreword

“Big Data Management and Processing is [a] state-of-the-art book that deals 
with a wide range of topical themes in the field of Big Data. The book, which probes 
many issues related to this exciting and rapidly growing field, covers processing, 
management, analytics, and applications... [It] is a very valuable addition to the 
literature. It will serve as a source of up-to-date research in this continuously 
developing area. The book also provides an opportunity for researchers to explore 
the use of advanced computing technologies and their impact on enhancing our 
capabilities to conduct more sophisticated studies.”
—Sartaj Sahni, University of Florida, USA

“Big Data Management and Processing covers the latest Big Data research 
results in processing, analytics, management and applications. Both fundamental 
insights and representative applications are provided. This book is a timely and 
valuable resource for students, researchers and seasoned practitioners in Big 
Data fields.
—Hai Jin, Huazhong University of Science and Technology, China

Big Data Management and Processing explores a range of big data related 
issues and their impact on the design of new computing systems. The twenty-
one chapters were carefully selected and feature contributions from several 
outstanding researchers. The book endeavors to strike a balance between 
theoretical and practical coverage of innovative problem solving techniques for 
a range of platforms. It serves as a repository of paradigms, technologies, and 
applications that target different facets of big data computing systems.

The first part of the book explores energy and resource management issues, 
as well as legal compliance and quality management for Big Data. It covers In-
Memory computing and In-Memory data grids, as well as co-scheduling for high 
performance computing applications. The second part of the book includes 
comprehensive coverage of Hadoop and Spark, along with security, privacy, and 
trust challenges and solutions.

The latter part of the book covers mining and clustering in Big Data, and includes 
applications in genomics, hospital big data processing, and vehicular cloud 
computing. The book also analyzes funding for Big Data projects.
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Foreword
Big Data Management and Processing (edited by Li, Jiang, and Zomaya) is a state-of-the-art book
that deals with a wide range of topical themes in the field of Big Data. The book, which probes many
issues related to this exciting and rapidly growing field, covers processing, management, analytics,
and applications.

The many advances in Big Data research that we witness today are brought about because of
the many developments we see in algorithms, high-performance computing, databases, datamining,
machine learning, and so on. These developments are discussed in this book. The book also show-
cases some of the interesting applications and technologies that are still evolving and that will lead
to some serious breakthroughs in the coming few years.

I believe that Big Data Management and Processing is a very valuable addition to the literature.
It will serve as a source of up-to-date research in this continuously developing area. The book also
provides an opportunity for researchers to explore the use of advanced computing technologies and
their impact on enhancing our capabilities to conduct more sophisticated studies.

I expect that Big Data Management and Processing will be well received by the research and
development community. It should prove very beneficial for researchers and graduate students
focusing on Big Data and will serve as a very useful reference for practitioners and application
developers.

Sartaj Sahni
University of Florida

vii
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Preface
The scope of Big Data today spans many aspects and it is not limited to main computing components
(e.g., processors, storage devices, and visualization facilities) alone, but it expands into a much larger
range of issues related to management and policy. Also, “Big Data” can mean “Big Energy,” because
of the pressure that data places on a variety of infrastructures needed to host, manage, and transport
data. This in turn raises various monetary, environmental, and system performance concerns.

Recent advances in software hardware technologies have improved the handling of big data. How-
ever, there still remain many issues that are pertinent to the overloading that happens due to the
processing of massive amounts of data, which calls for the development of various software and
hardware solutions as well as new algorithms that are more capable of processing of data.

This book,Big DataManagement and Processing, seeks to provide an opportunity for researchers
to explore a range of big data-related issues and their impact on the design of new computing systems.
The book is quite timely, since the field of big data computing as a whole is undergoing rapid changes
on a daily basis. Vast literature exists today on such data processing paradigms and frameworks and
their implications for a wide range of distributed platforms.

The book is intended to be a virtual roundtable of several outstanding researchers that one might
invite to attend a conference on big data computing systems. Of course, the list of topics that is
explored here is by no means exhaustive, but most of the conclusions provided here should be
extended to the other computing platforms that are not covered here. There was a decision to limit
the number of chapters while providing more pages for contributed authors to express their ideas, so
that the book remains manageable within a single volume.

It is also hoped that the topics covered will get the readers to think of the implications of such
new ideas on the developments in their own fields. The book endeavors to strike a balance between
theoretical and practical coverage of innovative problem-solving techniques for a range of platforms.
The book is intended to be a repository of paradigms, technologies, and applications that target the
different facets of big data computing systems.

The 21 chapters are carefully selected to provide a wide scope with minimal overlap between the
chapters so as to reduce duplications. Each contributor was asked that his/her chapter should cover
review material as well as current developments. In addition, the choice of authors was made so as
to select authors who are leaders in the respective disciplines.
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The Tércio Pacitti Institute
Federal University of Rio de Janeiro
Brazil

Anne Benoit
LIP, ENS Lyon
Lyon, France

Angelos Bilas
Institute of Computer Science (ICS)
Foundation for Research and Technology—

Hellas (FORTH)
and
Department of Computer Science
University of Crete, Greece

Vito Giovanni Castellana
High Performance Computing
Pacific Northwest National Laboratory
Richland, Washington

Huaming Chen
School of Computing and Information

Technology
University of Wollongong
Wollongong, NSW, Australia

Jianguo Chen
College of Computer Science and

Electronic Engineering
Hunan University
Changsha, Hunan, China

Jinjun Chen
Swinburne Data Science Research Institute
Swinburne University of Technology
Australia

Min Chen
Department of Computer Science
State University of New York
New Paltz, New York

Alfredo Cuzzocrea
DIA Department
University of Trieste and ICAR-CNR
Trieste, Italy

Monica Ferreira da Silva
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ABSTRACT

The overlap between big data and personal data is becoming increasingly relevant in today’s society,
in light of the technological developments and, in particular, of the increased use of personal data as
currency for purchasing “free” services. The global nature of big data, coupled with recently devel-
oped data analytics and the interest of companies in predicting trends and consumer preferences,
makes it necessary to analyze how personal data and big data are connected. With a focus on the
quality of data as fundamental prerequisite for ensuring that outcomes are accurate and relevant, the
authors explore the ways in which traditional and modern personal data protection principles apply
to the big data context.

It is not about the quantity of the data, but about the quality of it!

* All websites were last accessed on August 19, 2016.
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2 Big Data Management and Processing

1.1 INTRODUCTION

It is 2016 and big data is everywhere: in the newspapers, on TV, in research papers, and on the lips of
every IT specialist. This is not only due to its catchy name, but also due to the sheer quantity of data
available—according to IBM, we create 2.5 quintillion (2.5 times 1018) bytes of data every day.*
But what is the big deal with big data and, in particular, to what extent does it affect, or overlap with,
personal data?

1.1.1 TOPIC, APPROACH, AND METHODOLOGY

By way of introduction, the first step is to provide a definition of the concept that runs through
this chapter. Various attempts at defining big data have been made in recent years, but no universal
definition has been agreed upon yet. This is likely due to the constant evolution of this concept,
which makes it difficult to describe without risking that the definition is either too generic or that it
becomes inadequate within a short period of time.

One attempt at a universal definition was made by Gartner, a leading information technology
research and advisory company, that defines big data as “high-volume, high-velocity and/or high-
variety information assets that demand cost-effective, innovative forms of information processing
that enable enhanced insight, decision making, and process automation.”† In this case, data are
regarded as assets, which attaches an intrinsic value to it. On the other hand, the Article 29 Data Pro-
tection Working Party defines big data as “the exponential growth both in the availability and in the
automated use of information: it refers to gigantic digital datasets held by corporations, governments
and other large organisations, which are then extensively analysed using computer algorithms.”‡ This
definition regards big data as a phenomenon composed of both the process of collecting information
and the subsequent step of analyzing it. The common elements of the different definitions are there-
fore the size of the database and the analytical aspect, which together are expected to lead to better,
more focused services and products, as well as more efficient business operations and more targeted
approaches.

Big data can be (and has been) used in an incredibly diverse range of situations. It was employed to
help athletes of Great Britain’s rowing team achieve superior performance levels at the 2016Olympic
Games in Rio de Janeiro, by analyzing relevant information about their predecessors’ performance.§

Predictive analytics were used in order to deal with traffic in highly congested cities, paving the way
for the creation of the smart cities of the future.¶ Further, big data can have a great impact on medical
sciences, and has already helped boost obesity research results by enabling researchers to identify
links between obesity and depression that were previously unknown.**

Although big data does not always consist of personal data and could, for example, relate to techni-
cal information or to information about objects or natural phenomena, the European Data Protection
Supervisor (EDPS) pointed out in its Opinion 7/2015 that “one of the greatest values of big data for
businesses and governments is derived from the monitoring of human behaviour, collectively and

* IBM—What Is Big Data? 2016. IBM—Bringing Big Data to the Enterprise. https://www-01.ibm.com/software/
data/bigdata/what-is-big-data.html.

† What Is Big Data?—Gartner IT Glossary—Big Data. 2012. Gartner IT Glossary. http://www.gartner.com/it-glossary/big-
data/.

‡ Article 29 Data Protection Working Party. 2013. Opinion 03/2013 on Purpose Limitation.
§ Marr, Bernard. 2016. How Can Big Data and Analytics Help Athletes Win Olympic Gold in Rio 2016? Forbes.com.
http://www.forbes.com/sites/bernardmarr/2016/08/09/how-big-data-and-analytics-help-athletes-win-olympic-gold-in-rio-
2016/#12bedc444205.

¶ Toesland, Finbarr. 2016. Smart-from-the-Start Cities Is theWay Forward. Raconteur. http://raconteur.net/technology/smart-
from-the-start-cities-is-the-way-forward.

** Big Data Boosts Obesity Research Results | The New York Academy of Sciences. 2016. Nyas.Org. http://www.nyas.org/
AboutUs/AcademyNews.aspx?cid=d7d7b0bd-7eb5-411c-8fcf-0c60296e152f.

https://www-01.ibm.com/software/data/bigdata/what-is-big-data.html
https://www-01.ibm.com/software/data/bigdata/what-is-big-data.html
http://www.gartner.com/it-glossary/bigdata/
http://www.gartner.com/it-glossary/bigdata/
http://www.forbes.com/sites/bernardmarr/2016/08/09/how-big-data-and-analytics-help-athletes-win-olympic-old-in-rio-2016/#12bedc444205
http://www.forbes.com/sites/bernardmarr/2016/08/09/how-big-data-and-analytics-help-athletes-win-olympic-old-in-rio-2016/#12bedc444205
http://raconteur.net/technology/smart-from-the-start-cities-is-the-way-forward
http://raconteur.net/technology/smart-from-the-start-cities-is-the-way-forward
http://www.nyas.org/AboutUs/AcademyNews.aspx?cid=d7d7b0bd-7eb5-411c-8fcf-0c60296e152f
http://www.nyas.org/AboutUs/AcademyNews.aspx?cid=d7d7b0bd-7eb5-411c-8fcf-0c60296e152f
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individually.”* Analyzing and predicting human behavior enables decision makers in many areas to
make decisions that are more accurate, consistent, and economical, thereby enhancing the efficiency
of society as a whole. A few fields of application that immediately come to mind when thinking
of big data analytics based on personal data are university admissions, job recruitment, customer
profiling, targeted marketing, or health services. Analyzing the information about millions of previ-
ous applicants, candidates, customers, or patients makes it easy to establish common threads and to
predict all sorts of things, such as whether a specific person is fit for the job or is likely to develop a
certain disease in the future.

An interesting study was recently conducted by the University of Cambridge Psychometrics Cen-
tre: by analyzing the social networking “likes” of 58,000 users, researchers found that they were able
to predict ethnic origin with an accuracy of 95% and religious or political orientation with an accu-
racy of over 80%.† Even more dramatically perhaps, they were able to predict psychological traits
such as intelligence or emotional stability. The research was conducted using openly available data
provided by the study subjects themselves (Facebook likes). Its results can be fine-tuned even fur-
ther when cross-referencing them with data about the same subjects drawn from other sources, such
as other social networking profiles or Internet usage habits. This is the point where big data starts
overlapping with personal data, being separated only by a blurry border: “liking” a specific rock
band does not constitute personal data as such, but the ability of linking this information directly
to an individual or to other information makes it possible to identify what the person actually likes;
furthermore, it enables to draw inferences about their personality, possibly revealing even sensitive
political or religious preference (as was the case in the Cambridge study). “Companies may consider
most of their data to be non personal data sets, but in reality it is now rare for data generated by user
activity to be completely and irreversibly anonymised,” stated the EDPS in a recent Opinion.‡ The
availability of massive amounts of data from different sources combined with the desire to learn
more about people’s habits therefore poses a serious challenge regarding the right to privacy of the
individual and requires that the data protection principles are carefully taken into consideration.

A fundamental part of big data analytics, however, is that the raw data must be accurate in order
to lead to accurate results; massive quantities of inaccurate data can lead to skewed results and poor
decision making. Bruce Schneier, an internationally renowned security technologist, refers to this
as the “pollution problem of the information age.”§ There is a risk that analytical applications find
patterns in cases where the individual facts are not directly correlated, which may lead to unfair
conclusions and may adversely affect the persons involved. Another risk is that of being trapped in
an “information bubble,” with people only being shown certain information that has been predicted to
be of interest to them (but may not be in reality). In an article published in 2015 by TIME magazine,
Facebook’s newsfeed algorithm was explained: whereas users have access to an average of 1,500
posts per day, they only see about 300 of them, which have been preselected by an algorithm in
order to correspond as much as possible with the interests and preferences of each user.¶ The author
of the article concludes that “by structuring the environment, Facebook is training people implicitly
to behave in a particular way in that algorithmic environment.” Therefore, data quality is paramount

* EuropeanData Protection Supervisor. 2015.Opinion 7/2015—Meeting the Challenges of BigData: ACall for Transparency,
User Control, Data Protection by Design and Accountability. Available at: https://secure.edps.europa.eu/EDPSWEB/
webdav/site/mySite/shared/Documents/Consultation/Opinions/2015/15-11-19_Big_Data_EN.pdf.

† Kosinski, M., D. Stillwell, and T. Graepel. 2013. Private Traits and Attributes Are Predictable from Digital Records of
Human Behavior. Proceedings of the National Academy of Sciences 110 (15): 5802–5805. doi: 10.1073/pnas.1218772110.

‡ European Data Protection Supervisor. 2014. Preliminary Opinion of the European Data Protection Supervisor
Privacy and Competitiveness in the Age of Big Data: The Interplay between Data Protection, Competition
Law and Consumer Protection in the Digital Economy. https://secure.edps.europa.eu/EDPSWEB/webdav/site/mySite/
shared/Documents/Consultation/Opinions/2014/14-03-26_competitition_law_big_data_EN.pdf.

§ Schneier, Bruce. 2015. Data and Goliath. New York: W.W. Norton.
¶ Here’s How Your Facebook News Feed Actually Works. 2015. TIME.Com. http://time.com/3950525/facebook-news-feed-
algorithm/.

https://secure.edps.europa.eu/EDPSWEB/webdav/site/mySite/shared/Documents/Consultation/Opinions/2015/15-11-19_Big_Data_EN.pdf
https://secure.edps.europa.eu/EDPSWEB/webdav/site/mySite/shared/Documents/Consultation/Opinions/2015/15-11-19_Big_Data_EN.pdf
https://secure.edps.europa.eu/EDPSWEB/webdav/site/mySite/shared/Documents/Consultation/Opinions/2015/15-11-19_Big_Data_EN.pdf
https://secure.edps.europa.eu/EDPSWEB/webdav/site/mySite/shared/Documents/Consultation/Opinions/2015/15-11-19_Big_Data_EN.pdf
http://time.com/3950525/facebook-news-feed-algorithm/
http://time.com/3950525/facebook-news-feed-algorithm/
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to ensuring that the algorithms and analytical procedures are carried out successfully and that the
predicted results correspond with the reality.

This chapter is aimed at analyzing the personal data protection legal compliance aspects of big
data from a modern perspective, in order to identify the main challenges and to make adequate rec-
ommendations for the more efficient and lawful use of data as an asset. Few considerations are also
made on the connection between big personal data analytics and competition law. The methodology
is straightforward: the observations made throughout the chapter are based on the research conducted
by regulatory and advisory bodies, as well as on the empirical research and practical experience of
the authors. One of the chapter’s focal points is data quality. Owing to the nature of big data, raw data
that are not of adequate quality (accurate, relevant, consistent, and complete) represent an obstacle
in harnessing the value of the data. It is hoped that the chapter will enable the reader to gain a bet-
ter understanding that a correct legal compliance management can make a fundamental difference
between simply collecting vast amount of data, on the one hand, and effectively using the power of
big data, on the other hand.

1.1.2 STRUCTURE AND ARGUMENTS

This chapter is organized into two main sections: the first one addresses the personal data aspects of
big data from a business perspective and is aimed at identifying the benefits and challenges of using
big data analytics on massive personal datasets. The second part deals in detail with how the tradi-
tional data protection principles should be applied to big data analytics, while also tackling modern
data protection principles. Overall, the chapter aims to serve as a good basis for understanding both
the positive and the negative implications of deploying big data analytics on personal datasets. In
addition, the chapter will focus on the importance of the quality of the data analyzed, on the different
ways in which good levels of data quality can be achieved, and on the negative consequences that
may ensue when they are not.

1.2 BUSINESS OF BIG DATA

It is by now clear: big data means big business. Data are frequently called “the oil of the 21st century”
or “the fuel of the digital economy,” and the era we live in has been referred to as the “data gold
rush” by Neelie Kroes, the vice president of the European Commission responsible for the Digital
Agenda.* This is true not only at the theoretical level but also in practice. A report by the leading
consulting firm McKinsey found that “the intensity of big data varies across sectors but has reached
critical mass in every sector” and that “we are on the cusp of a tremendous wave of innovation,
productivity, and growth, as well as new modes of competition and value capture—all driven by big
data as consumers, companies, and economic sectors exploit its potential.”†

With so much importance being given to data, it is not surprising that new business models are
emerging, companies are being created, and apps and games are being designed with data collection
as one of the main purposes. The most recent and compelling example is that of the Pokémon Go
mobile game, which was designed to allow users to collect characters in specific places around the
city.‡ Niantic Labs, the developer of the game that has practically gone viral in only a couple of
weeks, has access to data about the whereabouts of players, their connections, and other data such
as area, climate, time of the day, and so on. It collects data from roughly 9.5 million daily active

* European Commission—Press Release—Speech: The Data Gold Rush. 2014. Europa.Eu. http://europa.eu/rapid/press-
release_SPEECH-14-229_en.htm.

† McKinsey Global Institute. 2011. Big Data: The Next Frontier for Innovation, Competition, and Productivity.
http://file:///Users/theodoradragan/Downloads/MGI_big_data_full_report%20(1).pdf.

‡ See, Hautala, Laura. 2016. Pokemon Go: Gotta Catch All Your Personal Data. CNET. http://www.cnet.com/news/pokemon-
go-gotta-catch-all-your-personal-data/.

http://europa.eu/rapid/pressrelease_SPEECH-14-229_en.htm
http://europa.eu/rapid/pressrelease_SPEECH-14-229_en.htm
http://file:///Users/theodoradragan/Downloads/MGI_big_data_full_report%20(1).pdf
http://www.cnet.com/news/pokemongo-gotta-catch-all-your-personal-data/
http://www.cnet.com/news/pokemongo-gotta-catch-all-your-personal-data/
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users, a number that is growing exponentially by the day at the moment.* This is a clear example
of how apps and games are starting to develop around the business of data, but also of how the data
can be collected in “fun” ways without the users necessarily being aware of how and what data are
gathered—the privacy policy is however very vague on these aspects.†

1.2.1 CONNECTION BETWEEN BIG DATA AND PERSONAL DATA

The business of big data requires conducting a careful balancing exercise between the importance of
harvesting the value of the data to foster innovation and evolution on the one hand, and the powerful
impact that big data can have on many business sectors on the other hand. The manner in which
personal data are collected and subsequently analyzed affects competition policy, antitrust policy, and
consumer protection. In a paper published by the World Economic Forum, attention has been drawn
to the fact that, “as ecosystem players look to use (mobile-generated) data, they face concerns about
violating user trust, rights of expression, and confidentiality.”‡ Big data and business are very much
intertwined, and even more so when the big data in question is personal data, in particular because
“for many online offerings which are presented or perceived as being ‘free’, personal information
operates as a sort of indispensable currency used to pay for those services: ‘free’ online services are
‘paid for’ using personal data which have been valued in total at over EUR 300 billion and have been
forecast to treble by 2020.”§

The concept of personal data is defined by Regulation 679/2016 as “any information relating to
an identified or identifiable natural person (‘data subject’); an identifiable natural person is one who
can be identified, directly or indirectly, in particular by reference to an identifier such as a name,
an identification number, location data, an online identifier or to one or more factors specific to the
physical, physiological, genetic, mental, economic, cultural or social identity of that natural person.”¶

While the list of factors specific to the identity of the person has been enriched from the previous
definition of personal data that was contained in Directive 95/46/EC, the main elements remain the
same. These elements have been discussed and elaborated by the Article 29 Working Party in its
Opinion 4/2007, which establishes that there are four fundamental elements to establish whether an
information is to be considered personal data.**

According to the Opinion, these elements are: “any information,” “relating to,” “identified or
identifiable,” and “natural person.”

1.2.1.1 Any Information
All information relevant to a person is included, regardless of the “position or capacity of those
persons (as consumer, patient, employee, customer, etc.).”†† In this case, the information can be
objective or subjective and does not necessarily have to be true or proven.

* Wagner, Kurt. 2016. How Many People Are Actually Playing Pokémon Go? Recode. http://www.recode.net/2016/7/13/
12181614/pokemon-go-number-active-users.

† Pokémon GO Privacy Policy. 2016. Nianticlabs.Com. https://www.nianticlabs.com/privacy/pokemongo/en.
‡ World Economic Forum. 2012. Big Data, Big Impact: New Possibilities for International Development.
http://www3.weforum.org/docs/WEF_TC_MFS_BigDataBigImpact_Briefing_2012.pdf.

§ European Data Protection Supervisor. 2014. Preliminary Opinion of the European Data Protection Supervisor
Privacy and Competitiveness in the Age of Big Data: The Interplay between Data Protection, Competition
Law and Consumer Protection in the Digital Economy. https://secure.edps.europa.eu/EDPSWEB/webdav/site/mySite/
shared/Documents/Consultation/Opinions/2014/14-03-26_competitition_law_big_data_EN.pdf.

¶ Article 4(1), Regulation (Eu) 2016/679 of the European Parliament and of the Council of 27 April 2016 on the protection
of natural persons with regard to the processing of personal data and on the free movement of such data, and repealing
Directive 95/46/EC (General Data Protection Regulation), Official Journal of the European Union, L 119/3, 4/5/2016.

** Article 29 Data Protection Working Party. 2007. Opinion 4/2007 on the Concept of Personal Data.
http://ec.europa.eu/justice/policies/privacy/docs/wpdocs/2007/wp136_en.pdf.

†† Idem, p. 7.

http://www.recode.net/2016/7/13/12181614/pokemon-go-number-active-users
http://www.recode.net/2016/7/13/12181614/pokemon-go-number-active-users
https://www.nianticlabs.com/privacy/pokemongo/en
http://www3.weforum.org/docs/WEF_TC_MFS_BigDataBigImpact_Briefing_2012.pdf
https://secure.edps.europa.eu/EDPSWEB/webdav/site/mySite/shared/Documents/Consultation/Opinions/2014/14-03-26_competitition_law_big_data_EN.pdf
https://secure.edps.europa.eu/EDPSWEB/webdav/site/mySite/shared/Documents/Consultation/Opinions/2014/14-03-26_competitition_law_big_data_EN.pdf
http://ec.europa.eu/justice/policies/privacy/docs/wpdocs/2007/wp136_en.pdf
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The words “any information” also imply information of any form, audio, text, video, images, etc.
Importantly, the manner in which the information is stored is irrelevant. TheWorking Party expressly
mentions biometric data as a special case,* as such data can be considered as information content as
well as a link between the individual and the information. Because biometric data are unique to an
individual, they can also be used as an identifier.

1.2.1.2 Relating to
Information related to an individual is information about that individual. The relationship between
data and an individual is often self-evident, an example of which is when the data are stored in an
individual employee’s files or in a medical record. This is, however, not always the case, especially
when the information regards objects. Such objects belong to individuals, but additional meanings
or information are required to create the link to the individual.†

At least one of the following three elements should be present in order to consider information to
be related to an individual: “content,” “purpose,” or “result.” An element of “content” is present when
the information is in reference to an individual, regardless of the (intended) use of the information.
The “purpose” element instead refers to whether the information is used or is likely to be used “with
the purpose to evaluate, treat in a certain way or influence the status or behavior of an individual.”‡ A
“result” element is present when the use of the data is likely to have an impact on a certain person’s
rights and interests.§ These elements are alternatives and are not cumulative, implying that one piece
of data can relate to different individuals based on diverse elements.

1.2.1.3 Identified or Identifiable
“A natural person can be ‘identified’ when, within a group of persons, he or she is ‘distinguished’
from all other members of the group.”¶ When identification has not occurred but is possible, the
individual is considered to be “identifiable.”

In order to determine whether those with access to the data are able to identify the individual,
all reasonable means likely to be used either by the controller or by any other person should be
taken into consideration. The cost of identification, the intended purpose, the way the processing is
structured, the advantage expected by the data controller, the interest at stake for the data subjects,
and the risk of organizational dysfunctions and technical failures should be taken into account in the
evaluation.**

1.2.1.4 Natural Person
Directive 95/46/EC is applicable to the personal data of natural persons, a broad concept that calls
for protection wholly independent from the residence or nationality of the data subject.

The concept of personality is understood as “the capacity to be the subject of legal relations,
starting with the birth of the individual and ending with his death.”†† Personal data thus relate to
identified or identifiable living individuals. Data concerning deceased persons or unborn children
falling in principle outside the application of personal data protection legislation (Recital 20 of Reg-
ulation (EU) 679/2016) may, however, indirectly be subject to protection in particular cases. When
the data relate to other living persons, or when a data controller makes no differentiation in their
documentation between living and deceased persons, it may not be possible to ascertain whether the
person the data relate to is living or deceased; additionally, some national laws consider deceased or

* Idem, p. 8.
† Idem, p. 9.
‡ Idem, p. 10.
§ Idem, p. 11.
¶ Idem, p. 12.
** Idem, p. 15.
†† Idem, p. 22.
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unborn persons to be protected under the scope of Directive 95/46/EC.* Legal persons are excluded
from the protection provided under Regulation (EU) 679/2016 and Directive 95/46/EC. However,
some provisions of Directive 2002/58/EC† (amended by Directive 2009/136/EC‡) extend the scope
of Directive 95/46/EC to legal persons.§

In conclusion, in some cases, the datamay not be personal in nature, butmay become personal data
as a result of cross-referencing it with other sources and databases containing information about spe-
cific users, therefore shrinking the circle of potential persons to “identifiable persons” and ultimately
even to specifically identified individuals. The 2013 MIT Technology Review raised the question
of whether big data has made anonymity impossible, arguing that “as the amount of data expands
exponentially, nearly all of it carries someone’s digital fingerprints.”¶ Big personal data is becoming
more and more the norm, rather than the exception, calling for the adoption of specific safeguarding
measures with regard to the individual’s right to privacy.

1.2.2 COMPETITION ASPECTS

The development of the digital market has made it clear that in the business of big data, personal
data is a particularly important asset, especially regarding gaining (and maintaining) a strong market
position. This is why personal data are also being used as a competitive advantage by some digital
businesses. The EDPS addressed the ever-increasing connection between big personal data analytics
and competition law in the workshop on “Privacy, Consumers, Competition and Big Data” that it
held in 2014 with the aim of discussing the themes explored in its Preliminary Opinion published
earlier that same year.**

Given the lack of a “unifying objective” with regard to competition law at the EU level, authorities
evaluate each situation (such as mergers between companies having a dominant market position) on
a case-by-case basis, based on very specific parameters of competition. The parameters have been
established by Commission Guidelines and are the following: price, output, product quality, product
variety, and innovation.†† However, applying these criteria in relation to companies whose business
model is centered around big data is difficult, especially considering, for example, the challenge
of measuring the probability of the merged entity to raise the price in case of services offered “for
free” in exchange of the personal data of the users. Therefore, the report recommended increasing
vigilance with regard to such issues and monitoring the market to establish whether an abuse of
dominant market position is being carried out using personal data as a “weapon.”

* Idem, pp. 22–23.
† Directive 2002/58/EC of the European Parliament and of the Council of 12 July 2002 concerning the processing of per-
sonal data and the protection of privacy in the electronic communications sector (Directive on privacy and electronic
communications) [2002] OJL 201, 31/07/2002 P. 0037–0047.

‡ Directive 2009/136/EC of the European Parliament and of the Council of 25 November 2009 amending Directive
2002/22/EC on universal service and users’ rights relating to electronic communications networks and services, Direc-
tive 2002/58/EC concerning the processing of personal data and the protection of privacy in the electronic communications
sector and Regulation (EC) No. 2006/2004 on cooperation between national authorities responsible for the enforcement of
consumer protection laws (Text with EEA relevance). [2006] OJ L 337, 18/12/2009 P. 0011–0036.

§ In the EDPS Preliminary Opinion on Big Data, it is also expected that: “[c]ertain national jurisdictions (Austria, Denmark,
Italy and Luxembourg) extend some protection to legal persons.” European Data Protection Supervisor. 2014. Preliminary
Opinion of the European Data Protection Supervisor Privacy and Competitiveness in the Age of Big Data: The Interplay
between Data Protection, Competition Law and Consumer Protection in the Digital Economy, p. 13, footnote 31. Avail-
able at https://secure.edps.europa.eu/EDPSWEB/webdav/site/mySite/shared/Documents/Consultation/Opinions/2014/14-
03-26_competitition_law_big_data_EN.pdf.

¶ MITTechnology Review. 2013.BigData Gets Personal. https://www.technologyreview.com/business-report/big-data-gets-
personal/.

** European Data Protection Supervisor. 2014. Report of Workshop of Privacy, Consumers, Competition and Big Data.
https://secure.edps.europa.eu/EDPSWEB/webdav/site/mySite/shared/Documents/Consultation/Big%20data/14-07-
11_EDPS_Report_Workshop_Big_data_EN.pdf.

†† Commission Guidelines on the application of Article 81(3) of the Treaty (2004/C 101/08).

https://secure.edps.europa.eu/EDPSWEB/webdav/site/mySite/shared/Documents/Consultation/Opinions/2014/14-03-26_competitition_law_big_data_EN.pdf
https://secure.edps.europa.eu/EDPSWEB/webdav/site/mySite/shared/Documents/Consultation/Opinions/2014/14-03-26_competitition_law_big_data_EN.pdf
https://www.technologyreview.com/business-report/big-data-getspersonal/
https://www.technologyreview.com/business-report/big-data-getspersonal/
https://secure.edps.europa.eu/EDPSWEB/webdav/site/mySite/shared/Documents/Consultation/Big%20data/14-07-11_EDPS_Report_Workshop_Big_data_EN.pdf
https://secure.edps.europa.eu/EDPSWEB/webdav/site/mySite/shared/Documents/Consultation/Big%20data/14-07-11_EDPS_Report_Workshop_Big_data_EN.pdf
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Given these market conditions, it appears useful to consider using privacy and personal data pro-
tection compliance as a competitive advantage in order to harness the full value of the data held by a
company. Privacy and personal data protection compliance can ensure that the data, even when it is
massive in quantity, is collected, stored, and processed according to the relevant rules. As mentioned
earlier in the chapter, the principle of data quality plays a particularly important role in this matter,
as it helps ensure that only accurate, relevant, and up-to-date data are processed, helping with com-
pliance but also with making sure that the outcomes of the data analysis are relevant and useful. A
research conducted by the consulting firm Deloitte points out the “epistemological fallacy that more
bytes yield more benefits,” arguing that it is “an example of what philosophers call a ‘category error’.
Decisions are not based on raw data; they are based on relevant information. And data volume is at
best a rough proxy for the value and relevance of the underlying information.”* Therefore, it is not
about the quantity of data collected, but about the quality of the information contained in it.

The best approach to ensure consistent data quality within a database is to start from the point of
collection and to implement measures or procedures along the chain of processing. When data are
collected responsibly, consumer trust could improve and users could therefore provide more accurate
data. In a recent survey by SDL, 79% of respondents said they are more likely to provide personal
information to brands that they “trust.”† Having an adequate, transparent, and easy-to-understand
privacy policy is the first step in that direction, as it would contribute to balance out the information
asymmetry between companies and consumers. Another step would be the implementation of regular
reviewing procedures, aimed at identifying the data that are still relevant, rectifying the data that are
out of use or incorrect, and deleting the data that are no longer of use. It would also constitute an
opportunity for “cleaning up” the database periodically, in order to ensure that there is no “dead
data” from so-called zombie accounts.‡

Taking such steps would ensure that the database consists of reliable, good-quality data that not
only comply with the relevant laws and regulations, but whose analysis can provide more detailed
and accurate outcomes. Companies that care about the quality of the data they process are therefore
more likely to have a real market advantage over the ones that do not take any steps in this respect.
Academic research corroborates the theoretical assumptions and the practical observations: Erik
Brynjolfsson, the director of the MIT Initiative on the Digital Economy studied a sample of publicly
traded firms and concluded that the firms in the sample that had adopted a data-driven decision-
making approach enjoyed 5%–6% higher output and productivity than would be expected given
their other investments and level of information technology usage.§

1.3 RECONCILING TRADITIONAL AND MODERN DATA
PROTECTION PRINCIPLES

The most recent Opinion on topics related to big data issued by the EDPS discussed whether,
and how, traditional data protection principles should be applied to big data analytics that involve

* Guszcza, James and Bryan Richardson. 2014. Two Dogmas of Big Data: Understanding the Power of Analytics for Predict-
ing Human Behavior.Deloitte Review, 15. http://dupress.com/articles/behavioral-data-driven-decision-making/#end-notes.

† SDL. 2014. New Privacy Study Finds 79 Percent of Customers Are Willing to Provide Personal Information to
a ‘Trusted Brand’. http://www.sdl.com/about/news-media/press/2014/new-privacy-study-finds-customers-are-willing-to-
provide-personal-information-to-trusted-brands.html.

‡ European Data Protection Supervisor. 2014. Report of Workshop of Privacy, Consumers, Competition and Big
Data. https://secure.edps.europa.eu/EDPSWEB/webdav/site/mySite/shared/Documents/Consultation/Big%20data/14-07-
11_EDPS_Report_Workshop_Big_data_EN.pdf.

§ Brynjolfsson, Erik, Lorin M. Hitt, and Heekyung Hellen Kim. Strength in Numbers: How Does Data-Driven Deci-
sionmaking Affect Firm Performance? SSRN Electronic Journal. doi: 10.2139/ssrn.1819486. http://papers.ssrn.com/sol3/
papers.cfm?abstract_id=1819486.

http://dupress.com/articles/behavioral-data-driven-decision-making/#end-notes
http://www.sdl.com/about/news-media/press/2014/new-privacy-study-finds-customers-are-willing-to-provide-personal-information-to-trusted-brands.html
http://www.sdl.com/about/news-media/press/2014/new-privacy-study-finds-customers-are-willing-to-provide-personal-information-to-trusted-brands.html
https://secure.edps.europa.eu/EDPSWEB/webdav/site/mySite/shared/Documents/Consultation/Big%20data/14-07-11_EDPS_Report_Workshop_Big_data_EN.pdf
https://secure.edps.europa.eu/EDPSWEB/webdav/site/mySite/shared/Documents/Consultation/Big%20data/14-07-11_EDPS_Report_Workshop_Big_data_EN.pdf
http://papers.ssrn.com/sol3/papers.cfm?abstract_id=1819486
http://papers.ssrn.com/sol3/papers.cfm?abstract_id=1819486
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personal data.* The underlying consideration that transpired from the document was that “we need
to protect more dynamically our fundamental rights in the world of big data.” It was argued that
the “traditional” data protection principles (i.e., those established before the era of big data) such
as transparency, proportionality, and purpose limitation have to be modernized and strengthened,
but also complemented by “new principles,” that have been developed more recently in response
to the challenges brought about by big data itself—accountability, privacy by design, and privacy
by default. In the following sections, the application of these principles will be discussed with ref-
erence to the overarching principle of data quality that the authors have advocated throughout the
chapter. Data quality is considered to be closely linked to each of these principles. Ensuring that
the data are relevant, accurate, and up-to-date is fundamental for the successful application of the
principles, while also representing the bridge between compliance and revenue, enabling thus the
return of investment (ROI).

1.3.1 TRADITIONAL DATA PROTECTION PRINCIPLES

The EDPS refers to transparency, proportionality, and purpose limitation as “traditional” data protec-
tion principles. Although these principles were identified since before the era of big data analytics,
they remain just as essential nowadays. They have been upgraded to fit the context, so it is important
to gain an understanding of how big data has changed the way that they are applied.

1.3.1.1 Transparency
The principle of transparency regards the information given to the data subject about the use made of
the data by the data controller. Transparency is one of the basic principles of data protection and lies
at the core of data quality: if the practices of the data controller are transparent, then the users know
what they can expect and are more likely to provide accurate data about themselves; therefore, the
dataset created is more likely to be relevant. One way to ensure transparency used to be by giving
information notices to users to let them know how their data are processed. However, in the era of
big data, more proactivity on the part of the data controller is required, so that it can be ensured that
the information given to the users is easy to read and understand.

Too often, privacy policies consist of texts written in “legalese” that are not understood by users.
A study conducted by Pew Research Center found that 52% of respondents did not know what a
privacy policy was, erroneously believing that it meant an assurance that their data would be kept
confidential by the company.† This could also be the result of the fact that privacy policies are often
long and complex texts that would simply take too much time to read carefully. According to a
study carried out by two researchers from Carnegie Mellon, it would take a person an average of
76 work days to read the privacy policy of every website visited throughout a year.‡ The study was
conducted in 2008 and, considering the dynamic expansion of the use of Internet, it may well be that
nowadays an individual would not even have enough time in a year to read all the privacy policies
of the websites visited within that same year.

Privacy policies are, at the moment, the main tool that is considered to ensure transparency and
yet, they are inefficient at achieving that purpose. Some options for improving privacy policies were

* European Data Protection Supervisor. 2015. Opinion 7/2015—Meeting the Challenges of Big Data: A Call for Trans-
parency, User Control, Data Protection by Design and Accountability. https://secure.edps.europa.eu/EDPSWEB/webdav/
site/mySite/shared/Documents/Consultation/Opinions/2015/15-11-19_Big_Data_EN.pdf.

† Pew Research Center. 2014. Half of Online Americans Don’t Know What a Privacy Policy Is.
http://www.pewresearch.org/fact-tank/2014/12/04/half-of-americans-dont-know-what-a-privacy-policy-is/.

‡ Cranor, Lorrie Faith and Aleecia McDonald. 2008. Reading the Privacy Policies You Encounter in a Year Would Take
76 Work Days. http://www.theatlantic.com/technology/archive/2012/03/reading-the-privacy-policies-you-encounter-in-a-
year-would-take-76-work-days/253851/.

https://secure.edps.europa.eu/EDPSWEB/webdav/site/mySite/shared/Documents/Consultation/Opinions/2015/15-11-19_Big_Data_EN.pdf
https://secure.edps.europa.eu/EDPSWEB/webdav/site/mySite/shared/Documents/Consultation/Opinions/2015/15-11-19_Big_Data_EN.pdf
http://www.pewresearch.org/fact-tank/2014/12/04/half-of-americans-dont-know-what-a-privacy-policy-is/
http://www.theatlantic.com/technology/archive/2012/03/reading-the-privacy-policies-you-encounter-in-ayear-would-take-76-work-days/253851/
http://www.theatlantic.com/technology/archive/2012/03/reading-the-privacy-policies-you-encounter-in-ayear-would-take-76-work-days/253851/
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suggested by a group of professors from Carnegie Mellon at PrivacyCon held in January this year.*
They proposed extracting and highlighting data practices that do not match users’ expectations,
using visual formats to display privacy policies, and highlighting in different colors the practices
that correspond to common expectations and the ones that do not.

These ideas could help users decipher the privacy policies and understand how their data are being
used, increasing transparency and contributing to balancing out the information asymmetry between
data controllers and data subjects.

The authors support these suggestions and agree with the idea that visually enhanced privacy
policies would be more effective and would transmit information quickly, grabbing users’ attention.
Using different colors to identify the privacy-level compliance would render the privacy policy, as a
tool, more efficient in communicating the information. As a positive side effect, easier-to-understand
privacy policies would enhance user trust in the data controller and contribute to data quality, as
users tend to provide more accurate data about themselves when they trust the company that is the
controller of that data.

1.3.1.2 Proportionality and Purpose Limitation
The sheer volume of personal data that each single user leaves behind while browsing the Internet or
using an app on their mobile phone is enormous. Computational social scientist Alex Pentland refers
to these data as “breadcrumbs”: “I believe that the power of big data is that it is information about
people’s behaviour instead of information about their beliefs. It’s about the behaviour of customers,
employees, and prospects for your new business. It’s not about the things you post on Facebook, and
it’s not about your searches on Google, which is what most people think about, and it’s not data from
internal company processes and RFIDs. This sort of big data comes from things like location data
off of your cell phone or credit card: It’s the little data breadcrumbs that you leave behind you as
you move around in the world.”† A real-life example of how these breadcrumbs of data can be used
is that of Netflix, that used big data analytics to find out whether the online series “House of Cards”
would be a hit, based on the information it gathered from its customer base of over 30 million users
worldwide.‡

The principles of proportionality and purpose limitation are closely tied to the Netflix example.
Incredible amounts of data are gathered each day, but it is not always clear how the data will be used
in the future, and that is precisely what the value of data resides in: the potential of using it over
and over, for different purposes, without diminishing its overall value. Therefore, the traditional
data protection principles of proportionality and purpose limitation find application in the big data
sector too.

In this respect, on April 2, 2013, the Article 29 Data Protection Working Party published an
opinion on the principle of purpose limitation.§ The concept of purpose limitation has two primary
building blocks:

• Personal data must be collected for specified, explicit, and legitimate purposes (the so-
called purpose specification).¶

* PrivacyCon Organised by the Federal Trade Commission. 2016. Expecting the Unexpected: Understanding
Mismatched Privacy Expectations Online. https://www.ftc.gov/system/files/documents/videos/privacycon-part-
2/part_2_privacycon_slides.pdf.

† Edge. 2012. Reinventing Society in the Wake of Big Data—A Conversation with Alex (Sandy) Pentland.
https://www.edge.org/conversation/reinventing-society-in-the-wake-of-big-data.

‡ Carr, David. 2014. Giving Viewers What They Want: For ‘House Of Cards,’ Using Big Data to Guarantee Its Popular-
ity. NYTimes.com. http://www.nytimes.com/2013/02/25/business/media/for-house-of-cards-using-big-data-to-guarantee-
its-popularity.html?pagewanted=all&_r=0.

§ Article 29 Data Protection Working Party. 2013. Opinion 03/2013 on purpose limitation. Adopted on April
2, 2013. Available at: http://ec.europa.eu/justice/data-protection/article-29/documentation/opinion-recommendation/files/
2013/wp203_en.pdf.

¶ Ibid. p. 11.

https://www.ftc.gov/system/files/documents/videos/privacycon-part-2/part_2_privacycon_slides.pdf
https://www.ftc.gov/system/files/documents/videos/privacycon-part-2/part_2_privacycon_slides.pdf
https://www.edge.org/conversation/reinventing-society-in-the-wake-of-big-data
http://www.nytimes.com/2013/02/25/business/media/for-house-of-cards-using-big-data-to-guaranteeits-popularity.html?pagewanted=all&_r=0
http://www.nytimes.com/2013/02/25/business/media/for-house-of-cards-using-big-data-to-guaranteeits-popularity.html?pagewanted=all&_r=0
http://ec.europa.eu/justice/data-protection/article-29/documentation/opinion-recommendation/files/2013/wp203_en.pdf
http://ec.europa.eu/justice/data-protection/article-29/documentation/opinion-recommendation/files/2013/wp203_en.pdf
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• Personal data must not be further processed in a way incompatible with those purposes (the
so-called compatible use).*

Compatible or incompatible use needs are to be assessed—“compatibility assessment”—on a case-
by-case basis, according to the following key factors (see alsoArticle 6.4 Regulation (EU) 679/2016):

• The relationship between the purposes for which the personal data have been collected and
the purposes of further processing†

• The context in which the personal data have been collected and the reasonable expectations
of the data subjects as to their further use‡

• The nature of the personal data and the impact of the further processing on the data subjects§

• The safeguards adopted by the controller to ensure fair processing and to prevent any undue
impact on the data subjects¶

In this opinion, the Article 29 Data Protection Working Party deals with Big Data.** More pre-
cisely, Article 29 Data Protection Working Party specifies that, in order to lawfully process Big
Data, in addition to the four key factors of the compatibility assessment to be fulfilled, additional
safeguards must be assessed to ensure fair processing and to prevent any undue impact. Article 29
Data Protection Working Party considers two scenarios to identify such additional safeguards:

1. “[i]n the first one, the organizations processing the data want to detect trends and correla-
tions in the information.

2. In the second one, the organizations are interested in individuals (. . . ) [as they specifically
want] to analyse or predict personal preferences, behaviour and attitudes of individual cus-
tomers, which will subsequently inform ‘measures or decisions’ that are taken with regard
to those customers.”††

In the first scenario, the so-called functional separation plays a major role in deciding whether further
use of data may be considered compatible. Examples of “functional separation” are: “full or partial
anonymisation, pseudonymsation, or aggregation of the data, privacy enhancing technologies, as
well as other measures to ensure that the data cannot be used to take decisions or other actions with
respect to individuals”‡‡

In the second scenario, prior customers/data subjects consent (i.e., free, specific, informed, and
unambiguous “opt-in”) would be required for further use to be considered compatible. In this respect,
Article 29 Data Protection Working Party specifies that “such consent should be required, for
example, for tracking and profiling for purposes of direct marketing, behavioural advertisement,
data-brokering, location-based advertising or tracking-based digital market research.”§§ Further-
more, access for data subjects: (i) to their “profiles,” (ii) to the algorithm that develops the profiles,
and (iii) to the source of data that led to the creation of the profiles is regarded as prerequisite for
consent to be informed and to ensure transparency.¶¶ Moreover, data subjects should be effectively
granted the right to correct or update their profiles. Last but not least, Article 29 Data Protection

* Ibid. p. 12.
† Ibid. p. 23.
‡ Ibid. p. 24.
§ Ibid. p. 25.
¶ Ibid. p. 26.
** Ibid. pp. 45ss.
†† Ibid. p. 46.
‡‡ Ibid. p. 27.
§§ Ibid. p. 46.
¶¶ Ibid. p. 47.
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Working Party recommends allowing “data portability”: “safeguards such as allowing data sub-
jects/customers to have access to their data in a portable, user-friendly and machine readable format
[as a way] to enable businesses and data-subjects/consumers to maximise the benefit of big data in
a more balanced and transparent way.”*

1.3.2 MODERN DATA PROTECTION PRINCIPLES

The EDPS has identified “four essential elements for the responsible and sustainable development
of big data:

• Organisations must be much more transparent about how they process personal data;
• Afford users a higher degree of control over how their data is used;
• Design user friendly data protection into their products and services; and
• Become more accountable for what they do.”†

It is evident from the above list that, of the four essential elements, only the first one relates to a
traditional data protection principle (transparency). The other three of the four essential elements
are all related to modern data protection principles, such as accountability, privacy by default and by
design, and increased users’ control of their own data. In that sense, big personal data processing is
very different from traditional personal data processing, since it requires additional principles to be
followed—principles that have been designed specifically to respond to the challenges of big data.

1.3.2.1 Accountability
The (by now cliché) popular saying “with great power comes great responsibility” perfectly captures
the essence of accountability in big personal data processing (see also Article 5.2 Regulation (EU)
679/2016). The accountability is related not only to how the data are processed (how transparent
the procedures are, how much access the data subject has to its own data, etc.) but also to issues
of algorithmic decision making, which is the direct result of big personal data processing in the
twenty-first century.‡ Processing the personal data at a high level is only a means to an end, the
final purpose being reaching the ability to make informed decisions on a high scale based on the
information collected and stored in big databases. As the EDPS points out in its Opinion 7/2015,
“one of the most powerful uses of big data is to make predictions about what is likely to happen
but has not yet happened.”§ This is, again, closely tied to the quality of data that the authors have
been emphasizing throughout this chapter: if data quality is high, related decisions are likely to have
positive results, whereas, if the data are of poor quality, decisions are likely to have a negative impact
on the affected population, leading to potentially unfair and/or discriminatory conclusions. In any
case, data controllers have to take responsibility and be accountable for the decisions they make
based on the processing of big datasets of personal data.

Proactive steps, such as disclosing the logic involved in big data analytics or giving clear and easily
understandable information notices to the data subjects, are needed to establish accountability. This
is so especially since the information contained in the datasets is not always collected directly from

* Ibid. p. 47. For example, access to information about energy consumption in a user-friendly format could make it easier for
households to switch tariffs and get the best rates on gas and electricity, as well as enabling them to monitor their energy
consumption and modify their lifestyles to reduce their bills as well as their environmental impact.

† EuropeanData Protection Supervisor. 2015.Opinion 7/2015—Meeting the Challenges of BigData: ACall for Transparency,
User Control, Data Protection by Design and Accountability. Available at: https://secure.edps.europa.eu/EDPSWEB/
webdav/site/mySite/shared/Documents/Consultation/Opinions/2015/15-11-19_Big_Data_EN.pdf.

‡ Kubler, Kyle. 2016. The Black Box Society: The Secret Algorithms That Control Money and Information. Information,
Communication & Society, 1–2. doi: 10.1080/1369118x.2016.1160142.

§ European Data Protection Supervisor. 2015. Opinion 7/2015—Meeting the Challenges of Big Data: A Call for
Transparency, User Control, Data Protection by Design and Accountability. Available at: https://secure.edps.
europa.eu/EDPSWEB/webdav/site/mySite/shared/Documents/Consultation/Opinions/2015/15-11-19_Big_Data_EN.pdf.
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the concerned individual—data can be “volunteered, observed or inferred, or collected from public
sources.”* Apart from disclosing the logic involved in decision making based on big data analytics
and ensuring that data subjects have access to their own data, as well as to information as to how it is
processed, companies should also develop policies for the regular verification of data accuracy, data
quality, and compliance with the relevant legislation. As the EDPS points out, “accountability is not
a one-off exercise.”† It needs to be undertaken continually, for as long as data are being processed
by the company. The principle of data accountability is closely connected to privacy by design and
by default—which, taken together, represent another modern data protection principle.

1.3.2.2 Privacy by Design and by Default
It is not enough anymore for data controllers to regard data privacy as an afterthought. Instead,
data controllers should incorporate data protection into the design and architecture of communica-
tion systems that are meant for the collection or processing of personal data. Recitals 78 and 108
of the Regulation (EU) 679/2016 foreshadow the increasing importance of data privacy by design
and by default, principles that are also explicitly addressed in Article 25 of the same legislation.‡ In
particular, the first comma of Article 25 states that: “the controller shall, both at the time of the deter-
mination of the means for processing and at the time of the processing itself, implement appropriate
technical and organisational measures, such as pseudonymisation, which are designed to implement
data-protection principles, such as data minimisation, in an effective manner and to integrate the
necessary safeguards into the processing in order to meet the requirements of this Regulation and
protect the rights of data subjects,” whereas comma 2 of the same article requires that “by default,
only personal data which are necessary for each specific purpose of the processing are processed.”§

When dealing with big datasets of personal data, taking into account privacy requirements right
from the beginning ensures that only the data that is strictly necessary for the processing is being
collected and, subsequently, that the data used in the relevant decision making is accurate. Moreover,
as mentioned previously in this chapter (under Section 1.2.2), there is a direct connection between
how much data subjects trust a data controller and the accuracy of data they choose to share with it.
If privacy is embedded right from the very beginning in the collection and processing of personal
data, data subjects are more likely to trust the data controller, thereby providing higher-quality data.

On the same note, as already mentioned above, the EDPS underlined in its Opinion 7/2015, the
concept of “functional separation.”¶ Functional separation requires data controllers to distinguish
between personal data used for a specific purpose, such as “to detect trends or correlations in the
information,” from personal data used for another purpose, such as to make decisions based on the
trends detected by means of processing the same information. This would allow data controllers to
detect and analyze trends based on the collected data, without negatively affecting the data subjects
from whom the data were collected in the first place. Such functional separation would ensure that
the traditional data protection principle of purpose limitation is respected and that personal data are
not processed for a purpose that is not compatible with the purposes for which it was collected,
unless specific and informed consent of data subjects has been given a priori.

* European Data Protection Supervisor. 2015. Opinion 7/2015—Meeting the Challenges of Big Data: A Call for Trans-
parency, User Control, Data Protection by Design and Accountability. Available at: https://secure.edps.europa.eu/
EDPSWEB/webdav/site/mySite/shared/Documents/Consultation/Opinions/2015/15-11-19_Big_Data_EN.pdf.

† Idem.
‡ Regulation (EU) 2016/679 of the European Parliament and of the Council of 27 April 2016 on the protection of natural
persons with regard to the processing of personal data and on the free movement of such data, and repealing Directive
95/46/EC (General Data Protection Regulation) (Text with EEA relevance).

§ Idem.
¶ European Data Protection Supervisor. 2015. Opinion 7/2015—Meeting the Challenges of Big Data: A Call for Trans-
parency, User Control, Data Protection by Design and Accountability. Available at: https://secure.edps.europa.eu/
EDPSWEB/webdav/site/mySite/shared/Documents/Consultation/Opinions/2015/15-11-19_Big_Data_EN.pdf.
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1.3.2.3 Users’ Control of Their Own Data
Finally, the principle of users’ control of their own data is gaining importance. Traditionally, it was
considered enough if users had access to their own data, along with a series of rights such as recti-
fication, deletion, or objection to processing. The newly developed principle is recalled by Recital 7
of Regulation (EU) 679/2016, which states that “[Rapid technological developments and globalisa-
tion] require a strong and more coherent data protection framework in the Union, backed by strong
enforcement, given the importance of creating the trust that will allow the digital economy to develop
across the internal market. Natural persons should have control of their own personal data.”* The
right of access to data may be one of the fundamental principles of data protection, but the right to
control the own personal information is quickly gaining importance, at the same pace with the rapid
developments of the technological developments.

The EDPS speaks of the “featurisation” of personal data in its recent Opinion 7/2015 on big data,
arguing that the degree of control over one’s data can be construed as a feature of the service provided
to the user.† Data controllers, argues the EDPS, should “share the wealth” created by the processing
of the personal data with those persons whose data are being processed.

At the moment, users do not have easy access to the type of data stored about them by a specific
company; most data controllers give users the possibility to contact them via email or telephone in
order to enquire about their own data. Giving users easy access to their data, for example, by logging
in to a control panel section on a website, along with the possibility of modifying it or changing the
permissions to process it, data quality would likely increase. Users who have control of their data
are likely to trust the data controller more and, potentially, to collaborate for various projects by
volunteering their data or agreeing to participate in case studies—the EDPS speaks of “personal
data spaces” (“data stores” or “data vaults”) as “user-centric, safe and secure places to store and
possibly trade personal data.”‡

As a (highly positive) side effect, giving users more control of their data would contribute to
increasing data quality, which, as explained previously, bears high significance on the relevance of
the processing and of the decisions made as a result of it. According to a research conducted by the
consultancy firm Deloitte, “given the time and expense involved in gathering and using big data,
it pays to ask when, why, and how big data yields commensurately big value. [. . . ] In reality, data
volume, variety, and velocity is but one of many considerations. The paramount issue is gathering
the right data that carries the most useful information for the problem at hand.”§ Therefore, creating
a fair “market” for data, in which users have not only access, but also control over their personal
information, would help ensure that the data gathered are more accurate, useful, and updated.

Another aspect of user control of data is to be found in the principle of data portability, which is
enshrined in Article 20 of the Regulation (EU) 679/2016: “[t]he data subject shall have the right to
have the personal data transmitted directly from one controller to another, where technically feasi-
ble.” This right clearly signifies a departure from the mere traditional access rights, in favor of the
stronger right for users to control their own personal data, by moving it from one provider to another
where they so wish. In the future, this will enable users to choose the service provider that best suits
their needs, not only from the point of view of the services offered but also from the perspective
of the privacy and data protection offered. Along with contributing to a more competitive market,

* Regulation (EU) 2016/679 of the European Parliament and of the Council of 27 April 2016 on the protection of natural
persons with regard to the processing of personal data and on the free movement of such data, and repealing Directive
95/46/EC (General Data Protection Regulation) (Text with EEA relevance).

† European Data Protection Supervisor. 2015. Opinion 7/2015—Meeting the Challenges of Big Data: A Call for
Transparency, User Control, Data Protection by Design and Accountability. Available at: https://secure.edps.europa.
eu/EDPSWEB/webdav/site/mySite/shared/Documents/Consultation/Opinions/2015/15-11-19_Big_Data_EN.pdf.

‡ Idem.
§ Guszcza, James and Bryan, Richardson. 2014. Two Dogmas of Big Data: Understanding the Power of Analytics for Predict-
ing Human Behavior.Deloitte Review, 15. http://dupress.com/articles/behavioral-data-driven-decision-making/#end-notes.

https://secure.edps.europa.eu/EDPSWEB/webdav/site/mySite/shared/Documents/Consultation/Opinions/2015/15-11-19_Big_Data_EN.pdf
https://secure.edps.europa.eu/EDPSWEB/webdav/site/mySite/shared/Documents/Consultation/Opinions/2015/15-11-19_Big_Data_EN.pdf
http://dupress.com/articles/behavioral-data-driven-decision-making/#end-notes
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data portability will potentially allow users to draw a direct benefit from the value created by the
processing of their data.

1.4 CONCLUSIONS AND RECOMMENDATIONS

This chapter has addressed the connections between personal data protection and big data, taking into
consideration the recent legislative modifications at the EU level (in particular, the entry into force
of Regulation (EU) 679/2016—“General Data Protection Regulation”) as well as relevant opinions
and recommendations by the Article 29 Data Protection Working Party and the EDPS.

The chapter began with a quick description of the topic, approach, and methodology (Section
1.1.1), after which it continued with an overview of the structure (Section 1.1.2). Sections 1.2 and
1.3 were dedicated to the main analysis. The authors discussed the personal data protection aspects
of big data from a business perspective (Section 1.2), touching on topics related to the impact of
data protection on competition between service providers. The analysis of Section 1.3 focused on
the importance of data quality, as a prerequisite for a correct, useful, and accurate data processing;
the analysis was structured in two sections, with the authors distinguishing between “traditional”
and “modern” data protection principles. Throughout the chapter, a series of recommendations were
made, where the case called for it. For convenience, the authors summarize these recommendations
below, per section. However, they point out that the full understanding of the topic can only be gained
by reading the specific section.

It was first concluded by the authors, in Section 1.2 of this chapter, that a connection between
big data and personal data is increasingly easy to establish, since the cross-referencing of the
various sources of information available on the Internet can lead to the identification of an
individual, even when it is not personal data in the first place. Therefore, big data should be
processed with the utmost attention, in order to ensure that either (a) no personal data are pro-
cessed or (b) where personal data are processed, that the processing is done in full respect of
the applicable legislation. Privacy and personal data protection compliance also gives a com-
petitive advantage to companies in order for them to harness the full value of the data. In
fact, it was shown that big data means big business only if personal data are lawfully col-
lected and further processed. Only in this case it is possible to make the connection between
the gathering and processing of big datasets and the monetization of the same by extracting
value from them, thus enabling the ROI. Finally, data quality is extremely important in order to
ensure that the results of the data analytics are relevant, accurate, and up to date. Enhancing the
users’ trust in the company by giving more information and designing easy-to-understand pri-
vacy policies can lead to an increase in the users’ willingness to provide accurate data about
themselves.

Section 1.3 dealt with the traditional and modern personal data protection principles. Of the
traditional principles, transparency remains paramount for the correct processing of personal
data in the context of big data. It was suggested by the authors that visually enhancing pri-
vacy policies, by using different color codes to show the level of privacy compliance, would
contribute to increasing the transparency and therefore the users’ trust in the data controller.
As regards the modern data protection principles, they have been developed in response to the
technological progress and the evolution of data analytics: accountability of the data controller,
incorporating privacy by design and by default, and giving users more control over their own
data are essential principles as far as the processing of big personal data is concerned. In par-
ticular, the authors agree with the suggestion of the EDPS, that “featurisation” of the personal
data and the creation of “personal data stores” would enable data subjects to have more control
over their data and would contribute to establishing a fairer balance between them and the data
controllers.

In conclusion, personal data protection compliance and quality management play an extremely
important role in the era of big data and the relevant safeguards must be taken by data controllers if
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they want to harness the full value of the data they own. If the reader takes away one lesson from
this chapter, it should be the following: it is not about the quantity of the data, but about the quality
of it! The authors have aimed at showing that privacy compliance is not merely a formal procedure,
but can also help enhance the quality of data, by establishing a higher level of trust from the users
and therefore determining them to provide more accurate data. Since one of the biggest problems
with big data is the tendency for errors to snowball, ensuring the quality of data is of the utmost
importance for the accuracy of the outcome of the analysis. All mechanisms or procedures, whether
internal or external, that contribute to the quality of data are to be considered highly valuable and
the authors strongly suggest that they be implemented.
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ABSTRACT

With the increase of computing capacity of big data centers (or we say cloud), energy management
is becoming more and more important. In this chapter, we will introduce the latest development
of research on the energy management of green cloud data centers. First, we will introduce power
metering methods for data centers, including both server power metering and virtual machine (VM)
power metering. For physical server, its energy can be measured using power distribution unit, so
we mainly focus on VM power metering. Second, we will discuss how to leverage the intermittent
renewable energy to reduce total carbon emissions for the geographically distributed data centers.We
consider using energy storage devices (ESDs) to store renewable energy and the brown energy when
its price is low, so as to reduce carbon emissions within the budget of energy cost. We also discuss
how to deploy ESDs, wind turbines, and solar panels for each data center to take the advantages of
energy sources in different locations. Finally, we consider selling energy back to the power grid, so
that the energy cost can be greatly reduced while retaining a lower level of carbon emissions.

2.1 POWER METERING FOR VIRTUAL MACHINES

The virtual machine (VM) is the most basic unit for virtualization and resource allocation. It is
important to study power consumption and power metering of VMs. First, the study of the power
consumption of VM would lead us to a better understanding about energy consumption in data
centers, such that better energy-efficient algorithm or VM consolidation algorithm can be developed.
Second, the study energy consumption of VMs can lead to more accurate power metering of VMs,
such that a more reasonable pricing scheme can be employed for the charge of VMs. The current data
center systems, such as EC2, charge users according to configuration types and rental time of VMs
[1,2]. But VMs with the same configuration and rental time may have totally different amounts of
energy consumption due to the running of different tasks. The amount of energy consumption should
be considered in the charge of VMs. However, it is a difficult task to measure the energy consumption
accurately for each VM. On the one hand, power models for the server cannot be directly applied
in VM power metering. On the other hand, it is difficult to accurately measure the resources used
by each VM. The latest cloud monitoring systems such as GreenCloud [3] and HP-iLO [4] can only
measure the power consumption in the granularity of server and resource. There is no system so far
that can measure power in the granularity of VM.

2.1.1 SYSTEM MODEL AND ARCHITECTURE FOR VM POWER METERING

2.1.1.1 System Model of VM Power Metering
For ease of understanding, the system model of VM power metering is illustrated in Figure 2.1 [5].

The total power consumption of a physical server consists of two parts, PStatic and PDynamic. PStatic
is the fixed power of a server regardless of running VMs or not, and PDynamic is the dynamic power
that is consumed by VMs running on it. Suppose there are n VMs and each of them is denoted by
VMi, 1 ≤ i ≤ n. Let PVMi denote the energy consumed by VMi. Thus, we have

PTotal = PStatic +
∑

PDynamic (2.1)

= PStatic +
n∑
i=1

PVMi (2.2)

PVMi can be further decomposed into the power consumption of components such as CPU, mem-
ory, and IO, denoted by PCPUVMi

, PMemVMi
, and PIOVMi

, respectively. PIOVMi
includes general energy cost

of all devices that involve IO operations such as disk and network data transfer. Thus, the power
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FIGURE 2.1 The system model of VM power metering.

consumption of VMi is

PVMi = PCPUVMi
+ PMemVMi

+ PIOVMi
(2.3)

When using performance monitor counters (PMCs) for modeling, PVMi can be decomposed into
the power consumption of PMCs of the system. Suppose there are m PMCs used for modeling with
each denoted by ej, 1 ≤ j ≤ m. Let PejVMi

denote the energy of ej consumed by VMi. Thus, we have

PVMi = Pe1VMi
+ Pe2VMi

+ · · · + PemVMi
(2.4)

2.1.1.2 Architecture of VM Power Metering
There are basically four steps for VM power metering: information collection, modeling, evalua-
tion, and adjusting. The architectures for VM power metering can be classified into two categories:
white-box and black-box architecture. For white-box architecture, a pitching-in or proxy program is
inserted into each VM to collect resources utilization or PMC events of the VM for power modeling,
as done in Reference 6. White-box architecture is simple in implementation, but it can be used only
in private cloud where proxy programs are allowed to be inserted into VMs. For public cloud such
as Amazon EC2, white-box method is almost infeasible due to the security and integrity worries
from users. Besides, the resource usage information collected inside each VM cannot objectively
reflect the usage of hardware resources by the VM. In contrast, black-box architecture is more prac-
tical, which collects modeling information such as PMCs of each VM at hypervisor level. A typical
example of black-box architecture is Xen virtualization platform using Xenoprofile as tool to collect
events of each VM on it, as shown in Figure 2.2 [7].

In this architecture, several VMs are running on the host, each with several applications running
inside. The first step for VM power metering is information collection, and we use tools to collect
modeling information such as physical server power, profiling resource features of host and each
VM running on it. A separate server is running for gathering the modeling information of the host
server and the information from power distribution unit (PDU). It is worth emphasizing that the
information collecting server runs an Network Time Protocol (NTP) service for synchronizing the
timestamps of resource information and power information. The second step is modeling, and there
is a modeling module specifically responsible for training parameters based on collected samples.
The last step is to evaluate the accuracy by calculating the error between estimated and measured
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FIGURE 2.2 Black-box architecture of VM power metering.

server power. The estimation module is also responsible for updating parameters when errors exceed
a certain threshold. With all these modules, this system can provide high-quality service for VM
power metering in a real application.

2.1.2 INFORMATION COLLECTION FOR MODELING

VM power is closely related to the usage of hardware resources, PMCs, and the power consumption
of server. The modeling information to be collected includes two parts: physical server power and
profiling features of the resources.

To collect server power, there are twomethods: one is to use externally attached PDU likeWattsUp
series [8] and Scheleifenbauer power meter [9]. The data can be logged inside the PDU or can be
accessed through local area network. The other is to use the Application Programming Interfaces
(APIs) provided by the server with built-in power meter. For instance, Dell Power Series provide
comprehensive power information for each component inside the server through Dell Open Man-
agement Suite [10]. PDU is convenient to be attached to and detached from servers, but infeasible
in large scale. In contrast, a server with inner power meter is preferred for the power management
of future data centers, though it may bring performance degradation when sampling too frequently.
Still, others use wires to connect their self-developed power meter with each component in the server
to measure the components’ power [11–13]. But this method is too complex to be used widely, and
Dell Series has already been able to provide power information of major components.

The profiling resources for modeling mainly include CPU, memory, and IO. To account the por-
tion of CPU usage by each VM, Kansal et al. [14] propose to transform the tracked performance
counters of each VM into the utilization of physical processor. Stoess et al. [15] directly use PMCs
for each VM. Chen et al. [16] use time slices of processors to account the portion of CPU usage
by each VM. For memory, Y. Bao et al. [17] believe the throughput of memory can well reflect
the variation of memory power, while Kansal and Krishnan [14,18] profile their memory utilization
using LLC missed. Still, Kim et al. [19] estimate the power consumption of memory using the num-
ber of memory accesses. For IO, Kansal proposes to use disk throughput to estimate disk power,
while Stoess uses the finishing time of an IO request. Besides, IBM has implemented monitoring of
IO throughput for each VM at the hypervisor level of Xen. In spite of this, it is not an easy thing
to implement the above-mentioned methods for modeling information collection. Fortunately, there
have been some tools for collecting profiling features of resources at the system level, and some are
designed specifically for profiling VM. Table 2.1 summarizes the most commonly used tools for
profiling in virtualization platform.

In information collection, the rate of sampling should also be taken into account. Sampling too
frequently will incur degradation of performance; otherwise, the modeling accuracy will decline.
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TABLE 2.1
Tools for Profiling in Virtualization Platform

Virtualization Tools

Xen XenOprof Xenperf

Xentrace Xentop

Xenanalyze Xenstat

XenMon

KVM Perf Suite Oprofile

Perfmon2

VMWare ReTrace vmkperf

An empirically setting for sampling rate is 1∼2 seconds [20]. In fact, the sampling rate should be
adjusted according to the variation of running applications, as is mentioned in Reference 21. In our
system, we choose 2 seconds as our sampling rate.

2.1.3 MODELING METHODS FOR VM POWER METERING

VM power is usually calculated by fairly dividing the power consumption of server, which should
be modeled first using the collected dataset composed of server power with resource features. This
is a regression problem, and it can be formulated as follows: suppose there are n observations in
the training dataset. Each observation has a vector of predictor variables R and a response variable
PMeasured. R = {RCPU ,Rmemory,RIO}, where RCPU , Rmemory, and RIO denote CPU utilization, last
level cache missing (LLCM), and IO throughput, respectively. PMeasured is the real server power
measured using PDU. Thus, the training samples can be denoted as D = {(R1,P1), . . . , (Rn,Pn)}.
Our goal is to find a proper model to estimate server power PEstimated for any new predic-
tor vector R. There are usually two types of models for estimating server power: linear and
nonlinear.

For linear model, Kansal et al. [14] use CPU utilization, LLCM, and transfer time of IO for
modeling. Krishnan et al. [18] only use instructions retired and last level cache (LLC) hits for his
linear model. Kim et al. [19] consider the number of active cores, retired instructions, and number
of memory accesses in his linear model. Similarly, Bertran et al. [22,23] also consider the number
of active cores for his linear model. Chen et al. [21] propose a modified model using CPU and hard
disk. Bohra et al. [24] use PMCs to represent the component states of CPU, memory, and caches for
modeling. The only difference among those linear models is the component selection for modeling.
In linear models, least squares is often used for multivariable linear regression.

For nonlinear models, Versick et al. [25,26] propose a polynomial formula, and it is the most
accurate when the polynomial order is six. Xiao et al. [27] build their polynomial model using PMCs.
Wen et al. [28] build a lookup table called LUT to store the CPU and LLC; the table is filled with
collected data and interpolated data by the designed rule. But the table is too large to be retrieved
when more features are considered. Yang et al. [29] adopts a machine learning method called ε-SVR
(support vector regression) model for VM power metering.

Linear model is the most commonly used method in VM power metering for its simplicity in
implementation, with low overhead when running. However, it assumes that all the input variables
are independent of each other [20]. Besides, the parameters should be trained frequently when the
behaviors of applications always vary, causing high overhead. Nonlinear model may improve the
accuracy to a certain extent, but too complex especially in updating parameters. In view of this,
we propose a tree regression-based method for VM power metering in Reference 7. The advantage
of this method is that the collected dataset can be partitioned into easy-modeling pieces by a best
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Algorithm 2.1 CreateTree
Require:

The training dataset D;
Ensure:

A tree T;
1: (feature, value) = BestSplitSelection(D, s, t);
2: if feature = null then
3: return value;
4: else
5: T .feature = feature;
6: T .value = value;
7: (D1,D2) = SplitData(D, feature, value);
8: T .left = CreateTree(D1);
9: T .right = CreateTree(D2);

10: end if

selected resource feature with proper value. Regression tree is a binary tree, created by recursively
partitioning data into subsets by a best selected feature-value pair, denoted as (feature, value), until
violating one of the constraints: the minimum size of node and the threshold of error reduction, as
can be seen in Algorithm 2.1.

The partitions of regression tree rely on the characteristics of dataset rather than artificially setting.
The dataset is added to the tree as a leaf node when there is no proper partitioning feature to be
selected anymore for this dataset. In our implementation, each leaf node only stores the parameters of
a linear model fitted on the dataset of this leaf. Function SplitData in this algorithm is to partition the
training dataset into two parts by the value of resource feature. Function BestSplitSelection returns
the best selected (feature, value) pair for partition. If the dataset is not suitable for further partition,
the returned feature is null.

The main idea of BestSplitSelection is to find the best (feature, value) pair from the training data
for splitting, so that the accuracy can be enhanced after partitioning, as shown inAlgorithm 2.2. There
are two stopping conditions for partitioning. One is the minimum size of partitioned subset s, which
ensures that the leaf is modeled with enough data. The other is the threshold of error reduction t,
which means partition happens only when error reduction is obvious and exceeds a certain threshold.
The feature will be returned as null when any stopping condition is satisfied, or the accuracy cannot
be further improved by partitioning.

In this algorithm, the Error function is calculated like this:

Error(D) =
∑

(PEstimated − PMeasured)2 (2.5)

Error(D) is the quadratic sum of the error between real server power and estimated power for
each observation in the training data. MakeLeaf (D) returns the parameters of linear model fitted
on D. Thus, each leaf node stores modeling parameters. For any new observation, a leaf node can
be searched by repeatedly comparing feature values of the tree. Thus, PEstimated of this observa-
tion can be calculated using the linear model obtained by fitting the dataset of this leaf. Since
the minimum size of each node is s, the complexity of CreateTree can be obtained easily, which
is O(3nlogn/s2 ).

In our work, the resource features for modeling are CPU utilization, LLCM, and IO through-
put, denoted as RCPU , RLLCM , and RIO, respectively. Thus, the power consumption of a server is
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Algorithm 2.2 BestSplitSelection
Require:

The training dataset D;
The minimum size of node s;
Threshold of error reduction t;

Ensure:
(bestfeature, bestvalue);

1: olderr = Error(D);
2: newerr = 0;
3: besterr = Infinite;
4: bestfeature = nulls;
5: bestvalue = nulls;
6: for all d ∈ D do
7: for all feature ∈ {CPU,memory, IO} do
8: (D1,D2) = SplitData(D, feature, d.Rfeature);
9: if size(D1) < s or size(D2) < s then

10: continue;
11: end if
12: newerr = Error(D1)+ Error(D2);
13: if newerr < besterr then
14: besterr = newerr;
15: bestfeature = feature;
16: bestvalue = d.Rfeature;
17: end if
18: end for
19: end for
20: if 0 < olderr − besterr < t then
21: return (null,MakeLeaf (D));
22: end if
23: if size(D1) < s or size(D2) < s then
24: return (null,MakeLeaf (D));
25: end if
26: return (bestfeature, bestvalue) ;

denoted as

PServer = PStatic + PDynamic = PStatic + αRCPU + βRLLCM + γRIO + e (2.6)

where e is the adjusting bias in model and α, β, and γ are the parameters of the searched leaf node
in the built regression tree for inputting the predictor vector {RCPU ,RLLCM ,RIO} of the server. PStatic
can be obtained when there is no VM or application running on the server. Based on the parameters
of the server power model, we calculate the power consumption of each VM like this:

PVMi = αRCPUVMi
+ βRLLCMVMi

+ γRIOVMi
+ ei (2.7)

where RCPUVMi
, RLLCMVMi

, and RIOVMi
denote CPU, LLCM, and IO throughput used by VMi, respectively;

n is the number of VMs on the server; and ei is the bias of each VM i, which can be calculated as
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follows:

ei = e ∗
(
αRCPUVMi

+ βRLLCMVMi
+ γRIOVMi

)
/

n∑
j=1

(
αRCPUVMj

+ βRLLCMVMj
+ γRIOVMj

)
(2.8)

2.1.4 EVALUATION METHODS

Since VM power is calculated by fairly dividing the server power, the commonly used evaluation
method for VM power metering is to directly evaluate the accuracy of the server power model. Most
of the work, in the literature use real error divided by the server power measured using PDU for
evaluation. Thus, this evaluation method can be represented as follows:

Accuracy 1 = 1− 1

n

∑ |PEstimated − PMeasured|
PMeasured

(2.9)

When PStatic accounts for a large part of server power, the relative error will be very small. For
instance, suppose the measured server power is 200W, in which static power accounts for 160W.
If the error between estimated and real server power is 10W, then we will get a relative error about
5%. This is in fact not as accurate as it seems. The real error shrinks after dividing it by such a big
denominator in formula (2.9). Meanwhile, other papers give real error within 1∼2W to show the
goodness of their result. However, it is indeed a very big error if PDynamic is just 3∼4W. Therefore,
we propose a novel but simple evaluation method as follows:

Accuracy 2 = 1− 1

n

∑ |PEstimated − PMeasured|
PDynamic

(2.10)

The advantage of our evaluation is that it reflects the modeling errors against dynamic power, not
using a big denominator. Therefore, our evaluation method is more objective in real use.

We also use stability to make evaluation; it reflects the fluctuation of errors. The lower, the better.
In fact, users always hope our regression tree can behave stably, and the errors do not always change
suddenly. Therefore, we define stability using standard deviation of real errors, denoted as Err. So
we have

EStability = δ(Err) (2.11)

For evaluation, various benchmarks are used to verify the effectiveness of the methods. Table 2.2
lists the most commonly used benchmarks as follows.

2.1.5 A CASE STUDY OF VM POWER METERING

Figure 2.3 is an example showing the power consumption of server and three VMs running on it
during 60 samplings.

The whole server power is composed of static power and dynamic power that are consumed by
the three VMs running on this server, so we have

PServer = PStatic + PVM1 + PVM2 + PVM3 (2.12)

Based on the regression tree method, we can calculate the energy consumed by the server and each
VM on it using the formula as follows:

W =
n∑
i=1

(Pi ∗�(ti)) (2.13)

where W denotes the total energy consumed during n samplings, and its unit is Wh (watt hour),
and �(ti) denotes the sampling interval. Pi is the power consumption for the ith sampling interval.
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TABLE 2.2
Benchmarks and Descriptions

Category Benchmark Function Description

Processor SPEC CPU2006 [30] A tool suite to test CPU performance through a wide range of
CPU-intensive workload from real user applications

Dhrystones [31] A benchmark from Unix Benchmark suite for testing the
performance of the processor

BYTEmark [32] Providing integer or floating points tests for CPU, memory, and
cache

Memory SPEC OMP2001 [33] Benchmarks for measuring shared-memory parallel processing and
metrics for energy consumption

Cachebench [34] A program testing memory hierarchy performance

Disk Bonnie++ [35] A tool for testing disk and file system IO performance

IOzone [36] A benchmark for testing the reading and writing performance for
file system

IOmeter [37] Measuring the IO subcomponents performance for single server and
clusters

Network Netperf [38] and iPerf Benchmark for testing network performance

Parallel NAS-NPB [39] A benchmark developed by NASA for parallel computing
evaluation

System performance Linpack [40] Benchmarks to evaluate the system performance using scientific
computation

StressAppTest [41] A high load benchmark to test hardware devices performance
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Similarly, we can calculate the electricity cost, denoted as Cost, for each VM and server as follows:

Cost =
n∑
i=1

(Pi ∗�(ti) ∗ Pri) (2.14)

where Pri is the electricity price during the ith sampling interval.
Suppose the electricity price is 20 $/MWh during our 60 samplings; for each, the interval is

2 seconds. Based on the estimated power using the regression tree method during the period of
2 minutes, the energy consumption are 0.40Wh, 0.46Wh, and 0.41Wh for each VM, and the server
power is 6.8097Wh, in which static power accounts for a large part. To estimate the total energy
cost, we suppose all the VMs run in this pattern for an hour. Thus, the electricity expenditure for the
server is 0.41 cents, and the cost for the three VMs are 0.024, 0.028, and 0.025 cents, respectively.
The cheapest price for one EC2 VM with low configuration will cost 1.3 cents per hour, much more
expensive than that of our server, because other operation cost such as management, and cooling
expenditure is taken into account. Through our analysis, we hope future IaaS providers will charge
users in a more fair way based on the power consumption or energy cost in the granularity of VM.

2.1.6 OPEN RESEARCH ISSUES

VM power metering is an important and emerging research topic. There are many research issues
yet to be investigated. Here are some typical issues, including VM service billing, power budgeting,
and energy-saving scheduling.

2.1.6.1 VM Service Billing
VM power is the basic unit for virtualized data centers, so future data centers will improve the
monitoring system with the visibility of VM power. On the one hand, this will be helpful for us to
understand the power consumption of data centers in a finer granularity; on the other hand, reasonable
billing for VM services can bemade. The traditional billing is based on the configuration and running
time of VMs, but the resources usage can be different for VMs with the same configuration and
running time. Therefore, future data centers will make full use of VM power metering technology
to improve billing schemes in VM services, especially for services like Amazon EC2.

2.1.6.2 Power Budgeting
Power budgeting is playing an important role in modern data centers. To support more servers
running in the data center without breaking the upper bound power, power capping technology is
introduced. The problem is that too many CPU-intensive VMs consolidated to the same server may
intrigue dynamic voltage and frequency scaling (DVFS) of the server so that all the VMs will suffer
the degradation of the performance of the server. This breaks the isolation of each VM indirectly,
and prolongs running time of tasks, even reduces energy efficiency. Therefore, VM consolidation
cannot always save energy without budgeting VM power. For modern data centers with power cap-
ping servers, there is a need to budget power in different granularities. In VM granularity, the users
can decide how much energy their VMs will use. They can budget the cost of applications running
inside their VMs. In server granularity, VM consolidation will be reasonably designed so that the
resources usage and the power efficiency can be enhanced without breaking the service-level agree-
ment (SLA) or quality of service (QoS) of the servers. From data center level, more servers can be
running at the same time without exceeding the peak power of the data center.

2.1.6.3 Power-Saving Scheduling
Future green data centers cannot go without good power-saving mechanisms. Many scheduling poli-
cies are studied in VMmigration and consolidation with idle servers powered off. Those scheduling
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methods only consider the constraints of resources in deployment. In fact, the energy of each VM
should also be considered so as to design power-saving scheduling for data centers. VMpowermeter-
ing provides an opportunity to optimize the already power-aware algorithms to save more energy
cost in virtualized cloud data centers. Therefore, VM power metering is of great significance and it
provides us opportunities to study new techniques for the future green cloud data centers.

2.2 GREEN BIG DATA CENTERS USING RENEWABLE ENERGY

In recent years, a large number of big data centers have been built to meet the ever-increasing demand
for computing resources. However, it is the high power consumption of the powerful servers of the
data centers that deteriorates the already serious global warming. According to a recent report, the
power consumption of Google is over 1120GWh with 67 million dollars per year, and Microsoft
consumes 600GWh with 36 million dollars [42] annually. The power consumption of data centers
accounts for 1.3% currently, and it is estimated to reach 8% in 2020. Thus, cloud data centers con-
tribute greatly to global warming, since 2/3 of the electricity of the world is generated by burning
fossil fuels [43]. Some Internet service providers have already taken steps to promote the usage of
renewable energy for data centers. For example, Google and Yahoo have already powered their own
data centers using clean energy, which account for 39.4% and 56.4%, respectively. Therefore, it is
significant for cloud data centers to make green scheduling using renewable energy. However, it is
hard to design such a scheduler considering the intermittent supply of renewable energy that changes
with time, and the fluctuating electricity prices. In this section, we will discuss how to green big data
centers by using intermittent renewable sources while considering energy cost.

2.2.1 LITERATURE REVIEW

There are usually two categories of study on greening cloud data centers: enhancing energy efficiency
and utilizing renewable energy.

2.2.1.1 Enhancing Energy Efficiency
Xie et al. [44] try to consolidate VMs onto fewer servers with idle servers in sleeping state. Srikan-
taiah et al. [45] try to consolidate heterogeneous workload onto fewer servers to minimize energy
consumption. Elnozahy et al. [13] combine both DVFS and power on/off techniques to reduce total
carbon emissions of data centers. Johan et al. [46] reduce the power consumption of server processors
using an energy priority scheduling policy on a variable-voltage platform. Gandhi et al. [47] try to
optimize the power allocation of the server farms through DVFS. Lin et al. [48] propose a dynamic
power management (DPM) scheme called dynamic right-sizing method to reduce the number of
active servers, such that the power consumption of data center can be reduced as much as possible.
For green data center, however, enhancing energy efficiency can only slow down the growth of the
carbon footprint of IT.

2.2.1.2 Utilizing Renewable Energy
In fact, using renewable energy sources is the radical way to reduce carbon emissions for cloud
data centers. Zhang et al. [49] propose a scheduler called GreenWare trying to maximize the usage
of renewable energy under a certain budget. Liu et al. [50] try to lower down the price of brown
energy by using renewable resources in a specific market. Brown et al. [51] propose a simulation
infrastructure called Rerack, which can be used to evaluate the cost of data centers using renew-
able energy. Li et al. [52] try to coordinate the workload power with the supply of the renewable
energy to reduce the carbon footprint. The authors in References 53 and 54 built a demo system
with solar panels to power a rack of servers. Based on this system, they designed two schedulers
(Green Hadoop and Green Slot) to maximize the usage of renewable energy within deadlines of the
tasks. In fact, carbon emissions should be regarded as a metric for the greenness of big data centers.
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FIGURE 2.4 Architecture of a green scheduler.

In the following, the architecture of a green scheduler will be introduced. It will make a schedule
of incoming requests, servers, and the usage of different types of energy, such that the total carbon
emissions can be minimized under the budget of energy cost.

2.2.2 ARCHITECTURE OF GREEN SCHEDULER

Internet service operators like Google always build their data centers in geographically distributed
locations to provide high-quality and reliable services. Wind and solar energy are the dominant
renewable sources, which account for 62% and 13% nonhydro renewable sources, respectively.
Therefore, we assume that all the data centers in our model are powered by solar, wind, as well
as traditional brown energy. The architecture of our scheduling system is shown in Figure 2.4 [55].

As can be seen, there is a green scheduler responsible for dispatching the incoming requests
to the data centers that are powered by intermittent renewable energy with fluctuating prices. The
scheduler itself is a high-performance server or a cluster of servers. There are transmission delays
from scheduler to each data center, which are different for data centers in different locations. The
input for each scheduling includes: (1) weather conditions (including temperature, solar illumination,
and wind speed), which are used for calculating the power supply of wind and solar in this time slot;
(2) total budget of energy cost; (3) QoS, the maximum response time of the requests; (4) electricity
prices in each time slot; and (5) the number of servers in each data center. The optimization goal is
to minimize total carbon emissions under the budget of energy cost while satisfying constraints like
QoS requirement within budget of energy cost.

2.2.3 USAGE OF ENERGY STORAGE DEVICES

To further reduce carbon emissions, energy storage devices (ESDs) should be taken into account. In
the past, ESD is commonly used as uninterrupted power supply (UPS) to keep the normal operation
of data centers when electricity failure happens, before any diesel generation can start to supply
power. This transition may take only 10∼20 seconds, while the energy stored in UPSs can sustain
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5∼30 minutes for data centers [56]. The excess storage capacity of those UPSs can be used to store
renewable energy, or the energy from the power grid when its price is low, such that both carbon
emissions and total energy cost can be further reduced by using ESDs as part of the normal energy
supply. Therefore, we assume each data center is equipped with some ESDs to store energy and
discharge it whenever necessary. By using ESDs in data centers, it brings some challenging issues
for the scheduling of user requests and energy supply. First, since ESDs can store energy when the
price is low, the scheduling of user requests needs to consider not only the current electricity price,
but also the price of stored energy by ESDs. Second, since ESDs have energy loss during the process
of charging/discharging and self-discharging as time goes, the decision making of when to charge
and when to discharge becomes a time-dependent process. That is, any decision of charging and
discharging will affect the decisions in the subsequent time slots. We mainly focus on minimizing
carbon emissions under budget of energy cost, which can be modeled as follows.

2.2.3.1 Workload Model
Since the servers in each data center have a capacity, one constraint of scheduling is to make sure
the requests assigned to a data center shall not exceed its capacity. Let N denote the number of
geographically located data centers. The running period of our scheduler is T time slots, and for
each slot t, t ∈ {1, 2, . . . , T}. Let λt denote the number of incoming requests in time slot t, λti denote
the number of requests dispatched to data center i in time slot t, and N denote natural numbers, then
we have

λt =
N∑
i=1

λti

λti ∈ N, ∀i ∈ {1, . . . ,N}

We assume the servers in a data center are homogeneous (note that our solution can be easily changed
to adapt for the case of heterogeneous servers). Let xti denote the number of active servers with service
rate μi (requests per second) in data center i during time slot t. The capacity constraint requires that
the number of incoming requests should be within the service capacity of active servers. It can be
expressed as

0 ≤ λti ≤ xti · μi (2.15)

0 ≤ xti ≤ Mi (2.16)

where Mi denotes the maximum number of servers in data center i.

2.2.3.2 Response Time Model
The QoS in our formulation is defined as the average response time of requests, denoted as Ri. It
consists of transmission delay from scheduler to data center, waiting time, and processing time of
the requests. Let Ri,max denote the worst-case response time of data center i. It is a performance
indicator, prespecified by the data center. To analyze the average waiting time, we adopt the M/M/n
queuing model, as is done in Reference 56. We assume all active servers are busy with probability
1, such that the average waiting time and processing time can be represented as 1/(μixti − λti) and
1/μi, respectively. Let di denote the transmission time from scheduler to data center i. The QoS
requirement of a data center can be expressed by

Ri = 1

μi · xti − λti
+ 1

μi
+ di < Ri,max (2.17)
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2.2.3.3 Power Consumption of Data Centers
Let Pidle denote the idle power of a server, and Ppeak denote the peak power when a server is busy
processing requests with maximum power. We adopt the commonly used power consumption model
in Reference 57, so we have

Pserver = Pidle + u× (Ppeak − Pidle)

where u is the utilization of this server.
The total power consumption of data centers can be estimated if we know the power consumption

of the IT infrastructure and the power usage effectiveness (PUE) of this data center. The power
consumption of the IT infrastructure is mainly consumed by servers in data centers. Thus, the total
power consumption of data center i in time slot t, denoted as Pti, can be calculated as

Pti = xti · [Pidle + (Ppeak − Pidle) · uti] · ρi

where ρi denotes the PUE of data center i, uti denotes the average server utilization at time slot t, and

uti = λti/(x
t
i · μi)

2.2.3.4 Power Supply and Demand
In data centers, there are three types of energy supply: wind, solar, and brown energy. The issue
is complicated by the introduction of ESDs. We need to determine how much energy of each type
should be charged into ESDs, and how much to discharge from ESDs to power data centers in each
time slot. We also consider electricity losses during charging, discharging, and that caused by self-
discharging as time goes. Thus, the power supply and demand model can be formulated as follows.

Let wind, solar, and brown energy to be drawn from microgrid by data center i in time slot t be
represented as Swti, Ss

t
i, and Sb

t
i, respectively. The upper bound of the supply for each type of energy

can be denoted as Swti,max, Ss
t
i,max, and Sb

t
i,max, respectively. We have

0 ≤ Swti ≤ Swti,max (2.18)

0 ≤ Ssti ≤ Ssti,max (2.19)

0 ≤ Sbti ≤ Sbti,max (2.20)

Let Rwti, Rs
t
i, and Rb

t
i denote the three types of energy that should be charged into battery for data

center i in time slot t, and Pwti, Ps
t
i, and Pb

t
i denote the energy used to directly power data centers,

respectively. We have

Swti = Rwti + Pwti
Ssti = Rsti + Psti
Sbti = Rbti + Pbti

Usually, there are losses during charging and discharging for battery ESDs. Let α and β denote
charging ratio and discharging ratio, respectively, whose values are usually between 85% and 95%,
so that the losses are between 5% and 15%. Besides, electricity in the battery will dissipate with time
due to self-discharging, which is usually 0.1∼0.3% per day [58]. In our model, we also consider
self-discharging with losses rate, which is denoted as θ.
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Let Dti denote the energy that should be discharged to power data center i in time slot t, and Eti
denote the amount of energy stored in the battery. We have

Et+1i = (1− θ)[Eti − Dti + α(Rwti + Rsti + Rbti)]

For the first time slot, we suppose there is no energy stored in advance, so that E1
i = 0 and D1

i = 0.
The energy stored in each battery should always be nonnegative, and should be bounded in its

capacity, so we have
0 ≤ Eti ≤ Ei,max (2.21)

where Ei,max denotes the maximum capacity of the ESD in data center i.
The energy to be discharged in time slot t should be constraint by its energy stored inside, so we

have
0 ≤ Dti ≤ Eti (2.22)

The energy to be charged should not exceed the remaining capacity of this battery in this time slot,
so we have

0 ≤ Rwti + Rsti + Rbti ≤ Ei,max − Eti (2.23)

The total energy consumed by data center i in time slot t should be equal to the sum of the three
types of energy that directly power this data center and the energy discharged from ESDs. Note that
there is electricity losses during discharging, so we have

Pwti + Psti + Pbti + βDti = Pti

2.2.3.5 Total Cost
Let Qwti, Qs

t
i, and Qb

t
i denote the price of wind, solar, and brown energy for data center i in time slot

t, respectively. The total cost should be within budget constraint B during the whole period of time,
so we have

Cti = [Swti · Qwti + Ssti · Qsti + Sbti · Qbti]
T∑
t=1

N∑
i=1

Cti ≤ B (2.24)

where Cti denotes the total cost of data center i in time slot t.

2.2.3.6 Total Carbon Emission
Carbon emission rate (CER) represents the amount of carbon emissions in unit energy (kWh), as
can be seen in Table 2.3. Based on this, we can estimate how much carbon will be emitted when
using each type of energy. Let Ew, Es, and Eb denote the CER of wind, solar, and brown energy,
respectively. The carbon emissions for data center i in time slot t can be denoted as

Emti = Ew · Swti + Es · Ssti + Eb · Sbti

TABLE 2.3
CER of the Energy Sources

Energy Source Coal Wind Solar

CER (gCO2e/kWh) 968 22.5 53
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2.2.3.7 Problem Formulation
Problem. Minimizing emissions using ESDs (ME-ESD)
Given the budget of energy cost, the number of requests in each time slot, the capacity of servers in
each data center, and energy supplies from three types of energy sources, we design a schedule to
minimize total carbon emissions under the budget of energy cost. Thus, the problem is formulated
as the following:

Minimize :
T∑
t=1

N∑
i=1

Emti

Subject to : (2.15) ∼ (2.24)

Renewable energy is usually more expensive than brown energy due to its intermittent nature and
high generating cost. Therefore, we take budget constraint into account in this problem. In these
two problems, the constraints are for each time slot t, and data center i = 1, . . . ,N. The decision
variables include xti, λ

t
i, Sw

t
i, Ss

t
i, Sb

t
i, Rw

t
i, Rs

t
i, Rb

t
i, and D

t
i. Thus, there are 9× N decision variables

for each time slot, and 9× N × T decision variables during the whole period of time.

2.2.3.8 Solution
From the above modelings, we found that each of the two problems can be well formulated as a
mixed integer linear programming (MILP) problem during the whole period of time. We solve this
problem using Cplex solver in MATLAB R©. In particular, Cplex can solve the MILP problem using
a simplex method with high efficiency, and it is feasible to run the experiments with reasonable
size like that in our simulation. Thus, we can obtain decisions for each data center in each time slot,
including the number of requests dispatched to each data center, the number of active servers, energy
of different types that are drawn from microgrid, and energy of different types that are charged into
or discharged from ESDs.

2.2.4 PLANNING FOR GREEN DATA CENTERS

In fact, cloud data centers should be carefully planned so as to make the best use of the energy
sources in different locations. For example, the data centers in locations with abundant wind sources
should be deployed with more wind turbines, while data centers with abundant solar energy should
be deployed with more PV panels. Besides, larger ESDs should be equipped to the data centers
with abundant renewable energy. Note that, here we assume that each data center has its own wind
turbines or solar panels to generate renewable energy. In this section, we study the issue of planning
for green cloud data centers based on the optimized scheduling framework as mentioned above. Our
plan includes: (1) How many servers each data center should have. (2) How many wind turbines and
solar panels should be used to power each data center. (3) What capacity of ESD should be equipped
for each data center. Thus, additional models are formulated as follows.

In our planning, the capacity of ESDs in different data centers should be different, so as to make
the best use of the fluctuating electricity prices and the energy supply in different locations to reduce
energy cost and carbon emissions. Considering the capital investment, we suppose the total capacity
of ESDs of all data centers is E0, and we make planning about what capacity of the ESDs should be
equipped for each data center, so we have

E0 =
N∑
i=1

Ei,max (2.25)
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In our model, the data centers can be powered directly by the power grid, or the renewable energy
generated by wind turbines or solar panels. The number of wind turbines or solar panels of those data
centers should be different due to the different climate conditions in those locations. Considering the
capital investment, we assume there are totally Kw wind turbines and Ks solar panels. We plan how
many of the wind turbines and solar panels should be deployed in each data center i, denoted as kwi
and ksi, respectively. So we have

Kw =
N∑
i=1

kwi (2.26)

Ks =
N∑
i=1

ksi (2.27)

Let pwti denote the generated energy of each wind turbine in data center i during time slot t, which
can be calculated using the model proposed in Reference 59 when wind speed is given. Similarly,
let psti denote the generated energy of each solar panel, which can be calculated using the PV model
in References 60 and 61when solar irradiation and temperature are given. Thus, themaximum energy
supply of wind and solar, denoted as Swti,max, Ss

t
i,max, can be calculated as follows:

Swti,max = kwi × pwti (2.28)

Ssti,max = ksi × psti (2.29)

Our goal is to minimize carbon emissions when planning for green cloud data centers. Thus, the
problem can be formulated as follows:

Minimize :
T∑
t=1

N∑
i=1

Emti

Subject to : (2.15) ∼ (2.23), (2.25) ∼ (2.29)

The decision variables of this problems include xti, λ
t
i,Pw

t
i,Ps

t
i,Pg

t
i,Rw

t
i,Rs

t
i,Rg

t
i,D

t
i,Mi, kwi, ksi, and

Ei,max. Thus, there are 9× N × T + 4× N decision variables during the whole period of time. This
formulated problem is also an MILP problem during the whole period of time, which can be solved
using Cplex solver in MATLAB. In each time slot, the solutions of the formulated optimization
problems determine: (1) how many requests should be dispatched into each data center; (2) how
many servers should be running in each time slot; (3) how much energy of each type should be used
to directly power each data center; (4) how much energy of each type should be stored into the ESDs
of each data center; and (5) how much energy should be discharged from the ESDs to power the
data centers. We also make planning during the whole period of time, and we determine (6) how
many servers each data center should have; (7) how many wind turbines and solar panels should be
deployed for each data center; and (8) what capacity of the ESDs should be equipped for each data
center.

2.2.5 REDUCING ENERGY COST FOR GREEN DATA CENTERS THROUGH ENERGY TRADING

Cloud data centers consume a large amount of energy, which leads to high energy cost and carbon
emissions. To reduce both energy cost and emissions, there have been endeavors trying to conserve
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energy consumption or to enhance energy efficiency using technologies such as workload consolida-
tion or VMconsolidation onto fewer servers, or usingDVFS to adjust power to save energy. However,
reducing energy consumption can only slow down the growth of carbon emissions [62]. Therefore,
others are trying to power data centers using renewable energy to green cloud data centers. However,
it is the high prices of renewable energy that hinder the extensive usage of renewable energy. In this
section, we propose an improved scheduling architecture to reduce energy cost for green cloud data
centers by using ESDs and energy trading with the power grid, as can be seen in Figure 2.5. Different
from existing work, we consider lowering down total energy cost when greening data centers from
the following three aspects:

1. Using cheap but green energy that are generated by the wind turbines and solar panels of
each data center

2. Using ESDs to store renewable energy when its supply is abundant, or store the brown
energy when its price is low and discharge when the energy price is high

3. Making profit by selling the energy (including the self-generated renewable energy and the
energy stored inside the ESDs) back to the power grid, so as to further reduce total energy
cost

FIGURE 2.5 Architecture of a green scheduler. Solid arrows show the direction of energy to be bought by
data centers; dashed arrows show the direction of energy to be sold back to the power grid.
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Our goal is to minimize total energy cost under a certain level of carbon emissions. The constraints
include the computing capacity of each data center, the QoS requirement of the requests, the capacity
of ESDs, and the supply of renewable energy. Our scheduling decides:

1. The number of requests that should be dispatched to each data center in each time slot
2. The number of servers that should be switched into sleeping states or active states in each

time slot
3. The usage of each type of energy, including powering the data centers, charging/discharging

of the ESDs, and that should be sold back to the power grid in each time slot

Based on this architecture, additional formulations are added as follows. For each type of energy
drawn, it will be used in three ways: (1) the energy to power data centers directly, denoted as Pwti,
Psti, and Pb

t
i, respectively; (2) the energy to be stored into ESDs, denoted as Rwti, Rs

t
i, and Rb

t
i,

respectively; and (3) the renewable energy to be sold back to the power grid, denoted as Gwti, Gs
t
i,

respectively. So we have

Swti = Rwti + Pwti + Gwti
Ssti = Rsti + Psti + Gsti
Sbti = Rbti + Pbti

The energy discharged from ESD, denoted as Dti, is usually used in two ways: (1) to power data
centers directly, denoted as P(ESD)

t
i and (2) to be sold back to the power grid, denoted as G(ESD)

t
i.

Thus, we have
Dti = P(ESD)

t
i + G(ESD)

t
i

The total energy used by data center i in time slot t, denoted as Pti, is

Pwti + Psti + Pgti + βP(ESD)
t
i = Pti

The problem of minimizing total energy cost within the carbon emission level can be formulated as
follows:

Minimize: C =
T∑
t=1

N∑
i=1
[Swti · Qwti + Ssti · Qsti + Sbti · Qbti

− (Gwti + Gsti + β · G(ESD)
t
i) · Qgti]

Subject to: (2.15) ∼ (2.23), (2.25) ∼ (2.29)

T∑
t=1

N∑
i=1
[Swti · Ewti + Ssti · Esti + Sbti · Ebti] ≤ E

Thus, the problem is formulated as a typical MILP problem during the whole period of time that
can be solved using Cplex. Thus, there are 12× N × T decision variables in total during the whole
period of time. In each time slot, the solutions of the formulated problems determine: (1) the number
of requests that should be dispatched to each data center, (2) the number of active servers, (3) how
much energy of each type (including that discharged from ESD) should be used to power data centers
directly, (4) how much energy of each type (including renewable energy and brown energy) should
be charged into ESDs, and (5) how much of the self-generated wind and solar energy, and the energy
stored in ESDs should be sold back to the power grid.
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TABLE 2.4
Parameters of Internet Data Centers

i μi Mi di Pipeak Piidle ρi

1 1.75 4500 0.20 140 84 1.3

2 1.50 5000 0.25 90 54 1.5

3 1.25 6000 0.10 34 20 1.7

4 2.00 4000 0.15 150 90 1.3

2.2.6 SIMULATIONS AND ANALYSIS

Simulations are based on traces from real world, including the statistical request traces, electricity
prices in different locations, and the power supply with respect to the weather conditions. All those
data are collected hourly from June 1 to June 30, 2014, so there are 720 scheduling slots in total. We
assume there are four data centers belonging to the same cloud operator.We use similar configuration
parameters in Reference 63, as shown in Table 2.4.

For the traces of the incoming requests, we use the Wiki dump [64], which are varying with time
periodically. For the electricity prices of brown energy from the power grid, we use the traces of
four locations (including CAPITL, CENTRL, DUNWOD, and GENESE) from New York Indepen-
dent System Operator (NYISO). For the supply of wind and solar energy, we use the power models
proposed in Reference 49 to calculate the energy supply of wind and solar, with history weather
conditions from MIDC of National Renewable Energy Laboratory [65]. We use the traces from four
stations, including Loyola Marymount University, University of Arizona, Solar Technology Accel-
eration Center, and National Energy Laboratory Hawaii Authority. We suppose each data center has
50K BP-MSX-120 solar panels and 1000 NE-3000 wind turbines for each data center. The supply
constraint of brown energy for each data center is five times of the maximum power of this data
center. Let Uhour denote unit capacity of ESD, which equals to the total energy of the data center
running in peak power for 1 hour. We suppose each data center has an ESD with a capacity of 1
Uhour. The parameters of electricity losses for α, β, and θ are 95%, 95% (per hour), and 0.3% (per
day), respectively. The maximum response time of QoS is set to be 1 second for all data centers.

2.2.6.1 Usage of ESDs
For the renewable energy bought from a power plant, its price is usually more expensive than brown
energy. Let the price of brown energy be denoted as Pbi, and the prices of wind and solar energy be
denoted as Pbi + 1.5 cents and Pbi + 18 cents per kWh, respectively [49]. Other parameters can be
obtained from the literature [66]. To make comparison, we denote minimum cost with no ESD and
that with ESD as ME andME-ESD, respectively.

Figure 2.6 shows the trend of carbon emissions with budget. When the budget increases, the
total carbon emission decreases. The upper bound of the budget is the maximum cost when carbon
emission is minimized, so that any extra investment afterward will not bring reduction in carbon
emissions anymore. When budget is fixed, we found that using ESDs can further reduce carbon
emissions compared with that using no ESDs. There are two reasons. First, much more renewable
energy will be used by storing it into ESDs when its price is low. Second, the total cost can be saved
by storing brown energy into ESDs, and the saved money can be used to buy more renewable energy.
Therefore, using larger ESDs can further reduce total carbon emissions.

Figure 2.7 shows the trend of minimum emissions with different ESD capacities. In this figure,
ME-N denotes the minimum emissions with no budget constrain, and ME-ESD-N and ME-ESD-B
denote minimum emissions using ESDs without budget constrain, and that within budget constraint
of 60,000$, respectively. ME-N and ME-ESD-N use ESDs with a capacity of 0.5 Uhour; we use
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them as our baselines. As can be seen in Figure 2.7, the total carbon emissions can be reduced
with the increase of ESD capacity. Besides, when ESD is large enough (like 8 Uhours), using only
60,000$ can achieve much lower carbon emissions than that of using 80,000$ more dollars when
ESD capacity is only 0.5 Uhour. Therefore, the capacity of ESD really matters when minimizing
carbon emissions. With larger ESDs, we can achieve lower carbon emissions within a lower budget
of energy cost, and the reduction can reach more than 25% when ESD capacity is 10 Uhours.

2.2.6.2 Planning for Green Data Centers
To make planning for green data centers, we assume that each data center has its own wind turbines
and solar panels, so as to achieve low cost when using renewable energy. We suppose the operation
and management cost for the self-generated renewable energy is 10 $/MWh for all data centers,
as done in Reference 67. There are totally 40K BP-MSX-120 solar panels and 10K NE-3000 wind
turbines to power each data center. We suppose there are 15,000 servers in total, and each data center
has at least 2500 servers. Each server has the capacity of 7200 requests per hour with peak power
150 watt and idle power 90 watt. We assume the PUE of all those data centers can reach as low as 1.2
by using the state-of-the-art infrastructure. Let Uhour denote unit capacity of ESD, which equals to
the total energy of all servers running in peak power for 1 hour. We assume the total capacity of the
ESDs is 4 Uhours, and the upper bound of brown energy from the power grid for each data center is
2 Uhours.

Table 2.5 shows the deployment of servers, wind turbines, solar panels, and ESD capacities for
the data centers under the planning goal of minimizing carbon emissions. The renewable energy
produced by the data centers is usually much cheaper than that bought from the power grid while
with low carbon emissions. Therefore, data centers with abundant renewable energy will be deployed
with more servers, as well as wind turbines and solar panels. It can be inferred that Data Center 1
(DC1) is abundant in renewable energy of both wind and solar, so that most of the servers, wind
turbines, and solar panels are deployed in this data center, as can be seen in Table 2.5. The data
centers with more wind turbines and solar panels are always equipped with larger ESDs. With larger
ESDs, more green but cheap energy can be utilized to reduce carbon emissions. Besides, the energy
cost can be further reduced using ESDs. In the following, we will discuss how to reduce energy cost
by using ESDs and energy trading.

2.2.6.3 Usage of ESDs and Energy Trading in Reducing Energy Cost
In the United States, the smart grid usually allows end-users to sell the self-generated solar energy
back to the power grid, as studied in References 68 and 69. The selling-back price is lower than
that from the power grid, due to the energy losses during AC/DC conversion, transmission losses,
and profit consideration of the utility company. Let the selling price be denoted as Qgti; it can be
represented as Qgti = γ · Qbti, where γ is between 0 and 1.

Figure 2.8 shows the trend of energy cost with the increase of parameter γ. As can be seen, the
overall trend of the energy cost is decreasing with the increase of γ. There is no reduction in energy

TABLE 2.5
Deployment for the Four Data Centers

DC1 DC2 DC3 DC4 Total

Servers 7500 2500 2500 2500 15,000

Wind turbines 10,000 0 0 0 10,000

Solar panels 31,650 0 8350 0 40,000

ESD (Uhours) 3.86 0 0.14 0 4
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cost when γ is set to be 0.1 or 0.2. In this case, there is almost no energy sold back to the power
grid, because it will not make any profit with such low selling-back prices, even incurring economic
losses for the data centers. Interestingly, the data centers can make great profit by energy trading
with the power grid when the parameter γ is above 0.3. When γ reaches 0.7, there even appears
surplus profit for cloud operators after covering all the energy cost of the data centers. Therefore,
the parameter for the selling-back prices affects the total energy cost greatly.

Figure 2.9 shows comparisons of our modeling method with different benchmarks. We have three
benchmarks:

1. MinCost-NoTrading-NoESD: Minimizing total cost with no energy trading and no ESDs to
store energy [63]

2. MinCost-NoTrading-ESD: Minimizing total cost with no energy trading, but uses ESDs to
store energy [70]

3. MinCost-Trading-NoESD: Minimizing total cost with energy trading, but uses no ESDs

Our scheduling method is denoted as MinCost-Trading-ESD: minimizing total cost by using both
energy trading and ESDs. As can be seen, our scheduling of MinCost-Trading-ESD can always
achieve the lowest energy cost under different carbon emission levels. Without energy trading or
ESDs, the energy cost of MinCost-NoTrading-NoESD is the highest among the four schedulings.
It can be found that the energy cost can be reduced no matter using only energy trading or ESDs,
and more energy cost can be reduced using energy trading than using only ESDs, as can be seen in
MinCost-Trading-NoESD andMinCost-NoTrading-ESD. Energy trading is playing an important part
in reducing total energy cost under different carbon emission levels. As can be seen, for MinCost-
NoTrading-NoESD and MinCost-NoTrading-ESD with no trading, there is almost no change in
energy cost under different emission levels. In contrast, the cost of MinCost-Trading-NoESD and
MinCost-Trading-ESD change greatly under different emission levels. ESD is significant for the
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lowest emission level that can be achieved in scheduling. For example, the lowest emission level for
MinCost-NoTrading-NoESD andMinCost-Trading-NoESD is 145 tons, much more higher than that
using ESDs. It can be concluded that our scheduling of MinCost-Trading-ESD can greatly reduce
total cost with less carbon emissions by using both ESDs and energy trading.

2.3 CONCLUSION

In this chapter, we studied two most important issues for the energy management of big data centers:
VM power metering and greening data centers using renewable sources.

VM power metering is very important for the power management of data centers. In this section,
we introduced regression tree method to estimate the power consumption of each VM. It recursively
partitions the dataset by a best selected feature with proper value using binary tree structure. It proved
to be a well-designed solution in piecewise linear models, more relying on the characteristics of
dataset, rather than artificial setting. In addition, a new evaluation method is proposed, which reflects
the extent of error in a more objective way. We use standard deviation of errors to evaluate the
stability of our method. Experiments show that our regression tree method can measure the power
consumption of both VM and server with high accuracy and stability.

Greening cloud data center using renewable energy is the radical way to reduce carbon emissions.
We first introduced a green scheduling framework, based on which we study three key issues:

1. Minimizing carbon emissions under budget of energy cost.We consider using ESDs to store
three types of energy, wind, solar, and brown energy. By leveraging larger ESDs, the carbon
emissions can be significantly reduced with a lower budget of energy cost.

2. Planning for green data center, which tries to optimally take the advantages of renewable
energy in different locations by deploying proper number of server, wind turbines, solar
panels, and ESD capacities for each data center. The data centers deployed with larger
number of servers will always be correspondingly deployed with more wind turbines or
solar panels, as well as larger ESDs.
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3. Lowering energy cost through energy trading with the power grid. Simulation results show
that our scheduler using both energy trading and ESDs can significantly reduce total cost
within lower carbon emission levels. Besides, higher selling-back prices will incur more
energy sold back to the power grid, reducing more cost as a result.
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ABSTRACT

Multiple applications from various domains, scientific or enterprise applications, generate huge
amounts of data that have to be processed at real-time speed or acquired, cleaned, stored, and ready
to be used. Examples of such big data sources could be airplane sensor monitoring to predict future
engine crashes and avoid disaster (big data analytics) or a big data platform for modern healthcare.
In the context of big data processing challenges, the in-memory computing paradigm has emerged
and it is currently used by several big data platforms for data storage/query (in-memory data grids
or databases) and for data processing (in-memory computing grids).
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3.1 INTRODUCTION

Big data refers to data sets that cannot be managed, processed, or stored by traditional hard-
ware/software solutions within a tolerable time interval due to various characteristics: very large
dimensions of the set, the speed of producing the data, and the data may be structured or unstruc-
tured. We can find multiple examples of applications that generate such large data sets. TheMontage
general engine that computes the mosaic of input images and displays the northern part of the Milky
Way in visible light has a database that contains more than 2 million images with a size of around
2 TB. When using Facebook, users may upload photos, share pages, or post comments. In a smart
city, the real-time processing becomes the main issue for big data analytics [1].

Multiple solutions for processing big-data-scale data sets have been developed. The MapReduce
framework introduces a programming model that is implemented and used successfully in different
systems. We can identify some shortcomings for the MapReduce model like the overhead when
starting a job and that it is not suited for real-time or interactive jobs. Therefore, solutions that add
real-time capabilities or stream processing of big data appeared: in-memory computing (IMC), real-
time queries for big data, or stream processing frameworks. The main idea for IMC is that the data
is kept in a distributed main memory ready to be processed.

The chapter is organized as follows. Section 3.2 aims to provide a general context for IMC, includ-
ing themotivation, general patterns, and evolution of this paradigm, together with its applicability for
real-time big data processing. Section 3.3 analyzes the existing solutions for batch/streaming real-
time processing considering also hybrid solutions. It describes traditional programming models and
architectures and hybrid approaches suited for big data applications. Section 3.4 focuses on exist-
ing models and solutions of IMC. We also identify real applications of this paradigm and possible
improvements in the context of big data processing. Section 3.5 focuses on technology survey and
considers existing platforms and tools such as Spark, Spark Streaming, Main Memory MapReduce
(M3R), Amazon Kinesis, Flink, etc. We compare the capabilities of these technologies and appli-
cability in real-life use cases. Finally, Section 3.6 describes the main big data platforms, focusing
on HPC, Cloud, and Datacenters from real-time processing perspective. The platforms may be open
source or proprietary, and custom made for certain applications or general-use platforms.

3.2 GENERAL CONTEXT

3.2.1 BIG DATA

The big data concept has emerged rapidly in the last years and has been defined or characterized in
different ways. We can state that big data refers to data sets that cannot be managed, processed, or
stored by traditional hardware/software solutions. Some of the challenges in managing the data are
the very large dimensions of the set and the fact that data is produced continuously or that the data
should be cleaned before use to remove noise or outliers for the analysis [2]. Another characterization
of big data is done using a multiple V’s model [3]; some of these V’s are as follows:

• Volume: The dimension of the data.
• Variety: Structured (well-defined data model)/unstructured (data model not defined)/semi-

structured (not strict data model) or mixed (various types) data depending on the source that
generates it: sensors gathering surrounding conditions, retailers that store all transactions
for advanced analysis, genome analysis, and so on.

• Velocity: Data is generated and processed at different speeds: near-real-time manner (at
small time intervals), real-time (continuous data), or streams of data.

• Veracity: “Clean” the data to remove noise or abnormality.
• Value: Big data can be used for multiple goals: reporting of business processes or transac-

tions, churn analysis (why does user engagement drop?), diagnosing system failures, and
also making different decisions.
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FIGURE 3.1 Big data analytics process.

• Volatility: The data should be stored for different amounts of time depending on its validity
or importance.

As the big data sources increase and big data analysis is required inmultiple domains, it is required
intensive research to build solutions for efficiently acquiring data (this includes some preprocessing
and data cleaning), storing it or processing it for big data analytics applications (Figure 3.1) to extract
valuable information.

Big data analytics examples may be found in multiple domains. In e-commerce or retail indus-
tries, sentiment analysis, segmentation, or clustering techniques are frequently used based on user
logs/searches and recent user transactions, so that the customers receive targeted and personal-
ized recommendations and increase customer satisfaction [4]. Improved healthcare quality may be
obtained using genomics and sequence analysis where the big data processing and analysis in a
timely manner has a huge impact [5,6]. The Montage general engine [7] computes the mosaic of
astronomical input images generated by projects such as IPHAS (INT Photometric Hα Survey of
the Northern Galactic Plane) [8] that displays the northern part of the Milky Way in visible light. In
this case, the database contains more than 2 million images with a size of around 2 TB.

The concept of many-task computing (MTC) has been introduced in [9] and was subject to exten-
sive research. It has been defined as a combination of high-performance computing (HPC) and
high-throughput computing (HTC) and it refers to applications that require the interaction with large
data sets and generate a very large number of various tasks: independent/flows, small/large, and com-
putational/data intensive. MTC may be classified using the number of tasks and the data sets size:
big data (very large data sets and very high number of tasks), MapReduce (very large data sets and
relatively reduced number of tasks), or HTC (smaller data sets and very high number of tasks). So,
the big data may be considered as a data-intensive subset of MTC.

3.2.2 BIG DATA MANAGEMENT

The major challenges when thinking at the big data concept are acquiring, storing, processing, and
querying the data. Multiple paradigms and solutions have been developed for efficiently processing
big data that have to take into account the different characteristics of the data sets for which they are
being used, like the data variety or the speed of producing data [10].

The Lambda architecture [11] proposes the decomposition of the big data processing problem
into three layers: batch, serving, and speed layers.
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• Batch layer: Stores the master data and computes primitive functions on any subset of the
data. A representative example for the batch layer is the Hadoop stack.

• Serving layer: Randomly accesses the batch views/results of the batch layer, indexes the
views, loads them, and performs queries on the data in the batch views.

• Speed layer: Reduces the latency of the previous two layers, by accessing the most recent
data and updates the real-time view based on the new data, it does not recompute on the
entire data set. Real-time/streaming systems implement the speed layer.

TheMapReduce framework is an important solution for big datamanagement, built for processing
very large data sets in a distributed environment using commodity hardware. It uses amap function on
the input and combines the intermediate results using a reduce function. The Apache implementation
of theMapReduce framework relies on the HadoopDistributed File System (HDFS) and a distributed
database, HTable. Although it is highly used,MapReduce requires jobs that have all the data available
at once so that it may not be used for applications that require real-time processing or streaming-
like applications. Multiple extensions have been developed to add capabilities to this framework [3]:
Twister/HaLoop/Tez allow iterative, recursive, and batch jobs. On the other hand, totally different
paradigms and solutions have emerged to provide support for real-time big data processing or for
handling stream processing.

Real-time processing solutions try to reduce the MapReduce overhead—IMC—or optimize real-
time queries over a variety of big data types [12]. A cloud-based real-time system is AWS Kinesis, a
system for real-time processing of streaming data that can acquire data from multiple sources. The
processing of big data streams is also important, as the stream data pattern is very common. Spark
(IMC framework implementation) may be used to process streams by converting the data streams
into multiple batch jobs, but it is not suited for a real stream application. Storm is an example of
actual streaming solution.

3.2.2.1 In-Memory Computing
The main idea for IMC is to keep data in a distributed main memory near to the application code,
ready to be processed. This approach appeared over 20 years ago, but the main memory was very
expensive, and also there was no motivation to implement an IMC framework. The drop in RAM
costs and increasing need for real-time processing of big-data represented an incentive for this model
to be developed [13]. In [6], the authors describe an in-memory cloud-based platform for real-
time genome analysis. The data is stored in an in-memory database (IMDB), and the processing
is performed in the platform layer, a distributed IMDB system.

In-memory storage and query solutions are IMDBs and in-memory data grids (IMDGs). IMDBs
move the data to be queried in the main memory. There are native IMDBs (HANA or Altibase) or
traditional databases with in-memory extensions (Oracle). For IMDGs, the data may be processed in
a distributed system of commodity servers, using the MapReduce framework. An important point is
the difference between IMC and IMDBs and IMDGs. IMC is a paradigm that deals with computing
too and takes into account scheduling tasks and deciding whether to move the data near the code
or the code near the data, in contrast to the data solutions that deal only with data. In-memory data
solutions can be used as building blocks for an IMC solution.

3.3 BATCH/STREAMING REAL-TIME PROCESSING

3.3.1 BATCH PROCESSING FOR BIG DATA

Batch processing of big data assumes handling large volumes of data in batches, at regular inter-
vals [14]. The most important generic implementation for batch-processing is Apache Hadoop and
MapReduce. A number of other solutions have been built on top of Hadoop for specialized purposes:
data mining or machine learning. Though batch solutions are widely used, they are not suited for
real-time processing (Figure 3.2).
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FIGURE 3.2 Big data task types.

3.3.1.1 Apache Hadoop and MapReduce
The Apache Hadoop [15] platform is the most important solution for big data batch processing using
a cluster of commodity machines. It relies on HDFS as a distributed file system and MapReduce as
a parallel programming model and a number of additional projects, available as services that may be
installed in a Hadoop cluster (Hive, Pig, Mahout). Hadoop represents a reliable framework and it is
a complete ecosystem (a wide range of services available for building a landscape).

The MapReduce [16] model may be formally described as follows: the input is split into small
tasks of type (key, value) and is distributed along the system to the workers, and a mathematical func-
tion is used to process the input (map stage). The result of the map stage is shuffled across the system
using the key, and a reduce function is used to combine the intermediate results. This model might
be used for extracting data and producing reports or extracting properties of Web pages for local-
ized search. In the case of large machine-learning problems, with iterative and recursive processes,
MapReduce is not efficient, due to the overhead for starting a MapReduce job.

3.3.1.2 Apache Mahout
Apache Mahout is a library for building scalable data mining and machine-learning applications.
Mahout provides multiple machine-learning algorithms implementations. It runs over Hadoop using
MapReduce. Its main design goals are the efficient processing, the ease of use, or the fact that it
might be easily integrated with different data stores and extended. It has been used in multiple appli-
cations requiring machine-learning implementations such as clustering Wikipedia’s articles [17],
collaborative filtering [18], or in bioinformatics (also the clustering algorithms are used in this case).

3.3.1.3 Dryad
The Dryad parallel computing model [19] allows building applications that scale well in clusters of
different sizes. The framework is based on dataflow graph execution, where the vertices are the com-
putational elements and the edges are the communication channels. One of the main purposes was
the ease of writing programs using this framework. The developer does not take care of concurrency
issues in parallel programming, but instead, he or she has to write several sequential programs (the
“vertices”) and connect them using one-way edges (the dataflow graph is a directed acyclic graph).
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A Dryad job is coordinated by a job manager (JM). The JM is responsible to generate the job’s
communication graph for each application, so it contains application-specific code. It also takes care
of scheduling the work across the available resources. The data is sent directly between nodes and
does not get through the JM, which is just a decision maker and does not mediate the communication.
The graph is built using a simple language composed of procedure calls, as a C++ library.

3.3.2 BIG DATA STREAMING PROCESSING

The stream processing pattern refers to processing input data without storing it completely: online
machine learning, real-time analytics, process logs streams, or streams of different events [20]. The
traditional batching systems could be enhanced toward a microbenchmarking-like processing, but
there is a need for native stream processing systems. MapReduce might be enhanced to group the
incoming stream into small batches. The authors of [21] proposed a prototype for online Hadoop
suited for online/pipeline aggregations. For computations that require a single MapReduce job, the
map and reduce phases are completely decoupled; the reduce step does not pull the map result any
more, but rather the map worker will push its output into the reduce phase. For multijob online
computations, storing the intermediate reduce results in HDFS will be skipped; instead, the result
will be pushed into the next map phase.

A streaming processing solution based on Spark is Spark Streaming and it implements the
D-Streams [22] processing model (discretized streams). The streaming computation consists in a
series of deterministic batch computations for small time intervals without the need of synchroniza-
tion. To address the latency challenge, the data structure of resilient distributed data sets (RDDs)
is used for keeping the data in memory. Based on the determinism of the state of each batch com-
putation, the fact that no replication or synchronization is used, a parallel recovery mechanism is
triggered when a node is lost and its RDDs are recomputed by each node in the cluster [23].

3.3.2.1 Apache Storm
Storm is a reliable, fault-tolerant computation system for processing real-time data streams. It is
highly used, thanks to the performances of the system (good scaling, work balancing, reliability)
and the multilang feature that allows the use of multiple programming languages such as Java, Scala,
or Python. Storm is used for stream aggregation and processing at Yahoo, Twitter, or Spotify [24].
Streamparse [25] is a Python library that provides an integration of Python and Storm and might be
used as a starting point for Python projects that require the Storm processing model.

Storm uses a simple abstraction of the stream computing problem (Figure 3.3). The concepts
that are used are Tuples—the data “unit,” the basic component of a Stream. A Spout generates raw
streams of data and sends them to Bolts based on different criteria such as grouping using a hash
function. Bolts apply different functions such as aggregation, filtering, or custom functions on the
input streams and might have as output other streams that are sent to other components. A Topology
wires the spouts and bolts together.

The Storm architecture [20] is quite similar to Hadoop’s and consists of one Nimbus master node
and multiple worker nodes (a few ZooKeeper nodes and multiple Supervisor nodes). The Storm
topology (an executable program) is deployed on the master node. The Nimbus node deals with the
control, runs the scheduling, and sends the workers assignment to the ZooKeeper nodes. The latest
ones contact the Supervisors to send the assignment information. Finally, the Supervisors launch the
Workers that download the topology from the Nimbus, based on the assignment information. The
workers implement the actual Storm topology.

3.3.2.2 Apache S4
Apache S4 (Simple Scalable Streaming System) [26] is a general distributed engine for processing
streams. It relies on a decentralized cluster of commodity hardware: all the nodes are processing
elements (PEs) that perform computations, and the interaction between PEs consists in input/output
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FIGURE 3.3 Storm basic concepts.

data streams that are consumed/emitted. The cluster management is handled using the ZooKeeper
service, the data events can be routed to the appropriate PE, and PE instancesmay be created/removed
when needed.

S4 provides a simple programming interface. The core code is written in Java and it was designed
as a modular, pluggable, generic architecture that allows customizations as newmodules, so develop-
ers may easily write and deploy applications as S4 jobs modules. It was initially released by Yahoo!
before becoming an Apache project, so it has been tested in real-life systems for processing search
queries, and has proven good performances.

3.3.2.3 Apache Flink
Apache Flink [27,28] is an open-source big data platform for distributed environments, developed
since 2009 (in a research group) and became part of the Apache incubator in 2014. It provides a
streaming dataflow engine that handles data distribution and communication in the cluster, fault
tolerance, and scalability. It includes APIs and components for both streaming and batch processing
and libraries for machine learning or complex events processing.

Flink uses the same runtime for batch and streaming applications and it manages the JVMmemory
itself avoiding expensive garbage collector operations. Flink optimizes iterative jobs (like machine-
learning applications) and batch programs (it caches intermediary data to avoid expensive operations
like shuffle or sort). Flink may be integrated with a wide range of other projects: HDFS, Kafka,
or Yarn.

3.3.2.4 Splunk
Splunk [29] is a real-time, scalable, and versatile platform for IoT big data. It gathers the data streams
from different sources such as sensors, network, applications, or end users and allows users to search,
monitor, and analyze it via a Web interface. Splunk offers a large number of products suited for
different users: Splunk Enterprise, Splunk Cloud (Splunk Storm is a cloud version), a lightweight
service, or a platform for a Hadoop cluster, HUNK. A stand-alone application is Splunk App for
Stream: it collects streaming application performance data from the network and makes it available
for analysis in the Splunk platform.
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Data processing in Splunk has some major phases. The data is acquired in the input segment
as a stream from the source; some metadata is added without analyzing the data. Next, it goes in
the parsing segment, when the stream is divided into events based on the contents and some more
information is added to the metadata. The data is then indexed, so the data from diverse sources is
combined into centralized indexes and may be searched quickly.

3.4 IN-MEMORY COMPUTING

IMC may be defined as a solution that stores data in RAM, across a distributed system (cluster,
cloud), and processes it in parallel [30]. The key idea for IMC systems is that the RAM should be
the primary storage for the code and the data the code works with. At some point, the data might not
fit into the RAM anymore. In this case, the IMC systems should handle the mechanisms to place the
data in a second storage.

In the traditional computing paradigm, the application code resides in the main memory and the
required application data is brought from the hard disk into the main memory. If we keep the data in
a distributed main memory ready to be processed, we avoid the latency introduced by the communi-
cation with the hard disk. So far, the main memory was very expensive, so the amount of data kept
in the RAM was limited. Also, before the big data notion, there was no motivation to implement
an IMC framework. The drop in RAM costs and increasing need for real-time processing of big
data represented an incentive for this model to be developed. Some of the use cases for IMC are the
same as the applications that generate big data sets: medical imaging processing, natural language
processing, real-time sentiment analysis, or real-time machine learning. There is a demand for com-
putation nodes with a very large main memory. Amazon has announced new X1 virtual machines of
physical servers carrying up to 2 TB of RAM [31] for demanding applications or IMDBs.

IMC is a complex paradigm and it does not refer to only IMDB systems. The remaining of this sec-
tion will cover IMC notions: in-memory cache systems, IMDGs, IMDBs, and in-memory processing
systems or computing grids [13].

Caching has an important role for I/O optimizations because frequently accessed data is kept
in the process memory (hence, in-memory caching) and it also optimizes the CPU workload by
keeping intermediate results without recomputing. The cache systems are generally distributed in-
memory key–value stores with put/get operations and may access the second storage via read/write
functionality. Other features depend on the actual implementation like policies to evict the data or
ACID transactions. Lately, the distributed caching has been disappearing, as the IMDGs or IMDBs
have taken over the caching challenges.

The basic idea for IMDBs is that the data is kept in the main memory and the disk is used for
backups, logs, and “cold” data that does not fit in the RAM. Relational databases have been devel-
oped and enhanced since 1970s, the data is organized into tables and relations, and ACID properties
are guaranteed. In-memory relational databases have been studied since the 1980s, but they have
appeared in the last decade, thanks to hardware advances. Some examples of relational IMDBs are
SAP HANA or H-Store. Relational IMDBs pay attention also to how tables are stored in the memory
(in the case of SAP HANA, the data in tables may be stored column-wise) and data partitioning. In
NoSQL databases, the data may be stored as key–values, trees, or graphs. Several NoSQL IMDBs
have appeared: MongoDB (document store), RAMCloud (in-memory key–value store), or Trinity
(in-memory distributed graph database).

The IMDGs (Figure 3.4a) are also key–value stores distributed in a cluster, which have to take
care of data high availability (they relay on a caching mechanism and take over the responsibility of
in-memory caching systems). Data grids have additional features compared to the cache systems. The
basic features of IMDGs include data partitioning across the nodes and transactional ACID support.
Then, we can refer to a support for co-location of computations and data in IMDGs, meaning that
the computation code should be moved near the data that is stored in the main memory of the nodes
in the cluster. Data is moved only when nodes appear/are lost and the data has to be repartitioned.
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(a) (b)

FIGURE 3.4 (a) In-memory data grid; (b) Ignite IMDG and IMC.

Massively parallel processing (MPP) is another important characteristic of IMDGs with support for
SQL and/or MapReduce, which optimizes data computations across the cluster and may respond to
complex data processing. The design of IMDGs allows them to scale up really well with the cluster
size because they are native scalable as opposite to IMDBs.

If a user wants to upgrade the infrastructure to use the speed of IMC, there would be two options.
A first possibility would be to use an IMDG that relies on an existing database (IMDGs are highly
integrated with database systems) and make some changes to the application to take advantage of
the newMPP, MapReduce, or other IMDG features. The other option to use an IMDB would require
replacing the existing database (unless it already has an in-memory option), but the application code
will not demand significant changes.
In-memory processing systems are focused on efficiently executing algorithms/code on the same

set of computers in the grid, meaning that it has a main target to schedule the computations across the
data stored in the cluster. IMC systems have to take care of other additional aspects: deployment of
the code, resourcemanagement, distributed executionmodel (MapReduce,MPI, StreamProcessing),
or distributed execution services (taking care of reliability, load balancing fault recovery). We can
distinguish between two types of in-memory processing systems: for data analytics (mainly batch
systems), Spark or Grid-Gain; and solutions for real-time processing (stream processing), Storm,
Yahoo! S4, Spark-Streaming, or XAP.

3.5 TECHNOLOGY SURVEY

In this section, we will take a closer look at two important IMC systems: Spark and M3R. The
traditional solutions for big data management were described in Section 3.2.

3.5.1 SPARK

Spark system [32] uses a data abstraction for big data called RDD. RDDs are deterministic, read-
only (immutable) partitioned set of records. Every action or transformation on an RDD creates a
new RDD, so an RDD can be created only via a deterministic sequence of transformations. RDDs
have the following properties: an user can explicitly cache working sets for speedups, locality-aware
scheduling, and fault tolerance.

Spark uses a persistence model that decides whether to persist the RDD in memory, on disk, or
both. When persisting the RDD in memory, other subsequent applications that need to read the RDD
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(a) (b)

FIGURE 3.5 (a) Spark runtime; (b) Spark scheduler.

have it available in the main memory. The lightweight fault recovery mechanism relies on the fact
that an RDD has the information on how it was derived from other RDDs (lineage).

In Figure 3.5a [13,32], the main runtime flow of a Spark job is described. A driver is launched to
start the job. It starts multiple workers, defines one or more RDDs, and invokes the required actions
on them. The workers can read the RDD from a distributed file system and can cache the RDD
partitions.

3.5.2 MAIN MEMORY MAPREDUCE

M3R [33] is a new implementation of the MapReduce framework and uses the IMC paradigm. The
M3R engine follows the traditionalMapReduce batch-processingmodel and implements theMapRe-
duce API, so it has backwards compatibility and it can run existing Hadoop jobs or jobs generated
by higher level services from the Hadoop Stack (Pig or SystemML).

M3R implements in-memory execution and stores key–value sequences in the heap. There is no
resilience assured; if a node fails, then no recovery is possible. The improvements compared to the
traditional MapReduce engine are as follows:

• The input/output is cached in the in-memory key–value store so that the output is not
persisted and subsequent jobs will get their input directly from the main memory.

• The shuffle phase overhead is reduced by the following features: co-location—the M3R
engine takes care of the case when a mapper has to send data to a reducer in the same JVM
and avoid network or I/O involvement; partition stability—the partitioning of keys across
the reducers is deterministic, and in the case of an iterative job, the mapper associated with
a certain key will be assigned to the same place so that the key will be locally shuffled;
de-duplication—do not send a copy of the map output to each reducer but to each reducer
location.

3.6 BIG DATA PLATFORMS: HPC, CLOUD, AND DATACENTERS

3.6.1 APACHE IGNITE

Apache Ignite [34] is an in-memory data fabric that combines different components such as IMDG,
IMC grid, and in-memory streaming into the same unique solution. Ignite is a general purpose plat-
form for IMC that applies to a broad range of use cases, thanks to its multiple components: HPC,
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FIGURE 3.6 Apache Ignite overview.

data grid, service grid, or streaming applications. Apache Ignite works with multiple underlying data
stores for structured (SQL), unstructured (NoSQL), or semistructured (Hadoop), and it offers real-
time, interactive queries over the data layer. It also provides a unified API that allows integration
with cloud IoT or enterprise applications.

From an architectural point of view, Apache Ignite is a middle ware software based on JVM
for a decentralized homogeneous cluster (Figure 3.6). It relies on a service provider interface (SPI)
design: each component is modular and pluggable so that the system is highly configurable and can
be adapted for different infrastructures.

The Ignite IMDG uses the main memory as primary storage and offers distributed cache as a
key–value store. Compared to Spark, Ignite provides SQL in-memory indexing, which speeds up
the SQL queries 100 times faster than in the case of native Spark RDDs. Another important feature
consists in the distributed SQL joins or cross-cache joins.

The Ignite in-memory compute grid provides a simple API for writing distributed computations or
data processing in the cluster such as CPU-intensive applications or resource-intensive tasks (HPC or
MPP). The important features of the in-memory compute grid that are implemented include different
parallel processing paradigms such as in-memory fork-join or in-memory map-reduce engine imple-
mentation or fault tolerance. It also allows the collocation of code with data either automatically or
manually (configured by the user/developer) as needed. The scheduler balances load distribution of
the jobs and a default scheduling policy is applied, but the scheduling may be customized in the code
[34]. Check-pointing allows saving the state of a job suited for long-running jobs.

Another important component is the Hadoop Accelerator, a module that allows in-memory
Hadoop jobs execution and file system operations. The accelerator contains an implementation of
an in-memory file system (IGFS), compatible with HDFS, which stores file system data in the
main memory and optimizes I/O latency. It provides an in-memory MapReduce implementation
that reduces some overhead from the traditional Hadoop architecture (name node, task trackers) and
offers performance boosts for CPU-intensive tasks with only small changes in the application due
to faster scheduling process and data-locality-aware nodes (the name node was the only responsible
for the data location).
In-memory streaming support addresses a broad variety of big data applications that cannot be

efficiently executed by traditional systems. It allows to process infinite streams of data that may arrive
at different rates (evenmillions of events per second) in scalable and fault-tolerant fashion. It relies on
the data grid for data locality. The streams are partitioned between the nodes and processed in sliding
windows. Continuous queries may be registered for the changing data. It integrates with multiple
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solutions that acquire streams of data and consumes the streams into the Ignite cache: Apache Flume
Sink, Apache Kafka, or Apache Camel Streamer.

3.6.2 SAP HANA

In the case of SAP, the IMC paradigm has a long history, and SAP technologies have evolved in
the process of adopting the in-memory approach [35]. SAP TREX is a search engine for structured
data (search and aggregate business data) or unstructured data (search and classify a large number of
documents). TREX loads indexes into working memories because data compression is used, so large
volumes of data may be processed entirely in memory. Next, SAP live Cache technology is a hybrid
database: it is based on SAPMaxDB, a traditional relational database and combines in-memory data
storage and object-oriented database technologies. SAPNetWeaver BusinessWarehouseAccelerator
specializes on speeding reporting queries and SAP BusinessObjects Explorer Accelerated extends
BWAccelerator, with a front end to navigate through the data in the BWAccelerator. SAP HANA is
an IMDB that combined features from the previous in-memory solutions with research results from
Hasso Plattner Institute (HPI) [36].

So, SAP HANA is the central element in SAP data management platform: an IMDB with the
purpose of providing a generic and powerful system for large data analysis and aggregation [37]. It
uses very large amounts of main memory, multicore CPUs on multiple nodes in a cluster, and SDD
storage, to improve the performance. The main characteristics of SAP HANA that contribute to its
goal are the following:

• Multiquery engine processing environment: offers support for structured, unstructured, or
semistructured data. It allows joins on semistructured data. It uses a graph engine to run
different algorithms (planning, supply chain), a text engine for unstructured data and a
relational engine for structured data.

• Register semantic data structures and also business logic in the data management system
(not the application layer).

• Use hardware advances: storage devices, large number of nodes and many cores per node,
cluster configuration.

• Communicate with the application layer in an efficient way, when talking about SAP
proprietary applications (using shared memory).

The SAPHANA application is suitable for multiple use cases. In [38], we can find themajor areas for
SAP HANA: real-time replication of data for BI analytics, using table replication for improving the
speed of programs and reports from the SAP ERP system, as a replacement for BW, as a substitute
for SAP ERP.

Some applications of HANA in big data, optimizing business operations, or real-time operational
intelligence use cases are presented in [39]. HANA is suited for big data use cases for the following
reasons: it may acquire data using real-time gathering systems (like event stream processing), use
predictive analytics or data science to get data insights, and develop applications using integrated
platform tools. An example of use case is managing energy resources: monitor loads (find peak
loads) or guide the wise use of energy.

3.6.3 XAP

GigaSpaces eXtreme Application Platform (XAP) [40] is a platform built to scale applications in
high-performance low-latency landscape, while the data volume, number of transactions, or number
of user connections increase. The use cases for XAP include extreme transactional applications,
such as trading or market data, and real-time analytics applications, such as air travel management
(customer case—XAP for stream processing and real-time analytics).
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FIGURE 3.7 XAP components.

The main components of GigaSpaces XAP are represented in Figure 3.7:

• OpenSpaces is a Spring-based framework used to develop applications in GigaSpaces, and
XAP uses a Space-Based Architecture (SBA) as a main design pattern. The Space is an
in-memory service that contains entries of information and might be accessed using four
operations: write, read, take, and notify. Space is a logical concept/interface that defines
a memory location and represents the basic building block for XAP. An abstraction at the
OpenSpaces layer is the Processing Unit; it encapsulates the middleware and the business
logic in a single unit.

• Core Middleware uses the same space-based model that exposes both JavaSpaces API and
other standard APIs such as JCache or JDBC. At this layer, the IMDGprovides data caching
and distributed state sharing.

• SLA-Driven Containers, lightweight containers—Java processes, are used to deploy Pro-
cessingUnits in a dynamic environment and they rely on SLAdefinitions. Themain purpose
of the container is to virtualize the underlying compute resources. These containers may be
used to deploy also IMDGs within a Processing Unit and might relocate IMDGs instances
depending on memory utilization and SLA.

As a short summary, the main features of XAP include that a single platform is able to run various
applications and all tiers are included in a single container. Next, the data access is fast because all
data is stored in-memory. Also, XAP provides high availability using in-memory backup for each
container. The scaling for the applications may be automatically or on demand.

3.7 CONCLUSIONS

The big-data-scale data sets rise new challenges in terms of data management: acquiring, validation,
storing, and processing to obtain meaningful results. The hardware evolution allowed the old IMC
idea to be implemented as a paradigm in current systems and it is successfully used in big data
platforms. In this chapter, we analyzed the evolution of the in-memory paradigm, emergence of
IMC frameworks and platforms for big data scenarios, and the benefits of using IMC-based systems
for real big data problems.
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ABSTRACT

Distributed software transactional memory (DTM) is an emerging, alternative concurrency con-
trol model for distributed systems that promises to alleviate the difficulties of lock-based dis-
tributed synchronization—for example, distributed deadlocks, livelocks, and lock convoying. A
complementary approach for handling conflicts is through a transactional scheduler, which orders
transactional requests to avoid or minimize conflicts. This chapter focuses on the closed and
open nesting models of managing inner (distributed) transactions to improve throughput on in-
memory data grids and presents three transactional schedulers, called reactive transactional sched-
uler (RTS), dependency-aware transactional scheduler (DATS), and scheduling-based parallel-
nested (SPN) transactional scheduler to support closed-, open-, and parallel-nested transactions,
respectively.
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4.1 INTRODUCTION

The explosion of big data management and processing for data-intensive analytics has prompted
much research to develop in-memory data grids. Processing data on in-memory has fueled
dynamic scalability and high performance of applications for distributed processing over big data.
Such an application requires more stringent atomicity to access shared and distributed data, and
the code blocks in the application are accordingly synchronized [1]. Traditionally, lock-based
synchronization has been exploited for processing the atomic code blocks, but it is inherently
error-prone [2].

For example, coarse-grained locking, in which a large data structure is protected using a single
lock, is simple and easy to use, but permits little concurrency. In contrast, with fine-grained locking,
in which each component of a data structure (e.g., a hash table bucket) is protected by a lock, pro-
grammers must acquire only necessary and sufficient locks to obtain maximum concurrency without
compromising safety, andmust avoid deadlocks when acquiringmultiple locks. Both these situations
are highly prone to programmer errors. The most serious problem with locks is that they are not eas-
ily composable—that is, combining existing pieces of software to produce different functionality is
not easy. This is because, lock-based concurrency control is highly dependent on the order in which
locks are acquired and released. Thus, it would be necessary to expose the internal implementa-
tion of existing methods, while combining them, in order to prevent possible deadlocks. This breaks
encapsulation, and makes it difficult to reuse software, a condition that has motivated transactional
memory (TM) [2].

TM is an alternative synchronization model for shared memory data objects that promises to
alleviate the difficulties of lock-based synchronization (i.e., scalability, programmability, and com-
posability issues). As TMcode is composed of read/write operations on shared objects, it is organized
as memory transactions, which optimistically execute, while logging any changes made to accessed
objects. Two transactions conflict if they access the same object and one access is a write. When
that happens, a contention manager resolves the conflict by aborting one and allowing the other to
commit, yielding (the illusion of) atomicity. Aborted transactions are restarted, often immediately,
after rolling-back the changes. Sometimes, a transactional scheduler is also used, which determines
an ordering of concurrent transactions so that conflicts are either avoided altogether or minimized.

Many libraries or third-party softwares contain atomic code, and application developers often
desire to group such code, with user, other library, or third-party (atomic) code into larger atomic code
blocks. This can be accomplished by nesting all atomic codewithin their enclosing code, as permitted
by the inherent composability of TM. But doing so—that is, flat nesting—results in large monolithic
transactions, which limits concurrency: when a large monolithic transaction is aborted, all nested
transactions are also aborted and rolled back, even if they do not conflict with the outer transaction.

Further, in many nested settings, programmers desire to respond to the failure of each nested
action with an action-specific response. This is particularly the case in distributed systems—for
example, if a remote device is unreachable or unavailable, one would want to try an alternate remote
device, all as part of a top-level atomic action. Furthermore, inadequate performance of a nested
third-party or library code must often be circumvented (e.g., by trying another nested code block) to
boost overall application performance. In these cases, one would want to abort a nested action and
try an alternative, without aborting the work accomplished so far (i.e., aborting the top-level action).

Three types of nesting have been studied in TM: flat, closed, and open [3]. If an inner transaction
I is flat-nested inside its outer transaction A, A executes as if the code for I is inlined inside A. Thus,
if I aborts, it causes A to abort. If I is closed-nested inside A, the operations of I only become part
of A when I commits. Thus, an abort of I does not abort A, but I aborts when A aborts. Finally, if I
is open-nested inside A, then the operations of I are not considered as part of A. Thus, an abort of I
does not abort A, and vice versa. We will discuss these types in Section 4.2.

If I aborts, A must abort because there may be dependency between I and A. However, if there is
no dependency between both, aborting A leads to degraded performance. Even though all the inner
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transactions commit, A aborts. In this case, two actions can be considered as the following: (1) In
closed nesting, all the inner transactions abort since they have committed internally. (2) In open
nesting, the compensation actions corresponding to the inner transactions are executed. Also, both
actions degrade performance. To cope with such a difficulty, this chapter will cover three transac-
tional schedulers, called reactive transactional scheduler (RTS), dependency-aware transactional
scheduler (DATS), and scheduling-based parallel-nested (SPN) transactional scheduler to support
closed, open, and parallel-nested transactions, respectively.

RTS, DATS, and SPN have been implemented over a popular open-source transactional
in-memory data store (i.e., Red Hat’s Infinispan [4,5]). This chapter will provide how RTS, DATS,
and SPN work in detail and their experimental evaluations on Infinispan.

4.2 PRELIMINARIES AND SYSTEM MODEL

We consider a distributed system that consists of a set of nodes N = {n1, n2, . . .} that communicate
with each other by message-passing links over a communication network. Similar to Reference 6,
we assume that the nodes are scattered in a metric space. The metric d(ni, nj) is the distance between
nodes ni and nj, which determines the communication cost of sending a message from ni to nj.

4.2.1 DISTRIBUTED TRANSACTIONS

A distributed transaction performs operations on a set of shared objects in a distributed system,
where nodes communicate by message-passing links. Let O = {o1, o2, . . .} denote the set of shared
objects. A transaction Ti is in one of three possible statuses: live, aborted, or committed. If an aborted
transaction retries, it preserves the original starting timestamp as its starting time.

We consider Herlihy and Sun’s dataflow distributed STMmodel [6], where transactions are immo-
bile, and objects move from node to node. In this model, each node has a TM proxy that provides
interfaces to its application and to proxies at other nodes. When a transaction Ti at node ni requests
object oj, the TM proxy of ni first checks whether oj is in its local cache. If the object is not present,
the proxy invokes a distributed cache coherence (cc) protocol to fetch oj in the network. Node nk
holding object oj checks whether the object is in use by a local transaction Tk when it receives the
request for oj from ni. If so, the proxy invokes a contention manager to mediate the conflict between
Ti and Tk for oj.

When a transaction Ti invokes an operation on object oj, the cc protocol is invoked by the local
TM proxy to locate the current cached copy of oj. We consider two properties of the cc. First, when
the TM proxy of Ti requests oj, the cc is invoked to send Ti’s read/write request to a node holding a
valid copy of oj in a finite time period. A read (write) request indicates the request for Ti to conduct
a read (write) operation on oj. A valid object copy is defined as a valid version. Thus, a node holding
versions of oj replies with the version corresponding to Ti’s request. Second, at any given time, the
cc must locate only one copy of oj in the network and only one transaction is allowed to eventually
write to oj.

4.2.2 NESTED TRANSACTIONS

The differences between the nesting models are shown in Figure 4.1, in which there are two trans-
actions containing a nested transaction. With flat nesting illustrated in Figure 4.1a, transaction T2
cannot execute until transaction T1 commits. T2 incurs full aborts, and thus has to restart from the
beginning. Under closed nesting presented in Figure 4.1b, only T2’s inner transaction needs to abort
and be restarted while T1 is still executing. The portion of work T2 executes before the data structure
access does not need to be retried, and T2 can thus finish earlier. Under open nesting in Figure 4.1c,
T1’s inner transaction commits independently of its outer, releasingmemory isolation over the shared
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(a)

(b)

(c)

FIGURE 4.1 Two transactions under flat, closed, and open nesting. (a) Flat nesting. (b) Closed nesting.
(c) Open nesting.

data structure. T2’s inner transaction can therefore proceed immediately, thus enabling T2 to commit
earlier than in both closed and flat nesting.

The flat- and closed-nested models have a clear negative impact on large monolithic transac-
tions in terms of concurrency. In fact, when a large transaction is aborted, all its flat/closed-nested
transactions are also aborted and rolled back, even if they do not conflict with any other transac-
tion. Closed nesting potentially offers better performance than flat nesting because the aborts of
closed-nested inner transactions do not affect their outer transactions. However, the open-nesting
approach outperforms both in terms of concurrency allowed. When an open-nested transaction com-
mits, its modifications on objects become immediately visible to other transactions, allowing those
transactions to start using those objects without a conflict, increasing concurrency [7]. In contrast, if
the inner transactions are closed- or flat-nested, then those object changes are not made visible until
the outer transaction commits, potentially causing conflicts with other transactions that may want to
use those objects.

To achieve high concurrency in open nesting, inner transactions have to implement abstract seri-
alizability [8]. If concurrent executions of transactions result in the consistency of shared objects at
an “abstract level,” then the executions are said to be abstractly serializable. If an inner transaction
I commits, I’s modifications are immediately committed in memory and I’s read and write sets are
discarded. At this time, I’s outer transaction A does not have any conflict with I due to memory
accessed by I. Thus, programmers consider the internal memory operations of I to be at a “lower
level” than A. A does not consider the memory accessed by I when it checks for conflicts, but I must
acquire an abstract lock and propagates this lock for A. When two operations try to acquire the same
abstract lock, the open nesting concurrency control is responsible for managing this conflict (so this
is defined “abstract level”).
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FIGURE 4.2 Aborting a transaction under open nesting.

Figure 4.2 shows that transaction T2 aborts due to a conflict and the compensation action of its
inner transaction is executed. Let us assume that T1 and T2’s inner transactions access the different
object and commit successfully. However, their outer transactions access the same object and T2
aborts. The compensating action of T2’s inner transaction must be executed because the inner trans-
action’s modification has become visible to other transactions. Even if open-nested transactions
provide high concurrency of inner transactions, the open-nested model does not always perform
better than flat- and closed-nested models due to a large number of abstract locks and compensation
actions [9].

4.2.3 ATOMICITY, CONSISTENCY, AND ISOLATION

We use the transactional forwarding algorithm (TFA) [10] to provide early validation of remote
objects, guarantee a consistent view of shared objects between distributed transactions, and ensure
atomicity for object operations in the presence of asynchronous clocks. TFA is responsible for
caching local copies of remote objects and changing object ownership. Without loss of generality,
objects export only read and write methods (or operations).

For completeness, we illustrate TFA with an example. In Figure 4.3, a transaction updates object
o1 at time t1 (i.e., local clock [LC] is 14) and four transactions (i.e., T1, T2, T3, and T4) request o1
from the object holder. Assume that T2 validates o1 at time t2 and updates o1 with LC= 30 at time
t3. A validation in distributed systems includes global registration of object ownership. Any read or
write transaction (e.g., T4) which has requested o1 between t2 and t3 aborts. When write transactions
T1 and T3 validate at times t1 and t2, respectively, transactions T1 and T3 that have acquired o1 with
LC= 14 before t2 will abort, because LC is updated to 30.

RTS and SPN are associated with nested TFA (N-TFA) [11], which is an extension of TFA
to implement closed nesting in distributed software transactional memory (DTM). DATS is asso-
ciated with TFA with open nesting (TFA-ON) [9], which extends the TFA algorithm [10], to
manage open-nested transactions. N-TFA [11] and TFA-ON [9] change the scope of object
validations.

FIGURE 4.3 An example of TFA.



66 Big Data Management and Processing

4.3 REACTIVE TRANSACTIONAL SCHEDULER

4.3.1 MOTIVATION

Past transactional scheduler often causes only a small number of aborts and reduces the total com-
munication delay in DTM [1]. However, aborts may increase when scheduling nested transactions.
In the flat and closed nesting models, if an outer transaction, which has multiple nested transac-
tions, aborts due to a conflict, the outer and inner transactions will restart and request all objects
regardless of which object caused the conflict. Even though the aborted transactions are enqueued to
avoid conflicts, the scheduler serializes the aborted transactions to reduce the contention on only the
object that caused the conflict. With nested transactions, this may lead to heavy contention because
all objects have to be retrieved again.

Proactive schedulers abort the losing transaction with a backoff time, which determines how long
the transaction is stalled before it is restarted [12,13]. Determining backoff times for aborted trans-
actions is generally difficult in DTM. For example, the winning transaction may commit before the
aborted transaction is restarted due to communication delays. This can cause the aborted transac-
tion to conflict with another transaction. If the aborted transaction is a nested transaction, this will
increase the total execution time of its parent transaction. Thus, the backoff strategy may not avoid
or reduce aborts in DTM.

Motivated by this, we propose the RTS scheduler for closed-nested DTM. RTS reduces the num-
ber of parent transactions’ aborts to prevent their committed nested transactions from the aborts.
RTS checks the length of the parent transaction’s execution time and determines whether losing
transaction is aborted or enqueued. If the parent transaction has a short execution time, it aborts.
Otherwise, it is enqueued to preserve its nested transactions. A backoff time used for the enqueued
parent transaction indicate, when the transaction is likely to receive an object.

4.3.2 SCHEDULER DESIGN

We consider two kinds of aborts that can occur in closed-nested transactions when a conflict occurs:
aborts of nested transactions and aborts of parent transactions. Closed nesting allows a nested trans-
action to abort without aborting its parent transaction. If a parent transaction aborts, however, all
of its closed-nested transactions are aborted. Thus, RTS performs two actions for a losing parent
transaction. First, determining whether losing transaction is aborted or enqueued by the length of its
execution time. Second, the losing transaction is aborted if it is a parent transaction with a “high”
contention level. A parent transaction with a “low” contention level is enqueued with a backoff
time.

The contention level (CL) of an object oj can be determined in either a local or distributed manner.
A simple local detection scheme determines the local CL of oj by how many transactions have
requested oj during a given time period. A distributed detection scheme determines the remote CL
of oj by how many transactions have requested other objects before oj is requested. For example,
assume that a transaction Ti is validating oj, and Tk requests oj from the object owner of oj. The local
CL of oj is 1 because only Tk has requested oj. The remote CL of oj is the local CL of objects that Tk
have requested if any. Ti’s commit influences the remote CL because those other transactions will
wait until Tk completes validation of oj. If Tk aborts, the objects that Tk is using will be released, and
the other transactions will obtain the objects. We define the CL of an object as the sum of its local
and remote CLs. Thus, the CL indicates how many transactions want the objects that a transaction
is using.

If a parent transaction with a short execution time is enqueued instead of aborted, the queuing
delay may exceed its execution time. Thus, RTS aborts a parent transaction with a short execution
time. If a parent transaction with a high CL aborts, all closed-nested transactions will abort even if
they have committed with their parent and will have to request the objects again. This may waste
more time than a queuing delay. As long as their waiting time elapses, their CL may increase. Thus,
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RTS enqueues a parent transaction with a low CL. We discuss how to determine backoff times and
CLs in Section 4.3.3.

4.3.3 ILLUSTRATIVE EXAMPLE

RTS assigns different backoff times for each enqueued transaction. A backoff time is computed
as a percentage of estimated execution time. Figure 4.4 shows an example of RTS. Three write
transactions T1, T2, and T3 request o1 from the owner of o1, and T2 validates o1 first at t3. T1 and T3
abort due to the early validation of T2. We consider two types of conflicts in RTS while T2 validates
o1. First, a conflict between two write transactions can occur. Let us assume that write transactions
T4, T5, and T6 request o1 at t4, t5, and t6, respectively. T4 is enqueued because the execution time
| t4 − t1 | of T4 exceeds | t7 − t4 | of T2—the expected commit time t7 of T2. At this time, the local
CL of o1 is 1 and the CLwill be 2 (i.e., the CLs of o3 + o2 + o1), which is a low CL. Thus, | t7 − t4 | is
assigned to T4 as a backoff time. When T5 requests o1 at t5, even if | t5 − t2 | exceeds | t5 – expected
commit time of T4 |, T5 is not enqueued because the CL is 4 (i.e., the local CL of o1 is 2 and the
CL of o4 is 2), which is a high CL. Owing to the short execution time of T6, T6 aborts. Second, a
conflict between read and write transactions can occur. Let us assume that read transactions T4, T5,
and T6 request o1. As backoff times, | t7 − t4 |, | t7 − t5 |, and | t7 − t6 | will be assigned to T4, T5,
and T6, respectively. o1 updated by T2 will simultaneously be sent to T4, T5, and T6, increasing the
concurrency of the read transactions.

Given a fixed number of transactions and nodes, object contention will increase if these trans-
actions simultaneously try to access a small number of objects. The threshold of a low or high CL
relies on the number of nodes, transactions, and shared objects. Thus, the CL’s threshold is adap-
tively determined. Assume that the CL’s threshold in Figure 4.4 is decided as 3. When T4 requests
o1, the CL for objects o1, o2, and o3 is 2, meaning that two transactions want the objects that T4
has requested, so T4 is enqueued. On the other hand, when T5 requests o1, the CL of objects o1 and
o4 is 4, representing that four transactions (i.e., more than the CL’s threshold) want o1 or o4 that T5
has requested, so T5 aborts. As long as the waiting time elapses, their CL may increase. Thus, RTS
enqueues a parent transaction with a low CL, which is defined as less than the CL’s threshold.

To compute a backoff time, we use a transaction stats table that stores the average historical
validation time of a transaction through a hash function. The table indicates the most current suc-
cessful commit times of write transactions with a different number of nested transactions. Whenever

(a)

(b)

FIGURE 4.4 A reactive transactional scheduling scenario. (a) Object-based scenario. (b) Transaction-based
scenario.
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a transaction starts, an expected commit time is picked up from the table. The requesting message
for each transaction includes three timestamps: the starting, requesting, and expected commit time
of a transaction. In Figure 4.4, if T5 is enqueued, its backoff time will be | t7 − t5 | + the expected
execution time (i.e., the expected commit – requesting time) of T4.

If the backoff time expires before an object is received, the corresponding transaction will abort.
Two possible cases exist in this situation. First, the transaction requests the object and is enqueued
again as a new transaction. The duplicated transaction (i.e., the previously enqueued transaction)
will be removed from a queue. Second, the object may be received before the transaction restarts. In
this case, the object will be sent to the next enqueued transaction.

4.4 DEPENDENCY-AWARE TRANSACTIONAL SCHEDULER

4.4.1 MOTIVATION

Figure 4.5 shows an example of open-nested transactions with compensating actions and abstract
locks. Listings 4.1 and 4.2 in Figure 4.5 illustrate two outer transactions, T1 and T2, and an inner
transaction in Listing 4.3. The inner transaction INSERT includes an insert operation in a Linked
List. T1 has a delete operation with a value. If the operation of T1 executes successfully, its inner
transaction INSERT executes. Conversely, regardless of the success of T2’s delete operation, its inner
transaction INSERT will execute. OnCommit and OnAbort, which include a compensating action,
are registered when the inner transaction commits. If the outer transaction (i.e., T1 or T2) commits,
OnCommit executes. When the inner transaction commits, its modification becomes immediately
visible for other transactions. Thus, if the inner transaction commits, and its outer transaction T1 or T2
aborts, a delete operation as a compensating action (described in OnAbort) executes. Let us assume
that T2 aborts, andOnAbort executes. Even though T2’s inner transaction (INSERT) does not depend
on its delete operation, unlike T1, OnAbort will execute. Thus, the conflict of object “tree-2” in T2
causes the execution of compensating action on object “tree-1” in INSERT. The INSERT operation
acquires the abstract lock again when it restarts. Finally, whenever an outer transaction aborts, its
inner transaction must execute a compensating action, regardless of the operation’s dependencies.

This drawback is particularly evident in distributed settings. In fact, distributed transactions typ-
ically have an execution time several orders of magnitude bigger than in a centralized STM, due to
communication delays that are incurred in requesting and acquiring objects. If an outer transaction
aborts, clearly the impact of the time needed for running compensating actions and for acquiring
abstract locks for distributed open-nested transactions is exacerbated due to the communication
overhead. Moreover it increases the likelihood of conflicts, drastically reducing concurrency and
degrading performance.

Motivated by these observations, we propose the DATS scheduler for open-nested DTM. DATS,
for each outer transaction Ta, identifies the number of inner transactions depending from Ta and
schedules the outer transactions with the greatest number of dependencies to validate first and (hope-
fully) commit. This behavior permits the transactions with high compensation overhead to commit;
the remaining few outer transactions that are invalidated will be restarted excluding their indepen-
dent inner transactions to avoid useless compensating actions and acquisition of abstract locks. In
the next subsection, the meaning of dependent transactions for DATS will be described.

4.4.2 ABSTRACT- AND OBJECT-LEVEL DEPENDENCIES

Abstract-level dependency indicates the dependency between an outer transaction and its inner trans-
actions at an abstract level. We define the dependency level (DL) as the number of inner transactions
that will executeOnAbortwhen the outer transactions abort. For example, T1 illustrated in Figure 4.5
depends on its INSERT due to the deleted variable. Thus, DATS detects a dependency between T1
and its INSERT (its inner transaction) because the delete operations in T1 shares the variable deleted
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Listing 4.1 Transaction T1
new Atomic <Boolean > ( ) {
@Override boolean a t om i c a l l y ( Txn t ) {
L i s t l l = ( L i s t ) t . open ( t r e e −2);
d e l e t e d = l l . d e l e t e ( 7 , t ) ;
i f ( d e l e t e d ) INSERT ( t , 1 0 ) ; / / i n n e r t r a n s a c t i o n
re turn d e l e t e d ;

}
}

Listing 4.2 Transaction T2
new Atomic <Boolean > ( ) {
@Override boolean a t om i c a l l y ( Txn t ) {
L i s t l l = ( L i s t ) t . open ( t r e e −2);
d e l e t e d = l l . d e l e t e ( 9 , t ) ;
INSERT ( t , 1 0 ) ; / / i n n e r t r a n s a c t i o n
re turn d e l e t e d ;

}
}

Listing 4.3 Inner Transaction INSERT
pub l i c boolean INSERT ( Txn t , i n t va l u e ){
pr i v a t e boolean i n s e r t e d = f a l s e ;
@Override boolean a t om i c a l l y ( t ) {
L i s t l l = ( L i s t ) t . open ( t r e e −1);
i n s e r t e d = l l . i n s e r t ( va lue , t ) ;
t . a c q u i r eAb s t r a c t L o c k ( l l , v a l u e ) ;
re turn i n s e r t e d ;

}
@Override onAbor t ( t ) {
L i s t l l = ( L i s t ) t . open ( t r e e −1); / / compensa t i on a c t i o n
i f ( i n s e r t e d ) l l . d e l e t e ( va lue , t ) ;
t . r e l e a s eAb s t r a c t L o c k ( l l , 7 ) ;

}
@Override onCommit ( t ) {
L i s t l l = ( L i s t ) t . open ( t r e e −1);
t . r e l e a s eAb s r a c t L o c k ( l l , v a l u e ) ;

}
}

FIGURE 4.5 Two open-nested transactions with abstract locks and compensating actions.

with the conditional if statement declared for executing INSERT. In this case, the DL = 1 for T1.
Conversely, T2 executes INSERT without checking any precondition, so itsDL = 0 because T2 does
not have dependencies with its inner transactions. The purpose of the abstract-level dependency is
to avoid unnecessary compensating actions and abstract locks. Even though T2 aborts, OnAbort in
INSERTwill not be executed because itsDL = 0, and the compensating action will not be processed.
Meanwhile, executingOnAbort implies running INSERT and acquiring the abstract lock again when
T2 restarts.

Summarizing, aborting outer transactions with smaller DLs leads to a reduced number of com-
pensating actions and abstract lock acquisitions. Such identification can be done automatically at
run-time by DATS using byte-code analysis or relying on explicit indication by the programmer.
The first scenario is completely transparent from the application point of view but in some cases
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could add additional overhead. The second approach, although it requires the collaboration of the
developer, is more flexible because it allows the programmer to bias the behavior of the scheduler.
In fact, even though the logic of an outer transaction reveals a certain number of dependencies, the
programmer may want to force running compensations in case of an abort. This can be done by
simply changing the value of DL associated to the outer transaction.
Object-level dependency indicates the dependency among two or more concurrent transactions

accessing the same shared object. For example, in Figure 4.5, T1 depends on T2 because they share
the same object “tree-2.” If T1 and T2 work concurrently, a conflict between them occurs. However,
delete(7) of T1 and delete(9) of T2 commute because they are two operations executing on the same
object (“tree-2”) but accessing different items (or fields when applicable) of the object (item “7” and
item “9”). We recall that two operations commute if applying them in either order, they leave the
object in the same state and return the same responses [14]. DATS detects object-level dependency at
the transaction commit phase, splitting the validation phase into two. Say, Ta is the transaction that is
validating. In the first phase, Ta checks the consistency of the objects requested during the execution.
If a concurrent transaction Tb has requested and already committed a new version of some object
requested by Ta, then Ta aborts in order to avoid isolation corruption. After the successful completion
of the first phase of Ta’s validation, DATS detects the object-level dependencies among concurrent
transactions that are validating with Ta in the second phase. To do that, DATS relies on the notion of
commutativity: Two transactions are defined as commutable if they conflict and they leave the state
of the shared data set consistent even if validated and committed concurrently.

A very intuitive example of commutativity is when two operations, call1(X) and call2(X), both
access the same object X but different fields of X. Suppose Ta and Tb are conflicting transactions
but simultaneously validating. If all of Ta’s operations commute with all of Tb’s operations, they can
proceed to commit together avoiding a useless abort. Otherwise, one of Ta or Tb must be aborted.
This scheduler is in charge of the decision (see next subsection).

In order to compute commutativity, DATS joins two supports. In the first, the programmer anno-
tates each transaction class with the fields accessed. The second is a field-based timestamping
mechanism, used for checking the field-level invalidation. The goal is to reduce the granularity
of the timestamp from object to field. With a single object timestamp, it is impossible to detect
commutativity because of field’s modifications. In fact, writes to different fields of the same object
are all reflected with the increment of the same object timestamp. In order to do that efficiently,
DATS exploits the annotations provided by the developer on the fields accessed by the transac-
tion to directly point only to the interested fields (instead of iterating on all the object fields,
looking for the ones modified). On such fields, it uses field-based timestamping to detect object
invalidation.

The purpose of the object-level dependency is to enhance concurrency of outer transactions.
Even though inner transactions terminate successfully, aborting their outer transactions affects these
inner transactions (due to compensation). Thus, DATS checks for the commutativity of conflicting
transactions and permits them to be validated, reducing the aborts.

4.4.3 SCHEDULER DESIGN

We designed DATS using abstract-level dependencies and object-level dependencies. When outer
transactions are invoked, the DL with their inner transactions is checked. When the outer transac-
tions request an object from its owner, the requests with their DLs will be sent to the owner and
moved into its scheduling queue. The object owner maintains the scheduling queue holding all the
ongoing transactions that have requested the object with their DLs. When T1 (one of the outer trans-
actions) validates an object, we consider two possible scenarios. First, if another transaction T2 tries
to validate the same object, a conflict between T1 and T2 is detected on the object. Thus, DATS
checks for the object-level dependency. If T1 and T2 are independent (according to the object-level
dependency rules), DATS allows T1 and T2 to proceed with the validation. Otherwise, the transaction
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FIGURE 4.6 Four different cases for two transactions T1 and T2 in DATS.

with lowerDLwill be aborted. In this way, dependent transactions with the minimal cost of abort and
compensating actions are aborted and restarted, permitting transactions with a costly abort operation
to commit.

Figure 4.6 illustrates an example of DATS with two transactions T1 and T2 invoked on nodes n1
and n2, respectively. The transaction T1 has a single inner transaction and T2 has two nested trans-
actions. Let us assume that T1’s DL = 1 and T2’s DL = 2. The circles indicate written objects. The
horizontal line corresponds to the status of each transaction described in the time domain. Figure 4.6
shows four different cases when T1 and T2 terminate. When T1 and T2 are invoked, DATS analyzes
their DLs, operations, and values. When T1 requests o1 from n0, the metadata for DLs, operations,
and values of o1 will be sent to n0. These are moved to the scheduling queue of n0. We consider four
different cases regarding the termination of T1 and T2.

• Case 1. T1 and T2 validate concurrently o1. DATS checks for the object-level dependency.
If T1 and T2 are not dependent at the object level (i.e., the operations of T1 and T2 over o1
commute), T1 and T2 commit concurrently.

• Case 2. T1 starts to validate and detects it is dependent with T2 (that is still executing) at
the object level on the object o1. In this case T2 will abort due to early validation. When T1
commits, the updated o1 is sent to n2.

• Case 3. Another transaction committed o1 before T1 and T2 validate. If T1 and T2 are
not dependent at the object level, o1 is sent to n1 and n2 simultaneously as soon as the
transaction commits.

• Case 4.Another transaction committed o1 before T1 and T2 validate. If T1 and T2 are depen-
dent at the object level, DATS checks for the abstract-level dependency, and o1 is sent to
n2 because T2’s DL is larger than that of T1. Aborting T1, the scheduler is forced to run a
single compensation (for T1−1) instead of two compensations (T2−1 and T2−2) in case of
T2’s abort. Further, considering the case in which the DL of T1 is 0, the abort of T1 does
not affect T1−1. In fact, its execution will be preserved and only the operations of T1 will
be re-executed.

4.5 SCHEDULING-BASED PARALLEL NESTING

4.5.1 MOTIVATION

The execution of nested inner transactions in the context of a parent transaction can be conceptually
represented by a dynamic tree, called transaction tree, in which transactions represent the vertex of
the tree and edges are used for defining the conflict relation between transactions. The topology of
the tree is not defined a priori. Originally, all the inner transactions belong to the same level of the tree
and their parent represents the parent transaction. Sibling transactions (belonging to the same level
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of the transaction tree) are executed in parallel, assuming their conflict independence. The approach
does not assume previous knowledge on transaction conflicts; therefore, some (or all) of the sibling
transactions cannot execute in parallel due to transaction dependencies. When a conflict happens,
the aborted transactions are moved on a lower level with an edge representing the just detected
dependency. In case all the inner transactions are not conflicting with the others, the parallel process
allows to execute only the inner conflicting transaction on the critical path and the others in parallel.

In closed nesting, all the inner transactions must commit successfully for triggering the parent’s
commit. In case they are independent, they can be executed and committed in parallel allowing
the parent transaction to commit just after the longest inner transaction completes its execution.
However, if there is dependency among them, conflicts occur, so their parallel activation may not be
effective. Figure 4.7 shows new order transaction T1 [15], including multiple inner transactions. T1
opens warehouse and district to extract a tax and stock to get a price, the first two inner transactions,
respectively. These two inner transactions do not have dependency. Executing two transactions in
parallel may lead to high performance.

Closed nesting performs better than flat nesting and the program model of closed nesting dif-
fers from that of open nesting. Even though open nesting yields high concurrency, it has inherent

Listing 4.4 Transaction T1

Atomic {
/ / i n n e rT x s : a number o f i n n e r t r a n s a c t i o n s
S t r i n g w_id = rand (WAREHOUSES) + 1 ;
S t r i n g d_ id = rand (DISTRICT ) + 1 ;
S t r i n g c_ i d = rand (CUSTOMER) + 1 ;
Atomic {
/ / I n t h e warehouse t a b l e : r e t r i e v e an o b j e c t
Ob j e c t warehouse = ( warehouse ) open ( w_id ) ;
W_TAX = warehouse .W_TAX
/ / I n t h e d i s t r i c t t a b l e : r e t r i e v e D_TAX , g e t and i n c D_NEXT_O_ID
Ob j e c t d i s t r i c t = ( d i s t r i c t ) open ( w_id , d_ id ) ;
D_TAX = d i s t r i c t .D_TAX;
/ / I n t h e cus tomer t a b l e : r e t r i e v e an o b j e c t

}
f o r ( i =0 ; i < Ge t I t emL i s t ( ) ; i ++){
Atomic {
Ob j e c t s t o c k = ( S tock ) open ( w_id , d_id , c_ id , i ) ;
s t o c k . q u a n t i t y = g e tQu a n t i t y ( ) ;
s t o c k . o r d e r _ c n t ++;
P r i c e = s t o c k . p r i c e ;

}
Atomic {
Ob j e c t cu s tomer = ( cus tomer ) open ( w_id , d_id , c _ i d ) ;
D i s coun t = cus tome r . D i s coun t ;
/ / Crea t e e n t r i e s i n ORDER
Ob j e c t o r d e r = new TpccOrder ( w_id , d_id , o_id , i )
o r d e r . Supply_W_ID = w_id ;
o r d e r . d e l i v e r y = nu l l ;
o r d e r . t o t a lAmoun t = P r i c e ∗(1−Discoun t )∗ (1+W_TAX+D_TAX) ;

}
}

}
}

FIGURE 4.7 New order transaction with multiple inner transactions in TPC-C.
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overheads such as commit overheads or abstract locking overheads [9]. Thus, open nesting does not
always perform better than closed nesting.

Motivated by this, we propose an SPN transactional memory model focusing on how to identify
whether or not inner transactions should be executed in parallel and how to enhance the performance
of parallel inner transactions in DTM.

4.5.2 SCHEDULER DESIGN

SPN consists of two steps: (1) converting the sequence of inner transactions to parallel inner trans-
actions and running them simultaneously, and (2) maintaining a “transaction table” of ongoing
parallel inner transactions. In the first step, nodes invoking transactions execute all inner transactions
simultaneously and request their objects from object owners simultaneously. Each object request is
composed of four elements—the order number of the inner transaction (NiTx), object id (oID), type
of the transaction (Type), and outer transaction id (TxID). An order number is assigned from 1 to the
total number of parallel inner transactions of the same parent transaction. Different inner transac-
tions may request the same object. Thus, in the second step, the owner moves these elements (i.e.,
NiTx, oID, Type) to the transaction table and identifies which inner transactions can be executed
in parallel. The transaction table is updated when requesting and validating objects. At both times,
object owners maintain the transaction table after storing the elements as follows:

• Requesting: If NiTx is 1, the object owner sends the object of oID to the requester on TFA
policy and updates its status asResponded. IfNiTx is not 1, the object owner checks whether
the priorNiTxs of current requesters have requested the same oID. The priorNiTxs indicates
lower numbers than NiTx with the same TxID. If NiTx is not 1 and no prior NiTxs have
requested the same oID, the owner sends the object to the requester because of no conflict.
If any prior NiTxs have requested the same oID, the owner updates its status as Wait and
sends a backoff time to the requester.

• Validating: When one requesting transaction validates before others, allow the requested
validation and remove corresponding TxIDs from the transactional table. Other transactions
that requested the same objects are aborted.Without requesting the object again, the aborted
transactions will receive the updated objects.

A requester may receive multiple backoff times from an owner. Receiving a backoff time means that
an inner transaction is using the same object. Different backoff times are assigned to different inner
transactions accessing the same object. Thus, we represent how the owner decides a backoff time
and the requester maintains the backoff time. When parallel inner transactions with different NiTxs
request objects, backoff times are calculated using a number of Wait statuses. Even if a prior status
is not updated (or is delayed) for some reason, an owner checks whether to reply with an object or a
backoff time using existing statuses. If a conflict is detected after updating prior statuses, conflicting
ongoing inner transactions receive backoff times and abort. In order to compute a backoff time,
we use the number of Wait statuses in the transaction table. If the NiTx’s status is Wait, its backoff
time will be the execution time × the number ofWait statuses. When the inner transaction commits
internally, another inner transaction with the smallest backoff time is woken up and starts using the
updated object.

Transactions’ backoff time is stored in an hash table. The backoff time of a transaction corre-
sponds to the average execution time of that transaction. The key of the table is the name of the
transaction. If a new order transaction in TPC-C requests an object, for example, its owner creates a
bucket with key “new_order.” When the transaction commits, the execution time is computed as its
commit time—its starting time. Later, if SPN detects a conflict with another new order transaction,
the execution time is assigned to the new order as a backoff time. As soon as an object is updated, a
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FIGURE 4.8 An example for maintaining a transactional table.

transaction receiving a backoff time is woken up to access the object. Thus, SPN does not need an
exact backoff time, so SPN uses an approximated execution time.

SPN also identifies conflicts between write and read transactions. If write and write or write and
read transactions access an object, the first write transactions’ status will be Responded and the
second write or read transactions’ status will be Wait. Read and write or read and read transactions
accessing an object simultaneously receive the object.

Figure 4.8 illustrates an example for a transaction table containing three outer transactions. T1
contains three write inner transactions. T2’s inner transactions access object o1, and T3’s inner trans-
actions access object o2. If the owner receives the requests from the node invoking T1−1, T1−2, and
T1−3, o1, a backoff time, and o2 are sent to T1−1, T1−2, and T1−3, respectively. T1−2 waits for the
backoff time. As soon as T1−1 commits, T1−2 that waits for o1 is woken up and use o1 updated by
T1−1. T2−1 and T2−2 receive o2 because of no conflict. If T1 commits first, T2 and T3 will be aborted.
If T2 commits first, T1 will be aborted.

As executing inner transactions in parallel, the purpose of SPN is to maximize their parallelism in
DTM. SPN keeps track of the access pattern of inner transactions and uses it for resolving conflicts.
Nonconflicting inner transactions are executed in parallel. Conversely, conflicting inner transactions
accessing the same objects are serialized.

4.6 IMPLEMENTATION AND EVALUATION

4.6.1 IMPLEMENTATION

We implemented Infinispan-based Hyflow [5] DTM framework, called iHyflow for experimental
studies. Figure 4.9 shows an architecture of iHyflow. The dark box indicates the object access
module, including the CC protocol and cache management implemented on Infinispan for iHyflow.

A CC protocol keeps track of objects’ location to retrieve objects from their owner nodes over
the network. It requires the identifier of the requested object and it generally caches a copy of the
requested object on the local node. Thus, the cache management is tightly related with the CC pro-
tocol to access objects, so that we modified the object access module using Infinispan to evaluate
RTS, DATS, and SPN. Infinispan is a JAVA-based open-source NoSQL data platform developed by
Red Hat [5]. iHyflow differs from Hyflow on the CC protocol and cache management developed
with Infinispan core library.

Infinispan includes a key-value store interface targeting scalability by natively replying on weak
data consistency models [5]. Unlike Infinispan, Hyflow ensures strong consistency through early
validation. To implement the early validation in iHyflow, setting a flag to an object in the cache has
been used when a transaction starts validation remotely or locally. If a transaction requests an object
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FIGURE 4.9 Architecture of Hyflow.

from its owner, the owner checks whether the object is set to a flag. A flag indicates that a transaction
is validating the object. Inherently, Infinispan supports a control-flowmodel. To implement dataflow,
iHyflow uses the find_owner(oid) function to find a real object owner. oid implies the address of the
original owner. If oid is 21 in 10 nodes, for example, n1 is an original owner. A transaction picks the
address of n1 and finds the address of oid’s real owner in n1. An original owner maintains a hash-
map consisting of the oids of objects and the addresses of real owners. The original owner returns
the address of oid’s real owner. For RTS, the real owner maintains CLs for each object. The transac-
tion requests the object from the real owner, the real owner sends the object and CL corresponding
to oid.

There are two kinds of commit models in Hyflow. First, the commit of parent transactions—top-
level commit model is used when a top-level transaction commits the changes from its log to the
globally committed memory after the successful validation of all objects in its read-set. Second,
the merge commit model is used when a nested transaction commits the changes from its log to the
log of its parent. The parent transaction identifies the changes from its nested transactions or itself
and maintains a CL. RTS is integrated with these commit models. The top-level commit and merge
commit models implemented in Hyflow have been used for iHyflow to maintain the commits of
nested transactions. In the top-level commit model in iHyflow, however, the committed objects must
be updated in the Infinispan cache. This operation happens in a validation.

4.6.2 EXPERIMENTAL EVALUATION

For the effectiveness of the transactional schedulers described in this chapter, we cannot compare
our results with any competitor DTM based on transactional data grids, as none of the DTMs that
we are aware of support closed- and open-nested transactions. Thus, we measured the throughput
(i.e., the number of committed transactions per second) of RTS, DATS, SPN, N-TFA (closed nesting
without a transactional scheduler), and TFA-OPEN (open nesting without a transactional scheduler)
and compared the speedup of RTS over N-TFA, DATS over TFA-OPEN, and SPN over N-TFA.
RTS and SPN represent N-TFA with RTS and SPN in iHyflow, respectively. RTS assumes that an
outer transaction includes operations defined as external codes of its inner transactions, but an outer
transaction does not have any operations for SPN because no dependency between the outer and
inner transactions is assumed. Thus, although RTS and SPN are designed on closed nesting, the
comparison between both is not appropriate. Also, two versions of N-TFA are implemented with and
without operations in an outer transaction, respectively. DATS represents TFA-OPEN with DATS
in iHyflow. The speedups were obtained with 2, 4, 8, 12, and 24 threads on a distributed system
consisting of 80 nodes, called PRObE [16]. Each node is an Opteron 6272, 64 bit, 16MB L2, 8-core
2.1GHz CPU.
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(a) (b)

(c) (d)

FIGURE 4.10 Performance speedup of RTS over N-TFA on TPC-C and YCSB. (a) TPC-C with low on RTS.
(b) TPC-C with high on RTS. (c) YCSB with low on RTS. (d) YCSB with high on RTS.

The Yahoo Cloud Servicing Benchmark (YCSB) [17] is the most well-known benchmark imple-
mented in Infinispan for NoSQL database. TPC-C [15] is the most used benchmark for DTM
evaluation. According to the standard of the benchmarks, 50% write transactions of 10,000 active
concurrent transactions per node have been configured. The high and low contention is configured
with 5 and 10 warehouses, respectively. In the benchmarks, keys (i.e., object id) used to identify
the object are generated using uniform probability. Each transaction includes 8 or 16 inner transac-
tions, which are defined as a length of a transaction. For example, RTS(8) indicates that a transaction
including 8 inner transactions is used to evaluate RTS, and TPC-C with low on closed nesting means
the TPC-C benchmark defined with closed nesting and 10 warehouses.

Figure 4.10 shows the speedup of RTS over N-TFA with 8 and 16 inner transactions per transac-
tion. We observe that RTS outperforms N-TFA up to 6× speedup. If an outer transaction including
multiple inner transactions aborts, it requests all the objects from their object owners again and
restarts the inner transactions, resulting in the degraded performance in N-TFA.

Figure 4.11 shows the speedup ofDATS over TFA-OPEN.DATS performs better than TFA-OPEN
because a number of requested abstract locks is minimized.

Figure 4.12 shows that SPN outperforms N-TFA up to 12× speedup due to the penalization of
inner transactions. The overhead to create and maintain a transaction table is involved to SPN, so
that SPN(16) performs worth than SPN(8) with 2 and 4 threads. However, as long as the contention
increases, the performance gain of SPN(16) is higher than that of SPN(8).
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(a) (b)

(c) (d)

FIGURE 4.11 Performance speedup of DATS over TFA-OPEN on TPC-C and YCSB. (a) TPC-C with low
on RTS. (b) TPC-C with high on RTS. (c) YCSB with low on RTS. (d) YCSB with high on RTS.

Additional experimental results for RTS, DATS, and SPN are described in Reference 1. Given
these results, a long running transaction including a large number of inner transactions suffers from
degraded performance regardless of the type of nested transactions. The results show that the pro-
posed transactional schedulers, identifying such underlying causes, and eliminating them can yield
significant throughput improvement.

4.7 SUMMARY

In this chapter, we studied three different schedulers to improve throughput in dataflow DTM on in-
memory transactional data grids. First, RTS focuses on scheduling closed-nested transactions. The
scheduler heuristically determines transactional contention level to determine whether a live parent
transaction aborts or enqueues. RTS is shown to enhance throughput at high and low contention, by
as much as 4.5× and 5.6× speedup, respectively.

Second, DATS schedules open-nested transactions. The key idea behind DATS is to avoid com-
pensating actions regardless of conflicted objects and minimize the number of requesting abstract
locks, improving performance. Our implementation and experimental evaluation shows that DATS
enhances throughput for open-nested transactions by as much as 3.7× and 5× under low and high
contention, respectively.
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FIGURE 4.12 Performance speedup of SPN over N-TFA on TPC-C and YCSB. (a) TPC-C with low on RTS.
(b) TPC-C with high on RTS. (c) YCSB with low on RTS. (d) YCSB with high on RTS.

Third, SPN considers parallel closed-nested transactions in DTM. Object owners maintain a
transactional table containing ongoing inner transactions to identify which inner transactions can
be executed in parallel. SPN exploits the parallelism of executing inner transactions and requesting
objects in DTM. SPN reveals that throughput is improved by up to 8.5× and 10.5× under low and
high contention, respectively.
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ABSTRACT

Big data applications play an increasing role in high-performance computing. They are perfect can-
didates for co-scheduling, as they obey flexible speedup models, alternating I/O operations and
intensive computation phases. In this chapter, we discuss co-scheduling on failure-prone platforms.
Checkpointing helps to mitigate the impact of a failure on a given application, but it must be com-
plemented by redistributions to rebalance the load among all applications. Co-scheduling usually
involves partitioning the applications into packs, and then scheduling each pack in sequence, as
efficiently as possible. The objective is therefore to determine a partition into packs, and an assign-
ment of processors to applications, that minimize the sum of the execution times of the packs. On
the theoretical side, we assess the problem complexity. On the practical side, we design several
polynomial-time heuristics to deal with the general problem with failures and redistribution costs.
The proposed heuristics show very good performance while executing in very short time, hence
validating the approach.

5.1 INTRODUCTION

With the advent of multicore platforms, high-performance computing (HPC) applications can be
efficiently parallelized on a flexible number of processors. Usually, a speedup profile determines
the performance of the application for a given number of processors. For instance, the applications
in Reference 1 were executed on a platform with up to 256 cores, and the corresponding execution
times were reported. A perfectly parallel application has an execution time tseq/p, where tseq is the
sequential execution time, and p is the number of processors. In practice, because of the overhead
due to communications and due to the inherently sequential fraction of the application, the parallel
execution time is larger than tseq/p. The speedup profile of the application is assumed to be known
(or estimated) before execution, through benchmarking campaigns.

Big data applications play an increasing role in HPC. They are perfect candidates for co-
scheduling, as they obey flexible speedup models a la BSP, alternating I/O operations and intensive
computation phases. A simple scheduling strategy on HPC platforms is to execute each application
in dedicated mode, assigning all resources to each application throughout its execution. However,
it was shown recently that rather than using the whole platform to run one single application, both
the platform and the users may benefit from co-scheduling several applications, thereby minimizing
the loss due to the fact that applications are not perfectly parallel. Sharing the platform between two
applications already leads to significant performance and energy savings [2], which become even
more important when the number of co-scheduled applications increases [3].

Furthermore, large-scale platforms are prone to failures. Indeed, for a platform with p proces-
sors, even if each node has an individual MTBF (mean time between failures) of 120 years [4], we
expect a failure to strike every 120/p years, for instance, every hour for a platform with p = 106

nodes. Failures are likely to destroy the load-balancing achieved by co-scheduling algorithms: if all
applications were assigned resources by the co-scheduler so as to complete their execution approx-
imately at the same time, the occurrence of a failure will significantly delay the completion time
of the corresponding application. In turn, several failures may well create severe imbalance among
the applications, thereby significantly degrading performance. To cope with failures, the de facto
general-purpose error recovery technique in HPC is checkpoint and rollback recovery [5]. The idea
consists of periodically saving the state of the application, so that, when an error strikes, the appli-
cation can be restored into one of its former states. The most widely used protocol is coordinated
checkpointing, where all processes periodically stop computing and synchronize to write critical
application data onto stable storage. The frequency at which checkpoints are taken should be care-
fully tuned, so that the overhead in a fault-free execution is not too important, but also so that the
price to pay in case of failure remains reasonable. The Young and Daly formulas [6,7] provide good
approximations of the optimal checkpointing interval.
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In this chapter, we discuss co-scheduling on failure-prone platforms. Checkpointing helps to mit-
igate the impact of a failure on a given application, but it must be complemented by redistributions to
rebalance the load among applications. Co-scheduling usually involves partitioning the applications
into packs, and then scheduling each pack in sequence, as efficiently as possible. The objective is
therefore to determine a partition into packs, and an assignment of processors to applications, that
minimize the sum of the execution times of the packs. Given a pack, that is, a set of parallel tasks
that start execution simultaneously, there are two main opportunities for redistributing processors.
First, when a task completes, the applications that are still running can claim its processors. Second,
when a failure strikes a task, that task is delayed. By adding more resources to it, we can reduce
its final completion time. However, we have to be careful, because each redistribution has a cost,
which depends on the volume of data that is exchanged, and on the number of processors involved
in redistribution. In addition, adding processors to a task increases its probability to fail, so there is
a trade-off to achieve in order to minimize the expected completion time of the pack.

The major contributions of this work are the following:

1. The NP-completeness proof for the general partitioning problem with k ≥ 3 tasks per pack
in a fault-free context, and an approximation algorithm.

2. The design of a detailed and comprehensive model for scheduling a given pack of tasks on
a failure-prone platform.

3. An optimal algorithm to assign processors to applications when the tasks that form a pack
are given and when no redistributions can be done.

4. The NP-completeness proof for the problem with redistributions.
5. The design and assessment of several polynomial-time heuristics to deal with the gen-

eral problem with failures and redistribution costs. These heuristics show very good
performance while executing in very short time, hence validating the approach.

The chapter is organized as follows. We discuss related work in Section 5.2. The problem is
then formally defined in Section 5.3. Theoretical results are presented in Section 5.4, exhibiting the
problem complexity, discussing subproblems and optimal solutions, and providing an approxima-
tion algorithm. Building upon these results, several polynomial-time heuristics are described and
thoroughly evaluated in Section 5.5. Finally, we conclude and discuss future work in Section 5.6.

5.2 RELATED WORK

In this chapter, we deal with pack scheduling for parallel tasks, aiming at makespan minimization
(recall that the makespan is the total execution time). The corresponding problem with sequential
tasks (tasks that execute on a single processor) is easy to solve for the makespan minimization objec-
tive: simply make a pack out of the largest p tasks, and proceed likewise while there remain tasks.
Note that the pack scheduling problem with sequential tasks has been widely studied for other objec-
tive functions, see Reference 8 for various job cost functions, and Reference 9 for a survey. Back to
the problem with sequential tasks and the makespan objective, Koole and Righter in Reference 10
deal with the case where the execution time of each task is unknown but defined by a probabilistic
distribution. They improve the result of Deb and Serfozo [11], who considered the stochastic prob-
lem with identical jobs. Ikura et al. [12] solve the makespan minimization problem where tasks have
identical execution times, but different release times and deadlines; they assume agreeable deadlines,
meaning that if a task has an earlier release time than another, it also has an earlier deadline. Koehler
et al. [13] propose a linear time solution to this last problem, and further give a O(n3) solution to the
problem of minimizing the number of packs while achieving optimal makespan.

We focus next on the problem of co-scheduling parallel tasks in Section 5.2.1, and then we discuss
related work on resilience in Section 5.2.2.
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5.2.1 PARALLEL TASKS

To the best of our knowledge, the problem with parallel tasks has not been studied as such. However,
it was introduced by Dutot et al. [14] as a moldable-by-phase model to approximate the moldable
problem. Themoldable taskmodel is similar to the pack schedulingmodel, but without the additional
constraint (pack constraint) that the execution of new tasks cannot start before all tasks in the current
pack are completed. Dutot et al. [14] provide an optimal polynomial-time solution for the problem
of pack scheduling identical independent tasks, using a dynamic programming algorithm. This is the
only instance of pack scheduling with parallel tasks that we found in the literature.

In practice, pack scheduling is really useful as shown by recent results. Li et al. [15] propose a
framework to predict the energy and performance impacts of power-aware message passing inter-
face (MPI) task aggregation. Frachtenberg et al. [16] show that system utilization can be improved
through their schemes to co-schedule jobs based on their load-balancing requirements and interpro-
cessor communication patterns. Shantharam et al. [2] study co-scheduling based on speedup profiles,
similar to our work, but packs can have only one or two tasks; still, they report faster workload
completion and corresponding savings in system energy.

Several publications [17–19] consider co-scheduling at a single multicore node, when contention
for resources by co-scheduled tasks leads to complex trade-offs between energy and performance
measures. Chandra et al. [18] predict and utilize interthread cache contention at a multicore in order
to improve performance. Hankendi and Coskun [19] show that there can be measurable gains in
energy per unit of work through the application of their multilevel co-scheduling technique at run-
time, which is based on classifying tasks according to specific performance measures. Bhaduria and
McKee [17] consider local search heuristics to co-schedule tasks in a resource-aware manner at a
multicore node to achieve significant gains in thread throughput per watt.

These publications demonstrate that complex trade-offs cannot be captured through the use of the
speedup measure alone, without significant additional measurements to capture performance varia-
tions from cross-application interference at a multicore node. Additionally, and following Reference
2 where packs have one or two tasks only, we expect significant benefits even when we aggregate
only across multicore nodes because speedups suffer due to the longer latencies of data transfer
across nodes. We can therefore project savings in energy as being commensurate with the savings in
the time to complete a workload through co-scheduling. Hence, we only test configurations where
no more than a single application can be scheduled on a multicore node.

One could ask, given a set of n tasks to schedule, why schedule them in packs rather than globally?
A global schedule would avoid the gaps incurred by some processors between the end of a pack and
the beginning of the next pack, thereby potentially decreasing the makespan. However, there are
several reasons to prefer pack scheduling. First, a global schedule is very hard to construct. Best-
known heuristics greedily assign a new task to a set of processors as soon as this set terminates
execution, thereby constraining the number of resources to be the same for the new task as for the last
task. Our co-schedule does not suffer from this rigidity in processor assignment decisions. Second,
the cost of scheduling itself is greatly reduced with pack scheduling. The scheduler launches a set
of tasks and transfers corresponding input data only at the beginning of a pack. No overhead is paid
until all tasks in the pack return, and a new pack is executed.

5.2.2 RESILIENCE

One of the most used technique to handle fail-stop errors in HPC is checkpoint and rollback recov-
ery [5]. The idea is to periodically save the system state, or the application memory footprint onto a
stable storage. Then, after a downtime and a recovery time, the system can be restored into a former
valid state (rollback step). Another technique to dealing with fail-stop errors is process replication,
which consists of replicating a process and even replicate communications. For instance, the project
RedMPI [20] implements a process replication mechanism and quadruplicates each communication.
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In this chapter, we use a lightweight checkpointing protocol called the double checkpointing algo-
rithm [21,22]. This is an in-memory checkpointing protocol, which avoids the high overhead of disk
checkpoints. Processors are paired: each processor has an associated processor called its buddy pro-
cessor. When a processor stores its checkpoint file in its own memory, it also sends this file to its
buddy, and the buddy does the same. Therefore, each processor stores two checkpoints, its own and
that of its buddy. When a failure occurs, the faulty processor loses these two checkpoint files, and the
buddy must resend both checkpoints to the faulty node. If a second failure hits the buddy during this
recovery period (which happens with very low probability), we have a fatal failure and the system
cannot be recovered.

To the best of our knowledge, this is the first work to consider co-schedules and failures, and hence
to use malleable applications [23,24] to allow redistributions of processors between applications.
More related work on models for parallel applications and resilience are discussed in Reference 25.

We point out that co-scheduling with packs can be seen as the static counterpart of batch schedul-
ing techniques, where jobs are dynamically partitioned into batches as they are submitted to the
system (see Reference 26 and the references therein). Batch scheduling is a complex online prob-
lem, where jobs have release times and deadlines, and where only partial information on the whole
workload is known when taking scheduling decisions. On the contrary, co-scheduling applies to a
set of applications that are all ready for execution. When considering failures, we restrict to a single
pack, because scheduling already becomes difficult for a single packwith failures and redistributions.

5.3 PROBLEM DEFINITION

The application consists of n independent tasks T1, . . . , Tn. The target execution platform consists
of p identical processors, and each task Ti can be assigned an arbitrary number σ(i) of processors,
where 1 ≤ σ(i) ≤ p. The objective is to minimize the total execution time by co-scheduling several
tasks onto the p resources. Note that the approach is agnostic of the granularity of each processor,
which can be either a single CPU or a multicore node.

5.3.1 SPEEDUP PROFILES

Let ti,j be the execution time of task Ti with j processors, andwork(i, j) = j× ti,j be the corresponding
work. We assume the following for 1 ≤ i ≤ n and 1 ≤ j < p:

Weakly decreasing execution time: ti,j+1 ≤ ti,j. (5.1)

Weakly increasing work: work(i, j+ 1) ≥ work(i, j). (5.2)

Equation 5.1 implies that execution time is a nonincreasing function of the number of processors.
Equation 5.2 states that efficiency decreases with the number of enrolled processors: in other words,
parallelization has a cost! As a side note, we observe that these requirements make good sense in
practice: many scientific tasks Ti are such that ti,j first decreases (due to load-balancing) and then
increases (due to communication overhead), reaching a minimum for j = j0; we can always let ti,j =
ti,j0 for j ≥ j0 by never actually using more than j0 processors for Ti.

Remarks

Determining j0 for a given application is a challenge by itself. Inmost cases, it is obtained by profiling
and interpolation. Also, in case of an imperfect knowledge of execution-time profiles, it is possible
to use curve-fitting techniques to construct near complete knowledge, and then use this constructed
knowledge. We treat the same application with two different problem sizes as two different appli-
cations (their execution-time profiles could potentially be different). Thus, sensitivity of runtime to
different parameters that could change runtime profiles is inherently taken care of.
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FIGURE 5.1 A co-schedule with four packs P1 to P4.

5.3.2 CO-SCHEDULES

A co-schedule partitions the n tasks into groups (called packs ), so that (i) all tasks from a given pack
start their execution at the same time; and (ii) two tasks from different packs have disjoint execution
intervals. For instance, in the example of Figure 5.1, the two first packs have three tasks, the third
pack has only one task, and the last pack has two tasks. The execution time, or cost, of a pack is the
maximal execution time of a task within that pack, and the cost of a co-schedule is the sum of the
costs of all packs.

5.3.3 FAULT MODEL

We consider fail-stop errors, which are detected instantaneously. To model the rate at which faults
occur on one processor, we use an exponential probability law of parameter λ. The mean (or MTBF)
of this law is μ = 1/λ. The MTBF of an application depends upon the number of processors it is
using, and hence changes whenever a redistribution occurs. Specifically, if application Ti is (cur-
rently) executed on j processors, its MTBF is μi,j = μ/j (see Proposition 1.2 in Reference 4 for a
proof).

To recover from fail-stop errors, we use a lightweight checkpointing protocol called the double
checkpointing algorithm, or buddy algorithm [21,22]. This is an in-memory checkpointing protocol,
which avoids the high overhead of disk checkpoints. Processors are paired: each processor has an
associated processor called its buddy processor. When a processor stores its checkpoint file in its
own memory, it also sends this file to its buddy, and the buddy does the same. Therefore, each
processor stores two checkpoints, its own and that of its buddy. When a failure occurs, the faulty
processor loses these two checkpoint files, and the buddy must resend both checkpoints to the faulty
node. If a second failure hits the buddy during this recovery period (which happens with very low
probability), we have a fatal failure and the system cannot be recovered. Note that the number of
processors assigned to each application must be even.

We enforce periodic checkpointing for each application. Formally, if application Ti is executed
on j processors, there is a checkpoint every period of length τi,j, with a cost Ci,j. We now explain
how to compute the cost Ci,j of a checkpoint when application Ti executes with j processors. Let mi
be the memory footprint (total data size) of application Ti. Each of the j processors holds mi/j data,
which it must send to its buddy processor. The time to communicate a message of size s is β+ s/τ,
where β is a start-up latency and τ the link bandwidth. We derive that Ci,j = (mi/jτ)+ β.

As for the checkpointing period τi,j, we use Young’s formula [7] and let

τi,j =
√
2μi,jCi,j + Ci,j. (5.3)

Because τi,j is a first-order approximation, the formula is valid only if Ci,j � μi,j. When a fault
strikes, there is first a downtime of duration D, and then a recovery period of duration Ri,j. We
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assume that Ri,j = Ci,j, while the downtime value D is platform-dependent and not application-
dependent.

5.3.4 EXECUTION TIME WITHOUT REDISTRIBUTION

To compute the expected execution time of a schedule, we first have to compute the expected exe-
cution time of an application Ti executed on j processors subject to failures. We first consider the
case without redistribution (but taking failures into account). Recall that ti,j is the execution time of
application Ti on j processors in a fault-free scenario. Let tRi,j(α) be the expected time required to
compute a fraction α of the total work for application Ti on j processors, with 0 ≤ α ≤ 1. We need
to consider such a partial execution of Ti on j processors to prepare for the case with redistributions.

Recall that the execution of application Ti is periodic, and that the period τi,j depends only on the
number of processors, but not on the remaining execution time (see Equation 5.3). After a work of
duration τi,j − Ci,j, there is a checkpoint of duration Ci,j. In a fault-free execution, the time required
to execute the fraction of work α is αti,j, hence a total number of checkpoints of

Nff
i,j(α) =

⌊
αti,j

τi,j − Ci,j
⌋
. (5.4)

Next, we have to estimate the expected execution time for each period of work between checkpoints.
We are able to calculate the expectation of one period of work according to an MTBF value and
a number of processors. The expected time to execute successfully during T units of time with j
processors (there are T − C units of work and C units of checkpoint, where T is the period) is equal
to ((1/λj)+ D) (eλjT − 1) [4]. Therefore, in order to compute tRi,j(α), we compute the sum of the
expected time for each period, plus the expected time for the last (possibly incomplete) period. This
last period is denoted as τlast and defined as

τlast = αti,j − Nff
i,j(α)(τi,j − Ci,j). (5.5)

Note that τlast depends onα because τlast represents the incomplete fraction of τi,j − Ci,j at the end of
the application. The first Nff

i,j(α) periods are equal (of length τi,j), and hence have the same expected
time. Finally, we obtain:

tRi,j(α)=eλjRi,j
(
1

λj
+D

)(
Nff
i,j(α)(eλjτi,j−1)+(eλjτlast−1)). (5.6)

In a fault-free environment, it is natural to assume that the execution time is nonincreasing with the
number of processors. Here, this assumption would translate into the condition:

tRi,j+1(α) ≤ tRi,j(α) for 1 ≤ i ≤ n, 1 ≤ j < p, 0 ≤ α ≤ 1. (5.7)

However, when we allocate more processors to an application, even though the work is further
parallelized, the probability of failures increases, and the corresponding waste increases as well.
Therefore, adding resources to an application is useful up to a threshold. After this threshold, we
have tRi,j+1 ≥ tRi,j. In order to satisfy Equation 5.7, we restrict the number of processors assigned to
each application, and never assign more processors than the previous threshold. In other words, if
Ti is already assigned j processors, we consider assigning more processors to it only if tRi,j+1 ≤ tRi,j.
Formally, this defines a maximum number of processors, jmax(i), for each application Ti:

jmax(i) = min
1≤j≤p{j such that tRi,k ≥ tRi,j for all k > j}, (5.8)

and we assume that tRi,j+1 ≤ tRi,j for all j < jmax(i).
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FIGURE 5.2 Work representation for application Ti at time te.

Another common assumption for malleable applications is that the work is nondecreasing when
the number of processors increases [23]: this amounts to say that no super-linear speedup is possible,
as stated earlier for the fault-free scenario. Hence, we assume here that for 1 ≤ i ≤ n, 1 ≤ j < p and
0 ≤ α ≤ 1, (j+ 1)× tRi,j+1(α) ≥ j× tRi,j(α).

For convenience, we denote by tUi the current expected finish time of application Ti at any point
of the execution. Initially, if application Ti is allocated to j processors, we have tUi = tRi,j(1).

5.3.5 REDISTRIBUTING PROCESSORS

There are two major cases for which it may be useful to redistribute processors: (1) in a fault-free
scenario, when an application ends, it releases processors that can be used to accelerate other appli-
cations, and (2) when an error strikes, we may want to force the release of processors, so that we can
assign more processors to the application that has been slowed down by the error.

5.3.5.1 Fault-Free Scenario
We first consider a simplified scenario without checkpoint (nor failure), in order to explain how
redistribution works. Consider for instance that q processors are released when application T2 ends.
We can allocate q1 new processors to application T1, and q3 new processors to application T3, where
q1 + q3 = q. This redistribution will take some time (redistribution cost RCi, detailed below), after
which T1 and T3 will resume execution, and we first need to compute the new expected completion
time for their remaining fraction of work.

Consider that a redistribution is conducted at time te (the end time of an application), and that
application Ti, initially with j processors, now has k = j+ q > j processors. What will be the new
finish time of Ti? The fraction of work already executed for Ti is te/ti,j, because the application was
supposed to finish at time ti,j (see Figure 5.2). The remaining fraction of work is α = 1− (te/ti,j),
and the time required to complete this work with k processors is t′, where t′/ti,k = α; hence

t′ = αti,k =
(
1− te

ti,j

)
ti,k.

Furthermore, we need to add a redistribution cost: when moving from j to k = j+ q processors, the
application Ti must redistribute its mi data across the processors. The application keeps its initial j
processors, which now hold too much data, and enrolls q = k − j new processors, which have no
data yet. Each of the original j processors initially holds mi/j data and will keep only mi/k after
the redistribution; it sends mi/jk data to each of the newly enrolled q processors, thereby keep-
ing (mi/j)− (k − j)(mi/jk) = (mi/k) data. In turn, each new processor receives mi/jk data from j
processors and duly gets mi/k data in the end.

What is the best schedule for such a redistribution, and what time does it require?We first account
for a constant start-up overhead S, paid for initiating the redistribution call. Then we adopt a realistic
one-port communication model [27] where a processor can send and receive at most one message at
any time-step. Independent communications, involving distinct sender/receiver pairs, can take place
in parallel; however, two messages sent by the same processor will be serialized. Recall that the time
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to communicate a message of size s is β+ (s/τ). To schedule the redistribution, we build a bipartite
graphGwith j nodes on the left and q nodes on the right, and we count the number of rounds required
to schedule the redistribution. Thanks to Konig’s theorem [28], we obtain a number of rounds equal
to max(j, k − j) (see Reference 25 for details), and the redistribution cost is

RCj→k
i = S+max(j, k − j)×

(
mi
jkτ
+ β

)
. (5.9)

Needless to say, we would perform a redistribution if the cost of redistribution is lower than the
benefit of allocating new processors to the application, that is, if

ti,j −
(
te + t′

)
> RCj→k

i .

5.3.5.2 Accounting for Failures
When struck by a fault, an application needs to recover from the failure and to re-execute some work.
While the application loads were well balanced initially in order to minimize total execution time,
now the faulty application is likely to exceed its expected execution time. If it becomes the longest
application of the schedule, we try to assign it more processors so as to reduce its completion time,
hence redistributing processors.

Because we use the double checkpointing algorithm as the resilience model, we consider proces-
sors by pairs. We aim at redistributing pairs of processors either when an application is finished, at
time te (as in the fault-free scenario discussed above), or when a failure occurs, say at time tf . In
each case, we need to compute the remaining work, and the new expected completion time of the
applications that have been affected by the event. Given an application Ti, we keep track of the time
when the last redistribution or failure occurred for this application, denoted as tlastRi . At time t (cor-
responding to the end of an application or to a failure), we know exactly howmany checkpoints have
been taken by application Ti executed on j processors since tlastRi , and we let this number be Ni,j:

Ni,j =
⌊
t − tlastRi

τi,j

⌋
. (5.10)

We begin with the case of an application completion: consider that an application finishes its execu-
tion at time te, hence releasing some processors. We consider assigning some of these processors to
an application Ti currently running on j processors. The fraction of work executed by Ti since the last
redistribution is (te − tlastRi − Ni,jCi,j)/ti,j, because we have to remove the cost of the checkpoints,
during which the application did not execute useful work.

We apply the same reasoning for the second case, when a fault occurs. In this case, we need to
consider the application Ti where the failure stroke, and other applications Ti′ from which we would
remove some processors (in order to give them to Ti).

1. Consider that application Ti is running on j processors and subject to a failure at time tf .
Therefore, Ti needs to recover from its last valid checkpoint, and the fraction of work
executed by Ti corresponds to the number of entire periods completed since the last
failure or redistribution tlastRi , each followed by a checkpoint. We can express it as
(Ni,j × (τi,j − Ci,j))/ti,j.

2. At time tf , consider application Ti′ , on which we perform a redistribution, moving from j′
to j′ − q processors, with q > 0. The fraction of work executed by Ti′ can be computed as
in the application ending case scenario: it is (tf − tlastRi′ − Ni′,j′Ci′,j′)/ti′,j′ .
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FIGURE 5.3 Example of redistribution when a fault strikes application Ti. The shaded rectangles correspond
to useful work done by Ti and Ti′ before the failure. Ti′′ is not affected by the failure, since it does not perform
a redistribution.

Finally, for any application subject to a redistribution or a failure, let αi be the remaining fraction
of work to be executed by Ti, that is, 1 minus the sum of the fraction of work executed before tlastRi
and the fraction of work expressed above (computed between tlastRi and t).

Similarly to the fault-free scenario, RCj→k
i denotes the redistribution cost for application Ti when

moving from j to k processors. Redistribution can now add (k > j) or remove (k < j) processors to
application Ti, and the cost is expressed as

RCj→k
i = S+max(min(j, k), |k − j|)×

(
mi
kjτ
+ β

)
. (5.11)

We are now ready to compute the new values of tlastRi for all applications subject to a failure or a
redistribution, and we illustrate the different scenarios in Figure 5.3. Let t be the time of the event
(end of application t = te, or failure t = tf ), and consider that a redistribution is done either for a
faulty application Ti or for another application Ti′ . After a redistribution, we always start by taking
a checkpoint before computing with the new period. Therefore, if a fault occurs, we do not have to
redistribute again.

For the faulty application Ti, the new value of tlastRi hence becomes tlastRi = t + D+ Ri,j +
RCj→k

i + Ci,k (we need to account for the downtime and recovery). However, if Ti′ is performing
a redistribution but it was not struck by a failure, it can start the redistribution at time t: either it is
getting new processors that are available following the end of an application, or is using less pro-

cessors and can perform its redistribution. In all cases, we have tlastRi′ = t + RCj′→k′
i′ + Ci′,k′ . Note

that we can have processors involved simultaneously in two redistributions, as they will only receive
data from the other processors of the faulty application Ti, and send data to the other processors
of the nonfaulty application Ti′ . We assume that sends and receives can be done in parallel without
slowdown.

Finally, the expected finish time of an application Ti for which we have updated tlastRi becomes
tUi = tlastRi + tRi,k(αi), where k is the new number of processors on which Ti is executed, and αi
the remaining fraction of work. Similarly to the fault-free scenario, we give extra processors to an
application only if the new expected finish time tUi is lower than the one with no redistribution.

Note that we consider that we cannot enroll processors that have not yet finished the current
redistribution, that is, if an event happens between t and tlastRi′ in Figure 5.3, the processors involved
in Ti and Ti′ cannot be considered for a new redistribution.

5.3.6 OPTIMIZATION PROBLEMS

We consider two optimization problems.
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The general one is studied in a fault-free context with no redistribution, and builds packs with at
most k tasks. The most general problem is when k = p, but, in some frameworks, we may have an
upper bound k < p on the maximum number of tasks within each pack.

Definition 5.1 (k-in-p-CoSchedule)

Given a fixed constant k ≤ p, find a co-schedule with at most k tasks per pack that minimizes the
execution time.

When considering failures and redistributions, we focus on a single pack made of n applications.

Definition 5.2 (Resilient-CoSched-1pack)

Given n malleable applications {T1, . . . ,Tn}, their speedup profiles, and an execution platform with
p identical processors subject to failures with individual rate λ, minimize the maximum of the
expected completion times of the applications. Redistributions are allowed only when an application
completes execution or is struck by a failure (with a cost specified in Section 5.3.5).

5.4 THEORETICAL ANALYSIS

In this section, we first focus on the problem in a failure-free scenario, where no checkpoints are
taken. We discuss the complexity of the problem in Section 5.4.1, by exhibiting polynomial and
NP-complete instances. Next we discuss how to optimally schedule a set of k tasks in a single pack
(Section 5.4.2), both in the failure-free scenario and when accounting for failures but not doing any
redistributions. Then, focusing again on the failure-free scenario, we explain how to compute the
optimal solution of k-in-p-CoSchedule (in expected exponential cost) in Section 5.4.3, and we
provide an approximation algorithm in Section 5.4.4. Finally, we prove the NP-completeness of the
problem Resilient-CoSched-1pack when considering failures and performing redistributions in
Section 5.4.5.

5.4.1 COMPLEXITY

Theorem 5.1

The 1-in-p-CoSchedule and 2-in-p-CoSchedule problems can both be solved in polynomial time.

Proof. This result is obvious for 1-in-p-CoSchedule: Each task is assigned exactly p processors
(see Equation 5.1) and the minimum execution time is

∑n
i=1 ti,p.

The proof is more involved for 2-in-p-CoSchedule, and we start with the 2-in-2-CoSchedule
problem to get an intuition. Consider the weighted undirected graphG = (V ,E), where |V| = n, each
vertex vi ∈ V corresponding to a task Ti. The edge set E is the following: (i) for all i, there is a loop on
vi of weight ti,2; (ii) for all i < i′, there is an edge between vi and vi′ of weight max(ti,1, ti′,1). Finding
a perfect matching of minimal weight in G leads to the optimal solution to 2-in-2-CoSchedule,
which can thus be solved in polynomial time.

For the 2-in-p-CoSchedule problem, the proof is similar, the only difference lies in the construc-
tion of the edge set E: (i) for all i, there is a loop on vi of weight ti,p; (ii) for all i < i′, there is an edge
between vi and vi′ of weight minj=1..p

(
max(ti,p−j, ti′,j)

)
. Again, a perfect matching of minimal weight

in G gives the optimal solution to 2-in-p-CoSchedule. We conclude that the 2-in-p-CoSchedule
problem can be solved in polynomial time. �

Theorem 5.2

When k ≥ 3, the k-in-p-CoSchedule problem is strongly NP-complete.
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Algorithm 5.1: Finding the Optimal 1-Pack-Schedule σ of k Tasks in the Same Pack
Procedure Optimal-1-pack-schedule(T1, . . . ,Tk)
begin

for i = 1 to k do
σ(i)← 1;

end
Let L be the list of tasks sorted in nonincreasing values of �σ;
pavailable := p− k;
while pavailable 	= 0 do

Ti� := head(L);
L := tail(L);
σ(i�)← σ(i�)+ 1;
pavailable := pavailable − 1;
L := Insert Ti� in L according to its �σ value;

end
return σ;

end

The proof can be found in Reference 3. It is based on a reduction from 3-Partition. Note that the
3-in-p-CoSchedule problem is NP-complete, and the 2-in-p-CoSchedule problem can be solved
in polynomial time; hence, 3-in-3-CoSchedule is the simplest problem whose complexity remains
open.

5.4.2 SCHEDULING A PACK OF TASKS

In this section, we discuss how to optimally schedule a set of k tasks in a single pack: the k tasks
T1, . . . ,Tk are given, and we search for an assignment function σ : {1, . . . , k} → {1, . . . , p} such that∑k

i=1 σ(i) ≤ p, where σ(i) is the number of processors assigned to task Ti. Such a schedule is called
a 1-pack-schedule, and its cost is max1≤i≤k ti,σ(i). In Algorithm 5.1, we use the notation Ti �σ Tj if
ti,σ(i) ≤ tj,σ(j):

Theorem 5.3

Given k tasks to be scheduled on p processors in a single pack, Algorithm 5.1 finds a 1-pack-schedule
of minimum cost in time O(p log(k)).

In this greedy algorithm, we first assign one processor to each task, and while there are processors
that are not processing any task, we select the task with the longest execution time and assign an
extra processor to this task. Algorithm 5.1 performs p− k iterations to assign the extra processors.
We denote by σ(�) the current value of the function σ at the end of iteration �. For convenience, we
let ti,0 = +∞ for 1 ≤ i ≤ k. We start with the following lemma:

Lemma 5.1

At the end of iteration � of Algorithm 5.1, let Ti� be the first task of the sorted list, that is, the task
with longest execution time. Then, for all i, ti�,σ(�)(i�) ≤ ti,σ(�)(i)−1.

Proof. Let Ti� be the task with longest execution time at the end of iteration �. For tasks such that
σ(�)(i) = 1, the result is obvious since ti,0 = +∞. Let us consider any task Ti such that σ(�)(i) > 1.
Let �′ + 1 be the last iteration when a new processor was assigned to task Ti: σ(�′)(i) = σ(�)(i)− 1
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and �′ < �. By definition of iteration �′ + 1, task Ti was chosen because ti,σ(�′)(i) was greater than
any other task, in particular, ti,σ(�′)(i) ≥ ti�,σ(�′)(i�). Also, since we never remove processors from

tasks, we have σ(�′)(i) ≤ σ(�)(i) and σ(�′)(i�) ≤ σ(�)(i�). Finally, ti�,σ(�)(i�) ≤ ti�,σ(�′)(i�) ≤ ti,σ(�′)(i) =
ti,σ(�)(i)−1. �

Proof of Theorem 5.3. Let σ be the 1-pack-schedule returned by Algorithm 5.1 of cost c(σ), and
let Ti� be a task such that c(σ) = ti�,σ(i�). Let σ′ be a 1-pack-schedule of cost c(σ′). We prove below
that c(σ′) ≥ c(σ); hence, σ is a 1-pack-schedule of minimum cost:

1. If σ′(i�) ≤ σ(i�), then Ti� has fewer processors in σ′ than in σ; hence, its execution time is
larger, and c(σ′) ≥ c(σ).

2. If σ′(i�) > σ(i�), then there exists i such that σ′(i) < σ(i) (since the total number of proces-
sors is p in both σ and σ′). We can apply the previous lemma at the end of the last iteration,
where Ti� is the task of maximum execution time: ti�,σ(i�) ≤ ti,σ(i)−1 ≤ ti,σ′(i), and therefore
c(σ′) ≥ c(σ).

Finally, the time complexity is obtained as follows: first, we sort k elements, in timeO(k log k). Then
there are p− k iterations, and at each iteration, we insert an element in a sorted list of k − 1 elements,
which takes O(log k) operations (use a heap for the data structure of L). �

Note that it is easy to compute an optimal 1-pack-schedule using a dynamic-programming
algorithm: the optimal cost is c(k, p), which we compute using the recurrence formula

c(i, q) = min
1≤q′≤q

{max(c(i− 1, q− q′), ti,q′)}

for 2 ≤ i ≤ k and 1 ≤ q ≤ p, initialized by c(1, q) = t1,q, and c(i, 0) = +∞. The complexity of this
algorithm isO(kp2). However, we can significantly reduce the complexity of this algorithm by using
Algorithm 5.1.

With failures. It is not difficult to extend this algorithm to solve the problem with failures, but still
without redistributions:

Theorem 5.4

The Resilient-CoSched-1pack problem without redistributions can be solved in polynomial
time O(n), where n is the number of applications.

We replace ti,j by tRi,j(1), and instead of adding processors one-by-one, we add them two-by-two.

5.4.3 OPTIMAL SOLUTION OF k-IN-p-COSCHEDULE

In this section, we sketch two methods to find the optimal solution to the general k-in-p-CoSche-
dule problem. This can be useful to solve some small-size instances, albeit at the price of a cost
exponential in the number of tasks n.

The first method is to generate all possible partitions of the tasks into packs. This amounts to
computing all partitions of n elements into subsets of cardinality at most k. For a given partition of
tasks into packs, we use Algorithm 5.1 to find the optimal processor assignment for each pack, and
we can compute the optimal cost for the partition. We still have to calculate the minimum of these
costs among all partitions.
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The second method is to cast the problem in terms of an integer linear program:

Theorem 5.5

The following integer linear program characterizes the k-in-p-CoSchedule problem, where the
unknown variables are the xi,j,b’s (Boolean variables) and the yb’s (rational variables), for 1 ≤ i, b ≤ n
and 1 ≤ j ≤ p:

Minimize
∑n

b=1 yb subject to
(i)

∑
j,b xi,j,b = 1, 1 ≤ i ≤ n

(ii)
∑

i,j xi,j,b ≤ k, 1 ≤ b ≤ n
(iii)

∑
i,j j× xi,j,b ≤ p, 1 ≤ b ≤ n

(iv) xi,j,b × ti,j ≤ yb, 1 ≤ i, b ≤ n, 1 ≤ j ≤ p.

(5.12)

Proof. The xi,j,b’s are such that xi,j,b = 1 if and only if task Ti is in the pack b and it is executed on
j processors; yb is the execution time of pack b. Since there are no more than n packs (one task per
pack), b ≤ n. The sum ∑n

b=1 yb is therefore the total execution time (yb = 0 if there are no tasks in
pack b). Constraint (i) states that each task is assigned to exactly one pack b, and with one number of
processors j. Constraint (ii) ensures that there are not more than k tasks in a pack. Constraint (iii) adds
up the number of processors in pack b, which should not exceed p. Finally, constraint (iv) computes
the cost of each pack. �

5.4.4 APPROXIMATION ALGORITHM

In this section, we introduce pack-Approx, a 3-approximation algorithm for the p-in-p-CoSche-
dule problem: if COSTopt is the optimal solution, and COSTalgo is the output of the algorithm, we
guarantee that COSTalgo ≤ 3COSTopt. The design principle of pack-Approx is the following: we
start from the assignment where each task is executed on one processor, and use Algorithm 5.2 to
build a first solution. Algorithm 5.2 is a greedy heuristic that builds a co-schedule when each task
is preassigned a number of processors for execution. Then, we iteratively refine the solution, adding
a processor to the task with longest execution time, and re-executing Algorithm 5.2. Here are the
details on both algorithms:
Algorithm 5.2. The k-in-p-CoSchedule problem with processor preassignments remains

strongly NP-complete (use a similar reduction as in the proof of Theorem 5.2). We propose a greedy
procedure in Algorithm 5.2 that is similar to the First Fit Decreasing Height algorithm for strip pack-
ing [29]. The output is a co-schedule with at most k tasks per pack, and the complexity isO(n log(n))
(dominated by sorting).
Algorithm 5.3.We iterate the calls to Algorithm 5.2, adding a processor to the task with longest

execution time, until (i) either the task of longest execution time is already assigned p processors, or
(ii) the sum of the work of all tasks is greater than p times the longest execution time. The algorithm
returns the minimum cost found during execution. The complexity of this algorithm isO(n2p) in the
simplest version presented here: in theO(np) calls to Algorithm 5.2, we do not need to re-sort the list
but we maintain it sorted instead, thus each call except the first one has linear cost. The complexity
can be reduced to O(n log(n)+ np) using standard algorithmic techniques [30].

Theorem 5.6

pack-Approx is a 3-approximation algorithm for the p-in-p-CoSchedule problem.

The involved proof can be found in Reference 3.
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Algorithm 5.2: Creating Packs of Size at Most k, When the Number σ(i) of Processors per Task
Ti Is Fixed
Procedure Make-pack (n, p, k,σ)
begin

Let L be the list of tasks sorted in non-increasing values of execution times ti,σ(i);
while L 	= ∅ do

Schedule the current task on the first pack with enough available processors and fewer
than k tasks. Create a new pack if no existing pack fits;
Remove the current task from L;

end
return the set of packs

end

Algorithm 5.3: pack-Approx
Procedure pack-Approx(T1, . . . ,Tn)
begin

COST = +∞;
for j = 1 to n do σ(j)← 1;
for i = 0 to n(p− 1)− 1 do

Let Atot(i) =∑n
j=1 tj,σ(j)σ(j);

Let Tj� be one task that maximizes tj,σ(j);
Call Make-pack (n, p, p,σ);
Let COSTi be the cost of the co-schedule;
if COSTi < COST then COST← COSTi;

if
(
Atot(i)
p > tj�,σ(j�)

)
or (σ(j�) = p) then

return COST ; /* Exit loop */
else σ(j�)← σ(j�)+ 1; /* Add a processor to Tj� */

end
return COST;

end

Minimum resource requirement.We conclude this section on theoretical analysis in a fault-free sce-
nario by the following remark.We point out that all results can be extended to deal with the variant of
the problem where each task Ti has a minimum compute node requirementmi. Such a requirement is
typically provided by the user. In that variant, Equation 5.2 is defined only for j greater than mi. For
all previous algorithms, the difference lies in the preliminary step where one assigns one processor
to each task: one would now assign mi processors to task i, for all i. The number of total steps in
the algorithms becomes smaller (because there are fewer processors available). One should note that
with this constraint, all results (Theorems 5.1 through 5.6) are still valid, and proofs are quite similar.

5.4.5 WITH REDISTRIBUTIONS

We can easily build examples to show the difficulty of Resilient-CoSched-1pack when redistri-
butions are allowed, even when there are no failures: (i) Algorithm 5.1 is no longer optimal because
it may give processors to an application with a poor speedup profile (i.e., it does not gain much from
the additional processors); and (ii) the greedy variant where remaining processors are allocated to
the application with the best speedup profile can also lead to nonoptimal schedules (see Reference
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25 for details). Intuitively, these little examples show that Resilient-CoSched-1pack seems to be
of combinatorial nature when redistributions are taken into account, even with zero cost.

To establish the complexity of the problem with redistributions, we consider the simple case with
no failures. Therefore, redistributions occur only at the end of an application, and any application
changes at most n times its number of processors, where n is the total number of applications. We
further consider that the redistribution cost is a constant equal to S, that is, we letβ = 0 and τ = +∞
in Equation 5.11. Even in this simplified scenario, the problem is NP-complete:

Theorem 5.7

With constant redistribution costs and without failures, Resilient-CoSched-1pack is NP-complete
(in the strong sense).

The involved reduction comes from 3-Partition, and can be found in Reference 25.

Remarks

We conjecture that Resilient-CoSched-1pack remains NP-complete with zero redistribution cost.
This is because of the combinatorial exploration suggested by the examples. But this remains an
open problem!

5.5 HEURISTICS AND SIMULATIONS

In this section, we introduce and evaluate polynomial-time heuristics to solve the general Resilient-
CoSched-1pack problem with both failures and redistributions. Before performing any redistribu-
tion, we need to choose an initial allocation of the p processors to the n applications. We use the
optimal algorithmwithout redistribution, Algorithm 5.1. Note that heuristics for the k-in-p-CoSche-
dule general problem can be found in Reference 3, together with their evaluation.

We first discuss the general structure of the heuristics in Section 5.5.1. Then, we explain how to
redistribute available processors in Section 5.5.2, and the two strategies to redistribute when fail-
ures occur in Section 5.5.3. The pseudo-codes for all algorithms are available in Reference 25. The
simulation settings are discussed in Section 5.5.4, and results are presented in Section 5.5.5.

5.5.1 GENERAL STRUCTURE

All heuristics share the same skeleton: we iterate over each event (either a failure or an application
termination) until total remaining work is equal to zero. If some applications are still working for
a previous redistribution (i.e., the current time t is smaller than tlastRi for these applications), then
we exclude them for the next redistribution, and add them back into the list of applications after the
current redistribution is completed. If an application ends, we redistribute available processors as will
be discussed in Section 5.5.2. Then, if there is a failure, we calculate the new expected execution
time of the faulty application. Also, we remove from the list the applications that end before tlastRf ,
and we release their processors.

Afterward, we have to choose between trying to redistribute or do nothing. If the faulty application
is not the longest application, the total execution time has not changed since the last redistribution.
Therefore, because it is the best execution time that we could reach, there is no need to try to improve
it. However, if the faulty application is the longest application, we apply a heuristic to redistribute
processors (see Section 5.5.3).
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5.5.2 REDISTRIBUTION WHEN AN APPLICATION ENDS

When an application ends, the idea is to redistribute the processors that it releases in order to decrease
the expected execution time. The easiest way to proceed consists of adding processors greedily to
the application with the longest execution time, as was done in Algorithm 5.1 to compute an optimal
schedule. This time, we further account for the redistribution cost, and update the values of αi,
tlastRi , and t

U
i for each application i that encountered a redistribution. Therefore, this heuristic, called

EndLocal, returns a new distribution of processors.
Rather than using only local decisions to redistribute available processors at time t, it is possible

to recompute an entirely new schedule, using the greedy algorithm Algorithm 5.1 again, but further
accounting for the cost of redistributions. This heuristic is called EndGreedy. Now, we need to com-
pute the remaining fraction of work for each application, and we obtain an estimation of the expected
finish time when each application is mapped on two processors. Similarly to Algorithm 5.1, we then
add two processors to the longest application while we can improve it, accounting for redistribution
costs.

Note that we effectively update the values ofαi and tlastRi for application Ti only if a redistribution
was conducted for this application. It may happen that the algorithm assigns the same number of
processors as was used before. Therefore, we keep the updated value of the fraction of work in a
temporary variable αti and update it whenever needed at the end of the procedure.

5.5.3 REDISTRIBUTION WHEN THERE IS A FAILURE

Similarly to the case of an application ending, we propose two heuristics to redistribute in case of
failures. The first one, ShortestapplicationsFirst, takes only local decisions. First, we allocate
the k available processors (if any) to the faulty application if that application is improvable. Then,
if the faulty application is still improvable, we try to take processors from shortest applications
(denoted Ts) in the schedule, and give these processors to the faulty application, until the faulty
application is no longer improvable, or there are no more processors to take from other applications.
We take processors from an application only if its new execution time is smaller than the execution
time of the faulty application.

The second heuristic, IteratedGreedy, uses a modified version of the greedy algorithm that
initializes the schedule (Algorithm 5.1) each time there is a failure, while accounting for the cost of
redistributions. This is done similarly to the redistribution of EndGreedy explained in Section 5.5.2,
except that we need to handle the faulty application differently to update the values of αf and tlastRf .

5.5.4 SIMULATION SETTINGS

To assess the efficiency of the heuristics, we have performed extensive simulations. Note that the code
is publicly available at http://graal.ens-lyon.fr/∼abenoit/code/redistrib, so that interested readers can
experiment with their own parameters.

To evaluate the quality of the heuristics, we conduct several simulations, using realistic param-
eters. The first step is to generate a fault distribution: we use an existing fault simulator developed
in References 31 and 32. In our case, we use this simulator with an exponential law of parameter λ.
The second step is to generate a fault-free execution time for each application (the ti,j value). We
use a synthetic model to generate the execution profiles in order to represent a large set of scientific
applications. The application model that we use is a classical one, similar to the one used in Refer-
ence 3. For a problem of sizem, we define the sequential time: t(m, 1) = 2× m× log2(m). Then we
can define the parallel execution time on q processors:

t(m, q) = f × t(m, 1)+ (1− f ) t(m, 1)
q
+ m

q
log2(m). (5.13)

http://graal.ens-lyon.fr/%E2%88%BCabenoit/code/redistrib
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The parameter f is the sequential fraction of time, we fix it to f = 0.08. So 92% of time is
considered as parallel. The factor (m/q) log2(m) represents the overhead due to communications
and synchronizations. Finally, we have ti,j(mi) = t(mi, j), where ti,j(mi) is the execution time for
application Ti with a problem of size mi on j identical processors.

Finally, we assign to each application Ti a random value for the number of data mi such that:
minf ≤ mi ≤ msup. We set minf = 1, 500, 000 and msup = 2, 500, 000 to have execution times long
enough so that several failures are likely to strike during execution. With such a value for msup, the
longest execution time in a fault-free execution is around 100 days. We also consider two different
data distribution cases: (i) very heterogeneous withminf = 1, 500, and (ii) homogeneous withminf =
2, 499, 000, and detailed results for these distributions are available in Reference 25.

The cost of checkpoints for an application Ti with j processors is Ci,j = Ci/j, where Ci is propor-
tional to the memory footprint of the application. We have Ci = mi × c, where c is the time needed
to checkpoint one data unit of mi. The default value is c = 1, unless stated otherwise. The synchro-
nization cost value S is fixed to S = 0 for all following experiments. Finally, the MTBF of a single
processor is fixed to 100 years, unless stated otherwise.

Note that we assume that a failure can strike during checkpoints but not during downtime, during
recovery, and while the processor is performing some redistribution.

5.5.5 RESULTS

To evaluate the heuristics, we execute each heuristic 50 times and we compute the averagemakespan,
that is, the longest execution time in the pack. We compare the makespan obtained by the heuristics
to the makespan (i) in a faulty context without any redistribution (worst case) and (ii) in a fault-free
context with redistributions (best case). We normalize the results by the makespan obtained in a
faulty context without any redistribution, which is expected to be the worst case. The execution in a
fault-free setting provides us an optimistic value of the execution of the application in the ideal case
where no failures occur. We consider all four possible combinations of EndLocal or EndGreedy
with ShortestapplicationsFirst or IteratedGreedy.

5.5.5.1 Performance in a Fault-Free Context
Figure 5.4 shows the impact of redistribution in a fault-free context with 1000 applications, where
we vary the number of processors from 2000 to 10,000. In this case, we compare EndLocal with
EndGreedy (see Section 5.5.2). The two heuristics have a very similar behavior, leading to a gain of
more than 20% with less than 4000 processors, and a slightly better gain for the EndGreedy global
heuristic. When the number of processors increases, the efficiency of both heuristics decreases to
converge to the performance without redistribution. Indeed, there are then enough processors so
that each application does not make use of the extra processors released by ending applications.
In the heterogeneous context (with minf = 1500), the gain due to redistribution is even larger (see
Reference 25).

5.5.5.2 Impact of n
Figure 5.5 shows the impact of the number of applications n when the number of processors is fixed
to 5000. The results show that having more applications increases the efficiency of both heuristics.
With n = 1000, we obtain a gain of more than 40% due to redistributions. The reason is that when
n increases, the number of processors assigned to each application decreases, then heuristics have
more flexibility to redistribute.

Note that, as expected, IteratedGreedy is better than ShortestapplicationsFirst, because
it recomputes a complete new schedule at each fault, instead of just allocating available processors
from shortest applications to the faulty application. Using EndGreedy with IteratedGreedy does
not improve the performance, while EndGreedy is useful with ShortestapplicationsFirst, hence
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FIGURE 5.4 Redistribution in a fault-free context.
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FIGURE 5.5 Impact of n with p = 5000 processors.

showing that complete redistributions are useful, even when only performed at the end of an appli-
cation. Similar results can be observed in the homogeneous and heterogeneous cases, and similar
conclusions are drawn when varying p for a fixed value of n (see Reference 25).

5.5.5.3 Impact of MTBF
Figure 5.6 shows the impact of the MTBF on the performance of redistributions. We vary the MTBF
of a single processor between 5 and 125 years. When the MTBF decreases, the number of failures
increases; consequently, the performance of both heuristics decreases. The performance of Iterat-
edGreedy is closely linked to theMTBF value. Indeed, it tends to favor a heterogeneous distribution
of processors (i.e., applications with many processors and applications with few processors). If an
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FIGURE 5.6 Impact of MTBF with n = 100 and p = 5000.
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FIGURE 5.7 Impact of checkpointing cost.

application is executed on many processors, its MTBF becomes very small and this application will
be hit by more failures; hence, it becomes even worse than without redistribution!

5.5.5.4 Impact of Checkpointing Cost
Figure 5.7 shows the impact of the checkpointing cost on a platform with 100 applications and 1000
processors. To do so, we multiply the checkpointing cost by c in Figure 5.7 (recall that c is the time
needed to checkpoint one data unit). When c decreases, the performance of the heuristics increases
and the gap between the execution time in a fault-free context and a fault context becomes small.
Indeed, if checkpoints are cheap, a lot of checkpoints can be taken, and the average time lost due to
failures decreases.

Additionally, we show in Reference 25 that the sequential fraction of time f of the applica-
tions also has an impact on performance: as expected, when applications are more parallel, the
redistribution is more efficient.
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5.5.5.5 Summary
Altogether, we observe that IteratedGreedy achieves better performance than Shortestappli-
cationsFirst, mainly because it rebuilds a complete schedule at each fault, which is very efficient
but also costly. Nevertheless, when the MTBF is low (around 10 years or less), Shortestapplica-
tionsFirst becomes better than IteratedGreedy. In a faulty context, we gain flexibility from the
failures and we can achieve a better load balance. We observe that the ratio between the number of
applications and the number of processors plays an important role, because having too many pro-
cessors for few applications leads to a deterioration of performance. We also show that the cost of
checkpointing and the fraction of sequential time have a significant impact on performance.

Finally, we point out that all four heuristics run within a few seconds, while the total execution
time of the application takes several days; hence, even the more costly combination Iterated-
Greedy-EndGreedy incurs a negligible overhead.

5.6 CONCLUSION

In this chapter, we have provided theoretical results to assess the complexity of the general partition-
ing problem in a fault-free scenario; the problem is NP-complete when a pack can contain at least
three tasks, and we have provided an approximation algorithm. When accounting for failures, we
have designed a detailed and comprehensive model for scheduling a single pack of applications on a
failure-prone platform, with processor redistributions.We have introduced a greedy polynomial-time
algorithm that returns the optimal solution (for a single pack) when there are failures but no proces-
sor redistribution is allowed, or in a fault-free scenario. We have shown that the problem of finding
a schedule that minimizes the execution time when accounting for redistributions is NP-complete in
the strong sense, even with constant redistribution costs and no failures. Finally, we have provided
several polynomial-time heuristics to redistribute efficiently processors at each failure or when an
application ends its execution and releases processors. The heuristics are tested through extensive
simulations, and the results demonstrate their usefulness: a significant improvement of the execution
time can be achieved thanks to the redistributions.

Further workwill consider partitioning the applications into several consecutive packs (rather than
one) and conduct additional simulations in this context. We also plan to investigate the complexity
of the online redistribution algorithms in terms of competitiveness. It would also be interesting to
deal not only with fail-stop errors, but also with silent errors. This would require adding verification
mechanisms to detect such errors.
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ABSTRACT

For various types of enterprise and scientific applications as well as cyber-physical systems (such
as sensor-equipped bridges, smart buildings, and industrial machinery), processing and analyzing
data is important for gaining insights and making meaningful decisions. The amount of data ana-
lyzed, however, is sometimes very large, and conventional processing tools and techniques cannot
be used for analyzing such Big Data. A programming model, called MapReduce, is proposed by
Google to simplify performing massively distributed parallel processing so that very large and com-
plex datasets can be processed and analyzed efficiently. A popular implementation of theMapReduce
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programming model, called Hadoop, is used by many companies and institutions, typically in con-
junction with cloud computing, for executing various Big Data applications, including web analytics
applications, scientific applications, data mining applications, and enterprise data-processing appli-
cations. The focus of this chapter is on describing effective resource management algorithms and
techniques for processing MapReduce jobs, including MapReduce jobs with an associated comple-
tion deadline. Effective resource management strategies are crucial for processing the MapReduce
jobs submitted to the system and to achieve user satisfaction and high system performance that
includes a high quality of service as reflected in a low ratio of jobs with missed deadlines, low job
response times, high job throughput, and high resource utilization.

6.1 INTRODUCTION

Modern large-scale processing systems have to be capable of processing large volumes of data (often
referred to as Big Data) that are prevalent in today’s world. For example, businesses as well as aca-
demic and research institutions can generate terabytes (TB) of data each day [1] and store petabytes
(PB, 250 bytes) of data on their systems [2]. The prevalence of data in today’s world is a result of the
numerous sources of data available from various industries and institutions, including:

• Scientific data (e.g., health-related data, weather data, satellite data)
• Industrial/organizational data (e.g., financial data, manufacturing data, retail data)
• Business intelligence data (e.g., sales data, customer behavior data, product data)
• System data (e.g., system logs, network logs, status files)

In addition, with the advent of the Internet of Things (IoT) paradigm leading to a popularity of
smart facilities and cyber-physical systems, such as sensor-equipped bridges, smart buildings, and
industrial machinery, a new source of Big Data (from sensors, for example) has emerged. Analyzing
this Big Data for making meaningful decisions and obtaining knowledge and insights is important
in various types of environments, including enterprise and scientific applications as well as cyber-
physical systems. However, the volume of data analyzed is too large for conventional processing
tools and techniques to handle efficiently. One of the main problems of processing Big Data is that
the rate at which data can be read from hard drives (access speed) is a bottleneck. The capacity of
hard drives has increased exponentially over the years. In comparison, the access speeds of hard
drives have increased at a slower rate. For example, it is common for hard drives to have capac-
ities of over 1 TB, but the access speed is typically only 100 MB/s [2]. This means that it can
take over 2.5 hours to read 1 TB of data from the hard drive. One solution to solve this problem
and improve performance is to use parallelism. Instead of reading the 1 TB data from a single
hard drive, 1 GB partitions of the data can be read from 1000 hard drives in parallel. By using
the parallelism of 1000 hard drives, reading 1 TB of data can be accomplished at a much faster
time: 100 s instead of 2.5 hours. However, there are a number of challenges with using parallelism,
including how to perform communication and coordination among the different machines, and how
to handle and recover from machine failures. In addition, developing and debugging/testing a dis-
tributed (parallel) application is more difficult than developing an application that runs on a single
machine.

MapReduce [1], originally proposed byGoogle, is a programmingmodel whose purpose is to sim-
plify performing massively distributed parallel processing so that very large and complex datasets
can be processed and analyzed efficiently (discussed in detail in Section 6.2.1). When dealing with
a large volume of data, it is necessary to distribute the computation among multiple machines to
enable parallel processing and reduce the overall processing time. MapReduce is a popular parallel
processing model that is often used in conjunction with cloud computing to facilitate Big Data ana-
lytics [3–5], which can include processing web analytics applications, scientific applications, social
networks, and enterprise data. Many companies and institutions also use MapReduce for a variety of
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other applications, including large-scale data processing (e.g., sorting, indexing, and grouping), data
mining (e.g., web crawling), artificial intelligence (e.g., machine learning), and scientific research
(e.g., bioinformatics) [5]. For example, Google has previously used MapReduce applications to ana-
lyze web documents to generate search indices for its web search engine, whereas Facebook uses
MapReduce to analyze its users’ activities and the success of advertisements on its website [6].
More recently, MapReduce jobs with an associated completion deadline have become important for
latency-sensitive applications, such as those used in the context of live business intelligence, per-
sonalized advertising, spam/fraud detection, real-time analysis of event logs, and various additional
real-time data analytics applications [7]. Business intelligence refers to analyzing the raw data of a
business or corporation so that smart and effective business strategies can be developed. Event log
analysis involves processing event logs to find particular patterns, filter event occurrences, and group
similar event occurrences together. Such event log analysis can be used for various types of com-
puting systems that have event monitors to collect and signal event occurrences, including operating
systems, database management systems, and cyber-physical systems. More generally, allowing users
to specify job deadlines permits the resource manager to prioritize jobs and ensure that time-critical
jobs are completed on time. In some situations, it is ideal to analyze the most up-to-date data and
receive the results in a timely manner (e.g., in real-time) so that the best decisions can be made. Thus,
it is common for various companies and institutions to submit MapReduce jobs to a cluster or a cloud
for processing. In both scenarios, a resource management middleware is required to efficiently and
intelligently execute the submitted MapReduce jobs.

The focus of this chapter is on describing effective algorithms and techniques for resource man-
agement for MapReduce jobs, including jobs characterized by service level agreements (SLAs). An
SLA defines a contract between the service requester and the service provider regarding the level
of quality of service (QoS) associated with a request [8]. The SLA may vary from application to
application, but handling of requests with an SLA often leads to an advance reservation request [9]
that is characterized by an earliest start time, a required execution time, and end-to-end deadline
for completion. Public cloud service providers such as Amazon and Microsoft deploy data centers
that comprise a large pool of resources. In addition, many enterprises and institutions have their own
private clouds for IT management, performing data-processing operations, and facilitating research.
Irrespective of the type of cloud deployed, effective and intelligent resource management is nec-
essary for harnessing the power of the underlying distributed hardware and achieving high system
performance [10], including high job throughput, low job response times, efficient use of resources,
and a high QoS as reflected in a low ratio of jobs with missed deadlines, for example.

Resource management for an open stream of MapReduce jobs, which comprises of multiple
phases of execution with multiple tasks in each phase, is a complex problem with a number of
challenging issues that include how to devise effective techniques to perform matchmaking and
scheduling such that the submitted jobs meet their SLA requirements. Matchmaking and schedul-
ing (collectively referred to as mapping) are two key operations performed by a resource manager
deployed in the resource management middleware of a cloud. When an incoming request (or job)
arrives from the user, the resource manager invokes a matchmaking algorithm that selects the
resource (or resources) from a given pool of resources to be allocated to the request. Once a number
of requests are allocated to a specific resource, a scheduling algorithm is used to determine the order
in which the requests assigned to the resource are to be executed. Matchmaking and scheduling is
a well-known computationally hard (NP-hard) problem, and the problem becomes more difficult
to solve when having to satisfy a user’s QoS requirements that is often captured in an SLA, while
also achieving the desired system objectives of the service providers, such as generating high revenue
andmaintaining high resource utilization. Furthermore, when considering an open stream of requests
with SLAs and requests requiring processing from multiple system resources, the complexity of the
resource management problem increases significantly. Effective management of the resources that
are used for executing the MapReduce applications is crucial for achieving the satisfaction of users
as well as high system utilization and is the focus of attention for this chapter.
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The rest of the chapter is organized as follows. In Section 6.2, background information onMapRe-
duce and Hadoop, which is a popular implementation of the MapReduce programming model, is
provided. Section 6.3 describes resource management techniques that focus on various aspects of
processing MapReduce jobs, including reducing job completion times and reducing the energy con-
sumption of resources executing the jobs. Next, in Section 6.4, resource management techniques
for MapReduce jobs with deadlines are presented. Lastly, Section 6.5 concludes the chapter and
provides directions for future work.

6.2 BACKGROUND

This section presents background information on the concepts and technologies relevant to this
chapter.

6.2.1 MAPREDUCE

A MapReduce application (or job) is characterized by multiple phases of execution and each phase
has multiple tasks [1] as illustrated by Figure 6.1. Many computations can be expressed using the
MapReduce programming model. A classic example is the URL access frequency application that
processes the logs of web servers to count the number of distinct URL accesses [1]. This application
is a variation of the well-known WordCount MapReduce application. The input that needs to be
processed is the logs of the web server. The first step is to split the input data into blocks with a
default size of 64 MB, which are called splits (refer to Figure 6.1). Next, in the map phase, map
tasks, which execute a user-defined mapper function, are created to process each of the partitions of
the input data (i.e., the splits). Note that the map tasks are independent from one another and can be
executed in parallel, possibly on different resources. In the URL access frequency application, the
mapper function reads each URL in the logs and generates a set of intermediate key/value pairs
of the form: {URL, 1}. This key/value pair specifies that one instance of a particular URL is
found. The intermediate dataset generated by the map phase can contain multiple duplicate key/value
pairs. For example, the key/value pair {www.carleton.ca, 1} can appear multiple times in the
intermediate dataset. Next, in the shuffle phase, the intermediary key/value pairs with the same key
are grouped together as shown in Figure 6.1. The sorted intermediary key/value pairs are then passed
onto the reduce phase. During the reduce phase, reduce tasks that execute a user-defined reducer
function process the intermediate key/value pairs to produce the final output, which is typically an
aggregate or summary of the original input data and is smaller and more meaningful than the original
input data. Similar to the map phase, the reduce tasks are independent from one another and can be
executed in parallel, possibly on different resources. Note that reduce tasks cannot complete their
execution until all the map tasks have finished executing. In the URL access frequency application,
the reducer function sums all the values with the same key to emit the output dataset:{URL, total
count}. Therefore, the final output will be a list of URLs and total number of times each URL is
accessed.

6.2.2 APACHE HADOOP

Apache Hadoop [11] is an open-source software framework (written in Java) that implements the
MapReduce programming model (discussed in Section 6.2.1). Hadoop is designed for executing
data-intensive distributed computing applications (i.e., Big Data applications), such as web analyt-
ics applications, scientific applications, and applications processing the data from social networks
or enterprises [3,12]. Hadoop comprises three main subframeworks: Hadoop Common, Hadoop
Distributed File System (HDFS), and Hadoop MapReduce. Hadoop Common provides the utility
functions, including remote procedure call (RPC) facilities and object serialization libraries, that are
leveraged by the HDFS and MapReduce frameworks. HDFS is an implementation of a distributed

www.carleton.ca
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file system that is based on Google’s distributed file system, named GFS (Google File System) [13].
HDFS provides redundant storage for the input data required by Hadoop jobs, and it also stores the
intermediary data and output data generated by Hadoop jobs.

A set of machines (where each machine is called a node) that runs Hadoop is referred to as a
Hadoop cluster (see Figure 6.2). A typical Hadoop cluster comprises a single master node and one
or more slave nodes. The master node is responsible for maintaining HDFS and assigning MapRe-
duce tasks to slave nodes for execution. The slave nodes perform work (e.g., read/write to HDFS or
execute MapReduce tasks) that the master node assigns to them. In the original Hadoop MapReduce
architecture (MRv1), the master node runs two Hadoop components (which are often calledHadoop
daemons): NameNode and JobTracker. Each slave node in the Hadoop cluster also runs two Hadoop
daemons: DataNode and TaskTracker.

The NameNode and DataNodes are the Hadoop daemons in charge of managing HDFS. Each
file that is written to HDFS is split into blocks of 64 MB (default value) and each block is stored on
the storage device of the node where DataNode is running. In addition, each block is replicated three
times (default value) and stored on different DataNodes to provide data redundancy and availability.
It is the job of NameNode to keep track of which DataNode stores the blocks of a particular file
(which is referred to as the metadata of HDFS). Another important function of NameNode (master)
is to direct DataNodes (slaves) to perform HDFS block operations (creation, deletion, and replica-
tion). DataNodes keep in constant contact with NameNode to receive instructions and also have to
handle read and write requests from HDFS clients. An example illustrating HDFS is presented in
Figure 6.3. Note that in this example, the block replication factor is two. As shown in this illustration,
the NameNode maintains the metadata of HDFS, and the file named “file.txt” is composed of two
blocks: Block 1A is replicated twice and stored on DataNode 1 and DataNode 2, and Block 1B is
also replicated twice and stored on DataNode 1 and DataNode 3.

JobTracker provides the connection between user applications and the Hadoop cluster, and it
has the following main responsibilities: initialize jobs and prepare them for execution, perform the
matchmaking and scheduling of MapReduce jobs, and monitor the status of the jobs that are cur-
rently running. JobTracker is also responsible for managing TaskTrackers, which operate as the
JobTracker’s slaves and their primary purpose is to execute the map tasks or reduce tasks that the
JobTracker assigns to them. Each TaskTracker periodically sends polling/update messages (called
heartbeats) to JobTracker to receive new tasks and to update its progress on the tasks that it is cur-
rently executing (if any). If JobTracker does not receive a heartbeat message from a TaskTracker
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DataNode

TaskTracker
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Master node

Slave nodes
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FIGURE 6.2 Example of a Hadoop cluster using Hadoop MapReduce Architecture v1 (MRv1).
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FIGURE 6.3 Example of HDFS.

within a specified time period (by default 1 minute), JobTracker assumes that the TaskTracker is lost
and remaps all the tasks that are assigned to the lost TaskTracker to other available TaskTrackers.
Each TaskTracker in the Hadoop cluster has a map task capacity (or number of map slots) and a
reduce task capacity (or number of reduce slots), which specify the maximum number of map tasks
and maximum number of reduce tasks, respectively, that the TaskTracker can execute in parallel at
any point in time. An overview of Hadoop MapReduce is presented in Figure 6.4. As shown in the
illustration, JobTracker maintains a list of active jobs and a list of completed jobs. There are two
active jobs in the example system, and JobTracker has assigned TaskTracker 1 two map tasks to
execute: Map Task 1 from Job B (Map B1) and Map Task 2 from Job C (Map C2).

6.2.2.1 Hadoop MapReduce v2 Architecture (MRv2)
The Hadoop MapReduce v1 architecture (MRv1) described earlier was found to have two main
inadequacies when used in very large clusters comprising more than 4000 nodes [14]. The first
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FIGURE 6.4 Example of Hadoop MapReduce (MRv1).
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deficiency is limited scalability. On very large clusters (more than 4000 nodes, for example), it was
reported that system performance deteriorates because there is a single entity, JobTracker, managing
all the slave nodes. For example, after a failure of a slave node, attempts to re-replicate the data could
cause network flooding. The second deficiency is the lack of support for multitenancy and lack of
support for running alternative frameworks and paradigms other than MapReduce. As the cluster
size increases, it becomes more desirable to share the cluster’s resources by partitioning the available
resources among multiple independent organizations such that different programs and applications,
other than MapReduce, can be run on the cluster. Lack of support for multitenancy can also result
in inefficient use of resources (e.g., low resource utilization) because there can be times when the
processing of only MapReduce jobs cannot utilize all the resources in a cluster with thousands of
nodes.

To solve the inadequacies of MRv1, a new Hadoop MapReduce architecture (MRv2) named Yet
Another Resource Negotiator (YARN) [15] was devised. The major change in MRv2 from MRv1 is
the introduction of a new hierarchical approach that replaces JobTracker and divides its function-
ality into two main responsibilities: allocation of system resources and job scheduling/monitoring.
More specifically, JobTracker and TaskTracker from MRv1 are replaced by three new components
(or Hadoop daemons) in MRv2: ResourceManager, NodeManager, and ApplicationMaster. Thus, a
Hadoop cluster based on MRv2 has a single ResourceManager daemon running on the master node,
a NodeManager daemon executing on each slave node in the cluster, and an ApplicationMaster dae-
mon for each application running on the cluster (refer to Figure 6.5). As illustrated in Figure 6.5,
there are two applications submitted to the ResourceManager: Client 1 submits a MapReduce job
for processing whereas Client 2 submits a non-MapReduce job for processing. As a result, there are
two ApplicationMasters running on the Hadoop cluster: one ApplicationMaster running on Slave
Node 3 for the MapReduce job submitted by Client 1 and another ApplicationMaster running on
Slave Node 1 for the non-MapReduce job submitted by Client 2.

The functionality of the ResourceManager is divided into two main components: Scheduler and
ApplicationManager. The main purpose of the Scheduler is to allocate resources (e.g., compute,
memory, and bandwidth) to each of the applications running on the cluster. In MRv2, the resource(s)
that an application requires to execute is defined based on the abstract notion of a resource container.
A resource container defines an application’s resource requirements that can include the following:
number of CPU cores, memory size, disk size, and network bandwidth. For instance, in Figure 6.5,
each application executing on the cluster has two resource containers, where each container resides
on a different slave node. This means that the MapReduce job submitted by Client 1 can execute on
Slave Node 2 and Slave Node 3, but not on Slave Node 1 since there is no resource container for
Client 1’s MapReduce job on the first slave node. Moreover, it can be observed that the resources of
Slave Node 2 are divided among two containers, which permits the execution of both jobs on that
node. The ApplicationManager is responsible for accepting job submissions from users, obtaining
the resource container for starting the ApplicationMaster, and restarting the execution of Applica-
tionMasters due to application or hardware failures. The ApplicationMaster is the Hadoop daemon
responsible for negotiating resource containers from the Scheduler for executing the client’s applica-
tion. In addition, ApplicationMasters also work in conjunction with the NodeManagers (of the slave
nodes) to execute and monitor the status/progress of the applications as well as to track and moni-
tor the status and usage of the resource containers. The NodeManager reports this status and usage
information of the resource containers to the ResourceManager. Overall, the changes made in MRv2
improveHadoop by improving reliability and scalability, and enable greater resource sharing through
multitenancy.

6.3 RESOURCE MANAGEMENT FOR MAPREDUCE JOBS

This section describes resource management techniques for MapReduce jobs that focus on different
aspects of processing MapReduce jobs and have a variety of different objectives, including reducing
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FIGURE 6.5 Example of a Hadoop cluster using Hadoop MapReduce Architecture v2 (MRv2).

job completion times, reducing data transmission between resources to minimize network traffic,
handling of heterogeneous resources, sharing of resources, and managing the energy consumption
of resources.

6.3.1 TECHNIQUES TO REDUCE JOB COMPLETION TIMES

In Reference 16, the authors present an abstraction of the MapReduce matchmaking and schedul-
ing problem by formulating it as an optimization problem using mixed integer linear programming
(MILP) where the objective is to find a schedule that minimizes the overall completion time of
the jobs in the cluster. Since using MILP to solve such a problem is NP-hard [17], optimal solu-
tions are difficult and time-consuming to compute even for offline versions where job arrivals are
predetermined. As such, the authors propose algorithms with heuristics to approximate the optimal
solutions within a factor of three of the optimal value. Using simulation, the authors compare their
algorithmwith other well-known scheduling algorithms such as first-in-first-out (FIFO), shortest job
first (SJF), and shortest task first (STF). The results show that while FIFO, SJF, and STF only work
well for specific workloads, their proposed algorithm consistently performs better.

The authors of Reference 18 also model the MapReduce scheduling problem as a linear program
where the objective is to minimize the overall completion time of the jobs in the cluster. Two types of
jobs are considered. The first type is data-intensive jobs which require performing data mining and
analysis of very large datasets, including system logs and historical data. The second type of job is
computationally-intensive jobs, that involve running algorithms or operations with high-processing
complexity, such as floating point operations. The modeling of the linear program is based on the
traditional job shop scheduling theory. A dispatch-rule-based online scheduling policy called LPT-θ
that is based on existing algorithms is proposed to approximate the optimal solution.
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Similar to Reference 18, in Reference 19, the authors present a resource management technique
to handle heterogeneous MapReduce workloads, comprising CPU-bound computationally-intensive
jobs and I/O-bound data-intensive jobs. The authors present a Triple-Queue Scheduler (TQS) that
includes a mechanism called MR-Predict to predict the type of workload that needs to be executed.
As the name suggests, TQS uses three queues: a CPU-bound job queue, an I/O-bound job queue, and
a wait queue. Through experimentation, the authors show that TQS can effectively schedule CPU-
bound and I/O-bound jobs such that the throughput of map tasks can increase by 30% compared to
the throughput achieved with the default Hadoop FIFO scheduler.

The authors of Reference 20 present a MapReduce framework called Dynamically ELastic
MApReduce (DELMA) that is capable of dynamically adjusting the cluster size (i.e., adding and
removing nodes from the processing of a job) on the fly while a job is being processed. The main
features of DELMA include the following: (1) ability to adjust the cluster size dynamically without
having to restart jobs already executing; (2) ability to lower completion time of jobs by adding vol-
untary or unutilized nodes to the cluster; and (3) ability to replace slow or faulty nodes while a job is
being processed. The authors evaluate DELMA under various processing and workload scenarios,
including adding nodes to the cluster at various times during job execution. The experimental results
showed that compared to Hadoop, DELMA can lower average job completion times by up to 50%
in the best-case scenario and up to 10% in the worst-case scenario.

In Reference 21, a cloud service model for MapReduce named Cura is presented. The objective
of Cura is to provide cost-effective MapReduce services in the cloud by implementing an efficient
resource allocation scheme that reduces the monetary cost of provisioning resources from the cloud.
The core resource management schemes that Cura provides include cost-aware resource provision-
ing, VM-aware scheduling, and online virtual machine reconfiguration. Experimental results show
that Cura provides an 80% reduction in the cost of provisioning resources from the cloud and reduces
job response times by up to 65%.

6.3.2 DATA LOCALITY-AWARE TECHNIQUES

MapReduce applications typically have to process very large datasets and frequent transmission
of data from one machine in the cluster to another machine in the cluster over the network can
severely reduce system performance due to limited network bandwidth in the cluster. Therefore, it
is beneficial to use a data locality-aware system to limit the data transfer between nodes as much as
possible. A data locality-aware system assigns tasks to execute on nodes that contain (or are close
to) the input data of the task in order to eliminate (or minimize) data transmission over the network.

In Reference 22, the authors propose a scheduling algorithm for workflows comprising multiple
MapReduce jobs with precedence relationships. The workflow is represented by a directed acyclic
graph (DAG). The proposed scheduling algorithm uses a predata placement strategy that reduces data
transmission over the network, and it also adopts the list scheduling algorithm, which is a priority-
based scheduling algorithm. The basic idea of the list scheduling algorithm is to assign each job
in the workflow a priority and schedule the job with the highest priority first. In the context of the
predata placement strategy, it is important to determine how to group datasets, where to place them,
and how many times to replicate the datasets. The authors propose using a data cohesion score,
which is used to represent the number of common datasets that there is between the datasets used
by task t and the datasets residing in each group of nodes. Preferably, task t will be assigned to the
group of nodes with the highest data cohesion score.

The authors of Reference 23 propose a scheduling technique that takes advantage of data locality
when scheduling map tasks. As discussed, the data locality-based technique advocates assigning
tasks to nodes that also contain the input data in order to prevent unnecessary data transmission over
the network. The proposed scheduling technique attempts to assign map tasks to a node that already
contains the input data (referred to as local map tasks). More specifically, the technique gives each
node in the cluster a chance to take any local map task in the queue before any nonlocal map tasks
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are assigned. The authors compared a prototype of their scheduler with the default Hadoop FIFO
scheduler and another algorithm called delay scheduling. The basic idea of the delay scheduling
algorithm is to improve data locality when scheduling map tasks by delaying the execution of a
task if it cannot be executed on a node where its input data is stored. A maximum delay, D, is
used to prevent a task from being starved. The experimental results show that, for the workloads
experimented with, the authors’ proposed technique achieves a lower average job response time in
comparison to that achieved by both FIFO and delay scheduling.

ALocality-Aware Reduce Task Scheduler (LARTS) is presented in Reference 24, which considers
data locality when scheduling reduce tasks. LARTS considers the size and the location of the input
data for reduce tasks when making scheduling decisions with the goal of minimizing network traffic,
which can in turn improve system performance. Through experimentation, the authors showed that
using LARTS over the traditional Hadoop FIFO scheduler can lead to a 7% reduction in job execution
times.

The authors of Reference 25 propose a technique to improve the effectiveness of Hadoop’s Fair
Scheduler (described inmore detail in Section 6.3.4). TheFair Scheduler [26] assigns each job a pool
of resources to use. When a job does not use all the resources in their pool, the Fair Scheduler may
assign the unused resources to the other jobs executing on the cluster. Furthermore, the Fair Scheduler
can also kill low-priority jobs to free up resources for higher-priority jobs. The problem with the Fair
Scheduler is that it does not consider data locality and other job properties when removing resources
from one job and reassigning them to other jobs. The technique proposed in Reference 25 aims
to fix these problems. For example, for I/O-bound jobs, the improved Fair Scheduler starts killing
tasks that are running on hosts that are furthest away from where the task’s input data is located in
order to reduce network traffic. Through experimentation, the authors show that the improved Fair
Scheduler can reduce network bandwidth usage, which in turn speeds up the execution time of jobs
by approximately 7% on average.

6.3.3 TECHNIQUES FOR HANDLING HETEROGENEOUS COMPUTING ENVIRONMENTS

This section describes resource management techniques for environments where the resources may
have different processing, memory, and network capacity (i.e., heterogeneous resources).

In Reference 27, the authors propose a new approach to solving the MapReduce resource man-
agement problem on the cloud where the system is characterized by heterogeneous resources. The
objective of the proposed approach is to minimize the total monetary cost of executing MapReduce
jobs on the cloud. The authors model the resource management problem as a constrained combi-
natorial optimization problem and solve the problem using an innovative constructive algorithm.
The results of the experiments showed a 2.8%–23.3% reduction in monetary cost compared to using
other resource management algorithms that consider heterogeneous resources in the cloud.

The authors of Reference 28 also focus on resource management for MapReduce workloads in
a heterogeneous computing environment. More specifically, a load-balancing algorithm whose pur-
pose is to evenly distribute the workload among nodes with different processing speeds is presented.
The algorithm is based on genetic algorithm theory, which is an artificial intelligence-based search
heuristic that solves optimization problems by simulating how natural evolution works. Simulation
results show that the proposed algorithm is effective in balancing the workload among heterogeneous
nodes, leading to a reduction in job completion times.

A MapReduce framework called MApReduce with adaptive Load balancing for heterogeneous
and Load imbalAnced clusters (MARLA), which is aimed at working efficiently in heterogeneous
and load-imbalanced computing environments, is presented in Reference 29. The problem with the
traditional approach is that, in heterogeneous clusters, nodes that have a lower performance pro-
file are assigned a similar workload (i.e., equal-sized data partition to process) to those nodes that
exhibit higher performance. MARLA alleviates this problem by using a dynamic task-scheduling
mechanism that allows each node in the cluster to request tasks at its own pace.
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6.3.4 RESOURCE SHARING TECHNIQUES

Resource management techniques that focus on fairly sharing the resources of a cluster among mul-
tiple users as well as techniques that borrow unused resources from other clusters are described in
this section.

Two of Hadoop’s default schedulers, the Fair Scheduler and Capacity Scheduler, focus on fairly
sharing the resources of the cluster among multiple users. The Fair Scheduler [26] is developed by
Facebook, and its objective is to ensure that each job (on average) gets an equal share of the available
resources in the cluster. The idea is to prevent many small jobs from starving the execution of a long
job and vice versa. The Fair Scheduler groups jobs into pools and each pool is assigned a minimum
share of the cluster’s resources (e.g., a minimum number of map slots and reduce slots). A separate
pool can also be assigned for each user so that all users get an equal share of the cluster’s resources.
The Capacity Scheduler [30] is developed by Yahoo and its objective is similar to the Fair Scheduler:
share a large cluster among many different independent users (or organizations). Jobs are placed in
queues and each queue is allocated a guaranteed capacity, which is a proportion of the total resource
slots of the cluster. Note that the unused capacity of a queue can be temporarily allocated to other
queues when needed. Furthermore, the jobs within a queue can be prioritized and the jobs with a
higher priority gain access to the queue’s resources first. The queues also support access control
mechanisms for restricting which users can submit jobs to a particular queue.

A technique called resource stealing, which allows currently running tasks to use the unutilized
task slots of a node (which the authors call residual resources), is presented in Reference 31. The
idea is that when there are available task slots on a node, the system splits the input data of a task into
two or more smaller blocks of data and creates an additional subtask to process each block of data
in order to make use of the unutilized task slots. In MapReduce, a fault-tolerance mechanism called
speculative execution is used. When a job is close to completion, but its completion is being slowed
down by a few straggling tasks that include slowly executing tasks and tasks that have crashed,
redundant tasks (called speculative tasks) are created and assigned to nodes that currently do not have
other tasks to execute. The idea is that one of the speculative tasks can finish executing earlier than the
original tasks, and thus the completion time of the job can be reduced. The authors of Reference 31
introduce an improvement to MapReduce’s default speculative execution mechanism called Benefit
Aware Speculative Execution. The new mechanism predicts if it is beneficial to launch a speculative
task, and only starts a speculative task if it is expected to finish earlier than the original task.

In Reference 32, the authors introduce a hierarchical MapReduce framework (HMR), which
supports executing MapReduce jobs on multiple clusters, such as clusters with unused resources.
A hierarchical MapReduce programming model is proposed where computations are expressed with
three functions:Map, Reduce, andGlobalReduce. The input to the GlobalReduce comprises the out-
put from all the reduce tasks of a job and is executed on only one node in the cluster. By supporting
the execution of MapReduce jobs in multiple clusters, a more effective resource sharing can be
achieved.

6.3.5 TECHNIQUES FOR ENERGY MANAGEMENT OF RESOURCES

This section presents resource management techniques that focus on green computing issues in the
context of MapReduce jobs: minimizing the energy consumed by a distributed system, such as a
cloud or cluster, when executing MapReduce jobs.

The authors of Reference 33 investigate techniques to improve the energy efficiency of running
MapReduce jobs in data centers and computational grids without severely affecting performance.
The authors study the performance and energy efficiency trade-offs of Hadoop using various work-
loads. The system activity traces that were recorded during experiments show that MapReduce
computations involve a large number of I/O operations (e.g., reading/writing a large volume of data
from/to disks) as well as network I/O operations, leading to low CPU utilization at some points in
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time. Through their study, the authors have found that careful resource allocation to match an appli-
cation’s degree of parallelism and using the well-known dynamic voltage and frequency scaling
(DVFS) technique can improve energy efficiency without a large performance cost.

The focus of Reference 34 is also on the challenge of making the execution of MapReduce jobs
more energy efficient. The paper considers a very bursty MapReduce workload with distinct CPU,
memory, and network requirements that is executed on a heterogeneous data center. An online energy
minimization path algorithm is presented and implemented in a new scheduler called the Green
MapReduce Scheduler (GEMS). GEMS reduces energy consumption while maintaining a low task
response time by using effective sleeping policies on the compute servers and the network switches.
More specifically, GEMS puts the compute servers and network switches to sleep when the load
on the system is low to save energy. Simulation experiments showed that GEMS produces up to
35% energy saving and improves job response times by 35% on heterogeneous data centers com-
pared to techniques that do not use sleeping policies on the compute and network devices and only
focus on the minimization of energy consumption on compute servers (without considering network
switches). The policies that only focus on the minimization of energy consumption typically use a
strategy where jobs are tightly packed on to a small number of servers, which leads to an increase in
response times and the servers running for a longer period of time. On the other hand, GEMS keeps
a larger number of servers active, allowing for a looser packing of jobs, which in turn reduces the
response times of the jobs. Energy savings are gained by putting servers and network switches to
sleep whenever possible.

6.4 RESOURCE MANAGEMENT FOR MAPREDUCE JOBS WITH DEADLINES

This section presents resource management techniques for MapReduce jobs with deadlines. Recall
from Section 6.1 that MapReduce jobs with deadlines have become increasingly important for
latency-sensitive applications such as those used in the context of live business intelligence and
real-time analysis of event logs [7].

6.4.1 MAPREDUCE BUDGET-BASED RESOURCE MANAGEMENT TECHNIQUE

In Reference 35, a MapReduce budget-based resource management algorithm (MRBB-RM) is pre-
sented. MRBB-RM is devised to intelligently perform matchmaking and scheduling (collectively
called mapping) for an open stream of MapReduce jobs with SLAs, where each SLA is character-
ized by an earliest start time, a required execution time, and an end-to-end deadline, on a distributed
environment such as a cloud or a cluster. MRBB-RM uses a deadline budgeting algorithm to decom-
pose the end-to-end deadline of a job into components (subdeadlines), each of which is associated
with a specific task in the job. The individual tasks of the job are then mapped on to the resources
using a matchmaking and scheduling algorithm where the objective is to minimize the number of
jobs that miss their deadlines.

Figure 6.6 presents an overview of MRBB-RM’s Algorithm 1: Job and Task Mapping Algorithm.
A more detailed and complete description of MRBB-RM and its associated algorithms can be found
in Reference 35.WhenMRBB-RM is available (i.e., not busy scheduling another job), it retrieves the
first job from its job queue and invokes Algorithm 1. The job queue stores the jobs that users submit
to the system and the jobs in the queue are sorted in nondecreasing order of their deadlines. The input
required by Algorithm 1 is a job j to map. As shown in Figure 6.6, the first step of Algorithm 1 is to
invoke Algorithm 2: Deadline Budgeting Algorithm to decompose job j’s end-to-end deadline into
components to give each of j’s tasks a subdeadline (step 1). More specifically, a separate subdeadline
is calculated for the map phase of the job and the reduce phase of the job. Each map task of the job
then has its subdeadline set to the subdeadline of the map phase, and similarly each reduce task of
the job has its subdeadline set to the subdeadline of the reduce phase. The subdeadlines of the map
phase and reduce phase are calculated by distributing the job’s laxity, where the amount of laxity that
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FIGURE 6.6 Overview of MRBB-RM’s Job and Task Mapping algorithm.

is assigned to the map phase and reduce phase is proportional to the execution time of the respective
phases. The laxity of a job (also called slack time) is the extra time that a job has to complete its
execution before its deadline and is calculated as follows: dj − (Ej + sj) where dj is the deadline of
job j, Ej is the execution time of job j, and sj is the earliest start time of job j.

After assigning a subdeadline to each task, Algorithm 1 then sorts the tasks of job j in non-
decreasing order of their subdeadlines with ties broken in favor of the task that has a higher execution
time (i.e., the task with less slack time) (step 2). Next, Algorithm 1 maps each of j’s tasks (in the
specified order) by finding a resource r in the system that can execute a task t at its earliest possible
start time (steps 3 and 4a). Note that Algorithm 1 schedules each task of job j such that the task can
complete executing before job j’s deadline and also before its subdeadline if possible. However, if
the task is a map task and it misses its subdeadline, the algorithm uses some of the laxity from the
next phase of execution (i.e., reduce phase) to schedule the map task as long as job j’s deadline is
not violated. In the case of reduce tasks, the subdeadlines of the tasks cannot be violated because
the reduce phase is the final phase of execution and the subdeadline of the reduce tasks is equal to
job j’s deadline. After the task is mapped, Algorithm 1 checks if the task is scheduled to complete
at or before job j’s deadline (step 5). If the task is scheduled to complete before j’s deadline (step
6a), then Algorithm 1 continues by mapping the next task of the job. This sequence of operations
is performed until all the tasks of the job are mapped, in which case the algorithm ends (step 4b).
If the task cannot be scheduled to finish executing before j’s deadline, Algorithm 3: Job Remapping
Algorithm is invoked (step 6b). Algorithm 3 remaps j and a set of jobs S that may have caused j to
miss its deadline. This includes jobs that are scheduled to start at or complete executing within the
interval: [start time of job j, deadline of job j]. Note that only tasks in jobs that have previously been
scheduled, but have not started executing, are remapped. If all the jobs in S are able to be remapped
and meet their deadlines, job j is said to be successfully mapped; otherwise, mapping job j is said
to have failed (i.e., one of the jobs cannot meet its deadlines). Depending on the scheduling policy,
job j can either be mapped ignoring its deadline (default behavior) or the job can be rejected. The
implementation of the algorithm supports both policies, but in the experiments described in Section
6.4.1.1, the former approach is chosen: jobs are mapped even if they miss their deadlines. After
Algorithm 3 completes and returns control, Algorithm 1 ends (step 7).

6.4.1.1 Performance Evaluation of MRBB-RM
A simulation-based performance evaluation of MRBB-RM is conducted. The following metrics are
used to evaluate system performance: (1) proportion of late jobs (P), which is equal to the ratio
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between the number of late jobs and the number of jobs executed in an experiment, (2) average job
turnaround time (T), and (3) average job matchmaking and scheduling time (O).

First, MRBB-RM is compared with the Minimum Resource Quota Earliest Deadline First with
Work-Conserving Scheduling (MinEDF-WC) technique [7], which has objectives that are similar to
that of MRBB-RM. MinEDF-WC is a resource allocation and scheduling technique for processing
MapReduce jobs with deadlines that is based on the well-known earliest deadline first scheduling
policy. MinEDF-WC allocates the minimum number of resources required for completing a job
before its deadline and also has the ability to dynamically allocate and deallocate resources from
active jobs when required. This ability to dynamically allocate and deallocate resources allows a
machine with spare resources to share its unused resources with other jobs that need them. A com-
parison between the performance of MRBB-RM with that of MinEDF-WC is presented next. The
workload used is a synthetic workload generated from workload traces of a Hadoop cluster used at
Facebook in October 2009 that is described in Reference 7.

Figure 6.7 presents a comparison of T between MRBB-RM and MinEDF-WC (presented in Ref-
erence 7). As shown in Figure 6.7, MRBB-RM achieves a comparable or lower T compared to
MinEDF-WC. With regards to P, it is observed that when λ is less than 1/5000 jobs per second,
MRBB-RM and MinEDF-WC perform comparably. However, at higher values of λ, a trade-off
between T and P is observed. When λ is greater than 1/5000 jobs per second, MinEDF-WC exhibits
a smaller P, whereas MRBB-RM achieves a lower T . This is attributed to MRBB-RM’s Job and
Task Mapping Algorithm attempting to schedule tasks to start executing at their earliest possible
time, which in turn reduces the job’s turnaround time. However, scheduling tasks to start at their
earliest possible times may not always achieve a mapping that minimizes the number of jobs that
miss their deadlines. For example, in certain situations delaying some jobs for a longer period of
time can prevent other jobs from missing their deadlines, but this in turn leads to an increase in the
job’s turnaround time.

Furthermore, experiments are also conducted with MRBB-RM to investigate how changing var-
ious system and workload parameters, including the job arrival rate (λ), the task execution times,
the earliest start time of jobs, the deadline of jobs, and the number of resources, can affect system
performance [35]. From the results of these experiments P, T , and O are observed to increase with
an increase in λ or an increase in the task execution times. This can be attributed to MRBB-RM
being subjected to a higher system load when λ or the task execution times are increased, which in
turn generates a high contention for resources. Conversely, it is observed that P, T , and O tend to
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decrease, as the number of resources increases or as the deadlines of the jobs increase (i.e., jobs have
more slack time). Overall, MRBB-RM is observed to be able to effectively match-make and sched-
ule an open stream of MapReduce jobs with deadlines while incurring a very smallO (on average 42
ms). The O/T ratio, which is an indicator of the processing overhead of the algorithm, is observed
to be less than 0.02% in all experiments conducted, demonstrating the efficiency of MRBB-RM. A
more detailed discussion of the results of these experiments can be found in Reference 35.

6.4.2 RESOURCE MANAGEMENT FOR MAPREDUCE JOBS WITH SLAs USING

OPTIMIZATION METHODS

Resource management techniques that model and solve the problem of matchmaking and scheduling
MapReduce jobs with SLAs, where each SLA comprises an earliest start time, a required execution
time, and an end-to-end deadline, using various optimization methods are presented in Reference
36. More specifically, the resource management problem for MapReduce jobs with SLAs is formu-
lated using MILP [37] and constraint programming (CP) [38] (refer to Figure 6.8). The resource
management model that is formulated using CP is called the CP Model and similarly, the resource
management model that is formulated using MILP is referred to as the MILP Model. The use of
MILP and CP in the proposed resource management techniques leads to an optimal solution in the
sense that the schedule that is generated results in the number of jobs that miss their deadlines being
minimized. The input required by the resource management model consists of a set of jobs, J, and a
set of resources, R, on which to execute J. The objective is to minimize the number of jobs that miss
their deadlines. Both the CP Model and the MILP Model have the same general structure: decision
variables, objective function, and constraints. The decision variables are the variables that are ini-
tially unknown and are assigned values once the problem is solved (i.e., they represent the output of
the model). The objective function is a mathematical function that generates the value that needs to
be optimized (minimized or maximized). Lastly, the constraints are a set of mathematical formulas
that restrict the values that the decision variables can be assigned. Solving the optimization model
involves assigning values to the decision variables to optimize the value generated by the objective
function, while also ensuring that none of the constraints are violated. Three implementations of the
MILP Model and CP Model using different software packages are considered:

• Approach 1: The MILP Model is implemented and solved using LINGO [39] (commercial
software).

• Approach 2: The CPModel is implemented using MiniZinc/FlatZinc [40] and solved using
Gecode [41] (both open-source software).

• Approach 3: The CP Model is implemented and solved using IBM ILOG CPLEX Opti-
mization Studio (CPLEX) [42] (commercial software).

The output produced after solving the resource management model includes the following: (1) the
assigned resource and scheduled start time for the tasks of each job, (2) the completion time of
the batch of jobs, and (3) the number of jobs that miss their deadlines. The measurements that are
made on the system to evaluate the performance of the different approaches include the processing
time required by the solver to produce the output.

6.4.2.1 Performance Evaluation of MILP Model-Based and CP Model-Based
Resource Management Techniques

To compare the effectiveness and performance of the three approaches, simulation experiments are
performed using various batch workloads, where each batch comprises multiple jobs to execute.
Each experiment concluded after successfully matchmaking and scheduling all the jobs in the batch
and a schedule and completion time for the batch of jobs is determined. The performances of the
three approaches are compared using the following metrics: completion time of the workload (C),
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FIGURE 6.9 Comparison of workload completion time for the large workloads. (Adapted from N. Lim et al.,
Engineering resource management middleware for optimizing the performance of clouds processing MapRe-
duce jobs with deadlines, International Conference on Performance Engineering (ICPE), Dublin, Ireland,
24–26 March 2014, pp. 161–172.)

processing time overhead (PO), and the size of workload (number of tasks) that the approach can
successfully process. Since all three approaches performmatchmaking and scheduling by solving an
optimization problem, each approach is able to generate a schedule where the number of late jobs is
minimized. In the set of experiments conducted to evaluate the three approaches, each approach gen-
erates a schedule where none of the jobs missed their deadlines. A representative set of results from
the performance evaluation of the MILP Model and CP Model are discussed next. A full discussion
of the performance evaluation and the results is provided in Reference 36.

The values of C and PO for the three approaches when executing the large workloads are shown
in Figures 6.9 and 6.10, respectively. The Large 1 workload has 2 jobs with each job having 100
map tasks and 30 reduce tasks. On the other hand, the Large 2 workload comprises 50 jobs with
each job having a varying number of map tasks from 1 to 100 and a varying number of reduce tasks
ranging from 1 to the number of map tasks. Therefore, on an average, the Large 2 workload has
approximately 3750 tasks. A more detailed description of the workloads can be found in Reference
36. From Figures 6.9 and 6.10, it is observed that Approach 2 is not able to process these larger
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FIGURE 6.10 Comparison of processing time overhead for the large workloads. (Adapted from N. Lim et al.,
Engineering resource management middleware for optimizing the performance of clouds processing MapRe-
duce jobs with deadlines, International Conference on Performance Engineering (ICPE), Dublin, Ireland,
24–26 March 2014, pp. 161–172.)
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workloads and Approach 1 is only able to generate a schedule for the Large 1 workload (as indicated
by the missing bars in the graphs). When attempting to generate solutions for the larger workloads
with Approaches 1 and 2, the experimental system eventually ran out of memory and the solver
crashed. This means that the solvers of Approach 1 and 2 could not handle such a large number
of decision variables on the system that was used to conduct the experiments. On the other hand,
the results show that Approach 3 is capable of processing both the large workloads and performed
well in terms of PO and C. Note that Approach 3 achieves a very small PO (1.08 s) for the Large 1
workload, and thus, the bar is not clearly visible in Figure 6.10.

6.4.3 MAPREDUCE CONSTRAINT PROGRAMMING-BASED RESOURCE MANAGEMENT TECHNIQUE

The results of the experiments discussed in Reference 36 and summarized in Section 6.4.2.1 demon-
strate the superiority of Approach 3: the CP Model implemented using IBM CPLEX, including
its more intuitive and simple formulation of constraints, lower processing overhead, and its abil-
ity to handle larger workloads. This motivated the investigation of a novel MapReduce Constraint
Programming-based Resource Management algorithm (MRCP-RM) [43] that can effectively per-
form matchmaking and scheduling for an open stream of MapReduce jobs with SLAs, where each
SLA is characterized by an earliest start time, a required execution time, and an end-to-end deadline.
The objective of MRCP-RM is to minimize the number of jobs that miss their deadlines. The key
difference between MRCP-RM and the techniques described in Reference 36 is that MRCP-RM can
handle an open stream of job arrivals whereas the techniques described in Reference 36 only support
a batch workload with a fixed number of jobs (i.e., a closed system).

Figure 6.11 presents a diagram showing an environment usingMRCP-RM. Users submit MapRe-
duce jobs to the system, which are placed in a job queue. If the resource manager is available (i.e.,
not busy mapping the previous set of jobs), it invokes MRCP-RM to map the set of jobs in the job
queue. MRCP-RM uses IBM CPLEX [42] to generate an OPL Model, which is an implementation
of the CP Model using IBM’s Optimization Programming Language (OPL). More specifically, an
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Manager using 

MRCP-RM

CPLEX CP 
Optimzer

ilog.concert
ilog.opl
ilog.cp
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. . .Resource 1 Resource m

Submit jobs

Users
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Job 3 Job 2 Job 1

<<solve>>
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FIGURE 6.11 Overview of MRCP-RM. (Adapted from N. Lim et al., A constraint programming-based
resource management technique for processing MapReduce jobs with SLAs on clouds, International Confer-
ence on Parallel Processing (ICPP), Minneapolis, MN, USA, 9–12 September 2014, pp. 411–421.)



124 Big Data Management and Processing

OPL Model that has new constraints added for each of the tasks that have started but not completed
executing is created. To solve the OPL Model, MRCP-RM invokes IBM CPLEX’s CP Optimizer
solving engine. Note that if this is not the first time that MRCP-RM is invoked, the set of jobs to
process includes the new jobs retrieved from the job queue as well as the jobs that are scheduled
or currently executing, but have not completed yet. MRCP-RM schedules all the newly submitted
jobs (i.e., jobs in the job queue), but also remaps the tasks of jobs that have not started executing to
provide the most flexibility in scheduling in order to minimize the number of late jobs. For example,
the tasks of a new job with an earlier deadline may need to be mapped in the place of the tasks of a
previously scheduled job that has a later deadline. Once a solution to the OPL Model is found, the
resource manager is able to determine the tasks to assign to a particular resource (matchmaking) and
when the tasks assigned to a particular resource should start to execute (scheduling).

6.4.3.1 Performance Evaluation of MRCP-RM
To investigate the effectiveness of MRCP-RM, a simulation-based performance evaluation is con-
ducted. Three performance metrics are used to evaluate the performance of MRCP-RM: proportion
of late jobs (P), average job turnaround time (T), and average job matchmaking and scheduling time
(O) (recall Section 6.4.1.1). First, experiments are performed to investigate the effect of various sys-
tem and workload parameters on the performance of MRCP-RM. For example, Figure 6.12 shows
the effect of the job arrival rate (λ) on T and O of MRCP-RM. The values of P achieved by MRCP-
RM for each value of λ experimented with are as follows: 0.04%, 0.55%, 1.03%, and 1.70% when
λ (in jobs per second) is 0.001, 0.01, 0.015, and 0.02, respectively. The results show that P, T , and
O increase with λ because of the increased contention for resources. In particular, one of the main
reasons for O increasing with λ is the existence of multiple scheduled tasks that have not started
executing at a given point in time, as well as multiple executing tasks that have not completed yet.
This large number of tasks to process leads to MRCP-RM requiring more time to generate and solve
the OPL Model, which in turn increases O. However, O/T , which is an indicator of the processing
overhead, is still observed to be small (less than 0.04%) in the experiments conducted.

A brief discussion of the results of the other experiments performed to investigate the effect of
changing various system and workload parameters on the performance of MRCP-RM is provided
next. A more detailed discussion can be found in Reference 43. It is observed that P, T , andO tend to
decrease with an increase in one of the following parameters: the number of resources in the system,
the earliest start times of the jobs, and the deadlines of the jobs. This can be attributed to an increase

0

0.05

0.1

0.15

0.2

0.25

0
50

100
150
200
250
300
350
400
450
500

0.001 0.01 0.015 0.02

O
(s

ec
) 

T 
(s

ec
)

λ (jobs per sec)

T O

FIGURE 6.12 Effect of job arrival rate on the average job turnaround time and average job matchmaking
and scheduling time of MRCP-RM. (Adapted from N. Lim et al., A constraint programming-based resource
management technique for processing MapReduce jobs with SLAs on clouds, International Conference on
Parallel Processing (ICPP), Minneapolis, MN, USA, 9–12 September 2014, pp. 411–421.)



Resource Management for MapReduce Jobs Performing Big Data Analytics 125

0

0.2

0.4

0.6

0.8

1

1.2

1/10,000 1/5000 1/2500 1/2000

P
(%

)

λ (jobs per sec)

MRCP-RM MinEDF-WC

FIGURE 6.13 MRCP-RMversusMinEDF-WC: proportion of late jobs when average job arrival rate is varied.
(Adapted from N. Lim et al., A constraint programming-based resource management technique for processing
MapReduce jobs with SLAs on clouds, International Conference on Parallel Processing (ICPP), Minneapolis,
MN, USA, 9–12 September 2014, pp. 411–421.)

in these parameters generating a situation where there is less contention for resources. Overall, from
the experiments conducted, it is observed that MRCP-RM is able to generate a schedule that leads
to a small P (less than 3.46%) with a small matchmaking and scheduling overhead as indicated by
the O/T ratio (less than 0.09%).

In addition, a performance comparison between MRCP-RM and the MinEDF-WC [7] technique
from the literature (recall Section 6.4.1.1), which has similar objectives to MRCP-RM, is also con-
ducted. A synthetic MapReduce workload from Facebook that is described in Reference 7 is used in
these experiments. Figure 6.13 presents a comparison of P between MRCP-RM and MinEDF-WC
(presented in Reference 7). As shown in Figure 6.13, MRCP-RM achieves a significantly lower P
(up to 93% lower) in comparison to MinEDF-WC. With respect to T (see Reference 43 for more
details), MRCP-RM is observed to have a comparable or lower T (up to 7% lower) in comparison to
MinEDF-WC. Note that the jobs in this workload have small slack times, leading to the jobs having
more stringent deadlines. This means that jobs need to be executed as close as possible to their ear-
liest start times (i.e., have a small turnaround time) in order to meet their deadlines. The improved
performance of MRCP-RM compared to MinEDF-WC when using the synthetic Facebook work-
load can be attributed to the use of the optimization technique, constraint programming, to perform
matchmaking and scheduling.

6.4.4 CONSTRAINT PROGRAMMING-BASED SCHEDULER FOR HADOOP

The strong performance of MRCP-RM, observed from the simulation experiments, motivated the
research presented in Reference 44, which focuses on devising a revised version of MRCP-RM and
implementing it on a real system that implements the MapReduce programming model: Hadoop
[11]. The new technique is referred to as the Constraint Programming-based Scheduler for Hadoop
(abbreviated CP-Scheduler). The CP-Scheduler can perform matchmaking and scheduling for an
open stream of Hadoop jobs with deadlines. Figure 6.14 illustrates a Hadoop cluster deploying the
CP-Scheduler. The Hadoop cluster comprises a single master node (NameNode and JobTracker)
and m slave nodes (DataNodes and TaskTrackers). Recall the discussion of Hadoop provided in
Section 6.2.2. Users submit Hadoop jobs to the JobTracker, which uses the CP-Scheduler to match-
make and schedule the map and reduce tasks of the jobs onto the TaskTrackers. More specifically,
the CP-Scheduler uses IBM CPLEX’s Java APIs to create and solve the CP Model that formulates
the matchmaking and scheduling problem as an optimization problem (recall Section 6.4.2).
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FIGURE 6.14 Hadoop cluster deploying the CP-Scheduler. (Adapted from N. Lim et al., A constraint
programming based Hadoop scheduler for handling MapReduce jobs with deadlines on clouds, Interna-
tional Conference on Performance Engineering (ICPE), Austin, TX, USA, 31 January–4 February 2015,
pp. 111–122.)

An overview of the CP-Scheduler algorithm is presented in Figure 6.15 as a flowchart. A more
detailed and complete description of the CP-Scheduler algorithm can be found in Reference 44.
The CP-Scheduler is invoked by the JobTracker each time it receives a heartbeat message from a
TaskTracker (recall Section 6.2.2) to perform matchmaking and scheduling. The input required by
the CP-Scheduler algorithm is a TaskTracker to assign tasks too. The first step is to create the input
data required by the CP Model, which includes a set of jobs to schedule, J, and a set of resources,
R (step 1). The set of jobs (J) includes newly arriving jobs that have not been scheduled and jobs
that have been previously scheduled, but not finished executing. Next, the CP-Scheduler checks if
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FIGURE 6.15 Overview of CP-Scheduler algorithm.
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there are any jobs in J (step 2). If J is empty, meaning there are no new jobs to schedule and no
jobs currently scheduled or executing on the system, the algorithm ends (step 3b). Otherwise, the
CP-Scheduler checks to see if there are any new jobs to schedule in J or any new resources in R (step
3a). Note that the resources in R can change in two cases: (1) resources are added to R if there are
new TaskTrackers added to the Hadoop cluster, or (2) resources are removed from R if TaskTrackers
that are part of the Hadoop cluster fail or crash. If there is new input data, the CP-Scheduler creates
and solves a new CP Model to perform matchmaking and scheduling (step 4a). Checking for new
input data in J and R is performed to prevent unnecessarily creating and solving a CP Model (which
is a source of overhead) when a solution for the same input has already been found previously. In step
5, the CP-Scheduler extracts the solution from the solved CP Model to assign tasks to the supplied
TaskTracker for execution.

6.4.4.1 Performance Evaluation of the CP-Scheduler
A performance evaluation of the CP-Scheduler is conducted on a Hadoop cluster deployed on Ama-
zon EC2 to determine the effectiveness of MRCP-RM on a real system and to obtain insights into
system behavior and performance. The CP-Scheduler’s performance is compared with the perfor-
mance achieved by an earliest deadline first (EDF) Hadoop scheduler (called the EDF-Scheduler),
which is implemented by extending Hadoop’s default FIFO scheduler. The comparison with the
EDF-Scheduler is made to investigate if the CP-Scheduler is more effective than a scheduler using the
well-known EDF scheduling policy when matchmaking and scheduling an open stream of MapRe-
duce jobs with deadlines. The workload used in these experiments is an open stream of Hadoop
WordCount jobs (recall Section 6.2.1) processing various input data sizes. More specifically, three
job types are used in the experiments: small containing 3 files (∼3 MB in total), medium contain-
ing 10 files (∼5 MB in total), and large containing 20 files (∼10 MB in total). The input files are
e-books (in plain text format) that are obtained from Project Gutenberg (www.gutenberg.org). A
detailed discussion of the performance evaluation of the CP-Scheduler and EDF-Scheduler can be
found in Reference 44. A representative set of the experimental results is presented next.

Experiments are performed for systems subjected to a mixed workload as well as a single class
workload. The mixed workload comprises jobs from each of the three job types: small, medium, and
large. The single class workload is characterized by jobs of any one type: small or medium or large.
Figures 6.16 and 6.17 show the results of the experiments conducted using the mixed workload,
which is the workload where the three job types defined earlier have an equal probability of being
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submitted to the system. It is observed that the CP-Scheduler (abbreviated CPS) outperforms the
EDF-Scheduler (abbreviated EDFS) by a large margin in terms of P (up to 91%) and T (up to 57%).
CPS is able to efficiently interleave the execution of multiple jobs and make more efficient use of the
system’s resources such that the number of jobs that miss their deadlines is minimized. Conversely,
EDFS simply selects the first job in its ordered job queue (i.e., the job with the earliest deadline)
to execute, which in turn results in inferior performance in terms of P and T . However, as shown
in Figure 6.17, EDFS achieves a much lower O (on average 0.012 s) compared to CPS (on average
1.51 s). CPS has a higher O because it uses a more complex matchmaking and scheduling algorithm
that requires generating and solving a constraint program (recall Section 6.4.4). Although the O of
CPS is higher compared to the O of EDFS, the O/T ratio, which is an indication of the processing
overhead in relation to the average job turnaround time, is still very low (less than 0.4%). The O/T
ratio is an appropriate indication of the processing overhead because it puts the measured values of
the algorithm runtimes into context by considering the algorithm run time (O) relative to the average
job turnaround time (T).

Figures 6.18 and 6.19 show the results of the experiments conducted with the single class work-
load comprising only of large jobs. As shown in Figure 6.18, CPS achieves a P equal to 0 for all λ

experimented with (as indicated by the nonvisible bars), while the P of EDFS increases from 0% to
49% as λ increases from 1/77.5 to 1/70 jobs per second. Furthermore, the performance improvement
of CPS over EDFS in terms of T is observed to increase from 32% to 62% as λ increases from 1/77.5
to 1/70 jobs per second. All the jobs in this workload have a large number of input files to process,
resulting in longer job execution times. Since EDFS does not efficiently interleave the execution of
multiple jobs, scheduling jobs that have long execution times tends to lead to more late jobs because
it is possible for jobs with tight deadlines to arrive on the system during the execution of another
job. On the other hand, CPS effectively interleaves the execution of multiple jobs on the system and
also reschedules the tasks of jobs that have not started executing when a job with an earlier deadline
arrives on the system. As a result, using CPS gives rise to a smaller P and T in comparison to using
EDFS. The trend for O (refer to Figure 6.19) is similar to that observed when using the mixed work-
load: CPS has a higher O compared to EDFS, but the processing overhead, as indicated by O/T , is
still small. Note that the performance trends that are observed when using the workload comprising
only small jobs and the workload comprising only medium jobs are similar to that achieved with the
workload comprising only large jobs. That is, in general it is observed that CPS achieves a lower P,
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a lower T , and a higherO compared to EDFS; however,O/T remains small (less than 0.7%). A more
in-depth discussion of the experimental results can be found in Reference 44.

6.4.5 OTHER TECHNIQUES

The authors of Reference 45 propose a Deadline Constraint Scheduler for Hadoop. The authors
develop a job execution cost model that considers parameters such as the execution time of map
tasks, the execution of reduce tasks, and the size of the input data. This model is used for a schedu-
lability test that is performed to determine if the job can be completed before its deadline given the
current available resources in the cluster. In Reference 46, the authors investigate the problem of
scheduling MapReduce workloads comprising jobs without deadlines and jobs with deadlines. The
authors present a scheduler that adopts a sampling-based technique called Tasks Forward Schedul-
ing (TFS) to predict the execution time of map tasks and reduce tasks. TFS predicts task execution
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times by initially executing a few tasks and then using the execution times of these initial tasks
to predict the execution times of future tasks. In addition, the proposed scheduler also leverages a
resource allocation model named Approximately Uniform Minimum Degree of Parallelism (AUMD)
to dynamically control the execution of jobs such that each job executes at its minimum degree of
task parallelism to meet its deadline. The idea is to prevent a single job from monopolizing all the
resources in the cluster and to allow more jobs to be executed on the cluster simultaneously.

In Reference 47, the authors describe a policy for dynamic provisioning of public cloud resources
to schedule MapReduce jobs with deadlines. Initially, jobs are executed on a local cluster, and if
required, resources from the cloud are dynamically provisioned to meet the application’s deadline.
Moreover, the authors of Reference 48 investigate resource management algorithms for minimizing
the cost of allocating virtual machines to execute MapReduce jobs with deadlines. Two VM provi-
sioning strategies are proposed: (1) List and First-Fit (LFF) and (2) Deadline-aware Tasks Packing
(DTP). The LFF approach sorts the pricing policies of VMs according to either increasing order
of unit cost or decreasing order of VM performance. Each map task is assigned to its own VM and
reduce tasks are assigned to one of the VMs already provisioned for map tasks. In the DTP approach,
the idea is to assign the map tasks and reduce tasks of jobs to execute on existing VMs as much as
possible until a job cannot meet its deadline, in which case a new VM needs to be provisioned.

The authors of Reference 49 focus on the joint considerations of workload balancing and meet-
ing deadlines for MapReduce jobs. Scheduling algorithms are proposed that are based on integer
linear programming and solved with a linear programming solver using a rounding approach. The
proposed scheduling algorithms are implemented and evaluated in Hadoop 1.1.2. The experimental
results using a workload with a fixed number of jobs show that the proposed technique can balance
workloads and achieve a higher deadline satisfaction ratio compared to existing Hadoop schedulers.

In Reference 50, the authors propose a scheduler for MapReduce jobs with deadlines based on
bipartite graph modeling called the Bipartite Graph Modeling MapReduce Scheduler (BGMRS).
BGMRS focuses on scheduling MapReduce jobs with deadlines on a heterogeneous cloud comput-
ing environment (i.e., on an environment where nodes exhibit different performance). BGMRS is
able to obtain the optimal solution to the scheduling problem by transforming the problem into a
well-known graph problem: minimum weighted bipartite matching. The authors conducted simula-
tion and testbed-based experiments using a workload with a fixed number of jobs to demonstrate the
effectiveness of the technique.

6.5 CONCLUSIONS AND FUTURE WORK

Analyzing data for making meaningful decisions is important in various types of environments,
including enterprise and scientific applications as well as cyber-physical systems, such as sensor-
equipped bridges, smart buildings, and industrial machinery. However, the volume of data analyzed is
sometimes very large and conventional processing tools and techniques cannot be used for analyzing
such Big Data. MapReduce/Hadoop has emerged as a popular technique and tool for processing Big
Data applications.MapReduce is a programmingmodel proposed byGoogle that simplifies perform-
ingmassively distributed parallel processing, whereasHadoop is an open-source software framework
(written in Java) that implements MapReduce. Hadoop is used by many companies and institutions,
typically in conjunction with cloud computing, for processing and analyzing large datasets (i.e.,
performing Big Data analytics). The focus of this chapter was on describing resource management
algorithms and techniques for processing MapReduce jobs, including MapReduce jobs with SLAs,
on a distributed system such as a cloud or cluster. The SLAmay vary from application to application
and often includes an earliest start time, a required execution time, and an end-to-end deadline. Intel-
ligent and efficient resource management techniques are necessary for harnessing the power of the
underlying distributed hardware and for achieving a high system performance that includes a high
QoS as reflected in a low ratio of jobs missing their deadlines. A number of resource management
techniques for processing MapReduce jobs with different goals, including reducing job completion
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times, reducing data transmission between resources to minimize network traffic, handling of het-
erogeneous resources, sharing of resources, and managing the energy consumption of resources,
were discussed in this chapter. Furthermore, a number of techniques for processing an open stream
of MapReduce jobs with deadlines were also described in this chapter, including:

• A MapReduce Budget-based Resource Management algorithm (MRBB-RM) that decom-
poses the end-to-end deadline for a job into components (i.e., subdeadlines), each of which
is associated with a specific task in the job

• A MapReduce Constraint Programming-based Resource Management algorithm (MRCP-
RM) that performs matchmaking and scheduling by solving a constraint programming
model

• A Hadoop Constraint Programming-based Scheduler (CP-Scheduler), which is designed
and devised to implement MRCP-RM on Hadoop—a real MapReduce system

The results from a rigorous performance evaluation of the resource management techniques demon-
strate that these techniques are effective in processing an open stream of MapReduce jobs with
deadlines. More specifically, the techniques are capable of generating a schedule leading to a low
number of jobs missing their deadlines with an acceptable processing overhead, as indicated by the
low values of O/T (less than 0.7% in all experiments conducted). The O/T ratio places the process-
ing time required by a matchmaking and scheduling algorithm (O) into context by considering the
value of O in relation to the mean job turnaround time (T). In addition, the techniques were also
observed to outperform techniques from the literature such as MinEDF-WC. A direction for future
research includes the extension of the deadline budgeting algorithms to support general workflows
with different kinds of precedence relationships (not just MapReduce jobs with two phases of exe-
cution), such as scientific workflows in the field of physics and biology. Moreover, investigating
how the error/inaccuracies in user-estimated execution times can affect system performance and
how to handle these errors/inaccuracies forms an interesting direction for future work. Constraint
programming-based energy-aware algorithms for handling workflows with deadlines also warrant
investigation.
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ABSTRACT

Tyche is a network storage protocol directly on top of raw Ethernet, which does not require any
hardware support from the network interface. It provides high I/O throughput and low I/O latency
via a copy-reduction technique, preallocation of memory, custom network queues and structures,
using remote direct memory access-like operations without hardware assistance, and storage-specific
packet processing. Tyche transparently bundles multiple network interface cards (NICs) and offers
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scaling with the number of links and cores via reduced synchronization, proper packet queue design,
and nonuniform memory access affinity management.

7.1 INTRODUCTION

Storage in datacenters is typically a separate tier from application servers and access happens mostly
via a storage area network (SAN). Current efforts to improve efficiency of datacenters in terms of
capital expenses and operational expenses, such as reduced energy consumption or less expensive
storage, dictate bringing storage closer to applications and computation by converging the two tiers.
Converged storage advocates placing storage devices, most likely performance-oriented devices,
such as solid-state disks (SSD) or nonvolatile memory (NVM)-based cards, in all servers where
computation occurs and adapting the current I/O stack to the newmodel. Therefore, compute servers
are used as a single distributed storage system as well, in a departure from traditional SAN and
network attached storage (NAS) approaches. In this model, where computation and storage are co-
located, the role of the network becomes more important for achieving high storage I/O throughput.

Although there has been a lot of research on high-speed interconnects, such as Infiniband,
Ethernet-based networks today dominate the datacenter due to management reasons, cost-efficiency,
and the software stack that is already in use. There are many advantages to using Ethernet-based
networks for storage as well. Ethernet has caught up with other technologies, especially in terms of
throughput. However, an area where Ethernet still lacks significantly is protocol overhead, as exhib-
ited in terms of CPU cycles. Technologies such as Infiniband are able to support more lightweight
protocols than IP-based protocols used over Ethernet. As Ethernet is starting to be used for accessing
storage in the datacenter, protocol overheads are becoming a main concern. Therefore, the network
protocol used on top of Ethernet plays a significant role in achieving high efficiency for storage
access.

Table 7.1 provides a summary of storage-specific and general-purpose network protocols based
on Ethernet. We classify these protocols into two categories, whether they need hardware support or
not. Software-only protocols typically exhibit relatively low throughput for small requests and incur
high overheads. A main reason is that either they mostly use TCP/IP or they are not optimized for
storage. TCP/IP inherently incurs high overheads due to its streaming semantics. On the other hand,
hardware-assisted protocols usually obtain maximum link throughput at lower CPU overheads, but
they require custom NICs or other extensions to the underlying interconnect, which is a significant
impediment for deployment and adoption.

In this chapter, we examine the issues associated with networked storage access over raw Ether-
net, and we describe the design of Tyche, a network storage protocol that achieves high efficiency,
without requiring any hardware assistance. Tyche delivers high I/O throughput and low I/O latency
by employing numerous techniques: copy-reduction, storage-specific packet processing, prealloca-
tion of memory, nonuniform memory access (NUMA) affinity management, remote direct memory
access (RDMA) like operations, bundling multiple NICs transparently, avoiding context switches
(when possible), and adaptive batching mechanism. Tyche can be deployed in existing infrastruc-
tures and to co-exist with other Ethernet-based protocols. To the best of our knowledge, our approach

TABLE 7.1
Network Storage Protocol and Generic Network Protocol Based
on Ethernet

Software Hardware

Storage NBD, iSCSI, AoE, FCoE iSER [1], SRP [2], gmblock [3]

Generic PortLand [4] iWARP, RoCE, JNIC [5]
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is the first to achieve 90% of link efficiency for 16 kB request sizes without any specialized hardware
support.

Our results show that Tyche achieves scalable throughput, up to 6.4GB/s for reads and 6.7GB/s
for writes on 6× 10Gbits/s network links without requiring any hardware support. This is 89%
and 93%, respectively, of the peek throughput available with six NICs. In addition, our optimized
protocol that reduces context switching is particularly effective for low degrees of I/O concurrency
and reduces host CPUoverhead by 31%per 4 kB-I/O request. For high degrees of I/O concurrency, an
adaptive batching significantly improves link utilization for small I/Os, and allows Tyche to achieve
up to 88% of the theoretical link utilization for 4 kB requests.

Our analysis shows that network storage protocols for modern servers with multiple resources
need to be designed for NUMA affinity and synchronization to achieve high network throughput.
Otherwise, performance degrades significantly. For small I/Os, two aspects are particularly effective
for improving link utilization: reducing overhead for low degrees of I/O concurrency and batching
several requests in a single message for high degrees of I/O concurrency.

The rest of this chapter is organized as follows. Sections 7.2 and 7.3 present Tyche and the main
decisions taken during its design to achieve high throughput and low latency. Section 7.4 discusses
performance results. Section 7.5 describes related work and Section 7.6 concludes our work.

7.2 SYSTEM DESIGN

Tyche [6–8] is a network storage protocol on top of raw Ethernet that achieves high I/O throughput
and low latency without any hardware support. Tyche presents the remote storage device locally by
creating at the client (initiator) a block device that can be used as a regular block device. Tyche is
independent of the storage device, and supports any existing file system.

Figure 7.1 depicts the overall design of Tyche that is composed of two layers. The block layer is
in charge of managing I/O requests and I/O completions. The network layer is in charge of network
messages and packets.

7.2.1 COMMUNICATION CHANNELS

Tyche uses the concept of communication channel to establish a connection between the initiator
and the target. Each channel allows a host to send/receive data to/from a remote host. Thus, Tyche
is a connection-oriented protocol that creates channels to perform the communication between both
nodes.

A channel is directly associated to the NIC that it uses for sending/receiving data. Although a
channel is mapped to a single NIC, several channels can be mapped to the same NIC.When there are

FIGURE 7.1 Overview of the send and receive path from the initiator to the target.
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(a) (b) (c) (d)

FIGURE 7.2 End-to-end I/O path through a channel for a write request of 16 kB when Tyche works in the
inline mode. Lines and numbers indicate the execution order. Solid lines indicate that there is a copy of data.
Dashed ones indicate that there is no copy of data. “L” means the action requires a lock. (a) Initiator send path.
(b) Target receive path. (c) Target send path. (d) Initiator receive path.

several NICs available, Tyche creates a channel per NIC, allowing the creation of multiple channels
between initiator and target. Therefore, Tyche is able to simultaneously and transparently manage
several channels/NICs.

To initialize the network stack, Tyche opens a channel per available NIC between initiator and
target. During the handshake phase, for each channel, the initiator and target exchange information
about resources. Then the initiator creates a local device for the remote device, and it is ready to
receive I/O requests for this new device.

Whether there are several channels open for the same remote device, Tyche uses a dynamic
scheduler to select the channels (see Section 7.3.2).

Figure 7.2 depicts the end-to-end I/O path of a write request through a channel. A read follows
the same path, except that the data message is sent from the target to the initiator. We use a 16 kB
request for clarifying purpose. The following sections explain in detail this end-to-end I/O path.

7.2.2 NETWORK MESSAGES

As shown in Figure 7.2a, Tyche receives regular I/O requests from the above layer (normally the
file system) to be issued to the remote device. An I/O request is composed of its parameters (request
type, LBA sector, size, and flags) and the pages with the data to be written or where to place the data
to be read. For this reason, Tyche supports two different types of messages: request messages and
data messages.

Request messages are used for transferring request parameters and for sending I/O completions
back from the target to the initiator. Data messages are used for sending data pages. For writes, data
messages are sent from the initiator to the target, whereas for reads, data messages are sent from the
target to the initiator. An I/O request corresponds to three network messages: two request messages
(the request itself and its completion) and a data message. Tyche always sends these three messages
through the same channel.

A request message corresponds to a single request packet, that is small (less than 100 bytes in
size), and is transferred using an Ethernet frame. Data messages are sent via RDMA-type messages
by using scatter-gather lists of memory pages (I/O buffers). The corresponding (data) packets are
transferred in separate Jumbo Ethernet frames of 4 or 8 kB. A data packet can carry at most two 4 kB
pages, so, a data message for an I/O request of N pages corresponds to N/2 data packets.
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7.2.3 MAIN DATA STRUCTURES

In order to reduce the overhead that implies the memory management, to minimize synchronization
for shared structures, and to allow scaling with the number of NICs and cores, Tyche allocates all
the resources per channel. Therefore, each channel has and manages its own private resources: two
buffers for messages at the block layer and several rings at the network layer.

At the block layer, each channel has two separate and preallocated buffers (see Figure 7.2), one for
request messages and one for data messages. Messages are sent and received by using these buffers.
I/O completions, which are handled as request messages, are prepared in the same buffer where the
corresponding request message was received.

At the target, the buffer for data messages contains lists of preallocated pages. The target uses
these pages not only for sending and receiving data messages but also for issuing regular I/O requests
to the local device. On the contrary, the initiator has no preallocated pages. For sending or receiving
data messages, the initiator uses the pages already provided by the regular I/O requests, avoiding, in
this way, any extra copy of data.

Although both, initiator and target, have allocated these buffers, the initiator handles the buffers
from both sides. During the connection handshake phase, the buffer information is exchanged, so
the initiator knows all necessary identification handlers of the target buffers. For each message, the
initiator specifies, in the packet header, its positions on the corresponding buffer. On its reception, the
network layer directly places a message in its buffer’s position. For instance, the initiator specifies
on behalf of the target the position (pages) where data packets have to be placed when they arrive
(for writes), and the target uses these pages for submitting the regular I/O write requests.

At the network layer, each channel uses three rings (see Figure 7.2), one for transmitting,
TX_ring, one for receiving, RX_ring, and one for notifications, Not_ring. Since Tyche han-
dles two kinds of packets (request and data packets), each channel also has two instances for each
ring. A request packet is sent using TX_ring_req, received in RX_ring_req, and its noti-
fication is placed in Not_ring_req. In the same way, a data packet uses TX_ring_data,
RX_ring_data, and Not_ring_data.

7.2.4 STORAGE-SPECIFIC NETWORK PROTOCOL

The header of our packets includes information to facilitate communication between the network
and block layers, to allow several channels per NIC, and to provide end-to-end flow control.

For each packet, the header includes the identifier of the channel, the local position in the trans-
mission ring that also denotes the position on the remote receive ring, the position of its message on
the corresponding message buffer, and positive and negative acknowledgments.

For data packets, the header also includes the number of pages that composes the data packet, the
position of these pages on the data message, and the total number of pages of the data message.

By using the same position on the transmission and receive rings, we reduce packet processing
overhead in the receive path. By including for each message its position in the buffer, upon its arrival,
a message is placed in its final position and we avoid the copy from the network layer to the block
layer.

Thanks to these fields, Tyche also allows out-of-order transfer, and delivery of packets over
multiple links in case a channel is mapped to several NICs.

7.2.5 NETWORKED I/O PATH

Figure 7.2 depicts the end-to-end I/O path of a 16 kB write request. In addition, Fig-
ures 7.3 through 7.6 describe this flow path providing more detail. On these figures, the numbers
on the arrows denote the execution order when several actions are run after a previous one.
Figures 7.2 through 7.4 mark with the label “L” some actions that require synchronization. For
simplicity, figures do not include error handling and retransmission paths.
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FIGURE 7.3 Overview of the send path at the initiator.

FIGURE 7.4 Overview of the receive path at the network layer.

For each I/O request, the initiator selects one channel, and from the buffers of this channel, it gets
one request message and one data message. Then it composes the messages, and transmits them.
Figure 7.3 shows this send path.

At the target, dedicated network threads, one per NIC, process incoming packets, compose mes-
sages, and generate notifications to the block layer. Block layer threads, several per channel, process
request messages and, for each request, construct a proper Linux kernel I/O request and issue it to
the local block device. Figures 7.4 and 7.5a summarize these receive paths for the network and block
layers, respectively.

The target uses a work queue to send completions back to the initiator. Local I/O completions run
in an interrupt context, which is not able to perform actions that can block such as sending/receiving
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(a) (b)

FIGURE 7.5 Overview of the receive path at the block layer. (a) At the target. (b) At the initiator.

FIGURE 7.6 Overview of the completion path at the target.

network messages. For this reason, the local I/O completion schedules a work queue task that exe-
cutes the required operations. Figure 7.6 depicts this completion path, and the network send path is
shown in Figure 7.3.

When a completion arrives, the initiator runs the receiving tasks to complete the corresponding
I/O request. Figure 7.5b depicts the receive path of the block layer at the initiator, and Figure 7.4 the
network receive path.

Tyche can operate in two different modes. In the “inline” mode (Figures 7.1 through 7.3), the
application context issues I/O requests to the target, without requiring any context switch in the
issue path. In the “queue” mode, regular I/O requests are inserted in a queue, and several threads
dequeue these I/O requests and issue them to the target. With the queue mode, the issuing context
blocks just after enqueuing the request.

7.3 MAIN CHALLENGES

In our design, we deal with the following main challenges: (i) memory management overhead; (ii)
NUMA affinity; (iii) synchronization; (iv) many cores accessing a single NIC; (v) latency; (vi)
batching; and (vii) elasticity. Next, we discuss how Tyche addresses these challenges.
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7.3.1 MEMORY MANAGEMENT

Each channel has preallocated buffers to reduce memory management overhead when receiv-
ing/sending messages. At the target, each channel also has preallocated pages that are used for
sending and receiving data messages as well as for issuing regular I/O requests to the local storage
device.

Network protocols over Ethernet involve a copy of data in the receive path fromNIC buffers to the
actual data location. The reason is that arriving data is placed in the physical pages belonging to the
NIC’s receive ring; however, these data should be placed eventually in the pages of the corresponding
request. The copy of data should occur in the target for write requests and in the initiator for reads.

For write requests, Tyche avoids the overhead of the memory copy from NIC buffers to Tyche
pages by interchanging the pages. On the arrival of a data packet, the target interchanges pages
between the NIC receive ring and the data buffers. This interchange of pages is possible because the
initiator specifies at the header of the data packet the position (pages) for these data at the target side.

For reads, Tyche cannot apply this interchange technique, and performs a single copy at the initia-
tor. When a read is sent over the network, the layer that initially issued the request expects specific
nonsequential physical pages (struct page objects in the Linux kernel) to be filled with the
received data. Therefore, exchanging pages does not work, and a memory copy is required.

7.3.2 NUMA AFFINITY

For efficiency and scalability purposes, modern servers employ NUMA architectures, such as the
one depicted in Figure 7.7 that corresponds to the servers used in our work. These servers use multi-
ple processor sockets with memory attached to each socket, resulting in nonuniform latencies from
processor to different memories. Each I/O device is placed to a specific NUMA node via an I/O hub
(Figure 7.7). Processors, memories, and I/O hubs are connected through high-speed interconnects,
for example, QPI (QuickPath Interconnect) [9]. Accessing remote memory (in a different NUMA
node) incurs significantly higher latency than accessing local memory [10,11], up to a factor of 2×.

In the I/O path, the elements related to NUMA affinity are application buffers, protocol data struc-
tures, kernel (I/O and NIC) data buffers, placement of NICs on server sockets, application threads,
protocol threads, work queues, and interrupt handlers.

Tyche orchestrates affinity of memory and threads by considering the system topology and the
location of NICs. It creates a communication channel per NIC, and associates resources exclusively
with a single channel.

Each channel allocates memory for all purposes in the same NUMA node where its NIC is
attached, and it also pins its threads to the same NUMA node. For instance, in the architecture of
Figure 7.7, a channel mapped to NIC-0 allocates resources in Memory-0 and runs its threads in cores
within Processor-0, a channel mapped to NIC-3 uses Memory-1 and Processor-1.

FIGURE 7.7 Internal data paths in our NUMA servers.
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The NIC driver has, per NIC, transmission and receive rings. We also force the allocation of these
resources in the same node where the NIC is attached, making them part of the NIC channel.

We implement a NUMA-awareness work queue as well, because in the Linux kernel used it is
not possible to apply affinity on the assignment of tasks to work queues. Our work queue launches a
thread per core, and each thread is pinned in its corresponding core. The target submits completion
messages to the work queue by using its NUMA information.

There are still points uncovered, such as, in the Linux kernel, it is not possible to force placement
of I/O completions, or to control placement of buffer cache pages; and controlling application thread
placement can have adverse effects on application performance.

In addition, we implement a channel scheduler [8] that is able to dynamically select the scheduling
policy depending on the throughput achieved by each NUMA node and the current load in terms of
requests. The goal is to deal with load imbalance among nodes. Our channel scheduler uses by default
the affinity-based policy. It switches to a round-robin policy when it detects that better balancing
of requests across NUMA nodes may lead to higher throughput. It then switches back to affinity
scheduling when it finds that balancing requests across NUMA nodes creates unnecessary cross-
NUMA traffic.

7.3.3 SYNCHRONIZATION

Using private resources per channel allows Tyche to minimize synchronization. However, Tyche still
has to grant exclusive access to each channel, because several threads can simultaneously use the
same channel. For the same reason, the NIC driver has to grant exclusive access to its rings as well.

Figures 7.2 through 7.4 mark with “L” the locks of the end-to-end I/O path in the inline mode.
Table 7.2, for each lock, gives its name, the layer, path, and host in which the lock is used, the data
structure or task protected, and the steps in Figure 7.2 in which it is held. All the locks are spin-locks.

In addition, Tyche uses atomic operations to control access to other data structures such as its
transmission rings. An atomic operation per-buffer also avoids the (uncommon) case of concurrently
processing overlapped messages.

For packets and messages, Tyche assigns in advance its position on the receive rings and buffers;
consequently, the receive path does not require locks. Sending completions neither requires locks,
since the target sends a completion message by using the corresponding request message.

The initiator path can operate in two different modes. In the inline mode, application threads
simultaneously submit their requests without performing a context switch. The queue mode uses
a context switch to avoid having many threads accessing the send path and incurring a significant

TABLE 7.2
Locks on the Tyche End-to-End I/O Path for the Inline and
Queue Modes

Lock Layer Path Data Structure/Task Steps in Figure 7.2

Mes Block IS, IR Message buffers 1, 17

NIC Network driver IS, TS NIC transmission ring 3, 5, 14

Not Network IR, TR One per notification rings 7, 9, 10, 11, 16, 17

Work Block TS Work queue 12, 13

Pos Network IS, TS To send positive ack Not included

Neg Network IS, TS To send negative ack Not included

Que Block IS Request queue (queue mode) Not included

Note: S, R, I, and T stand for send, receive, initiator, and target, respectively.
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synchronization overhead. The queue mode introduces a new queue at the initiator block layer, and
therefore a lock is required.

Our previous results [8] show that the inline approach where application threads issue requests
with no context switch is preferable to using a queuing approach that trades locks for context
switches, when NUMA affinity is enabled end-to-end. Indeed, in these cases, the inline approach
outperforms by up to 24% the queuing approach.

7.3.4 MANY CORES ACCESSING A SINGLE NETWORK LINK

The increasing number of cores in modern servers also increases the contention when threads from
multiple cores access a single network link. In the send path, the initiator uses the queue mode to
limit the number of threads that can access each link. At the target, work queues send completions
back, limiting the number of contexts (one per core) that interact with each NIC. In the receive path,
Tyche uses one thread per NIC to process incoming data. Our analysis [6] shows that one core can
sustain higher network throughput than a single 10 GigE NIC, and therefore it does not limit the
maximum throughput.

7.3.5 REDUCING LATENCY FOR SMALL I/O REQUESTS

Our analysis of the host CPU overheads in the networked I/O path (see Section 7.4.3) finds out that
there are two fundamental limitations to achieve high input/output operations per second (IOPS)
for small requests: Context switches impose significant CPU overhead whereas network packet pro-
cessing dominates over link throughput. Tyche significantly reduces network packet processing, and
here we propose an optimization for context switches.

Figure 7.8 marks with green circles the context switches done; in addition, Table 7.5 describes
them. Serving a 4 kB request involves, at least, six context switches. For larger requests, more contest
switches are expected because the number of data packets sent/received depends on the request size.

We propose Tyche-NoCS, a variant of our protocol that avoids the context switches on the receive
path and on the target send path. Section 7.4.3 shows that this design is particularly effective for low
degrees of I/O concurrency.

Tyche-NoCS avoids CS-Rec, that is, the context switch done between the network and block
threads, by using a single thread to run the whole receive path. The network thread processes a
packet, composes the message, and checks whether any data message related to the request message
just composed has arrived. When all the messages (request message and data message if any) have
been received, the network thread runs the block layer tasks through a callback function. To avoid
blocking this thread, we also use callback functions to check whether all the messages that compose
an I/O request have been received. In addition, the notification rings that communicate both threads
are not used, and we reduce overhead by avoiding them and, for instance, the lock to ensure exclusive
access to them as well.

Tyche-NoCS also eliminates CS-WQ, that is, the context switch done in the target send path due
to the work queue, by attempting to send the response to the initiator from the completion context
of the local I/O. If it succeeds, there will be no context switch. But, if the operation needs to block,
which is not allowed in the completion context, it will fall back to the work queue of the base version.
Note that the completion context will block if, for instance, there is no room in the transmission ring.
Avoiding the work queue results in avoiding the management associated, for instance, the lock that
is required to insert/dequeue tasks into/from the work queue.

It is worth emphasizing that Tyche cannot avoid CS-IRQ, the context switch done when the NIC
interrupt is raised in the receive path, because interrupt handler functions cannot do anything that
could sleep. Previous works [12,13] have examined how to avoid this context switch by using polling
instead of interrupts. However, we have not considered this option because the spinning time could
be significant larger, especially for large requests. In our case, the NIC interrupt handler just wakes
up our network thread.
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FIGURE 7.8 End-to-end I/O path showing the components we measure, and the associated context switches
that are marked with a small circle. Labels A, B, C, etc., describe the computed values. We show the path for a
request message. Data messages follow a similar path, using different rings.

To avoid CS-Out, done to complete the request, layers above Tyche should be modified. But, this
is beyond our scope, since this context switch is out of the control of Tyche. One option could be that
the application thread waits for the completion spinning [12,14]. But, when there are a large number
of threads concurrently issuing I/O requests, the spinning option is not viable.

7.3.6 ADAPTIVE BATCHING

At high concurrency when there is a large number of outstanding small requests, the previous design
cannot achieve high link utilization and consequently high IOPS. For this reason, we propose an
adaptive batching that can improve significantly link utilization for small requests. The novelty of our
proposal is a dynamic technique that varies the degree of batching without increasing I/O overhead
and response time.

We introduce a new request message, called batch request message or batch message. A batch
message is a single network message that includes several I/O requests, reads, or writes, issued
by the same or different threads. When a batch message is received, the target issues to the local
device a regular I/O request per request included in the batch message. Completions are sent as
batch messages as well. The target sends the completion message when all the requests within the
batch message are completed. Batch messages significantly reduce the number of messages and the
associated message processing.

We also introduce batch data messages that transmit the data of two 4 kB requests by batching
them in a single data packet of 8 kB. This method may be applied to larger requests as well, but the
main benefit occurs when 4 kB requests are batched and sent in 8 kB packets.
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There are two general remarks about batching. First, batching makes sense up to some request
size. Large I/O requests already make efficient use of the network, and batching offers no benefit.
Given the low overhead of Tyche, this size is 8 kB, so our proposal only batches 4 kB requests.
Other systems, with higher overheads, will benefit from batching larger requests as well. Second,
static batching does not work in practice, as our results show. Thus, we employ an adaptive technique
that constantly adjusts the number of requests batched. When our technique chooses a batch degree
of one, it incurs no additional overhead compared to the optimized inline mode.

Our batching mechanism is built around a batch queue introduced in the send path of the inline
mode. Now, at the initiator, each I/O request is inserted into the batch queue. Then, a single (batch)
thread dequeues requests and includes them in a batch request message.

A key aspect of our batching approach is to decide when to wait for new requests or
when to send the batch message immediately. We use a parameter, the current batch level
(current_batch_level), to determine the number of requests to include in a batch mes-
sage. We send a batch message when it has current_batch_level requests. We dynamically
calculate current_batch_level based on the link throughput achieved. If by increasing or
decreasing the batch level compared to the current value results in increased throughput, we will
keep moving in the same direction.

The value of current_batch_level varies between 1 and max_batch_level, where
max_batch_level corresponds to the maximum number of requests that a batch message can
carry.

To compute the value of current_batch_level, our batch mechanism calculates two val-
ues: (1) the throughput achieved (Xput and Xput_p) in the last and previous intervals; and (2) the
average number of outstanding I/O requests (a_out_r) in the batch queue during the last interval.

We then calculate the improvement in the throughput of the last interval over the previous interval,
and we set current_batch_level as:

If the improvement is larger than 3%, the new value of current_batch_level will be
increased to: current_batch_level+min(a_out_r,max_batch_level)

2 .
If the improvement is smaller than −3%, the value of current_batch_level will be

reduced to: 1+min(a_out_r,current_batch_level)
2 .

Otherwise, no change is made to the batch level.

To avoid delaying requests too long, we use a maximum amount of time (max_delay) that the
first request batched may be delayed. A batch message will be sent if current_batch_level
is reached or max_delay expires.

Finally, we avoid the case where the batch level remains unmodified because throughput is stable,
although there is potential for better link utilization. For this reason, if after 10 consecutive intervals
there are no changes, we compare the throughput of current_batch_level to the throughput
of current_batch_level− 1 and current_batch_level+ 1. If, for one of these new
values, there is an improvement of at least 3%, we start adjusting current_batch_level again.

7.3.7 ELASTICITY

Elasticity refers to the ability to automatically remove or add resources according to the current
workload with the aim of efficiently using resources. For instance, a typical server today has a few
10s of cores and a few 10 GigE links. Tyche uses a two-phase process to deal with elasticity on such
systems. The first phase allows to dynamically add or remove NICs to the system without rebooting
the system. We use ioctl commands to invoke this process from user space. When adding a new
NIC, new channels could be opened for it. Whereas, when removing an NIC, channels opened and
mapped to this NIC will be closed and this resources will be released.
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The second phase is applied by the initiator, and implies to use or not NICs already connected to
the system depending on the throughput achieved for the current workload. The issue is to ensure
proper utilization of network throughput from multiple and diverse application workloads running.
The NICs that Tyche is not using could be used by other protocols.

Let us suppose that the servers have two NUMA nodes, and that each NUMA node has attached
nNICs. If each NIC provides a maximum throughput of TMB/s, therefore, the maximum throughput
achieved per NUMA node could be n× T . Tyche opens a channel per NIC, and initially all the
channels are active and in use. Every 5 seconds, Tyche applies the following policy to decide whether
a channel should be kept active or not:

If, for a NUMA node with n channels active, the throughput achieved is less than 75% of the
maximum throughput that n− 1 channels could provide, one channel is turned off, and the
corresponding NIC is not used.

If, for a NUMA node with p channels active, the throughput achieved is more than 75% of the
maximum throughput that these NICs could provide, a new channel is turned on.

If the NUMA node does not have more channels available (all the channels mapped to NICs
on this NUMA node are already active), and other NUMA node has channels available
(because they are inactive), the NUMA node achieving the maximum throughput will
borrow one of these channels, and it will use n+ 1 channels.

7.4 EXPERIMENTAL EVALUATION

This section evaluates our proposals with an implementation of Tyche in Linux kernel 2.6.32.We use
as baseline NBD (Network Block Device), which is a popular, software-only solution for accessing
remote storage. NBD can only use one NIC per remote storage device. We tested iSCSI as well, but
NBD outperforms iSCSI, so we only include NBD in our graphs. For evaluation purposes, and as an
intermediate design point, we also implement a version of Tyche, called TSockets, that uses TCP/IP.
TSockets uses sockets to perform the communication, and uses all available NICs by creating a
connection per NIC. Here, we provide a baseline analysis, and then we analyze the impact of NUMA,
our proposals to increase performance for small requests, and our approach for elasticity. Analysis
for other aspects can be found in References 6–8 and 15.

Our experimental platform consists of two systems (initiator and target) connected back-to-back
with multiple NICs. Both nodes have two, quad core, Intel(R) Xeon(R) E5520 CPUs running at
2.7GHz. The operating system is the 64-bit version of CentOS 6.3 testing with Linux kernel version
2.6.32. Each node has six Myricom 10G-PCIE-8A-C cards. Each card is capable of about 10Gbits/s
throughput in each direction for a full-duplex throughput of about 20Gbits/s. The target node is
equipped with 48GB DDR-III DRAM and the initiator with 12GB. The target uses 12GB as RAM
and 36GB as ramdisk. Note that we use ramdisk only to avoid the overhead of the storage devices,
since we are interested in focusing on the network path.

We evaluate the main features of our approach with two microbenchmarks zmIO and FIO. zmIO
is an in-house microbenchmark that uses the asynchronous I/O API of the Linux kernel to issue
concurrent I/Os at low CPU utilization [16]. FIO is a flexible workload generator [17].

7.4.1 BASELINE PERFORMANCE

First, we analyze the baseline performance with zmIO. We run zmIO with sequential reads and
writes, synchronous operations, direct I/O, 32 threads submitting requests and two outstanding
requests per thread, a request size of 1MB, and a run time of 60 s. The remote storage device is
accessed in a raw manner (there is no file system). The test is run for one to six NICs, with one
channel per NIC. Tyche applies NUMA affinity.
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(a) (b)

FIGURE 7.9 Throughput (in GB/s) achieved by Tyche, TSockets and NBD with zmIO, sequential reads and
writes, and 1MB requests. (a) Read requests. (b) Write requests.

Figure 7.9 depicts results for Tyche, TSockets, and NBD. For reads, with up to three NICs, Tyche
achieves the maximum throughput of the NICs. With four or more NICs, Tyche provides a bit lower
throughput, 4.3, 5.4, and 6.2GB/s, respectively. This is due to the overhead of copying pages in the
initiator that becomes noticeable at high rates. For writes, Tyche achieves the maximum throughput
provided by the NICs except for six NICs, that it obtains 6.5GB/s. With six NICs, when running this
benchmark, the initiator is almost a 100% CPU utilization. TSockets achieves a throughput of 2.1
and 1.7GB/s for reads and writes, respectively. NBD obtains a throughput of 609MB/s because it is
only able to use a single NIC. Therefore, Tyche outperforms up to 10× the throughput of NBD and
more than 3× the throughput of TSockets. We also see that TSockets is more than 3× better than
NBD, which shows that TCP/IP is responsible only for part of the overheads when accessing remote
storage.

Tyche throughput scales with the number of NICs, and our proposal achieves between 82% and
92% of NIC throughput. NBD is only able to use a single link. TSockets does not scale with the
number of NICs, and by using six NICs, it is able to saturate at most two NICs.

7.4.2 DEALING WITH NUMA

Our analysis [6,8,15] shows that NUMA affinity is an important issue that spans the whole I/O
path and has a significant performance impact. Indeed, Tyche achieves the maximum throughput
only when the right placement of memory and threads is done by improving performance by up to
97% [6].

We now analyze the impact of NUMA effects depending on the placement applied by Tyche and
the application. Table 7.3 summarizes the configurations evaluated: Ideal, TyNuma, andWorst. With
Ideal, we manually configure the NUMA placement of the application. With TyNuma and Worst,
we run the application without any affinity hint. We use six NICs, three on each NUMA node, and
one channel per NIC. Further analysis can be found in References 6, 8, and 15.

We analyze the QPI traffic with the open-source Intel Performance Counter Monitor (PCM) [18]
that provides estimations of traffic transferred through QPI links. Table 7.4 describes the estimations
analyzed.

We use zmIO, because when zmIO is run without affinity hint, it allocates 99% of writes and
around 75% of reads on a single NUMA node (node 0). Therefore, almost all writes issued to chan-
nels allocated in node 1 have their resources allocated in node 0, and for reads, this rate is only 50%.
Consequently, with zmIO, the performance also depends on the request type.
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TABLE 7.3
Configuration of the Tests Run for the NUMA Study

NUMA Affinity
Channel

Test Tyche Application Scheduler

Ideal Yes Yes Affinity-aware

TyNuma Yes No RR

Worst No No RR

Note: RR stands for round-robin scheduling.

TABLE 7.4
Estimations of Data Traffic through the QPI Links Given
by PCM Excluding the QPI Traffic between I/O Hubs

Name Node Traffic Direction

Q1-N0 0 Local I/O-Hub-0⇔ Processor-0

Q1-N1 1 Local I/O-Hub-1⇔ Processor-1

Q0-N0 1 Remote Processor-0⇒ Processor-1

Q0-N1 0 Remote Processor-1⇒ Processor-0

We run zmIO with random reads and writes, direct I/O, 128 kB requests, and a runtime of 60 s.
The remote storage device is accessed as a raw device. We run 4, 8, 16, and 32 application threads.
Figure 7.10 provides throughput, in GB/s, achieved by Tyche as a function of the number of appli-
cation threads, and the percentage of the total traffic through each QPI-node link at the initiator as a
function of the application threads and configuration.

For writes, only Ideal configuration achieves its maximum throughput, being 6.25GB/s. Almost
all the data traffic comes through the QPI-1 link, having a similar amount of traffic at both nodes.
Worst only obtains up to 3.73GB/s, and Ideal outperforms Worst by up to 86%. Now, data traffic
is only through the QPI-1 link on node 0, since almost all the requests are allocated in this node.
There is no data traffic through QPI-1 on node 1, and there is a significant amount of traffic through
QPI-0. TyNuma only achieves up to 4.92GB/s, and Ideal improves this throughput by up to 27%.
Regarding QPI traffic, TyNuma behaves like Worst.

Owing to the QPI data traffic, Worst and TyNuma are not able to provide better performance.
TyNuma outperforms Worst because, at the Target, TyNuma is applying NUMA affinity, whereas
Worst is not.

For reads, Ideal and TyNuma achieve up to 6.85 and 6.64GB/s, respectively, whereas Worst only
up to 4.17GB/s. Ideal improves throughput by up to 73% comparing with Worst.

This difference in performance between Ideal and Worst is again due to the QPI traffic. Ideal has
all the data traffic through the QPI-1 links, both nodes having the same amount of traffic. However,
Worst has up to 33% of the total traffic coming through QPI-0.

When comparing Ideal and TyNuma, there is only a small difference in throughput; however,
regarding QPI traffic, TyNuma behaves more similar to Worst. With TyNuma, at the initiator, the
QPI traffic is quite similar to that with Worst, since application buffers are allocated there, and the
application is not applying NUMA affinity. At the target, the QPI traffic is the same as with Ideal. At
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FIGURE 7.10 Throughput (in GB/s) and percentage of QPI for Tyche with varying affinity, zmIO, 128 kB
requests, and random reads andwrites. (a) Throughput—writes. (b) Throughput—reads. (c) QPI traffic—writes.
(d) QPI traffic—reads.

the target, Ideal and TyNuma apply NUMAplacement, butWorst does not. SoWorst has a significant
amount of traffic through QPI-0 links.

With four threads, threads and resources are allocated in NUMA node 0; for this reason, with
Ideal, data traffic is only through the QPI-1 link of node 0.

7.4.3 LATENCY EVALUATION

Now we analyze the cost of the I/O path for a request. Table 7.5 summarizes the individual and
cumulative overheads computed. Figure 7.8 marks with arrows and labels the parts of the I/O path
that we measure in our study.

In spite of the improvements implemented, Tyche exhibits high host CPU overhead and low net-
work link utilization for small I/Os. Figure 7.11 that depicts the theoretical link utilization achieved
by Tyche when FIO is run with direct I/O, and random reads. For a baseline comparison, we include
the link utilization achieved by NBD. Tyche provides up to 5× the link utilization of NBD. But
Tyche is able to achieve only up to 56% of the maximum link utilization for 4 kB requests, whereas,
for 8 kB requests, the link efficiency is 90%.

Table 7.6 presents overheads, in µs, and throughput, in MB/s, obtained by Tyche, for requests of 4
and 128 kB. We use a single NIC connected to NUMA node 0, and we open a single channel on this
NIC. We run FIO during 60 s with direct I/O, and random requests. The storage device is accessed
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TABLE 7.5
Overhead Breakdown for the End-to-End Path of Tyche, as Shown in Figure 7.8

Name Path Description

Total A - B - E - B - A Overhead, reported by the application, of serving the request measured as the time
delay between the application issues the request until it is completed.

Tyche B - E - B Overhead measured by Tyche as the time between the arrival of the request to its
block layer until its completion. Effectively, this is the overhead of our protocol
excluding the above layers.

Ty-IS B - C

Overhead of the Tyche (Ty): send path at the initiator (IS) and target (TS) and
receive path at the initiator (IR) and target (TR).

Ty-TR D - E

Ty-TS F - G

Ty-IR H - B

CS-WQ Cost of the context switch due to the work queue.

CS-Rec Cost of the context switches between the network layer and block layer threads.

CS-IRQ Cost of the context switches done when an NIC’s IRQ is raised. Measured as the time
spent since the IRQ handler function executes the wake up function until the
network thread starts its execution.

Ramdisk E - F Overhead of the ramdisk from issuing a request until receiving its completion.
Ramdisk is synchronous, so IO happens inline without context switches.

I/O kernel A - B and B - A Time needed by a request to arrive from the application to Tyche and to be completed
from Tyche. It is calculated (not measured) as the difference between total and
Tyche overheads.

Network C - D and G - H Overhead of the network interface and network link(s). It is calculated (not measured)
as the difference between Tyche overhead and the sum of Ty-IS, Ty-TR, Ty-TS,
Ty-IR, CS-WQ, CS-Rec, CS-IRQ, and Ramdisk. It includes the overhead of the
corresponding driver at the host, which, however, is low compared to the rest of the
host overheads.

in a raw manner. There is one application thread issuing I/O requests, and one outstanding request.
Tyche applies NUMA affinity.

For small requests, message processing is the most important source of per-I/O request overhead
and the main bottleneck when using fast storage devices, being up to 65% of the total overhead.
For 4 kB requests, Tyche overheads (Ty-IS, Ty-TR, Ty-TS, Ty-IR, CS-WQ, CS-Rec, and CS-IRQ)
are 47% of the total, and only 20% without taking into account the context switches done along the
Tyche path. Similar percentages are true for other request sizes.

The I/O kernel overhead is high, and depends on the request type and its size. A significant com-
ponent of this overhead is the overhead due to the context switch done to complete the request
(CS-Out), as we prove in Reference 7.

Each context switch costs around 4µs. At Tyche level, the contest switches represent 27.5% and
20.0% of the total overhead for 4 and 128 kB requests, respectively.

Now we evaluate Tyche-NoCS, our proposal to reduce context switches. Table 7.7 provides the
overhead breakdown, in µs, and throughput, in MB/s, for the same test under the same configuration.

Total overhead is reduced by up to 27.6% for 4 kB reads, and throughput is improved by up to
39.1%. For 128 kB reads, overhead is reduced by up to 8.1%, and throughput is improved by up
to 8.8%. For writes, this reduction is 30.8% and 5.2% for 4 and 128 kB requests, respectively, and
throughput is improved by up to 44.8% and 5.5%, respectively.

CS-Rec is reduced to zero, since no context switch is done on the receive path. Ty-TR and Ty-
IR are significantly reduced as well. There are two reasons: (i) the notification rings are not used
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FIGURE 7.11 Link utilization achieved by Tyche and NBDwith varying number of outstanding I/O requests,
FIO, direct I/O, and random reads.

TABLE 7.6
Overhead (in µs) and Throughput (in MB/s) Measured for Tyche, by Running FIO with a
Single Thread and a Single Outstanding I/O, Direct I/O, and Random Reads and Writes

Read Requests Write Requests

Overhead (µs) 4 kB 128 kB 4 kB 128 kB

Software I/O kernel 13.19 15.33 12.80 40.96

Ty-IS 2.75 2.00 4.75 26.25

Ty-TR 3.00 4.25 5.00 24.25

Ty-TS 4.00 22.00 3.00 3.00

Ty-IR 5.00 45.00 2.25 2.00

CS-WQ 4.00 4.00 4.00 3.00

CS-Rec 8.00 7.00 8.00 7.00

CS-IRQ 8.15 30.54 8.13 37.90

Hardware Ramdisk 1.00 30.75 1.00 31.00

Network 24.60 60.21 24.87 63.35

Total 73.69 221.08 73.80 238.71

Throughput (MB/s) 52.50 565.00 52.50 523.25

because a single thread runs the whole receive path; and (ii) the locks to protect these rings are not
required.

CS-WQ is reduced to zero, since the context switch due to the work queues is not done. Ty-TS is
also reduced because the management of the work queue is avoided, for instance, we avoid the lock
to add a job to the work queue.

The I/O kernel overhead is also slightly reduced.We believe that the reduction is due to the system
caches as Li et al. [19] point out, since there are fewer threads running and fewer context switches.

7.4.4 EVALUATION OF ADAPTIVE BATCHING

To study the effects of batching, we modify the implementation done of Tyche that now batches
requests and data messages and applies the dynamic algorithm to choose the batch level. The new
version is called Tyche-Batch. In addition, we have implemented a static version with a fixed batch
level during the whole execution.
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TABLE 7.7
Overhead (in µs) and Throughput (in MB/s) Measured for Tyche-NoCS, by Running FIO
with a Single Thread and a Single Outstanding I/O, Direct I/O, and Random Reads
and Writes

Read Requests Write Requests

Overhead (µs) 4 kB 128 kB 4 kB 128 kB

Software I/O Kernel 11.38 14.77 12.11 42.36

Ty-IS 2.00 2.00 3.00 23.75

Ty-TR 1.00 2.50 2.00 20.25

Ty-TS 3.00 20.00 1.00 2.00

Ty-IR 1.00 40.00 0.00 0.25

CS-WQ 0.00 0.00 0.00 0.00

CS-Rec 0.00 0.00 0.00 0.00

CS-IRQ 8.09 30.71 8.01 38.92

Hardware Ramdisk 1.00 30.50 1.00 31.00

Network 25.91 62.79 23.99 67.83

Total 53.38 203.27 51.11 226.36

Throughput (MB/s) 73.00 614.75 76.00 552.00

We run FIO during 60 s with direct I/O, random reads and writes, 4 kB request size, 1, 2, 4, 8,
16, 32, 64, and 128 threads issuing requests, and four outstanding requests per thread. The remote
storage device is accessed in a raw manner. We have also tested that our batch technique provides
no benefit for larger sizes, but it does not hurt. Tyche applies NUMA affinity.

The dynamic version is configuredwith 1 s as check interval, 64 requests asmax_level_batch,
and 5ms as max_delay. We run the static version with 2, 4, 8, 16, 32, and 64 requests as
max_batch_level. However, we only present results for 2, 8, and 64 requests, since all of them
have similar behavior.

Figure 7.12 depicts the theoretical link utilization, depending on the number of outstanding
requests, achieved by the dynamic Tyche-Batch version (DyB in the figure), and the static version
with 2, 8, and 64 requests as batch level (B-2, B-8, and B-64), and Tyche with no batching (NoB).

(a) (b)

FIGURE 7.12 Link utilization achieved by the dynamic and static Tyche-Batch versions and Tyche with no
batching, when data messages are also batched, with FIO, direct I/O, and random reads and writes of 4 kB. (a)
Read requests. (b) Write requests.
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Dynamic Tyche-Batch outperforms the no batch version up to 57% and 53% for reads and
writes, respectively. For reads, our proposal achieves up to 88% of link utilization, and for writes
up to 81%.

Comparing the dynamic version to the static versions, we see that the dynamic version achieves
the best performance and follows the static version providing the best behavior. Sometimes, a static
version outperforms the dynamic version, but the larger difference between them is quite small. In
these cases, the algorithm took a conservative decision when, by batching a large number of requests,
it could achieve a higher throughput.

The static versions achieve poor performance and link utilization at low concurrency. The reason
is that batch messages are sent to the target because max_delay expires and not because the batch
level is reached.

7.4.5 ELASTICITY EVALUATION

We analyze now the elasticity process proposed with zmIO and different workloads. The test is run
with direct I/O, asynchronous operations, sequential reads andwrites, 32 threads submitting requests,
two outstanding requests, and using a raw device. To change the workload, we run the test six times
in a row with different request sizes, each one during 30 s. The request sizes tested are 4 kB, 16 kB,
64 kB, and 1MB, and the order of the tests is 4 kB, 16 kB, 1MB, 64 kB, 4 kB, and 1MB.

Initially, six channels, one per NIC, are active, and Tyche checks the throughput every 5 s. Tyche
applies affinity optimizations, and the minimum number of channels active will be two, one per
each node.

Figure 7.13 depicts the throughput in MB/s achieved by Tyche (solid curve plotted left axis), and
the number of channels-NICs on during the execution of the tests (dashed curve right axis).

With 4 kB requests, Tyche turns off four channels, two per each NUMA node, since two channels
are enough to provide the maximum throughput for this size. When the request size changes to
16 kB, Tyche turns on one channel on each node, the steps around the 35 second shows this behavior.
When the request size is 1MB, Tyche turns on a third channel per node, being all the NICs working.
The channels will be on until the request size changes to 4 kB at the second 125. At this point,
Tyche turns off four channels, two per node, and keeps active only two channels. Finally, when
the size changes to 1MB, all the channels are turned on again, and the maximum throughput is
reached.

(a) (b)

FIGURE 7.13 Throughput (left y-axis) in MB/s achieved by Tyche and number of NICs on (right y-axis)
during the execution of zmIO with request sizes of 4 kB, 16 kB, 1MB, 64 kB, 4 kB, and 1MB, for sequential
reads and writes. (a) Read requests. (b) Write requests.
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When increasing the request size, Figure 7.13 depicts steps on the curves that show how Tyche
is turning on channels. However, when channels are turned off, the throughput curve does not have
these steps, since the throughput just drops, although the steps appear on the curve for the NIC
number.

7.5 RELATED WORK

Regarding network storage protocols, iSCSI and NBD are built over TCP/IP and are widely used
in Linux. In contrast, Tyche uses its own Ethernet-based transport, which incurs less overhead.
HyperSCSI [20] modifies iSCSI to use raw Ethernet instead of TCP/IP. It turns Ethernet into a
usable storage infrastructure by adding missing components such as flow control, segmentation, and
reassembly. Compared to HyperSCSI, Tyche transparently uses multiple NICs, it deals with NUMA
and synchronization issues, and it uses RDMA-like operations and a copy-reduction technique. All
the techniques used in Tyche can eventually be incorporated in HyperSCSI as well.

RDMA has been used extensively by protocols such as iSER (iSCSI Extension for RDMA) [1],
SCSI RDMA Protocol (SRP), and RDMA-assisted iSCSI [2], which improve the performance of
iSCSI by taking advantage of RDMA-operations. Two commonly known protocols are InternetWide
Area RDMA Protocol (iWARP) and RDMA over Converged Ethernet (RoCE). iWARP performs
RDMA over TCP, and RoCE over Ethernet. However, all these protocols focus on providing RDMA
capabilities by using hardware support. Tyche focuses on using existing Ethernet and exploring
issues at the software interface between the host and the NIC.

Regarding the copy-reduction technique, several authors proposed similar techniques [21–23]
typically to avoid the copy between the kernel and user space. Rizzo proposes to remove data-copy
costs by granting applications direct access to the packet buffers [23]. Our approach avoids the copy
at kernel space by ensuring that Ethernet frames are prepared properly and then interchanging pages
between the Ethernet ring and the Tyche queues.

Recently, there has been a lot of work on for NUMA-aware process scheduling and memory
management in the context of many-core and systems [24–27]. Moreaud et al. [28] study NUMA
effects on high-speed networking in multicore systems, and show that placing a task on a node far
from the NIC leads to a performance drop. Their results show that NUMA effects on throughput are
asymmetric since only the target destination buffer appears to need placement on a node close to the
interface. In our case, NUMA affects both sides, target and initiator.

Community has long recognized lock contention as a key impediment to achieve high perfor-
mance for shared-memory parallel programs [12,27,29,30]. Today, the potential for performance
losses in parallel systems due to synchronizations is well understood. Bjørling et al. [29] demon-
strate that, in the Linux block layer, the single lock used for protecting the I/O request queue
can become a bottleneck for SSDs. They propose to use a queue per core to solve it. In our
case, we use a queue approach to avoid the lock contention that happens for the NIC lock when
there is a high concurrency of large write requests and the application has not applied memory
placement.

Lately, there have been renewed interest in latency and overhead for storage access due to SSDs
and emerging storage devices [31–34]. Rumble et al. [34] analyze the latency problem of network
protocols, and they claim that operating systems should implement a new networking architecture
and new protocols to solve the latency problem end-to-end. Recently, several works have proposed to
bypass the kernel and to run in user-space I/O stacks to reduce latency by eliminating kernel crossing
overheads [12,14,35]. However, our proposal is to reduce latency by redesigning the network I/O path
and without modifying the operating system.

Gim et al. [13] show that the overhead of a context switch mostly comes from the pollution of the
data cache. They propose a mechanism that performs or not a context switch base on several features
such as CPU utilization, I/O latency, and request size. Our approach, however, is to eliminate context
switches for 4 kB requests by using a single thread that runs the whole path.
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Currently, many network storage protocols are using batch messages or batch operations
[12,36]. IX [12] batches network requests in the presence of network congestion and allows appli-
cation threads to issue batched system calls. Similarly, we batch I/O requests based on the observed
I/O concurrency by examining the queues in the I/O path and additionally we use a performance
feedback mechanism (achieved throughput) to adapt batching, regardless of the network conditions.

Lately, there have been a significant interest in elasticity with many works in this field [37–40].
However, to the best of our knowledge, elasticity has not been proposed for network storage protocols
as we do here.

7.6 CONCLUSIONS

In this chapter, we present the design of Tyche, a networked storage protocol that is deployed directly
on top of Ethernet. Tyche provides RDMA-like operations without requiring hardware support from
the network interface. Tyche provides reliable delivery, framing, and transparent bundling of mul-
tiple NICs. It is an end-to-end protocol that does not require any hardware support. Tyche uses
a copy-reduction technique based on virtual memory page remapping to reduce processing cost.
The target avoids all copies for writes by interchanging pages between the NIC receive ring and
Tyche. The initiator requires a single copy for reads, due to OS-kernel semantics for buffer alloca-
tion. Tyche reduces overheads for small I/O requests by avoiding context switches for low degrees
of I/O concurrency, or by dynamically batching messages for high degrees of I/O concurrency. We
would like to remark that Tyche does not use RDMA in Ethernet, instead our protocol uses a similar,
memory-oriented abstraction that allows us to perform RDMA-like operations.

Our results show that network storage protocols for modern servers with multiple resources need
to consider NUMA affinity and synchronization to achieve high throughput. Indeed, our protocol
is able to achieve up to 6.7GB/s when using 6× 10Gbits/s network links. For small requests and
low degrees of I/O concurrency, avoiding context switches significantly reduces CPU overhead (by
31% per 4 kB-I/O request), whereas with high degrees of I/O concurrency, an adaptative batching
is needed to achieve high link utilization (by up to 88% of the theoretical link utilization for 4 kB
requests). Therefore, network protocols for converged storage over raw Ethernet without hardware
support are a viable approach.

ACKNOWLEDGMENTS

We thankfully acknowledge the support of the European Commission under the 7th Framework
Programs through the NanoStreams (FP7-ICT-610509) project, the HiPEAC3 (FP7-ICT-287759)
Network of Excellence, and the COST programme Action IC1305, “Network for Sustainable
Ultrascale Computing (NESUS).”

REFERENCES

1. Mike Ko, John Hufferd, Mallikarjun Chadalapaka, Uri Elzur, Hemal Shah, and Patricia Thaler. iSCSI
Extensions for RDMA Specification (Version 1.0). http://www.rdmaconsortium.org/home/draft-ko-
iwarp-iser-v1.PDF. Last accessed: July 11, 2016.

2. Jiuxing Liu, Dhabaleswar K. Panda, and Mohammad Banikazemi. Evaluating the impact of RDMA on
storage I/O over InfiniBand. In Proceedings of the SAN Workshop, 2004, Madrid, Spain.

3. Evangelos Koukis, Anastassios Nanos, and Nectarios Koziris. GMBlock: Optimizing data movement in
a block-level storage sharing system over Myrinet. Cluster Computing, 13(4):349–372, December 2010.

4. Radhika NiranjanMysore, Andreas Pamboris, Nathan Farrington, Nelson Huang, Pardis Miri, Sivasankar
Radhakrishnan, Vikram Subramanya, and Amin Vahdat. PortLand: A scalable fault-tolerant layer 2 data
center network fabric. SIGCOMM Computer Communication Review, 39(4):39–50, August 2009.

http://www.rdmaconsortium.org/home/draft-koiwarp-iser-v1.PDF
http://www.rdmaconsortium.org/home/draft-koiwarp-iser-v1.PDF


Tyche 157

5. Michael Schlansker, Nagabhushan Chitlur, Erwin Oertli, Paul M. Stillwell, Jr, Linda Rankin, Dennis
Bradford, Richard J. Carter, Jayaram Mudigonda, Nathan Binkert, and Norman P. Jouppi. High-
performance Ethernet-based communications for future multi-core processors. In Proceedings of the
Conference on Supercomputing, 2007, Reno, Nevada, USA.
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8. Pilar González-Férez and Angelos Bilas. Mitigation of NUMA and synchronization effects in high-speed
network storage over raw Ethernet. The Journal of Supercomputing, DOI: 10.1007/s11227-016-1726-7,
2016.

9. Intel. An Introduction to the Intel� QuickPath Interconnect. http://www.intel.com/content/www/us/en/io/
quickpath-technology/quick-path-interconnect-introduction-paper.html, 2009. Last accessed: July 11,
2016.

10. Matthew Dobson, Patricia Gaughen, Michael Hohnbaum, and Erich Focht. Linux support for NUMA
hardware. In Ottawa Linux Symposium, 2003, Ottawa, Canada.

11. Christoph Lameter. Local and remote memory: Memory in a Linux/NUMA system. In Ottawa Linux
Symposium, 2006, Ottawa, Canada.

12. Adam Belay, George Prekas, Ana Klimovic, Samuel Grossman, Christos Kozyrakis, and Edouard
Bugnion. IX: A protected dataplane operating system for high throughput and low latency. In Proceed-
ings of the 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI 14), 2014,
Broomfield, Colorado, USA.

13. Jongmin Gim, Taeho Hwang, Youjip Won, and Krishna Kant. SmartCon: Smart context switching for
fast storage devices. Transactions on Storage, 11(2):5:1–5:25, March 2015.

14. Steven Swanson and Adrian M. Caulfield. Refactor, reduce, recycle: Restructuring the I/O stack for the
future of storage. Computer, 46(8):52–59, 2013.
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ABSTRACT

With the rapid data scale growth, machine-learning algorithms are widely adopted to deal with big
data. It naturally becomes the focus of researchers and software developers how to run such algo-
rithms efficiently on modern many-core platforms. In this chapter, two unique hardware platforms,
Intel R© Single-Chip Cloud Computer (SCC) and Intel R© Xeon R© PhiTM coprocessor, are employed
to accelerate the backpropagation (BP) neural network and lead to a better performance for data
processing. Furthermore, we also explored dynamic voltage and frequency scaling (DVFS) on the
many-core platform in searching of the suitable configuration to aid the processing of big data when
the power/energy savings need to be taken into consideration.

8.1 INTRODUCTION

Over the past 20 years, data have increased in large scale in various fields. According to a report
published by International Data Corporation (IDC) (one of the most influential leaders in big data
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FIGURE 8.1 Data big bang.

and its research fields) in 2013, the overall created and copied data volume in the world was 4.4
zettabytes (ZB). It is doubling in size every 2 years, and by 2020, the digital universe—the data
we create and copy annually—will reach 44 ZB or 44 trillion gigabytes (IDC 2014), as shown in
Figure 8.1.

Under the explosive increase of global data, the term of “big data” is mainly used to describe
enormous data sets. Compared with traditional data sets, big data typically includes masses of
unstructured data that need more real-time analysis (Chen et al. 2014). While the term “big data”
itself is relatively new, the act of gathering and storing large amounts of information for analysis
is ages old. The concept gained momentum in the early 2000s when industry analyst Doug Laney
articulated the now-mainstream definition of big data as the three Vs (Laney 2001). In the “3V”
model, volume means, with the generation and collection of masses of data, data scale becomes
increasingly big; velocity means the timeliness of big data, specifically, data collection and analysis
must be rapidly and timely conducted, so as to maximally utilize the commercial value of big data;
variety indicates the various types of data, which include semistructured and unstructured data such
as audio, video, Web page, and text, as well as traditional structured data.

In 2011, IDC added another V (value) to this definition to form the “4V” model. It was expressed
as “big data technologies describe a new generation of technologies and architectures, designed
to economically extract value from very large volumes of a wide variety of data, by enabling the
high-velocity capture, discovery, and/or analysis” (Gantz and Reinsel 2011).

8.2 BACKPROPAGATION NEURAL NETWORK

In terms of big data processing, people want to find out the meaningful relationship among the data.
Traditional analytics methods struggle to discover the underlying structure of the big data because
it would not be feasible to implement a comprehensive analysis due to the “4V” model of the data.
In addition the huge range of potential correlations and relationships between disparate data sources
make it impossible for any analyst to test all hypotheses and search out all the opportunities hidden in
the data (Skytree 2015). Thus, machine learning becomes a research focus in dealing with big data.

Machine learning evolves from pattern recognition and computation learning theory in artificial
intelligence. Compared to traditional methods, it focuses on the study and construction of algorithms
that can learn from and make predictions on data (Kohavi and Provost 1998;Werbos 1994). Machine
learning is data driven and relies little on human direction. Furthermore, unlike traditional methods,
machine learning thrives on increasing data set (Skytree 2015). All these make it an ideal tool to
analyze the big data.

Backpropagation (BP) neural network is a widely used machine-learning method. It is usually
regarded as a supervised learning method that can be employed in both classification and regression
problems. BP neural network can learn their weights and biases using the gradient descent algorithm.
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FIGURE 8.2 Typical BP neural network architecture with two inputs, one output, and one hidden layer.

For each sample, BP neural network requires a desired output in order to calculate the loss function
gradient.

BP neural network needs to calculate the loss function gradient (we call it “error”). As shown
in Figure 8.2, the error propagates backwards from the output node(s) to the input node(s). That
is where the name “backpropagation” derives from. Then the gradient error of the network based
on the network’s modifiable weights is calculated (Werbos 1994). Finally, the stochastic gradient
descent algorithm uses this gradient to find weights that will finally minimize the error. If the weight
is updated every time after one input sample, the performance of the network would depend on the
input sequence of the samples to a large degree. To eliminate the impact of the input sequence of the
samples, batch learning is a good choice in which the training phase and testing phase are separate.
Hence, batch learning is employed in this work.

Although BP neural network is a relatively simple neural network, it is the foundation of many
advancedmachine-learning methods. It is still widely used in many applications. For example, scien-
tists have used large amount of hydrological data set to train the BP neural network to get a real-time
robust hydrological prediction (Wan et al. 2015) In addition, researchers presented the cable joint
conductor based on the PSO algorithms of BP neural network (Zhou et al. 2015). BP neural network
is also used in emerging areas such as smart grid (Rui et al. 2014).

8.3 HIGH-PERFORMANCE COMPUTING

Due to the “4V” model of big data, the computation incurred from machine-learning method can be
intensive. Thus, the execution speed to deal with big data could easily become a bottleneck. High-
performance computing would be an effective way to overcome this obstacle. High-performance
computing refers to the use of parallel processing for running programs efficiently, reliably and
accurately. In addition, in certain scenarios reduced power/energy consumption is desired, especially
when wewant to deal with big data with highperformance computing. Luckily, modern microproces-
sors are generally equipped with dynamic voltage and frequency scaling (DVFS) capability. DVFS
allows microprocessors to complete necessary tasks with reduced power/energy consumption by
varying the voltage and frequency of the computing elements.

Since the training process of BP neural network would be very time consuming and computation
intensive, in this work, we implemented the training process of BP neural network on advanced
parallel computing platforms, Intel R© Single-Chip Cloud Computer (SCC) and Intel R© Xeon R© PhiTM

coprocessors. Our research focus is how to use the many-core platform to speed up the computation
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of BP neural network for data processing.We also studied how to use DVFS for power-/energy-aware
computing of BP neural network on many-core platform.

8.4 TEST CONFIGURATION

As an exemplary study, in our experiment, we try to train the BP neural network to learn the operation
of addition on SCC and Intel R© Xeon R© PhiTM platforms. We also train the BP neural network to
learn the operation of multiplication on Intel R© Xeon R© PhiTM platform. We try to train the BP neural
network to learn the addition and multiplication operations solely based on the data provided. BP
neural network built for this purpose has two input variables, one hidden layer, one output layer,
and one output variable. The number of training samples is set to 9600. Since there are two input
variables, from our observation too many neurons (nodes) in the hidden layer can lead to overfitting.
Hence, the numbers of nodes that we use in the hidden layer are 5, 10, and 20, respectively, for
Intel R© SCC. For Intel R© Xeon R© PhiTM, we choose to employ 10 nodes in the hidden layer. We set
the training iteration’s upper limit to 20,000. We assume that the performance of neural network is
satisfactory when the average error is less than 0.001. Thus, either on the condition that the iterations
of training reach 20,000 or on the condition that the average error is less than 0.001, training is
stopped. There are twowidely used parallel approaches: task parallelism and data parallelism. In task
parallelism, various tasks are partitioned among the cores to carry out the computation in solving the
problem. In data parallelism, the data used in solving the problem are partitioned among the cores
and each core carries out more or less similar operations on its part of the data (Pacheco 2011). In
our experiment, data parallelism is employed.

8.5 PARALLEL BP NEURAL NETWORK ON SCC

The SCC experimental processor is a 48-core concept vehicle created by Intel Labs as a platform
for many-core software research (Intel 2010). The SCC contains 48 PentiumTM class IA-32 cores
on a 6× 4 2D-mesh network of tiled core clusters with high-speed I/Os on the periphery (Howard
et al. 2010). Every tile consists of two cores and a router shared by the two cores. The 48 cores
are divided into 6 voltage domains and 24 frequency domains on the SCC chip, where the routers
and other peripherals are on separate voltage and frequency domains. As shown in Figure 8.3, every
four tiles share a power domain, and the programmer can change the voltage for all the cores in
a voltage domain. Every two cores on the same tile can also have their own frequency within the
frequency domain. The SCC also provides the capability of manipulating the voltage and frequency
directly at the application level, which supports the research on power-/energy-aware computing
applications.

Since the SCC comes equipped with the DVFS capability, besides execution time, several
power-/energy-related metrics can also be measured or calculated, including power consumption,
power per speedup (PPS), energy consumption, and energy-delay product (EDP). The execution
time includes the communication time among cores, since the SCC follows a message-passing pro-
gramming model. Power consumption is obtained by measuring the voltage and current of the SCC
chip only. The overhead time that it takes to measure the power consumption has been deducted
in our experiment. The power reading does not include DDR DIMMs, which are off-chip. PPS is
calculated by dividing power consumption by the speedup achieved with increasing the number of
cores. What is more, energy and EDP are calculated based on the power and execution time readings
we get. On SCC, the number of cores in use is 1, 2, 4, 8, 16, 32, and 48, separately. We implemented
three voltage and frequency settings, being High (1.2 V/800 MHz), Medium (0.9 V/533 MHz), and
Low (0.8 V/400 MHz).
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FIGURE 8.3 SCC architecture and tile internal structure. (From Torres et al. 2015. An auto-tuning assisted
power-aware study of iris matching algorithm on Intel’s SCC. Journal of Signal Processing Systems, 80(3):
261–276.)

8.5.1 EXECUTION TIME

Figure 8.4 reflects the relationship between the execution time (in seconds) and the number of cores
in a log–log scale, while we vary the number of nodes in the hidden layer of the BP neural network.
The results show that for a fixed number of nodes in the hidden layer, first, with the number of
cores used for computation increasing from 1 to 32, the execution time decreases correspondingly;
second, when the number of cores is fixed, the higher the frequency is, the less time it takes to
execute the program. Overall, the high voltage and frequency setting (1.2 V/800 MHz) gives the
best performance for our computation-intensive benchmark.

Another interesting observation is that with the number of nodes in the hidden layer decreasing,
the decreasing rate of execution time becomes slow when the number of cores increases from 32 to
48. When the number of nodes in the hidden layer is five, the execution time even increases with the
number of cores increasing from 32 to 48. In this case, the time saved by distributing the workload in
a parallel fashion cannot make up the communication overhead caused by message passing among
the cores.

8.5.2 POWER CONSUMPTION

The experiment results show that no matter the number of nodes in the hidden layer is 5, 10, or 20,
the power consumption (in watts) is identical, which means that the number of nodes in the hidden
layer has no effect on the power assumption. Thus, only the data of five nodes in the hidden layer
are presented here. Figure 8.5 reflects the relationship between the power consumption (in watts)
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FIGURE 8.4 Relationship between execution time and the number of cores.

FIGURE 8.5 Relationship between power consumption and the number of cores.

and the number of cores in a log–log scale. With the number of cores increasing, the increasing
rate of power consumption becomes faster, as more power domains are involved in the computation.
Overall, the low voltage and frequency setting (0.8 V/400 MHz) gives the best power reading for
our benchmark, with a sacrifice on the performance.

8.5.3 POWER PER SPEEDUP

PPS was proposed as an indicator to measure energy efficiency (Mair et al. 2010). This metric gives
the power required for a given level of speedup through parallelism. Therefore, a small PPS value
is desired. Figure 8.6 reflects the relationship between the PPS (in watts) and the number of cores
in a log–log scale. When the number of nodes in the hidden layer is fixed, configuration (0.8 V/400
MHz) provides the best PPS results for all core counts. So it is more power efficient to use the low
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FIGURE 8.6 Relationship between PPS and the number of cores.

voltage and frequency setting to achieve a given speedup when we increase the number of cores for
our benchmark.

8.5.4 ENERGY CONSUMPTION

Figure 8.7 reflects the relationship between the energy consumption (in joules) and the number of
cores in a log–log scale, while varying the number of nodes in the hidden layer. It can be seen that
with the number of nodes in the hidden layer increasing, theminimum energy consumptionwill move
in the direction where the number of cores increases. As discussed above, the number of nodes in
the hidden layer of the neural network has no effect on the power assumption. Thus, for BP neural
network, energy is more affected by execution time. The similarity between the energy consumption
curve and the execution time curve under each configuration also supports this point of view.

8.5.5 ENERGY-DELAY PRODUCT

Figure 8.8 reflects the relationship between the EDP (in joules-seconds) and the number of cores in
a log–log scale, while varying the number of nodes in the hidden layer. The experiment results show

FIGURE 8.7 Relationship between energy and the number of cores.
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FIGURE 8.8 Relationship between EDP and the number of cores.

TABLE 8.1
Best Configuration for Each Metric

Energy-Related Metrics

Number of Nodes Execution Time Power PPS Energy EDP

5 32 cores 1.2 1 cores 0.8 32 cores 0.8 32 cores 0.8 32 cores 0.9

V/800 MHz V/400 MHz V/400 MHz V/400 MHz V/533 MHz

10 48 cores 1.2 1 cores 0.8 32 cores 0.8 32 cores 0.8 32 cores 0.9

V/800 MHz V/400 MHz V/400 MHz V/400 MHz V/533 MHz

20 48 cores 1.2 1 cores 0.8 48 cores 0.8 48 cores 0.8 48 cores 0.9

V/800 MHz V/400 MHz V/400 MHz V/400 MHz V/533 MHz

that the shape of the EDP curve for different number of nodes in the hidden layer is very similar to
the energy curve shape. The minimum point of EDP will move in the same direction as the minimum
point of energy moves. The difference is that when the number of nodes and the number of cores
are constant, EDP under configuration 0.9 V/533 Hz is the smallest, and EDP under configuration
0.8 V/400 MHz is the largest, though the EDP difference between configurations 0.9 V/533 Hz and
1.2 V/800 MHz is very small. Overall, the medium voltage and frequency configuration gives us the
best of both worlds when we take both energy and user experience (in terms of system response time
to finish the job) into consideration.

8.5.6 BEST CONFIGURATION FOR EACH METRIC

Table 8.1 summarizes the best configuration (number of cores and voltage/frequency) for each
metric. Depending on specific user’s requirement, suitable configuration can be employed.

8.6 PARALLEL BP NEURAL NETWORK ON INTEL R© XEON R© PHITM

8.6.1 INTRODUCTION ABOUT INTEL R© XEON R© PHITM

Intel R© Many Integrated Core (Intel R© MIC) architecture integrates many Intel CPU cores onto a
single chip for a high parallelism (Chrysos 2014). In our research, we implement the BP neural
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TABLE 8.2
Specs of Intel R© Xeon R© PhiTM 5110P and Intel R© Xeon R© PhiTM 7120P

Intel R© Xeon R© PhiTM 7120P Intel R© Xeon R© PhiTM 5110P

Number of cores 61 60

Processor turbo frequency 1.238 GHz 1.053 GHz

Max turbo frequency 1.333 GHz N/A

TDP 300 W 225 W

FIGURE 8.9 Architecture of Intel R© Xeon R© PhiTM coprocessor.

network on both the Intel R© Xeon R© PhiTM 5110P and Intel R© Xeon R© PhiTM 7120P coprocessors.
Table 8.2 summarizes the specifications of these two coprocessors.

Figure 8.9 shows the architecture of the Intel R© Xeon R© PhiTM coprocessor. The coprocessor is
mainly composed of processing cores, caches, memory controllers, and PCIe client logic (Chrysos
2014). All the cores are interconnected in a ring topology. Each core supports up to four hardware
threads. There are two common programming models for the Intel R© MIC architecture, the native
programming model, and the heterogeneous offload model.

• Offload Mode: It refers to writing a program from the point of view of running on the main
processor and offloading part of the work from the main processor to one or more Intel R©
Xeon R© PhiTM coprocessors. The program initially starts on the host processor, which is
commonly a Xeon processor. Then based on user’s definition in the code (directive-based),
part of the code is allocated to the coprocessor for execution. The key feature is that the
compiled binary runs whether there is a coprocessor or not (Jeffers and Reinders 2013).

• Native Mode: Since Intel R© Xeon R© PhiTM hosts a Linux micro OS in it and can appear as
another machine connected to the host like another node in a cluster, the user can take the
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coprocessor as another computer node. An application has to be cross-compiled for Xeon R©
PhiTM operating environment if it needs to be run natively.

Compared to offloadmode, nativemode is more appropriate for programs that are largely performing
operations that map to parallelism either in threads or vectors, and are not performing significant
amounts of I/O or serial execution. Usually, if we want to use native mode, we need to use the
compiler flag “-mmic” when compiling the program.

Since Intel R© Xeon R© PhiTM cannot easily measure energy-related metrics, we mainly focus on
the performance of paralleling BP neural network on different modes.

8.6.2 TEST RESULTS

In this experiment, the training ending condition for both multiplication and addition is that the
training iterations reach the limit. Furthermore, there are two input variables and one output variable
for both multiplication and addition. The structure of BP neural network is the same as we used in
the SCC case. For addition operation, the results implemented on Xeon R© PhiTM 5110P and Xeon R©
PhiTM 7210P are represented. For multiplication operation, we present the result on Xeon R© PhiTM

5110P as a representative. The number of threads in use is 1, 2, 4, 8, 16, 32, 64, 128, and 240,
respectively, and the thread affinity type in use is compact. Both native mode and offload mode are
tested.

Figure 8.10 presents the relationship between the execution time and the number of threads for the
test case of addition on the Xeon R© PhiTM 7120P platform. The performance under native mode and
offload mode is very similar. Under each mode, the execution time decreases significantly when the
number of threads increases from 1 to 128. However, with the number of threads increasing from 128
to 240, the execution time decrease is not that obvious. Figure 8.11 presents the relationship between
the speedup and the number of threads for the test case of addition on Xeon R© PhiTM 7120P. The
speedup reaches maximum when the number of threads is 240 although the speedup increases little
when the number of threads varies from 128 to 240.

Figure 8.12 presents the relationship between execution time and the number of threads for the
test case of addition on the Xeon R© PhiTM 5110P platformwhile Figure 8.13 presents the relationship
between speedup and the number of threads for the test case of addition on the Xeon R© PhiTM 5110P

FIGURE 8.10 Relationship between the execution time and the number of the threads for addition on Xeon R©
PhiTM 7120P.



Parallel Backpropagation Neural Network for Big Data Processing on Many-Core Platform 169

FIGURE 8.11 Relationship between the speedup and the number of the threads for addition on Xeon R© PhiTM

7120P.

platform. Overall, the performance on Xeon R© PhiTM 5110P is very similar to the performance on
Xeon R© PhiTM 7120P. Compared to the Xeon R© PhiTM 7210P platform, the speedup is a little smaller,
which can be indicated by Table 8.2.We can observe that the processor turbo frequency is 1.238 GHz
for Xeon R© PhiTM 7210P while Intel R© Xeon R© PhiTM 5110P possesses the processor turbo frequency
of 1.053 GHz.

Figures 8.14 and 8.15 show the execution time and speedup change when varying the number of
threads on the Xeon R© PhiTM 5110P platform for the test case of multiplication. Due to the same
neural network architecture and the same training ending condition, the performance for multipli-
cation is almost the same as the performance for addition. The speedup reaches the largest when
the number of threads is 240. Correspondingly, the execution time is smallest when there are 240
threads. Hence, the results on the 7120P platform are omitted.

FIGURE 8.12 Relationship between the execution time and the number of the threads for addition on Xeon R©
PhiTM 5110P.
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FIGURE 8.13 Relationship between the speedup and the number of the threads for addition on Xeon R© PhiTM

5110P.

FIGURE 8.14 Relationship between the execution time and the number of the threads for multiplication on
Xeon R© PhiTM 5110P.

8.7 CONCLUSIONS

With machine-learning technique widely adopted to deal with the processing of big data, how to
efficiently running this algorithm on emerging many-core platform has been of the interest for
researchers and software developers. In this work, we studied the performance of BP neural network
on innovative Intel R© SCC and Intel R© Xeon R© PhiTM platforms. We can conclude that paralleling
BP neural network on SCC and Intel MIC contributes to a better performance for data processing.
Researchers can implement their machine-learning algorithms dealing with big data on many-core
platforms to get a speedup. In addition, if power/energy saving is a crucial factor when processing
big data, DVFS can be employed on the many-core platform to search out the suitable configuration
to meet the power/energy requirement.
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FIGURE 8.15 Relationship between the speedup and the number of the threads for multiplication on Xeon R©
PhiTM 5110P.
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ABSTRACT

Analytics of tremendous big data generated from natural systems (e.g., tectonic plates’ move-
ment, atmospheric data), engineered systems (e.g., servers, electronic devices), and human activities
(e.g., trajectories, Web click-streams, health records, customers’ transactions, user interactions
in social networks) require highly scalable data management systems with new capabilities in
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both algorithms and architectures. SQL-on-Hadoop bridging Relational Database Management
technologies and Hadoop Ecosystem technologies are becoming mainstream for big data analytics.

9.1 INTRODUCTION

Big data features characteristics, which traditional systems cannot handle, such as (i) high volume—
volume refers to the amount of data, which henceforth increased to the range of tera- and petabyte
scale; (ii) high velocity—velocity refers to the speed at which new data is generated and processed,
henceforth the challenge is to analyze data while it is being generated; and (iii) high variety—variety
refers to different types of data, for example, structured (relational data), semistructured (XML,
JSON), and unstructured (text and multimedia contents). Recently, additional features were added,
namely, (iv) veracity—veracity refers to the messiness or trustworthiness of the data, which usually
lacks quality and accuracy and (v) value—value refers to getting value out of the data.

The relational database management systems (RDBMSs) are de facto the solution for data stor-
age. However, the volume, the type, and the velocity of business data have changed. To address high
volume, RDBMS technologies are scaled-up vertically through hardware upgrade with more cen-
tral processing units and memory. Vertical scale-up turns out to be expensive. Also, RDBMSs are
designed to accommodate structured data, while the majority of the data comes in a semistructured or
unstructured format. Finally, RDBMS technologies lack in high velocity because they are designed
for steady data retention. Indeed, data warehousing technologies are designed as batch systems
refreshed periodically. Nevertheless, stream-based applications require eager increments’ manage-
ment. As a result, relational databases fail to handle big data, and new technologies are emerging.
The past decade had witnessed a growing number of new big data management technologies, which
are becoming mainstream for big data analytics.

Along Ralph Kimball, Big data is a paradigm shift in how we think about data assets, where do
we collect them, how do we analyze them, and how do we monetize the insights from the analysis.
Therefore, the big data has several impacts on datamanagement technologies and requires rethinking
every aspect of data processing. First, big datamanagement systems are deployed on top of clusters of
commodity hardware, which aggregate I/O bandwidth and flops/s, and which should be elastic, such
that storage and computing resources are added and released as needed. Second, big data implies
collecting, cleansing, and analyzing data at scale.

Apache Hadoop ecosystem is one of the most widely open-source heralded new platforms for
managing big data. Hadoop comes with a distributed file system (HDFS) and a framework for pro-
cessing large data sets on computer clusters (MapReduce framework). New Hadoop-based technolo-
gies foster a programming interface with high-level and declarative language. Thus, SQL-on-Hadoop
data management systems enable the use of SQL-like languages on top of MapReduce-based sys-
tems (e.g., HiveQL/Apache Hive, Spark SQL, and Cloudera Impala). Early published comparisons
of Hadoop technologies to RDBMSs demonstrated that RDBMSs outperform Hadoop for structured
data analytics. These comparisons do not hold for big data management and processing challenges.

This chapter looks into requirements to assess SQL-on-Hadoop big data management systems.
The outline of the chapter is as follows: Section 9.2 reviews advances in history in data manage-
ment systems. First, we depict advanced hardware architectures and query processing techniques
implemented in RDBMSs. Second, we present the Apache Hadoop Ecosystem. Section 9.3 describes
SQL-on-Hadoop technologies and more precisely open-source projects such as Hive, Spark, and
Impala. Section 9.4 outlines requirements for SQL-on-Hadoop technologies assessment. Finally,
Section 9.5 concludes the chapter.

9.2 BIG DATA MANAGEMENT SYSTEMS

Dealing with huge data sets, most online analytical processing (OLAP) systems are I/O-bound and
CPU-bound. First, this is due to hard drives’ I/O performances, which do not evolve as fast as storage,
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computing hardware (Moore Law), and network hardware (Gilder Law). Second, OLAP systems
require high computing capacities. Since the 1980s with RAID (Redundant Arrays of Inexpensive
Disk) systems [1] and seminal research on distributed data structures [2,3], both practitioners and
experts admitted that dividing disk I/O across disk drives allows to aggregate drives’ I/O through-
puts and prevents I/O bottleneck. In order to achieve high performance and large capacity, database
systems and distributed file systems rely upon data partitioning, parallel processing, and parallel I/Os.

In this section, we overview big data management systems dealing with both OLAP and online
transaction processing (OLTP) workloads. First, we depict advanced hardware architectures and
query processing techniques implemented by RDBMSs. Second, we present the Apache Hadoop
Ecosystem. Third, we overview New SQL Systems.

9.2.1 RELATIONAL DATABASE MANAGEMENT SYSTEMS

RDBMSs are based on the relational model invented by E. F. Codd [4]. In this section, we overview
(i) hardware architectures, (ii) storage layouts, and (iii) data-processing techniques of RDBMSs for
processing OLAP workloads.

9.2.1.1 Parallel Computer Architectures
There are two different types of database hardware architectures for big data management: (1) sym-
metric multiprocessing (SMP) and (2) massively parallel processing (MPP). The second is more
cost-effective as the system growth is practically unlimited.

The SMP environment is a tightly coupled multiprocessor system where processors, the same
memory, disk space, and I/O devices use a single operating system and are connected using a com-
mon bus. Communication between nodes occurs via shared memory. The workload is distributed
across the processors in the system. The actual speed at which the job completes is limited by the
shared resources in the system. Note that performance is limited by the bandwidth of the memory
bus. The system might be upgraded vertically, that is, vertical scale-up.

TheMPP environment is a loosely coupled or a shared-nothing multiprocessor system. Each node
has its own computing units, operating system, and memory. Nodes are connected through a high
speed network and communicate with each other through message sending. MPP can be setup with a
shared-nothing or shared-disk architecture. To scale the MPP system, compute nodes and associated
memory and disk resources are added (i.e., horizontal scale-up).

9.2.1.2 Data Fragmentation
Data fragmentation (a.k.a. sharding, or partitioning) involves splitting a data set into smaller frag-
ments and distributing them across a large number of machines. It aims at minimizing (i) query
running times through enabling intraquery parallelism and interquery parallelism, (ii) the cost of
maintenance of the data warehouse through targeted and parallel refresh operations, and (iii) the
cost of ownership of a data warehouse through the use of commodity hardware with a shared-nothing
architecture rather than expensive server architectures.

9.2.1.3 Storage Layouts
In terms of storage layouts, there are two different types of storage layouts for big data manage-
ment, namely (i) row-oriented stores and (ii) column-oriented stores. A column-oriented DBMS
stores data tables as columns of data. The main difference between a columnar database and a tradi-
tional row-oriented database is centered around performance, efficient memorymanagement through
loading only useful attributes, storage necessities which are reduced through compression of repeat-
ing values, and schema modifying techniques. Recent years have seen the introduction of a number
of column-oriented database systems, including MonetDB [5], C-Store [6], and VectorWise [7].
Column-oriented storage layouts are well-suited for OLAP-like workloads, while row-oriented
storage layouts are well-suited for OLTP workloads.
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9.2.1.4 Data-Processing Techniques
Recent years have seen the investigation of efficient data-processing techniques for OLAP-like work-
loads such as (1) parallel query processing, (2) materialized views and calculated attributes, (3)
vectorized query processing, (4) materialization strategies, (5) index-only plans, and (6) invisible
joins.

• Parallel query processing: Parallel query processing of database clusters is based on two
nonexclusive techniques known as intraquery parallelism and interquery parallelism. In
intraquery parallelism, a query divides into multiple subqueries. Each subquery processes
a different subset of data. Subqueries run in parallel. In interquery parallelism, queries
execute concurrently in order to improve the system throughput.

• Aggregate tables and calculated attributes: An aggregate table (a.k.a. materialized view)
summarizes large number of detail rows into information that has a coarser granularity,
and so fewer rows. As the data is precomputed, an aggregate table allows faster OLAP
cube processing. Derived attributes are calculated from other attributes. In [8,9], authors
propose sound recommendations for usage of aggregate tables and calculated attributes for
OLAP workloads.

• Vectorized query processing: A standard query execution system processes one row at a
time. Vectorized query execution streamlines operations by processing a block of rows at a
time. Within the block, each column is stored as a vector. Simple operations like arithmetic
and comparisons are done by quickly iterating through the vectors in a loop, with no or
very few function calls or conditional branches [7].

• Materialization strategies: In row-oriented stores, nonselected columns are removed from
the result set as soon as they are unnecessary. In column-oriented stores, it is necessary to
decide when to materialize the columns together. There are two choices: early materializa-
tion and late materialization. Early materialization retrieves all the columns necessary and
materializes them together upfront. Late materialization combines columns together at the
very end of the processing, just before presentation. In [10], authors report their experiences
with late and early materialization and highlight their strengths and weaknesses.

• Index-only plans: This technique consists in creating indices for all needed columns so that
the database systemwould not need to do any table scans during query execution. Thus, base
relations are stored row-oriented, and an additional unclustered B+ Tree index is added on
every column of every table [11].

• Invisible joins: This technique aims at speeding up star joins in a column store. The invis-
ible join performs joins in three phases. First, each predicate is applied to the appropriate
dimension table to extract a list of dimension table keys that satisfy the predicate. These
keys are used to build an in-memory hash table. In the second phase, each hash table is
used to extract the positions of records in the fact table that satisfy the corresponding pred-
icate. Then, the position lists from all of the predicates are intersected to generate a list
of satisfying positions in the fact table. The third phase of the join uses the list of satisfy-
ing positions in the fact table. For each column in the fact table containing a foreign key
reference to a dimension table that is needed to answer the query, foreign key values are
extracted using satisfying positions list and are looked up in the corresponding dimension
table [11].

9.2.1.5 Benchmarking RDBMS
There are few RDBMS benchmarks out of the TPC benchmarks [12]. The Transaction Processing
Council proposes a set of benchmarks for assessing (i) OLTP systems, such as TPC-C and TPC-E;
(ii) OLAP, such as TPC-H and TPC-DS; (iii) virtualization systems, such as TPC-VMS and TPCx-V;
and (iv) green systems, such as TPC-Energy.
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9.2.2 APACHE HADOOP ECOSYSTEM

Apache Hadoop [13] allows distributed processing of large data sets across clusters of computers
using a simple programming model. It is designed to scale up from single servers to thousands of
machines, each offering local computation and storage. Rather than rely on hardware to deliver high-
availability, Hadoop is designed to detect and handle failures at the application layer, so delivering
a highly-available service on top of a cluster of computers, each of which may be prone to failures.
Hadoop clusters grow very large up to thousands of nodes.
Hadoop YARN (Yet Another Resource Negotiator or MRv2) provides several advantages over the

previous version of Hadoop (MRv1) [14]. It enables dynamic resource configurations on individual
nodes and a flexible resource model. Indeed, it advocates support for programming model diversity,
and provides a generic resource management framework for implementing distributed applications.
A basic Apache Hadoop system has two core components:

• Hadoop Distributed File System: HDFS is designed to manage large amounts of data. It
stores files as big data blocks. HDFS block sizes are in megabytes (typical values are
128MB, 256MB, etc.), which are significantly larger than the block sizes used in tradi-
tional file systems (4 or 8KB). HDFS distributes data blocks across the entire cluster. For
fault tolerance, blocks are replicated a number of times to ensure high data availability.
HDFS provides a high aggregate I/O bandwidth across a large cluster of servers.

• MapReduce Framework [15]: It serves for implementing applications to process data. The
MapReduce processing model consists of multiple stages: the first is a parallel Map phase,
in which input data is split into discrete chunks that can be processed independently. Each
Map task output is partitioned and sorted in memory and Combiner functions run on it. This
output is written to local disk called as Intermediate Data. The Map phase is followed by a
shuffle and a sort proper to the Hadoop MR framework. In the reduce phase, the output of
the Map phase is aggregated in order to produce the desired result.

9.2.2.1 Tuning a MapReduce Job
In order to maximize MapReduce job performance, it is important (i) to balance the load equally
across nodes in the cluster, (ii) to set appropriate memory settings, (iii) to set containers: mappers
and reducers, (iv) to select appropriate codecs, and (v) to adjust the replication factor according to
input data and processing complexity. Hereafter, we enumerate the most important parameters to
adjust for tuning a MapReduce job.

• Memory and computing resources: Hadoop uses environment variables that determine the
heap sizes and the number of computing units allocated for each Hadoop process such as
Mappers and Reducers (YARN children) during the execution of a MapReduce job.

• Data block size: The block size setting is used by HDFS to divide files into blocks and then
distribute those blocks across the cluster. The block size might be set different for each
HDFS file. Indeed, in order to gain maximum parallelism within each MapReduce job, it
is recommended to have large blocks for big files and small blocks for small files.

• Input split size: By default, the input split size is equal to the block size. MapReduce data
processing is driven by the input splits. Indeed, in order to gain maximum parallelism, that
is, increasing the number ofMappers, each HDFS block is logically divided into input splits
and each input split is assigned to a Mapper for processing.

• Reducers: The optimal number of Reducers depends on the cluster computing capacities
as well as the input data volume for Reducers.

• Combiners: Combiners are local Reducers, which are set in order to lessen the number
of intermediate keys that are being passed to the Reducers. Each combiner processes the
output of a Mapper and performs aggregation like a reducer.
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• Data compression and decompression: Compression enables to shift the computation load
from IO to CPU. During the shuffle phase, the intermediate key–value pairs are shuffled
over the network to Reducers, and all of intermediate data and output data are flushed on
the hard drives. These I/O operations are expensive. Intermediate data compression saves
storage space requirements and speeds up the transfer of data throughout the network. Note
also that Hadoop can process compressed files, but some formats are not splittable, such as
Gzip and Snappy. Consequently, each non-splittable file is entirely processed by a Mapper.
The reduction of the number of Mappers, despite the availability of hardware resources,
lead to poor parallel processing performance and under-utilization of hardware resources.
Apache Hadoop supports most known compressing formats such as Gzip, Snappy, Bzip2,
and LZO. Commonly codecs are compared through the degree of compression and com-
pression/decompression speed. In [16], authors investigate green MapReduce computing,
sketching tradeoffs of energy efficiency, and Hadoop codecs usage.

• Replication factor: The replication factor is a property that can be set and updated for each
HDFS file. File replication operates through declustering data blocks and their replicas
throughout the Hadoop cluster.

9.2.2.2 Apache Pig Latin
Apache Hadoop is an ecosystem of related projects. It includes a high-level script language Apache
Pig Latin [17]. The latter organizes aworkflow ofMapReduce jobs in a directed-acyclic graph (DAG)
of computations.

Hereafter, we show translation and processing of TPC-H business question Q5 (Figure 9.1) in pig
latin script (respectively, Figures 9.2 and 9.3). Q5 lists for each nation in a region the revenue volume
that resulted from lineitem transactions in which the customer ordering parts and the supplier filling
them were both within that nation. Q5 has two parameters, namely, a year (for instance, 1994) and
a region name (for instance, ASIA).

9.2.2.3 Benchmarking Hadoop Ecosystem Projects
Releases of Apache Hadoop include benchmarks such as (i) TeraSort—Teragen generates 100B-
records in which TeraSort performs the sort and (ii) TestDFSIO—it is a MapReduce implementation
of distributed IO benchmark. A number of benchmarking projects investigated Hadoop clusters per-
formances with well-known TPC decision-support systems benchmarks. In [19], TPC-H benchmark
is translated into HiveQL for assessing the performance of Apache Hive. In [8,18,20], TPC-H

SELECT n_name, sum(l_extendedprice*(1-l_discount)) as rev
FROM customer,orders,lineitem,supplier,nation,region
WHERE c_custkey = o_custkey
AND l_orderkey = o_orderkey
AND l_suppkey = s_suppkey
AND c_nationkey = s_nationkey
AND s_nationkey = n_nationkey
AND n_regionkey = r_regionkey
AND r_name = ’[REGION]’
AND o_orderdate >= date ’[DATE]’
AND o_orderdate < date ’[DATE]’ + interval ’1’ year
GROUP BY n_name
ORDER BY revenue desc;

FIGURE 9.1 SQL statement of TPC-H business question Q5.
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---- orders of 1994
Orders = LOAD ’/home/TPCH/orders.tbl’ USING Pig-Storage(’|’)

AS (o_orderkey:int, ..., o_comment:chararray);
orders_94 = FILTER orders BY o_orderdate MATCHES ’1994.*’;
orders_1994 = FOREACH orders_94 GENERATE o_orderkey,o_custkey;
---- lineitems of 1994
lineitem = LOAD ’/home/TPCH/lineitem.tbl’ USING PigStorage(’|’)

AS (l_orderkey:int, ..., l_comment:chararray);
lineitems_94 = JOIN lineitem BY l_orderkey, orders_1994 BY o_orderkey;
lineitems_1994 = FOREACH lineitems_94 GENERATE

l_orderkey, o_custkey,l_extprice, l_discount,l_suppkey;
---- Region ASIA
region = LOAD ’/home/TPCH/region.tbl’ USING Pig-Storage(’|’)
AS (r_regionkey:int, r_name:chararray, r_comment:chararray);
asia = FILTER region BY r_name MATCHES ’ASIA’;
----- Suppliers of ASIA
supplier = LOAD ’/home/TPCH/supplier.tbl’ USING PigStorage(’|’)

AS (s_suppkey:int, ..., s_comment:chararray);
nation = LOAD ’/home/TPCH/nation.tbl’ USING Pig-Storage(’|’)

AS (n_natkey:int, ..., n_comment:chararray);
join_supp_asia = JOIN asia BY r_regionkey, nation BY n_regionkey;
supp_asia = JOIN join_supp_asia BY n_natkey, supplier BY s_natkey;
supp_nations_asia = FOREACH supp_asia GENERATE s_suppkey,s_natkey,n_name;
----- join all, customers of nations of ASIA
customer = load ’/home/TPCH/customer.tbl’ USING PigStorage(’|’)

AS (c_custkey:int,..., c_comment:chararray);
join_customer_orders = JOIN lineitems_1994 BY o_custkey,

customer BY c_custkey;
join_line_supp = JOIN join_customer_orders BY l_suppkey,

supp_nations_asia BY s_suppkey;
same_nation = FILTER join_line_supp BY s_natkey == c_natkey;
selected = FOREACH same_nation

GENERATE n_name,(l_extprice*(1-l_discount)) AS rev:float;
group_nation = GROUP selected BY n_name;
sum_group = FOREACH group_nation

GENERATE flatten(group), SUM(selected.rev) AS sum_rev;
result = ORDER sum_group BY sum_rev DESC;
STORE result INTO ’OUTPUT_PATH/tpch_query5’;

FIGURE 9.2 Pig script of TPC-H business question Q5. (Adapted from Moussa, R.: TPC-H benchmarking
of Apache Pig Latin on Hadoop Cluster. https://sites.google.com/site/rimmoussa/CC_pig_tpch.tar, 2011.)

benchmark is translated into Pig Latin Scripts for assessing the performance of Apache Pig Latin.
A comparison of Hive and Pig Latin is reported in [21].

While MapReduce supports a wide range of use cases, it is not the ideal model for all large-scale
computations, namely, iterative jobs and join operations.

9.2.3 NEWSQL SYSTEMS

The NewSQL was coined by the 451 Group [22] as a class of ScalableSQL RDBMSs that provide
scalable performance for OLTP read–write workloads with the ACID guarantees [23–27]. VoltDB
andClustrix data store use a traditional approach in which each table is partitioned using a single key
and rows are distributed among servers using a consistent hashing algorithm. Googles Spanner uses
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JobId Maps Reduces AvgMapTime AvgReduceTime Alias Feature
job_0278 15 1 10 72 join_customer_orders, lineitem,

lineitems_1994, lineitems_94,
HASH_JOIN

orders, orders_1994, orders_94
job_0279 2 1 3 12 asia, join_supp_asia, nation, region,

supp_asia
HASH_JOIN

job_0280 2 1 9 27 customer, join_customer_orders,
join_line_supp

HASH_JOIN

job_0281 2 1 3 12 join_line_supp, supp_asia,
supp_nations_asia, supplier

HASH_JOIN

job_0282 2 1 7 21 join_line_supp, same_nation,
selected

HASH_JOIN

job_0283 1 1 3 12 group_nation, sum_group GROUP_BY,
COMBINER

job_0284 1 1 3 12 result SAMPLER
job_0285 1 1 3 12 result OROER_BY

Outputs hdfs://borderline-3.bordeaux.grid5000.fr:54310/user/rmoussa/OUTPUT_PATH/tpch_query5,

FIGURE 9.3 DAG and statistics of Q5 processing.

a different partitioning model. A spanner deployment contains a set of servers known as spanservers,
which are the nodes responsible for serving data to clients. A spanserver manages hundreds to thou-
sands of tablets, each of which contains a set of directories. NuoDB is another NewSQL solution
that uses a completely different approach for data partitioning. A NuoDB deployment is made up
of a number of Storage Managers (SMs) and Transaction Managers (TMs). The SMs are the nodes
responsible for maintaining the data, while the TMs are the nodes that process the queries. Each SM
has a complete copy of the entire data, which basically means that no partitioning takes place within
the SM [28].

Almost all of the NewSQL systems eschew the 2PL (phase locking) because of the complex-
ity in dealing with deadlocks. Some of the NewSQL solutions implement innovative approaches to
concurrency control. For example, Googles Spanner uses a hybrid approach in which read–write
transactions are implemented through read–write locks, but read-only transactions are lock-free.
VoltDB assumes that the total availablememory is large enough to store the entire data store and trans-
actions are short-lived. Based on these assumptions, all transactions are then executed sequentially
in a single-threaded and lock-free environment [28].

NewSQL systems are benchmarked with Yahoo Cloud Serving Benchmark (YCSB) and
TPC-C [24].

9.3 SQL-ON-HADOOP SYSTEMS

New SQL-on-Hadoop systems such as Apache Shark, Apache Spark, and Cloudera Impala target (i)
high performance through implementing traditional RDBMS optimizations and (ii) interoperability
through support of different source formats. Next, we overview open-source projects such as Apache
Hive, Apache Spark, and Cloudera Impala.

9.3.1 APACHE HIVE

Apache Hive [29] is an open-source data warehousing solution built on top of Hadoop and released
by Facebook. Hive supports queries expressed in HiveQL, an SQL-like declarative language, which
are compiled into MapReduce jobs. Figure 9.4 illustrates HiveQL code for TPC-H business question
Q5. Similar to traditional databases, Hive stores data in tables, where each table consists of a number
of rows, and each row consists of a specified number of columns. Each column has an associated
type. The latter is either primitive type (integer, float, etc.) or complex type (map, list, struct).HiveQL
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supports analysis expressed as MapReduce programs by users and in the programming language of
their choice.

9.3.2 APACHE SPARK

The frameworkMapReduce might be cumbersome. The underlying file system incurs overheads due
to data replication, disk I/O, and serialization. For applications that require data reuse,Pregel [30] is a
system for iterative graph computations that keeps intermediate data in memory, while HaLoop [31]

-- create tables and load data
CREATE EXTERNAL TABLE customer (c_custkey int,..., c_comment string)

ROW FORMAT DELIMITED FIELDS TERMINATED BY ’|’
STORED AS TEXTFILE LOCATION ’/tpch/customer’;

CREATE EXTERNAL TABLE lineitem (l_orderkey int,..., l_comment string)
ROW FORMAT DELIMITED FIELDS TERMINATED BY ’|’
STORED AS TEXTFILE LOCATION ’/tpch/lineitem’;

CREATE EXTERNAL TABLE orders (o_orderkey int,..., o_comment string)
ROW FORMAT DELIMITED FIELDS TERMINATED BY ’|’
STORED AS TEXTFILE LOCATION ’/tpch/orders’;

CREATE EXTERNAL TABLE supplier (s_suppkey int,..., s_comment string)
ROW FORMAT DELIMITED FIELDS TERMINATED BY ’|’
STORED AS TEXTFILE LOCATION ’/tpch/supplier’;

CREATE EXTERNAL TABLE nation (n_nationkey int,...,n_comment string)
ROW FORMAT DELIMITED FIELDS TERMINATED BY ’|’
STORED AS TEXTFILE LOCATION ’/tpch/nation’;

CREATE EXTERNAL TABLE region (r_regionkey int,..., r_comment string)
ROW FORMAT DELIMITED FIELDS TERMINATED BY ’|’
STORED AS TEXTFILE LOCATION ’/tpch/region’;

-- create the target table
CREATE EXTERNAL q5_local_supplier_volume (N_NAME STRING, REVENUE DOUBLE);
-- the query
INSERT OVERWRITE TABLE q5_local_supplier_volume
SELECT n_name, sum(l_extendedprice*(1-l_discount)) AS revenue
FROM customer c JOIN
(SELECT n_name, l_extendedprice, l_discount, s_nationkey, o_custkey
FROM orders o JOIN
(SELECT n_name, l_extendedprice, l_discount, l_orderkey, s_nationkey
FROM lineitem l JOIN
(SELECT n_name, s_suppkey, s_nationkey FROM supplier s JOIN
(SELECT n_name, n_nationkey
FROM nation n JOIN region r
ON n.n_regionkey = r.r_regionkey AND r.r_name = ’ASIA’

) n1 ON s.s_nationkey = n1.n_nationkey
) s1 ON l.l_suppkey = s1.s_suppkey

) l1 ON l1.l_orderkey = o.o_orderkey and o.o_orderdate >= ’1994-01-01’
AND o.o_orderdate < ’1995-01-01’) o1

ON c.c_nationkey = o1.s_nationkey AND c.c_custkey = o1.o_custkey
GROUP BY n_name
ORDER BY revenue DESC;

FIGURE 9.4 HiveQL code for TPC-H business question Q5. (Adapted from Yuntao, J.: Running the TPC-H
benchmark on Hive. https://github.com/rxin/TPC-H-Hive, 2009.)
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offers an iterative MapReduce interface. Nevertheless, these frameworks do not provide abstrac-
tions for more general reuse, for example, to let a user load several data sets into memory and
run ad hoc queries across them. Inspired by distributed shared memory, in [32], authors propose
resilient distributed data sets (RDDs). RDDs implement distributed memory abstraction that allows
programmers perform in-memory computations on large clusters in a fault-tolerant manner. They
target applications that MapReduce framework handles inefficiently, such as iterative algorithms
and interactive data-mining tools.
Spark SQL is open source [33]. It provides a DataFrame API that performs relational operations

on both external data sources and Sparks built-in distributed collections. A DataFrame is equivalent
to a table in a relational database and can also be manipulated in similar ways to RDDs. Unlike
RDDs, DataFrames keep track of their schema and support various relational operations that lead to
more optimized execution (see translation of Q5 TPC-H into Spark SQL in Figure 9.5).

9.3.3 CLOUDERA IMPALA

Cloudera Impala [35] is an open-source,MPP SQL query engine designed specifically to leverage the
flexibility and scalability of Hadoop as well as decades of research in parallel databases (semijoin,
vectorized processing, run time code generation [36]).

Custom application logic can be incorporated through user-defined functions (UDFs) in Java
and C++, and user-defined aggregate functions (UDAs) in C++. Due to the limitations of HDFS as a
storage manager, Impala does not support UPDATE or DELETE. Impala supports bulk data deletion

import org.apache.spark.sql.functions.sum
import org.apache.spark.sql.functions.udf

class Q05 extends TpchQuery {
import sqlContext.implicits._
override def execute(): Unit = {

val decrease = udf { (x: Double, y: Double) => x * (1 - y) }
val forders = order.filter($"o_orderdate" < "1995-01-01"
&& $"o_orderdate" >= "1994-01-01")
val res = region.filter($"r_name" === "ASIA")

.join(nation, $"r_regionkey" === nation("n_regionkey"))

.join(supplier, $"n_nationkey" === supplier("s_nationkey"))

.join(lineitem, $"s_suppkey" === lineitem("l_suppkey"))

.select($"n_name", $"l_extendedprice", $"l_discount",
$"l_orderkey", $"s_nationkey")

.join(forders, $"l_orderkey" === forders("o_orderkey"))

.join(customer, $"o_custkey" === customer("c_custkey")
&& $"s_nationkey" === customer("c_nationkey"))

.select($"n_name",
decrease($"l_extendedprice", $"l_discount").as("value"))

.groupBy($"n_name")

.agg(sum($"value").as("revenue"))

.sort($"revenue".desc)
outputDF(res)

}
}

FIGURE 9.5 Spark code for TPC-H business question Q5. (Adapted from Savvides, S.: TPC-H queries
implemented in Spark using the DataFrames API. https://github.com/ssavvides/tpch-spark, 2015.)
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by dropping a table partition. Typically, the user recomputes parts of the data set to incorporate
updates and then replaces the corresponding data files, often by dropping and re-adding the partition
as demonstrated in [8] for handling TPC-H refresh functions in a Hadoop cluster.

9.3.4 TPC BENCHMARKING EXPERIENCES OF SQL-ON-HADOOP SYSTEMS

SQL-on-Hadoop systems are benchmarked using the most prominent decision support systems
benchmarks, namely, TPC-H and TPC-DS. Hereafter, we overview relevant benchmarking studies
of SQL-on-Hadoop systems. In [19], TPC-H benchmark is translated into HiveQL for assessing the
performance of Apache Hive. Performance studies show that Hive+Tez outperforms Hive+Oozie.
The workflow orchestratorApache Oozie bad performs parallelism and performs expensive I/O oper-
ations. It was replaced with Tez [37], which enhances tasks scheduling and avoids materialization
overheads of Hadoop.

In [34], TPC-H benchmark is translated into Spark for assessing the performance of Apache
Spark. In [38], authors compare MapReduce to Spark using the TeraSort benchmark. In [39],
Floratou et al. compareHive-MR,Hive-Tez, and Impala for different file formats (ORC, Parquet) and
compression types (no compression, Snappy) using TPC-H benchmark (SF=1000, i.e., 1 TB) and a
microworkload of TPC-DS showing out-performance of Impala. In [35], authors compare different
storage options for TPC-H benchmark data with SF=1000 (1 TB of raw data), where the combi-
nation of Parquet columnar file format and Snappy compression algorithm outperforms all other
combinations of storage options and compression algorithms. Authors report also performance mea-
surements for a subset of TPC-DS benchmark (namely, Q27, Q34, Q42, Q43, Q46, Q52, Q55, Q59,
Q65, Q73, Q79, Q96), which demonstrate that Parquet consistently outperforms by up to five times
all the other formats. Compared to Hive, SparkSQL, and Presto, Impala is the highest performing
SQL-on-Hadoop system, for both single-user and multiuser workloads composed of 10 users.

Floratou et al. [40] demonstrate that TPC-H and TPC-DS rules for benchmarking are not followed.
Indeed, (i) the performance measurements are limited to a subset of TPC-DS benchmark workload,
that is, a single datamart and a dozen of queries among 99 TPC-DS queries, and (ii) the workload is
rewritten either because Impala does not support windowing functions and rollup or for optimizing
expensive operations and introducing hints for the optimizer.

9.4 ASSESSING SQL-ON-HADOOP SYSTEMS

Hadoop vendors have added functionalities to the open-source edition of Hadoop, which focus on
client support, graphical user interfaces for cluster management, and query optimization techniques
for high performance. Henceforth, multiple distributions of Hadoop exist and include Amazon Web
Services Elastic MapReduce Hadoop Distribution by Amazon, Hortonworks Hadoop Distribution
by Hortonworks, Cloudera Hadoop Distribution by Cloudera, IBM Infosphere BigInsights Hadoop
Distribution by IBM, etc. As the number of SQL-on-Hadoop systems is increasing, it becomes nec-
essary to be able to assess offers. Reviewed research papers [19,34,35,38,40] use TPC benchmarks,
namely, TPC-H and TPC-DS benchmarks, which are not representatives of Big data. Next, we argue
that TPC-H and TPC-DS mismatch big data rationale and are insufficient for comparing SQL-on-
Hadoop systems. Then, we propose new requirements to consider for assessing big data management
systems in general.

9.4.1 TPC BENCHMARKS SHORTCOMINGS

The use of TPC benchmarks mismatches big data rationale. It reveals the following shortcomings
for assessing big data management systems:

• First, TPC-H and TPC-DS benchmarks implement limited refresh functions, while big data
velocity deals with the pace at which massive data flows in continuously from sources.
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• Second, TPC-H and TPC-DS benchmarks data fall in the structured data model, while
big data incorporates all the varieties of data, including structured, semistructured, and
unstructured data.

• Third, TPC-H and TPC-DS include solely OLAP workload, while big data is subject to
different workload types, including OLTP, Create–Read–Update–Delete (CRUD), OLAP,
Sort, IO operations, Information Retrieval, Machine Learning, and Multimedia Analytics
Workloads.

• Fourth, big data management systems are deployed on top of clusters of commodity hard-
ware, and each node may be prone to failures. It is very important to report system
performances, that is, query response times under failure scenarios as well as time to recover
lost data.

• Fifth, TPC benchmarks are synthetic benchmarks, while big data veracity refers to the
biases, noise, and abnormality in data sets.

In order to overcome TPC-H and TPC-DS shortcomings, new benchmarks are proposed, namely,

• BigBench Benchmark: The BigBench [41] data model is adopted from the TPC-DS data
model. Its schema uses the data of the store and Web sales distribution channel and
augments it with semistructured and unstructured data.

• TPC-DI Benchmark: TPC-DI [42] fosters manipulation and loading of large volumes of
data having different formats (multirow formats and XML), complex transformations, his-
torical loading, and incremental updates, as well as consistency requirements ensuring that
the integration process results in reliable and accurate data.

9.4.2 KEY REQUIREMENTS AND CONSTRAINTS FOR SQL-ON-HADOOP SYSTEMS ASSESSMENT

In this section, we propose key requirements and constraints to consider for assessing big data
management systems.

9.4.2.1 Quality of Service Requirements
• Service-Level Agreement (SLA): SLAs capture the agreed-upon guarantees between a ser-

vice provider and a customer. They define the characteristics of the provided service
including service-level objectives, as maximum response times, minimum throughput rates,
and data consistency, and define penalties if these objectives are not met by the service
provider.

• Client Support: Ideally, every customer receives 24× 7× 365 support.

9.4.2.2 Capacity Requirements
SQL-on-Hadoop systems rely on Hadoop capacities plus their SQL engines.

• Data Models: SQL-on-Hadoop systems should be designed to deal with the variety of big
data. They should support all types of data, that is, (1) structured, (2) semistructured, and
(3) unstructured data. Structured data refers to any data that resides in fields that have pre-
defined lengths and formats (e.g., relational databases). Semistructured data are schema-
less data that have an hierarchical structure (e.g., XML, JSON, or BSON). Semistructured
data often consists of complex, nested elements having schema-less fields that differ type-
wise from row to row. The data can constantly evolve. Unstructured data represent around
80% of data. It includes text and multimedia content (e.g., text documents, videos, photos,
audio files).

• Storage Formats: SQL-on-Hadoop systems should implement effective data formats and
support efficiently existing formats. Hadoop file formats include (1) SequenceFiles, (2)
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serialization formats, and (3) columnar formats. SequenceFiles store data as binary key–
value pairs. There are three formats available for records stored within SequenceFiles,
which are (i) uncompressed, (ii) record-compressed, and (iii) block-compressed. Uncom-
pressed SequenceFiles are not efficient for input/output (I/O) since they occupy more space
on disks, and block-based compression provides better compression ratios compared to
record-compressed SequenceFiles.
Compression codecs commonly used with Hadoop have different characteristics (com-

press/uncompress speed and rate). The ability to split compressed files is also a very
important consideration. Splittable formats enable Hadoop to split files into chunks for
parallel processing.
Serialization refers to the process of turning data structures into byte streams either for

storage or transmission over a network. Conversely, deserialization is the process of con-
verting a byte stream back into data structures. There are serialization frameworks within
the Hadoop ecosystem, including Facebook Thrift, Google Protocol Buffers, and Apache
Avro [43] (a binary row format).
Columnar file formats supported on Hadoop include the RCFile format, the Optimized

Row Columnar (ORC), and Apache Parquet [44]. Parquet is a customizable PAX-like for-
mat optimized for large data blocks (tens, hundreds, thousands of megabytes) with built-in
support for nested data. The most recent version (Parquet 2.0) also implements embedded
statistics: inlined column statistics for further optimization of scan efficiency, for example,
min/max indexes.

• Consistency Model: It is well admitted that no single consistency model is appropriate for
all uses. SQL-on-Hadoop systems focus on scalability and availability; for these purposes,
they replicate data asynchronously. GuaranteeingACID properties (Atomicity,Consistency,
Isolation,Durability) [45] in a distributed transaction across a distributed data management
system is complex. Network connections might fail, or one node might successfully com-
plete its part of the transaction and then be required to roll back its changes because of a
failure on another node.Moreover, the CAP theorem [46] asserts that any networked shared-
data system can have only two of three properties: consistency, availability, and partition
tolerance. Consistency ensures that all the servers in the system will have the same data, so
anyone using the system will get the same query answer regardless of which server answers
their request. Availability ensures that the systemwill always respond to a request. Partition
Tolerance ensures that the system continues to operate as a whole even if individual servers
fail or can’t be reached.

Systems are Basically Available, in Soft state, and Eventually consistent (i.e., BASE).
Therefore, (i) the system does guarantee the availability of the data as well as a response to
any request, (ii) the state of the system could change over time, so even during times with-
out input there may be changes going on due to eventual consistency, thus the state of the
system is always soft. The system will eventually become consistent once it stops receiving
input. The data will propagate to everywhere it should sooner or later, but the system will
continue to receive input and is not checking the consistency of every transaction before
it moves onto the next one. Consistency guarantees affect latency and system response to
concurrent read and write requests. One of the biggest challenges with HDFS is that it is
not designed for incremental updates. VectorH is the only system that addresses this chal-
lenge and supports updates efficiently [47]. VectorH implements a fully ACID compliant
transactional database with multiversion read consistency. Any new transaction will see
all previously committed transactions, both small incremental transactions and large bulk
data loads. Changes are always written persistently to a transaction log before a commit
completes to always ensure full recoverability.

• Security Policies: It is important that an SQL-on-Hadoop system implements a security
policy which allows (i) to secure data sets right accesses, so that only authorized users can



186 Big Data Management and Processing

view and update particular data sets, (ii) to audit each user actions, (iii) to encrypt the data
at-rest as well as on-the-wire, and (iv) to enable fine-grained access control, which restricts
users to accessing only certain columns in a table. The most recent version of Cloudera
Hadoop (CDH) implements Access Control Lists (ACLs) for HDFS. ACLs allow to define
an arbitrary number of user groups and then assign each of them specific permissions on
directories and files.
Apache Sentry is an open-source project that enables role-based access control for Hive

and Impala tables. Sentry allows to implement a database-like security policy, through the
grant of SELECT, INSERT, or ALL privileges to a group on a particular Hive or Impala
table, rather than on the underlying HDFS directories and files.

• High Availability: Data distribution among multiple disks increases the distributed stor-
age system failure likelihood. Many approaches to build highly available distributed data
storage systems have been proposed. They generally use either (i) replication or (ii) par-
ity calculus. The latter approach uses systematic erasure codes (e.g., Reed Solomon [RS]
codes, Low-Density Parity-Check codes, Tornado code). With replication, data manage-
ment is straightforward. However, the storage overhead with replication is always higher
than it is with systematic erasure codes. When a certain level of availability is targeted, the
erasure codes are able to provide service with a lower storage overhead than replication
techniques. For data warehousing, high availability through erasure codes saves storage
costs, particularly for big data of type write-once (i.e., not subject to delete refreshes).
Nevertheless, data recovery is more complicated than replication. Indeed, first data recov-
ery is not a simple copy to operation as for replication, it performs complex decoding
calculus, and second data recovery involves different servers, which send their contents
to a recovery manager and consequently it implies a high communication overhead. Era-
sure codes were investigated and proved efficient for highly available distributed storage
systems [48,49]. The Quantcast File System (QFS) [50] is a free, high-performance, fault-
tolerant, distributed file system developed to support MapReduce processing, or other
applications reading and writing large files sequentially, which uses erasure codes to ensure
high availability of data files.

• Streams Data Integration and Processing: Data warehouse systems are deployed as part
of an OLAP system separated from the OLTP system. Data propagates down to the OLAP
system, but typically after some lag. This system architecture is sufficient for retrospective
analytics, but does not suffice in situations that require real-time analytics. The Lambda
Architecture coined by Natan Marz [51,52] defines a robust framework for ingesting
streams of fast data while providing efficient real-time and historical analytics. The Lambda
architecture requires revision of software layers. Hence, to deal with the velocity of big data,
SQL-on-Hadoop systems should process data streams in real-time to keep up with their
arriving speed. The open-source Apache Storm and Apache Flink process data streams as
true streams, that is, data streams are immediately pipelined as soon as they arrived, while
SparkStreaming processes data streams on microbatching basis.

9.4.2.3 System Constraints
System constraints are related to first setup constraints such as specific operating system (e.g., Red
Hat Enterprise Linux for IBM BigInsights) and hardware specifications such as minimum number
of nodes (e.g., 3 nodes), CPU type (e.g., 64-bit systems), minimum RAM capacities (e.g., 16GB),
and number and capacities of hard drives for management and compute nodes; and second operation
constraints such as the maximum number of concurrent users.

9.4.2.4 Cost Constraints
There are two types of SQL-on-Hadoop solutions’ deployment methods, which lead to a different
cost model. The first is an on-premises deployment, while the second is a cloud-based deployment.
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With an on-premises deployment, the company is responsible for setting up the appropriate hardware
and software, the acquisition of software licenses, and hiring qualified staff for system functioning
and maintenance. With a cloud-based deployment, the client accesses the system off-premises via
the Internet and cloud providers deliver and shrink IT resources on-demand and align costs to actual
usage.

Apache Hive, Apache Spark, and Cloudera Impala are free and open source. Nevertheless, the
deployment of free software on HPC platforms is costly, taking into account human expertise as well
as the HPC platform cost. A closer look at commercial offers such as IBM BigInsights available
on IBM bluemix cloud portal gives ideas on nonfree software costs. IBM proposes three mod-
ules to install on a cluster: (i) IBM Open Platform—a distribution that is based on open-source
Apache Hadoop Ecosystem, (ii) BigInsights Data Analyst—which provides specific tools for data
analysis as well as Big SQL and BigSheets, and (iii) BigInsights Data Scientist—which offers
in-Hadoop analytics and predictive modeling for data science teams with Big R, Text Analytics,
and SystemML included. Costs vary along cluster size, module, and number of nodes. For a small
cluster of three nodes (16 TB), IBM Open Platform costs US$ 12,510/month, BigInsights Data Ana-
lyst US$ 17,807/month, and BigInsights Data Scientist US$ 20,145/month. For a small cluster of
10 nodes (53 TB), IBM Open Platform costs US$ 28,680/month, BigInsights Data Analyst US$
37,414//month, and BigInsights Data Scientist US$ 42,090/month.

9.5 CONCLUSIONS

In this chapter, we studied big data management systems, in particular SQL-on-Hadoop sys-
tems. Specifically, we have reviewed SQL-on-Hadoop open-source projects and we identified
requirements and constraints for assessing SQL-on-Hadoop systems. The focus in big data man-
agement systems is on (1) horizontal scalability and high performance, (2) continuous availability,
(3) un-structured data processing, and (4) real-time processing. The proposed requirements and
constraints aim at allowing a fair comparison of different offerings.
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ABSTRACT

In the big data era, traditional relational database systems cannot effectively handle the big volume
of data due to their limited scalability. People are seeking new ways to tackle the problem of big
data. After Google published its work of MapReduce, Hadoop (an open-source implementation of
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MapReduce) has risen to be the de facto standard tool for big data processing. People have applied
Hadoop to various big data application scenarios, which show the power of Hadoop. However, the
1.0 version of Hadoop supports only one computing model of MapReduce, which is not efficient
enough to provide higher performance.

Now Hadoop has evolved into Hadoop 2.0 (YARN). Hadoop 2.0 has a newly designed archi-
tecture, which separates resource management and job scheduling. Hadoop 2.0 supports other
computing models besides MapReduce, including complex computing work expressed in a DAG
(directed acyclic graph). People also try to improve the execution layer of Hadoop, such as the work
of Tez from Hortonworks, to provide lower latency.

In the meantime, AMP lab of California University at Berkeley brought out Spark, which now
draws more and more attention from academia and industry. The Spark ecosystem includes the core
and four major components surrounding it, including Spark SQL for structured data processing,
Spark Streaming for stream data processing, MLLib for machine learning, and GraphX for graph
data processing. In essence, Spark and Hadoop provide similar functionalities; however, in some
application scenarios, Spark outperforms Hadoop by many times.

Hadoop and Spark are two ecosystems. Both of them can play the central role in future big data
warehouses. On one hand, they are replacement to each other; on the other hand, they can be used
together to get work done. For example, people can use Spark in exploratory analysis and get instant
feedback, and use Hadoop to consolidate all data in one place, and conduct a thorough analysis on
the whole data set.

In this chapter, we analyze limitations of different technologies and the business requirements
behind the continuous innovations. We also try to point out some lessons that the database research
community and the database industry should have learned.

10.1 ONE SIZE CANNOT FIT ALL

10.1.1 A BRIEF INTRODUCTION TO RELATIONAL DATABASE MANAGEMENT SYSTEMS

In early 1970s, IBM scientist E. F. Codd, who later won Turing Award, published the famous paper
of “A Relational Model of Data for Large Shared Data Banks.” The paper laid down the theoretic
foundation of modern relational database management systems (RDBMSs). The relational model is
as simple as some tables with rows and columns. The rows correspond to entities and the columns
correspond to attributes of entities. Upon the data model, some basic operations are defined, includ-
ing selection (filtering), projection, and join. The selection operation is to select a subset of rows of
the table, the projection operation is to select a subset of columns of the table, and the join operation
is to create new rows by combining rows from two or more tables, which have some semantic rela-
tionship. For example, each row of the department table corresponds to some rows of the employee
table, which means that these employees are working in the department. On the basis of the basic
operations, complex queries could be composed to fetch desired results.

Many researchers put their efforts into developing working database management systems, which
are completely based on the new relationalmodel. Two of theworks are prominent: one is Ingres from
University of Californian at Berkeley and the other is System R from IBM. In 1974, IBM engineers
invented a query language named SEQUEL (structured English query language) for SystemR, which
was predecessor of the SQL language. Besides that, researchers have developed storage methods,
indexing techniques, query optimization techniques, transaction-processing methods, and database
recovery techniques for RDBMS. These methods made RDBMS an efficient and reliable data engine
for various online transaction-processing (OLTP) applications.

From 1970s till now, RDBMS has become the dominant data management technology in the
market. RDBMSs have been applied to industries such as banking, aviation, and government agen-
cies. Critical data is stored in RDBMSs and various applications are run over RDBMSs to support
business activities pertaining to our daily life.
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After more and more data are collected, people are increasingly interested in analyzing the data
to find some valuable information concerning what has happened and what will happen, for decision
making. RDBMSs are also the underlying engine of such decision support systems, running online
analytic processing (OLAP) and data-mining applications.

10.1.2 THE BIG DATA ERA

Now comes the big data era. According to Wikipedia [1], big data is defined as “a collection of data
sets so large and complex that it becomes difficult to process using on-hand database management
tools or traditional data-processing applications.” Big data comes from various sources including
e-commerce Web sites, sensors in internet of thing (IOT), observations of scientific experiments,
and user-generated contents on the Web. For example, the volume of data generated by LHC (Large
Hadron Collider) of CERN in one experiment can easily reach PB (petabyte) level. Several forces
drive the arise of big data; one of them is that the price of storage is getting lower and lower, giving
people the possibility to collect more and more data at very low cost. In the above scientific scenario,
people need to collect data in a finer granularity to find out some interesting patterns inside it.

Big data have several characteristics; the “three Vs” that most people agreed on are volume, veloc-
ity, and variety. Volume is the primary characteristic of a big data set. The volume is so big that the
data set could not be efficiently handled by traditional database techniques. Velocity refers to some
scenarios that the data is generated in a high pace; we need some efficient tools to handle the data
timely, otherwise the data will be lost. Variety means various types of data, including structured data
such as relational tables, unstructured data such as text, audio and video, and semistructured data
such as XML files.

10.1.3 LIMITATIONS OF RDBMS TO HANDLE BIG DATA

RDBMS is not ready for handling of big data. It is designed to run on reliable hardware, which usually
takes the form of proprietary high-end servers. To process big data, we can scale up such high-end
servers by adding more CPUs, memories, storage devices, and network bandwidth. However, there
is an upper limit and the cost is prohibitive.

The alternativemethod is to scale out the system by distributing data and processing onto a cluster,
which is composed of hundreds to thousands of not-so-expensive commodity servers. We can add
more nodes to the cluster to achieve satisfactory performance when the load becomes heavier. Big
data needs thousands and even ten thousands of nodes to process it. No RDBMS has run on a cluster
of up to more than 1000 nodes till now. Due to the limited scalability of RDBMS, people are seeking
new ways.

10.2 THE HADOOP 1.0 ECOSYSTEM

10.2.1 INTRODUCTION TO THE HADOOP 1.0 ECOSYSTEM

Search is Google’s main business in its early days. The search engine scrawls theWorldWideWeb to
grab Web pages and indexes the pages to serve later user search requests. The data set of Web pages
is really big. It is uneasy to store and process the data set on several big servers, such as mainframes.
Google used a cluster of commodity servers to do the job and designed GFS (Google File System)
and MapReduce to index the Web pages.

GFS is a distributed file system running on a large cluster. Data is organized into blocks of large
sizes (64 or 128 MB). Each block has three replicas, which are stored on different nodes to provide
fault tolerance. MapReduce is a computing model running over GFS.

The MapReduce runtime takes care of job scheduling, task assignment, recovery from failures,
etc. Users only need to provide two functions, that is, the Map function and the Reduce function.
The input of MapReduce is a list of <key1, value1> pairs and the Map function is applied to each
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FIGURE 10.1 MapReduce computing model.

key–value pair to compute intermediate key–value pairs <key2, value2>. The intermediate key–value
pairs are grouped together on the basis of key equality, that is, <key2, list<value2>>. For each key2,
the Reduce function is applied to the list of value2, and aggregated results are generated. Users write
MapReduce programs to perform various data-processingworks by designing differentMap function
and Reduce functions. The general MapReduce computing model is depicted in Figure 10.1.

Hadoop is an Apache project founded by Doug Cutting. The Hadoop software stack is an open-
source implementation of the MapReduce technology. In the following text, we will use MapReduce
to refer to the MapReduce computing model, not specifically referring to Google’s proprietary
technology.

In Hadoop, HDFS (Hadoop distributed file system) is the counterpart of GFS. HDFS has a mas-
ter/slave style of architecture. NameNode acts asmaster andDataNodes are workers. TheNameNode
is responsible for the management of metadata, such as the locations of data blocks, and DataNodes
are responsible for the storage of data blocks.

The MapReduce runtime runs over HDFS, which includes two major components, that is, a Job-
Tracker and TaskTrackers, which are running on the NameNode and the DataNodes, respectively.
Users write MapReduce programs and submit to JobTracker as MapReduce Jobs.

The JobTracker coordinates the execution of a MapReduce Job by assigning Map and Reduce
tasks to TaskTrackers on workers in the cluster. It is intelligent enough to assign tasks to TaskTrack-
ers who are near to the data. A TaskTracker executes Map tasks or Reduce tasks assigned by the
JobTracker. Figure 10.2 shows the components of MapReduce runtime and their relationships. The
JobTracker (and the node it runs on) is also called the master node. The TaskTrackers (and the nodes
they run on) are also called worker nodes.

AMapReduce job is executed in two phases: Map stage and Reduce stage. The detailed execution
flow of a MapReduce job is as follows:

1. The data set to be processed (i.e., the input file) is loaded to the distributed file system. At
loading, the file is split into multiple data blocks, which have the typical size of 64 or 128
MB. Each block is replicated three times onto different nodes by the underlying distributed
file system.

2. The JobTracker receives a MapReduce job from some client, executes the job by assigning
map tasks and reduce tasks onto TaskTrackers, and monitors the status of TaskTrackers.
Suppose that there are M map tasks and R reduce tasks to assign.

3. Each block is then assigned to a mapper, that is, a worker which is assigned a map task.
Each worker processes the contents of the input split and generates key–value pairs from the
input data and passes the pairs to the user-defined Map function one by one. The generated
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FIGURE 10.2 Execution runtime of MapReduce.

intermediate key–value pairs are buffered in memory, and it is periodically written to local
disk. Persistence of intermediate results provides the nice property of fault tolerance.

The intermediate outputs produced by the mappers are sorted locally to group key–value pairs
having the same key, and the file in local disk is organized into R regions, each region corresponding
to one key. The locations of the R regions are sent to the master for later forwarding to the reduce
workers.

4. When all Map tasks are finished, the JobTracker assigns Reduce tasks to workers. The inter-
mediate data is shuffled to reducers. As described before, Map function outputs are already
partitioned and stored in local disks; reducers simply pull specific partitions of the Map
function outputs from different nodes, using the locations notified by the master. The reduc-
ers merge intermediate results by the intermediate keys (key2), and all values of the same
key are grouped together. Then each reducer applies Reduce function to the values of key2
to generate some aggregation results. The output of reducers is stored into the distributed
file system.

5. When all map tasks and reduce tasks have been completed, the JobTracker returns control
to the user program, which can access the final result in the distributed file system.

To describe the MapReduce computing model more clearly, the frequently used example of word
count is shown below. The word count program is to count occurrence of each distinct word in a big
file loaded into the distributed file system.

The Map function of the job is to generate <word,1> for each word it encounters, as shown in
Figure 10.3. The Reduce function is to compute the occurrence of each word according to the output
of Mappers, as illustrated in Figure 10.4.

Execution flow of the word count program is illustrated in Figure 10.5. After the MapReduce
runtime receives the word count program, it launches mappers on workers for the file splits. The
map function scans its corresponding data block and generates <word,1> for each word in the block,
and the intermediate results are stored in local disks of worker nodes. After that, MapReduce runtime
launches Reducers, which pulls data from intermediate results. Reducers count occurrences of each
word by sorting and counting the <word,1> list.

10.2.2 THE ECOSYSTEM OF HADOOP 1.0

On the basis of HDFS and the MapReduce computing model, several tools together form the whole
Hadoop ecosystem ( Figure 10.6). These tools are briefly introduced as follows.
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FIGURE 10.3 Map function for word count.

FIGURE 10.4 Reduce function for word count.

FIGURE 10.5 Execution flow of the word count program.

Hive is a data warehouse upon Hadoop. It provides SQL like query language HQL (Hive query
language) for users to query the data. The queries are translated into MapReduce jobs and run on the
Hadoop cluster.

HBase is the counterpart of Google Big Table on the Hadoop Platform. It is a scalable, highly
reliable, and highly performant distributed database for structured data processing. It uses the column
family data model, which is similar to the one that Big Table uses. HBase supports updating one row
of data in the table, and it is used in data-serving applications.

Pig implements the procedural script language of Pig Latin. Programs written in Pig Latin are
translated into MapReduce jobs and run upon the Hadoop platform. Some data-processing work,
such as the join operation, is not straightforward to write in the form of MapReduce jobs. Pig Latin
provides primitives such as join to facilitate writing of complex data-processing programs. Just like
Hive, Pig is used to do offline data analysis. The difference between the two is that Hive uses a
declarative language of HQL and Pig uses a procedural language of Pig Latin.
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FIGURE 10.6 Apache Hadoop ecosystem.

Flume is a highly scalable, highly reliable, and highly fault-tolerant distributed log data collecting
system. It is used to aggregate mass of log data from numerous servers into one big data platform.
Flume provides some simple functionalities for log data processing, such as filtering and format
conversion. Flume can be configured to write log data to various data sinks (destination).

Sqoop is an abbreviation for “SQL to Hadoop.” It is a tool to move data from relational databases
or other structured data sources to Hadoop. For example, Sqoop can import data in a MySQL
database into Hadoop platform; the data can be imported into raw HDFS files, Hive tables, or
HBase tables. On the other hand, Sqoop can also export Hadoop data into a MySQL database. The
import/export program is written as a MapReduce program, which can fully leverage the parallel
processing capability and high-fault tolerance of the MapReduce computing model.

Mahout is a machine-learning software package on the Hadoop platform. It aims to provide
scalable machine-learning algorithms to run on a large cluster to analyze very big data sets. Clas-
sical data-mining and machine-learning algorithms such as clustering, classification, collaborative
filtering (used in recommendation), and frequent item set mining are implemented.

Oozie is a workflow scheduler system to manage Apache Hadoop jobs. Oozie supports several
types of Hadoop jobs such as MapReduce jobs, pig scripts, Hive queries, and Sqoop data import and
export jobs. Oozie workflows are triggered by time (frequency) and/or data availability.

Zookeeper is open-source implementation of Google’s Chubby. Chubby is a distributed lock ser-
vice. Most distributed applications need common services such as a unified naming service, status
synchronization service, central management of configuration data, and cluster management (includ-
ing management of node’s status and notification of data changes on nodes). These services are hard
to implement and debug. By using zookeeper, people do not need to reinvent the wheel again and
again. By handing such functionalities over to Zookeeper, the complexity of the whole distributed
system is reduced. In a distributed system that is composed of a master node and a number of slave
nodes, the master node could be the single point of failure. By replacing the master node with a small
number of nodes managed by Zookeeper, we can reduce such failures.

10.2.3 APPLICATION OF HADOOP 1.0 TO VARIOUS SCENARIOS

It seems that the MapReduce computing model is too simple; however, it is not that simple. Various
data-processing and analytic algorithms have been translated intoMapReduce jobs to run on Hadoop
to analyze big data sets.

Besides simple SQL summarization, researchers have migrated many complex algorithms onto
the Hadoop/MapReduce platform including OLAP, data mining, machine learning, information
retrieval, multimedia data processing, science data processing, and graph processing [2].MapReduce
is not only a tool for unstructured data processing, but it can also handle structured data efficiently
[3] when the data is organized properly.
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10.2.4 CONTINUOUS IMPROVEMENT OF HADOOP 1.0

From the advent of Hadoop/MapReduce, researchers from industry and academia have improved
Hadoop/MapReduce frommany aspects [4–6], including (1) storage layout and data placement opti-
mization, handling of data skew, index support, and data variety support; (2) extension ofMapReduce
for stream processing, incremental processing, and iterative processing; (3) two-way join, multi-way
join, theta join optimization, and parallelization of data-mining/machine-learning algorithms; (4)
scheduling strategies for multicore CPU, GPGPU, heterogeneous environment, and cloud; (5) easy-
to-use interfaces for SQL query, statistical, data-mining, and machine-learning algorithms, such as
Hive, Pig, System ML, and Mahout; and (6) energy saving techniques and privacy and security
guarantee techniques.

For example, some researchers of Saarland University believe that by carefully choosing of
implementation techniques in Hadoop, they can solve the performance of Hadoop/MapReduce to
some extent. They brought forth Hadoop++ [7] and HAIL [8]. Hadoop++ employed the following
techniques. (1) The Hadoop plan: The team make Hadoop’s hard-coded query processing pipeline
explicit and represent it as a DB-style physical query plan to reason on it and optimize it. (2) Trojan
index: At data load time, a read optimized index is created for each split; it is called a Trojan index.
The indexes can improve later query performance. Since Trojan indexes are created at data load
time, they have no penalty at query time. (3) Trojan join: Trojan join co-partitions the data at data
load time for later high performance of joining operation. Preliminary results show an improvement
of Hadoop++ over Hadoop by up to a factor of 20. HAIL (Hadoop Aggressive Indexing Library)
changes the upload pipeline of HDFS in order to create different clustered index for each block
replica. HAIL improves both data uploading to HDFS (up to 60% with the replication factor of 3)
and the runtime of MapReduce jobs (up to 68× faster than Hadoop).

10.2.5 MERITS AND LIMITATIONS OF HADOOP 1.0

The most important merit of Hadoop 1.0 is its scalability. Hadoop has been deployed to large cluster
of thousands of nodes in real-life production environment, which cannot be imaged by RDBMS
before. Why we need a scalability like this; the reasons include cost and I/O bandwidth.

The first reason is the cost to scale. Hadoop can run on large clusters of commodity hardware to
support big data processing. SQL on Hadoop systems are more cost efficient than MPP databases
such as Teradata, Vertica, and Netezza, which need to run on expensive high-end servers and do not
scale out to thousands of nodes.

The second reason is the I/O bottlenecks. When the volume of data is really big, only some
portion of data can be loaded into main memory and the remaining data has to be stored on disks.
By spreading I/O onto a large number of nodes, we can speed up data loading and subsequent data
processingwith a big aggregated I/O bandwidth, which is tens to hundreds times of the I/O bandwidth
that only one high-end server can provide.

In 2008, one of Yahoo’s Hadoop clusters, which is composed of 910 nodes, sorted 1 terabytes of
data in 209 s, setting the new record for the terabyte sort benchmark. The previous record is 297 s. The
significance lies in that it is the first time an open-source Java program won the sort benchmark [9].

In March 2011 [10], the Apache Hadoop project was awarded the top prize of MediaGuardian
Innovation Awards of the year. The judging panel described the Hadoop project as a “Swiss army
knife of the twenty-first century,” and it has the potential to change the face of media innovations. The
Hadoop platform has become the de facto standard tool for big data processing, and the important
role it plays has been recognized by more and more people.

Although Hadoop has achieved a great success in handling big data, it has some major limi-
tations, which hinder it from being a tool for diverse applications. For Hadoop 1.0, there are two
major limitations. (1) It only supports one computing model, that is, MapReduce. The MapReduce
computing model has limited expressive capability. It is not straightforward to express a complex
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data-processing work in a single MapReduce job; such work has to be translated into a series of
MapReduce jobs, which are run one after another. (2) The fact that the intermediate results are per-
sisted to disks has a big negative impact on system performance; it is hard to further cut down the
response time of queries.

10.3 HADOOP 2.0 AND SPARK

10.3.1 BUSINESS REQUIREMENTS

Because Hadoop has shown its potential of processing very big data sets, people hope that all data,
whether it is structured or unstructured, or wherever it comes from, could be consolidated in one
place. After various types of data are in one place, one needs various data-processing methods to
analyze these data of different types.

Hadoop is a tool for batch processing of big volume of data. It is designed to process the data with
an as high as possible throughput. However, there is an emerging need for interactive query, which
Hadoop 1.0 could not support. The MapReduce computing model of Hadoop 1.0 is also not well
suited for iterative processing of data, which is required in machine learning. The reasons have been
mentioned in the above section, that is, the overhead of launching multiple jobs and materializing
intermediate results to the file system.

10.3.2 INTRODUCTION TO THE HADOOP 2.0 ECOSYSTEM

Since there is a need that Hadoop could support different processing models on one platform, devel-
opers of the Hadoop project introduced Hadoop 2.0 (or Yet Another Resource Negotiator, YARN
in short) [11,12], which won best paper award on Symposium of Cloud Computing in 2013. YARN
separates the MapReduce computing model from resource management functionality, which are tied
together in Hadoop 1.0.

Now several data-processing models can work side by side on top of YARN, including traditional
MapReduce job for batch processing, Tez for interactive processing, Spark for in-memory iterative
processing, Storm for real-time stream processing, and GraphLab/Giraph for graph processing, as
shown in Figure 10.7. In all, YARN has taken Hadoop from a batch-processing tool to a tool for
more diverse data-processing applications, including interactive queries.

Figure 10.8 shows major components of Hadoop 2.0 runtime and the workflow of job scheduling.
The ResourceManager and NodeManagers form the data-processing framework. The ResourceMan-
ager running on the Master node, together with NodeManagers running on Slave nodes, takes charge
of running distributed applications. On the Hadoop 2.0 platform, an application can be aMapReduce
job, a Hive query, a Pig script, or a Giraph query.

FIGURE 10.7 From Hadoop 1.0 to Hadoop 2.0.
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FIGURE 10.8 Components of Hadoop 2.0 runtime and job scheduling.

ResourceManager is the highest authority to allocate resources for all applications. It is composed
of two main components, that is, a Scheduler and an ApplicationsManager. The Scheduler is respon-
sible for allocating resources to various running applications subject to constraints of capacities,
queues, etc. It performs the scheduling function based on resource requirements of the applications
and constraints. Hadoop uses resource containers to organize necessary resources (CPU, memory,
etc.) to run tasks of applications.

The ApplicationsManager accepts job submissions, negotiates the first container for executing the
per-application specific ApplicationMaster, and provides the service for restarting the Application-
Master container on failures. The per-application ApplicationMaster negotiates resource containers
for the application from the Scheduler of the ResourceManager and works with the NodeManagers
to execute applications and track their status and monitor their progress.

A NodeManager running on a slave node launches containers for applications, monitors its
resource usage (including CPU, Memory, disks, network bandwidth usages), and reports the
information to ResourceManager.

Compared with Hadoop 1.0, Hadoop 2.0 has several advantages, including the following aspects.
(1) Higher scalability: The ResourceManager focuses on scheduling of resources, and it can eas-
ily manage a very larger cluster up to tens of thousands of nodes, thus Hadoop 2.0 could achieve
higher scalability than Hadoop 1.0. (2) Resource use efficiency: The ResourceManager could opti-
mize resource usage according to per-application resource requirements, fairness, service level
agreements, etc., thus improving resource use efficiency. (3) Diverse workloads: Besides MapRe-
duce jobs (primary for batch processing), YARN supports more programming models, including
graph data processing, iterative processing, real-time stream data processing, and interactive query.
Machine-learning algorithms usually need several iteration of processing over the data to get the final
results. (4) Flexibility: Hadoop 2.0 provides backward compatibility; MapReduce programs written
for Hadoop 1.0 could directly run on YARN without any modifications. Programming models such
as MapReduce can evolve independently.

10.3.2.1 Tez
To address the shortcoming of high latency of Hadoop/MapReduce, Hortonworks has proposed Tez
as an Apache Incubator project. Tez is a highly efficient and scalable execution engine that can be
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easily leveraged by existing tools such as Hive, Pig, or Cascading to run faster (Figure 10.7). Tez
runs on Hadoop 2.0 YARN [13–16].

The Tez project is aimed at building a framework, which supports processing the data with a
complex directed acyclic graph (DAG) of tasks. A DAG defines the data flow of an application.
Vertices represent data-processing tasks and reflect some of the business logic that transforms and/or
analyzes the data. Edges represent movement of data.

Tez models each vertex as a composition of Input, Processor, and Output modules. Input and
Output determine the data format and how and where it is read from/written to. An input represents
a pipe through which a processor can accept input data from a data source such as HDFS or the
output generated by another vertex, while an output represents a pipe through which a Processor
can generate output data for another vertex to consume or to a data sink such as HDFS. Processor
holds the data transformation logic, which consumes one or more Inputs and produces one or more
Outputs. Users can plug in input, processing, and output logic into vertexes and then build a DAG
to perform arbitrary data-processing works.

Tez runtime automatically maps a DAG onto physical resources, parallelizes the logic, and exe-
cutes it in Hadoop. Tez expands the logical graph into a physical graph by adding parallelism at the
vertices; that is, multiple tasks are created per logical vertex to perform the computation in parallel.
A logical edge in a DAG is also materialized as a number of physical connections between the tasks
of two connected vertices.

With the expressive capability of DAG, some works took multiple MapReduce jobs, now can be
a single job. An example is given as follows. The following Hive statement joins three tables and
computes some aggregations.

SELECT a.state, COUNT (*), AVERAGE(c.price)
FROM a
JOIN b ON (a.id = b.id)
JOIN c ON (a.itemId = c.itemId)
GROUP BY a.state

In Hive, the statement is translated into several MapReduce jobs, which run one after another; Figure
10.9a depicts the execution flow of the MapReduce jobs. In Tez, the statement is translated into only
one job expressed in a DAG as depicted in Figure 10.9b. We can see from the figure that, to run the
statement above, Tez requires fewer jobs (1 vs. 3) and no IO synchronization barriers (provided via
HDFS for the MR jobs) are required.

By executing series of MR tasks in a single job, and by eliminating unnecessary tasks, synchro-
nization barriers, and reads from and writes to HDFS, Tez speeds up data processing across both
small-scale and low-latency, and large-scale and high-throughput workloads. Tez can speed up Pig
and Hive workloads by an order of magnitude. It is the basis for Hive 1.3 (Stinger).

One of the unique features of Tez is the ability to dynamically optimize the DAG execution. Tez
allows users to plug in vertex management modules to collect runtime information and change the
dataflow graph dynamically to optimize performance and resource utilization.

The vertex state machine invokes the user module at significant transition points such as vertex
start, source task completion, etc. At these points, the user logic can examine the runtime state and
provide hints to the main Tez execution engine to decide runtime attributes such as task parallelism
of vertex.

10.3.3 INTRODUCTION TO THE SPARK ECOSYSTEM

Apache Spark is a powerful big data-processing tool, with rich functionalities such as machine
learning, real-time stream processing, and graph computations. Since first introduced in 2010 by
University of California at Berkeley, Spark and its ecosystem [17] have grown to be an alternative
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FIGURE 10.9 (a) MapReduce jobs. (b) Tez job.

FIGURE 10.10 Spark ecosystem and components.

of Hadoop ecosystem, not only as a component of the Hadoop platform. Now, the largest known
cluster of Apache Spark has more than 8000 nodes.

The Spark ecosystem consists of several components, including Spark Core, Spark SQL, Spark
Streaming, MLlib, and GraphX, as depicted in Figure 10.10.

The Spark Core component is the cornerstone for parallel and distributed processing of large data
sets. Spark Core is responsible for all basic I/O functionalities, scheduling andmonitoring the jobs on
clusters, dispatching tasks, accessing to different storage systems, memory management, and fault
recovery.

The Spark SQL component is a library riding on top of Apache Spark. Users and developers can
leverage the power of declarative queries and optimized storage to run SQL queries on data, which is
stored in RDDs (Resilient Distributed Datasets, will be introduced later) format. Data from various
sources such as JSON, Parquet, or Hive can be extracted, transformed, and loaded into Spark as
RDDs. After that, users can run ad hoc SQL queries to retrieve interesting results.

Spark Streaming is a light-weight API that allows developers to perform streaming analytics by
ingesting data in mini-batches. Transformations are applied on mini-batches of data. Spark Stream-
ing consumes data from various data sources and live streams such as Twitter, Apache Kafka, IOT
sensors, and Apache Flume. The component has potential applications in log processing, intrusion
detection, fraud detection, online advertisements and campaigns, supply chain management, etc.

To extract valuable information from big data sets, there is an increasing need for analyzing large
data sets with complex machine-learning algorithms to extract deep insights. MLlib is a low-level
machine-learning library on Spark platform. It can be called from Scala, Python, and Java program-
ming languages. MLlib eases the development of scalable machine-learning pipelines. Commonly
used machine learning and data-mining algorithms have been implemented in MLlib, including
clustering, classification, decomposition, regression, and collaborative filtering.
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GraphX is an API on top of Apache Spark for graph data processing. Spark GraphX introduces
Resilient Distributed Graph (RDG, an abstraction of Spark RDDs), which associates records with
the vertices and edges of a graph. RDG helps data analysts perform graph operations through various
expressive primitives. Developers can use these primitives to implement graph data analysis algo-
rithms such as PageRank, in a few lines of code. The GraphX component supports many use cases
such as recommendation and fraud detection.

The Spark Core component makes use of a special data structure known as RDD. RDDs are
immutable, partitioned collection of records that can be operated on in parallel. Since RDD is
immutable, it has no overhead related to synchronization. Any kind of data can be put in RDDs.
RDDs are usually created by either transforming existing RDDs or by loading an external data set
from HDFS or HBase.

10.3.3.1 Resilient Distributed Dataset
RDD is designed to keep the whole data set in memory for faster computation (since the data can be
accessed with lower latency), which is beneficial to data-processing work of iterative style, such as
machine-learning algorithms. RDD uses a unique lineage-based technique to provide fault-tolerance
guarantee. When some downstream RDD is lost due to failures, it can be re-constructed from
upstream RDD by applying transformations between the two RDDs in the DAG, which described
the logic of the data-processing flow. Basically, the re-construction of lost partition is exactly the
same as the lazy evaluation of the DAG (will be introduced later).

By keeping the data in memory, Spark has avoided the overhead of I/O operations related to
writing the intermediate results to disks and reading the data back from disks, which has been the
pain point of Hadoop/MapReduce.When the memory is not sufficient to keep the whole RDD, Spark
will perform the eviction based on an LRU (Least Recently Used) strategy.

Typically, an application logic expressed in a sequence of operations on RDDs includes trans-
formation and action. Transformations are coarse-grained operations such as join, union, filter, or
map on existing RDDs, which produce a new RDD. Actions are operations such as count, first, and
reduce, which returns some values after being applied to existing RDDs.

All transformations are lazy, which means that Spark will not execute them immediately, but
tracks all the transformations to be applied to upstreamRDDs, tracing back the dependencies onwhat
parent RDD is needed and then eventually track all the way to the source node of a DAG. Activation
of actions, which starts from the leaf node of a DAG, will trigger downstream transformations first
and upstream transformations later on RDDs.

Data processing works can be expressed in a series of transformations and actions on RDDs; the
former tells how to generate a new RDD from an old RDD by some operations and the latter specifies
how to generate the final result. RDD, transformations and actions together, constitutes a DAG.

A realistic DAG looks like the one shown in Figure 10.11. Some data files in HDFS are loaded into
two RDDs. Then a series of transformations (map, flatMap, filter, groupBy, join, etc.) are run against
the RDDs one by one. After one transformation is run against an RDD, a new RDD is generated.
Then the next transformation will be run against the newly generated RDD to generate another new
RDD, etc. Finally, an action (count, collect, save, take) is invoked on the last RDD, and the final
result is generated and written to storage devices.

There are two forms of dependencies between partitions of a child RDD and a parent RDD (please
refer to Figure 10.12). Narrow dependency means that each partition of the parent RDD is used by
at most one partition of the child RDD. Wide dependency means that multiple child partitions may
depend on one partition of the parent RDD. Operations such as group-by-keys, reduce-by-keys, and
sort-by-keys need wide dependency to achieve correct results. The processing of narrow dependency
(generating child RDD from parent RDD) can be donewithin amachinewithout data shuffling across
network. However, wide dependencies involve data shuffling.

The DAGScheduler is the scheduling layer of Spark that implements stage-oriented scheduling.
The basic concepts of theDAGScheduler are jobs and stages. A job is a top-level work item submitted
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FIGURE 10.11 Typical DAG of RDDs.

FIGURE 10.12 Narrow dependency and wide dependency.

to DAGScheduler to compute the result of an action. A job ends with a single final RDD. A stage
is a set of parallel tasks, one per partition of an RDD, that compute partial results as part of a Spark
job. It is a unit of data processing.

The DAGScheduler will examine the type of dependencies and group the narrow dependency
RDDs into a stage.Wide dependencies will span across consecutive stages within the execution flow.
Figure 10.13 shows a job and its corresponding stages that joins two tables and performs aggregation.

The DAGScheduler generates a DAG of stages for each job, keeps track of which RDDs and
stage outputs are materialized, and finds a minimal schedule to run jobs. It then submits stages to
TaskScheduler to run.

DAGScheduler also determines the preferred locations to run each task on, based on the current
cache status (some partitions of an RDD are cached in memory), and hands over the information to
TaskScheduler. Furthermore, DAGScheduler handles failures due to shuffle output files being lost,
in which case old stages may need to be resubmitted. Failures within a stage that are not caused by
shuffle file loss are handled by the TaskScheduler itself, which will retry each task a small number
of times before cancelling the whole stage.

10.3.3.2 DataFrame
DataFrame adds an abstraction layer on RDD for Spark SQL. In the earlier versions of Spark SQL,
DataFrame was named SchemaRDD. Basically, a SchemaRDD is an RDDwith a layer of schema on
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FIGURE 10.13 Job and corresponding stages.

top, which gives formal names and data types to different columns in the data set. TheDataFrameAPI
evaluates operations in a lazy manner to provide support for relational optimizations and optimiza-
tion of the whole data-processing workflow. Programmers can integrate procedural and relational
processing by calling DataFrame API in Scala or Java program.

10.3.4 PERFORMANCE OF SPARK

10.3.4.1 Performance of Shark (Spark SQL) for SQL Queries
AMPLab of University of California at Berkley has drawnworkloads and queries fromReference 18
to provide quantitative and qualitative comparisons of five systems, including Redshift, Hive (v0.12),
Shark, Impala (v1.2.3), and Stinger/Tez (v0.2.0).

Redshift is an MPP database offered by Amazon.com based on the ParAccel data warehouse.
Shark is a predecessor of Spark SQL, a Hive-compatible SQL engine running on top of Spark Core.
Impala from Cloudera is a Hive-compatible SQL engine with its own MPP-like execution engine.

The data set contains three tables. The Ranking table stores Web sites and their page ranks. The
UserVisits table stores server logs for each Web page. And the Documents table stores unstructured
HTML pages. There are four queries in the workload. Query 1 (a scan query) and Query 2 (an
aggregation query) are exploratory SQL queries. Query 3 is a join query with a small result set.
Query 4 is a bulk UDF query. It calculates a simplified version of PageRank using a sample of the
Common Crawl (http://commoncrawl.org/) data set.

For Query 1 (scan query), when the data set can be kept in memory, Spark outperforms other
systems for all selectivity. For Query 2 (aggregation query), Spark running on in-memory data set
achieves higher performance than other systems except RedShift.

For Query 3 (join query), when the selectivity is low, Spark achieves similar response times
to Redshift and Impala (in-memory means the data set is resident in memory), and outperforms

http://commoncrawl.org/
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TABLE 10.1
Median Response Times of Query 3 for Different Systems
(Settings)/Selectivity (Seconds)

System (Setting) Version Query 3A Query 3B Query 3C

485,312 Rows 53,332,015 Rows 533,287,121 Rows

(Low Selectivity) (Median Selectivity) (High Selectivity)

Redshift (HDD) Current 33.29 46.08 168.25

Impala—Disk 1.2.3 108.68 129.815 431.26

Impala—Mem 1.2.3 41.21 76.005 386.6

Shark—Disk 0.8.1 111.7 135.6 382.6

Shark—Mem 0.8.1 44.7 67.3 318

Hive—YARN 0.12 561.14 717.56 2374.17

Tez 0.2.0 323.06 402.33 1361.9

FIGURE 10.14 Median response times of Query 3 for different systems (settings)/selectivity.

other systems. When the selectivity is higher, Spark (in-memory) outperforms other systems or set-
tings except Redshift, which always outperforms Spark. For Query 4 (query with UDFs), Spark
(in-memory) outperforms Hive and Tez by a large margin. Table 10.1 and Figure 10.14 show the
results of the join query (Query 3) on different systems. Readers can refer to Reference 19 for more
benchmark results.

From the results above, we can see that Shark (now Spark SQL) is a very competitive one among
currently available big data-processing systems for structured data.

10.3.4.2 Performance of Spark for Machine-Learning Algorithms
Designers of Spark [20] have also compared the performance of the logistic regression implementa-
tion on Spark platform to an implementation for Hadoop, using a 29-GB data set on 20 “m1. xlarge”
EC2 (Amazon Elastic Compute Cloud) nodes with four cores each.

The results are shown in Figure 10.15. With Hadoop, each iteration takes 127 s, because it runs
as an independent MapReduce job. With Spark, the first iteration takes 174 s, which they think the
reason is due to using Scala instead of Java, but subsequent iterations take only 6 s, because the
cached data can be reused. This allows the job to run up to 10× faster.
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FIGURE 10.15 Logistic regression performance in Hadoop and Spark.

10.3.4.3 Awards That Spark Received
Spark has officially won the Daytona GraySort contest (http://sortbenchmark.org/) in 2014 [21].
People of Databricks sorted 100 TB of data on disk in 23 min, using Spark on 206 EC2 machines.
The previous world record set by Hadoop/MapReduce used 2100 machines and took 72 min. The
result showed that Spark could sort the same amount of data faster (3× faster) and use less hardware
resources (10× fewer machines). All the sorting work took place on disk (HDFS), without using
Spark’s in-memory cache.

Winning the benchmark is a prominent milestone for Spark. The sorting results demonstrate that
Spark can handle data set of very big size, from GBs to TBs. Databricks has enhanced the Spark
platform with new techniques, including sort-based shuffle, a new Netty-based transport module,
and external shuffle service, which make the winning of the benchmark possible.

Although no official PB sort competition exists, Databricks also sorted 1 PB (10 trillion records)
of data on 190machines and released the result; they took less than 4 h. The PB time is over 4× faster
than previously reported result based on Hadoop/MapReduce, which took 16 h on 3800 machines.

People from Spark community and Databricks company continuously improve Spark from many
aspects, including scalability, reliability, and performance. Now all Spark operators can do external
(disk) operations when the whole data set cannot fit into memory, and the operators are a superset of
map and reduce, which make writing complex data-processing program more convenient. The result
of 1 PB sorting shows that Spark is able to process data sets bigger than the aggregate memory of
the whole cluster.

Table 10.2 shows some settings in sorting and some performance metrics achieved. The results
are compared with the results of earlier record Hadoop/MapReduce had made.

10.3.5 HADOOP AND SPARK: COEXIST OR COMPETE?

Both Hadoop and Spark can manage data sets of very big sizes and provide similar analytic function-
alities over the data. Naturally, one question is coming into the minds of people. The two platforms
will coexist or compete with each other, and finally who can win?

Spark has not implemented its own file systems and storage formats (RDD is a memory-oriented
storage format). It relies on distributed file systems such asHDFS and storage formats such as parquet
(a columnar file format for query-intensive data warehouse applications). Except that, Spark can run
in a standalone mode without any more dependency on the Hadoop platform.

Spark aims to become a unified data hub, which not only processes native data sets (in-memory
RDDs loaded from disk-resident parquet files), but also accepts data from any sources, including
RDBMS such as MySQL, stream processing systems such as Storm, message queues such as Kafka,

http://sortbenchmark.org/
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TABLE 10.2
Comparison of Hadoop and Spark 100 TB Sorting Results

Items Hadoop MR Record Spark Record Spark 1 PB

Configuration # Nodes 2100 206 190

# Cores 50,400 physical nodes 6592 virtualized nodes 6080 virtualized nodes

Cluster disk throughput 3150 GB/s (est.) 618 GB/s 570 GB/s

Network Dedicated data Virtualized (EC2) Virtualized (EC2)

center, 10 Gbps 10 Gbps network 10 Gbps network

Results Data size 102.5 TB 100 TB 1000 TB

Elapsed time 72 min 23 min 234 min

Sort rate 1.42 TB/min 4.27 TB/min 4.27 TB/min

Sort rate/node 0.67 GB/min 20.7 GB/min 22.5 GB/min

Sort Benchmark Yes Yes No

Daytona Rules

Source: From Reynold Xin. Spark the fastest open source engine for sorting a petabyte. https://databricks.com/blog/
2014/11/05/spark-officially-sets-a-new-record-in-large-scale-sorting.html, 2014.

and other big data systems such as Hive and HBase. People can join data sets from various sources
(e.g., joining Spark native RDD data sets loaded from HDFS files and data sets fetched from an
RDBMS) and pump the data into a processing pipeline, which completely runs inside the Spark
framework.

On the other hand, YARN takes Hadoop from a batch-processing tool to an interactive one.
By separating the resource management functionality from programming models, the Hadoop
2.0 platform supports various applications, including batch MapReduce jobs, interactive queries,
iterative machine-learning algorithms, stream data processing, and graph data processing. Spark
can be embedded into Hadoop platform as an application to provide interactive query processing
capabilities.

From above description, we can see that there is functionality overlapping and inter-dependency
between the two platforms. The two platforms and their ecosystems will coexist and evolve forward
to more advanced tools.

However, one thing could not be denied. The two platforms will compete with each other. Besides
achieving higher performance than Hadoop in many application scenarios, Spark can now process
very big data sets up to PBs, which is the strength of Hadoop traditionally.

Spark gains many attractions over Hadoop. For example, Mahout, a machine-learning library for
Hadoop since 2009, has been moved on top of Spark for higher performance. In early version of
Mahout, machine-learning algorithms are implemented as MapReduce programs, which run inef-
ficiently due to the limitation of MapReduce computing model. In 2014, the Mahout community
decided to move Mahout codebase onto other data-processing systems. It would no longer accept
Hadoop MapReduce code and completely switched new development to Spark. However, MapRe-
duce algorithms already in the codebase are kept there and maintained by the community. The reason
to move Mahout to Spark is that Spark provides a more flexible program model and a more efficient
execution engine.

The community of Mahout project reworks Mahout to leverage in-memory data-processing capa-
bility of Spark for higher performance. Now, Mahout is refactored to be a more general library, not
only running on Spark, but also on other data-processing systems, such as H2O engine. H2O was
developed separately by a startup called 0xdata. It is an in-memory data engine specifically designed
for running various types of machine learning and statistical workloads on data stored in the HDFS
at scale.



One Platform Rules All 209

However, the Hadoop community also continuously improves Hadoop to support low-latency
queries, which is the strength of Spark platform. The two platforms will compete and coexist for a
long time. People will not abandon Hadoop entirely because it is still a great tool for storing lots and
lots of data, and some people still use MapReduce for batch processing of data.

After adding the capability of interactive query to Hive by designing and implementing of Tez,
Hortonworks unveiled a new strategy called Stinger. Next [22] will rework Hive to handle read/write
transactions, support the full set of SQL, and provide sub second response times. They also try
to integrate Hive and Apache Spark so that the former can handle machine-learning jobs. A more
powerful Hive will be appealing to lots of users who have been using Hive for a long time and are
not willing to transfer to a completely new technology such as Spark.

10.3.6 HADOOP/SPARK’S ROLE IN FUTURE BIG DATA WAREHOUSES

Both Hadoop and Spark can place a central role in future generation of big data warehouses.
Databases such as VoltDB/Sap HANA can manage data marts and support real-time queries over
analytic results on the edge of a data center. There are three symbiosis scenarios, that is, Hadoop
dominant, Spark dominant, and Coexist (please refer to Figure 10.16).

In a Hadoop dominant scenario, Hadoop is the final backend to consolidate all data in one place.
The data can be structured, semistructured, or unstructured. Over the Hadoop platform, people can

(a) (b)

(c)

FIGURE 10.16 Role of Hadoop and Spark in future generation of data warehouses. (a) Hadoop dominant.
(b) Spark dominant. (c) Coexist.
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perform various analytics over different data sets, including simple statistics and complex machine-
learning and data-mining algorithms. In this scenario, Spark can be a component of Hadoop platform
to provide in-memory processing of moderate-sized data sets.

However, Spark does not want to be only a component of other frameworks. The community
of Spark is trying to make Spark a fully functional framework. It can also play a dominant role in
the next generation of data warehouses. Spark will act as a data hub, receives data from various
sources, including streaming sources, files, and other RDBMS, and pumps the data through an ana-
lytic pipeline. It is the final place to gather all related data for people to derive insights. Spark can
extract data from Hadoop, such as data in HDFS, Hive table, and HBase table. Although Spark can
run over YARN of Hadoop 2.0, it is Spark that rules all, not Hadoop.

In the above two scenarios, Hadoop and Spark both try to embrace the other into its arms.
In the third scenario, data is sent to Spark first, and people do some exploratory analysis over

subset of data on Spark. And then, all data is handed over to Hadoop for further deep analysis. Deep
analysis needs data that spans a longer period of time, thus taking more time to finish. Spark and
Hadoop are used together by leveraging their strengths for different stages of data processing.

10.4 CONCLUSIONS

10.4.1 BUSINESS REQUIREMENTS DRIVE INNOVATIONS

The capacity of storage devices is increasing, while the price is going down, making collecting and
saving data sets of very big sizes possible. In old days, when people have some data, they resort to
database (specifically RDBMS). RDBMSs become a “one size fits all” tool. Now people have really
big data sets in hand, but they lack proper tools to process the data. Traditional RDBMS could not
handle data sets of very big sizes due its scalability limitation. The requirements of people to derive
insights from big data sets give the birth to tools such as Hadoop and Spark.

Hadoop 1.0 is a tool that mimics MapReduce technology of Google. It is a batch-processing
tool from the very beginning of design. However, people are eager to get the results earlier for fast
decisionmaking; there is a demand for lower latency for data-processingworks including exploratory
analysis andmachine learning. Timeliness of analysis (latency) is becoming the pain point of Hadoop
1.0.

Spark was born to meet such requirements with its in-memory processing design principle. By
keeping the data set in the aggregate memory of a cluster, Spark can process big data sets and achieve
fast response times. In the new version of Spark, operators can also operate on disk-resident data too,
which makes Spark a strong competitor of Hadoop.

However, Hadoop has evolved into Hadoop 2.0 with a cleaner architecture, which separates
resource management and programming models. It has become a more powerful tool; it can process
more data types and provide lower latency.

In all, the requirements of timely analysis of big data sets drive these innovations. We can see that
the two camps inspire each other, limitations of Hadoop 1.0 spark the enthusiasm of some researchers
to develop Spark, and higher performance of Spark spurs the evolution of Hadoop.

10.4.2 LESSONS THAT DATABASE RESEARCH COMMUNITY AND DATABASE INDUSTRY SHOULD

HAVE LEARNED

In early days, some people have criticized the over-simplicity, programming at very low level, and
low performance of Hadoop/MapReduce. However, for really big data sets, which could not be han-
dled by traditional RDBMSs, people can only rely on Hadoop/MapReduce. More and more people
use Hadoop, and it became more and more popular. Hadoop has become a standard tool for big data
processing.
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We can recall that in early days of RDBMS when relational systems were first introduced, hierar-
chical (IMS) and network (IDMS) database camps argued that relational systems were much inferior
and could not provide good enough performance. Over time, these arguments turned out to be
false (http://www.b-eye-network.com/view/10786). Researchers and developers of RDBMS have
brought out optimization techniques for efficient execution of transactions, as well as other tech-
niques to make RDBMS a reliable and high-performance database for vast number of operational
and analytical applications.

RDBMS has become a big success, and it is the dominant technology in the database market and
fosters several big companies such as Oracle and TeraData. History repeats itself again and again. In
early days of Hadoop/MapReduce, there is a debate [23] around Hadoop/MapReduce whether it is an
innovation or a major step backward. Time has passed, and the big success of Hadoop/MapReduce
may have given an answer to the debate.

Hadoop is a tool, and so is Spark, just like RDBMS is a tool. RDBMSs are suitable for data
management requirements of OLTP applications, while Hadoop or Spark is a proper tool for big
data processing; it can process any type of data and it supports batch processing as well as interac-
tive analysis. Different jobs need different tools. Hadoop (and the MapReduce programing model)
has its merits, including lower cost than proprietary tools, highly scalability, and highly reliabil-
ity. Hadoop/MapReduce is an innovative tool. When Spark breaks the establishment of Hadoop in
big data-processing domain, people are more careful and no one denies advancement of Spark over
Hadoop; we hear no criticism this time.

Hadoop and Spark were not born from traditional database research community or database
companies. The first paper of MapReduce was not published on a database conference.

Some people from database research community overemphasized the limitations of Hadoop/
MapReduce, and they are blind to its merits. They are unwilling to admit disruptiveness of the tech-
nology, even after they see the increasing popularity of Hadoop/MapReduce. Some companies have
looked down on Hadoop/MapReduce or ignored it in early days. There are some lessons for the
database research community and database companies to learn.

The penetration power of new data-processing technologies is so powerful that no vendors can
resist the popularity of Hadoop and continue to reject it. EMC, formerly not as a database vendor,
became a strong player in the market overnight through acquiring Greenplum, which has com-
bined scalability of MapReduce and high performance of PostgreSQL (an open-source RDBMS).
The coming of EMC into the database market, just like throwing a stone into the water, breaks
the calmness and forces traditional database vendors to rethink their attitudes toward new tech-
nologies such as Hadoop and Spark. To maintain its leadership in the market, TeraData acquired
AsterData company to obtain the AsterData database, which used MapReduce-style parallelization
to enrich its product line. Oracle, a leader in traditional database market, looked down on and rejected
Hadoop/MapReduce before 2011, finally published its Big Plan, which incorporated NoSQL and
Hadoop into its software line in late 2011. Microsoft rejected Hadoop/MapReduce in 2009, and in
2012 due to more and more popularity and success of Hadoop, it closed its Dryad project and hugged
Hadoop [24].

Popularity instead of dying out of Hadoop/MapReduce and 180◦ turning around of Oracle and
Microsoft’s attitude toward Hadoop/MapReduce can tell something.

Microsoft is an interesting company. When Netscape grabbed most of the market share of WWW
browser, Microsoft provided Internet Explorer for free. When Real player began to gain attraction
in the audio and video streaming market, Microsoft provided similar product of Media Tools almost
for free. When Java became a popular programming language, Microsoft delivered C# language on
the .Net platform, which is very similar to Java. When Apple Siri became a popular digital assistant
on iPhone, Microsoft brought out Cortana on Windows. Microsoft succeeded to some extent in all
above cases to compete with other products. When Hadoop became a standard tool for big data
processing, Microsoft introduced Dryad, which is also a parallel computing framework to process
big data. This time the outcome is somewhat different.

http://www.b-eye-network.com/view/10786
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Dryad adopts the concept of DAG to express complex data-processing work. In a DAG, each
vertex is a program and edges represent data channels, which can be files, TPC pipes, or shared
memory FIFO queues. Due to the huge popularity of Hadoop/MapReduce, Microsoft discontin-
ued the development of Dryad and shifted its focus to Hadoop framework in 2011 as mentioned
above.

In our opinion, Dryadmay have been an alternative toHadoop/MapReduce. In recent several years
after Microsoft abandoned Dryad, Apache Hadoop community picked up the basic idea of Dryad
and developed Apache Tez, a new runtime framework on YARN to provide interactive query capa-
bility. DAG is also one of basic concepts and techniques on which Spark is based; other techniques
include in-memory data sets, lineage-based fault-tolerance guarantee, etc. The Spark community has
developed Spark into a reliable and high-performance big data platform, which not only challenges
Hadoop, but also, together with Hadoop, challenges traditional databases; they are not friends but
foes [25]. Who knows whether it is a wrong decision for Microsoft not to insist on developing Dryad
to be a general and high-performance big data framework?

Basically, traditional databases such as Oracle, IBM DB2, Microsoft SQL Server, TeraData,
MySQL, and PostgreSQL, and new tools such as Hadoop and Spark do the same thing, that is,
data management and data analysis. New tools have begun to eat up some market shares of tradi-
tional databases, challenging heavy weight companies such as Oracle and TeraData, just as reported
in Wall Street Journal [26]. Hadoop and Spark are disruptive innovations, and they are breaking
the monopoly of traditional technologies, specifically RDBMS. It is one of the reasons that Hadoop
received criticism, because Hadoop has become a stronger and stronger competitor and may one day
come in the center of stages in many application scenarios.

10.4.2.1 Lesson 1: Standing Up to New Requirements
What lessons database vendors should have learned? One important lesson is that vendors should
have really cared about customers and listened to them. Customers need some software that is scal-
able, they want to enjoy higher performance at lower cost, they have many types of data to process,
and the data size is really big.

The basic requirement is that they want to run some low-cost software on low-cost clusters to get
big data analysis work done. Traditional databases fall short of the expectation. Database vendors
and the database research community enjoy the big success of traditional database technology and
react somehow slowly to new requirements of people in the new era.

Though not all database vendors are slow, IBM moves fast in the big data era. When Hadoop
began to attract huge attention, IBM has integrated Hadoop into its analytic software stack. IBM had
done the right thing to meet customer’s requirements.

Since RDBMS had become a dominant technology in database market, people from traditional
database community and traditional database vendors naturally dislike something with a NoSQL
label. Successes of new tools such as Hadoop and Spark have pushed them to becomemore acute, not
to be indulged in old success any more. Hadoop and Spark do not mean to be a friend of traditional
databases. They are alternatives; they are replacements; they are competitors; and they are game
changers.

Hadoop is designed for management and processing of hundreds of TB or even tens of PB of
data. When the volume of data is merely tens of TB, performance of the old version of Hive is
much inferior to MPP database and people use a hybrid architecture to handle the big data. Some
recent data is stored in an MPP database for higher performance of processing, and all data is
consolidated in Hadoop for later batch processing. Now the situation is changing; new execution
engine such as Tez of Hadoop or Spark can achieve much higher performance, and it is possible
to build the whole data warehouse upon Hadoop or Spark with all data in one place. It is possible
that traditional RDBMSs that stand in the center of the stage may be expelled to the edge of the
stage.
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10.4.2.2 Lesson 2: Being More Open Minded
Another lesson that people should have learned is that researchers and developers should be more
open minded. RDBMS is a tool, so is Hadoop, and so is Spark, although the latter two have learned
some ideas from RDBMS, there are also critical innovations in them. And both of them have some
advantages over traditional RDBMSs such asmuch higher scalability. New techniques that can tackle
challenges of big data processing should be respected, no matter what labels are attaching to them—
NoSQL or SQL—and no matter what techniques they use.

Nowmore and more database researchers admit the importance of open-source big data platforms
such as Hadoop and Spark. They have seen rapid adoption of such platforms for processing of big
data even in traditional enterprise using RDBMS before [27]. From the author list of Reference 27,
we can see that the author of the first MapReduce paper and the researcher who led the lab where
Spark was born were invited to the meeting dominated by database researchers before.

They realize that diverse data sources require diverse programming abstractions to operate on
data sets, besides SQL. Although SQL RDBMs are still widely used, key–value stores, data stream
processors, Hadoop and Spark frameworks, etc. play more and more important roles in data manage-
ment and analytic applications. It is the time to rethink what a database means and what a database
curriculum looks like.

Big data has generated a growing demand for data scientists, who can extract actionable knowl-
edge from large volumes of diverse data. The skill set of a data scientist includes not only traditional
know-how of data management and business intelligence, but also mathematics, statistics, artificial
intelligence, and machine learning, as well as new data-processing tools such as Hadoop and Spark.

REFERENCES

1. Wikipedia. Big data. https://en.wikipedia.org/wiki/Big_data, 2016.
2. Jimmy Lin, Michael Schatz. Design patterns for efficient graph algorithms in MapReduce. 8th Workshop
on Mining and Learning with Graphs, Washington, DC, USA, 2010, pp. 78–85.

3. Tim Kaldewey, Eugene J. Shekita, Sandeep Tata. Clydesdale: Structured data processing on MapReduce.
EDBT, Berlin, Germany, 2012, pp. 15–25.

4. Sherif Sakr, Anna Liu, Ayman G. Fayoumi. The family of MapReduce and large scale data processing
systems. http://arxiv.org/abs/1302.2966, 2013.

5. Kyong-Ha Lee, Yoon-Joon Lee, Hyunsik Choi, Yon Dohn Chung, Bongki Moon. Parallel data processing
with MapReduce: A survey. SIGMOD Record 2011, 40(4): 11–20.

6. Xiongpai Qin, Huiju Wang, Furong Li, Baoyao Zhou, Yu Cao, Cuiping Li, Hong Chen, Xuan Zhou,
Xiaoyong Du, Shan Wang. Beyond simple integration of RDBMS and MapReduce—Paving the way
toward a unified system for big data analytics: Vision and progress. GCC, Xiangtan, China, 2012, pp.
716–725.

7. Jens Dittrich, Jorge-Arnulfo Quiane-Ruiz, Alekh Jindal, Yagiz Kargin, Vinay Setty, Jorg Schad.
Hadoop++: Making a yellow elephant run like a cheetah. PVLDB 2010, 3(1–2): 515–529.

8. Stefan Richter, Jorge-Arnulfo Quiane-Ruiz, Stefan Schuh, Jens Dittrich. Towards zero-overhead adaptive
indexing in Hadoop. Technical Report, Information Systems Group, Saarland University, 2012.

9. Aanand. Apache Hadoop wins Terabyte Sort Benchmark. https://developer.yahoo.com/blogs/hadoop/
apache-hadoop-wins-terabyte-sort-benchmark-408.html, 2008.

10. Apache Hadoop takes top prize at Media Guardian Innovation Awards. http://www.theguardian.com/
technology/2011/mar/25/media-guardian-innovation-awards-apache-hadoop, 2011.

11. Vinod Kumar Vavilapalli, Arun C. Murthy, Chris Douglas et al. Apache Hadoop YARN: Yet another
resource negotiator. SOCC, Santa Clara, CA, USA, 2013, Article No. 5.

12. HortonWorks. Apache Hadoop YARN wins best paper award at SoCC 2013! http://zh.hortonworks.com/
blog/apache-hadoop-yarn-wins-best-paper-award-at-socc-2013/, 2013.

13. HortonWorks. Apache Tez—A framework for YARN-based, data processing applications in Hadoop.
http://zh.hortonworks.com/hadoop/tez/, 2015.

14. Apache Tez. http://incubator.apache.org/projects/tez.html, 2016.

https://en.wikipedia.org/wiki/Big_data
http://arxiv.org/abs/1302.2966
https://developer.yahoo.com/blogs/hadoop/apache-hadoop-wins-terabyte-sort-benchmark-408.html
https://developer.yahoo.com/blogs/hadoop/apache-hadoop-wins-terabyte-sort-benchmark-408.html
http://www.theguardian.com/technology/2011/mar/25/media-guardian-innovation-awards-apache-hadoop
http://www.theguardian.com/technology/2011/mar/25/media-guardian-innovation-awards-apache-hadoop
http://zh.hortonworks.com/blog/apache-hadoop-yarn-wins-best-paper-award-at-socc-2013/
http://zh.hortonworks.com/blog/apache-hadoop-yarn-wins-best-paper-award-at-socc-2013/
http://zh.hortonworks.com/hadoop/tez/
http://incubator.apache.org/projects/tez.html


214 Big Data Management and Processing

15. Arun C. Murthy, Bikas Saha. Apache Tez: Accelerating Hadoop query processing. Hadoop Summit, San
Jose, USA, 2013.

16. HortonWorks. Interactive query for Hadoop with Apache Hive on Apache Tez, benefits of the Stinger
Initiative delivered. http://hortonworks.com/hadoop-tutorial/supercharging-interactive-queries-hive-tez/,
2015.

17. Apache Spark ecosystem and Spark components. https://www.dezyre.com/article/apache-spark-
ecosystem-and-spark-components/219, 2016.

18. Andrew Pavlo, Erik Paulson, Alexander Rasin, Daniel J. Abadi, David J. DeWitt, Samuel Madden,
Michael Stonebraker. A comparison of approaches to large-scale data analysis. SIGMOD, Providence,
Rhode Island, USA, 2009, pp. 165–178.

19. Amp Lab. Big data benchmark. https://amplab.cs.berkeley.edu/benchmark/, 2016.
20. Matei Zaharia, Mosharaf Chowdhury, Michael J. Franklin, Scott Shenker, Ion Stoica. Spark: Cluster

computing with working sets. HotCloud, Boston, MA, USA, 2010.
21. Reynold Xin. Spark the fastest open source engine for sorting a petabyte. https://databricks.com/

blog/2014/11/05/spark-officially-sets-a-new-record-in-large-scale-sorting.html, 2014.
22. Gigaom. Hortonworks lays out a future for Hive that includes transactions, Spark and sub-

second queries. https://gigaom.com/2014/09/03/hortonworks-lays-out-a-future-for-hive-that-includes-
transactions-spark-and-sub-second-queries/, 2014.

23. David J. DeWitt, Michael Stonebraker. MapReduce: A major step backwards. http://homes.cs.
washington.edu/~billhowe/mapreduce_a_major_step_backwards.html, 2008.

24. Mary Jo Foley. Microsoft drops Dryad; puts its big-data bets on Hadoop. http://www.zdnet.com/blog/
microsoft/microsoft-drops-dryad-puts-its-big-data-bets-on-hadoop/11226, 2011.

25. Michael Stonebraker, Daniel Abadi, David J. DeWitt, SamMadden, Erik Paulson, Andrew Pavlo, Alexan-
der Rasin. MapReduce and parallel DBMSs: Friends or foes? Communications of the ACM 2010, 53(1):
64–71.

26. Wall Street Journal. Open-source projects like Hadoop affects growth for Oracle, Teradata.
http://finance.yahoo.com/news/open-source-projects-hadoop-affects-100545583.html, 2013.

27. Daniel Abadi, Rakesh Agrawal, Anastasia Ailamaki et al. The Beckman report on database research.
Communications of the ACM 2016, 59(2): 92–99.

http://hortonworks.com/hadoop-tutorial/supercharging-interactive-queries-hive-tez/
https://www.dezyre.com/article/apache-sparkecosystem-and-spark-components/219
https://www.dezyre.com/article/apache-sparkecosystem-and-spark-components/219
https://amplab.cs.berkeley.edu/benchmark/
https://databricks.com/blog/2014/11/05/spark-officially-sets-a-new-record-in-large-scale-sorting.html
https://databricks.com/blog/2014/11/05/spark-officially-sets-a-new-record-in-large-scale-sorting.html
https://gigaom.com/2014/09/03/hortonworks-lays-out-a-future-for-hive-that-includestransactions-spark-and-sub-second-queries/
https://gigaom.com/2014/09/03/hortonworks-lays-out-a-future-for-hive-that-includestransactions-spark-and-sub-second-queries/
http://homes.cs.washington.edu/~billhowe/mapreduce_a_major_step_backwards.html
http://homes.cs.washington.edu/~billhowe/mapreduce_a_major_step_backwards.html
http://www.zdnet.com/blog/microsoft/microsoft-drops-dryad-puts-its-big-data-bets-on-hadoop/11226
http://www.zdnet.com/blog/microsoft/microsoft-drops-dryad-puts-its-big-data-bets-on-hadoop/11226
http://finance.yahoo.com/news/open-source-projects-hadoop-affects-100545583.html


11 Security, Privacy, and Trust for
User-Generated Content
The Challenges and Solutions

Yuhong Liu, Yu Wang, and Nam Ling

CONTENTS

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 216
11.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 216

11.1.1 UGC and Big Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 217
11.1.2 Classification of UGC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 217

11.1.2.1 Online Social Network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 217
11.1.2.2 Crowdsourcing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 218
11.1.2.3 Online Word-of-Mouth Network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 218

11.1.3 System Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 218
11.1.4 Emerging Security, Privacy, and Trust Challenges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 219

11.1.4.1 Relationship among Security, Privacy, and Trust . . . . . . . . . . . . . . . . . . . . . . . . . . . 219
11.1.4.2 Security Challenges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 220
11.1.4.3 Privacy Challenges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 220
11.1.4.4 Trust Challenges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 221

11.2 Security Attacks and Defenses. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 221
11.2.1 Sybil Attack . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 221
11.2.2 Security Attacks Based on Users’ Sensitive Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . 222

11.2.2.1 Identity Theft . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 222
11.2.2.2 Social Spam and Phishing Attack . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 223
11.2.2.3 Defense . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 223

11.3 Privacy Attacks and Defenses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 224
11.3.1 Understanding Privacy Threats and Defenses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 224

11.3.1.1 Private Information Type . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 224
11.3.1.2 Privacy Adversary Type . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 224

11.3.2 Privacy-Related Threats . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225
11.3.2.1 Profile Privacy Threats . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225
11.3.2.2 Relationship Privacy Threats . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225
11.3.2.3 A Mixture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 226

11.3.3 Privacy Preserving Solutions for UGC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 226
11.3.3.1 Enhancing User Privacy Settings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 226
11.3.3.2 Data Encryption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227
11.3.3.3 Defenses against Private Information Inference . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227

11.3.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 228
11.4 Trust Models, Attacks, and Defenses. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 228

11.4.1 Ensuring Trustworthiness of UGC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 228
11.4.1.1 Web-of-Trust . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 228
11.4.1.2 Direct/Indirect Trust Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 228
11.4.1.3 Bayesian-Based Trust Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 229

215



216 Big Data Management and Processing

11.4.1.4 Dempster–Shafer Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 229
11.4.1.5 Fuzzy Logic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 230
11.4.1.6 Entropy-Based Trust Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 230

11.4.2 Trust-Related Attacks and Defenses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 230
11.4.2.1 New Comer Attack . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 231
11.4.2.2 Self-Boosting and Bad-Mouthing Attack . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 231
11.4.2.3 On–Off Attack . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 231
11.4.2.4 More Advanced Attack . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 231

11.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 232
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 232

ABSTRACT

With the rapid development of ubiquitous computing, more individual users are getting used to gen-
erate, share, and exchange excessive amount of digital media content on the Internet. Such content,
which is also called user-generated content (UGC), has become an essential source of today’s big
data. The anonymity and simplicity of generating such content, however, make it extremely dif-
ficult to guarantee the quality. Furthermore, the significant value of UGC also attracts malicious
users’ attention and leads to diverse profit-driven attacks, raising great concerns on its security,
trustworthiness, and privacy.

This chapter starts with introducing the relationship between UGC and big data as well as UGC
classification. A system model is then established to describe UGC-centric platforms, providing the
foundation for the later understanding of the challenges and solutions in such platforms. The main
theme of this chapter is to provide a comprehensive review on the emerging security, privacy, and
trust challenges for UGC as well as the state-of-the-art defense solutions. The relationship among
security, privacy, and trust in the big data context is also discussed in details.

11.1 INTRODUCTION

Recent years, big data has attracted increasing attention from both academia and industry. Although
the definition of big data varies across different fields and is still evolving, it is commonly agreed
that big data has five essential characteristics, which are often described as five Vs: volume, velocity,
variety, value, and veracity [1,2]. Specifically, the meaning of these five Vs is listed below:

• Volume refers to the size of the data. The data generated and stored by today’s cyber systems
is huge, which may need to be measured by petabytes or even exabytes.

• Velocity refers to the high speed of data generation, which requires more powerful data-
processing capability.

• Variety refers to various types of unstructured data, such as image, video, social network-
ing conversations, geographic location information, etc., which is much more complex to
process than the traditional structured data.

• Value refers to the meaningful information that can be extracted from the large amount of
data.

• Veracity refers to the trustworthiness of the data. When the data is generated and accessed
by diverse parties, it becomes extremely challenging to ensure the quality and truthfulness
of the information.

Big data can be generated from diverse sources, such as health data from medical industry, sensor
data from Internet of Things (IoT) applications, business transaction data from stock market, etc.
Beyond these sources, big data is also generated by individual Internet users everyday, where it is
called user-generated content (UGC).
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As ubiquitous computing dramatically changes the way people think, work, and interact, it has
become much easier and more convenient for individual users to proactively generate, share, and
exchange diverse digital media content on the Internet, such as question–answer databases, digital
video, blogging, forums, review sites, online social conversations, mobile phone photography, and
wikis. Such UGC has experienced exponential increase recently and is recognized as an important
component of big data.

11.1.1 UGC AND BIG DATA

As one type of big data, UGC also shares the “five-V” characteristics.
The flexibility of generating UGC by anyone from any devices at anywhere has led to an expo-

nential increase in its volume and velocity. For example, YouTube users were uploading 300 hours
of new videos every minute in the year 2014, three times more than 1 year earlier [3]; 500 million
tweets are generated on Twitter everyday, bringing around 30% growth in volume every year [4];
by the end of the first quarter 2016, cumulative reviews on Yelp have grown to approximately 102
million with a 32% growth compared to the same period last year [5].

Furthermore, due to individual users’ subjective preferences, the format of UGC is quite diverse
by nature. Images, videos, audios, social interactions, and conversations are frequently created,
posted, and shared online by individual users.

The value of UGC is significant. UGC has been utilized in a number of research studies to predict
events, such as movie box-office income [6], natural disasters such as earthquake [7] and typhoon
[8], and even political elections [9,10]. In addition, more users are relying on UGC to make their
online purchasing and downloading decisions. For example, in online review systems, for example,
Amazon, Yelp, Reditt, and IMDB, users refer to ratings and reviews generated and shared by other
users to evaluate the trustworthiness of online items.

The veracity of UGC, however, is difficult to control due to two reasons. On the one hand, the easi-
ness of creating and sharing such contents allows unconsciousmistakes from individual users. On the
other hand, UGC’s significant value has provided strong motivation for profit-driven manipulations,
which aim to conduct unethical promotions, to spread rumors and to mislead public’s decision mak-
ings. For example, more businesses aware of the influence of online ratings/reviews are developing
their online marketing strategies accordingly or even trying to manipulate user ratings/reviews [11].

In this chapter, we mainly discuss the veracity of UGC, with specific focus on the security, trust,
and privacy challenges and the corresponding defense solutions.

11.1.2 CLASSIFICATION OF UGC

Among diverse channels allowing individual users to generate online content, three categories of
emerging applications, which motivate individual users’ contribution from different aspects, are
gaining popularity and become major sources for UGC.

11.1.2.1 Online Social Network
Online social networks provide various ways to involve users in online social interactions and enter-
tainments. For example, LinkedIn users are able to post their professional profiles, build up business
connections, and search out job opportunities; Twitter users can explicitly express their opinions,
comments, and sentiments through tweets and re-tweets; Facebook users can share their photos and
status and comment on friends’ walls to socialize with their family and friends; YouTubers are able
to publish videos about their daily lives and interesting experiences to attract subscribers.

Online social network platforms rich in UGC have already become the most popular Internet
destinations [12]. In the year 2009, the amount of time users spent on social networking and blogging
sites tripled and accounted for 17% of their total time spent online [13].
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11.1.2.2 Crowdsourcing
Crowdsourcing, emerging recently, is an online, distributed problem-solving and production
model [14], in which problems can be published through open calls to an unknown group of solvers
(i.e., crowd) [15]. Crowdsourcing can be in many forms and for different purposes, including fund
raising (i.e., crowdfunding), knowledge gathering and sharing (e.g., Stackoverflow and Wikipedia),
human intelligent tasks (e.g., Amazon Mechanical Turk), etc. Specifically, a typical crowdsourcing
procedure involves breaking a huge task into micro ones by the requestor and then completing the
micro tasks by the crowd.

By leveraging intelligence from diverse crowd, crowdsourcing is gaining popularity. On the one
hand, more companies and institutions rely on crowdsourcing for finding solutions to different prob-
lems due to its low cost and high efficiency. One example is the Defense Advanced Research Projects
Agency (DARPA) balloon experiment in 2009, where the crowd was asked to compete to first find
and report the location of 10 balloon markers placed by DARPA across the United States. Another
example is the Netflix prize in 2009, where the crowd was asked to design a recommendation
algorithm as more accurate than Netflix’s own algorithm. On the other hand, individual users are
motivated to get involved as crowd workers for money, social recognition (i.e., social badges), or the
common good. For example, individual users from all over the world spontaneously post and revise
edits on Wikipedia and its sister projects, leading to over 10 edits per second, more than 800 new
articles per day [16].

11.1.2.3 Online Word-of-Mouth Network
With the simplicity of generating and sharing personal experiences online, word-of-mouth (i.e.,
WoM), one of the most ancient mechanisms in the history of human society, is gaining new signif-
icance in the cyber world. The trustworthiness of the online contents/users can be evaluated based
on feedback from large-scale, virtual WoM networks in which individuals share their own opinions
and experiences. The aggregated results of such feedback are called online reputation. For example,
viewers on YouTube may “like” or “dislike” a video clip; buyers on Amazon share their purchasing
experiences; travelers evaluate hotels or restaurants on Yelp; readers can either “dig” or “bury” a
piece of social news on Reddit; etc.

The Pew Internet & American Life Project has found that 26% of adult Internet users in the
United States have provided reviews for at least one product, service, or person using online review
systems. The online WoM network is playing an increasingly important role in influencing users’
online decisions. For instance, eBay sellers with established reputation can expect about 8% more
revenue than new sellers marketing the same goods [17]; a survey conducted by comScore Inc. and
The Kelsey Group reveals that consumers are willing to pay at least 20%more for services receiving
an “Excellent,” or 5-star, rating than for the same services receiving a “Good,” or 4-star, rating [18].

Different from online social networks and crowdsourcing, online WoM networks are originally
designed to focus more on evaluating existing data instead of producing new data. Nevertheless, the
excessive amount of evaluation data itself also forms an essential component of the UGC big data.

11.1.3 SYSTEM MODEL

In this section, we would like to provide an abstract system model for network or platforms where
the digital contents are mainly generated by users. Specifically, as shown in Figure 11.1, the system
contains two layers: the user layer and the content layer.

On the user layer, there are two types of users: generators who create at least one piece of con-
tent and consumers who view the contents created by generators. For example, generators may be
users uploading posts on social networks, workers committing crowdsourcing tasks, and reviewers
in online WoM networks. Consumers may be users who retweet a post on Twitter or like a post
on Facebook, requestors who collect submissions from the crowd, or online users who make their
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Content Layer

User Layer

FIGURE 11.1 System model of UGC-centric platforms.

purchasing or downloading decisions based on others’ reviews/ratings. It is possible for an individual
user to be a pure generator, a pure consumer, or a mixture who both generates and consumes con-
tents. In addition, a pair of connected users can represent people who (1) have social connections,
either professional or personal, (2) co-workers who have been involved in the same crowdsourcing
tasks, or (3) reviewers who have reviewed same online items.

On the content layer, we use a star to represent each piece of content generated by a user. The
contents could be posts from social network users, submissions from crowdsourcing workers, or
reviews/ratings from online WoM network reviewers. In addition, multiple-linked contents can rep-
resent (1) related social conversation topics; (2) submissions toward the same crowdsourcing task;
or (3) ratings/reviews evaluating the same online item.

More important, two types of links are employed to connect the user layer and the content layer. A
dotted link connecting a piece of content C and a user Ui represents that C is generated by Ui. Such
links indicate many-to-one relationship, where one user can generate multiple contents while one
piece of content can only be generated by one user. A dashed link connectingUj andC represents that
C is consumed by Uj. Such links indicate many-to-many relationship, where one user can consume
multiple contents and one piece of content can be consumed by multiple users.

11.1.4 EMERGING SECURITY, PRIVACY, AND TRUST CHALLENGES

As normal users are motivated in numerous ways to contribute to UGC, the incentive to manipulate
such content is also increasing, raising great challenges for data security, privacy, and trust.

11.1.4.1 Relationship among Security, Privacy, and Trust
Recently, security, trust, and privacy are often mentioned together in discussions on attacks and pro-
tections of information systems or networks. Although these three terms are closely related with one
another, each one of them has its own emphasis. Therefore, before discussing UGC-related security,
trust, and privacy challenges, we would like to first clarify these three terms through their definitions.

Security is defined as preservation of information confidentiality, integrity, and availability. In
addition, “other properties such as authenticity, accountability, nonrepudiation, and reliability can
also be involved” [19]. In other words, the ultimate goal of security defenses is to deny illegitimate
access to data.
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Privacy is defined as “the ability of data owners to seclude themselves, or information about
themselves, and thereby express themselves selectively” [20]. Different from confidentiality, which
is considered as part of security, privacy ismore subjective since data ownersmay determine if a piece
of information is private in diverse ways according to their own background, interests, education,
culture, etc.

Trust is defined as “how much confidence one party has about whether the other party will con-
duct a certain action or possess a certain property” [21]. Different from security and privacy, trust
represents the relationship between two parties, with an expectation on the future activities.

Attacks launched against security, privacy, or trust often have different attack goals and need
to be addressed through different solutions. In this chapter, we discuss typical attacks/defenses for
security, privacy, and trust separately, with the purpose of comparing underlying similarities and
differences among these attacks and defenses.

11.1.4.2 Security Challenges
Driven by the huge profits behind the big data economy, various security attacks against UGC are
emerging rapidly.

Due to the simplicity of creating online accounts, Sybil attacks, where a single attacker creates a
large amount of fake online accounts to dominate information propagated in UGC applications, are
getting popular and may cause severe damage.

Moreover, security risks are raised due to the exposure of user data. Users generate contents online
to share experiences and to build relationships in a much bigger cyber community. Such contents,
however, may also expose users to a wide range of other users and groups, such as strangers, the
hosting site, third parties connecting to the hosting site, hackers, etc. Such exposure may introduce
diverse risks to individual users, such as identity theft, physical or cyber stalking, phishing attacks,
social spams, etc.

11.1.4.3 Privacy Challenges
UGC may explicitly or implicitly contain personal information, which raises wide concerns on user
privacy. People carelessly posting their personal information on social media can easily have their
privacy breached. For example, a research conducted by Carnegie Mellon University has shown that
it is possible to predict most and sometimes all of an individual’s nine-digit Social Security Number
using information gleaned from social networks and online databases [22]. A study [23] has shown
that a large percentage of Facebook users investigated in the study disclose their personal information
including real name, address, date of birth, hobbies and interests, etc., with or without awareness.

Moreover, even information that is supposed to be well protected may be breached by advanced
privacy attacks. For example, a recent research shows that even users who carefully protect their own
information may still have their personal attributes disclosed by hackers examining their friends’ list
[24]. Another example is the Netflix Prize 2006, an open contest for movie recommendation algo-
rithm based on previous ratings from anonymous Netflix users. In this contest, Netflix has released a
data set with 100,480,507 ratings provided by 480,189 anonymous Netflix subscribers to the public.
Two researchers from the University of Texas at Austin developed a de-anonymization attack model
and applied their model to the data set. They have demonstrated [25] that the identity of some sub-
scribers can be easily unmasked by matching up their ratings at Netflix and at IMDB, another movie
rating Web site. The authors also claim that sensitive information such as political preference can be
inferred from this data set using their attack model.

In the context of crowdsourcing, privacy issues are raised from two perspectives. On the one hand,
workers’ personal data may be exposed to attackers while they are fulfilling tasks. For example, To
et al. [26] claim that the location of a worker can be obtained by an adversary when the worker
reports events (e.g., disaster) happening in his or her area to a Spatial Crowdsourcing (SC) server.
On the other hand, the raw data provided by a task requestor may include sensitive information that
should be protected from misappropriating by the workers. Varshney [27] points out that requestors
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also need to obscure raw data provided to workers for processing, correction, or evaluation in order
to protect their intellectual capital and confidential information. In both cases, random noises may
need to be added to data values for privacy preservation purposes. However, such noises have to be
controlled to not significantly affect the result accuracy. The trade-off between privacy and result
accuracy is challenging and needs to be carefully considered in the design of crowdsourcing tasks.

11.1.4.4 Trust Challenges
The simplicity of creating digital content online has also led to an increase of users’ uncertainty in
providing high-quality information, which makes the trustworthiness of such content questionable.

Data quality in the crowdsourcing scenario has been raised as a critical issue due to two reasons.
First, participants with diverse background or sometimes even lack of knowledge may get involved
and contribute a large number of unusable submissions. Second, ill-designed tasks by inexperienced
requestors may also lead to poor quality of collected data [28]. As a consequence, crowdsourcing
has rarely been used for mission critical systems, unless the trustworthy issues of crowd submissions
could be resolved. A number of studies have been conducted to improve data quality [29] by using
redundant nonexpert labels in image annotation [30], repeated labeling [31], setting qualification
test [32], etc.

As discussed before, online WoM network is initially established to help individual users differ-
entiate high-quality online items from low-quality ones by utilizing ratings/reviews from individual
online users. Unfortunately, most, if not all, of the evaluation data on such platforms also has the
same quality issue. For example, one category in the “Amazon window shop app” for iPad, called
“peculiar products,” contains a lot of kooky and fake products, such as uranium ore, or a $50 Tuscan
whole milk [33]. Surprisingly, these products receive thousands of ratings/reviews, although Ama-
zon does not really sell them. Users in this example are just providing those reviews for fun. But it
also shows how easy it is to generate fake content (i.e., reviews) online.

In addition, many companies aggressively take advantage of online WoM marketing by manip-
ulating online user discussions. Book authors and eBay users are shown to write or buy favorable
reviews for their own products [34–36]. A recent study has identified that 10% online products have
manipulated user reviews [11]. The boom of review companies, which provide sophisticated review
manipulation packages at affordable prices, reinforces the prevalence of such manipulations. For just
$9.99, a company named “IncreaseYouTubeViews.com” can provide 30 “I like” ratings or 30 real
user comments to your video clips on YouTube. Taobao, which is the largest Internet retail platform
in China, has identified these review boosting services as a severe threat. Such manipulations may
significantly distort the review results, undermine users’ confidence about onlineWoM systems, and
may eventually make such systems lose their worthiness.

Diverse signal processing techniques and statistic analysis have been employed to detect dishonest
ratings/reviews [37–39]. In addition, quantitative trust models are developed to dynamically evalu-
ating reviewers’ trustworthiness in providing honest ratings/reviews. On the other hand, advanced
attacks that explore vulnerabilities of detection methods and trust models are also evolving rapidly.
An “arm-race” between trust model defenses and attacks is taking place.

In the rest part of this chapter, we discuss specific attacks and defenses from security, privacy,
and trust aspects, respectively.

11.2 SECURITY ATTACKS AND DEFENSES

11.2.1 SYBIL ATTACK

Sybil attacks, initially proposed by Douceur [40], denote attacks where a single malicious entity
(i.e., attacker) creates excessive pseudonymous online IDs to gain disproportionately large influence
in the system [41]. By controlling these pseudo IDs to coordinately conduct malicious behavior, the
attacker could obtain significant resources of the system and cause severe damage.
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Carefully designed Sybil attacks can be launched in a wide range of applications, such as peer-
to-peer (P2P) networks and wireless sensor networks. For example, to mitigate risks of data loss and
leakage, large-scale P2P networks often make multiple nodes carry on replicated tasks to introduce
redundancy. In Sybil attacks, however, the large amount of Sybil accounts can dramatically increase
the chance of malicious attacker being repetitively selected to perform a task and thus defeats this
redundancy [40].

In UGC-centric systems, information is usually aggregated based on “majority vote” or “majority
opinion,” with the assumption that majority of the user accounts are honest. In normal cases, each
user account expresses its opinion by only one vote. Sybil attacker, however, can easily turn normal
users into minority by taking upmultiple votes through its fake accounts and thus significantly distort
the general public’s opinion. For example, in Google PageRank, malicious attacker may increase a
Web page’s rank by creating multiple other Web pages linking to it [42]. In online WoM systems,
such as eBay or Amazon rating systems, Sybil accounts could spread rumors about honest vendors
to downgrade their reputation or self-promote themselves to obtain financial profits [43].

Extensive studies have been conducted to detect and prevent Sybil attacks. For example, in [44],
users and their trust relationships are modeled as a social graph, where vertexes represent users and
links represent user relationship. The defense scheme, SybilGuard, is proposed to differentiate Sybil
accounts from normal ones by identifying the disproportionately small “cut” in the social graph
based on the assumption that malicious users can create many identities but few trust relationships.
In their later study in [45], an improved protocol named SybilLimit has been proposed to optimize
the approach by further minimizing the number of Sybil account in million-node synthetic social
network. A Bayesian-based inference approach, SybilInfer, has been proposed in [46] that consists
of a probabilistic model of honest social networks as well as an inference engine. Buchegger and
Boudec [47] have proposed a solution to detect and eliminate Sybil accounts by periodically re-
evaluating the behavior of accounts and discounting historical ratings. In [48], the authors have
examined the graph of distributed hash tables (DHTs) (a graph showing a node is introduced by
which node) to identify Sybil accounts, based on the assumption that a large number of malicious
accounts are introduced by a small number of Sybil entities. In addition, Sybil attacks can also be
prevented by utilizing a centralized authority, which issues trusted certifications to ensure that only
one identity would be assigned to a given entity [49]. Other solutions may include checking resource
owned by identities, increasing cost to create Sybil identities, using trusted devices, etc. [49].

In spite of the rapid development of diverse defenses, it is very challenging to completely elim-
inate Sybil attacks in practice. The research on defending against Sybil attacks is still very active
today.

11.2.2 SECURITY ATTACKS BASED ON USERS’ SENSITIVE INFORMATION

UGC-centric systems are now a prime target of diverse security attacks due to the rich information
about personal details posted on these systems everyday, including but not limited to people’s real full
name and home address, date of birth, email address, user name and password, friendship, geograph-
ical locations, credit card details, etc. In this section, we discuss several typical security attacks such
as identity theft, social spam, and phishing attacks, which have been developed long time ago even
before the prosperity of UGC-centric systems. However, UGC-centric systems, especially social
networking Web sites, provide a new venue for these old frauds.

11.2.2.1 Identity Theft
In identity theft attacks, attacker attempts to obtain users’ personally identifiable information (PII)
and deliberately uses such information to impersonate the victim for the purpose of fraud such as
posting spam, sending out malware, stealing the private data of contacts, or even soliciting contacts
to send money [50].
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The reasons for the success of identity theft are multifaceted. Users’ identity information may
be disclosed due to the vulnerabilities of UGC-centric systems. For example, in [51], a friend-in-
the-middle attack has been proposed to retrieve users’ sensitive data from social networking sites
by hijacking HTTP sessions on the network layer, which most social networking sites fail to secure.
Furthermore, users’ personal information may also be breached through third-party applications.
Most social networking sites have apps that ask for permission to access their account informa-
tion. Poorly secured or even already compromised third-party apps bring high risks of identity
theft.

Identity theft attacks are prevalent in UGC-centric systems. For example, in 2013, a 18-year-
old student of the Sullivan County School District in Sullivan County, Tennessee, opened a fake
Twitter account under the name of the district superintendent, Dr. Yennie, and posted a number of
inappropriate tweets through that account [52]. In recent years, a popular identity theft scam on
Facebook is that a stolen user account sends out desperate messages to its friends asking for money.
Such messages could be something like “I’m traveling abroad and lost my wallet. Please wire me $x
so I can get home.”

There are also research studies on the feasibility of large-scale identity theft. For example, the
authors in [41] have proposed an automated way to launch identity theft attacks on social net-
works. Specifically, by forging an existing victim user’s identity and sending out friend requests
to the victim’s friends, the attacker could connect to some of the victim’s friends, access their sensi-
tive personal information, and turn them into victims. With the retrieved sensitive information, the
attacker is able to forge more existing users and further launch identity theft attacks against their
friends.

11.2.2.2 Social Spam and Phishing Attack
As online social networks such as Facebook and Twitter are getting popularity, social spams are also
emerging rapidly. According to [53], by exploiting target users’ social relationship and connecting
to them, social networking spammers can make up to 10 times more money than that made from
their traditional way of spamming through emails. These spams may yield thousands of views since
people are more likely to trust something sent from their social network “friends.” A recent example
is that, in the year 2015, 1.5 million Facebook accounts were stolen and sold to businesses who send
out advertisements to friends through those compromised accounts [54].

Social phishing often goes hand in hand with social spams, in which attacker aims to fraudulently
acquire sensitive information by impersonating a trustworthy party. Social phishing often contains
malicious links to forgery Web sites or Web sites that are infected with malware. For example, an
attack was launched against Facebook users in 2012, where malicious accounts impersonating Face-
book security sent out fake messages and a forgery link to normal users asking their Facebook login
info as well as credit card information [52]. Experiments conducted in [55] show that social phishing
attacks can achieve 70% success rate on social networks.

11.2.2.3 Defense
Extensive studies have been conducted to prevent users from being attacked. Solutions are proposed
from social, technical, and legal perspectives, for example, educating people to be aware of such
attacks, enhancing monitoring of such attacks, blacklisting malicious Web sites and taking them
down once they are detected, increasing security of Web browsers, filing lawsuits against suspected
attackers, etc.

Among these solutions, the most essential one is to educate UGC-centric system users to be
cautious about the contents that they are posting online everyday and to minimize the disclosure
of their sensitive information. Technical solutions will never be sufficient without individual users
being aware of the potential security risks.
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11.3 PRIVACY ATTACKS AND DEFENSES

Thanks to the convenience of online communications, more people are getting used to move their
social activities from offline to online, such as making friends, searching jobs, building relationships,
exchanging knowledge and information, etc. The increase of online activities creates massive UGC
when people exchange information through the Internet. However, when people generate and share
these contents, they often do not expect such information to be later retrieved, mined, and even used
to hurt themselves.

Privacy, a subjective concept, denotes the ability of an individual or a group to control the amount
of personal information available to the public. In other words, data owners should have the privilege
to control, according to their own preferences, what information to share and shared to whom.

11.3.1 UNDERSTANDING PRIVACY THREATS AND DEFENSES

According to the privacy definition above, privacy threats and defenses can be analyzed from two
perspectives: the information-type perspective and the adversary-type perspective.

11.3.1.1 Private Information Type
Different types of private information often face different privacy challenges and hence may require
distinct privacy preserving solutions. In the context of UGC, we classify users’ private information
into two types: profile (i.e., Type I) information, which denotes a user’s personal information, includ-
ing but not limited to one’s identity, age, gender, addresses, photos, location, religious beliefs, etc.,
and relationship (i.e., Type II) information, which includes the family, friend, colleague, and social
relationship.

While profile information is usually generated and owned by one user, relationship information
can be generated and shared by multiple users, which obscures the information ownership and often
leads to complex privacy scenarios.

11.3.1.2 Privacy Adversary Type
While UGC may be easily accessed by different parties, the user who generates such data may not
always be aware of all these parties. We summarize all the potential parties that may access users’
data and violate their privacy as follows:

• Other users in the system. According to their relationship with the data owner, these users
can be further divided into three categories as directly connected users, indirectly connected
users, and general public [56]. Specifically, directly connected users denote friends, family
members, or colleagues who are closely connected with the data owner; indirectly con-
nected users denote friends of friends (FOF) who may connect to the data owner through
one or two hops; and general public denotes users who have no relationship with the data
owner at all.

• Third parties, such as app developers and advertising agencies. These third parties are
often the consumers of user behavior data generated in UGC-centric systems and thus pro-
vide most of the revenue for UGC system providers. There is a strong motivation for UGC
system providers to share their data with such parties. Nevertheless, due to the more-than-
necessary data acquisition and imperfect anonymization, such data sharing often leads to
user privacy violation by third parties.

• UGC system providers. From technical aspect, UGC system providers can arbitrarily access
all the data generated and shared in their systems. Therefore, their inappropriate usage of
users’ data may cause more severe damage yet could hardly be detected by individual users.
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11.3.2 PRIVACY-RELATED THREATS

Various privacy threats against UGC are rapidly emerging and dynamically evolving in recent years.
In this section, we classify typical privacy threats into two categories: profile privacy threats and
relationship privacy threats.

11.3.2.1 Profile Privacy Threats
Users’ sensitive profile (i.e., Type I) information may be breached due to (1) vulnerable privacy
settings made by data owners, (2) information leakage through legitimate parties, or (3) information
inference made by illegitimate parties. Note that whether a party is legitimate or not is determined
by the data owners’ own preferences. Here, illegitimate parties can refer to any parties who are not
permitted by a user to access his or her private information.

Arbitrary disclosure of the private information can cause severe damage to individual users. For
example, there is an emerging trend of users sharing their location information in online social net-
works, especially mobile-based networks. Although it allows users to benefit from more dynamic
and personalized services, the exposure of their location information may also raise high risks of
physical harm such as stalking. Appropriate privacy setting is the first step to protect user privacy.
This first step, however, still requires a lot of effort. Currently, when users post contents online with
no explicit privacy settings, such contents are often made open to public by default without users’
awareness. Even though more users are aware of their privacy, the controls over their privacy settings
are often too complex to follow.

In addition, even with perfect privacy settings, where only legitimate users are allowed to access
the sensitive information, there is very limited control over the privacy leakage made by these legit-
imate users, no matter intentionally or incautiously. For example, a user obtaining others’ sensitive
information may simply spread it out over the network. Similar behavior often occurs in offline
human society as “telling the secret” [56]. Furthermore, the study in [57] shows that users with
insufficient privacy settings will increase the privacy vulnerability of their friends as well as that
of the entire social community. Moreover, inappropriate data usage/sharing made by UGC platform
providers forms another source of privacy leakage.

Finally, illegitimate users may exploit privacy vulnerabilities and infer users’ sensitive profile
information from anonymized data set. Specifically, attackers attempt to de-anonymize a user by
linking anonymized demographic data sets publicly or semipublicly released [58]. A study [59,60]
described another attack using photo tagged in other users’ content to link user profile and reveal
users’ sensitive data, for example, current location. Other than location data, more sensitive data can
be inferred from publicly released data, despite being anonymized. The attack described in [61] can
even predict a user’s social security number based on publicly available information.

11.3.2.2 Relationship Privacy Threats
Relationship (i.e., Type II) privacy can also be violated due to (1) vulnerable privacy settings made
by data owners, (2) information leakage through legitimate parties, or (3) information inference from
complex privacy scenarios caused by multiple data owners.

The first two threats are similar to that against profile privacy. The major difference is the third
threat, which is challenging since multiple parties involved in one relationship often have their pri-
vacy requirements different from and even conflicting with one another. Intelligent illegitimate users
taking advantage of such conflicts among different parties may infer individual users’ sensitive
relationship and even re-construct the social graph of the entire network.

A typical example is the exposure of users’ friendship in online social networks. To encourage
users’ social connections and interactions, popular online social networks such as Facebook and
Twitter have recently provided a friend search engine, which allows any individual users to query
another user’s friend list. Meanwhile, to address the increasing concerns about friendship privacy,
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OSNs also allow individual users to set their entire friend list as “private,” which is supposed to be
unsearchable by any other users.

However, even if a user set his or her friend list as private, such information can still be easily
breached by his or her friends if their friendship information is set as open to public. This problem is
called “mutual effect” [62]. For example, Facebook actually releases “mutual friends” between two
users as long as one of them sets his or her friend list as open to public. Wagner [63] has conducted
an experiment on Mark Zuckerberg. Although Mark sets his friend list as “private,” meaning that no
other users except him can see his friendship, anyone, by searching the “mutual friends” between
Mark and Chris Cox, the chief product officer of Facebook, can see a detailed list of their 621 mutual
friends. Mark’s friendship privacy is compromised. More important, if any of these 621 friends also
sets his or her friend list as open, even more friends of Mark may be retrieved. After a few rounds
of such friend search, the entire friend list of Mark might be disclosed, making the “private” setting
meaningless.

Various attack strategies to discover private friendship by taking advantage of mutual effect are
discussed in [64]. To resolve mutual effect, a privacy preserving friend search engine has been pro-
posed in [62], where a piece of friendship will not be released unless both friends (i.e., the owners of
this information) agree to disclose it. This defense scheme can effectively prevent privacy inference
attacks launched by an individual attacker. Yet an advanced collusion attack has been recently pro-
posed in [65], where a victim user’s friendship privacy setting can still be compromised through a
carefully designed query sequence coordinately launched by multiple malicious requestors. Active
research studies on friendship privacy attacks and defenses are still rapidly evolving.

Beyond individual user’s relationship privacy, social network topology, which contains all friend-
ship connections among users, is also the target of privacy attacks. A study [66] claims that a
complete social graph can be identified by randomly crawling data in the social graph and repetitively
querying user data. To prevent such arbitrary crawling, Facebook has once limited the number of
friends exposed in the public listings to a fixed number, eight [12]. Soon after that, some researchers
have noticed that although the number of displayed friends is limited, showing eight friends is already
enough for a third party to crawl data so as to estimate the network topology [12]. To effectively
protect social network topology from advanced privacy attacks remains a challenging issue.

11.3.2.3 A Mixture
Note that although we differentiate privacy threats against user profile from that against relationship,
privacy breach of one could lead to breach of the other. For example, a study [67] has introduced an
attack to unmask anonymous users through their social relationship. In the study, an attacker, with
some knowledge of a user’s friendship pattern (i.e., relationship privacy), can re-identify the user
(i.e., profile privacy) in a social graph by mapping the pattern on the graph.

11.3.3 PRIVACY PRESERVING SOLUTIONS FOR UGC

11.3.3.1 Enhancing User Privacy Settings
As mentioned above, enhancing user privacy settings provides the first step protection. A lot of
efforts have been made to help individual users understand the meaning of their privacy settings.
For example, in [68], the authors propose to help a user check his or her profile by demonstrating it
from different people’s view, including a friend, a friend of friend, and general public. Moreover, a
“privacy wizard” has been developed in [69] to help users specify their privacy intentions easily.

Extensive efforts are also made to help users improve the granularity of their privacy settings. For
instance, in [70], a privacy preserving architecture has been developed to disclose different levels
of user private information to different groups of people at different time. In [69], the authors have
proposed a personalized privacy setting approach, which first asks users to manually categorize their
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social relationship and corresponding privacy settings, and then automates such process through
machine-learning mechanisms.

11.3.3.2 Data Encryption
To handle potential privacy leakage caused by untrustworthy UGC system providers, some research
studies propose to encrypt users’ sensitive data and only allow UGC system providers to access the
cipher text. For example, a “flybynight” system has been implemented as a Facebook application,
which helps users send encrypted messages to one another [71]. Instead of directly developing appli-
cations based on UGC-centric systems, authors in [72] implement aWeb browser extension to enable
user data encryption.

However, these encryption-based schemes often sacrifice the convenience of user operations and
suffer from the high-computational costs introduced by the encryption process.

11.3.3.3 Defenses against Private Information Inference
Diverse privacy preserving approaches have been proposed to prevent illegitimate users from infer-
ring user private information. We classify these studies into two categories according to the type of
private information they aim to protect.

Privacy preserving approaches in the first category focus on anonymizing the profile data of indi-
vidual user to prevent attackers from identifying targeted users or inferring their sensitive attributes
(i.e., Type I information). Defense in this category is often performed proactively when data are
created by the user online. Traditional privacy preserving technologies, such as clustering [73],
k-anonymity [74], l-diversity [75], t-closeness [76], or differential privacy [77], are often adopted.

Approaches in the second category particularly address how to preserve sensitive relationship
(i.e., Type II information), which engages multiple users [78]. Most efforts have been made to
anonymize users’ sensitive relationship when such data is released to third parties [79–88]. These
defense schemes use either graph clustering-generalization techniques or graph manipulation-based
solutions (i.e., inserting/deleting nodes/edges from original graphs) for anonymization.

Defense Solutions for Profile Privacy—Type I

k-Anonymity: As mentioned above, attackers can make inference on released anonymous data
from multiple sources that have overlapping attributes. By doing so, they can re-identify a targeted
user and acquire sensitive information. Sweeney [74] has developed a model named k-anonymity to
protect anonymous data from being recognized. The study states that a data set satisfies k-anonymity
if, for each individual record, the data set contains at least k records that cannot be distinguished
from this record (these k records form an equivalent class). Altering data to satisfy k-anonymity can
deter data holder frommapping/linking users with external information and acquiring sensitive data.

l-Diversity: Despite its simplicity and prominence, k-anonymity has its drawback and may be
vulnerable under attacks when sensitive information is not diversified or attackers have better back-
ground information. Based on k-anonymity approach, Machanavajjhala et al. [89] have proposed
an approach named l-diversity against attacks mentioned above, by maintaining at least l distinct
values of a sensitive attribute for each equivalent class. This way, a data set can be anonymized by
l-diversity even if attackers have background information about the user to be re-identified.

t-Closeness: A study [90] further improves l-diversity by introducing the t-closeness approach,
which requires the value distribution of a sensitive attribute in one equivalent class to be close to
that in the whole data set. The t-closeness approach prevents attackers from narrowing sensitive data
down to a specific range so that they cannot easily identify users’ private information.
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Differential Privacy: Another approach to preserve privacy is named differential privacy pro-
posed in [91]. Differential privacy is a statistic approach to encrypt data in a data set while maximally
maintaining the query accuracy.

Defense Solutions for Relationship Privacy—Type II

Clustering-Based Approach: Clustering-based approach is to classify data into groups based on
some attributes so that data within a cluster are more similar than data from different clusters [92].
A variety of algorithms have been developed and applied in defining clusters and classifying data.
A clustering algorithm can be applied to anonymize user data to prevent attacks through friendship,
communication, or shared activity [93], by generalizing either the nodes (i.e., individual users) or
the edges (i.e., relationships) [94] in a relationship graph [93].

Graph Modification Approach: Graph modification approach is another important approach
that adds noise to the graph, for example, inserting/deleting edges. After such modifications, a node
will have a different pattern from the original one and thus is hard to be re-identified [95–98].

11.3.4 SUMMARY

In summary, the development of both attack and defense on privacy of UGC is a dynamically evolv-
ing process. With the increase of computing power and massive data created online, data become
more complicated and highly dimensional, which leads to more research challenges in the future.

11.4 TRUST MODELS, ATTACKS, AND DEFENSES

Asmentioned before, a number of trust-related challenges have been raised in UGC-centric systems.
As it is critical for such systems to ensure their trustworthiness and encourage user collaborations,
establishing fair and accurate trust evaluation models is required. The development of such trust
models, however, is challenging especially with the existence of dynamically evolving attacks. In
this section, we discuss different trust evaluation models, attacks against such models, and their
corresponding defense solutions.

11.4.1 ENSURING TRUSTWORTHINESS OF UGC

11.4.1.1 Web-of-Trust
In the context of “Web-of-Trust,” graph-based models have been developed, where users are repre-
sented by vertexes and their trust relationship is represented by edges [99,100]. The basic assumption
is that trust value can get propagated through either concatenation or multipath recommendations.
Some simple mathematics approaches, such as minimum, maximum, weighted average, etc., have
been involved to model the propagation of trust.

Web-of-Trust was initially developed for cryptography applications, such as PGP and GnuPG.
The decentralized trust model provides an alternative to the public key infrastructure (PKI), which
has a centralized structure. Nevertheless, the decentralized trust propagation idea provides the
foundation for trust models developed later and has been widely utilized in different applications.

11.4.1.2 Direct/Indirect Trust Model
Direct/indirect trust model is a classic model that mimics the trust establishment process in human
society. In particular, if a person A needs to determine whether to trust another person B or not, he or
she may directly make the decision if he or she knows B well; or otherwise refer to another person
C for recommendation. Similarly, in direct/indirect trust models, a trustee’s trust value is calculated
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by integrating trustor’s own observations (i.e., direct trust) as well as others’ recommendations (i.e.,
indirect trust).

Direct/indirect trust models have been applied in peer-to-peer networks [101], ad hoc and sensor
networks [102], and online WoM networks [39].

11.4.1.3 Bayesian-Based Trust Model
The Bayesian model, introduced by Thomas Bayes, is a well-known, widely applied statistic
methodology of interpreting probability.

The Bayesian model well fits the trust establishment scenario by its nature. Different from
frequency-based probability models, which interpret probability as the frequency of an event’s
occurrence in a certain number of experimental trials, the Bayesian model assigns a predetermined
probability (i.e., prior) to a hypothesis based on past knowledge or experience. Each time when new
data is obtained, it will be integrated with the prior probability to get an updated probability (i.e.,
posterior). The philosophy behind the Bayesian model, dynamically updating existing knowledge
with new observations, matches the practical way of people recognizing the world and building up
trust relationship.

In online WoM systems, the Bayesian-based model has been utilized to evaluate the trustwor-
thiness of online items. In [103], a Bayesian model that takes binary user ratings as input has been
developed to assess online items’ posterior reputation score based on users’ prior experiences. A
Bayesian trust framework is proposed in [104,105] to dynamically evaluate online items’ trustworthi-
ness. In particular, user ratings have been considered to follow beta distribution, and the probability
density function is updated each time when a new user rating comes in. Furthermore, the model is
also extended in [106] to evaluate users’ trustworthiness and based on that, to detect malicious users
who provide unfair ratings.

11.4.1.4 Dempster–Shafer Theory
The Dempster–Shafer theory (DST), introduced by Arthur P. Dempster and Glenn Shafer, is a frame-
work for combining evidence from independent sources to achieve a degree of belief [107]. By
introducing the concept of “uncertainty” to represent ignorance, DST has been widely adopted for
decision-making processes, especially when there is a lack of evidence. Specifically, the probability
for any set of propositions is bounded by belief (the lower bound) and plausibility (the upper bound),
where the difference between the lower and upper bounds represents “uncertainty.” Furthermore, to
achieve the overall degree of belief, the Dempster’s rule of combination integrates evidence from
independent sources by keeping commonly shared belief while ignoring conflicts.

DST has initially been applied in expert systems, computer systems that facilitate decisionmaking
for risk assessment and decision-making support. For example, belief function is adopted in [108] to
model uncertainty in expert system. In [109], an improved DST framework for combining belief has
been proposed. The introduction of uncertainty makes DST more flexible and easier to be applied
in diverse research areas, such as neural networks [110], sensor fusion [111], etc.

In recent literature on UGC, how to handle large volume of low-quality or even conflict informa-
tion provided by untrustworthy users has attracted increasing attention. In this context, DST plays
an important role through explicitly reasoning process with uncertainty and incomplete information.
Kim and Ahmad [112] have introduced the concepts of trust, distrust, and a lack of confidence when
analyzing the trustworthiness of UGC. In their study, DST is adopted to measure the level of trust
for a content provider by combining trust evidence, distrust evidence, and lack of evidence. In [113],
the authors have developed a malicious agent detection model based on DST in distributed repu-
tation systems. The model evaluates the trustworthiness of an agent by obtaining and combining
testimonies from other agents (i.e., witnesses). A witness trustworthiness model based on DST is
proposed in [114] to detect unfair ratings to e-commerce sellers. DST has been adopted in [115] to
evaluate the trustworthiness of ratings provided by different reviewers in an online reputation system.
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11.4.1.5 Fuzzy Logic
Both the Bayesian-based trust model and the DST, as discussed above, compute trust values by
applying probability-based models on crisp input values. In real life, however, human users often
recognize the world through some fuzzy values. For example, human’s perception about the temper-
ature is usually not some crisp values as 70◦ or 80◦, but some fuzzy values as cold, normal, and hot.
As a consequence, most of the time, their decision-making processes may rely on some simple fuzzy
rules instead of precise mathematics equations. We use an online WoM system example to demon-
strate such process. Assume a human user checks a product’s rating value and volume to make his or
her purchasing decision. The user may obtain the decision based on some simple fuzzy rules, such
as “I will purchase it if the rating value is high and rating volume is large” or “I will not purchase
it if the rating value is average and rating volume is too small.” In such scenario, two rating values
as 4.9 and 4.8 may both be considered as high value and are not explicitly differentiated during the
decision-making process, which does not match the basic assumptions of Bayesian or DST.

A different model, fuzzy logic, introduced by Zadeh [116], has been applied to mimic such
human users’ fuzzy decision-making process. There are three steps involved in a typical fuzzy logic
decision-making process. First, crisp input values are converted into fuzzy values. Second, some
fuzzy rules, such as IF A and B then C, will be applied on the converted fuzzy inputs to derive
fuzzy outputs. At the end, the fuzzy outputs will be converted back to crisp output values through a
defuzzification process.

Fuzzy logic has been widely applied in trust evaluation and decision-making processes. For
example, a fuzzy logic-based trust model [117], which considers the vagueness and ambiguity of
customers’ domain and specificity, has been proposed for customers to evaluate the trustworthiness
of e-commerce platforms. Fuzzy logic has also been adopted in a recommender system, which rec-
ommends UGC based on users’ social trust [118]. Such systems can effectively retrieve high-quality
recommendations and significantly enhance the quality of UGC.

11.4.1.6 Entropy-Based Trust Model
Information entropy (or the Shannon entropy), originally proposed by Claude Shannon in infor-
mation theory in [119], is used to describe how much uncertainty or randomness an event has. In
general, higher entropy value represents more uncertainty and randomness, indicating that more
questions or investigations are required to know the state of an event. In [102], an entropy-based
trust model has been proposed, where trust is considered as a measure of uncertainty, quantified
by entropy. The entropy-based model addresses trust concatenation and propagation problems by
evaluating trustworthiness through recommendations from multiple sources. Wang and Gui [120]
described a recommendation trust model, where the trust between recommendation nodes and sub-
ject (i.e., trustor) nodes is calculated based on information entropy algorithm. By evaluating the trust
value, a node can identify malicious nodes in its neighbors and avoid interacting with them.

11.4.2 TRUST-RELATED ATTACKS AND DEFENSES

With the rapid development of trust models, profit-driven attacks that exploit vulnerabilities of trust
evaluation schemes also gain popularity. Specifically, these attacks may set one or several attack
goals as follows:

• To conduct bad behavior while maintaining high trust values to avoid punishment
• To downgrade trust values of honest users
• To undermine users’ trust relationship

In this section, some typical trust-related attacks and their defenses are discussed in details. Some
of the attacks can be conducted by a single malicious user, while others have to be launched by a
group of malicious users. Note that, due to the limited influence of one individual user, most attacks
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in practice are performed by a group of malicious users, which are also called collusion attacks. In
collusion attacks, multiple malicious IDs sharing the same attack goals are either controlled by one
attacker (i.e., Sybil attacks) or actively collaborating with one another to coordinately conduct bad
behavior.

11.4.2.1 New Comer Attack
A straightforward attack is the new comer attack, where a malicious user with low trust value simply
drops its original ID and re-joins the system with a new user ID to refresh its trust value. New comer
attacks are especially popular and efficient in systems where the cost of registering new user IDs is
trivial.

To defend against such attacks, many UGC-centric systems restrict the number of online
pseudonym that can be obtained by their users. They increase the cost of acquiring a new user ID
by binding user identities with IP address [121] and requiring entry fees [122]. Furthermore, trust
bootstrap studies suggest reasonably assigning trust for a newcomer, such as low initial trust [123]
and initial trust based on majority behavior [124], so that new IDs have to conduct a number of good
behavior to accumulate sufficient trust values.

11.4.2.2 Self-Boosting and Bad-Mouthing Attack
In self-boosting attacks, multiple colluded malicious users positively recommend each other to their
peers, aiming to boost their own trust values. On the other hand, these malicious users may also
conduct bad-mouthing attacks, where they spread bad comments on targeted honest users, aiming to
downgrade their trust values. These attacks are especially effective against trust models where peer
recommendation plays a critical role.

The defenses against self-boosting and bad-mouthing attacks require the separation of recommen-
dation trust from behavior trust. In other words, each user should have two types of trust: behavior
trust that evaluates how likely a user may conduct good behavior and recommendation trust that
evaluates how likely a user may provide good recommendation. As a consequence, a user with a low
recommendation trust value will have very limited influence on other users’ decision making [21].

11.4.2.3 On–Off Attack
In on–off attacks, malicious users conduct good and bad behavior alternatively, aiming at damaging
the system through bad behavior while maintaining their trust values above the threshold through
good behavior to avoid being penalized.

To defend against such attacks, the dynamic properties of trust should be considered. In particular,
a good user account may be compromised and starts to conduct bad behavior or an incompetent user
account may turn into a competent one due to environment changes [21]. As a result, the trust value
of a user should be dynamically changing according to the user’s most recent behavior pattern. To
implement such dynamics, many trust models control the influence of historical behavior through
forgetting schemes. In [125], only the most recent behavior is considered in trust calculation. This
scheme, however, raises wide concerns because both good and bad behavior is forgotten equally
fast, which may help the attacker to re-gain reputation. Then, the fading factor [105] is introduced
to gradually reduce the weights of behavior provided long time ago. Furthermore, the system can
count users’ good behavior and bad behavior asymmetrically. The adaptive forgetting scheme in [21]
makes good reputation be built up through consistent good behavior but can be easily ruined by only
a few bad behavior.

11.4.2.4 More Advanced Attack
In conflicting behavior attacks, a malicious user performs differently to different groups of honest
peers to cause conflicts in their recommendations, aiming at undermining the recommendation trust
among different groups of honest peers.
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To strengthen attacks and to avoid being detected, a smart attacker makes malicious user IDs
collaborate in more complicated ways. In the oscillation attack [125], malicious user IDs are divided
into different groups and each group plays a dynamically different role. At a given time, some groups
focus on bad-mouthing honest users while other groups focus on self-boosting attacks. The roles
of those groups switch dynamically. In the RepTrap attack proposed in [126], malicious user IDs
coordinately break the “majority rule”-based trust, by making the majority recommendations on
some items be considered as dishonest recommendations. These items are referred to as traps. In
this attack, malicious users take turns to make one trap after another. By doing so, they can increase
their own recommendation trust as well as reduce honest users’ recommendation trust.

To handle attacks with complicated collusion, defense schemes [38,127] have been proposed from
two new angles: temporal analysis, which explores the rich user behavior information in time domain
(e.g., time when different behavior is conducted, behavior changing trend, etc.), and user correlation
analysis, which aims to identify close relationship among colluded malicious users. These advanced
defense schemes are compatible with most of the earlier defense schemes and have shown promising
results when tested against real user data.

There is a fierce competition between trust-related attacks and defenses. This competition will
surely continue to evolve and lead to new research challenges and opportunities.

11.5 CONCLUSION

In conclusion, the flexibility and convenience of creating and sharing contents online have greatly
encouraged individual users’ contribution to today’s digital information. As a consequence, UGC has
become a major source of big data. Such data provides rich information for human user behavior-
related studies across different disciplines, including but not limited to computer science, sociology,
economics, marketing, etc.

In spite of the substantial value, its sheer volume, on the other hand, also raises great challenges.
In this chapter, we analyze the “five-V” characteristics of UGC and mainly focus on the discussions
about veracity—the trustworthiness of the data. In particular, we introduce three major platforms
where UGC is generated and shared, describe an abstract system model for these UGC-centric
platforms, and provide an overview of diverse security, privacy, and trust challenges against such
platforms. In the rest part of the chapter, we discuss the state-of-the-art security, privacy, and trust
attacks and defenses on UGC in details, including their definitions, impact, application scenarios,
advantages and limitations, etc., with the purpose of providing the readers a comprehensive under-
standing of the challenges as well as opportunities in this newly emerging and rapidly evolving
research field.
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ABSTRACT

Increasing deployments of the Internet of Things (IoT) applications have brought forward the
requirement of processingmassive volumes of streaming data generated by the IoT sensors. The gen-
eral real-time big data processing has been confrontedwithmultiple new challenges when addressing
the data-processing requirements of the IoT applications. In this chapter, we describe the specifics of
the challenges/issues faced by the IoT data-processing applications and how real-time big data pro-
cessing and various related technological paradigms have been used to mitigate them. The chapter
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sheds light on key areas such as maintaining real-time responses, handling massive amounts of data,
different flavors of data analytics, as well as information security aspects of real-time data process-
ing in the context of the IoT. We observed that while multiple data-stream processing systems and
architectures have been proposed and implemented, very few, if any, stream-processing systems
specifically targeted for IoT use cases exist. Furthermore, we observed that detailed investigations
need to be carried out in applying real-time big data-processing technologies in the context of IoT.
We envision multiple works will appear in the near future that will fill the gaps of applying real-time
big data-processing technologies for the IoT.

12.1 INTRODUCTION

Real-time and near-real-time processing of big data has gained significant attention in recent times
due to the rise of the Internet of Things (IoT). Out of the 3Vs of big data—volume, velocity,
and variety [1]—successful handling of the velocity and volume aspects has a major impact on
what can be achieved with IoT. Real-time big data-processing technologies are the enablers for
achieving this impact. However, conventional real-time data-processing technologies often have
challenges in specific areas to make them scale and run efficiently when faced with IoT-scale
data. The aim of this chapter is to evaluate the challenges arising in real-time processing of large
amounts of data generated by the IoT, and to look at ways that technology is improving to meet these
challenges.

IoT refers to connecting set of devices (their sensors and actuators) and systems with the Internet
in order to create seamless interactions between the users of the system. IoT use cases come in all
sizes and shapes. They can be part of our daily lives and have the potential to transform day-to-day
lives. It is estimated that by 2020, more than 20 billion IoT-enabled devices will be used across
a wide range of industries [2]. Cisco Consulting Services estimates that more than 8 trillion US
dollars in value at stake for the private and public sectors will be generated by IoT between 2013 and
2022 [3]. Hence, IoT provides significant opportunities to create value in business processes such
as automation of many manual processes, which enables the creation of entirely new products and
services [4,5]. The following are some of the key IoT use cases:

1. Predictive maintenance
2. Tracking moving “things” and alerting
3. Improving logistic of thing networks
4. Smart health and in-home care
5. Personal tracking and health (e.g., Fitbit)
6. Sports analytics
7. Security and surveillance, for example, surveillance, security, asset tracking, wildlife track-

ing, forest tracking, safety and security via home surveillance, monitor health and kids, and
perimeter checks for pets and kids

8. Calculating and acting on user context (targeted advertising)
9. Transport: trains, buses
10. Energy efficiency (load prediction, smart lighting, metering, heating)
11. Smart agriculture (watering based on moisture levels, pest control, livestock management)

correlate with other data sources like weather and delivery of pesticides, etc. through drones
12. Smart retail and restaurants: monitoring stores, supply chain, logistics, customer tracking

in store, etc.
13. Smart buildings (power, security, proactive maintenance, heating, ventilation, and air

conditioning [HVAC], etc.)
14. Smart logistics, supply chain, and operations (e.g., airlines, hospitality)
15. Financial services, smart banking, usage-based insurance, better data for insurance, and

fraud detection via better data
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FIGURE 12.1 A taxonomy of IoT use cases.

16. Smart city (e.g., waste management, traffic, pollution monitoring, parking, urban planning,
smart parking, road tax)

A classification of the IoT use cases is shown in Figure 12.1. The taxonomy is grouped into four
areas as Person, Home, Society, and Planet. While they are grouped into four such categories, some
use cases overlap with each other. For example, home refrigerator will be connected to a supply
chain management system, which will automatically order consumables when they run out of stock.

Real-time analytics conducts data processing online with low latency values. Real-time analytics
becomes important when the velocity and the volume of the data being received by the system are
very large and when the type of data processing is mostly one-time operation. For example, filtering
call detail records (CDR) based on the customer’s status (e.g., blacklisted) [6], radio astronomy [7],
road traffic management [8,9], etc. are examples for such applications. For example, LOFAR’s 77
antenna stations distributed in a 10,000-square-km area may generate data around 37 Tbit/s [7]. In
such situations, the data-processing system should be capable of handling such huge data rate, where
real-time data processing has a significant role to play.

Real-time processing is critical for IoT due to several reasons. First, millions of sensors may
get connected in a typical IoT installation, which produce immense amounts of data. Most of the
data produced by such sensors may not necessarily be required to be stored. Hence, the use of
real-time processing technologies fits well with such data-processing scenario since the data get
processed as and when they arrive at the real-time data-processing system. Second, the devices in
an IoT installation need to respond in a timely fashion. For example, the warning messages emitted
by the pacemaker of a heart patient need to be reached by the paramedical team within seconds in
order to provide fast emergency treatments. Many of the prominent IoT software platforms have
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been developed with the ability of conducting real-time data processing due to the significance of
real-time data processing in IoT data analytics (see Table 12.1 for examples).

In this chapter, first, we will elaborate on specific challenges that need to be addressed in Section
12.2. Next, we move on to describing real-time IoT data-processing architectures in Section 12.3.
We describe how to respond to events generated by IoT systems in a timely fashion in Section 12.4.
Handling the data deluge is described in Section 12.5 while data analysis techniques are presented
in Section 12.6. Information security aspects of real-time IoT data processing are described in Sec-
tion 12.7. Finally, we summarize the findings made through this chapter and provide guidelines for
further improvements in Section 12.8.

12.2 CHALLENGES AND TECHNOLOGIES

There have been multiple challenges for effective implementation of real-time big data processing
in the IoT scenarios. In this section, first, we iterate these issues one by one. Next, we describe the
technologies that have been developed to address these challenges.

The main challenge has been adaptation of conventional data-processing system architectures to
the IoT scenarios. Because of the distributed nature of IoT applications, it becomes difficult to map
centralized data-processing architectures such as Apache Spark, Apache Hadoop, Apache Flink,
etc. to function effectively. Many of such big data-processing systems do batch processing, which
requires the data to be in one single location (such as a flat file) in order to conduct processing. Even
the conventional real-time data-processing systems such as Apache Storm, IBM Infosphere Streams,
etc. have been conducting processing in centralized computer cluster. The process of getting the data
to such centralized location and sending the processed results back to the devices has to confront
large network latencies.

Most of the clocks used in IoT devices are susceptible for time drifts. Furthermore, network inter-
ruptions are typical in such systems. Owing to such reasons, disorders are prevalent in data streams
generated by many IoT systems. Hence, the need of handling disordered streams has become a sig-
nificant challenge than ever before. Furthermore, there can be missing values in such data streams,
which makes it harder to conduct calculations exactly. Hence, disorder handling and approximation
techniques are vital for handling such scenarios.

Data collection protocols also play a vital role on the types of analytics that could be conducted on
IoT data streams. These protocols need to be lightweight. However, based on the circumstance, these
protocols may have to communicate encrypted data and also may bear different levels of reliability
requirements. Table 12.1 shows details of communication protocols used by some of the famous
IoT platforms [10]. It can be observed that Message Queue Telemetry Transport (MQTT), which is
a lightweight, open, simple client server publish/subscribe messaging transport protocol, has been
mostly used by many IoT software platforms. Hence, real-time big data-processing systems that are
intended for processing IoT data need to support widely used protocols such as MQTT.

Furthermore, IoT platforms require much higher information security measures compared to gen-
eral software applications and services. Since the information flow happens across multiple devices,
and tens of thousands or even millions of devices get connected to such IoT system, it means there
is increased risk of information security violations happening in such an ecosystem. Therefore, the
real-time data-processing system designer has to take into consideration the requirement for placing
appropriate information security measures.

12.3 REAL-TIME IoT DATA-PROCESSING ARCHITECTURES

Real-time data processing plays a key role in IoT data processing. System architectures of real-time
data processing have been shaped by different usage patterns of IoT data. The following are some
usage patterns where real-time processing will be useful:
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1. Provide a real-time dashboard that shows the current status of the system in real-time. For
example, the following dashboard shows a real-time view of the vehicles based on Transport
for London (TFL) data feeds [11]. Similarly, some dashboards would update real-time,
showing updates to the data in the chart itself.

2. Generate alerts based on simple or complex patterns. For example, the following SQL-like
query will generate an event if the power consumption has increased by more than 30%
within 10min:

from e1=PowerStream->PowerStream[power> 03 & (power-p.power)/p.power > 0.3]
insert into PowerAlerts

3. Run a machine-learning model generated from batch processing against the incoming data
in real-time. For example, learn a fraud detection model using batch processing and use that
model against the incoming data in real-time fashion.

4. Tracking—tracking assets, vehicle, animal, or a human and alert if they deviate from the
desired behavior.

5. Data correlation—correlating data coming through multiple data streams and taking deci-
sions. Since data joins are complex, this processing is complicated with batch processing
and it can be easily implemented using complex event-processing (CEP) windows.

6. Lambda architecture—combining data from batch and real-time processing.
7. Detecting and switching to detailed analysis—detecting a condition and switching to

detailed analysis, for example, detect a suspicious user and analyze his actions in detail
(with human in the loop and batch processing).

Implementing such use cases is very difficult using batch processing technologies such as Apache
Hadoop or Apache Spark. Batch processing needs to write data to the disk, read it again, and
process them in batch style. Often, with tuning, these processes take minutes. In contrast, real-
time technologies such as event stream processing (ESP) and CEP are designed to produce results
in seconds and milliseconds because they process the data in memory event by event or using
small batches. The work conducted on the development of real-time big data-processing architec-
tures in the context of IoT applications can be categorized as system architecture-level develop-
ments and protocol-level developments. Next, we will delve into the details of each of these two
areas.

12.3.1 DATA-PROCESSING ARCHITECTURES

In terms of system architecture-level developments, there are several novel real-time data-processing
systems being developed recently targeting specifically the IoT runtime environments such as real-
time data processing on in-vehicular networks, enterprise communication systems, smart cities,
smart grids, etc.

Automotive Embedded Data StreamManagement System (AEDSMS) is a platform for data inte-
gration and management of an automotive embedded system via a DSMS [12]. It is one of the unique
examples for the application of real-time big data-processing technologies in the context of IoT. A
significant feature of an AEDSMS is that hardware and software that run in a vehicle are determined
during the design phase of the automotive. AEDSMS exposes high-level queries (HLQs) interface,
which are less dependent on the physical structure. The HLQs are compiled into low-level queries
(LLQs) that match the physical structure (Figure 12.2).

Ali et al. [13] described a solution that reduces the gap between IoT and online enterprise
communication systems. Their approach had a stream processing and reasoning layer imple-
mented using CQELS (Continuous Query Evaluation over Linked Streams) query engine, which
is a resource description framework (RDF) stream-processing engine. CQELS supports reasoning
through relating patterns of events to actions via event–condition–action (ECA) rules in AnsProlog.
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FIGURE 12.2 Automotive Embedded Data Stream Management System (AEDSMS) is an example of
a real-time data-processing system developed for Internet of Things. (Adapted from A. Yamaguchi et al.,
2015, AEDSMS: Automotive embedded data stream management system, In 2015 IEEE 31st International
Conference on Data Engineering. Seoul, pp. 1292–1303. doi: 10.1109/ICDE.2015.7113377.)

Similarly, the application of CQELS for IoT in smart cities has been developed. ACEIS is an
integration and automated discovery system for urban data streams [14]. An important characteristic
of their work is that they created a Complex Event Service Ontology, which is used to represent
service requests and semantic event services. Through this ontology, ACEIS automatically produces
CQELS queries and deploys the queries to a CQELS engine. The use of such semantic technologies
is important for handling the issue of data deluge, which is described later in this chapter.

ParStream IoT Analytics Platform (shown in Figure 12.3) is one example for an industrial geo-
distributed edge analytics platform [15]. SQL queries are received by ParStream from a variety of
analytical applications, which get connected to it. ParStream query is broken down into a series
of smaller SQL queries for each of the nodes. Each of these subqueries along with the central data
(these are small tables) gets distributed to the federated nodes for executing joins. The partial answers
are passed back to the geo-distributed analytics where they get aggregated. Event stream analytics
can be performed on the data collected by EdgeAnalyticsBoxes, which are specifically designed to
enable edge analytics or can be performed in any standard hardware with certain processing and
storage capabilities.

12.3.2 DATA COLLECTION PROTOCOLS

Power efficiency, reliability, data footage, security, etc. are some of the key concerns of communi-
cation protocols developed for IoT applications. In terms of protocol-level development, there are
initiatives taken to create standardized approaches by various standardization bodies such as World
WideWebConsortium (W3C), Institute of Electrical and Electronic Engineers (IEEE), Internet Engi-
neering Task Force (IETF), EPCglobal, and the European Telecommunications Standards Institute
(ETSI).

Out of the protocols described in Figure 12.4, application protocols such as Constrained Appli-
cation Protocol (CoAP), MQTT, Advanced Message Queuing Protocol (AMQP), Extensible Mes-
saging and Presence Protocol (XMPP), and Data Distribution Service (DDS) are of importance for
real-time big data processing in the IoT.

CoAP is aweb transfer protocol based onREpresentational State Transfer (REST) on top of HTTP
[16]. CoAP is based on UDP by default, which makes CoAP more suitable for IoT applications.
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FIGURE 12.3 ParStream’s Distributed Architecture for IoT. (Adapted from R. Bloor and R. Jozwiak, 2014,
A Database Platform for the Internet of Things, The Bloor Group.)

Furthermore, some of the HTTP functionalities have been modified to meet the IoT requirements
such as low power consumption and operationwith noisy and lossy links. It is easy to convert between
the two protocols in REST-CoAP proxies since CoAP has been designed based on REST.

The MQTT protocol has been developed based on publish/subscribe pattern through which mes-
sage brokers operate. The message broker acts as a server as well as it relays messages between
clients, which enables the messages to cross firewall boundaries. MQTT connects embedded devices
and networks with applications and middleware. MQTT is aimed for resource-constrained devices
that use unreliable, low-bandwidth links. MQTT is based on TCP protocol. MQTT has been used
in multiple applications such as energy meters, Facebook notifications, healthcare, monitoring,
etc. MQTT represents an ideal messaging protocol for the IoT and M2M communications and is
able to create routing for small, low-cost, low-power, and low-memory devices in vulnerable and
low-bandwidth networks.

AMQP [17] is an application layer protocol for the IoT focusing on the message-oriented envi-
ronments. AMQP exchanges messages via a reliable transport protocol such as TCP. AMQP has
been developed based on a layered architecture with the lowest level having an efficient, binary,
peer-to-peer protocol for transporting messages between two processes over a network. A layer of
messaging has been defined on top of AMQP’s transport layer.

DDS is a middleware protocol and API standard for data-centric connectivity [18]. DDS archi-
tecture is designed to be scalable from small devices to the cloud. Different from MQTT or AMQP,
DDS depends on a brokerless architecture and it uses multicasting to maintain excellent quality of
service (QoS) and high reliability to its applications.

Several comparisons have been made on the characteristics of the above-mentioned protocols.
Packet loss rate is an important measure when comparing MQTT and CoAP. If the communication
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FIGURE 12.4 IoT network protocols and standardization efforts. (From A. Al-Fuqaha et al., 2015, Internet
of things: A survey on enabling technologies, protocols, and applications. IEEE Communications Surveys &
Tutorials, 17(4), 2347–2376, Fourth quarter 2015. doi: 10.1109/COMST.2015.2444095.)

involves small-sized messages with loss rate under 25%, CoAP outperforms MQTT by generating
less extra traffic. A similar observation has been made by Caro et al. [19] where they found that in
the case of smartphone application environment, CoAP’s round trip time and bandwidth usage are
smaller than those of MQTT. It has also been found that CoAP is more efficient than HTTP in trans-
mission time and energy usage. With high volume of message exchanges, AMQP produced better
results than RESTful web services. In real-time processing of IoT data, it is very important to have
the IoT system to operate with lightweight protocols. However, different protocols will perform well
in specific scenarios [16]. A comparison of the IoT data collection protocols is shown in Table 12.2.

12.4 RESPONDING IN A TIMELY FASHION

The most significant problem that needs to be addressed in real-time big data-processing of the IoT
is responding to the events generated in a timely fashion. If we look at the IoT use cases listed in the
introduction section, except for few use cases such as urban planning, the usefulness of those use
cases requires us to react to the data immediately. For example, in use cases such as in-home care,
logistic network, traffic, and surveillance, the value of the information reduces sharply with time. In
such use cases, immediate intervention can save lives and money. For example, in the DEBS grand
challenge 2014, four-node CEP cluster did smart meter forecasts, processing 0.8 million events per
second with less than 100 ms latency [20]. These types of numbers are impossible to achieve with
batch processing.

12.4.1 BATCHED EVENT PROCESSING IN IoT

Batched event processing (i.e., batched stream processing) is a distributed data-processing tech-
nique that models recurring batch computations as incrementally bulk-appended data streams. In
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TABLE 12.2
Comparison between the IoT Application Protocols

Application Publish/ Request/ Header Size

Protocol RESTful Transport Subscribe Response Security QoS (byte)

CoAP Yes UDP Yes Yes DTLS Yes 4

MQTT No TCP Yes No SSL Yes 2

MQTT-SN No TCP Yes No SSL Yes 2

XMPP No TCP Yes Yes SSL No –

AMQP No TCP Yes No SSL Yes 8

DDS No UDP Yes No DTLS Yes –

HTTP Yes TCP No Yes SSL No –

Source: Adapted from A. Al-Fuqaha et al., 2015, Internet of things: A survey on enabling technologies, protocols,
and applications. IEEE Communications Surveys & Tutorials, 17(4), 2347–2376, Fourth quarter 2015. doi:
10.1109/COMST.2015.2444095.

this paradigm, either queries or data can be batched. In query batching, the queries from multi-
ple query series operating on the same input data stream can be aligned to execute together when
new bulk update happens [21]. In data batching, the stream computation is conducted as a series of
deterministic batch computations that are conducted on small time intervals [22].

Query batching provides the ability of removing redundant computations or I/O across the queries,
which arises from spatial correlations among the queries. Comet is a system that was developed on
this concept. Users of Comet can submit a query series. Comet implements a set of global optimiza-
tions that takes the advantage of the notion of query series. When a new bulk update arrives, Comet’s
query execution gets triggered. In Comet, a query is decomposed into a number of subqueries. A sin-
gle large query is formulated by comet by aligning subqueries from different query series into the
large query. Optimizations are carried out on the large query to remove redundancies and improve
performance (Figure 12.5).

FIGURE 12.5 Continuous versus batched stream-processing paradigms. (a) In the continuous processing
model, each and every record received by the nodes is continuously processed and new records are sent down-
stream. (b) In the D-Stream-processing model, in each time interval, each and every record that arrives is stored
reliably across the cluster to form an immutable, partitioned dataset. This dataset is processed to compute
other distributed datasets that represent program output or state to pass to the next interval. (Adapted from M.
Zaharia, T. Das, H. Li, S. Shenker, and I. Stoica, 2012, Discretized streams: An efficient and faulttolerant model
for stream processing on large clusters, In Proceedings of the 4th USENIX Conference on Hot Topics in Cloud
Computing (HotCloud’12). USENIX Association, Berkeley, CA, USA, pp. 10–10.)
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In data-batching technique, which is also followed in the D-Streams model, the streaming com-
putation is treated as a series of deterministic batch computations on discrete time intervals [22]. In
each time interval, the data is stored reliably across the cluster, which creates an input dataset for
that interval. The dataset is processed via deterministic parallel operations once the time interval is
complete. Deterministic operations such as map, reduce, and groupBy are followed to create new
datasets that resemble either program outputs or intermediate state. The results are stored in resilient
distributed datasets (RDDs), which are a fast storage abstraction.

Latency is a critical parameter that determines the usefulness of most of the real-time IoT appli-
cations. In such applications, continuous processing needs to be given priority over data-batching
techniques. This can be observed even from the data-processing architectures described in Sec-
tion 3.1. Even if data-batching techniques are used in the higher levels of event-processing system
hierarchy, the event batching interval needs to be chosen with low time intervals as much as possible
to avoid long end-to-end event-processing latencies.

12.4.2 POWER CONSUMPTION VERSUS RESPONSE TIME

There are challenges with battery-powered and distributed sensors, where there is a very high prob-
ability of devices losing network connections or even dying due to low power; further low quality
sensors may also produce incorrect sensor reading. Data loss due to these scenarios should not be
considered as special, but rather they should be considered as a norm and handled. Techniques such as
using redundant sensors with overlapping coverage area and predictions based on the neighborhood
can be used to provide timely response even during data losses.

IoT systems often face the scarcity of power. Power issues may arise in multiple levels
such as at the sensor/device level, fog computing (intermediate computing) devices, data cen-
ters, etc. The typical energy-aware data stream scheduling can be classified into three groups:
hardware-based techniques (dynamic power management and dynamic voltage frequency scaling),
software-based stream scheduling techniques (e.g., virtual machine consolidation, elastic scal-
ing), and application-based stream scheduling techniques (e.g., task duplication) [23]. In most
of the scenarios, a trade-off exists between the power consumption and the response times in
energy-aware data stream scheduling techniques. If the system can be operated with high power
envelope, the response times can be kept at the minimum level. On the other hand, then the power
availability reduces, and the system performance (and the response time) needs to be updated
accordingly.

For example, Sun et al. [23] used an energy model to estimate the energy consumption of each
computing node in a data stream environment. They have investigated the relationship between
energy consumption, response time, and resource utilization in data stream computing to gener-
ate conditions to meet the high energy efficiency and low response time requirements. They use
an energy-efficient consolidation of noncritical query operators on noncritical path to maximize the
energy efficiency without distributing the response time of the data stream graph [23]. The critical
path is a path having the longest latencies from source vertex vs to end vertex ve in the data stream
graph. The proposed Re-Stream system implements two new models on Apache Storm: first, a crit-
ical vertex-based real-time scheduling model, and second, an energy-aware consolidation model.
It is a typical observation that the response time of a stream-processing application increases with
increasing amounts of input data rates. Similarly, the increase of input data rate results in increased
energy consumption rate. However, in the proposed Re-Stream approach, there can exist a sweetspot
input data rate where despite the relatively large input data rate, the energy consumption remains at
a low value.

In performance-sensitive stream-processing applications that have the ability of elastic scaling, it
is necessary to avoid unnecessary or very frequent reconfigurations by keeping the actual QoS close
to the user’s specifications [24]. Such technique allows the delivery of high performance in a cost-
effective manner. Matteis et al. [24] modeled the cost of operating such elastic stream-processing
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system as L, where

L = QoS cost+ resource cost+ switching cost (12.1)

Resource cost = per core cost+ power cost (12.2)

For different levels of power consumption, we could find the resource allocation that maximizes per-
formance compared to historical workload so that one could identify whether significant reduction
in power can be achieved with slight increase (e.g., 50ms) in the desired response time [25]. We
could also predict how much power would be needed to decrease the response time significantly in
the context of real-time IoT data-processing applications.

12.5 HANDLING THE DATA DELUGE

The second most significant problem that needs to be addressed in real-time big data processing in
IoT is how to handle the huge amounts of data produced by the IoT sensors. There are obviously two
approaches for handling the surge of data generated by IoT sensors: either summarize the data to
match with the current computing environment or provision the environment to meet the increasing
demand. The former approach has been followed in most of the use cases since most of the time the
value exists with timely processed information rather than on raw data.

12.5.1 DATA SUMMARIZATION

Various data summarization techniques can be employed with reduction in the size of the data,
which will be handled by the system. Data summarization algorithms as well as techniques such
as edge analytics, complementing sensor readings, etc. can be employed for constructing effective
data summarization pipelines. Next, we will present the details of these techniques.

12.5.1.1 Edge Analytics
One of the solutions in the data summarization realm is edge analytics. In this technique, raw data
generated from the sensors are partially processed to extract summarized information, which will
then be transmitted higher up in the system hierarchy. An analysis by Cisco Consulting Services
indicates that for a retail store with $20 million in annual sales and 100 security and video analytics
cameras, edge computing/analytics can provide savings of 33,800 US dollars annually, and a 1.7%
annual EBIT (earnings before interest and tax) increase [3]. According to International Data Corpo-
ration (IDC), by 2018, about 40% of the data created by IoT systems will be handled close to or at
the edge of a network [26]. There are several variations of edge analytics and related system archi-
tectures present today. There are several notable IoT platforms built using edge analytics concepts.
Among them, the ParStream IoT Analytics Platform (described in Section 3.1) is one of the notable
systems that conducts edge analytics. Another example is the Dell Edge Gateway 5000 Series, which
aggregates and relays data securely from a variety of sensors and equipment [27]. These gateways
consist of Intel Atom processors that provide the ability of conducting local analytics at the gateway
itself, which allows for sending only meaningful information to the next tier. The next tier can be
another gateway, the data center, or the cloud.

The decision of how much data to send to the centralized event-processing cluster can be decided
either by edge nodes or by the centralized server cluster, for example, if the rate of change on the
measured values is high or if it fluctuates, the edge nodes might decide to send events in higher
frequency under the assumption that there is some interesting thing happening at its end, or the
centered processing node can ask a set of sensors to send events in higher frequency if it has predicted
that there can be some abnormal conditions where the sensors are. The cost of edge computing
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FIGURE 12.6 Data movement from fog to cloud. Fog data services act as the coordinator in between.
(Adapted from Cisco, 2015, Cisco Fog Computing Solutions: Unleash the Power of the Internet of Things,
Cisco Systems, Inc.)

infrastructure can be easily offset by the reduced bandwidth costs, storage, and processing costs
enabled by processing the sensor data locally [3].

Fog computing is a variation of edge analytics where it extends the cloud computing paradigm
toward the edge analytics. Fog computing in simple terms is a highly virtualized platform that pro-
vides compute, storage, and networking services between the end devices and traditional cloud
computing data centers. Fog services can be hosted either in the network or in the end devices such
as set-top boxes or access points. This provides the benefit of combining intelligence of the edge
with the proximity to obtain predictable latency for streaming applications. Some of the key features
of fog computing include the geographically distributed nature, very large number of nodes, support
for mobility, real-time interactions, predominance of wireless access, heterogeneity, interoperability
and federation, support for online analytics, and interplay with the cloud [28] (Figure 12.6).

12.5.1.2 Complementing Sensor Readings
Complementing sensor readings is one of the techniques used when sensors cannot send readings
in a continuous manner, when certain readings of the sensor can be derived from other attributes,
sending those values is unnecessary, and they can be calculated at the server side. In cases where
there is no mathematical model, machine-learning techniques can also be used to estimate the sensor
readings. In this case, to validate the correctness and to adjust the errors, the actual readings could
be sent time to time in low frequencies. The use of such sensor reading complementing techniques
is inevitable when the rate of sampling by the sensors is insufficient to capture the level of details
of the real world, which needs to be captured. This is called misrepresentation of data [30]. Query
execution costs can be significantly larger than what is a reasonably reliable answer.

The incorporation of statistical models of real-world processes into a sensornet query processing
architecture can help to solve this issue. In such a technique, sensors need to be used for reading
data only when the model itself is insufficient to answer the query with an acceptable level of con-
fidence [30]. Any trivial statistical model can capture correlation among sensors. For example, the
temperature values read by geographically closely located sensors are likely to be correlated. In such
a situation, the reading from one sensor could be used to improve the estimates of the other read-
ings. In such a system, temperature measurements have both temporal and spatial correlations. The
historical values measured by the sensors should help to estimate the temperature later in time. Such
temporal correlations can be represented by a dynamic probabilistic model. In such a model, for
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each discrete time index t, one needs to estimate a probability density function (pdf) represented by
p(Xt1, . . . ,X

t
n | o1...t), which assigns a probability for each joint assignment to the attributes at t, given

O1...t, all observations made up to time t. The evolution of this system over time allows to calculate
the probability for each joint assignment to the attributes at time t+1 as p(Xt+11 , . . . ,Xt+1n | o1...t).
Therefore, all the measurements made up to time t can be used to improve the estimate of the pdf at
time t+1.

With the help of a transition model, one can calculate p(Xt+11 , . . . ,Xt+1n | o1...t) via a simple
marginalization operation as

p(Xt+11 , . . . ,Xt+1n | o1...t) =
∫
p(Xt+11 , . . . ,Xt+1n | xt1, . . . , xtn)p(xt1, . . . , xtn | o1...t)dxt1 . . . dxtn (12.3)

where it is assumed that the transition model p(Xt+1|Xt) is the same for all times t. For example, the
transition model needs to be different in different times of the day due to different types of variations
(increase/decrease) happening in the temperature throughout the day.

Once the p(Xt+11 , . . . ,Xt+1n | o1...t) has been obtained, the measurements ot+1 made at time t + 1
can be used to obtain p(xt+11 , . . . , xt+1n | o1...(t+1)), the posterior distribution at time t + 1 can be
calculated given all measurements up to time t + 1. The process is continued for time t + 2, t + 3,
and so on. The pdf for the initial time t = 0, p

(
X0
1, . . . ,X

0
n

)
is initialized using the prior distribution

for attributes X1, . . . ,Xn. The process of inputting the estimate for density at time t via the transition
model and then conditioning on the measurements at time t+1 is generally called filtering. Filtering
enables to condition the estimates on the complete history of observations, which can considerably
reduce the number of observations required for acquiring confident approximations for the queries
on the system.

For Gaussian distributions, the filtering process is called Kalman filter [31]. In Kalman filtering,
the transition model p(Xt+11 , . . . ,Xt+1n | xt1, . . . , xtn) is a learned data with two steps. First, a mean and
covariance matrix need to be learned for the joint density p(Xt+11 , . . . ,Xt+1n , xt1, . . . , x

t
n). Once this is

done, tuples can be formed as 〈Xt+11 , . . . ,Xt+1n , xt1, . . . , x
t
n〉 from the attributes at every consecutive

times t and t+1. These tuples are used to compute the joint mean vector and covariance matrix. Next,
a conditioning rule is used to compute the transition model:

p(X(t+1) | Xt) = p(X(t+1), Xt)
p(Xt)

(12.4)

When this transition model has been computed, one can answer queries in a similar fashion and thus
can compute all of the operations required to answer the queries by performing only basic matrix
operations.

A practical example of the use of filtering is human trajectory processing. Consider the scenario of
a person carrying an iBeacon sensor (e.g., a smartphone) walking in a field of iBeacons. The signals
transmitted by the iBeacons are received by the iBeacon sensor. An approximation of the location
of the person at a particular time is constructed by triangulating the locations of the iBeacons, which
the iBeacon sensor detected (see Figure 12.7). However, the location P(x,y) obtained from such a
triangulation is a rough approximation of the exact location of that person at a particular time. This
is due to multiple reasons, such as signals emitted by different iBeacons are received by the iBeacon
sensor with similar signal strength, at different times, low sampling frequency of iBeacon sensor,
out-of-order arrival of events, etc. If the iBeacon sensors are operating with low sampling frequency,
sudden changes made to the trajectory of the person are not properly captured (Figure 12.7).

If one plots the raw triangulated path of the person, it may create a rough trajectory that has signif-
icant deviations from the person’s original trajectory. Hence, a trajectory smoothing and realignment
technique needs to be used to correct the trajectory of the person.
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FIGURE 12.7 A person walking with an iBeacon sensor through a field of iBeacons. The signals sent from
the iBeacons are received by the sensor and are used to construct an approximation of the location of the person
carrying the iBeacon sensor.

12.5.1.3 Data Stream Compression and Redundancy Elimination
Events gathered from sensors can be compressed before they are sent to the data-processing system.
Furthermore, sending redundant or useless data via the network can be avoided. In this way, the huge
amounts of data that otherwise would have to be sent through the network could be eliminated.

In most of the environment monitoring applications, the captured data can be of high temporal
or spatial correlation. Such applications could tolerate some loss of data accuracy [32]. The high
temporal coherence indicates the presence of redundancy in the continuous data sequence, which
creates unnecessary data transmission and energy consumption.

In one such scheme that involves bitmap-based event encoding scheme when an event arrives,
the event’s bit-map-based encoding is computed. The generated bitmap is used for traversing a
tree-based index structure and finding the matching results. Sadoghi et al. developed a parallel
compressed event matching (PCM) algorithm, which conducts subscription matching in parallel
overcompressed events. These compressed events are produced by coalescing multiple bitmap-based
event encodings into one [33] using bit-wise OR operations and these compressed events are used
for traversing the index. The PCM algorithm can easily solve the matching problem for a set of
events via single index traversal with a single pass over all relevant leaf nodes. Figure 12.8 depicts
an overview of the PCM algorithm.

In order to gain the benefit of the use of any compressed event-matching algorithm, the com-
pressed events must be similar. Accounting for the noise in the event stream and bringing similar
events together that are close to each other (yet not adjacent) using an online stream reordering
(OSR) technique needs to be employed. OSR algorithm has the ability of reasoning about stream
heterogeneity and dynamically adapts to similarity among the events. Sadoghi et al. further proposed
an adaptive parallel compressed matching algorithm (A-PCM) that first reorders the stream online
using the OSR technique, and for each batch of events that OSR outputs, a similarity value is cal-
culated. All the event batches that have lower similarity value compared to a predefined threshold
are processed uncompressed using the standard matching algorithm while the others are processed
using the compressed matching technique. It has been observed that A-PCM algorithm is mostly
effective when the variance in the event stream is high.

Redundancy elimination is another important technique to be followed when implementing data
summarization. Significant amount for work has been conducted on redundancy elimination in the
domain of radio-frequency identification (RFID) stream processing. One of the key hindrances in
the adoption of RFID technology is the unreliability of the data streams that are produced by RFID
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FIGURE 12.8 Parallel compressed matching (PCM) algorithm. (Adapted from M. Sadoghi and H. A. Jacob-
sen, 2014, Adaptive parallel compressed event matching, In 2014 IEEE 30th International Conference on Data
Engineering. Chicago, IL, pp. 364–375. doi: 10.1109/ICDE.2014.6816665.)

sensors [34]. A sliding window over the reader’s data stream (i.e., smoothing filter) that estimates
the value of lost readings from each RFID tag within a time window is utilized as the solution. The
smoothing filter functionality can be expressed in CQL as,

SELECT distinct tag_id FROM rfid_readings_stream [ANGE ’5 sec’] GROUP BY tag_id

Here, setting the smoothing window size is a challenging activity because one needs to balance two
opposing application requirements “ensuring completeness” for the set of tag readings because of
the reader unreliability and “capturing tag dynamics” because of the tag movement in and out of the
reader’s detection field. The smoothing window must be large enough to correct the reader unrelia-
bility so that the system could ensure the completeness property. However, using larger smoothing
window reduces the accuracy of detecting the tag movements within the window resulting false
positives.

12.5.2 SYSTEM-WIDE SCALING

The second approach that could be followed to handle large amounts of streaming IoT data is system-
wide scaling, which means adjusting the system to handle the entire set of data generated from the
IoT sensors. This requires provisioning of additional resources. Several techniques such as geo-
distributed stream processing, elastic scaling of event-processing systems, etc. have been used in
this context with proven results.

12.5.2.1 Geo-Distributed Stream Processing
Increased deployment of cost-efficient data centers around the globe has enabled geo-distributed
stream processing to become a reality. Since IoT systems get deployed across different geo-
graphical areas, the analytics conducted on such geo-distributed IoT deployments need to be
supported by geo-distributed stream-processing systems. Efficient event-transferring techniques
such as batched event-transferring need to be employed in such geo-distributed stream-processing
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systems. Maintaining low response times is another significant challenge in geo-distributed stream
processing.

JetStream is one such example for a geographically distributed data stream-processing sys-
tem [35]. Bandwidth limitation is a critical factor when implementing a geo-distributed stream-
processing system. Two techniques have been used by JetStream to overcome the issues of bandwidth
limitation, which are explicitly defined in the programming model. First, a structured storage is oper-
ated by the system in the form of online analytical processing (OLAP) data cubes, which enables
data to be analyzed where they get generated. Second, adaptive filtering and data transformations
that adjust data quality to match the bandwidth availability have been used by JetStream.

Heintz et al. [36] have examined the characteristics of centralized versus edge computing in
the context of geo-distributed data processing. The study has resulted saying neither of these two
approaches is ideal for modern analytics requirements. Especially, the resource requirements of the
queries could vary drastically. While some queries require large amounts of verbose data to be trans-
ferred across the wide area networks, most of the geo-distributed data streaming that involve IoT
scenarios operate with relatively small amounts of raw data to be transferred from thousands of edge
devices to a centralized location for processing. Hence, techniques need to be devised to automati-
cally place data and computation based on characteristics of the query, the data, and the resources.
Furthermore, identification of a proper set of operators to be placed at the center versus at the edge is
another important task to be performed. In such a setup, for example, filter operators could be placed
at the edge while aggregation at the edge may not be beneficial.

12.5.2.2 Elastic Scaling
Another approach for system-wide scaling is elastic scaling where the processing conducted by
an event-processing system has been expanded to third-party compute clusters. The decision
for expanding to external cluster can be taken based on considering the throughput and latency
requirements of the jobs handled by the stream-processing system.

Elastic scaling in the resource-limited scenarios is often most interesting for IoT deployments.
Most of the IoT systems need to operate with low resource levels. Resource limitations are associated
with budget limitations, inadequate electricity supply, space limitations, etc. Local system resources
are limited in most of the scenarios; hence, it is required to expand into external systems such as
public clouds. When to provision resources is a critical question to be addressed in such scenarios.
For example, virtual machines (VMs) need to be spawned in an elastic fashion to cater the real-time
processing requirements [37]. Since commercial clouds incur usage cost, techniques need to be in
place to keep the economic costs at minimum by formulating a trade-off between the latency and
economic costs as an optimization problem.

One of the key hindrances for elastic scaling of real-time data-processing systems is the require-
ment for accessing shared state. For example, when some operator needs to be shifted to newly
provisioned computing resource (e.g., a VM), it requires the existing state of the operator also to
be migrated to the newly provisioned compute resource, which becomes virtually impossible if the
shared state is very large. Efforts have been made to solve such issues by the introduction of global
state managers [38,39].

12.5.3 DATA DIVERSITY

Semantic descriptions of data are an important aspect when dealing with the data deluge. IoT
data often correlate with each other. Furthermore, the event field descriptions often have similar-
ities between them. Semantics of the data streams produced by multiple different sensors can be
considered to reduce the large amounts of data.

The use of semantic technologies such as RDF requires significant quantities of computing and
communication resources, which are generally scarce in IoT devices [40]. This is one of the main



256 Big Data Management and Processing

issues that needs to be overcome when addressing the issue of data diversity. One example of
application of semantic technologies in the context of IoT data processing can be pointed out from
the marine and fishery domain. The water quality of fish farms can be monitored via IoT applica-
tions. Knowledge models need to be applied to analyze sensor data and emit warnings in the case of
anomalousmeasures [40]. SensorMarkup Language (SenML) is a nonproprietary emerging standard
for denoting device parameters and sensor measurements that could be used with such application.
SenML is designed for resource-constrained devices and it supports compact data representations
for JavaScript Object Notation (JSON) and Efficient XML Interchange (EXI). However, to gain the
benefit from data produced by IoT devices that communicate via SenML, the SenML elements need
to be mapped to an RDF model such as using a directed labeled graph [40].

The ability of automatic discovery and integration of sensor data on the fly is another impor-
tant characteristic when addressing the data diversity of real-time IoT data processing. Difficulty
of discovering the capabilities of the available infrastructure and integrating heterogeneous data
sources are two of the challenges in this domain [14]. The ACEIS integration and automated dis-
covery system for urban data streams is one example IoT data-processing system that takes this into
consideration.

12.6 DATA ANALYSIS TECHNIQUES

The previous two sections of this chapter discussed about two of the most pressing issues to be
addressed when conducting real-time big data processing in the IoT. This section will discuss
data analysis techniques currently used with real-time IoT data analytics that needs to take the
above-mentioned issues into consideration. The first two subsections describe CEP and time series
processing aspects of real-time IoT data while the latter two sections discuss the use of intelligent
techniques with real-time data processing to obtain on-the-fly insights on IoT data.

12.6.1 COMPLEX EVENT-PROCESSING APPROACH

CEP deals with a special type of events called complex event, which is an event derived from a group
of events using either aggregation or derivation functions. For example, if event A happens and then
event B happens, we conclude that event pattern A-> B leads to a complex event C. Conducting
operations on complex events is called complex event processing. CEP engines, which are the soft-
wares that do CEP, are capable of detecting complicated patterns, correlations, trends, etc. from data
streams.

CEP engines have been used as one of the technologies to implement solutions for the challenges
mentioned above. CEP engines detect the presence of complex events and produce output events only
when such complex events are encountered. Furthermore, some of the modern CEP engines such as
WSO2 Siddhi [41], SAP event stream processor, etc. have support for handling the disorder of data
streams, missing events, and duplicated events. Some of these CEP engines support communication
over lightweight protocols such as MQTT, CoAP, etc.

12.6.2 TIME SERIES PROCESSING

Almost all IoT devices collect data over time and the resulting data are time series data. Hence, the
time series analysis methods and tools will play a key role in real-time IoT analytics. For example, if
we are trying to detect equipments that are likely to fail among IoT-enabled devices in operation, we
need to process reading collected from each device and trigger an alarmwhen it deviates from normal
behavior. When applying the time series processing concepts in IoT scenarios, there are several key
issues to be solved. These include handling some specific issues such as out-of-order events arrival,
triggering events out from a window, etc.
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Doing this would involve time series analysis, which fits well with time and window-based
processing supported by real-time analytics. Specifically, technologies like CEP support these
processing well.

Unlike other datasets, time series data are autocorrelated. That is the value at time t is affected
strongly by the values at t − 1 and t − 2 and so on. Hence, the processing is often done using mov-
ing time window that keeps the recent data and processing. A very good example of this kind of
processing is seen in stock markets, where most of the decisions are taken not based on point data
but on data from a time window.

1. Detecting anomalous devices—time window operations such as moving average, z-score,
etc. are major features used in anomaly detection.

2. Predicting the next value (load prediction)—the expected electrical load, stock price
forecasting, etc.

3. Data correlation—correlating two time series is an expensive operation without time
windows.

4. Detecting trends and patterns—CEP pattern operators, hard coding patterns.

For example, consider the case where we want to detect whether the electricity load has increased
more than 30% within the last hour. When implementing an algorithm like this, it is very hard to
partition the data as the condition could fall across a boundary of partitions. For instance, if we
partition the data by the hour, we will miss an occurrence that starts at 8:54 and finishes at 9:03.
Consequently, this nullifies the advantage of batch processing and limits it to a single machine. This
can also lead to the condition where processing cannot keep up with the data.

In contrast, real-time stream processing operates on data event by event as they arrive. Hence, they
process data in a sequence and do not face the above problem. Moreover, since stream processing
starts processing once the event has arrived, it has much better chance of keeping up with high event
rates than batch processing (i.e., than letting the data to collect and try to process them in batches).
As we mentioned before, streaming technologies have demonstrated the ability to handle event rates
close to millions of events per second.

Also, most use cases would need a deep understanding about time, and stream-processing systems
support time natively. Often, the event receive time is not the same as the time the event has actually
occurred. IoT use cases need to operate with external time specified in the event as an attribute. This
leads to several challenges.

1. Events may arrive out-of-order, and it is the responsibility of the system to order them. This
becomes complicated because there is a trade-off between accuracy (longer you wait for
out-of-order events, better accuracy you will have) and responsiveness (time from event
arrival to trigger).

2. System can only know the progress of time as the events arrive in the system. Hence, each
event arrival shifts the time in the system, and any parallel processing components need to
be notified about the time shift. For example, if data is processed as four partitions, each
partition needs to be notified about the time shift.

Streaming systems such as CEP supports above complicated scenarios natively, saving the end user
from wasting a lot of time and complexity.

12.6.3 PREDICTIVE ANALYTICS FOR IoT

One of the most important aspects of IoT analytics is predicting what might happen in the future and
being prepared to face the opportunities and threats. For example, this is heavily used in predictive
maintenance of machinery, sending warning alerts when defined limits are about to be reached, in
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managing supply and demand of resources such as to autoscaling the system just when the load
is about to shoot. In this section, we will first describe some of the example application use cases
of predictive analytics for IoT. Next, we will investigate some key issues of applying predictive
analytics for IoT in the real-time data-processing domain such as handling the missing values.

The most simple form of prediction is done by defining multiple levels of thresholds below the
actual threshold such that when the reading reaches the low-level thresholds, they can be alerted as
warnings. But this approach has many flaws because there can be many false positives. When the
reading reaches the warning it will not reach the actual threshold. In some cases the rate of increase
might be very low such that it will take a very long time from the warning signal to actually hit the
threshold.

This can be combined with regression analytics, where algorithms like linear regression can be
used to predict the future values based on the current rate of change of the reading and with this
model we can approximate how long it will take to reach the threshold, and if the time to reach the
threshold is below the expected level, then the warning can be raised. Second or higher derivations
of reading can also be used to more accurately predict the time to reach the threshold.

There are only a few cases where we can come up with a mathematical model for prediction; in
all other cases, machine learning plays a vital role by learning the system over time and forecasting
results and categorizing them into meaningful groups. There are plenty of open-source machine-
learning library/solutions such as R, python, and Spark MLlib.

The forecasting functionality of machine learning not only helps to predict the future readings
but it can also be used to identify missing events due to temporary network outage of sensor failure.
Probability-based predictions such as Markov chains can also be used to predict the possibility of
the occurrence of the next event based on its current state. Such techniques have been employed for
anomaly detection in data streams.

12.6.4 STREAMING MACHINE LEARNING FOR IoT

The application ofmachine-learning techniques in real-time IoT data processing has become a neces-
sity due to the inherent characteristics of IoT data streams. However, most of the current streaming
machine-learning research is focused on theoretical aspects. For example, popular streaming ML
frameworks such as SAMOA [42] data streams produced by IoT sensors may get distorted by noise.
Hence, analytics conducted on such noisy data streams often consists of a lot of missing values.
Furthermore, concept drift may be present in IoT data analytics systems.

The relation between the input data and the target variable changes over time due to the phe-
nomenon of concept drift. Techniques such as incremental decision tree inducer for data streams can
be used as a means of building new methods for dealing with concept drift.

12.7 SECURE REAL-TIME IoT DATA PROCESSING

The growth of IoT systems in different locations getting interconnected via communication networks
has resulted in added potential for unauthorized access, abuse, or fraud, which could take place at
any access point in the network. Since the Internet is an enormous public network, when abuse
does occur, it can create a significant impact to the society. Security violations could appear at any
level of an IoT data-processing system. Hence, information security and associated threat mitigation
techniques have direct impact on shaping up the real-time IoT big data-processing applications. This
section investigates some of the key concerns in this area.

Most of the IoT security challenges are associated with the wireless Internet security challenges.
Wireless networks are more vulnerable to penetration (i.e., eavesdropping) because radio frequency
bands are easy to scan. Local area networks (LANs) that use the 802.11b (Wi-Fi) standard can be
easily penetrated by outsiders using laptops, wireless cards, external antennae, and freeware hacking
software [43]. Therefore, how to securely connect a device to a network is a great challenge. The
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weakest link in the communication inmost of the scenarios is device to the home network. The degree
of infrastructure protection is highly affected by its heterogeneity. A secure communication channel
needs to be established between highly constrained devices that use low-bandwidth standards (e.g.,
IEEE 802.15.4) and more powerful devices [44].

Other than general security threats such as the one described above, IoT introduces a completely
new breed of security threats to daily appliances. Nonintrusive load monitoring (NILM) could be
used for detailed tracking of residents of a housing complex, resulting in decreased privacy. If a
hacker gains access to a home’s smart meter, the hacker could cut off electricity to the security
systems [45]. Another example is hackers gaining access to one’s car, which has the ability of remote
manipulation via cell phone. This will lead to hackers controlling the internal systems of the car.

Securing with noisy data is one approach that could be followed in IoT infrastructures to mitigate
such threats. By exploiting the fact that certain communication channels are generally noisy, one
can probably achieve secure encryption against adversaries [46]. Furthermore, techniques such as
homomorphic encryption can be used for remote health data analysis applications, which allows for
preventing eavesdropping in the cloud [47].

12.8 SUMMARY AND CONCLUSIONS

This chapter clarified the important role played by real-time big data-processing technologies in
advancing the IoT.We described use cases where IoT has been used in daily life and the requirements
for why real-time data processing is required in such IoT use cases. We presented details of novel
real-time IoT data-processing architectures specifically tailored for IoT use cases. Furthermore, we
provided the details of data collection protocols used in real-time IoT data-processing systems. Then
we described how to respond to events in a timely fashion and also presented methods to follow for
handling the massive amounts of streaming data produced by IoT. Furthermore, we presented dif-
ferent data analysis techniques that are followed in real-time IoT data-processing scenarios. Finally,
we described some of the notable information security-related concerns when conducting real-time
IoT data processing.

It became clear that while multiple data stream-processing systems and architectures have been
proposed and implemented, very few, if any, stream-processing systems specifically targeted for IoT
use cases exist. From the content presented in this chapter, it was clear that while techniques exist for
handling data deluge, it is not clear what types of issues may occur in applying such techniques in
real-world settings. For example, system-wide scaling may have multiple issues such as scalability,
reliability/fault tolerance, information security, power consumption, etc., which need to be handled.
Furthermore, dealing with the semantic information has been a significant challenge to conquer.
However, only few works have been conducted to address the issue of data diversity. Streaming
machine learning is still at its early stage. Hence, significant amount of work can be conducted with
the application of streaming machine learning for IoT applications. Overall we believe that multiple
works will appear in the near future, which will fill the gaps of current real-time big data-processing
technologies for IoT.
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ABSTRACT

Big data streaming has become an important paradigm for real-time processing of massive con-
tinuous data flows in large-scale sensing networks. While dealing with big sensing data streams
from Internet of Things (IoT), a data stream manager (DSM) must always verify the authenticity,
integrity, and confidentiality of the data to ensure end-to-end security as the medium of communica-
tion is wireless and untrusted. Malicious attackers could access andmodify the data at any time/place
from source to cloud data center. Existing technologies for data security verification are not suit-
able for data-streaming applications, as the verification should be performed in real time and which
introduces a delay in the data stream. In this chapter, we will propose a Dynamic Prime-Number-
Based Security Verification (DPBSV) framework for big data streams. Our framework is based on
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a common shared key that is updated dynamically by generating synchronized prime numbers. The
common shared key updates at both ends, that is, source-sensing devices and DSM, without further
communication after handshaking. Theoretical analyses and experimental results of our DPBSV
framework show that it can significantly improve the efficiency of the verification process by reduc-
ing the time and utilizing a smaller buffer size in DSM. We have experimented the proposed scheme
in a simulated environment and demonstrated the feasibility of the approach. We observed that the
proposed scheme not only reduces the verification time or buffer size in DSM, but also strengthens
the security of the data by constantly changing the shared keys.

13.1 INTRODUCTION

A number of application scenarios such as telecommunications, network security, large-scale sensor
networks, etc. require real-time processing of data streams, where the applicability of the tradi-
tional “store-and-process” method is limited [1]. There are a wide range of applications that require
cloud-based data stream processing (e.g., data from large-scale sensors, information monitoring,
web exploring, data from social networks such as Twitter and Facebook, surveillance data analysis,
financial data analysis) [2]. These applications produce high-volume, high-velocity, and real-time
data as input, and hence require a novel paradigm for data processing. As a result, a new computing
paradigm based on stream-processing engines (SPEs) has emerged. SPEs deal with specific types of
challenges and are intended to process data streams with a minimal delay [3,4].

Some applications such as network monitoring and fraud detection produce data, which is beyond
the capability of traditional data-processing infrastructures. These applications require real-time pro-
cessing of very high-volume data streams (termed as big data streams). The complexity of big data is
defined through V4’s: (1) volume—referring to terabytes, petabytes, or even exabytes (10006 bytes)
of stored data, (2) variety—referring to the unstructured, semistructured, and structured data from
various sources like social media (e.g., Twitter, Facebook), sensors, surveillances, image or video,
medical records, etc., (3) velocity—referring to the high speed at which the data move in/out, and (4)
veracity—referring to the quality of data. These features present significant opportunities and chal-
lenges for big data stream processing [2]. Big data stream is continuous in nature and it is important
to perform the real-time analysis as the life time of the data is often very short (applications can
access the data only once) [5,6].

Though processing big data streams has emerged as one of the important topics of research, secure
data stream processing has received little attention from researchers. Some of these data streams arise
frommission-critical applications (e.g., environmental monitoring, military application), where data
streams need to be secured [7]. The problem is further exacerbated when thousands to millions
of small sensors simultaneously produce data streams for real-time analytics [8]. The hard ques-
tion is: can we efficiently undertake secure processing of thousands of data streams while meeting
mission-critical data-processing constraints (e.g., minimizing data-processing overheads)? In addi-
tion, compared to the conventional store-and-process method, these sensors have limited processing
power, storage, bandwidth, and energy [8,9].

One of the security threats is the man-in-middle attack, in which a malicious attacker can access
or modify the data stream from sensors. This situation arises as it is not possible to monitor a
large number of sensors deployed in untrusted environments [9]. The common approach is to apply
a cryptographic model for securing the data streams. Keeping data encrypted is the most com-
mon and safe choice to secure data in transmission subject to safeguarding of encryption keys.
There are two prominent cryptographic encryption algorithms available: asymmetric and symmet-
ric. Asymmetric-key encryption algorithms (e.g., RSA, ElGamal, DSS, YAK, Rabin) perform a
number of exponential operations over a large finite field. Therefore, they are approximately 1000
times slower than symmetric-key cryptography [10,11]. Efficiency can become a serious issue if
asymmetric-key cryptography-based infrastructure such as the Public-Key Infrastructure (PKI) [12]
is applied to big data streams. Thus, symmetric-key encryption is the most efficient cryptographic
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solution for such applications. However, symmetric-key algorithms (e.g., DES, AES, IDEA, RC4)

do not scale when subjected to the real-time, on-the-fly processing of big data streams.
In this chapter, we present the design and development of a Dynamic Prime-Number-Based Secu-

rity Verification (DPBSV) scheme. Our scheme is based on the notion of a common shared key
that is dynamically and periodically updated by generating synchronized prime numbers. The syn-
chronized prime number enables reduction of the communication overhead without compromising
security. Our scheme is suitable for big data streams as it verifies the security (confidentiality and
integrity) on-the-fly (with minimum delay), hence leading to reduced communication overhead. The
scheme uses much smaller key length (64 bits) as against symmetric cryptographic algorithms. This
enables faster security verification processing of streams at data stream manager (DSM). The same
level of security is maintained by updating the shared keys dynamically. Dynamic key generation is
based on the random prime numbers, and is initialized and synchronized at sensors and DSM. We
save on network overhead as our scheme does not require DSM and sensor node to communicate
after the initial handshaking key step.

Our proposed scheme is efficient in comparison to Advanced Encryption Standard (AES), as
it reduces the computational load and execution time significantly. The main contributions of the
chapter can be summarized as follows:

• We present a secure big data stream-processing scheme.
• We design and develop an efficient DPBSV scheme for big data streams.
• We evaluate the DPBSV scheme both theoretically and empirically. Our analysis shows

that it is efficient when applied to big data streams in comparison to standard AES.

The rest of this chapter is organized as follows. Section 13.2 provides the background on big data
stream and corresponding security-related work. Section 13.3 provides a motivating example in big
data streams as well as detailed analysis of our research problem. Section 13.4 describes the DPBSV
key exchange scheme. Section 13.5 presents the security analysis of the scheme formally. Section
13.6 evaluates the performance and efficiency of the scheme through experimental results. Section
13.7 concludes the chapter.

13.2 PROPOSED SECURE DATA STREAM ARCHITECTURE

13.2.1 BIG DATA STREAM

Data stream processing is an emerging computing paradigm that is particularly suitable for applica-
tion scenarios where huge amounts of data (termed as big data) must be processed in near real time
(with minimal delay). Unlike traditional batch-processing systems where query processing is done
over archived (i.e., the data need to be stored based on a predefined schema prior to processing)
data, SPE processes real-time time streaming data on-the-fly. The need for on-the-fly processing
arises from the high-volume and high-velocity input data that cannot be persisted for later analy-
sis for practical reasons (e.g., data storage overhead). DSM handles streams of tuples in a similar
way to a conventional database system handling relations. In addition, DSM undertakes the security
verification of the data blocks on-the-fly.

Cloud computing has become the platform of choice for processing big data due to its on-
demand elasticity, extremely low latency, and massively parallel processing architecture [13]. It
supports the most efficient way to obtain actionable information from big data streams [5,14–16].
Figure 13.1 shows our cloud-based architecture for big data stream-processing systems consisting of
data sources, the cloud data centers, and the DSM framework. We refer to Reference 17 for further
information on stream data processing in datacenter cloud. It is important to note that the security ver-
ification of streaming data has to be performed in real time with a fixed buffer size before the actual
stream query processing step. Finally, the processed data are stored in the cloud storage. Queries
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FIGURE 13.1 Overlay of our architecture from source-sensing devices to cloud data-processing center.

registered in DSM are defined as “continuous” since they are continuously applied to the streaming
data flows. Results are sent to the user each time the streaming data satisfy the query predicate. The
queries (including security verification operation) are defined as a directed acyclic graph where each
node is an operator and edges define data flow.

It is clear from the above description that security verification is one of the critical requirements
for big data stream processing. We note that the security verification step as proposed in our DSM
framework adds to overall stream-processing time. Hence, the major challenge for DSM is to reduce
this additional security verification overhead. This is critical for big data stream due to the high
volume and high velocity. Hence, in our DSM approach, security verification is done on-the-fly
(with minimal overhead).

13.2.2 SYMMETRIC-KEY CRYPTOGRAPHY-BASED SECURITY VERIFICATION METHODOLOGY

The Data Encryption Standard (DES) has been a standard symmetric-key algorithm since 1977.
However, it was cracked rather easily. In 2000, the AES [18] replaced the DES to meet the ever-
increasing requirements of data security. The AES, also known as the Rijndael algorithm, is a
symmetric block cipher that can encrypt data blocks of 128 bits using symmetric keys of 128, 192,
or 256 bits [18,19]. AES was introduced to replace the Triple DES (3DES) algorithm. Hence, we
have compared our proposed solution against AES.

Symmetric keys are smaller in size than asymmetric keys, so they have less computational
burden. The 128-bit symmetric key provides the same strength of protection as a 3248-bit asym-
metric key [11]. Since the aim is to perform the security verification on-the-fly (real-time), the
symmetric-key cryptography becomes a natural choice due to its scalability. It is noted in the lit-
erature that symmetric-key cryptography is approximately 1000 times faster than strong public-key
ciphers [10]. However, it is comparatively easy to read/modify the symmetric-key cryptography
as it has small key size [10]. To circumvent this problem, we periodically apply a synchronized
dynamic prime number (Pi) generation algorithm at both source and DSM. This algorithm leads
to confusion for malicious attackers. The procedure Prime (Pi) is calculated and synchronized on
both source and DSM ends. This intelligent modification makes the overall process of security
verification faster and prevents potential attacks. We explain this algorithm in detail later in this
chapter.

We assume that the deployed source nodes operate in two modes: trusted mode and untrusted
mode. In the trusted mode, the nodes operate in a cryptographically secure space and adversaries
cannot penetrate this space. Nodes can incorporate trusted platform module (TPM) to design the
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trusted mode of operation. The TPM is a dedicated security chip following the trust computing
standard specification for cryptographic microcontroller system [20]. TPM provides a hardware-
based trust, which contains cryptographic functionality such as key generation, store, and manage
embedded in the chip. The detailed architecture can be found in Reference 20. We assume that the
proposed Prime (Pi) and secret key calculation on source nodes are conducted in the trusted mode.

13.3 MOTIVATION AND PROBLEM ANALYSIS

The above discussion on the DSM framework architecture clearly outlines the following most
important requirements as regards to the secure processing of the big data stream:

1. Security verification needs to be performed in real time (on-the-fly).
2. The verification framework has to deal with high-volume and high-velocity data.
3. Data items can be read once in the prescribed sequence.
4. Unlike the store-and-process paradigm, original data are not available for comparisons in

the context of the stream-processing paradigm.

Based on the above features of big data stream, we have categorized existing security methods into
two classes: communication security [21,22] and server side data security [23–26]. Communication
security deals with handling security data in motion. On the other hand, server side data security
is concerned with securing the data security when it is at rest. The security threats and solutions
proposed in the literature are not suitable for secure processing of the big data streams for the reasons
outlined below.

Communication security techniques are mainly proposed for network communication. Network
communication-related attacks are broadly divided into two types: external and internal. To avoid
such attacks, security solutions have been proposed for each individual TCP/IP layers. For the phys-
ical layer, the proposed solutions include spread jamming reports, accurate and complete design of
the node physical package, etc.; for the data link layer, the proposed solutions include error correct-
ing codes, collision detection and avoidance techniques, rate limiting, etc.; for the network layer, the
proposed solutions include link layer encryption and authentication, multipath routing, identity ver-
ification and authenticated broadcast, etc.; and for the transport layer, the proposed solutions include
packet authentication [21]. These solutions can avoid the communication threats but are not suitable
for dealing with new challenges posed by big data stream.

The server side data security is mainly proposed for physical data centers, when data are at rest and
accessed through applications. There are several potential attacks for such data such as data interrup-
tion, interception, privacy breach, impersonation, session hijacking, programming flaws, software
modification, software interruption, defacement, disrupting communications, hardware interruption,
hardware modification, etc. Several solutions have been proposed to protect data and cloud servers
from attacks such as privacy in multitenant environments, data protection from disclosure, access
control, software security, service availability, access control, application security, data security (e.g.,
data in transit, data at rest, reminisce), cloud management control security, virtual cloud protection,
hardware security, hardware reliability, etc. [23–27]. However, these proposed solutions are tailored
toward the store-and-process paradigm, and hence are not feasible for on-the-fly big data stream
processing.

Existing symmetric cryptographic-based security solutions for data security are based on either
static shared key or centralized dynamic key. In static shared key, we need to have a long key to defend
from a potential attacker. The length of the key is always proportional to security verification time.
Based on the requirement of big data stream processing (specified above), it is clear that security
verification should be done in real time. For the dynamic key management solution, centralized
rekeying processing and distribution of keys to all the sources is a time-consuming process. A big
data stream is always continuous in nature and often huge in volume. This makes it impossible to
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pause the data movement while the rekeying, distribution, and synchronization processes finish. To
address this problem, we are proposing a scheme for big data stream security verification without
the need for rekeying. The benefits include reduction of the communication overhead and increase
in the efficiency of the security verification process at DSM.

Our proposed scheme is as follows: we use a common shared key for both sensors and DSM. The
key is updated dynamically by generating synchronized prime numbers without the need for com-
munication between them. This reduces the communication overhead, as required by the rekeying
process in existing methods, without compromising security. Owing to the reduced communication
overhead, our scheme performs the security verification with minimum delay. The communication
is required at the beginning for the initial key establishment and synchronization because DSM
sends all the keys and key generation properties to the sources in this step. There is no further com-
munication between the source sensor and DSM after handshaking, which increases the efficiency
of the solution. Based on the shared key properties, individual source updates their dynamic key
independently.

13.4 DYNAMIC PRIME-NUMBER-BASED SECURITY VERIFICATION

This section describes the DPBSV scheme. Similar to any secret key-based symmetric-key cryptog-
raphy, the DPBSV scheme consists of four independent components: system setup, handshaking,
rekeying, and security verification. Table 13.1 provides the notations used in describing the scheme.
We next describe the scheme in detail.

TABLE 13.1
Notations

Acronym Description

Si ith sensor’s ID

Ki ith sensor’s secret key

Ksi ith sensor’s session key

Kenc Generated key for an authentication

KSH Secret shared key of sensors and DSM

K/K′ Encrypted with sensor’s secret key for user authentication

C/C′/C′′ Calculated hash value

r Random number generated by sensors

t Interval time to generate the prime number

Pi Random prime number

Kd Secret key of the DSM

k Initial shared key for sensor and DSM for authentication

ID Encrypted data for integrity check

AD Secret key for authenticity check

E() Encryption function

H() One-way hash function

Prime(Pi) Prime number generation function

KeyGen Key generation procedure

⊕ Bitwise X-OR operation

|| Concatenation operation

DATA Fresh data at sensor before encryption
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13.4.1 DPBSV SYSTEM SETUP

We have made a number of realistic and practical assumptions while defining our scheme. First, we
assume that DSM has deployed all the sensor’s identities (IDs) and secret keys because the network
is fully untrusted. We allow an increased number of key exchanges between the sensors and DSM
for the initial session key establishment process to achieve stronger security. Our aim is to make this
session more secure because we transmit all the secret information of key generation to sensors. We
assume that both sensor node Si and DSM have a secret shared key, that is, k.

Step 1: A sensor (Si) generates a random number r and sends it to the DSM with its identity as
{Si, r}. There are n numbers of sensors deployed and those are S1, S2, S3, . . . , Sn, and Si is the id of
the ith sensor. In our scheme, sensors do not communicate with each other to reduce the communi-
cation overhead. The proposed scheme also updates the dynamic shared key on both ends to prevent
potential attacks from traffic behavior analysis.

1. Si→ DSM : {Si, r}.
Step 2: Once the DSM receives the request from a sensor, it retrieves the corresponding sensor’s
secret key, that is, Ki← retrieveKey(Si) first and then DSM selects a random session key Ksi, that
is, Ksi ≤ ftarrowradomdKey(). In order to share this session key with the corresponding sensor (Si),
DSM generates a key based on a selected session key and the corresponding sensor’s private key
Kenc = Ksi ⊕ Ki. Following the generated key (Kenc), DSM encrypts the generated key with the
session key K = Ek(Ksi, Kenc) and it performs the hash function C = H(Kenc||K||r). Finally, DSM
sends the value of C and Kenc to Si.
Kenc = Ksi ⊕ Ki, from randomly selected session key Ksi.

K = Ek(Ksi,Kenc)

C = H(Kenc ‖ K ‖ r)

2. Si← DSM : {C,Kenc}.
Step 3: The corresponding sensor gets its session key Kenc based on its own secret key Ksi = Kenc ⊕
Ki and finds out the value of K′ based on the value of Ksi and Kenc, that is, K′ = Ek(Ksi, Kenc). Next,
it computes the hash H(Kenc\parallelK′\parallelr) and checks whether or not it is equal to C. If the
hashes are equal and K = K′, Si can authenticate DSM. However, if it is not equal, then Si ends the
protocol. Following the authentication, it transmits C′ = H(1||Kenc||K′||r) to DSM as follows.
Ksi = Kenc ⊕ Ki, to extract the session key for own.

K′ = Ek(Ksi,Kenc)

C′ = H(1 ‖ Kenc ‖ K′ ‖ r)

3. Si→ DSM : {C′}.
Step 4: After receiving C′, DSM compares it with H(1\parallelKenc\parallelK\parallelr) to check
whether or not they are equal. If they are equal, DSM authenticates Si. Otherwise, the protocol is
terminated. After authentication by DSM and sensor, DSM and S can share the session key Ksi and
C′′ = H(2 ‖ Kenc ‖ K ‖ r).

C′′ = H(2 ‖ Kenc ‖ K ‖ r)

4. Si← DSM : {C′′}.
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13.4.2 DPBSV HANDSHAKING

DSM sends all its properties to sensors {S1, S2, S2, . . . , Sn} based on their individual session key.
Generally, the larger the prime number of secret shares used in the pairwise key establishment pro-
cess, the better the security the pairwise key will achieve. However, using a larger prime number
for the secret shares requires a greater computation time. In order to make the security verification
lighter and faster, we reduce the prime number size. The dynamic prime number generation function
is defined in Theorem 13.2 (described later in this chapter). We calculate the prime number on both
sensor and DSM sides to reduce communication overhead and minimize the chances of disclosing
the shared key.

Step 5: Prime (Pi) computes the relative prime number on both sides with a time interval t. In
the handshaking process, it transmits all its procedures to generate the key and prime number such
as (Kd, t, Pi, Prime(Pi), KSH , KeyGen).

5. Si← DSM :Ek(Kd, t,Pi,Prime(Pi),KSH ,KeyGen).

In this step, DSM sends all the parameters and properties of KeyGen to source sensors. The
transferred information is stored in a trusted part of the sensor (e.g., TPM).

13.4.3 DPBSV REKEYING

We propose a novel rekeying mechanism that calculates prime numbers dynamically on both source
sensors and DSM independently. In the proposed scheme, the small size of the key leads to faster
security verification. However, a small key size can be relatively easy to crack. To counter this issue,
the key pair is periodically updated. In the event of key compromise at sensors, DSM undertakes a
key resynchronization process with the sensor as described next. The source sensor executes Step 3 to
reinitialize and resynchronize the key pair with the DSM.We assume that the secret key information
is managed by the sensor in a trusted fashion such as by employing the TPM hardware.

The following presents an alternative approach to rekeying and the corresponding analysis in
terms of efficiency.

Step 6: The above-defined DPBSV handshaking process relays information related to the Prime
(Pi) and KeyGen to the sensors. We next describe the secure data transmission and verification pro-
cess based on the above functions and keys. As mentioned above, the proposed scheme applies the
synchronized dynamic prime number generation Prime (Pi) on both sides, that is, sensors and DSM.
At the end of the handshaking process, sensors have their own secret keys, initial prime number, and
initial shared key generated by the DSM. The next cycle of the prime generation process is based
on the value of the prime number and the specified time interval. Sensors generate the shared key
KSH = H(E(Pi, Kd)) using the prime number Pi and DSM secret key Kd. Each data block is asso-
ciated with the authentication tag and contains two different parts. The first is the encrypted DATA
based on its secret key Ki and shared key KSH for integrity checking (i.e., ID = DATA⊕ KSH ⊕ Ki),
and the second part is concerned with the authenticity checking (i.e., AD = Si ⊕ KSH). The resulting
data block is:

((DATA⊕ KSH ⊕ Ki) ‖ (Si ⊕ KSH))

ID = DATA⊕ KSH ⊕ Ki
AD = Si ⊕ KSH

6. Si→ DSM : {Ek(ID||AD)}.
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13.4.4 DPBSV SECURITY VERIFICATION

According to the features of big data streams, security verification should be performed in real time
(with minimal delay). The next step explains how the DSM verifies the authenticity and integrity of
each or selected data block.

Step 7: The DSM verifies whether the data were modified while in transit and was sent by an
authenticated sensor node. The DSM first checks the authenticity and integrity of specific data block
AD. The approach selects the next block to be checked for authenticity and integrity based on speci-
fied random interval such as ID (configurable variable). This random variable is calculated based on
the corresponding prime number, that is, j = Pi%7. The calculated values vary from 0 to 6, that is,
the maximum interval of 6 blocks and if the value of j is 0, then it will verify every data block. For the
authenticity check, the DSM decrypts AD with shared key Si = AD ⊕ KSH . Once Si is obtained, the
DSM checks its source database and extracts the corresponding secret key Ki for the integrity check
according to the value of j. Given Ki, the DSM decrypts data and checks Message Authentication
Code (MAC) for integrity check DATA = ID ⊕ KSH ⊕ Ki.

Si = AD ⊕ KSH
DATA = ID ⊕ KSH ⊕ Ki

13.5 SECURITY ANALYSIS OF DPBSV

In this section, we provide a theoretical analysis of the proposed scheme and prove that it can ensure
both authenticity and integrity of streaming data.

Assumption 13.1

No one can decrypt data that were encrypted by a symmetric-key algorithm, unless in possession of
the session/shared key that was used to encrypt the data by the sensor.

Assumption 13.2

DSM is deployed on a trusted server.

Assumption 13.3

A sensor’s secret key, Prime (Pi), and secret key calculation procedures are deployed on trusted
hardware such as TPM; hence they are safe from intruders. Similar to most cryptological analysis of
public-key communication protocols, we now define the attack models for the purpose of verifying
authenticity and integrity.

Definition 13.1 (attack on authentication)

A malicious attacker Ma is an adversary capable of monitoring, intercepting, and introducing itself
as an authenticated source node that can send data streams to the DSM.

Definition 13.2 (attack on integrity)

A malicious attackerMi is an adversary capable of monitoring the data stream and is able to modify
the stream while it is in transit.

Theorem 13.1

The security is not compromised by reducing the size of the shared secret key (KSH).
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TABLE 13.2
Notations Symmetric-Key (AES) Algorithm Takes Time to Get All
Possible Keys Using Most Advanced Intel i7 Processor

Key length 8 16 32 64 128

Key domain size 256 65,536 4.295e+09 1.845e+19 3.4028e+38
Time (in nanosecond) 1435 1e+05 7.301e+09 3136e+19 5.7848e+35

Proof. We reduce the size of the prime number to make the key generation process faster. The
ECRYPT II recommendations on key length say that a 128-bit symmetric key provides the same level
of protection as a 3248-bit asymmetric key. Smaller keys can also provide desired security levels as
long as they are not shared publically. An advanced processor (Intel i7 processor) takes about 1.7
nanoseconds to try out one key from one block. With this speed, it would take about 1.3× 1012 ×
the age of the universe to check all the keys from the possible key set [11] of an asymmetric scheme.
By reducing the size of the prime number, we speed up the security verification process at DSM (see
Table 13.2). As shown in Table 13.2, a 64-bit symmetric key takes 3136e+19 nanoseconds (more
than a month), so we safely concluded that updating the prime number every week (i.e., t = 168
hours) will not compromise the security of the system. The dynamic shared key is computed based on
the prime number. Hence we conclude that an attacker cannot crack the shared key within the interval
time t. Further, the shared key is updated without exchanging information between the sensors and
DSM. This leads to confusion for adversaries who may try to intercept the data flow. The original
key has been changed four times before an attacker knows that key and this knowledge is not known
to the attackers. �

Theorem 13.2

Dynamically generated prime number Pi in Algorithm 13.1 is always synchronized between the
source sensors (Si) and DSM.

Proof. The normal method to check the prime number is 6k + 1,∀k ∈ N+ (an integer). Here, we
initially initialize the value of k based on this primary test formula. Our prime generation method
is based on the nth prime number generation and from the extended idea of Reference 28. In our
scheme, the input Pi is the currently used prime number (initialized by DSM) and the return Pi is
the calculated new prime number. Initially, Pi is initialized by DSM during the DPBSV handshaking
process and the interval time is t. �

FromAlgorithm 13.1, we calculate the new prime number Pi based on the previous one Pi−1. The
complete process of the prime number calculation is based on the value of m, and m is initialized
from the value k. The value of k is constant at source because it is calculated from the current prime
number. This process is initialized during DPBSV handshaking. Since the value of k is the same on
both sides, the procedure Prime (Pi) returns identical values. In Algorithm 13.1, the value of S(m)

is computed as follows [28]:

S1(x) = (−1)
(
√
x/6)+ 1

(
√
x/6)+1∑
k=1

x

6k + 1
− x

6k + 1

S2(x) = (−1)
(
√
x/6)+ 1

(
√
x/6)+1∑
k=1

x

6k − 1
− x

6k − 1
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Algorithm 13.1
Dynamic Prime Number Generation

Prime (Pi)

1. Pi−1 = Pi.

2. Set k :=
⌈
Pi−1
6

⌉
.

3. Se m := 6k + 1.

4. If m ≥ 107 then

5. k := k/105 := k/105

6. GO TO: 3

7. If S(m) = 1. then

8. GO TO: 14

9. Set m := 6k + 5

10. If S(m) = 1 then

11. GO TO: 14

12. k := �k3 +√kmod 17+ k
13. GO TO: 3

14. Pi = m

15. Return (Pi)//calculated new prime number

S(x) = S1(x)+ S2(x)
2

If S(x) = 1, then x is prime, otherwise x is not prime.
x �≡ 0 mod i∀1 ≤ i ≤ x− 1, if x is prime.
Put the value of x as a prime number, then

⇒ x

6k + 1
− x

6k + 1
= −1

Same as
x

6k − 1
− x

6k − 1
= −1

∀ k within the specified range, that is, 107, then

S1(x) = (−1)
(
√
x/6)+ 1

(
√
x/6)+1∑
k=1

(−1) = 1

The same S2(x) is also 1 and then

S(x) = S1(x)+ S2(x)
2

= 1

Hence, the property of S(x) is proved.

Theorem 13.3

An attacker Ma cannot read the secret information from sensor node (Si) or introduce itself as an
authenticated node in DPBSV.

Proof. Following Definition 13.1, we know that an attacker Ma can gain access to the shared key
KSH by monitoring the network thoroughly, butMa cannot get secret information such as Prime (Pi)
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and KeyGen. Considering the computational hardness of secure modules (such as TPM), we know
thatMa cannot get the secret information for Pi generation, Ki and KeyGen. So there are no possibil-
ities for the malicious node to tap into the data stream; however,Ma can introduce himself/herself as
the authenticated node and start sending false information to DSM. In our scheme, sensor (Si) sends
((DATA⊕ KSH ⊕ Ki)\parallel(Si ⊕ KSH)), where the second part of the data block (Si ⊕ KSH) is
used for authentication checks. DSM decrypts this part of the data block for the authentication check.
DSM retrieves Si after decryption and matches the corresponding Si within its database. If the cal-
culated Si matches with the DSM database, it accepts; otherwise it rejects the node as source and
marks it as not an authenticated sensor node. All required secured information for prime number and
key generation procedure are stored in a trusted part of the sensor node (i.e., TPM). According to
the features of TPM, the attacker cannot get the information from TPM as discussed before. Hence
we conclude that attacker Ma cannot attack or get access to the big data stream. �

Theorem 13.4

An attacker Mi cannot read the shared key KSH within the time interval t in the DPBSV model.

Proof. Following Definition 13.2, we know that an attacker Mi has full access to the network to
read the shared key KSH , butMi cannot get correct secret information such as KSH . Considering the
method described in Theorem 13.1, we know that Mi cannot get the currently used KSH within the
time interval t, because our proposed scheme calculates Pi randomly after time t and then uses
the value of Pi sensor to generate KSH . For more details on computation analysis, readers can refer
to Theorem 13.1. �

13.6 EXPERIMENT AND EVALUATION

In order to evaluate the efficiency and effectiveness of the proposed DPBSV scheme under adverse
conditions, we observe each individual data block for authentication checks and selected data blocks
for integrity attacks. The integrity attack verification interval is dynamic in nature and the data
verification is done at the DSM only.

To validate our proposed scheme, we experimented with two different approaches by using dif-
ferent simulation environments. We first verify the security scheme using Scyther [29], and then
measure the efficiency of the scheme using JCE (Java cryptographic environment) [30]. We also
check the required buffer size to process our proposed scheme and compare with standard AES
algorithm; this experiment is done in a MATLABR© simulation tool.

13.6.1 SECURITY VERIFICATION

The scheme is written in the Scyther simulation environment using Security Protocol Description
Language (.spdl). According to the features of Scyther, we define the role of S and D, where S is
the sender (i.e., sensor nodes) and D is the recipient (i.e., DSM). Next, S and D have all the required
information that are exchanged during the handshake process. This enables D and S to update their
shared key. S sends the data packets to D, and D performs the security verification. In our simulation,
we introduce two types of attacks by the adversaries, that is, attacks on integrity and authenticity.
In our experiments, we evaluated all packets at D (DSM) for security verification. We experimented
with 100 numbers of runs for each claim (also known as bounds) and found out the number of attacks
at D as shown in Figure 13.2. Apart from these, we follow the default properties of Scyther.

13.6.1.1 Attack Model
Many types of cryptographic attack can be considered. In our case, we focus on integrity attack and
authentication attacks as discussed above. In an integrity attack, an attacker can perform a brute
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FIGURE 13.2 Scyther simulation environment with parameters and result page of success security verifica-
tion at DSM.

force attack on captured packets by systematically testing every possible key, and we assumed that
he/she is able to determine when the attack is successful. In an authentication attack, an attacker
tries to get the behavior of the source node. We assume that he/she is able to determine the source
node’s behavior and the attacker can introduce an authenticated node and act as the original source
node. In our concept, we are using a trusted module in the sensor to store the secret information and
procedure for key generation and encryption (i.e., TPM).

13.6.1.2 Experiment Model
In practice, attacks may be more sophisticated and efficient than brute force attacks.

However, this does not affect the validity of the proposed DPBSV scheme as we are interested in
efficient security verification without periodic key exchanges and successful attacks. Here, wemodel
the process as described in the previous section and fixe the key size as 64 bits (see Table 13.2). We
used Scyther, an automatic security protocols verification tool, to verify our scheme.

13.6.1.3 Results
Wedid our simulation using variable numbers of data blocks in each run. Our experiment ranges from
10 to 100 instances with 10 intervals. We check the authentication for each data block, whereas the
integrity check is performed on the selected data blocks. Without encryption information, attackers
cannot authenticate encrypted data blocks. Hence, we did not find any attacks for authentication
checks. For integrity attacks, it is hard to get the shared key (KSH), as the shared key (KSH) is fre-
quently changed based on the dynamic prime number Pi on both source sensor (Si) and DSM. In
the experiment, we did not encounter any attack in integrity check. Figure 13.2 shows the result of
security verification experiments in the Scyther environment. From the observations above, we can
conclude that our proposed scheme is secure.

13.6.2 PERFORMANCE COMPARISON

13.6.2.1 Experiment Model
It is clear that the actual efficiency improvement brought about by our scheme depends highly on
the size of key and rekeying without further communication between sensor and DSM. We have
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FIGURE 13.3 Performance of the proposed scheme compared in efficiency to 128-bit AES and 256-bit AES.

performed experiments with different sizes of data blocks. The results of our experiments are given
below.

We compare the performance of our proposed scheme DPBSV with the AES, the stan-
dard symmetric-key encryption algorithm [18,19]. Our scheme was compared with two standard
symmetric-key algorithms: 128-bit AES and 256-bit AES. This performance comparison experi-
ment is carried out in JCE. This comparison is based on the features of JCE in Java virtual machine
version 1.6 64 bit. JCE is the standard extension to the Java platform, which provides a framework
implementation for cryptographicmethods.We experimented withmany-to-one communication. All
sensor nodes communicate with the single node (DSM). All sensors have similar properties, whereas
the destination node has the properties of DSM (more powerful to initialize the process). The pro-
cessing time of data verification is measured at the DSM node. Our experimental results are shown
in Figure 13.3; the result validates the theoretical analysis presented in Section 13.5.

13.6.2.2 Results
The performance of our scheme is better than the standard AES algorithm when different sizes of
the data blocks are considered. Figure 13.3 shows the processing time of the proposed DPBSV
scheme in comparison with base 128-bit AES and 256-bit AES for different sizes of data blocks.
The performance comparison shows that our proposed scheme is more efficient and faster.

13.6.3 REQUIRED BUFFER SIZE

13.6.3.1 Experiment Model
We experimented the features of the DSM buffer by using MATLAB as the simulation tool. This
performance is based on the processing time performance calculated in Figure 13.3 (last subsec-
tion). Here, we compared our scheme with standard 128-bit AES and 256-bit AES, the same as the
processing time performance comparison. DPBSV required minimum buffer size to process security
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FIGURE 13.4 Performance comparison of minimum buffer size required to process the security verification
with various data rates to DSM.

verification at DSM with various data rates starting from 50 to 300 MBpS with 50 MBpS interval.
Performance comparison is done are to measure the efficiency of our proposed scheme (DPBSV).

13.6.3.2 Results
The performance of our scheme is better than the standard AES algorithmwith different rates of data.
Figure 13.4 shows the minimum buffer size required to process security at DSM and the proposed
DPBSV scheme performance compared with base 128-bit AES and 256-bit AES. The performance
comparison shows that our proposed scheme is efficient and requires less buffer to process security
than the baseline AES protocols.

From the above three experiments, we conclude that our proposed DPBSV scheme is secured
(from both authenticity and integrity attacks), efficient (compared to standard symmetric solutions,
that is, 128/256-bit AES), and maintain end-to-end security in big sensing data stream.

13.7 CONCLUSIONS

In this chapter, we have proposed a novel authenticated key exchange scheme, namely, DPBSV,
which aims to provide an efficient and fast (on-the-fly) security verification scheme and ensure
end-to-end security in big data stream. Our scheme has been designed based on symmetric-key
cryptography and random prime number generation. By theoretical analyses and experimental eval-
uations, we showed that our DPBSV scheme has provided significant improvement in the processing
time, and prevented malicious attacks on authenticity and integrity. In our scheme, we decrease the
communication and computation overhead by dynamic key initialization at both the sensor and DSM
end, which in effect eliminates the need for rekeying and decreases the communication overhead.
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ABSTRACT

Accelerators, including graphic processing units (GPUs) for general-purpose computation, many-
core designs with wide vector units (e.g., Intel Phi), have become a common component of many
high-performance clusters. The appearance of more stable and reliable tools that can automatically
convert code written in high-level specifications with annotations (such as C or C++) to hardware
description languages (high-level synthesis—HLS) is also setting the stage for a broader use of
reconfigurable devices (e.g., field programmable gate arrays—FPGAs) in high-performance sys-
tem for the implementation of custom accelerators, helped by the fact that new processors include
advanced cache-coherent interconnects for these components. In this chapter, we briefly survey the
status of the use of accelerators in high-performance systems targeted at big data analytics applica-
tions. Although the recent progress in the use of accelerators for this class of applications has been
significant, we argue that, differently from scientific simulations, there are still gaps to close. This is
particularly true for the “irregular” behaviors exhibited by emerging no-SQL and graph databases.
We focus our attention on the limits of HLS tools for data analytics and graph methods, and dis-
cuss a new architectural template that better fits the requirement of this class of applications. We
validate the new architectural templates by modifying the Graph Engine for Multithreaded System
(GEMS) framework to support accelerators generated with such a methodology, and by testing it
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with queries coming from the Lehigh University Benchmark (LUBM). The architectural template
enables better supporting the task- and memory-level parallelism present in graph methods by sup-
porting a new control model and an enhanced memory interface. We show that our solution allows
generating parallel accelerators, providing speed ups with respect to conventional HLS flows. We
finally draw conclusions and present a perspective on the use of reconfigurable devices and design
automation tools for data analytics.

14.1 INTRODUCTION

The emergence of big data analytics is determining profound changes in computing. Taming big
data’s 5Vs, in fact, requires significant evolutions, if not true revolutions, in the conventional com-
puting stack. To support the ever-increasing volume, velocity, and variety of data, enabling veracity
and extraction of value from the data themselves, new solutions in software, runtimes, and hardware
are required. The simple adaptation of current relational database infrastructures is not sufficient:
they certainly have decades of history, research, and advancements, but also bring with them legacy
approaches that do not cope well with the new issues introduced by big data. For example, tables may
not be sufficient to express the variety of the data, and queries built along join and select procedures
may not scale well with the volume of the data.

14.1.1 BIG DATA AND GRAPHS

New data models, including graph databases based on the Resource Description Framework (RDF)
and attributed graphs (which couple tables of attributes with vertices and edges), have appeared,
together with related query languages (e.g., SPARQL and DATALOG).

Graphs appear a convenient way to store, process, and retrieve information for many of the emerg-
ing big data analytics datasets, such as security, communication, transportation and social networks,
government and healthcare data, environmental science, biomedical research, and finance. Graph
methods are inherently parallel, as they allow spawning concurrent activities for each vertex or edge,
but they also present so-called irregular behaviors. They are basically pointer or linked list-based
data structures, and require fine-grained data accesses. Large graphs exhibit poor spatial and tem-
poral locality: an algorithm may move from a memory location to another one completely unrelated
while following edges. They are usually synchronization intensive, because concurrent search activ-
ities may reach the same locations and need coordination. Additionally, it is difficult to partition
a graph among concurrent activities on distributed memories without generating load imbalance,
because certain vertices may have significantly more edges than others. Thus, they may be reached
simultaneously by many activities. In general, they are characterized by limited arithmetic opera-
tions but an abundance of memory accesses. Current systems, instead, exploit processors with deep
cache hierarchies and advanced prefetchers optimized for locality, high floating point performance,
and, in clusters, interconnect networks that perform best with large, batched, data transfers.

14.1.2 ACCELERATING GRAPH ANALYTICS

The emerging data models, the limitations of old frameworks, and the issues of commodity systems
have led to the introduction of countless specialized software infrastructures. Open source RDF
databases include Jena SDB [1] backed by relational databases; Jena TDB [1] backed by native,
disk-based storage; Sesame [2] with support for layering on top of relational databases or a native
backend; Virtuoso Open Source edition [3]; and 4store [4]. Research-level RDF database approaches
include RDF-3X [5], Hexastore [6], YARS2 [7], SHARD [8], BitMat [9], and SPARQL queries on
PIG [10]. Commercial RDF databases include Bigdata [11], BigOWLIM [12], and Virtuoso [3]. A
number of these approaches leverage Map-Reduce frameworks to achieve scalability on clusters, or
implement support for distributed cluster with the objective to increase performance, dataset size, or
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both [13–15]. The SPARK framework [16], on top of Hadoop or in standalone mode, together with
the GraphX library, has also started to be employed to implement and query RDF databases. GEMS,
the Graph Engine for Multithreaded Systems [17], is a software stack composed of three layers: a
custom multithreaded runtime (GMT—Global Memory and Threading), a library of graph meth-
ods and related data structures, and a SPARQL-to-C++ compiler. The custom runtime at its basis
enables irregular applications and, more specifically, graph methods, to scale in performance and
size on commodity clusters by addressing through software approaches some of the shortcomings
of current high-performance architectures with this type of applications. Specifically, it provides a
global address space across cluster nodes (so that large datasets to be explored in memory do not
need partitioning), lightweight software multithreading to tolerate latencies to access data on remote
nodes, and messages aggregation to maximize utilization of the interconnect network of the cluster.
The SPARQL-to-C++ compiler converts SPARQL queries into graph methods expressed in C++ that
exploit the graph library at the lower level of the stack. GEMS is a first example of how hardware
characteristics of systems need careful consideration for emerging big data analytics workloads. The
original Cray Urika is an example of solutions that tried to go even further on the path of special-
ization. It employed the custom-designed Cray XMT 2 architecture (derived from the Tera MTA
designs, systems implementing nodes with multithreaded processors, global address space, and syn-
chronization at the level of the single memory word to better support throughput-based applications
such as graph exploration) to implement graph databases, adapting existing open source frameworks.
Cray hasmoved away from the use of custom architectures due tomaintainability and cost issues, and
introduced a Urika-GX [18], based on somewhat more commodity components (x86 nodes with the
latest Cray Aries interconnect) and running Hadoop and Spark software frameworks. However, rec-
ognizing that these are not optimal for all type of workloads, it also supports the Cray Graph Engine
(CGE), which again employs a custom runtime with features that can speed up graph methods.

While costs are a significant reason to implement data analytics frameworks using commodity
systems, there is undeniably a need to better exploit the underneath hardware. Given the intense
interest and focus on data analytics of the majority of large private and public institutions, custom,
or semicustom, systems may still be justified if they can demonstrate higher performance, and the
ability to manage larger datasets, without trading off too much flexibility.

Accelerators such as graphic processing units (GPUs) for general-purpose computations and as
the Intel Phi are becoming more and more widespread in high-performance systems. Optimized
for throughput computing, they allow increasing performance for massively parallel, arithmetic-
intensive workloads, while remaining power efficient. By trading off latency for throughput, they
also provide impressive amounts of memory bandwidth, which potentially make them an appealing
platform also for applications different than scientific simulations. Because they find applications
in a variety of markets (e.g., gaming), they have become a commodity component at affordable
costs. Consequently, much work has been done to develop approaches for accelerating more unusual
workloads for these architectures. We have seen approaches to accelerate conventional relational
database operations, and more recently a large amount of research to accelerate a variety of graph
methods [19–24], on single and multiple accelerators, even installed on distributed systems. A
number of approaches try to accelerate graph methods by adopting Map-Reduce models. Lately,
we have seen the appearance of the first graph databases (e.g., BlazeGraph) [25] able to exploit
GPUs by building on existing MapReduce libraries of graph methods (MapGraph, in the case of
BlazeGraph) [26].

When it comes to application-specific accelerators, reconfigurable devices, and in particular field
programming gate arrays (FPGAs), are resurging. Owing to the end of Dennard’s Scaling and slow-
ing down of Moore’s law, FPGAs have become more affordable to produce in large quantities with
respect to general-purpose processors on Application Specific Integrated Circuits (ASICs), while
reducing the spread in terms of efficiency. In fact, every production technology node becomes
much more expensive to implement, and FPGAs, being mostly based on standard, heavily repli-
cated cells (mainly Static Random Access Memories—SRAMs), can benefit from significantly
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increased densities, and an easier technology development process than processors, such as no need
to develop custom logic cells, care specifically for hotspots, etc. And even if the final operating
clock frequencies for the devices are different, FPGA-based designs are specialized after produc-
tion on a case-by-case basis. They can even be reconfigured during system operation. An ASIC,
instead, remains targeted for the specific function and cannot adapt, so that it effectively needs
to address as many cases as possible, usually not always providing the highest efficiency. The
latest industry developments, with a significant number of processor designs that integrate both
general-purpose processors and reconfigurable logic (e.g., Xilinx Zynq platforms), initiatives to
open coherent buses, interconnects, and protocols of general-purpose processors to accelerators (e.g.,
IBM’s CAPI—Coherent Access Port Interface, and Intel’s OmniPath, preceded by AMD’s Hyper-
Transports) and key acquisitions (Intel’s acquisition of Altera and Micron’s acquisitions of Pico and
Convey), indicate a clear trend. The suitability for memory-intensive applications is also exempli-
fied by the appearance of a number of FPGA devices integrating 3D stacked memories. FPGAs
can thus represent more and more a very promising intermediate point between commodity-based
accelerator and custom system for data analytics applications. However, there remains a significant
productivity gap in the use of reconfigurable logic. Designing accelerators by employing Hard-
ware Description Languages (HDL) is difficult and time-consuming. Hand-designed accelerators
usually provide very high performance, but can address only a very specific set of algorithms. High-
level synthesis (HLS) approaches, which generate HDL starting from descriptions in higher-level
languages (such as C/C++), have been a research topic for many decades. However, they have his-
torically targeted regular, compute-intensive applications, and have focused on the exploitation of
instruction-level parallelism (ILP). Only recently have HLS approaches matured enough to start
targeting task-level parallelism (TLP), which is preponderant in data analytics applications. A num-
ber of tools have started to support OpenMP or OpenCL (e.g., Convey’s OpenHT, Xilinx Vivado
HLS, and Altera HLS) [27–29] as a way to describe task parallel applications. However, these
still better apply to compute-intensive and regular workloads, where memory patterns and fork-
ing/joining tasks are all precomputable during the synthesis phases. There is, however, still a large
amount or research and explorations that need to be done to efficiently address issues of irregu-
lar and memory-intensive workloads, which instead present many unpredictable dynamic effects
that are only manageable at runtime. Graph methods represent, again, a clear example. Because
HLS tools basically are compilers, the nature of the data structures (mostly pointer-based) used
in graph methods makes many of the compiler methods inefficient or inapplicable (e.g., alias
analysis).

14.1.3 CHAPTER ORGANIZATION

In this chapter, we present a case study that shows how HLS synthesis tools could be improved to
better support data analytics applications. In particular, we focus on task parallelism extraction and
the management of the memory system, which represent the most significant limitations of conven-
tional HLS approaches. We present the case study in the context of the GEMS graph database, a
real data analytics application. Progress still remains to be done, but we believe that this is a step
in the direction of increasing the usability and applicability of custom accelerators based on FPGA
technology for data analytics workloads, making them a viable platform. Section 14.2 of this chapter
presents related works in the area of acceleration of analytics workloads with reconfigurable devices.
Section 14.3 describes the general case study, where GEMS is modified to support query accelera-
tors running on FPGA. Section 14.4 describes the proposed architecture design and its integration
in an open source FPGA synthesis flow. Section 14.5 discusses experimental results obtained by
generating accelerators for queries coming from the Lehigh University Benchmark (LUBM) [30].
Finally, Section 14.6 draws some conclusions and presents future prospects for the use of FPGA
accelerators, and design automation tools, in data analytics.
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14.2 RELATED WORK

Our case study touches many different aspects connected with the design of accelerators for recon-
figurable devices. First and foremost, we have to look at platforms and related research for the
acceleration of databases and data analytics. Then, because we look in particular to graph-based
data models, we also need to look to more general solutions that try to speed up graph methods and
workloads that exhibit an irregular behavior. Finally, because our main objective is not just to dis-
cuss the design of custom accelerators per se, but also to highlight the gaps in the approaches that
could greatly increase the flexibility in the applicability of reconfigurable devices for accelerating
data analytics, we need to discuss the current trends in HLS and contrast them with the requirements
of data analytics code.

14.2.1 ACCELERATORS FOR DATABASES, DATA ANALYTICS, AND GRAPH METHODS

In the last few years, an increasing number of commercial platforms for data analytics that implement
reconfigurable devices have appeared. The most prominent examples are theMicrosoft Catapult [31]
project, which has integrated FPGAs in Microsoft-designed servers to improve performance, reduce
power consumption, and provide new capabilities in the datacenter, and the Netezza’s systems [32],
now owned by IBM. Data analytics has also been an area of intense study and development for the
Convey HC and MX hybrid platforms. These systems integrate high-density FPGAs with general-
purpose processors, providing optimized high bandwidth, and host-coherent memory controllers.
Convey HC and MX have been followed up, for cost reasons, by the Convey WX (Wolverine)
accelerator, which is a PCI-Express drop-in solution that provides similar features.

These systems are the outcome of a large amount of research done to accelerate databases and data
analytics, including operators and full queries. IBM has proposed an FPGA-based system to acceler-
ate expensive operations in relational databases queries, including data decompression and predicate
evaluation [33]. IBM has also explored FPGA support for DB2 with BLU acceleration: compres-
sion techniques, paired with the Column-Store approach, enable performingmost SQL operations on
the compressed values, so that they can be processed in a Single Instruction Multiple Data (SIMD)
fashion. IBM looked at a similar approach also for GPUs [34]. The work from Halstead et al. [35]
discusses FPGA acceleration of hash-joins on a Convey MX, exploiting multithreading and the sup-
port for atomic memory operations provided by the system. Casper and Olukotun [36] show the
potential of hardware acceleration for in-memory databases with select, sort, and join operations.
In Reference 37, we see an example of the integration of custom units on reconfigurable logic with
general-purpose processors to accelerate analytics workloads.

Reference 38 presents a first example of compilation of queries to FPGA, targeted to streaming
databases. The work from Takenaka et al. [39] presents a compiler-based approach that translates
SQL-based queries for software-based complex event-processing systems in hardware. Dennl et al.
[40] discuss acceleration of the SQL restrict and aggregate operators, employing partial dynamic
reconfiguration to compose query-specific datapaths. The poster [41] hints at the potential of the use
of HLS to fully implement queries for in-memory databases by employing Vivado HLS.

The approach that we discuss in this chapter goes a step further than these solutions. We focus
on the acceleration of workloads in emerging data formats based on graph representations. In these
situations, the acceleration of conventional relational and table-based operations only improves part
of the problem.We, instead, look at techniques to support complete acceleration of SPARQL queries.
To do so, we work in the context of the GEMS framework. In particular, the GEMS SPARQL-to-C++
compiler converts queries expressed in SPARQL into a set of graph pattern-matching routines. Our
objective is, thus, to provide efficient ways to synthesize, and accelerate, those graph methods.

Prominent examples of designs to accelerate graph traversal and, in general, irregular kernels are
the Breadth First Search (BFS) personalities for the Convey HC [42], and the Convey MX systems.
The ConveyMX, in particular, couples a multithreaded custom processor on the reconfigurable logic
with an OpenMP programming environment (CHOMP—Convey Hybrid OpenMP) [43]. Betkaoui
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et al. [44] discuss reconfigurable hardware methodologies for efficient parallel processing of large-
scale graph exploration. These, however, either are custom accelerators for a specific kernel, or
employ general-purpose designs on the FPGA. Our approach exploits an HLS approach. In Ref-
erence 45, Halstead et al. discuss how to extend the ROCCC framework to support irregular
applications, introducing multithreading to tolerate long memory access latencies. However, they
do not address atomic memory operations and focus on the simple case study of pointer chasing.

14.2.2 SYNTHESIS APPROACHES

Conventional HLS approaches and tools typically adopt the so-called finite-state machine (FSM)
with Datapath (FSMD) model. This model works by analyzing the specification and by identifying
the operations in the code, determining type and dependencies of these operations. Given resource
constraints, that is, limitations on the number of functional units and requirements in terms of mem-
ory, they consequently generate a datapath and an FSM that, based on a static scheduling of the
operations, executes them on the datapath. This model allows efficient extraction of ILP, but does
not work well when the code exposes TLPs (such as, for example, independent iterations in a for
loop). In fact, complexity of the FSM controller, which is typically centralized for the whole portion
of code that gets synthesized, exponentially grows as it needs to manage concurrent tasks. As data
analytics applications, and graph methods, present significant amounts of task parallelism, better
solutions to manage task parallelism are required.

To improve the situation, the majority of the current HLS approaches look at decomposing the
FSM to reduce its complexity. Among the variety of works, we highlight approaches that restruc-
ture the controller in a hierarchical way [46,47], even using State Charts descriptions [48]. Some
solutions, like [49], employ a pseudo-distributed approach that enables supporting Speculative Func-
tional Units (SFUs). The final architecture still relies on a static schedule, but a local controller
dynamically checks results of SFUs without stalling the whole datapath. Our approach, instead,
is completely orthogonal. It is built from the beginning with distributed controllers, and does not
consider any fixed schedule, avoiding runtime conflicts on shared resources through arbiters.

Some other approaches try to solve the problem by synthesizing the tasks independently, and then
managing their execution through custom schedulers or dedicated processors [50,51]. The design
proposed in our case study, instead, does not require any additional control unit.

Various commercial and research HLS flows started considering parallel specifications as
input descriptions. These include specifications annotated in CUDA, OpenMP, OpenCL, and
pthreads [52,53]. LegUP [54] also supports OpenMP specifications, but requires the instantiation
of an additional general-purpose processor for scheduling. These do not apply very well to data
analytics applications in general, and in particular to graph methods. These may present several
nested loops with significantly different number of iterations, and instances that, only due to data
dependencies, can show significant load unbalance. The solutions that we present in our case do
not require an additional processor, and can support any level of nested parallelism. OpenCL [55]
is finding some success, also in commercial tools [27]. However, having been designed mainly for
vector-based processors, it does not adapt well to irregular applications and graph methods.

14.3 CASE STUDY: GEMS ON FPGA

GEMS [17] implements an RDF database on a commodity cluster by mainly employing graph meth-
ods at all levels of his stack. To address the limitations of HPC systems, GEMS employs GMT, a
custom runtime that provides a global address space across the cluster, so that data do not need to
be partitioned, lightweight software multithreading, to tolerate data access latencies, and message
aggregation, to improve network utilization with fine-grained transactions. A graph application pro-
gramming interface (API) and a set of methods to ingest RDF triples and generate the related graph
and dictionary, collectively named SGLib, are built with the functions provided by the runtime. On
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top of the whole system, a translator converts the query expressed in SPARQL to graph pattern-
matching operations in C++. GEMS has demonstrated that by rethinking, and deeply customizing,
the conventional database stack, it is possible to obtain promising scaling results for performance and
size with emerging data models. Although running on commodity homogeneous clusters, GEMS’
runtime tries to address in software issues that limit performance of graph methods and irregular
applications on these architectures. The approach aims at exploiting in a useful way the surplus
of computing power coming from today’s HPC systems to address their limitations with specific
workloads, without requiring, as in the past, fully custom systems.

We argue that the any novel data analytics infrastructure needs to start taking advantage of accel-
erators. The use of accelerators, in particular GPUs and vector processors, is now widespread in
high-performance systems, because they allow to reach, although for specific workloads, high peak
performance while maintaining power under control. However, because only certain workloads map
well on these somewhat “commoditized” accelerators, further research is needed to understand if
data analytics can really benefit from them. Researcher are making a significant effort to map in the
most efficient way possible relevant algorithms such as graph algorithms on these architectures, with
various degrees of success.

We also argue that reconfigurable devices such as FPGAs can represent a promising middle
ground between fully custom designs and fully commodity systems, as shown by some available
commercial platforms. To demonstrate the suitability of FPGAs for data analytics, we study a mod-
ification to the GEMS stack so that the SPARQL queries, after being converted to graph methods in
a standard programming language, are executed directly on an FPGA-based accelerator, rather than
through the intermediate library developed on GEMS’ multithreaded runtime. We go further than
approaches that exploit logic already implemented on the FPGA, being in the form of processors
optimized for certain workloads (akin to GPUs or vector processors, only with different optimiza-
tion points), or in the form of accelerators for specific recurrent functions for the query processing.
We look at providing a way to synthesize completely custom accelerators for each query, expressed
as set of graph pattern-matching operations, starting from their C code. The logic synthesis of the
FPGA bitstream from the HDL code may require more times than the usual software compilation
and optimization of queries performed in databases. However, the logic synthesis time is not a lim-
iting factor. In fact, especially for databases supporting all the emerging data models that enable
recognizing recurring patterns, analysts spend a great majority of the time running the same queries
on dynamically changing data, rather than on changing and recompiling the queries.

We have modified the GEMS stack so that the SPARQL translator interacts with an HLS tool
to generate the HDL code. The modified translator generates the C code that expresses the graph
search. We also extended the intermediate SGLib, developing an alternate version of the graph API
written in C that does not use the GMT runtime.

As the HLS tool, we have adopted the Bambu framework [56]. Bambu is a state-of-the-art HLS
tool available under GPL. Bambu takes in input a C-code specification and synthesis objectives (e.g.,
target frequency and area), and outputs a Verilog implementation, directly synthesizable on a variety
of devices from several vendors (Altera, Xilinx, Lattice). Bambu’s conventional target architecture is
an FSMD. Bambu’s flow has three main components: front-end, synthesis, and back-end. The front-
end phase processes the input specification, employing the GNU Compiler Collection (GCC). The
front-end analyzes the input specifications and applies code transformations and optimizations (loop
unrolling, function inlining, constant propagation, etc.). The process generates several graph-based
Internal Representations (IR), such as Control Flow Graphs, Data Flow Graphs, Program Depen-
dence Graphs, and Call Graphs. The synthesis phase takes those IRs in input and synthesizes the
application one function at a time, following the structure of the call graph. This results in a mod-
ular, hierarchical design. The main activities that the flow performs, as in most HLS approaches,
are operation scheduling, allocation and binding of functional units, registers, and interconnections.
Finally, the back-end generates the final circuit description in Verilog, together with the simulation
and synthesis scripts that enables Bambu to directly interface with third-party tools.
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FIGURE 14.1 Structure of the GEMS stack and interaction with Bambu HLS.

Because the currently available version of Bambu is based around the FSMD model, we have
heavily extended and modified the framework to support a different control model and the related
novel synthesis techniques for the generation of the accelerators that can cope better with the
requisites of graph methods and irregular workloads.

Figure 14.1 conceptually shows the modifications to the GEMS stack and the interaction with
Bambu.

Figure 14.2 shows a sample SPARQL query, together with its graph pattern representation.
When processing this query, the custom SPARQL-2-C translator generates the C-code implemen-

tation as listed in Figure 14.3a.
Bambu processes the C query implementation generated by GEMS’ SPARQL translator, in the

form of pattern-matching functions. The pattern-matching function consists of a nest of parallel
loops: each loop corresponds to matching a particular edge of the graph pattern that composes the
query. In SPARQL queries, both vertices and edges may be either constant (represented through their
value in the input data) or variable. The labels of constant elements, used the perform value checking
during the query execution, act as input parameters for the search function. This allows supporting
with just one procedure different queries that differ only for those labels. Figure 14.3 presents, as
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(a)

SELECT ?x ?y

WHERE {

?y ub:subOrganizationOf

<http://www.University0.edu> .

?y rdf:type ub:Department .

?x ub:worksFor ?y .

?x rdf:type ub:FullProfessor

}
<http://www.University0.edu>

?Y

ub:subOrganizationOf

ub:Department

rdf:type

?X

ub:worksFor

(b)

ub:FullProfessor

rdf:type

FIGURE 14.2 Example Query Q6: full professors working at a department of University0. (a) shows the
query expressed in SPARQL, while (b) shows the equivalent graph pattern.

an example, query Q6 from the LUBM benchmark [30], together with its graph representation and
a pseudocode describing the output of GEMS’ modified translator.

Bambu processes the generated code and performs additional transformations to better expose
TLP. In particular, Figure 14.3b shows how parallel loops are partially unrolled, with an unrolling
factor equal to the number of kernel instances allocated in the synthesized architecture. Currently,
the user must provide this number. The flow bounds all the kernel instances in the unrolled loop to
different hardware modules during the synthesis, enabling concurrent execution.

14.4 PROPOSED ARCHITECTURE

As previously discussed, the majority of HLS techniques adopts the FSMD model for the target
architecture. While very effective in exploiting ILP, this execution paradigm is inherently serial and
does not efficiently exploit coarser granularities of parallelism, such as TLP. However, Graph meth-
ods and, in general, data analytics, although providing some ILP, typically have large amounts of
dynamic TLP. Additionally, the conventional HLS techniques are optimized for applications with
regular memory patterns and small datasets. Consequently, they just assume simple memory models
where datasets are easily partitionable, and there is no need to synchronize parallel operations as
they work on different data. This is not the case of graph methods: they do not have any locality, and
a uniform partitioning of the dataset usually leads to load imbalance. In general, assuming a shared
memory is the preferred abstraction to implement efficient graph algorithms, also in common pro-
gramming languages. This is the same assumption made by GEMS’ SPARQL translator. Because
graphmethods are also synchronization intensive, as concurrent activity may need to access the same
elements simultaneously, the memory model also has to offer atomic memory operations. Since we
have to generate the full architecture executing the graph algorithm, we need to couple this abstrac-
tion with an effective, and high-performance, architectural implementation. And, differently from all
the other HLS synthesis approaches, we also need to provide support for atomic memory operations.

To overcome the limitations of the FSMD model, we have devised an adaptive distributed con-
troller (DC) design able to manage concurrent execution flows, and thus execute parallel tasks. To
provide adequate support to the memory model, we have designed an enhanced memory inter-
face that, while providing an abstract shared memory view, implements multiple channels for
multibanked/multiported memories and supports atomic memory operations.

14.4.1 DISTRIBUTED CONTROLLER ARCHITECTURE

The proposed design supports parallel execution and dynamic scheduling through the introduction
of an adaptive DC [57]. The DC consists of a set of communicating modules, each one associated
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1 void search(Graph * graph, NodeId var_2, Label

p_var_3,

2 LabelId p_var_4, LabelId p_var_5, LabelId p_var_7,

3 LabelId p_var_8, LabelId p_var_9) {

4 size_t in_degree_var_2 = getInDegree(graph, var_2);

5 Edge * var_2_1_inEdges = getInEdges(graph, var_2);

6 for(size_t i_var_3 = 0; i_var_3 < in_degree_var_2;

i_var_3++) {

7 LabelId var_3; //el. with label
"ub:subOrganizationOf"

8 var_3 = var_2_1_inEdges[i_var_3].property;

9 NodeId var_1; //el. with label "?Y"

10 var_1 = var_2_1_inEdges[i_var_3].node;

11 if(var_3 == p_var_3) {

12 size_t in_degree_var_1 = getInDegree(graph, var_1)

;

13 Edge * var_1_3_inEdges = getInEdges(graph, var_1);

14 for(size_t i_var_7 = 0; i_var_7 < in_degree_var_1;

i_var_7++) {

15 LabelId var_7; //el. with label "ub:worksFor"

16 var_7 = var_1_3_inEdges[i_var_7].property;

17 NodeId var_6; //el. with label "?X"

18 var_6 = var_1_3_inEdges[i_var_7].node;

19 if(var_7 == p_var_7) {

20 size_t out_degree_var_6 = getOutDegree(graph,

var_6);

21 Edge * var_6_5_outEdges = getOutEdges(graph,

var_6);

22 for(size_t i_var_9 = 0; i_var_9 <

out_degree_var_6; i_var_9++) {

23 LabelId var_9; //el. with label "rdf::type"

24 var_9 = var_6_5_outEdges[i_var_9].property;

25 NodeId var_8; //el. with label
"ub:FullProfessor"

26 var_8 = var_6_5_outEdges[i_var_9].node;

27 if((var_9 == p_var_9) && (var_8 == p_var_8)) {

28 size_t out_degree_var_1 = getOutDegree(graph,

var_1);

29 Edge * var_1_7_outEdges = getOutEdges(graph,

var_1);

30 for(size_t i_var_5=0; i_var_5<out_degree_var_1

; i_var_5++) {

31 LabelId var_5; //el. with label "rdf::type"

32 var_5 = var_1_7_outEdges[i_var_5].property;

33 NodeId var_4; //el. with label
"ub:Department"

34 var_4 = var_1_7_outEdges[i_var_5].node;

35 if((var_5 == p_var_5) && (var_4 == p_var_4))

36 insertResults(var_6);

37 }

38 }

39 }

40 }

41 }

42 }

43 }

44 }

1void kernel(size_t i_var3, Edge * var_2_1_inEdges

, Graph * graph, NodeId var_2, Label

p_var_3, LabelId p_var_4, LabelId p_var_5,

LabelId p_var_7, LabelId p_var_8, LabelId

p_var_9) {

2LabelId var_3; //el. with label
"ub:subOrganizationOf"

3var_3 = var_2_1_inEdges[i_var_3].property;

4NodeId var_1; //el. with label "?Y"

5var_1 = var_2_1_inEdges[i_var_3].node;

6if(var_3 == p_var_3) {

7size_t in_degree_var_1 = getInDegree(graph,

var_1);

8Edge * var_1_3_inEdges = getInEdges(graph,

var_1);

9for(size_t i_var_7 = 0; i_var_7 <

in_degree_var_1; i_var_7++) {

10// Same as Fig. 14.3a lines [15-40]

11...

12}

13}

14}

15

16

17void search(Graph * graph, NodeId var_2, Label

p_var_3, LabelId p_var_4, LabelId p_var_5,

LabelId %p_var_7, LabelId p_var_8, LabelId

p_var_9) {

18size_t in_degree_var_2 = getInDegree(graph,

var_2);

19Edge * var_2_1_inEdges = getInEdges(graph, var_2

);

20size_t i_var_3;

21

22for(i_var_3=0; i_var_3 < in_degree_var_2%4;

i_var_3++) {

23kernel(i_var3, var_2_1_inEdges, graph, p_var_3,

p_var_4, p_var_5, p_var_7, p_var_8,

p_var_9);

24}

25

26for(; i_var_3 < in_degree_var_2%4; i_var_3+=4) {

27kernel(i_var3, var_2_1_inEdges, graph, p_var_3,

p_var_4, p_var_5, p_var_7, p_var_8,

p_var_9);

28kernel(i_var3+1, var_2_1_inEdges, graph,

p_var_3, p_var_4, p_var_5, p_var_7,

p_var_8, p_var_9);

29kernel(i_var3+2, var_2_1_inEdges, graph,

p_var_3, p_var_4, p_var_5, p_var_7,

p_var_8, p_var_9);

30kernel(i_var3+3, var_2_1_inEdges, graph,

p_var_3, p_var_4, p_var_5, p_var_7,

p_var_8, p_var_9);

31}

32}

FIGURE 14.3 Pseudocode for the pattern-matching routines of example query Q6.

with an operation. The approach does not require the definition of any execution order (scheduling) at
design time, and allows runtime exploitation of parallelism. The controller modules, called execution
managers (EMs), start the execution of the associated operations as soon as all their dependencies
are satisfied and resource conflicts are resolved. The minimum set of dependencies each operation
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is subject to, called activating conditions (ACs), is computed by analyzing the Extended Program
Dependence Graph (EPDG) of the algorithm, which extends a typical Program Dependence Graph
(PDG) with control-flow information, such as loops’ back edges. ACs are expressed as logic func-
tions, and specifically synthesized for each EM. Instead, dedicated arbiters, called resourcemanagers
(RMs), associated to shared resources manage resource conflicts: if multiple operations compete for
a resource, the arbiter establishes which one executes first, according to a priority ordering. EMs
communicate through a lightweight token-based schema: each EM receives a token signal whenever
a dependency gets satisfied. When the controller has collected all the AC tokens (i.e., all dependen-
cies are satisfied), it checks for resource availability. If the resource associated with the operation is
free, execution starts. The approach does not introduce any communication overhead, because it does
not use any sophisticated protocol. Since every operation and function is managed independently,
the DC can efficiently control several concurrent execution flows. Obtaining the same behavior with
centralized FSMs is possible, but not cheap: in fact, the complexity of an FSM controller, in terms
of number of states and transitions, is exponential with respect to number of flows. This complexity
would lead to unfeasible designs even for relatively small degrees of TLP. The complexity of the DC
instead grows linearly with the number of operations, regardless of the latency of the operations and
of number of concurrent flows. Figure 14.4 proposes an example of EPDG, annotated with ACs and
binding information, and the associated parallel controller architecture. Operations 3, 4, 5 are bound

(a) (b)

FIGURE 14.4 Example Extended ProgramDependencies Graph (a) and correspondingDistributed Controller
architecture (b).
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to the same resource C, while operations 6, 7 are bound to D: the corresponding EMs interface with
RMs to avoid structural conflicts. In this example, all the operations have unknown latency (e.g.,
external memory accesses, function calls, speculative operations) and the completion of their execu-
tion is notified through explicitly done signals from the datapath to the EMs. If the execution latency
is known at design time, this signaling is not required, and the EMs directly manage the timing.

14.4.2 MEMORY INTERFACE

In hardware synthesis, TLP is exploited by replicating the computing resources, substantially imple-
menting spatial multithreading. Different hardware accelerators implement different tasks/threads.
The final design allocates multiple instances of such accelerators. Our approach works in the same
way by binding concurrent function calls to distinct hardware components, thus allowing parallel
execution. However, not all the resources can be straightforwardly replicated. This is, in particu-
lar, the case with memory resources. In parallel applications, tasks usually share data, consequently
requiring access to a shared memory. Thus, parallel execution of tasks requires managing concurrent
memory operations. This is particularly important in memory-bound applications, because they may
have limited ILP and as such not enough operations to completely hide memory latency. Employing
caches across accelerators requires implementing coherency protocols, and caches are not effec-
tive with kernels that generally have poor spatial and temporal locality (such as graph methods).
More suitable architectural approaches are mostly based on memory distribution and/or partitioning.
These techniques enable memory operations to concurrently access data, but introduce additional
challenges:

1. Memory addresses usually are not statically known, thus destination locations must be
identified at runtime.

2. Tasks may try to access the same data in parallel, thus they may need synchronization.
3. Structural conflicts on shared memory resources have to be avoided.

In our approach, we address these issues by incorporating in the synthesized architectures an adaptive
memory interface controller (MIC). TheMIC completely manages concurrency and synchronization
of the memory resources [58]. It dynamically maps memory operations across multiple, distributed
and/or multiported memories, such as those available today in the latest hybrid systems that integrate
general-purpose processors and FPGAs (Convey HC and MX).

Figure 14.5 shows a high-level schematic representation of the MIC. The MIC takes in input
memory access requests from N ports, which have an address, a data, and an operation-type (load/-
store) line. The MIC routes requests toward one of theM output ports by evaluating their addresses.
It serves a request as soon as the corresponding port is available. In a similar way, it routes back
M done signals (which notify termination of an operation) and the results (in case of loads) to the

FIGURE 14.5 Top-level memory interface controller structure.
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requesting operation. The memory is composed ofM different and independent banks, and each out-
put port accesses one bank. Each memory bank has nonoverlapping addresses. Accesses are routed
toward a specific memory port at runtime, providing efficient support of the unpredictable memory
access patterns typical in irregular applications. Customizable control logic, synthesized according
to the particular scrambling function that distributes the data on the memory system, performs the
routing. A lightweight arbitration scheme, which avoids any structural conflict on shared resources
and does not introduce any further delay, provides concurrency management. For arbitration, we
employ RMs also in the MIC, similarly to the DC. Access routing and resource availability checks
both occur at runtime, enabling the MIC to issue concurrent memory operations, provided that they
do not address the same memory locations. This improves system memory bandwidth utilization.
Support of atomic memory operations, such as fetch-and-add and compare-and-swap, enables syn-
chronization. The RMs reject further memory requests on a memory location accessed by an atomic
memory operation, guaranteeing atomicity.

14.4.3 SYNTHESIS FLOW

As previously discussed, we have integrated these solutions in Bambu. To generate the DC archi-
tecture, we either designed novel synthesis techniques or heavily customized previous approaches.
Having been designed around the FSMD model, the majority of HLS algorithms requires the
definition of an execution schedule. The proposed architecture, instead, does not employ any pre-
determined execution ordering. In fact, the DCs dynamically execute operations. With respect to an
FSMD synthesis flow, the proposed approach mandates additional front-end analysis steps to build
the EPDG and compute the ACs. The approach also adopts custom algorithms for register [59] and
module binding [60]. To integrate the MIC into the synthesis flow, instead, no significant changes
to the synthesis algorithms are required.

14.5 EXPERIMENTAL RESULTS

We tested our approach by generating accelerators that implements queries from the LUBM bench-
mark. We consider seven queries from the set used in Reference 61. The objective of LUBM is to
evaluate the performance of semantic web repositories in a standard and systematic way. It evaluates
the performance considering queries over datasets originated from a single realistic ontology. LUBM
consists of a university domain ontology, customizable and repeatable synthetic data, a set of test
queries, and several performance metrics. We generated two different datasets: LUBM-1, consisting
of 100,573 triples, and LUBM-40, consisting of 5,309,056 triples.

To evaluate the effectiveness of the proposed approach, we synthesized the queries with two
different configurations. In the first (serial), the generated accelerator is serial (i.e., a single task). In
the second, the generated accelerator is parallel, implementing four hardware kernels (T = 4) and
a MIC with four memory channels (M = 4). We synthesized all the designs with Vivado 2015.1,
targeting a Xilinx Virtex-7 xc7vx690t (the same device used in a Convey Wolverine WX690). We
set a target frequency of 100MHz for the synthesis. Table 14.1 reports the performance of the design
in terms of execution latency (clock cycles) and maximum clock frequency.

In general, parallel accelerators (T = 4,M = 4) are able to provide speed ups with respect to the
serial ones. With the small dataset, the average speed up is around 2.1, ranging from 1.03 (Q1) to
3.13 (Q3), depending on the query. With the large dataset, the average speed up is similar (2.05),
with a minimum of 1.08 (Q1 and Q6) and a maximum of 3.13 (again Q3). The reasons for the
minimal speed ups of query Q1 and Q6 with the large dataset reside in the structure of the query
and the high dependency of graph-like methods from the dataset itself. In particular, the outer loops
of Q1 and Q6 execute only a few iterations. Hence, these queries employ only a few tasks. Our
current design implements a fork-join scheme that spawns a group of T tasks (identified from loop
iterations) and assigns them to the T hardware kernels. The group of tasks runs to completion before a
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TABLE 14.1
Execution Delays of LUBM Queries Q1–Q7 on Serial Accelerators and on Parallel
Accelerators Generated with Our Methodology (4 Kernels, 4 Memory Channels)

Serial T = 4, M = 4

Maximum Maximum

Latency Frequency Latency Frequency

(#Cycles) (MHz) (#Cycles) (MHz) Speed Up Speed Up

LUBM-1 LUBM-40 LUBM-1 LUMB-40 LUBM-1 LUMB-40

Q1 5,339,286 1,082,526,974 130.34 5,176,116 1,001,581,548 113.37 1.03 1.08

Q2 141,022 7,359,732 143.66 54,281 2,801,694 130.11 2.60 2.63

Q3 5,824,354 308,586,247 121.27 1,862,683 98,163,298 114.53 3.13 3.14

Q4 63,825 63,825 143.20 42,851 42,279 122.97 1.49 1.51

Q5 33,322 33,322 133.92 13,442 13,400 138.31 2.48 2.49

Q6 674,951 682,949 136.76 340,634 629,671 113.26 1.98 1.08

Q7 1,700,170 85,341,784 131.98 694,225 35,511,299 106.71 2.45 2.40

TABLE 14.2
Area Occupation (in Terms of LUTs and FPGA slices) of the Serial
Accelerators and of the Parallel Accelerators for LUBM Queries Q1–Q7

Serial T = 4, M = 4 Area Overhead

LUTs Slices LUTs Slices LUTs Slices

Q1 5600 1802 13,469 4317 2.40 2.39

Q2 2690 824 5280 1607 1.96 1.95

Q3 5525 1775 13,449 4308 2.43 2.43

Q4 3477 1073 7806 2399 2.24 2.24

Q5 2785 848 5750 1738 2.06 2.05

Q6 4364 1369 10,600 3426 2.43 2.50

Q7 6194 1943 15,002 4953 2.42 2.55

Note: Area Overhead is the ratio of the area occupied by the parallel accelerators over the serial
accelerators.

new group can start execution. Consequently, tasks of the same group could have different execution
times, but the group terminates only when all the tasks have completed, leading to underutilization
of hardware resources and memory bandwidth. The dataset dependency is highlighted by Q6, which
takes almost the same time on the sequential architecture with both the dataset sizes. However, while
the parallel accelerator reaches a speed up of 2 on the smaller dataset, on the larger dataset, it only
providesminimal speed up due to data layout inmemory that does not maximize concurrency. In fact,
whenever one of the hardware kernels in the parallel accelerator tries to access a memory location
concurrently accessed by another kernel, theMIC, by design, denies the request, and the kernel stalls.
The parallel accelerators always meet the target frequency of 100MHz, but they are on average 10%
slower than the serial accelerators, with amaximumof around 20% for the biggest designs (Q7).With
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the smallest designs, the difference is obviously lower, and in one case (Q5), the parallel accelerator
also reaches a slightly higher maximum frequency.

Table 14.2 reports the area of the synthesized accelerators in terms of number of look-up tables
(LUTs) and slices. The results are post place and route. The occupation of the parallel accelerators
goes from around 2 times to 2.5 times the occupation of the serial accelerators. While the kernels
are replicated four times, the synthesis tool performs optimizations that make occupation a sublinear
function of the number of hardware kernels.

Because we see an average speed up of 2, the average increase in area is somewhat balanced by
the higher performance. Obviously, for queries with speed ups over 2.5, the parallel implementation
is highly profitable, while for the others, although there is still an advantage in using the parallel
controller, it does not outweigh the increased occupation.

14.6 CONCLUSIONS

In this chapter, we have discussed the prospectives on the use of accelerators for data analytics
applications. We have presented the contrasts between the aspiration to reach high scalability in
performance and size through the use of fully custom systems, from the hardware to the software,
and the need to employ commodity hardware designs to contain costs. We have highlighted how
the increasingly widespread use of accelerators such as GPUs and vector processors, now basically
commodity resources for HPC systems, represents an opportunity for data analytics. We argued that
the emerging class of accelerators employing reconfigurable devices such as FPGAs, although not
as widespread as GPUs, may provide an opportunity to better customize systems for workloads
that, presenting irregular behaviors, may not be as amenable as (for example) scientific simula-
tions to more commodity accelerators. While there are still productivity gaps to bridge, tools that
enable automatic generation of accelerators from specifications in high-level languages (HLS tools)
have matured significantly. As a case study, we have presented a set of novel architectural templates
and techniques to enhance the synthesis of parallel accelerators for data analytics applications. Our
proposed approach allows, in particular, generating efficient accelerators for graph methods and
applications that present irregular behaviors. These are present in many data analytics applications
(e.g., graph databases) that exploit emerging data models such as RDF or attributed graphs, and are
extremely different from the behaviors of more conventional, table-based, relational databases. We
have detailed the approach and have discussed how it can be integrated into the GEMS’ stack (an
RDF graph database) to generate parallel accelerators for SPARQL queries. We have validated the
approach by synthesizing SPARQL queries from LUBM.

We believe that these represent significant steps towards making FPGA-based accelerators viable
for data analytics. Although there are still limitations to address, such as enabling better load bal-
ancing and providing scalability across multiple accelerators, these efforts show that there exists a
promising intermediate step between a fully custom and a commodity system. Accelerator-based
systems can provide performance and flexibility for data analytics applications, while still being
affordable in terms of costs.

REFERENCES

1. Apache Jena. Home. Available at: https://jena.apache.org, 2014.
2. SesameRDF. Home. Available at: http://www.openrdf.org, 2014.
3. Virtuoso. Openlink Virtuoso Universal Server. Available at: http://virtuoso.openlinksw.com.
4. Steve Harris, Nick Lamb, and Nigel Shadbolt. 4store: The design and implementation of a clustered RDF

store. In 5th International Workshop on Scalable Semantic Web Knowledge Base Systems (SSWS2009),
pages 94–109, 2009.

5. Thomas Neumann and Gerhard Weikum. The RDF-3X engine for scalable management of RDF data.
The VLDB Journal, 19(1):91–113, 2010.

https://jena.apache.org
http://www.openrdf.org
http://virtuoso.openlinksw.com


294 Big Data Management and Processing

6. Cathrin Weiss, Panagiotis Karras, and Abraham Bernstein. Hexastore: Sextuple indexing for semantic
web data management. Proceedings of the VLDB Endowment, 1(1):1008–1019, 2008.

7. Andreas Harth, Jürgen Umbrich, Aidan Hogan, and Stefan Decker. YARS2: A federated repository for
querying graph structured data from the web. In ISWC’07/ASWC’07: 6th International Semantic Web and
2nd Asian Semantic Web Conference, pages 211–224, 2007.

8. Kurt Rohloff and Richard E. Schantz. High-performance, massively scalable, distributed systems using
the mapreduce software framework: The shard triple-store. In PSI EtA ’10: Programming Support
Innovations for Emerging Distributed Applications, pages 4:1–4:5, 2010.

9. Medha Atre, Vineet Chaoji, Mohammed J. Zaki, and James A. Hendler. Matrix bit loaded: A scalable
lightweight join query processor for RDF data. In Proceedings of the 19th International Conference on
World Wide Web, pages 41–50.

10. Spyros Kotoulas, Jacopo Urbani, Peter Boncz, and Peter Mika. Robust runtime optimization and skew-
resistant execution of analytical sparql queries on pig. In Proceedings of the 11th International Semantic
Web Conference, 2012.

11. BigDataDB. Bigdata R©. Available at: http://www.blazegraph.com.
12. Ontotext. OWLIM|Ontotext. Available at: https://www.ontotext.com, 2014.
13. Apache Giraph. Available at: http://giraph.apache.org.
14. Graphlab. Available at: https://turi.com.
15. Grzegorz Malewicz, Matthew H. Austern, Aart J.C. Bik, James C. Dehnert, Ilan Horn, Naty Leiser,

and Grzegorz Czajkowski. Pregel: A system for large-scale graph processing. In SIGMOD’10: ACM
International Conference on Management of Data, pages 135–146, 2010.

16. Apache. Apache spark—Lightning-fast cluster computing. Available at: http://spark.apache.org.
17. Vito Giovanni Castellana, Alessandro Morari, Jesse Weaver, Antonino Tumeo, David Haglin, Oreste

Villa, and John Feo. In-memory graph databases for web-scale data. Computer, 48(3):24–35, 2015.
18. Inc. Cray. Urika-gx agile analytics platform for big data. Available at: http://www.cray.com/

products/analytics/urika-gx.
19. Gunrock, High-performance graph primitives on GPUs. Available at: https://github.com/gunrock/

gunrock.
20. MassimoBernaschi, Giancarlo Carbone, and FlavioVella. Betweenness centrality onmulti-GPU systems.

In Proceedings of the 5th Workshop on Irregular Applications—Architectures and Algorithms, IA3 2015,
Austin, Texas, USA, November 15, 2015, pages 12:1–12:4, 2015.

21. Adam McLaughlin and David A. Bader. Scalable and high performance betweenness centrality on the
GPU. In International Conference for High Performance Computing, Networking, Storage and Analysis,
SC 2014, New Orleans, LA, USA, November 16–21, 2014, pages 572–583, 2014.

22. Duane Merrill, Michael Garland, and Andrew Grimshaw. High-performance and scalable GPU graph
traversal. ACM Transactions on Parallel Computing, 1(2):14:1–14:30, February 2015.

23. Md. Naim, Fredrik Manne, Mahantesh Halappanavar, Antonino Tumeo, and Johannes Langguth. Opti-
mizing approximate weighted matching on NVIDIAKepler K40. In 22nd IEEE International Conference
on High Performance Computing, HiPC 2015, Bengaluru, India, December 16–19, 2015, pages 105–114,
2015.

24. Jyothish Soman and Ankur Narang. Fast community detection algorithm with GPUs and multicore
architectures. In 2011 IEEE International Parallel Distributed Processing Symposium (IPDPS), pages
568–579, 2011.

25. SYSTAP. Blazegraph. Available at: https://www.blazegraph.com/product/.
26. Zhisong Fu, Michael Personick, and Bryan Thompson. Mapgraph: A high level API for fast development

of high performance graph analytics on GPUs. In Proceedings of Workshop on GRAph Data Management
Experiences and Systems, GRADES’14, pages 2:1–2:6, 2014.

27. Altera SDK for OpenCL. Available at: http://www.altera.com.
28. Convey. Openht—Hybrid threading toolset. Available at: https://github.com/tonybrewer/openht.
29. Xilinx. Vivado high level synthesis. Available at: http://www.xilinx.com/products/design-tools/vivado/

integration/esl-design.html.
30. Yuanbo Guo, Zhengxiang Pan, and Jeff Heflin. Lubm: A benchmark for OWL knowledge base systems.

Web Semantics, 3(2–3):158–182, October 2005.

http://www.blazegraph.com
https://www.ontotext.com
http://giraph.apache.org
https://turi.com
http://spark.apache.org
http://www.cray.com/products/analytics/urika-gx
http://www.cray.com/products/analytics/urika-gx
https://github.com/gunrock/gunrock
https://github.com/gunrock/gunrock
https://www.blazegraph.com/product/
http://www.altera.com
https://github.com/tonybrewer/openht
http://www.xilinx.com/products/design-tools/vivado/integration/esl-design.html
http://www.xilinx.com/products/design-tools/vivado/integration/esl-design.html


Considerations on the Use of Custom Accelerators for Big Data Analytics 295

31. Andrew Putnam,AdrianM. Caulfield, Eric S. Chung, Derek Chiou, Kypros Constantinides, JohnDemme,
Hadi Esmaeilzadeh et al. A reconfigurable fabric for accelerating large-scale datacenter services. In 2014
ACM/IEEE 41st International Symposium on Computer Architecture (ISCA), pages 13–24, June 2014.

32. IBM. Netezza analytics. Available at: https://www-01.ibm.com/software/data/puredata/analytics/ nztech-
nology/analytics.html.

33. Bharat Sukhwani, Hong Min, Mathew Thoennes, Parijat Dube, Balakrishna Iyer, Bernard Brezzo, Donna
Dillenberger, and Sameh Asaad. Database analytics acceleration using FPGAs. In Proceedings of the
21st International Conference on Parallel Architectures and Compilation Techniques, PACT’12, pages
411–420, New York, NY, USA, 2012. ACM.

34. Sina Meraji, Berni Schiefer, Lan Pham, Lee Chu, Peter Kokosielis, Adam Storm, Wayne Young, Chang
Ge, Geoffrey Ng, and Kajan Kanagaratnam. Towards a hybrid design for fast query processing in db2
with blu acceleration using graphical processing units: A technology demonstration. In Proceedings of
the 2016 International Conference on Management of Data, SIGMOD’16, pages 1951–1960, 2016.

35. Robert J. Halstead, Bharat Sukhwani, Hong Min, Mathew Thoennes, Parijat Dube, Sameh Asaad, and
Balakrishna Iyer. Accelerating join operation for relational databases with FPGAs. In 2013 IEEE 21st
Annual International Symposium on Field-Programmable Custom Computing Machines (FCCM), pages
17–20, April 2013.

36. Jared Casper and Kunle Olukotun. Hardware acceleration of database operations. In Proceedings
of the 2014 ACM/SIGDA International Symposium on Field-Programmable Gate Arrays, FPGA’14,
pages 151–160, New York, NY, USA, 2014. ACM.

37. Lisa Wu, Andrea Lottarini, Timothy K. Paine, Martha A. Kim, and Kenneth A. Ross. Q100: The archi-
tecture and design of a database processing unit. In Proceedings of the 19th International Conference on
Architectural Support for Programming Languages and Operating Systems, ASPLOS’14, pages 255–268,
New York, NY, USA, 2014. ACM.

38. Rene Mueller, Jens Teubner, and Gustavo Alonso. Glacier: A query-to-hardware compiler. In Pro-
ceedings of the 2010 ACM SIGMOD International Conference on Management of Data, SIGMOD’10,
pages 1159–1162, New York, NY, USA, 2010. ACM.

39. Takashi Takenaka, Masamichi Takagi, and Hiroaki Inoue. A scalable complex event processing frame-
work for combination of sql-based continuous queries and c/c++ functions. In 2012 22nd International
Conference on Field Programmable Logic and Applications (FPL), pages 237–242, August 2012.

40. Christopher Dennl, Daniel Ziener, and Jürgen Teich. Acceleration of SQl restrictions and aggrega-
tions through FPGA-based dynamic partial reconfiguration. In 2013 IEEE 21st Annual International
Symposium on Field-Programmable Custom Computing Machines (FCCM), pages 25–28, April 2013.

41. Gorker Alp Malazgirt, Nehir Sonmez, Arda Yurdakul, Osman Unsal, and Adrian Cristal. Accelerating
complete decision support queries through high-level synthesis technology (abstract only). In Proceed-
ings of the 2015 ACM/SIGDA International Symposium on Field-Programmable Gate Arrays, FPGA’15,
pages 277–277, New York, NY, USA, 2015. ACM.

42. Convey Computer. Convey computer doubles graph500 performance, develops new graph personality.
Available at: http://www.conveycomputer.com.

43. Convey Computer. Convey MX Series. Architectural Overview. Available at: http://www.convey
computer.com.

44. Brahim Betkaoui, Yu Wang, David B. Thomas, and Wayne Luk. A reconfigurable computing approach
for efficient and scalable parallel graph exploration. In 2012 IEEE 23rd International Conference on
Application-Specific Systems, Architectures and Processors (ASAP), pages 8–15, 2012.

45. Robert J. Halstead, Jason Villarreal, and Walid Najjar. Exploring irregular memory accesses on FPGAs.
In Proceedings of the First Workshop on Irregular Applications: Architectures and Algorithms, IAAA’11,
pages 31–34, 2011.

46. Alain Girault, Bilung Lee, and Edward A. Lee. Hierarchical finite state machines with multiple con-
currency models. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems,
18(6):742–760, June 1999.

47. Chris Papachristou and Yusuf Alzazeri. A method of distributed controller design for RTL circuits.
DATE’99: Design, Automation and Test in Europe, pages 774–775, 1999.

48. Andrew Seawright andWolfgangMeyer. Partitioning and optimizing controllers synthesized from hierar-
chical high-level descriptions. In DAC’98: 35th Annual Design Automation Conference, pages 770–775,
1998.

https://www-01.ibm.com/software/data/puredata/analytics/nztechnology/analytics.html
https://www-01.ibm.com/software/data/puredata/analytics/nztechnology/analytics.html
http://www.conveycomputer.com
http://www.conveycomputer.com
http://www.conveycomputer.com


296 Big Data Management and Processing

49. Alberto A. Del Barrio, Seda Ogrenci Memik, María C. Molina, José M.Mendias, and Román Hermida. A
distributed controller for managing speculative functional units in high level synthesis. IEEE Transactions
on Computer-Aided Design of Integrated Circuits and Systems, 30(3):350–363, March 2011.

50. Chao Huang, Srivaths Ravi, Anand Raghunathan, and Niraj K. Jha. Generation of heterogeneous dis-
tributed architectures for memory-intensive applications through high-level synthesis. IEEE Transactions
on Very Large Scale Integration (VLSI) Systems, 15(11):1191–1204, 2007.

51. Faraydon Karim, Alain Mellan, Anh Nguyen, Utku Aydonat, and Tarek Abdelrahman. A multilevel
computing architecture for embedded multimedia applications. IEEE Micro, 24(3):56–66, 2004.

52. David Bacon, Rodric Rabbah, and Sunil Shukla. FPGA programming for the masses. Queue,
11(2):40:40–40:52, February 2013.

53. Jason Cong, Bin Liu, Stephen Neuendorffer, Juanjo Noguera, Kees A. Vissers, and Zhiru Zhang. High-
level synthesis for FPGAs: From prototyping to deployment. IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems, 30(4):473–491, 2011.

54. Jongsok Choi, Stephen Brown, and Jason Anderson. From software threads to parallel hardware in high-
level synthesis for FPGAs. In 2013 International Conference on Field-Programmable Technology (FPT),
pages 270–277, December 2013.

55. Tomasz S. Czajkowski, Utku Aydonat, Dmitry Denisenko, John Freeman, Michael Kinsner, David Neto,
JasonWong, Peter Yiannacouras, and Deshanand P. Singh. From OpenCL to high-performance hardware
on FPGAs. In FPL’12: 22nd International Conference on Field Programmable Logic and Applications,
pages 531–534, 2012.

56. Bambu: A Free Framework for the High-Level Synthesis of Complex Applications. Available at:
http://panda.dei.polimi.it.

57. Christian Pilato, Vito Giovanni Castellana, Silvia Lovergine, and Fabrizio Ferrandi. A runtime adap-
tive controller for supporting hardware components with variable latency. In AHS 2011: NASA/ESA
Conference on Adaptive Hardware and Systems, pages 153–160, 2011.

58. Vito Giovanni Castellana, Antonino Tumeo, and Fabrizio Ferrandi. An adaptive memory interface con-
troller for improving bandwidth utilization of hybrid and reconfigurable systems. InDATE 2014: Design,
Automation and Test in Europe, pages 1–4, 2014.

59. Vito Giovanni Castellana and Fabrizio Ferrandi. Scheduling independent liveness analysis for register
binding in high-level synthesis. InDATE 2013: Design, Automation and Test in Europe, pages 1571–1574,
2013.

60. Vito Giovanni Castellana and Fabrizio Ferrandi. An automated flow for the high level synthesis of coarse
grained parallel applications. In 2013 International Conference on Field-Programmable Technology
(FPT), pages 294–301, December 2013.

61. Bin Shao, Haixun Wang, and Yatao Li. Trinity: A distributed graph engine on a memory cloud. In Pro-
ceedings of the 2013 ACM SIGMOD International Conference on Management of Data, pages 505–516.
ACM, 2013.

http://panda.dei.polimi.it


15 Complex Mining from
Uncertain Big Data in
Distributed Environments
Problems, Definitions, and Two
Effective and Efficient Algorithms

Alfredo Cuzzocrea, Carson Kai-Sang Leung, Fan Jiang,
and Richard Kyle MacKinnon

CONTENTS

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 298
15.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 298
15.2 Complex Mining from Uncertain Big Data: Problems and Definitions . . . . . . . . . . . . . . . . . . . . . 300

15.2.1 Frequent Itemset Mining. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 300
15.2.2 Frequent Itemset Mining from Uncertain Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 301
15.2.3 Constrained Frequent Itemset Mining from Uncertain Data . . . . . . . . . . . . . . . . . . . . . . . . . 301
15.2.4 Constrained Frequent Itemset Mining

from Distributed Uncertain Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 301
15.2.5 MapReduce-Based Constrained Frequent Itemset Mining

from Uncertain Big Data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 302
15.3 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 303

15.3.1 Mining Frequent Itemsets from Uncertain Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 303
15.3.2 Constrained Mining . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 304
15.3.3 Big Data Mining with the MapReduce Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 306

15.4 An Effective and Efficient Tree-Based Algorithm for Supporting Constrained Mining
from Uncertain Big Data in Distributed Environments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 307
15.4.1 Finding Frequent Itemsets That Satisfy Succinct Constraints . . . . . . . . . . . . . . . . . . . . . . . 307

15.4.1.1 Finding Locally Frequent Itemsets That Satisfy Succinct Constraints . . . . 307
15.4.1.2 Finding Globally Frequent Itemsets That Satisfy Succinct Constraints . . . 312
15.4.1.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 312

15.4.2 Finding Frequent Itemsets That Satisfy Nonsuccinct Constraints . . . . . . . . . . . . . . . . . . . 313
15.4.2.1 Finding Frequent Itemsets That Satisfy Inductive

Succinct Constraints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 313
15.4.2.2 Finding Frequent Itemsets That Satisfy Antimonotone Constraints . . . . . . . 313
15.4.2.3 Finding Frequent Itemsets in a Postprocessing Step . . . . . . . . . . . . . . . . . . . . . . . 314
15.4.2.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 314

15.5 MrCloud: An Effective and Efficient MapReduce-Based Algorithm for Supporting
Constrained Mining from Uncertain Big Data in Cloud Environments . . . . . . . . . . . . . . . . . . . . . 315
15.5.1 Managing Uncertain Big Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 315
15.5.2 Querying Uncertain Big Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 316

297



298 Big Data Management and Processing

15.5.3 Processing Uncertain Big Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 317
15.6 Experimental Assessment and Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 320

15.6.1 Experimenting the Tree-Based Algorithm for Supporting Constrained Mining
from Uncertain Big Data in Distributed Environments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 321

15.6.2 Experimenting the MapReduce-Based Algorithm for Supporting Constrained
Mining over Uncertain Big Data in Cloud Environments . . . . . . . . . . . . . . . . . . . . . . . . . . . . 324

15.7 Conclusions and Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 326
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 328

ABSTRACT

Big data refer to a wide variety of valuable data of different veracities that are generated or collected
at a high velocity with volumes beyond the ability of commonly used software to manage, query,
and process within a tolerable elapsed time. On the one hand, big data analytics incorporates various
techniques from a broad range of fields, which include cloud computing, data mining, machine learn-
ing, mathematics, and statistics. For instance, data mining discovers implicit, previously unknown,
and potentially useful information and/or knowledge from data. On the other hand, uncertain big
data management represents an active and well-recognized research area where a relevant number
of proposals converge. This is due to several reasons, but mostly dictated by the emergence of big
data trends as well as the explosion of cloud computing paradigms. Within this wide research con-
text, a leading role is played by the issue of extracting useful knowledge from big data being the
uncertain big data setting a critical case to be considered. In our research, we specially focus on
two well-known distinct first-class data-mining problems over uncertain big data, namely: (i) fre-
quent itemset mining from uncertain big data and (ii) constrained mining from uncertain big data.
We recognize that these subproblems converge into a general problem that we name as complex
mining from uncertain big data, for which a plethora of real-life applications and systems can be
found. Inspired by these relevant research challenges, we provide in this chapter the following con-
tributions: (i) a comprehensive overview of state-of-the-art literature in the context of the research
problem of complex mining from uncertain big data, (ii) an effective and efficient algorithm for sup-
porting tree-based constrained mining of uncertain big data in distributed environments, as well as
(iii) another effective and efficient algorithm for supporting MapReduce-based constrained mining
of uncertain big transactional data in cloud environments.

15.1 INTRODUCTION

Big data [1–3] refer to high-value data with different veracities (e.g., precise, imprecise, or uncer-
tain data) and high volumes beyond the ability of commonly used software to manage, query, and
process within a tolerable elapsed time. These high volumes of valuable data can be easily collected
or generated at a high velocity from a wide variety of data sources (which may lead to a wide variety
of data types and/or formats) in various real-life applications such as bioinformatics, graph man-
agement, sensor and stream systems, smart worlds, social networks, as well as the Web [4–9]. The
characteristics of these big data can be described by the following “5V’s”:

1. Value, which focuses on the usefulness of data
2. Variety, which focuses on differences in types, contents, or formats of data
3. Velocity, which focuses on the speed at which data are collected or generated
4. Veracity, which focuses on the quality of data (e.g., uncertainty, messiness, or trustworthi-

ness of data)
5. Volume, which focuses on the quantity of data
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Rich sets of useful information and knowledge are embedded in the big data (e.g., biological data,
medical images, streams of advertisements, surveillance videos, business transactions, financial
charts, social media data, web logs, texts, and documents). Owing to the “5V’s” characteristics of big
data, new forms of algorithm are needed for managing, querying, and processing these big data so
as to enable enhanced decision making, insight, process optimization, data mining, and knowledge
discovery. This drives and motivates research and practices in data science, which aims to develop
systematic or quantitative data analytic algorithm to analyze (e.g., inspect, clean, transform, and
model) and mine big data.

On the one hand, big data analytics [10–15] incorporates various techniques from a broad
range of fields, which include cloud computing, data mining, machine learning, mathematics, and
statistics. Data mining aims to extract implicit, previously unknown, and potentially useful infor-
mation from data. With “5V’s” characteristics of big data, it is natural to handle the data in a
cloud computing environment as a cloud environment represents a “natural” context for big data
by providing high performance, reliability, availability, transparency, abstraction, and/or virtual-
ization. Various approaches—ranging from mathematical models to approximation models, from
resource-constrained paradigms to memory-bounded methods—can be applied in cloud computing
environments. Over the past few years, algorithms for handling big data according to a “system-
atic” view of the problem (e.g., MapReduce algorithms) are gaining momentum. MapReduce [16]
is a high-level programming model for handling high volumes of big data by using parallel and dis-
tributed computing [17–20] on clouds [21–23], which consist of a master node and multiple worker
nodes. As implied by its name, MapReduce involves two key functions: (i) the “map” function and
(ii) the “reduce” function both commonly used in functional programming languages such as LISP
for list processing:

1. The mapper applies a mapping function to each value in the list of values and returns the
resulting list.

2. The reducer applies a reducing function to combine all the values in the list of values and
returns the combined result.

An advantage of using the MapReduce model is that users only need to focus on (and specify) these
“map” and “reduce” functions—without worrying about implementation details for the following:

• Handling machine failures
• Managing intermachine communication
• Partitioning the input data
• Scheduling and executing the program across multiple machines

On the other hand, uncertain big data management (e.g., [24–30]) represents an active and well-
recognized research area where a relevant number of proposals converge. This is due to several
reasons, but mostly dictated by the emergence of big data trends as well as the explosion of cloud
computing paradigms (e.g., [31–35]). Within this wide research context, a leading role is played
by the issue of extracting useful knowledge from big data (e.g., [36–40]) being the uncertain big
data setting a critical case to be considered. In our research, we specially focus on two well-known
distinct first-class data-mining problems over uncertain big data, namely:

1. Frequent itemset mining from uncertain big data
2. Constrained mining from uncertain big data

We recognize that these subproblems converge into a general problem that we name as complex
mining from uncertain big data, for which a plethora of real-life applications and systems can be
found. Some examples are (i) healthcare management (e.g., [41]), (ii) advanced Web applications
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(e.g., [42,43]), (iii) traffic flow prediction (e.g., [44,45]), (iv) reservation management on optical
grids (e.g., [46]), as well as (v) mobile web and social networking (e.g., [47,48]).

Inspired by these relevant research challenges, we provide in this chapter the following contribu-
tions:

1. A comprehensive overview of state-of-the-art literature in the context of complex mining
from uncertain big data, by respectively focusing on problems and definitions of frequent
itemset-mining from uncertain big data and constrained mining from uncertain big data

2. An effective and efficient algorithm for supporting tree-based constrained mining of uncer-
tain big data in distributed environments (like clouds, indeed, or even wireless sensor big
data networks), which is capable of dealing with input constraints, thus finally devising an
innovative constrained frequent itemset-mining framework for uncertain big data

3. An effective and efficient algorithm for supporting MapReduce-based constrained mining
over uncertain big transactional data in cloud environments, which allows users to query
big data by specifying constraints that express their interests, and it also processes user-
specified constraints to discover useful information and knowledge from uncertain big data

The remainder of this chapter is organized as follows. In Section 15.2, we provide problems, def-
initions, and motivations of complex mining from uncertain big data in distributed environments
(like clouds). Section 15.3 contains the necessary background on research areas that are critical for
our work. In Section 15.4, we introduce the first algorithm embedded in our framework for sup-
porting complex mining from uncertain big data, that is, the one that focuses on frequent itemset
mining. Section 15.5 illustrates the MapReduce-based algorithm for supporting constrained mining
over uncertain big data, which represents the second algorithm embedded in our proposed frame-
work. In Section 15.6, we describe our extensive experimental campaign that clearly shows the
benefits coming from our proposal. Finally, Section 15.7 contains conclusions and future work of
our research. This chapter significantly extends our previous studies [17,49], by providing a uni-
fied conceptual view of the general issue of supporting complex mining from uncertain big data in
distributed environments.

15.2 COMPLEX MINING FROM UNCERTAIN BIG DATA: PROBLEMS AND
DEFINITIONS

As described in Section 15.1, our general focus is on the problem of supporting complex mining over
uncertain big data, by specifically focusing on the issue of providing frequent itemset mining over
uncertain big data and the issue of providing constrained mining over uncertain big data, respec-
tively. In this section, we provide foundations, definitions, and motivations of complex mining from
uncertain big data for distinct applicative settings.

15.2.1 FREQUENT ITEMSET MINING

Data mining aims to discover implicit, previously unknown, and potentially useful information that
is embedded in data. As a common data-mining task, frequent itemset mining [50–52] looks for
itemsets (i.e., sets of items) that are frequently co-occurring together. The mined frequent itemsets
can be used in the discovery of correlation or casual relations, analysis of sequences, and formation
of association rules.

The research problem of finding frequent itemsets has been the subject of numerous studies
[53–55] since its introduction [56]. In early days, many algorithms were Apriori-based [57], which
depends on a generate-and-test paradigm to find all frequent itemsets by first generating candi-
dates and then checking their support (i.e., their occurrences) against the traditional databases
containing precise data (e.g., traditional databases of shopper market basket transactions). To avoid
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the generate-and-test paradigm, the FP-growth algorithm [58] was proposed. Such a tree-based
algorithm constructs an extended prefix-tree structure, called frequent pattern tree (FP-tree), to cap-
ture the contents of the transaction database. Rather than employing the generate-and-test strategy
of Apriori-based algorithms, FP-growth focuses on frequent pattern growth [59,60]—which is a
restricted test-only approach (i.e., does not generate candidates, and only tests for support).

15.2.2 FREQUENT ITEMSET MINING FROM UNCERTAIN DATA

With the aforementioned traditional databases of precise data, users definitely know whether an item
is present in (or is absent from) a transaction. In contrast, data in many real-life applications are rid-
dled with uncertainty [61–66]. It is partially due to inherent measurement inaccuracies, sampling and
duration errors, network latencies, and intentional blurring of data to preserve anonymity. As such,
the presence or absence of items in a dataset is uncertain. Moreover, with the increasing number of
uncertain objects for sensor devices and noisy data management technologies such as DUST [67] in
recent years, uncertain data-mining [68–72] is in demand. As a concrete example, a physician may
highly suspect (but cannot guarantee) that a coughing patient suffers from the Middle East respira-
tory syndrome (MERS). The uncertainty of such suspicion can be expressed in terms of existential
probability (e.g., a 60% likelihood of suffering from the MERS). With this notion, each item in a
transaction tj in databases containing precise data can be viewed as an itemwith a 100% likelihood of
being present in tj. To find frequent itemsets from these uncertain data, several uncertain data-mining
algorithms (e.g., U-Apriori [73], UF-growth [74], tube-growth [75], and BLIMP-growth [76] algo-
rithms) have been proposed. Among them, UF-growth, tube-growth, and BLIMP-growth capture
the contents of the uncertain data in a tree structure, from which frequent itemsets can be mined
recursively.

15.2.3 CONSTRAINED FREQUENT ITEMSET MINING FROM UNCERTAIN DATA

For many real-life applications, users look for all frequent itemsets. Correspondingly, many frequent
itemset-mining algorithms, regardless of whether they are Apriori-based or tree-based, provide little
or no support for user focus when mining precise or uncertain data. However, for some other real-life
applications, users may have some particular phenomena in mind on which to focus the mining (e.g.,
a physician may want to find only those patients who are suffering from MERS, medical analysts
may want to find only those lab test records belonging to patients suspected to suffer from asthma
instead of all the patients). Without user focus, the user often needs to wait for a long period of time
for numerous frequent itemsets, out of which only a tiny fraction may be interesting to the user.
Hence, constrained frequent itemset mining [77,78], which aims to find those frequent itemsets that
satisfy the user-specified constraints, is needed. CAP [79], DCF [80], and FIC [81] are examples of
algorithms that mine constrained frequent itemsets from traditional precise data.

15.2.4 CONSTRAINED FREQUENT ITEMSET MINING FROM DISTRIBUTED UNCERTAIN DATA

With advances in technology, one can easily collect high volumes of massive data [12,82] from
not only a single source but multiple sources. For example, in recent years, sensor networks have
been widely used in many application areas such as agricultural, architectural, environmental, and
structural surveillance. Sensors distributed in these networks serve as good sources of data. However,
sensors usually have limited communication bandwidth, transmission energy, and computational
power. Thus, data are not usually transmitted to a single distant centralized processor to perform
the data-mining task. Instead, data are transmitted to their local (e.g., closest) processors within a
distributed environment [83]. As this requires massive computing power (e.g., [84]), this calls for
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parallel and distributed mining [85–87]. For example, parallel and distributed frequent itemset-
mining [20,88] searches for implicit, previously unknown, and potentially useful frequent itemsets
that might be embedded in the distributed data.

Some examples of Apriori-based distributed algorithms that find frequent itemsets in a distributed
environment include Count Distribution, Data Distribution, and Candidate Distribution [89], as well
as FDM [90]. Similarly, Parallel-HFP-Leap [91] also finds frequent itemsets in a distributed envi-
ronment, but it is a tree-based algorithm. However, regardless of whether they are Apriori-based or
tree-based, all these distributed frequent itemset-mining algorithms do not handle constraints nor
do they mine uncertain data. On the other hand, CAP, DCF, and FIC all find constrained frequent
itemsets, but they mine a centralized database of precise data. Similarly, the U-Apriori and UF-
growth algorithms bothmine a centralized database of uncertain data for all (unconstrained) frequent
itemsets instead of only those constrained ones. Recently, Kozawa et al. [92] used general-purpose
computation on GPU in an attempt to accelerate uncertain data mining. However, they aimed to
find all (unconstrained) probabilistic-frequent itemsets instead of constrained frequent ones. In other
words, these existing mining algorithms fall short in different aspects.

Hence, a natural question to ask is: Is it possible to mine uncertain data for only those frequent
itemsets that satisfy user-specified constraints in a distributed environment? In response to this ques-
tion, we conducted a feasibility study. Its preliminary results [93,94] show the possibility of mining
constrained frequent itemsets from distributed uncertain data. In this chapter, we propose an effec-
tive and efficient algorithm for tree-based mining of uncertain data in a distributed environment
for frequent itemsets that satisfy user-specified constraints. Here, our key contribution is the non-
trivial integration of (i) constrained mining, (ii) parallel and distributed mining, (iii) uncertain data
mining, (iv) tree-based mining, and (v) frequent itemset mining. The resulting tree-based algorithm
efficiently mines from distributed uncertain data for only those constrained frequent itemsets. It
avoids the candidate generate-and-test paradigm, handles uncertain data, pushes user constraints
inside the mining process, avoids unnecessary computation, and finds only those itemsets satisfying
the constraints in a distributed environment.

15.2.5 MAPREDUCE-BASED CONSTRAINED FREQUENT ITEMSET MINING

FROM UNCERTAIN BIG DATA

Several algorithms have been proposed over the past few years to use the MapReduce model—
which mines the search space with parallel, distributed, or cloud computing—for big data analytics
tasks like classification [95] and clustering [96]. In contrast, we focus on another big data analytics
task—namely, association rule mining [57], which discovers interesting knowledge in the form of
association rules A⇒ C revealing associative relationships between (i) shopper market baskets A
andC of frequently purchased merchandise items or (ii) collections A andC of frequently co-located
events.

By applying association rule mining to valuable big market basket data, data scientists can help
shop owners/managers find interesting or popular patterns that reveal customer purchase behavior.
The research problem of association rule mining usually consists of two key steps:

1. Mining of frequent patterns [97]
2. Formation of association rules (by using the mined frequent patterns as antecedents and

consequences of the rules)

Recall from Section 15.2.3 that CAP [79], DCF [80], and FIC [81] are examples of algorithms that
mine constrained frequent itemsets from traditional precise data. To mine constrained frequent item-
sets from big data, BigSAM [98] exploits a special class of constraints called SAM constraints. Such
exploitation helps reduce the search space when mining itemsets satisfying user-specified SAM con-
straints. However, many commonly used constraints (e.g., sum(X.Price) ≤ $150, which finds every
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combinationX of itemswith a total price at most $150) do not belong to the class of SAM constraints.
In the current chapter, we explore another class of constraints, called antimonotone (AM) constraints,
to which commonly used constraints belong. We explore two subclasses of AM constraints: (i) the
frequency constraint and (ii) nonfrequency AM constraints.

In this respect, our key contribution is our second effective and efficient algorithm called
MrCloud—which uses the MapReduce model in cloud environments for managing, querying, and
processing uncertain big data. More specifically, MrCloud manages transactions of uncertain big
data, allows users to query these big data by specifying AM constraints expressing their interests,
and processes the user-specified constraints to discover useful information and knowledge in the
form of frequent patterns from the uncertain big data.

15.3 BACKGROUND

Three well-defined research areas are critical for our work, namely:

1. Frequent itemset mining from uncertain data
2. Constrained mining
3. Big data mining with the MapReduce model

In the following, we provide the necessary background for all these areas.

15.3.1 MINING FREQUENT ITEMSETS FROM UNCERTAIN DATA

The research problem of frequent itemset mining was first introduced [56] in 1993. The correspond-
ing algorithm—namely, Apriori—mined all frequent itemsets from a transaction database (TDB)
consisting of precise data, in which the contents of each transaction are precisely known. Specifi-
cally, if a transaction ti contains an item x (i.e., x ∈ ti), then x is precisely known to be present in ti.
On the other hand, if a transaction ti does not contain an item y (i.e., y �∈ ti), then y is precisely known
to be absent from ti. However, this is not the case for probabilistic databases consisting of uncertain
data. A key difference between precise and uncertain data is that each transaction of the latter con-
tains items and their existential probabilities. The existential probability P(x, ti) of an item x in a
transaction ti indicates the likelihood of x being present in ti. For a real-life example, each transac-
tion ti represents a patient’s visit to a physician’s office. Each item x within ti represents a potential
disease, and is associated with P(x, ti) expressing the likelihood of a patient having that disease x in
ti (say, in t1, the patient has a 60% likelihood of having asthma, and a 90% likelihood of catching a
cold regardless of having asthma or not). With this notion, each item in a transaction ti in datasets
of precise data can be viewed as an item with a 100% likelihood of being present in ti.

Given an item x and a transaction ti, there are two possible worlds when using the possible world
interpretation of uncertain data [99,100]:

1. The possible worldW1 where x ∈ ti
2. The possible worldW2 where x �∈ ti

Although it is uncertain which of these two worlds is the true world, the probability ofW1 being the
true world is P(x, ti) and that of W2 is 1− P(x, ti).

Definition 15.1

Let (i) Item be a set of m domain items and (ii) X = {x1, x2, . . . , xk} be a k-itemset (i.e., a pattern
consisting of k items), where X ⊆ Item and 1 ≤ k ≤ m. Then, a transactional database is the set of
n transactions, where each transaction tj ⊆ Item (for 1 ≤ j ≤ n). The projected database of X is the
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set of all transactions containing X. Each item xi in a transaction tj = {x1, x2, . . . , xh} in an uncertain
database is associated with an existential probability P(xi, tj), which represents the likelihood of the
presence of xi in tj [100], with value:

0 < P(xi, tj) ≤ 1 (15.1)

The existential probability P(X, tj) of a pattern X in tj is then the product of the corresponding
existential probabilities of every item xi within X when these items are independent [101,102]:

P(X, tj) =
∏
xi∈X

P(xi, tj) (15.2)

Finally, the expected support expSup (X) of X is the sum of P(X, tj) over all n transactions in
the database:

expSup(X) =
n∑
j=1

P(X, tj) =
n∑
j=1

⎛
⎝∏
xi∈X

P(xi, tj)

⎞
⎠ (15.3)

With this notion of expected support, existing tree-based algorithms—such as UF-growth [74], tube-
growth [75], and BLIMP-growth [76]—mine frequent patterns from uncertain data by first scanning
the uncertain database once to compute the expected support of all domain items (i.e., singleton
patterns). Infrequent items are pruned as their extensions/supersets are guaranteed to be infrequent.
The algorithms then scan the database a second time to insert all transactions (with only frequent
items) into a tree (e.g., UF-tree [74], TPC-tree [75], or BLIMP-tree [76]). Each node in the tree
captures (i) an item x, (ii) its existential probability P(x, tj), and (iii) its occurrence count. At each
step during the mining process, the frequent patterns are expanded recursively.

Definition 15.2

A pattern X is frequent in an uncertain database if expSup(X) ≥ minsup. Given a database and
minsup, the research problem of frequent pattern mining from uncertain data is to discover from
the database a complete set of frequent patterns having expected support ≥ minsup.

15.3.2 CONSTRAINED MINING

An existing constrained frequent itemset-mining framework [78–80] allows the user to use a rich set
of SQL-style constraints to specify his interest for guiding the mining process so that only those fre-
quently occurring sets of market basket items that satisfy the user constraints are found. This avoids
unnecessary computation for mining those uninteresting frequent itemsets. These user-specified con-
straints can be imposed on items, events, or objects in various domains, including shopper market
baskets, meteorological records, and event planning calendars. In general, these constraints can be
categorized into following two subclasses of constraints, which can be further subdivided into several
overlapping classes according to the properties that they possess:

1. Frequency constraints include the following:
• C1 ≡ sup(X)≥minsup expresses the user interest in finding frequent patterns from pre-

cise data, that is, every patternX with actual support (or frequency)meeting or exceeding
the user-specified minimum support threshold minsup.

• C2 ≡ expSup(X) ≥ minsup expresses the user interest in finding frequent patterns from
uncertain data, that is, every pattern X with expected support meeting or exceeding the
user-specified minimum support threshold minsup.
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2. Nonfrequency constraints, with examples include the following:
• C3 ≡ max(X .Price) ≤ $25 expresses the user interest in finding every frequent itemset

X such that the maximum price of all market basket items in each X is at most $25.
• C4 ≡ min(X .RewardPoints) ≥ 2000 expresses the user interest in finding every pattern

X such that the minimum reward points earned by travelers among all airports visited
are at least 2000.

• C5 ≡ X .Location = Europe expresses the user interest in finding every pattern X such
that all places in X are located in Europe.

• C6 ≡ min(X .Price) ≤ $30 says that the minimum price of all items in an itemset X is
at most $30.

• C7 ≡ avg(X .Price) ≤ $30 says that the average price of all items in X is at most $30.
• C8 ≡ sum(X .Price) ≤ $150 says that the total price of all items in X is at most $150.
• C9 ≡ sum(X .Rainfall) ≥ 90mm says that the total rainfall among all meteorological

records in X is at least 90mm.

The above constraints can be categorized into several overlapping classes according to the properties
that they possess. One of these properties is succinctness [78].

Definition 15.3

Let Item be the set of domain items. Then, an itemset SSj ⊆ Item is a succinct set if SSj can be
expressed as a result of selection operation σp(Item), where σ is the usual SQL-style selection
operator and p is a selection predicate. A powerset of items SP ⊆ 2Item is a succinct powerset if
there is a fixed number of succinct sets SS1, . . . , SSk ⊆ Item such that SP can be expressed in terms
of the powersets of SS1, . . . , SSk using set union and/or set difference operators. A constraint C is
succinct provided that the set of itemsets satisfying C is a succinct powerset.

It is important to note the following two observations about succinct constraints:

1. A majority of user-specified constraints are succinct. Among the aforementioned non-
frequency constraints, (i) C3 ≡ max(X .Price) ≤ $25, (ii) C4 ≡ min(X .RewardPoints) ≥
2000, (iii) C5 ≡ X .Location = Europe, and (iv) C6 ≡ min(X .Price) ≤ $30 are succinct.
For any succinct constraints, one can directly generate precisely all and only those item-
sets satisfying the constraints without generating and excluding itemsets not satisfying the
constraints. Hence, one can use member generating functions [80] to precisely generate
constrained itemsets.

For instance, C3 ≡ max(X .Price) ≤ $25 is succinct because any itemset satisfying C3
can be expressed as a member in the succinct powerset 2σPrice≤$25(Item). In other words,
itemsets satisfying C3 can be precisely generated by combining any market basket items
having price ≤ $25, thereby avoiding the substantial overhead of the generation and
exclusion of invalid itemsets.

Similarly, itemsets satisfying C6 ≡ min(X .Price) ≤ $30 can be precisely generated by
combining at least one market basket item having price≤ $30 with some optional items (of
any price values).

2. Many nonsuccinct constraints can be induced into weaker constraints that are succinct.
As an example, nonsuccinct constraint C7 ≡ avg(X .Price) ≤ $30 can be induced into a
succinct constraint C6 ≡ min(X .Price) ≤ $30 as all frequent itemsets satisfying C7 must
satisfy C6.

Besides succinctness, there are some other properties possessed by constraints. One of them is
antimonotonicity [78].
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Definition 15.4

A constraint C is anti-monotone (AM) if and only if all subsets of an itemset satisfying C also satisfy
C. Equivalently, a constraint C′ is AM if and only if all supersets of an itemset violating C′ also
violate C′.

With this additional property (i.e., antimonotonicity), succinct constraints can be further divided
into the following two subclasses:

1. Succinct antimonotone (SAM) constraints
2. Succinct non-antimonotone (SUC) constraints

Among the aforementioned nonfrequency constraints, (i) C3 ≡ max(X .Price) ≤ $25, (ii) C4 ≡
min(X .RewardPoints) ≥ 2000, and (iii) C5 ≡ X .Location = Europe are SAM constraints. For
instance, for any itemset X satisfies C3, subsets of X formed by removing items (having either the
maximum price or not) from X would not possess a higher maximum price (i.e., maximum price
of all market basket items in these subsets ≤ $25). Note that supersets of any itemset violating the
SAM constraints also violate the constraints (e.g., if an itemset X contains an item having price >

$25, then X violates C3 and so does every superset of X).
In contrast, C6 ≡ min(X .Price) ≤ $30 is a SUC constraint because it does not possess such an

antimonotonicity property. For instance, if the minimum price of all items contained within X is
higher than $30, then X violates C6 but there is no guarantee that all supersets of X would violate C6.
As an example, let y.Price be $50 and z.Price be $10. Then, X ∪ {y} and X ∪ {z} are both supersets
of X. Among them, the former (i.e., X ∪ {y}) still violates C6 but the latter (i.e., X ∪ {z}) satisfies C6.

Definition 15.5

A pattern X is valid in a database if such a pattern also satisfies the user-specified constraints. Given
(i) a database, (ii) user-specified minsup, and (iii) user-specified constraints, the research problem
of constrained pattern mining from uncertain data is to discover from the database a complete set
of patterns satisfying the user-specified constraints (i.e., valid patterns).

15.3.3 BIG DATA MINING WITH THE MAPREDUCE MODEL

MapReduce [16] is a high-level programming model for processing vast amounts of data. It usually
uses parallel and distributed computing on clouds of nodes (i.e., computers). As implied by its name,
MapReduce involves two key functions: “map” and “reduce.”

First, the input data are read, divided into several partitions (subproblems), and assigned to differ-
ent processors. Each processor executes the map function on each partition (subproblem). The map
function takes a pair of 〈key, value〉 and returns a list of 〈key, value〉 pairs as an intermediate result:

map: 〈key1, value1〉 → list of 〈key2, value2〉

where (i) key1 and key2 are keys in the same or different domains and (ii) value1 and value2 are the
corresponding values in some domains.

Afterward, the pairs returned by the map function are shuffled and sorted. Each processor then
executes the reduce function on (i) a single key from this intermediate result together with (ii) the list
of all values that appear with this key in the intermediate result. The reduce function “reduces”—by
combining, aggregating, summarizing, filtering, or transforming—the list of values associated with
a given key (for all k keys) and returns a single (aggregated or summarized) value:

reduce: 〈key2, list of value2〉 → value3
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where (i) key2 is a key in some domains and (ii) value2 and value3 are the corresponding values in
some domains. Examples of MapReduce applications include the construction of an inverted index
as well as the word counting of a document for data processing [16].

To mine frequent patterns from precise data using the MapReduce model, three Apriori-based
algorithms called SPC, FPC, and DPC [103] were proposed. Among them, SPC uses single-pass
counting to find frequent patterns of cardinality k at the k-th pass (i.e., the k-th database scan) for
k ≥ 1. FPC uses fixed-passes combined-counting to find all patterns of cardinalities k, (k + 1), . . . ,
(k + m) in the same pass or database scan. On the one hand, this fixed-passes technique fixes the
number of required passes from kmax (where kmax is the maximum cardinality of all frequent patterns
that can be mined from the precise data) to a user-specified constant. On the other hand, owing to
combined-counting, the number of generated candidates is higher than that of SPC. In contrast, DPC
uses dynamic-passes combined-counting, which takes the benefits of both SPC and FPC by taking
into account the workloads of nodes when mining frequent patterns with MapReduce. In addition,
a parallel randomized algorithm called PARMA [104] was proposed for mining approximations to
the top-k frequent patterns and association rules from precise data by using MapReduce.

As a preview, our MrCloud algorithm also uses MapReduce. However, unlike SPC, FPC, or
DPC [103] (which use the Apriori-based approach to mine frequent patterns from precise data), our
MrCloud uses a tree-based approach to mine frequent patterns from uncertain data—which deals
with a much larger search space than that for mining precise data due to the presence of the existen-
tial probability values. Moreover, unlike PARMA (which mines all of the approximately frequent
patterns from precise data), our data analytic algorithm mines some—specifically, those interesting
patterns that satisfy the user-specified constraints—of the truly frequent patterns from uncertain data.

15.4 AN EFFECTIVE AND EFFICIENT TREE-BASED ALGORITHM FOR
SUPPORTING CONSTRAINED MINING FROM UNCERTAIN
BIG DATA IN DISTRIBUTED ENVIRONMENTS

Without loss of generality, we assume to have p sites/processors and m = m1 + m2 + · · · + mp sen-
sors in a distributed network such thatm1 wireless sensors transmit data to their closest or designated
site/processor P1, m2 sensors transmit data to the site/processor P2, and so on. With this setting, our
proposed algorithm finds constrained itemsets that are frequent in the entire wireless sensor network.
Depending on the properties of constraints (i.e., whether the constraints are succinct or not), different
procedures are carried out.

15.4.1 FINDING FREQUENT ITEMSETS THAT SATISFY SUCCINCT CONSTRAINTS

In this section, we describe our proposed algorithm for supporting frequent itemset mining from
uncertain big data in distributed environments. In particular, we show how the algorithm first finds
(i) itemsets that satisfy succinct constraints and are locally frequent with respect to site/processor Pi
(in Section 15.4.1.1) and then finds (ii) those that satisfy succinct constraints and are globally fre-
quent with respect to all sites/processors in the entire wireless sensor network (in Section 15.4.1.2).
As a preview, in Section 15.4.2, we will show how our proposed algorithm discovers frequent
itemsets that do not satisfy succinct constraints.

15.4.1.1 Finding Locally Frequent Itemsets That Satisfy Succinct Constraints
Given mi sensors transmitting data to the processor Pi, a local database TDBi of uncertain data
can be created for Pi. We aim to find itemsets that are both (i) frequent to Pi and (ii) satisfying a
succinct (SAM or SUC) constraint C. For uncertain data, we use the “possible world” interpretation
of uncertain data. We find constrained locally frequent itemsets from uncertain data in the following
steps:
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1. Identification of items satisfying the constraints: Let ItemM be the collection of mandatory
items—that is, the collection of domain items that individually satisfy the SAM or SUC
constraintC; letItemO be the collection of optional items—that is, the collection of domain
items that individually violate C.

Then, for any SAM constraint CSAM , an itemset X satisfying CSAM cannot contain any
item from ItemO due to the antimonotonicity property. So, any itemset X satisfying CSAM
must consist of only items that individually satisfy CSAM . In other words, any itemset X
satisfying CSAM must be generated by combining items from ItemM (i.e., X ⊆ ItemM).
Owing to the succinctness property, items in ItemM can be efficiently enumerated (from
the list of domain items) by selecting only those items that individually satisfy CSAM . See
Example 15.1.

EXAMPLE 15.1

Let us consider an illustrative sample set of an uncertain database (as shown in Table 15.1)
and its auxiliary information (as shown in Table 15.2) about shopper market basket data.
In this uncertain database, each transaction contains items and their corresponding exis-
tential probabilities. For example, there are five domain items a,b, c,d, and e in the first
transaction t1, where the existential probabilities of these items are 0.7, 0.8, 0.8, 1.0,
and 0.2, respectively. Note that (i) different items may have the same existential prob-
abilities (e.g., the existential probabilities of two different items b and c in t1 have the
same value 0.8) but (ii) the existential probabilities of the same item may vary from one
transaction to another (e.g., the existential probability of item e is 0.2 in transaction t1 but
it is 0.1 in t2). Let constraint CSAM be the SAM constraint C3 ≡ max(X.Price) ≤ $25. Our
proposed algorithm checks each of the six domain items against the constraint CSAM.
It first enumerates the valid items a,b, and f (i.e., items with individual price ≤ $25).

TABLE 15.1
An Illustrative Sample Set of an Uncertain
Database on Shopper Market Baskets

TID Content

t1 {a:0.7, b:0.8, c:0.8, d:1.0, e:0.2}

t2 {a:0.7, b:0.8, d:1.0, e:0.1, f :0.4}

t3 {a:0.8, c:0.5, e:0.3, f :0.4}

t4 {b:0.8, c:0.8, d:1.0}

t5 {c:0.8, d:1.0}

TABLE 15.2
Auxiliary Information for the
Uncertain Data in Table 15.1

Item Price

a $10

b $20

c $100

d $50

e $75

f $25
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So, ItemM = {a,b, f }. Once we have identified the domain items that satisfy the SAM
constraint CSAM, these items serve as building blocks for all constrained frequent item-
sets satisfying CSAM because all constrained frequent itemsets must comprise only those
ItemM items.

Next, for any SUC constraint CSUC, any itemset X satisfying CSUC is composed of manda-
tory items (i.e., items that individually satisfy CSUC) and possibly some optional items
(regardless of whether or not they satisfy CSUC). Note that, although CSUC possesses the
succinctness property (i.e., one can easily enumerate all and only those itemsets that are
guaranteed to satisfy CSUC), it does not possess the antimonotonicity property. So, if an
itemset violates CSUC, there is no guarantee that all or any of its supersets would violate
CSUC. Hence, not all itemsets satisfyingCSUC are composed of only domain items that indi-
vidually satisfy the constraints (as for SAM constraints). Instead, any itemset X satisfying
CSUC must be generated by combining at least one ItemM item and possibly some ItemO

items. Owing to succinctness, items in ItemM and in ItemO can be efficiently enumerated.
See Example 15.2.

EXAMPLE 15.2

Consider the same illustrative sample set of an uncertain database (as shown in
Table 15.1) and its auxiliary information (as shown in Table 15.2) in Example 15.1. Let
constraint CSUC be the SUC constraint C6 ≡ min(X.Price) ≤ $30. Our proposed algo-
rithm checks each of the six domain items against CSUC. It first enumerates the valid
items a,b, and f (i.e., items with individual price ≤ $30), giving ItemM = {a,b, f }. The
remaining domain items then belong to ItemO (i.e., items with individual price > $30).
Once we have classified the domain items into (i) the ItemM items (which satisfy CSUC)
and (ii) the ItemO items (which violate CSUC), all these items serve as building blocks for
all constrained frequent itemsets satisfying CSUC because all constrained frequent item-
sets must comprise at least one ItemM item and may contain some additional ItemM or
ItemO items.

2. Construction of a UF-Tree: Once the domain items are classified into ItemM and ItemO

items (no ItemO items for CSAM), our algorithm then constructs a UF-tree, which is built
in preparation for mining constrained frequent itemsets from uncertain data. It does so by
first scanning the TDB of uncertain data once. It accumulates the expected support of each
of the items in order to find all frequent domain items. Among these items, the algorithm
discards those infrequent ones and only captures those frequent ones in the UF-tree. Note
that any infrequent ItemM or ItemO items can be safely discarded because any itemset
containing an infrequent item is also infrequent.

Once the frequent ItemM and ItemO items are found, our algorithm arranges these two
kinds of items in such a way that ItemM items appear below ItemO items (i.e., ItemM

items are closer to the leaves, and ItemO items are closer to the root). Among all the
items in ItemM, they are sorted in nonascending order of accumulated expected support.
Similarly, among all the items in ItemO, they are also sorted in nonascending order of
accumulated expected support. The algorithm then scans the TDB the second time and
inserts each transaction of the TDB into the UF-tree. Here, the new transaction is merged
with a child (or descendant) node of the root of the UF-tree (at the highest support level)
only if the same item and the same expected support exist in both the transaction and the
child (or descendant) nodes.

For SAM constraints, the corresponding UF-tree captures only those frequent ItemM

items; for SUC constraints, the corresponding UF-tree captures both the frequent ItemM

items and the frequent ItemO items. With such a tree construction process, the UF-tree
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possesses the property that the occurrence count of a node is at least the sum of occurrence
counts of all its child nodes. See Example 15.3.

EXAMPLE 15.3

Let us continue with Example 15.2, and let the user-specified support threshold minsup
be set to 1.0. Our algorithm builds the UF-tree that captures the frequent items satisfy-
ing the SUC constraint C6 ≡ min(X.Price) ≤ $30 as follows. First, the algorithm scans
the uncertain data once and accumulates the expected support of each ItemM item as
well as each ItemO item. Hence, it finds all frequent ItemM items and sorts them in
descending order of (accumulated) expected support. It also finds all frequent ItemO

items and sorts them in descending order of (accumulated) expected support. Among
the two kinds of items, ItemO are arranged on top (near the root) of ItemM items (which
are near the leaves). Specifically, our algorithm obtains ItemO items d, c, and e (with
their corresponding accumulated expected support values of 4.0, 2.9, and 0.6), which
are sorted in descending order of their expected support values. Among these ItemO

items, e (having accumulated expected support of 0.6 < minsup) is removed. Then, the
algorithm represents the frequent ItemO items and their expected support as d:4.0 and
c:2.9. The expected support of each of these frequent ItemO items ≥ minsup. Similarly,
the algorithm also obtains ItemM items b, a, and f (with their corresponding accumu-
lated expected support values of 2.4, 2.2, and 0.8), which are also sorted in descending
order of their expected support values. Among these ItemM items, f (having accumulated
expected support of 0.8<minsup) is removed. Then, the algorithm represents the frequent
ItemM items and their expected support as b:2.4 and a:2.2. The expected support of each
of these frequent ItemM items ≥ minsup.

Next, our algorithm scans the uncertain data the second time and inserts each transac-
tion into the UF-tree. The algorithm first inserts frequent items from the first transaction t1
into the tree. It then inserts the frequent items from the second transaction t2 into the UF-
tree. Since the expected support of d in t2 is the same as that in an existing branch (i.e.,
the branch for t1), this node can be shared. So, the algorithm increments the occurrence
count for the tree node (d:1.0) to 2, and adds the remainder of t2—namely, 〈(b:0.8):1,
(a:0.7):1〉—as a child of the node (d:1.0):2. To capture the third transaction t3, our
algorithm inserts 〈(c:0.5):1, (a:0.8):1〉 into the tree. For the fourth transaction t4, the algo-
rithm increments the occurrence count for each tree node in an existing path 〈(d:1.0):2,
(c:0.8):1, (b:0.8):1〉 by 1. Finally, our algorithm increments the occurrence count for
the tree nodes in an existing path to get 〈(d:1.0):3, (c:0.8):2〉 by 1 for the fifth trans-
action t5. Hence, at the end of the tree construction process, we get the UF-tree shown
in Figure 15.1a capturing the contents of the uncertain data.

3. Mining of Constrained Frequent Itemsets from theUF-Tree:Once theUF-tree is constructed
with the item-ordering scheme where ItemO items are above ItemM items, our proposed
algorithm extracts appropriate paths to form a projected database for each x ∈ ItemM. The
algorithm does not need to form projected databases for any y ∈ ItemO because all itemsets
satisfying CSUC must be “extensions” of an item from ItemM (i.e., all valid itemsets must
be grown from ItemM items) and no ItemO items are kept in the UF-tree for CSAM .

When forming each {x}-projected database and constructing its UF-tree, our algorithm
does not need to distinguish those ItemM items from ItemO items in the UF-tree for the
{x}-projected database. Such a distinction between two kinds of items is only needed for
the UF-tree for the TDB (for SUC constraints only) because, once we found at least one
valid item x ∈ ItemM, for any v satisfying CSUC,

v = {x} ∪ others (15.4)

where (i) x ∈ ItemM and (ii) others ⊆ (
ItemM ∪ ItemO − {x}).
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FIGURE 15.1 The UF-trees used in our proposed algorithm (Examples 15.3 and 15.4).

After constructing projected UF-trees for each x ∈ ItemM, our proposed algorithm
mines all frequent itemsets that satisfyCSUC in the samemanner as it mines those satisfying
CSAM . See Example 15.4.

EXAMPLE 15.4

Let us continue with Example 15.3. Once the UF-tree is constructed, our proposed algo-
rithm recursively mines constrained locally frequent itemsets from this tree with minsup =
1.0 as follows. From the header table (from top to bottom) containing two ItemO items d :
4.0 = (4× 1.0) and c : 2.9 = (1× 0.5)+ (3× 0.8) as well as two ItemM items b : 2.4 =
(1× 0.8)+ (2× 0.8) and a : 2.2 = (1× 0.8)+ (1× 0.7)+ (1× 0.7), the algorithm first
finds two constrained frequent itemsets {b} and {a} with expected support values of 2.4
and 2.2, respectively.

Then, our algorithm recursively mines constrained frequent itemsets from this UF-tree
withminsup = 1.0 as follows. From the UF-tree shown in Figure 15.1a, our algorithm starts
with a ∈ ItemM and constructs a UF-tree for the {a}-projected database. The resulting tree,
as shown in Figure 15.1b, consists of a single path—namely, 〈(d:1.0):2, (b:0.8):2〉 with
the expected support of {a} equal to 0.7 (implying that d or b occurs together with a twice
in the original database). The expected support values of {a,b} = 2× 0.7× 0.8 = 1.12
and of {a,d} = 2× 0.7× 1.0 = 1.4. Thus, both {a,b} and {a,d} are frequent.

The algorithm then extracts from this single-path tree to form a UF-tree for the {a,b}-
projected database. The resulting tree, as shown in Figure 15.1c, consists of a single
node (d:1.0):2 with the expected support of {a,b} equal to 0.56 = 0.7× 0.8 (implying
that {d} occurs together with {a,b} twice in the original database). Itemset {a,b,d}, with
its expected support equals 2× 0.56× 1.0 = 1.12, is frequent. This marks the end of the
extensions of {a}.

Then, the algorithm considers the next item in ItemM (i.e., b) and constructs a UF-tree
for the {b}-projected database. The resulting tree, as shown in Figure 15.1d, consists of
a single path—namely, 〈(d:1.0):3, (c:0.8):2〉 with the expected support of b equal to 0.8
(implying that {b,d} occurs three times and {b, c} occurs twice in the original database).
The expected support values of {b, c} = 2× 0.8× 0.8 = 1.28 and of {b,d} = 3× 0.8×
1.0 = 2.4. So, they are both frequent.
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The algorithm then extracts from this single-path tree to form a UF-tree for the {b, c}-
projected database. The resulting tree, as shown in Figure 15.1e, consists of a single
node (d:1.0):2 with expected support of {b, c} equal to 0.64 = 0.8× 0.8 (implying that
d occurs together with {b, c} twice in the original database). Itemset {b, c,d}, with its
expected support equal to 2× 0.64× 1.0 = 1.28, is frequent.

Since no more items belong to ItemM, this marks the end of the mining process. Our
proposed algorithm recursively finds the following eight locally frequent itemsets that sat-
isfy the SUC constraint C6 ≡ min(X.Price) ≤$30 from uncertain data: {a}:2.2, {a,b}:1.12,
{a,b,d}:1.12, {a,d}:1.4, {b}:2.4, {b, c}:1.28, {b, c,d}:1.28, and {b,d}:2.4.

15.4.1.2 Finding Globally Frequent Itemsets That Satisfy Succinct Constraints
Once the constrained locally frequent itemsets are found from distributed uncertain data, the next
step is to find the constrained globally frequent itemsets among those constrained locally frequent
itemsets. Note that it is not a good idea to transmit all data in TDBi from each site/processor Pi to a
centralized site/processor Q, where all data are merged to form a global database TDB =⋃

i TDBi
from which constrained globally frequent itemsets are found. The problem with such an approach is
that it requires lots of communication for transmitting data from each site. This problem is worsened
when TDBi’s are huge; wireless sensors can generate huge amounts of data. Moreover, such an
approach does not make use of constrained locally frequent itemsets in finding constrained globally
frequent itemsets.

Similarly, it is also not a good idea to ask each site to transmit all its constrained locally frequent
itemsets to a centralized site, where the itemsets are merged. The merge result is a collection of
global candidate itemsets. The problem is that if a constrained itemset X is locally frequent at a site
P1 but not at another site P2, then we do not have the frequency of X at P2. Lacking this frequency
information, one may not be able to determine whether X is globally frequent or not.

Instead, our proposed algorithm does the following. Each site/processor Pi (for 1 ≤ i ≤ p) applies
constraint checking and frequency checking to find locally frequent ItemMi items (and ItemOi items
for CSUC), which are then transmitted to a centralized site/processor Q. It takes the union of these
items, and broadcasts the union to all Pi’s. Each Pi then extracts these items (potentially globally fre-
quent items) from transactions in TDBi and puts them into a UF-tree. Note that all globally frequent
itemsets must be composed of only the items from this union because of the following:

• If an item A is globally frequent, then A must be locally frequent in at least one of Pi’s.
• If an item B is locally infrequent in all the Pi’s, then B is guaranteed to be globally

infrequent.

At each site Pi, the UF-tree contains (i) items that are locally frequent with respect to Pi and (ii) items
that are potentially globally frequent but locally infrequent items with respect to Pi. Then, our algo-
rithm recursively applies the usual tree-based mining process (e.g., UF-growth) to each α-projected
database (where locally frequent α ⊆ ItemMi ) of the UF-tree at Pi to find constrained locally fre-
quent itemsets (with local frequency information). These itemsets are then sent toQ, where the local
frequencies are summed. As a result, constrained globally frequent itemsets can be found. If the sum
of available local frequencies of a constrained itemset X meets the minimum support threshold, then
X is globally frequent. For the case where a constrained itemset is locally frequent at a site P1 but
not at another site P2, then Q sends a request to P2 for finding its local frequency. It is guaranteed
that such frequency information can be found by traversing appropriate paths in the UF-tree at P2
(because the UF-tree keeps all potential globally frequent items).

15.4.1.3 Summary
Given p sites/processors in a distributed environment (e.g., a wireless sensor network), our algorithm
makes use of (i) the constrained locally frequent itemsets and (ii) theUF-trees that keep all potentially
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global frequent items to efficiently find constrained globally frequent itemsets (with respect to the
entire distributed environment). Again, succinct constraints are pushed inside the mining process;
the computation is proportional to the selectivity of succinct constraints. Moreover, our proposed
algorithm does not require lots of communication among processors (e.g., it does not need to transmit
TDBi).

15.4.2 FINDING FREQUENT ITEMSETS THAT SATISFY NONSUCCINCT CONSTRAINTS

In Section 15.4.1, we showed how our proposed distributed mining algorithm finds frequent itemsets
that satisfy succinct constraints. Recall from Section 15.3.2 that, although a majority of constraints
are succinct, there are a few constraints that are not succinct. In this section, we discuss how we
modify the proposed distributed mining algorithm for finding frequent itemsets that do not satisfy
succinct constraints.

15.4.2.1 Finding Frequent Itemsets That Satisfy Inductive Succinct Constraints
For a constraint C that is not succinct, our proposed distributed mining algorithm first tests to see
if such a nonsuccinct constraint C can be induced into a succinct constraint C′. If so, the algorithm
carries out the following steps:

1. The algorithm induces C into C′.
2. The algorithm applies the same mining procedures as described in Section 15.4.1 but using

the induced constraintC′ (instead of the original constraintC). In other words, the algorithm
finds locally frequent itemsets that satisfy C′, from which globally frequent itemsets that
satisfy C′ can be found.

3. For each globally frequent itemset X that satisfy C′, the algorithm tests to see if X also
satisfies the original nonsuccinct C and returns X to users if it satisfies C.

EXAMPLE 15.5

Given a user-specified constraint C7 ≡ avg(X.Price) ≤ $30, our algorithm induces C7 into a suc-
cinct constraint C6 ≡ min(X.Price) ≤ $30 and finds all globally frequent itemsets that satisfy C6.
Afterward, the algorithm tests these itemsets and returns only those that satisfy C7.

15.4.2.2 Finding Frequent Itemsets That Satisfy Antimonotone Constraints
Recall from Section 15.3.2 that a constraint CAM is antimonotone (AM) if all subsets of an itemset
satisfying CAM also satisfy CAM . Hence, for a constraint C that is not succinct and cannot be induced
into a succinct constraint, our proposed distributedmining algorithm tests to see if such a nonsuccinct
constraint C is AM. If so, the algorithm carries out mining procedures that are similar (but not
identical) to those described in Section 15.4.1. Specifically, the algorithm takes the following steps
to find constrained locally frequent itemsets:

1. The algorithm identifies frequent items satisfying C in the same way as described in
Section 15.4.1.1.

2. The algorithm constructs a UF-tree in the same way as described in Section 15.4.1.1.
3. The algorithm mines those frequent itemsets that satisfy C from the UF-tree. Here, unlike

the usual Step 3 in which no constraint checking is needed when forming a projected
database and constructing a smaller UF-tree for a frequent itemset X, the algorithm needs
to apply additional constraint checking (to see if X satisfies C).

On the one hand, if X satisfies C, the algorithm forms an X-projected database and
constructs a smaller UF-tree capturing such an X-projected database.
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On the other hand, if X violates C, the algorithm does not form an X-projected database
and any supersets of X can be pruned/ignored because these supersets of X are guaranteed
to violate C (whenever X itself violates C).

4. Once the locally frequent itemsets that satisfy C are found, the algorithm finds globally
frequent itemsets that satisfy C in the same way as described in Section 15.4.1.2.

EXAMPLE 15.6

Given a user-specified constraint C8 ≡ sum(X.Price) ≤ $150, our algorithm constructs a UF-tree
capturing all frequent items. During the mining process, the algorithm recursively applies con-
straint checking to see if an itemset X satisfies C8. If it does, the algorithm forms an X-projected
database and constructs its corresponding UF-tree for extensions of X; otherwise, the algorithm
prunes X. Consequently, the algorithm finds all globally frequent itemsets that satisfy C8.

15.4.2.3 Finding Frequent Itemsets in a Postprocessing Step
Finally, for a constraint C that is (i) neither succinct nor AM and (ii) cannot be induced into succinct
constraints, our proposed distributed mining algorithm carries out the following steps:

1. The algorithm applies the same mining procedures as described in Section 15.4.1, but using
no constraint. In other words, the algorithm finds locally frequent itemsets, from which
globally frequent itemsets can be found.

2. For each globally frequent itemset X, the algorithm carries out a postprocessing step to test
if X satisfies the original nonsuccinct C and returns X to users if it satisfies C.

EXAMPLE 15.7

Given a user-specified constraint C9 ≡ sum(X.Rainfall) ≥ 90mm, our algorithm first finds all glob-
ally frequent itemsets, which include those that satisfyC9 and those that do not. Then, the algorithm
carries out a postprocessing step to test these itemsets and returns only those that satisfy C9.

15.4.2.4 Summary
Given p sites/processors in a distributed environment (e.g., a wireless sensor network), our pro-
posed distributed mining algorithm first finds constrained locally frequent itemsets depending on
the following classes of the constraint C:

• If C is succinct (SAM or SUC), then our algorithm carries out the steps as described in
Section 15.4.1.

• If C is not succinct but can be induced into succinct constraints, then our algorithm carries
out the steps as described in Section 15.4.2.1.

• If C is AM but not succinct, then our algorithm carries out the steps as described in
Section 15.4.2.2.

• If C is neither succinct nor AM and cannot be induced into succinct constraints, then our
algorithm carries out the steps as described in Section 15.4.2.3.

Afterward, our proposed distributed mining algorithm effectively and efficiently finds constrained
globally frequent itemsets (with respect to the entire distributed environment) from the UF-trees
capturing all potentially global frequent items.
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15.5 MRCLOUD: AN EFFECTIVE AND EFFICIENT MAPREDUCE-BASED
ALGORITHM FOR SUPPORTING CONSTRAINED MINING FROM
UNCERTAIN BIG DATA IN CLOUD ENVIRONMENTS

Given (i) uncertain big data, (ii) user-specified minsup, and (iii) a user-specified constraint C (e.g.,
an AM constraint), the research problem of constrained frequent pattern mining from uncertain big
data is to discover from big data a complete set of patterns having expected support ≥ minsup and
satisfying C (i.e., valid frequent patterns). In this section, we introduce our data analytic algorithm—
calledMrCloud—that usesMapReduce for managing, querying, and processing uncertain big data in
Cloud environments. Specifically, our algorithm manages transactions of uncertain big data, allows
users to query these big data by specifying constraints expressing their interests, and processes the
user-specified constraints to discover useful information and knowledge from the uncertain big data.

15.5.1 MANAGING UNCERTAIN BIG DATA

To manage uncertain big data, our MrCloud algorithm keeps track of both (i) the transactions of
uncertain data and (ii) an auxiliary file capturing information about domain items in uncertain data.
Here, items in each transaction of uncertain data are associated with existential probability values
expressing the likelihood of these items in the transaction in the form of a set of every item xi with
its existential probability value P(xi, tj), as follows:

{xi : P(xi, tj)} (15.5)

See Table 15.3 for an illustrative sample capturing transactions of uncertain data collected about the
airports visited by travelers. Also see Table 15.4 for the auxiliary information about reward points

TABLE 15.3
An Illustrative Sample Set of Uncertain Big Data

TID Content

t1 {AMS: 0.9, BCN: 1.0, CPH: 0.5, DEL: 0.9, EDI: 1.0, FRA: 0.2}
t2 {AMS: 0.8, BCN: 0.8, CPH: 1.0, EDI: 0.2, FRA: 0.2, IST: 0.6}
t3 {AMS: 0.4, FRA: 0.2, GUM: 1.0, HEL: 0.5}

TABLE 15.4
Auxiliary Information for the
Uncertain Big Data in Table 15.3

IATA Code Airport Reward Points

AMS Amsterdam 2400

BCN Barcelona 3000

CPH Copenhagen 2600

DEL Delhi 3200

EDI Edinburgh 2000

FRA Frankfurt 2200

GUM Guam 1800

HEL Helsinki 2800

IST Istanbul 1600
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TABLE 15.5
Classification of Some AM and Non-AM Constraints

Classification Constraints

X.attribute θ constant, where θ ∈ {>,≥=,≤,<}
max(X.attribute) θ constant, where θ ∈ {=,≤,<}

AM min(X.attribute) θ constant, where θ ∈ {>,≥,=}
sum(X.attribute) θ constant, where θ ∈ {≤,<}
C1 ∧ C2, where C1 and C2 are AM constraints

C1 ∨ C2, where C1 and C2 are AM constraints

max(X.attribute) θ constant, where θ ∈ {>,≥}
Non-AM min(X.attribute) θ constant, where θ ∈ {≤,<}

sum(X.attribute) θ constant, where θ ∈ {>,≥}
avg(X.attribute) θ constant, where θ ∈ {>,≥,=,≤,<}

that can be earned by travelers visiting those airports. For instance, t1 captures the uncertain data that
a traveler may have visited six airports (namely, AMS, BCN, CPH, DEL, EDI, and FRA). Among
them, it is 100% sure that he has visited BCN and EDI (where he earned 3000 and 2000 points,
respectively). There is a 90% chance that he has visited AMS or DEL (where he would earn 2400
and 3200 points, respectively), 50% chance that he has visited CPH (where he would earn 2600
points), and only 20% chance that he has visited FRA (where he would earn 2200 points).

15.5.2 QUERYING UNCERTAIN BIG DATA

Once our MrCloud algorithm managed uncertain big data, it allows users to query the data. Users
can express their interests by selecting one of SQL-style constraints in the form of (i) “X.attribute θ

constant,” (ii) “agg(X.attribute) θ constant,” and (iii) their logical combinations via the conjunction
operator “AND” (∧) or the disjunction operator “OR” (∨), where (i) agg is an aggregate function
including max, min, sum, and (ii) θ is a comparison operator including >,≥,=,≤,<. Examples
are not confined to the aforementioned frequency or nonfrequency constraints (as shown in Sec-
tion 15.3.2); users can also specify AM constraints involving more than one aggregate function. The
following is an example:

• C10 ≡ difference(X.Price) = max(X.Price) − min(X.Price) ≤ $10 says that the differ-
ence between the maximum and minimum prices in X is at most $10 (which involves the
difference between two aggregate functions maximum and minimum).

Moreover, users can also specify constraints involving more than one constraint. Examples include
the following:

• C11 ≡ (C4 ∧ C5) ≡ [min(X.RewardPoints) ≥ 2000] ∧ [X.Location = Europe] expresses
the user interest in finding every pattern X such that the minimum reward points earned by
travelers among all European airports visited are at least 2000 (which involves a logical
conjunction “AND” of two AM constraints).

Since the users specify their constraints by selecting one of the SQL-style constraints, MrCloud can
easily determine whether the user-specified constraints are AM or not. Table 15.5 shows examples
of the classification.
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15.5.3 PROCESSING UNCERTAIN BIG DATA

Once the users queried uncertain big data by specifying their constraints that express their interest,
our MrCloud algorithm processes these user-specified queries to find frequent patterns that satisfy
these user-specified constraints. Given (i) an implicit frequency constraint C2 ≡ expSup(X) ≥ min-
sup and (ii) an explicit user-specified constraints, MrCloud explores the antimonotonicity of these
constraints in pruning the search space. More specifically, the implicit frequency constraint satisfies
the antimonotonicity, as described in the following:

• If a pattern X is frequent (i.e., expSup(X) ≥ minsup), then all subsets of X are guaranteed
to satisfy the AM constraints because expSup(X′) ≥ expSup(X) ≥ minsup for every subset
X′ ⊆ X.

• If a pattern Y is infrequent (i.e., expSup(Y)<minsup), then all supersets of Y are guaranteed
to be infrequent because expSup(Y ′) < expSup(Y) < minsup for every superset Y ′ ⊇ Y .
Thus, every superset Y ′ of Y can be pruned.

However, if a pattern X is frequent, then some supersets of X may be frequent while some other may
not be frequent. Thus, frequency checking is needed to be applied to every superset of X.

Similarly, if the user-specified constraint satisfies the antimonotonicity, then we can prune the
search space due to the following:

• If a pattern X satisfies AM constraints, then all subsets of X are guaranteed to satisfy the
AM constraints.

• If a pattern Y does not satisfy AM constraints, then all supersets of Y are guaranteed not to
satisfy the AM constraints and thus can be pruned.

However, if a pattern X satisfies AM constraints, then some supersets of X may satisfy the AM
constraints while some other may not satisfy the AM constraints. Thus, constraint checking is needed
to be applied to every superset of X.

These observations about AM constraints hold not only for constraints involving one AM
constraint but also constraints involving multiple AM constraints due to the following:

1. If constraints Ca and Cb are AM, then the constraint (Ca ∧ Cb) is also AM. For AM con-
straints Ca and Cb, if a pattern X satisfies Ca and Cb, then all subsets of X are guaranteed
to satisfy Ca and satisfy Cb. In other words, all subsets of X are guaranteed to satisfy
(Ca ∧ Cb). Conversely, if a pattern Y does not satisfy Ca and does not satisfy Cb, then
all supersets of Y are guaranteed not to satisfy Ca and not to satisfy Cb. In other words, all
supersets of Y are guaranteed not to satisfy (Ca ∧ Cb). Thus, (Ca ∧ Cb) is also AM.

2. If constraints Ca or Cb are AM, then the constraint (Ca ∨ Cb) is also AM. For AM con-
straints Ca or Cb, if a pattern X satisfies Ca and Cb, then all subsets of X are guaranteed to
satisfy Ca or satisfy Cb. In other words, all subsets of X are guaranteed to satisfy (Ca ∨ Cb).
Conversely, if a pattern Y does not satisfy Ca or does not satisfy Cb, then all supersets of Y
are guaranteed not to satisfy Ca or not to satisfy Cb. In other words, all supersets of Y are
guaranteed not to satisfy (Ca ∨ Cb). Thus, (Ca ∨ Cb) is also AM.

On the other hand, if the explicit user-specified constraints do not satisfy antimonotonicity, our
MrCloud first discovers all frequent patterns and then verifies the validity of each of these discovered
patterns to see if it satisfies the user-specified constraints at a postprocessing step.

To process uncertain big data, ourMrCloud algorithm first reads and divides the uncertain big data
into several partitions and assigns them to different processors. The map function (denoted as map1)
receives 〈transaction ID, content of that transaction〉 as input. To facilitate time-efficient and space-
efficient constrained frequent pattern mining, MrCloud pushes the user-specified nonfrequency AM
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constraints CAM early in the mining process by pushing them into the map1 function. So, for every
transaction tj, the map1 function performs constraint checking for CAM and emits an 〈x,P(x, tj)〉
pair for each occurrence of valid item x ∈ tj (i.e., those domain items satisfying the nonfrequency
AM constraints), as follows:

map1:〈ID of transaction tj, content of tj〉
→ list of 〈valid x,P(x, tj)〉 (15.6)

In other words, by specifying the following, the map1 function produces a list of 〈valid x,P(x, tj)〉
pairs with many different valid x and P(x, tj) for the keys and values:

for each tj ∈ partition of the uncertain big data do
for each item x ∈ tj and {x} satisfies CAM do

emit 〈x,P(x, tj)〉.
Afterward, these 〈valid x,P(x, tj)〉 pairs are shuffled and sorted. Each processor then executes the
reduce function (denoted as reduce1) on the shuffled and sorted pairs to obtain the expected support
of x. Recall that each item in the uncertain big data is associated with an existential probability value.
The reduce1 function computes the expected support of all domain items (i.e., singleton patterns)
by using MapReduce with Equation 15.3, which can be simplified to become the following when
computing singleton patterns:

expSup({x}) =
n∑

j=1

P(x, tj) (15.7)

where P(x, tj) is an existential probability of item x in transaction tj. In other words, the reduce1
function sums all existential probabilities of x for each valid x to compute its expected support:

reduce1:〈valid x, list of P(x, tj)〉
→ list of 〈valid frequent {x}, expSup({x})〉 (15.8)

More specifically, the reduce1 function finds those items satisfying the frequency constraints by
specifying the following:

for each x ∈ 〈valid x, list of P(x, tj)〉 do
set expSup({x}) = 0;
for each P(x, tj) ∈ list of P(x, tj) do

expSup({x}) = expSup({x})+ P(x, tj);
if expSup({x}) ≥ minsup then

emit 〈{x}, expSup({x})〉
For the explicit user-specified nonfrequency non-AM constraints CnonAM , our MrCloud verifies the
validity of each discovered frequent {x} returned by the reduce1 function to see if it satisfies the
user-specified constraints. Consequently, we obtain all valid frequent singletons (i.e., domain items
that satisfy the user-specified constraints) and their associated existential support values.

MrCloud then proceeds to the next step, which is computationally intensive, by rereading each
transaction in the uncertain big data to form an {x}-projected database (i.e., a collection of all prefixes
of transactions ending with x) for each valid frequent singleton {x} returned by the reduce1 function.
This second map function (denoted as map2) is defined as follows:

map2:〈ID of transaction tj, content of tj〉
→ list of 〈valid frequent {x}, part of tj with x〉 (15.9)
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It can be specified as follows:

for each tj ∈ partition of the uncertain big data do
for each {x} ∈ 〈{x}, expSup({x})〉 do

if prefix of tj ending with x contains items besides x then
emit 〈{x}, prefix of tj ending with x〉

The worker node corresponding to each partition helps to form an {x}-projected database for every
valid frequent item x in the transactions assigned to that partition. The {x}-projected database consists
of prefixes of relevant transactions (from the uncertain big data) that end with x. More precisely, the
worker node outputs 〈{x}, portion of tj for forming the {x}-projected database〉 pairs.

Then, the reduce function reduce2 is defined as follows:

reduce2: 〈valid frequent {x}, {x}-projected database〉
→ list of 〈valid frequent X, expSup(X)〉 (15.10)

It shuffles and sorts these pairs of {x}-projected databases, from which valid frequent nonsingleton
patterns can be found and their expected support values can be computed. As any nonsingleton
patterns containing valid singleton items are not guaranteed to be valid, additional constraint check
on AM constraints CAM is required when forming the projected database in mining valid frequent
patterns. So, the worker node corresponding to each projected database then builds appropriate trees
(e.g., UF-tree, TPC-tree, or BLIMP-tree)—based on the projected databases assigned to the worker
node—to mine every valid frequent nonsingleton pattern X (with cardinality k, where k ≥ 2). The
worker node also outputs 〈X, expSup(X)〉, that is, every valid frequent nonsingleton pattern with its
expected support:

for each x ∈ {x}-projected database do
build a tree for {x}-projected database to find X;
if X satisfies CAM and expSup(X) ≥ minsup then

emit 〈X, expSup(X)〉
Again, for the explicit user-specified nonfrequency non-AM constraints CnonAM , our MrCloud ver-
ifies the validity of each discovered frequent X returned by the reduce2 function to see if it satisfies
the user-specified constraints.

EXAMPLE 15.8

Let us consider an illustrative sample set of an uncertain big database (as shown in Table 15.3)
and its auxiliary information (as shown in Table 15.4) with (i) the user-specified minsup=0.9 and
(ii) a user-specified constraint C11 ≡ [min(X.RewardPoints) ≥ 2000] ∧ [X.Location = Europe] (which
expresses the user interest in finding every pattern X such that the minimum reward points earned
by travelers among all European airports visited are at least 2000). Based on the auxiliary infor-
mation, we learn that airports AMS, BCN, CPH, EDI, FRA, and HEL (but not DEL, GUM, or IST)
satisfy C10. More specifically, (i) both DEL and GUM are not in Europe and (ii) travelers visiting
either GUM or IST would not be able to earn at least 2000 reward points.

Then, for the first transaction t1, the map1 function outputs only 〈AMS, 0.9〉, 〈BCN, 1.0〉, 〈CPH,
0.5〉, 〈EDI, 1.0〉, and 〈FRA, 0.2〉. Similarly, for the second transaction t2, the map1 function outputs
〈AMS, 0.8〉, 〈BCN, 0.8〉, 〈CPH, 1.0〉, 〈EDI, 0.2〉, and 〈FRA, 0.2〉. For the third transaction t3, the
map1 function outputs only 〈AMS, 0.4〉, 〈FRA, 0.2〉, and 〈HEL, 0.5〉. These output pairs are then
shuffled and sorted.

Note that the map1 function does not output 〈DEL, 0.9〉 for t1 because {DEL} does not satisfy
C10. Moreover, it also does not output 〈IST, 0.6〉 for t2 or 〈GUM, 1.0〉 for t3 because both {IST}
and {GUM} also do not satisfy C10.
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Afterward, the reduce1 function first reads 〈AMS, [0.9, 0.8, 0.4]〉, 〈BCN, [1.0, 0.8]〉, 〈CPH,
[0.5, 1.0]〉, 〈EDI, [1.0, 0.2]〉, 〈FRA, [0.2, 0.2, 0.2]〉, and 〈HEL, [0.5]〉; the function then outputs
〈{AMS}, 2.1〉, 〈{BCN}, 1.8〉, 〈{CPH}, 1.5〉, and 〈{EDI}, 1.2〉 (i.e., valid frequent singletons and their
corresponding expected support).

Also note that, although the reduce1 function reads 〈FRA, [0.2, 0.2, 0.2]〉 and 〈HEL, [0.5]〉,
it does not output 〈{FRA}, 0.6〉 or 〈{HEL}, 0.5〉 because valid singletons {FRA} and {HEL} are
infrequent.

After rereading the first transaction t1, the map2 function outputs 〈{BCN}, {AMS: 0.9, BCN:
1.0}〉 (where {AMS: 0.9, BCN: 1.0} is a prefix of t1 ending with item BCN), 〈{CPH}, {AMS:
0.9, BCN: 1.0, CPH: 0.5}〉, and 〈{EDI}, {AMS: 0.9, BCN: 1.0, CPH: 0.5, EDI: 1.0}〉 (where
{AMS: 0.9, BCN: 1.0, CPH: 0.5, EDI: 1.0} contains only valid frequent items—i.e., it does
not contain invalid item DEL). Similarly, after rereading the second transaction t2, the map
function2 outputs 〈{BCN}, {AMS: 0.8, BCN: 0.8}〉, 〈{CPH}, {AMS: 0.8, BCN: 0.8, CPH: 1.0}〉,
and 〈{EDI}, {AMS: 0.8, BCN: 0.8, CPH: 1.0, EDI: 0.2}〉. After rereading the third transac-
tion t3, the map2 function does not output anything. All output pairs are then shuffled and
sorted.

Note that the map2 function does not output 〈{AMS}, {AMS: 0.9}〉 for t1 because {AMS: 0.9}
does not contain any valid frequent item other than AMS itself (i.e., singleton prefix of transactions
does not contribute to the mining of nonsingletons). The same comments apply to not outputting
〈{AMS}, {AMS: 0.8}〉 for t2 or 〈{AMS}, {AMS: 0.4}〉 for t3. Moreover, recall that the reduce1 function
outputs 〈{AMS}, 2.1〉, 〈{BCN}, 1.8〉, 〈{CPH}, 1.5〉, and 〈{EDI}, 1.2〉 (as FRA and HEL are infrequent
and GUM is invalid). Hence, the map2 function does not output anything for FRA, GUM, or HEL
(i.e., not outputting 〈{FRA}, {AMS: 0.9, BCN: 1.0, CPH: 0.5, EDI: 1.0, FRA: 0.2}〉 for t1; {AMS: 0.8,
BCN: 0.8, CPH: 1.0, EDI: 0.2, FRA: 0.2}〉 for t2; 〈{FRA}, {AMS: 0.4, FRA: 0.2}〉; or 〈{HEL}, {AMS:
0.4, FRA: 0.2, HEL: 0.5}〉 for t3).

Afterward, the reduce2 function reads 〈{BCN}, {BCN}-projected database〉. Based on this
{BCN}-projected database (which consists of two subtransactions {AMS: 0.9, BCN: 1.0} and {AMS:
0.8, BCN: 0.8}), a tree is built. Consequently, valid frequent pattern {AMS, BCN}with an expected
support of 1.54 is found. Similarly, the reduce2 function reads 〈{CPH}, {CPH}-projected database〉.
It builds a tree based on this {CPH}-projected database (which consists of two subtransactions
{AMS: 0.9, BCN: 1.0, CPH: 0.5} and {AMS: 0.8, BCN: 0.8, CPH: 1.0}), and finds valid frequent
patterns {AMS, CPH}, {AMS, BCN, CPH}, and {BCN, CPH} with expected support values of 1.25,
1.09, and 1.3, respectively. The reduce2 function then reads 〈{EDI}, {EDI}-projected database〉. It
builds a tree based on this {EDI}-projected database (which consists of two subtransactions {AMS:
0.9, BCN: 1.0, CPH: 0.5, EDI: 1.0} and {AMS: 0.8, BCN: 0.8, CPH: 1.0, EDI: 0.2}), and finds valid
frequent patterns {AMS, EDI} and {BCN, EDI} with expected support values of 1.06 and 1.16,
respectively.

Recall from Example 15.8 that the set of map1 and reduce1 functions discover four valid fre-
quent singletons (with their corresponding expected support values): 〈{AMS}, 2.1〉, 〈{BCN}, 1.8〉,
〈{CPH}, 1.5〉, and 〈{EDI}, 1.2〉. Here, the set of map2 and reduce2 functions discover six addi-
tional valid frequent nonsingleton patterns (with their corresponding expected support values):
〈{AMS, BCN}, 1.54〉, {AMS, BCN, CPH}, 1.09〉, 〈{AMS, CPH}, 1.25〉, 〈{AMS, HEL}, 1.06〉, 〈{BCN,
CPH}, 1.3〉, and 〈{BCN, EDI}, 1.16〉. Hence, MrCloud finds a total of 10 patterns satisfying
both frequency constraint C2 ≡ expSup(X) ≥ minsup and nonfrequency AM constraint C11 ≡
[min(X.RewardPoints) ≥ 2000] ∧ [X.Location = Europe] involving a logical conjunction of two
nonfrequency AM constraints.

15.6 EXPERIMENTAL ASSESSMENT AND ANALYSIS

In order to assess and analyze the performance of our proposed algorithms for supporting com-
plex mining from uncertain big data, we conducted extensive experimental campaigns. Derived
results clearly show the benefits coming from our proposals. In this section, we provide experimental
evidence for both our algorithms.
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15.6.1 EXPERIMENTING THE TREE-BASED ALGORITHM FOR SUPPORTING CONSTRAINED MINING

FROM UNCERTAIN BIG DATA IN DISTRIBUTED ENVIRONMENTS

In this section, we focus the attention on the experimental assessment and analysis of the first
algorithm embedded in our framework for supporting complex mining from uncertain big data.

To evaluate our proposed algorithm, we used many different datasets, including IBM synthetic
data, real-life databases from the UC Irvine Machine Learning Depository (e.g., mushroom data),
as well as those from the Frequent Itemset-Mining Implementation (FIMI) Dataset Repository.*
For instance, IBM synthetic datasets used in our experiments were generated by the program devel-
oped at IBM Almaden Research Center [57]. The datasets contain 100K to 10M records with an
average transaction length of 10 items, and a domain of 1000 items. We assigned to each item an
existential probability in the range of (0,1]. All experiments were run in a time-sharing environment
in a 2.4 GHz machine. The reported figures are based on the average of multiple runs. Runtime
includes CPU and I/Os for constraint checking, UF-tree construction, and frequent itemset-mining
steps.

In Experiment 15.1, we evaluated the functionality of our proposed algorithm, which was imple-
mented in C++. For instance, we used (i) a dataset of uncertain data and (ii) a constraint with 100%
selectivity (so that every item is selected). With this setting, we compared our algorithm (which
mines constrained frequent itemsets from uncertain data) with U-Apriori [73] and UF-growth [74]
(which mine unconstrained frequent itemsets from uncertain data). Experimental results on the IBM
dataset showed that, in terms of accuracy, our algorithm returned the same mining results—that is,
the same collection of frequent itemsets—as those returned by U-Apriori and UF-growth.

However, it is important to note that both U-Apriori and UF-growth are confined to finding fre-
quent itemsets from a centralized dataset of uncertain data when the user-specified constraints are
of a single selectivity of 100%, whereas our proposed algorithm is more flexible as it is capable of
finding frequent itemsets from distributed uncertain data with constraints of any selectivity.

As for the runtimes among these three algorithms, our algorithm took the shortest amount of time
to mine frequent itemsets because it pushes user-specified constraints into the mining process. The
higher the selectivity of the constraints, the longer was the runtime for our algorithm. Both U-Apriori
and UF-growth were not designed to handle constraints, let alone pushing the constraints into the
mining. To handle constraints, U-Apriori and UF-growth first ignored the constraints and found all
frequent itemsets. Then, they applied constraint checking as a postprocessing step to prune those

(a) (b)

FIGURE 15.2 Experiment 15.1: Runtime of our algorithm versus existing algorithms (e.g., UF-growth [74]).

* http://fimi.ua.ac.be/

http://fimi.ua.ac.be/
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infrequent itemsets. Hence, the runtime of these two existing algorithms were independent of the
selectivity of the SAM and SUC constraints. See Figure 15.2.

In Experiment 15.2, we continued with our functionality evaluation. Specifically, we used (i) a
constraint and (ii) a dataset of uncertain data consisting of items all with existential probability of 1
(indicating that all items are definitely present in the database). With this setting, we compared our
algorithm (which mines constrained frequent itemsets from uncertain data) with some existing algo-
rithms that mine constrained frequent itemsets from precise data (e.g., CAP [79]). We observed from
the experimental results that our algorithm returned the same mining results—that is, the same col-
lection of frequent itemsets—as those returned by CAP. In other words, our algorithm is as accurate
as CAP.

However, regarding the flexibility, CAP is confined to finding frequent itemsets from a centralized
dataset of uncertain data when existential probability of all items is of 1. In contrast, our proposed
algorithm is capable of finding frequent itemsets from distributed uncertain data containing items
with various existential probability values ranging from 0 to 1.

In Experiment 15.3, we measured the amount of communication/data transmitted between the
distributed sitesPi’s and their centralized siteQ. Figure 15.3 shows the results for both IBM synthetic
dataset andUCI real-lifemushroom dataset. Note that the amount of transmitted data decreasedwhen
the selectivity of constraints decreased. The reason is that, as the constraint selectivity decreased,
fewer frequent itemsets satisfied the constraints. Hence, less data were transmitted.

Between the SAM and SUC constraints, frequent itemsets satisfying SAM constraints consist
of only those domain items that individually satisfy the constraints. Hence, the amount of data
transmitted grew exponentially when selectivity increased linearly. In contrast, frequent itemsets

FIGURE 15.3 Experiment 15.3: Amount of data transmitted versus selectivity.
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FIGURE 15.4 Experiment 15.4: Runtime versus number of sites.

satisfying SUC constraints consist of (i) those domain items that individually satisfy the constraints
and (ii) optional items. Hence, the amount of data transmitted grew rapidly at the beginning (i.e.,
when selectivity was low).When selectivity kept increasing, the amount of data transmitted gradually
became stable (as domain items in frequent itemsets are either in required or optional).

In Experiment 15.4, we evaluated the effects of varying the number of distributed sites. Recall
from Figure 15.3 that, when more sites were in the distributed network, our algorithm transmitted
more data because an addition of a site implies transmission of an additional set of locally frequent
items and locally frequent itemsets. In other words, more sites in the network led to extra com-
munication time. However, more sites led to smaller UF-trees that were built and mined at each
site. Regarding runtime, there was trade-off between the communication cost and the tree construc-
tion/mining cost. We observed from Figure 15.4a and b that, when the number of sites increased
from 1 to 2 and to 4, the mining on the synthetic dataset was distributed among multiple sites. As a
result, less work was required at each individual site, where smaller UF-trees were built and mined.
So, runtimes decreased. However, when the number of sites grew from 4 to 8 and to 16, the over-
head due to extra communication cost offset the benefits of using extra sites. Consequently, runtimes
increased. Figure 15.4c and d shows similar observation on mining the real-life mushroom databases
except that (i) the runtimes decreased when the number of sites increased from 2 to 4 and to 8 and
(ii) the times increased when the number of sites grew from 8 to 16.

In Experiment 15.5, we examined the effect of the distribution of existential probabilities of items.
Recall that nodes are merged in a UF-tree if they contain the same item and same existential prob-
ability values. So, we divided the precision of existential probability values into 2%, 5%, and 10%.
Figure 15.5 shows three versions of an IBM synthetic dataset having existential probability values
in the range [10%, 100%]. When the precision is 2%, all existential probability values are multiples
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FIGURE 15.5 Experiment 15.5: Runtime versus probability distribution.

of 2% within that range (e.g., 10%, 12%, 14%, 16%, . . ., 98%, 100%) for a total of 46 unique exis-
tential probability values. Similarly, when the precision is 5% (or 10%), there are 19 (or 9) unique
existential probability values. When items took on only a few unique existential probability values,
UF-trees became smaller and thus took shorter runtimes.

In Experiment 15.6, we also tested the effect of minsup. When minsup increased, fewer itemsets
had expected support ≥ minsup, and thus shorter runtimes were required for the experiment.

All these experimental results showed the importance and the benefits of using our proposed
distributed algorithm in mining constrained frequent itemsets from uncertain data.

15.6.2 EXPERIMENTING THE MAPREDUCE-BASED ALGORITHM FOR SUPPORTING CONSTRAINED

MINING OVER UNCERTAIN BIG DATA IN CLOUD ENVIRONMENTS

In this section, we focus the attention on the experimental assessment and analysis of the second
algorithm embedded in our framework for supporting complex mining from uncertain big data.

We evaluated our proposed data analytic algorithmMrCloud in mining user-specified constraints
from uncertain big data. We used various benchmark datasets, which include real-life datasets (e.g.,
accidents, connect4, and mushroom) from the UCI Machine Learning Repository* and the FIMI
Repository.We also used IBM synthetic datasets, whichwere generated using the IBMQuest Dataset
Generator [57]. For our experiments, the generated data ranges from 2M to 10M transactions with
an average transaction length of 10 items from a domain of 1K items. As the above real-life and
synthetic datasets originally contained only precise data, we assigned to each item contained in
every transaction an existential probability from the range (0, 1].

All experiments were run using either (i) a single machine with an Intel Core i7 4-core processor
(1.73GHz) and 8GB of main memory running a 64-bit Windows 7 operating system or (ii) the Ama-
zon Elastic Compute Cloud (EC2) cluster—specifically, 11 High-Memory Extra Large (m2.xlarge)
computing nodes.†

We implemented existing mining framework [78–80], UF-growth [74], tube-growth [75],
BLIMP-growth [76], and our data analytic algorithmMrCloud all in the Java programming language.
The stock version of Apache Hadoop 2.7.2 was used.

In Experiment 15.7, we demonstrated the functionality and capability of MrCloud by using (i) a
database consisting of items all with existential probability value of 1.0 (indicating that all items are
definitely present in the database) and (ii) a user-specified AM constraint. Experimental results show

* http://archive.ics.uci.edu/ml/
† http://aws.amazon.com/ec2/

http://archive.ics.uci.edu/ml/
http://aws.amazon.com/ec2/
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FIGURE 15.6 Experiment 15.9: Runtime versus #transactions.

that, in terms of accuracy, our data analytic algorithm returned the same collection of valid frequent
patterns as those returned by the existing mining framework [78–80] for finding valid frequent pat-
terns from precise data. Note that, in terms of flexibility, MrCloud is not confined to finding valid
frequent patterns from a database in which existential probability values of all items are 1.0.MrCloud
is capable of finding valid frequent patterns from any database, in which existential probability values
of all items are ranging from 0 to 1.

In Experiment 15.8, we experimented with (i) an uncertain database and (ii) a user-specified AM
constraint with 100% selectivity (so that every item is selected). Experimental results show that,
in terms of accuracy, MrCloud returned the same collection of frequent patterns as those returned
by UF-growth [74], tube-growth [75], and BLIMP-growth [76]. Note that, in terms of flexibility,
MrCloud is not confined to handling AM constraints with 100% selectivity. MrCloud is capable of
handling AM constraints with any selectivity.

In Experiment 15.9, we demonstrated the efficiency ofMrCloud. Figure 15.6 shows thatMrCloud
took much shorter runtimes than the runtimes required by the existing UF-growth algorithm [74]
when handling AM constraints with 100% selectivity because UF-growth was not designed to handle
different selectivity of constraints. Hence, for a fair comparison, we used 100% selectivity for this
experiment.

(a) (b)

FIGURE 15.7 Experiment 15.10: Runtime versus selectivity on (a) synthetic dataset and (b) real-life datasets.
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FIGURE 15.8 Experiment 15.11: Speedup versus #transactions.

In Experiment 15.10, we showed how the runtimes for MrCloud decreased when the selectivity
increased (i.e., fewer patterns were selected). For the current experiment, MrCloud was run in the
aforementioned EC2 cluster. As a MapReduce-based algorithm, MrCloud takes advantage of all 11
nodes in the EC2 cluster. In contrast, as a non-MapReduce-based algorithm, UF-growth was run
on a single machine (i.e., does not take advantage of multiple nodes). This explains why MrCloud
is faster than UF-growth. Moreover, the figure shows the scalability of MrCloud. When the num-
ber of transactions in the IBM synthetic dataset increased, the runtimes required by both MrCloud
and UF-growth also increased. However, MrCloud required significantly lower runtimes than UF-
growth. The same comments apply to other tested datasets (e.g., real-life accidents, connect4, and
mushroom datasets). Figure 15.7a shows the benefits of constraint pushing in the big data-mining
process than applying constraint pushing as a postprocessing step in the IBM synthetic dataset, while
Figure 15.7b shows those for the three real-life accidents, connect4, and mushroom datasets. Both
figures show that, when selectivity decreased (i.e., fewer frequent patterns satisfy the constraints),
runtimes also decreased, because (i) fewer pairs were returned by the map function, (ii) fewer pairs
were shuffled and sorted by the reduce function, and/or (iii) fewer constraint checks were performed.

In Experiment 15.11, we examined the speedup of MrCloud. Figure 15.8 shows that MrCloud led
to high speedup (e.g., more than seven times for the IBM synthetic dataset) even with just 11 nodes
when compared with UF-growth [74].

In Experiment 15.12, we examined the efficiency of MrCloud with respect to different values
of minsup. Figure 15.9a shows the efficiency of MrCloud for the real-life accidents dataset: The
runtimes of MrCloud decreased when the user-specified minsup increased. Consistent results are
shown in Figure 15.9b and c for the real-life connect4 and mushroom datasets, respectively.

15.7 CONCLUSIONS AND FUTURE WORK

Big data are everywhere. Existing big data analytic algorithms discover frequent patterns from pre-
cise databases. However, there are situations in which data are uncertain. As items in each transaction
of these uncertain data are usually associated with existential probabilities expressing the likelihood
of these items to be present in the transaction, the corresponding search space for uncertain data is
much larger than that for precise data. This matter is worsened when we are dealing with uncertain
big data. Furthermore, in many real-life applications, users may be interested in only a tiny portion
of this large search space, for instance like it happens with amounts of uncertain data obtained from
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(a) (b)

(c)

FIGURE 15.9 Experiment 15.12: Runtime versus minsup on (a) accidents, (b) connect4, and (c) mushroom
datasets.

various sources such as networks of distributed wireless sensors, which have increased over the past
few years. On the other hand, there are many real-life applications in which users are interested in
only some subsets of all the frequent itemsets that can be mined from these high volumes of massive
distributed uncertain data.

Inspired by these considerations, in this chapter, we have proposed a framework for supporting
complex miming from uncertain big data targeted to distributed environments, which embeds the
following two distinctive algorithms: (i) an algorithm for supporting tree-based mining of uncertain
big data in distributed environments like clouds and even wireless sensor big data networks and (ii)
a MapReduce-based algorithm for supporting constrained mining over uncertain big (transactional)
data in cloud environments.

To find frequent itemsets that satisfy the user-specified constraints from these distributed uncer-
tain data, the first algorithm introduces a tree-based mining approach, which is a nontrivial integra-
tion of constrained mining, parallel and distributed mining, uncertain data mining, and tree-based
frequent itemset mining. The deriving algorithm handles different types of user-specified constraints.
For instance, our algorithm first identifies domain items that satisfy succinct constraints at each dis-
tributed site and then constructs a UF-tree, from which constrained locally frequent itemsets can be
mined recursively. To return to the user each constrained globally frequent itemset, its local frequen-
cies at all sites are summed. Missing frequencies can be computed by traversing appropriate paths
in essential UF-trees. In addition to succinct constraints, our algorithm also handles nonsuccinct
constraints such as inductive succinct constraints and AM constraints.

MrCloud, the second algorithm embedded in our framework, allows users to query uncertain big
data by expressing their interest, and processes the user-specified query by using the MapReduce
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model in cloud environments, thus avoids wasting lots of time and space by first discovering all fre-
quent patterns and then pruning uninteresting ones at a postprocessing step. As an output, MrCloud
discovers from uncertain big data all and only those patterns that are interesting to the users.

In addition to this, a comprehensive experimental campaign has clearly shown the effectiveness
and the efficiency of our framework for supporting complex miming from uncertain big data in
distributed environments.

Future work is mainly oriented to extend our framework to provide innovative adaptiveness
metaphors. It is inspired by both traditional (e.g., [105]) and recent (e.g., [106]) studies.
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ABSTRACT

The need to understand large, complex, information-rich data sets is common to all fields of stud-
ies in this current information age. Given this tremendous amount of data, efficient and effective
tools need to be present to analyze and reveal valuable knowledge that is hidden within the data.
Clustering analysis is one of the popular approaches in data mining and has been widely used in
big data analysis. The goal of clustering involves the task of dividing data points into homogeneous
groups such that the data points in the same group are as similar as possible and data points in dif-
ferent groups are as dissimilar as possible. The importance of clustering is documented in pattern
recognition, machine learning, image analysis, information retrieval, etc.

Due to the difficulties of parallelization of the clustering algorithms and the inefficiency at large
scales, challenges for applying clustering techniques in big data have arisen. The question is how to
deploy clustering algorithms to this tremendous amount of data to get the clustering result within a
reasonable time. This chapter provides an overview of the mainstream clustering techniques pro-
posed over the past decade and the trend and progress of clustering algorithms applied in big
data. Moreover, the improvement of clustering algorithms in big data is introduced and analyzed.
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The possible future for more advanced clustering techniques is illuminated on the basis of today’s
information era.

16.1 INTRODUCTION

16.1.1 APPLICATION BACKGROUND

An overwhelming flow of data in a structured, unstructured, or heterogeneous format has been
accumulated due to the continuous increase in the volume and detail of data captured by organi-
zations, such as social media, government, industry, and science. These massive quantities of data
are produced because of the growth of the Web, the rise of social media, the use of mobile, and
the information of Internet of Things (IoT) by and about people, things, and their interactions. The
big data era has arrived. Big data becomes the most influential force in daily life. According to the
IDC reports, the digital universe is doubling in size every 2 years and it will reach 44 zettabytes by
2020 [1].

How to store huge amounts of data is not the biggest problem anymore. But how to design solu-
tions to understand this big amount of data is a major challenge. Operations such as analytical
operations, process operations, retrieval operations are very difficult and hugely time consuming
because of this massive volume of data. One solution to overcome these problems is the use of data-
mining techniques in discovering knowledge from big data. Data mining [2] is called exploratory
data analysis, among other things. It is an analytic process designed to explore data. Data mining
aims to search for consistent patterns or systematic relationships between variables. It then validates
the findings by applying the detected patterns to new subsets of data. Although the hidden patterns
are derived from heterogeneous data in big data mining, these hidden patterns can still be reviewed
as structured knowledge. The structured knowledge is combined with human knowledge of decision
makers that are heterogeneous or unstructured and upgraded into intelligent knowledge [3].

16.1.2 BIG DATA CHALLENGE

The term of big data [4] that refers to large database has a comprehensive definition through the
3Vs of big data: volume, variety, and velocity. Garter [5] extended this 3Vs model to a 4Vs mode by
including a new “V”: value. More recently, this model has been updated to 5Vs [6]: volume, velocity,
variety, veracity, and value. Where volume refers to the vast amounts of data generated every second.
Velocity refers to the speed at which new data is generated and the speed at which data moves around.
Variety refers to the different types of data, such as structured, unstructured, and heterogeneous data,
and different source of data that can be used. Veracity refers to the messiness or trustworthiness of
the data. Quality and accuracy are less controllable with different forms of big data. Value refers to
how the data can be turned into value. It is the process of discovering hidden values of big data sets,
which then documents and socializes as realized values. Challenges of big data have been arisen
because of its 5Vs characteristics [7]:

Volume: Massive data has been produced by the increased use of emails, twitter messages,
photos, video clips, and sensor data. This massive data is too large to store and is hard to
analyze using traditional database technology. The challenge is how to determine the rele-
vance within large data volumes and how to extract valuable information from the relevant
data.

Velocity: Another change of big data is how to response quickly to data and deal with it in a
reasonable time. Techniques on analyzing the data while it is being generated without ever
putting it into databases are urgent in the field of big data study.

Variety: Data comes from different sources with different specifications such as Twitter,
Facebook, LinkedIn, and instant messaging in a complex and heterogeneous format.
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Another challenge issue is how to manage, merge, and govern the different forms of
data.

Complexity: Quality and accuracy are less controllable due to the different sources and different
structures of data. It becomes really complicate to connect and associate from heteroge-
neous data to extract useful information and thus improvements on exploiting this huge
amount of data are very wide and dispersed. Data complexity increases with the increase
in volume. The traditional data managements with relational database tools are no longer
sufficient to meet the requirements to capture, store, and further analyze big data.

16.1.3 BIG DATA CLUSTERING ANALYSIS

The speed of information growth exceeds Moore’s Law at the beginning of this new century. Given
this tremendous amount of data, efficient and effective tools need to be present to analyze and reveal
valuable knowledge that is hidden within the data. Techniques from data mining are well-known
knowledge discovery tools for this purpose. Clustering is one of the popular approaches in data
mining and has been widely used in big data analysis. The goal of clustering involves the task of
dividing data points into homogeneous groups such that the data points in the same group are as
similar as possible and data points in different groups are as dissimilar as possible.

However, conventional clustering techniques cannot cope with this huge amount of data because
of their high complexity and computational cost [8]. The question for big data clustering is how
to scale up and speed up clustering algorithms with minimum sacrifice to the clustering quality.
Therefore, an efficient processing model with a reasonable computational cost of this huge, complex,
dynamic, and heterogeneous data is needed in order to exploit this huge amount of data. Single-
machine clustering techniques and multiple-machine clustering techniques are two most popular
big data clustering techniques. Single-machine clustering algorithms run in one machine and can use
resources of just one single machine while the multimachine clustering [8] techniques run in several
machines and can have access to more resources. Multimachine clustering techniques become more
popular due to the better scalability and faster response time to the users.

16.1.4 CHAPTER ORGANIZATION

The rest of the chapter is organized as follows: the main stream clustering algorithms and key
technologies for clustering in big data are introduced in Section 16.2. The instances of clustering
techniques that have been used in single-machine clustering and multimachine clustering are illus-
trated in Section 16.3. The applications of big data clustering including image segmentation, load
balancing in parallel computing, genetic mapping, and community detention are discussed in Section
16.4. Finally, the chapter is concluded in Section 16.5.

16.2 OVERVIEW OF CLUSTERING TECHNIQUES IN BIG DATA

16.2.1 GENERAL INFORMATION OF CLUSTERING ANALYSIS

Clustering is one of the most fundamental tasks in exploratory data analysis that groups similar data
points in an unsupervised process. Clustering techniques have been exploited in many fields includ-
ing in many areas, such as data mining, pattern recognition, machine learning, biochemistry, and
bioinformatics [9]. The main process of clustering algorithms is to divide a set of unlabeled data
objects into different groups. The cluster membership measure is based on a similarity measure. In
order to obtain high-quality partition, the similarity measure between the data objects in the same
group is to be maximized and the similarity measure between the data objects from different groups
is to be minimized. Most of the clustering task uses an iterative process to find locally or globally
optimal solutions from high-dimensional data sets. In addition, there is no unique clustering solution
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for real-life data and it is also hard to interpret the “cluster” representations [9]. Therefore, clustering
task requires many experiments with different algorithms or with different features of the same data
set. Hence, how to save computational complexity is a significant issue for the clustering algorithms.
Moreover, clustering very large data sets that contain large numbers of records with high dimensions
is considered a very important issue nowadays. Most conventional clustering algorithms suffer from
the problem that they do not scale with larger sizes of data sets, andmost of them are computationally
expensive in memory space and time complexities. For these reasons, the parallelization of cluster-
ing algorithms is a practical approach to overcome the aforementioned problems, and the parallel
implementation of clustering algorithms is somewhat inevitable.

More importantly, clustering analysis is distinguished with other analysis [9]. Clustering analysis
is called unsupervised learning. The main goal is to divide a set of unlabeled data sets into several
groups based on the conceptual or hidden properties of the input data sets. In the other word, clus-
tering analysis is unsupervised “nonpredictive” learning. It divides the data sets into several clusters
on their subjective measurements. It is unlike supervised learning and it is not based on the “trained
characterization.” In general, there are a set of desirable features for a clustering algorithm [9,10]:
scalability, the temporal and spatial complexity of the algorithm should not explode on large data
sets; robustness, the outliers in the data set should be detected during the process; order insensitivity,
the ordering of the input data should not affect the outcome of the algorithm;minimum user-specified
input, the number of user-specified parameters should be minimized; arbitrary-shaped clusters, the
clusters can be shaped arbitrary; and point proportion admissibility, different clustering algorithms
produce different results with different features. Hence, a clustering algorithm should be chosen such
that duplicating data set and re-clustering task should not change the clustering results.

16.2.2 MAINSTREAM CLUSTERING ALGORITHMS

Depending on the data properties or the purpose of clustering, different types of clustering algorithms
have been developed [10]:

Partitioning: clustering requires a fixed number of clusters to be specified a priori. Objective
functions such as square error function are used as a criterion in the optimization process
of data partitioning. Partitioning clustering uses an iterative process to optimize the cluster
centers, as well as the number of clusters.

Hierarchical: clustering does not specify the number of clusters, and the output is indepen-
dent of the initial condition. However, the hierarchical clustering is static, that is, the data
points assigned to a cluster cannot be reassigned to another cluster. In addition, it will fail
to separate overlapping clusters due to the lack of information regarding the global shape
or size of the clusters.

Density-based: clustering separates data objects based on their regions of density, connectivity,
and boundary. The clusters are defined as connected dense component which can grow in
any direction that density leads to. Density-based clustering is good for discovering clusters
of arbitrary shapes and it can provide a natural protection against outliers.

Grid-based: clustering divides the space of data objects into grids. It is capable to go through
the data set once to compute the statistical values for the grids with a fast-processing time.
However, the performance of grid-based clustering depends on the size of the grid; it is
insufficient to obtain the required clustering quality for highly irregular data distributions.

Model-based: clustering assumes that the data is generated by a mixture of underlying proba-
bility distributions. It is a method which is used to optimize the fit between the given data
and the predefined mathematical model. One advantage of model-based clustering is that
it can automatically determine the number of clusters based on standard statistics.

Evolutionary: clustering approaches use genetic algorithm, particle swarm optimization, and
other evolutionary approach for clustering task. For example, genetic algorithm uses
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evolutionary operators (such as selection, crossover, and mutation) and a population to
obtain the optimal partition of the input data. Evolutionary approaches are stochastic and use
an iterative process. These algorithms start with a random population of solutions, which is
a valid partition of data with a fitness value. In the iterative step, the evolutionary operators
are applied to generate the new population. A population’s likelihood of surviving into the
next iteration is determined by a fitness function. The iterative step is repeated until it finds
the required solution meeting some stop criteria.

16.2.3 KEY TECHNOLOGIES FOR CLUSTERING IN BIG DATA

Unlike traditional clustering algorithms, the volume of data must be taken into account when clus-
tering big data because this requires substantial changes in the architecture of a storage system. In
addition, most of traditional clustering algorithms are designed to handle either numeric or cate-
gorical data with limited size. On the other hand, big data clustering deals with different types of
data such as image, video, sensors, mobile devices, text, etc. [11,12]. Moreover, the velocity of big
data requires that the big data clustering techniques have a high demand for the online processing
of data. At the high level of the five categories of clustering algorithms, most of the algorithms have
a similar procedure. These algorithms start with some random initialization and follow with some
iterative process until some convergence criteria are met. For example, partitioned clustering such
as k-means algorithm starts with randomly choosing k centroids and reassigns each data point to the
closest cluster centroids in an iterative process. Thus, the issue of the big data clustering is how to
speed up and scale up the clustering algorithms with the minimum sacrifice to the clustering quality.
There are three ways to speed up and scale up big data clustering algorithms.

The first way is to reduce the iterative process using sampling-based algorithms. Sampling-based
algorithms perform clustering algorithms on a sample of the data sets instead of performing on
the whole data set. Complexity and memory space needed for the process decrease in sampling-
based algorithms because computation needs to take place only for smaller sample data sets. PAM,
CLARA, and CLARANS [9–12] are proposed to fight with the exponential search space in the
k-medoid clustering problem.

The second way is to reduce the data dimension using randomized techniques. Dimensionality of
the data set is another aspect, which influences the complexity and speed of clustering algorithms.
Random projection and global projection are used to project data set from a high-dimensional space
to a lower-dimensional space [8,12]. CX/CUR, CMD, and Colibri [8,12] are dimension reduction
techniques, which are proposed to reduce long execution time of big data clustering.

The last way is to apply parallel and distributed algorithms, which use multiple machines to speed
up the computation in order to increase the scalability. Parallel processing applications include con-
ventional parallel application and data-intensive applications. The conventional parallel applications
assume that data can be fit into the memory of distributed machines. Data-intensive applications are
I/O bound and devote the largest fraction of execution time to movement of data. OpenMP,MPI [13],
and MapReduce are common parallel processing models for computing data-intensive applications.

16.3 INSTANCES OF CLUSTERING TECHNIQUES IN BIG DATA

In this section, we will list some clustering techniques, which are designed for large-scale data sets.
There are mainly two types of techniques based on the number of computer nodes that have been
used: single-machine techniques and multimachine techniques. Due to the nature of scalability and
faster response time to the users, multimachine clustering techniques have attracted more attention.
A list of common big data clustering techniques is shown in Figure 16.1.
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FIGURE 16.1 List of big data clustering techniques.

16.3.1 SINGLE-MACHINE CLUSTERING TECHNIQUES

Single-machine clustering techniques run in one machine and the data has been stored in another
machine. Sampling-based techniques and dimension reduction techniques are two common strate-
gies for single-machine techniques.

16.3.1.1 Sampling-Based Techniques
The problem of scalability in clustering algorithms is in terms of computing time and memory
requirements. Sampling-based algorithms handle one sample of the data sets at a time, and then
generalize it to whole data set. Most of these algorithms are partitioning-based algorithms.

CLARANS is an example of k-medoid methods, which has been extended to spatial very large
database (VLDB) [9–12]. Before CLARANS, PAM (partitioning around medoids) and CLARA are
the two early versions of k-medoid methods. PAM is one of the first k-medoid algorithms that are
introduced. It is more robust than k-means in the presence of noise and outlier detection. PAM
combines relocation of points between perspective clusters with re-nominating the points as poten-
tial medoids in an iterative process. The objective function is adopted to guide the process. The
space complexity of PAM is O(n2) because it needs to store the entire pairwise dissimilarity matrix
between objects in central memory. Hence, PAM becomes impractical in large data sets. Unlike
PAM, CLARA is proposed to avoid this problem. CLARA uses five samples and each sample has
O(k) points. PAM will be applied to each sample, and CLARA retains the best medoids using the
objective function. The whole data set is assigned to resulting medoids for final partition. Both space
complexity and time complexity are linear, not quadratic.

CLARANS is proposed to improve efficiency in comparison to CLARA. CLARANS uses random
search to generate neighbors by starting with a set of medoids. If a neighbor represents a better
partition, then the process continues with the same set of medoids. Otherwise, the algorithms restart
with a local minimum that is found. The best medoids are returned for the formation of a resulting
partition. The time complexity of CLARANS is O(n2).

16.3.1.2 Dimension Reduction Techniques
The complexity and the speed of clustering algorithm are influenced by the number of instances in
the data set. However, objects in data mining could consist of hundreds of attributes. High dimen-
sionality of the data set is another influential aspect, and clustering in such high-dimensional spaces
requires more complexity and longer execution time [8,12]. One approach to dimension reduction is
projection. A data set can be projected from a high-dimensional space to a lower-dimensional space.
PCA (principal component analysis) is one method used to reduce the dimensionality of a data set
[14]. It provides simpler representation of data, reduction in memory, and faster execution time. One
approach to dimension reduction is subspace clustering. Subspace clustering seeks to find clusters
in different subspaces within a data set. Many dimensions are irrelevant in high-dimensional data.
Subspace clustering algorithms localize the search for relevant dimensions, allowing them to find
clusters that exist in multiple subspaces. CLIQUE is one of the algorithms proposed to find clusters
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FIGURE 16.2 General framework of most parallel and MapReduce clustering.

within subspaces of data set [15]. CLIQUE combines density- and grid-based clustering. CLIQUE
operates on high-dimensional data by not operating all the dimensions at once but by processing
a single dimension at first step and then grows upward to the higher one. The last way to address
the problem of dimension reduction is co-clustering. Traditional clustering focuses only on features
while co-clustering focuses on both data points and features. Dual regularized co-clustering (DRCC)
[16] method based on semi-nonnegative matrix tri-factorization is a co-clustering algorithm. It gen-
erates a data graph and a feature graph to explore the geometric structure of data manifold and feature
manifold.

16.3.2 MULTIPLE-MACHINE CLUSTERING TECHNIQUES

In this age of data explosion, parallel processing is essential to process a massive volume of data in
a timely manner. Because the growth of data size is a lot faster than memory and processor advance-
ments, single-machine clustering techniques with a single processor and a memory cannot handle
the tremendous amount of data. Algorithms that can be run on multiple machines are needed. Unlike
single-machine techniques, multiple-machine clustering techniques divide the huge amount of data
into small pieces. These small pieces of data can be loaded on different machines and the huge prob-
lem can be solved using processing power of thesemachines. Parallel processing applications include
conventional parallel applications and data-intensive applications. The conventional parallel applica-
tions assume that data can be fit into thememory of distributedmachines. Data-intensive applications
are I/O bound and devote the largest fraction of execution time to the movement of data. OpenMP,
MPI [13], and MapReduce are common parallel processing models for computing data-intensive
applications. Here, we only discuss the conventional parallel and MapReduce clustering algorithms.

Both parallel and MapReduce clustering algorithms follow the general framework illustrated in
Figure 16.2. First, the input data are partitioned and distributed over different machines. Second,
each machine performs local clustering on its own split of the input data. Third, the information of
machine is aggregated globally to produce global clusters for the whole data set. The global cluster
is sent back to each machine as a start point for new local clustering. This process continues until
the stop criteria have been met. Finally, the final results of the global clusters are generated.

16.3.2.1 Parallel Clustering
Three main strategies in the parallelism used in data-mining algorithms can be identified as the
followings [10]: (1) independent parallelism, the whole data is operated in each processor and no
communication between processors; (2) task parallelism, different algorithms are operated on each
processor; and (3) SPMD (single programmultiple data) parallelism, the same algorithm is executed
on multiple processors with different partitions. The results are exchanged in order to cooperate with
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FIGURE 16.3 Flow chart of BIRCH algorithm.

each other. The combination of task and SPMD parallelism with master–slave architecture is the
common strategy.

16.3.2.1.1 Parallel Partitioning Clustering Algorithms
k-means algorithm is one of the most popular partitioning clustering algorithms. A parallel imple-
mentation of k-means is introduced in Reference 17. The parallel k-means algorithm is developed on
the message-passing model of a network of workstations (NOWs). Besides parallel k-means, a par-
allel CLARANS algorithm using PVM (parallel virtual machine) is introduced in Reference 18.
PVM uses a master–slave paradigm. Master program can assign tasks to other slaves, and the
communication between computers is based on the message passing.

16.3.2.1.2 Parallel Hierarchical Clustering Algorithm
The network topology of processors and the splitting data accessing have been used in the paralleliza-
tion of hierarchical clustering algorithms. A parallel BIRCH [19] called PBIRCH is a hierarchical
clustering algorithm applied to the SPMD model with message passing. PBIRCH divides the data
equally into the processors, and k-means algorithm is applied in the initial stage. The k initial cen-
troids are broadcasted to each processor, and a CF-tree is constructed accordingly. The centroids of
the local clusters are used to compute the global centroids. Each processor recalculates the centroids,
and the processes are repeated until it converges. In Figure 16.3, BIRCH scans the input data and
builds the CF tree. The initial CF-tree might not be accurate due to the skewed input order or the
splitting effect by the page size. A tree condensing step might be applied to address this issue. The
global clustering clusters all the subclusters in the leaf nodes, which is done by an agglomerative
hierarchical clustering algorithm. The clustering results reassign all the data points based on the
results by global clustering step.

16.3.2.1.3 Parallel Density-Based Clustering Algorithm
PDBSCAN [20] is a parallel version of DSBSCAN algorithm. DSBSCAN is a density-based clus-
tering algorithm. The main objective of density-based clustering is discovery of clusters of arbitrary
shapes. PDBSCAN with master–slave configuration includes three steps. The first step divides the
input data into several partitions and distributes them to different nodes. The second step concurrently
clusters the partition using DBSCAN. The last step accumulates the local clusters and calculates the
global clusters for the whole data.

16.3.2.1.4 Parallel Graph-Based Clustering Algorithm
The goal of graph partitioning is to find the good cluster of vertices. The parallelization of METIS is
ParMETIS, which is a multilevel partitioning algorithm [21]. ParMETIS includes three phases. The
first phase is coarsening phase. It tries to find the maximal matching on the original graph such that
the vertices that are matched create a small enough graph. The second phase is partitioning phase.
The coarsened graph from previous phases clusters in k-way using multilevel recursive bisection
algorithm. A greedy algorithm is applied to project back the partitioning from second phases to the
original graph in the last phase.

16.3.2.1.5 GPU-Based Parallel Clustering
The use of GPU instead of CPU speeds up the computation in parallel computing. GPUs are consisted
of thousands of cores, and CPUs have only several processing cores (see Figure 16.4). GPUs are
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FIGURE 16.4 Difference between CPU and GPU. CPU has several cores while GPU consists of hundreds of
cores.

much more powerful and faster than CPUs. A G-DBSCAN [22] is a GPU-based parallel algorithm.
G-DBSCAN has two parallelized steps. A graph where the edges are created based on a predefined
threshold is constructed in the first step. The second step uses breadth-first search (BFS) to traverse
the graph to identify the clusters. Results show that G-DBSCAN is 112 times faster than DBSCAN.

16.3.2.2 MapReduce-Based Clustering
MapReduce is one of themost efficient big data solutions, which enables to process amassive volume
of data in parallel with many low-end computing nodes. This programming paradigm is a scalable
and fault-tolerant data-processing tool that was developed to provide significant improvements in
large-scale data-intensive applications in clusters. MapReduce has gained significant momentum
from industry and academia by virtue of its simplicity, scalability, and fault tolerance [23].

MapReduce model hides details of parallel execution, which allows users to focus only on data-
processing strategies. The MapReduce model consists of two basic elements [24]: mappers and
reducers. The idea of this programming model is to design mappers (or map function), which can be
used to generate a set of intermediate key/value pairs. The reducer (or reduce function) is used as a
shuffling or combining function to merge all of the intermediate values that are associated with the
same intermediate key. The main aspect of the MapReduce algorithm is that if every map and reduce
is independent of all other ongoing maps and reduces, then the operations can be run in parallel on
different keys and lists of data.

The process of MapReduce approach can be decomposed as follows: (1) Prepare input data:
MapReduce utilizes the Google File System (GFS or HDFS) as an underlying storage layer to read
input and store output [23]. GFS is a chunk-based distributed file system that supports fault toler-
ance by data partitioning and replication. The big data is divided into small chunk on different worker
nodes. (2) The map step: The map function of each note is applied to local data and the output is
written to a temporary storage space. (3) The sort and send step: The output from Step 2 is sorted
with key such that all data belonging to one key are located on the same node. The sorted results are
sent to reduce processors. (4) The reduce step: Each group of output data (per key) is processed in
parallel on each reduce node. The user-provided reduce function is executed once for each key value
produced by the map step. (5) Produce the final output: The MapReduce system collects all of the
reduce outputs and sorts them by key to produce the final output. The results are stored in the GFS.

16.3.2.2.1 MapReduce-Based Partitioning Clustering Algorithms
PKMeans [25] is a distributed version of k-means algorithm using MapReduce framework to speed
up and scale up the process. The PKMeans follows the general framework illustrated in Figure 16.5.
The data is implicitly partitioned in the distributed file system. The local clustering is performed in
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FIGURE 16.5 General framework of a MapReduce system.

the map step using k-means algorithm. The global clustering is performed in the merge and reduce
step. The outputs of the reduce step are the centroids of clusters, which are sent back to the map
step for the next iteration. The process is iterated until it converges. The speed up and size up of
PKMeans are near linear and the scale up is also good.

16.3.2.2.2 MapReduce-Based DBSCAN
MapReduce-based DBSCAN [26] is a density-based clustering algorithm implemented using
MapReduce. Existing parallel DBSCAN has three major drawbacks. First, they cannot properly
balance the load among parallel tasks. Second, the scalability of these algorithms is limited because
all critical subprocedures are not parallelized. Third, these algorithms are not less portable to emerg-
ing parallel processing paradigms because they are not designed for shared-nothing environments.
In MR-DBSCAN, all the critical subprocedures are parallelized to ensure scalability. A novel cost-
based data partitioning method is proposed to achieve desirable load balancing on heavily skewed
data. Results show that the MR-DBSCAN has good speed up and scale up. It is a lot faster than the
exiting parallel DBSCAN.

16.3.2.2.3 MapReduce-Based Evolutionary Algorithm
The inherent parallel nature of evolutionary algorithms makes them optimal candidates for par-
allelization. A scalable MR-CPSO algorithm using the MapReduce framework to overcome the
inefficiency of PSO clustering for large data sets is proposed in Reference 27. MR-CPSO algorithm
using the MapReduce methodology has been successfully parallelized. MR-CPSO is a partitioning
clustering algorithm similar to the k-means approach. The clustering task inMR-CPSO is formulated
as an optimization problem to obtain the best solution based on the minimum distances between the
data points and the cluster centroids.

16.4 APPLICATION

16.4.1 IMAGE SEGMENTATION

Image segmentation is a necessary first process in image understanding and computer vision by
correctly classifying the pixels of an image in decision-oriented applications [28]. The essential
goal of image segmentation is to partition an image into uniform and homogeneous attribute regions
based on some likeness measure, such as gray level, color, tone, texture, etc. Due to the variety
and complexity of images, image segmentation is still a very challenging research topic. Basically,
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segmentation approaches for images are based on the discontinuity and similarity of image intensity
values. Discontinuity is an approach which partitions an image based on abrupt changes. According
to the predefined criteria, the similarity approach is based on partitioning an image into similar
regions.

Big data image segmentation is a strategy in image analysis, which is emerged especially in the
medicine area [4]. Different algorithms for big data image segmentation have been executed on
the parallel computing strategy to achieve effective results. Researchers have proposed a variety of
techniques to tackle the challenging problem of image segmentation. Because of the complexity
of image segmentation and given that only partial prior knowledge is provided, the segmentation
result would be poor if a supervised method was adopted. Thus, the unsupervised method is a better
choice to solve such a problem. Clustering as an unsupervised learning strategy has been used for
solving automatic grouping of images and image segmentation problem. In addition, clustering can
also organize and retrieve image databases in an efficient way.

Partitioning clustering is the most popular technique for big data image segmentation due to the
simplicity of implementation. In Reference 29, a distributed c-means algorithm is proposed for big
data image segmentation and has been applied for magnetic resonance image (MRI) segmentation.
The algorithm is implemented on a parallel and distributed machine based on mobile agents. The
approach is implemented on a multiagent platform. The proposed algorithm is executed on Mobile
Classification Agents on different nodes on their data at the same time. The results are provided to
Mobile Host Agent to further compute the global results until the stop criteria have met. The output
segmented images are provided from the Mobile Classification Agents. The algorithm is applied
on MRI cerebral image and the results show that the complexity of the parallel program has been
reduced using the multiagent platform. In addition, it overcomes the big data challenges and offers
a high-performance computing tool using a multiagent system.

16.4.2 LOAD BALANCING IN PARALLEL COMPUTING

In the big data era, the rapid and scalable deployment of virtual Web stores, media outlets, and other
online sites or services is a problem of considerable practical interest. In a cloud-based architecture,
a set of hosted resources such as processors, operating systems, software, and other components can
be combined or strung together to form virtual machines. The key is how to allocate the resources
to support these virtual machines and reduce the response time. Load balancing [30] is an important
problem of heterogeneous computer networks in cloud computing. The main concern of load bal-
ancing is how to distribute resources among the users such that no node is overloaded or sitting idle.
Traditional parallel computing and grid computing environments load-balancing algorithms can be
classified into three ways [31]:

1. Static load balance algorithms: These algorithms are suitable for small distributed envi-
ronments. The decisions related to balancing of load will be made at compile time when
resource requirements are estimated. The advantage of static load balance algorithms is the
simplicity with regard to both implementation and overhead.

2. Dynamic load balance algorithms: The distribution of work load for dynamic load balance
algorithms is changed at run-time. The communication delays and execution time have been
reduced since they use current load information when making distribution decisions.

3. Mixed load balance algorithms: These algorithms are a mix of static and dynamic load
balance algorithms. They focus on how to symmetrically assign computing task and how
to reduce communication cost of symmetrical distributed computing nodes.

In a distributed system environment, load balance algorithms focus on reducing the job response time
by distributing the total load of system. There aremany load-balancing algorithms available. Depend-
ing on the requirement, clustering algorithms play an important role in realizing cloud computing
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to implement the load-balance of accessing resources. Active clustering [32] is a clustering-based
dynamic load-balancing algorithm. It groups similar nodes together using local re-wiring and then
works on these clusters. It uses the concept of matchmaker node to create a cluster. The active clus-
tering adopts the iterative nature of hierarchical clustering algorithms. In the iterative process, the
algorithm assumes that there are two types of nodes. First node selects a matchmaker node that is
of a different type. This matchmaker node connects with its neighbor node that is of same type as
the first node. The process repeats until the matchmaker node gets detached. The performance of the
system is enhanced with high resources, thereby increasing the throughput by using these resources
effectively. However, the algorithm is degraded due to the increase of system diversity. Hence, there
is a strong need for an efficient load-balancing mechanism in cloud computing.

16.4.3 GENETIC MAPPING

Genetic maps are important component in plant science. A genetic map serves many practical bio-
logical purposes and is a key tool in both classical and modern plant research. A genetic map is a list
of genetic elements ordered according to their co-segregation patterns [33]. The essential concept
of a genetic map is the linkage group. The linkage group collects genetic markers that are found on
a single chromosome. The number of linkage groups equals to the number of chromosomes in the
species. Genetic markers are clustered into the linkage groups. In order to group genetic makers into
linkage groups, it needs to compute pairwise similarities between all pairs of markers and then use
various standard clustering algorithms for clustering. A similarity matrix with the similarity scores
is an input for clustering algorithms with a complexity of O(m2) for m markers.

The bottleneck for genetic mapping therefore is how to efficiently find the linkage groups using
clustering algorithms. Moreover, conventional genetic mapping tools were designed for small data
sets and can only handle up to 10,000 markers. In Reference 34, a fast clustering algorithm called
BubbleCluster is proposed to exploit the structure of genetic makers. The BubbleCluster algorithm
consists of three phases. The first phase is the most important. It exploits the structure of genetic link-
age groups to quickly cluster high-quality makers as a skeleton. The second phase uses the skeleton
obtained from the first phase to cluster noisier low-quality makers. Small clusters found from previ-
ous phases are merged with large clusters. This algorithm exploits the underlying linear structure of
chromosomes to avoid the quadratic pairwise calculation.

16.4.4 COMMUNITY DETECTION

Community detection is a useful tool to partition the nodes of an observed network into groups. A
“network community” is typically thought of as a group of nodes such that the connection of the
nodes is dense within groups but sparser between them [35]. Community detection is potentially
very useful. A good partition can be considered as a hint of underlying semantic structure or pos-
sible mechanisms of network formation. Researchers in computer science, mathematics, physics,
statistics, and bioinformatics use community detection algorithms to better understand the large-
scale structure of the interaction between groups in social and biological systems. For example,
knowing the groups or communities within a social network such as LinkedIn can be used to infer
about the trends of collaboration between individuals in industry as well as in academia. It helps
to better understand the function of key biological process by uncovering the nature of interactions
between groups of proteins in a protein–protein interaction network. Hence, community detection
has received a great deal of attention in real-world graphs such as large social networks, Web graphs,
and biological networks.

Community detection is similar to clustering where both use a data-mining technique to partition
a network into groups based on the similarity measurement. In Reference 36, a fast parallel modu-
larity optimization algorithm (FPMQA) for community detection is introduced. An interested social
network called Interest Network links two IDs if both IDs have participated to the discussion about
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one or more topics. The initial network is updated using the attitude consistency of the connected ID
pairs. FPMQA is then used to conduct community detection. FPMQA assumes that the each node is a
separate community in a network and it then finds the pairs of communities with the local maximum.
FPMQA uses the parallel manner to merge the corresponding community pairs into one community.
Compared to conventional approaches, FPMQA reduces the running time of community detection
and uses the reliable ground truths to evaluate detected communities.

16.5 CONCLUDING REMARKS

In this chapter, we reviewed the literatures about clustering in big data and the corresponding cluster-
ing algorithms. Clustering algorithms are categorized to six classifications: partitioning, hierarchical,
density-based, model-based, grid-based, and evolutionary algorithms. The most popular clustering
algorithms are partitioning and hierarchical algorithms and many of parallel versions of the algo-
rithms have been developed. The traditional single-machine techniques are not powerful enough to
handle the huge volume of data accumulated nowadays. Parallelism in the clustering algorithms is
important for multimachine techniques. Parallel clustering is potentially useful for big data clus-
tering. But the complexity of implementing such algorithms is a challenge for researchers. Hence,
MapReduce has gained significant momentum from industry and academia by virtue of its simplic-
ity, scalability, and fault tolerance. Big data clustering as an essential task in big data mining is not
limited in image segmentation, load balance, genetic maps, and community detection.
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ABSTRACT

Large graph computing system is a key tool in big data computing. It can be applied to a variety of
big data applications, such as social networks, web page search, and protein interactions. However,
the unstructured graph data make data access nonuniform, which poses a great challenge for building
an efficient large graph computing system. Fortunately, a lot of large graph computing frameworks
have been proposed recently to alleviate the above problems. In general, these frameworks can be
categorized into single-node in-memory system, distributed shared memory system, and single-node
out-of-core system. Besides, there are some other solutions that utilize flash SSD and GPU to speed
up large graph computing. In this chapter, wewill review these typical large graph computing systems
from a system perspective.

347



348 Big Data Management and Processing

17.1 INTRODUCTION

17.1.1 APPLICATION BACKGROUND

Many practical problems can be expressed as graphs, which consist of a set of vertices and some
edges between them. In detail, the vertices can be viewed as entities, and the edges can be used to
represent the relationship between two entities. We are now living in the era of big data. A variety
of data with different formats are generated quickly, and are growing in both size and complexity. It
is a nontrivial work to process, store, and analyze these big data. To extract values from it, efficient
analysis frameworks are required.

MapReduce [1] is a parallel programming model that can handle a lot of big data problems
efficiently, but its performance on graph algorithms is poor, because the iterative nature of graph
algorithms will cause a lot of communication and synchronization overhead if MapReduce model
is used. Parallel Boost Graph Library (Parallel BGL) [2] and CGMGraph [3] are two parallel graph
libraries based onMessage Passing Interface (MPI), and a number of graph algorithms can be imple-
mented by using their Application Programming Interfaces (APIs). But these two libraries do not
support fault tolerance, which means it is impractical for them to be employed in a huge cluster
environment, where machines may fail frequently. Some other works focus on optimizing a single
graph algorithm, which are not general solution for all algorithms.

17.1.2 LARGE GRAPH COMPUTING SYSTEMS

Based on above facts, a lot of distributed graph computing systems have been proposed in recent
years, including Pregel [4], and its open source clones Giraph [5] and Hama [6], GraphLab [7],
PowerGraph [8], and GraphX [9]. These systems adopt the philosophy of “think like a vertex”
(vertex-centric computing model), where each vertex receives messages from other vertices, updates
its value based on user-defined logic, and then sends its newly updated value to its outgoing neigh-
bor vertices. The vertex-centric computing model is easy for users to design and implement scalable
graph algorithms. In addition to the vertex-centric computing model, PowerGraph supports edge-
centric computing model, where for the edge to be addressed, it first gathers updates that are
generated in the last iteration for each vertex, and applies the new value, and then for each edge to
be addressed, spreads the new value of the source vertex to destination vertex. Reference 10 adopts a
block-centric computation model. PathGraph [11] exploits a path-centric computation model. These
systems trade a comparatively long partition time for the better locality of graph data when using
their computing model.

A distributed graph computing system scales well with the increase of the graph size, but its hard-
ware cost is relatively high. Besides, to build a robust and efficient system, load balance, fault toler-
ance, synchronization, and coordination are the challenges that need to be carefully addressed.More-
over, for ordinary users, it is a nontrivial work to build the environment, implement graph algorithms,
debug, and tune the performance on a distributed system. Hence, some researchers have started to
explore the solution of large graph computation on a single machine (we ignore the in-memory sys-
tems on a single machine in this chapter), and a lot of systems have been proposed, such as GraphChi
[12], X-Stream [13], PathGraph, VENUS [14], and GridGraph [15]. These systems use disks to scale
when processing large graphs, so their bottleneck lies in the disk access I/O. What is worse, the data
locality of graph computation is poor. To make efficient large graph computing on a single machine
possible, they usually preprocess the graph data, and based on the preprocessing scheme, the cor-
responding computation model is used, so that good data locality during the computation can be
guaranteed. According to the experiment results of GraphChi, to run the PageRank algorithm on a
Twitter graph of 1.5 billion edges, it takes Spark with 50 machines (100 CPU cores) 8.1min, while
GraphChi only needs 13min on MacMini of 8GB RAM and a 256GB SSD (solid-state drive). How-
ever, a single machine large graph computation system also has its limitation, for example, when the
graph size is extremely large, it usually fails to process it or the performance is unacceptable.
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There are some other solutions targeting at the heterogeneous systems. The representative systems
are TurboGraph [16], FlashGraph [17], TOTEM [18], and Cusha [19]. SSD has different perfor-
mance characteristics with HDD (hard disk drive), so TurboGraph and FlashGraph exploit some
novel schemes optimized specially for SSD. A graphics processing unit (GPU) is a part of most
computer systems, which has much better parallel processing capability than CPU, and can be used
to offload computation tasks, but its logical processing is short. As for the characteristics of GPU,
TOTEM and Cusha proposed approaches to maximize the performance of the GPU when doing
graph computation.

17.1.3 CHAPTER ORGANIZATION

The chapter is organized as follows: Section 17.2 lists some challenges of large graph computation.
In Section 17.3, we introduce the representative distributed graph computing systems and their key
techniques. Section 17.4 shows the representative single machine graph computing systems and their
key techniques. Section 17.5 describes the representative heterogeneous graph computing systems
and their key techniques. We finally conclude the chapter in Section 17.6.

17.2 CHALLENGES OF LARGE GRAPH COMPUTATION

Efficient large graph computation is challenging. First, large graph computation is a branch of big
data computation, which faces the common challenges as many other big data problems. Second,
graph computation has its own characteristics, such as poor data locality, nonstructured graph data,
which pose new challenges to large graph computation. In this section, we will discuss the challenges
of large graph computation in detail.

17.2.1 BIG VOLUME AND NONSTRUCTURED DATA

First of all, graph data is a kind of big data, which satisfies the basic features (i.e., volume, velocity,
and variety) of big data. The volume of graph data is huge and is growing rapidly. The web pages
indexed by Google in 1998 were around one million, and quickly reached one billion in 2000. In
2014, it indexed around 30 trillion web pages [20]. Facebook achieved one billion users in October
2012. Obviously, large graphs are usually beyond the memory size of a single machine. Careful
design is required on either scale out by using clusters or scale up on disks. Another issue is the
variety of graph data, which comes from the annotating and combining data sets. That means vertices
and edges can be labeled as arbitrary properties. For example, edges can be labeled to define the
nominal difference between two vertices (A is the fan of B) or can carry the weight to show the
degree of difference (need to walk 15 miles from A to B).

In addition to the challenges from volume, velocity, and variety, the difficulties brought by the
unstructured feature of graph data also require to be addressed before we start to build an efficient
graph computing system. There is no canonical definition of the unstructured data, but generally, the
elements within the unstructured data have no structure. For example, social graphs and road graphs
have completely different structures, and even with the social graphs, different types of social graphs
are also varied. Moreover, within a graph, different vertices are varied in its number of edges and the
vertices they connect to. The unstructured data have poor data locality, and the graph algorithms are
data driven, which will result in suboptimal performance if the data are not well preprocessed.

17.2.2 PARALLEL GRAPH PROCESSING

Parallel computing is essential for efficient large graph computing, but also offers challenges. First,
we need to deal with task assignment, which corresponds to graph partitioning. Note that an optimal
graph partition requires that the tasks are equal-sized with minimum shared vertices (edge cut) or
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shared edges (vertex cut), but this is an NP-hard problem. Besides, tasks are usually dependent, so
that we have to take the synchronization overhead into consideration. For a distributed system, the
overhead mainly comes from the communication among machines, while in a single machine of
NUMA architecture, the impact is particularly significant.

When processing a problem in parallel, load balance is an important factor that affects the overall
performance. However, in the field of graph computing, most real graphs follow the phenomenon
of power law [21], which indicates that the degrees of different vertices are varied significantly in
a graph. Therefore, load balance is another challenge we face to build an efficient parallel graph
system.

In a distributed system, fault tolerance is important and necessary to maintain the system avail-
able. However, it will incur extra overhead not only at the normal computation stage, but also at the
recovery stage. A good fault tolerance should have little impacts on the system performance at both
stages.

17.3 REPRESENTATIVE DISTRIBUTED LARGE GRAPH COMPUTING SYSTEMS
AND OPTIMIZATION TECHNIQUES

In this section, we introduce three representative distributed graph computing systems, and then we
summarize some optimization techniques that are used in distributed systems.

17.3.1 PREGEL

Pregel was presented by Google in 2010, which aims to replace MapReduce to do efficient and reli-
able graph computing in a distributed environment. It borrows the ideas of BSP (Bulk Synchronous
Parallel) [22] model to implement its computation and communication model. Specifically, the com-
putation of Pregel consists of a sequence of iterations. An iteration is called a superstep, where
vertices are processed in parallel. Besides, Pregel adopts vertex-centric computation model, so that,
during a superstep, each vertex will receive the messages that were sent by its in-neighbors at the
last superstep, and then updates its own state based on user-defined compute logic, and finally sends
the new state along its outgoing edges.

In Pregel, an algorithm terminates when every vertex votes to halt (as shown in Figure 17.1), and
no messages are passed in the current superstep. At the beginning, every vertex is in the active state,
which will execute the compute logic defined by users. A vertex goes into inactive state by voting
to halt; this means that the vertex will not do any computation unless it receives new messages from
other vertices. Those vertices that reactivated by the messages must explicitly deactivate themselves
again after they complete the computation in the superstep.

Ac�ve Inac�ve

Vote to Stop

Messages 
Received

FIGURE 17.1 Vertex state machine.
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class PageRankVertex : public Vertex<double, void, double> {
public: virtual void Compute(MessageIterator* msgs) {

if (superstep() >= i) {
double sum = 0;
for (; !msgs->Done(); msgs->Next())

sum += msgs->Value();
*MutableValue() = 0.15/NumVer�ces() + 0.85 * sum;

}
if (superstep() < 30) {

const int64 n = GetOutEdgeIterator().size();
SendMessageToAllNeibhbors(GetValue()/n);

}
else {

VoteToHalt();
}

}
};

FIGURE 17.2 PageRank implemented in Pregel.

In Figure 17.2, we illustrate an implementation of PageRank in Pregel. In a superstep, the vertex
program first iterates all the messages sent in the previous superstep, which contain the sum of
PageRanks of all in-neighbors. Then, the new PageRank value is computed, which is sent to its
out-neighbors.

Pregel partitions graph into different parts, each part consists of a set of vertices and all their
outgoing edges. The partition scheme is based on the vertex ID, so that we can easily imply which
partition a vertex belongs to. The default partition function is hash(N), where N is the number of the
partitions, and users can design their own partition scheme to replace the default partition function.

Communication between vertices is completed by messages. During a superstep, a vertex may
receive many messages from its in-neighbors. All messages are guaranteed to be delivered and not to
be duplicated, which will be available in the next superstep as the input of the vertex’s update func-
tion. Note that in a distributed environment, the communication overhead between machines may
be the main bottleneck of the performance. To improve the performance, Pregel provides combiner
function for users, by which users can combine messages sent to a vertex into a single message to
reduce the number of messages to be sent; however, owing to the un-order characteristic of messages,
the combiners can only be used for commutative and associative operations.

Pregel’s fault-tolerant mechanism is implemented by checkpoint. At the beginning of a superstep,
the master instructs every worker to save their partitions to the persistent storage, which includes
vertex value, edge value, and incomingmessages, and so on. Themaster uses pingmessages to detect
worker failures. When workers fail, the master will reassign the partitions owed by these workers to
the currently available workers in the cluster, reload the partition state from the most recent state, and
compute the lost steps to the current step. To balance the overhead between the recovery overhead
and checkpoint overhead, Pregel sets the checkpoint frequency according to the mean time to failure
model.

17.3.2 GRAPHLAB

GraphLab (we describe the distributed version here) is an asynchronous distributed shared memory
graph system in which the vertex program can directly access the information of its current vertex,
adjacent edges, and adjacent vertices. Its main purpose is to provide an asynchronous, dynamic,
graph-parallel computation that can execute many Machine-Learning and Data Mining (MLDM)
algorithms efficiently on a cluster.



352 Big Data Management and Processing

Ini�aliza�on Phase

Raw Graph
data

Raw Graph
data

Distributed
File System

Distributed
File System

Atom File

Atom File

Atom File

Atom Index
Parse &
Par��on

Atom
Collec�on

Index
Construc�on

MapReduce
Graph Builder

Execu�on Phase

Cluster

TCP RPC
Comms

Monitoring &
Atom

Placement

GL Engine

GL Engine

GL Engine

Distributed
File System

Atom File

Atom File

Atom File

Atom Index

FIGURE 17.3 GraphLab system overview.

Many MLDM algorithms can be modeled by using graph data; in this way, data dependencies
can be expressed, and we are able to extract more singles from the noise data. Besides, most MLDM
algorithms iteratively update a set of parameters, and these updates depend on the underlying graph
structure (the same algorithm on different graph data structure may output varied parameters). Syn-
chronous systems such as Pregel update all parameters at the end of an iteration in parallel, where the
input data are the parameters received from the last iteration, while GraphLab updates the parameters
asynchronously by using the most recent parameter values. Synchronous computation can result in
performance degradation, since the runtime of each computation phase is determined by the slowest
machine when synchronous computation is used, and the slow machine can be caused by various
factors, such as load, network, and hardware variety. In addition, the vertex itself has different com-
plexity and convergence (depending on the data) in the algorithm, which can produce the varied
runtime. Therefore, GraphLab exploits the asynchronous computation mode, with which a lot of
MLDM algorithms can benefit a lot from, such as belief propagation, PageRank.

The parameters of manyMLDM algorithms converge asymmetrically, which means some param-
eters converge quickly in a few iterations, while others converge very slowly over many iterations.
To optimize the performance, GraphLab adopts a dynamic scheduling scheme, which focuses
on these more challenging parameters (converge slow parameters) to accelerate the convergence.
Although Pregel supports dynamic computation by allowing some vertices to skip some supersteps,
its effectiveness is very limited compared to the priority computation of GraphLab.

Parallel processing is a necessity for efficient large graph computing. However, for some MLDM
algorithms, serializability is required to help speed up the convergence or ensure the correctness of
algorithms. To address the problem, GraphLab ensures that every parallel processing has an equiv-
alent sequential execution by introducing sort consistency models with different levels, where users
can choose the corresponding model based on their algorithms.

Figure 17.3 shows the overview of GraphLab. The system first loads row graph data from a dis-
tributed file system, and then graph partition is conducted. If hashed partitioning is used, the process
will be done by MapReduce framework, where a map is performed over each vertex and edge, and
each reducer accumulates the atom file, which will then be uploaded to the distributed file system. In
the execution phase, the atom files will be assigned to the machines in the cluster, and these perform
the corresponding computation in parallel (Figure 17.3).

GraphLab introduces the Gather, Apply, and Scatter (GAS) computation model. In the gather
phase, the vertex program reads the information from its in-neighbors along its in-edges, and the
update value is generated and applied to the vertex. Figure 17.4 shows the PageRank implemented
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PageRank (Scope scope) {
float accum = 0;
foreach (nbr in scope.in_nbrs) {

accum += nbr.val / nbr.out_nbrs;
}
vertex.val = 0.15 + 0.85 * accum;

}

FIGURE 17.4 PageRank in GraphLab.

in GraphLab; the vertex program directly reads the neighbor vertices’ state to compute the sum.
Once the new sum is updated to the vertex, its value can be read by other vertex programs.

Pregel employs the synchronous checkpoint, which suspends all the computation and flushes the
communication channels when constructing the snapshot. This synchronousmechanism is inefficient
for GraphLab as the synchronous computation. Therefore, GraphLab uses asynchronous checkpoint
(Chandy–Lamport algorithm [23]) to implement the fault-tolerant mechanism, which incrementally
constructs a snapshot without suspending the computation. When a failure occurs, the system can
recover from the last checkpoint.

17.3.3 POWERGRAPH

Most real graphs present a power-law degree distribution, which implies that most vertices have
relatively small numbers of neighbors while a small fraction of vertices have very large number of
neighbors. This phenomenon brings challenges to the efficient distributed parallel graph processing,
for instance, the imbalanced workloads between the workers, the communication asymmetry, and
imbalanced worker storage.

To address these challenges, Gonzalez et al. [8] present PowerGraph (included in GraphLab
version 2.2), which exploits vertex-cut graph partition to ensure balanced computation and communi-
cation.Moreover, PowerGraph combines the best features of Pregel andGraphLab, so that it supports
BSP computation model, as well as the computation-efficient asynchronous computation model.

Figure 17.5 shows the communication model of PowerGraph, where a vertex with high degree
is split into multiple parts, and each part contains part of the edges and is stored on a machine in
the cluster. During the computation, the vertex program runs on each part in parallel, and the accu-
mulator and the updated vertex data are exchanged via network communication. In this way, edge
data of high-degree vertex can be evenly assigned across the machines in the cluster. Moreover, a
vertex program can also span among the machines, which helps improve work balance and reduce
communication. Since there exists communications between the vertex data (master) and its replicas
(mirrors), and the vertex replicas will increase the storage overhead of the system, the number of
split is carefully determined to reduce such network and storage overhead.

17.3.4 OPTIMIZATION TECHNIQUES

Based on the above system architectures, some works propose optimization techniques, which
improve the system performance significantly.

Pregel andGraphLab employ a vertex-centric programingmodel, which is easy for users to imple-
ment a lot of graph algorithms. However, this model hides the partition information from users,
which may result in heavy network (Pregel) or scheduling (GraphLab) overhead. To optimize the
performance, Tian et al. proposed Giraph++, which exploits a new “think like a graph” (graph-
centric) computation model. Giraph++ exposes the partition information to users, with which graph
algorithms can be optimized.
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FIGURE 17.5 Communication pattern of PowerGraph.

Xue et al. [24] found that most existing distributed graph computing systems (such as Pregel)
are inefficient in their memory usage, since they do not allow jobs to share graph data. As shown
in Figure 17.6a, when running concurrent jobs, each job maintains a separate graph data, though
the graph data may be duplicate. To solve the problem, they propose Seraph, which decouples the
graph data and the job-specific data, so that graph data can be shared among the jobs (shown in
Figure 17.6b); thus, memory usage can be reduced greatly. Moreover, Seraph exploits delta graph
checkpointing and state regeneration to implement efficient fault tolerance mechanism.

In terms of processing natural graph with skewed degree distribution, Pregel and GraphLab will
incur load imbalance and heavy data contention, while PowerGraph suffers from high vertex com-
munication overhead, even for the low-degree vertices. PowerLyra [25] improves the performance in
processing skewed graph through dynamically applying different computation and partition strate-
gies for vertices with different degrees. PowerLyra follows the computation model of PowerGraph
in the process of high-degree vertices, which guarantees high parallelism. For the low-degree ver-
tices, by preserving vertices and along with their one-direction edges (in or out-edges), PowerLyra

FIGURE 17.6 Manner of executing concurrent jobs. (a) Existing graph systems. (b) Seraph.
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performs local gathering, and distributed scattering to minimize the communication overhead. As
for the partition scheme, PowerLyra uses edge cut for low-degree vertex and reserve one-direction
edges for them; vertex cut was used to partition the vertices of high degree, whose edges are spanned
across many machines for the consideration of parallelism.

Synchronous and asynchronous checkpoints require to save the current vertex state to reliable
persistent storage (e.g., distributed file systems) and this state information will be loaded from the
storage and themissing steps where faults occurred for the recovery will be recomputed. This process
is costly for normal execution as well as the recovery stage. Wang et al. [26] introduced Imitator,
which supports an efficient fault-tolerant mechanism by replicating vertex state to their replicas. In
existing vertex-centric distributed graph computing systems, vertex replicas are originally used for
the local access of vertex state. Therefore, Imitator borrows the idea of fault tolerance of distributed
file system (DFS) to reuse these replicas for the backup of vertex data, and synchronization messages
between the master vertex and its mirrors can be used to keep the mirrors at the fresh state. In this
way, fault tolerance can be implemented with very low storage overhead. Moreover, replicas of a
vertex are spread across many machines, which means the recovery can be done in parallel, and this
process can be done fast since the state is read from Dynamic Random Access Memory (DRAM)
instead of disk-based storage.

17.4 REPRESENTATIVE SINGLE-NODE LARGE GRAPH COMPUTING SYSTEMS
AND OPTIMIZATION TECHNIQUES

Two representative single-node large graph computing systems based on disks are introduced in this
section, and then some optimization techniques on this field are given.

17.4.1 GRAPHCHI

GraphChi is a disk-based vertex-centric large graph computing system on a single machine. To pro-
cess a large graph with billion edges, it is necessary to use disk to extend the memory. However,
without careful design, a lot of random I/Os will be generated due to the nonstructured feature of
graph data and poor locality of graph algorithm; thus, the performance of processing large graphs
would be unacceptable.

To enable the efficient large graph processing based on disks, GraphChi first conducts a prepro-
cess to arrange the location of graph data on the disks, and then a novel computation model is used to
do the execution, which makes the access to storage sequentially with only a few random accesses.
Further, GraphChi’s computation model is asynchronous, which helps speed up the convergence of
some algorithms. Besides, the selective scheduling employed in GraphChi can mitigate I/O amount
for traversal algorithms, which further boosts the performance.

In the preprocessing phase, GraphChi first splits vertices into vertex subsets (intervals) based on
the rule that the number of in-edges of each interval is roughly equal and can fit into the memory.
Then, according to the intervals, GraphChi partitions edges into shards, and each shard stores all
the in-edges of the interval. Within a shard, the edges are sorted according to their source vertex
ID. Based on the preprocessing scheme, the Parallel Sliding Window (PSW) method is used to load
the graph from disks and computation for vertices is done in parallel. As shown in Figure 17.7, the
vertices of the graph are split into four intervals, where each interval associates a shard (a set of
edges). In an iteration, PSW executes the computation in intervals by processing the vertices one
interval at a time. When executing an interval, all the in-edges of that interval will be loaded from
the disks sequentially to the memory, and since the edges are ordered by their source vertex ID in
a shard, the out-edges of the interval are located in a block in other shards, so that another 3 (4-1)
sequential accesses in the example of Figure 17.7 are required to load the out-edges in an interval.
The experimental results show that GraphChi runs on a personal computer and has comparable or
even better performance than the distributed system with a number of machines.
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FIGURE 17.7 Visualization of the stages of one iteration of the Parallel Sliding Windows method.

17.4.2 X-STREAM

GraphChi achieves good performance on large graph computing by using disks on a single machine.
However, its preprocessing overhead is expensive, which requires to sort the edges within a shard to
reduce random accesses to edges on storage. X-Stream presents an edge-centric computation model,
which needs no preprocessing model, and takes full advantage of the sequential bandwidth of disks.

X-Stream is also a disk-based large graph computing system on a single machine. But different
from GraphChi’s vertex-centric computation model, it adopts an edge-centric computation model
and computational states are maintained on the vertices. Its computational model is shown in Fig-
ure 17.8. In the scatter phase, X-Stream iterates all the edges and sends the update over the edge,
and then in gather phase, iterates the updates and applies the update to the corresponding vertex.
This edge-centric approach accesses edges sequentially to make better use of the disk’s bandwidth.
However, it incurs random access on the vertex state. To mitigate this overhead, streaming parti-
tion approach is used, which partitions vertices into subsets, so that the states of a subset can fit
in high-speed memory (cache) for in-memory graphs, and main memory for out-of-core graphs.
Each vertex subsets associates an edge partition, which stores all the out-edges of that vertex subset.
Figure 17.9 shows the edge-centric computation model with streaming partitions. In the scatter
phase, X-Stream processes all the streaming partitions, and for each partition, it loads the vertex
subset, and then streams the edges on the storage to generate updates, and writes them to output
buffer (Uout). X-Stream appends the update of a edge to corresponding destination partition’s local
input buffer (Uin). In the gather phase, it reads the update value from Uin and updates the vertex
state.
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edge_sca�er (edge e)
send update over e;

update_gather (update u)
apply update u to u.des�na�on;

while not done
for each edege e
edge_sca�er(e);

for each update u
update_gather(u);

FIGURE 17.8 Edge-centric computation model.

Sca�er phase:
for each streaming par��on p

read in vertex set of p;
for each edge e in edge list of p

edge_sca�er(e): append update to Uout;

Shuffle phase:
for each update u in Uout

let p = par��on containing target of u;
append u to Uin(p);

destroy Uout;

Gather phase:
for each streaming par��on p

read in vertex set of p;
for each update u in Uin(p)

edge_gather(u);
destroy Uin(p);

FIGURE 17.9 Edge-centric computation model with streaming partition.

17.4.3 OPTIMIZATION TECHNIQUES

There are some other works that present optimization techniques to optimize the performance of a
single machine graph computing system based on disks.

GraphChi has the drawbacks of long preprocessing time and separated load and computation
phases. Cheng et al. [14] proposed VENUS, which adopts a novel computation model. In detail,
their computation model supports vertex-centric computation with streamlined processing. First, a
new sharding model (preprocessing) is used, where vertices are split into disjoint intervals, for each
interval, a g-shard and v-shard are created. The g-shard stores the in-edges of the interval, while the
v-shard contains all vertices in that g-shard, including the source and destination of each edge. The
in-edges of a g-shard are ordered by their destination vertex. Note that, since the update of a vertex
can be done when all in-edges of that vertex are loaded into the memory, there is no need to load
the whole subgraph (edges in an interval). Based on that, the interval is split to ensure that v-shard
can be fit in the memory. Second, based on the sharding model, the streamlined computation model
is proposed. As shown in Figure 17.10, the execution begins when the v-shard is loaded into the
memory, and the update of vertex starts when all its in-edges are read from storage, and the load
process of other vertices’ in-edges is conducted at the same time to parallelize I/O and computation,
while GraphChi needs both the out-edges and in-edges to update the value, and cannot parallelize
I/O and computations like VENUS.
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FIGURE 17.10 Vertex-centric streamlined processing.

In X-Stream, update values in the scatter phase can be as large as |E|, which may incur a large
amount of I/Os and result in suboptimal performance. Zhu et al. [15] proposed GridGraph, which
splits the vertices into P equal-sized vertex chunks; each vertex chunk contains vertices within a con-
tinuous range. Then the edges are partitioned into P × P blocks (grids), and an edge is distributed to
a gird based on the rule that the source vertex determines the row block, while the destination ver-
tex determines the column block. Figure 17.11 shows an example of GridGraph’s partition scheme.
Based on this storage layout, a novel dual sliding window computation model is used. Figure 17.12
shows the PageRank algorithm of the example graph (Figure 17.11) by using the computation model.
We use this example to illustrate the dual sliding window computation model. To update a vertex’s
pagerank value, GridGraph sequentially reads the edges of the block at the column-oriented target,
and the vertex values of source chunk and destination chunk are loaded in the memory, so updates
can be applied to the destination vertex in place, which avoids the overhead write to local buffer or
the disks in the worst case. Further, selective scheduling is employed to skip unnecessary blocks for
algorithms such as BFS (breadth first search) and WCC (weakly connected component) to boost the
performance.
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FIGURE 17.11 An example of GridGraph’s partition scheme.
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FIGURE 17.12 Illustration of dual sliding windows. It shows the first iteration of PageRank on the example
graph.

17.5 REPRESENTATIVE HETEROGENEOUS LARGE GRAPH COMPUTATION
SYSTEMS AND OPTIMIZATION TECHNIQUES

In this section, we introduce two heterogeneous graph computation systems based on SSDs and
GPU, respectively.

17.5.1 FLASHGRAPH

FlashGraph is a single machine large graph computing system based on an array of SSDs. Besides,
FlashGraph is a semiexternal system, which maintains algorithmic vertex state in the memory, and
edge data on storage. In addition, algorithms implemented in FlashGraph are executed by read-
ing/writing vertices and reading edges. In this way, bad write performance and endurance of SSDs
can be avoided. FlashGraph provides performance comparable to in-memory systems, and outper-
forms out-of-core systems. Moreover, FlashGraph adopts a vertex-centric computation model, and
requests the edge lists on demand; this is because the performance gap between the sequential access
and random access of SSD is much smaller than that of HHD.

To provide performance comparable to in-memory systems, FlashGraph uses an array of SSDs to
achieve the high throughput and low latency to storage. But the throughput and I/O latency of SSDs
is still far beyond that of DRAM. To overcome these challenges, FlashGraph is built on SAFS (set-
associative file system), which is used to refactor I/O scheduling, data placement, and data caching
for the extreme parallelism of modern NUMA multiprocessors.

Figure 17.13 shows the architecture of FlashGraph. The edge data are stored on SSDs, which
are accessed selectively, and a compact edge data format is applied to reduce the I/O amount. The
SSDs are managed by SAFS; to improve the performance, an asynchronous user-task I/O interface
is added to SAFS, which allows general-purpose computation in the page cache, so the overhead of
accessing data in page cache and memory consumption can be reduced. Besides, it overlaps the I/O
and computation. The graph engine is responsible for the schedules of vertex programs; to optimize
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FIGURE 17.13 Architecture of FlashGraph.

the performance, the engine will merge the adjacent I/O requests of vertex programs, which not
only reduces the I/O amount but also performs I/O sequentially. FlashGraph exposes vertex-centric
interface to users, with which a variety of graph algorithms can be expressed.

17.5.2 TOTEM

The hybrid systems with processing units of different characteristics optimized for both sequential
processing and bulk processing (e.g., GPU) have the potential to enable efficient large graph process-
ing. However, before that, some challenges need to be addressed, for example, the graph partition
and load assignment for assistant processing units.

TOTEM exploits a low time and space complexity graph partitioning algorithm based on vertex
connectivity. Besides, in the CPU–GPU hybrid system, the communication of graph processing can
be significantly reduced by aggregating and batching messages (assisted by the high bandwidth of
the PCI-E bus that typically connects discrete GPUs); in this case, computation is the main bottle-
neck. The vertex connectivity here is quantized by vertex degree. By doing so, most graphs can be
partitioned into different degrees of parallelism, which match the different processing elements with
varied processing ability, and are more likely to result in balanced workloads among the processing
units. One straight idea of implementing the partition scheme is to sort the vertices according to their
degree in place, which results in O(|V| log |V|) time complexity. However, there is no need to sort
the vertices completely; a partial sort can be applied (i.e., finding the degree values that divide the
graph into the desired partitions), which takes O(|V|) time complexity.

TOTEM offloads low-degree vertices to GPU for the computation; this is because low-degree
vertices have a few connected edges, which are a good choice for memory-limited GPU. Besides,
most natural graphs follow power-law degree distribution, where most vertices have a few edges,
and few vertices adjacent to a large number of edges. Therefore, offloading many low-degree ver-
tices to GPU and placing a few high-degree vertices on CPU matches the level of parallelism
offered by the processing element. Moreover, this assignment achieves good load balance across the
cores.



Large Graph Computing Systems 361

17.6 SUMMARY

In this chapter, we introduce the representative distributed, single node based on disks, and het-
erogeneous large graph computing systems. For the distributed large graph computing systems, the
partition scheme, communication model, and fault tolerance are three important aspects that affect
the system’s performance significantly. For the single-node large graph computing systems based
on disks, I/Os are the main bottleneck; to boost the performance, we should concentrate on the data
layout and data format on the storage. Of course, a proper computation model based on the layout
and format should also be carefully designed. For the heterogeneous large graph computing sys-
tems based on SSDs, we need to keep the characteristics of SSDs in mind, for example, the I/O
parallelism, small performance gap between sequential access and random access, and wear out, to
design the system, which can take fully advantage of the good features of SSDs and avoid or reduce
impacts brought by the bad side. As for the heterogeneous CPU–GPU, we should fully make better
use of the high parallelism offered by GPU, and consider its limited memory size to offload proper
tasks to it; besides, the work load balance among the cores is also the key factor we need to take into
consideration.

The research field of large graph computing system has experienced good developments and some
breakthroughs, but as we described above, there still remains some open issues to be addressed in
all kinds of systems. And we look forward to more research work in this direction.
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ABSTRACT

The leverage of high-throughput technologies in biology area brings the academia and industry an
enormous amount of “omics” data. These data include genomics data and proteomics data. In this
chapter we considermostly on the genomics data. Benefited from the development of “BigData” area
and also the domain knowledge driven by genomics data, two subsequent areas including precision
medicine and cancer genomics, are discussed in this chapter. Meanwhile, we consider genomics data
from the “Big Data” landscape and give a comprehensive “life cycle” on these data. Two significant
and state-of-the-art cases in genomics data study are also presented. These two cases, which are
ENCODE and CGHub, show inspiring and interesting results by the integration of big data analytics
technology in genomics data. As the life science, biomedicine and health care sectors are at a turning
point into data intensive science. Since we could benefit from the overwhelming genomics data, big
data analytics shows us a promising potential to deliver a better understanding and improvement of
our life.

18.1 INTRODUCTION

In recent years, bioinformatics has drawn much attention from the academia and industry. The many
advanced tools and in-depth analyses provide a deeper understanding of the internal and correlated
meanings of different mechanisms of themolecular systems on the Earth.With high-throughput tech-
nologies, the increasing amount of “omics” data, including proteomics and genomics, have boosted
this even further. An upsurge of interest for data analytics in bioinformatics comes as no surprise to
researchers from a variety of disciplines. Specifically, the astonishing rate at which genomics and
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FIGURE 18.1 The future of genomics rests on the foundation of the Human Genome Project. (From Francis
S. Collins et al. Nature, 422(6934):835–847, 2003.)

genetic data are generated leads the researchers into the realm of “big data.” This chapter is dedi-
cated to providing an update of the genomics background and the state-of-the-art developments in
the genomics area from the perspective of big data analytics.

18.1.1 HISTORY OF GENOMICS

The study of genomics started since the 1990s when the Human Genome Project (HGP) launched
its research on a complete sequence of all three billion base pairs in the human genome. The exper-
imental genomics, which provides the veracious data of life at the molecular level, promises to
revolutionize the way in which cells and cellular processes have been studied [1]. The HGP was
designed as a three-step program to produce genetic maps, physical maps, and then the complete
nucleotide sequence map of human chromosomes [2]. Besides the development of sequencing and
genotyping technologies in the past few decades, computational biology has become intrinsic to
modern biological research [3].

The main contribution of HGP is the generation of large, publicly available, and comprehen-
sive genomics data [3]. On April 14, 2003, the USA’s National Human Genome Research Institute
(NHGRI), the Department of Energy (DOE), and their partners in the International Human Genome
Sequencing Consortium announced the successful completion of the HGP within the state-of-the-art
technology [4]. Not only human beings but also other species are being sequenced. In 1995, the first
bacterium genome sequence was completed, namely, Haemophilus influenza. Saccharomyces cere-
visiae (a type of beer yeast) was completely sequenced in 1996. In 2000, Drosophila melanogaster,
the well-known fruit fly, had its full genome sequence of the model organism completed. The latest
sequenced species in records is Zebrafish, which was completed in 2013. So far, increasingly dif-
ferent types of life on Earth are being sequenced, which means that more and more corresponding
genomics and proteomics data have been recorded. As shown in Figure 18.1, it details the future of
genomics firmly resting on the foundation of HGP [3]. Three themes are presented: the genomics
to biology, the genomics to health, and the genomics to society. There are six critically important
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components relevant to the themes, which are resources, technology development, computational
biology, training, ELSI (ethical, legal, and social implications), and education.

It has been a promising research area that integrates computational and experimental technology
components [3]. The emergent availability of massive biological data has necessitated the involve-
ment of a bunch of computational technologies, including the big data analytics tools, data mining,
and machine learning, to cooperatively handle these data. The key issue in the next-generation
biomedical research is how to address the computational technology toward developing data-driven
decision support systems, in order to help biologists either design further experiments or conduct
data analysis.

18.1.2 GENOMICS DATA

With the impressive drop in cost of high-throughput instruments, there are now many biology labs
that are able to produce data as quickly and vastly as they want. Comparing genomics data with other
major areas of “big data,” such as proteomics data, astronomy data, particle physics data, website
resources (such as YouTube, Twitter), and so on, it is very critical to have an insightful view about
genomics via big data analytics [5], as genomics data are being produced at an extraordinary speed
and has its specific domain knowledge.

Every year, over 25 zetabytes (ZB) of data are being produced in the field of astronomy [5]. The
same phenomenon occurs in particle physics, which produces massive quantities of raw data. How-
ever, very less data are kept for storing and further analysis after data cleansing and preprocessing. In
the genomics area, around 1 ZB data are generated annually. There aremore than 7000 recorded high-
throughput instruments all over the world. These instruments are located in nearly 1000 sequencing
centers [5]. It is approximated that over the next 10 years, the sequencing genomics data of over 1.2
million reported species of plants and animals would be encompassed.

Genomics data refer to the genome and DNA/RNA data of the organism. Typically, it is the
representation in an alphabetical array for every sequence. It is a chemical and mechanical pro-
cess essentially to “digitize” the information present in the DNA and RNA. Besides these data,
other available omics data, which include transcriptomics, methylomics, and metabolomics data,
could be integrated hierarchically to improve our further understanding from the genotype to the
phenotype [6]. Either for considering individual data type for specific domain study or integrating
related data types for knowledge discovery between different domains, a data-driven framework built
upon a comprehensive representation of biology is desired to ease the upsurge of data and facilitate
bioinformatics research.

For example, in one of our recent work, considering that the proteomics data is publicly avail-
able and is an expression of genomics data, we had drilled big data analytics into the proteomics
area to facilitate the experimental research of biologists. To be specific, among proteomics research,
direct benefit from proteomics would be infectious diseases. Thus, in our work, where pathogen–host
protein–protein interaction (PHPPI) is considered as the key infection process at the molecular level,
a proper representation of the proteomics data would introduce a high dimensionality issue, while
a highly skewed ratio between positive and negative PHPPIs exists in a big dataset [7]. The highly
skewed ratio is normally set to be 1:100 to 1:500. Considering the variety of infectious diseases and
the rising number of proteomics data, a powerful and comprehensive model is desired in this area to
help biologists to analyze these proteomics data.

These omics data, including genomics, proteomics, and so on, have revolutionized system biol-
ogy for a better understanding of biological mechanisms [8]. Bottlenecks and opportunities are
posed by a growing gap between the abilities in generating and interpreting these data. The cost
and difficulties in quantitative experiment have been relatively controllable nowadays, whereas the
challenges are brought in the data analysis stage, which involves data management, integration, anal-
ysis, and interpretation [9]. Now it has become even more challenging, as precision medicine is
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gaining intensive attentions recently, and the cooperation of big data analytics with researchers on
personalized medicine has also become very promising.

18.1.3 CHALLENGES AHEAD

While extensive specialized analyses are required when data become extremely large, different big
data areas have different domain knowledge. The interpretation of genomics sequences and analysis
of DNA expression, and the research of mutations and developments at the molecular level are the
main vision of genomics [5]. Incorporated with big data analytics technologies, an integration of
biology domain expertise, data science, machine learning, and even an infrastructure with powerful
computation capability are required to achieve these goals. There is no clear consensus among and
within biologists and bioinformatics researchers nowadays to best describe the process of leveraging
the available omics data to interpret such a domain knowledge, which could be either discovering
previously unknown insights or looking for specific patterns [10], such as recognizing the locations
of transcription start sites [11]. Today, many research institutions and companies are utilizing their
specialty domain knowledge to define and explore their own big data solutions for analyzing these
omics data for further research and application [12,13].

Since profiling genomics data is no longer a bottleneck for biology study, an efficient frame-
work for data storage, transfer, and analysis is desired. Unlike the traditional dataset, a single
genome sequencing file could be several gigabytes; meanwhile, the worldwide distribution of high-
throughput instruments would have facilitated research on formulating a fast and qualified system
for cooperation. These specifications in the genomics area call for more considerations in data
acquisition, data transfer, data storage, and data analysis.

The next section provides an in-depth view of the genomics area and its knowledge delivered
by cooperation with big data analytics technology. In the third section, we will detail the current
research on data science in the genomics area.

18.2 DOMAIN KNOWLEDGE DRIVEN BY GENOMICS DATA: IN-DEPTH VIEW

The general definition of “big data” includes using inductive statistics and concepts from nonlinear
system identification to infer laws (regressions, nonlinear relationships, and causal effects) from
large dataset to reveal relationships, dependencies, and to perform predictions of outcomes and
behaviors. By now, the DNA data deluge comes from thousands of sources.More than 7000 sequenc-
ing instruments are dispersed around the world, generating genomics data, and sooner or later, there
will be tens of thousands of profiling instruments. As a consequence, both the storage and com-
putation burden have been increasing dramatically. In spite of these challenges, how to narrow the
gap and build an efficient connection between genomics data and the domain knowledge we want
to discover is an urgent research problem. Precision medicine and cancer genomics are two major
subareas that we would like to discuss in this section.

18.2.1 KNOWLEDGE FOR PRECISION MEDICINE

As genomics data pile up at an extraordinary speed and volume, biomedicine area is increasingly
turning into cross-disciplines of data science [10,14,15]. Specifically, it delivers a promising fortune
toward precision and personalized research, which means a P4 medicine: predictive, preventive,
participatory, and personalized [16].

On January 20, 2015, U.S. President Barack Obama announced a program to launch a new Pre-
cision Medicine Initiative, which takes a closer look at curing diseases like cancer and diabetes. The
ultimate goal is to generate a medical solution according to the personalized information to keep the
human body healthy. According to the definition of precisionmedicine in Reference 17, besides other
biological databases, it is important to consider individual information to pose a possible precaution
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FIGURE 18.2 Basic framework of personalized medicine. (From Akram Alyass et al. BMC Medical
Genomics, 8(1):33, 2015.)

and treatment solution against diseases. Even though the development of high-throughput technolo-
gies has lowered the cost of data acquisition, the development of electronic medical system is still
on its early stage for data acquisition. Currently, there are two main components being discussed in
precision medicine: a near-term in personalized therapeutic solution for specific disease and a long-
term in knowledge extraction for better health [12]. A basic framework of personalized medicine,
as shown in Figure 18.2, was proposed. The accumulated genomics data also simulate the devel-
opment of system biology, which is an integrative research strategy for tackling the complexity of
biological systems and interpreting their behavior and interactions across all organization levels [18].
The precision medicine benefits from the overwhelming medical data, which establishes a new link
between genes, biologic functions, and the related diseases [18–21]. Analogous to the proteomics
area, assembling genomics data in system biology could deliver a trustful graphical representation
of biological interaction maps, and further compute a predictive and dynamic model of organisms
and diseases. The advancement in identifying the interactions between proteins reduced the false-
positive rate and improved the quality of curated datasets [22,23]. In cooperation with genomics
data, a study that utilized machine-learning methods to recognize the locations of transcription start
sites in a genome sequence [11] has been a great start. Similar studies are supposed to be conducted
on splice sites, promoters, or positioned nucleosomes identification [24–27].

The genomics-related medicine research is known as “genomics medicine” [28], which has a
consensus definition “using an individual patients genotypic information in their clinical care” [29].
However, the approach to an effective precision medicine solution is currently in its very early stage
of development incorporating with genomics data. The private protocol issues would be a hindrance
in both the electronic medical system development and genomics data sequencing stage.

In order to generate a precision medicine solution, not only genomics data would be involved,
but also other omics data, especially the electronic medical records. This particular vision provides



368 Big Data Management and Processing

a hierarchical framework as the physiology and pathophysiology do, in which there is a belief that
“genetic can be used to definitely explain features that our genome might accurately indicate the
individual risk of developing diseases” [30]. Some specific examples in therapy-related study have
been done, such as the discussion of the relevance of CYP2D6 in breast cancer tamoxifen therapy
decision [31], which tried to interpret the genotype–phenotype association of cancer.

A rational scheme of precision medicine would require each person’s genomics profile, which
raises not only ethical or legal issues, but also the modeling, computing, and analyzing ability prob-
lems. Even though almost 2000 clinical conditions are achieved with genetic testing nowadays, the
effective electronic health records (EHRs) still need to be further developed, in an efficient way,
which would accordingly produce a comprehensive and individual-specific data [32]. The ultimate
goal for precision medicine would be aiming to deliver the exact right treatment at a right dose at a
right time, with minimum illness consequences and maximum efficacy [33,34].

18.2.2 KNOWLEDGE FOR CANCER GENOMICS

Among the overwhelming amount of genomics data, big data analytics provides a novel paradigm
to retrieve information into the related domain knowledge. Besides the precision medicine area,
several other research areas, such as functional traits research [35], rice genome project [36], and
plant genome annotation and function prediction [37], have been raised associating with the boosting
genomics data. In this section, wewill discuss another major area: cancer genomics, which covers the
study of cancer mechanism, mutation prevention and detection, and cancer treatment. As an impor-
tant step toward precision medicine, cancer genomics study is one of the most important discovery
science areas [38]. A proposed paradigm from cancer genomics to precision medicine is shown in
Figure 18.3. The gap between cancer genomics and precision medicine is wide, and bridging this gap
is far from straightforward. The major ethical proof, data profiling and annotation, and the integra-
tion of domain knowledge are the first layer hurdles. Proper patient consents are required to proceed
to data generation and computational analyses. Furthermore, an efficient knowledge-based system
to process data to achieve functional and mechanistic studies is desired. Since cancer is considered
as a disease of genome mutation, the more biologists learn from cancer tumors, the more they put the
belief in the finding that each single cancer tumor is a representation of one specific set of genome
changes. Even though its effect in clinic is currently limited because of the gap between cancer study
and therapeutic decision, cancer genomics is considered to affect every corner of cancer research and
would be extended as a critical link for personalized cancer medicine [39,40].

Most of the data science research on cancer genomics area are currently conducted on pattern
detection problems. Our previous work once aimed to achieve a fast and accurate cancer subtype
classification on genomics dataset. Machine-learning technology is the most popular method in
classification. Specifically, extreme learning machines (ELM), support vector machine (SVM), gen-
eral vector machine (GVM), and the state-of-the-art deep learning methods have been deployed
to tackle the gene expression data classification problem [41,42]. In the classification problem of
cancer genomics dataset, the small quantity of samples and high dimensionality are two main hin-
drances for learning model development. As cancer genomics data piling, a relatively big dataset
with high dimension would appear in the near future, which is supposed to be an important but also
a challenging branch of machine-learning application in the big data area.

There are two major consortia in the cancer genomics area, which are The Cancer Genome Atlas
(TCGA) Research Network and the International Cancer Genome Consortium (ICGC). Both tumor
and healthy cells from over 1000 patients have been sequenced and molecular differences have been
recorded in TCGA across 34 cancer types. These data are currently held at the Cancer Genomics
Hub at the University of California, Santa Cruz (UCSC). Also, for ICGC, more than 666 terabytes
of data have been profiled. The recent ICGC data release is version 21, which contains 68 different
cancer projects covering 18,677 donors. These data are housed on separate repositories, such as
the European Genome-phenome Archive (EGA-Hinxton), Pan-Cancer Analysis of Whole Genomes
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FIGURE 18.3 From cancer genomics to personalized medicine. (From Lynda Chin et al. Nature Medicine,
17(3):297–303, 2011.)

(PCAWG), Genomic Data Commons in the University of Chicago (GDC), and so on. As a benefit
of cloud computing technologies, more and more data are now being transferred to Amazon Web
Services (AWS). Figure 18.4 shows a statistic diagram of ICGC. Meanwhile, the Broads Genome
Data Analysis Center (GDAC) is another genome data center that processes TCGA data through



370 Big Data Management and Processing

FIGURE 18.4 A statistic diagram from ICGC data portal.

their computational framework to generate analysis reports. This pipeline shown in Figure 18.5 in
the computational framework is called Firehose.

However, most of the ongoing work still focuses on data acquisition and storage. Especially
for some controlled data, the ethical and legal policies still need more consolidation efforts and
a proper protocol to process. An in-depth analysis, such as a specific discovery, which is previously
unreported loss-of-function mutations in HLA-A gene in over 170 squamous cell lung cancers by
“The Cancer Genome Atlas Research Network” (TCGA) [43], has shown the power and importance
of network collaboration. Beyond TCGA, these data would need to be more publicly available to
researchers all over the world to facilitate the analysis.

FIGURE 18.5 Broads genome data analysis center: Firehose. (From Vivien Marx. Nature Methods,
10(4):293–297, 2013.)
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With the benefits from high-throughput technologies, cancer genomics is able to compare the
genomics sequences, epigenomics profiles, and even the transcriptomics data between tumor cells
and normal cells [44]. As the increasing research on genomics aberrations inspires to target on the
ultimate goal, that is, personalized cancer medicine, the future focus of cancer genomics falls on
the identification of new genetic aberrations [45], which is the critical aspect in revealing the cancer
mechanism. Specifically, as cancer mostly occurs due to somatic mutations in genome with addi-
tional contributions from epigenetic and transcriptomics alterations, one of the in-depth analyses
is mainly focused on the somatic mutations in cancer genomics data. This awareness focusing on
somatic mutations research has promised us within the reach of personalized cancer medicine [46],
in which three main challenges are considered as the key hurdles. The first issue is to identify the
somatic mutations from the short sequence reads, the second issue is to distinguish the responsible
but small somatic mutation for the development and progression of cancer, and the last one is to
determine the developing biological pathways and processes that are expressed by these somatic
mutations [45].

Along with the studies on cancer mechanism via cancer genomics, research on cancer treatments
is another main area in cancer genomics. Through the enhanced understanding of molecular mecha-
nisms of cancer, it is meaningful to translate the genomics data to improve cancer prevention, early
detection, diagnosis, and treatment [47]. This would also be the link between cancer genomics and
precision medicine, especially personalized cancer medicine, in modern oncology. Since very tiny
changes in DNAs and RNAs could possibly introduce large-scale effects on the phenotype [48],
the more we know by extracting from cancer genomics, the deeper and closer we are able to get a
precision treatment.

Early-stage research is ongoing in the area of associating the high or low levels of gene
expression with profiles of increased sensitivity or resistance to specific compounds [39,49].
As TCGA and ICGC are generating an overwhelming amount of cancer genomics data, both
whole genome sequencing and targeted genome sequencing are promising to reveal individual
genomics variants information [40,45]. The research on cancer treatments associated with genomics
aims to detect the molecularly targeted therapies based on the genomics alterations in patient’s
tumor, from the perspectives of initiation and progression of cancer [50,51]. A specific research
based on integration of analyzing complex cancer genomics and clinical profiles is introduced
in Reference 52. Focusing on visualization and analysis of multidimensional cancer genomics
data, Reference 52 provides a portal, namely, cBioPortal, to process the overwhelming surge of
multidimensional genomics data. Currently, the users are able to view some basic patterns in
gene alterations across samples in a cancer study, even to link the patterns to clinical outcomes
when the related data are available. Yet, the future direction for cBioPortal is to include more
genomics data types and clinical attributes. The related genomics data types include somatic muta-
tions, DNA copy-number alterations (CNAs), mRNA and micro-RNA (miRNA) expression, DNA
methylation, and proteomics data. The feature of batch download of complete datasets is also
anticipated.

The gap between the study of precision medicine and cancer genomics is wide, and currently the
research strength on translating genomics data from genotype to phenotype could not yet reduce
the gap and bind these two areas together. This intrigues the introduction of data science, especially
big data-related research, into this domain. Focusing on the early stage of big data analytics in the
genomics area, we will provide a discussion about data management and analysis in genomics data
in the next section.

18.3 EMERGING BIG DATA LANDSCAPE IN GENOMICS

As discussed in the earlier sections, to adapt big data analytics technologies in the genomics area,
a scientific community consisting of bioinformatics, biomathematics, and biostatistics would be
desired to transfer the genomics data to its biological meaning, which targets both precisionmedicine
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and cancer genomics areas [8]. At the turning point toward a data-intensive research in the bioin-
formatics area, we are able to decipher the potential clues on the mechanisms underlying disease
initiation and progression, as well as providing further novel strategies for efficient prevention and
treatment [8,9,53]. Inside these expectations, the effort in drilling the big data analytics technology
into genomics data entails many challenges and future research directions. Although there are very
few studies to reveal and establish a general or specific model on discovering the inner value out of
genomics data for further study of disease mechanism, interventions, and treatments, the bottleneck
has been shifted from the genomics data profiling to data management, which includes acquisition,
transfer, and storage.

A basic “life cycle” of a dataset encompasses data acquisition, data transfer, data storage, and
data analysis. In bioinformatics, the typical initialized dataset size was about 2.5 gigabyte in the
year 2000, which was publicly available on the file transfer protocol site of the University of Cali-
fornia, Santa Cruz [54]. In 2012, the dataset size was reported to be approximately 170 terabyte in
the Cancer Genomics Hub (CGHub) [55,56]. Beyond the size of dataset, the computational infras-
tructure and software tools need to meet the requirement of the analysis tasks. Comparing with the
data in astronomy, the data in genomics is much more heterogeneous [5], which brings more chal-
lenges when considering that even a single human sequencing genome is around 140 gigabyte in
size nowadays.

Utilizing and optimizing the technologies in the big data area for genomics require special exper-
tise and experiences in data sciences. As stated above, data are the key to interpret these inner
meanings. In this section, the emerging big data landscape in genomics would introduce several
novel ideas to overcome the challenges in dataset transfer, storage, and computation.

18.3.1 DATA ACQUISITION

According to the facilities recorded in Reference 47, currently there are 7389 high-throughput “next-
generation” sequencing machines situated in 1027 centers, out of which most of the machines are
situated in the United States (5492 machines). These machines are the main data acquisition access
of genomics. Since most machines are located in the United States, these sequencing data are mostly
archived in Sequence Read Archive (SRA) maintained by the United States National Institutes of
Health/National Center for Biotechnology Information (NIH/NCBI). Besides these direct sequenc-
ing data, the TCGA and ICGC also archive the cancer genomics data from both tumor and healthy
cells. The genomics data are heterogeneous and the research focus of these centers differs from each
other. Currently the genomics data are highly distributed and stored in different satellite sites as a
consequence of the location distribution.

For the highly distributed data sites, a comprehensive dataset repository in one single site seems
to be impossible in a short term. Besides the data transfer to AWS, there is also an ongoing project
in ICGC that transfers data from different satellite sites to a single controllable repository, which is
considered as a much more efficient way to maintain and distribute the data [13]. However, for other
big data areas, the data acquisition accesses and acquisition differ a lot [5]. In the astronomy area, the
astronomical data are acquired by limited specialist facilities [57,58], while in the video area, most
of the video data comes from YouTube streaming clips under several standard protocols. The fMRI
(functional magnetic resonance imaging) images are collected with controllable converted formats
by some centralized facilities.

Data quality control is an important aspect for genomics data, since these data are generally
unaligned and noisy. In some occasions, data value would be even missing. The electronic internal
fluctuations of the instruments result in a nonconsistent performance across the profiling process.
Considering the published dataset, the Genomics of Drug Sensitivity in Cancer project, it contains
639 cancer cell lines, which are described by a set of genomics features [39]. However, the data-
missing problem reduces the available training dataset from 639 to 608, which results in less data
samples. To uncover the knowledge beneath these data, a simple target toward data analysis is not
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enough since the data consist of multiple levels for their own corresponding meanings, including
DNA sequencing data, RNA expression data, miRNA data, and so on.

To accommodate these problems, completing the missing data via data analytics method and
designing a rational data integrationmodel frommultiple levels are required. A hybrid understanding
on these data is critical in the data acquisition stage and may lead to a more meaningful and better
knowledge discovery.

18.3.2 DATA TRANSFER

It becomes increasingly challenging for a single facility to host its own data on a single machine since
the upsurge speed of data is exceeding theMoore’s law. Over the next 10 years, the sequencing speed
and capacity are expected to grow continually. As collaborations are more common nowadays, the
data in TCGA and ICGC are deposited in the corresponding portal and also every collaborator houses
their own data. Considering the heterogeneity in omics data, the various communities supported by
different foundering agencies also generate their own omics data [59]. An increasing motivation to
share and transfer the data from the data portal to scientists at high speed has been significantly
raised.

As a starting maneuver, some ICGC data are deposited in the European Genome Phoneme
Archive [13]. Meanwhile, each ICGC collaboration country (since PCAWG is distributed by coun-
tries) and AWS also house their own data. Yet, the network issues have been occasionally occurring
and brought inconvenience to scientists. Thus, now, a centralized database is being built to host all
the interpreted data. This centralized database is chosen to be located in the Ontario Institute for
Cancer Research (OICR). With such a strategy that centralized administering data by one single
portal site, a faster and more stable connectivity is critical in data transfer. Currently, the Beijing
Genomics Institute (BGI) in Shenzhen, China, is able to generate 6 terabytes of genomics data per
day. BGI can transfer about 1 terabyte per day to its customer. By exploring a variety of technolo-
gies for data transfer over the Internet, BGI has a vision that their transferred ability could reach
24 gigabyte every 30 seconds when transferring data from China to University of California, San
Diego (UCSD) [60]. However, this technology, namely, FASP, also requires the operators to main-
tain an extremely large bandwidth, which makes the transfer of data expensive in the genomics
area.

An improvement on the Internet protocol itself would be a direct solution for big data trans-
fer in genomics, such as Internet2 [61]. Aside from protocol technology, data compression on the
DNA sequence reads, specifically in the FASTQ format, is another aspect to speed up the data trans-
fer [55,62–65]. FASTQ format is a standard format for storing both a biological sequence and its
corresponding quality scores. Another method to boost the data transfer speed would be realized via
the efficient data distribution [55,63,66].

However, data transfer could be one of the less critical bottlenecks to apply big data analyt-
ics in genomics, while data storage strategy is supposed to significantly affect the performance
of data processing. Since a single genome data file could be several gigabytes and also the data
are highly distributed all over the world, the data analysis neither on the cloud nor the local stor-
age in a raw data format could be limited. This introduces the discussion of the genomics data
storage.

18.3.3 DATA STORAGE

Petabyte-level storage management is required nowadays to tackle the storage demands in many
big data areas. In the genomics area, the huge demand for storage mainly comes from the raw
genomics data. Since the storage issue has been identified and shifted from the physical storage
issues to the data itself, nowadays, shipping is still the main method to transfer large quantities of
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FIGURE 18.6 A referential compression sequence. (From Sebastian Wandelt. Datenbank-Spektrum,
12(3):161–171, 2012.)

sequence data [67]. Thus, an efficient method to store the genomics data remains a major challenge
for genomics data.

A method that encodes the difference between a logging genome sequence and a recorded refer-
ence genome sequence was introduced in Reference 68. Considering that a single human genome
that might occupy three gigabytes of storage, it would be 150 terabyte when it might reach 50,000
human genomes [67]. Different from traditional data compression algorithms, bioinformatics uti-
lizes a referential data compression algorithm to avoid a huge decompression time consumption
and keep the absolute fidelity of the raw sequence data [5,69,70]. A simple example for referential
compression sequence is shown in Figure 18.6. A developed algorithm based on this compression
schema could reach an evolutionary compression rate of 400:1 or even higher [67,68]. Shown as
Figure 18.6, the reference sequence is set to be “GCAAAACAAAGT” while normally we used the
Revised Cambridge Reference Sequence (rCRS). It is represented by its coordinate positions. For the
uncompressed sequence, “AAAGGCAAAATA,” the matches (7,4) and (0,6) indicate the segments
of “AAAG” and “GCAAAA” by the start position and the length of the segments. The last segment,
which is “TA,” is stored in its raw data format since there is no good matching in the reference
sequence.

To achieve an optimal compression algorithm and develop it into a standard is a promising effort
to facilitate the storage of genomics data efficiently. However, using the compression strategy on
genomics data to resolve the data storage problem remains open and a challenge for researchers [67].
A balance between compression speed and compression rate is one of the critical issues. Another
issue after the data compression is about how to utilize these compressed sequences directly. Despite
the data compression aspect in storage, data reduction is also a main aspect in data storage, which
introduces great opportunities for a direct understanding of the raw genomics data. As soon as the
real-time abstraction method becomes mature, these raw data will be redundant and no longer need
to be stored in their raw representation method.
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18.3.4 DATA ANALYSIS

Data analysis is the final stage that matters the most. It is the primary challenge when the researchers
aim to learn knowledge from the massive genomics data. A functional data analysis comprises data
visualization, data relationship network mapping, data relationship rules extraction, and data pre-
diction. Genomics data is heterogeneous and high dimensional, it fits perfectly with the four “Vs”
definition of big data: which are high volume, high velocity, high variety, and high veracity [71–73].

As data science is now flourishing with overwhelming data, various frameworks and tools have
been developed. Taking TCGA as an example, every two weeks, the Broads Genome Data Anal-
ysis Center (GDAC) processes the TCGA data by the computational framework Firehose and
releases a brief analysis report, profiling the significant alterations, and correlatingmethylation status
with clinical features and mutated genes. Meanwhile, another framework, namely, SeqWare, takes
consideration of a small portion of ICGC data to release a report.

One important aspect of data analysis is data visualization. In the knowledge extraction phase, a
useful and important step is offering an intuitive visualization of the genomics data to display the
different types of alterations. As long as the visualization techniques are employed in many areas,
several tools such as Circos, Gitools, the UCSC Cancer Genomics Browser, the Cancer Genome
Workbench, and the cBio Cancer Genomics Portal are developed [44,74–78]. The visualization tech-
niques offer a visual exploration mostly for the cancer genomics area, in which the concerned data
could reveal the cancer initialization genes and pathways. Several examples have been visualized
in Reference 37, which are distinguishing the alterations in cancer-driven genome data in tumors,
studying the cause–effect relationships between different alteration types data in tumor samples,
stratifying the tumor samples based on clinical annotations data, and mapping the global alteration
profile patterns on the rearrangement of large chromosomal regions data. Visualization of cancer
genomics data is critical to translate knowledge of cancer genomics data into a possible person-
alized cancer medicine, which provides challenges and opportunities for the complex genomics
data.

Since machine-learning methods have been extensively employed in almost every scientific and
engineering area, it has been considered as the next powerful toolbox to interpret the genomics data
and act as an important piece of precision medicine [79–82]. An example utilizing machine learning
in genomics is to learn to recognize the locations of transcription start sites (TSSs) in a genome
sequence [11,26]. As a blend of machine learning and bioinformatics, it develops into several special
learning models considering the application situations in the genomics area, including supervised
learning and unsupervised learning.

As quoted from the “no free lunch theorems” [83], there is not an exactly perfect machine-learning
algorithmworking for all applications. In the bioinformatics area, especially in the genomics area, the
various types of biology knowledge at hand are critical in selecting a proper model. However, mostly
it is implicit in mapping the prior knowledge into the framing of the machine-learning problem [26].
For example, there was a study to quantitatively link the genomics data with its functional traits by
utilizing the whole genome sequence data from the related microbial communities [35]. In Reference
80, both the multilayer perceptron (MLP) and radial basis function neural networks (RBFNN) have
been employed to predict the probability of membership of one individual in a phenotypic class of
interest using genomics and phenotypic data.

Alongwith several other issues, such as handling of heterogeneous data [84–89], feature selection,
imbalanced datasets, and the missing data considering different data sources, using the machine-
learning methods to provide a comprehensive analysis and prediction in the genomics area remains
challenging, yet promising [90,91].

In a nutshell, the ultimate goal for big data analytics in the genomics area is to be able to interpret
genomics sequence, and further reach out to answer the relationship between genotype and pheno-
type data. To accomplish this goal, a hybrid understanding and cooperation from different domains,
including data science, computer science, genomics specialist, and so on [59,92–95], are required.
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In the next section, we will discuss two major projects: ENCODE project and CGHub project, to
show how big data analytics could facilitate genomics research.

18.4 CASES IN GENOMICS ANALYTICS AND BIOINFORMATICS

Several research have achieved inspiring and interesting results from the analyses of big data in
genomics. In this section, we will review some state-of-the-art achievements. One is the ENCODE
project [92] and the other is the CGHub project [55,56].

18.4.1 ENCODE

The ENCODE (the encyclopedia of DNA Elements) project aims to project all the human genome
to their corresponding functional elements. Launched in 2003, ENCODE involved more than 400
leading scientists and processed more than 11,972 files, with a size of more than 15 terabyte. The
NHGRI established a worldwide research consortium.

Started with two phases simultaneously, a pilot phase and a technology development phase, cur-
rently, ENCODE is on its third phase, the production phase. The pilot phase tested and compared
existing methods to rigorously analyze a defined portion of the human genome sequence, while
the technology development phase scaled the ENCODE project to a production phase on the entire
genome along with additional pilot-scale studies. The report of the pilot phase was published in June
2007 [96]. The findings highlighted the success of the project to identify and characterize functional
elements in the human genome. The technology development phase has also been a success with the
promotion of several new technologies to generate high-throughput data on functional elements.

The successes of the pilot phase and technology development phase stimulate the NHGRI to
fund more studies in order to scale the ENCODE project to a production phase. Meanwhile, the
production phase starts to include a Data Coordination Center, which is located at the University of
California, Santa Cruz, to offer a storage, analysis, and service of the ENCODE data. Currently, there
are over 440 scientists from 32 laboratories participating in the ENCODE project and the tasks are
also assigned over different subgroups in the ENCODE Consortium, namely, Production Centers,
Data Coordination Center, Data Analysis Center, Computational Analysis Awards, and Technology
Development Effort.

The pilot phase targeted to identify gaps in current tools and data for detecting functional
sequences, and also evaluate the efficiency of the available methods in a large-scale scenario. This
phase involved both computational and experimental methods to annotate the human genome. The
findings promoted the knowledge of human genome functions [96]. The targeted 1% of the human
genome were studied from multiple and diverse experiments. The genome transcribed process, tran-
scriptional regulation, a sophisticated view of chromatin structure, and data integration for new
mechanistic and evolutionary insights of human genome functions were reported. The pilot phase
helps define a more comprehensive pathway to understand the functional elements of the human
genome.

In September 2007, the production phase was initiated in the ENCODE project. As a benefit
from the pilot phase and technology development phase, an organized framework for genomics
study was established, in which raw sequence data acted as the bottom layer with the annotation
layers above [97]. The data model has facilitated the research on knowledge mining of the human
genome [92,98–103]. As the data are continually accumulated, the real improvements start when the
various datasets are layered together [104] to tackle much more complex genome mechanisms and
diseases. Figure 18.7 shows a diagram of the ENCODE project. Currently, 13 of 60 known histone
modifications and 120 of 1800 transcription factors are examined, which benefits a lot for the com-
plex genome mechanisms study about the genotype–phenotype relationships. The view of genomics
data from the biologists’ side has been changed and revolutionized toward a data-intensive research
when various data are tiered together in the ENCODE project.
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FIGURE 18.7 A diagram of ENCODE project. (From Brendan Maher. Nature, 489(7414):46, 2012.)

As the ENCODE project is currently on its way to the discovery of the functional elements of
the human genome, the subgroup ENCODE Data Coordination Center (DCC) plays a key role in
this project. A well-organized data transfer capability and a well-developed data visualization tool
are the basic requirements in the ENCODE consortium. An available ENCODE data site on UCSC
Genome Center is http://genome.ucsc.edu/ENCODE/. For cancer genomics research, another site
named Cancer Genomics Hub in UCSC has already had a massive impact toward overcoming cancer
through the power of torrential data [55,56].

18.4.2 CGHub

Under a contract with the National Cancer Institute (NCI), the Cancer Genomics Hub (CGHub) is an
online repository of the sequence data, including the Cancer Genomics Atlas (TCGA), the Cancer
Cell Line Encyclopedia (CCLE), and the Therapeutically Applicable Research to Generate Effective
Treatments (TARGET) projects. Among the repository, there are more than 1.4 petabyte data.

Figure 18.8 shows the general TCGA data flow. Cancer genomics is the main focus area in
CGHub. Considering data acquisition and data transfer issues mentioned in Section 18.3, a specially
enhanced protocol and a well-designed data organization method have been developed.

To achieve a higher and better network service, CGHub utilized the Annai GeneTorrent (GT)
protocol. It is an enhanced version of the BitTorrent (BT) protocol. Combined with the IBMGeneral
Purpose Filesystem (GPFS), CGHub is able to transfer data in a highly parallel and secure mode.

Since the data storage on CGHub is mostly patient-derived cancer genomics data, it is highly con-
fidential. Only authorized researchers are able to access the data. In the system design phase, CGHub
deployed a separate authentication and authorization component solution, which is a single-sign-on

http://genome.ucsc.edu/ENCODE/
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FIGURE 18.8 General TCGA data flow in CGHub. (From Christopher Wilks, Melissa S. Cline, Erich Weiler
et al. Database, 2014:bau093, 2014.)

(SSO) architecture, and the full authorization is under the control of the NCI-appointed Data Access
Committee (DAC).

To be a secure repository for the cancer genomics data, both the storage and transmission need to
be encrypted. In CGHub, the SHA-1 (160 bits) hash and encryption are implemented for each single
genomics sequence file. The genomics data are stored under the definition of the Sequence Read
Archive Metadata XML schema, which is popular in the cancer genomics community. Including
the available commands and interfaces, CGHub is an integrated system to provide confidential and
interact service for cancer genomics researchers. As an extension of future development on CGHub,
the expansion of data acquisition and storage issues are the promising research areas. Besides these,
more help will come from the efforts on data transfer, such as deploying the Internet2 technology to
increase the internet speed [13].

However, to address a possible solution on either precision medicine or cancer genomics, not a
single site or single technology would be able to achieve them all [105,106]. DISSECT is now able to
analyze a wide range of genomics data using the distributed-memory parallel computational archi-
tectures of computer clusters [105]. Even though the data are under restricted conditions, DISSECT
shows an ability of achieving the same performance on large sample sizes. From the data sharing
aspect, an omics data sharing mechanism is inevitably needed in the long run [107]. The genomics
data are stored worldwide in many data centers. To reveal the genotype–phenotype relationships,
the BD2K architecture is proposed to combine the separate genomics data repositories and deliver
an open source software stack [107]. A cohesive genomics informatics ecosystem is desired and is
developing very quickly.

18.5 SUMMARY

To utilize the big genomics data is challenging for our life and also research from every aspect. The
life science, biomedicine, and healthcare sectors are currently at a turning point into a data-intensive
science with the benefit from the overwhelmingly available data. When we are talking about big data
analytics, the vision is not only about a research output but also the economic outcome and other
benefits, specifically concerning human life. The genomics data lead us to a new era to play with
heterogeneous data and domain knowledge in order to extract insightful knowledge for improving a
better life.

As an emerging big data area, the knowledge discovery process of genomics data not only requires
abundant data but also leverages the corresponding domain knowledge. In this chapter, twomain con-
cerning areas are discussed: precision medicine and cancer genomics. There is a scarcity of studies
on the well-designed framework by now, which is both time-consuming and costly. A hybrid educa-
tion and cooperation is highly demanded to leverage the data. Figure 18.9 shows a basic framework
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FIGURE 18.9 Proper framework for knowledge discovery in genomics.

for data science application. Several aspects must be considered during the research development,
which are interpretability (being able to interpret the data clearly), reproducibility (could be mirrored
to other research), simplicity (ease to deploy), and affinity (efficient utilization of the computation
power).

Besides the domain knowledge involved in this chapter, we have reviewed the current interna-
tional efforts in big data analytics in genomics data. In big data analytics, data matter the most, which
introduces the issues of acquisition, storage, transfer, and analysis. As long as an urgent desire for
efficient data operations before the specific analysis, the data operation problem is considered from
several aspects: data acquisition, data transfer, and data storage. The highly distributed and hetero-
geneous characters of genomics data result in the specific requirement for data integration. Since
both structured and unstructured data exist in the genomics area, an analysis either on the cloud side
or in the local system involves a hybrid understanding of the cross-discipline areas.

We have also introduced some of our work [7,41] in big data analytics on genomics and pro-
teomics. The ENCODE project and CGHub system were presented to give an understanding about
how we take care of genomics data and how the data are revolutionizing our understanding of life.
Technically, the legal and ethical issues are the first to be considered in the genomics area. Beyond
further research of the genomics data, a basic pipeline to deal with the data operation issues (focus-
ing on data acquisition, transfer, and storage) and also a general framework toward data analysis are
desired to facilitate the international cooperation and research.

We have just reached a turning point toward the data-intensive life and research. Among these
complex and unknown data, big data analytics has the potential to deliver a better understanding and
improvement of our life. As in a nascent stage, the combination of big data analytics technologies
and the surge of veracious data entail a lot of challenges and research visions.
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ABSTRACT

Big data has created a foundation upon which competitive advantage can be created, sustained, and
increased. However, it is the case that big data project managers are frequently unaware that financial
planning is paramount to ensure return on investment. Otherwise, their projects may require more
capital investment than they should and yield less financial returns. As a result, some of the projects
they are responsible for may become unattractive or unfeasible from the financial point of view
and have to be abandoned. This chapter presents a method to maximize the return on investment in
big data projects. The method takes advantage of the fact that these projects are often divided into

385
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interrelated subprojects. Moreover, it acknowledges the fact that not all subprojects are necessarily
going to be run. In addition, the order in which these subprojects are actually run may alter the
financial value of big data projects as a whole. All of this provides big data project managers with
a tool that allows them to make better financial decisions and increase the chances of having their
projects selected for implementation.

19.1 INTRODUCTION

In recent years, a huge flow of structured and unstructured data has been made available for analysis
to organizations in both the private and public sectors. According to Chen et al. (2014) and Rao and
Ali (2015), the bulk of this data comes from

1. The business transactions that are recorded in computerized information systems on a daily
basis,

2. The search engines that look for information over the Internet,
3. The social networks that connect people all over the world, and
4. The physical objects (appliances, sensors, cameras, machines, etc.) that are connected to

the Internet in increasing numbers.

The term big data is frequently used to refer to this huge amount of data.
It is rightfully claimed by many that big data has become a basis for gaining competitive

advantage, underpinning innovation, sales growth, increased productivity, and enhanced consumer
satisfaction (Tien, 2015). Nevertheless, the business value of big data does not stem from the amount
of data that an organization has at its disposal, but from what it does with it. In this respect, using
currently available technology, one can gather data from a variety of sources. This data can then be
analyzed to provide answers that enable cost reduction, revenue increase, shortening process time,
speeding up product development, and optimizing advertising (Fosso et al., 2015).

As a result, many big data projects are currently being run by organizations of all types and sizes.
These projects cover a variety of different business and research areas such as financial services
(Bedeley & Iyer, 2014), city planning (Sullivan & Mitra, 2014), bioinformatics (Shahzad & Ahsan,
2014), ecology (Hampton et al., 2013), and health care (Groves et al., 2013), among others. Accord-
ing to Jeff Kelly, a research analyst with Wikibon (www.wikibon.org), the big data market is likely
to exceed US$ 50 billion by 2017 (Kelly, 2014).

Nevertheless, it is a well-established economic principle that everything costs something
(Shiffman & Jochum, 2011). Moreover, every rational investment decision has to take into account
all the opportunities that are currently available to investors. Therefore, besides being profitable, an
investment opportunity has to be attractive from the financial point of view, that is, it has to provide
more financial benefits than other investment opportunities (Melicher & Norton, 2013).

However, it is frequently the case that big data project managers are unaware of the effect of
financial planning on the projects under their responsibility. As a result, many big data projects tend
to require more capital investment than they should and yield less return on investment. Moreover,
they are likely to be more exposed to financial risk. All of this may turn financially viable projects
into unfeasible or unattractive endeavors, which have to be abandoned (Chen et al., 2015; Dutta &
Bose, 2015).

This chapter presents a method to analyze big data projects from the financial point of view. The
method takes into account that big data projects are frequently divided into a portfolio of interre-
lated subprojects to facilitate understanding, planning, and execution (Kerzner, 2013). Moreover, it
identifies the subproject running order that maximizes the return on the investment that is about to
be made. Finally, it takes into account that it may be more profitable not to run all the subprojects
in the portfolio. This tends to make big data projects more attractive and valuable, increasing their
chances of being selected for implementation.

www.wikibon.org
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The remainder of this chapter is organized as follows. Section 19.2 presents the concepts and
techniques that are required to comprehend the subsequent sections. Section 19.3 discusses works
that are related to the content of this chapter. Section 19.4 introduces the method with the help of
a real-world inspired example. Section 19.5 summarizes the method. Finally, Section 19.6 presents
the conclusions of this chapter.

19.2 CONCEPTUAL BACKGROUND

According to the Project Management Institute (www.pmi.org), a project is a temporary undertaking
that aims to create a unique product, service, or result. In this context, a subproject is a project
partition of reduced scope, containing strongly related activities (PMI, 2013).

The idea of dividing a project into subprojects is not new. It is believed that the Egyptians used it to
expedite the construction of the pyramids in the Giza Plateau, about 5000 years ago (El-Mehalawi,
2010; Hodgson & Cicmil, 2006). In this respect, the use of subprojects tends to facilitate under-
standing, planning, execution, and monitoring. Moreover, it is likely to make the estimates of cost
and duration more accurate (Kerzner, 2013).

According to Denne and Cleland-Huang, there are two kinds of subprojects into which a project
can be divided (Alencar et al., 2012a). The first, called minimum marketable feature orMMFs, yield
direct financial returns when they are completed. The second, called architectural elements or AEs,
yield no direct financial returns. However, they are necessary for the completion of other subprojects.
Although the ideas of Denne and Cleland-Huang were originally expressed in terms of software
modules, they are extended here to encompass projects and subprojects.

19.2.1 DEPENDENCY RELATIONS AMONG SUBPROJECTS

Although AEs and MMFs are usually self-contained units, it might be the case that a subproject
can only be run when another is completed. This creates a dependency relation among subprojects,
which is frequently modeled with the support of a network diagram (Kerzner, 2013).

For instance, consider a portfolio of subprojects SP = {sp1, sp2, . . ., sp10} into which a project
P has been divided. Let us assume that sp2 can only run when sp1 is completed and that the same
applies to sp3 and sp6 in regard to sp2. Moreover, take into account that sp4 can only be run after
the competition of sp3 and that sp5 cannot be run before sp4 is finished. Furthermore, consider that
sp7 can only be after sp6 is completed and that the same thing can be said about sp8 in regard to
sp7. In addition, acknowledge that sp9 and sp10 do not depend on the completion of one another to
run. However, they have to wait for the completion of all the other subprojects in the portfolio before
they can be run. The network diagram presented in Figure 19.1 specifies these dependency relations.

In Figure 19.1, Begin and End are dummy subprojects. They require no capital investment to be
run. In addition, they take no time to be completed and yield no results. Moreover, an arrow going
from a subproject to another, for example, sp1→ sp2, indicates that the latter can only be run when

FIGURE 19.1 Network diagram.

www.pmi.org
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the former is completed. See Kerzner (2013) and Nuguti (2015) for thorough but gentle introductions
to the use of network diagrams to manage projects.

19.2.2 PROJECT FINANCING

As everything costs something (Shiffman & Jochum, 2011), with the exception of dummy subpro-
jects like Begin and End, every subproject requires capital investment to be run. In addition, some
subprojects may produce a flow of financial inputs when they are completed. The financial inputs
and outputs of a subproject describe a cash flow. For instance, Table 19.1 presents the cash flow of
the subprojects of project P introduced in Figure 19.1.

In Table 19.1, Id is used to recognize that each subproject has a unique identifier. Type indi-
cates whether a subproject is an AE or an MMF. Period refers to an arbitrary length of time of
equal duration, for example, days, weeks, quarters, etc.MkSp, which stands for makespan, indicates
the number of periods that a subproject requires to be completed. For example, all subprojects in
Table 19.1 require just one period to be completed.

The numbers presented in Table 19.1 from column 1 to 24 are the subprojects’ financial inputs and
outputs. These numbers are introduced in thousand units of an arbitrary currency, that is, American
dollar, euros, yens, British pounds, etc. The symbol $ is used to designate values of that currency.
Positive values are financial inputs (i.e., revenues) while negatives values are financial outputs (i.e.,
expenses).

For example, Table 19.1 registers an output of $100K (one hundred thousand monetary units) in
the first period in respect to subproject sp5. This is the capital investment that is required to run that
subproject. In periods 2 and 3, sp5 yields outputs of $10K and $20K, respectively. From period 4 to
24, it yields a steady output of $60K per period. Therefore, sp5 is an MMF. Subprojects sp8, sp9,
and sp10 follow the same pattern and are also MMFs. The remaining subprojects in Table 19.1 are
all AEs, that is, sp1, sp2, sp3, sp4, sp6, and sp7.

It should be noted that the flow of inputs and outputs described in Table 19.1 ends at period 24.
By the end of that period, the final products yielded by the subprojects sp1, sp2, . . ., sp10 are out
of date and a new solution is expected to take over. The length of time from period 1 to 24 is called
window of opportunity or WO for short.

It is a well-established financial principle that monetary values associated with different periods
do not have the sameworth. The reasons for this are quite simple. For example,money can be invested
and provide financial return. In particular, it can be lent and yield interest. Moreover, its value can

TABLE 19.1
Subprojects’ Cash Flow

Subproject Period

Id Type MkSp 1 2 3 4 5 6 7 . . . 24

sp1 AE 1 −90 0 0 0 0 0 0 . . . 0

sp2 AE 1 −95 0 0 0 0 0 0 . . . 0

sp3 AE 1 −80 0 0 0 0 0 0 . . . 0

sp4 AE 1 −70 0 0 0 0 0 0 . . . 0

sp5 MMF 1 −100 10 20 60 60 60 60 . . . 60

sp6 AE 1 −60 0 0 0 0 0 0 . . . 0

sp7 AE 1 −75 0 0 0 0 0 0 . . . 0

sp8 MMF 1 −110 50 100 250 250 250 250 . . . 250

sp9 MMF 1 −300 0 4 6 8 10 12 . . . 46

sp10 MMF 1 −210 5 7 9 11 13 15 . . . 49
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be corroded by inflation and fluctuations in the foreign exchange market. As a result, in order to be
properly operated on (add, subtract, divide, etc.), monetary values associated with different periods
have to be adjusted using an interest rate (Gitman & Zutter, 2014).

In this respect, the financial value of a subproject is frequently given by the adjusted sum of its
cash flow elements, which take into account the period in which a subproject starts. Such a sum is
called its net present value or NPV for short. In more formal terms, the NPV of a subproject sp,
which starts at period t, is given by

NPV(sp, t) =
wo∑
k=t

ek−t+1
(1+ i)k (19.1)

whereWO is the subproject’s window of opportunity, ek∈{1,2,...,wo−t+1} is the k-th cash flow element
of sp and i is an interest rate. For example, consider an interest rate of 1.5% per period, which is
used in all the remaining examples presented in this chapter. If sp5 is run at period 3, then

NPV(sp5, 3) = −$100K
(1+ 1.5%)3

+ $10K

(1+ 1.5%)4
+ $20K

(1+ 1.5%)4
+ · · · + $60K

(1+ 1.5%)24
= $847K

If sp5 is run at period 4, its NPV decreases to $793K. At period 5, its NPV decreases even further
to $740K and so on and so forth. Table 19.2 presents the NPV of subprojects sp1, sp2, . . . , sp10
according to the period in which they start running.

If a project is to be fully implemented, then all its subprojects have to be run. In these circum-
stances, the financial value of a project is the sum of the NPVs of its subprojects. On the other hand,
if a project is only partly implemented, then its NPV is the sum of the subprojects that are actually
going to be run. For example, consider the following running sequence of the subprojects described
in Figure 19.1:

RS = sp1→ sp2→ sp6→ sp7→ sp8→ sp3→ sp4→ sp5→ sp10→ sp9

TABLE 19.2
Subprojects’ NPV according to the Period in Which They
Start Running

Period

Subproject Id 1 2 3 4 5 . . . 24

sp1 −89 −87 −86 −85 −84 . . . −63
sp2 −94 −92 −91 −90 −88 . . . −66
sp3 −79 −78 −77 −75 −74 . . . −56
sp4 −69 −68 −67 −66 −65 . . . −49
sp5 957 902 847 793 740 . . . −70
sp6 −59 −58 −57 −57 −56 . . . −42
sp7 −74 −73 −72 −71 −70 . . . −52
sp8 4315 4079 3847 3618 3392 . . . −77
sp9 135 101 69 39 11 . . . −210
sp10 282 244 208 174 142 . . . −147
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TABLE 19.3
Constraints That a Running Sequence Should Satisfy

Id Condition

a The first subproject is run in the first period

b Only one project can be running at any given time

c There is no delay between the completion of a subproject and the beginning of the next

d Once a project starts it cannot be interrupted

e All subprojects must be run within the window of opportunity

In addition, take into account the constraints established in Table 19.3.
In these circumstances,

NPV(RS)

= NPV(sp1→ sp2→ sp6→ sp7→ sp8→ sp3→ sp4→ sp5→ sp10→ sp9)

= NPV(sp1, 1)+ NPV(sp2, 2)+ NPV(sp6, 3)+ NPV(sp7, 4)+ NPV(sp8, 5)

+ NPV(sp3, 6)+ NPV(sp4, 7)+ NPV(sp5, 8)+ NPV(sp10, 9)+ NPV(sp9, 10)

= −$89K− $92K− $57K− $71K+ $3392K− $73K− $63K

+ $586K+ $32K− $103K = $3462K

If the last constraint stated in Table 19.3 were waived, then one could consider running just the first
five subprojects in running sequence RS, that is, sp1→ sp2→ sp6→ sp7→ sp8. In this case,

NPV(sp1→ sp2→ sp6→ sp7→ sp8)

would amount to

−$89K− $92K− $57K− $71K+ $3392K = $3083K

19.2.3 RUNNING SEQUENCE ROLLOUT

Table 19.4 presents the financial details of the rollout of running sequence RS. In that table, lines
from sp1 to sp10 contain the undiscounted cash flow elements of each of the subprojects of project P.
This takes into account the period in which each subproject is run. See Table 19.1 in this respect.

For example, the sixth column of line sp3 contains the first nonzero value that is registered in that
line. This arises from the fact that in RS, subproject sp3 is run in the sixth period.

The line Total indicates the total contribution of the different subprojects to the cash flow of RS in
each period. For instance, in period 7, line Total registers $30K, which is the result of $100–$70K.

Line PV, which stands for present value, shows that the value at the beginning of period 1 is
equivalent in worth to the value shown in the Total line. For example, in period 7, line PV registers
$27K. This indicates that if one invests $27K at the beginning of period 1, obtaining an interest rate
of 1.5%, by the end of the seventh period, one has $27K ×(1+ 1.5%)7 = $30K.

Moreover, the sum of the absolute value of all negative numbers in the PV line is capital invest-
ment (CI) required by the running sequence, that is, $89K+ $92K+ $57K+ $71K+$102K+
$27K+ $22K= $460K. In other words, this is the amount of money that one has to have at one’s
disposal at the beginning of period 1 to pursue RS.
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TABLE 19.4
Cash Flow of an Implementation Sequence

Period

Subproject 1 2 3 4 5 6 7 8 9 10 . . . 24

sp1 −90 0 0 0 0 0 0 0 0 0 . . . 0

sp2 −95 0 0 0 0 0 0 0 0 . . . 0

sp6 −60 0 0 0 0 0 0 0 . . . 0

sp7 −75 0 0 0 0 0 0 . . . 0

sp8 −110 50 100 250 250 250 . . . 250

sp3 −80 0 0 0 0 . . . 0

sp4 −70 0 0 0 . . . 0

sp5 −100 10 20 . . . 60

sp10 −210 5 . . . 33

sp9 −300 . . . 28

Total −90 −95 −60 −75 −110 −30 30 150 50 −25 . . . 371

PV −89 −92 −57 −71 −102 −27 27 133 44 −22 . . . 260

Rollout −89 −181 −238 −309 −411 −438 −411 −278 −234 −256 . . . 3,462

Finally, the line Rollout contains the accumulated sum of the values introduced in the PV line. It
should be noted that the last value of this line is the NPV of RS.

The return on investment (ROI) of running sequence RS is given by

ROI(RS) = NPV(RS)− CI(RS)
CI(RS)

= 3462− 460

460
= 653%

See Finnerty (2013) for an introduction to project financing.
Table 19.5 presents several possible running sequences for the subprojects of the project P

described in Figure 19.1 together with their respective NPV, CI, and ROI. These sequences have
been generated taking into consideration the constraints established in Table 19.3.

TABLE 19.5
List of all Possible Running Sequences

Id Running Sequence NPV ($1000K) CI ($1000K) ROI (%)

1 sp1→ sp2→ sp6→ sp7→ sp8→ sp3→ sp4→
sp5→ sp10→ sp9

3462 460 653

2 sp1→ sp2→ sp6→ sp7→ sp8→ sp3→ sp4→
sp5→ sp9→ sp10

3459 473 631

3 sp1→ sp2→ sp6→ sp3→ sp7→ sp8→ sp4→
sp5→ sp10→ sp9

3238 524 518

4 sp1→ sp2→ sp6→ sp7→ sp3→ sp8→ sp4→
sp5→ sp10→ sp9

3238 524 518

5 sp1→ sp2→ sp3→ sp6→ sp7→ sp8→ sp4→
sp5→ sp10→ sp9

3236 526 515

...
...

...
...

...

40 sp1→ sp2→ sp3→ sp6→ sp7→ sp4→ sp5→
sp8→ sp9→ sp10

2848 872 227
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Note that the sequences in Table 19.5 have been ordered by their ROI. As a result, the sequence
that comes first in that table is the logical choice to run the subprojects in SP. This is the running
sequence that yields the highest return on the investment that is about to be made.

19.3 RELATED WORK

19.3.1 ON INCREMENTAL FUNDING OF BIG DATA PROJECTS AND INITIATIVES

In order to identify work that is related to the incremental funding of big data projects, several repos-
itories of scientific and technological research were consulted using the search string introduced in
Table 19.6. These repositories are presented in Table 19.7. The search for related work was carried
out on March 18, 2015.

Note that altogether the repositories presented in Table 19.7 index the majority of significant
computer-related research around the world. Table 19.8 shows the number of references yielded by
each repository. It should be mentioned that one article was referred to in more than one repository.
As a result, the redundant reference was eliminated from the search for related work.

Note the repository that returned the vast majority of potentially relevant references was Google
Scholar. Nevertheless, more recently, Google Scholar has been criticized with respect to its useful-
ness as a repository of references to scientific and technical work (Delgado et al., 2014).

TABLE 19.6
String Used in the Search for Related Work

Search String

“big data”

AND

((“incremental funding” OR “step-by-step funding” OR

“additive funding” OR “cumulative funding”)

OR

(“incremental backing” OR “step-by-step backing” OR

“additive backing” OR “cumulative backing”)

OR

(“incremental financing” OR “step-by-step financing” OR

“additive financing” OR “cumulative financing”))

TABLE 19.7
Repositories of Scientific and Technical Work

Repositories Internet Address

ACM Digital Library http://dl.acm.org/

Google Scholar https://scholar.google.com

IEEE Xplore Digital Library http://ieeexplore.ieee.org/Xplore/home.jsp

JSTOR http://www.jstor.org/

Science Direct http://www.sciencedirect.com/

Scopus http://www.scopus.com/

Springer Link http://link.springer.com/

Web of Science http://wokinfo.com/webtools/searchbox/

DBLP Computer Science Bibliography http://dblp.uni-trier.de/

http://dl.acm.org/
https://scholar.google.com
http://ieeexplore.ieee.org/Xplore/home.jsp
http://www.jstor.org/
http://www.sciencedirect.com/
http://www.scopus.com/
http://link.springer.com/
http://wokinfo.com/webtools/searchbox/
http://dblp.uni-trier.de/
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TABLE 19.8
Hits per Repository of Scientific and Technical
Work

Repositories Hits

ACM Digital Library 0

Google Scholar 15

IEEE Xplore Digital Library 0

JSTOR 0

Science Direct 1

Scopus 0

Springer Link 0

Web of Science 0

DBLP Computer Science Bibliography 0

Total 16

However, Google Scholar is the only free access repository that contains references to books,
technical reports, patent applications, dissertations, theses, and unpublished works. Furthermore,
occasionally, it indexes journals and conference papers that are not currently indexed by other repos-
itories. As a result, the use of Google Scholar tends to increase the coverage of any review of the
existing literature. In particular, it enhances the range of the search for work that is related to the con-
tent of this chapter. Table 19.9 presents the type of the publications yielded by the search performed
on the repositories introduced in Table 19.7.

All the references presented in Table 19.8 were written in English. In order to have their rele-
vance to the incremental funding of big data projects determined, they had their titles, abstracts, and
keywords carefully examined. In addition, whenever it was found necessary, the full text of these
works was also analyzed. If the search for related work returned a reference to a book, its pertinent
sections were examined with the help of Google book (https://books.google.com).More specifically,
the keywords and expressions used to build the search string presented in Table 19.6 were used to
feed the book search mechanism and locate the pertinent sections. All of this follows the ideas of
Kitchenham et al. (2015) on the systematic review of the literature.

TABLE 19.9
Types of Reference Returned by the Search
Performed on the Repositories of Scientific
and Technical Work

Type of Publication Quantity

Journal article 1

Conference article 2

Book chapter 2

Technical magazine article 2

Technical report 5

Books 1

Patent registration 1

Total 14
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As a result, it was found that none of the references considered in Table 19.8 discusses the incre-
mental funding of big data projects. Therefore, at this date, no proposal has considered the possibility
of using the revenue generated by a big data subproject to fund the development of other system parts.
Moreover, no proposal has considered the impact of incrementally funding big data projects on their
financial value. In addition, so far, no one has recognized the impact of the incremental funding
approach to project finance on the likelihood of a big data project being selected for implementa-
tion. Hence, it seems reasonable to claim that this chapter presents a new andmeaningful contribution
to the management of big data projects.

19.3.2 RELATED WORK SUMMARY

The systematic search carried out in Section 19.3.1 reveals that no proposals have been presented
so far with respect to the incremental funding of big data projects. Nevertheless, extensive work has
been performed on extending and perfecting the idea of incrementally funding IT-related projects.*
This creates a basis that can be used to maximize the return on the investment made in big data
projects.

For instance, if the number of subprojects is considerable, the ideas of Alencar et al. (2014) can be
used to obtain an approximate solution with an arbitrary error margin and degree of confidence. In
addition, if the cash flow elements are uncertain, the ideas of Schmitz et al. (2008) can be considered
to select the running sequence that is likely to provide the highest return on investment.

Moreover, if one is interested in the efficiency of the investment that is about to be made in a big
data project, one could use the proposal of Alencar et al. (2012b) to identify the running sequence
that is efficient from the point of view of several financial performance indicators. See Alencar et al.
(2012a) for a partial summary of the work that has been developed so far on the incremental funding
of IT-related projects.

19.4 AN EXAMPLE

Consider a large health insurance company such as United Health, Kaiser Foundation, or Wellpoint
in the United States or Boots, BUPA, or Capital Healthcare in Europe. Let us call this company
Health Investment Corporation, or HIC.

Although the health insurance business can be traced back to late nineteenth-century England
(Beik, 2014), the health insurance market has never been in such a difficult position (Brunoni et
al., 2015). Lately, medical research has made incredible advances in the treatment of a number of
disabling or potentially fatal diseases, such as cancer, diabetes, ischemic heart disease, stroke, acute
asthma, and many others (Weaver & Bryce, 2015).

However, this has come at a price. Understandably, those who suffer from these diseases are
determined to have access to these new treatments. As a result, they have been putting pressure
on their representatives to strengthen legislation so that they are treated with the latest available
technology. However, these new treatments tend to be expensive. Hence, the cost of health care has
been escalating all over the world (Emanuel, 2012).

All of this has led to threats to increase taxation to fund public health, which no one wants. It
has also led to private health insurance with reduced coverage that many would rather not have or to
private health insurance with wide coverage that just a few can afford. Therefore, both government
and private business are in a situation in which they have to do more with their existing resources
(Auerbach & Kellermann, 2011).

The HIC is well aware of the challenges that private insurance faces in this day and age (Meier
et al., 2013). Its managers believe that it should be possible to reduce its running costs considerably
so that they can offer affordable wide coverage insurance. As a result, they have been considering

* A search in Google and the Google Academic can reveal the extension of these works.
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a number of information technology-related projects. There is, however, one particular project that
has caught the attention of the company’s CEO, that is, the possibility of using the huge amount of
data they have been storing in HIC’s computerized information system to devise a cost reduction
strategy (White, 2014).

19.4.1 TASK FORCE

A task force composed of IT professionals, business consultants, and medical personnel has been
put together to study the problem and come up with suggestions. Initially, they have identified in the
literature the diseases that most strongly affect the running cost of health insurance plans. Among
those, one can cite heart conditions, diabetes, hypertension, cancer, and asthma among others (Hu
et al., 2015).

Moreover, according to the business and medical teams, the cost of the treatment of these dis-
eases can be considerably reduced through managed care programs. These programs are designed to
motivate people to be actively involved with the treatment of the diseases they have. This includes
wide access to easy-to-read medical information, taking an active part in support groups, and medi-
cal, nursing, and psychological assistance. All of this is intended to commit policyholders to change
their lifestyle so that their diseases are kept under control.

For example, some of the program’s participants may be required to follow a strict diet while
others have to agree to exercise regularly and reduce their daily workload. Moreover, some of
them have to consent to visit their doctors on a regular basis, take their medicines exactly as
they have been prescribed, and keep certain health indicator parameters within preestablished lim-
its. This may include the amount of glucose, cholesterol, urea, creatinine, and calcium in their
blood.

When a support group of their peers is made available, the participants’ progress toward dealing
with their illnesses has to be reported to the group. It is surprising what motivated and well-informed
policyholders can do to improve their own health with the support of others.

Some disease management programs even inform medical doctors and patients on the existence
of equally effective, but less expensive treatments, when they are available. It is believed that it is
in everybody’s best interest to keep the cost of health insurance as low as possible. See Kongstvedt
(2015) for a thorough introduction to managed care programs. See Denham et al. (2013), Marton
et al. (2014), andWallasch and Hermann (2012) for reports on the success of managed care programs
in different circumstances.

19.4.2 PROGRAM’S ADMISSION CRITERIA

Although HIC management has agreed to the idea of setting up a managed care program, there is
still the question of selecting the diseases that are going to be dealt with by the program. In addition,
the company has to identify the right people to invite to take part in the program.

According to the medical team that is advising the HIC, heart conditions and diabetes are the right
diseases to start with. They are among those that most strongly affect the operational cost of health
plans. Moreover, people who suffer from these diseases display a distinct behavior with respect to
the use of health insurance plans that are not hard to track.

For example, people who have a heart condition tend to visit the cardiologist on a regular basis.
In addition, they are required to take electrocardiograms and echocardiograms more frequently than
those that have a healthy heart. The same can be said about people with diabetes. They tend to visit
the endocrinologist several times a year and take blood tests that monitor their glucose level more
frequently than others do.

Furthermore, when people join a health insurance plan, they are required to declare the existence
of certain preexisting diseases. Otherwise, the coverage provided by the plan may be void in the
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TABLE 19.10
Criteria to Be Used for Admission into the Managed Care Program

Criteria

Id Heart Condition Diabetes

1 Visiting the cardiologist two or more times within a
period of 12 months

Having appointments with the endocrinologist two
or more times within a period of 12 months

2 Taking an electrocardiogram or echocardiogram two
or more times within a period of 12 months

Taking a blood test that monitors glucose levels two
or more times within a period of 12 months

3 Declaring a heart condition as a preexisting illness
when joining the health insurance plan

Indicating diabetes as a preexisting illness when
joining the health insurance plan

4 Being at least 60 years old Being at least 60 years old

5 Being admitted to a medical unit with an ICD
related to heart diseases

Being admitted to a medical unit with an ICD
related to diabetes

event of medical developments related to these diseases. This includes heart conditions and diabetes
(Green, 2014).

Finally, when a person is admitted to a medical unit, the health insurance plan is informed of the
nature of the medical event via the international classification of disease codes or ICD codes. For
example, the ICD codes for diabetes range from E10 to E14, depending on the type of diabetes one
has. A full list of the ICD codes can be found in Bowie and Schaffer (2013).

The medical team that is advising HIC also indicates that the insurance cost of heart condi-
tions and diabetes are greater among the elderly (Hu et al., 2015). Therefore, special attention
may have to be given to people belonging to this age group. Table 19.10 summarizes the crite-
ria devised by the medical team to admit HIC policyholders into the company’s managed care
program.

It should be noted that among the admission criteria presented in Table 19.10, the last two are of
special interest. As indicated by the medical team, there are many studies showing that hospitaliza-
tion is one of the most expensive events in the health insurance business. Moreover, the chances of
being readmitted to a hospital after being discharged are much higher among the elderly population
(Krumholz, 2013). Therefore, those who comply with criteria 4 and 5 can be considered extremely
high-risk policyholders.

Although there is some evidence that managed care programs may not be the best way to deal
with the risk of hospital readmission, some new reports have indicated that with some adjustments,
these programs may become more effective in this respect (Donzé et al., 2013).

19.4.3 MANAGED CARE PROGRAM

To facilitate understanding, planning, and running, the HIC-managed care program has been divided
into a number of subprojects. These subprojects are described in Table 19.11.

It should be noted that as a result of the risk assessment subproject sp2, policyholders are divided
into four groups in respect to the risk of incurring considerable insurance costs in the near future,
that is, low, medium, high, and extreme.

According to the business and medical teams, the investment that would have to be made in the
low- and medium-risk groups tends to yield a negligible return on investment. Therefore, people in
these groups are not going to be invited to take part in the managed care program.

The remaining policyholders are to be persuaded to take part in different programs. These man-
aged care programs are essentially different because people in the extreme high-risk group require
stronger and more expensive actions. Otherwise, their health insurance costs can easily get out of
control.
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TABLE 19.11
Managed Care Program Subprojects

Id Description

sp1 Search and identification—Use the vast amount of information that has been stored in the HIC’s databases
to find those who fit at least one of the admission criteria for the managed care programs

sp2 Risk assessment—Interview those who can be potentially invited to join the programs over the phone so that
the severity of their conditions can be estimated. Record the results of the interviews and risk assessments
in the HIC’s databases

sp3 Set up the managed care program for high-risk policyholders—Design the services that the HIC’s managed
care program is going to provide for policyholders who have high risk of incurring considerable insurance
costs

sp4 Invite high-risk policyholders to join the program—Invite those who qualify to join in the managed care
program for high-risk policyholders. Record in the HIC’s databases the invitation results

sp5 Run the high-risk managed care program—Get people to commit to the program’s regulations and activities.
Run the program and monitor the changes of the participants’ lifestyle. Record in the HIC’s databases
every interaction between the program and its participants

sp6 Set up the extreme high-risk disease managed care program—Design the services that the managed care
program is going to offer to policyholders that have extreme high risk of incurring considerable cost claims

sp7 Persuade policyholders to join the extreme high-risk managed care program—Persuade those who qualify to
join in the extreme high-risk managed care program. Record the results of the invitation in the HIC’s
databases

sp8 Run the extreme high-risk managed care program—Get people to agree to the program’s regulations and
activities. Run the program and monitor the changes in the participants’ lifestyle and health status.
Register all the interactions between the program and its participants

sp9 Advertising—Advertise the existence of the managed care programs with the intention of getting new people
to join the healthcare plan and to apply to the managed care programs. Use the information stored in the
HIC databases to build the advertising strategy

sp10 Make adjustments—Exploit the information recorded in the HIC’s databases to report on the results of both
managed care programs. In addition, look for opportunities to make adjustments in the programs’
eligibility criteria to make it more efficient. Moreover, use the same information to adjust the programs’
services and activities to make it more attractive to policyholders. This is intended to reduce the program’s
dropout rate

19.4.4 PROJECT PLANNING, FINANCING, AND IMPLANTATION CONSTRAINTS

The dependency relations that are required to hold true among the subprojects from sp1 to sp10 are
presented in Figure 19.1. The cash flow of these subprojects is introduced in Table 19.1. Their NPV
according to the period they start running are shown in Table 19.2. Table 19.5 presents the NPV, CI,
and ROI for several possible implementation sequences.

The sequence that comes first in Table 19.5 is the one that yields the highest ROI. As HIC is
a for-profit organization, this is the sequence that HIC’s advisory team should select to implement
the subprojects described in Table 19.11. This holds true if no restrictions have been imposed on
the capital that is available to run those subprojects and a minimal value for ROI has not been
preestablished.

However, it is not always the case that managers have at their disposal the required capital to
implement the running sequence of their choice. Moreover, even if the capital is available, big
data projects are usually compared with other investment opportunities before they are selected for
implementation (Chandra, 2014).

In this respect, many companies tend to establish a hurdle rate, that is, a minimum return on
investment that projects have to yield. If the ROI of a project falls below the acceptable hurdle rate,
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it should not be run. For example, if the hurdle rate for the managed care project were 700%, none
of the running sequences in Table 19.5 would fulfill this requirement. As a result, the project would
have to be abandoned (Calandro et al., 2015).

However, running all the subprojects in a portfolio may not always lead to the highest possible
ROI. If a particular subproject spi requires considerable capital to be run and yields small financial
returns, a higher ROI for a particular running sequence may be obtained by avoiding running spi.
This is the case of subproject sp9, as it is the most expensive subproject in the portfolio. In addition,
sp9 is the subproject that yields the smallest financial returns across the window of opportunity of
the managed care project. See Table 19.1 in this respect.

For example, consider the following running sequence, which sp9 is not a part of

NRS = sp1→ sp2→ sp6→ sp7→ sp8→ sp3→ sp4→ sp5→ sp10

This particular running sequence yields an NPV of $3565K and requires a capital investment of
$438K. As a result, its ROI is given by ($3565K–$438K)/$438K= $714K. Not only is the ROI
of NRS considerably higher than the ROI of the sequence that comes first in Table 19.5, but it also
requires less capital investment.

Although NRS does not consider running all subprojects presented in Table 19.11, this is the
running sequence that yields the highest ROI among all possible implementation sequences. If HIC
has made available the capital investment it requires, the managed care advisory team should select
this sequence for implementation over all the other alternatives.

19.5 SUMMARY OF THE METHOD

Companies that consider running big data projects may benefit from taking the following steps:

1. Project selection—Let P be a big data project that has been divided into a portfolio of
subprojects SP = {sp1, sp2, . . ., sp10}.

2. Dependency relations—Define a graph G = (V ,E) that specifies the dependency relations
that are required to hold true among the subprojects in SP. Note that

V = SP and E = {(spi, spj) | spi, spj ∈ V}

In addition, if running spj depends on the completion of spi, then (spi,spj) ∈ E. The reverse
also holds true.

3. Network diagram—Build the network diagram that corresponds to the information speci-
fied in G.

4. The window of opportunity—Determine the project’s window of opportunityWO.
5. Data flow elements—For each spk ∈ SP, estimate the value of its cash flow component in

period i, that is, espk ,i. Note that 1 ≤ i ≤ WO.
6. Makespan—Establish the makespan of every subproject in SP.
7. The net present value—Define the function NPV(sp,t) that returns the net present value of

subproject sp, if it is run at period t. See Equation 19.1 in this respect.
8. Running sequences—Generate all possible running sequences. Take into account the con-

straints that may have been imposed on the running sequences that can be used to carry out
project P. See Figure 19.1 and Table 19.3 in this respect. Take into account that running
all the subprojects in the portfolio may lead to a suboptimal running sequence.

9. The net present value—Calculate the NPV of every possible running sequence. This is the
sum of the NPVs of every subproject in the sequence according to the period in which they
are run. See step 6 in this respect.
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10. The capital investment—As everything costs something, it is important to figure out the
capital investment CI required by each possible running sequence.

11. The return on investment—Calculate the return on investment of every possible running
sequence. This is the ratio between their NPV minus CI and CI.

12. Selecting the running sequence for implementation—Among the running sequences that
one has enough capital to run, select the one that has the highest ROI. Run this sequence
and take advantage of the financial benefits it provides.

19.6 CONCLUSION

Although the term big data first appeared in a conference article written about 20 years ago by
Michael Cox and David Ellsworth (Cox & Ellsworth, 1997), very little has been said so far on how
the benefits of big data projects should be evaluated. This is unfortunate as the benefits of these
projects are usually compared to the benefits of other competing initiatives before they are selected
for implementation. As a result, big data project managers may find it difficult to gather the support
they need to run their projects.

This chapter presents a method that goes toward filling this gap. The method allows project man-
agers to evaluate big data projects from a financial point of view. Moreover, the method maximizes
the return on investment yielded by these projects. This is achieved by identifying the subprojects’
running sequence that provides the highest ratio between its net present valueminus its capital invest-
ment, and its capital investment. As a result, big data projects tend to become more attractive and
profitable.

The financial principles and techniques that are used by the method presented in this chapter
are not difficult to understand. Although the calculations would be made easier with the support of
automated tools, for small projects, they can be carried out with the help of a generic spreadsheet
tool, such as MS Excel. All of this enables better decision making. Ultimately, this shall help to
place big data projects at the center of initiatives that aim to extract more value from the data that
organizations have at their disposal.
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ABSTRACT

Most of the hospitals have accumulated a large amount of medical and treatment data after many
years of operation. Moreover, data are still being generated in hospitals every day, which contain
valuable information. How to extract and fully utilize the value of data from the massive historical
hospital data is a key issue for both hospitals and society. With the arrival of the big data and cloud
computing era, this issue has attracted considerable attention. In addition, the speed of data mining
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and analysis for large-scale data becomes a hot topic to researchers from both academia and industry.
In this chapter, we focus on the optimization methods for parallel data-mining algorithms, and the
applications of these algorithms in the field of large-scale hospital data processing. First, techniques
of data mining and famous cloud computing platforms are considered. Then, different parallel opti-
mization methods of the related data-mining algorithm are discussed, such as the parallel random
forest algorithm based on an Apache Spark platform. Finally, applications of big data processing in
hospitals are discussed, based on the optimized data-mining algorithms in the big data and cloud
computing environment.

20.1 INTRODUCTION

20.1.1 APPLICATION BACKGROUND

With the continuous emergence of a variety of new information dissemination methods and the rise
of cloud computing and Internet of Things (IoT) technologies, the amount of data is increasing
constantly at a high speed [1]. Almost every hospital has accumulated a large amount of medical
and treatment data after many years of operation, and more data are being produced every day.
There exists a large amount of valuable knowledge in the huge amounts of hospital data. More and
more researchers and developers are concentrating on the issue of how to effectively extract and fully
utilize the value of data from the large-scale historical hospital data.

Currently, most hospitals in many countries around the world are overcrowded and lack effective
patient queue management. Patients are usually required to undergo examinations, inspections, or
tests (referred to as “treatment tasks” in this chapter) according to their conditions. In such a case,
more than one treatment task might be required for each patient. Some of the tasks are independent,
whereas others might wait for the completion of dependent tasks. Most of the patients need to wait in
queues for unpredictable but long periods of time, waiting for their turn to accomplish each treatment
task.

In this chapter, we focus on helping patients complete their treatment tasks in a predictable time
and helping hospitals schedule each treatment task queue to avoid overcrowded and ineffective
queues. We propose a patient operation time consumption (POTC) model based on an optimized
random forest (RF) algorithm, which is trained from the massive realistic data of various hospitals.
The realistic hospital data are analyzed carefully and rigorously based on critical parameters, such
as the start time and end time for each patient in a treatment task, the age and gender of a patient, and
the detailed treatment content for each different task. Then, based on the POTC model, we imple-
ment a hospital treatment route recommendation (HTRR) system for hospitals. Time consumptions
of different patients are calculated and predicted, which takes into account the patient’s conditions
and operations performed during the treatment. The total waiting time of each treatment task is pre-
dicted, which is the summation of the predicted time consumptions of all patients in the waiting
queue of the task. Finally, an efficient and convenient treatment route is created and recommended
to each patient to achieve intelligent triage.

20.1.2 CHALLENGES FOR HOSPITAL BIG DATA PROCESSING

There exist various challenges in the process of constructing a high-quality and accurate POTCmodel
from historical hospital data and the applications of HTRR:

1. Hospital data have the characteristics of mass and high dimensions and contain a lot of
noisy data. The daily operation of hospitals draws up a huge amount of medical and treat-
ment data. Depending on statistics, the number of patients in a medium-sized hospital is in
the range of 8,000–12,000 per day, and the number of the corresponding treatment tasks
records is between 120,000 and 200,000 per day. Each treatment task record contains a lot



Parallel Data Mining and Applications in Hospital Big Data Processing 405

of information, such as the information of a patient, the information of a treatment depart-
ment and a doctor, the detailed contents of the treatment task, etc. Numerous unexpected
events might exist during the treatments in the hospital every day, such as nonappointed
tasks, treatment machine stoppage, etc. Meanwhile, most of the treatment tasks are partici-
pated by the hospital staff, such as the CT scan, payment, purchase, etc. All these conditions
lead to a large proportion of noisy, incomplete, and inconsistent data in hospital data.

2. Because of the different treatment contents, the time consumptions for patients in different
treatment departments are not in the same range. For instance, the time consumption for a
patient in a CT scan task is greater than that in a payment task. What is more, owing to the
different patient’s conditions and different time periods, the time consumptions for patients
in the same treatment department might also be different. For instance, in the case of a CT
scan task, the time consumption for the elderly should be greater than a youngster. Hence,
the operation time consumption for a patient in a treatment task is complex, which relates
various parameters. Therefore, it is an opportunity that various POTC models are likely
to be trained from massive historical hospital data that contain the necessary knowledge.
Meanwhile, it is a problem obtaining the POTC auto-adaptively to match the conditions of
different patients and different treatment tasks.

3. The speed of the data-mining process for the POTCmodel and the real-time requirement of
HTRR are also critical. There are increasingly strict time requirements for HTRR applica-
tions. Fortunately, the development of parallel computing, cloud computing, distributed
computing, and supercomputing provides such a high-speed computing power. Apache
Hadoop and Spark are two famous cloud computing platforms, which are widely used in the
fields of parallel computing and big data mining. Numerous parallel data mining algorithms
and applications have been performed and implemented based on the Apache Hadoop and
the Apache Spark platforms.

20.1.3 CHAPTER ORGANIZATION

The rest of the chapter is structured as follows. Section 20.2 provides an overview of the cloud
computing platforms and the parallel optimization methods of the related data-mining algorithm. A
typical hospital application based on the big data and cloud environment is described in Section 20.3.
The program deployment of the hospital application and the related experimental result analysis are
shown in Section 20.4. Finally, Section 20.5 presents the conclusion and future work.

20.2 OVERVIEW OF OPTIMIZATION METHODS FOR PARALLEL DATA MINING

20.2.1 RELATED WORK

Data mining and analysis for large-scale data has grown to be one of the hot research topics in the
domains of both academia and industry currently. Because of the business demand and competitive
pressure, almost every business holds higher demand on data processing in real time and validity
than before [2]. Enormous data often have characteristics founded in various input variables in hun-
dreds or thousands levels, while each one of them contains just a limited valuable knowledge. At the
same time, big data have some characteristics such as high dimension, complexity, and much noisy
data [3]. As a result, a critical challenge is the way to obtain valuable information and knowledge
from massive data more efficiently and more accurately with data-mining methods.

On the one hand, many researchers proposed various special algorithms for data processing in
each specific domain, and achieved great accuracy and performance. The RF algorithm [4] is an
ensemble classifier algorithm based on numerous decision tree models, and is a suitable data-mining
algorithm for big data. The RF algorithm is widely used in various fields, such as fast action detec-
tion via discriminative RF voting and Top-K subvolume search [5], and robust and accurate shape
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model matching using RF regression voting [6]. To improve the accuracy of the data analysis with
continuous features, various optimization methods of classification and regression algorithms were
proposed. A self-adaptive induction algorithm for the incremental construction of binary regres-
sion trees was presented in Reference 7. In Reference 8, a multibranch decision tree algorithm was
proposed based on a correlation-splitting criterion.

On the other hand, various recommendation algorithms were presented and applied in different
fields. Most existing recommendation algorithms were devoted to make use of the knowledge on
the efficiency and correctness of algorithms. Gediminas et al. [9] introduced an overview of the
current generation of recommendation methods, such as content-based, collaborative, and hybrid
recommendation approaches. A travel recommendation algorithm that mines people’s attributes and
travel group types was discussed in Reference 10. Yang et al. [11] introduced a Bayesian-inference-
based recommendation system for online social networks, in which a user propagates a content rating
query along the social network to his direct and indirect friends.

However, to the best of our knowledge, there is no effective prediction and recommendation
algorithm for POTC in the existing studies. Moreover, there is almost no existing study on hospital
queuing management and treatment route recommendations.

20.2.2 CLOUD PLATFORM FOR PARALLEL COMPUTING

With the popularity of the applications of parallel data analysis, researchers in various fields are
seeking convenient technologies and tools to accomplish the computing tasks of the related realistic
applications. The speed of data mining and analysis for big data is a very important factor [12] in
practical project applications. Cloud computing, distributed computing, and supercomputing offer
high-speed computing powers and provide an excellent opportunity for large-scale data processing.
The Apache Hadoop and the Apache Spark are two famous cloud platforms that are widely used
in parallel computing and massive data analysis. Numerous parallel data-mining algorithms were
implemented based on the MapReduce [13] and RDD [14] models on these cloud platforms.

20.2.2.1 Apache Hadoop
Apache Hadoop is a distributed system infrastructure developed by the Apache Foundation. The core
components of the Apache Hadoop platform are the Hadoop-distributed file system (HDFS) and the
MapReduce programming model. HDFS serves as a storage system for massive amounts of data,
and MapReduce provides a parallel and distributed programming model to compute and analyze the
huge amount of data. The structure of the Apache Hadoop platform is illustrated in Figure 20.1.

FIGURE 20.1 Structure of the Apache Hadoop platform.
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In Figure 20.1, the structure of the Apache Hadoop platform contains a series of components.
The functions of some of the core components are described as follows:

• HDFS is a basic data storage management in the Hadoop platform, which provides a
solution for storing large-scale data files across multiple computing nodes.

• ZooKeeper is a large-scale distributed and reliable coordination system, which provides the
functions, including configuration maintenance, name service, distributed synchronization,
group services, etc.

• HBase is a scalable, high-reliability, high-performance, distributed, and dynamic model of
column-oriented database. HBase uses HDFS as a file storage system, and uses Zookeeper
as a collaborative service.

• MapReduce is a parallel and distributed programming model for large datasets. MapRe-
duce contains a Map stage and a Reduce stage. In the Map stage, specified operations of
independent elements on the dataset are performed, and produce the intermediate results in
the form of 〈key, value〉. In the Reduce stage, the intermediate results in the same “key” are
gathered in a reduce function, and get the final result after the corresponding computing.

• Mahout is a machine learning and math library based on MapReduce. Benefiting from
the parallel computing programming model of MapReduce, Mahout has provided vari-
ous data-mining algorithms, such as clustering, classification, and recommendation engine
algorithms.

Various data-mining algorithms were presented based on the Apache Hadoop cloud platform in Ref-
erences 15 and 16. Focusing on large-scale data and the performance of classification algorithms,
some studies on the intersection of parallel/distributed computing and learning of tree models were
proposed. Panda et al. [17] proposed a scalable distributed framework based on MapReduce for par-
allel learning of decision tree models over large datasets. Besides, they developed and deployed a
MapReduce-based tree learner, called PLANET, which can be scaled effectively. A parallel boosted
regression trees algorithm was presented in Reference 18 for web search ranking, where a novel
method for parallelizing the training of Parallel Boosted Regression Trees (GBRT) was performed
based on data partitioning and distributed computing. Apache Mahout implemented various parallel
machine-learning algorithms based on MapReduce, for example, the parallel RF algorithm and the
parallel k-means algorithm.

20.2.2.2 Apache Spark
The Apache Spark platform is an open-source project that is contributed by numerical excellent
developers from diverse organizations. Apache Spark is a popular parallel data-processing platform
for interactive queries and iterative algorithms, and is suitable for computing and analysis of massive
data. The structure of the Apache Spark platform is illustrated in Figure 20.2.

The Spark platform supports a lot of mechanisms for parallel computing and iterative computing,
such as in-memory storage and efficient fault recovery. Spark’s core programming model is the
resilient distributed datasets (RDDs). RDDs represent a collection of distributed items, which can
be manipulated in parallel across many computing nodes. The Spark platform provides various APIs
for building and manipulating these collections. In the Spark platform, data are cached in memory
before the processing phase, and iterations for the same data come directly from memory.

Apache Spark is an efficient cloud platform that is suitable for data mining and machine learning.
Numeral achievements have been published in the field of data mining and machine learning based
on Apache Spark.

Zaharia [19] presented a fast and interactive analytic over Hadoop data with Spark. Huang et al.
[20] introduced an in-memory parallel processing algorithm for massive remotely sensed data based
on the Apache Spark platform.
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FIGURE 20.2 Structure of the Apache Spark platform.

20.2.3 PARALLEL OPTIMIZATION OF RANDOM FOREST ALGORITHM BASED ON CLOUD PLATFORM

The RF algorithm is an ensemble classifier algorithm based on decision tree, and is suitable for clas-
sification processing for big data. To train an RF model, first, k different training data subsets are
generated from an original dataset with a bootstrap sampling approach. Then, k decision tree models
are constructed as a C4.5 or CART algorithm by training these k subsets, respectively. Finally, an
RF model is constructed by these k decision tree models. In the prediction process, each sample of
the testing data is predicted by all decision tree models in the trained RF model, and the final clas-
sification result is returned depending on the vote of these tree models. The training and prediction
process of the RF algorithm is presented in Figure 20.3.

However, the accuracy of the RF algorithm is affected by noisy data. As mentioned above, there
are various conditions resulting in a large proportion of noise, incomplete, and inconsistent data in
hospital data. The noisy data might lead to noisy decision trees and a noisy RF model, and decrease
the accuracy of the RF model. Hence, it likely leads to a classification or regression error for the
testing dataset.

FIGURE 20.3 Training and prediction process of the random forest algorithm.
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In this chapter, an innovative optimization approach of the RF algorithm is proposed to limit the
above shortcut of the algorithm. First, a newmargin distribution optimizationmethod is introduced to
reduce the influence of the algorithm accuracy for noisy data. Moreover, to improve the performance
of the algorithm, we discuss a parallelization solution of the RF algorithm on the Apache Spark cloud
platform.

20.2.3.1 New Margin Distribution Optimization Method for the RF Algorithm
To reduce the influence of the accuracy of the RF algorithm from noise and large-scale data, an
innovative approach of the algorithm is introduced in this section by optimizing the margin distri-
bution. We minimize classification intervals of margin distribution using the average classification
interval measurement method instead of the traditional method. In the presence of noisy data, the
optimization method can effectively narrow the effect of noisy data on the training process of RF.

As an important index to assess the performance of a classifier, the generalization ability refers
to the ability of a classifier to correct classification of the training set outside of the sample. The
generalization error relates to the error of judgment proportion classifier on the training set outside
of the sample. In Reference 5, the class interval of RF function is defined as using the law of large
numbers as the theoretical basis to prove the following conclusions are obtained: with the increase of
the number of decision tree and RF in the generalization error, the RF model tends to a finite upper
bound.

Margin function (also called classification interval function) is defined as the subtraction between
the average number of sample that is divided into the correct class and the average number of samples
that are divided into all error classes by the ensemble of classifiers, as described in Equation 20.1:

Mg(x, y) = AVk(hk(x,�k) = y)− AVk(hk(x,�k) = z), (z �= y), (20.1)

where �k is a random feature vector corresponding to a meta decision tree, h(x, θk) is the output of
x and �k, y is the correct classification vector, z is an error classification vector, and AVk(·) is the
average number of sample.
Mg(x, y) < 0 indicates that the sample x is classified into an error class by the classifier. The

greater the value of the classification interval function Mg(x, y), the better the classification perfor-
mance of the current classifier, and the higher the classifier’s confidence. The margin distribution
optimization of the RF algorithm is shown in Figure 20.4.

In Figure 20.4, hmin is the minimummargin between two classifications, hmean is the mean margin
between two classifications, and hdist is the optimized margin distribution by maximizing the margin
mean and minimizing the margin variance simultaneously.

FIGURE 20.4 Margin distribution optimization of the random forest algorithm.
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20.2.3.2 Parallelization of the RF Algorithm Based on the Apache Spark Cloud Platform
For the original RF algorithm, the construction progress of the decision tree models is in a serial
way, in which each decision tree classifier is constructed one by one. To improve the speed of the
RF algorithm, we parallelize the RF algorithm in the Spark cloud computing environment. Taking
advantage of the cloud computing platform and the distributedmemorymanagement mechanism, the
performance of the RF algorithm is improved by three parallel processes: the parallel training process
of the RF model, the parallel splitting process of each decision tree, and the parallel prediction
and voting process. The parallel training process of the decision trees of the RF model is shown in
Figure 20.5.

1. Parallel training process of k decision trees: After the training data are loaded into the
Tachyon system of the Spark platform, the training dataset has been sampled to k training
subsets as k RDD objects at an action stage. In this approach, it will need more time con-
sumption. Owing to the parallel training process of k decision trees, the training time of the
RF algorithm reduces k times in theories. Therefore, we parallelize the training process of
the algorithm. The k decision trees of the RF model are constructed at the same time.

2. Parallel splitting process of the decision tree in the RF algorithm: While parallelizing the
training process of k decision trees, the splitting process of each decision tree can also

FIGURE 20.5 Parallel training process of the random forest model.
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be parallelized. All the feature variables are calculated concurrently with the MapReduce
model based on Spark. Thus, the training process of the RF model is a dual parallel process.

3. Parallel prediction and voting process of the RF algorithm: After the training process of
the RF-algorithm, k-trained decision trees have been constructed. To increase the speed of
prediction and voting process for the RF algorithm, this process is parallelized by a dual-
layer parallel process on the Spark platform. In the first layer parallel process, the testing
dataset is divided into a series of records. All records are predicted at the same time. In the
second layer parallel process, each record is predicted by k decision trees concurrently.

20.3 APPLICATIONS IN HOSPITAL BIG DATA PROCESSING

In this section, we concentrate on the issue of how to extract and fully utilize the value of data from
the massive historical hospital data. We focus on helping patients complete their treatment tasks in
a predictable time and helping hospitals schedule each treatment task queue and avoid overcrowded
and ineffective queues.

We use the improved RF algorithm to train a POTC model from massive realistic hospital data.
Based on the trained POTC model, we develop an HTRR system. We identify and calculate differ-
ent waiting times for different patients based on their conditions and operations performed during
treatment. Consequently, an efficient and convenient treatment plan is created and recommended to
each patient to achieve intelligent triage.

20.3.1 PREPROCESS FOR LARGE-SCALE HOSPITAL DATA

Before training the POTC model, the large-scale hospital data are required to be preprocessed. Hos-
pitals data from different processes of treatment are gathered. Then, some important features are
selected and calculated, such as the operation time consumption of each treatment record, and the
week and the time range of the treatment time. The detailed steps of the preprocess of the hospital
data are summarized as follows:

1. Gather hospital data from different treatment processes: The daily business of the hospital
produces a huge amount of treatment data. These data are gathered from different pro-
cesses of treatment task, which include registration, medical examination, inspection, drug
delivery, payment, and other treatment tasks.

2. Choose the same dimensions of data: Different contents and formats of the medical data
and treatment data are generated in different processes of treatment, while the dimensions
are also different. To train the operation time consumption model for each process of treat-
ment, we choose the same features of data from these data, such as the patient information
(e.g., patient card number, patient name, sex, and age), the treatment project information
(e.g., project name, department name, doctor name, and doctor position), the active time
information (e.g., start time and end time), and other related information of the patient.

3. Calculate new features of data formodel training: To train the POTCmodel, some important
features of the hospital data should be calculated, such as the operation time consumption of
each treatment record, day of week for the treatment time, and the time range of treatment
time. Other features that are not contributing to themodel training are removed from the raw
data, such as the patient card number, the patient name, telephone, etc. Here, for a single
visit, we cite a single example of treatment operation records, which contains features such
as the patient name, age, and gender. The detailed records of the treatment tasks on one
patient’s visit are shown in Table 20.1.
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TABLE 20.1
Example of Treatment Data Records

Patient
Number

Gender Age Task Name Department
Name

Doctor
Name

Start Time End Time

3278 Male 21 Checkup Surgery Dr. Li 2015-05-13
09:20:00

2015-05-13
09:32:14

3278 Male 21 Payment Cashier-8 Null 2015-05-13
08:41:18

Null

3278 Male 21 CT scan CT-1 Dr. Sun 2015-05-13
09:12:00

2015-05-13
09:26:00

3278 Male 21 MR scan MR-3 Dr. Lin 2015-05-13
10:16:45

2015-05-13
10:23:52

3278 Male 21 Take
medicine

TCMPhar-
macy

Null 2015-05-13
10:36:14

2015-05-13
10:41:21

. . . . . . . . . . . . . . . . . . . . . . . .

20.3.2 PATIENTS OPERATION TIME CONSUMPTION MODEL BASED ON BIG DATA

To predict the waiting time for each treatment task, we use the RF algorithm to train the POTC based
on both patient and time characteristics, and then build the POTC model.

20.3.2.1 Training CART Regression Trees of the RF Model
Because the target variable of the RF model is the POTC, which is a continuous variable, a classi-
fication and regression tree (CART) model is used as a meta-classifier in the RF algorithm. Thus, a
CART regression tree model is created for each training subset straini. The main process of building
the regression tree of CART is described as follows:

Step 1. Calculate the best splitting features variables and the best split point. In each tree
node’s splitting process, each feature variable subspace yj and each potential split point
value vp of yj are chosen to calculate the loss function of (yj, vp), which is defined in
Equation 20.2:

(yj, vp) = argmin

⎡
⎣ ∑
x∈RL(yj,vp)

(yi − cL)2

+
∑

x∈RR(yj,vp)

(yi − cR)2
⎤
⎦ ,

(20.2)

where RL(yj, vp) is the first (left) subset of data split by vp in the feature subspace yj, and
cL is the average value in the RL(yj, vp) subset.
Step 2. Split the tree node and further grow the tree. Split the training dataset into two forks
by vp in the feature subspace yj. RL(yj, vp) denotes the first (left) data subset and RR(yj, vp)

denotes the second (right) data subset, which are defined in Equation 20.3:

RL(yj, vp) = {x|(yj ≤ vp)},
RR(yj, vp) = {x|(yj > vp)}.

(20.3)
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FIGURE 20.6 Meta CART tree of the POTC model.

Step 3.Construct multibranch for the CARTmodel. Some independent variables of data are
nominal data, which have different values, such as the time range (0–23) and day of week
(Monday–Sunday). To construct the regression tree model felicitously, in this chapter, we
introduce a multibranch regression tree model instead of two-fork tree model to construct
the CART model. After the tree node splitting into two forks by variable yj and value vp in
step 2, the same feature variable yj continues to be selected to calculate the best split point
vpL for the data in the left branch and vpR for the data in the right branch. A meta CART
regression tree of the POTC model is shown in Figure 20.6.

These processes of construction of a meta CART tree are repeated to train k CART regression trees
on k training subsets.

20.3.2.2 Collecting k CART Trees for an RF Model
After the construction of the k CART regression trees, these trees are gathered and combined into
an RF model.

The original RF algorithm uses a traditional direct voting method in the voting process. In this
case, if the RF algorithm contains some noisy decision trees, the accuracy of the algorithm is
decreased. It likely results in a classification or regression error for the testing dataset. To miti-
gate this problem, in this chapter, a weighted voting method is applied to the RF algorithm in an
innovative way. The weighted voting method can effectively improve the classification accuracy of
the RF algorithm for testing dataset. The weighted regression result H(X) of the RF model for the
data X is the average value of k trees, as defined in Equation 20.4:

H(X) = 1

k

k∑
i=1
[wi × hi(x)], (20.4)

where wi is the weight of the tree hi and hi(x) is a meta-classifier for a pruning regression tree
constructed by the CART algorithm. The POTC model based on the RF algorithm is shown in
Figure 20.7.
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FIGURE 20.7 POTC model based on the RF algorithm.

20.3.3 HOSPITAL TREATMENT ROUTE RECOMMENDATION SYSTEM BASED ON BIG DATA

Based on the trained POTC model, an HTRR system is developed. In the daily operation of every
hospital, more than one treatment task might be required for most of the patients. As we all know,
the best condition is that these patients can go to the task with the least waiting time for them. After
the patients obtain the list of required tasks, the detailed information of the tasks, including the task
id, task name, and the detailed information of patients in the waiting queue of the task, is sent to the
HTRR system in real time. The HTRR system calculates and predicts the time consumption of each
patient who is in the waiting queue of each task. Then, these tasks are re-sorted by the predicted
waiting time in ascending order. Finally, an efficient and convenient treatment plan is created and
recommended to each patient to achieve intelligent triage. The detailed steps of the HTRR system
are described as follows:

1. Predict the waiting time of all the treatment tasks for the current patient: Assume that
there exist various treatment tasks for each patient according to the patient’s condition. Let
Tasks = {Task1, Task2, . . . , Taskn} be a set of treatment tasks that the current patient needs
to complete, and let Ui = {Ui1, Ui2, . . . ,Uim} be a set of patients waiting in the queue for
Taski.

For each patient Uik waiting in the queue of Taski, the POTC of each treatment task
is predicted by the trained POTC model according to the patient’s characteristics (such as
gender and age), time factors (such as the week and month period of the treatment time),
and other factors (such as treatment departments, availablemachines, and servicewindows).
The patient treatment time consumption Tik for patient Uik in the queue of treatment task
Taski is defined in Equation 20.5:

Tik = H(Xik, �j)

= 1

k

k∑
i=1
[CAi × hi(x, �j)],

(20.5)

where Xik is the treatment data of patientUik,Wi is the accuracy weight of tree hi, and hi(x)
is a result of POTC predicted by a single CART regression tree.

Then, all the predicted POTC of patients in the queue of the current treatment task is
added to obtain the waiting time of Taski, which is defined as Ti. The calculation formula
of Ti is defined in Equation 20.6:
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Ti = 1

Wi

m∑
k=1

Tik, (20.6)

where Wi is the number of service windows or workbenches that can provide a service for
treatment task Taski in parallel, m is the number of patients waiting in the queue of Taski,
and Tik denotes the predicted waiting time for the patient-in-waiting Patientk.

2. Sort all the treatment tasks of the current patient in ascending order by waiting time: All
treatment tasks of the current patient are sorted in ascending order according to the waiting
time. If there exists any task that is dependent on another task, these tasks should be sorted
based on their dependencies rather than their waiting times.

3. Provide an HTRR for the current patient: Finally, an HTRR with the sorted treatment tasks
is performed for each patient by a mobile application interface. Each patient can be invited
to complete his treatment activities in the most convenient way with the least waiting time.

The parallel recommendation process of the HTRR system is shown in Figure 20.8.
Usually, more than one treatment task are required for each patient, and many patients waiting in

the queue of each treatment task. Therefore, a parallel HTRR system is implemented for each patient
if there is more than one treatment task for the patients.

Assume that there are n treatment tasks required for the current patient to complete and that there
are a number of patients waiting in the queue of each treatment task. In the parallelization solution,
n RDD objects are created to refer to the n treatment tasks. There exists a number of partitions in
each RDD object that refer to patients waiting in the queue of each task. Let partition Uij be the jth
patient waiting for the ith treatment task.

Step 1. For each patient Uij in a task Taski, the time consumption of the patient might
generate in the ith task, which is predicted by the trained POTC model. In this step, the

FIGURE 20.8 Parallel recommendation process of the HTRR system.
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time consumption for each patient Uij is calculated with the k-trained CART trees of the
RF-based POTCmodel in a shuffle() function, and the predicted POTC Tij of treatment task
Taski is derived.
Step 2. The POTC of all the patients in each task is added in a sum() function, and the
predicted waiting time Ti of each task is obtained. An RDD object (Taski, Ti) is created for
each task.
Step 3. The predicted waiting times for all the tasks for the current patient are sorted in
ascending order with a sort() function. A new RDD object Ts is created to save the sorted
waiting times of all the treatment tasks. Hence, the parallel HTRR schema for the current
patient is performed.

20.4 PROGRAM DEPLOYMENT AND APPLICATIONS RESULT ANALYSIS

The algorithms proposed in this chapter are applied to the actual project of a hospital in China. In the
project, a data center and cloud platform are built at the National Supercomputing Center in Chang-
sha (NSCC). Daily hospital treatment data are transmitted and stored in the HBase database of the
data center. Then, treatment data are loaded into the Spark cluster regularly, and a POTC model of
this hospital is trained with the POTC algorithm proposed. The tasks required for each patient and the
current queue situations of the tasks are transmitted to the cloud platform in real time. The predicted
waiting time of each task is calculated by the trained time prediction model. Finally, a real-time rec-
ommendation of hospital treatment route is available to each patient through the mobile system. The
program deployment of the proposed system is introduced in Section 20.4.1. Numerous experiments
and applications are performed and the experimental results are analyzed in Section 20.4.2.

20.4.1 PROGRAM DEPLOYMENT

Almost every hospital has accumulated a large amount of medical and treatment data after many
years of operation, and more data are being produced every day. These data are recorded in the
database in the hospital, and then transported and stored in the HBase database in the data center of
NSCC. Before the periodic training process of the POTC model, the hospital data are loaded from
HBase into the Spark Tachyon system. Finally, applications of the POTC algorithm and the HTRR
system are deployed and executed on the Spark cluster. The detailed steps of program deployment
of the hospital application are described as follows:

1. Store historical hospital data into HBase: In our solution, the historical hospital data are
stored in theHBase, which is a distributed storage systemwith high reliability, performance,
and scalability. The HDFS is used as the file storage system of HBase. HDFS supports
handling huge amounts of data in HBase with the MapReduce programming model.

With the increase in the number of treatment data records in HBase, the data table will
gradually split into multiple splits, and all the data are stored in corresponding regions
that are managed by Zookeeper [21]. A uniform row key is created for each record, and
each region stores the data on the row key in the range of [startkey, endkey]. Then, dif-
ferent regions are allocated to the corresponding region servers in the HBase cluster for
management.

Hospital treatment data are stored in a dictionary order of the row key. To load the same
department and treatment task data efficiently in the training process of the POTC model,
the row key of each treatment data is defined as follows:

rowkey = {HospitalID+ “_”+ DepartmentID+ “_”+ TaskID+ “_”+ ActionTime+
“_”+ PatientID}.
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FIGURE 20.9 Row keys and regions in HBase for the hospital data.

Thus, the data in the same department and the same treatment task are stored near each
other. An example of row keys and regions in HBase for the treatment data is shown in
Figure 20.9.

2. Load the hospital datasets into the Spark platform: Before the training and prediction
process, the large-scale hospital datasets are loaded into the Spark platform. Large-scale
training data are stored in the Tachyon system of the Spark platform in the form of RDD
objects.We create an RDD object RDDoriginal to store the original training dataset So, which
is stored in external files. The key code of this command is defined as follows:

RDDoriginal = SparkContext.textFile(So).

The process of loading massive hospital data to the Spark Tachyon memory system is
shown in Figure 20.10. The RDD object RDDoriginal supports two kinds of operations,
transformation operation and action operation. Transformation operations include a series
of operations on the RDD object, and a new RDD object will be returned. Action operations
include a series of operations that compute a result based on the RDD object, and send it
back to the driver program or save it to an external storage system.

At the transformation stage, k RDD objects are defined to save k training subsets, which
are sampled from the original training dataset RDDoriginal in a bootstrap sampling way.
Because of the lazy fashion mechanism of Spark, the RDD objects are constructed and
saved into the Tachyonmemory system at the action stage with series operations. Extending
from the MapReduce model, the Spark RDD model supports iterative computation. The
intermediate data are stored in Spark cluster’s memory as RDD objects, which are generated
by the iterative processes of machine-learning algorithms. The mechanism of the Spark
RDD model allows these RDD objects to be used repeatedly. Hence, it is suitable for the
RF algorithm.

3. Execute the application of the HTRR system on the Spark cluster: Applications of parallel
POTCmodel training and parallel HTRR system are deployed on a Spark cluster. The Spark
cluster is constructed with a driver machine, a system master computing node, and a series
of worker nodes. The process of job submit on the Spark cluster is shown in Figure 20.11.

First, the POTC and the HTRR system are submitted to the Spark driver after the Spark cluster
startup. When an action function in the system is touched off, a new job is generated with a Spark
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FIGURE 20.10 Process of loading hospital data to the Spark Tachyon.

FIGURE 20.11 Process of job submit on the Spark cluster.

context. The job is submitted to the Spark master, and a DAG graph is produced by a DAG scheduler
for each job, which will calculate various job stages and divide the stages into multiple tasks.

Second, the tasks are submitted to a task scheduler, which is responsible for scheduling these
tasks to the corresponding executors on the worker nodes in the Spark cluster.
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Finally, there exists one or more ExecutorBackend (EB) process in each worker node. Each pro-
cess contains an executor object, and the executor object has one thread pool, and each thread will
launch a task.

20.4.2 APPLICATIONS RESULT ANALYSIS

In this section, various experiments and applications of the proposed algorithm and the hospital
system are performed. Sizable historical hospital data are selected from a hospital in China. Experi-
mental results of pharmacy task are taken as examples to discuss in terms of the task quantities, the
operation time consumption, and the average waiting time.

20.4.2.1 Experiment and Application Setup
All experiments are performed on a Spark cloud platform, which is built by one master computing
node and 100 slave computing nodes. Each computing node executes in Ubuntu 12.04.4, with one
Pentium R© Dual-Core 3.20GHz CPU and 8GB memory. All nodes are connected by a high-speed
Gigabit network, and are configured with Hadoop 2.6.0, Spark 1.4.0.

In our experiments, training data are chosen from a hospital in China, which covered 3 years
(2013–2015). The data volumes are described in Table 20.2.

There are various treatment departments in the hospital and various treatment tasks in each depart-
ment. Taking the data of the pharmacy task as an example, the quantities of the pharmacy task in
all months in 2013–2015 are presented in Figure 20.12. Obviously, the data quantity is smooth and
steady in each month except for February. Because it is the month of the Chinese New Year, many
people are reluctant to go to the hospital in the new year.

20.4.2.2 Average Quantities of Pharmacy Task
A series of experiments of the proposed algorithm is performed, and experimental results of phar-
macy task are taken as examples to discuss. At present, most hospitals in China consist of two types
of pharmacies, namely, the Western medicine pharmacy and the traditional Chinese medicine phar-
macy. More than one service window is available in each pharmacy department. Moreover, the
dispensing medicines are mainly operated by the pharmacy staff. Medicines might be taken by a
patient’s family or companion rather than the patient himself.

In our experiments, the treatment time consumption of the pharmacy task for each patient is
different, which is generally associated with the pharmacy staff, drug contents, and the time period
factors. We analyze the quantities and time consumption of the pharmacy tasks in the time period
factors in this section. The quantities of these two types of pharmacy tasks in each week period are
presented in Figure 20.13.

As can be observed from Figure 20.13, there exist two peaks of the pharmacy treatment every day
for both of the Western medicine pharmacy (shown in Figure 20.13a) and the traditional Chinese

TABLE 20.2
Datasets from an Actual Hospital Application

Years Departments Tasks Instances Data Size

2013 298 15,124 178,273,257 1.3 TB

2014 302 15,386 214,764,385 1.7 TB

2015 296 14,992 205,845,486 2.1 TB
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FIGURE 20.12 Average quantities of the pharmacy task in 2013–2015.

FIGURE 20.13 Quantities of the pharmacy task in each week period.
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FIGURE 20.14 Operation time consumption of the pharmacy task.

medicine pharmacy (shown in Figure 20.13b). The first peak comes from 9 am to 12 am, and the
second peak comes from 3 pm to 5 pm. Between 12 am and 3 pm, it is the rest time of most of the
hospital staff; only the emergency department of the pharmacy is still open. Usually, the time period
between 8 am and 6 pm every day is the work time for both of the Western medicine pharmacy and
the traditional Chinese medicine pharmacy. Between 6 pm and 8 am, some service windows of the
Western medicine pharmacies open, while all service windows of the traditional Chinese medicine
pharmacy close.

In comparison with the traditional Chinese medicine pharmacy, there are more service windows
for the Western medicine pharmacy, and less time consumption for each pharmacy operation. In
addition, the overall number of patients on the weekend is less than that on weekdays. Taking the
average quantity of pharmacy task in the first peak (9 am to 12 am) every day as an example, for
the Western medicine pharmacy, there are 80–100 pharmacy tasks at the peak time in each weekday.
The average quantity is 104 on Monday, 100 on Tuesday, 94 on Wednesday, 91 on Thursday, 91
on Friday, 68 on Saturday, and 38 on Sunday. For the traditional Chinese medicine pharmacy, the
quantity of pharmacy at the peak time in each weekday is 15–25. The average quantity of pharmacy
task is 25 on Monday, 25 on Tuesday, 26 on Wednesday, 22 on Thursday, 26 on Friday, 18 on
Saturday, and 5 on Sunday.
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FIGURE 20.15 Average waiting time for patients.

20.4.2.3 Operation Time Consumption of the Pharmacy Task
After discussing the average quantity of the pharmacy task, we account and analyze the operation
time consumption of the pharmacy task. The operation time consumptions of the pharmacy task
under time factors are presented in Figure 20.14.

In Figure 20.14, each point in the charts refers to a value of one leaf node in the regression tree
models of the POTC model. The average number of records at the leaf nodes of the peak-time case
on weekdays is approximately 113,880 (= 104 × 365 days × 3 years). Obviously, in the peak-time
case, because of the large number of records, the value of trained operation time consumption is
smooth and steady in both the traditional Chinese medicine pharmacy and the Western medicine
pharmacy. On the contrary, owing to the limited training samples, at the nadir point of two types of
pharmacies, the average value of trained operation time consumption is undulating.

Taking 10.00 am on Monday of the Western medicine pharmacy as an example, the average
quantity of pharmacy task is 104, namely, there are 113,880 (= 104× 365 days× 3 years) records at
the leaf node of the trained tree model. The operation time consumption is 180–240 s (approximately
3.0–4.0min) for a Western medicine pharmacy task, and 380–440 s (approximately 6.3–7.3min)
for a traditional Chinese medicine pharmacy task. However, for nadir points of both weekday and
weekend, there is 0 or 1 pharmacy treatment per hour on average, namely, there are 0–1095 (= 1 ×
365 days× 3 years) records at the leaf node of the trained tree model. With the number of records of
each leaf node reduced, the accuracy of operation time consumption of each leaf node is decreased.

20.4.2.4 Average Waiting Time for Patients
To evaluate the efficiency of the HTRR system, various experiments about the average waiting times
for patients in the with-HTRR case with that in the without-HTRR case are performed. Each case is
under treatment data with 8000 patients and 35,480 treatment records. We accounted and compared
the average waiting times of patients in the with-HTRR case with that in the without-HTRR case.
The results of comparison are presented in Figure 20.15.

It is easy to observe from Figure 20.15 that the advantage of the average waiting time of patients
in cases of with-HTRR is greater than that in cases of without-HTRR. When the number of tasks
required for each patient is equal to 2, the average waiting time of each patient is approximately
16min in the without-HTRR case (the original case), while 12min in the with-HTRR case. When
there are four treatment tasks required for each patient, the average waiting time is approximately
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48min in the former case, while it is 32min in the latter case. When there are eight treatment tasks
required for each patient, the average waiting time is approximately 138min in the former case,
while it is 79min in the latter case.

20.5 CONCLUSIONS

In this chapter, we discussed the parallel optimization of data-mining algorithms in the big data and
cloud computing environment and its applications in hospitals. The parallel optimization methods
of the parallel RF algorithm based on an Apache Spark platforms are introduced. Then, to utilize
the large-scale hospital data fully and effectively, we developed applications of hospitals based on
the optimized data-mining algorithms, which are implemented in a cloud computing environment.
Abundant experimental results and applications indicated that the optimized data-mining algorithms
achieve a high accuracy and performance and the hospital applications reach the requirements of
hospitals and society.

In addition, there are many interesting issues about data-mining algorithms and applications in
hospitals in a big data environment. As the amount of data in hospitals are increasing every day,
various incremental data-mining algorithms based on streaming data and real-time applications of
hospitals will be our future work.
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ABSTRACT

One of the significant research challenges in the realm of vehicular clouds is to identify conditions
under which these clouds can support big data applications. It is clear that big data applications,
with stringent data-processing requirements, cannot be supported by ephemeral vehicular clouds,
where the residency time of vehicles in the cloud is too short for supporting virtual machine setup
and migration. Similarly, it turns out that vehicular cloud implementations relying on bandwidth-
constricted interconnection topologies are not suitable for big data applications. Unfortunately, this
is the case of the vast majority of vehicular clouds proposed thus far in the literature that rely on a
wireless interconnection fabric.

Our main contribution is to identify sufficient conditions under which big data applications can
be effectively supported by datacenters built on top of vehicles in a parking lot. This is pioneering
work: to the best of our knowledge, this is the first time researchers are looking at evaluating the
feasibility of the vehicular cloud concept and its suitability for supporting big data applications. One
of our main findings is that (1) if the residency times of the vehicles are sufficiently long and (2) if
the interconnection fabric has a sufficient amount of bandwidth, then big data applications can be
supported effectively by such datacenters.
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21.1 INTRODUCTION AND MOTIVATION

The past decade has witnessed the emergence and incredible success of cloud computing (CC), a
paradigm shift adopted by information technology (IT) companies with a large installed infrastruc-
ture base that often goes underutilized [1–6]. The unmistakable appeal of CC is that it provides
scalable access to computing resources and to a multitude of IT services. Not surprisingly, CC and
cloud IT services have seen and continue to see a phenomenal adoption rate around the world [7].
In order to achieve almost unbounded scalability, availability, and security, CC requires substantial
architectural support ranging from virtualization, to server consolidation, to file system support, to
memory hierarchy design [8,9].

The National Institute of Standards [10] has defined CC as “A model for enabling convenient,
on-demand network access to a shared pool of configurable computing resources (e.g., networks,
servers, storage, applications, and services) that can be rapidly provisioned and released with
minimal management effort or service provider interaction.”

As it turns out, CC is a catchy metaphor for utility computing implemented through the provi-
sioning of various types of hosted services over the Internet [1]. Indeed, it has been argued [11] that
CC was inspired by the concept of utility computing and was enabled by the availability of infras-
tructure providers whose surplus computational resources and storage can be rented out to users. In
this context, a user may purchase the amount of compute services they need at the moment. They
also need not be concerned with over-provisioning for services whose popularity does not meet their
predictions and market analysis, thus wasting costly resources, or under-provisioning for one that
becomes wildly popular, and missing potential customers and revenue. As a result, the underlying
business model of CC is the familiar pay-as-you-go model of metered services, where a user pays
for whatever he or she uses and no more, and where additional demand for service can be met in real
time [1,9].

In time, this state of affairs has led naturally to the establishment of a global compute-power
marketplace [8]. In turn, the availability of the compute-power marketplace has a number of
important corollaries. For example, instead of investing in infrastructure, businesses and individ-
ual entrepreneurs may find it useful to rent the infrastructure and oftentimes the software required
to run their applications. This powerful idea has been suggested, at least in part, by the pervasive
presence of relatively low-cost high-speed Internet, a good handle on virtualization, and advances
in parallel and distributed computing [9,12].

21.1.1 A FIRST LOOK AT VEHICULAR CLOUDS

This subsection provides an introduction to the ideas that underlie vehicular cloud (VC) computing
and investigates some of its ramifications, challenges, and opportunities.

A few years ago, inspired by the success and promise of conventional CC, a number of papers [13–
17] have introduced the concept of VC, a nontrivial extension of the conventional CC paradigm. VCs
weremotivated by the realization that present-day vehicles are endowedwith powerful onboard com-
puters, powerful transceivers, and an impressive array of sensing devices. As it turns out, most of the
time the computing, storage, and communication resources available in our vehicles are chronically
underutilized. Putting these resources to work in a meaningful way is poised to have a significant
societal impact.

It is very likely that, given the right incentives, the owners of vehicles will decide to rent out their
onboard capabilities just as the owners of large computing or storage facilities find it economically
appealing to rent out their excess capacity. For example, we anticipate that in the near future air
travelers will park and plug their vehicles in airport long-term parking lots. In return for free parking
and other perks, they will allow their vehicles to participate, during their absence, in the airport
datacenter as suggested by [14].
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More generally, we expect that in a VC the underutilized vehicular resources including compute
power, storage, and Internet connectivity can be shared between drivers or rented out over the Internet
to various customers, very much as conventional cloud resources are. In [16], it was suggested that,
even under current technology, many forms of VCs are technologically feasible and economically
viable. They predicted that, once adopted, the VCs will be the next paradigm shift with a lasting
technological and societal impact [16].

One of the fundamental ways in which VCs differ from conventional clouds is in the ownership of
resources. In VCs, the ownership of the computational resources is distributed over a large vehicle-
owner population as opposed to a single owner as is the case of conventional clouds run by Amazon,
Google, IBM,Microsoft, Facebook, Yahoo!, Oracle, and other players. A first corollary of this is that
the resources of the VC are likely to be highly dynamic. As vehicles enter and leave the parking lot,
new computational resources become available while others depart, creating a volatile environment
where the task of promoting reliability, dependability, and availability becomes very challenging.
A second corollary is that in VCs, the distributed ownership of computational resources makes it
very challenging to promote reliability, dependability, and availability. To get a feel for the problem,
assume that we just assigned a user job to a vehicle currently in the parking lot. If the vehicle remains
in the parking lot until the job terminates, all is well. Difficulties arise when the vehicle departs before
job completion. In such a case, unless special precautions are taken, the entire work done is lost and
we have to restart the entire job again, taking chances on another vehicle, and so on until eventually
the job is completed.

21.1.2 BIG DATA APPLICATIONS

The volume of data that has to be collected and analyzed on a daily basis is growing rapidly, in
fact exponentially, because data is collected by all sorts of sensing devices embedded in our sensor
networks, smartphones, smart glasses, smart cars, various RFID readers, and so on [18]. Similarly,
huge amounts of data are produced by social networks, various flavors of vehicular networks, and
by devices forming what has been called the Internet of Things (IoT) [19,20].

Arguably, we are approaching a fundamental paradigm shift in computing as the number of smart
device (e.g., smartphone and tablet) users is expected to exceed 3 billion (40% of the global popula-
tion) by the end of 2016 and to swell to more than 4 billion in the next 3 years [21,22]. In addition,
given the recent advances in microprocessors and the development of more types of connected smart
devices (e.g., smart watches, smart glasses, smart meters, connected vehicles, etc.), we are seeing
the next phase of the Internet, populated by traffic originating primarily from IoT devices. Cisco
predicted that the number of connected IoT devices will reach 50 billion by 2020 [23,24].

By 2017, it is expected that the amount of monthly data generated by devices such as smart-
phones, wearables of all sorts, and vehicles will reach 14 exabytes and will surpass 24.3 exabytes by
2019 [25]. With the widening gap between bandwidth capacity and data volumes, more and more
useful data will be thrown away for the lack of processing capability. Besides its mere size, the data
collected by various smart devices is incredibly rich in contextual information and, if properly har-
vested, could contribute tremendously to enhancing our understanding of our environment and daily
experience.

Given the ephemeral nature of context and context-sensitive needs of individuals and enterprises,
the highest value from data can be extracted only by processing it in near real-time. However, due to
latency and costs involved in moving data to and from a distant cloud facility, cloud-based real-time
processing huge amounts of data in near real-time remain a big challenge. Until new data-processing
technologies are developed, the processing of huge volumes of data with stringent time constraints
is neither technologically feasible nor economically viable [26].

Yet another example of large data sets that need to be processed not only fast but also reliably is
provided by the type of processing dealing with customer experience in e-commerce applications.
In this context, the most prevalent workloads are searches and many other services that support and
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enhance a customer’s experience. Managing the contents of a shopping cart and various queries
launched by a prospective customer requires the ability to store and recover efficiently customer
preferences, a history of previous purchases, returns, personal data, and so on. This information
must be maintained reliably and must be made available in a fraction of a second. The common
wisdom is that unhappy customers will not be return customers [27].

Another type of workload is associated with queries launched by a customer and involves com-
posite services. For example, a customer may be interested in restaurants in New York. The search
algorithm must traverse all available postings of each such item and must return the answers in a
given, often customer-aware, way. A successful search service presupposes that the data is stored
reliably and that it is accessible in a fraction of a second irrespective of how many servers are down
at the moment [1].

Importantly, in the examples above, the total user-perceived latency needs to be a fraction of a
second. Consequently, any file system in support of such applicationsmust support latency reduction.
However, high throughput is also an important performance metric because a highly popular service
needs to support many thousands of simultaneous queries. The high availability requirements in such
a system can only be supported through redundancy of storage (in addition to execution redundancy,
where each user query may be executed by two or more servers). Storage redundancy implies that
virtually each data item must be stored at several locations in the network.

More generally, big data is a commonly used term for describing data collections, both structured
and unstructured (as discussed above), that are so large and so complex that traditional data-
processing applications are inadequate for handling them effectively. And yet, this data needs to be
analyzed for the purpose of decision making in such relevant areas as identifying trends in customer
behavior, weather patterns, computer vision, medical sciences, terror attack prevention, nanotech-
nology, microbiology, robotics, and massively parallel processing, to name just a few [28–37]. The
challenges involved in handling these large amounts of data in a timely and secure and privacy-
preserving fashion range from data collection, to data transfer, to data storage, to data analysis, to
data visualization, to many others.

As it turns out, emerging big data applications involve sophisticated multiphase data process-
ing [26]. Many of these applications rely on MapReduce [12,38] and on its open-source twin
Hadoop [39–41]. Since our simulations use MapReduce, we now provide a succinct review of how
MapReduce works.

MapReduce was introduced by Google in 2004 and is suitable for processing semistructured
and unstructured data [2]. MapReduce was inspired by the Lisp functions with the same name and
same functionality. The processing performed by MapReduce has two sequential stages: Map and
Reduce. In the Map phase, a user-defined function is applied to every logical input record to produce
an intermediate result of key–value pairs; the Reduce stage collects all the key–value pairs produced
by the Map stage and collapses them using yet another user-supplied function [12].

21.1.3 OUR CONTRIBUTIONS

The conception of VC is novel and so are themyriad of potential applications and significant research
challenges facing the VC research community. While a good number of papers were written about
various flavors of VCs, there are virtually no studies concerning the practical feasibility of VCs.
Some of these papers proposed VCs built on top of moving vehicles interconnected by some form of
wireless communication fabric; some other authors consider amix ofmoving and stationary vehicles.
Our extensive simulations show that VCs based on wireless communications do not appear to be able
to support big data applications effectively. It is our hope that this negative result might serve as a
wake-up call to the VC community.

One of the significant research challenges in the realm of VCs is to identify conditions under
which the VCs can support big data applications. It is clear that such applications, with stringent
data-processing requirements, cannot be supported by ephemeral VCs, that is to say, VCs where
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the residency time of vehicles in the cloud is too short for supporting VC setup and VM migration.
Similarly, VC implementations with bandwidth-constricted interconnection topologies are not suit-
able for big data applications. Unfortunately, so are the vast majority of VCs that rely on a wireless
interconnection fabric.

Our main contribution is to identify sufficient conditions under which big data applications can
be effectively supported by datacenters built on top of vehicles in a parking lot. This is pioneering
work: to the best of our knowledge, this is the first time researchers are looking at evaluating the
feasibility of the VC concept and its suitability for supporting big data applications. One of our main
findings is that if the residency times of the vehicles are sufficiently long and if the interconnection
fabric has a sufficient amount of bandwidth, then big data applications can be supported effectively
by such datacenters. The extensive details of our findings are spelled out in Section 21.7.

At this point, it is appropriate to give the reader a synopsis of the chapter. Section 21.2 offers
a succinct synopsis of cloud services, followed by, in Sections 21.3 and 21.4, a taxonomy of VCs
and a survey of relevant work on VCs, respectively. In Section 21.5, we review, respectively, the
assumptions we make about the architecture and services provided by the VC, the strategy for VM
migration, and the capabilities of vehicles. Specifically, in Section 21.5.1, we discuss VM migra-
tion and data replication strategies, while in Section 21.5.2, we discuss our assumptions about the
onboard capabilities of vehicles. Next, Section 21.6 discusses a particular instance of a realistic VC
that will be used in our simulation section. Section 21.7 presents the details of our empirical evalua-
tion of the conditions that allow a VC-based datacenter to support big data applications effectively.
Specifically, Section 21.7.1 introduces our simulation model; Section 21.7.2 presents the intercon-
nection model used in our empirical evaluation; Section 21.7.3 presents our interpretation of the
results we have obtained; Section 21.7.4 presents a critical look at two strategies for setting the VM
migration offset; Section 21.7.5 contrasts the performance of a VC-based datacenter with that of a
conventional datacenter. Finally, Section 21.8 offers concluding remarks and directions for future
work.

21.2 A REVIEW OF CLOUD SERVICES

Hand in hand with CC go cloud IT services where not only computational resources and storage are
rented out, but also specialized services are provided on demand. In this context, users may purchase
the amount of services they need at the moment. As their IT needs grow and as their services and
customer base expand, the users will be in the market for more and more cloud services and more
diversified computational and storage resources [26]. As a result, developers with innovative ideas
for new applications are no longer required to immobilize capital in hardware and software to test
their ideas. They also need not be concerned with over-provisioning for services whose popularity
does not meet their predictions, or under-provisioning for those that become wildly popular [11].

Three aspects are novel in CC: first, it gives users the illusion of having infinite computing
resources available on demand, thus eliminating the need for them to plan far ahead for resource
provisioning. Second, it eliminates the up-front financial commitment by cloud users, allowing com-
panies to start small and to increase hardware resources only when there is an increase in their needs
because of their applications getting more popular. Third, it gives users the ability to pay for comput-
ing resources on a short-term basis as needed (e.g., processors by the hour and storage by the day)
and release them as needed, thereby rewarding conservation by releasing resources (e.g., machines
and storage) when they are no longer useful.

There are three basic types of conventional cloud services:

Infrastructure as a Service (IaaS): Here the cloud provider offers its customers computing,
network, and storage resources. A good example is Amazon Web Services (AWS), where
Amazon provides its customers computing resources through its Elastic Compute Cloud
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(EC2) service and storage service through both Simple Storage Service (S3) and Elastic
Book Store (EBS) [42].

Platform as a Service (PaaS): PaaS solutions are development platforms for which the devel-
opment tool itself is hosted in the cloud and accessed through a browser. With PaaS,
developers can build Web applications without installing any tools on their computers
and then deploy those applications without any specialized systems administration skills.
Google AppEngine [43] and Microsoft Azure [44] are good examples of this category.

Software as a Service (SaaS): With SaaS, a provider licenses an application to customers as
a service on demand, through a subscription, in a “pay-as-you-go” model. This allows
customers to use expensive software that their applications require, without the hassle
of installing and maintaining that software. GoogleAppEngine and IBM [45] are good
examples of this category.

21.3 A TAXONOMY OF VCs

The huge fleet of vehicles that crisscross our roadways and city streets feature an impressive array
of onboard computational, storage, and sensing capabilities. It is common knowledge that many of
these vehicles spend hours each day in a parking garage, parking lot, or driveway. The computational
and storage capabilities of these parked vehicles are a vast untapped resource that, at the moment, is
wasted. These attributes make vehicles ideal candidates for servers in a datacenter. As mentioned in
Section 21.1, the CC paradigm has worked well for enabling the exploitation of excess computing
capacity.

We believe it is only a matter of time before the potential of the huge vehicular fleet on our road-
ways, streets, and parking lots will be recognized as an abundant and underutilized computational
resource that can be tapped into for the purpose of providing third-party or community services.

As already mentioned, it is reasonable to expect that, given the right incentives, the owner of a
vehicle will decide to rent out excess onboard capabilities, just as the owners of large computing or
storage facilities find it economically appealing to rent out their excess capacity. For example, it is
quite natural to assume that, while on travel, travelers will park and plug their cars in airport long-
term parking garage. While in the parking garage, the airport will power the vehicles’ computing
resources and will allow for on-demand access to this parking garage datacenter. Likewise, it is easy
to infer that the drivers of vehicles stuck in congested traffic will be more than willing to volunteer
their onboard computing resources so that municipal traffic management centers can run complex
simulations designed to help alleviate the effects of congestion by city-wide rescheduling of traffic
lights.

Recall that what distinguishes vehicles in a VC from servers in a conventional cloud is the
dynamic availability of resources. Clearly, some vehicles are parked for unpredictable periods of
time (think of the parking lot of a convenience store) while others are stuck in congested traffic and
move at very low speed changing their points of attachment to some wireless network. Finally, some
of our vehicles spend substantial amounts of time on the road and may be involved in dynamically
changing situations; in such situations, the vehicles have the potential to cooperate with local author-
ities to solve, in a timely fashion, traffic-related problems that cannot be addressed by the municipal
traffic management centers alone for the lack of adequate computational resources. Eltoweissy et al.
[46] and Olariu et al. [17] have argued that in many such situations, the vehicles have the potential
to cooperatively solve problems that would take a centralized system an inordinate amount of time,
rendering the solution useless.

More significantly, Eltoweissy et al. [46] have postulated that, in the near future, the vehicles will
autonomously self-organize into VCs utilizing their corporate resources on-demand and largely in
real-time in resolving critical problems that may occur unexpectedly. The new VCs will also con-
tribute to unraveling some technical challenges of the increasingly complex transportation systems
with their emergent behavior and uncertainty.
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With this in mind, Eltoweissy et al. [46] have proposed to think of a VC as a group of largely
autonomous vehicles whose corporate computing, sensing, communication, and physical resources
can be coordinated and dynamically allocated to authorized users.

In our vision, the VC concept is the next natural step in meeting the computational and situational
awareness needs not only of the driving public but also of a much larger segment of the population.
A primary goal of the VC is to provide on-demand solutions to events that have occurred but cannot
be met reasonably with preassigned assets or in a proactive fashion.

It is important to delineate the structural, functional, and behavioral characteristics of VCs. As
a step in this direction, Olariu et al. [16] have identified autonomous cooperation among vehicular
resources as one of the distinguishing characteristics of VCs. Another important characteristic of
VCs is the ability to offer a seamless integration and decentralized management of their onboard
resources. We anticipate that a VC can dynamically adapt its managed vehicular resources allocated
to applications according to changing application-level requirements and environmental and systems
conditions.

As far as a simple taxonomy goes, VCs can be public, private, or various hybrids thereof. The
public VC will provide (typically short-term) services on the Internet, whereas a private VC is pro-
prietary and provides (typically long-term) services to a limited set of users and would belong to
specific vehicle fleets such as FedEx, UPS, Costco, or Wal-Mart. Private VCs may be of interest to
military units as discussed by Florin et al. [47]. As an example of a hybrid VC, one may consider an
inter-VC cooperation.

We believe it is not too far-fetched to imagine, in the not-so-distant-future, a large-scale federation
of VCs established ad hoc in support of mitigating large-scale emergencies. One of these large-scale
emergencies could be a planned evacuation in the face of a potentially deadly hurricane or tsunami
that is expected to make landfall in a coastal region [48–53]. Yet another such emergency would be a
natural or man-made disaster apt to destroy the existing infrastructure and to play havoc with cellular
communications. In such a scenario, a federation of VCs could provide a short-term replacement for
the infrastructure and also provide a decision-support system.

While a static VC (e.g., vehicles in a parking lot) may mimic the behavior of a conventional CC
facility, many of our vehicles spend a substantial amount of time on the road and may be involved, on
a daily basis, in various dynamically changing situations, ranging from normal traffic to congestion,
to accidents, to other similar traffic-related events.

Under present-day practices, the vehicles are mere spectators that witness traffic-related events
without being able to participate in the mitigation of their effect. We suggest that in such situations
the vehicles have the potential to cooperate with various authorities to solve problems that otherwise
will either take an inordinate amount of time to solve (traffic jams) or cannot be solved for the lack
of adequate resources that can be brought to bear.

The mobility attribute of the VC, combined with the fact that the presence of vehicles in close
proximity to an event is very often an unplanned process, implies that the pooling of the resources of
those vehicles that for a VC in support of mitigating the event must occur spontaneously by the com-
mon recognition of a need for which there are no preassigned or dedicated resources available. This
option does not exist in conventional clouds and turns out to be an important defining characteristic
of VCs.

21.4 A SURVEY OF RECENT WORK ON VCs

The main purpose of this section is to offer a succinct survey of recent papers dealing with VCs.
The first papers that have introduced the concept of VC were Eltoweissy et al. [46] and Olariu
et al. [15,17]. These early papers have defined various possible versions of VCs, have pointed out
their multifold applications, and have identified a number of research challenges. For example,
autonomous clouds were proposed for the first time by Olariu et al. [15], where they also surveyed
a number of important applications and interesting research challenges.
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Actually, some researchers have pointed out that, even under present-day state of the practice,
many implementations of VCs are feasible and economically viable [15,17,54,55]. Olariu et al. [16]
argued that, once adopted, VCs will be the next paradigm shift, taking vehicular networks to the next
level of relevance and innovation.

Recently, Gu et al. [56] published a survey paper where they reviewed key issues in VC mostly
concerning its architecture, inherent features, service taxonomy, and potential applications. Not long
afterwards, Whaiduzzaman et al. [55] offered an updated perspective of various research topics in
VCs.

Arif et al. [14] have looked at datacenters run on top of the vehicles parked at a major airport.
In that context, they proposed a stochastic prediction model for the parking occupancy given time-
varying arrival and departure rates. They provided closed forms for the probability distribution of the
parking lot occupancy as a function of time, for the expected number of vehicles in the parking lot
and its variance, and for the limiting behavior of these parameters as time increases. In addition to
analytical results, they have obtained a series of empirical results that confirm the accuracy of their
analytical derivations.

Vignesh et al. [57] suggested potential new services that could be offered in VCs. A dynamic
group of vehicles in a parking lot is considered where the vehicles are typically parked for several
days and can form a stationary VC (SVC). The vehicle that controls the allocation of resources is
called the SVC Master (SVC-M). The other vehicles in SVC are called SVC Participants (SVC-P).
Once a vehicle wishes to join the SVC, it broadcasts an Association Request message. If it does
not receive any ACK within a certain interval, it assumes that there is no SVC yet formed and acts
as the SVC-M. If there is already an SVC-M, it will receive an association ACK. In Computation
as a Service (CaaS), the client sends a request for computation to the SVC-M. The SVC-M selects
the node with the maximum processing power and the longest parking history, then contacts the
selected node through a request, and thereby hands over the computational data. In Storage as a
Service (StaaS), the client initiates a storage request to the SVC-M along with the content to be
stored. SVC-M finds the node with the maximum memory and availability using the information
in the resource table and contacts that respective node and sends the associated storage files to the
SVC-P. In StaaS retrieval, the client that stored data in the SVC initiates a storage retrieval request to
the SVC-M. The SVC-M finds the SVC-P that currently holds the requested content and contacts that
SVC-P and sends the names of the files to be retrieved. The SVC-P returns the stored file contents
to the SVC-M, and the SVC-M then sends the stored content to client.

Hussain et al. [54] proposed a network model with an architecture divided into two networks
(i.e., VANET and CC) connected through gateway terminals (GTs). Vehicles moving on the road
serve as both producers and consumers. Roadside units (RSU) serve as GTs between vehicles and
cloud infrastructure. Vehicles with onboard 3G/4G Internet access can serve as a secondary GTs
to the cloud. Cloud architecture also consists of Authenticator, CPM (Cloud Processing Module),
CKB (Cloud Knowledge Base), and vehicles CDM (Cloud Decision Module). This system uses
the message lifetime, which defines the message validity period, to prevent stale messages from
cluttering the network.

He et al. [58] proposed a novel software architecture for the vehicular data clouds in the IoT
environment. A new generation of IoT-based vehicular data clouds can be developed to bring many
benefits, such as predicting increasing road safety, reducing road congestion, managing traffic, and
recommending vehicle maintenance or repair. The proposed IoT-based vehicular data cloud contains
various devices such as sensors, actuators, controllers, GPS devices, mobile phones, networking
technologies (wireless sensor network, cellular network, satellite network), CC, IoT, and middle-
ware. It supports V2V and V2I communications and is able to collect and exchange data among
drivers, vehicles, and roadside infrastructure such as cameras and street lights. This paper explains
intelligent parking cloud service. Finding available parking is challenging in many cities, so a system
to find available parking spots is necessary [59,60]. In this architecture, a vehicle is equipped with a
processor and a transceiver such as Bluetooth devices and infrared devices. When a vehicle is about
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to enter a parking lot, the entrance booth validates the reservation and, if it is valid, a direction for
finding the spot is sent to the driver. Sensors connected to the computer center report the status of
every parking spot on an ongoing basis. This mechanism can be used for advertisement of a partic-
ular parking spot. IoT-based vehicular data clouds must be efficient, scalable, secure, and reliable
before they could be deployed at a large scale. Existing algorithms and mechanisms are unsatisfac-
tory to meet all these requirements at the same time. Some of the challenges include performance,
reliability and quality of service, security and privacy, and integration of IoT with new and existing
devices and technologies.

In order to be able to schedule resources and to assign computational tasks to the various vehicles
in the VC, a fundamental prerequisite is to have an accurate picture of the number of vehicles that are
expected to be present in the parking lot as a function of time. What makes the problem difficult is
the time-varying nature of the arrival and departure rates. Arif et al. [14] have proposed a stochastic
prediction model for the parking occupancy given time-varying arrival and departure rates. They
provided closed forms for the probability distribution of the parking lot occupancy as a function of
time, for the expected number of vehicles in the parking lot and its variance and for the limiting
behavior of these parameters as time increases. In addition, they have obtained a series of empirical
results that confirm the accuracy of their analytical predictions.

Recently, Ghazizadeh et al. [61] have studied the problem of task scheduling in VCs and presented
a near-optimal solution based on mixed integer linear programming. Being integer programming-
based, their solution has the disadvantage that it does not scale to a large number of vehicles.

Fault tolerance and availability are important issues in CC and, therefore, also in VCs. Of the
papers cited above, the only one that even recognizes fault tolerance and availability being important
is He et al. [58]; however, they have not provided any solution. Recently, Ghazizadeh [62] has started
to look at the strategies for improving the mean time to failure (MTTF) in VCs. His work was
continued by [63,64] and also by Florin et al. [47].

Other important topics related to VC management are also getting attention. For example, Baron
et al. [65] and Refaat et al. [66] are addressing the important topic of virtual machine (VM)migration
in VCs. Strategies for VM migration are essential in conventional CCs. Due to the dynamic nature
of VCs, VM migration becomes even more important here.

Finally, Yan et al. [67] have investigated the problem of providing security and privacy in VCs.
They have shown that many of the insecurities found in conventional CC carry over to VCs. In addi-
tion, they have identified a number of VC-specific security problems and have proposed preliminary
solutions.

21.5 A HIGH-LEVEL VIEW OF THE DATACENTER AND VC MODEL

The main goal of this section is to present a bird’s-eye view of the datacenter and VC model
assumed in this chapter. Both the datacenter and VC model will be presented in much more detail
in Sections 21.6 and 21.7.

Throughout this chapter, we deal with a datacenter supported by a (static) VC built on top of
vehicles parked in a sufficiently large parking lot, similar to the long-term parking lot at a major
airport, or to the parking lot of a large corporation that employs thousands of people and operates
around the clock 24/7. To be more specific, we consider a variant of the latter scenario, which we
describe in some detail in Section 21.6. For obvious reasons, such a parking lot is almost always
nearly full and, in particular, it is always possible to find a vehicle that can be assigned to an incoming
user job.

The resulting VCwill harvest the corporate computational and storage resources of the participat-
ing vehicles sitting in the parking lot for the purpose of creating a VC-based datacenter and a huge
distributed data storage facility that, with proper security safeguards in place, will turn out to be an
important computational asset that the corporation cannot afford to waste. In the scenario above, the
architecture of the VCwill be almost identical to the architecture of a conventional cloud [1,6,68,69],
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FIGURE 21.1 Illustrating the virtualization model assumed in this chapter.
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FIGURE 21.2 Illustrating the functional view of the datacenter manager assumed in this chapter.

with the important difference that the VC is far more dynamic than a conventional datacenter. Indeed,
imagine what happens when a large number of workers end their workday and depart, only to be
replaced by the folks working the next shift.

To keep things relatively simple, we assume that the VC offers only IaaS cloud services. Recall
that in IaaS, the users request a hardware platform and specify their preferred OS support. As illus-
trated in Figure 21.1, the VC offers the user a virtualized instance of the desired hardware platform
and operating system bundled as a VM and guest OS hosted by one of the vehicles in the parking
lot. For fault-tolerance purposes, each user job may be assigned to multiple vehicles. When the VM
running the user job in a specific vehicle terminates execution, the result is uploaded to the data-
center. In this scenario, the datacenter waits for the prescribed number of instances of the user job
to terminate and makes a final determination by using, for example, a quorum-based algorithm or
voting mechanism [70–73].

To get an idea of the type of processing that is going on, consider a user job submitted for execution
by the datacenter and refer to Figure 21.2 that offers a functional view of the datacenter manager
module. The requirements of the submitted user job, in terms of the hardware platform that needs to
be emulated, the requested OS, and the user-specified input data, are evaluated by the Job Admission
daemon. If these requirements can be met by the datacenter, the job is admitted and gets inserted
into a queue of jobs awaiting execution. Otherwise, the job is rejected.

Once the job makes it to the front of the queue, control passes to the virtualization agent that
bundles the resources specified by the user job into a VM, specific OS, and the input data to the
VM. Finally, the virtualization agent passes control to the job scheduler that identifies one vehicle
(or a group of vehicles) on which the job is to be executed. For simplicity, in this chapter, we assume
that each user job is assigned and executed on a single vehicle. The extension to the case where, for
the sake of redundancy, each user job is run on several vehicles will be investigated in an upcoming
work.
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FIGURE 21.3 Illustrating the logical view of the datacenter communications assumed in this chapter.

Next, Figure 21.3 presents the logical view of the communication structure of the datacenter. This
communication structure is, conceptually, very similar to that of a standard datacenter (see Barroso
et al. [1]). The analogy is better understood if one bears in mind that a vehicle in the parking lot is just
like a server in a rack of servers. Accordingly, the parking lot is partitioned logically into clusters of
parking spots, regions of clusters, and so on. The communication in each cluster is under the control
of a switch called the cluster controller. Similarly, the communication in a region is under the control
of a switch called a region controller. Referring to Figure 21.3, the parking lot is partitioned into N
regions. Each such region consists of k clusters. The datacenter manager discussed above is in control
of assigning user jobs to various vehicles in the parking lot.

21.5.1 VM MIGRATION AND DATA REPLICATION

Once a vehicle is ready to leave the parking lot, a number of actions need to be undertaken. First
and foremost, if the vehicle is hosting a guest VM, the VM and all intermediate data stored by the
departing vehicle must bemigrated to an available vehicle in the parking lot. There are several known
strategies for VMmigration [65,66,74,75]. For the purpose of this chapter, we have not implemented
a specific migration discipline. We have estimated the average time such a migration should take for
a given VM size and available network bandwidth.

Inspired by the data replication strategies adopted by the Google File System (GFS) [76] and the
Google record storage system Bigtable [77], in support of reliability, dependability, and availability,
the datacenter will mandate data replication for multistage big data applications.

As an example, at the end of the Map stage, the intermediate result, in the form of a set of key–
value pairs, will be stored by a number of vehicles in the parking lot. Likewise, when a VMbelonging
to a multistage user job has to be migrated, it will go (if at all possible) to one of the vehicles that
stores relevant intermediate data for that job. More details on this are discussed in Sections 21.6 and
21.7.

21.5.2 THE VEHICLE MODEL

The past 10 years have seen an unmistakable trend toward making the vehicles on our roads and city
streets smarter and the driving experience safer, less stressful, and, as a result, more enjoyable [78]. A
typical vehicle today is likely to contain at least some of the following devices: an onboard computer,
a GPS device coupled with a digital map, a radio transceiver, a short-range rear collision radar device,
and a camera. These are supplemented, in high-end models, by sophisticated sensing devices that
can alert the driver to all manner of mechanical malfunctions and road conditions [78,79].
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We assume that each vehicle has a virtualizable onboard computer similar, but not necessarily
identical, to the Intel Itanium [80], AMD Athlon, or Opteron lines of processors. The vehicles are
assumed to have been preloaded with a suitable VM monitor (VMM) that is in charge of mapping
between the guest VM and the host car’s resources (see Figure 21.1). In this chapter, we assume that
each vehicle runs a single VM. This restriction is nonessential and is made only to streamline the
presentation. Because of their sophisticated compute capabilities and ample storage, our vehicles are
good candidates for servers in a warehouse-scale computer [2].

We assume that the datacenter has implemented a mechanism that identifies available vehicles
in the parking lot. Such a mechanism can be implemented by assigning to each vehicle a status bit.
When a vehicle is about to leave the parking lot, the datacenter alerts all the other vehicles assigned to
the same user job of the imminent departure. When a vehicle enters the parking lot and joins the VC,
it will initiate communication with the resource manager component of the datacenter manager. We
assume that the drivers of the vehicle will select an available parking spot at random. The resource
manager identifies the cluster and region where the vehicle is parked. Finally, the job scheduler can
select, using some form of locality criteria, one or several available vehicles that can be assigned to
a job.

21.6 DETAILS OF THE DATACENTER ARCHITECTURE

The goal of this section is to spell out the details of our datacenter implemented on the vehicles in the
parking lot of a plant that operates 24 hours a day, 7 days a week.* The patrons of the parking lot are
working at the plant in staggered 8-hour shifts, providing a pool of vehicles that can serve as the basis
for a datacenter. We assume that the vehicles in the parking lot are plugged into a standard power
outlet and are provided Ethernet connection to the datacenter. The challenge facing the implemen-
tation of the datacenter is to maintain high availability and reliability in the face of the dynamically
changing resources. Trade-offs will be identified and analyzed and several possible solutions will be
contrasted.

Imagine a medium-size plant that employs 7680 people and that operates around the clock, 7
days a week. For simplicity, assume that all the workers drive their own vehicle to work. In order
to avoid bottlenecks at the entrance to the parking lot, the plant has implemented staggered 8-hour
shifts. This is to say, at the top of each hour, 320 people end their workday and leave the plant, only
to be replaced by 320 fresh workers that start their 8-hour workday.

• The parking lot has a capacity of 2560 vehicles and is assumed to be nearly always full.
• We assume that all the 320 vehicles belonging to departing workers leave the parking lot

before the 320 new vehicles pull in.
• An arriving vehicle picks one of the available parking spots at random.
• For each vehicle, the datacenter keeps track, among others, of its status (available or busy),

of its arrival time, and of its departure time.

Services: The datacenter offers its users a virtualized instance of their desired hardware platform and
operating system bundled as a VM and guest OS, hosted by some vehicle in the parking lot.

• The vehicles are assumed to have been preloaded with a suitable VMM that maps between
the guest VM and the host vehicle’s resources.

• Each vehicle hosts at most one VM and has ample disk space. The size of a VM is uniformly
500MB.

* A good example of such a plant is Newport News Shipbuilding located in Hampton Roads, Virginia, that employs well over
20,000 people.
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• The users are assumed to run jobs whose durations are uniformly distributed in the interval
[1,5] hours. The duration of a job is taken to be the amount of time it takes the job to execute
in the absence of any overhead.

• Each user runs a MapReduce job with an input of 50GB and generates intermediate data
(at the end of the Map stage) of 25GB.

Network support: The network fabric that interconnects the vehicles in the datacenter is described
next.

• At the logical level, the parking lot is organized as a quadtree as illustrated in Figure 21.4.
• The root of the tree is a 64Gb switch* called the datacenter controller (DC) collocated

with the datacenter manager. The DC is in charge of the communication between the parked
vehicles and the datacenter.

• The DC has four children, termed region controllers (RC). Each RC is a 16Gb switch in
charge of the communication within its own region.

• Each RC has four children, termed group controllers (GC). Each GC is a 4Gb switch in
charge of the communication within its own group.

• Finally, each GC has four children, termed cluster controllers (CC). Each CC is a 1Gb
Ethernet switch in charge of a cluster of 40 parking spots (vehicles). The vehicles in a
cluster communicate uniquely through the local CC. The CC also acts as a gateway to
other members of the communication hierarchy described above.

Dependability and availability support: The datacenter strives to ensure a high level of dependability
and availability as described next.

• In support of availability and reliability, vehicles are expected to store data belonging to
various users, as explained next.

• Three replicas of all intermediate data produced by a job must be saved. To minimize
latency, the first copy is stored in the hard drive of the host vehicle; the second copy is
stored on a vehicle in the same cluster; and the third copy is stored on a vehicle anywhere
in the parking lot.

• The datacenter also keeps track of the various jobs that use a given vehicle’s hard drive as
a repository.

• When a vehicle is about to depart, its guest VM as well as the data it stores need to be
migrated to a suitable vehicle. This operation takes time and several migration strategies
have been explored.

• When a vehicle departs without having migrated its guest VM, the corresponding user job
will have to be restarted from scratch.

• If it becomes apparent that a vehicle is about to depart, the datacenter must attempt to
relocate the data stored in its hard drive.

Statistical data we are interested to collect: In order identify sufficient conditions for our VC-based
datacenter to support big data applications, we intend to collect statistical data as described next.

Before we discuss these statistical data, a definition is necessary. We define job completion time
as the total amount of time it takes a job to complete. Observe that job completion time is the sum of
job duration time† and the various overheads incurred, such as downloading the initial data on which
the job is to run, migrating the corresponding VM, replicating the intermediate data produced, and
transferring the job output to the datacenter manager.

* We assume that the link connecting the DC with its four children (see below) has a bandwidth of 16GB.
† This is the time that takes the user job to execute in the absence of any overhead.
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FIGURE 21.4 Illustrating the logical partition of the parking lot.

The goal is to minimize job completion time. In order to do this, we wish to evaluate strategies
for various VM migration and data replication strategies.

Job completion time overhead: When a job is first assigned to a vehicle from the job queue,
a job start time is set on the job. This is not reset if the job fails and is sent back to the
job queue. When the job completes, the time span is recorded. This value is the total job
completion time. To get the overhead, the job processing time defined by the parameter is
subtracted. The overhead may include time due to sending data or VMs, VM migrations,
or if the job fails, additional job processing time. At the end of the simulation, the average
is saved.

Average jobs in parking lot: At each time point, the number of the jobs currently assigned in
the parking lot is counted and saved by the datacenter. At the end of the simulation, the
average is saved.

Total jobs completed: Every time a job completes, the datacenter increments a counter rep-
resenting the number of jobs completed. At the end of the simulation, the average is
saved.

Failures per job: Upon a job failure, the datacenter increments a counter representing the num-
ber of failed jobs. At the end of the simulation, this number is divided by the number of
completed jobs.

VM migrations per job: Every time a VM migration is started, the datacenter increments a
counter representing the number of VM migrations. This is divided by the number of jobs
completed to give the number of VM migrations per job.

MTTF: MTTF is defined in the parking lot as the average of the total amount of processing
time completed across all jobs before a failure occurs. After the simulation, the average job
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completion time, total jobs completed, and the number of job failures are all known. To get
the MTTF, the average job completion time is multiplied by the jobs completed and then
divided by the number of job failures. This value is saved.

21.7 EMPIRICAL PERFORMANCE EVALUATION

Given the pioneering nature of the parking lot datacenter and our interest in reporting the feasibility
of delivering big data applications in VC-based datacenters, in our simulations we have varied our
parameters widely to get a good understanding of how the model acts. In doing so, we made a choice
for this baseline simulation to run a large number of varying experiments a few number of times,
rather than a few experiments several times. This gives us a full view over a wide variety of input
parameters, at the expense of not having the smoothing effects of averaging several runs.

Recall that the datacenter offers IaaS cloud services and that, to fix the ideas, the user jobs are
assumed to be two-stage MapReduce tasks each involving an input of size 50GB, consistent with
big data-processing needs.

21.7.1 SIMULATION MODEL

Each experiment is run for 1 week (10,080 minutes) with time stepping each minute. Vehicle arrivals
are set such that the parking lot is nearly always full. We assume that vehicle residency is exponen-
tially distributed with a mean of 480 minutes. As a vehicle arrives, it is assigned to a random empty
spot in the parking lot. Immediately upon arrival in the parking lot, the vehicle is assumed to be
available for job assignment.

Incoming user jobs are placed into a job queue run by the datacenter and are only assigned if the
following conditions are met:

• Only u, vehicle utilization percentage, of the vehicles in the parking lot may be assigned a
job at any given time.

• Only i vehicles may be in the initial job setup status at any given time.
• A vehicle may have at most one VM assigned to it at any given time.

In each of our simulations, u is set to 0.8 and i varies between 100, 200, and 300, meaning only 80%
of cars in the parking lot may be assigned jobs and, depending on the value of i, only 100, 200, or
300 cars may be in the initial setup task of the job. Both u and i act as a throttle that limits the number
of jobs being assigned from the job queue.

Incoming jobs arrive according to a Poisson distribution with parameter λ, varying from 0.05 to
1 minute every 0.05 minutes. λ represents the job inter-arrival time, meaning that jobs will arrive
from once every 3 seconds to once every 60 seconds.

Upon arrivals, jobs are assigned to the job queue, organized as a priority queue. The job with the
earliest arrival time is assigned first to the vehicle in the parking lot that has the latest departure time.
Each job has a VM size, input data size, and processing time. The VM and data size are both static,
set to 500 and 50,000MB (i.e., 50GB), respectively. Processing time varies starting from 30 to 300
minutes, in increments of 30 minutes.

Upon assignment, the job starts the first of five tasks. The first task is the initial job setup. In this
task, the datacenter sends the VM, assumed to be of size 500MB, and the input data, of size 50GB,
to the vehicle over the network, as explained in Section 21.7.2. Processing may not begin until this
step is complete.

The next three tasks are theMap, backup, and Reduce tasks. In theMap and Reduce tasks, half the
job processing is completed, meaning each Map and Reduce tasks lasts for half the processing time.
Between the Map and Reduce task is the backup task. In this task, the intermediate data, assumed
to be of size 25,000MB (i.e., 25GB), is copied from the host vehicle to three backups hosts: two of
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Simulation Parameters

Parameter Description Values

Simulation length Length of the simulation in minutes 10,080 minutes

Car residency distribution Distribution of the amount of time a car spends Exponential

in the parking lot

Car residency mean Mean time of residency for a car Mean 480 minutes

Incoming job distribution Distribution of incoming jobs Poisson

λ Inter-job arrival time of incoming jobs Varies between 0.05 and 1

u Fraction of total vehicles that may have a job 0.8

assigned

i Number of jobs in initial setup Varies between 100, 200, and 300

VM size Size, in MB, of the VM 500MB

Data size Size, in MB, of the data 50,000MB

Job-processing time Length of time it takes a job to complete Varies between 30 and 300 minutes

processing

τ Length of time prior to the car leaving that the 30 and 60 minutes

VM migration will be started

these backup hosts are sent to the same cluster, and an additional backup host is a vehicle in the same
group, but a different cluster. Upon job failure, the job can be restarted at the Reduce task using the
backup. Backups are also sent over the network.

The final task is the job finalization task. The results of the Reduce task must be sent to the
datacenter over the network.

We assume that we know when the vehicles leave. Given this information, we are able to mitigate
job failure due to vehicles leaving. If a backup exists, the job VM can be migrated to the vehicle with
the backup, and the job can restart. The datacenter will start this VM migration at a set time, τ, prior
to the vehicle leaving. This gives the datacenter time to find a new vehicle to assign the job to, and
then to migrate the VM to that vehicle. If a backup exists, the new host will be chosen as the vehicle
that does not already have a job. If there are multiple, then the one with the latest departure time is
chosen. If no backup exists, or no new host is available, then the vehicle will continue its current task
until either a backup host becomes available or the vehicle leaves. If a new host is found, the VMmust
be sent via the network to the new host. If the vehicle leaves before the job is complete or before the
VM is migrated, then the job fails and is reinserted into the job queue. Since, as already mentioned,
the job queue is organized as a priority queue based on the job arrival time into the system, a failed
job takes precedence over newly arrived jobs and will be assigned to the next available vehicle.

21.7.2 NETWORK MODEL

In our simulation, there are four types of messages that are being sent via the network: initial setup
data, backup data, VM migration data, and job finalization data. To simplify our model, we chose
to simulate the network by giving each message an equal share of the bandwidth at each link. This
choice leads to an easier understanding of what is happening in the datacenter, rather than introducing
the intricacies of a certain protocol.We assume that a message sent in the current time unit is sent and
received in the same time unit and the available bandwidth can be fully utilized. Each of the routes
of the messages are first determined and the bandwidth at each link is divided among all messages
on the link. Then for each individual message, the lowest link bandwidth is used, which represents
the bandwidth available for the message.
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21.7.3 INTERPRETING OUR RESULTS

Each graph has a distinct separation in the features of the graphs. Near a value of 0.6 for λ, each
graph in Figure 21.5 shows a distinct divide. When this point is reached, no additional jobs can be
assigned until one in initial setup state moves into the next state. This plays the role of the admission
control daemon and acts as a throttle to the datacenter in order to ensure that the network does
not get too congested. When i is 100, as is shown in the first column of Figure 21.5, the divide
is near a value for λ of 0.65. Similarly, for i of 200, the divide is near a value of λ of 0.6, and
for i of 300, the divide is near a value for λ of 0.55. This divide represents the point at which the
value of i is met. To the right, those with lower incoming job rates, the datacenter is able to run the
jobs that have been assigned more efficiently as the job rate decreases or λ increases. This is to be
expected that if there are fewer jobs assigned to the datacenter, it will be able to handle them more
efficiently.

This efficiency is clearly seen in the first row of plots in Figure 21.5 that show job completion time
overhead. This shows the job completion time minus the job-processing time. This represents the
overhead due to the network and VM migrations. To the far right, for lower incoming job rates,
the overhead is low representing the amount of time sending data over the network is quite low. As
the job rate increases, the traffic in the network increases, leading to higher job completion time.
At the point of the divide, the number of incoming jobs is limited by the number of jobs in the initial
job setup state.

As can be seen in the middle row of plots in Figure 21.5, the number of jobs assigned at any point
in the parking lot stays nearly constant to the left of this divide. To the right of the divide, it drops
off sharply and eventually flattens out. Each job must take at minimum the job processing time to
complete, as would be the case with a network with infinite bandwidth. As more jobs are added to
the datacenter, the load on the network increases, adding more overhead to the job completion time,
as is also seen in the top row of plots. This leads to a sharp increase in the number of jobs in the
parking lot up to the point they are throttled by the value i. To the left of the divide, the number of
jobs in the parking lot is nearly constant. This shows that the datacenter is able to complete jobs at
the same rate as jobs are accepted.

The third row of plots in Figure 21.5 shows the number of jobs completed. As expected, the
number of jobs completed increases as the throttle i increases from 100 jobs to 200 jobs. This trend
does not continue as it is increased to 300 jobs; instead, the opposite is true for some values of job
processing time. This is due to an increasing number of job failures occurring with low values of λ

and high values of job processing time.
We now look at the plots in Figure 21.6. These plots show statistics relating to the vehicles leaving

the datacenter. In these figures, the same divide as in the plots in Figure 21.5 still exists, but is not as
clear. The failures typically occur to the left of the λ divide and for higher job completion times. This
agrees with intuition, as if there are more jobs and the jobs are longer, then the jobs will increase the
load on the network until the point the job takes longer than the residency time of the vehicle. This
is exactly what the plots in the first row of Figure 21.6 show. These are the failures per job. As the
incoming job rates increase and the job completion time increases, there are more job failures. Also,
as the throttle i increases, there are more and more failures.

The middle row of plots in Figure 21.6 shows the number of VM migrations per job. The shape
of these plots reflects that of the first row. In an ideal set of plots, the shape representing the number
of VM migrations per job should be larger and more prominent than that of the failures. This would
show that the VM migrations essentially keep failures from occurring. We do not see this in our
graphs leading us to assume that we are not handling VM migrations in an optimal way.

Finally, we look at the MTTF in the bottom row of plots in Figure 21.6. To get the value of MTTF,
we take the number of completed jobs multiplied by average job completion time and divided by
the number of job failures. For lower values of the throttle i, the MTTF is high and it decreases as i
increases. At i equal to 100, the worst MTTF is above 60,000 minutes (10 hours). For i equal to 200,
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(a) (b) (c)

(d) (e) (f )

FIGURE 21.7 Comparison of τ = 60 and τ = 30. Total jobs completed: (a) i = 200, τ = 60; (d) i = 200,
τ = 30. Failures per job: (b) i = 200, τ = 60; (e) i = 200, τ = 30. VMmigrations per job: (c) i = 200, τ = 60;
(f) i = 200, τ = 30.

the worst MTTF is above 15,000 minutes (4.16 hours), and for i equal to 300, the worst MTTF is
only above 7600 minutes (2.1 hours).

21.7.4 COMPARING VM MIGRATION OFFSET

The plots in Figure 21.7 show the differences in our plots or VM migration offsets of 30 and 60
minutes. We expected the VM migration offset of 30 minutes to show much better results than that
of the 60-minute setting. This intuition came from our observation that a VMmigration does not take
very long since its size is low and that by starting the VM migration at 60 minutes, we essentially
cut short the length of time each vehicle is able to process.

In Figure 21.7, each plot has a value of i equal to 200 and τ is 60 minutes in the top row and
30 minutes in the bottom row. The first column of plots shows the number of jobs completed, the
second column shows the number of failures per job, and the third column shows the number of VM
migrations per job. The difference in job completion time is very slight, but the values are slightly
better for a VM migration offset of 60 than for 30. The difference is at its maximum less than 100
jobs more completed. The difference in values increases as the λ decreases and the job completion
time increases. The number of VM migrations for a VM migration offset of 60 is roughly double
that of 30. Finally, we see that there are slightly less job failures for a VM migration offset of 60
than that of 30. Each of these again shows us that our VM migrations are less than ideal.

21.7.5 COMPARISON WITH A CONVENTIONAL DATACENTER

Finally, to compare our VC with a conventional datacenter with similar bandwidth and servers, we
keep all our input parameters the same, except for the residency time of vehicles, which we set to
be infinite. The difference in the results will represent the overhead caused by vehicles leaving the
datacenter. These are shown in Figures 21.8 and 21.9.

First we look at Figure 21.8 that shows the number of jobs completed for i equal to 100, 200,
and 300, the first, second, and third columns, respectively, for both the VC and the conventional
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FIGURE 21.8 Comparison of vehicular and conventional datacenter. Total jobs completed: (a) i = 100, τ =
60; (b) i = 200, τ = 60; (c) i = 300, τ = 60; (d) i = 100, conventional; (e) i = 200, conventional; (f) i = 300,
conventional.

datacenter. For comparison, we used 60 as the value for τ. This value will not matter in the results
for the conventional datacenter since these servers will not leave. As expected, in all cases, the num-
ber of jobs completed in the VC is less than that of the datacenter. In both, for i equal to 100, there
is very little difference. As the values of i increase, this difference becomes much more signifi-
cant, especially as the job completion time increases. This is most pronounced with i equal to 300.
The overhead due to vehicles leaving leads to many more jobs being completed in the conventional
datacenter than our VC-based datacenter.

Next, we look at Figure 21.9 showing the job completion time overhead for VC-based and con-
ventional datacenters. Again, the columns show values of i equal to 100, 200, and 300, and the top
row shows the VC-based datacenter while the bottom row shows the conventional datacenter. As
expected, the overhead in the VC-based datacenter is more than that of the conventional datacenter
in all cases. Again, as i increases and the job completion time increases, the VC-based datacenter
fares worse as the job completion time increases. The difference of the two represents the overhead
in job completion time due to vehicles leaving the parking lot.

21.8 CONCLUDING REMARKS AND DIRECTIONS FOR FUTURE WORK

A few years ago, inspired by the success of conventional cloud services, a number of papers have
introduced the concept of VC, a nontrivial extension of the conventional CC paradigm.

In this pioneering work, we investigated sufficient conditions under which big data applications
can be effectively supported by datacenters built on top of vehicles in a medium-sized parking lot
and we have determined a baseline solution for implementation of such VCs. This paper is only a
groundwork and the first step for our future works.

Inspired by the data replication strategies adopted by the GFS, we proposed and studied the effects
of data storage redundancy on vehicles of a parking lot. In our simulation, at the end of theMap stage,
two instances of the data were replicated on vehicles in the same cluster as the original vehicle and
an instance was replicated on a vehicle in the same group, but a different cluster. In future work,
we will look at more scenarios for data replication and we will take into consideration the jobs with
fewer or more stages than a MapReduce job. As a baseline, the assumption is that each vehicle can
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FIGURE 21.9 Comparison of vehicular and conventional datacenter. Job completion time overhead: (a) i =
100, τ = 60; (b) i = 200, τ = 60; (c) i = 300, τ = 60; (d) i = 100, conventional; (e) i = 200, conventional; (f)
i = 300, conventional.

run one VM at a time and the VMmigration is attempted 30 or 60 minutes before the vehicle departs,
to vehicles that contain an instance of the data. We need to find optimized solutions for this matter
by studying more VM migration strategies such as double migration strategy.

We also looked at a job assignment strategy that selects vehicles with the longest residency time
for assignment of new jobs. This approach for vehicle selection can lead to issues like unbalanced
clusters, where a cluster has more jobs than its neighbor clusters. This can be optimized with load
balancing and more sophisticated job assignment algorithms. We need to find better ways to utilize
the datacenter to its fullest potential since currently only less than half of the vehicles in the parking
lot have jobs at any time.

Our other interest relies on analyzing possibilities of having a fully wireless architecture as
opposed to a combination of links as it was described in the network support in Section 21.6. Given
the fact that the datacenter should support big data, the task of promoting reliability, dependability,
and availability is a challenge in such networks.

In the future work, we will also investigate the case which a job starts on several vehicles to
enhance the reliability of the VC. Improving the accuracy and reliability might come with the cost of
stalling in the system, which should be studied. This promises to be an exciting area of investigation.
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Markov chains, 258
MARLA, seeMApReduce with adaptive Load balancing

for heterogeneous and Load imbalAnced clusters
Massively parallel processing (MPP), 175
Matchmaking, 107
Materialization strategies, 176
MATLAB�, 32, 276–277
ME-ESD, seeMinimizing emissions using ESDs
Mean time between failures (MTBF), 82, 86

impact of, 99–100
Mean time to failure (MTTF), 433, 438–439, 441
Memory
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interface, 290–291
management, 142
resource, 177

Memory interface controller (MIC), 290, 291
MERS, seeMiddle East respiratory syndrome
Message-passing programming model, 162
Message passing interface (MPI), 84, 337, 339, 348
Message processing, 151
Message Queue Telemetry Transport (MQTT), 242, 246
Metadata of HDFS, 110
MIC, seeMemory interface controller
Micro-RNA (miRNA), 371
Microsoft, 107, 211, 427
Middle East respiratory syndrome (MERS), 301
MILP, seeMixed integer linear programming
MinCost-NoTrading-ESD benchmark, 39–40
MinCost-NoTrading-NoESD benchmark, 39–40
MinCost-Trading-NoESD benchmark, 39–40
MinEDF-WC technique, seeMinimum Resource Quota

Earliest Deadline First with Work-Conserving
Scheduling technique

Minimizing emissions using ESDs (ME-ESD), 32
Minimum marketable feature (MMFs), 387
Minimum Resource Quota Earliest Deadline First with

Work-Conserving Scheduling technique
(MinEDF-WC technique), 119

MRCP-RM vs., 125
miRNA, seeMicro-RNA
Misrepresentation of data, 251
Mixed integer linear programming (MILP), 32, 113

model-based resource management techniques, 120–123
model, 120

Mixed load balance algorithms, 343
Mixed workload, 127–128
MLDM, seeMachine-Learning and Data Mining
MLlib, 202
MLP, seeMultilayer perceptron
MMFs, seeMinimum marketable feature
Model-based clustering algorithms, 336
Modern data protection principles, 4, 12; see also Data

protection
accountability, 12–13
EDPS, 8–9
privacy by default, 13
privacy by design, 13
reconciling, 8
users’ control of own data, 14–15

Moldable-by-phase model, 84
Moldable task model, 84
MongoDB, 52
Montage general engine, 46, 47
Moore’s law, 281–282, 335, 373
Motivation analysis, 267–268
MPI, seeMessage passing interface
MPP, seeMassively parallel processing
MQTT, seeMessage Queue Telemetry Transport
MR-CPSO algorithm, 342
MRBB-RM, seeMapReduce budget-based resource

management algorithm
MrCloud algorithm, 307, 315

managing uncertain big data, 315–316
processing uncertain big data, 317–320

MRCP-RM, seeMapReduce Constraint
Programming-based Resource Management
algorithm

MRI segmentation, seeMagnetic resonance image
segmentation

MR-Predict mechanism, 114
MRv1, see Hadoop MapReduce Architecture v1
MRv2, see Yet Another Resource Negotiator (YARN)
MTBF, seeMean time between failures
MTC, seeMany-task computing
MTTF, seeMean time to failure
Multilayer perceptron (MLP), 375
Multilevel co-scheduling technique, 84
Multimachine techniques, 337
Multiple-machine clustering techniques, 339

MapReduce-based clustering techniques, 341–342
parallel clustering techniques, 339–341

“Mutual effect”, 226

N

NameNode, 110, 194
NAS approaches, see Network attached storage approaches
National Cancer Institute (NCI), 377
National Institute of Standards, 426
National Supercomputing Center in Changsha

(NSCC), 416
Native mode, 167
NBD, see Network Block Device
NCI, see National Cancer Institute
Nested TFA (N-TFA), 65
Nested transactions, 63
Nesting types, 62–63
Netflix, 10, 220
Net present value (NPV), 389, 390, 398
Network

communication-related attacks, 267
community, 344
diagram, 398
messages, 138
model, 440
monitoring, 264
networked I/O path, 139–141
thread, 144

Network attached storage approaches (NAS approaches),
136

Network Block Device (NBD), 147
Network of workstations (NOWs), 340
Network Time Protocol (NTP), 19–20
NewSQL systems, 179–180
New York Independent System Operator (NYISO), 36
NIC driver, 137–138, 143
NIH/NCBI, see United States National Institutes of

Health/National Center for Biotechnology
Information

NILM, see Nonintrusive load monitoring
NiTx, see Inner transaction
NoB, see No batching
No batching (NoB), 153
Node, 110
NodeManager, 112, 199–200
“No free lunch theorems”, 375
Nonintrusive load monitoring (NILM), 259
Nonlinear models, 21
Nonlocal map tasks, 114–115
Nonstructured data, 349
Nonsuccinct constraints, 313–314; see also Succinct

constraints
Nonuniform memory access affinity management (NUMA

affinity management), 136, 148–150
affinity, 142–143
configuration of tests run for, 149
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Nonuniform memory access affinity management (NUMA
affinity management) (Continued)

node, 147
NUMA-aware process, 155

Nonvolatile memory (NVM), 136
NoSQL, 55
NOWs, see Network of workstations
NP-hard problem 107, 113, 349–350
NPV, see Net present value
NSCC, see National Supercomputing Center in Changsha
N-TFA, see Nested TFA
NTP, see Network Time Protocol
NUMA affinity management, see Nonuniform memory

access affinity management
NuoDB, 180
NVM, see Nonvolatile memory
NYISO, see New York Independent System Operator

O

Object id (oID), 73
Objective function, 120
Object-level dependencies, 68–70
Offload mode, 167
OICR, see Ontario Institute for Cancer Research
oID, see Object id
OLAP systems, see Online analytical processing systems
OLTP, see Online transaction-processing
1-in-p-CoSchedule problems, 91
1-pack-schedule, 92
One platform rules

awards, 207, 208
Big Data era, 193
business requirements, 199
business requirements drive innovations, 210
components, 200
database research community and database industry, 210
DataFrame, 204–205
Hadoop 1.0 ecosystem, 193–199
from Hadoop 1.0 to Hadoop 2.0, 199
Hadoop 2.0 and Spark, 199–210
Hadoop and spark: Coexist or Compete?, 207–209
limitations of RDBMS, 193
Microsoft, 211
open minded, 213
performance for Machine-Learning Algorithms,

206–207
RDBMSs, 192–193
RDD, 203–204, 205
requirements, 212
role in future big data warehouses, 209–210
spark ecosystem, 201–203

Online
activities, 224
reputation, 218
social network, 217, 223, 225–226
WoM network, 218

Online analytical processing systems (OLAP systems),
174–175, 176, 193, 255

Online stream reordering (OSR), 253
Online transaction-processing (OLTP), 176, 192
Online WoM

marketing, 221
systems, 229

On–off attack, 231
Ontario Institute for Cancer Research (OICR), 373
Open-nesting approach, 64–65

OpenMP, 337, 339
OpenSpaces, 57
Operation constraints, 186
Operation time consumption of pharmacy task, 422
OPL, see Optimization Programming Language
Optimization methods, 350

distributed large graph computing systems and, 353–355
heterogeneous large graph computation systems,

359–360
performance evaluation of CP model-based resource

management techniques, 120–123
performance evaluation of MILP model-based resource

management techniques, 120–123
resource management for MapReduce jobs with SLAs,

120
single-node large graph computing systems, 357–359

Optimization problems, 90–91
Optimization Programming Language (OPL), 123–124
Optimized Row Columnar (ORC), 185
Oracle, 427
ORC, see Optimized Row Columnar
Oscillation attack, 232
OSR, see Online stream reordering
O/Tratio, 120, 128
Output module, 201

P

PaaS, see Platform as a Service
pack-Approx, design principle of, 94, 95
Packet loss rate, 246–247
Packs, 86
Pack scheduling, 84
PageRank

algorithm, 348
in GraphLab, 353
implemented in Pregel, 351

PAM, see Partitioning around medoids
Pan-Cancer Analysis of Whole Genomes (PCAWG),

368–369
Parallel BGL, see Parallel Boost Graph Library
Parallel BIRCH (PBIRCH), 340
Parallel Boosted Regression Trees (GBRT), 407
Parallel Boost Graph Library (Parallel BGL), 348
Parallel BP neural network; see also Backpropagation

neural network (BP neural network)
configuration for metric, 166
energy-delay product, 165–166
energy consumption, 165
execution time, 163
on Intel� Xeon� PhiTM, 166–170
power consumption, 163–164
power per speedup, 164–165
on SCC, 162
SCC architecture and tile internal structure, 163

Parallel clustering techniques, 339
flow chart of BIRCH algorithm, 340
GPU-based parallel clustering algorithm, 340–341
parallel graph-based clustering algorithm, 340
parallel hierarchical clustering algorithm, 340
parallel partitioning clustering algorithms, 340
PDBSCAN, 340

Parallel compressed event matching algorithm (PCM
algorithm), 253–254

Parallel computer architectures, 175
Parallel computing, 349–350

load balancing in, 343–344
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Parallel data mining
cloud platform for parallel computing, 406–411
optimization methods for, 405
related work, 405–406

Parallel density-based clustering algorithm (PDBSCAN),
340

Parallel graph
clustering algorithm, 340
processing, 349–350

Parallel hierarchical clustering algorithm, 340
Parallelism, 106
Parallelization of METIS (ParMETIS), 340
Parallelization of RF algorithm, 410–411
Parallel optimization of RF algorithm, 408–409
Parallel partitioning clustering algorithms, 340
Parallel processing, 352
Parallel query processing, 176
Parallel randomized algorithm (PARMA), 307
Parallel Sliding Window method (PSW method), 355
Parallel tasks, 84
Parallel virtual machine (PVM), 340
Parking lot, big data in

big data applications, 427–478
datacenter and VC model, 433–436
datacenter architecture, 436–439
empirical performance evaluation, 439–445
review of cloud services, 429–430
survey of recent work on VCs, 431–433
taxonomy of VCs, 430–431
VC, 426–427

PARMA, see Parallel randomized algorithm
ParMETIS, see Parallelization of METIS
ParStream IoT Analytics Platform, 245, 250
Partition

clustering algorithms, 336
clustering technique, 343
scheme, 351
stability, 54
tolerance, 185

Partitioning around medoids (PAM), 338
Past transactional scheduler, 66
Pathogen–host protein–protein interaction (PHPPI), 365
Patient operation time consumption model (POTC model),

404, 412, 416
collecting k CART trees for RF model, 413–414
training CART regression trees of RF model, 412–413

“Pay-as-you-go” model, 426, 430
PBIRCH, see Parallel BIRCH
PCA, see Principal component analysis
PCAWG, see Pan-Cancer Analysis of Whole Genomes
PCM, see Performance Counter Monitor
PCM algorithm, see Parallel compressed event matching

algorithm
PDBSCAN, see Parallel density-based clustering algorithm
pdf, see Probability density function
PDG, see Program Dependence Graph
PDU, see Power distribution unit
Performance-sensitive stream-processing applications,

249–250
Performance comparison, DPBSV scheme

experiment model, 275–276
results, 276

Performance Counter Monitor (PCM), 148
Performance evaluation

of CP-Scheduler, 127–129
of CP model-based resource management techniques,

120–123

of MILP model-based resource management techniques,
120–123

of MRBB-RM, 118–120
of MRCP-RM, 124–125

Performance monitor counters (PMCs), 19, 21
Personal data

connection between big data and, 5
information relating to individual, 6
information relevant to person, 5–6
natural person, 6–7
person identification, 6

“Personal data spaces”, 14
Personalized medicine framework, 367
Personalized privacy setting approach, 226–227
Personally identifiable information (PII), 222
Person identification, 6
PEs, see Processing elements
Petabyte-level storage management, 373
Pew Internet & American Life Project, 218
Phishing attack, 223
PHPPI, see Pathogen–host protein–protein interaction
Pig, 196
Pig Latin, 178, 179, 196
PII, see Personally identifiable information
p-in-p-CoSchedule problem, 94–95
PKI, see Public key infrastructure
PKMeans, 341–342
PLANET, 407
Platform as a Service (PaaS), 430
PMCs, see Performance monitor counters
PMI, see Project Management Institute
PO, see Processing time overhead
Poisson distribution, 439
POTC model, see Patient operation time consumption

model
Power-saving scheduling, 26–27
Power budgeting, 26
Power consumption, 30, 162, 249–250
Power distribution unit (PDU), 19–20,
PowerGraph, 348, 353, 354
PowerLyra, 354–355
Power metering for VM, 18

architecture of, 19–20
benchmarks and descriptions, 25
electricity cost, 26
evaluation methods, 24
information collection for modeling, 20–21
modeling methods for, 21–24
open research issues, 26
power-saving scheduling, 26–27
power budgeting, 26
power consumption, 24–25
system model of, 18–19
VM service billing, 26

Power per speedup (PPS), 162, 164–165
Power supply and demand, 30–31
PPS, see Power per speedup
Precision Medicine Initiative, 366
Precision medicine, knowledge for, 366–368
Predictive analytics, 2
Predictive analytics for IoT, 257–258
Pregel, 181–182, 350–351, 352

PageRank implemented in, 351
vertex-centric programming model, 353

Present value (PV), 390
Prime number (Pi), 266–267, 270
Principal component analysis (PCA), 338
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Privacy, 224
challenges, 220–221
data encryption, 227
by default, 9, 13
defenses against private information inference, 227
by design, 9, 13
enhancing user privacy settings, 226–227
leakage, 225
mixture, 226
policy, 8, 9
preserving approaches, 227
preserving solutions for UGC, 226
privacy-related threats, 225–226
privacy adversary type, 224
private information type, 224
profile privacy threats, 225
relationship among security, privacy, and trust, 219–220
relationship privacy threats, 225
setting, 225
threats and defenses, 224
for UGC, 219
understanding privacy threats and defenses, 224
wizard, 226–227

Privacy attacks and defenses, 224
attack and defense on privacy, 228
privacy preserving solutions for UGC, 226–228
private information type, 224
understanding privacy threats and defenses, 224

Private information
inference, defenses against, 227
type, 224

Proactive schedulers, 66
Probabilistic-frequent itemsets, 302
Probabilistic model, 222
Probability-based predictions, 258
Probability density function (pdf), 252
PRObE, 75
Problem analysis, 267–268
Processing elements (PEs), 50–51
Processing time overhead (PO), 120, 122
Processor(s), 85

module, 201
redistributing, 88–90

Production Centers, 376
Profile information, 224
Profile privacy threats, 225
Profit-driven attacks, 230
Program Dependence Graph (PDG), 289
Program deployment, 416

EB process, 419
hospital application, 416–417
POTC and HTRR system submission, 417–418
row keys and regions in HBase, 417
task scheduler, 418

Programming languages, 50
Program’s admission criteria, 395–396
Project, 387

financing, 388–390
planning, 397–398
selection, 398

Project Management Institute (PMI), 387
Proportionality, 10–12
Pseudonymisation, 13
PSW method, see Parallel Sliding Window method
Public cloud, 19
Public key infrastructure (PKI), 228, 264–265
Purpose limitation, 10–12

Purpose specification, 10
PV, see Present value
PVM, see Parallel virtual machine
Python, 50

Q

Quality of service (QoS), 26, 107, 184, 246
Quantcast File System (QFS), 186
Query batching, 248
QuickPath Interconnect (QPI), 142

R

Radial basis function neural networks (RBFNN), 375
Radio-frequency identification (RFID), 253–254
RAID, see Redundant Arrays of Inexpensive Disk
RAMCloud, 52
Random forest algorithm (RF algorithm), 404, 408–409

collecting k CART trees, 413–414
new margin distribution optimization method, 409
parallelization, 410–411
parallel optimization, 408–409
training CART regression trees, 412–413

Random projection, 337
Ranking table, 205
Rapid technological developments, 14
RBFNN, see Radial basis function neural networks
rCRS, see Revised Cambridge Reference Sequence
RDBMSs, see Relational database management systems
RDDs, see Resilient distributed data sets
RDF, see Resource description framework
RDG, see Resilient Distributed Graph
RDMA, see Remote direct memory access
RDMA over Converged Ethernet (RoCE), 155
Re-Stream system, 249
Reactive transactional scheduler (RTS), 63, 66

example, 67
motivation, 66
scheduler design, 66–67

Real-time analytics, 241
Real-time big data processing, 240

batched event processing in IoT, 247–249
challenges and technologies, 242–243
data analysis techniques, 256–258
handling data deluge, 250–256
IoT software platforms, 241–242
power consumption vs. response time, 249–250
responding in timely fashion, 247
secure real-time IoT data processing, 258–259
taxonomy of IoT use cases, 241

Real-time gathering systems, 56
Real-time IoT data-processing architectures, 242

data-processing architectures, 244–245
data collection protocols, 245–247, 248

Real-time processing, 46, 48, 241–242
Redistributing processors, 88

accounting for failures, 89–90
example of redistribution, 90
fault-free scenario, 88–89

Redistribution(s), 95–96, 97
execution time without, 87–88
in fault-free context, 99
redistributing processors, 88–90

RedMPI project, 84–85
Redshift, 205
Reduce, 116; see alsoMapReduce
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function, 193–194
phase, 108
stage, 428
task capacity, 111

Reducers, 177
Reducing function, 299
Redundancy elimination, 253–254
Redundant Arrays of Inexpensive Disk (RAID), 175
Reed Solomon codes, (RS codes), 186
Region controller, 435
Regression tree, 22
Rekeying, DPBSV, 270
Relational database management systems (RDBMSs), 174,

192–193, 210–213
benchmarking RDBMS, 176
data-processing techniques, 176
data fragmentation, 175
limitations of RDBMS to handle big data, 193
parallel computer architectures, 175
storage layouts, 175

Relational databases, 52
Relational model, 192
Relationship privacy threats, 225–226
Remote direct memory access (RDMA), 136
Remote procedure call (RPC), 108
Renewable energy

energy efficiency enhancement, 27
ESDs, 28–32
green big data centers using, 27
green scheduler architecture, 28
literature review, 27
planning for green data centers, 32–33
reducing energy cost for green data centers, 33–36
simulations and analysis, 36–40
utilizing renewable energy, 27–28

Replication factor, 178
REpresentational State Transfer (REST), 245–246
RepTrap attack, 232
Request messages, 138
Rerack, 27
Research-level RDF database approaches, 280–281
Reservation management on optical grids, 299
Resilience, 84–85

model, 89
Resilient-CoSched-1pack problem, 91, 93, 95–96
Resilient distributed data sets (RDDs), 50, 182, 202–203,

207, 249
job and corresponding stages, 205
Typical DAG of RDDs, 204

Resilient Distributed Graph (RDG), 203
Resource

constraints, 284
container, 112

Resource description framework (RDF), 244, 280
Resource management, 107

CPS for Hadoop, 125–129
data locality-aware techniques, 114–115
example of Hadoop cluster, 113
for MapReduce, 107, 112
for MapReduce jobs with deadlines, 117
for MapReduce with SLAs, 120–123
MRBB-RM, 117–120
MRCP-RM, 123–125
problem using optimization methods, 121
resource sharing techniques, 116
techniques for energy management of resources,

116–117

techniques for heterogeneous computing environments,
115

techniques to reducing job completion times, 113–114
ResourceManager, 112, 199–200
Resource managers (RMs), 289, 436
Resource sharing techniques, 116
Resource stealing technique, 116
Response time, 249–250
Response time model, 29
REST, see REpresentational State Transfer
Return on investment (ROI), 9, 386, 391, 392, 397–398, 399
Revised Cambridge Reference Sequence (rCRS), 374
RF algorithm, see Random forest algorithm
RFID, see Radio-frequency identification
RMs, see Resource managers
Roadside units (RSU), 432
RoCE, see RDMA over Converged Ethernet
ROI, see Return on investment
RPC, see Remote procedure call
RS, see Running sequences
RS codes, see Reed Solomon codes,
RSU, see Roadside units
RTS, see Reactive transactional scheduler
Running sequences (RS), 390–392, 398, 399

S

S4, see Simple Scalable Streaming System
SaaS, see Software as a Service
SAFS, see Set-associative file system
SAM constraints, see Succinct antimonotone constraints
Sampling-based algorithms, 337, 338
SAN, see Storage area network
SAP HANA, 52, 56
SAP live Cache technology, 56
SAP TREX, 56
SBA, see Space-Based Architecture
Scala programming language, 50
SCC, see Single-Chip Cloud Computer
Scheduler, 112, 200

DATS, 70–71
SPN, 73–74

Scheduling, 107
algorithm, 114, 130

Scheduling-based parallel-nested transactional scheduler
(SPN transactional scheduler), 63, 71

motivation, 71–73
scheduler design, 73–74

Scheduling nested transactions, 63
atomicity, consistency, and isolation, 65
DATS, 68–71
DATS, performance speedup of, 77
distributed transactions, 63
experimental evaluation, 75–77
implementation, 74–75
nested transactions, 63–65
nesting types, 62–63
preliminaries and system model, 63
RTS, 66–68
RTS, performance speedup of, 76
SPN, 71–74
SPN, performance speedup of, 78

Scheleifenbauer power meter, 20
SchemaRDD, 204–205
Scientific data, 106
SC server, see Spatial Crowdsourcing server
SCSI RDMA Protocol (SRP), 155
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Secure data stream architecture
big data stream, 265–266
symmetric-key cryptography-based security verification

methodology, 266–267
Security

analysis of DPBSV, 271–274
challenges, 220
defense, 223
Policies, 185–186
relationship among security, privacy, and trust, 219–220
secure real-time IoT data processing, 258–259
threats, 267
for UGC, 219
violations, 258

Security attacks, 222
identity theft, 222–223
social spam and phishing attack, 223
Sybil attack, 221–222
on users’ sensitive information, 222

Security Protocol Description Language (.spdl), 274
Security verification, 266, 274

attack model, 274–275
DPBSV, 271
experiment model, 275
results, 275

Self-boosting attack, 231
Semantic technologies, 255–256
Semistructured data, 184
Sensor Markup Language (SenML), 256
SEQUEL, see Structured English query language
Sequence analysis, 47
SequenceFiles, 185
Sequence Read Archive (SRA), 372
Sequence Read Archive Metadata XML schema, 378
Seraph graph, 354
Serialization, 185
Server side data security, 267
Service-level agreement (SLA), 26, 107, 184

performance evaluation of CP model-based resource
management techniques, 120–123

performance evaluation of MILP model-based resource
management techniques, 120–123

resource management for MapReduce jobs with, 120
Service provider interface (SPI), 55
Serving layer, 48
Set-associative file system (SAFS), 359
Setup constraints, 186
SFUs, see Speculative Functional Units
Shannon entropy, see Information entropy
Shark, see Spark SQL
ShortestapplicationsFirst, 98–99
Shortest job first (SJF), 113
Shortest task first (STF), 113
Shuffle phase, 108
Sibling transactions, 71–72
Signal processing techniques, 221
Simple Scalable Streaming System (S4), 50
Simulation(s)

and analysis, 36
carbon emissions, 37
ESDs and energy trading in reducing energy cost, 38–40
ESDs, usage of, 36
experiments, 117
ME-ESD-B, 36–38
model, 439–440
parameters, 440
planning for green data centers, 38

Single-Chip Cloud Computer (SCC), 161
architecture and tile internal structure, 163
configuration for metric, 166
energy-delay product, 165–166
energy consumption, 165
execution time, 163
parallel BP neural network on, 162
power consumption, 163–164
power per speedup, 164–165

Single-machine clustering techniques, 338–339; see also
Multiple-machine clustering techniques

Single-machine techniques, 337
Single-node large graph computing systems, 355; see also

Distributed large graph computing systems
edge-centric computation model, 357
GraphChi, 355
GridGraph’s partition scheme, 358
optimization techniques, 357–359
vertex-centric streamlined processing, 358
X-Stream, 356

Single-sign-on architecture (SSO architecture), 377–378
Single class workload, 127–128
Single program multiple data parallelism (SPMD

parallelism), 339
Size of workload, 120, 122
SJF, see Shortest job first
SLA-Driven Containers, 57
SLA, see Service-level agreement
Slack time, 118
Smoothing window size, 254
SMP, see Symmetric multiprocessing
SMs, see Storage Managers
Snappy compression algorithm, 183
Social network, 223, 226, 264, 344
Social phishing, 223
Social spam, 223
Software-based stream scheduling techniques, 249
Software as a Service (SaaS), 430
Solar energy, 28
Solid-state disks (SSD), 136, 348
Space-Based Architecture (SBA), 57
Space, 57
Spanservers, 180
Spark, 210–211

awards, 207, 208
community, 212
DataFrame, 204–205
Hadoop and, 207–209
performance for Machine-Learning Algorithms,

206–207
RDD, 203–204
role in future big data warehouses, 209–210
spark ecosystem, 201–203
system, 48

Spark cloud platform, 419
Spark cluster, process of job submit on, 418
SPARK framework, 281
Spark RDD model, 417
Spark SQL, 182, 205

performance for SQL Queries, 205–206
Spark Streaming, 46, 50, 202
Spark Tachyon, process of loading hospital data to, 418
SPARQL-to-C++ compiler, 281
SPARQL queries, 286–287
Spatial Crowdsourcing server (SC server), 220–221
Spatial multithreading. spdl, 290, see Security Protocol

Description Language
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Speculative execution mechanism, 116
Speculative Functional Units (SFUs), 284
Speculative tasks, 116
Speed layer, 48
Speedup profiles, 85
SPEs, see Stream-processing engines
SPI, see Service provider interface
Splunk, 51–52
Splunk Storm, 51
SPMD parallelism, see Single program multiple data

parallelism
SPN transactional scheduler, see Scheduling-based

parallel-nested transactional scheduler
Spout, 50
SQL-on-Hadoop systems, 180

Apache Hadoop ecosystem, 177–180
Apache Hive, 180
Apache Spark, 181–182
assessing, 184
big data management systems, 174
capacity requirements, 184–186
Cloudera Impala, 182–183
cost constraints, 186–187
data management systems, 174
key requirements and constraints for, 184-
Quality of Service requirements, 184
RDBMS, 175–176
system constraints, 186
TPC benchmarks, 183–184

SQL, see Structured query language
SQL to Hadoop (Sqoop), 197
SRA, see Sequence Read Archive
SRAMs, see Static Random Access Memories
SRP, see SCSI RDMA Protocol
SSD, see Solid-state disks
SSO architecture, see Single-sign-on architecture
StaaS, see Storage as a Service
Standard AES algorithm, 276
State-of-the-art deep learning methods, 368
Static load balance algorithms, 343
Static Random Access Memories (SRAMs), 281–282
Stationary VC (SVC), 432
Statistical algorithm, 198
Statistical models of real-world processes, 251
STF, see Shortest task first
Stinger, 209
Stochastic gradient descent algorithm, 161
Storage-specific network protocol, 139
Storage area network (SAN), 136
Storage as a Service (StaaS), 432
Storage Formats, 184–185
Storage Managers (SMs), 180
Storm system, 48, 50, 51
Straightforward attack, 231
Stream-processing engines (SPEs), 264
Stream(s)

data integration, 186
data processing, 186
processing, 257
stream-based applications, 174
streaming machine learning for IoT, 258

Structured data, 184
Structured English query language (SEQUEL), 192
Structured query language (SQL), 55
Subdeadline, 117–118
Subproject, 387

cash flow, 388

dependency relations among, 387–388
managed care program, 396–397
NPV, 389
running sequences for, 391

Succinct antimonotone constraints (SAM constraints), 306
Succinct constraints, 307

distributed environment, 312–313
finding globally frequent itemsets, 312
finding locally frequent itemsets, 307–312

Succinct non-antimonotone constraints (SUC constraints),
306

SUC constraints, see Succinct non-antimonotone constraints
Support vector machine (SVM), 368
SVC, see Stationary VC
SVC-M, see SVC Master
SVC Master (SVC-M), 432
SVC-P, see SVC Participants
SVC Participants (SVC-P), 432
SVM, see Support vector machine
Sybil attack, 220, 221–222
Symmetric-key cryptography-based security verification

methodology, 266–267
Symmetric cryptographic-based security solutions, 267–268
Symmetric keys, 266
Symmetric multiprocessing (SMP), 175
Synchronization, 143–144
Synchronous computation, 352
Synthesis flow, 291
System constraints, 186
System data, 106
System model

UGC, 218–219
of VM power metering, 18–19

System R, 192
System setup, DPBSV, 269
System-wide scaling, 254

elastic scaling, 255
geo-distributed stream processing, 254–255

T

Taobao platform, 221
TARGET projects, see Therapeutically Applicable Research

to Generate Effective Treatments projects
Task

force, 395
parallelism, 339
scheduler, 418

Task-level parallelism (TLP), 282
Tasks Forward Scheduling (TFS), 129–130
TaskTracker, 110–111, 194
TCGA Research Network, see The Cancer Genome Atlas

Research Network
t-closeness, 227
TDB, see Transaction database
Technology Development Effort, 376
Temporal analysis, 232
Teragen, 178–179
Terasort, 178–179
TestDFSIO, 178–179
Tez project, 199, 200–201, 202, 212
TFA, see Transactional forwarding algorithm
TFA-ON, see TFA-Open nesting
TFA-Open nesting (TFA-ON), 65
TFL data, see Transport for London data
TFS, see Tasks Forward Scheduling
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The Cancer Genome Atlas Research Network (TCGA
Research Network), 368, 370, 377

Therapeutically Applicable Research to Generate Effective
Treatments projects (TARGET projects), 377

Threat mitigation techniques, 258
“3V” model, see Volume, velocity, variety model
Time series

analysis, 257
processing, 256–257

TLP, see Task-level parallelism
TM, see Transactional memory
TMs, see Transaction Managers
Topology, 50
TOTEM, 360
TPC benchmarking experiences of SQL-on-Hadoop

systems, 183–184
TPC-C, 76
TPC-DI Benchmark, 184
TPC-H, 178–179, 183
TPM, see Trusted platform module
TQS, see Triple-Queue Scheduler
Traditional batch-processing systems, 265
Traditional databases, 212
Traditional data protection principles, 4, 9

EDPS, 8–9
proportionality and purpose limitation, 10–12
reconciling, 8
transparency, 9–10

Traffic flow prediction, 299
Transactional forwarding algorithm (TFA), 65
Transactional memory (TM), 62
Transactional scheduler, 62
Transaction database (TDB), 303
Transaction Managers (TMs), 180
Transaction Processing Council, 176
“Transaction table”, 73
Transcription start sites (TSSs), 375
Transformations, 203, 417
Transition model, 252
Transparency of data, 9–10
Transport for London data (TFL data), 244
Traps, 232
“Treatment tasks”, 404
Tree-based algorithm; see alsoMapReduce-based algorithm

experimenting tree-based algorithm, 321–324
finding frequent itemsets satisfying succinct constraints
nonsuccinct constraints, 313–314
succinct constraints, 307–313
for supporting constrained mining, 307

Tree-based constrained mining of uncertain big data, 300
Trinity, 52
Triple-Queue Scheduler (TQS), 114
Triple DES algorithm (3DES algorithm), 266
Trusted mode, 266–267
Trusted platform module (TPM), 266–267
Trust for UGC, 219

challenges, 221
relationship among security, privacy, and trust, 219–220

Trust models, 228
advanced attack, 231–232
ensuring trustworthiness of UGC, 228–230
new comer attack, 231
on–off attack, 231
self-boosting and bad-mouthing attack, 231
trust-related attacks and defenses, 230

Trust-related attacks and defenses, 230
advanced attack, 231–232

new comer attack, 231
on–off attack, 231
self-boosting and bad-mouthing attack, 231

Trustworthiness of UGC, 228
Bayesian-based trust model, 229
Direct/Indirect Trust Model, 228–229
DST, 229
entropy-based trust model, 230
fuzzy logic, 230
Web-of-Trust, 228

TSockets, 147, 148
TSSs, see Transcription start sites
Tube-growth algorithms, 301, 324–325
Tuples, 50
TurboGraph, 349
Twitter, 223, 225–226
2-in-p-CoSchedule problems, 91
Tyche, 136

adaptive batching, 145–146
baseline performance, 147–148
challenges, 141
communication channels, 137–138
completion path at target, 141
cores accessing single network link, 144
data structures, 139
elasticity, 146–147
elasticity evaluation, 154–155
end-to-end I/O path, 138
end-to-end path of, 151
evaluation of adaptive batching, 152–154
experimental evaluation, 147
internal data paths in our NUMA servers, 142
latency evaluation, 150–152
locks on Tyche end-to-end I/O path, 143
memory management, 142
networked I/O path, 139–141
network messages, 138
network storage protocols, 136, 155–156
NUMA, 148–150
NUMA affinity, 142–143
receive path at block layer, 141
receive path at network layer, 140
reducing latency for small I/O requests, 144–145
send and receive path, 137
send path at initiator, 140
storage-specific network protocol, 139
synchronization, 143–144
system design, 137

Tyche-Batch, 152
Tyche-NoCS, 144, 153
TyNuma application, 148, 149
Type II information, 224
Type I information, 224

U

U-Apriori algorithms, 301
UCI Machine Learning Repository, 324
UCSC, see University of California, Santa Cruz
UCSD, see University of California, San Diego
UF-growth algorithms, 301, 304, 324–325
UF-Tree, 310–312
UGC, see User-Generated Content
Uhour, 36–37, 38
Uncertain big data

constrained frequent itemset mining from, 301
experimenting tree-based algorithm, 321–324
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frequent itemset mining from, 301
management, 299, 315–316
MapReduce-based algorithm for supporting constrained

mining, 315
MapReduce-based constrained frequent itemset mining

from, 302–303
processing, 317–320
tree-based algorithm for supporting constrained mining,

307–314
tree-based constrained mining of, 300

Uncertain data-mining algorithms, 301
Uninterrupted power supply (UPS), 28–29, 431
United States National Institutes of Health/National Center

for Biotechnology Information (NIH/NCBI), 372
University of California, San Diego (UCSD), 373
University of California, Santa Cruz (UCSC), 368
Unstructured data, 184
Unsupervised

learning, 336
method, 343

UPS, see Uninterrupted power supply
URL access frequency, 108
User correlation analysis, 232
User-Generated Content (UGC), 216

and Big Data, 217
classification of UGC, 217
crowdsourcing, 218
emerging security, privacy, and trust challenges,

219–221
online social network, 217
online WoM network, 218
privacy attacks and defenses, 224–228
security attacks and defenses, 221–223
system model, 218–219
system providers, 224
trust models, attacks, and defenses, 228–232

User layer, 218–219
User privacy settings, 226–227

V

Value, 46, 216, 298, 334
Value, Variety, Velocity, Veracity, Volume (5V’s), 298–299
Variety, 46, 160, 174, 193, 216, 264, 298, 334
VC, see Vehicular clouds
VectorH system, 185
Vectorized query processing, 176
Vehicle model, 435–436
Vehicular clouds (VC), 426–427

datacenter and VC model, 433–436
survey of recent work, 431–433
taxonomy of, 430–431
virtualization model, 434

Velocity, 46, 160, 174, 193, 216, 264, 298, 334
Veracity, 46, 174, 184, 216, 264, 298, 334
Vertex-centric

computing model, 348
programming model, 353
streamlined processing, 358

Vertex state machine, 201, 350
Very large database (VLDB), 338
Virtualization

agent, 434
systems, 176

Virtual machine (VM), 18, 255
architecture of, 19–20
case study of VM power metering, 24–26
comparing VM migration offset, 444
evaluation methods, 24
information collection for modeling, 20–21
migrations per job, 438
modeling methods for power metering, 21–24
open research issues, 26
power-saving scheduling, 26–27
power budgeting, 26
power metering, 18, 26
service billing, 26
strategies for VM migration, 438–439
system model of, 18–19
VM migration, 438

Virtual WoM networks, 218
VLDB, see Very large database
VM, see Virtual machine
VM monitor (VMM), 436
Volatility, 47
VoltDB, 179–180
Volume, 46, 160, 174, 193, 216, 264, 298, 334
Volume, velocity, variety model (“3V” model), 160
Volume, velocity, variety value model (“4V” model), 160,

161

W

Wait queue, 114
WattsUp series, 20
Weakly connected component (WCC), 358
Web-of-Trust, 228
White-box architecture, 19
Wiki dump, 36
Wind energy, 28
Window of opportunity (WO), 388, 389, 398
Wireless networks, 258–259
Word-of-mouth network (WoM network), 218
Workload model, 29
World Wide Web Consortium (W3C), 245
Worst application, 148, 149
Write requests, 142

X

XAP, see eXtreme Application Platform
Xeon� PhiTM 7210P platform, 169
XMPP, see Extensible Messaging and Presence Protocol

Y

Yahoo!, 427
Yahoo Cloud Servicing Benchmark (YCSB), 76, 180
Yahoo’s Hadoop clusters, 198
Yet Another Resource Negotiator (YARN), 112, 177
Young’s formula, 86–87
YouTube, 221

Z

ZooKeeper, 50, 51, 197, 407
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