

Title Page
Data Lake for Enterprises
Leveraging Lambda Architecture for building Enterprise Data Lake
Tomcy John
Pankaj Misra

BIRMINGHAM - MUMBAI

Copyright

Data Lake for Enterprises

Copyright © 2017 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a
retrieval system, or transmitted in any form or by any means, without the
prior written permission of the publisher, except in the case of brief
quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the
accuracy of the information presented. However, the information contained in
this book is sold without warranty, either express or implied. Neither the
authors, nor Packt Publishing, and its dealers and distributors will be held
liable for any damages caused or alleged to be caused directly or indirectly by
this book.

Packt Publishing has endeavored to provide trademark information about all
of the companies and products mentioned in this book by the appropriate use
of capitals. However, Packt Publishing cannot guarantee the accuracy of this
information.

First published: May 2017

Production reference: 1300517

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham
B3 2PB, UK.

ISBN 978-1-78728-134-9

www.packtpub.com

http://www.packtpub.com

Credits

Authors

Tomcy John

Pankaj Misra

Copy Editors

Shaila Kusanale

Vikrant Phadkay

Reviewers

Wei Di

Vivek Mishra

Ruben Oliva Ramos

Project Coordinator

Nidhi Joshi

Commissioning Editor Proofreader

Amey Varangaonkar Safis Editing

Acquisition Editor

Chaitanya Nair

Indexer

Mariammal Chettiyar

Content Development Editor

Aishwarya Pandere

Production Coordinator

Aparna Bhagat

Technical Editor

Karan Thakkar

Foreword
As organizations have evolved over the last 40 to 50 years, they have slowly
but steadily found ways and means to improve their operations by adding
IT/software systems across their operating areas. It would not be surprising
today to see more than 250+ applications in each of our Fortune 200
companies. This has also slowly caused another creeping problem as we
evolve from our level of maturity to another; silos of systems that don’t
interface well to each other.

As enterprises move from local optimization to enterprise optimization they
have been leveraging some of the emerging technologies like Big Data
systems to find ways and means by which they could bring data together
from their disparate IT systems and fuse them together to find better means of
driving efficiency and effectiveness improvement that could go a long way in
helping enterprises save money.

Tomcy and Pankaj, with their vast experience in different functional and
technical domains, have been working on finding better ways to fuse
information from variety of applications within the organization. They have
lived through the challenging journey of finding a ways to bring out changes
(technological & cultural).

This book has been put together from the perspective of software engineers,
architects and managers; so it’s very practical in nature as both of them have
lived through various enterprise grade implementation that adds value to the
enterprise.

Using future proof patterns and contemporary technology concepts like Data
Lake help enterprises prepare themselves well for the future, but even more
given them the ability to look across data that they have across different
organizational silos and derive wisdom that’s typically lost in the blind spots.

Thomas Benjamin

CTO, GE Aviation Digital.

About the Authors
Tomcy John lives in Dubai (United Arab Emirates), hailing from Kerala
(India), and is an enterprise Java specialist with a degree in engineering (B
Tech) and over 14 years of experience in several industries. He's currently
working as principal architect at Emirates Group IT, in their core
architecture team. Prior to this, he worked with Oracle Corporation and
Ernst & Young. His main specialization is in building enterprise-grade
applications and he acts as chief mentor and evangelist to facilitate
incorporating new technologies as corporate standards in the organization.
Outside of his work, Tomcy works very closely with young developers and
engineers as mentors and speaks at various forums as a technical evangelist
on many topics ranging from web and middleware all the way to
various persistence stores. He writes on various topics in his blog
and www.javacodebook.com.

First and foremost, I would like to thank my savior and lord, Jesus Christ, for
giving me strength and courage to pursue this project. It was a dream come
true.
I would like to dedicate this book to my father (Appachan), Late C.O.John,
and my dearest mom (Ammachi), Leela John, for helping me reach where I
am today. I would also like to take this opportunity to thank my dearest wife,
Serene and our two lovely children, Neil (son) and Anaya (daughter), for all
their support throughout this project and also for allowing me to pursue my
dream and tolerating not being with them after my busy day job.
It was my privilege working with my co-author, Pankaj. I take this
opportunity to thank him for supporting me, when I first offloaded my dream
of writing this book topic and then staying with me at all stages in completing
this book. It wouldn't be possible to reach this stage in my career without
mentors at various stages of my career. I would like to thank Thomas
Benjamin (CTO, GE Aviation Digital), Rajesh R.V (chief architect, Emirates
Group IT) and Martin Campbell (chief architect) for supporting me at
various stages, with words of encouragement and wealth of knowledge.

Pankaj Misra has been a technology evangelist, holding a bachelor’s degree
in engineering, with over 16 years of experience across multiple business
domains and technologies. He has been working with Emirates Group IT
since 2015, and has worked with various other organizations in the past. He
specializes in architecting and building multi-stack solutions and
implementations. He has also been a speaker at technology forums in India
and has built products with scale-out architecture that support high-volume,
near-real-time data processing and near-real-time analytics.

This book has been a great opportunity for me and would always be an
exceptional example of collaboration and knowledge sharing with my co-
author Tomcy. I am extremely thankful to him for entrusting me with this
responsibility and standing by me at all times. I would like to dedicate this
book to my father B. Misra and my mother Geeta Misra who have always
been one of the most special people to me. I am extremely grateful to my wife
Priti and my kids, daughter Eva and son Siddhant, for their understanding,
support and helping me out in every possible way to complete the book.
This book is a medium to give back the knowledge that I have gained by
working with many of the amazing people throughout the years. I would like
to thank Rajesh R.V. (chief Architect, Emirates Group IT) and Thomas
Benjamin (CTO, GE Aviation) for always motivating, helping & supporting
us.

About the Reviewers
Wei Di is currently a staff member in a business analytics data mining team.
As a data scientist, she is passionate about creating smart and scalable
analytics and data mining solutions that can impact millions of individuals
and empower successful business.

Her interests also cover wide areas, including artificial intelligence, machine
learning, and computer vision. She was previously associated with the eBay
human language technology team and eBay research labs, with focus on
image understanding for large-scale application and joint learning from both
visual and text information. Prior to that, she was with Ancestry.com,
working on large-scale data mining and machine learning models in the areas
of record linkage, search relevance, and ranking. She received her PhD from
Purdue University in 2011 with focus on data mining and image
classification.

Vivek Mishra is an IT professional with more than 9 years of experience in
various technologies like Java, J2ee, Hibernate, SCA4J, Mule, Spring,
Cassandra, HBase, MongoDB, REDIS, Hive, Hadoop. He has been a
contributor to open source software such as Apache Cassandra and lead
committer for Kundera(a JPA 2.0-compliant object-datastore mapping library
for NoSQL Datastores such as Cassandra, HBase, MongoDB, and REDIS).

Vivek, in his previous experience, has enjoyed long-lasting partnerships with
the most recognizable names in SCM, banking and finance industries,
employing industry-standard, full-software life cycle methodologies such as
Agile and SCRUM. He is currently employed with Impetus Infotech.

He has undertaken speaking engagements in cloud camp and Nasscom big
data seminars and is an active blogger at mevivs.wordpress.com.

Rubén Oliva Ramos is a computer systems engineer with a master's degree
in computer and electronic systems engineering, teleinformatics, and
networking specialization from University of Salle Bajio in Leon,

Guanajuato, Mexico. He has more than 5 years of experience in developing
web applications to control and monitor devices connected with Arduino and
Raspberry Pi using web frameworks and cloud services to build Internet of
Things applications.

He is a mechatronics teacher at the University of Salle Bajio and teaches
students of master's in design and engineering of mechatronics Systems. He
also works at Centro de Bachillerato Tecnologico Industrial 225 in Leon,
Guanajuato, Mexico, teaching the following: electronics, robotics and
control, automation, and microcontrollers at Mechatronics Technician Career.
He has worked on consultant and developer projects in areas such as
monitoring systems and datalogger data using technologies such as Android,
iOS, Windows Phone, Visual Studio .NET, HTML5, PHP, CSS, Ajax,
JavaScript, Angular, ASP .NET databases (SQlite, mongoDB, and MySQL),
and web servers (Node.js and IIS). Ruben has done hardware programming
on Arduino, Raspberry Pi, Ethernet Shield, GPS and GSM/GPRS, ESP8266,
and control and monitor systems for data acquisition and programming.

He has written the book titled Internet of Things Programming with
JavaScript, Packt.

His current job involves monitoring, controlling, and acquisition of data with
Arduino and Visual Basic .NET for Alfaomega Editor Group.

"I want to thank God for helping me reviewing this book, to my wife, Mayte,
and my sons, Ruben and Dario, for their support, to my parents, my brother
and sister whom I love and to all my beautiful family."

www.PacktPub.com
For support files and downloads related to your book, please visit www.PacktP
ub.com.

Did you know that Packt offers eBook versions of every book published, with
PDF and ePub files available? You can upgrade to the eBook version at www.
PacktPub.comand as a print book customer, you are entitled to a discount on
the eBook copy. Get in touch with us at service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles,
sign up for a range of free newsletters and receive exclusive discounts and
offers on Packt books and eBooks.

https://www.packtpub.com/mapt

Get the most in-demand software skills with Mapt. Mapt gives you full
access to all Packt books and video courses, as well as industry-leading tools
to help you plan your personal development and advance your career.

http://www.PacktPub.com
http://www.PacktPub.com
http://www.PacktPub.com
https://www.packtpub.com/mapt

Why subscribe?

Fully searchable across every book published by Packt
Copy and paste, print, and bookmark content
On demand and accessible via a web browser

Customer Feedback
Thanks for purchasing this Packt book. At Packt, quality is at the heart of our
editorial process. To help us improve, please leave us an honest review on
this book's Amazon page at https://www.amazon.com/dp/1787281345.

If you'd like to join our team of regular reviewers, you can e-mail us at
customerreviews@packtpub.com. We award our regular reviewers with free
eBooks and videos in exchange for their valuable feedback. Help us be
relentless in improving our products!

https://www.amazon.com/dp/1787281345

Table of Contents
Preface

What this book covers
What you need for this book
Who this book is for
Conventions
Reader feedback
Customer support

Downloading the example code
Errata
Piracy
Questions

1. Introduction to Data
Exploring data
What is Enterprise Data?
Enterprise Data Management
Big data concepts

Big data and 4Vs
Relevance of data
Quality of data
Where does this data live in an enterprise?

Intranet (within enterprise)
Internet (external to enterprise)

Business applications hosted in cloud
Third–party cloud solutions
Social data (structured and unstructured)

Data stores or persistent stores (RDBMS or NoSQL)
Traditional data warehouse
File stores

Enterprise’s current state
Enterprise digital transformation

Enterprises embarking on this journey
Some examples

Data lake use case enlightenment
Summary

2. Comprehensive Concepts of a Data Lake

What is a Data Lake?
Relevance to enterprises

How does a Data Lake help enterprises?
Data Lake benefits

How Data Lake works?
Differences between Data Lake and Data Warehouse
Approaches to building a Data Lake
Lambda Architecture-driven Data Lake

Data ingestion layer - ingest for processing and storage
Batch layer - batch processing of ingested data
Speed layer - near real time data processing
Data storage layer - store all data
Serving layer - data delivery and exports
Data acquisition layer - get data from source systems
Messaging Layer - guaranteed data delivery
Exploring the Data Ingestion Layer
Exploring the Lambda layer

Batch layer
Speed layer
Serving layer

Data push
Data pull

Data storage layer
Batch process layer
Speed layer
Serving layer

Relational data stores
Distributed data stores

Summary
3. Lambda Architecture as a Pattern for Data Lake

What is Lambda Architecture?
History of Lambda Architecture
Principles of Lambda Architecture

Fault-tolerant principle
Immutable Data principle
Re-computation principle

Components of a Lambda Architecture
Batch layer

Speed layer
CAP Theorem
Eventual consistency

Serving layer
Complete working of a Lambda Architecture
Advantages of Lambda Architecture
Disadvantages of Lambda Architectures
Technology overview for Lambda Architecture
Applied lambda

Enterprise-level log analysis
Capturing and analyzing sensor data
Real-time mailing platform statistics
Real-time sports analysis
Recommendation engines
Analyzing security threats
Multi-channel consumer behaviour

Working examples of Lambda Architecture
Kappa architecture
Summary

4. Applied Lambda for Data Lake
Knowing Hadoop distributions
Selection factors for a big data stack for enterprises

Technical capabilities
Ease of deployment and maintenance
Integration readiness

Batch layer for data processing
The NameNode server
The secondary NameNode Server
Yet Another Resource Negotiator (YARN)
Data storage nodes (DataNode)
Speed layer
Flume for data acquisition

Source for event sourcing
Interceptors for event interception
Channels for event flow
Sink as an event destination

Spark Streaming
DStreams

Data Frames
Checkpointing

Apache Flink
Serving layer

Data repository layer
Relational databases
Big data tables/views
Data services with data indexes
NoSQL databases

Data access layer
Data exports
Data publishing

Summary
5. Data Acquisition of Batch Data using Apache Sqoop

Context in data lake - data acquisition
Data acquisition layer
Data acquisition of batch data - technology mapping

Why Apache Sqoop
History of Sqoop
Advantages of Sqoop
Disadvantages of Sqoop

Workings of Sqoop
Sqoop 2 architecture
Sqoop 1 versus Sqoop 2

Ease of use
Ease of extension
Security
When to use Sqoop 1 and Sqoop 2

Functioning of Sqoop
Data import using Sqoop
Data export using Sqoop

Sqoop connectors
Types of Sqoop connectors

Sqoop support for HDFS
Sqoop working example

Installation and Configuration
Step 1 - Installing and verifying Java
Step 2 - Installing and verifying Hadoop

Step 3 - Installing and verifying Hue
Step 4 - Installing and verifying Sqoop
Step 5 - Installing and verifying PostgreSQL (RDBMS)
Step 6 - Installing and verifying HBase (NoSQL)

Configure data source (ingestion)
Sqoop configuration (database drivers)
Configuring HDFS as destination
Sqoop Import

Import complete database
Import selected tables
Import selected columns from a table
Import into HBase

Sqoop Export
Sqoop Job

Job command
Create job
List Job
Run Job
Create Job

Sqoop 2
Sqoop in purview of SCV use case

When to use Sqoop
When not to use Sqoop
Real-time Sqooping: a possibility?
Other options

Native big data connectors
Talend
Pentaho’s Kettle (PDI - Pentaho Data Integration)

Summary
6. Data Acquisition of Stream Data using Apache Flume

Context in Data Lake: data acquisition
What is Stream Data?
Batch and stream data
Data acquisition of stream data - technology mapping
What is Flume?
Sqoop and Flume

Why Flume?
History of Flume

Advantages of Flume
Disadvantages of Flume

Flume architecture principles
The Flume Architecture

Distributed pipeline - Flume architecture
Fan Out - Flume architecture
Fan In - Flume architecture
Three tier design - Flume architecture
Advanced Flume architecture
Flume reliability level

Flume event - Stream Data
Flume agent

Flume agent configurations
Flume source

Custom Source
Flume Channel

Custom channel
Flume sink

Custom sink
Flume configuration
Flume transaction management
Other flume components

Channel processor
Interceptor
Channel Selector
Sink Groups
Sink Processor
Event Serializers

Context Routing
Flume working example

Installation and Configuration
Step 1: Installing and verifying Flume
Step 2: Configuring Flume
Step 3: Start Flume

Flume in purview of SCV use case
Kafka Installation

Example 1 - RDBMS to Kafka
Example 2: Spool messages to Kafka

Example 3: Interceptors
Example 4 - Memory channel, file channel, and Kafka channe
l

When to use Flume
When not to use Flume
Other options

Apache Flink
Apache NiFi

Summary
7. Messaging Layer using Apache Kafka

Context in Data Lake - messaging layer
Messaging layer
Messaging layer - technology mapping
What is Apache Kafka?

Why Apache Kafka
History of Kafka
Advantages of Kafka
Disadvantages of Kafka

Kafka architecture
Core architecture principles of Kafka
Data stream life cycle
Working of Kafka
Kafka message
Kafka producer
Persistence of data in Kafka using topics
Partitions - Kafka topic division
Kafka message broker
Kafka consumer

Consumer groups
Other Kafka components

Zookeeper
MirrorMaker

Kafka programming interface
Kafka core API’s
Kafka REST interface

Producer and consumer reliability
Kafka security
Kafka as message-oriented middleware

Scale-out architecture with Kafka
Kafka connect
Kafka working example

Installation
Producer - putting messages into Kafka

Kafka Connect
Consumer - getting messages from Kafka
Setting up multi-broker cluster
Kafka in the purview of an SCV use case

When to use Kafka
When not to use Kafka
Other options

RabbitMQ
ZeroMQ
Apache ActiveMQ

Summary
8. Data Processing using Apache Flink

Context in a Data Lake - Data Ingestion Layer
Data Ingestion Layer
Data Ingestion Layer - technology mapping
What is Apache Flink?

Why Apache Flink?
History of Flink
Advantages of Flink
Disadvantages of Flink

Working of Flink
Flink architecture

Client
Job Manager
Task Manager
Flink execution model

Core architecture principles of Flink
Flink Component Stack
Checkpointing in Flink
Savepoints in Flink
Streaming window options in Flink

Time window
Count window

Tumbling window configuration
Sliding window configuration

Memory management
Flink API’s

DataStream API
Flink DataStream API example
Streaming connectors

DataSet API
Flink DataSet API example
Table API

Flink domain specific libraries
Gelly - Flink Graph API
FlinkML
FlinkCEP

Flink working example
Installation
Example - data processing with Flink

Data generation
Step 1 - Preparing streams
Step 2 - Consuming Streams via Flink
Step 3 - Streaming data into HDFS

Flink in purview of SCV use cases
User Log Data Generation
Flume Setup
Flink Processors

When to use Flink
When not to use Flink
Other options

Apache Spark
Apache Storm
Apache Tez

Summary
9. Data Store Using Apache Hadoop

Context for Data Lake - Data Storage and lambda Batch layer
Data Storage and the Lambda Batch Layer
Data Storage and Lambda Batch Layer - technology mapping
What is Apache Hadoop?

Why Hadoop?

History of Hadoop
Advantages of Hadoop
Disadvantages of Hadoop

Working of Hadoop
Hadoop core architecture principles
Hadoop architecture

Hadoop architecture 1.x
Hadoop architecture 2.x

Hadoop architecture components
HDFS
YARN
MapReduce
Hadoop ecosystem

Hadoop architecture in detail
Hadoop ecosystem

Data access/processing components
Apache Pig
Apache Hive

Data storage components
Apache HBase

Monitoring, management and orchestration components
Apache ZooKeeper
Apache Oozie
Apache Ambari

Data integration components
Apache Sqoop
Apache Flume

Hadoop distributions
HDFS and formats
Hadoop for near real-time applications
Hadoop deployment modes
Hadoop working examples

Installation
Data preparation
Hive installation
Example - Bulk Data Load

File Data Load
RDBMS Data Load

Example - MapReduce processing

Text Data as Hive Tables
Avro Data as HIVE Table

Hadoop in purview of SCV use case
Initial directory setup
Data loads
Data visualization with HIVE tables

When not to use Hadoop
Other Hadoop Processing Options
Summary

10. Indexed Data Store using Elasticsearch
Context in Data Lake: data storage and lambda speed layer

Data Storage and Lambda Speed Layer
Data Storage and Lambda Speed Layer: technology mapping

What is Elasticsearch?
Why Elasticsearch

History of Elasticsearch
Advantages of Elasticsearch
Disadvantages of Elasticsearch

Working of Elasticsearch
Elasticsearch core architecture principles
Elasticsearch terminologies

Document in Elasticsearch
Index in Elasticsearch

What is Inverted Index?
Shard in Elasticsearch
Nodes in Elasticsearch
Cluster in Elasticsearch

Elastic Stack
Elastic Stack - Kibana
Elastic Stack - Elasticsearch
Elastic Stack - Logstash
Elastic Stack - Beats

Elastic Stack - X-Pack
Elastic Cloud

Apache Lucene
How Lucene works

Elasticsearch DSL (Query DSL)
Important queries in Query DSL

Nodes in Elasticsearch

Elasticsearch - master node
Elasticsearch - data node
Elasticsearch - client node

Elasticsearch and relational database
Elasticsearch ecosystem

Elasticsearch analyzers
Built-in analyzers
Custom analyzers

Elasticsearch plugins
Elasticsearch deployment options
Clients for Elasticsearch
Elasticsearch for fast streaming layer
Elasticsearch as a data source
Elasticsearch for content indexing
Elasticsearch and Hadoop
Elasticsearch working example

Installation
Creating and Deleting Indexes
Indexing Documents
Getting Indexed Document
Searching Documents
Updating Documents
Deleting a document
Elasticsearch in purview of SCV use case

Data preparation
Initial Cleanup
Data Generation

Customer data import into Hive using Sqoop
Data acquisition via Flume into Kafka channel
Data ingestion via Flink to HDFS and Elasticsearch

Packaging via POM file
Avro schema definitions
Schema deserialization class
Writing to HDFS as parquet files

Writing into Elasticsearch
Command line arguments

Flink deployment
Parquet data visualization as Hive tables

Data indexing from Hive
Query data from ES (customer, address, and contacts)

When to use Elasticsearch
When not to use Elasticsearch
Other options

Apache Solr
Summary

11. Data Lake Components Working Together
Where we stand with Data Lake
Core architecture principles of Data Lake
Challenges faced by enterprise Data Lake
Expectations from Data Lake
Data Lake for other activities
Knowing more about data storage

Zones in Data Storage
Data Schema and Model
Storage options

Apache HCatalog (Hive Metastore)
Compression methodologies
Data partitioning

Knowing more about Data processing
Data validation and cleansing
Machine learning
Scheduler/Workflow
Apache Oozie

Database setup and configuration
Build from Source
Oozie Workflows
Oozie coordinator

Complex event processing
Thoughts on data security

Apache Knox
Apache Ranger
Apache Sentry

Thoughts on data encryption
Hadoop key management server

Metadata management and governance
Metadata

Data governance
Data lineage
How can we achieve?

Apache Atlas
WhereHows

Thoughts on Data Auditing
Thoughts on data traceability
Knowing more about Serving Layer

Principles of Serving Layer
Service Types

GraphQL
Data Lake with REST API
Business services

Serving Layer components
Data Services
Elasticsearch & HBase
Apache Hive & Impala
RDBMS

Data exports
Polyglot data access
Example: serving layer

Summary
12. Data Lake Use Case Suggestions

Establishing cybersecurity practices in an enterprise
Know the customers dealing with your enterprise
Bring efficiency in warehouse management
Developing a brand and marketing of the enterprise
Achieve a higher degree of personalization with customers
Bringing IoT data analysis at your fingertips
More practical and useful data archival
Compliment the existing data warehouse infrastructure
Achieving telecom security and regulatory compliance
Summary

Preface
Data is becoming very important for many enterprises and it has now become
pivotal in many aspects. In fact, companies are transforming themselves with
data at the core. This book will start by introducing data, its relevance to
enterprises, and how they can make use of this data to transform themselves
digitally. To make use of data, enterprises need repositories, and in this
modern age, these aren't called data warehouses; instead they are called Data
Lake.

As we can see today, we have a good number of use cases that are leveraging
big data technologies. The concept of a Data Lake existed there for quite
sometime, but recently it has been getting real traction in enterprises. This
book brings these two aspects together and gives a hand-on, full-fledged,
working Data Lake using the latest big data technologies, following well-
established architectural patterns.

The book will bring Data Lake and Lambda architecture together and help the
reader to actually operationalize these in their enterprise. It will introduce a
number of Big Data technologies at a high level, but we didn't want to make
it an authoritative reference on any of these topics, as they are vast in nature
and worthy of a book by themselves.

This book instead covers pattern explanation and implementation using
chosen technologies. The technologies can of course, be replaced with more
relevant ones in future or according to set standards within an organization.
So, this book will be relevant not only now but for a long time to come.
Compared to a software/technology written targeting a specific version, this
does not fall in that category, so the shelf life of this book is quite long
compared to other books in the same space.

The book will take you on a fantastic journey, and in doing so, it follows a
structure that is quite intuitive and exciting at the same time.

What this book covers
The book is divided into three parts. Each part contains a few chapters, and
when a part is completed, readers will have a clear picture of that part of the
book in a holistic fashion. The parts are designed and structured in such a
way that the reader is first introduced to major functional and technical
aspects; then in the following part, or rather the final part, things will all
come together. At the end of the book, readers will have an operational Data
Lake.

Part 1, Overview, introduces the reader to various concepts relating to data,
Data Lake and important components . It consists of four chapters and as
detailed below, each chapter well-defined goal to be achieved.

Chapter 1, Introduction to Data, introduces the reader to the book in general
and then explains what data is and its relevance to the enterprise. The chapter
explains the reasons as to why data in modern world is important and how it
can/should be used. Real-life use cases have been showcased to explain the
significance of data and how data is transforming businesses today. These
real-life use cases will help readers to start their creative juices flowing and
get thinking about how they can make a difference to their enterprise using
data.

Chapter 2, Comprehensive Concepts of a Data Lake, deepens further into the
details of the concept of a Data Lake and explains use of Data Lake in
addressing the problems faced by enterprises. This chapter also provides a
sneak preview around Lambda architecture and how it can be leveraged for
Data Lake. The reader would thus get introduced to the concept of a Data
Lake and the various approaches that organizations have adopted to build
Data Lake.

Chapter 3, Lambda Architecture as a Pattern for Data Lake, introduces the
reader into details of Lambda architecture, its various components and the
connection between Data Lake and this architecture pattern. In this chapter
the reader will get details around Lambda architecture, with the reasons of its

inception and the specific problems that it solves. The chapter also provides
the reader with ability to understand the core concepts of Lambda
architecture and how to apply it in an enterprise. The reader will understand
various patterns and components that can be leveraged to define lambda
architecture both in the batch and real-time processing spaces. The reader
would have enough background on data, Data Lake and Lambda architecture
by now, and can move onto the next section of implementing Data Lake for
your enterprise.

Chapter 4, Applied Lambda for Data Lake, introduces reader to technologies
which can be used for each layer (component) in Lambda architecture and
will also help the reader choose one lead technology in the market which we
feel very good at this point in time. In this chapter, the reader will understand
various Hadoop distributions in the current landscape of Big Data
technologies, and how they can be leveraged for applying Lambda
architecture in an enterprise Data Lake. In the context of these technologies,
the reader will understand the details of and architectural motivations behind
batch, speed and serving layer in an enterprise Data Lake.

Part 2, Technical Building Blocks of Data Lake, introduces reader to many
technologies which will be part of the Data Lake implementation. Each
chapter covers a technology which will slowly build the Data Lake and the
use case namely Single Customer View (SCV). Almost all the important
technical details of the technology being discussed in each chapter would be
covered in a holistic fashion as in-depth coverage is out of scope of this book.
It consists of six chapters and each chapter has a goal well defined to be
achieved as detailed below.

Chapter 5, Data Acquisition of Batch Data using Apache Sqoop, delves deep
into Apache Sqoop. It gives reasons for this choice and also gives the reader
other technology options with good amount of details. The chapter also gives
a detailed example connecting Data Lake and Lambda architecture. In this
chapter the reader will understand Sqoop framework and similar tools in the
space for data loads from an enterprise data source into a Data Lake. The
reader will understand the technical details around Sqoop and architecturally
the problems that it solves. The reader will also be taken through examples,
where the Sqoop will be seen in action and various steps involved in using it

with Hadoop technologies.

Chapter 6, Data Acquisition of Stream Data using Apache Flume, delves deep
into Apache Flume, thus connecting technologies in purview of Data Lake
and Lambda architecture. The reader will understand Flume as a framework
and its various patterns by which it can be leveraged for Data Lake. The
reader will also understand the Flume architecture and technical details
around using it to acquire and consume data using this framework in detail,
with specific capabilities around transaction control and data replay with
working example. The reader will also understand how to use flume with
streaming technologies for stream based processing.

Chapter 7, Messaging Layer using Apache Kafka, delves deep into Apache
Kafka. This part of the book initially gives the reader the reason for choosing
a particular technology and also gives details of other technology options. . In
this chapter, the reader would understand Kafka as a message oriented
middleware and how it’s compared with other messaging engines. The reader
will get to know details around Kafka and its functioning and how it can be
leveraged for building scale-out capabilities, from the perspective of client
(publisher), broker and consumer(subscriber). This reader will also
understand how to integrate Kafka with Hadoop components for acquiring
enterprise data and what capabilities this integration brings to Data Lake.

Chapter 8, Data Processing using Apache Flink, the reader in this chapter
would understand the concepts around streaming and stream based
processing, and specifically in reference to Apache Flink. The reader will get
deep into using Apache Flink in context of Data Lake and in the Big Data
technology landscape for near real time processing of data with working
examples. The reader will also realize how a streaming functionality would
depend on various other layers in architecture and how these layers can
influence the streaming capability.

Chapter 9, Data Storage using Apache Hadoop, delves deep into Apache
Hadoop. In this chapter, the reader would get deeper into Hadoop Landscape
with various Hadoop components and their functioning and specific
capabilities that these components can provide for an enterprise Data Lake.
Hadoop in context of Data Lake is explained at an implementation level and
how Hadoop frameworks capabilities around file storage, file formats and

map-reduce capabilities can constitute the foundation for a Data Lake and
specific patterns that can be applied to this stack for near real time
capabilities.

Chapter 10, Indexed Data Store using Elasticsearch, delves deep into
Elasticsearch. The reader will understand Elasticsearch as data indexing
framework and various data analyzers provided by the framework for
efficient searches. The reader will also understand how elasticsearch can be
leveraged for Data Lake and data at scale with efficient sharding and
distribution mechanisms for consistent performance. The reader will also
understand how elasticsearch can be used for fast streaming and how it can
used for high performance applications with working examples.

Part 3, Bringing it all together, will bring together technical components from
part one and two of this book to give you a holistic picture of Data Lakes. We
will bring in additional concepts and technologies in a brief fashion so that, if
needed, you can explore those aspects in more detail according to your
enterprise requirements. Again, delving deep into the technologies covered in
this chapter is out of the scope of this book. But we want you to be aware of
these additional technologies and how they can be brought into our Data
Lake implementation if the need arises. It consists of two chapters, and each
chapter has a goal well defined to be achieved, as detailed here.

Chapter 11, Data Lake components working together, after introducing reader
into Data Lake, Lambda architecture, various technologies, this chapter
brings the whole puzzle together and brings in a holistic picture to the reader.
The reader at this stage should feel accomplished and can take in the
codebase as is into the organization and show it working. In this chapter, the
reader, would realize how to integrate various aspects of Data Lake to
implement a fully functional Data Lake. The reader will also realize the
completeness of Data Lake with working examples that would combine all
the learning from previous chapters into a running implementation.

Chapter 12, Data Lake Use Case Suggestions, throughout the book the reader
is taken through a use case in the form of “Single Customer View”; however
while going through the book, there are other use cases in pipeline relevant to
their organization which reader can start thinking. This provoking of thought
deepens into bit more during this chapter. The reader will understand and

realize various use cases that can reap great benefits from a Data Lake and
help optimize their cost of ownership, operations, reactiveness and help these
uses with required intelligence derived from data. The reader, in this chapter,
will also realize the variety of these use cases and the extents to which an
enterprise Data Lake can be helpful for each of these use cases.

What you need for this book
This book is for developers, architects, and product/project owners, for
realizing Lambda-architecture-based Data Lakes for Enterprises. This book
comprises working examples to help the reader understand and observe
various concepts around Data Lake and its basic implementation. In order to
run the examples, one will need access to various pieces of open source
software, required infrastructure, and development IDE. Specific efforts have
been made to keep the examples simple and leverage commonly available
frameworks and components. The operating system used for running these
examples is CentOS 7, but these examples can run on any flavour of the
Linux operating system.

Who this book is for
Java developers and architects who would like to implement Data Lake
for their enterprise
Java developers who aim to get hands-on experience on Lambda
Architecture and Big Data technologies
Java developers who would like to discover the world of Big Data and
have an urge to implement a practical solution using those technologies.

Conventions
In this book, you will find a number of text styles that distinguish between
different kinds of information. Here are some examples of these styles and an
explanation of their meaning.

Code words in text, database table names, folder names, filenames, file
extensions, pathnames, dummy URLs, user input, and Twitter handles are
shown as follows: "Rename the completed spool file to spool-1 as specified in
the earlier example."

A block of code is set as follows:

agent.sources = spool-source

agent.sources.spool-source.type=spooldir

agent.sources.spool-source.spoolDir=/home/centos/flume-data

agent.sources.spool-source.interceptors=ts uuid

Any command-line input or output is written as follows:

${FLUME_HOME}/bin/flume-ng agent --conf ${FLUME_HOME}/conf/ -f ${FLUME_HOME}/conf/spool-fileChannel-kafka-flume-conf.properties -n agent -Dflume.root.logger=INFO,console

New terms and important words are shown in bold. Words that you see on
the screen, for example, in menus or dialog boxes, appear in the text like this:
" Without minimum or no delay (NRT: Near Real Time or Real time) the
company wanted the data produced to be moved to Hadoop system"

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think
about this book-what you liked or disliked. Reader feedback is important for
us as it helps us develop titles that you will really get the most out of.

To send us general feedback, simply e-mail feedback@packtpub.com, and
mention the book's title in the subject of your message.

If there is a topic that you have expertise in and you are interested in either
writing or contributing to a book, see our author guide at www.packtpub.com/aut
hors.

http://www.packtpub.com/authors

Customer support
Now that you are the proud owner of a Packt book, we have a number of
things to help you to get the most from your purchase.

Downloading the example code
You can download the example code files for this book from your account at
http://www.packtpub.com. If you purchased this book elsewhere, you can visit htt
p://www.packtpub.com/support and register to have the files e-mailed directly to
you.

You can download the code files by following these steps:

1. Log in or register to our website using your e-mail address and
password.

2. Hover the mouse pointer on the SUPPORT tab at the top.
3. Click on Code Downloads & Errata.
4. Enter the name of the book in the Search box.
5. Select the book for which you're looking to download the code files.
6. Choose from the drop-down menu where you purchased this book from.
7. Click on Code Download.

Once the file is downloaded, please make sure that you unzip or extract the
folder using the latest version of:

WinRAR / 7-Zip for Windows
Zipeg / iZip / UnRarX for Mac
7-Zip / PeaZip for Linux

The code bundle for the book is also hosted on GitHub at https://github.com/Pac
ktPublishing/Data-Lake-for-Enterprises. We also have other code bundles from our
rich catalog of books and videos available at https://github.com/PacktPublishing/.
Check them out!

http://www.packtpub.com
http://www.packtpub.com/support
https://github.com/PacktPublishing/Data-Lake-for-Enterprises
https://github.com/PacktPublishing/

Errata
Although we have taken every care to ensure the accuracy of our content,
mistakes do happen. If you find a mistake in one of our books-maybe a
mistake in the text or the code-we would be grateful if you could report this
to us. By doing so, you can save other readers from frustration and help us
improve subsequent versions of this book. If you find any errata, please
report them by visiting http://www.packtpub.com/submit-errata, selecting your
book, clicking on the Errata Submission Form link, and entering the details of
your errata. Once your errata are verified, your submission will be accepted
and the errata will be uploaded to our website or added to any list of existing
errata under the Errata section of that title.

To view the previously submitted errata, go to https://www.packtpub.com/books/c
ontent/supportand enter the name of the book in the search field. The required
information will appear under the Errata section.

http://www.packtpub.com/submit-errata
https://www.packtpub.com/books/content/support

Piracy
Piracy of copyrighted material on the Internet is an ongoing problem across
all media. At Packt, we take the protection of our copyright and licenses very
seriously. If you come across any illegal copies of our works in any form on
the Internet, please provide us with the location address or website name
immediately so that we can pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected pirated
material.

We appreciate your help in protecting our authors and our ability to bring you
valuable content.

Questions
If you have a problem with any aspect of this book, you can contact us
at questions@packtpub.com, and we will do our best to address the problem.

Introduction to Data
Through this book, we are embarking on a huge task of implementing a
technology masterpiece for your enterprise. In this journey, you will not only
have to learn many new tools and technologies but also have to know a good
amount of jargon and theoretical stuff. This will surely help you in your
journey to reach the ultimate goal of creating the masterpiece, namely Data
lake.

This part of the book aims at preparing you for a tough road ahead so that
you are quite clear in the head as to what you want to achieve. The concept of
a Data lake has evolved over time in enterprises, starting with concepts of
data warehouse which contained data for long term retention and stored
differently for reporting and historic needs. Then the concept of data mart
came into existence which would expose small sets of data with enterprise
relevant attributes. Data lake evolved with these concepts as a central data
repository for an enterprise that could capture data as is, produce processed
data, and serve the most relevant enterprise information.

The topic or technology of Data lake is not new, but very few enterprises
have implemented a fully functional Data lake in their organization. Through
this book, we want enterprises to start thinking seriously on investing in
a Data lake. Also, with the help of you engineers, we want to give the top
management in your organization a glimpse of what can be achieved by
creating a Data lake which can then be used to implement a use case more
relevant to your own enterprise.

So, fasten your seatbelt, hold on tight, and let's start the journey!

Rest assured that after completing this book, you will help your enterprise
(small or big) to think and model their business in a data-centric approach,
using Data lake as its technical nucleus.

The intent of this chapter is to give the reader insight into data, big data, and
some of the important details in connection with data. The chapter gives

some important textbook-based definitions, which need to be understood in
depth so that the reader is convinced about how data is relevant to an
enterprise. The reader would also have grasped the main crux of
the difference between data and big data. The chapter soon delves into the
types of data in depth and where we can find in an enterprise.

The latter part of the chapter tries to enlighten the user with the current state
of enterprises with regard to data management and also tries to give a high-
level glimpse on what enterprises are looking to transform themselves into,
with data at the core. The whole book is based on a real-life example, and the
last section is dedicated to explaining this example in more detail. The
example is detailed in such a manner that the reader would get a good amount
of concepts implemented in the form of this example.

Exploring data
Data refers to a set of values of qualitative or quantitative variables.

Data is measured, collected and reported, and analyzed, whereupon it can be
visualized using graphs, images or other analysis tools. Data as a general
concept refers to the fact that some existing information or knowledge is
represented or coded in some form suitable for better usage or processing.

- Wikipedia

Data can be broadly categorized into three types:

Structured data
Unstructured data
Semi-structured data

Structured data is data that we conventionally capture in a business
application in the form of data residing in a relational database (relational
database management system (RDBMS)) or non-relational database
(NoSQL - originally referred to as non SQL).

Structured data can again be broadly categorized into two, namely raw and
cleansed data. Data that is taken in as it is, without much cleansing or
filtering, is called raw data. Data that is taken in with a lot of cleansing and
filtering, catering to a particular analysis by business users, is called cleansed
data.

All the other data, which doesn’t fall in the category of structured, can be
called unstructured data. Data collected in the form of videos, images, and so
on are examples of unstructured data.

There is a third category called semi-structured data, which has come into
existence because of the Internet and is becoming more and more
predominant with the evolution of social sites. The Wikipedia definition of
semi-structured data is as follows:

Semi-structured data is a form of structured data that does not conform with
the formal structure of data models associated with relational databases or
other forms of data tables, but nonetheless contains tags or other markers to
separate semantic elements and enforce hierarchies of records and fields
within the data. Therefore, it is also known as self-describing structure.

Some of the examples of semi-structured data are the well-known data
formats, namely JavaScript Object Notation (JSON) and Extensible
Markup Language (XML).

The following figure (Figure 01) covers whatever we discussed on different
types of data, in a pictorial fashion. Please don't get confused by seeing
spreadsheets and text files in the structured section. This is because the data
presented in the following figure is in the form of a record, which, indeed,
qualifies it to be structured data:

Figure 01: Types of Data

What is Enterprise Data?
Enterprise data refers to data shared by employees and their partners in an
organization, across various departments and different locations, spread
across different continents. This is data that is valuable to the enterprise, such
as financial data, business data, employee personal data, and so on, and the
enterprise spends considerable time and money to keep this data secure and
clean in all aspects.

During all this, this so-called enterprise data passes the current state and
becomes stale, or rather dead, and lives in some form of storage, which is
hard to analyze and retrieve. This is where the significance of this data and
having a single place to analyze it in order to discover various future business
opportunities leads to the implementation of a Data lake.

Enterprise data falls into three major high-level categories, as detailed next:

Master data refers to the data that details the main entities within an
enterprise. Looking at the master data, one can, in fact, find the business
that the enterprise is involved in. This data is usually managed and
owned by different departments. The other categories of data, as
follows, need the master data to make meaningful values of them.
Transaction data refers to the data that various applications (internal and
external) produce while transacting various business processes within an
enterprise. This also includes people-related data, which, in a way,
doesn’t categorize itself as business data but is significant. This data,
when analyzed, can give businesses many optimization techniques to be
employed. This data also depends and often refers to the master data.
Analytic data refers to data that is actually derived from the preceding
two kinds of enterprise data. This data gives enough insight into various
entities (master data) in the enterprise and can also combine with
transaction data to make positive recommendations, which can be
implemented by the enterprise, after performing the necessary due
diligence.

The previously explained different types of enterprise data are
very significant to the enterprise, because of which most enterprises have a
process for the management of these types of data, commonly known as
enterprise data management. This aspect is explained in more detail in the
following section.

The following diagram shows the various enterprise data types available and
how they interact with each other:

Figure 02: Different types of Enterprise Data

The preceding figure shows that master data is being utilized by both
transaction and analytic data. Analytic data also depends on transaction data
for deriving meaningful insights as needed by users who use these data for
various clients.

Enterprise Data Management
Ability of an organization to precisely define, easily integrate and effectively
retrieve data for both internal applications and external communication

- Wikipedia

EDM emphasizes data precision, granularity and meaning and is concerned
with how the content is integrated into business applications as well as how it
is passed along from one business process to another.

- Wikipedia

As the preceding wikipedia definition clearly states, EDM is the process or
strategy of determining how this enterprise data needs to be stored, where it
has to be stored, and what technologies it has to use to store and retrieve this
data in an enterprise. Being very valuable, this data has to be secured using
the right controls and needs to be managed and owned in a defined fashion. It
also defines how the data can be taken out to communicate with both internal
and external applications alike. Furthermore, the policies and processes
around the data exchange have to be well defined.

Looking at the previous paragraph, it seems that it is very easy to have EDM
in place for an enterprise, but in reality, it is very difficult. In an enterprise,
there are multiple departments, and each department churns out data; based
on the significance of these departments, the data churned would also be very
relevant to the organization as a whole. Because of the distinction and data
relevance, the owner of each data in EDM has different interests,
causing conflicts and thus creating problems in the enterprise. This calls
for various policies and procedures along with ownership of each data in
EDM.

In the context of this book, learning about enterprise data, enterprise data
management, and issues around maintaining an EDM are quite significant.
This is the reason why it's good to know these aspects at the start of the book
itself. In the following sections we will discuss big data concepts and ways in

which big data can be incorporated into enterprise data management and
extend its capabilities with opportunities that could not be imagined without
big data technologies.

Big data concepts
Let me start this section by giving the Wikipedia definition for Big Data:

Big data is a term for data sets that are so large or complex that traditional
data processing applications are inadequate to deal with them. The term "big
data" often refers simply to the use of predictive analytics, user behaviour
analytics, or certain other advanced data analytics methods that extract
value from data, and seldom to a particular size of data set.

- Wikipedia

Let's try explaining, the two sentences that are given in the preceding
Wikipedia definition. Earlier, big data referred to any data that is large and
complex in nature. There isn't any specified size of data for it to be called big
data. This data was considered so big that conventional data processing
applications found it difficult to use it in a meaningful fashion. In the last
decade or so, many technologies have evolved in this space in order to
analyze such big data in the enterprise. Nowadays, the term big data is used
to refer to any sort of analysis method that can comprehend and extract this
complex data and make valuable use of it in the enterprise.

Big data and 4Vs
Whenever you encountered the term big data being overly used, you must
have come across an important aspect with regard to it, called 4Vs (until
recently, it was 3Vs, and then the fourth, very significant, V got introduced).
The 4Vs, namely variety, velocity, volume, and veracity (in no particular
order) determine whether the data we call Big Data really qualifies to be
called big:

Variety: In the context of big data, variety has a very important place.
Variety refers to vivid types of data and the myriad sources from which
these are arrived at. With the proliferation of technologies and the ever-
growing number of applications (enterprise and different personal ones),
there is high emphasis on data variety. This is not going to come down
any time soon; rather, this is set to increase over a period of time, for
sure. Broadly, data types can be categorized into structured and
unstructured. Applications during this time deal mainly with structured
data stored mostly in a relational database management system
(RDBMS). This is very common, but nowadays, there has been the need
to look at more unstructured data, and some of the examples can be
video content, image content, file content in the form of binaries, and so
on.
Velocity: In the context of big data, velocity is referred to in two
aspects. First is the rate at which the data is generated, and second is the
capability by which the enormous amount of data can be analyzed in
real time to derive some meaningful conclusions. As the proverb goes,
Time is money, this V is a very important aspect, which makes it easy to
take quick decisions in real time. This aspect is one of the strongholds of
some of the businesses, especially retail. Giving the customer a
personalized and timely offer can be the deciding factor of the customer
buying a product from you or ditching you to select a more favorable
one.
Volume: In the context of big data, volume refers to the amount/scale of
data that needs to be analyzed for a meaningful result to be derived.
There isn't a quantitative figure that categorizes a data to be falling into

big data. But usually, this volume is definitely more than what a
conventional application is handling as of now. So, in general, this is
quite big and does pose a problem for a traditional application to deal
with in a day-to-day fashion (OLTP - OnLine Transaction
Processing). For many businesses, analyzing and making use of social
data has become a necessity. These social apps (Facebook, Google+,
LinkedIn, and so on) have billions of registered users producing billions
of data (structured and unstructured) in a day-to-day fashion. In addition
to this, there are applications that themselves produce a huge amount of
data in the form of conventional transactions and other analytics
(behavioral, location-based, and so on). Also, with the growing number
of wearables and sensors that emit data every millisecond, the volume
aspect is going to be very important, and this is not going to come down
any time soon.

As detailed in the previous section, until recently, there used to be 3Vs. But
quite recently, the fourth V was introduced by IBM, namely veracity. For
data growing at an exponential rate and as deduced from different reliable
and unreliable sources, the significance of this V is huge.

You must have already heard/read of fake news/material being circulated in
various social media when there is something important happening in the
world. This V brings this a very important aspect of accuracy in big data.
With proliferation of data, especially in social channels, this V is going to be
very important, and rather than 3Vs, it is leaning highly towards 4Vs of Big
Data.

Veracity: In the context of big data, veracity refers to accuracy of data
being analyzed to get to a meaningful result. With a variety of sources,
especially the not-so-reliable user-entered unstructured data, the data
coming from some of these channels has to be consumed in a judicial
manner. If an enterprise wants to use this data to generate business, its
authenticity has to be verified to an even greater extent.

Big Data and its significant 4V's are shown in a pictorial representation, as
follows:

Figure 03: 4V's of Big Data

Figure 03 clearly shows what the 4V's are and what each of these V's means,
with adequate bullet points for easy understanding.

Relevance of data
To any enterprise, data is very important. Enterprises have been collecting a
good amount of past data and keeping it in a data warehouse for analysis.
This proves the importance of data for enterprises for past data analysis and
using this for future enterprise growth. In the last decade or so, with the
proliferation of social media and myriads of applications (internal to the
enterprise and external cloud offerings), the data collected has grown
exponentially. This data is increasing in amount as the day goes by, but
enterprises are finding it really difficult to make use of these high volumes of
diverse data in an effective manner. Data relevance is at the highest for
enterprises nowadays as they are now trying to make use of this collected
data to transform or energize their existing business.

A business user when fed with these huge amounts of data and right tools can
derive real good value. For example, if customer-related data from various
applications flows into a place where this data can be analyzed, this data
could give a good amount of valuable insights, such as who is the customer
who engages with various website pages of the enterprise and how. These
derivations can be used as a way in which they can look at either changing
their existing business model or tweaking certain business processes to derive
maximum profit for the enterprise. For example, looking at various insights
from centralized customer data, a new business model can be thought
through, say in the form of starting to look at giving loyalty points to such
customers. This data can also be made use of, giving more personalized
offers closer to customer recommendations. For example, looking at the
customer behavior, rather than giving a general offer, more personalized
offers suiting the customer's needs could be offered. However, these are fully
dependent on the business, and there isn't one approach fitting all the
scenarios. These data can, however, be transformed and cleansed to make
them more usable for a business user through different data visualizations
techniques available as of now in the form of different types of graphs and
charts.

Data is relevant, but where exactly this data lives in an enterprise is detailed

in the following section.

Vit Soupal (Head of Big Data, Deutsche Telekom AG) in one of his blogs
defines these 4V’s of big data as technical parameters and defines another
three V’s bringing in business into context. We thought that we would not
cover these additional V’s in our book, but these are definitely required for
Data lake (Big Data) to be successful in an enterprise.

These additional 3 Vs (business parameters) are as follows:

Vision: Every enterprise embarking on Big Data (Data lake) should
have a well-defined vision and should also be ready to transform
processes to make full use of it. Also, management in the enterprise
should fully understand this and should be in a position to make
decisions considering its merits.
Visualization: Data lake is expected to have a huge amount of data.
Some will make a lot of sense and some won't at certain points in time.
Data scientists work on these data and derive meaningful deductions,
and these need to be communicated in an effective manner to the
management. For Big Data to be successful, visualization of meaningful
data in various formats is required and mandated.
Value: Big Data should be of value to the enterprise. These values could
bring about changes in business processes or bring in new innovative
solutions (say IoT) and entirely transform the business model.

Vit also gives a very good way of representing these 7 V’s as shown in the
following figure:

Figure 04: 7 V's of big data

Figure 04 shows that Big Data becomes successful in an enterprise only if
both business and technical attributes are met.

The preceding figure (Figure 04) conveys that Data lake needs to have a well-
defined vision and then a different variety of data flows with different
velocity and volume into the lake. The data coming into the lake has different
quality attributes (veracity). The data in Data lake requires various kinds of
visualization to be really useful to various departments and higher
management. These useful visualizations will derive various value to the
organization and would also help in making various decisions helpful to the
enterprise. Technical attributes in a Data lake are needed for sure (variety,
velocity, volume, and veracity), but business attributes/parameters are very
much required (vision, visualization, and value), and these make Data lake a
success in the enterprise.

Quality of data
There is no doubt that high-quality data (cleansed data) is an irresistible asset
to an organization. But in the same way, bad quality or mediocre quality data,
if used to make decisions for an enterprise, cannot only be bad for your
enterprise but can also tarnish the brand value of your enterprise, which is
very hard to get back. The data, in general, becomes not so usable if it is
inconsistent, duplicate, ambiguous, and incomplete. Business users wouldn't
consider using these data if they do not have a pleasant experience while
using these data for various analyzes. That's when we realize the importance
of the fourth V, namely veracity.

Quality of data is an assessment of data to ascertain its fit for the purpose in a
given context, where it is going to be used. There are various characteristics
based on which data quality can be ascertained. Some of which, not in any
particular order, are as follows:

Correctness/accuracy: This measures the degree to which the collected
data describes the real-world entity that's being captured.
Completeness: This is measured by counting the attributes captured
during the data-capturing process to the expected/defined attributes.
Consistency: This is measured by comparing the data captured in
multiple systems, converging them, and showing a single picture (single
source of truth).
Timeliness: This is measured by the ability to provide high-quality data
to the right people in the right context at a specified/defined time.
Metadata: This is measured by the amount of additional data about
captured data. As the term suggests, it is data about data, which is useful
for defining or getting more value about the data itself.
Data lineage: Keeping track of data across a data life cycle can have
immense benefits to the organization. Such traceability of data can
provide very interesting business insights to an organization.

There are characteristics/dimensions other than what have been described in
the preceding section, which can also determine the quality of data. But this

is just detailed in the right amount here so that at least you have this concept
clear in the head; these will become clearer as you go through the next
chapters in this book.

Where does this data live in an
enterprise?
The data in an enterprise lives in different formats in the form of raw data,
binaries (images and videos), and so on, and in different application's
persistent storage internally within an organization or externally in a private
or public cloud. Let's first classify these different types of data. One way to
categorize where the data lives is as follows:

Intranet (within enterprise)
Internet (external to enterprise)

Another way in which data living in an enterprise can be categorized is in the
form of different formats in which they exist, as follows:

Data stores or persistent stores (RDBMS or NoSQL)
Traditional data warehouses (making use of RDBMS, NoSQL etc.)
File stores

Now let's get into a bit more detail about these different data categories.

Intranet (within enterprise)
In simple terms, enterprise data that only exists and lives within its own
private network falls in the category of intranet.

Various applications within an enterprise exist within the enterprise's own
network, and access is denied to others apart from designated employees.
Due to this reason, the data captured using these applications lives within an
enterprise in a secure and private fashion.

The applications churning out this data can be data of the employees or
various transactional data captured while using enterprises in day-to-day
applications.

Technologies used to establish intranet for an enterprise include Local Area
Network (LAN) and Wide Area Network (WAN). Also, there are multiple
application platforms that can be used within an enterprise, enabling intranet
culture within the enterprise and its employees. The data could be stored in a
structured format in different stores, such as traditional RDBMS and NoSQL
databases. In addition to these stores, there lies unstructured data in the form
of different file types. Also, most enterprises have traditional data
warehouses, where data is cleansed and made ready to be analyzed.

Internet (external to enterprise)
A decade or so ago, most enterprises had their own data centers, and almost
all the data would reside in that. But with the evolution of cloud, enterprises
are looking to put some data outside their own data center into cloud, with
security and controls in place, so that the data is never accessed by
unauthorized people. Going the cloud way also takes a good amount of
operational costs away from the enterprise, and that is one of the biggest
advantages. Let's get into the subcategories in this space in more detail.

Business applications hosted in
cloud
With the various options provided by cloud providers, such as SaaS, PaaS,
IaaS, and so on, there are ways in which business applications can be hosted
in cloud, taking care of all the essential enterprise policies and governance.
Because of this, many enterprises have chosen this as a way to host internally
developed applications in these cloud providers. Employees use these
applications from the cloud and go about doing their day-to-day operations
very similar to how they would have for a business application hosted within
an enterprise's own data center.

Third–party cloud solutions
With so many companies now providing their applications/services hosted in
cloud, enterprises needing them could use these as is and not worry about
maintaining and managing on-premises infrastructure. These products, just
by being on the cloud, provide enterprises with huge incentives with regard to
how they charge for these services.

Due to this benefit, enterprises favorably choose these cloud products, and
due to its mere nature, the enterprises now save their data (very specific to
their business)in the cloud on someone else infrastructure, with the cloud
provider having full control on how these data live in there.

Google BigQuery is one such piece of software, which, as a service product,
allows us to export the enterprise data to their cloud, running this software for
various kinds of analysis work. The good thing about these products is that
after the analysis, we can decide on whether to keep this data for future use or
just discard it. Due to the elastic (ability to expand and contract at will, with
regard to hardware in this case) nature of cloud, you can very well ask for a
big machine if your analysis is complex, and after use, you can just discard or
reduce these servers back to their old configuration.

Due to this nature, Google BigQuery calls itself anEnterprise Cloud Data
Warehouse, and it does stay true to its promise. It gives speed and scale to
enterprises along with the important security, reliability, and availability. It
also gives integration with other similar software products again in cloud for
various other needs.

Google BigQuery is just one example; there are other similar software
available in cloud with varying degrees of features. Enterprises nowadays
need to do many things quickly, and they don't want to spend time doing
research on this and hosting these in their own infrastructure due to various
overheads; these solutions give all they want without much trouble and at a
very handy price tag.

The list of such solutions at this stage is ever growing, and I don't think that
naming these is required. So we picked BigQuery as an example to explain
this very nature.

Similar to software as a service available in the cloud, there are many
business applications available in cloud as services. One such example is
Salesforce. Basically, Salesforce is a Customer Relationship Management
(CRM) solution, but it does have many packaged features in it. It's not a sales
pitch, but I just want to give some very important features such business
applications in cloud bring to the enterprise. Salesforce brings all the
customer information together and allows enterprises to build a customer-
centric business model from sales, business analysis, and customer service.

Being in cloud, it also brings many of the features that software as a service
in cloud brings.

Because of the ever-increasing impact of cloud on enterprises, a good amount
of enterprise data now lives on the Internet (in cloud), obviously taking care
of privacy and other common features an enterprise data should comply with
to safeguard enterprise’s business objectives.

Social data (structured and
unstructured)
Social connection of an enterprise nowadays is quite crucial, and even though
enterprise data doesn’t live in social sites, it does have rich information fed
by the real customer on enterprise business and its services.

Comments and suggestions on these special sites can indeed be used to
reinvent the way enterprises do business and interact with the customers.

Comments in these social sites can damage the reputation and brand of an
enterprise if no due diligence in taken on these comments from customers.
The enterprise takes these social sites really seriously nowadays, because of
which even though it doesn't have enterprise data, it does have customer
reviews and comments, which, in a way, show how customer perceive the
brand.

Because of this nature, I would like to classify this data also as enterprise data
fed in by non-enterprise users. Its very important to take care of the fourth V,
namely veracity in big data while analyzing this data as there are people out
there who want to use these just as channels to get some undue advantages
while dealing with the enterprise in the process of the business.
Another way of categorizing enterprise data is by the way the data is finally
getting stored. Let's see this categorization in more detail in the following
section.

Data stores or persistent stores
(RDBMS or NoSQL)
This data, whether on premises (enterprise infrastructure) or in cloud, is
stored as structured data in the so-called traditional RDBMS or new
generation NoSQL persistent stores. This data comes into these stores
through business applications, and most of the data is scattered in nature, and
enterprises can easily find a sense of each and every data captured without
much trouble. The main issue when data is stored in a traditional RDBMS
kind of store is when the amount of data grows beyond an acceptable state. In
that situation, the amount of analysis that we can make of the data takes a
good amount of effort and time. Because of this, enterprises force themselves
to segregate this data into production (data that can be queried and made use
of by the business application) and non-production (data that is old and not in
the production system, rather moved to a different storage).

Because of this segregation, analysis usually spans a few years and doesn't
give enterprises a large span of how the business was dealing with certain
business parameters. Say for example, if the production has five years of
sales data, and 15 years of sales data is in the non-production storage, the
users, when dealing with sales data analysis, just have a view of the last five
years of data. There might be trends that are changing every five years, and
this can only be known when we do an analysis of 20 years of sales data.
Most of the time, because of RDBMS, storing and analyzing huge data is not
possible. Even if this is possible, it is time consuming and doesn't give a great
deal of flexibility, which an analyst looks for. This renders to the analyst a
certain restricted analysis, which can be a big problem if the enterprise is
looking into this data for business process tweaks.

The so-called new generation NoSQL (different databases in this space have
different capabilities) gives more flexibility on analysis and the amount of
data storage. It also gives the kind of performance and other aspects that
analysts look for, but it still lacks certain aspects.

Even though the data is stored in an individual business application, it doesn't
have a single view from various business application data, and that is what
implementing a proper Data lake would bring into the enterprise.

Traditional data warehouse
As explained in the previous section, due to the amount of data captured in
production business applications, almost all the time, the data in production is
segregated from non-production. The non-production data usually lives in
different forms/areas of the enterprise and flows into a different data store
(usually RDBMS or NoSQL) called the data warehouse. Usually, the data is
cleansed and cut out as required by the data analyst. Cutting out the data
again puts a boundary on the type of analysis an analyst can do on the data. In
most cases, there should be hidden gems of data that haven’t flown into the
data warehouse, which would result in more analysis, using which the
enterprises can tweak certain processes; however, since they are cleansed and
cut out, this innovative analysis never happens. This aspect is also something
that needs correction. The Data lake approach explained in this book allows
the analyst to bring in any data captured in the production business
application to do any analysis as the case may be.

The way these data warehouses are created today is by employing an ETL
(Extract, Transform, Load) from the production database to the data
warehouse database. ETL is entrusted with cleaning the data as needed by the
analyst who works with these data warehouses for various analyses.

File stores
Business applications are ever changing, and new applications allow the end
users to capture data in different formats apart from keying in data (using a
keyboard), which are structured in nature.

Another way in which the end users now feed in data is in the form of
documents in different formats. Some of the well-known formats are as
follows:

Different document formats (PDF, DOC, XLS, and so on)
Binary formats

Image-based formats (JPG, PNG, and so on)
Audio formats (MP3, RAM, AC3)
Video formats (MP4, MPEG, MKV)

As you saw in the previous sections, dealing with structured data itself is in
question, and now we are bringing in the analysis of unstructured data. But
analysis of this data is also as important nowadays as structured ones. By
implementing Data lake, we could bring in new technologies surrounding this
lake, which will allow us to make some good value out of this unstructured
data as well, using the latest and greatest technologies in this space.

Apart from various file formats and data living in it, we have many
applications that allow end users to capture a huge amount of data in the form
of sentences, which also need analysis. To deal with these comments from
end users manually is a Herculean task, and in this modern age, we need to
decipher the sentences/comments in an automatic fashion and get a view of
their sentiment. Again, there are many such technologies available that can
make sense of this data (free flowing text) and help enterprises deal with it in
the right fashion.

For example, if we do have a suggestion capturing system in place for an
enterprise and (let's say) we have close to 1000 suggestions that we get in a
day, because of the nature of the business, it's very hard to get into the

filtering of these suggestions. Here, we could use technologies aiding in the
sentiment analysis of these comments, and according to the rating these
analysis tools provide, perform an initial level of filtering and then hand it
over to the human who can understand and make use of it.

Enterprise’s current state
As explained briefly in the previous sections, the current state of enterprise
data in an organization can be summarized in bullets points as follows:

Conventional DW (Data Warehouse) /BI (Business Intelligence):
Refined/ cleansed data transferred from production business
application using ETL.
Data earlier than a certain period would have already been
transferred to a storage, which is hard to retrieve, such as magnetic
tape storage.
Some of its notable deficiencies are as follows:

A subset of production data in a cleansed format exists in DW;
for any new element in DW, effort has to be made
A subset of the data is again in DW, and the rest gets
transferred to permanent storage
Usually, analysis is really slow, and it is optimized again to
perform queries, which are, to an extent, defined

Siloed Big Data:
Some departments would have taken the right step in building big
data. But departments generally don’t collaborate with each other,
and this big data becomes siloed and doesn't give the value of a true
big data for the enterprise.
Some of its deficiencies are as follows:

Because of its siloed nature, the analyst is again constrained
and not able to mix and match data between departments.
A good amount of money would have been spent to build and
maintain/manage this and usually over a period of time is not
sustainable.

Myriad of non-connected applications:
There is a good amount of applications on premises and on cloud.
Applications apart from churning structured data also produce
unstructured data.
Some of the deficiencies are as follows:

Don't talk to each other
Even if it talks, data scientists are not able to use it in an
effective way to transform the enterprise in a meaningful way
Replication of technology usage for handling many aspects in
each business application

We wouldn't say that creating or investing in Data lake is a silver bullet to
solve all the aforementioned deficiencies. But it is definitely a step in the
right direction, and every enterprise should at least spend some time
discussing whether this is indeed required, and if it is a yes, don't deliberate
over it too much and take the next step in the path of implementation.

Data lake is an enterprise initiative, and when built, it has to be with the
consent of all the stakeholders, and it should have buy-ins from the top
executives. It can definitely find ways to improve processes by which
enterprises do business. It can help the higher management know more about
their business and can increase the success rate of the decision-making
process.

Enterprise digital transformation
Digital transformation is the application of digital technologies to
fundamentally impact all aspects of business and society.

- infoworld.com

Digital transformation (DX) is an industry buzzword and a very strong
initiative that every enterprise is taking without much deliberation. As the
word suggests, it refers to transforming enterprises with information
technology as one of its core pillars. Investing in technologies would
definitely happen as part of this initiative, but data is one of the key aspects in
achieving the so-called transformation.

Enterprises has known the importance of data and its analysis more and more
in recent times, and that has definitely made every enterprise think out-of-the-
box; this initiative is a way to establish data at the center.

As part of this business transformation, enterprises should definitely have
Data lake as one of the core investments, with every department agreeing to
share their data to flow into this Data lake, without much prejudice or pride.

Enterprises embarking on this
journey
A Forrester Consulting research study commissioned by Accenture
Interactive found that the key drivers of digital transformation are
profitability, customer satisfaction, and increased speed-to-market.

Many enterprises are, in fact, already on the path of digital transformation. It
is no more a buzzword, and enterprises are indeed making every effort to
transform themselves using technology as one of the drivers and, you guessed
it right, the other one being data.

Enterprises taking this path have clearly defined objectives. Obviously, this
changes according to the enterprise and the business they are in. But some of
the common ones, in no particular order, are as follows:

Radically improve customer experience
Reduce cost
Increase in revenue
Bring in differentiation from competitors
Tweak business processes and, in turn, change the business model

Some examples
There are a number of clear examples about what enterprises want to achieve
in this space, some of which are as follows:

Ability to segment customers and give them personalized products.
Targeting campaigns to the right person at the right time.
Bringing in more technologies and reducing manual work, basically
digitizing many aspects in the enterprise.
Using social information clubbed together with enterprise data to make
some important decisions.
Predicting the future in a more quantitative fashion and taking necessary
steps and also preparing accordingly, well in advance, obviously.
Taking business global using technology as an important vehicle.

The next section details one of the use cases that enterprises want to achieve
as part of digital transformation, with data as the main contributor.
Understanding the use case is important as this is the use case we will try to
implement in this book throughout.

Data lake use case enlightenment
We saw the importance of data in an enterprise. What enterprises face today
is how to mine this data for information that can be used in favor of the
business.

Even if we are able to bring this data into one place somehow, it's quite
difficult to deal with this huge quantity of data and that too in a reasonable
time. This is when the significance of Data lake comes into the picture. The
next chapter details, in a holistic fashion, what Data lake is. Before getting
there, let's detail the use case that we are trying to achieve throughout this
book, with Data lake taking the center stage.

Data lake implementation using modern technologies would bring in many
benefits, some of which are given as follows:

Ability for business users, using various analyzes, to find various
important aspects in the business with regard to people, processes, and
also a good insight into various customers
Allowing the business to do these analytics in a modest time frame
rather than waiting for weeks or months
Performance and quickness of data analysis in the hands of business
users to quickly tweak business processes

The use case that we will be covering throughout this book is called Single
Customer View. Single Customer View (SCV) is a well-known term in the
industry, and so it has quite a few definitions, one of which is as follows:

A Single Customer View is an aggregated, consistent and holistic
representation of the data known by an organisation about its customers.

- Wikipedia

Enterprises keeps customer data in varying degrees siloed in different
business applications. The use case aims at collating these varying degrees of
data from these business applications into one and helping the analysts

looking at this data create a single customer view with all the distinct data
collected. This single view brings in the capability of segmenting customers
and helping the business to target the right customers with the right content.

The significance of this use case for the enterprise can be narrowed down to
points as listed next:

Customer segmentation
Collating information
Improving customer relations and, in turn, bringing is retention
Deeper analytics/insight, and so on

Conceptually, the following figure (Figure 05) summarizes the use case that
we plan to implement throughout this book. Structured, semi-structured, and
unstructured data is fed into the Data lake. From the Data lake, the Single
Customer View (SCV) is derived in a holistic fashion. The various data
examples are also depicted in each category, which we will implement in this
book. Doing so gives a full use of a Data lake in an enterprise and is more
realistic:

Figure 05: Conceptual view of Data lake use case for SCV

Figure 05 shows that our Data lake acquires data from various sources
(variety), has different velocities and volumes. This is more a conceptual
high-level view of what we will be achieving after going through the whole
book.

We are really excited, and we hope you are, too!

Summary
In this chapter, we delved deep into some of the common terminologies in the
industry. We started the chapter by understanding data, enterprise data, and
all important big data. We then dealt with the relevance of data, including
various data quality attributes. After that, we went into the details of the
different types of data classification and where the data lives in an enterprise.

In the sections that followed, we dealt with digital transformation and
finished the chapter with the use case that we will be implementing
throughout this book in more detail.

After completing this chapter, you will have clearly grasped many
terminologies and will also have a good understanding of the significance of
data and Data lake to an enterprise. Along with that, you will have a very
good idea about the use case and its relevance.

In the next chapter, we will delve deep into Data lake and also the pattern that
we will use in implementing Data lake in more detail.

Comprehensive Concepts of a Data
Lake
The concept of a Data Lake in an enterprise was driven by certain challenges
that enterprises were facing with the way the data was handled, processed and
stored. Initially, all the individual applications in the enterprise, via a natural
evolution cycle, started maintaining huge amounts of data themselves with
almost no reuse in other applications in the same enterprise. These created
information silos across various applications. As the next step of evolution,
these individual applications started exposing this data across the
organization as a data mart access layer over the central data warehouse.
While Data Mart solved one part of the problem, other problems still
persisted. These problems were more about data governance, data ownership
and data accessibility, which were required to be resolved so as to have better
availability of enterprise relevant data. This is where a need was felt to have
Data Lakes which could not only make such data available but also store any
form of data and process it so that data can be analyzed and kept ready for
consumption by consumer applications. In this chapter, we will look at some
of the critical aspects of a Data Lake and understand how it matters for an
enterprise.

What is a Data Lake?
If we need to define the term Data Lake, it can be defined as a vast repository
of a variety of enterprise-wide, raw information that can be acquired,
processed, analyzed and delivered.

A Data Lake acquires data from multiple sources in an
enterprise in its native form and may also have internal,
modeled forms of this same data for various purposes. The
information thus handled could be any type of information,
ranging from structured or semi-structured data to completely
unstructured data. A Data Lake is expected to be able to derive
enterprise-relevant meanings and insights from this information
using various analysis and machine learning algorithms.

Relevance to enterprises
A Data Lake brings a variety of capabilities to the enterprise by centralizing
the data. With data being centralized, the enterprise can tap into capabilities
that have not yet been explored. This data can help enterprises with a lot
more meaningful business insights when compared to any single system in
the enterprise. Additionally, with a lot more advancements in Data Science
and Machine Learning, a Data Lake can help with many more optimized
operating models for the enterprise as well as specialized capabilities
like predictive analysis, recommendations and so on for future growth.

These are hidden capabilities and have never seen the light of day until this
point as the so-called important data is out of reach from people who can see
relevant insights to make or transform the business in a better way.

How does a Data Lake help
enterprises?
Organizations have been aspiring for a long time to achieve a unified data
model that can represent every entity in an enterprise. This has been a
challenge due to various reasons, some of which have been listed here:

An entity may have multiple representations across the enterprise.
Hence there may not exist a single and complete model for an entity.
Different enterprise applications may be processing the entities based on
specific business objectives, which may or may not align with expected
enterprise processes.
Different applications may have different access patterns and storage
structures for every entity.

These issues have been bothering enterprises for a long time; limiting
standardization of business processes, service definition and their vocabulary.

In Data Lake perspective, we are looking at the problem the other way
around. Bringing Data Lake would mean implicitly achieving a unified data
model to a good extent without really impacting the business applications,
which are good at solving very specific business problems. A Data Lake may
represent an entity to its fullest based on the information captured from
various systems that owns this data.

With entities being represented with much better and complete details, Data
Lakes do present a lot of opportunities to the enterprise to handle and manage
data in a way that can help the enterprise grow and derive business insights to
achieve enterprise goals. An interesting article by Martin Fowler is worth
mentioning here, as he summarizes some of the key aspects around Data
Lake in an enterprise at the following link: https://martinfowler.com/bliki/DataLake
.html.

https://martinfowler.com/bliki/DataLake.html

Data Lake benefits
Organizations generate a huge amount of data across their business systems
and as they grow bigger, they also need to get smarter in handling data across
disparate systems.

One of the most basic approaches is to have a single domain model that
accurately describes their data and represents the most significant data for
their overall business. Such information may be referred to as enterprise data.

An organization that has well-defined enterprise data also has some ways to
manage that data so that changes to the definition of data are always
consistent and it is well known as to how systems are sharing this
information.

In such a case, the systems may be broadly classified as data owners and data
consumers. For enterprise data, there needs to be an owner, and that owner
defines how the data becomes available to other consuming systems that play
the role of data consumers.

Once organisations have this clear definition of data and systems, they can
leverage a lot of information with such mechanisms. Nowadays, one of the
common ways to envisage this entire model of enterprise data is by building
an enterprise-wide Data Lake responsible for capturing, processing, analyzing
and serving this data to the consuming systems. Consistent knowledge of this
central model can help the organisations with the following:

Data Governance and Lineage
Applying machine learning and artificial intelligence to derive business
intelligence
Predictive Analysis, such as a domain-specific recommendation engine
Information traceability and consistency
Historical Analysis to derive dimensional data
A centralized data source for all enterprise data results in data services
primarily optimized for data delivery

Helping organizations take more informed decisions for future growth

In this section, we discussed what a Data Lake is capable of? A definitive
follow-on in this chapter would be to discuss and summarize how a Data
Lake works and can be realized.

How Data Lake works?
In order to realize the benefits of a Data Lake, it is important to know how a
Data Lake may be expected to work and what components architecturally
may help to build a fully functional Data Lake. Before we pounce on the
architectural details, let us understand the life cycle of data in the context of a
Data Lake.

At a high level, the life cycle of a data lake may be summarized as shown
here:

Figure 01: Data Lake life cycle

These can also be called various stages of data as it lives within the Data
Lake. The data thus acquired can be processed and analyzed in various ways.
The processing and data analysis could be a batch process or it could even be
a near-real-time process. Both of these kinds of processing are expected to be
supported by a Data Lake implementation as both of these patterns serve very
specific use cases. The choice between the type of processing and analysis

(batch/near-real-time) may also depend on the amount of processing or
analysis to be performed, as it may not be feasible to perform extremely
elaborate operations for near-real-time expectations, while there could be
business use cases that cannot wait for long-running business processes.

Likewise, the choice of storage would also depend on the requirements of
data accessibility. For instance, if it is expected to store the data such that it
could be accessed via SQL queries, the choice of storage must support a SQL
interface. If the data access requirement is to provide a data view, it may
involve storing the data in such a way that the data may be exposed as a view
and allows for easy manageability and accessibility of data. A more
prominent requirement that has been evident in recent times is that of
providing data as a service, which involves exposing data over a lightweight
services layer. Each of those exposed services accurately describes and
delivers the data. This mode also allows for service-based integration of data
with systems that can consume data services.

While the data flows into a Data Lake from the point of acquisition, its
metadata is captured and managed along with data traceability, data lineage,
and security aspects based on data sensitivity across its life cycle.

Data lineage is defined as a data life cycle that includes the data's origins
and where it moves over time. It describes what happens to data as it goes
through diverse processes. It helps provide visibility to the data analytics
pipeline and simplifies tracing of errors back to their sources.

Traceability is the ability to verify the history, location, or application of an
item by means of documented recorded identification.

- Wikipedia

Differences between Data Lake and
Data Warehouse
Many a times, Data Lakes are also perceived as Data Warehouses. Both Data
Lake and Data Warehouse have different objectives to be achieved in an
enterprise. Some of the key difference are shown here:

Data Lake Data Warehouse

Captures all types of data and
structures, semi-structured and
unstructured in their most natural form
from source systems

Captures structured information
and processes it as it is acquired
into a fixed model defined for
data warehouse purposes

Possesses enough processing power to
process and analyze all kinds of data
and have it analyzed for access

Processes structured data into a
dimensional or reporting model
for advanced reporting and
analytics

A Data Lake usually contains more
relevant information that has good
probability of access and can provide
operational needs for an enterprise

A Data Warehouse usually
stores and retains data for long
term, so that the data can be
accessed on demand

As evident from the above differences, a Data Lake and Data Warehouse
would ideally complement each other in an enterprise, and in no way should
a Data Lake be seen as a replacement for a Data Warehouse as they play
absolutely distinct roles in an enterprise.

Approaches to building a Data Lake
Different organizations would prefer to build the data lake in different ways,
depending on where the organisation is in terms of the business, processes,
and systems.

A simple data lake may be as good as defining a central data source, and all
systems may use this central data source for all the data needs. Though this
approach may be simple and look very lucrative, it may not be a very
practical way for the following reasons:

This approach would be feasible only if the organizations are building
their information systems from scratch
This approach does not solve the problems of existing systems
Even if organization decides to build the data lake with this approach,
there is a lack of clarity of responsibility and separation of concerns
Such systems often try to do everything in a single shot, but eventually
lose out with increasing demand of data transactions, analysis, and
processing

A better way to build a data lake would be to look at the organization and its
information systems as a whole, classify the data ownership, and define a
unified enterprise model. This approach, while it may have process-specific
challenges and may take more effort to get defined, will nonetheless provide
the required flexibility, control, and clear data definition and separation of
concerns between the entities of various systems in an enterprise. Such Data
Lakes can also have independent mechanisms to capture, process, analyze
and serve enterprise data to the consuming applications.

Lambda Architecture-driven Data
Lake
As we discussed in earlier sections, there exist multiple ways of processing
data, however they can be broadly classified into batch and real-time data
processing. While there can be scenarios where one of them provides the
desired outcomes, there can be additional scenarios that may need data from
both batch as well as real-time data processing components. This drives us to
a problem of merging batch data with real-time data. This problem is
addressed by the Lambda Architecture pattern, which will be discussed in
further detail in the next chapter. Here, we are discussing the initial view of a
Lambda-Architecture-driven data lake.

Lambda Architecture, as a pattern, provides the ways and means to perform
highly scalable and performant distributed computing on large sets of data
and yet (eventually) provides consistent data with the required processing,
both in batch as well as in near real time. Lambda Architecture defines the
ways and means to enable scale-out architecture across various data load
profiles in an enterprise, with low latency expectations.

Figure 02: Layers in a Data Lake

The way the Lambda Architecture pattern achieves this is by dividing the

overall architecture into layers. Each of these layers are covered on high-level
in below sections of this chapter.

Data ingestion layer - ingest for
processing and storage
A fast ingestion layer is one of the key layers in the Lambda Architecture
pattern. This layer needs to control how fast data can be delivered into the
working models of the Lambda Architecture. Some of the key specifications
of this layer are:

It must be highly scalable with on-demand scalability to be able to scale
based on varying load conditions
It must be fault tolerant with both fail-safety (recovery) as well as fail-
over (resiliency)
This layer must be able to support multi-thread and multi-event
execution
This layer must be able to quickly transform the acquired data structure
into the target data formats as needed by the processing layers of the
Lambda Architecture
This layer must ensure that all of the data delivered is in its purest form
for further processing

Batch layer - batch processing of
ingested data
The batch processing layer of a Lambda Architecture is expected to process
the ingested data in batches so as to ensure optimum utilization of system
resources; at the same time, long-running operations may be applied to the
data to ensure high quality of data output, which is also known as modeled
data. The conversion of raw data to modeled data is the primary
responsibility of this layer, wherein the modeled data is the data model
that can be served by the serving layers of the Lambda Architecture. The
primary specifications for this layer can be defined as follows:

The batch layer must be able to apply data cleaning, data processing,
and data modeling algorithms on the raw data ingested
It must have mechanisms in place to replay/rerun the batches for
recovery purposes
The batch layer must be able to support machine learning and data
science based processing on the raw ingested data to produce high
quality of modeled data
This layer may also have to perform some other operations to improve
the quality of the overall modeled data by de-duplication, detecting
erroneous data, and providing a view of the data lineage

Speed layer - near real time data
processing
This layer is expected to perform near-real-time processing on the data
received from the ingestion layer. Since the processing is expected to be in
near real time, such data processing will need to be quick, fast, and efficient,
with support and design for high-concurrency scenarios and an eventually
consistent outcome. A lot of factors play a role in making this layer fast,
which will be discussed in detail later in this book. Broadly, the
specifications for such a layer can be summarized as follows:

Must support fast operation on very specific data streams ingested.
Must be able to produce a data model relevant to near-real-time
processing needs. All long-running processes must be delegated to batch
mode.
Must be supported by fast access and storage layers so as to have no
backlog/pile-up of events to be processed.
Must be decoupled like the batch process from the ingestion layer.
Must produce output model in a way that it can be merged with the
batch-processed dataset to provide enriched enterprise data.

Data storage layer - store all data
The data storage layer is very eminent in the Lambda Architecture pattern as
this layer defines the reactivity of the overall solution to the incoming
event/data streams. As per the theory of connected systems, a system is only
as fast as the slowest system in the chain. Hence, if the storage layer is not
fast enough, the operations performed by the near-real-time processing layer
would be slow, thus hampering the near-real-time nature of the architecture.

In the overall Lambda Architecture, there are broadly two kinds of active
operations on the ingested data: Batch processing and Near-Real-Time
processing. The data needs for batch and Near-Real-Time processing are very
different. For instance, a batch mode, in most cases, would need serial read
and serial write operations, for which a Hadoop storage layer may suffice.
However, if we consider Near-Real-Time Processing, which would need
quick lookups and quick writes, Hadoop storage may not be the right fit. For
supporting Near-Real-Time processing, it is required that the data layer
supports some kind of indexed data storage.

Batch Mode Near-real-time processing

Serial read and serial write operation Quick lookups and quick writes

Hadoop storage layer (yes) Hadoop storage layer (no)

Typical specifications for a storage layer in a Lambda Architecture can be
summarized as given here:

Must support both serial as well as random operations
Must be tiered based on the usage pattern with appropriate data solutions
Must be able to handle large volumes of data for both batch as well as
near-real-time processing
Must be flexible and scalable for multiple data structure storage

Serving layer - data delivery and
exports
The Lambda Architecture also emphasizes the criticality of how the data is
served or delivered to the consuming application. Data, as we know, can be
delivered in multiple ways between systems. However, one of the most
common ways to deliver data is via services. In the context of a Data Lake,
these services may be called Data Services that may deliver primarily data.

One of the other ways to deliver data is via exports. The data in its final form
can be exported as messages, files, data dumps, and so on for other systems
to consume.

The primary focus while delivering/serving data is to have the data in the
desired form. This form can be enforced as a data contract whether the data is
served by services or by exports. However, during data delivery operations, it
is very important to have a merge between the batch data and the data from
near real-time processing, as both of these streams would hold key
information from an organizational domain perspective. The data
serving/delivery layer will need to ensure that the data is consistent as
adhering to an agreed contract with the consuming application.

Overall, high-level specifications for the data serving/delivery layer can be
summarized as follows:

It must support multiple mechanisms to serve data to the consuming
application
For every mechanism supported for serving the data, there should be
adherence to a contract in agreement with the consuming application
It must support merged views of both batch-processed and near real time
processed data
It must be scalable and responsive to the consuming application

With the serving layer having its key responsibility to serve the data out of

the Data Lake, this layer may also optionally merge the data for enrichment.

While these are primarily specifications of Lambda Architecture layers, there
are other layers too such as data acquisition, messaging, and the data
ingestion layer that feed the data into the Lambda Architecture for
processing, which we will discuss later in this chapter.

Data acquisition layer - get data
from source systems
In an organization, data exists in various forms, which can be classified as
structured data, semi-structured data, or unstructured data.

Some of the examples of structured data are relational databases, XML/JSON
data, messages across systems and so on. Semi-structured data is also very
prevalent from an organization perspective, particularly in the form of e-
mails, chats, documents and so on. Unstructured data also exists in a
workplace in the form of images, videos, raw texts, audio and so on.

For all of these types of data, it may not be possible to always define a
schema. Schemas are very useful while translating data into meaningful
information. While defining the schema of structured data would be very
straightforward, a schema cannot be defined for semi-structured or
unstructured data.

One of the key roles expected from the acquisition layer is to be able to
convert the data into messages that can be further processed in a Data Lake;
hence the acquisition layer is expected to be flexible to accommodate a
variety of schema specifications. At the same time, it must have a fast
connect mechanism to seamlessly push all the translated data messages into
the data lake.

Figure 03: Data acquisition components

A Data acquisition layer may be composed of multi-connector components
on the acquisition side and push the acquired data into a specific target
destination. In the case of Data Lakes, the target destination would be the
messaging layer.

There are specific technology frameworks that enable low-latency acquisition
of data from various types of source systems; for every data type, the
acquisition connectors are generally required to be configured/implemented
depending on the framework used. The data acquisition layer is expected to
perform limited transformation on the data acquired so as to minimize the
latency. The transformation within the data acquisition layer should be
performed only to convert the acquired data into a message/event so that it
can be posted to the messaging layer.

In the event that the messaging layer is not reachable (either
due to a network outage or downtime of the messaging layer),
the data acquisition must also support the required fail-safety
and fail-over mechanisms.

For this layer to be fail-safe, it should be able to support local and persistent
buffering of messages such that, if needed, the messages can be recovered
from the local buffer as and when the messaging layer is available again. This
component should also support fail-over and if one of the data acquisition
processes fails, another process seamlessly takes over.

Figure 04: Data Acquisition Component Design

For this layer to support low-latency acquisition, it needs to be built on fast
and scalable parsing and transformation components.

As shown in the preceding figure, an acquisition layer’s simplified
component view comprises connectors, data parsers, data transformers, and a
message publisher. We will be discussing these components in detail in
specific chapters in the context of the specific technologies and frameworks.

Messaging Layer - guaranteed data
delivery
The messaging layer would form the Message Oriented Middleware
(MOM) for the data lake architecture, and hence would be the primary layer
for decoupling the various layers with each other, but with guaranteed
delivery of messages.

In order to ensure that the delivery of messages is guaranteed, the messages
will need to be persistent. This persistence of messages is usually done on a
storage drive. The storage drive used for persisting these messages should be
fit for the purpose based on number and size of the messages to be stored.
Fundamentally, since the nature of message oriented middleware is to queue
up the messages, for both writes and reads, this fits well into the
characteristics of serial access (writes and reads), for which spinning disks
may be adequate. However, for a very large scale application with millions
of messages streamed per second, SSD could provide better IO rates.

The other aspect of a messaging layer is its ability to enqueue and dequeue
messages, as is the case with most messaging frameworks. Most messaging
frameworks provide enqueue and dequeue mechanisms to manage publishing
and consumption of messages respectively. Every messaging framework
provides its own set of libraries to connect to its resources (queues/topics).

Figure 05: Message queue

Any message-oriented middleware generally supports two types of
communication with queue and topic messaging structures. They are as
follows:

Queues are mostly used for point-to-point communication, with every
message consumed only once by one of the consumers
Topics are mostly used for publish/subscribe mechanisms, wherein a
message is published once but is consumed by multiple subscribers
(consumers). Hence a message is consumed multiple times, once by
every consumer. Internally, topics are based on queues; however, these
internal queues are managed differently by the messaging engine to
provide a publish/subscribe mechanism.

Both queues and topics can be configured to be non-persistent or persistent.
For the purpose of guaranteed delivery, it is imperative to have persistent
queues such that messages are never lost.

At a high level, the message-oriented middleware can be abstracted with
components such as message broker, message store, and queues/topics with a
messaging framework/engine.

Figure 06: A messaging framework

Shown here are the high-level components of a messaging framework. Please
note, the details have been abstracted to provide a simplified view. These
components will be discussed in greater detail in Chapter 7, Messaging Layer

using Apache Kafka later in this book.

Exploring the Data Ingestion Layer
The data ingestion layer is responsible for consuming messages from the
messaging layer and performing the required transformation to ingest them in
the lambda layer such that the transformed output conforms to the expected
storage or processing formats. This layer must also make sure that the
messages are consumed in a consistent way, such that no message is lost and
every message is processed at least once.

This layer is expected to have multiple consumers/threads for parallel
consumption of messages. Every such consumer in this layer must be
stateless and must have fast streaming capability. These streams must be
drawn from the messaging layer and the generated output must also be
streamed into the lambda layer. The data ingestion layer must ensure that the
rate of message consumption is always more than or equal to the message
ingestion rates, such that there is no latency to process the messages/events.
A lower processing rate or latency in this layer will result in a pile-up of
messages in the messaging layer and hence would compromise the near-real-
time processing capability of the messages/events. This layer should also
support a fast consumption approach for recovery from such pile-ups if
required.

Hence there is an implicit need that this layer is always in near real time with
minimum latency such that there are no messages are piled up in the
messaging layer. In order to be near real time, this layer must have capability
to continuously consume the messages/events and have enough resiliency for
fail-over.

The message consumers here play a vital role of delivering the messages to
the lambda layer for further processing. Hence the internal components of
message consumers is similar to the data acquisition layer with the
differentiation that the message consumers are aware of the message format
from the messaging layer (source) and the format in which the messages need
to be delivered to the lambda layer (destination). The message consumption
may be done in micro-batches to achieve the required resource optimization

and achieve better system efficiency.

Figure 07: Message consumers

The message consumers, however, may need to push the output stream for
both batch as well as speed layer processing in the lambda layer.

Exploring the Lambda layer
As mentioned before, the lambda layer typically comprises two layers, a
batch layer as well as a near real time processing layer known as the speed
layer.

Batch layer
Batch processing has been one of the most traditional ways of processing
large amounts of data and are usually long-running processes. With the
advent of many recent big data technologies, these Batch processes have
become much more efficient and performant; this has greatly helped in
reducing processing times.

The batch process is usually aware of the expected data to be consumed and
the expected output. Historically, these processes were monolithic in nature
and would process the entire dataset in a single run and some level of multi-
threading, with specific mechanisms for handling failure scenarios and
operational procedures to maintain such processes in production.

Hadoop, as a big data technology, provided all of the required framework and
technology support for building batch processes that were more efficient and
scalable than traditional batch processes. Hadoop came with two major
components required for executing batch processes, primarily the process and
the storage. Hadoop batch processes proved to be faster than regular batch
processes primarily due to the following reasons:

1. Fast and optimized execution of processes using the Map-Reduce
paradigm.

2. Sequential storage for fast sequential reads and writes.
3. Replicated storage for higher availability of data.
4. Runtime execution of processes near the data managed by job

schedulers.

These capabilities of a Hadoop-based batch process provided immense
improvements over traditionally built batch processes, wherein the data
distribution and process distribution was managed by the underlying Hadoop
framework, while the mapper and reducer jobs are focused on specific data
processing.

Figure 08: The Map-Reduce paradigm - batch processing

A Map-Reduce paradigm of process execution is not a new paradigm; rather
it has been used in many applications ever since mainframe systems came
into existence. It is based on Divide and Rule and stems from the traditional
multi-threading model. The primary mechanism here is to divide the batch
across multiple processes and then combine/reduce output of all the processes
into a single output. This way, each and every process is running in parallel
but independent of each other on partitions of data. This ensures that the data
is processed at least once and the output of each of these processes are
combined and results de-duplicated if any. With built-in framework
capabilities, this execution of a batch proved to be highly optimized and
helped Hadoop technology to get into solving mainstream batch problems.
Such Batch processes also provided good window to derive more business
intelligence from data processing and are also embedded with more
sophisticated capabilities like data science and machine learning to serve
batch oriented analytical needs. But then there were always questions around:
what can be done for real-time needs?

As an answer to the near real time needs of data processing, multiple
frameworks originated. These were aimed at solving this problem. Lambda

Architecture also provides mechanisms to use some of
these frameworks mainly in its speed layer.

Some of the early attempts made to achieve real-time processing is by
triggering frequent batch processes. However, the processing could never get
closer to near real time expectations.

Speed layer
The speed layer attributes to the near real time processing layer of Lambda
Architecture, where the messages/data are processed as soon as they are
ingested and the processed data is stored in the storage layer.

Since the primary need for the speed layer is to make data available in near
real time, one has to ensure that the processing, storage and data availability
meets the near real time expectation.

This would be possible only if the processing layer, storage layer, and serving
layer are all operating at equal velocities to ensure that the data is not getting
halted at any point in the flow.

Some of the initial streaming technologies used were Flume with HDFS,
which did solve some part of the problem; however, it constrained the overall
solution to having data converted to logs and these logs would get ingested
into HDFS with almost no processing. The processing ultimately was done
using batch processes that were not real time in nature.

It was soon realized that reliance on Hadoop batch processing would not fit
into the expectation on near real time processing, hence there were separate
frameworks built that specialized in near real time processing and these
frameworks would constitute the speed layer in Lambda Architecture.

The initial frameworks were standalone frameworks, which did not integrate
well into the Hadoop ecosystem; however, as there was more usage and
maturity around these capabilities, it was evident that the systems needs to be
integrated such that operability and manageability are simplified.

Figure 09: Near Real-Time Processing Pipeline

The mechanism implemented by these frameworks was same as that of
Hadoop, that is, the Map-Reduce paradigm. However, it was implemented for
real-time processing. Every framework had their own way of handling
streaming data and resource management. Many of these frameworks were
built on fast in-memory messaging capabilities which was a very effective
way to decouple one component from another in real time processing yet
have minimal latency.

The real-time processing was often dependent on data like the look-up data
and reference data; hence there was a need to have a very fast data layer such
that any look-up or reference data does not adversely impact the real-time
nature of the processing. Here, some of the NoSQL technologies played that
role well which we will discuss in later sections and chapters.

Serving layer
The serving layer in a Lambda Architecture plays the role of delivering data
to the consumers. The serving layer could support various protocols for data
delivery. All of these protocols could be classified as a push or a pull from a
data consumer perspective.

A serving layer must be able to consume the required data from the data
lake’s data storage layer and deliver that data to the consuming application in
adherence to the interface agreed.

Data push
Any mechanism used to push data out of the Data Lake can be defined as a
Data Push mechanism. These can be of various types; however, here we are
discussing some of the most common mechanisms:

Data Exports: A serving layer must have the required tools, controls,
and manageability to export the data in desired format for consumer
applications. A part of this layer does indicate similar roles to that of an
ETL; however, it is more driven by what the consumer application
requires and how. These may be driven by internal batch processes
scheduled at the serving layer such that the data from Data Lake can be
extracted, transformed, and loaded to the destination. This part of the
serving layer may also leverage some of the embedded ETL tools for the
purpose.
Data Publish: A serving layer may also publish the data to the required
queues/topics for consumption by consumer applications as subscribers.
This gets us to point-to-point data delivery and publish/subscribe
models. Since these data had to be publishable messages, the size of
these messages needs to be as small as possible for optimal
performance.

Data pull
Any mechanism used to pull the data from Data Lake can be considered as
Data Pull mechanism. Here, we will discuss, some of the most common data
pull mechanisms.

Services: One of the most popular mechanisms of data delivery are the
data services. This comprises of building web services (REST/SOAP)
over the Data Lake, such that the data can be exposed via services to the
consuming applications. This works very well for consuming relatively
small volumes of data over HTTP for near real time application
requirements. This also stems from the notion of data as a service,
wherein the entire data is ready and available over services. Such service
requests and response definitions must be concise and clearly defined so
that these are generic enough for multiple consumers to consume. This
also implicitly means that the data access must be highly optimized so as
to guarantee sub-second response times or large dataset, with the
capability of random access. These services are more geared towards
read-only services for data and should not be used for data mutations.
Data Views: A Data Lake can also potentially have data delivery
mechanisms based on data views that can be connected from various
applications and the data can be fetched/pulled. This mechanism of
serving data has been very common as it combines simplicity with ease
of maintenance and access. Once data is exposed from a data view, any
of the authorized applications can directly connect to such a data view
using standard drivers and any additional data processing can be
performed by the consuming application itself. These views are
generally materialized views to keep them performant and isolate any
query impact that may occur on underlying participating tables.
However materialized views also need data refreshes to be performed
which can be done incrementally or may also involve reconstruction of
the entire data view, also known as refresh cycles. If a refresh cycle is
involved in rebuilding the entire materialized view, the required
mechanisms must be in place, such that while the refresh cycle are
executed the data serving is not impacted. Traditionally this was done

using synonyms; for some recent technologies, the same is achieved via
replicated datasets.

Data storage layer
The data storage layer in a Lambda Architecture must provide a flexible
access mechanism and at the same time should be highly optimized for both
batch as well as near real time operations. In other words, the storage must
support both sequential as well as random access of data. In a typical Lambda
Architecture, the following layers are directly dependent on the storage.

Batch process layer
A batch process, from the perspective of data access, requires sequential
access of data and the storage layer should be optimized for this operation.
Hadoop as a technology reads and writes data as blocks and each of these
blocks contains data in a sequence. Even the block level access in Hadoop is
in a sequence to make sure that any batch to disk operation is fast enough
even on spinning disks (commodity hardware).

Speed layer
The speed layer needs to perform its operation in near real time on the
received data message and hence it needs to access the storage that supports
random access to be able to quickly look up the required information and
write back the processed data.

Serving layer
The serving layer consists of various operations that require both sequential
and random access to disk depending on the nature of the data delivery. For
instance, if an export is required to be performed for large datasets, the
serving layer would mostly trigger a batch process to export the required
data, which will largely depend on sequential data access. But if the data
delivery is in the form of data services, the required disk access must support
random data access to ensure that the response time service expectations are
met.

Figure 10: Data Access Patterns

Thus, the data in a Data Lake can be broadly classified into two categories on
the basis of accessibility, that is, Non-Indexed Data and Indexed Data.

Indexed Data: In the context of maintaining indexed data in a Data

Lake, we are looking at maintaining data that can be randomly
addressed and accessed. The underlying hardware also plays a vital role
in supporting the storage and access patterns for random data. As
mentioned before, SSD would surely be a good fit here. But there are
other things associated like cost, failure frequency, availability, storage
volume, power consumption and so on, which motivates us to think
about the spinning disks. In this context, there is a trade-off expected in
I/O rates. At the same time, one can also think about tiered storage here
such that the high IO/transaction data indexes stay in SSD while the rest
falls to spinning disk.

Today, almost all data indexing frameworks support both SSD as well
as Spinning disks. Some of the leading frameworks in this space, who
have been widely used in the context of Big Data technology and
Lambda Architecture are Solr and Elastic. Both of these frameworks
are based on the Lucene engine and depend on the open source
Lucene engine for core indexing capabilities with added capabilities
around data indexing and access. These frameworks guarantee sub
second response time over large volumes of data which fits well into
the need for speed layer for fast lookups and persistence. Both Elastic
and Solr store indexes of the data and can optionally also store the
data for fast lookup.

Non-indexed Data: The raw data as ingested into a data lake is stored
sequentially and in blocks of data generally. These blocks of data form a
unit of data for processing. Since the non-indexed data is stored
sequentially, it is used for batch data processing and the output data is
also stored sequentially. Since this is sequential data, there is limited
lookup capability based on keys that few of the storage formats support.
Some of the data storage also support some level of indexing and
partitioning of data such that the data can be located as fast as possible.
This data is generally used for batch processing and in order to make the
batch process execute fast, the batch process runs near to the data such
that movement of data for processing is minimized, taking advantage of
data localization. This is one of the key reasons for a fast map-reduce
 process in Hadoop ecosystem.
Storage-Based Classification: While these differences are related more

to access patterns, the data stores can also be classified based on storage
mechanisms.

Figure 11: Data Stores

Relational data stores
These data stores have been most popular since last many decades and most
commonly represent structured data with relationships between data entities.
The relational data stores have matured since years and have been widely
used across enterprises. Until a few years ago, these stores used to form the
primary storage layer of every enterprise and almost all of the enterprise data
would exist in these relational data stores as they provided a very logical way
to organize and manage data.

Distributed data stores
While relational data stores were very efficient in handling relational
datasets, soon it was realized that they may not be the best fit for other types
of data storage. These types of data included semi-structured and
unstructured data. Keeping relational data stores scalable at very high
volumes for data storage and access also involved complicated processes and
practices. These challenges were recently addressed by a range of distributed
data stores which came into existence as distributed file systems and NoSQL
(Not only SQL) data stores. Hadoop has been one of the most popular
distributed file systems, while there have been a number of NoSQL data
stores that have come into existence, each one of them solves a very specific
problem. All NoSQL databases are inherently implemented on similar
concepts of distributed data management, but they can be further classified
into the following categories:

Figure 12: NoSQL Data Stores Classification

Shown here is a broad classification of NoSQL data stores as of their current
state. Each of these types specializes in solving a particular problem related
to data access and data management.

For instance, a key value store could be most appropriate while capturing
ticks or machine data and where accessibility requirement can be done via
key based access. Likewise columnar storage provides a denormalized
storage mechanism, wherein the data is stored as columns or family of
columns, instead of rows, which solves the problem of a read heavy use case
and is expected to support write heavy scenarios as well. Document stores are
mostly suited for storing an entire document against a key. Most often these
documents are of JSON format and these stores can store JSON as is and
provide a JSON-friendly query engine for supporting queries. An index store
generally is preferred where there are heavy search scenarios to be
implemented across large datasets in sub second, taking advantage of
indexing capabilities.

Each of these stores has numerous books published as each of them has a vast
landscape of capabilities when it comes to large-scale data handling and
management in an enterprise. With respect to Data Lakes, we would be
picking some of these data stores to demonstrate various aspects of the data
serving layer in future chapters. In Chapter 5, Data Acquisition of Batch Data
with Apache Sqoop, we will cover HBase and in chapter 10 we will
cover Elasticsearch as NoSQL stores used in our Data Lake.

Summary
In this chapter, we went through various parts of a data lake and the Lambda
Architecture at a high level and established a foundation for chapters later in
this book. There, we will dive into greater technical details towards realizing
this architecture. This chapter introduced the concept of data lake, some high-
level concepts around data acquisition, messaging layer, ingestion layer, and
Lambda Architecture layers, namely speed and batch. We also discussed, to
some extent, the concepts around data storage and differences
between storing data for random access and sequential access.

Lambda Architecture as a Pattern
for Data Lake
In the previous chapter, while going through the concepts of Data Lakes, you
were introduced a bit to Lambda Architecture. In this chapter, we will go into
a bit of detail on Lambda Architecture and also try to explain the significance
of this important architecture pattern in this book's Data Lake
implementation.

This chapter, though it tries to cover this architecture paradigm in detail,
doesn't give any technology implementation. This is intentional to make sure
that you understand the concepts of these patterns first; once that is achieved,
the following chapters will detail this pattern with technology backing.

After going through this chapter, you will learn the Lambda Architecture
pattern in detail. Once you learn this pattern, you will also see how it forms
an integral part of our Data Lake construction.

What is Lambda Architecture?
Lambda Architecture is not technology dependent; rather it is agnostic of
technology and defines some practical and well-versed principles to handle
and cater to big data. It is a very generic pattern that tries to cater to common
requirements raised by most big data applications. The pattern allows us to
deal with both historical data and real-time data alongside each other. We
used to have two different applications catering to transactional –– OnLine
Transaction Processing (OLTP) and analytical –– OnLine Analytical
Processing (OLAP) data, but we couldn't mix these together; rather they live
separately and don't talk to each other.

These bullet points describe what a Lambda Architecture is:

Set of patterns and guidelines. This defines a set of patterns and
guidelines for the big data kind of applications. More importantly, it
allows the queries to consider both historical and newly generated data
alike and gives the desired view for the analysts.
Deals with both historical (batch) and real-time data.
Technology agnostic and generic in nature. Not at all dependent on
technologies, this is a pattern that is generic, and any technology can be
used so long as the main layer and its responsibilities are met.
It clearly separates responsibilities into distinct layers. It does separate
responsibilities between layers and complies with the Separation of
concerns principle of architecture beautifully.
It's domain agnostic. It can be applied to different types of business
domains as it is a pattern that is generic.

History of Lambda Architecture
Nathan Marz coined the term Lambda Architecture (LA) to describe a
generic pattern for data processing that is scalable and fault-tolerant. He
gathered this expertise working extensively with big-data-related
technologies at BackType and Twitter. The pattern is conceptualized to
handle/process a huge amount of data by using two of its important
components, namely batch and speed layer. Nathan generalized his findings
and experience in the form of this pattern, which should cater to some of the
important architecture principles, such as these:

Linear scalable: It should scale out and not up and should cater to
different kinds of use cases
Fault-tolerant: Capable of a wide range of workloads, it should also
shield the system from hardware and software failure and inherent
human mistakes
Backtype: Reads and updates
Extensibility: Manageable, easy to extend, and easy to keep adding new
features and data elements

There is a wealth of details documented at http://lambda-architecture.net/. The
architecture pattern became significant with the emergence of big data and
the enterprises' focus on real-time analytics and digital transformation. Why
the pattern was named Lambda (symbol λ) is not very clearly detailed.

However, we have always thought the greek letter in association with the
pattern to be a way by which data comes from two places. Batch and Speed
data (layer) pipeline represents the curved parts of the lambda Symbol, which
then combine and serve through the serving layer (the line merging from the
curved part), as shown in the following figure:

http://lambda-architecture.net/

Figure 01: The Lambda Symbol

Principles of Lambda Architecture
Nathan Marz, in his Big Data book, has given full-fledged details on the
Lambda Architecture pattern. The following are the three main principles on
which his pattern has been developed. Some of these have been briefly
covered in the previous section.

Fault-tolerant
Hardware
Software
Human

Immutable Data
Re-computation

Lets detail each one of these principles in the next sections.

Fault-tolerant principle
Hardware, software, and human fault tolerance should be part of this pattern.
The pattern is for catering to big data, and because of this, any of these faults
can be a big problem to recover from. So, data loss and data corruption don’t
have any place in this pattern because of the data vastness. If it does have
this, in most cases, it is irrecoverable; so this principle is quite a strong need.

One of the important parts of this is human fault tolerance. Some of the very
common mistakes are typical operational mistakes made in day-to-day
operations; the next most common mistakes are bugs introduced over a
period of time (releases) into the production system. The system should
indeed be designed to cater to and address these aspects.

Immutable Data principle
The data should be stored in a raw format from the different source systems.
More importantly, the data stored should be immutable in nature. By making
it immutable, it inherently takes care of human fault tolerance to at least some
extent and takes away errors with regards to data loss and corruption. It
allows data to be selected, inserted, and not updated or deleted. To cater to
fundamental fast processing/performance, the data is usually stored in a
denormalized fashion. Data being immutable makes the system in general
simpler and more manageable.

Re-computation principle
Since raw data is always available in the lake, it's always possible to cater to
new requirements by running or re-computing functions against the raw data.
In addition to this, it's apt to store this data in a schema-less structure because
tying data to a schema brings its own issue of re-computation. Tying data to
schema also brings overhead to development and maintenance.
While implementing the Data Lake with this pattern as one of the main
layers, we will see how these principles described before are realized.

Components of a Lambda
Architecture
We have been talking about the various components of Lambda Architecture
in multiple sections of this book already, and I am sure you will have some
idea after going through those sections. This section and the following
section detail each and every component of the Lambda Architecture. But this
will avoid any dependency on technologies because we need to go under this
layer, and once we are through, we can use any technology available in the
market and create this pattern without much trouble. Understanding each
layer and its significance along with the lead function that it has to take care
of is very much required, as this is the basis that you would get when going
through future chapters. In the context of Data Lake, the components of
Lambda Architecture just form one of the layers, which is termed as the
Lambda Layer. We will now go through various layers in this Lambda Layer
in detail. The main layers constituting the Lambda Layer are as follows:

Batch layer
Speed layer
Serving layer

A pictorial view of a Lambda Architecture is shown next. The figure shows
these important layers in the pattern:

Figure 02: Components of a Lambda Architecture

As you can see very clearly from this diagram, new data is fed to both the
batch and speed layers. The batch layer keeps producing and re-computing
views for every set batch interval. The speed layer also creates the relevant
real-time/speed views. The serving layer orchestrates the query by querying
both the batch and speed layers, merges it, and sends the result back.

Whenever new batch views are created, the speed view in place is discarded
and only the new data after that batch is taken into consideration for
generating the speed views. Also, old batch views are kept and archived or
discarded according to the use case or implementation.
In a generic fashion, the new way of handling big data is to follow a data
pipeline as shown in the next figure, in which data is taken from the source of
truth in the rawest format. Then we create an appropriate view out of it,
catering to a business requirement; we use these views as needed. The core
working of Lambda Architecture does follow these footsteps by allowing the
batch and speed layers to produce appropriate views. Then the serving layer
comes in between and does the necessary orchestration of these created
views.

Figure 03: Big Data pipeline

Batch layer
The batch layer is where raw data is stored as is in the rawest format possible.
Since no omission nor transformation happens while storing, many different
use cases with different perspectives can be derived from these at different
stages. This is the store where master data in an immutable state is also
available and used by various analyses going forward. Since the data is
immutable, update and even delete are forbidden operations. Data is always
appended (added) with a timestamp so that when some data is required, it can
be queried with the highest timestamp to get the latest record. Delete is also
forbidden because then many analyses would require these deleted record
details.

The queries, when run against raw data, would result in lot of processing
time. To avoid these delays while querying the required details, in a periodic
fashion, views aligning closer to the required format (result) is generated and
stored, called batch views. Whenever a new batch view is regenerated (by
taking in data that has come after the last batch processing), the old batch
view is discarded. As one of the principles of this architecture is fault
tolerance, this regeneration of batch view every time, even though it is really
time consuming, takes away the various errors that could have got introduced
as explained earlier. There are different approaches that can be used to make
sure that this data processing takes less time as opposed to conventional
batches, which take hours and even days to complete.

Figure 04: Lambda Architecture - batch layer

The persistence store requirement for a batch layer catering to a very large
amount of data is that it should support high-scale random reads. However, it
need not support random writes as the data is bulk-loaded in a set frequency.

With respect to the single customer view use case, the following figure
shows how the batch layer can be realized, by producing a so-called batch
view (intermediate view) from the customer master dataset.

Figure 05: Single customer view - batch layer

For our use case of a single customer view, the customer data flows into the
batch layer, where the master dataset is maintained; and then, at a set batch
process interval, batch views are created. The serving layer, when required,
will query these views, merge with the speed views, and send the results
across.

Speed layer
Speed layer is also known as the Real-time Layer and (as the name suggests)
caters to real-time analysis requirements. The batch layer operates in
specified intervals and between the completion of one batch execution and
start of another; the business users still wants analysis to be conducted on the
data. The responsibility of merging the batch view along with real-time data
is the role of the Speed layer. Now, the batch processing window can be
reduced, but since batch deals with a good amount of data, processing by the
batch layer usually takes time and the business cannot wait for this lag in
processing of the batch layer. For achieving near real-time data for analysis,
data is incremented to the speed layer in a low latency fashion. Once the
batch layer is executed and catches up with the data in the speed layer, the
speed layer views are discarded and the process continues.

The query, when fired by the user, queries both the batch and speed layer. It
merges the result to get the results for the user according to the desired
parameters sent.

To achieve fault tolerance and to recover from the errors introduced, both the
batch and speed layer at any moment can resort to re-computation (batch
layer from the raw data) or roll back (to a previous state for batch layer) and
just flush (for speed layer and regenerating the view).

There are some important concepts that this layer complies with to achieve its
basic objective, which are as follows:

Incremental computation: A new real-time view is created using an
existing real-time view and new data. As detailed before, this is done so
as to reduce the time taken to make the data available for analysis in
near real time.
Eventual consistency: To achieve some of the computations in real
time is really complex and time consuming. In that case, the system goes
for approximations (closer or more approximate to correct answer).
After some time (usually not too much), the data becomes correct.

The store requirements for speed layer should support both random read and
write to cater to incremental updates. The speed layer does allow mutation as
against the batch layer but deals with a very small dataset (say, a day as the
batch process frequency) compared to the batch layer, which does deal with a
huge amount of data (spanning months or years).

Following the generic approach as explained in the previous section, the
speed layer also creates a so-called speed view (intermediate view) catering
to the requirement, as shown in this diagram:

Figure 06: Lambda Architecture - speed layer

With respect to the single customer view, this is how the speed layer can be
realized:

Figure 07: Single customer view - speed layer

The new data flows to the speed layer, where the appended data is processed
and appropriate speed views are created. When required by the serving layer,
the speed view gets merged with the batch views and results are sent across.

CAP Theorem
In the previous section, we did give some very important aspects such as
eventual consistency (the next section dives deep into this) and other aspects
in brief. Before explaining this aspect in more detail, it is apt to explain a
very important theorem called CAP theorem.

CAP (Consistency, Availability, Partition Tolerance) Theorem, also named
Brewer's theorem after computer scientist Eric Brewer, states that it is
impossible for a distributed computer system to simultaneously provide all
three (Consistency, Availability, Partition Tolerance) guarantees.

- Wikipedia

Out of three guarantees, a distributed system can only have one of C
(Consistency) or A (Availability) when the distributed data is partitioned. A
distributed system is bound to have network failures, and in this case,
network partitioning would have to be tolerated. Let's detail these three
important aspects in a concise manner in this table:

Consistency

When data is partitioned (distributed), all the nodes
see the same data at a given time, and this should be
true for all times
When queried, each node will return the latest data. If
not, the system will just error out

Availability

At all times, every request being fired at the system
generates a valid response
While doing this, it doesn't mean that every request
will receive a response with the latest information
(data)

Partition
tolerance

The system is able to perform continuously even if
a network failure or data loss occurs

The Data Lake using Lambda Architecture works with this theorem in a
context. Usually in such a context, Availability is chosen as against
Consistency. Because of this aspect, consistency of data would be achieved
eventually, and more often than not, data goes with approximations. This is
known as eventual consistency. We will go into a bit more detail of this
aspect in the following section:

Figure 08: CAP theorem

The traditional ACID (Atomicity, Consistency, Isolation, Durability) based
stores such as RDBMSes choose Consistency over Availability. NoSQL-
based stores, which are more common for Data Lake because of
their features, choose the BASE (Basically Available, Soft state, Eventual
consistency) philosophy and choose Availability over Consistency.

Eventual consistency
Eventual consistency is a consistency model used in distributed computing to
achieve high availability that informally guarantees that if no new updates
are made to a given data item, eventually all accesses to that item will return
the last updated value.

- Wikipedia

In the previous section, you would have clearly got the notion behind the
guarantees, namely consistency versus availability.

Its expected that data in a distributed system will become eventually
consistent but always available. For a Data Lake, the availability guarantee is
more important than consistency, but it purely depends on the use case. We
cannot show/use bad data to the end user as this would have a huge impact on
the company's brand. So, use cases need to be carefully validated you take
this as a generic principle for your Data Lake.

In the context of Data Lakes (Lambda Layer), if the speed layer becomes
corrupted (data loss or data corruption), eventually the batch and serving
layer would correct these mistakes and have the queries served fine through
the serving layer. The speed layer in the pattern just keeps the data for a
period of time so that the batch and serving layers can process the data from
scratch and ensure consistency; once done, the speed layer views get
discarded.

Serving layer
The core task of the serving layer is to expose the views created by both the
batch and speed layer for querying by other systems or users.

Apart from this, there is a good amount of orchestration work done by this
layer. The speed layer needs to keep looking at the batch layer to see if the
necessary batch operation is done. If so, the batch layer store needs to be
updated soon after the batch operation is conducted from the batch view.
Soon after this, the existing speed layer view will be discarded and this is also
a bookkeeping activity which keeps the speed layer store size in control.

The following figure shows the two layers namely batch and serving in
action:

Figure 09: Lambda Architecture - serving layer

When a query comes to the serving layer, it in turn forms and fires two
queries to the two different layers namely batch and speed. The queries fired
look into the timestamp of records and fetches the results according to the
parameters supplied. Once it gets the records from both the layers, it merges
and applies various application logic and produces the final output in the

desired format by the system or user. Because of the quality of data, the batch
layer is more reliable (recomputation aspect when each batch operation is
completed), in case of conflicts, the batch view results overrides that of speed
layer.

Complete working of a Lambda
Architecture
The following figure pictorially shows the complete working of Lambda
Architecture:

Figure 10: Complete working of Lambda Architecture

As briefly explained earlier, the master data set is maintained and managed in
the batch layer. When new data arrives, it is despatched to both, batch and
speed layer. Once it reaches the batch layer, at regular batch interval batch
views are generated and recomputed from scratch each time. Similarly, the
speed layer using the new data generates the speed view whenever the new
data arrives in the layer. The serving layer when queried, merges both the
speed and batch layer views to generate the appropriate query results.

Once the batch view is generated, the speed view is discarded and till the
time new data arrives only bath view needs to be queried as all the data is
available in the batch layer itself.

Batch
Layer

Stored immutable data
Constantly growing in size
Recomputes views all the time

Speed
Layer

Constant stream of data
Stores mutable data
Less in size/ volume
Views live for a specified period and discarded at
intervals

Serving
Layer

Responsible for indexing and making sure exposed
batch views perform well
Exposes real-time views created incrementally by the
speed layer
Merges result from both batch and speed views in a
consistent fashion

Advantages of Lambda
Architecture
There are various advantages because of which we chose Lambda
Architecture for construction Data Lake for the enterprise. Some of these
advantages can be given as:

Data stored is in raw format. Because of this, at any time, new
algorithms, analytics, or new business use cases can be applied to the
Data Lake by simply creating new batch and speed views. This is one of
the biggest advantages of traditional data warehouses in which data is
cleansed and stored. Because of this, new use cases would need to
change the data schema, and this is usually time and effort consuming.
One of its very own important principles, namely recomputation, helps
correct fault tolerance without much trouble. As more and more data
comes into the lake, data loss and corruption can be something
that cannot be afforded. Because of this recomputation, at any moment
we can recompute, roll back, or flush data to correct these errors.
Lambda Architecture separates different responsibilities into well-
defined and bounded layers. By doing so, these layers can have different
technologies and different optimization techniques can be employed to
make it function better without any effect on that other layers. Some of
the technologies used in these layers, including stores, can be swapped
with a better one without much trouble.
It provides a pluggable architecture. Adding a new type of source data or
similar one already plugged in, the architecture is built to take in these
source systems without many changes at all.

Disadvantages of Lambda
Architectures
Choosing a Lambda Architecture to develop a Data Lake for your enterprise
does incur some inherent disadvantages if some of its aspects are not fully
thought through. Some of these are as follows:

Due to its different layers, it is generally considered to be complex.
Keeping sync between these two layers incurs cost and effort, and this
has to be thought through and handled.
Because of these two distinct and fully distributed layers (batch and
speed), maintenance and support activities are quite hard.
There are a good number of technologies that have to be mastered to
construct a Lambda-Architecture-driven Data Lake. Getting people who
have expertise in these technologies can be troublesome for your
recruitment division.
Implementing a Lambda Architecture with open sources technologies
and then deploying in the cloud can be troublesome. To avoid this, you
could very well use cloud technologies to implement Lambda
Architecture, but by doing so, the enterprise automatically gets itself tied
to a particular cloud provider and that inherently is considered a
disadvantage.
Even though the architecture pattern has been around for quite some
time now, the tools are still immature and evolving. Cloud evolution has
surely accelerated and innovated in this space so it won't be long before
we get mature solutions and tools in this space.
CI/ CD is now a requirement and not at all a luxury. As tools in this
space are still not that mature, tools in regards to CI/ CD also fall into
the same category, making it hard to do many automations.
The setup could require a good amount of hardware components.
Technically, low end hardware components can be used but for
enterprise grade, usually high end is considered with a well-defined
support model with vendors.
The architecture pattern has always been criticized for implementing the

same job twice (batch and speed layer).

Technology overview for Lambda
Architecture
As explained briefly earlier, Lambda Architecture is a pattern with well
defined guidelines and is technology agnostic. Looking at its various
components/layer, any technology can be brought in to do the required job.

With, emergence of various cloud providers, you could even get ready-made
components in cloud (many are cloud dependent) which actually implements
the Lambda Architecture. In this book, we are marching ahead to actually
create a Data Lake in which the lambda pattern just covers one layer, called
Lambda Layer.

Since there are so many choices for technologies, the future chapters are a bit
opinionated. When we make each technology, we would give the rationale
for our choice, but keeping it as open as possible. We would also give our
other technology choices, so that if needed, these technologies can indeed be
swapped by the reader if required. Having said that, we will actually
implement the Data Lake using the selected technology. The next part of the
book details each technologies in detail, and once done in the following part,
we will bring these technologies together and build the Data Lake.

Applied lambda
Enterprise-level Data Lake is one of the applications of the Lambda
Architecture pattern. In this book, we are going to cover this in more detail.
However, there are other use cases where this pattern can be applied and this
section tries to cover these.

Enterprise-level log analysis
One of the very common use cases for this pattern is log ingestion and
various analytics that surround it. The ELK (Elasticsearch, Logstash,
Kibana) stack is a leading one in this space, but this pattern could very well
be used. The logs can vary from conventional application logs to different
types of logs produced by various software and hardware components. If we
need to have an enterprise level log management and analytical capability
this pattern is indeed a good choice. These logs are produced in large
quantities and at very high velocity. Also these are immutable in nature and
does need to have an order in place for analyst (may be a developer of an
application or a security data scientists making use of this data to decipher
any security threat) to make use of these.

Using the important layer in Lambda Layer (batch and speed layer which we
will explain in detail in next coming sections) helps validate these real-time
logs and also can comprehend past logs to give a real-time insight. These
insights can result in some actions which can be proactively assigned to a
development team. For instance, application bugs can be assigned to
application developer and threat reviews can be assigned to security analysts.

In addition to log analysis to detect certain anomalies, we can also use this
data as a analysis methodology and auditing. For example website like,
Google Analytics data when fed to lake and analyzed can be used to derive
some trends, which can be advantageous to the business running the website.

Capturing and analyzing sensor
data
With the ever-increasing Internet of Things (IoT) use cases, more and more
sensors are expected to be used by enterprises. With more sensors, comes
huge amount of data. With huge amount of data from these sensors, making
out useful information can be really hard and tricky. Using Data Lake with
Lambda Layer can help users with a scalable solution for such real-time
analytics for these huge volume sensor data.

Real-time mailing platform statistics
For an enterprise, mailing platform plays a very important component these
days. With huge amount of data from business applications and social
platforms, the e-mail marketing platform role is significant. Many e-mail
platforms gives a good amount of tracking information for each e-mail sent in
the form of different tracking statuses like opened, link clicked, and so on.
Making use of this huge amount of tracking data and making it available as a
real-time statistics will help refine the marketing team to better target the
emails and also with different content. These days, e-mail platforms have the
capability of A/B testing on the content and this is quite important data for
the marketing team to better prepare marketing email material according to
the target audience.

Real-time sports analysis
Analysis and statistics of various games in a real-time fashion using the
historic batch view and real-time data from a current game to show the
viewers different statistics and analysis.

The batch layer can keep doing various batch operations and prepare the
various batch views and these can be mixed with the current game and
various milestones achieved in this current game could be deduced and
shown. In the game of cricket, for example, the current game when played,
the current player could achieve various milestones. For example, achieve
1000 runs in Test Cricket, during this time these special milestones can be
shown to the viewers watching the match/ game.

Recommendation engines
Various business-related recommendation engines using both historic and
current real-time data from various business applications, most of the time,
end user operated website.

Analyzing security threats
Logs can be captured from various hardware and software components
including business applications and analyzed for security threats by
comparing with past datasets. According to various analyses conducted,
different mechanisms of authentication (for example) can be done. Say, for
example, we can step up authentication (two-factor); The request is coming
from Nigeria repeatedly within a span of few minutes to be stepped up or
altogether blocked for being reviewed by a human and then for authorizing
the transaction.

Multi-channel consumer behaviour
Lambda Architecture can be used to analyze multi-channel customer
behavior. It can be used to analyze customer purchase behaviors, their past
purchases, their social connect and so on. and then use this data for a targeted
marketing campaign. Also, various A/B testing results can be analyzed, and
then you can appropriately take action on how a campaign e-mail has to be
triggered.

Working examples of Lambda
Architecture
Here are some of the working examples where Lambda Architecture has been
used as a way by which certain use cases have been handled:

Multiple use cases on Twitter: One of the use cases where modified
lambda is used in the area of sentiment analysis of tweets.
Multiple use cases in Groupon.
Answers by Crashlytics: Deals with mobile analytics, use Lambda
Architecture layers of batch and speed effectively to produce meaningful
analytics.
Stack Overflow: A well-known question-answer forum with a huge
user community and plenty of activity. For a logged-in user,
recommended questions make a new section, where the Lambda
Architecture is used. There are other analytics too, such as voting, which
uses batch views.
Flickr Magic View: Revised Lambda Architecture to create a magic
view by combining bulk and real-time compute (courtesy:
code.flickr.com).

http://code.flickr.com

Kappa architecture
This book is about building Data Lakes using Lambda Architecture as one of
the main layers (Lambda Layer). However, we feel that the readers also need
to learn about another minimalist Lambda Architecture under active
discussion, namely Kappa architecture. It is more or less similar to lambda,
but for the sake of simplicity, the batch layer is removed and only the speed
layer is kept. The main idea is to avoid having to compute a batch layer from
scratch all the time and try doing almost all of these in real-time or the speed
layer. One of the disadvantages of the Lambda Architecture, as detailed
above, is to have to keep coding and executing the same logic twice, and this
is avoided in the Kappa Architecture.

An image speaks more than a thousand words, and the next diagram
compares both the Kappa and Lambda Architectures side by side. In this, you
can clearly see that in Kappa, the only missing part is the all-important batch
layer:

Figure 11: Kappa (left) and Lambda (right) architectures side by side

We strongly feel that for building a Data Lake, even though complex,
Lambda Architecture is the way to go and that's the reason for choosing this
pattern. We really wanted to give you readers another perspective was shown
in the previous figure, you dive deep into implementation mode and that's the
only reason to explain the Kappa architecture briefly.

The Batch layer in Lambda exists for a reason and to address this aspect,
Kappa brings in newer technology frameworks capable of handling a huge
amount of data and do the relevant processing. We do feel that in Kappa, the
responsibility taken care of by both batch and speed layers in Lambda is
diluted and combined. In fact, we can make use of newer technologies in
Lambda and keep these layers separate having well-defined responsibilities
set.

Summary
In this chapter, you learned about the Lambda Architecture in detail. In our
Data Lake implementation, the Lambda Layer (an implementation of the
Lambda Architecture) forms an integral part.

We have taken care to introduce only the theoretical aspects of Lambda
Architecture in this chapter, and stayed away from all technologies; we want
you to understand that this is a pattern and any technology can be used to
implement various parts of this architecture without much trouble. In the next
chapter, however, we will start introducing technologies and will introduce
places where it can be used.

The first few sections of this chapter introduced you to this pattern and later
sections detailed a bit more of each of the components/layers forming a
Lambda Architecture. We stated the advantages and disadvantages associated
with this pattern and gave a full picture of this pattern in detail before
wrapping up.

We hope you now have enough of a background on Data, Data Lake, and
Lambda Architecture; you can go to the next chapter to actually implement a
Data Lake for your enterprise.

Applied Lambda for Data Lake
As introduced in the initial chapters, big data is defined as four Vs, that is,
Variance, Velocity, Volume, and Varsity. We also got introduced to Lambda
architecture and how it can possibly enable merge outputs from two
distinctive processing pipelines. In order to leverage big data technologies to
solve processing problems, it may be a good idea to marry Lambda
architecture with these Big Data architectures such that we can reap the
benefits of both. Though big data refers to an end-to-end solution to handle,
process, and manage information across all the four Vs, it has become quite
synonymous with the Hadoop Big Data framework. While the initial
implementation of Hadoop was introduced by the open source Apache
community, its immediate demand brought in a lot of commercial offerings
for support. Over a period of time, the community witnessed a number of
customized distributions of Hadoop. Some of the most popular ones today are
Cloudera, Hortonworks, and MapR. As we know, Hadoop as a framework
was initially implemented by Yahoo! for internal Big Data scenarios and was
later open sourced as Hadoop under an Apache license. Horton works as a
spin-off from Yahoo! and continues to maintain its commercial offering in
this space, competing closely with Cloudera and MapR. In this chapter, we
will have a quick overview of the technologies in the Hadoop landscape and
how can they conceptually help us realize a Data Lake.

Here we want to establish certain grounds in terms of the
overall landscape of big data and the specific technologies
chosen in this book for forthcoming chapters. As far as possible,
this book will refer to standard open source distributions so that
the examples and concepts are distribution agnostic and can be
run on any distribution of your choice. Hence, the content of
this book will lean more towards open source distributions.

Knowing Hadoop distributions
A Big Data ecosystem consists of multiple capabilities, and for every
capability in the ecosystem, there are one or more frameworks. Different
distributions realize these capabilities in their own specific ways and also
have some additional edge over other competitors in the same space.

Figure 01: Hadoop distributions

Shown here are some of the leading distributions of Hadoop framework,
wherein Cloudera, Hortonworks, and MapR are the leaders in commercial
space while Apache Hadoop is an open source distribution. These
commercial offerings, while having their own specific capabilities, are
largely based on the specifications of the open source Hadoop framework.

Just to put a few things into the perspective of why a Hadoop distribution
should be chosen, unfortunately there is no straight answer for it. However,
we can compare these distributions across various dimensions that we may be
interested in for evaluation.

Selection factors for a big data stack
for enterprises
For any enterprise to adopt a particular Hadoop Distribution that is
commercially supported, there are a few key factors that the enterprise would
generally need to evaluate against these distributions in context of its
maturity and culture of adoption. Here, we will briefly touch upon some of
these key factors.

Technical capabilities
Each of the distributions has its own unique capabilities as well as many
other capabilities which are similar to each other. At the minutest details, we
can always have a big list of capabilities, but we can focus on some of the
prominent ones for the purpose of comparison and evaluation.

Ease of deployment and
maintenance
Many Hadoop distributions, while using common core components, do
differentiate themselves from others in terms of ease of deployment and
maintenance. This may vary from automation and monitoring interfaces to
alerts and upgrades, and so on.

Integration readiness
Many of these distributions provide specific capabilities for integration with
other data systems, both inbound as well as outbound. This, at times,
becomes a crucial factor for selection of a particular Hadoop distribution:

Figure 02: Hadoop distributions and their features

While we see Apache Hadoop as a great open source framework for big data
processing, it may be critical for enterprises to get professional services
around these capabilities. For that purpose, every enterprise should evaluate

these Hadoop distributions for fitment into their organizations, since every
organization would have its own processes, standards, monitoring, and
alerting expectations, and above all, its own skill set. However, for the
purpose of this book, we prefer to keep the understanding to be very neutral
around building a Data Lake with a Lambda Architecture; hence we will
resort to open source Apache Hadoop for all examples and samples.

Batch layer for data processing
The core of Hadoop technology has been its ability to perform faster,
performant, and optimized batch processes. It proved to be a big success in
solving some of the more complex problems of long-running batch
processing within organizations. The initial implementations of Hadoop were
based on open source Hadoop distributions; however, with the inherent need
to make it professionally supported, there were a number of features that
were incorporated to make it feasible for enterprise use in terms of
provisioning, management, monitoring, and alerting. This resulted in some of
the more customized distributions led by MapR, Cloudera, and Hortonworks:

Figure 03: The Hadoop 1 framework

As shown in this image, the Hadoop 1 framework can be broadly classified
into Storage and Processing. Storage here is represented by Hadoop
Distributed File System (HDFS) while processing is represented as a
MapReduce API. Hadoop 2 included many of the improved capabilities with
the introduction of YARN, and this representation changed as shown here:

Figure 04: The Hadoop 2 framework

There could be a number of other frameworks that could have been
considered here like Pig scripts, Hive queries, Impala queries, and so
on. However, all of these are internally executed as MapReduce batch jobs
and can be additionally orchestrated with actions, stages, and parameters in
an Oozie workflow or cascade.

Let's have a closer look at how Hadoop MapReduce batch jobs work. The
functioning of a Hadoop MapReduce consists of various key components that
were introduced as part of the initial Hadoop framework. The Hadoop
framework itself has undergone an evolution with Hadoop 1 and Hadoop 2.
Hadoop 1, while establishing the Hadoop capability of MapReduce batch
jobs, it did suffer from a single point of failure. With the introduction of
Hadoop 2, this single point of failure was eliminated and a few other key
capabilities were added. From a discussion perspective, we will cover
Hadoop 2 and compare it with Hadoop 1 as we go through the details.
Hadoop 2, for batch frameworks, consists of the following key components:

Figure 05: A typical Hadoop cluster

The NameNode server
This component has the responsibility of scheduling and tracking jobs spread
across the cluster. Until Hadoop 1, it was a single point of failure, but with
Hadoop 2, this responsibility was delegated to YARN, which creates multiple
job trackers across the cluster and ensures failover.

The secondary NameNode Server
This component is used for snapshotting of the in-memory state of a Hadoop
cluster and to keep track of write-ahead logs and transactional attributes. It is
often used to replicate the cluster state. This is not a backup node for the
NameNode server, but is for snapshotting purposes.

Yet Another Resource Negotiator
(YARN)
Yet Another Resource Negotiator (YARN) was introduced in Hadoop 2 is
the primary resource manager for the whole of the Hadoop cluster. This
eliminated the single point of failure that existed in Hadoop 1 by spawning
multiple job trackers in a Hadoop cluster such that failure of a job tracker
does not affect other jobs and ensures re-scheduling of failed jobs to resume
from the point of failure.

Data storage nodes (DataNode)
A Data node's primary role in a Hadoop cluster is to store data, and the jobs
are executed as tasks on these nodes. The tasks are scheduled in a way that
the batch job processing is done near the data by allocating tasks to those
nodes which would be having the data for processing in most certainty. This
also ensures that the batch jobs are optimized from execution perspectives
and are performant with near data processing.

Please see the details and inner working of a typical Hadoop batch process
here:

Figure 06: MapReduce in action

Here, we see that the job, when initiated, is divided into a number of mapper
jobs. The number of mapper jobs spawned typically depends on the block
size and the amount of data to be processed. From a job process perspective,
one can always specify the maximum number of mapper jobs, however the
number of mappers would always be limited by the maximum number of

mappers specified. This is very helpful when we want to limit the amount of
cores that can be utilized for batch jobs.

As stated before, the block size plays a vital role in the batch process since
the unit of work for a mapper depends on the block size, and the job is
distributed across the mappers as blocks of data as inputs.

At a high level, a typical batch job is executed in the following sequence:

1. The job driver program, which sets the job context in terms of mapper,
reducer, and data format classes, is executed.

2. The mapper jobs are fed with blocks of data, as read from job execution.
3. The output produced by the mapper is sorted and shuffled before it is fed

to reducers.
4. The reducer performs the reduce function on the intermediate data

produced by mappers and stores the output back on HDFS as per data
format definitions defined in the job driver program.

While this may seem to be very simple and straight forward, the actual job
execution consists of multiple stages. At this point, we just want to provide a
context for the Hadoop Batch processing hence limiting the information to a
level that is required to understand the concept.

We will be discussing this subject again in much greater detail
in later chapters on the batch layer.

The overall expectation of the batch layer in a Lambda Architecture is to
provide high-quality, processed data that can be correlated with near-real-
time processing of the speed layer, resulting in considerably dependable and
consistent information reflected in near-real-time.

Speed layer
The speed layer in a Lambda Architecture provides near real-time processing
of events. Since the expectation is to process the events in near-real-time
there is a limited amount of processing that can be done on a limited size of
information. This may also include machine learning or complex event
processing algorithms that can be run for near-real-time scenarios.

The term near-real-time processing is a relative term and may mean different
things for different people and different scenarios. For instance, for a
customer reservation, this may mean of the order of 2-3 seconds, however for
a use case such as recommendation engine, it may mean a few minutes.

In terms of Lambda Architecture, this layer should receive the same
event/message which otherwise is also captured by the batch layer, but both
of these layers would give very different meaning to the data once processed,
complementing their respective purposes for realizing a use case.

Speed layer generally comprises of stream processing of the event received
from acquisition layer, and generally there is a presence of a messaging
middleware for guaranteed delivery as well as loosely coupled integration
with the acquisition layer.

Some of the early frameworks in this space have been Apache Storm, Flume,
and Apache Kafka with consumer-based stream processing. Flume has
remained a popular choice in this space, but recently Spark Streaming and
Flink have been gaining a good adoption for their support and simplicity
when it comes to deploying parallel processing and pipeline processing with
support for scale-out architecture. There are very specific differences in the
way each of these frameworks operates, some of which are explained next.

Flume for data acquisition
Flume plays a very important part in the data acquisition capability in our
Data Lake implementation. Below figure pictorially shows how Flume's
stream processing works.

Figure 07: Flume stream processing

Shown here is a very-high-level component architecture of the Flume
process, which consists of Source, Interceptors, Channels, and Sinks. Each
one of these components has a very specific responsibility when handling
events/messages.

While we will be dwelling on this. In much more detail in later chapters,
please check out a summary of these components now.

Source for event sourcing
This component captures data from source systems in the form of Flume
events/messages. Flume has a number of built-in source connectors that can
connect to a variety of systems with multiple protocol supports.

Interceptors for event interception
Interceptors transform flume events/messages en route to channels. These
typically consist of event serializers and are applied before the
event/messages reaches the channel.

Channels for event flow
Flume supports persistent as well as in-memory channels. A channel provides
a layer of indirection for flume events/messages and supports multiple
patterns for the way the events/messages are relayed to the sink from the
channel.

Sink as an event destination
Sink represents the target system connectors from a Flume perspective.
Flume has built-in sink connectors for connecting to various systems in an
enterprise over various protocols, in a very similar way to that of the source.

While Flume was the initial approach for near real-time stream processing, it
did lack from being a true near-real-time that could accommodate custom
processing of events/messages, and had develop custom component for the
same. The set up and deployment of flume was static at a given point in time,
with a given configurations. For any changes required, the configurations
needed changes and the Flume process had to be restarted. This posed a
limitation for near-real-time use cases.

These limitations were soon addressed by frameworks such as Storm, Spark
Streaming, and so on. For the context of this book and to apply the Lambda
architecture to Data Lakes, we will be primarily considering Spark Streaming
and the Flink framework.

Spark Streaming
Shown in the next image is a very simplified view of the Spark streaming
process. Spark was originally designed for faster processing of batches of
data from Hadoop and was translated for near-real-time use cases as Spark
streaming, retaining some of the fundamental building blocks and patterns in
both the scenarios. One of the primary building blocks of Spark Streaming is
DStreams, Receivers, and Resilient Distributed Datasets (RDD). While
Spark started with optimizing batch processing and was translated for near-
real-time use cases, the fundamental behavior remained somewhat similar.
Even for near-real-time use cases, Spark streaming works with micro-batches
with a batch interval. This batch interval also introduces some latency in
Spark stream-based processing, limiting the near-real-time behavior to a few
seconds rather than a fraction of a second.

Figure 08: Spark streaming

As shown here, the overall Spark streaming approach works with data
streams having real-time data inflow for near-real-time processing. The Spark
streaming components divide the incoming data stream into multiple micro-
batches. These micro-batches are then submitted to the core Spark Engine,
which processes these micro-batches to produce batches of processed data.

DStreams
Streams represent discrete sets of RDDs (Resilient Distributed Datasets) for
both input and output data streams. Spark streaming provides many of the
Streams as part of the Spark streaming framework, while various frameworks
supporting Spark streaming, provide their own implementations of RDDs that
can be used for DStreams.

These DStreams are divided into micro-batches before getting submitted to
the core Spark Engine for processing:

Figure 09: Spark streaming streams

Data Frames
Data Frames represent a window of time that allows for executing operations
on the time-windowed dataset. One of the most common of such operations is
executing SQL queries on the specific windowed dataset or Data Frame via a
Spark session. This allows a quick analysis of data streamed into a given time
window and performing of windowing operations. A Data Frame is generally
seen as a set of columns that can be logically considered as a table but with
optimizations to perform quick operations with a SQL-like interface provided
by the Spark framework.

Checkpointing
Spark streaming supports both metadata checkpointing as well as data
checkpointing in order to provide the required fault tolerance for critical 24/7
applications. Metadata checkpointing includes configurations, DStream
operations, and batches to recover the overall process, while data
checkpointing includes persisting the in-flight RDDs to a reliable storage.
Checkpointing can be enabled for operations that involve data
transformations. However, for simple processing, where certain failure levels
can be tolerated, it may not be required.

Apache Flink
Flink as a framework overcomes these limitations of Spark streaming also
supports exactly once processing which good consistency. It processes data
iteratively row by row and is not limited by constraints of micro-batching as
in the case of Spark streaming. It also supports time based windowing
functions that are very helpful while performing event correlations, while
keeping the processing pipeline very flexible and scalable.

The primary feature of Flink which makes it different and very suitable for
iterative processing is generally attributed to its near-real-time processing
capability. However, it also supports batch processing. Some of the important
features of Flink are as follows:

1. Exactly once processing makes it a reliable candidate for performing
accurate aggregations while the streams are processed. This is generally
not the case with Flume. It also supports checkpoint mechanism to keep
it tolerant with respect to failures as well.

2. Out of order processing is supported which provides excellent
capability in the streaming layer to have the processing done in the
expected order with respect to event timelines. In a typical multi-
threaded environment, it is very obvious that the events may arrive out
of order to downstream systems. This is further elaborated here:

Figure 10: Out of order scenario

3. Provides out-of-the-box windowing capability for a streamed event, not
only on the basis of event time but also on the basis of counts and
sessions. This is particularly useful when such events need to be
categorized/grouped together.

4. Failure recovery is supported with no data loss, with a very light-weight
process state management such that the processing is resumed from the
point of failure:

Figure 11: Apache Flink failure recovery

5. Flink is proven for high-throughput and low-latency processing. As
mentioned earlier, since it is not dependent on micro-batching
constraints, latency is very low compared to Spark Streaming and it
happens to be the most appropriate near-real-time event processing
framework.

6. It works with YARN and MESOS as resource managers, and
scheduling event processing on the available nodes and for failure
recoveries.

Flink is designed and implemented to be run on a large node cluster. It also
supports standalone cluster deployment with dynamic pipeline processing, as
shown in this sample execution:

Figure 12: Flink stream processing

If we look at the overall Flink architecture, it is built to support both bounded
as well as unbounded dataset processing, with APIs supporting both the
modes. An architecture layout as depicted on flink.apache.org can be seen here:

http://flink.apache.org

Figure 13: Apache Flink architecture

When we refer to bounded and unbounded datasets, we are typically referring
to batch and stream processing respectively. Since Flink is fundamentally a
stream processing framework, it can also perform batch operations effectively
as batch data is nothing but a subset of streaming data. Any near-real-time
framework in general can be leveraged for batch processing. But it is not true
the other way round; that is, pure batch based processing such as a Hadoop
MapReduce batch process cannot perform the role of a stream processing
framework since its capabilities are built for batch processing, which cannot
be used for stream processing. Even if we minimize the interval between
various batch jobs, it will always have a lag to prepare, process, and load the
results of the batch process.

Here are the key differences between all the three frameworks that we have
discussed in this chapter, namely Flume, Spark Streaming, and Apache Flink:

Flume Spark Streaming Apache
Flink

Flume is mostly used as an
event producer for data

Provides stream
processing capability as

This is an in-
memory,

acquisition. However, it can
be leveraged for stream
processing as well with
custom sink implementations.

part of Hadoop
framework, and provides
for stream processing
across a topology of
nodes.

near-real-
time
processing
framework
across nodes.

Scalability is achieved by
increasing the number of sinks
in flume configurations and is
generally static in nature.

Supports dynamic
scaling with nodes based
topology.

Support for
dynamic
scaling with
nodes-based
processing
topology.

Processes data as flume
events, supporting single and
batch processing for real-time
scenarios.

Processes data as micro
batches only. Hence it
introduces certain latency
which may not be
expected for few critical
use cases.

Processes
events in
near-real-
time.

Flume processes an event at
least once, and in case of
exceptions, it replays the
events. This can cause
duplicate processing.

Supports exactly once
processing but can result
into data loss. At least
Once processing is also
supported and will not
cause data loss.

Supports
Exactly once
processing.

In addition to parallel processing, complex event processing has also been
used in near-real-time processing very effectively, along with Natural
Language Processing and machine learning. Some of these algorithms are
appropriate for near-real-time execution, while many are not. Any latency in
processing affects the overall processing time frames since the such
processing is as slow as the slowest component in the component
orchestration.

One of the other areas that does greatly influence the throughput is the data
compressions that play a vital role in processing speeds. While compression
in a Remote Procedure Call (RPC) may seem to be an overhead from the

processing perspective, they do save on costly IO operations and can provide
considerable performance gains across near-real-time processing. It is
important to have the right compression codec supported for such processing.
For instance, a simple ZIP-based compression may introduce more lags than
performance gains since it is a transformation-based compression and does
not support parallel compression techniques. In this space SNAPPY and
LZO are more suitable compression codecs that can provide required
performance gains. However, the choice of these codecs also depends on the
support provided by the parallel processing framework being used.

The output of the Speed Layer is captured generally in the serving layer
having high performance data repositories. Some of examples would be
HBase, Elasticsearch, in-memory cache, and so on. Since this layer perform
near-real-time processing, these data technologies also provide viable means
for quick lookup and for reference data purposes.

Serving layer
The serving layer consists of data that can be readily served to consumer
applications. Hence this is mostly the processed data. The processed data in
this layer could be exposed via any of the data repositories and multiple
protocols.

From the perspective of customer SCV, the processed customer data may
exist in a materialized data view, a data service, as an export ready to be
served or via direct access to tables for BI/reporting use cases. There could be
multiple use cases, every use case may demand it's own data representation
and accessibility.

A typical serving layer can be represented as follows:

Figure 14: Serving layer

As seen from this representation, a serving layer as well may have multiple
moving parts, but broadly they would be Data Repository and Data Access or
Data Delivery Layer.

Data repository layer
The Data repository layer may be composed of multiple types of databases.
The reason for this is that different data types may need to be represented for
different purposes and usually a single choice of database would not suffice.
The idea behind the serving layer is that it should be able to serve the data as
per the requirement, hence multiple databases do find a good use here. In
general the serving layer would serve a combined view of data both from the
batch layer as well as from the speed layer.

Relational databases
This would still find a lot of utility in the serving layer as integrations may be
required with various reporting and BI tools, which works on standard
database drivers based access. This may involve populating data into this
store at scheduled intervals from the batch layer.

Big data tables/views
Few applications need to integrate directly with the data from table or views,
hence these tables/views need to be kept up to date with data in the serving
layer. Access to these is again via data drivers as well as being accessible via
native connectivity libraries in cases of Hive and Impala.

Data services with data indexes
The data indexes are used for quick searches for data and are generally used
by data services in the data access layer. These can optionally also be
exposed as REST/SOAP endpoints. This indexing layer is generally based
on Lucene based indexing engines and are very fast when it comes to
searches that need to reflect the changes in near-real-time. The indexes could
optionally also serve the complete data and in certain time critical use cases
that is helpful as well. It needs to be ensured that these indexes are built to
support performance and scalability since these handle more of the real time
service load.

The most common framework to build data services is Spring Boot, closely
followed by Dropwizard. All of these frameworks support JAX-RS 2.0
specifications and integrate well with service definition tools such as
Swagger, providing a well rounded capability for building and publishing
REST services in general.

In order to maintain the data consistency of the Data Lake, it is important to
consider that these services are all read-only services, since their primary role
is to deliver data, and should not ideally expose endpoints to change the data,
since the data should only be altered by data processing cycles in a Lambda
Architecture as discussed earlier.

NoSQL databases
These databases are of great use for applications who want to consume this
data directly via native NoSQL drivers, for high performance lookups and
access. This access can also be wrapped behind data services like in case of
Data Indexes. The processes data will need to be modelled in a way that
provides for optimized storage and supports the expected access patterns.
This should also support high performance and scale out architecture such as
data indexes as this repository can also play a vital role for near-real-time use
cases.

Data access layer
The Data access layer in any application has the responsibility to access the
data from underlying data repositories based on the access patterns expected.
Here we can broadly categorize the data access layer to be performing either
a pull or a push of data with respect to the serving layer.

At a high level, a data push refers to outflow of the data from the serving
layer wherein the data is pushed out to other systems by the serving layer.

A Data Pull however refers to outflow of the data from the serving layer
wherein the external systems pull the data from the serving layer, if the data
is in the available format and the serving layer supports the expected data
definition and protocols for data exchange.

Data exports
The data can be exported from the data repository as a scheduled export with
a cron job. Many applications prefer to get a scheduled data dump once in a
while for their operation requirements. The serving layer must have the
required tools, processes, and schedulers to support data export use cases.
Such data exports have been very prominent; however to get the best results,
it needs to be ensured that more and more streaming formats (text files,
comma separated values, Extensible Markup Language, JavaScript Object
Notation, and so on) are used for these exports for consistent performance
rather than transformational formats (.doc, .pdf, .xlsx, and so on).

Data publishing
The serving layer may also need to publish the processed data. This is more
of a case with the output from near-real-time processing in which other
downstream systems may be interested. Here the serving layer may play the
role of an event hub. Most often it is good to expose such events over a topic
such that multiple consumers could consume these events. However, a slow
or unavailable consumer could potentially cause a pile up of messages on the
data lake side. Hence this component should also be built for failure scenarios
so that smooth recovery can be ensured, while keeping serving layer healthy
and functional.

As discussed before as well, if we need to ever classify data based on Push or
Pull, this can be classified as:

Push Pull

Data Exports

Data Publish

Relation Database Access
Tables/Views
NoSQL and Indexes via Data Service

For the purpose of this book, the various technologies that we will be
considering to build a Data Serving Layer are the following:

Data Serving Layer
Component Technology

Relational Database PostgreSQL

Tables and Views Hive, Impala

Indexes Elasticsearch

NoSQL Database HBase, Couchbase

Data Services Spring Boot Service

Data Exports Hadoop MapReduce, Sqoop, Pig
Scripts

Data Publish JMS, Kafka

Summary
In this chapter, we discussed how we plan to apply a Lambda Architecture by
choosing specific frameworks and technologies. With the suggested set of of
frameworks and technologies, we will realize the use case as discussed in Cha
pter 1, Introduction to Data to have a fully functional data lake as we progress
through later chapters of this book. Just to summarize, the following image
demonstrates the selection of technologies as discussed in this chapter in
various layers of a Data Lake with a Lambda Architecture applied:

Figure 15: Technology mapping

Data Acquisition of Batch Data
using Apache Sqoop
Now that we have discussed some of the essential elements of a data lake in
the context of Lambda Architecture, it is imperative that the complete story
around data lake starts from capturing the data from source systems, which
we are referring to as Data Acquisition.

Data can be acquired from various systems, in which data may exist in
various forms. Each of these data formats would need a specific way of data
handling such that the data can be acquired from the source system and put to
action within the boundaries of data lake.

In this chapter, we would be specifically looking at acquiring data from
relational data sources, such as a Relational DataBase Management System
(RDBMS) and discuss specific patterns for the same. When it comes to
capturing data specifically from relational data sources, Apache Sqoop is one
of the primary frameworks that has been widely used as it is a part of the
Hadoop ecosystem and has been very dominant for this capability.

Various technologies would now be mentioned at various points (not that you
should know or we will discuss everything in this book) throughout this part
of the book and the following parts as we are now in the process of actually
implementing the Data Lake using various technologies.

Context in data lake - data
acquisition
The process of inducting data from various source systems is called data
acquisition. In our data lake, we have a layer defined (in fact, the first one)
which has only this responsibility to take care of.

One of the main technologies that we see doing the main job of inducting
data into our data lake is using Apache Sqoop. The following sections of this
chapter aim at covering Sqoop in detail so that you get a clear picture of this
technology as well as get to know the data acquisition layer in detail.

Data acquisition layer
In Chapter 2, Comprehensive Concepts of a Data Lake you got a glimpse of
the data acquisition layer. This layer’s responsibility is to gather information
from various source systems and induct it into the data lake. This figure will
refresh your memory and give you a good pictorial view of this layer:

Figure 01: Data lake - data acquisition layer

The acquisition layer should be able to handle the following:

Bulk data: Bulk data in the form of regular batches or micro-batches, as
the case may be. Sqoop is able to handle huge amounts of bulk data and
integrate it with the legacy applications datastore residing in traditional
RDBMS. Micro-batch refers to more frequent bulk loads with less
records to handle in each load. Sqoop is not the right choice here, rather
Apache Flume (discussed in detail in the subsequent chapters, as we do
have cases which require this) is a more apt choice.
High-velocity data: Data varying from a few megabytes to terabytes in
the form of regular batches and micro-batches needs to be handled by
this layer efficiently without any bottleneck. One aspect is the speed at
which this data comes (micro-batches can come more frequently and
randomly as against regular batches which happen in a specified time
interval), and another is the amount at which data comes into this layer.

Different formats of data (disparate data): Different types of file
formats (XML, JSON, TEXT, and so on) and different structured and
unstructured data formats. Non-relational formats, such as various
binary data, from various sources, such as IoT sensors, server logs,
machine generated logs, image data, video data, and so on also has to be
handled efficiently.
Structured/unstructured data: The previous point covered this aspect
but this point demands a separate mention because of its significance.
Also, it has to cater semi-structured data, which falls in between
structured and unstructured data. Chapter 1, Introduction to Data did
cover these different data types in a bit more detail, so we wouldn't want
to repeat ourselves here.
Integration with diverse technologies and systems: With different
types of business applications and Internet applications available in the
enterprise, this layer has to integrate well with different technology
applications and data stores with ease and ingest data into the data
storage layer in our data lake.

Data acquisition of batch data -
technology mapping
To cover our use case and to build data lakes, we use two different
technologies in this layer, namely Apache Sqoop and Apache Flume. This
chapter dives deep into Sqoop and Chapter 7, Messaging Layer with Apache
Kafka dives deep into Flume.

The following figure brings in the technology aspect to the conceptual
architecture that we will be following throughout this book. We will keep
explaining each technology and its relevance in the overall architecture
before we bring all the technologies together in the final part of this book
(Part 3).

Figure 02: Technology mapping for acquisition layer

In line with our use case, we will be connecting to some of the business
applications data store based on a traditional RDBMS. We will be using
PostgreSQL as our RDBMS database holding customer data. We will connect
to an intranet (B2B) application and an Internet (B2C) application which
holds different sets of customer profile information within itself. Our data
lake will have a consolidation of profile information from these disparate
business applications, from which we will derive SCV.

Business to Business (B2B) applications are applications used
by various departments within the organization and between
organizations/businesses.

Business to Consumer (B2C) applications are applications
used by organizations to interact with their consumers.

Why Apache Sqoop
One of the very commonly used tools for data transfer for Apache Hadoop.

In the data acquisition layer, we have chosen Apache Sqoop as the main
technology. There are multiple options that can be used in this layer. Also, in
place of one technology, there are other options that can be swapped. These
options will be discussed in detail to some extent in the last section of this
chapter.

Apache Sqoop is one of the main technologies being used to transfer data to
and from structured data stores such as RDBMS, traditional data warehouses,
and NoSQL data stores to Hadoop. Apache Hadoop finds it very hard to talk
to these traditional stores and Sqoop helps to do that integration very easily.

Sqoop helps in the bulk transfer of data from these stores in a very good
manner and, because of this reason, Sqoop was chosen as a technology in this
layer.

Sqoop also helps to integrate easily with Hadoop based systems such as
Apache Oozie, Apache HBase, and Apache Hive.

Apache Oozie is a server-based workflow scheduling system to manage
Hadoop jobs.

HBase is an open source, non-relational distributed database modeled after
Google's BigTable and is written in Java.

Apache Hive is a data warehouse infrastructure built on top of Hadoop for
providing data summarization, query, and analysis.

- Wikipedia

History of Sqoop
Sqoop was initially developed and maintained by Cloudera, and later
incubated as an Apache project on 23 July, 2011. In April 2012, the Sqoop
project was promoted as Apache’s top-level project. Since then, all releases
have been managed by Apache committee members. As of the writing of this
book, 1.4.6 is the stable release for Sqoop, released on May 11, 2015.

Due to some inherent challenges in Sqoop 1 (version 1.x.x), fresh thought
came in this regard and this brought Sqoop 2 into existence. In this book, we
will be using Sqoop 1 instead of Sqoop 2. However, we will make sure that
you are introduced, in more detail, both the versions of Sqoop so that you
have a fair bit of knowledge and clearly know the distinction between the two
versions and when to use what.

Advantages of Sqoop
Below are the advantages of Apache Sqoop, which is also the reason for
choosing this technology in this layer.

Allows the transfer of data with a variety of structured data stores like
Postgres, Oracle, Teradata, and so on.
Since the data is transferred and stored in Hadoop, Sqoop allows us to
offload certain processing done in the ETL (Extract, Load and
Transform) process into low-cost, fast, and effective Hadoop processes.
Sqoop can execute the data transfer in parallel, so execution can be
quick and more cost effective.
Helps to integrate with sequential data from the mainframe. This helps
not only to limit the usage of the mainframe, but also reduces the high
cost in executing certain jobs using mainframe hardware.
Data from other structured data stores can be Sqooped into Hadoop,
which is mainly for unstructured data stores. This process allows us to
combine both types of data for various analysis purposes in a more cost
effective and fast manner.
Has an extension mechanism, using which different connectors can be
built and hooked. This can be used to customize existing connectors, and
can also be tweaked according to use case requirements. There are a
number of in-built connectors for stores such as MySQL, PostgreSQL,
Oracle, and a number of well-known ones. Because of its capability of
writing extensions, many companies have written custom connectors
that are well supported and enterprise grade. For example, Oracle
connector is developed by Quest Software and VoltDB connector is
developed by VoltDB itself.
In addition to JDBC based connectors (for various RDBMS systems), it
also has direct connectors which uses native tools for better
performance.
Sqoop also supports a variety of file formats such as Avro, Text, and
SequenceFile.

Avro is a remote procedure call and data serialization framework developed

within Apache's Hadoop project. It uses JSON for defining data types and
protocols, and serializes data in a compact binary format.

- Wikipedia

SequenceFile is a flat file consisting of binary key/value pairs. It is
extensively used in MapReduce as input/output formats.

- Hadoop wiki

Disadvantages of Sqoop
Even though Sqoop has very strong advantages to its name, it does have
some inherent disadvantages, which can be summarized as:

It uses a JDBC connection to connect with RDBMS based data stores,
and this can be inefficient and less performant.
For performing analysis, it executes various map-reduce jobs and, at
times, this can be time consuming when there are lot of joins if the data
is in a denormalized fashion.
Being used for bulk transfer of data, it could put undue pressure on the
source data store, and this is not ideal if these stores are heavily used by
the main business application.

Workings of Sqoop
For your data lake, you will definitely have to ingest data from traditional
applications and data sources. The ingested data, being big, will definitely
have to fall into the Hadoop store. Apache Sqoop is one technology
that allows you to ingest data from these traditional enterprise data stores into
Hadoop with ease.

SQL to Hadoop == SQOOP

The figure below (Figure 03) shows the basic workings of Apache Sqoop. It
gives tools to export data from RDBMS to the Hadoop filesystem. It also
gives tools to import data from a Hadoop filesystem back to RDBMS.

Figure 03: Basic workings of Sqoop

In our use case, we will be exporting the data stored in RDBMS
(PostgreSQL) to the Hadoop File System (HDFS). We will not be looking at
Sqoop's import capability in detail, but we will briefly cover that aspect also
in this chapter so that you have pretty good knowledge of the different
capabilities of this great tool.

As of writing this book, Sqoop has two variations (flavours) called by
its major versions as Sqoop 1 and Sqoop 2. We have detailed sections below
which explain both Sqoop 1 and 2, jotting down comparisons between the
two for easy understanding. In this book, as detailed earlier, we will be

working with Sqoop 1, as Sqoop 2 is still a work in progress and we wouldn't
want to start solving its inherent problems while constructing the code for our
use case.

Below is a figure taken from official Sqoop documentation, and it shows the
architecture view for Apache Sqoop 1.

Figure 04: Conceptual architecture of Sqoop 1

The workings of Sqoop are pretty straightforward, as detailed conceptually in
the preceding figure. The user interacts with Sqoop using command prompts
using various commands. These commands, when executed, kick off map
tasks in Hadoop, which connects with the supplied RDBMS (using JDBC -
Java DataBase Connectivity) and then connects to the Hadoop filesystems
and stores data. One of the inherent problems with Sqoop 1 is very
fundamental and this is due to the usage of JDBC for connectivity, as this can
be quite clunky for different use cases.

JDBC is an application programming interface (API) for the programming
language Java, which defines how a client may access a database. It is part
of the Java Standard Edition platform, from Oracle Corporation.

- Wikipedia

The next section gives the reader a glimpse of Sqoop 2, as this is logically the
next step in the upgrade process for Sqoop 1.

Sqoop 2 architecture
The workings of Sqoop 2 are very much in line with Sqoop 1. However,
Sqoop 2 brings in more user-friendly and easy-to-use features by taking
difficult parts of Sqoop 1 away from the user. It brings in a new web browser
based tool along with the client (this is the only option in Sqoop 1) and also
helps the user install Sqoop once on a machine, giving provision for the user
to access it from multiple places. It also gives a good amount of RESTful
API’s (more details can be found in the Apache Sqoop documentation at https:
//sqoop.apache.org/docs/1.99.5/RESTAPI.html), which aids in many of the
integrations that Sqoop needs to support for effective use in the context of a
data lake.

The following figure (Figure 05) shows the detailed architecture of how
Sqoop 2 works as compared to Sqoop 1. To bring in comparison between
Sqoop 1, additional parts brought in by Sqoop 2 are shaded. The architecture
figure is referred from the Sqoop documentation (https://sqoop.apache.org/docs/1.
99.5/) and changed to decipher the context of this book.

https://sqoop.apache.org/docs/1.99.5/RESTAPI.html
https://sqoop.apache.org/docs/1.99.5/

Figure 05: Conceptual architecture of Sqoop 2

As shown in Figure 05, the shaded sections are new in Sqoop 2. Sqoop 2 has
introduced a server component and has also given a new client in the form of
a browser, using which users can now interact with Sqoop and this interface
shields the user from clunky commands and hides the complexity behind the
browser interface. Due to the server component, users can now interact with
Sqoop from other machines as well, as opposed to Sqoop 1. There are a
number of components inside Sqoop the server component, enabling this new
set of features, and these are shown in the above figure. Also, with that, a
new block in the server, namely Metadata, which stores so-called data for

data so that it is quite easy for the user, takes away much of the commonly
repeated stuff, and allows us to use this data stored in the repository.

Sqoop 1 versus Sqoop 2
It's important to understand the difference between the two flavours of
Sqoop, and this sections aims to cover that in some detail. It will first explain
the main design thoughts on which Sqoop 2 was designed and then compare
each of these with regards to Sqoop 1.

As detailed in blogs on the Apache website on Sqoop, below are the main
design thoughts on which the newly-developed and ever-evolving Sqoop 2
architecture design is based. They are:

Ease of use
Ease of extension
Security

The subsections below will delve into the above design thoughts and compare
both Sqoop 1 and Sqoop 2.

Ease of use
Adding the layer between the client and Hadoop is the reason for a lot of the
ease which Sqoop 2 brings as compared to Sqoop 1. The following table
compares this design though between the two versions.

Sqoop 1 Sqoop 2

Command line is the only client
option

Command line along with browser
interface (via Hue) are the client
options

Client only architecture Client-server architecture

Client works only on the same
machine where Sqoop is installed

Server setup allows access to
Sqoop from different machines

Tight coupling between other tools
(Apache Oozie) when integration is
brought about.

Integration is quite easy using the
exposed REST API’s

Connectors and drivers need to be
configured for each client
installation separately. Each of the
clients need to have connection
details with them to connect and
execute.

Because of server component,
connectors and JDBC drivers
would be configured in one place

No well defined role-based access
possible.

Role-based access and execution is
possible because of the central
access by the server component.

More error prone, as many options
are to be filled in manually by the
user by reading various available
documentation.

Having a browser-based interface
makes sure that the user is advised
when they make mistakes and that
all necessary options are filled in
before actually using Sqoop.

Table 01: Sqoop 1 and Sqoop 2 - Comparison based on Ease of Use

Hue (Hadoop User Experience) is an open-source Web interface that
supports Apache Hadoop and its ecosystem, licensed under the Apache v2
license.

- Wikipedia

Quite clearly, this design thought scores well with Sqoop 2 as against Sqoop
1 and most of the advantages come in by default for Sqoop 2 because of the
central one-time server component installation.

Ease of extension
Let's now get into the second design thought based on which Sqoop 2 was
designed. This aspect is quite crucial for modern day enterprises with varying
types of applications in which data lives.

Sqoop 1 Sqoop 2

Only JDBC style connector
possible

Apart from JDBC, other connectors can
be built and used. Because of this, it is
quite flexible and other data stores can
easily write and maintain their own
connectors.

Common connector
functionality not abstracted
away, making it complex to
write connectors and they are
forced to know the nitty-gritties
of Sqoop

Common connector functionality
abstracted away and providers need to
only write the core aspects. This allows
the shielding of unwanted complexities
while writing the connector.

Complexity of writing a
connector is quite high.

Complexity has reduced considerably
as low-level working details of Sqoop
have been abstracted away and the
connector provider only writes core
logic of data transfer.

Explicit selection of connector
is not mandated nor validated,
paving way for errors.
Connector selection is implicit.

Explicit connector selection is
mandated reducing errors resulting due
to selection of wrong connector.

Table 02: Sqoop 1 and Sqoop 2 - Comparison based on ease of extension

The table above summarized the differences between Sqoop 1 and 2 with
regard to writing a connector. Clearly, Sqoop 2 brings in good advantages as
against Sqoop 1.

Security
One of the key design thoughts which Sqoop 2 considered when it was being
designed and developed is security. For modern day enterprises, utmost care
is given to data security, and Sqoop 2 does aid in having a granular and fine
grained access control.

The following table summarizes this very important aspect between the two
Sqoop versions.

Sqoop 1 Sqoop 2

No role-based access
control

Role-based access control possible because of the
single Sqoop server component.

Only Hadoop
security available

Hadoop security along with role-based security
available.

Limited security
support
(username/password)
when integrating
with external
systems

External system security using role-based access
control.

Client requires direct
access to Hive and
HBase

Server only needs to have access and the client
having access is defined using well defined roles.

Each client makes
distinct connections
which are never
reused

Connections are made first class objects and they
are pooled and used multiple times. Users having
Admin role creates connection objects and users
having Operator role uses these connections for
executing various jobs.

Possesses resource management policy. The above

Does not possess
resource
management policy

point allows how connections can be used and how
each role can be used during execution of job
(import or export).

Table 03: ​Sqoop 1 and Sqoop 2 - Comparison based on security

Clearly, Sqoop 2 scores well against Sqoop 1 in one of the key aspects,
namely, security. For modern day enterprises, security plays a key role,
especially in regard to data and how it can be accessed and used by different
parties in the organization.

When to use Sqoop 1 and Sqoop 2
At the time of writing this book Sqoop 2 is still not fully complete in all
aspects and not fully in a stable state. That's the core reason for us to choose
Sqoop 1 for implementing the chosen use case for this book. However,
clearly Sqoop 2 brings in good advantages (detailed in subsections above) as
against Sqoop 1 and when fully ready should be used or favored in place of
Sqoop 1.

Functioning of Sqoop
Let's get into a bit more detail on the actual working of Sqoop in this section.
When a command is entered in the command line, these in turn execute a
map task to connect to the desired RDBMS (using appropriate connector) and
then retrieve the required/relevant data. After the map task, it hands over the
data to the reduce task, which has the responsibility of persisting this
retrieved data to HDFS/HBase/Hive.

Data import using Sqoop
The import tool within Sqoop when given commands imports individual or
all tables from RDBMS using various available connector API’s into HDFS.
When importing data, each row in an RDBMS table is imported into HDFS
as a record. According to the type of data, it is either stored as text files for
text data or as sequence files and Avro files in case of binary data.

The following figure (Figure 06 - our interpretation of Sqoop Export inspired
from Apache Sqoop blogs) details the Sqoop import tool functioning by
importing data from PostgreSQL to HDFS:

Figure 06: Working of Sqoop Import

Before the actual Sqoop import function executes, the tool analyses the

database and forms relevant metadata. The formed metadata is then used to
execute the import function from the database of the required table or the
whole table as the case may be.

Sqoop does provide different options based on which the import function can
take place. The data imported from a table is stored as single or multiple
HDFS files (according to size of data from source) in the form of comma
separated values (for each column) and each row in the table is separated
using a new line. Sqoop also provides options while importing to specify file
format (Avro or text files).

Later in this chapter we will actually run you through the Sqoop command
which will be used to get data from PostgreSQL to HDFS. This section just
gives the import Sqoop functioning and its actual working under the hood.

Data export using Sqoop
The working of the Sqoop export tool is very much similar to the Sqoop
import tool. When the export command is executed, Sqoop gathers the
metadata required for the export function and then churns the appropriate
map tasks depending on the size and nature of the data; then it transfers the
data to the appropriate RDBMS. It does use the available connectors to
actually persist/write the data to the database. Some connectors have a
concept of staging table where data is first collected (staged) and then
actually moved to the target database. This staged table approach is good in
one aspect where there is a failure while export and because of this staged
data availability, the whole job doesn't have to be redone, rather it could very
well be reused.

The following figure (Figure 07 - our interpretation of Sqoop Export inspired
from Apache Sqoop blogs), very much similar to Sqoop import (Figure 06)
gives the inner working of Sqoop when exporting data using Sqoop:

Figure 07: Working of Sqoop Export

Our use case does not demand showing the export function of Sqoop;
however, we will just give you the important Sqoop export commands in the
next sections of this chapter so that you as a reader have a complete
understanding of Sqoop.

Sqoop connectors
Sqoop connector allows Sqoop job to:

Connect to the desired database system (import and export)
Extract data from the database system (export) and
Load the data to the database system (import)

Apache Sqoop allows itself to be extended in the form of having the
capability of plugin codes, which is specialized in data transfer with a
particular database system. This capability is a part of Sqoop’s extension
framework and can be added to any installation of Sqoop. Sqoop 1 does have
this capability and Sqoop 2 extends this aspect even further and adds many
new features (the comparison section before has covered this aspect). Sqoop
2 has better integration using well defined connector API’s.

For transferring data when Sqoop is invoked, two components come into
play, namely:

Driver: JDBC is one of the main mechanisms for Sqoop to connect to a
RDBMS. The driver in purview of Sqoop refers to JDBC driver. JDBC
is a specification given by Java Development Kit (JDK) consisting of
various abstract classes and interfaces. Any RDBMS for connecting to
them provides drivers complying with the JDBC specification. These
drivers are proprietary and often have licenses associated with it, based
on which this could be used. For Sqoop to work, these drivers need to be
installed as the case may be by individual users and then used. Since
these drivers are written by the database system providers it would be
written with utmost care to be highly performant and efficiency in mind.
Connector: For a Sqoop job to run, it requires metadata of the data
which needs to be transferred. Connector helps to retrieve these
metadata and aids in transferring data (import and export) in the most
efficient manner possible. JDBC is one of the main mechanisms and
uses SQL language for data extraction and load; but each database
systems would have certain hacks called as dialects. Connector uses

these dialects to efficiently transfer data. Sqoop ships with a default
JDBC connector (generic), which works with JDBC and SQL-compliant
database systems; but due to its generic nature, it may not be the most
optimal way of transferring data. There are other built-in connectors and
external specialized connectors, which will be discussed in detail in the
following subsection.

The figure (Figure 08) shows how these components are used by the Sqoop
client to get a connection and thereafter use this connection object to transfer
data from and to the database system:

Figure 08: Sqoop Connector components and its working

In the case of Sqoop 1, when a command is executed, Sqoop first analyses
the command-line arguments and scans the Sqoop installation for the most
apt (efficient and better performing) connector. It does scan both the built-in
and manually installed connectors while choosing the best possible option. If
it is not able to find right connector, as a last resort, it uses the built-in
generic JDBC connector. Once it selects a connector, it looks for the best
driver, and mostly there is a specialized driver tagged to a connection and
database system to choose from. In case of generic JDBC driver, however,
the driver has to be explicitly supplied using the command-line parameters.

One of the difference between Sqoop 2 is that in Sqoop 2, the connector has
to be explicitly selected as against implicit selection in Sqoop 1.

Types of Sqoop connectors
Sqoop connectors can be broadly classified as below:

Built-in connectors: Connectors which ship along with the default
Sqoop installation are categorized in this. Built-in connectors can again
be sub-categorized as follows:

Generic JDBC connector: This connector can be used to connect
to any database system complying with JDBC and SQL. Sqoop
chooses this connector as a last resort when it is not able to find any
other connector (default or manually installed).
Specialized connectors: These are connectors included by default
along with Sqoop installation for all the popular database
management systems. Some of the example connectors falling into
this category are Oracle, MySQL, PostgreSQL and so on.
Fast-path connectors: Specialized built-in connector which
use database specific tools to better perform the data transfer option
fall into this category. MySQL and PostgreSQL have such native
tool based connectors which does have better performance and
throughput purely by the merit of being native.

Pluggable external connectors: As against built-in default connectors,
Sqoop does allow plugging in external connectors dealing with
appropriate datasource to better do the data transfer and these connectors
fall into this category. These are specialized connectors, mostly supplied
and maintained by the database providers. Being managed by the
provider themselves, these usually are highly performant and use
different database native tools to do the data transfer job. Connectors
dealing with different NoSQL databases are readily available, such as
Couchbase connector.

Sqoop support for HDFS
Sqoop is natively built for HDFS export and import; however, architecturally
it can support and source and target data stores for data exports and imports.
In fact, if we observe the convention of the words Import and Export it is all
with respect to whether the data is coming into HDFS or going out of HDFS
respectively. Sqoop also supports incremental data exports and imports with
having an additional attribute/fields for tracking the database incrementals.

Sqoop also supports a number of file formats for optimized storage such as
Apache Avro, orc, parquet, and so on. Both parquet and Avro have been very
popular file formats with respect to HDFS while orc offers better
performance and compression. But as a tradeoff, parquet and Avro formats
are relatively more preferred formats due to maintainability and recent
enhancements for these formats in HDFS, supporting multi-value fields and
search patterns.

Avro is a remote procedure call and data serialization framework developed
within Apache's Hadoop project. It uses JSON for defining data types and
protocols, and serializes data in a compact binary format. Its primary use is
in Apache Hadoop, where it can provide both a serialization format for
persistent data, and a wire format for communication between Hadoop
nodes, and from client programs to the Hadoop services.

- Wikipedia

Sqoop working example
We will be using Google Cloud Platform for running the whole use case
that we will be covering in this book. Screenshots and code would be covered
throughout this book with this in mind so that the reader at the end of this
book would have a fully functioning Data Lake in the cloud which slowly
could be connected to the real database existing in the enterprise.

Being the first chapter, which is now dealing with installation and code, this
chapter will install certain softwares/tools/technologies/libraries that will be
referred to in subsequent chapters. In the context of Sqoop, some installations
and commands won't be required but
are needed for running all of these in the cloud having a clean node with
nothing installed on it.

These examples have been prepared and tested on CentOS 7, and this would
be our platform for all the examples covered in this book.

Installation and Configuration
For all the installations discussed in this book, we are following some basic
conventions and assumptions:

1. The user is assumed to be a non-root, but sudo user configured with no
password.

2. All downloads are assumed to be downloaded into a single directory,
referred to as ${DOWNLOAD_DIR}. This should be configured as an
environment variable using the following command and the same must
be added into ~/.bashrc:

export DOWNLOAD_DIR=<path of download directory>

3. All the installations are assumed to done in user directories, except for
RPMs, hence any system level changes, package installations, and so on
will have to be done using sudo.

Now let's get our hands dirty with some code. This section details each and
every point as a step for easy reading and understanding. Let's dig in.

Step 1 - Installing and verifying
Java

1. For the purpose of the examples covered in this book, it is recommended
to go with Oracle JDK only.

2. Please copy the download link to the latest Java JDK from the Oracle
website. For Linux distributions, RPM download is recommended. At
the time of writing this book, this is the Oracle JDK download page (http
://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.ht
ml), however this changes often, hence may require some fresh search
and exploration on search engines.

3. In order to download from the copied link, please run this command in
CentOS shell. Here the copied link is the one pointing to the download.ora
cle.com, however since this link is dynamic, it will need to be copied for
every download.

wget --header "Cookie: oraclelicense=accept-securebackup-cookie" http://download.oracle.com/otn-pub/java/jdk/8u131-b11/d54c1d3a095b4ff2b6607d096fa80163/jdk-8u131-linux-x64.rpm

4. Once downloaded, run the setup to complete the installation with the
following commands:

5. Install the downloaded RPM file by running the following command:

rpm --install <JDK_RPM_FILE>

6. Set the JAVA_HOME environment variable, pointing to the directory where
JDK is installed; usually it is in the subdirectories of /usr/java.

export JAVA_HOME=/usr/java/default

7. Configure the PATH variable as:

export PATH=$PATH:$JAVA_HOME/bin

8. Put the above export statements in ~/.bashrc
9. Verify the install by executing the following command and observing

that PATH has the location of JAVA folder installed:

http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
http://download.oracle.com

echo $PATH

Even now, java -version would show Open JDK but that can be ignored as
various components make use of JAVA_HOME as a reference point for JAVA
install.

Step 2 - Installing and verifying
Hadoop

1. As mentioned before we would be using open source Apache Hadoop
distribution for all the samples in this book, specifically version 2.7.3.

2. Download the Hadoop Distribution from the following location in
${DOWNLOAD_DIR} using wget command:

wget http://www-eu.apache.org/dist/hadoop/common/hadoop-2.7.3/hadoop-2.7.3.tar.gz

3. Once the download is complete, using the shell change into any user
directory, let us refer it as ${HADOOP_HOME}, where we want to install, and
run the following command to extract the contents:

tar -xzvf ${DOWNLOAD_DIR}/ hadoop-2.7.3.tar.gz

4. Also, please disable the firewall from within the shell using the
following command and reboot the VM:

systemctl stop firewalld

systemctl disable firewalld

5. We will be setting up Hadoop in pseudo distributed mode for the
examples, while in production Hadoop is setup in distributed mode (in C
hapter 09, Data Store using Apache Hadoop we are covering Hadoop
deployment options in a bit more detail). Change into the ${HADOOP_HOME}
directory and perform the changes as mentioned here: https://goo.gl/x6TC9
q

6. In case of HOST KEY VERIFICATION FAILURE, while setting up Hadoop in
Pseudo distributed mode, please run the following commands in the
shell:

ssh-keyscan -H -t rsa localhost >> ~/.ssh/known_hosts

ssh-keyscan -H -t rsa 0.0.0.0 >> ~/.ssh/known_hosts

ssh-keyscan -H -t rsa 127.0.0.1 >> ~/.ssh/known_hosts

https://goo.gl/x6TC9q

8. Once the DFS is up and running, the installation completion can be
confirmed by navigating to the following URL: http://localhost:50070.

9. This pseudo-distribution setup is a reasonably complete setup that will
be required for running various examples covered in this book.

10. As of now, we may just run DFS, however we will delve into other
services like YARN, Hive, Hbase, and so on in later chapters in this
book. For running Sqoop examples we just need dfs running.

11. Please set the environment variable HADOOP_HOME to point to the Hadoop
installation directory, using the export command in ~/.bashrc. Also
configure the PATH environment variable:

export HADOOP_HOME=<Hadoop-Installation-Directory>

export PATH=$PATH:$JAVA_HOME/bin:$HADOOP_HOME/sbin:$HADOOP_HOME/bin

Step 3 - Installing and verifying Hue
Hue provides a complete UI based access to various Hadoop services,
orchestrations, workflows and even a browser for HDFS. Hue setup is very
straightforward, and can be done by compiling the hue from source. In order
to install Hue, the following steps may be followed:

1. Please download Hue 3.11 using the following command for its tarball
release:

wget https://dl.dropboxusercontent.com/u/730827/hue/releases/3.11.0/hue-3.11.0.tgz

2. Extract the contents of the tarball in a user directory by using the
following command:

tar -zxvf ${DOWNLOAD_DIR}/hue-3.11.0.tgz

3. Hue setup has dependency on Python 2.7 and many of the other
packages, which need to be installed the OS specific package installer.
For the purpose of this book, we have tried all the installs on CentOS 7,
and we ended up with the following packages to be specifically
installed:

sudo yum install libffi-devel

sudo yum install gmp-devel

sudo yum install python-devel mysql-devel

sudo yum install ant gcc gcc-c++ rsync krb5-devel mysql openssl-devel cyrus-sasl-devel cyrus-sasl-gssapi sqlite-devel openldap-devel python-simplejson

sudo yum install libtidy libxml2-devel libxslt-devel

sudo yum install python-devel python-simplejson python-

setuptools sudo yum install maven

4. As per Hue's README.txt, which has the installation steps, please run the
following command from the HUE source directory (the directory
where we extracted tarball):

PREFIX=~/ make install

5. Here PREFIX is considered to be the installation directory, but it can be
any of the user directories as well. Hue setup would create a directory,

hue, under that PREFIX.
6. Once the install completes, configure the

${PREFIX}/hue/desktop/conf/hue.ini with the correct HDFS URL as shown:

fs_defaultfs=hdfs://localhost:9000

7. Set the environment variable ${HUE_HOME} using the following command,
and add the same to ~/.bashrc.

export HUE_HOME=~/hue

(assuming that this is the folder path created in the previous step).

8. Configure ${HADOOP_HOME}/etc/hadoop/hdfs-site.xml with the following
properties:

<property>

 <name>dfs.webhdfs.enabled</name>

 <value>true</value>

</property>

<property>

 <name>hadoop.proxyuser.hue.hosts</name>

 <value>*</value>

</property>

<property>

 <name>hadoop.proxyuser.hue.groups</name>

 <value>*</value>

</property>

9. Once Hue is setup, please change to the ${HUE_HOME} and start the hue
server with the following command:

${HUE_HOME}/build/env/bin/supervisor

10. To run it as a daemon process, so that the process does not terminate if
your console gets disconnected, you may use the following command:

 ${HUE_HOME}/build/env/bin/supervisor -d

11. Navigate to http://localhost:8888 and create the user account for Hue.
After login, we can also see HDFS file view from hue (located at top
right corner).

Once we login into the Hue console, some errors or

misconfiguration may be reported, but these can be ignored, as
we will be setting up these configurations with every framework
we integrate with Hue.

Step 4 - Installing and verifying
Sqoop
Sqoop has been changing in its form and features very rapidly since the
Hadoop platform release. As mentioned before, the Sqoop framework, as it
stands today, comes as Sqoop and Sqoop 2. While Sqoop is the older
generation of the ETL framework in the Hadoop world, it is complete. On the
other hand, Sqoop 2 is a more recent advancement with a REST-based
interface but it is still not complete. For the purpose of installation, we'll
cover the installation of the Sqoop version specifically.

Sqoop binary packages can be downloaded and extracted as given below:

1. Download the binary package of sqoop with hadoop2 compatibility with
the following command:

wget https://www-eu.apache.org/dist/sqoop/1.4.6/sqoop-1.4.6.bin__hadoop-2.0.4-alpha.tar.gz

2. Extract this tarball in any of the user directories, let us refer to it as
${SQOOP_HOME}, with the following command:

tar -zxvf <DOWNLOAD_LOCATION>/sqoop-1.4.6.bin__hadoop-2.0.4-alpha.tar.gz

3. Configure the ${SQOOP_HOME} environment variable with the
following command and add the same to ~/.bashrc:

export SQOOP_HOME=${SQOOP_HOME}

export PATH=$PATH:$SQOOP_HOME/bin

4. Verify by invoking sqoop --help in the CentOS shell.

Alternatively, to build and install Sqoop from source, please follow the
following steps:

1. Download the latest version of Sqoop from:

wget http://www-eu.apache.org/dist/sqoop/1.4.6/sqoop-1.4.6.tar.gz

2. Extract this tarball in any of the user directories; let's refer to it as
${SQOOP_HOME}, with the following command:

tar -zxvf <DOWNLOAD_LOCATION>/sqoop-1.4.6.tar.gz

3. Follow instructions in COMPILING.txt to compile the source code, or
alternatively using ssh change into ${SQOOP_HOME} and run the following
command:

ant release

4. During the install, if any executables are reported to be missing, please
install them using package installer (yum install <required package>). The
ones we encountered on CentOS 7 were, AsciiDoc, LSB and xmlto.

5. After the install, copy the bin folder of Sqoop source into build/bin and
copy the build folder to an independent folder.

6. Configure the ${SQOOP_HOME} environment variable with the following
command and add the same to ~/.bashrc:

export SQOOP_HOME=${SQOOP_HOME}

export PATH=$PATH:$SQOOP_HOME/bin

7. Verify by invoking sqoop -help in the CentOS shell.

Step 5 - Installing and verifying
PostgreSQL (RDBMS)
We have selected PostgreSQL as our relational database, which we would be
using both as a metastore as well as a data store for relational information.
While the sample described in this chapter may correspond to Sqoop, the
installation will be reused across the chapter.

PostgreSQL provides ready packages for almost all the common operating
systems. For Linux, the PostgreSQL is available as a standard package that
can be installed using native package installer. On CentOS 7, we followed the
following steps.

1. Run the following command in terminal:

sudo yum install postgresql-server*

2. Once the database is installed, please initialize the database by running
the following:

sudo service postgresql initdb

sudo chkconfig postgresql on

3. Start postgres server with the following command:

sudo service postgresql start

4. By this time, a Postgres user (non-interactive) has been created on the
system. The database password for this user may be altered with the
following commands:

sudo -u postgres psql postgres

This would take you into Postgres shell which would be indicated
as postgres=#. Use the following command to enter the new
password:

postgres=# password postgres

5. Exit the Postgres shell by entering the following command:

postgres=# q

6. Next, we will need to alter configurations in the data directory of the
newly created database. Invoke the following command to see the data
directory and the port on which PostgreSQL is running. Default port is
5432. As a reference, it can be seen something similar
to /usr/bin/postgres -D /var/lib/pgsql/data -p 5432 after the command is
executed:

sudo service postgresql status

7. Set the permissions to modify the pgsql data files with the following
command:

sudo chmod 777 -R /var/lib/pgsql

8. Now go to data directory of Postgres and alter the pg_hba.conf
(/var/lib/pgsql/data/pg_hba.conf) to allow local and remote users connect
to the database using postgres user credentials. A typical modified file of
pg_hba.conf looks as given:

TYPE DATABASE USER ADDRESS METHOD

"local" is for Unix domain socket connections only

local all all md5

IPv4 local connections:

host all all 127.0.0.1/32 md5

IPv6 local connections:

host all all ::1/128 md5

remote connections

host all all 0.0.0.0/0 md5

Allow replication connections from localhost, by a user with the

replication privilege.

#local replication postgres peer

#host replication postgres 127.0.0.1/32 ident

#host replication postgres ::1/128 ident

9. The lines highlighted above have been changed from their original
values to enable a normal username/password based login.

10. Now, we will need to modify the /var/lib/pgsql/data/postgresql.conf file
with the following:

11. Set the permissions back onto the folder /var/lib/pgsql with the
following command:

sudo chmod 0700 -R /var/lib/pgsql

12. Start/Restart the PostgreSQL service with the following command:

sudo service postgresql restart

This completes the database setup. In order to be able to remotely access this
database please ensure the following:

The database port is open and accessible
A client application is installed to help run the query on Postgre
database. We would recommend installing pgAdmin4 as the PostgreSQL
client.

Step 6 - Installing and verifying
HBase (NoSQL)

1. Download HBase binary version 0.98.24 from the following URL using
the command:

wget https://archive.apache.org/dist/hbase/0.98.24/hbase-0.98.24-hadoop2-bin.tar.gz

At the time of authoring this book, the stable version of HBase
was 1.2.4, but we were forced to fallback to 0.98.x vesion of
HBase due to compatibility issues of Sqoop 1 with newer
versions of HBase.

2. Extract the above binary with tar command as shown below, from the
directory where you would want to extract it, let us refer to it as
${HBASE_HOME}:

tar -zxvf downloads/hbase-0.98.24-hadoop2-bin.tar.gz

3. Set an environment variable HBASE_HOME pointing to the directory where
the files have been extracted with following command and add the same
to ~/.bashrc file:

export HBASE_HOME=${HBASE_HOME}

export PATH=$PATH:$HBASE_HOME/bin

4. Once extracted, we can observe that the HBase configuration files are
placed in ${HBASE_HOME}/conf directory.

5. Lookup hbase-site.xml in <HBASE_HOME>/conf directory, and please modify
the following as shown below (centos is the username used in this
sample configuration, this can be replaced with the username on the
VM. Also, replace the localhost with IP address of HDFS).

<configuration>

 <property>

 <name>hbase.rootdir</name>

 <value>hdfs://localhost:9000/user/centos/hbase</value>

 </property>

 <property>

 <name>hbase.zookeeper.property.dataDir</name>

 <value>/home/testuser/zookeeper</value>

 </property>

</configuration>

6. Please start HBase by executing <HABSE_HOME>/bin/start-hbase.sh, which
would start the Hbase service which can be monitored at
http://localhost:60010:

Figure 09: HBase Service Console

7. We may verify the HBase install by launching it's shell and running
some basic HBase queries:

1. Launch the shell by executing <HBASE_HOME>/bin/hbase shell
command.

2. Create a test table by executing the following query inside the shell:

create 'test', 'cf'

3. If the above table gets created successfully, it indicates that the
basic setup is successful and refreshing the HBase Service home
page lists the table created as shown:

Figure 10: HBase Install Verification

8. Also, alternatively, please consider referring to the Get Started page of
HBase of further reference.

This is the basic setup of HBase and would be sufficient for us to run a few
Sqoop examples.

Configure data source (ingestion)
In this section we will see how to configure our data source which will be
considered as a source for data ingestion into our Data Lake.

1. Login into PostgreSQL database using a client (pgAdmin4) with the user
postgres and respective credentials.

2. Create the source database that would have customer profile
information. This database can be created using pgAdmin4 UI, let us name
it as sourcedb.

3. Execute the following script to create the table:

CREATE TABLE public."customer"(

 id integer NOT NULL,

 first_name character varying COLLATE pg_catalog."default",

 last_name character varying COLLATE pg_catalog."default",

 dob date,

 CONSTRAINT "customer_pkey" PRIMARY KEY (id)

)

WITH (

 OIDS = FALSE

)

TABLESPACE pg_default;

ALTER TABLE public."customer"

OWNER to postgres;

4. Insert a few rows of data into this table with a script as given
below:

INSERT INTO public."customer" values(0,'tomcy','john','1985-10-20');

INSERT INTO public."customer" values(1,'rahul','dev','1989-08-15');

INSERT INTO public."customer" values(2,'pankaj','misra','1982-08-10');

INSERT INTO public."customer" values(3,'devi','lal','1990-05-06');

INSERT INTO public."customer" values(4,'john','doe','1992-06-25');

With the above steps completed we are ready with our source data that we
would want to import into HDFS. The table in postgresql should now look as
shown in the figure (Figure 11):

Figure 11: Loaded sample data in RDBMS

Sqoop configuration (database
drivers)
In order to configure Sqoop with required database drivers, please follow the
following steps:

1. Since the database of our choice is postgresql, please download the
postgresql JDBC driver from the following location (the latest driver at
the time of authoring this book) from within the VM (CentOS) using the
following command:

wget https://jdbc.postgresql.org/download/postgresql-9.4.1212.jre6.jar

2. Place the JDBC driver inside ${SQOOP_HOME}/lib folder.

Configuring HDFS as destination
Sqoop’s natural destinations are HDFS and RDBMS for import and export
respectively. However, Sqoop 2 also supports few more connectors to the list,
namely Kafka and Kite.

Kite is a high-level data layer for Hadoop. It is an API and a set of tools that
speed up development. You configure how Kite stores your data in Hadoop,
instead of building and maintaining that infrastructure yourself.

- http://kitesdk.org/docs/current/

With respect to Sqoop 1, both the source and destination are provided as part
of the command line parameters, as would be evident in the examples
covered in this chapter.

Sqoop Import
Sqoop when compiled comes with a set of shell scripts that invoke the Sqoop
jobs. All the Sqoop operations are performed via a single shell script, which
can be found inside ${SQOOP_HOME}/bin, i.e. sqoop.sh.
In order to perform a data import from the configured sources, i.e. postgresql
database into HDFS, the shell command can be run as given:

bin/sqoop import --connect jdbc:postgresql://<DB_SERVER_ADDRESS>/<DB_NAME>?schema=<SCHEMA> --table <TABLE_NAME> --m 1 --username <DB_USER_NAME> --password <DB_PASSWORD>

Where:

 <DB_SERVER_ADDRESS> → Address (hostname/IP) of the database

 <DB_NAME> → Database Name

 <SCHEMA> → Database Schema where the source table exists

 <TABLE_NAME> → Name of the table to be imported

 <DB_USER_NAME> → Name of the postgresql user who has access to the

 table

 <DB_PASSWORD> → Database password for the user

 --me → Indicates number of map tasks

In our case, the filled-in command is as shown:

sqoop import --connect jdbc:postgresql://<CentOS_IP>/sourcedb?schema=public --table customer --m 1 --username postgres --password <password>

Once the import is complete, the imported files can be viewed via Hue or by
Namenode UI (Utilities | Browse the file system), as shown in the
screenshots.

The figure shows the HDFS view in Hue:

Figure 12: HDFS View in Hue (HDFS Browser menu in top right)

The figure (Figure 13) shows the same HDFS view in the Namenode UI:

Figure 13: HDFS View in Namenode UI (Utilities/Browse the filesystem
menu)

If we look into the file, we see that this file has the contents which we had
initially inserted into the sourcedb database in PostgreSQL:

Figure 14: File Contents via Hue

This file written into HDFS has been written in text format, which is the
default format until and unless specified. Alternatively, the same Sqoop
import could be run to import the data into HDFS as binary Avro data files as
well, by making a small change to the import parameters as shown below.

bin/sqoop import --connect jdbc:postgresql://<DB_SERVER_ADDRESS>/<DB_NAME>?schema=<SCHEMA> --table <TABLE_NAME> --m 1 --username <DB_USER_NAME> --password <DB_PASSWORD> --as-avrodatafile --append

The resulting difference can be seen in the following screenshots. The figure
below shows the Avro file uploaded to HDFS viewed using Hue in the HDFS
File browser.

Figure 15: Import as Avro Data File via Hue

In the previous screenshot, clicking on the Avro part file would show the
content stored in HDFS as shown in following screenshot:

Figure 16: Avro Data File Contents via Hue

As seen in previous figure, the Avro representation of data is slightly
different from text representation. An Avro file is also compressed, hence

provides the benefits of compression at storage levels.

Import complete database
Sqoop executable also comes with the capability to import all tables from a
relational database to HDFS. The typical syntax to perform this is as given:

sqoop import-all-tables (generic-args) (import-args)

With respect to the previous import command, the only difference here would
be to use the import-all-tables option of Sqoop command. A sample
command is as shown:

bin/sqoop import-all-tables --connect jdbc:postgresql://<DB_SERVER_ADDRESS>/<DB_NAME>?schema=<SCHEMA> --m 1 --username <DB_USER_NAME> --password <DB_PASSWORD> --as-avrodatafile

As we come to this point, we also realize that in order to see this command in
action, we should have multiple tables in the relational database. Hence, I
would suggest creating an additional table of addresses related to customers:

CREATE TABLE public.address

(

 id integer NOT NULL,

 custumer_id integer NOT NULL,

 street1 character varying COLLATE pg_catalog."default",

 street2 character varying COLLATE pg_catalog."default",

 city character varying COLLATE pg_catalog."default",

 state character varying COLLATE pg_catalog."default",

 country character varying COLLATE pg_catalog."default",

 zip_pin_postal_code character varying COLLATE pg_catalog."default",

 CONSTRAINT address_pkey PRIMARY KEY (id),

 CONSTRAINT customer_fkey FOREIGN KEY (custumer_id)

 REFERENCES public.customer (id) MATCH SIMPLE

 ON UPDATE NO ACTION

 ON DELETE NO ACTION

)

WITH (

 OIDS = FALSE

)

TABLESPACE pg_default;

ALTER TABLE public.address

 OWNER to postgres;

Once the table is created, the following scripts may be used to load sample
data:

INSERT INTO address (id, custumer_id, street1, street2, city, state, country, zip_pin_postal_code)

VALUES (0, 0, 'd-40', 'chavez street', 'trivandrum', 'kerala', 'india', '778908');

INSERT INTO address (id, custumer_id, street1, street2, city, state, country, zip_pin_postal_code)

VALUES (1, 1, 'l-90', 'cooper street', 'mumbai', 'maharashtra', 'india', '400056');

INSERT INTO address (id, custumer_id, street1, street2, city, state, country, zip_pin_postal_code)

VALUES (2, 2, 'a-47', 'sector-11', 'noida', 'uttar pradesh', 'india', '201311');

INSERT INTO address (id, custumer_id, street1, street2, city, state, country, zip_pin_postal_code)

VALUES (3, 3, 'r-98', 'sector-37', 'gurgaon', 'haryana', 'india', '122021');

INSERT INTO address (id, custumer_id, street1, street2, city, state, country, zip_pin_postal_code)

VALUES (4, 4, '201', 'high street', 'austin', 'texas', 'us', '41101');

If we want to see the import-all-tables in action, we will have to remove
existing files in HDFS otherwise this command would fail with a message
similar to: Output directory hdfs://localhost:9000/user/<username>/customer
already exists.

In order to remove the contents from HDFS, we may run the following
command in the shell:

hdfs dfs -rm -r /user/<username>/*

After the import of tables are done, we see that the tables were traversed in a
cascading manner to retrieve all the information as shown in the following
screenshot:

Figure 17: Import all tables in a database into HDFS

Import selected tables
In order to import selected tables, there is no direct mechanism in Sqoop,
however it can be achieved by scripting. Sqoop does support getting a list of
all tables, and then these tables can be looped over to import selective tables
into HDFS.

Import selected columns from a
table
Sqoop does provide a command line option to import selected columns into
HDFS. This be done either by using the --columns option or by using free form
query capability of Sqoop. Both of these variations are shown as follows:

Using --columns options:

bin/sqoop import --connect jdbc:postgresql://<DB_SERVER_ADDRESS>/<DB_NAME>?schema=<SCHEMA> --table customer --columns id,first_name,last_name --m 1 --username <DB_USER_NAME> --password <DB_PASSWORD> --as-avrodatafile --append

Using free form query capability

sqoop import --query 'SELECT c.*, a.* FROM customer c JOIN address a on (c.id == a.id) WHERE $CONDITIONS' -m 1 --target-dir /user/foo/joinresults

Import into HBase
As indicated earlier during the installation steps, Sqoop can also
import/export data with HBase as destination/source respectively. Here we
shall see how to initiate data import from RDBMS into HBase using Sqoop.

bin/sqoop import --connect jdbc:postgresql://<DB_SERVER_ADDRESS>/<DB_NAME>?schema=<SCHEMA> --table <TABLE_NAME> --m 1 --username <DB_USER_NAME> --password <DB_PASSWORD> -hbase-table <HBASE_TABLE_NAME> --column-family <HBASE_COLUMN_FAMILY_NAME> -hbase-create-table

An example with filled-in values for the above command is as shown as
follows:

sqoop import --connect jdbc:postgresql://<CentOS_IP>/sourcedb?schema=public --table customer --m 1 --username postgres --password <password> -hbase-table customer --column-family h_cust_col1 -hbase-create-table

As we see here, there are a few new arguments used specific to HBase.
HBase is a NoSQL data store with primary capability to support key value
pairs and column families, the arguments used here are specified for table
name and column family definition.

After we run the above Sqoop import command, we observe the data to be
imported in HDFS storage area of HBase.

In order to view the data in HBase, we can use hbase shell, which can be
launched by running the following command in the VM (CentOS) shell:

${HBASE_HOME}/bin/hbase shell

Once the hbase shell is initialized, run the command as shown in the
following screenshot:

Figure 18: Imported Table into HBase as seen in "HBase shell"

There is no direct way to export data from HBase using Sqoop; however, it
can be achieved by making a Hive view over HBase tables. We will discuss
Sqoop export from HDFS in detail in the next section.

Sqoop Export
Similar to the Sqoop import function, Sqoop also can export data from HDFS
to a relational database. The precondition, however, is that the table must be
already existing in the target database:

sqoop export (generic-args) (export-args)

sqoop export --connect jdbc:postgresql://<DB_SERVER_ADDRESS>/<DB_NAME>?schema=<SCHEMA> --table <TABLE_NAME> --m 1 --username <DB_USER_NAME> --password <DB_PASSWORD> --export-dir <HDFS_SOURCE_PATH>

Here <HDFS_SOURCE_PATH> is the Hadoop filesystem path as a source that would
be exported to a target database:

Figure 19: Export to RDBMS from HDFS using Sqoop Export

Sqoop Job
The Sqoop framework also supports concept of Jobs. A Sqoop job may be
defined and saved for reusability of Sqoop commands. A Sqoop job typically
consists of a source and a destination defined with a few other optional
parameters. A Sqoop job is saved in Sqoop metadata for reusability and
remote access.

Job command
A job is stored as a metadata entity within Sqoop metastore. The primary
objective of creating a job is to define a one-time configuration between
source and target systems and reuse it multiple times to perform export or
import. Like any other entity, even job supports lifecycle methods such as
create, get, update, and delete with a few other functions. We will discuss
these functions in the next sections.

Create job
A typical syntax for creating a Sqoop job execution can be defined as:

sqoop job (generic-args) (job-args)

 [-- [subtool-name] (subtool-args)]

bin/sqoop job --create <JOB_NAME> -- <OPERATION_NAME> --connect jdbc:postgresql://<DB_SERVER>/sourcedb?schema=public --table <TABLE_NAME> --m 1 --username <DB_USER> --password <DB_PASSWORD> --as-avrodatafile

Where,

<JOB_NAME> → Name of the job to be created

<OPERATION_NAME> → Name of the sqoop operation to be defined, e.g. import

<DB_SERVER> → DB Server address or IP

<TABLE_NAME> → Name of the table to be imported

<DB_USER> → Username of the DB containing data to be imported

<DB_PASSWORD> → Password of the DB containing data to be imported

Please observe the spaces around --. These spaces are
interpreted as separators of one segment of command from the
other.
For simplicity, the embedded default datastore, namely
HSQLDB, is considered here as Sqoop 1 metastore.

HSQLDB is a relational database engine written in Java, with a JDBC
driver, conforming to ANSI SQL:2011. A small, fast, multithreaded engine
and server with memory and disk tables, LOBs, transaction isolation,
multiversion concurrency and ACID.

- https://sourceforge.net/projects/hsqldb/

List Job
The configured jobs can be listed by using the following command:

bin/sqoop job --list

Run Job
Running the job would always require accessing the stored job and then
executing it, hence meta connect (connection to Sqoop 1 metastore where job
metadata is stored) would be required here as well. The following command
would execute a stored job.

bin/sqoop job --exec <JOB_NAME>

If prompted for password, please enter your PostgreSQL user password.

Create Job
A typical syntax for creating a Sqoop job execution can be defined as:

sqoop job (generic-args) (job-args)

 [-- [subtool-name] (subtool-args)]

bin/sqoop job --create <JOB_NAME> -- <OPERATION_NAME> --connect jdbc:postgresql://<DB_SERVER>/sourcedb?schema=public --table <TABLE_NAME> --m 1 --username <DB_USER> --password <DB_PASSWORD> --as-avrodatafile

Where,

 <JOB_NAME> → Name of the job to be created

 <OPERATION_NAME> → Name of the sqoop operation to be defined, e.g. import

 <DB_SERVER> → DB Server address or IP

 <TABLE_NAME> → Name of the table to be imported

 <DB_USER> → Username of the DB containing data to be imported

 <DB_PASSWORD> → Password of the DB containing data to be imported

Sqoop 2
Sqoop 2 contains all the capabilities as described above in the context of
Sqoop 1, as well as many of the new capabilities which do not exist in Sqoop
1. These include Sqoop-shell, metadata support for multiple databases as
repositories, as well as concept of links and remotability of Sqoop jobs.

Sqoop 2 runs from within an embedded container and depends on Hadoop
environment variables to locate all dependencies.

Here, we are referring to v 5 of Sqoop 2 primarily because it worked slightly
better than the latest versions of Sqoop 2 at the time of authoring this book.

In order to install Sqoop 2, the following steps are required to be performed:

1. Download the Sqoop 1.99.5 (yes, this officially called as Sqoop 2)
binary distribution for Hadoop 2 using the following command:

wget http://archive.apache.org/dist/sqoop/1.99.5/sqoop-1.99.5-bin-hadoop200.tar.gz

2. Once the download is complete, extract the contents of the tarball into a
user directory with the following command. Let us refer to the extracted
Sqoop folder as ${SQOOP2_HOME} and update the ~/.bashrc file accordingly.

tar -zxvf ${DOWNLOAD_DIR}/sqoop-1.99.5-bin-hadoop200.tar.gz

3. Configure the file located at
${SQOOP2_HOME}/server/conf/catalina.properties to contain all the absolute
classpath directories of our Hadoop install. A sample of such a
configuration in our case is given below for reference
(/data1/home/centos/hadoop-2.7.3 below refers to ${HADOOP_HOME} and makes
sure absolute path is given, as it doesn't resolve environment variables
correctly):

common.loader=${catalina.base}/lib,${catalina.base}/lib/*.jar,${catalina.home}/lib,${catalina.home}/lib/*.jar,${catalina.home}/../lib/*.jar,/data1/home/centos/hadoop-2.7.3/share/hadoop/common/lib/*.jar,/data1/home/centos/hadoop-2.7.3/share/hadoop/common/*.jar,/data1/home/centos/hadoop-2.7.3/share/hadoop/hdfs/*.jar,/data1/home/centos/hadoop-2.7.3/share/hadoop/hdfs/lib/*.jar,/data1/home/centos/hadoop-2.7.3/share/hadoop/mapreduce/*.jar,/data1/home/centos/hadoop-2.7.3/share/hadoop/mapreduce/lib/*.jar,/data1/home/centos/hadoop-2.7.3/share/hadoop/yarn/*.jar,/data1/home/centos/hadoop-2.7.3/share/hadoop/yarn/lib/*.jar

4. Configure ${SQOOP2_HOME}/server/conf/sqoop.properties to point to the

Hadoop configurations as shown:

org.apache.sqoop.submission.engine.mapreduce.configuration.directory=/data1/home/centos/hadoop-2.7.3/etc/hadoop

5. Set the permissions to the Sqoop 2 scripts with the following command:

chmod +x ${SQOOP2_HOME}/bin/*

6. Verify the Sqoop 2 configuration with the following command (if there
is an error Caused by: java.sql.SQLNonTransientConnectionException:
No current connection, ignore it and the configuration is all good):

${SQOOP2_HOME}/bin/sqoop2-tool verify

7. Launch the sqoop 2 server with the following command:

${SQOOP2_HOME}/bin/sqoop2-server start

Hue comes with native integration with Sqoop 2, and at the time of authoring
this book, there were incompatibilities found between Hue and Sqoop 2.
These incompatibilities have been raised and are currently bugs registered in
Hue JIRA. Once such link is provided for reference: https://issues.cloudera.org/br
owse/HUE-5128.

However, we observed that once we have Sqoop 2 set up and working, we
could use Sqoop 2 shell and view the configured jobs and connectors in Hue.
Some of the screenshots have been provided as an indicative reference. Once
we have the issues fixed in Hue for Sqoop 2, we will see that this would be a
very strong capability for actively managing Sqoop 2 via Hue.

In the images below, we see a few configurations for resource links that can
be configured via Hue for Sqoop 2 (in the Data Browser menu item, click
on Sqoop Transfer). Here, we are configuring a database link and an HDFS
link.

https://issues.cloudera.org/browse/HUE-5128

Figure 20: RDBMS to HDFS via Sqoop 2 and Hue

Clicking on next navigates Hue to the next screen which captures the
database connection details to finally save the database link to the database
repository.

Figure 21: RDBMS Link

Similarly, an HDFS link can also be configured with hdfs link name and
HDFS URI as shown:

Figure 22: HDFS Link

Like Sqoop 1, Sqoop 2 also needs a metadata repository. By default, Sqoop 2
uses an embedded Apache Derby database (https://db.apache.org/derby/);
however, external databases can also be configured via sqoop.properties file.
A sample of this file is provided in the following code block highlighting the

https://db.apache.org/derby/

Sqoop 2 repository configuration:

External connectors load path

"/path/to/external/connectors/": Add all the connector JARs in the specified folder

#

org.apache.sqoop.connector.external.loadpath=

org.apache.sqoop.repository.jdbc.handler=org.apache.sqoop.repository.postgresql.PostgresqlRepositoryHandler

org.apache.sqoop.repository.jdbc.maximum.connections=4

org.apache.sqoop.repository.jdbc.url=jdbc:postgresql://192.168.43.28/sqoop?schema=SQOOP

org.apache.sqoop.repository.jdbc.driver=org.postgresql.Driver

org.apache.sqoop.repository.jdbc.user=sqoop

org.apache.sqoop.repository.jdbc.password=sqoop

org.apache.sqoop.repository.jdbc.transaction.isolation=READ_COMMITTED

As shown in the code snippet above, we would need to create a user sqoop for
the above configuration to work. Cloudera provides a reference page on how
to set up this user at the following location: https://goo.gl/F6iJsb.

We have also referred (from Cloudera) to those setup instructions below,
with very minor modifications with respect to the specific PostgreSQL
version we are working with in this book. Full setup and detailing of Sqoop 2
is outside the scope of this book:

$ psql -U postgres

Password for user postgres: *****

postgres=# CREATE ROLE sqoop LOGIN ENCRYPTED PASSWORD 'sqoop'

NOSUPERUSER INHERIT CREATEDB NOCREATEROLE;

CREATE ROLE

postgres=# CREATE DATABASE "sqoop" WITH OWNER = sqoop

ENCODING = 'UTF8'

TABLESPACE = pg_default

LC_COLLATE = 'en_US.UTF-8'

LC_CTYPE = 'en_US.UTF-8'

CONNECTION LIMIT = -1;

CREATE DATABASE

postgres=# q

https://goo.gl/F6iJsb

Sqoop in purview of SCV use case
As we have seen here, Sqoop covers a substantial part of building a single
customer view, as we discussed in Chapter 1, Introduction to Data. Sqoop
covers one of the most prominent channels for data acquisition, i.e. data
transfer from relational databases to the HDFS layer. Most business and
partner apps fall into this category and amount to a majority of structured
information.

Hence, from the perspective of building a single customer view:

Figure 23: Sqoop in purview of SCV use case

As seen from the above, out of the entire single customer view, we still have
various other types of information to be captured, which we will be covering

in the chapters to follow.

From the perspective of single customer view, we discussed in this chapter
various import and export mechanisms of data. As we start building a
complete data lake for single customer view, we can visualize various
architecture layers and components getting introduced.

From the Sqoop usage perspective, the layers being introduced here are data
acquisition and can be visualized as shown:

Figure 24: Acquisiton Layer with Sqoop for Single Customer View

When to use Sqoop
Apache Sqoop could be employed for many of the data transfer requirements
in a data lake, which has HDFS as the main data storage for incoming data
from various systems. These bullet points give some of the cases where
Apache Sqoop makes more sense:

For regular batch and micro-batch to transfer data to and from RDBMS
to Hadoop (HDFS/Hive/HBase), use Apache Sqoop. Apache Sqoop is
one of the main and widely used technologies in the data acquisition
layer.
For transferring data from NoSQL data stores like MongoDB and
Cassandra into the Hadoop filesystem.
Enterprises having good amounts of applications whose stores are based
on RDBMS, Sqoop is the best option to transfer data into a Data Lake.
Hadoop is a de-facto standard for storing massive data. Sqoop allows
you to transfer data easily into HDFS from a traditional database with
ease.
Use Sqoop when performance is required, as it is able to split and
parallelize data transfer.
Sqoop has a concept of connectors and, if your enterprise has diverse
business applications with different data stores, Sqoop is an ideal choice.

When not to use Sqoop
Sqoop is the best suited tool when your data lives in database systems such
as Oracle, MySQL, PostgreSQL, and Teradata; Sqoop is not a best fit for
event driven data handling. For event driven data, it's apt to go for Apache
Flume (Chapter 7, Messaging Layer with Apache Kafka in this book covers
Flume in detail) as against Sqoop. To summarize, below are the points when
Sqoop should not be used:

For event driven data.
For handling and transferring data which are streamed from various
business applications. For example data streamed using JMS from a
source system.
For handling real-time data as opposed to regular bulk/batch data and
micro-batch.
Handling data which is in the form of log files generated in different
web servers where the business application is hosted.
If the source data store should not be put under pressure when a Sqoop
job is being executed, it's better to avoid Sqoop. Also, if the bulk/batch
have high volumes of data, the pressure that it would put on the source
data store would be even greater, which is usually not desirable.

Real-time Sqooping: a possibility?
For real-time data ingestion we don't think Sqoop is a choice. But for near
real-time (not less than 5 mins, no particular reason for choosing the time as 5
mins), Sqoop could be used for transferring data. Since these are more
frequent, the volume of data should also be in such a way that Sqoop can
handle and complete it before the next execution starts.

Other options
For the bulk/batch transfer of data from RDBMS to the Hadoop filesystem
there aren't many options in the open source world. However, there are
possible choices whereby we could transfer data from RDBMS to Hadoop,
and this section tries to give you the reader some possible options so that,
according to enterprise demands, they can be evaluated and brought into the
data lake as technologies if found suitable.

Native big data connectors
Most of the popular databases have connectors, using which data can be
extracted and loaded onto the Hadoop filesystem. For example, if your
RDBMS is Oracle, Oracle provides a suite of products which integrate the
Oracle database with Apache Hadoop. The figure below (Figure 09) shows
the full suite of Oracle Big Data connector products and what they do (details
taken from www.oracle.com).

Figure 25: Oracle Big Data connector suite of products

Similar to Oracle, MySQL RDBMS has MySQL Applier, which is the native
big data connector which can be used to load data from MySQL to Hadoop
filesystem. MySQL Applier is also capable of incremental data transfer (real-
time) as against the traditional batch by Sqoop. The following figure (Figure
10) shows the MySQL native connector to transfer data to HDFS.

http://www.oracle.com

Figure 26: MySQL Applier for Hadoop

Talend
Talend is an open source ETL development (graphical), monitoring and
scheduling tool. In purview of this chapter, we are only taking the ETL
capability of Talend into discussion but it has a suite of products having
different capabilities ideal for big data. Talend is supported by a very large
community and has a huge amount of connectors (800+, largest connector
library), using which you will be able to do the integration work with a
variety of tools and technologies with ease. Talend is a mature product and
supports a variety of big data technologies.

Having a rich set of connectors, Talend can integrate and transfer data from a
variety of database systems to Hadoop without much trouble and is a viable
alternate to Sqoop. Talend also has a graphical user interface, using which the
data pipelines can be authored and executed, making it very user-friendly to
operate. It also has a Sqoop connector, using which Sqoop’s advantages can
also be brought into your big data landscape.

A reference transformation graph taken from talendexpert.com is as shown in
the following figure (Figure 11):

Figure 27: Talend graphical user interface for ETL development

http://talendexpert.com

Pentaho’s Kettle (PDI - Pentaho
Data Integration)
Pentaho is an open source (commercial offering also available) Business
Intelligence (BI) suite comprising of a variety of products, one among it
being called Kettle, capable of data integration. Kettle is now called Pentaho
Data Integration (PDI). It's a Java based tool and supports cross platform,
having support for a variety of database technologies.

Pentaho comes with inbuilt readers and writes for both HDFS and relational
databases and provides a rich graphical user interface to enable data
movement and transformation.

Summary
In this chapter, we started introducing or rather mapping technologies into the
various data lake layers. In this chapter, we started with the technology
introduction in the data acquisition layer. We started the chapter with the
layer definition first, and then listed down reasons for choosing Sqoop by
detailing both its advantages and disadvantages. We then covered Sqoop and
its architecture in detail. While doing so, we covered two important versions
of Sqoop, namely version 1 and 2. Soon after this theoretical section, we
delved deep into the actual workings of Sqoop by giving the actual setup
required to run Sqoop, and then delved deep into our SCV use case and what
we are achieving using Sqoop.

After reading this chapter, you should have a clear understanding of the data
acquisition layer in our data lake architecture. You should have also gotten
in-depth details on Apache Sqoop and what are the reasons for choosing this
as a technology of choice for implementation. You would also have gained
knowledge on the actual working of Sqoop and how we can use it in action
by going through the working example. You would by now have also
implemented data acquisition functionality from PostgreSQL to HDFS using
Sqoop, which kickstarts our SCV use case using Data Lake.

In the next chapter, we will move on to the next layer in our Data Lake,
namely the Messaging Layer, and introduce the technology choices that we
have chosen in detail, similar to what we have done in this chapter.

Data Acquisition of Stream Data
using Apache Flume
To continue with the approach of exploring various technologies and layer in
Data Lakes, this chapter aims to cover another technology being used in the
data acquisition layer. Similar to the previous chapter (and, in fact, every
other chapter in this part of the book), we will first start with the overall
context in purview of Data Lake and then delve deep into the selected
technology.

Before delving deep into the chosen technology, we will give our reasons for
choosing this technology and also will familiarize you with adequate details
so that you are acquainted with enough details to go back to your enterprise
and start actually using these technologies in action.

This chapter deals with Apache Flume, the second technology in the data
acquisition layer. We will start off lightly on Apache Flume and then dive
deep into the nitty-gritties. Finally we will show you a working Flume
example--linking with our SCV use case. The final section of the chapter is
chosen to familiarize you with other similar technologies that can be used in
place of Flume to realize the capability in your Data Lake architecture.

After reading this chapter, you will have a clear idea of Flume's usage in the
architecture and will also have gained enough details on the full working of
Flume. You will also have hands-on experience with Flume and will have
progressed further in our journey to implement Data Lake and realize the
SCV use case.

This is really exciting; let's dive in!!

Context in Data Lake: data
acquisition
One of the V’s of Big Data makes this chapter significant in all aspects in the
modern era of any enterprise, namely Velocity. Traditionally, analytics was
all done on data collected in the form of data (slow data), but nowadays
analytics is done on data flowing in real time and then acted upon in real time
to make a meaningful contribution to the business. The business outcome can
be in the form of acting on a live Twitter stream of a customer to enhance
customer experience or showing up a personalized offer by looking at some
of his recent actions on your website. In this chapter, we will be covering
mainly the Data Acquisition part of real-time data in our Data Lake.

In Chapter 5, Data Acquisition of Batch Data with Apache Sqoop we have
detailed what the Data Acquisition layer is, so I won't be covering that in this
section. However there is a significant difference between the data handled in
Chapter 5, Data Acquisition of Batch Data with Apache Sqoop (which was
batch data) and real-time data (in this chapter). Let's understand these data
types in a bit more detail before delving into the technical aspects.

What is Stream Data?
Stream data is the data generated by a variety of business applications and
external applications (these days, almost all social media) continuously and in
a fast pace, usually having a small payload. There is a variety of data
that falls into this category, some which are as follows:

Log data generated by various web and application servers where your
application is hosted
Data generated by user behaviour (page impression, link clicks and so
on) on your company’s website
Loads of data generated by your customers on various social network
platforms
In recent times, data generated by various sensors as part of your
enterprise’s vision to go to IoT platforms

These are real time data which comes one after the other and makes sense
when processed in a sequential manner. For an enterprise analysing these
data and then responding appropriately can be a business model and this can
indeed transform their way of working. Looking at these data in real time
fashion and then personalizing according to customer needs can indeed be
very rewarding for the customer, but will also bring financial gains to the
business and can improve customer experience (intangible benefits).

The following figure shows the stream data from various so called sources
which will eventually come as is into the Data Lake or gets processed and
persisted in the data store:

Figure 01: Data Streaming in action

Enterprise should start using these data initially for bear minimum use cases,
for example, collect log data and see if there are errors which can be
proactively looked upon and corrected. Over a period of time, complex use
cases can be derived, say analyse user behaviour (from the behavioural data
by your user on your site) and serve the user in a real-time fashion
appropriate offers.

It's better to stream these data into the Hadoop file system as is without any
processing but we can also have an approach of putting data as is in Hadoop
and can also have some processing making real sense for business. These
processed data can then flow to a visual analytic tool and then showcase
necessary details for business to use these in real time business decision
making. Say, keep analysing booking data for your ecommerce site and if not
meeting the target, make necessary adjustments in the prices of each item
(may be give discounts for items having huge inventory and not really
selling).

One of the very fundamental issues with analysing stream data is to handle
message received in order. If the order if not maintained the analysis can
result in wrong interpretations which can have adverse negative impact on
business. The amount of data coming along can vary and it can be that when
the system is in load velocity of data can be very huge for the various
components to handle. Architecture principles like scalability, durability and
other aspects should be considered and dealt with.

Batch and stream data
The following table (Table 01) summarizes the main difference which exist
between batch and stream data. Our use case does have both these types of
data. For handling batch data we selected and used Sqoop as the technology
and for stream data handling and transfer to Hadoop we have selected Flume
as the choice.

Batch Data Stream Data

Mostly the volume
of data is quite high
and deal with a
chunk of data in
defined period of
time. Batch
consisting of
thousands of
records.

The volume of data is not that great. But, deal with
high velocity data and it comes continuously but
does not have defined period in which they come.
Stream data consist of single or few record. Few
records are sometimes also called as micro-batch as
the batch record size is quite small compared to
conventional batch.

Analysis or
processing is done
on a very large
period or all the
data.

Analysis and processing is done on a small dataset
over a moving time window in a continuous
 manner.

Period of operation
spans from minutes
to hours usually.

Operation period spans from milliseconds to
seconds in most of the cases.

Since the data set is
huge, complex
analysis can be
performed deriving
usual deductions for
business decision
making.

Simple analysis can be performed and in usual case
done with batch analysis to derive usual
information.

Example, customer
who has purchased
more electronic
items past month
when the sale was
going on.

Example, detection of credit card fraud as and
when a purchase happens OR RBA (Risk Based
Analysis) for important transactions in your
ecommerce website. According to risk, step up
authentication to multi factor (say One Time
Password) mechanism.

Table 01: Details summarizing difference between Batch and Stream data

The preceding table does state quite clearly the varying difference between
batch and stream data. This means, these two data need to be handled
accordingly when ingesting into the Data Lake.

Data acquisition of stream data -
technology mapping
The following figure brings in technology aspect to the conceptual
architecture that we will be the following throughout this book.

We have chosen Apache Flume as the real time data transfer technology and
this does come in the data acquisition layer of our Data Lake implementation.

Figure 02: Technology mapping for Acquisition Layer

Inline with our use case of SCV, the real time data from various business
applications will flow into the Flume and then transferred to the Hadoop file
system for storage and later analysis. The real time data from business
application that we are going to handle is the customer’s behavioural data
when dealing with the enterprise’s website. Data such as page visits, link
clicks, location details, browser details and so on will flow into Flume and
then stored in HDFS.

The following figure (Figure 03) shows only the aspect that we will be
delving deep in this chapter, rest of the layers and other aspects from Data
Lake is intentionally taken away from this diagram. However it does show
Sqoop also so that we are building onto our full-fledged Data Lake
architecture as we navigate through chapters one by one.

Figure 03: Working of Flume in the Data Lake

What is Flume?
Flume (not technical) is constructed to transfer logs down a mountain by
using the shear capability of water flowing through a constructed channel.
These channels can be build over a large distance and enables to transfer
these logs quickly, effectively and in a very cost effective manner. These
flumes can be used for transferring variety of materials, although initially the
main intent was to transfer logs and lumber.

Standing by its name Flume, it's a piece of technology which enables to
transfer huge amount of data from a source to its intended destination.
Similar to its physical counterpart (log Flume), this was also constructed
initially for transfer of log data accumulated in each servers (and other
software components), aggregate it and give a holistic analytical capability.
Later on it was extended for different sources and different destinations.

The following figure (Figure 04) gives the conceptual view of how Flume
functions. In our use case (Data Lake implementation with SCV in mind), we
will be using to capture log data (collected from various web servers) as well
as event data (mainly behavioural data) and channelling into the common
data storage (Hadoop system) as shown earlier in Figure 03:

Figure 04: Conceptual view of working of Flume

Sqoop and Flume
In this section, we are not going to compare the features of Sqoop and Flume;
rather we are doing this to bring out the difference between the two
technologies and what features these bring onto the table. For realizing our
Data Lake we do need two technical capabilities as offered by these
technologies for sure.

To put you reader at ease comparing these technologies and bring out its
capabilities, the following table has summarized information as points and
some details to elaborate the point. It's important to note that each row is not
a one on one comparison between the two, rather it summarizes capability of
each in a tabular, easily readable format.

Sqoop Flume

Batch data handling. Stream data (real time data)
handling.

Works on high volume of data. Size of
data can be of the range of gigabytes
to terabytes.

Works on low volume data with
high velocity. Data is usually
messages and of the range of
kilobytes to megabytes.

Main capability is to transfer data from
RDBMS to Hadoop (HDFS).

Main capability is to transfer
data in motion (stream) data into
Hadoop (HDFS).

Works really well with variety of
RDBMS, mainly using the JDBC
technique. Vendors of RDBMS does
have provision of writing their own
connector and can use many
optimization techniques (using native)
to achieve the best results.

Apart from message type of data,
Flume works well in bringing
log data into Hadoop.

Has capability to parallelize data N/A

transfer operation.

Most apt for data at rest (data residing
in RDBMS). Most suitable for data in motion.

Acts on data which is more or less
static in nature.

Acts on data which changes
often. Because it is event driven,
the order in which these events
reaches is quite important to
make sure that data integrity is
kept while bringing to the
Hadoop environment.

Works on data which is already
aggregated and collected.

Collection and aggregation of
data possible, it deals with the
most recent data.

Inherently reliable, highly
available and distributed in
nature.

Being batch, it can put undue pressure
on the source system from where data
is being transferred to HDFS.

Does Not put any pressure on the
source system and works
completely disconnected
manner.

Table 02: Sqoop and Flume difference summarized in a table

The following figure quite well summarizes the capability which Sqoop and
Flume brings in purview of the capability requirement required in
implementing the Data Lake.

Figure 05: Sqoop and Flume

Why Flume?
This section is dedicated explain you why we have chosen Flume as our
technical choice in the technical capability that we look to realize Data
Acquisition layer for handling stream/real time data.

With the following subsections, we will first dive into the history and then
into Flume’s advantages as well as disadvantages. The advantages detailed
are the main reasons for our choice of this technology for dealing with
transfer of real-time data into Hadoop.

History of Flume
Apache Flume was developed by Cloudera for handling and moving large
amount data produced into Hadoop. Without minimum or no delay (NRT:
Near Real Time or Real time) the company wanted the data produced to be
moved to Hadoop system, for various analysis to be carried. That was how
this beautiful came into existence.

As detailed in previous section, it was initially conceived and developed to
take care of a particular use case of collecting and aggregating log data from
various source (web servers) into Hadoop for performing various analytics
useful for proactive maintenance. Later on it was redesigned and refactored to
include different sources and destinations and also design was taken into
account for pluggability and extensibility in mind.

Very much similar to Sqoop, Flume also has two major flavours. They are:

Flume OG (Old Generation: pre 1.0)
Flume NG (New Generation)

As the name suggests, Flume OG was the initial Flume distribution, which
then underwent complete rewrite and refactoring giving rise to Flume NG.
Flume NG is the current supported and active Apache project and this is the
flavor we will use in our book. As of writing this book, the latest version of
Flume NG is 1.7.0, which was released on October 17, 2016. Flume got into
Apache Incubator with version 1.0.0 and 1.1.0.

Advantages of Flume
Some of the core advantages of Apache Flume which made this technology
chosen are as detailed here in bullet points:

Open source.
Very good documentation, with many examples and patterns of how
these can be applied, is available.
High throughput with low latency.
Declarative configuration.
Inherently distributed.
Highly reliable, available, and scalable (horizontally).
Highly extensible and customizable.
Less costly installation, operation and maintenance.
Contextual routing aspect has a dedication subsection in this chapter.
But for you to have a heads-up, this is an aspect of Flume to look at the
payload (stream data or event) and construct a routing which is apt.
Build-in support for a variety of source and destination systems.
Inherently highly pluggable.
Feature rich.
Transaction support is built in.
Capability of getting data from multiple servers into Hadoop easily
Supports different data flows like multiple-hop, fan-out, fan-in and so
on.
Good integration support with a variety of existing monitoring tools.

Disadvantages of Flume
Although Flume has good advantages attached to it, it does have some
disadvantages pulling it down on certain aspects. They are as follows:

Weak ordering guarantee.
Does Not guarantee that message reaching is unique (duplicate messages
might pop in at times, in many scenarios).
For an enterprise, sizing the hardware of a typical Flume can be tricky,
and in most cases, it's trial and error. Because of this, its scalability
aspect is often put under a lens.
The throughput that Flume can handle depends on the backing store of
the channel. So, scalability and reliability is under question when the
choice of backing store is not chosen wisely considering all factors.

Clearly Flume’s advantages overweight its disadvantages and that's one of
the main reason for our choice. Second aspect is it popularity (which is
relative) and that the reason not mentioned in the advantages but this aspect
really matters for an enterprise (easy recruitment, good community with
answers for every question).

Flume architecture principles
Any technology piece to be successful, should have clearly defined
architecture principles based on which its design is created and then evolved
throughout. Flume also comes in one such software and up next are some of
the architecture principles based on which Flume was designed (some of
those got introduced as part of Flume NG):

Reliability: The capability of continuously accepting stream data and
events without losing any data, in a variety of failure scenarios (mostly
partial failures). One of the core architecture principles taken very
seriously by Flume is fault-tolerance, which means that even if some
components fail or misbehave, some hardware issues pop up, or if
bandwidth or network behaves bad, Flume will accept these as facts of
life in most cases and carry on doing its main job without shutting down
completely. Flume does guarantee that the data reaching the Flume
Agent will eventually be handed over to other components as long as the
agent is kept running. There are settings that can be set to control the
reliability level. Good to know that higher the reliability, lower will be
the scalability.
Scalability: Flume has the ability to handle more stream data with mere
changes in hardware topology. Flume scales horizontally by allowing to
add additional machines to cater to the load of increased message
throughput. In the architecture section we will cover various
components which needs change when scaled horizontally. The
scalability does however depend on the destination system's ability to
keep taking data coming out of the pipeline and that at times can be a
defining aspect of how much your flume can scale.
Manageability: Ability to manage various components as part of the
solution centrally in all aspects is key to success installation of any
architecture in production. Apache Flume, using Flume master (will
explain in next section in detail) component allows managing all
components in a central fashion using defined settings controlled
through a web interface or Flume command line interface.
Extensibility: One of the very important principle which allows

integration of this technology with various source and destination
systems. This is a mandatory requirement and definitely one of the core
principles how Flume was designed and architected. This is achieved
mainly by writing new or using built-in connectors to connect to Flume
in both input and output.

These are some of the core architecture principles on which Flume was made
and in the following sections many of these aspects will get clarified more.

The Flume Architecture
We discussed in previous section, the architecture principles based on which
Flume was conceived, now let's deep dive into the architecture. Let's start off
with a very basic diagram detailing the architecture of Flume (Figure 06) and
then in the following sections keep diving deep.

Figure 06: Basic Flume Architecture

A simple Flume architecture has three important components, which work
together to transfer a data from source to destination in real time fashion
(stream or log data). They are:

Source: The responsibility of listening to stream data or events and then
putting it to the channel
Channel: A pipe where events are stored until it has been taken by
someone else
Sink: The responsibility of taking away events from the channel for
further processing (sending to another source) or persisting to a data
store. If sink operation fails, it will keep trying until success.

The following table summarizes some of examples for each of the
components in the Flume architecture namely Source, Channel and Sink:

Source Channel Sink

Console Memory Memory

Exec File JDBC

Syslog JDBC File

Avro and so on Null

JMS HDFS

Spooling Directory and so on

and so on

Table 03: Some examples of source, channel, and sink

Figure 06 depicts a very basic Flume architecture but according to various
setup or arrangements of these core components different topologies can be
setup and used according to the requirement. Some of the well known
arrangements are:

Distributed pipeline
Fan Out
Fan In

The following subsections gives you a very detailed description for these
arrangements. Also, it has another section which details advanced Flume
architecture by bringing in some more components into the basic one.

Distributed pipeline - Flume
architecture
The source, channel, sink unit can chain one after the other accomplishing
what is called as Distributed pipeline architecture, as shown in Figure 07:

Figure 07: Distributed pipeline Flume architecture

Fan Out - Flume architecture
Arrangement of the Flume components namely source and channel in such a
way that there is one source which is fed to many channels is termed as Fan
Out Flume architecture. The following figure (Figure 08) shows the Fan Out
architecture:

Figure 08: Fan Out Flume architecture

Fan In - Flume architecture
The arrangement of Flume's components, namely source and channel, in such
a way that there are many sources fed to one channel is termed as a Fan In
Flume architecture. The following figure (Figure 09) shows this architecture:

Figure 09: Fan In Flume Architecture

Next is a figure (Figure 10) that combines these Flume components in a more
complex manner, and it is more functionally suited to a particular use case.
This is shown to you to make you understand that according to your use case,
you are free to arrange these components:

Figure 10: Typical Flume Architecture arrangement catering to a use case

Three tier design - Flume
architecture
Most of the Flume deployments follow a well documented three tier design.
The three main tiers of this design are:

Agent Tier: This is the tier where the Flume agents are located along
with sources which contains data which have to be moved.
Collector Tier: This is the tier where the data from the agent tier is
collected using multiple collectors and then these are forwarded to the
next layer.
Storage Tier: This is the tier where data from collector tier flows finally
and stored. This will have file systems like HDFS where the data is
stored.

The following figure (Figure 11) shows the three tier design of a Flume
Architecture in action:

Figure 11: The three-tier design of Flume architecture

Advanced Flume architecture
The Flume architecture in an enterprise setting will have one more important
component namely Flume master, whose main responsibility is to serve as a
centralized authority for all the configurations of all nodes in the overall
architecture. Every machine participating in the architecture is termed as
node. Each node depends on the master to retrieve the configurations which
dictates as to how the Flume should perform its actions.

The entire Flume topology can be configured or reconfigured dynamically by
sending relevant commands using Thrift API to the Flume master.

The following figure (Figure 12) shows an advanced Flume architecture
arrangement, which shows the all-important Flume master controlling the
configuration and dictating the overall working and topology of Flume:

Figure 12: Advanced Flume architecture

Flume reliability level
Reliability is one of the core architecture principle based on which Flume
architecture was designed. To achieve this level of reliability, Flume provides
its user with configurable reliability levels. They are classified as follows:

End-to-end: When this reliability level is set, the event sent to Flume
will surely make it to the other end as long as the originating agent (the
agent which accepted the venet) is alive. To achieve this reliability
level, the agent when receiving an event stores/writes in the disk in
WAL (Write Ahead Log). When the event reaches the defined
endpoint and acknowledgement is sent all the way to the originating
agent and then the written event is erased. This level can withstand
failure of any component after the originating agent. As pointed out
earlier, higher the reliability lower is it scalability and this falls into
highest reliability level offered by Flume.
Store on failure: When this reliability level is set, the event when
traversing through different agents (hops), the originating agent of the
event will only store/write to the disk only if the agent to whom the
event was sent fails. In principal agent only write to disk the detail of
event if there is no acknowledgement from the next hop on agent. This
is a more practical reliability level but if there are silent failures, events
can be lost forever.
Best-effort: This reliability level is the weakest and the most lightweight
in which the vent is sent to the next hop without writing to the disk and
does not rely on any acknowledgement or failure coming back from the
next agent where the event was sent to.

Choose the right reliability level what your use case demands and always
keep in mind that more the reliability, less is the scalability and more is the
cost of maintenance.

Flume event - Stream Data
Event is the unit of data which is send across the Flume pipeline. The
structure of the event is quite simple and had two parts to it namely:

Event header: A Key/Value pair in the form Map<String, String>. These
headers are meant to add more data about the event. For example, these
headers can hold severity and priority aspects of this event, and so on.
These headers can also contain UUID or event ID which distinguishes
one event from the other.
Event payload: An array of bytes (byte array) in the form byte[]. 32 KB
is the default body size, which is usually truncated after that figure but
this is a configurable value in Flume.

This figure shows the internal structure of the Flume event, which hops from
one agent to another in Flume:

Figure 13: Anatomy of a Flume event

Flume agent
Flume agent is the smallest possible deployment comprising of Source,
Channel and Sink as its main components. The following figure shows a
typical Flume agent deployment:

Figure 14: Flume Agent components

Flume agent is a Java daemon which received event from a source and then
passes onto a channel, where it is usually written to the disk (according to
reliability level set) and then moves the event to the sink. When the sink
receives the event it sends acknowledgement back to channel and channel
erases the event from its store. The agent has a very small memory footprint
(-Xmx20m) and can be controlled declaratively using configurations.

Flume agent configurations
Some of these aspects have been unintentionally discussed in details in the
Flume architecture section, however we thought that separate section for
these agent configuration is required. Since we don't want to repeat ourselves,
we will be referring some aspects back to that section.

The following are main configurations using which agents can be arranged:

Multi-hop (multi-agent flow): Similar to the one given in the preceding
section Distributed pipeline - Flume architecture. One agent feeds the
event to another (called as a hop) and this carries on according to use
case demand. Figure 15 shows multi-hop flume agent configuration:

Figure 15: Multi-hop flume agent configuration

Consolidation (converging flow): Similar to one given in the preceding
section, Three tier design - Flume architecture. Multiple agents
consolidates the events and sends it across to other set of agents. Figure
16 shows this setup of agent configuration in action:

Figure 16: Consolidation flume agent configuration

Multiplexing: Similar to Figure 10 in which inside an agent a source
fans out to multiple channels and one of the channel feeds to another
agent’s source. This is one such setup and varied kinds of setup is
possible as demanded by the use case.

Flume source
Flume agent can have multiple sources, but it is mandatory to have at least
one source for it to function. The source is managed by Source Runner which
controls the threading aspect and execution models namely:

Event-driven and
Polling

In event-driven execution model the source listens and consumes events. In
polling execution model the source keeps polling for events and then deal
with it.

The event (as detailed earlier) can take a variety of content satisfying the
event schema (header and payload). The source, complying with the
architecture principle of extensibility, works on plugin approach. The source
requires mandated name and type. According to the type, source will demand
additional parameters and accordingly configurations have to set for it to
work fine. The source can accept single event or a batch of event (mostly and
in ideal case micro-batch as opposed to regular batch). Built-in sources in
Flume can be broadly classified as:

1. Asynchronous sources: Client sending the events doesn’t handle the
failure. Once the event is sent the client forget it (fire and forget). Some
of the examples are as follows:

Exec executes the command and ingest the output as data.
Configuration looks as shown in the code block:

agent.sources.http.type=http

agent.sources.http.port-8080

Syslog (spooling directory) parses the file and ingests the data. The
following configuration is just an example of how a spooling
directory can be configured:

agent.sources.spool.type = customerDataDir

agent.sources.spool.spoolDir = /data/lake/customerdata

agent.sources.spool.deletePolicy = immediate

2. Synchronous sources: After the event is sent and if the source doesn’t
acknowledge to the client, the client can deal with the failure scenarios
gracefully. Some of the examples are:

JMS, these are events produced and handled by Java Messaging
Service (Queues and Topics). Sample configuration for connecting
to an AMQP queue is as follows:

agent.sources.jms.type = jms

agent.sources.jms.initialContextFactory = org.apache.activemq.jndi.ActiveMQInitialContextFactory

agent.sources.jms.providerURL = tcp://datalakeserver:61616

agent.sources.jms.destinationName = customerData

agent.sources.jms.destinationType = customerDataQueue

HTTP inherently starts a web server to handle REST API. This is
an example configuration:

agent.sources.execSource.type=exec

agent.sources.execSource.command=’ps -ef | grep java’

Custom Source
If your use case demands a special source, a custom source can be written by
implementing source interface. An example of how this custom source (class
com.datalakebook.CustomSource) can be configured for an agent ag1 is as follows:

ag1.sources = src1

ag1.channels = ch1

ag1.sources.src1.type = com.datalakebook.CustomSource

ag1.sources.src1.channels = ch1

Flume Channel
A channel is a mechanism used by the Flume agent to transfer data from
source to sink. The events are persisted in the channel and until it is
delivered/taken away by a sink, they reside in the channel. This persistence in
channel allows sink to retry for each event in case there is a failure while
persisting data to the real store (HDFS).

Channels can be broadly categorized into two:

1. In-memory: The events are available until the channel component is
alive:

Queue: In-memory queues in the channel. This has the lowest
latency time for processing because the events are persisted in
memory.

2. Durable: Even after the component is dead, the event persisted is
available, and when the component becomes online, these events will be
processed:

File (WAL or Write-Ahead Log): The most used channel type.
It's durable and requires disk to be RAID, SAN or similar.
JDBC: A proper RDBMS backed channel that provides ACID
compliance.
Kafka: stored in Kafka cluster.

There is another special channel called Spillable Memory Channel, which
stores data in-memory and on disk. When the capacity of in-memory is full,
rest of the events are stored to disk (embedded file channel).

You will be clearly remembering the reliability section that has been
discussed earlier in this chapter. The reliability aspect depends on the channel
type which is being configured as detailed before. Channels also takes care of
the event ordering and also helps in transaction guarantee for the agent.

RAID (originally redundant array of inexpensive disks, now
commonly redundant array of independent disks) is a data

storage virtualization technology that combines multiple
physical disk drive components into a single logical unit for the
purposes of data redundancy, performance improvement, or
both.

A storage area network (SAN) is a network which provides
access to consolidated, block level data storage. SANs are
primarily used to enhance storage devices, such as disk arrays,
tape libraries, and optical jukeboxes, accessible to servers so
that the devices appear to the operating system as locally
attached devices.

In computer science, write-ahead logging (WAL) is a family of
techniques for providing atomicity and durability (two of the
ACID properties) in database systems. In a system using WAL,
all modifications are written to a log before they are applied.
Usually both redo and undo information is stored in the log.

In computer science, ACID (Atomicity, Consistency, Isolation,
Durability) is a set of properties of database transactions. In
the context of databases, a single logical operation on the data
is called a transaction.

- Wikipedia

Custom channel
The pluggable aspect of Flume can be used to write custom channel
according to your requirement satisfying the use case. For this, the class has
to be written implementing the channel interface. A sample configuration of a
custom channel for an agent ag1 for a custom channel class
com.datalakebook.CustomChannel is as follows:

ag1.channels = ch1

ag1.channels.ch1.type = com.datalakebook.CustomChannel

Flume sink
Similar to the source, the sink is managed by SinkRunne, which manages the
thread and execution model. Unlike a source, however, a sink is polling-
based and polls the channel for events. The sink is the component that
outputs (according to type of output required) it from the agent to an external
or other source. Sinks also participate in transaction management, and when
the output from a sink is successful, an acknowledgement is passed back to
the channel. The channel then takes the event away from the persistence
mechanism. Transaction management will be covered in detail in a separate
section.

There are a variety of existing sinks available, as follows:

HDFS: Write to HDFS. This currently supports writing text and
sequence files (in compressed format as well). The following is a sample
HDFS sink configuration (taken from Flume user guide) for an agent
named a1. The full configuration can be found in the Flume user guide (h
ttps://flume.apache.org):

a1.channels = c1

a1.sinks = k1

a1.sinks.k1.type = hdfs

a1.sinks.k1.channel = c1

a1.sinks.k1.hdfs.path = /flume/events/%y-%m-%d/%H%M/%S

a1.sinks.k1.hdfs.filePrefix = events-

a1.sinks.k1.hdfs.round = true

a1.sinks.k1.hdfs.roundValue = 10

a1.sinks.k1.hdfs.roundUnit = minute

HBase: Writes to HBase
AsyncHBase: Writes to HBase asynchronously
Hive: Writes text or JSON to Hive tables and partitions
Null & Logger: For debugging
Kafka: This can publish the event to a Kafka topic. For our use case, we
will definitely be using this sink
And so on

https://flume.apache.org

For a complete list of Flume Sinks and its configuration details, please go
through the Flume user guide (https://goo.gl/U8pS35) as covering this in all
aspects is outside the scope of this book.

https://goo.gl/U8pS35

Custom sink
Custom sink can be written taking advantage of its pluggable nature. You
need to implement the Sink interface according to your requirement to write
custom sink. Here is a sample configuration of how custom sink can be
configured for an agent ag1 for which com.datalakebook.CustomSink class is
written implement the Sink interface:

ag1.channels = ch1

ag1.sinks = cus1

ag1.sinks.cus1.type = com.datalakebook.CustomSink

ag1.sinks.cus1.channel = ch1

Flume configuration
Flume can be fully configured using the flume configuration file. A single
image speaks more than thousand words, so we will like to explain Flume
configuration using the following figure. An exhaustive flume configuration
is out of scope of this book, but will explain some core aspects of how the
flume can be configured and this can be base for understanding a full-fledged
configuration.

Figure 17: Flume Configuration Tree (sample)

The next code block shows the preceding configuration tree figure:

Active Flume Components

flumeAgent1.sources=source1

flumeAgent1.channels=channel1

flumeAgent1.sinks=sink1

Define and Configure Source 1

flumeAgent1.sources.source1.type=netcat

flumeAgent1.sources.source1.channels=channel1

flumeAgent1.sources.source1.bind=127.0.0.1

flumeAgent1.sources.source1.port=10010

Define and Configure Sink 1

flumeAgent1.sinks.sink1.type=logger

flumeAgent1.sinks.sink1.channels=channel1

Define and Configure Channel 1

flumeAgent1.channels.channel1.type=memory

Other Flume Agent configurations

flumeAgent2.sources=source2

…

When a configuration is loaded by Flume for actual execution, it follows
some defined rules. Some of which are as given next:

Every agent should have at least one channel
Every source should have at least one channel
Every sink should have only one channel
Agents should be named and only these named agents configurations are
loaded
Within a named agent, only active components are loaded
Every component defined should have its type defined

Flume transaction management
Throughout the previous sections we have indeed transaction aspects at
various stages. The following figure summarizes these discussions in a more
pictorial fashion:

Figure 18: Transaction management in Flume (Source Tx and Sink Tx)

This figure shows that incoming data from a client or previous sink starts the
present agent transaction and this is termed as Source Tx in the figure. The
Source Tx ends soon after the event is persisted in the channel and
acknowledgement received.

In purview of an agent a second transaction kicks in termed as Sink Tx
which start with the data being polled by the sink and when the data is
successfully transferred, channel uses the acknowledgement to remove the
data in the channel.

Flume does have transaction management in all aspects and according to use
case various reliability levels can be set in channel which decides how the
transaction behaviour (Sink Tx) is realized.

Other flume components
In addition to main components in Flume, there are other very important
components. These components will be discussed in some detail in this
section. The following figure shows all of these components working
together:

Figure 19: Other Flume components working together

The following subsection gets deep into working and responsibility of each of
the components in the preceding figure (Figure 19). Let's get started and
understand how these components will help you in designing the right Flume

component arrangement to execute your use case successfully.

Channel processor
As shown in Figure 19 the source sends the events to the channel processor.
Every source has its own channel processor and for persisting the event in the
channel, the source delegates the work to the channel processor, which
actually does the job of persisting according to the channel type.

Interceptor
As seen in the preceding figure, the channel processor then passes the events
to the interceptor. Channel selector has instance of its interceptor attached to
it.

Interceptors act upon event soon after the event is generated and before
sending it to the channel. Flume gets this ability to modify and filter events
with help from these interceptors. Interceptors are mainly classified into:

1. Built-in/predefined interceptors - As the name says these interceptors
built-in in Flume. Some examples are:

Timestamp Interceptor: Inserts header of time in milliseconds
when the event is acted upon.
Host Interceptor: Inserts host or IP of the machine where agent is
running.
UUID Interceptor: Inserts universally unique identifier to every
event.
Morphline Interceptor: It floats the event through a morphline
configuration file which has commands defined and all these events
passes through these commands and then finally the events are
filtered and also transformed.
Search and Replace Interceptor: Based on regular expressions it
gives the functionality of search and replace functionality and so
on.

2. Custom interceptors:
By looking at the event, it can insert headers or transform the event.
It's plain Java code of writing a custom interceptor.

Figure 20: Interceptor chain in action

Channel Selector
As shown in the preceding figure, channel selector helps in selecting the right
channel based on set criteria. Very much similar to interceptors, channel
selector is classified into two main categories:

1. Built-in channel selector:
Replicating channel selector

Default channel selector if explicitly not specified
If more than one channel is specified for a source, each
channel gets a copy of the event.

Multiplexing Channel Selector
According to header value a channel is selected.
Can say that this provides dynamic routing based on the
specified header values.
Context Routing

2. Custom Channel Selector: For handling dynamic criteria you can write
your own custom implementation for ChannelSelector class.

Sink Groups
Reliability is one of the core architecture principle on which Flume was built
on. To take care of failures, flume components can be arranged in a variety of
fashion. In case of failures when transferring data from channel to sink, sink
can be setup in a load balanced or failover fashion. For achieving this
prerequisite is to configure a Sink Group. A Sink Group, as its name
suggests, is a logical grouping of of sinks. The defined or these named group
participates in load balancing or failover case.

Some of the aspects of a Sink Group which are worth noting down is as
follows:

A sink can only be associated with one Sink Group at a time.
All sinks has their own default Sink Group where it belongs to.
If not specified each sink belongs to this default Sink Group and it
behaves as a pass through for events.
The Sink Group can be deactivated at any point but deactivating it
doesn't have any impact on the sinks participating in that Sink Group.
In the Flume configuration, Sink Group is a top level element.

Sink Processor
Sink Processor dictates how the Sink Group will function and achieve the
load balancing or failover scenarios required by the reliability guarantee
agreed for your Flume setup. Sink Processor is also a top level component in
the Flume configuration. Broadly Sink Processor is classified into two:

1. Built-in Sink Processor: These are processors present by default with
Apache Flume.

Default Sink Processor:
Accepts only one sink.
Doesn't have to be explicitly put as a single sink has this
processor by default.

Failover Sink Processor:
Keeps a prioritized list of sinks
Uses that priority to select the sink and makes sure that there
is always a sink to process an event.
If an event fails while sending to a sink, the next event
automatically selects the next sink in the priority list.

Load Balancing Sink Processor:
Keeps an indexed list of sink
When events come along it uses conventional load balancing
approach of looking at the load and then distributing the load
evenly as possible.
Round robin load balancing is defaulted
Apart from round robin Flume has another algorithm namely
random.

2. Custom Sink Processor: Does have support for this but not yet in there
with the latest Flume release.

Event Serializers
To convert the event into format of your choice serializers can be a handy
component whipped with the Flume installation. Only a very few sinks
support serializers at the moment namely File_Roll sink and HDFS Sink.
There are few serializers in the default installation of Flume as follows:

1. Body text terializer:
Writes the body of the event as is into an output stream
Event headers are however ignored while the stream is written

2. Flume event - avro event serializer:
Writes the event to an Avro container file

3. Avro event serializer:
This is similar to the preceding serializer but has configurable
control over the record schema of the Avro container file

Context Routing
As explained earlier, event has two main parts namely Header and Payload.
Header (Key/Value pair) values can be used and accordingly routing defined.
Two components where the routing selection can be decided are:

Channel: A channel can be selected according to the header values.
Custom component namely Channel Selector can be written which can
have code written to select the channel desired for achieving your use
case.
Sink: As before, header values can be used to make decisions to select
the right sink. Also, within the sink different operations can be
performed by writing custom sink which can do whatever your use case
require. There are some default header values which can also be used to
do sophisticated stuff for your use case selected.

Basically you can introduce any number of headers and using which your
components can do the right stuff. Doing this, the flume components behaves
dynamically in all aspects.

Flume working example
In this section, as always throughout this part of the book, we will cover a full
working example for the technology; towards the end of this section, there
will be a dedicated section that covers how in our use case SCV is
implemented, showing real code snippets.

Installation and Configuration
This step details most of the installation stuff that has to be done to make
Flume working. This is a pre-requisite to be dealt with.

Step 1: Installing and verifying
Flume
In this section we will install Apache Flume and then verify its installation.
Follow the given steps for complete installation:

1. Download the Apache Flume binary distribution with the following
command; we will be using the current version of Apache Flume, which
is 1.7.0.

wget http://www-us.apache.org/dist/flume/1.7.0/apache-flume-1.7.0-bin.tar.gz

2. Once downloaded, change the directory to a location where you will
want to extract contents by using the following command:

tar -zxvf ${DOWNLOAD_DIRECTORY}/apache-flume-1.7.0-bin.tar.gz

3. Let us refer to the extracted flume folder as ${FLUME_HOME}. Set
${FLUME_HOME} as an environment variable as well as in the ~/.bashrc file
with the following command, where ${FLUME_HOME} should be replaced
with the complete path:

export FLUME_HOME=${FLUME_HOME}

4. Once extracted, getting started with flume is as simple as putting in the
required configuration in conf/flume-conf.properties. The next section
will detail out various parts of this configuration.

Step 2: Configuring Flume
The conf folder in the Flume configuration folder comes with templates for
configuration files. These templates are well documented and provide a
jumpstart for users. If we look into conf/flume-conf-template.properties, we see
the following:

Figure 21: Flume Configuration Template

In the Flume Configuration section covered before, more details on various
configuration aspects have already been covered with examples; so we will
not repeat ourselves here. With regards to configuring Flume to cater to our
SCV use case, it will be covered in the following sections.

Step 3: Start Flume
The flume agent can be started with the flume-ng command as shown
next (sample only, and for reference). Again, these will be detailed in
later sections:

bin/flume-ng agent -n $agent_name conf -f conf/flume-conf.properties

Here,

agent → The instance of Flume agent

-n $agent_name → Name of the agent as defined in the configuration file

-f conf/flume-conf.properties → configuration file with flume component definitions

Flume in purview of SCV use case
As discussed with the overall data lake architecture in previous chapters and
the Single Customer View use case, it is evident that capabilities of Flume
can be leveraged in multiple ways. Flume can be used for data acquisition as
well as can play a role in data ingestion as well. For the context of this
chapter we will focus on data acquisition capabilities of flume from various
sources in context of SCV use case.

While we may discuss the messaging layer in a greater detail in later
chapters, in order to complete the data acquisition mechanisms for flume, we
will also cover in the examples some basic parts of messaging engine,
Apache Kafka.

Kafka Installation
We will perform a basic, bare minimum setup of Kafka, only as a message
broker (message going in an out of a component), playing a primary role of a
Flume sink. We will go ahead with default configurations for now.

1. Download the Kafka binaries with the following command:

wget http://redrockdigimark.com/apachemirror/kafka/0.10.1.1/kafka_2.11-0.10.1.1.tgz

2. Change directory to a user directory, where we will want to extract the
contents of the kafka tarball using the following command:

tar -xzvf <DOWNLOAD_DIRECTORY>/kafka_2.11-0.10.1.1.tgz

3. Let us refer to the extracted Kafka folder as ${KAFKA_HOME} and configure
the same using the following command and add the same to ~/.bashrc
file. Also, as with other installations, you can optionally update $PATH
with ${KAFKA_HOME}/bin:

export KAFKA_HOME=${KAFKA_HOME}

4. Change the directory into the extracted Kafka folder, ${KAFKA_HOME} and
run the following commands to start the Kafka server:

${KAFKA_HOME}/bin/zookeeper-server-start.sh

${KAFKA_HOME}/config/zookeeper.properties

And then, in a separate bash shell, start the kafka server with the
following command

${KAFKA_HOME}/bin/kafka-server-start.sh

${KAFKA_HOME}/config/server.properties

5. On successful start of the Kafka server, you should be able to see the
message started (kafka.server.KafkaServer) on the shell console.

6. This Kafka instance is started based on the default server.properties file

which is bundled within the Kafka binary. For the purpose of Flume as
an acquisition layer, this will be good enough.

In the following sections we will be detailing a number of examples required
for completion of SCV scenarios. One such scenario will be to load the data
from database while the other will be to load the data from unstructured data
source, such as a spool file. We will see how to realize these scenarios with
these examples.

Example 1 - RDBMS to Kafka
As we have created some data with earlier chapters for Sqoop export/import,
we will reuse the same data for streaming them as events into Kafka using
Flume in this example. Database Source Configuration:

1. Copy the PostgresSQL driver jar, downloaded in previous chapters (Chap
ter 5, Data Acquisition of Batch Data with Apache Sqoop), into
${FLUME_HOME}/lib folder:

cp ${SQOOP_HOME}/lib/postgresql-9.4.1212.jre6.jar

$F{LUME_HOME|/lib

2. SQL as a source is not a standard source which gets bundled with flume
distribution. Hence a third party source needs to be downloaded and
installed:

1. Download the source from the following location, using this
command:

wget https://github.com/keedio/flume-ng-sql-source/archive/1.4.2.tar.gz

2. Rename file as sql-source-1.4.2.tar.gz:

mv ${DOWNLOAD_DIR}/1.4.2.tar.gz

${DOWNLOAD_DIR}/sql-source-1.4.2.tar.gz

3. Extract the contents of tarball into a user folder using the following
command

tar -zxvf ${DOWNLOAD_DIRECTORY}/sql-source-1.4.2.tar.gz

4. Change directory into the extracted contents and compile the source
code using the following command. The binary JAR will be
compiled into the target folder:

mvn install -DskipTests

5. Create the plugins.d with sql-source as its subdirectory and other
directories using the following command:

mkdir -p ${FLUME_HOME}/plugins.d/sql-source/lib

6. Copy the jar from target folder to the plugins.d/sql-source/lib folder
using the following command:

cp ${DOWNLOAD_DIR}/flume-ng-sql-source-1.4.2/target/flume-ng-sql-source-1.4.2.jar

${FLUME_HOME}/plugins.d/sql-source/lib

3. Change directory back to ${FLUME_HOME} and create a new flume
configuration file db-kafka-flume-conf.properties. Make the following
configuration changes:

Source Configuration: The source can be configured with the
following properties. Please change the properties as per your VM
setup. The directory pointed by agent.sources.sql-
source.status.file.path should be an existing directory before
executing Flume agent, here as per the following properties, it will
be mkdir ~/db-kafka. In the flume configuration, we will need to
specify the full path for all directory and file locations:

agent.sources = sql-source

agent.sources.sql-source.type=org.keedio.flume.source.SQLSource

agent.sources.sql-source.hibernate.connection.url=jdbc:postgresql://<ip_address>/sourcedb?schema=public

agent.sources.sql-source.hibernate.connection.user=postgres

agent.sources.sql-source.hibernate.connection.password=<db_password>

agent.sources.sql-source.table=customer

agent.sources.sql-source.columns.to.select=*

agent.sources.sql-source.status.file.path=/home/centos/db-kafka

agent.sources.sql-source.status.file.name=sql-source.status

The properties set just now can be explained as given in tabular format (Table
04):

Property Description

agent.sources
Set a logical reference name for the
source

agent.sources.sql-source.type

The class declaring the type of source
being configured. Here it belongs to the
open source GitHub project for SQL
source.

agent.sources.sql-

source.hibernate.connection.url Set the JDBC URL

agent.sources.sql-

source.hibernate.connection.user Set the connection user
agent.sources.sql-

source.hibernate.connection.user Set the connection user password

agent.sources.sql-source.table Set the table name

agent.sources.sql-

source.columns.to.select

Set the columns to be selected. Here it is
set to * which means all.

agent.sources.sql-

source.status.file.path

Set it to a location where we want to
keep the status file for source

agent.sources.sql-

source.status.file.path Set the name of status file

Table 04: Flume source configuration

Channel Configuration:

The channel can be defined as follows.

agent.channels = memoryChannel

agent.sources.sql-source.channels = memoryChannel

agent.channels.memoryChannel.type = memory

agent.channels.memoryChannel.capacity = 100

Sink Configuration:

Each sink must be defined

agent.sinks = kafkaSink

agent.sinks.kafkaSink.type=org.apache.flume.sink.kafka.KafkaSink

agent.sinks.kafkaSink.brokerList=localhost:9092

agent.sinks.kafkaSink.topic=db

agent.sinks.kafkaSink.channel = memoryChannel

4. Overall Configuration should now look as:

agent.sources = sql-source

agent.sources.sql-source.type=org.keedio.flume.source.SQLSource

agent.sources.sql-source.hibernate.connection.url=jdbc:postgresql://<ip_address>/sourcedb?schema=public

agent.sources.sql-source.hibernate.connection.user=postgres

agent.sources.sql-source.hibernate.connection.password=<db_password>

agent.sources.sql-source.table=customer

agent.sources.sql-source.columns.to.select=*

agent.sources.sql-source.status.file.path=/home/centos/db-kafka

agent.sources.sql-source.status.file.name=sql-source.status

The channel can be defined as follows.

agent.channels = memoryChannel

agent.sources.sql-source.channels = memoryChannel

agent.channels.memoryChannel.type = memory

agent.channels.memoryChannel.capacity = 100

Each sink must be defined

agent.sinks = kafkaSink

agent.sinks.kafkaSink.type=org.apache.flume.sink.kafka.KafkaSink

agent.sinks.kafkaSink.brokerList=localhost:9092

agent.sinks.kafkaSink.topic=db

agent.sinks.kafkaSink.channel = memoryChannel

5. Launch the flume agent with the following command:

${FLUME_HOME}/bin/flume-ng agent --conf ${FLUME_HOME}/conf/ -f ${FLUME_HOME}/conf/db-kafka-flume-conf.properties -n agent -Dflume.root.logger=INFO,console

6. Observations:
The following statements in status file indicate the last index read
and meta information of the source:

cat ~/db-kafka/sql-source.stat

Figure 26: Source last index read and meta information

The following Kafka logs indicate the events that were queued:

cat /tmp/kafka-logs/db-0/00000000000000000000.log

Figure 27: Kafka log showing events queued

The following consumer command launches a consumer and shows
the events consumed from Kafka:

${KAFKA_HOME}/bin/kafka-console-consumer.sh

${KAFKA_HOME}/config/consumer.properties --topic db -bootstrap-server localhost:9092 --from-beginning

Figure 28: Consumer command showing events consumed from Kafka

Example 2: Spool messages to
Kafka
A Spool file, in simple words, is a file containing data to be processed. Most
of the times, such files contain delimited information (information separated
by a character), and is read line by line for processing, wherein each line
represents a record. Optionally, each of these line may also contain
XML/JSON data structure.

One of the sources of data can be spool files emitted by other systems, which
may contain user data and these spool files may work as integration points
into the Data Lake.

Flume framework supports a number of variations of spool formats, here we
are considering the most common spool format which contains data as JSON
messages.

A spool source may be configured with the following steps:

1. Create another configuration file, ${FLUME_HOME}/conf/spool-kafka-flume-
conf.properties file, the same way as done for db-kafka integration.

2. Perform source, channel and sink configuration as follows:
Source Configuration:

1. Provide Spooler file configuration, as a source. Please create
data user directory with command mkdir ~/flume-data. This
directory will contain the spool file to be processed:

agent.sources = spool-source

agent.sources.spool-source.type=spooldir

agent.sources.spool-source.spoolDir=/home/centos/flume-data

2. Make sure that the spooler directory exists and is
accessible and flume process can access it

3. Create a spool file and populate the spool file with the
following data, and save it in ~/data directory with the

filename as spool-1 for reference:

{"id":0,"firstName":"tomcy","lastName":"john","dob":"1985-10-20"}{"id":1,"firstName":"rahul","lastName":"dev","dob":"1989-08-15"}{"id":2,"firstName":"pankaj","lastName":"misra","dob":"1982-08-10"}{"id":3,"firstName":"devi","lastName":"lal","dob":"1990-05-06"}{"id":4,"firstName":"john","lastName":"doe","dob":"1992-06-25"}

Channel Configuration: Channel configuration is not very
different than in the previous example with just one minor change
as we continue to use the memory channel.

agent.channels = memoryChannel

agent.sources.spool-source.channels = memoryChannel

agent.channels.memoryChannel.type = memory

agent.channels.memoryChannel.capacity = 100

Sink Configuration: Minor changes required in sink
configuration since most of the sink configuration
remains the same except the Kafka topic, as given next:

Each sink must be defined

agent.sinks = kafkaSink

agent.sinks.kafkaSink.type=org.apache.flume.sink.kafka.KafkaSink

agent.sinks.kafkaSink.brokerList=localhost:9092

agent.sinks.kafkaSink.topic=spooled

agent.sinks.kafkaSink.channel = memoryChannel

3. Launch the flume agent with the following command:

${FLUME_HOME}/bin/flume-ng agent --conf ${FLUME_HOME}/conf/ -f ${FLUME_HOME}/conf/spool-kafka-flume-conf.properties -n agent -Dflume.root.logger=INFO,console

4. Verification and Observations:
The spool file got renamed as spool-1.COMPLETED since it was
processed.
Kafka logs contain the data streamed from spool file, as shown
next:

cat /tmp/kafka-logs/spooled-0/00000000000000000000.log

Figure 31: Kafka log revisited

Running Kafka consumer consumes the queued messages in
Kafka logs:

${KAFKA_HOME}/bin/kafka-console-consumer.sh

${KAFKA_HOME}/config/consumer.properties --topic spooled -bootstrap-server localhost:9092 --from-beginning

Figure 32: Running Kafka consumer (logs revisited)

Example 3: Interceptors
There are multiple interceptors supported by Flume out of the box, and are
very useful for specific scenarios. As indicated previously, the interceptors
act on source events, to intercept them and add a few more details to the
event as needed.

In order to better understand the usage of Interceptors, we will take the
example of spooled events being streamed into kafka. We will intercept
 these spooled events and add 2 more attributes which can be useful for our
Data Lake:

1. Timestamp (timestamp): Adding of timestamp to every event will help
maintain the time profile of event, such that an event’s end to end timing
can be tracked.

2. UUID (eventId): Adding UUID to an event will help uniquely identify
each event. Since an event is immutable, tracking event via UUID
provides traceability.

This will require creating a new configuration file, ${FLUME_HOME}/conf/spool-
interceptor-kafka-flume-conf.properties, having similar configurations as in the
spool example, with minor changes in source and sink configuration with
additional interceptor configuration as shown next:

1. Source configuration changes: As shown, the source configuration is
only around defining additional interceptors, namely timestamp and
UUID and their respective properties:

agent.sources = spool-source

agent.sources.spool-source.type=spooldir

agent.sources.spool-source.spoolDir=/home/centos/flume-data

agent.sources.spool-source.interceptors=ts uuid

#Timestamp Interceptor Definition

agent.sources.spool-source.interceptors.ts.type=timestamp

#UUID Interceptor Definition

agent.sources.spool-source.interceptors.uuid.type=org.apache.flume.sink.solr.morphline.UUIDInterceptor$Builder

agent.sources.spool-source.interceptors.uuid.headerName=eventId

2. Channel configuration: The channel configuration remains the same as
in the previous example:

agent.channels = memoryChannel

agent.sources.spool-source.channels = memoryChannel

agent.channels.memoryChannel.type = memory

agent.channels.memoryChannel.capacity = 100

3. Sink Configuration Changes:

Each sink must be defined

agent.sinks = kafkaSink

agent.sinks.kafkaSink.type=org.apache.flume.sink.kafka.KafkaSink

agent.sinks.kafkaSink.brokerList=localhost:9092

agent.sinks.kafkaSink.topic=spooled-intercepted

agent.sinks.kafkaSink.channel = memoryChannel

agent.sinks.kafkaSink.useFlumeEventFormat=true

As we observe the change in sink configuration is addition of the property
useFlumeEventFormat so that the event headers are also captured while capturing
the event body as part of the Kafka message.

In order to rerun the preceding example but with interceptors, do the
following:

1. Rename the spool file to be uncompleted and delete the Kafka logs for
the spooled topic using the commands provided here:

mv ~/flume-data/spool-1.COMPLETED ~/flume-data/spool-1

2. Change the directory to <FLUME_HOME> and run the following command to
reprocess the spool file:

${FLUME_HOME}/bin/flume-ng agent --conf ${FLUME_HOME}/conf/ -f ${FLUME_HOME}/conf/spool-interceptor-kafka-flume-conf.properties -n agent -Dflume.root.logger=INFO,console

3. The output from the Kafka console consumer can be observed as shown
next:

${KAFKA_HOME}/bin/kafka-console-consumer.sh

${KAFKA_HOME}/config/consumer.properties --topic spooled-intercepted -bootstrap-server localhost:9092 --from-beginning

Figure 35: Kafka logs revisited again to show consumer details

As shown here, the interceptor headers have been captured as part of the
message, however the consumer will need to process the message
accordingly for message headers and the message body.

Example 4 - Memory channel, file
channel, and Kafka channel
So far, we have seen in all our examples the usage of the memory channel.
Flume supports a few more channels, of which File channel and Kafka
channel are well-known. Each of these channels is capable of connecting to
source and sink in exactly the same way, however there are a few subtle
differences in the way they are defined. For example, if we define a File
channel, we will need to provide the location of the file and a few other file
related attributes, and also ensure that the file location has sufficient
permissions to be accessible.

On other hand, if we define a Kafka channel, we will need the Kafka
connection URL as well as the topic name, which will act as a channel for
further consumption. Hence in this case, the topology can be Source →
Kafka Channel → HDFS, as an example.

Let us replay the spool example with the preceding variations and observe
how it changes the way our example works:

1. File Channel:
1. Copy the ${FLUME_HOME}/conf/spool-interceptor-kafka-flume-

conf.properties file to ${FLUME_HOME}/conf/spool-fileChannel-kafka-
flume-conf.properties and change the source, channel and sink
configurations as shown next:

agent.sources = spool-source

agent.sources.spool-source.type=spooldir

agent.sources.spool-source.spoolDir=/home/centos/flume-data

agent.sources.spool-source.interceptors=ts uuid

#Timestamp Interceptor Definition

agent.sources.spool-source.interceptors.ts.type=timestamp

#UUID Interceptor Definition

agent.sources.spool-source.interceptors.uuid.type=org.apache.flume.sink.solr.morphline.UUIDInterceptor$Builder

agent.sources.spool-source.interceptors.uuid.headerName=eventId

The channel can be defined as follows.

agent.channels = fileChannel

agent.channels.fileChannel.type = file

agent.channels.fileChannel.capacity = 100

agent.channels.fileChannel.transactionCapacity=10

agent.channels.fileChannel.dataDirs=/home/centos/flume-data/flume-channel/data

agent.channels.fileChannel.checkpointDir=/home/centos/flume-data/flume-channel/checkpoint

agent.sources.spool-source.channels = fileChannel

Each sink must be defined

agent.sinks = kafkaSink

agent.sinks.kafkaSink.type=org.apache.flume.sink.kafka.KafkaSink

agent.sinks.kafkaSink.brokerList=localhost:9092

agent.sinks.kafkaSink.topic=spooled-fileChannel

agent.sinks.kafkaSink.channel = fileChannel

agent.sinks.kafkaSink.useFlumeEventFormat=true

2. Rename the completed spool file to spool-1 as specified in the
earlier example.

3. Create the flume channel’s data and checkpoint directories for
transactionsal and rollback needs:

mkdir -p ~/flume-data/flume-channel/data

mkdir -p ~/flume-data/flume-channel/checkpoint

4. Ensure that that channel capacity (in configuration,
agent.channels.fileChannel.capacity = 100) is always greater than the
transaction capacity (in configuration,
agent.channels.fileChannel.transactionCapacity=10)

5. Run the flume process again for spool file with the following
command:

${FLUME_HOME}/bin/flume-ng agent --conf ${FLUME_HOME}/conf/ -f ${FLUME_HOME}/conf/spool-fileChannel-kafka-flume-conf.properties -n agent -Dflume.root.logger=INFO,console

6. Verification and Observations:
Verify the messages with the same Kafka console consumer
command as in the previous example, all the messages must
be seen exactly the same way as in the previous example.

 ${KAFKA_HOME}/bin/kafka-console-consumer.sh

 ${KAFKA_HOME}/config/consumer.properties --topic spooled-fileChannel -bootstrap-server localhost:9092 --from-beginning

Observe the flume channel data directory for the flume log
created, and inspect the content of the log (~/flume-data/flume-
channel/data/log-1) file as shown next:

Figure 37: Flume log

2. Kafka Channel:
1. Copy ${FLUME_HOME}/conf/spool-interceptor-kafka-flume-

conf.properties file to ${FLUME_HOME}/conf/spool-kafkaChannel-kafka-
flume-conf.properties and change the source, channel, and sink
configurations as shown next:

agent.sources = spool-source

agent.sources.spool-source.type=spooldir

agent.sources.spool-source.spoolDir=/home/centos/flume-data

agent.sources.spool-source.interceptors=ts uuid

#Timestamp Interceptor Definition

agent.sources.spool-source.interceptors.ts.type=timestamp

#UUID Interceptor Definition

agent.sources.spool-source.interceptors.uuid.type=org.apache.flume.sink.solr.morphline.UUIDInterceptor$Builder

agent.sources.spool-source.interceptors.uuid.headerName=eventId

The channel can be defined as follows.

agent.channels = kafkaChannel

agent.channels.kafkaChannel.type =org.apache.flume.channel.kafka.KafkaChannel

agent.channels.kafkaChannel.kafka.bootstrap.servers=localhost:9092

agent.channels.kafkaChannel.kafka.topic=datalakeChannel

agent.sources.spool-source.channels = kafkaChannel

Each sink must be defined

agent.sinks = kafkaSink

agent.sinks.kafkaSink.type=org.apache.flume.sink.kafka.KafkaSink

agent.sinks.kafkaSink.brokerList=localhost:9092

agent.sinks.kafkaSink.topic=spooled

agent.sinks.kafkaSink.channel = kafkaChannel

agent.sinks.kafkaSink.useFlumeEventFormat=true

2. Rename the completed spool file to spool-1.log and clear the Kafka
logs as specified in the earlier example.

3. Run the flume process again for the spool file with the following
command:

${FLUME_HOME}/bin/flume-ng agent --conf

${FLUME_HOME}/conf/ -f

${FLUME_HOME}/conf/spool-kafkaChannel-kafka-flume-conf.properties -n agent -Dflume.root.logger=INFO,console

4. Verification and Observation:
Observe the channel-specific Kafka topic and its queue depth:

${KAFKA_HOME}/bin/kafka-run-class.sh kafka.tools.GetOffsetShell --broker-list localhost:9092 --topic datalakeChannel

Figure 38: The channel-specific Kafka topic's queue depth in the log

Verify the messages with the same Kafka console consumer
command as in the previous example; all the messages must be
seen exactly the same way as in the previous example:

${KAFKA_HOME}/bin/kafka-console-consumer.sh

${KAFKA_HOME}/config/consumer.properties --topic datalakeChannel -bootstrap-server localhost:9092 --from-beginning

As we observed here, we used Kafka as a channel; and then we again
propagated the event back into a Kafka topic. This does not sound right, and
for all practical cases, this will not be the case since we will be more
interested in putting the events into a processing pipeline from a kafka
channel or directly ingesting into the storage layers. This example was taken
more as a reference to indicate a very important aspect--that Kafka can be

used as a channel rather than a destination sink. This will be a big advantage
since most near-real-time processing frameworks and batch frameworks
would want to consume the events from Kafka as a channel.

In this chapter, we looked at Flume as an additional acquisition layer
component to capture much richer customer information through various
sources. Here, we have covered RDBMS as well as spool file as input, both
of them aggregating the customer information into the data layer. The overall
acquisition layer with Flume being added to already existing sqoop
component can be visualized in the following figure:

Figure 39: Acquisition Layer with Sqoop and Flume for Single Customer
View

When to use Flume
Some of the consideration which you can use when choosing Flume for
handling different use cases is as follows - choose Flume when you want:

To acquire data from a variety of source and store
into Hadoop system
To handle high-velocity and high-volume data into
Hadoop system
Reliable delivery of data to the destination
A scalable solution that can run quite easily just by
adding more machine to it, when the velocity and
volume of data increases
The capability of dynamically configuring the
various components in the architecture without
incurring any downtime.
To achieve a single point of contact for all the
various configurations based on which the overall
architecture is functioning

When not to use Flume
In some scenarios, usage of Flume is not the ideal choice. There are other
options out there which can be employed to solve those use case and not
Flume. Do not choose Flume when:

You need more data processing as against transfer of
data. They are more suited for other stream
processing technologies.
You need more batch data transfer scenarios (regular
batch as against micro-batch).
You need a more available setup with no data loss.
You need a durable message with very high
scalability requirements (there isn't a scientific
quantitative figure for that though).
You have a huge number of consumers as this has a
very high impact on Flume’s scalability.

Even through Flume can be dynamically configured in many cases, it does
incur downtime in certain configuration changes (topology changes).

Other options
As always, it doesn't mean that Apache Flume is the only option that can be
used to solve the use case problem in hand. We chose Flume for its merit and
advantages especially considering our use case of SCV. There are other
options which can be considered and these are discussed in brief in his
section.

Apache Flink
Apache Flume is used mainly for data acquisition capability. We will be
using Flume to transfer data from source systems sending stream data to the
messaging layer (for further processing) and all the way into HDFS.

For transferring data all the way to HDFS, Apache Flume is best fit for
stream data. However for getting stream data and then processing is one of
the main use case for Apache Flink and it does have additional features
suited for this.

This doesn't mean that Apache Flink can be used for transferring data to
HDFS, it does have the mechanism but there willn't be so many built-in
capabilities. It does have many features as against Flume but they are more
on the stream processing aspects. Flink does have a rolling file sink, using
which we can write data streams to HDFS but definitely lack many features
provided by built-in features in Flume.

Apache Flink is growing in popularity day by day but stream processing is its
main capability and Flume will still be around mainly in the space of data
acquisition and persisting into Hadoop and related big data storage systems.

Apache NiFi
The Apache NiFi website states Apache NiFi as - An easy to use, powerful,
and reliable system to process and distribute data.

It definitely is an alternate to Apache Flume and does have a rich set of
features and easy to use web user interface. It is highly configurable, security
thought and built bottom up and is highly customizable (extensibility
principle).

One of the strong features notable is its drag and drop capable web user
interface in which most of properties of components dropped can be
configured dynamically on the fly. Another notable feature is it capability of
ingesting almost any data. If you do have a very particular data, you can write
your own ingestion methodologies. Similar to inputting data, it also have a
wide range of support for various protocols used to send data out of NiFi.
Again, the output aspect is also customizable if the need be by writing some
custom implementation class according to your use case requirement.

Summary
First of all, a pat on your back for coming this far. We have completed the
technologies that we are going to use in our Data Lake’s first layer namely
Data Acquisition Layer. Even though we have covered just two technologies
(we willn't say we have covered these topic in depth but we have covered
these in some breath and in alignment with our use case implementation) we
have covered fair distance in our journey to implement Data Lake for your
enterprise.

In this chapter, similar to other chapters in this part, we first set our context
by seeing where exactly this technology will be placed in the overall Data
Lake architecture. We then gave enough details on why we chose Apache
Flume as the technology for handling stream data from source systems.

After that we went deep into Apache Flume and start learning main concepts
and working of Flume. We then looked at a full-fledged working example of
Flume, in line with our use case of SCV. Before wrapping up we did put in
bullet points, when and when not to you Flume. We then wrapped up the
chapter by introducing you to other technology options which you can
consider replacing Flume when you actually implement Data Lake, obviously
if it is right suit.

After reading this chapter you should have a fair bit of idea on Flume as a
whole and will also have a full-fledged working example ready. You will
now have fair bit of idea of handling both stream and batch data acquisition
methodologies which can be employed in your enterprise.

Messaging Layer using Apache
Kafka
Handling streamed data is a very important aspect of a Data Lake. In the Data
Lake architecture discussed in this book, the handling of streamed data is the
responsibility of the messaging layer. In this chapter, we will go into detail on
this layer and will also discuss the technology that we have chosen to be a
part of this layer doing the actual work.

We have chosen Apache Kafka as the fitting technology to be used
in messaging layer. This chapter delves deep into this technology and it's
architecture in regards to Data Lake.

Context in Data Lake - messaging
layer
In this chapter, we are dealing with a technology which constitutes one of the
core layers of Data Lake namely, the messaging layer. Its crucial to have a
fully functional messaging layer for dealing with a real-time data stream
flowing in from different applications in an enterprise.

The technology that we have shortlisted to do this very important job of
handling such, stream data is Apache Kafka. This chapter will take you
through the functioning of messaging layer and then deep dive into the
technology, Kafka.

Messaging layer
In Chapter 2, Comprehensive Concepts of a Data Lake, you already a high-
level view of the messaging layer and how it works, especially in the context
of Data Lake.

Figure 01: Data Lake: Messaging layer

The messaging layer in Data Lake takes care of as mentioned in the bulleted
list has a set of functions/capabilities:

One of the core capabilities of this layer is it's ability to decouple both
the source (producer) and destination (consumer).
Ability to handle high-velocity messages of the order of hundreds of
megabytes per second from each application server node.
Ability to handle huge volumes of data of the order of terabytes to
petabytes.
Ability to deal with messages with very low latency under extreme
throughput requirements.
Ability to guarantee message delivery (durability) in an ordered fashion.
Ability to supply the same message to multiple consumers with less
hassle of doing so. In our context, supplying messages to Lambda
Speed Layer (the speed layer within the Lambda Layer) and Data
Storage Layer at the same time to do two different functions.
Capability of data analysis to derive operational statistics. Ability to

aggregate data coming from various sources and to do some analysis.
Obviously, high performance with less hardware requirements (yes,
indeed this is a requirement).
Ability to perform bare minimum enrichment and transformation
capabilities.

Messaging layer - technology
mapping
If data is the lifeblood of high technology, Apache Kafka is the circulatory
system

- Todd Palino, LinkedIn

To cover our use case and to build our Data Lake, we use Apache Kafka in
this layer as the technology.

The following figure brings in the technology aspect to the conceptual
architecture that we will be following throughout this book. We will keep
explaining each technology and its relevance in terms of overall architecture
before bringing all the technologies together in the final part of this book
(Part 3).

Figure 02: Technology mapping for Messaging Layer

In line with our use case of SCV, the real-time data from various business
applications will flow into Flume. From there, using the messaging layer, it
will flow to the Hadoop file system for storage as well as the Lambda speed
layer. The real-time data from business applications that we are going to
handle is customer’s, behavioral data coming from user interaction with
enterprise's website. For example, data such as page visits, link clicks,

location details, browser details and so on, will flow into Flume. Using the
publish subscribe capability of Kafka it is then streamed to the Data
Ingestion Layer. The Data Ingestion Layer will handle multi-target
ingestion, where one path goes to the Data Storage Layer (HDFS) and the
other goes to Data Ingestion Layer for required processing as needed.

What is Apache Kafka?
Apache Kafka is an open-source stream processing platform developed by
the Apache Software Foundation written in Scala and Java. The project aims
to provide a unified, high-throughput, low-latency platform for handling real-
time data feeds. Its storage layer is essentially a "massively scalable pub/sub
message queue architected as a distributed transaction log," making it highly
valuable for enterprise infrastructures to process streaming data.

- Wikipedia

The next sections of this chapter will definitely give you more details on what
Kafka is in detail. In one sentence, Kafka gives a level of indirection, by
which it disconnects the source from the consumer and also gives capability
which a messaging layer should process, as detailed in the previous section.

Why Apache Kafka
We are using Apache Kafka as the stream data platform (MOM: message-
oriented middleware). Core reasons for choosing Kafka is it's high
reliability and ability to deal with data with a very low latency.

Message-oriented middleware (MOM) is software or hardware
infrastructure supporting the sending and receiving of messages
between distributed systems.

- Wikipedia

Apache Kafka has some key attributes attached to it making it an ideal choice
for us in achieving the capability that we are looking to implement the Data
Lake. They are bulleted below:

Scalability: Capable of handling high-velocity and high-volume data.
Hundreds of megabytes per second throughput with terabytes of data.
Distributed: Kafka is distributed by design and handles some of the
distributed capabilities as follows:

Replication: The replication feature is one of the default features
which needs to be available for any distributed enabled technology
and Kafka has this feature built-in.
Partition capable: Again, capability to partition is one of the
inherent features required for distributed architecture.

Faster: This attribute can be quite relative and subjective. However, for
such a capability, in the market, Kafka is considered to be quite fast and
performant.
Capable of supporting a variety of consumers. However, consumers are
considered inherently slow because of more work configured to be done
by them.
Inherent buffering capability: To cater to a variety of consumers,
Kafka has a built-in buffering capability.
Publish/subscribe feature: Asynchronous and capable of a pub/sub
integration pattern. This is one of the key features of a messaging based

technology.
Reliability/guarantee similar to database: all the data sent to Kafka is
ordered and is persistent by default.
Fault tolerance: inherent built-in fault tolerance in Kafka because of
distributed nature and replication.

History of Kafka
Kafka was initially developed by an engineering team at LinkedIn and later
released as an open source project with the Apache Software Foundation in
early 2011. Kafka is LinkedIn’s messaging platform. The project went from
incubation to top-level Apache project on October 23, 2012.

Jay Kreps, Neha Narkhede and Jun Rao are the founders of Kafka while
working for LinkedIn’s engineering team. Jay Kreps has been a big fan of the
famous writer Franz Kafka and found the name Kafka to be apt for this
messaging platform, which is optimized for writing purposes (as quoted by
Jay Kreps in Quora).

Kafka is primarily developed by keeping in mind some of the important new-
generation messaging requirements like high-throughput, low-latency and
capability of handling high-velocity and high-volume real-time feeds. It is
written in Scala and is one of the top projects in Apache Software
Foundation (ASF) with big community backing. The design of Kafka is
heavily borrowed or influenced from how transaction/commit logs work and
function.

Figure 03: History of Apache Kafka

In 2014, the Kafka founders started their own company, Confluent, which
actively develops multiple solutions using Kafka at it's core. The company is
also a forerunner which develops multiple connectors for Kafka and
maintains it in the industry.

Advantages of Kafka
Apache Kafka is selected for it's strengths in the space of messaging. The
following are some of the advantages which Kafka possess, making it ideal
for our Data Lake implementation:

High-throughput: Kafka is capable of handling high-velocity and high-
volume data using not so large hardware. It is capable of supporting
message throughput of thousands of messages per second.
Low latency: Kafka is able to handle these messages with very low
latency of the range of milliseconds, demanded by most of new use
cases.
Fault tolerant: The inherent capability of Kafka to be resistant to
node/machine failure within a cluster.
Durability: The data/messages are persistent on disk, making it durable
and messages are also replicated so the messages are never lost.
Scalability: Kafka can be scaled-out without incurring any downtime
on the fly by adding additional nodes. The message handling inside the
Kafka cluster is fully transparent and these are seamless.
Distributed: Inherently supports distributed architecture making it
scalable using capabilities like replication and partitioning.
Message broker capabilities.
High concurrency: Capable of handling thousands of messages per
second and that too in low latency conditions with high throughput.
Kafka allows the reading and writing of messages into it at high
concurrency.
By default persistent: By default, the messages are persistent making it
durable and reliable.
Consumer friendly: Kafka can be integrated with a variety of
consumers. Each customer has a different ability to handle these
messages coming out of Kafka and because of it's inherent persistence
capability, it can behave or act differently according to the consumer
that it integrates with. It also integrates well with a variety of consumers
written in a variety of languages.
Batch handling capable (ETL like functionality): Since Kafka persists

messages, it could also be employed for batch like use cases and can
also do the work of a traditional ETL.
Capable of handling a variety of use cases commonly required for a
Data Lake, namely log aggregation, web activity tracking, and so on.
Designed to work on commodity hardware. For POC’s it is fine, but for
an enterprise, because of many reasons, selecting a commodity hardware
is not recommended, even though it should work just fine.
Helps decouple the data pipeline bringing a level of indirection.
Helps handle real-time data pipeline. This is one of the core reasons for
our choice, as we need to find a technology piece to handle real-time
messages from applications.
Apache Kafka is open source and has a huge fan following community.
Also, there are many companies that are ready to provide commercial
support, which can be an important aspect for big enterprises because of
their criticality.
Kafka works well with Apache Spark. For us, Spark is in our technology
list and that also makes Kafka a good choice.
For streaming messages to consumers, it uses system capabilities and
because of this, it can perform quite well. It also uses many operation
system features for doing many things efficiently, and that is definitely a
plus point.

Disadvantages of Kafka
Although Kafka’s advantages overshadows its disadvantages, it's good to
know it's limitations and consider it only when advantages are too compelling
to omit. The following are the disadvantages mostly associated with Kafka
and some might be more relevant for a particular use case but not really
linked with ours.

Doesn’t possess a full set of management and monitoring tools.
This makes enterprise support staff a bit apprehensive about choosing
Kafka and supporting it in the long run.
The broker uses certain system calls to deliver messages to the
consumer, but if the message needs some tweaking, doing so reduces
Kafka’s performance significantly. If the message is unchanged, it can
perform quite well, as it uses the capabilities of the system.
Kafka only matches the exact topic name and does not support wildcard
topic selection, making it incapable of addressing certain use cases.
API’s which are needed by other languages are maintained by different
individuals and corporates, so these can be a problem because of the
lack of pace by which these vendors update the connectors.
Kafka broker and its approach are often attributed to be really simple
and uncomplicated in nature. Because of this, other components are used
to cater to certain requirements like Zookeeper (state coordination), and
MirrorMaker (inter-cluster communication) which makes the
deployment and support of the overall architecture a nightmare,
especially for support staff.
Inherently, Kafka doesn't have any problems with the individual
message size. But, as the size increases, the brokers and consumers start
compressing these messages and because of this, the node memory gets
slowly used when decompress and compress happens when the data
flows in the pipeline. This could impact throughput and also
performance.
It's often criticized that, as the number for queues in a Kafka cluster
increases, it starts behaving a bit clumsy and and slowly. Kafka will say
this is as it is by design (as Microsoft will always categorize certain bugs

in their software as this is by design).
Kafka lacks other messaging paradigms like request/reply, point-to-
point queues and so on, making it problematic for certain use cases.

Kafka architecture
This section aims to explain ins and outs of Apache Kafka. We will try to
dive deep into its architecture and then, later on try expanding each part of it's
architecture's components in a bit more detail.

So, let's stream forward.

Core architecture principles of
Kafka
The main motivation behind Kafka when developed by LinkedIn’s
engineering team was

To create a unified messaging platform to cater to real-time data from
various applications in a big organization.

- LinkedIn

There are core architecture principles based on which Kafka was conceived
and designed. The bulleted points sum up these principles:

Maximize performance (compression and B-tree usage is an example)
Wherever possible, core kernel capabilities to offload work to drive
optimization and performance (zero-copy and direct use of Linux
filesystem cache is an example)
Distributed architecture
Fault tolerance
Durability of messages
Wherever possible, eliminate redundant work
Offload responsibility of tasks to consuming application, as the case
may be (consumers manage the message state and work on a No ACK
approach).
Extensibility: provide as many ways by which applications can plug in
and make use of Kafka. Also, provide ways by which to write new
connectors as needed.
High throughput (capable of handling high-volume messages)
Real-time processing of these messages to derive processed messages in
real-time
Low latency delivery

Data stream life cycle
Apache Kafka is a piece of technology that enables us to handle data streams.
Before getting into the working of Kafka, let's see what life cycle events that
are when a data stream flow takes place. Rassul Fazelat, in one of his
LinkedIn blogs, has explained this in detail as shown pictorially in the
following figure.

Figure 04: Life cycle of Data Stream

As shown in the preceding figure, the life cycle events of a data stream have
three components, each having a definite job to do:

Create: The most important component. It produces the data streams
from a variety of internal business applications and external partners as
well as other applications. For example, server logs from servers where
business applications are hosted, behavioural data collected from various
business applications in the form of click stream, page views, social data
coming from various social sites, various sensors (IoT) emitting
different parameters, and so on.
Collect: This is one of the components that helps in collecting this data
and making it available for processing. This capability is achieved by
the technology we are diving deep into this chapter, Apache Kafka.
Other options that give you this capability do exist, such as ActiveMQ,
HornetQ and so on.
Process: Component which processes the data stream and derives
meaningful data stream for various analyses. In our Data Lake

architecture, we have this capability requirement and we also have a
technology in mind, which will be delved deep into the following
chapters. Some of the example technologies in this space are Apache
Spark, Apache Flink, and so on.

Working of Kafka
Kafka’s architecture in whole is quite simplistic in nature and has some very
important components, which are the crux of the whole workings of it.

The following figure shows the workings of Kafka with all components
labelled. The main components which constitute Kafka architecture are as
follows:

Message: Flows from producer all the way to consumer through topics
existing in a broker.
Producer: Producer, as the name suggests produces these stream
messages and pumps into the topic.
Topic: The category into which the producer pumps the message. The
producer produces messages of a particular category which fall into this
topic. Ideally, for each category of messages a new topic is created in
Kafka.
Broker: Kafka cluster comprising of multiple servers/nodes. Each node
is a Kafka broker and contains multiple partitions holding multiple
topics.
Partition: Each of the Kafka topic, is partitioned and each partition
contains ordered messages from the producer. Writes to each partition
are sequential in nature and this aspect is one of the main reasons for
Kafka’s high performance. When writing onto the topic partition, each
message is given a sequence number referred to as offset and this
uniquely identifies a message in a partition. Kafka, being distributed in
nature, distributes these topic partitions across multiple brokers for fault
tolerance and durability of messages.
Consumer: Again as the name suggests, subscribes to a particular
message category (a topic) and consumes messages in that topic. This
consumer reads messages from the topic and is entrusted with
maintaining the audit of which message has been read and actioned.
Kafka does not remove these messages nor take an audit of messages
read by various consumers connecting to the topic and reading
messages.

Consumer Group: A group of consumers logically grouped in Kafka is
known as the consumer group.

So, the producers produce messages and dumps into various categorized
topics, from there consumers subscribed to these topic reads the messages
and do the necessary. The communication of various components is over the
efficient and reliable TCP protocol. This is the overall architecture of Kafka.

We have dedicated the sections here to detailing each of these components:

Figure 05: Kafka architecture

Detailed Kafka documentation can be found on Kafka’s official site,

available at https://kafka.apache.org/documentation/.

https://kafka.apache.org/documentation/

Kafka message
As said in Apache Kafka documentation, the message contains a fixed header
and an array of variable length key and variable length value. The header
contains the following fields:

CRC32 checksum to detect any corruption (4 bytes)
A so-called magic identifier, having a value of either 0 or 1 (1 byte)
Attributes identifier (1 byte):

Bit 0-2: Compression codec: contains the following values
0: No compression
1: GZIP gives a high compression ratio but low performance
on compression and decompression with higher load on the
CPU
2: Snappy gives lower compression ratio with high
performance in decompression and less burden on the CPU
3: lz4 is a lossless compression algorithm
(http://lz4.github.io/lz4/)

Bit 3: Timestamp type
0: Create time
1: Log append time

Bit 4-7: Reserved
Optional timestamp only if magic identifier is greater than 0 (8 bytes)

The body part of the message contains the following fields:

Key length (4 bytes), say a length of K
Actual key value (K bytes)
Payload length (4 bytes), say a length of V
Actual payload value (V bytes)

It's been documented that the key and value length is kept open as there are a
lot of optimizations being done in regards to message format and this design
makes Kafka quite easily adaptable.

http://lz4.github.io/lz4/

The following figure shows the message format in Kafka in a pictorial format
covering all the aspects we just covered:

Figure 06: Kafka message format (courtesy: Kafka Apache documentation)

Kafka producer
As the name suggests, this is the client which produces message (stream data)
to the Kafka cluster into the designated Kafka topics. There are different
types of producers that exist and each have different ways by how they pump
these messages. Some produce at a high-velocity with low volume (a
message with less payload and high throughput). Some produce low velocity
data at a very high-volume (low throughput with the message size being
high).

The producer has a choice of sending messages in a synchronous or
asynchronous manner. Asynchronous support in Kafka allows producers to
send micro-batch messages and can reduce the chattiness between the
producer and the cluster. In certain situations, this is quite useful and it is
always dependent on the use case being developed. If real-time message
processing is required, this micro-catching will be the best choice, as it incurs
a lag between message production and actual processing/analysis.

Persistence of data in Kafka using
topics
High-level abstraction provided by Kafka where the data pushed by
producers is persisted, having a defined name. To cater to replication and
fault tolerance each topic is divided into multiple partitions and each partition
is distributed in different brokers inside the Kafka cluster.

The topic doesn't keep a note of consumers who have consumed the messages
inside the topic, rather the full control of monitoring is offloaded to the
consumer and it's their responsibility to keep the track of messages
consumed. The consumer comes to a topic and collects a message beginning
from a particular message ID and this has to be managed by the consumer.

The following figure shows the inner structure of a topic, how the partitions
are created, and how messages get into each message:

Figure 07: Inner structure of a Kafka topic

Messages pumped to the topic get appended to the partition towards the end,
as shown in the preceding figure. Each partition in a topic is logically a log
file.

Kafka does keep the messages in the partitions, even though all consumers
have consumed them, and follows a different approach of removing these
from the partition. Kafka gives the user ways by which these messages
should be removed from partitions using well defined properties. The
following are the configurations based on which messages are removed:

Description Configuration property

Number of messages in the partition log.flush.interval.messages

Timestamp
log.default.flush.interval.ms,

log.flush.interval.ms

Size of the all messages in the partition log.retention.size

Table 01: Kafka message removal configurations

Partitions - Kafka topic division
To achieve fault tolerance and replication, Kafka’s topic is divided into
partitions and also distributed over multiple brokers. Each partition elects one
server (broker or node) as the leader (known as leader) and zero or more
servers follows the leader (known as followers).

The leader takes care of the read and write activities. The followers keep
replicating the leader and always sync with it. As with any distributed
system, if the leader fails due to any reason, one of the followers takes charge
of the situation automatically and becomes the leader. This allows seamless
fault tolerance and message durability in Kafka.

To divide the leader and followers throughout the Kafka cluster, Kafka
makes optimal partitions in a server as leader and others as followers. Again,
these are seamless to the user and handled internally by Kafka’s architecture.

Kafka message broker
One of the important component, which brings the decoupling behaviour of
Kafka in action is the all important message broker. The messages produced
by the producer is pumped to the topic residing in the broker and the
consumer consumes the messages from the topic (the consumer subscribes to
topics in the broker and the broker publishes the messages to it). The
messages are published to this broker and there could be more than one
broker (node) which forms the Kafka cluster. The storage responsibility in
Kafka is taken care of by the broker. Finding the message from within the
partition and within a broker is the responsibility of the broker. This is
required when the consumer requests a message from within a subscribe
topic.

The messages are stored in the topic consisting of multiple partitions and
these partitions get replicated in multiple brokers with the same cluster. The
following figure shows an example replication which a Kafka cluster having
4 brokers could employ (this is just a pictorial representation; internals are
completely handled by Kafka).

Figure 08: Message replication in topic across broker in Kafka cluster

In the figure, the red block is the leader and the green blocks are the
followers. Each topic partition is also replicated into multiple nodes with the
cluster. For clarity the partitions within a topic are not shown.

One of the brokers in the Kafka cluster takes the role of controller and
manages these partition leaders and the state of these partitions. In addition, it
is given the responsibility to do partition reassignment, as the case may be
and to deal with replicas as configured.

Kafka consumer
Consumers consume messages from the topic from within the Kafka cluster.
It consumes messages in a sequential manner from within a partition of a
topic. The consumer is required to make sure that it tracks the messages
being taken/read from the topic and when asked for a message it is required
to supply a sequential ID and the messages from that ID onwards are read in
a sequential manner thereafter. Kafka uses a pull approach from the consumer
to consume a message and this is one of the main reason for the high
throughput of message consumption in Kafka. Also, the throughput of
message consumption is left to individual consumers, and because of this
Kafka is ready to integrate with a variety of consumers having different
capabilities.

If needed, consumer can always come back and consume old messages if
needed (replay) because the messages are kept in the memory of Kafka
according to defined configuration properties.

Within a consumer group, it is guaranteed that a message will be consumed at
least once.

Consumer groups
Consumer groups allow multiple hosts to form a group (using the same
group) to access a particular topic. Consumer groups guarantee that a
message is only read by one consumer in the group. As shown in the
following figure, partitions are assigned to each consumer in a group and
these are entrusted to read the messages in a topic. A consumer may get one
or more partitions from which to read the messages, but it's care is taken that
one partition is only assigned to a single consumer in a group.

This figure shows the working of a consumer group in action in a Kafka
deployment.

Figure 09: Multiple consumers logically grouped in a consumer group

As shown in the figure, for easy understanding of a consumer group we have
just taken two brokers with one topic replicated with the two brokers, and in
each broker the topic has two partitions. We have two consumer groups,
group A having two consumers and group B having 4 consumers. Group A
consumers read messages from two partitions of a topic from broker 0 and
two partitions of the same topic from broker 1. Group B consumers read
messages from two partitions of a topic from broker 0 and other consumers

reads the messages from two partitions of a topic from broker 1.

Other Kafka components
In addition to these components, there are some important components in a
Kafka deployment without which the Kafka won't work as intended. These
are a couple of the important components that could be used:

Zookeeper
MirrorMaker

Zookeeper
Zookeeper is one of the very important hidden component, needed
(mandatory) for Kafka to function properly. It is entrusted to do the following
jobs:

Taking care of bringing each broker into the cluster membership.
Electing the Kafka controller which does some very important functions
within the cluster such as managing the state of partitions and their
replicas.
Complete topic configurations like number of partitions, leader
partitions election, partition replication location and so on.
Access control list maintenance and various quotas within each broker.

MirrorMaker
As the name suggests, it helps mirror data cross Kafka clusters. This
component can be used to mirror an entire cluster from one data center to
another, as shown in the next figure.

Inherently, this component uses both consumer and producer APIs to mirror
the cluster. It reads messages from one or more source cluster and then writes
to the target cluster.

Figure 10: MirrorMaker working in mirroring Kafka cluster from one data
center to another

Kafka programming interface
Kafka contains two programming interface mechanisms:

Low level core API’s
REST API’s: REST interface wrapping the core API’s for easy access

Kafka core API’s
These are the core API’s in Apache Kafka, as documented in the Apache
Kafka documentation:

Producer API: Contains a set of API’s which allows us to publish a
stream of data to one or more of the named/categorized Kafka topics in
the cluster.
Streams API: Contains relevant API’s which acts on the stream of data.
They can process this stream data and can transform it from existing
form to a designated form according to your use case demands. These
are relatively new API's as against existing producer and consumer
API’s.
Connect API: API’s which allows Kafka to be extensible. It contains
methods which can be used to build Kafka connectors for the inputting
and outputting of data into Kafka.
Consumer API: Contains relevant API’s to subscribe to one or more
topics in the broker. Since consumer takes care of a message and it's
consumption, there are API’s using which a message can be consumed
precisely from a partition.

Kafka REST interface
The REST interface wrapping the core API’s created and maintained by
Confluent (company created by ex-LinkedIn engineering team who created
Kafka). Using these API’s does have performance overhead, as it needs two
hops to do a piece of work. It also requires an additional server for hosting
these REST API’s. In addition, for every call to these API’s, additional time
is lost in parsing the JSON request and also for creating the JSON response.

Producer and consumer reliability
In distributed systems, components fail. Its a common practice to design your
code to take care of these failures in a seamless fashion (fault-tolerant).

One of the ways by which Kafka tolerates failure is by maintaining the
replication of messages. Messages are replicated in so called partitions and
Kafka automatically elects one partition as leader and other follower
partitions just replicate the leader. The leader also maintains a list of replicas
which are in sync so as to make sure that ideal replication is maintained to
handle failures.

The producer sends message to the topic (Kafka broker in Kafka cluster) and
durability can be configured using the producer configuration,
request.required.acks, which has the following values:

0: message written to network/buffer
1: message written directly to partition leader
all: producer gets an acknowledgement when all in-sync replicas (ISR’s)
get the message

Consumer reads data from topics and in Kafka the state of the message read
from topic by a consumer is kept with the consumer itself rather than Kafka.
This allows Kafka to take away management of message consumption by
each of the consumers. It's the responsibility of each consumer to manage this
and they do this using what is called consumer offset (the sequence message
ID from where the consumer last read the message). The messages in topic
are kept as is and are not deleted soon after consumers have subscribed to a
topic read. The messages are deleted from the topic, according to set
broker/topic configuration. So, even though the consumer is dead or is not in
a position to consume messages, it's still kept in the topic and if the retention
period is kept at a reasonable level, when the consumer comes online, using
it's offset, it can read all the messages from that offset value, without much of
a problem. This is how consumer reliability is achieved in Kafka.

This figure shows the various positions that a consumer uses while traversing
a topic partition in a broker.

Figure 11: Offsets which consumer uses to track message consumption

This figure shows some of the important positions maintained by a consumer
in a log partition as summarized here:

Last committed offset: Offset of the last message written to the log. If a
partition fails and the consumer is hooked to a new partition, this offset
is used as the starting point.
Current position: offset which is read by the consumer
High watermark: Offset that holds the message which has been
successfully copied to all replicas within the cluster. This is a message
till a consumer can ideally read other messages after that won't be
exposed for consumption till all replicas get the message and then the
watermark offset moves forward.
Log end offset: Message which is last written by the producer to a log.

Kafka security
When designed and developed at LinkedIn, security was kept out to a large
extent. Security for Kafka was an afterthought after it became a main project
at Apache. Later on in the year 2014, various security discussions were
considered for Kafka, especially data at rest security and transport layer
security.

Kafka broker allows clients to connect to multiple ports and each port
supports a different security mechanism, as detailed here:

No wire encryption and authentication
SSL: wire encryption and authentication
SASL: Kerberos authentication
SSL + SASL: SSL is for wire encryption and SASL for authentication
Authorization similar to Unix permissions for read/write by a client

These security features are led by Confluent and more details can be found at
http://docs.confluent.io/2.0.0/kafka/security.html.

http://docs.confluent.io/2.0.0/kafka/security.html

Kafka as message-oriented
middleware
Message-oriented middleware (MOM) is software or hardware infrastructure
supporting sending and receiving messages between distributed systems.
MOM allows application modules to be distributed over heterogeneous
platforms and reduces the complexity of developing applications that span
multiple operating systems and network protocols. The middleware creates a
distributed communications layer that insulates the application developer
from the details of the various operating systems and network interfaces.

- Wikipedia

Looking at the definition for MOM above, Kafka fits in the category of an
MOM and does cater to all the capabilities needed by it. But, Kafka is not just
a simple queue/message management solution and has certain core
capabilities making it more marketable than traditional MOM. Some of it's
inherent capabilities that are advantages are:

Approach used is log (distributed commit log) based with zero-copy and
messages are always appended
Uses partitions heavily to distribute messages within a topic in multiple
partitions across brokers in a cluster
Distribution built-in and this helps fault-tolerance and message
durability
Replication built-in
Scalability built-in. One consumer per partition allocated and for scaling
keeps adding partitions.
It's a queuing mechanism which will work just fine if the subscribed
consumer is not available or offline as the message state is managed by
the consumer as against the broker/topic.
Durable messaging: since Kafka persists the data on the disk without
performance issues, the message durability is guaranteed and this is one
of the aspects not seen in traditional messaging systems. This also

allows the consumer to consume these messages at their pace rather than
according to the producer rate.

As it stands today, Kafka does the job of a MOM plus some more additional
core features required for big data platform and for modern messaging
requirements as against traditional ones.

With more and more data generated through various social websites and with
evolution of IoT, more and more data streams will come into the existence.
Kafka with it's inherent capabilities, will be able to take care of these streams
of data to do meaningful derivations to solve many business problems for an
enterprise.

Zero-copy describes computer operations in which the CPU
does not perform the task of copying data from one memory
area to another. This is frequently used to save CPU cycles and
memory bandwidth when transmitting a file over a network.

- Wikipedia

Scale-out architecture with Kafka
Main principles on which Kafka works have been covered in this
chapter earlier. We won't cover those again here; however below are the main
reasons for scale-out architecture in Kafka:

Partition: Splits a topic into multiple partitions and increasing partitions
is a mechanism of scaling.
Distribution: Cluster can have one or more brokers and these brokers
can be increased to achieve scaling.
Replication: Similar to partitions, multiple replication of a message is
there for fault-tolerance and this aspect also brings in scalability in
Kafka.
Scaling: Each consumer reads a message from a single partition (of a
topic) and to scale out we add more consumers and the newly added
consumers read the message from new partition (one consumer cannot
read from the same partition; this is a rule) as shown in this figure.

Figure 12: Scale out by adding more consumers

Kafka connect
Extensibility is one of the important design principle followed rigorously by
Kafka. The Kafka Connect tool makes Kafka extensible. The tool enables
Kafka to connect with external systems and helps bring data into it, and also
out from it to other systems. It has a common framework, using which
custom connectors can be written. More details on Kafka connect can be
found in Kafka documentation in https://kafka.apache.org/documentation.html#conne
ct.

The following figure shows how Kafka Connect works.

Figure 13: Kafka connect working

The Kafka connectors are categorized into two:

Source Connectors: Connectors which bring data into Kafka topics.
Sink Connectors: Connectors which take data away from topics into
other external systems

There are a huge list of connectors available, catering to various external
systems, using which Kafka can hook onto them. These existing connectors
are again categorized broadly into two:

Certified connectors: Connectors which are written using the Kafka
Connect framework and have already passed the best coding practice.
They are usually created and managed by vendors. These vendors write
these connectors to enable Kafka to connect and integrate into their tool.

https://kafka.apache.org/documentation.html#connect

Other connectors (non-certified): These are connectors which are not
yet certified and are maintained and managed by the community.

A full list of certified and non-certified connectors can be found at the link htt
ps://www.confluent.io/product/connectors/.

https://www.confluent.io/product/connectors/

Kafka working example
We have briefly discussed a basic setup of Kafka as part of Flume examples.
The basic setup of Kafka as listed there remains the same, hence the
installation steps will remain the same, however we will also look
additionally at usage examples of Kafka as a message broker.

The most natural programming language for Kafka is currently Scala or Java.
Hence, to keep things simple, we will be using Java as our choice of language
for examples.

Installation
1. Download the Kafka binaries from the following link, using the

command:

wget http://redrockdigimark.com/apachemirror/kafka/0.10.1.1/kafka_2.11-0.10.1.1.tgz

2. Change the directory to a user directory, where we will want to extract
the contents of the Kafka tarball using the following command. Let us
refer the extracted KAFKA directory as ${KAFKA_HOME}:

tar -xzvf ${DOWNLOAD_DIRECTORY}/kafka_2.11-0.10.1.1.tgz

3. Set KAFKA_HOME as environment variable using the following commands
and add the same into ~/.bashrc:

export KAFKA_HOME=<PATH to KAFKA Directory>

export PATH=$PATH:$KAFKA_HOME/bin

4. Change the directory into the extracted Kafka folder, that
is, ${KAFKA_HOME}, and run the following command to start the Kafka
server:

${KAFKA_HOME}/bin/kafka-server-start.sh ${KAFKA_HOME}/config/server.properties

5. This Kafka instance is started based on the default server.properties file,
which is bundled within the Kafka binary.

The Kafka installation comes bundled with default configurations for
producer, broker (server), as well as consumer. We will have a deeper look at
each one of these with working examples.

Producer - putting messages into
Kafka
The default producer configuration that comes bundled with Kafka is as
given below, located at ${KAFKA_HOME}/config/producer.properties:

############################# Producer Basics #############################

list of brokers used for bootstrapping knowledge about the rest of the cluster

format: host1:port1,host2:port2 ...

bootstrap.servers=localhost:9092

specify the compression codec for all data generated: none, gzip, snappy, lz4

compression.type=none

name of the partitioner class for partitioning events; default partition spreads data randomly

#partitioner.class=

the maximum amount of time the client will wait for the response of a request

#request.timeout.ms=

how long `KafkaProducer.send` and `KafkaProducer.partitionsFor` will block for

#max.block.ms=

the producer will wait for up to the given delay to allow other records to be sent so that the sends can be batched together

#linger.ms=

the maximum size of a request in bytes

#max.request.size=

the default batch size in bytes when batching multiple records sent to a partition

#batch.size=

the total bytes of memory the producer can use to buffer records waiting to be sent to the server

Code 01: Console Producer Configuration

This is the basic configuration required for Kafka producer, wherein, the
most important and the only required configuration parameters are:

1. bootstrap.servers: Refers to the Kafka broker listening ports, which will
be comma-separated to specify a cluster of brokers in a multi-broker
Kafka cluster.

2. key.serializer: Specifies the serializer for serializing the key of the

message (value). The value of which is a fully qualified class name of
the desired serializer. The default for the console producer is
org.apache.kafka.common.serialization.StringSerializer.

3. value.serializer: A property that specifies the serializer for serializing
the message (value). The value of which is a fully qualified class name
of the desired serializer. The default for console producer is:
org.apache.kafka.common.serialization.StringSerializer.

Serialization is the process of converting an object into a stream
of bytes in order to store the object or transmit it to memory, a
database, or a file. https://goo.gl/eDQE5A (https://docs.microsoft.com)

A simple producer can be built easily by using Kafka libraries as follows:

1. Checkout the latest code from the source repository using the following
command:

git clone https://github.com/PacktPublishing/Data-Lakes-for-Enterprises

If the repository is already cloned, ensure to check out the latest source
code with the following command:

git pull

2. Within the repository, the source code of this chapter is under the folder
named, chapter07.

3. The following is the maven dependency for a simple producer, declared
in chapter07/pom.xml.

<dependencies>

 <!-- https://mvnrepository.com/artifact/org.apache.kafka

 /kafka-clients -->

 <dependency>

 <groupId>org.apache.kafka</groupId>

 <artifactId>kafka-clients</artifactId>

 <version>0.10.1.1</version>

 </dependency>

</dependencies>

Code 02: Maven Dependencies for Simple Producer

4. A simple producer Java implementation is as shown in the following

https://goo.gl/eDQE5A
https://docs.microsoft.com

code snippet:

public class SimpleProducer {

 public static void main(String[] args) throws

 ExecutionException, InterruptedException {

 Properties props = new Properties();

 /*

 Set the list of broker addresses separated by commas.

 This needs to be updated with IP of your VM running Kafka

 broker

 */

 props.setProperty("bootstrap.servers",

 "192.168.0.117:9092");

 //Set the serializer for key of the message(value)

 props.put("key.serializer",

 "org.apache.kafka.common.serialization.StringSerializer");

 //Set the serializer for the message (value)

 props.put("value.serializer",

 "org.apache.kafka.common.serialization.StringSerializer");

 //Create a producer

 Producer<String, String> producer = new KafkaProducer<String, String>(props);

 //Create a message to be sent to a topic

 ProducerRecord message = new

 ProducerRecord("customer", "001", "A Sample Message...");

 //send the message

 producer.send(message);

 System.out.println("Message Published");

 //close the producer connection

 producer.close();

 }

}

Code 03: A Simple Producer

Few observations in the preceding examples are:

The minimum required configuration for a Kafka producer has been put
in as a properties object. This could have been provided as a map as
well.
We are using the default serializers for message key and it's value.
While publishing the message we are also specifying the topic as well as
key of the message.

The topic specified while sending the message will get created if it does
not exist already.

5. For the simple producer to publish messages to a remote broker process,
it is important to change the following setting in the server.properties,
that is, ${KAFKA_HOME}/config/server.properties, of Kafka server such that
the Kafka server binds to the correct external IP, rather than binding to
the localhost.

Figure 14: Binding Host (external IP) configuration of Kafka Server

6. The preceding source code can be run by simply executing the main
program in an IDE of your choice. The only precondition is that the
Kafka must be running. Make sure that the broker IP in the
SimpleProducer class (line 18) is changed before running the class. The
console output will show a message stating Message Published once the
message is published to the topic.

7. The message published can be verified from the Kafka console by
running the following command:

${KAFKA_HOME}/bin/kafka-console-consumer.sh --topic customer --bootstrap-server <broker-ip>:9092 --from-beginning

Figure 15: Output of console consumer for Messages published by Simple
Producer

Kafka Connect
As discussed earlier, Kafka Connect can be used to copy streaming messages
from or to Kafka and is very similar to Flume. However, in order to use
Kafka connect there is a dependency to have confluent setup. Provided here
are the steps to install Confluent:

1. Download the latest Confluent package from the following link, using
the command given below. It’s a big download so it may take some time
to complete:

wget http://packages.confluent.io/archive/3.2/confluent-oss-3.2.0-2.11.tar.gz

2. Change directory to a user directory and extract the contents of the
preceding tarball using the following command. We will refer the
extracted confluent folder as ${CONFLUENT_HOME}:

tar zxvf ${DOWNLOAD_DIRECTORY}/confluent-oss-3.2.0-2.11.tar.gz

3. Set CONFLUENT_HOME as an environment variable using the following
command and add the same to ~/.bashrc file:

export CONFLUENT_HOME=<PATH to CONFLUENT Directory>

4. Start the Zookeeper and Kafka server with the following commands if it
is not already started:

${KAFKA_HOME}/bin/zookeeper-server-start.sh ${KAFKA_HOME}/config/zookeeper.properties ${KAFKA_HOME}/bin/kafka-server-start.sh -daemon ${KAFKA_HOME}/config/server.properties

5. Start the schema registry with the following command:

${CONFLUENT_HOME}/bin/schema-registry-start ${CONFLUENT_HOME}./etc/schema-registry/schema-registry.properties

Once the schema registry is successfully started, it will display a log
message as shown:

[2017-05-09 22:10:10,088] INFO Server started, listening for requests... (io.confluent.kafka.schemaregistry.rest.SchemaRegistryMain:45)

6. Follow the Quickstart instructions for the Avro schema example as
provided at the following URL (from Step 5 onwards in the Quickstart
guide). All the instructions specified in the Quickstart guide are required
to be run from ${CONFLUENT_HOME} and wherever, localhost is mentioned, it
needs to be replaced with the IP to which Kafka is binding to.(http://docs.c
onfluent.io/2.0.0/quickstart.html#quickstart).

7. This is a good Quickstart article to make us understand the purpose of
Kafka Connect.

8. Once you have run the Avro example, switch back to ${KAFKA_HOME} and
see the results from the test topic by running the following command:

${KAFKA_HOME}/bin/kafka-console-consumer.sh --topic test --bootstrap-server <broker-ip>:9092 --from-beginning

9. Here, we ran Zookeeper and Kafka from our existing Kafka install. We
also ran schema registry from the confluent platform and were able to
push messages in the Avro format and in a parallel fashion consume
them with Avro validations.

http://docs.confluent.io/2.0.0/quickstart.html#quickstart

Consumer - getting messages from
Kafka
The default consumer configuration ($KAFKA_HOME/config/consumer.properties)
that comes bundled with Kafka is as shown:

Zookeeper connection string

comma separated host:port pairs, each corresponding to a zk

server. e.g. "127.0.0.1:3000,127.0.0.1:3001,127.0.0.1:3002"

zookeeper.connect=127.0.0.1:2181

timeout in ms for connecting to zookeeper

zookeeper.connection.timeout.ms=6000

#consumer group id

group.id=test-consumer-group

#consumer timeout

#consumer.timeout.ms=5000

Code 04: Console Consumer Configuration

As seen here, the only configuration required by the console consumer (the
consumer that comes by default with Kafka for terminal/ssh based
consumption) is the Zookeeper connection (this is an old property but kept
for backward compatibility), or bootstrap servers (this is the new property),
details and group ID. Other settings are around timeouts and group ID which
are optional. The group ID indicates the consumers belonging to a group,
such that the group always processes every message only once. The key and
value deserializers default to a string deserializer, as explained in the
producer section before.

Hence the mandatory settings for a consumer are:

1. bootstrap.servers: Refers to the Kafka broker listening addresses (comma
separated ip:port), which specifies a cluster of brokers in a multi-broker
Kafka cluster.

2. key.deserializer: Specifies the serializer for serializing the key of the
message (value). The value of which is a fully qualified class name of

the desired serializer. The default for console producer is
org.apache.kafka.common.serialization.StringSerializer.

3. value.deserializer: Specifies the serializer for serializing the message
(value). The value of which is a fully qualified class name of the desired
serializer. The default for console producer is
org.apache.kafka.common.serialization.StringSerializer.

4. group.id: defines a group for the consumers.

Now, let us look at how a simple consumer can be built by using Consumer
API.

1. The maven dependencies for a simple consumer are the same as for a
simple producer and are as follows for reference:

<dependencies>

 <!-- https://mvnrepository.com/artifact/org.apache.kafka/

 kafka-clients -->

 <dependency>

 <groupId>org.apache.kafka</groupId>

 <artifactId>kafka-clients</artifactId>

 <version>0.10.1.1</version>

 </dependency>

</dependencies>

Code 05: Maven Dependencies for Simple Consumer

2. A simple consumer Java implementation is as shown here:

public class SimpleConsumer {

 public static void main(String[] args) {

 Properties props = new Properties();

 /*

 Set the list of broker addresses separated by commas.

 This needs to be updated with IP of your VM running

 Kafka broker

 */

 props.setProperty("bootstrap.servers",

 "192.168.0.117:9092");

 //Set the deserializer for the key of the message

 props.put("key.deserializer",

 "org.apache.kafka.common.serialization.StringDeserializer");

 //Set the deserializer for the message (value)

 props.put("value.deserializer",

 "org.apache.kafka.common.serialization.StringDeserializer");

 //Set the groupId

 props.put("group.id", "1234");

 //Create a consumer from Kafka Consumer

 Consumer<String, String> consumer = new

 KafkaConsumer<String, String>(props);

 //Subscribe the consumer to the topic

 consumer.subscribe(Arrays.asList("customer"));

 try {

 while (true) {

 //Get All records from latest offset

 ConsumerRecords<String, String> records =

 consumer.poll(100);

 //Display all records

 for (ConsumerRecord<String, String> record :

 records) {

 System.out.println("key:" + record.key() +

 "\nvalue:" + record.value());

 }

 }

 } finally {

 consumer.close();

 }

 }

}

Code 06: A Simple Consumer

Looking at the code, we can observe and verify the following:

The minimum required configuration for a Kafka consumer has been put
in as a properties object. This could have been provided as a map as well
The consumer is continuously watching the topic for new messages
The polling interval is defined as 100 ms for consuming new messages
and is a configurable value, as evident from the previous code

3. The preceding source code can be run by simply executing the main
program in IDE of your choice. The only precondition is that the Kafka
must be running and the producer has published some messages into the
topic. Make sure that the broker IP in the SimpleConsumer class (line 22) is
changed before running the class. The console output will show all the
messages consumed from the topic, as shown in this figure.

Figure 16: Output from Simple Consumer

Setting up multi-broker cluster
While we may be setting up the Kafka server on a single node deployment in
our example code, we can always have multiple broker deployment for single
node level resiliency. In that case, if one broker fails, the other broker is still
available to serve the messages.

Setting up multiple brokers on a single node is very straightforward and
involves changing the following settings in
${KAFKA_HOME}/config/server.properties.

Configuration
Parameter Description

broker.id
This should always be unique in a Kafka cluster for each
of the broker instances

port
The port must be different if multiple brokers are to be
set up on the same node

logs.dir
The log location for each of the brokers must be defined
on different paths for single node deployment

A general recommendation is to have 2 different server.properties file for
each of the broker instances. An example of this file is as shown next
(observe the parameters changed). The broker ID is required to be distinct for
both the broker configurations. Accordingly the logs directory need to be
configured, so that both broker are writing to different log folders.

############################# Server Basics #############################

The id of the broker. This must be set to a unique integer for each broker.

broker.id=10

Switch to enable topic deletion or not, default value is false

delete.topic.enable=true

############################# Socket Server Settings #############################

java.net.InetAddress.getCanonicalHostName() if not configured.

FORMAT:

listeners = security_protocol://host_name:port

EXAMPLE:

listeners = PLAINTEXT://your.host.name:9092

listeners=PLAINTEXT://192.168.0.117:9092

Hostname and port the broker will advertise to producers and consumers. If not set,

it uses the value for "listeners" if configured. Otherwise, it will use the value

returned from java.net.InetAddress.getCanonicalHostName().

#advertised.listeners=PLAINTEXT://your.host.name:9092

The number of threads handling network requests

num.network.threads=3

The number of threads doing disk I/O

num.io.threads=8

The send buffer (SO_SNDBUF) used by the socket server

socket.send.buffer.bytes=102400

The receive buffer (SO_RCVBUF) used by the socket server

socket.receive.buffer.bytes=102400

The maximum size of a request that the socket server will accept (protection against OOM)

socket.request.max.bytes=104857600

############################# Log Basics #############################

A comma seperated list of directories under which to store log files

log.dirs=/tmp/kafka-broker10-logs

The default number of log partitions per topic. More partitions allow greater

parallelism for consumption, but this will also result in more files across

the brokers.

num.partitions=1

The number of threads per data directory to be used for log recovery at startup and flushing at shutdown.

This value is recommended to be increased for installations with data dirs located in RAID array.

num.recovery.threads.per.data.dir=1

############################# Log Flush Policy #############################

Messages are immediately written to the filesystem but by default we only fsync() to sync

the OS cache lazily. The following configurations control the flush of data to disk.

There are a few important trade-offs here:

1. Durability: Unflushed data may be lost if you are not using replication.

2. Latency: Very large flush intervals may lead to latency spikes when the flush does occur as there will be a lot of data to flush.

3. Throughput: The flush is generally the most expensive operation, and a small flush interval may lead to exceessive seeks.

The settings below allow one to configure the flush policy to flush data after a period of time or

every N messages (or both). This can be done globally and overridden on a per-topic basis.

The number of messages to accept before forcing a flush of data to disk

#log.flush.interval.messages=10000

The maximum amount of time a message can sit in a log before we force a flush

#log.flush.interval.ms=1000

############################# Log Retention Policy #############################

The following configurations control the disposal of log segments. The policy can

be set to delete segments after a period of time, or after a given size has accumulated.

A segment will be deleted whenever *either* of these criteria are met. Deletion always happens

from the end of the log.

The minimum age of a log file to be eligible for deletion

log.retention.hours=168

A size-based retention policy for logs. Segments are pruned from the log as long as the remaining

segments don't drop below log.retention.bytes.

#log.retention.bytes=1073741824

The maximum size of a log segment file. When this size is reached a new log segment will be created.

log.segment.bytes=1073741824

The interval at which log segments are checked to see if they can be deleted according

to the retention policies

log.retention.check.interval.ms=300000

############################# Zookeeper #############################

Zookeeper connection string (see zookeeper docs for details).

This is a comma separated host:port pairs, each corresponding to a zk

server. e.g. "127.0.0.1:3000,127.0.0.1:3001,127.0.0.1:3002".

You can also append an optional chroot string to the urls to specify the

root directory for all kafka znodes.

zookeeper.connect=localhost:2181

Timeout in ms for connecting to zookeeper

zookeeper.connection.timeout.ms=6000

Code 07: Multi-Broker Setup

Once the preceding changes are done, we can launch the Kafka server in
daemon mode using the following commands:

${KAFKA_HOME}/bin/kafka-server-start.sh -daemon ${KAFKA_HOME}/config/server-broker10.properties ${KAFKA_HOME}/bin/kafka-server-start.sh -daemon ${KAFKA_HOME}/config/server-broker20.properties

After the Kafka instances are started, observe the creation of logs in the tmp
folder: (/tmp/kafka-logs/) as shown here:

Figure 17: Multiple Broker Logs

Kafka in the purview of an SCV use
case
The usage of this technology (Apache Kafka) in the purview of SCV can be
summarized very well by this figure:

Figure 18: Kafka technology usage in SCV use case

In this chapter, we looked at the publishing, message broker and consuming
aspects of information. In the previous chapter, we used Kafka both as a
channel as well as a sink. While using Kafka as a channel, it was acting both
as a producer as well as a consumer; while using Kafka as a sink it was more
of doing a producer function.

What this basically means is that we intend to use Kafka more as a message
broker and as a channel so that we can define acquisition and ingestion
interfaces around it from a single customer view perspective. This
information could be a mix of structured and unstructured information
exchanged via messages with standard data formats like XML/JSON. In the
previous chapter, we saw how we can acquire both structured as well as
unstructured data as a Spool file into Kafka. There could be

additional/custom interfaces built with custom serializers/sinks, making
Kafka as the central broker of message/events disseminated into target
systems via an ingestion layer.

When to use Kafka
Kafka has its core capabilities making it a choice for our use case and these
were documented in this chapter when we started of Kafka should be used:

When you need a highly distributed messaging system
When you need a messaging system which can scale out exponentially
When you need high throughput on publishing and subscribing
When you have varied consumers having varied capabilities by which to
subscribe these published messages in the topics
When you need a fault tolerance operation
When you need durability in message delivery
Obviously, all of the preceding without tolerating performance degrade.
With all the preceding it should be blazing fast in operation.

When not to use Kafka
For certain scenarios and use cases, you shouldn't use Kafka:

If you need to have your messages processed in order, you need to have
one consumer and one partition. But this is not at all the way Kafka
works and we do have multiple consumers and multiple partitions (by
design one consumer consumes from one partition) and because of this,
it won't serve the use case that we are looking to implement.
If you need to implement a task queue because of the same reason in the
preceding point. It doesn't have all the bells and whistles that you
associate with a typical queue service.
If you need a typical topic capability (first in first out) as the way it
functions is quite different.
If your development and production environment is Windows or Node.js
based (subjective point but it's good to know that this aspect is quite
true).
If you need high security with finer controls. The original design of
Kafka is not really created with security in mind and this plagues
Kafka at times.

Other options
There are sections in this chapter that details advantages of using Kafka. Also
in this chapter, there are sections that details disadvantages and when not to
use Kafka. That means, Kafka for us is just a choice suited for the topic that
we are covering in this book and also for the SCV use case. The main reason
for this choice is because of Kafka's clear advantages; especially when
dealing with big data and its associated technologies.

There are other options in market which is a full-fledged messaging system
(MOM) and possess rich features compared to Kafka. Some of the
alternatives that we think you could look into and replace Kafka are briefly
summarized in this section. In no way we mean to say that these cannot be
used in our use case, just that we thought Kafka is the best fit. If we are to
look at other options in place of Kafka these alternatives are our favorites.

All the technology choices have been made after careful technical analysis
and with our book we want to give the right steer for you in the right
direction.

RabbitMQ
One of the strong alternatives that we see is RabbitMQ. It's one of the most
powerful and well-known message brokers in the industry. Some of its
important features are as follows:

Written in Erlang programming language
Very good documentation with lots of resources online
Developed and maintained by Pivotal
Open source and commercially supported by many vendors
Matured
Rich routing capabilities
Distributed in nature
Possess durability and persistence options (optional though)
Possess order message processing if needed
Supports clustering if needed
Licensed under Mozilla Public License

Use/choose RabbitMQ if:

You need messages to be routed in more complex ways
Each message needs delivery guarantees
Don't really care much about ordered message delivery and it is left to
the consumer to maintain the order
Your enterprise demands paid commercial support for production
environment
High-availability requirements in deployment aspect
You need good routing capabilities
You are looking to support multiple protocols (AMQP, STOMP,
MQTT, and so on.)
You need better security features
You need transaction features

The Advanced Message Queuing Protocol (AMQP) is an open standard
application layer protocol for message-oriented middleware. The defining

features of AMQP are message orientation, queuing, routing (including
point-to-point and publish-and-subscribe), reliability and security.

Simple (or Streaming) Text Oriented Message Protocol (STOMP), formerly
known as TTMP, is a simple text-based protocol, designed for working with
message-oriented middleware (MOM). It provides an interoperable wire
format that allows STOMP clients to talk with any message broker
supporting the protocol.

MQTT (Message Queuing Telemetry Transport) is an ISO standard publish-
subscribe-based "lightweight" messaging protocol for use on top of the
TCP/IP protocol. It is designed for connections with remote locations where
a "small code footprint" is required or the network bandwidth is limited.

- Wikipedia

ZeroMQ
Some of its important features are as follows:

Lightweight messaging system
Capable of high throughput with low latency operation
Capable of handling many messaging scenarios by bringing in various
components within ZeroMQ
Capable of asynchronous programming
Not very good support for transaction based messaging systems
Licensed under GPL
Supports variety/multiple language bindings

Use/choose ZeroMQ if:

You are looking for the simplest messaging system in regards to
implementation
You are looking for fast message transmission of transient messages
You need to connect multiple applications using messaging architecture
and should have a very low footprint on the nodes
You need an asynchronous messaging model

Apache ActiveMQ
Some of its important features are as follows:

Provides different persistence mechanisms
Horizontally scalable
Highly flexible in configuration aspect
Support for a variety of transport protocols
Many projects internally use Apache ActiveMQ as an enterprise service
bus
Supports many advanced messaging system features
Easily integrates with many applications, especially Java-based
Reliable
Faster
Supports transaction in messaging system
Open source with vibrant community
Has scheduler support

Use/choose ActiveMQ if:

You are looking for ease by which a product can be configured
You are looking at messaging system having high performance with no
persistence

Summary
The topic covered in this chapter is quite exhaustive. Rest assured that you
have covered enough of Apache Kafka to implement a Data Lake.

In this chapter, we started with the relevance of messaging layer in the
context of a Data Lake. After that, the chapter deep dived into Kafka and
detailed it's architecture and its various components. It then showed you the
full working example of Kafka with step-by-step instructions from
installation all the way to taking data from a source, to destination using
Kafka. Finally, as in other chapters we introduced other choices which can
replace Kafka as the technology to achieve the same capability.

After reading this chapter, you should now have a clear idea of the messaging
layer and a deep understanding of Apache Kafka and how it works. You
should also have a clear idea of how our use case can use this technology and
what exactly it accomplishes.

Data Processing using Apache Flink
By now, I am sure you have got the approach of each chapter in this part of
the book. This chapter follows the same approach. It will introduce the Data
Ingestion Layer initially and then it will make a technology mapping, in our
case, Apache Flink.

Handling both stream and batch data and appropriately processing it is an
important feature required for our Data Lake implementation, and Flink is the
choice for us. In this chapter, we will give you just enough details that you
need to know about Flink to execute the Data Lake use case in hand.
Covering Flink in its full aspects is out of the scope of this book and would
take a book in itself. We will initially dive into Flink’s core strengths and
weaknesses, followed by its architecture and important components. We will
then delve deep into an actual hand on coding session of Flink and the
connection with our SCV use case.

Finally, we will explain some of the alternate technologies that you can think
of if Flink is not something you would like to import for your chosen use case
in your organization.

Context in a Data Lake - Data
Ingestion Layer
In this chapter, we are dealing with a technology that constitutes one of the
core layers of Data Lake, namely Data Ingestion Layer. For dealing with
processing of data from both streaming and batch data from different
applications in an enterprise having the layer is very important.

The technology that we have shortlisted to do this very important job of
processing data is Apache Flink. I have to say that this selection was quite
difficult as we have another technology in mind, namely Apache Spark,
which was really strong in this area and more matured. But we decided to go
with Flink in the end considering its pros. However, we have also detailed
Spark a bit as opposed to other chapters in which we have just named other
options and left it, because of its significance in this space.

This chapter will take you through the Data Ingestion Layer and its working
first and then it will dive deep into the technology, Flink.

Data Ingestion Layer
Data ingestion is the process of obtaining and importing data for immediate
use or storage in a database. To ingest something is to "take something in or
absorb something."

- whatis.com

In Chapter 2, Comprehensive Concepts of a Data Lake you will have got a
glimpse of the Data Ingestion Layer. This layer’s responsibility is to gather
both stream and batch data and then apply any processing logic as demanded
by your chosen use case. The following figure will refresh your memory and
give you a good pictorial view of this layer:

Figure 01: Data Lake - Data Ingestion Layer

In our Data Lake implementation, the Data Ingestion Layer is responsible for
consuming the messages from the messaging layer and performing the
required transformation for ingesting them into the Lambda Layer (batch and
speed layer) such that the transformed output conforms to the expected
storage or processing formats. The Data Ingestion Layer must ensure that the
rate of message consumption is always better or equal to the message
ingestion rates, such that there is no latency to process the messages/events.

Some of the characteristics of Data Ingestion Layer can be summarized as

http://whatis.com

follows:

Less complex and really fast to cater to data input (in our case, output
from the messaging layer)
Capable of handling different data flows (real-time or batch, continuous
or asynchronous)
Capable of handling various data types (structured, unstructured, and
semi-structured)
Integration with various persistence store mechanisms
Multiple transport protocol support
Capable of handling four V's of big data
Capable of connecting with disparate systems and technologies

Figure 02: Working of Data Ingestion layer in our Data Lake implementation

As shown in the preceding figure, we will take data from the messaging layer
and will enrich and transform it accordingly to pass it to the Lambda Layer
(both Speed and Batch Layer).

Data Ingestion Layer - technology
mapping
For covering our use case and to build Data Lake we use Apache Flink in this
layer as the technology. Other strong technology choices namely Apache
Spark will also be explained a bit as we do feel that this is an equally good
choice, in this layer. This chapter dives deep into Flink, though.

The following figure brings in the technology aspect to the conceptual
architecture that we will be following throughout this book. We will keep
explaining each technology and its relevance in the overall architecture
before we brings all the technologies together in the final part of this book
(Part 3):

Figure 03: Technology mapping for Data Ingestion Layer

Inline with our use case of SCV, the data from the messaging layer is taken in
by this layer and then enriched and transformed accordingly and passed onto
the Lambda Layer. We might also pass this data to the Data Storage Layer for
persisting as well.

In this layer there might be other technologies such as Kafka Consumer,
Flume and so on. to take of certain aspects in the real working example of
SCV. Part 3 will bring these technologies together so that a clear SCV is

derived for enterprise use.

What is Apache Flink?
Apache Flink is an open-source stream processing framework for distributed,
high-performing, always-available, and accurate data streaming
applications.

- flink.apache.org

Apache Flink is a community-driven open source framework for distributed
big data analytics, like Hadoop and Spark. The core of Apache Flink is a
distributed streaming dataflow engine written in Java and Scala. Flink
executes arbitrary dataflow programs in a data-parallel and pipelined
manner. Flink's pipelined runtime system enables the execution of bulk/batch
and stream processing programs.

- Wikipedia

Apache’s definition of Flink is somewhat easy to understand and the second
part of Wikipedia's definition is quite hard to understand. For the time being
just understand that Flink brings a unified programming model for handling
stream and batch data using one technology.

This chapter in no way covers in a comprehensive way the working of
Apache Flink. Apache Flink is a topic by itself spanning an entire book.

However, without giving too much details, it tries to cover many aspects of
this awesome tool. We will skim through some of the core aspects and we
will also give you enough information to actually use Flink in your Data Lake
implementation.

For comprehensive coverage of Flink, I suggest going through, latest
documentation of Flink in Apache, which can be found at https://ci.apache.org/pr
ojects/flink/flink-docs-release-1.1/.

https://ci.apache.org/projects/flink/flink-docs-release-1.1/

Why Apache Flink?
The technology choice in this layer was really tough for us. Apache Spark
was initially our choice, but Apache Flink had something in it that made us
think over and at the time of writing this book, the industry did have some
pointers favoring Flink and this made us do the final choice as Flink.
However, we could have implemented this layer using Spark and it would
have worked well for sure.

This section tries to give the reader reasons for why Flink was chosen.
Obviously we have a subsection that gives detail advantages of Flink and
those are these primary reasons for the choice.

But before going to the advantages and disadvantages of Flink, lets see how
Flink started its journey and what were the advantages it had when it started.
Some aspects is definitely its learning from existing similar technologies and
that itself is an advantage. Other aspect is new things get developed when
there is such a requirement (necessity is the mother of all inventions as stated
by the famous proverb). One of the main differences between the two is to do
with how these two are actually implemented (implementation design and
details).

The following are some of the reasons for its selection as against its
competitors:

Easier to use application programming interface (API) and also at much
higher level
Lighting fast data processing using many inherent Flink features (in-
memory processing)
Capable of touching each stream data and perform required analysis
Low latency data processing
Support for exactly once processing
High throughput
Fault tolerant
Easy configuration

Open source
Capable of providing accurate results for late coming data and also out
of order data streams
Stateful in nature

Spark operates in micro-batch and that's one of the core reasons to move to
Flink. Going forwards micro-batch can be an issue (bottleneck) to handle
real-time data and giving results as required by use cases in a timely manner.
Due to this reason only, Spark is not considered as it does impose a latency in
analyzing data in real-time and to produce relevant results.

History of Flink
Flink started as a fork from the Stratosphere project and in April, 2014 it
was incubated in Apache Incubator. In the same year (December, 2014),
Flink became Apache's top-level project and the 0.9 version was Flink’s first
version after becoming top-level Apache project and 1.1 is the latest release
of Flink released in December, 2016.

In 2010, the research project "Stratosphere: Information Management on the
Cloud" (funded by the German Research Foundation (DFG)) was started as
a collaboration of Technical University Berlin, Humboldt-Universität zu
Berlin, and Hasso-Plattner-Institut Potsdam.

- Wikipedia

The following figure summarizes Flink’s evolution in a pictorial fashion for
easy understanding:

Figure 04: History of Apache Flink

It was a complete rewrite from Stratosphere 0.2 to Flink 0.8. Flink was added
on real-time data streams and integration with a variety of frontend and
backends making it more acceptable in the industry. It also has been well
integrated with many of the open source big data technologies and gels with
this ecosystem quite well. The Fink community has been thriving since then
and has started challenging more mature frameworks like Spark in due course

because of its subtly implementation philosophies of avoiding micro-batch
and dealing with stream data as is in real-time.

Advantages of Flink
Apache Flink was chosen for its inherent strengths and new designs. It was
also chosen, considering use case that we are dealing with and also how the
big data space is going forward. It is also considering how enterprises see
data at real-time as a mechanism to make more profit. Dealing with real-time
data with less latency as against dealing with micro-batch inherently
providing results with some latency is needed in modern industries and Flink
does live up to this aspect quite well.

Some of the core advantages offered by Flink are as follows:

Capable of working with filesystems apart from Hadoop File Systems.
Easy API’s.
Open source.
Better testing capability and support.
Extremely fast data processing.
Unified programming model for both batch and stream data. This
internally helps enterprises to get resources (people) in this technology
to handle these disparate types of data into Data Lake.
Capable of analyzing stream data at extreme velocity as required by use
case and transform accordingly.
Flink has its own Machine Learning (ML) library, FlinkML, for
dealing with ML related use cases.
Support for iterative queries and algorithms natively.
Supports many new operators along with built-in MapReduce models.
Low latency data processing using its pipelined engine.
By design capable of handling higher throughput.
Fault tolerance support using light-weight methodologies.
Also support batch processing.
Built-in storm support allowing reusing of code written for Storm.
Bult-in memory manager supporting customizations as required by your
use case
Little or no configuration.
Most of tuning in regards to performance handled internally by the Flink

engine.
Possesses different windowing features for the streamed data required
for modern big data technologies (for handling steady data streams,
Flink divides the arriving data into slices based on timestamp, count and
other criteria, this is called as a window).
Being stateful is one of the features making it come out of failure.
Capable of large scale enterprise deployment capable of handling high
volume and velocity data from various business applications.
Decouples APIs from actual execution (what this means is the same
program can be ran in many ways and this is hidden from users) making
it easy to achieve performance.
Many required metric for monitoring and management is exposed via
REST APIs.
Easy to use dashboard for rich user interface experience.
Supports highly-available cluster setup.

For more details, Flink documentation does have a specific section detailing
with Flink, which can be found at this link http://flink.apache.org/introduction.html
#features-why-flink.

http://flink.apache.org/introduction.html#features-why-flink

Disadvantages of Flink
Being the latest in this space (not really the latest, its origin dates back to
2008), it does try to cover many of the shortcomings its more popular
competitors have within them. So in that league it does possess only a very
few disadvantages as of now.

Some of the disadvantages associated with Flink can be bulleted as follows:

Compared to competitors not ahead in popularity and community
adoption at the time of writing this book
Maturity in the industry is less
Pipelined execution in Flink does have some limitation in regards to
memory management (for long running pipelines) and fault tolerance
Flink uses raw bytes as internal data representation, which if needed, can
be hard to program
Doesn't have matured APIs for querying data (Flink’s Table API is not
quite there when compared with other competitors)
Data source integration API’s are not the best and are limited in options.
Only Java and Scala API’s available as of now

Working of Flink
An image conveys much more than a paragraph and because of that reason
we will start this section with a figure. The functioning of Flink is as shown
in the following figure:

Figure 05: Functioning of Flink

Flink is capable of taking in both batch and stream data. It operates on batch
data as if it is another form of stream data and this itself is quite a unique
feature of Flink. We have in one of the chapters in Part 1 explained a bit on
Kappa Architecture was explained, in which all data is being considered
and dealt with stream data and Flink uses that exact principle in its
architecture and implementation.

In the preceding figure, both types of data (batch and stream) from various
source systems gets into Flink. The Flink program submits the job and using

master and worker, deals with these data and produces output.

Flink architecture
The crux of the Flink architecture as shown in the preceding figure are three
important components working together namely:

Client
Job Manager
Task Manager

The following figure shows this aspect extracted out for easy understanding:

Figure 06: Core components in Flink architecture

The preceding figure clearly shows the interaction between these components
pretty well. Now let's get into each component into a bit more detail in

following subsections.

Client
The client has the following defined functions to be performed for each Flink
program execution:

Code parsing
Type extraction
Optimizer: Optimization to select the best since, Flink has a built-in
optimizer that optimizes the code before actual execution
Graph Builder: Construction of dataflow graph for every job
Transfer the constructed dataflow graph to job manager
Get the job results generated

The following figure gives you anatomy of the Flink client component and
also gives the link between another Flink component:

Figure 07: Flink client component

Job Manager
The main functions performed by the Job Manager (master node) are as
follows:

Prepares to parallelize execution of tasks.
Task Scheduling: Schedules the tasks on the task managers. It deploys,
stops, and cancels tasks in the task manager.
Contains the checkpoint coordinator, which is used to trigger
checkpoints in the task manager.
Execution Tracking: Tracks the execution of tasks in the task manager
and gathers task results.
Gathers and keeps the metadata associated with the dataflow graph.

The following figure shows the anatomy of Job Manager in detail and also
shows its link to the next component:

Figure 08: Flink Job Manager component

Task Manager
Task Manager is the worker node where the tasks are finally executed. It
contains multiple task slots in which it executes the tasks as
specified/demanded by the Job Manager.

The following figure shows the anatomy of the Task Manager. It shows
multiple workers task nodes showing that this component is usually more
than one in a typical deployment:

Figure 09: Flink Task Manager component

The following figure shows all these components in the Flink architecture in
action, but unlike the previous high-level image, this details each components
and its interaction:

Figure 10: Flink architecture component nitty-gritties (courtesy-Flink
documentation)

The preceding figure shows that each component is linked by a coordination
system built on the Akka library. Flink has different deployment topology. If
Flink is started in local mode, one Job Manager with one or more task
manager is started with the same JVM.

As shown in the preceding figure, the client submits a job to the job manager,
which in turn controls the task manager, inside which tasks are placed in
tasks slots and then executed.

The next section gives us the Flink execution model and the path a job takes
to execute it and produce results.

Flink execution model
The following figure shows Flink’s execution model. The Flink program
written is parsed by the program compiler and then type extracted and then
optimized (Flink Optimizer). Each submitted job is then converted to a
dataflow graph and then passed onto Job Manager, which then creates an
execution plan and the job graph is then passed onto Task Manager where the
tasks are finally executed (execution graph).

Figure 11: Flink execution model

Core architecture principles of
Flink
We have gone through Flink’s architecture and its important components in
the previous section. Before going deep into Flink internals it's very
important to understand the principles on which Flink was conceived and
developed. Some of the core architecture principles followed by Flink are as
follows:

Hide internal workings of many aspects away from users (abstract as
much as possible so as to become easy for users).
Decouple API’s from actual execution logic (interface-implementation
approach). This helps Flink to execute the same program in multiple
ways hidden away from the users achieving maximum performance.
Declarative.
Little or no tuning.
Execute everything as stream (even batch data).
Little or no configuration.
Support for many filesystems (BYOS - Bring Your Own Storage).
Multiple deployment options (BYOC - Bring Your Own Cluster).
Work very close with various Hadoop systems and technologies.
Separation of application logic from fault-tolerance.

Flink Component Stack
The following figure shows Flink’s stack in detail. Getting in each
component in the stack is out of the scope of this book and we would suggest
going through Flink’s official documentation (https://ci.apache.org/projects/flink/fl
ink-docs-release-1.1/).

Figure 12: Flink Component Stack (Courtesy Apache Flink doc - http://flink.ap
ache.org)

The preceding figure shows the various components in Flink stack in a layer
fashion (conceptual architecture). As shown, Flink supports variety of storage
(BYOS) and that constitutes the bottom later. The next layer is the
deployment topology that Flink supports (BYOC) and as shown, it does
support a variety of them. The next layer labelled Runtime is the core of
Flink’s execution model and consists of Batch Optimizer for batch operation

https://ci.apache.org/projects/flink/flink-docs-release-1.1/
http://flink.apache.org

and Stream Builder for stream handling. On top of that is the layer that is
interacted by the developer and it is quite well abstracted away from the
developer in the form of well-defined API’s and libraries.

Checkpointing in Flink
One aspect of Apache Flink that allows it to handle stateful streaming is
checkpointing and this is one of core features that makes it different from
others. Other aspect namely savepoint (explained in the next section), also
enables Flink to handle stateful streaming.

Fault tolerance is one of the core features of Flink. Achieving this feature
with high throughput and performance is quite a tricky combination to
achieve. But Flink achieves this using the so called checkpointing feature.

As against batch (which has a defined start and end), stream data does not
have a clear start and end. Also the stream data coming in has a state that has
to be preserved and this poses additional challenges in achieving fault
tolerance.

Checkpointing in Flink uses the Distributed Snapshots approach, which is
based on a technique by Chandy and Lamport in the year 1985. Flink has
slightly varied the algorithm by saving the snapshot state periodically
(frequency is configurable) in the background of the running data stream to a
persistent storage (Flink supports multiple filesystems). This mechanism,
however does not put any pressure on other components and is quite
lightweight and happens very seamlessly to the developer under the hoods.

Stream barriers is the mechanism by which Flink’s checkpointing mechanism
works. These barriers are inserted at sources and flow through the stream.
These streams as shown in the following figure are part of either current
snapshot or the next snapshot. When these barriers pass through operators, it
triggers state snapshots and is persistent in the storage. Once the
checkpointing is done the barriers flow through and the process continues.
When all the sinks receives these checkpoints, the current checkpoint is
complete and can be taken away from storage (if needed). In case of failure,
the checkpoint stored on storage can be restored and continued from there.

The following figure shows the stream barriers and checkpointing aspects in

detail:

Figure 13: Checkpointing in Apache Flink

Checkpointing is one of the very important technical aspects in Flink and
many other design principles such as fault tolerance are fully relying on this.

Savepoints in Flink
Savepoint is another important feature in Flink, which takes it ahead of many
of its competitors. Savepoint is a point in time snapshot that keeps track of
where exactly we are in the processing of input streams and also holds its
associated metadata. It also keeps track of all the pending states or in flight
sessions in Flink execution engine. Conceptually its like taking a picture by
literally stopping the stream data. By doing so, however, it doesn't actually
stop the operation but does this silently in the background.

Internally Flink handles savepoints very much similar to checkpointing, but it
does have some notable differences, as follows:

Triggering can be done manually by relevant configurations
Is never terminated by Flink until it is explicitly done by the user

The following figure shows the savepoint working in a pictorial fashion for
easy understanding:

Figure 14: Savepoints (SP) in Flink

Savepoint features allows us to do many operations quite easily and give a

versioning mechanism of the snapshots being taken at an internal. Some of
those are:

Can help in applying Flink upgrade/bug fixes quite easily. If due to any
reason, issue is seen, it can always use a previous savepoint to restore.
Can help in doing A/B testing. A savepoint can be used to spin off
another Flink execution with variation and tested.
If you would like to reprocess data streams due to some reason or replay
certain scenarios.

For more details, we would suggest going through the following blog http://dat
a-artisans.com/how-apache-flink-enables-new-streaming-applications/.

http://data-artisans.com/how-apache-flink-enables-new-streaming-applications/

Streaming window options in Flink
Generally speaking, a window defines a finite set of elements on an
unbounded stream. This set can be based on time, element counts, a
combination of counts and time, or some custom logic to assign elements to
windows.

- Flink documentation (flink.apache.org)

Dealing with infinite data stream demands the need for such window
functions. Flink’s DataStream API (discussed in following sections) does
have some built-in windowing functions that takes care of most use cases. It
also allows us to define custom window behavior as required by your use
case by letting developers implement its interfaces and implementing
appropriate methods.

The following are Flink’s built-in windowing options:

Time window
Count window

http://flink.apache.org

Time window
As the name suggests, it groups the incoming data stream by time.
Timestamp which Flink looks are:

Processing time: Uses the system/machine time where Flink executes.
Event time: Uses an existing timestamp on the data stream event.
Ingestion time: A mix of the preceding two. When each event arrives, it
attaches the event with the system time and then uses these stamped
time on these events for grouping.

Count window
As the name suggests, windows are based on the configured count. If the
event count hits the configured value, the data streams are
windowed/grouped.

Both time and count windows can be configured in two different ways:

Tumbling
Sliding

Tumbling window configuration
As the name suggests, it tumbles over the data stream. Tumbling windows do
not overlap with each other and because of which events in a tumbled
window do not fall into two windows. Tumbling configuration can be done
for both time and count windows by mere configuration.

The following figure shows tumbling window in action:

Figure 15: Tumbling window

Sliding window configuration
As the name suggests, the window slides over the data stream. Because of
this sliding nature, the windows tend to overlap with other sliding windows.
Due to this the data stream events in one windows can belong to other
windows as well. Again, this can be configured for both time and count
windows by appropriate configuration.

The following figure shows the sliding window in action:

Figure 16: Sliding window

In this section, we just have skimmed through one of the important Flink’s
capability of windowing, that is a mandatory functionality especially for
processing infinite data streams. These become more significant when you
need to do an aggregation.

Memory management
Memory management in Flink is often attributed to be innovative and claims
to be one of the first big data technology which has implemented custom
memory management. To achieve this Flink has its own mechanisms for type
extraction and serialization.

The following figure shows the JVM heap that is divided into areas dedicated
to do certain defined activities in regards to memory. As shown in the figure,
Flink has a managed heap, which is a dedicated memory fraction given to
Flink for various Flink related operations such as caching and data
processing:

Figure 17: Flink memory management

Some of the core features of Flink’s memory management is as follows:

Non GC (Garbage Collection) based approach
Serialization is based on individual fields as against the whole object
Employs C++ style memory management as against Java (based on GC)
Works on pool of memory pages comprising of bytes and map objects

The preceding listed features give some unique advantages to Flink in regards
to memory management as follows:

Does not throw Out Of Memory (OOM) exceptions
Garbage collection is quite a stress on the hardware and because of these
features in Flink GC doesn't put pressure
Binary representation of storing data is more efficient and uses less
memory.
Limited or no memory tuning required
Stable performance and more reliable
Binary representation can be compared and operated with other binary
representation easily, making it more performant

In computer science, garbage collection (GC) is a form of
automatic memory management. The garbage collector, or just
collector, attempts to reclaim garbage, or memory occupied by
objects that are no longer in use by the program. Garbage
collection was invented by John McCarthy around 1959 to
abstract away manual memory management in Lisp.

- Wikipedia

Elaboration on this subject is out of scope of this book but more information
can be found from the Flink documentation at https://cwiki.apache.org/confluence/
pages/viewpage.action?pageId=53741525.

https://cwiki.apache.org/confluence/pages/viewpage.action?pageId=53741525

Flink API’s
Basic operation of Flink can be explained in very simple terms, as shown in
the the following figure:

Figure 18: Flink program execution

As shown in the preceding figure, a Flink programs connects to a source, and
then applies use case related operations (transformation, calculations and so
on) and then finally outputs the results to the sink. Flink is capable of taking
in data of two forms, namely, real-time data (DataStream) and batch data
(DataSet). To cater to these distinct data types Flink has two main API’s
namely:

DataStream API: To handle continuous real-time flowing data to cater
to real-time stream analytics. API’s are available in Java and Scala.
DataSet API: To handle stagnant data in batch format. API’s are
available in Java, Scala, and Python.

In addition to these main API’s, Flink also has domain specific libraries. The
following figure shows some of the important ones that we will be discussing
in detail in the following subsections:

Figure 19: Flink API’s

DataStream API
As the name says it all, the DataStream API in Flink can be used to do any
operation on the stream of the inflowing data. The operation is one on each
element in a stream or stream windows as the case may be. It offers many
built-in transformations and also gives a toolbox to create custom ones if
needed for your use case. DataStream is the core structure in the DataStream
API.

Flink’s DataStream API is capable of handling almost any kind of data types
(basic types such as string arrays, and so on, and composite types such as
tuples, POJO’s, and so on).

The following figure shows DataStream program execution in Flink:

Figure 20: Flink DataStream API program execution

Flink DataStream API example
To handle a stream of incoming data, these numbered steps (as documented
in the Flink documentation) have to be done programmatically:

1. Get the StreamExecutionEnvironment object. StreamExecutionEnvironment is the
basis for all Flink data stream execution programs. The following code
block shows one way to get this object created in Java:

 final StreamExecutionEnvironment env = StreamExecutionEnvironment . getExecutionEnvironment();

2. Load the initial data from the appropriate source.
3. Do the necessary transformation on this loaded data. The full set of

transformations available can be found in the Flink documentation at
this link: https://goo.gl/YI82xY.

4. Specify the destination where the results after transformation has to be
kept.

5. Trigger the program execution.

We wouldn't want to replicate the Flink documentation here; rather we would
say that you go to this link to have a deep understanding of the DataStream
API in the Flink documentation: https://goo.gl/NS69SK.

https://goo.gl/YI82xY
https://goo.gl/NS69SK

Streaming connectors
Flink has many connectors for easy integration that can be broadly
categorized as follows:

1. Built-in Connectors: Connectors that are already there along with the
Flink installation and developed by various providers and are already
supported and maintained come under this category:

File: Reads file from a specified file path. It can monitor a directory
and as and when a file is added or changed can read and do the
needful
Collection: Reads from elements and also is capable of reading
from Java collections
Socket: Reads text socket from exposed port
Basic:

File
Socket
Standard output

Advanced:
Elasticsearch: Used to store and index JSON documents. We
do have a dedicated chapter on this in which we will discuss
this technology in a bit more detail. Flink supports both
Elasticsearch 1.x and Elasticsearch 2.x
Cassandra
HDFS (Hadoop FileSystem)

RabbitMQ
Apache Kafka: Gives provision to convert a Kafka topic to
DataStream and also can write to a DataStream. Flink has good
integration support with Kafka
Apache NiFi
Amazon Kinesis Streams
Sources: Connectors that are configured as source in Flink comes
in this.
Sinks: Connectors which are configured as sink in Flink are
categorized in this

Source and Sink: Connectors that behave as both source and sink
in the Flink ecosystem come into this category

2. Custom Connectors: If these built-in connectors suit your chosen use
case, Flink does give provision to implement your own connector. Flink
has a toolbox using which you could do this with ease. Using the
toolbox (specification interfaces), both custom source and sink can be
implemented.

DataSet API
Flink handles batch data and processes it using the Flink’s built-in DataSet
API. The DataSet API also has mechanisms to do necessary transformations
necessary for common use cases. After transformation, the DataSet is
transformed to DataSet. API’s are in Java, Scala, and Python. In Flink batch
data and its processing also work on the same aspect as stream data. The
following figure shows basic working of the DataSet API on a batch data
using the MapReduce paradigm producing DataSet (class of objects created
when data is read and processed):

Figure 21: Flink DataSet API program execution

Flink DataSet API example
Apart from the environment, rest of the steps in DataSet API program are
identical to that of the DataStream API. The following are the steps you have
to perform to actually deal with batch data using the DataSet API in Flink:

1. Before doing anything with the DataSet API, you need to get an
environment specific to batch data handling. ExecutionEnvironment is the
object require to start using the API and its capability as shown in this
code snippet (there are many ways and this is just a basic way):

final ExecutionEnvironment env = ExecutionEnvironment.getExecutionEnvironment();

2. To do operations on data, the data has to be created or loaded from the
source. In this set data is prepared. Data can be loaded/created from file-
based, collection-based, socket-based, and so on.

3. Do the necessary transformations on the loaded/created data next. There
are various transformations possible on the batch data such as Map,
FlatMap, Filter, Reduce and so on. The complete list of transformations
can be found in the Flink documentation at this URL
https://goo.gl/HLg3bN.

4. In this step specify where the transformed data results are to be put (Sink
configuration). For example, write results to file, socket and so on.

5. This is the final step in which the program execution is triggered, which
triggers off the actual program execution.

https://goo.gl/HLg3bN

Table API
API’s built on top of DataStream and DataSet API’s enabling SQL like
queries on the data is termed as Table API. They are available in the Java
and Scala languages. Using these API’s you can use SQL-like expressions for
specifying the required operations.

The Table API creates this abstraction above DataStream and DataSet,
making it easy for coding. Using this, its easy to deal with structured data
using the popular SQL expression. Basic data structures that the API deals
with is Table.

SQL (Structured Query Language) is a domain-specific language used in
programming and designed for managing data held in a Relational Database
Management System (RDBMS), or for stream processing in a RDBMS.

- Wikipedia

Similar to the DataStream and DataSet APIs, using the Table API can done
by doing the following steps:

1. Get the ExecutionEnvironment as this is the starting point for any API
execution in Flink:

ExecutionEnvironment env = ExecutionEnvironment.getExecutionEnvironment();

2. After that, you need to get TableExecutionEnvironment using
ExecutionEnvironment as shown next in the code snippet. According to the
data type (batch or stream data) to be handled, you need to get either
BatchTableEnvironment (batch data) and StreamTableEnvironment (stream
data), as shown in this code snippet:

BatchTableEnvironment tableEnv = TableEnvironment.getTableEnvironment(env);

 OR

StreamTableEnvironment tableEnv = TableEnvironment.getTableEnvironment(env);

3. Now, register the table. This can be from DataStream, DataSet, and so

on, shown in this code snippet as an example:

tableEnv.registerDataSet("table_name", mytable);

 OR

tableEnv.registerDataStream("table_name", mytable);

4. Now, using the TableAPI, perform various operations.

The Flink documentation has all the details with regards to this API at https://g
oo.gl/B6F8Ey.

https://goo.gl/B6F8Ey

Flink domain specific libraries
Apart from the core API’s (DataStream and DataSet) there are other API’s
for easy handling of certain operation as shown in the following list. Similar
to the Table API most of the libraries are also built on top of core Flink
API’s:

Gelly (Graph Library)
FlinkML (Machine Learning Library)
FlinkCEP (Complex Event Processing Library)

Event processing is a method of tracking and analyzing
(processing) streams of information (data) about things that
happen (events), and deriving a conclusion from them. Complex
event processing (CEP), is event processing that combines data
from multiple sources to infer events or patterns that suggest
more complicated circumstances.

- Wikipedia

Gelly - Flink Graph API
Gelly is Flink’s Graph API and library. There are various algorithms built-in
long with this library to deal with graph capability. Graph management was
initially offloaded to another library, namely Apache Spargel, to be handled.
However a new project namely Gelly was launched by Gelly to deal with
graph management, more aligned with other core API’s and also using core
Flink capabilities.

The Gelly library requires objects inheriting from DataSet, so at the end it
caters to addressing graph-related functionality for batch data.

Gelly offers various graph analysis utilities and also allows doing many
iterative processes on graphs and has many algorithms to deal with the graph
data.

Similar to the core API’s in Flink, Gelly offers various functions to transform
and modify various types of batch data. A graph representation in Gelly is
based on vertices and edges (DataSet - batch data).

This section has just skimmed through the Gelly library and more details can
be found in official Flink documentation in the following URL https://goo.gl/S5
plEP.

Figure 22: Flink Graph API (Gelly)

Flink’s Gelly has both Java and Scala APIs.

https://goo.gl/S5plEP

FlinkML
Flink’s answer to the Machine Learning (ML) library is FlinkML. It has
built-in support for various ML libraries and the list keeps growing. It works
on the pipeline mechanism inspired by scikit-learn (http://scikit-learn.org/).

FlinkML can act on both batch and stream data. Stream data and the ML
application is quite significant and one of the use cases can be to deal with
payment transactions and detect fraud.

For more details, see Flink documentation at the following URL https://goo.gl/z
DL2Cn.

Scikit-learn (formerly scikits.learn) is a free software machine learning
library for the Python programming language.

- Wikipedia

A project name Apache SAMOA (Scalable Advanced Massive Online
Analysis), is a streaming machine language framework that could also be
used along with Flink to cater to stream data ML capabilities.

http://scikit-learn.org/
https://goo.gl/zDL2Cn

FlinkCEP
Flink has its own Complex Event Processing (CEP) library called
FlinkCEP. The library allows to deal with vent patterns in a stream and
accordingly deals with it to cater to use case in hand. It is built on top of the
DataStream API and helps defining user patterns and then injecting into a
stream and according to the pattern generates new events and deals with
those accordingly.

Again we wouldn't want to delve deep into this topic in this book as it would
be a book by itself. We strongly suggest going through the official Flink
documentation at the following URL https://goo.gl/Tsu6q7.

https://goo.gl/Tsu6q7

Flink working example
This section details a full working example using Flink. Towards the end of
this section, it also brings a connection of our use case with Flink and how its
features are used.

At the time of authoring this book, we had Flink Release
Candidate 3 source code available for download, while official
release of Flink 1.3.0 was just about to be released. As we
observed Flink Release Candidate 3 (RC3) was versioned as
1.3.0, and its implementation is expected to be very close to the
official release of Flink 1.3.0.

Installation
Follow the steps for full installation of Flink:

1. Download the latest source code for release candidate of flink 1.3.0,
which was RC3 (release candidate 3) at the time of authoring this book,
using the following command in your download directory,
${DOWNLOAD_DIR}:

wget https://github.com/apache/flink/archive/release-1.3.0-rc3.zip

2. Change to a user directory and extract the contents from the zip using
the following command. Let us refer to the extracted Flink source folder,
flink-release-1.3.0-rc3, as ${FLINK_SRC}:

unzip ${DOWNLOAD_DIR}/release-1.3.0-rc3.zip

3. Change directory into ${FLINK_SRC} and use the following command to
compile the source code. It may take some time for the build the
complete.

mvn install -DskipTests

4. Once the build completes, copy the generated build-target folder to a
separate user folder, <flink-install-dir>. This user folder would be our
working installation of Flink 1.3.0 RC3. The command below would
inherently create the Flink install directory as part of its execution:

cp -r ${FLINK_SRC}/build-target <flink-install-dir>

5. Configure the ${FLINK_HOME} environment variable using the following
command and add the same into ~/.bashrc:

export FLINK_HOME=<flink-install-dir>

export PATH=$PATH:$FLINK_HOME/bin

6. Change to the user directory of Flink’s extracted content and start the
Flink server using the following command:

${FLINK_HOME}/bin/start-local.sh

7. Navigate to http://<vm-ip-address>:8081, and the following screenshot
should be visible, confirming a successful setup of Flink on a single
node:

Figure 23: Flink Dashboard

If you are planning to run the Flink examples from a development
environment, it is advisable to build Flink source on the same machine, since
such builds are platform dependent. This is also due to the fact that, we are
using the latest Flink version for our examples, i.e. RC3, which is not yet
available in most of the public maven repositories at the time of authoring the
book.

Example - data processing with
Flink
Let us build an example to process some data with Flink. For this purpose,
let's try to process the data that we have in our database, stream the data via
Flink, and store it in the database.

In order to have substantial data for our examples, it would be good to have a
bit larger volume of data. In the following section, we will see how we can
generate the required data.

Data generation
In this section, we will go in steps explaining how we can generate the
required data to showcase our example/use case:

1. The commands/steps outlined in these examples, can be run either from
within an IDE of your choice or directly from within CentOS. If it is
done from within CentOS, additional copy/move steps between your
IDE and CentOS could be avoided.

2. In your local (cloned) git repository, navigate to the chapter08 folder
which contains the code that will be detailed in this chapter. For data
generation, the code is contained in one of the modules of chapter08, in
the client-generator folder.

3. Change the directory into a client-generator folder and run the following
command to build from source:

mvn install

4. Once the package is built successfully, observe that the tarball is built in
the target folder of the client-generator project

5. Change the directory to a user folder, we suggest creating a ~/data-
generators directory and extract the contents of the tarball with the
following command:

tar -zxvf <client-generator project>/target/client-generator-1.0-SNAPSHOT-bin.tar.gz

6. Once the contents are extracted, change the directory into the extracted
folder and configure the properties file (~/data-generators/client-
generator-1.0-SNAPSHOT/config/db.properties), based on your database
configurations:

jdbc.url=jdbc:postgresql://<DB_IP_ADDRESS>/sourcedb?schema=public

user=

password=

7. Run the following command from within ~/data-generators/client-
generator-1.0-SNAPSHOT to generate the content. For the purpose of our

examples, let us generate 100,000 customer records including their
addresses. Please make sure that the PostgreSQL database server is
running before executing this command:

java -jar client-generator-1.0-SNAPSHOT.jar config/db.properties 100000

8. After successful execution, the script will display the status of records
generated in the console.

Now that we have about 100,000+ rows in our database for customer profile
(customer + address), let us build the example that we intend to in which we
will stream all of these rows in PostgreSQL DB into Hadoop storage via
Flink.

For now, we will build the examples in such a way that it can be used as an
extendable piece for our SCV use case.

The overall example can be divided into multiple steps, as detailed in the
following sections.

Step 1 - Preparing streams
This step involves preparing data streams by publishing the data into the
Kafka topic, for which we will utilize the simple producer API (explained in
Chapter 7, Messaging Layer with Apache Kafka). In this step, we will read the
data from the database and publish the records into a topic in Kafka:

1. In order to prepare streams, navigate to the chapter08 folder, which
contains the code for this chapter. For preparing the streams, the code is
contained in one of the modules of chapter08, that is, in the
chapter08/flink-example1 folder.

2. Change the following properties files as per your environment:
chapter08/flink-example1/config/db.properties: This file contains all
the database related properties to access the database
chapter08/flink-example1/config/producer.properties: This file
contains all the configurations required for the producer to publish
the customer records read from the database and publish them into
a Kafka topic
chapter08/flink-example1/config/flink.properties: This file contains
Flink-related configuration, which currently contains the
HDFS path and user account only
The main class doing the job in this example is DBProducer.java, the
complete source code of this class is as shown as follows. The
DBProducer class reads the customer records from the database and
publishes the customer records as JSON strings into a Kafka topic,
named customer. The code is well commented and it's quite
straightforward to understand going through it line by line:

public class DBProducer {

private static final String CUSTOMER_QUERY = "SELECT * FROM CUSTOMER";

public static void main(String[] args) throws SQLException, IOException, ClassNotFoundException {

publishCustomers();

 }

private static void publishCustomers() throws SQLException, IOException, ClassNotFoundException {

//Initialize the object mapper for serialization/deserialization

 ObjectMapper mapper = new ObjectMapper();

//Load the producer properties and initialize Kafka producer

 Properties producerProps =

 PropertyLoader.loadProperty("producer.properties");

 Producer kafkaProducer = initializeProducer(producerProps);

//Establish database connection & execute query to retrieve all customer records

 Connection conn = getConnection();

 System.out.println("Database Connection Established...");

 Statement stmt = conn.createStatement();

 ResultSet result = stmt.executeQuery(CUSTOMER_QUERY);

 System.out.println("Query Executed...");

//Serialize all customer records into JSON string and publish to Kafka topic

 while(result.next()) {

 Customer cust = new Customer();

 cust.setId(result.getInt("id"));

 cust.setFirstName(result.getString("first_Name"));

 cust.setLastName(result.getString("last_Name"));

 cust.setDob(result.getDate("dob"));

//Serialize object into a JSON string

 String customerMessage = mapper.writeValueAsString(cust);

//Publish customer record as JSON message

 ProducerRecord message = new

ProducerRecord(producerProps.getProperty("topicName"),

 String.valueOf(cust.getId()), customerMessage);

 kafkaProducer.send(message);

 }

 System.out.println("Messages Published");

//Close producer and exit

 conn.close();

 kafkaProducer.close();

 }

private static Producer initializeProducer(Properties producerConfig)

 Producer<String, String> producer = new KafkaProducer<String, String>(producerConfig);

return producer;

 }

private static void closeProducer(Producer producer) {

if (producer != null) {

 producer.close();

 }

 }

private static Connection getConnection() throws ClassNotFoundException, IOException, SQLException {

 Class.forName("org.postgresql.Driver");

 Properties props = PropertyLoader.loadProperty("db.properties"

return DriverManager.getConnection(props.getProperty("jdbc.url"), props);

 }

 }

Code 01: Publish DB Records into Kafka

As shown in the preceding code, we are reading all the customer
 records from the database and then publishing them into a topic
named customer into Kafka.

While doing so, we are also converting the records into objects and
serializing those objects into JSON representation by using
ObjectMapper.

4. From within chapter08/flink-example1, run the following command to
compile the code:

mvn install

5. Execute the preceding code, which is in DBProducer.java from within your
IDE or from command line. Before executing the Java class please go
through the preceding listed class and understand it's working. This will
queue the customer records as messages in the customer Kafka topic:

While executing the class from within the IDE, please make sure
that the working directory is properly set pointing to the project
folder, that is, flink-example1, and the module classpath in Run
Configuration. This can be set by navigating to the top-level menu
Run and under that selecting Run… opens these settings. Once this
is set, you may simply execute the class from IDE. This is with
reference IntelliJ IDEA. Similar setting are available in Eclipse as
well.
If you are executing the class from Command Prompt/shell, you
may run the following command to execute the program from
within the project folder, that is, chapter08/flink-example1:

java -cp target/flink-example1-1.0-SNAPSHOT.jar com.laketravels.ch08.db.producer.DBProducer

Step 2 - Consuming Streams via
Flink
Now that we have all 100K records queued into Kafka, the next step is to
consume these messages using Flink and start establishing an execution
pipeline within Flink.

Flink comes with a lot of inbuilt connectors, and one of the source connectors
is the Kafka connector. In order to include the Kafka connector, the following
dependency is required to be added into the project’s pom.xml file (refer to
flink-example1/pom.xml):

<dependency>

 <groupId>org.apache.flink</groupId>

 <artifactId>flink-connector-kafka-0.10_2.10</artifactId

 <version>1.2.0</version>

</dependency>

<dependency>

 <groupId>org.apache.flink</groupId>

 <artifactId>flink-streaming-java_2.11</artifactId

 <version>1.2.0</version>

</dependency>

Code 02: Flink Dependencies for Consumption from Kafka

In order to consume the messages from the Kafka topic, the following code
can be taken as a reference. This same code is being used in our example in
the com.laketravels.ch08.consumer.FlinkProcessor class, which contains the main
method:

final ObjectMapper mapper = new ObjectMapper();

Properties flinkProps = PropertyLoader.loadProperty("flink.properties");

// create execution environment

StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment

env.enableCheckpointing(2000, CheckpointingMode.EXACTLY_ONCE);

// parse user parameters

ParameterTool parameterTool = ParameterTool.fromArgs(args);

DataStream<Tuple2<IntWritable, Text>> messageStream = env.addSource(

new FlinkKafkaConsumer010(

 parameterTool.getRequired("topic"

new Tuple2DeserializerSchema(),

 parameterTool.getProperties()));

messageStream.rebalance().print();

Code 03: Code to consume Kafka messages from Flink Process

The main method in the FlinkProcessor class needs the following arguments
for a successful launch of the execution pipeline. The parameters required for
this example are:

topic - Contains the name of the topic from where the messages are to be
consumed
bootstrap.servers - Contains comma separated list of ip:port of Kafka
broker processes
zookeeper.connect - Contains the zookeeper connect address, in the form
ip:port

group.id - Identifies the consumer group for message consumption and
group level offset management of the consumer

In our example, we are passing the parameters as command line arguments as
follows. Once the arguments are passed, they are decoded/interpreted by
ParameterTool for substitutions within the code:

--topic customer --bootstrap.servers <KAFKA_SERVER_IP>:9092 --zookeeper.connect <ZOOKEEPER_IP>:2181 --group.id 1 --auto.offset.reset earliest

In the preceding code, the messages are being consumed using the
SimpleStringSchema deserializer. This deserializer is required by
FlinkKafkaConsumer to deserialize messages into the data stream.

In order to replay the messages/re-submit the job, the Flink job
can be run with different Group IDs

We have now consumed the messages from Kafka and now we have to use
Flink as a channel to persist into HDFS. This is explained in the next step.

Step 3 - Streaming data into HDFS
Flink also provides a number of connectors including HDFS connectors as
sinks. All the HDFS connectors have very similar constructs. HDFS
connectors can sink messages from Flink DataStreams that have a tuple
structure. HDFS also stores data as tuples. The specific class provided for this
purpose by Flink is the Tuple2 class.

A tuple is a finite ordered list of elements. (https://en.wikipedia.org/wiki/Tuple

Any sink can be added to the Flink environment by making a call to the
env.addSink(...) method. The specific class that we have used here is
BucketingSink. The following code can be considered as a reference for
understanding our example:

System.setProperty("HADOOP_USER_NAME", flinkProps.getProperty("hdfsUser"));

BucketingSink<Tuple2<IntWritable, Text>> hdfsSink = new BucketingSink<Tuple2<IntWritable, Text>>(flinkProps.getProperty(

hdfsSink.setBucketer(new DateTimeBucketer("yyyy-MM-dd--HHmm"));

hdfsSink.setWriter(new SequenceFileWriter<IntWritable, Text>());

hdfsSink.setBatchSize(1024 * 1024 * 400);

messageStream.addSink(hdfsSink);

Code 04: HDFS Sink in Flink Processor

If we try to connect the code shown in the previous step with the preceding
code, we may realize a bit of an issue in terms of source and sink.

The main issue here is that, in the previous step the source is sourcing
messages from Kafka as String messages, while Sink requires the messages
to be in tuple structure. This creates a gap in what is coming in and what is
required to be persisted.

In order to solve this we can implement a custom deserializer schema class at
the source, a reference implementation can be seen here:

public class Tuple2DeserializerSchema implements DeserializationSchema {

https://en.wikipedia.org/wiki/Tuple

 public Object deserialize(byte[] bytes) throws IOException {

 ObjectMapper mapper = new ObjectMapper();

 Customer cust = (Customer) mapper.readValue(new String(bytes),

 Customer.class);

 Tuple2<IntWritable, Text> tuple = new Tuple2<IntWritable, Text>();

 tuple.setFields(new IntWritable(cust.getId()), new Text(new

 String(bytes)));

 return tuple;

 }

 public boolean isEndOfStream(Object o) {

 return false;

 }

 public TypeInformation<Tuple2<IntWritable, Text>> getProducedType() {

 return new TupleTypeInfo<Tuple2<IntWritable, Text>>

 (TypeExtractor.createTypeInfo(IntWritable.class),

 TypeExtractor.createTypeInfo(Text.class));

 }

}

Code 05: Tuple2 Deserializer Schema for Flink Source

During the initialization of DataStream in the FlinkProcessor class, we can
pass the custom serializer (Tuple2DeserializerSchema) instead of the String
serializer as shown in the following, with complete code:

public class FlinkProcessor {

public static void main(String[] args) throws Exception {

final ObjectMapper mapper = new ObjectMapper();

 Properties flinkProps = PropertyLoader.loadProperty("flink.properties"

// create execution environment

 StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment

 env.enableCheckpointing(2000, CheckpointingMode.EXACTLY_ONCE);

// parse user parameters

 ParameterTool parameterTool = ParameterTool.fromArgs(args);

 DataStream<Tuple2<IntWritable, Text>> messageStream = env.addSource(

new FlinkKafkaConsumer010(

 parameterTool.getRequired(

new Tuple2DeserializerSchema(),

 parameterTool.getProperties()));

 messageStream.rebalance().print();

 System.setProperty("HADOOP_USER_NAME", flinkProps.getProperty("hdfsUser"

 BucketingSink<Tuple2<IntWritable, Text>> hdfsSink = new BucketingSink<Tuple2<IntWritable, Text>>(flinkProps.getProperty(

 hdfsSink.setBucketer(new DateTimeBucketer("yyyy-MM-dd--HHmm"));

 hdfsSink.setWriter(new SequenceFileWriter<IntWritable, Text>());

 hdfsSink.setBatchSize(1024 * 1024 * 400);

 messageStream.addSink(hdfsSink);

 env.execute();

 }

}

Code 06: Flink Processor for Reading Messages from Kafka and writing into
HDFS

The preceding example can be run from the IDE as a standalone process or
from the command prompt. In case this needs to be run from the command
line, the following command may be used, assuming that the working
directory is the source directory of this example, that is, flink-example1:

java -cp target/flink-example1-1.0-SNAPSHOT.jar com.laketravels.ch08.consumer.FlinkProcessor --topic customer --bootstrap.servers <kafka-server-ip>:9092 --zookeeper.connect <zookeeper-ip>:2181 --group.id 1 --auto.offset.reset earliest

Please ensure that HDFS services are running and exposed on an accessible
IP before executing the FlinkProcessor. In case the HDFS is configured to run
on localhost, it will need to be changed in core-site.xml. A sample is shown
as follows:

 <property>

 <name>fs.defaultFS</name>

 <value>hdfs://192.168.0.165:9000</value>

 </property>

The output of this execution is that the customer JSON is stored against the
the customer ID in HDFS, as follows:

Figure 24: Messages Sinked into HDFS

Flink in purview of SCV use cases
Now that we have seen an example of Flink based processing, it is time that
we apply this to the single customer view use case and continue building the
Data Lake landscape.
For this purpose, let us consider integrating sources such as customer
information stored in relational format and user location logs. For user logs,
we will generate them as spool files which can then be consumed by Flume
with Kafka channel. This Kafka channel would be eventually consumed and
processed by the Flink pipeline into HDFS sink. In this use case Flume acts
as the acquisition layer that would acquire data from these sources and store
them as messages in Kafka topics. We will define two Flink processing
pipelines, that would consume these information from both of these Kafka
topics and then process and store these information in the HDFS layer.

User Log Data Generation
In order to generate a sample log of customer location (100,000 records),
please follow the following steps, which are very similar to the above
mentioned customer generation.

1. Clone/Update the source code for the project (we assume this is already
done as you have cloned the whole book’s code from git when you
started) chapter08/web-generator

2. Change into the directory containing the project (web-generator) and run
the following command to generate the tarball:

mvn install

3. Change to a user directory, ~/data-generators as in previous case, and
extract contents with the following command:

tar -zxvf <web-generator project>/target/web-generator-1.0-SNAPSHOT-bin.tar.gz

4. Change to the user directory containing the extracted content and run the
following command to generate the records as a spool file (location.log):

java -jar web-generator-1.0-SNAPSHOT.jar location.log 100000

5. The log thus generated has the following structure of content:

Figure 25: Location Log Content

As we can see above, the location log contents are mostly free
flowing and these logs may contain additional fields as required.
The only correlation here is the customer identifier.

6. Copy the generated location.log to the spool directory which would be
configured in Flume configuration. This could be the same directory
which was created while running Flume examples

Flume Setup
Flume configuration will be required for us to stream the contents from DB
and the log file into Kafka topics. Here we will follow similar steps to
configure both the data sources as discussed in earlier chapters:

1. Make a new Flume configuration in ${FLUME_HOME}/conf, let us call it as
customer-data-kafkaChannel-flume-conf.properties. As the name suggests,
this would contain all the configurations required to capture customer
data.

2. Now let us have a look at the source configuration as shown below:

agent.sources = sql-source spool-source

agent.sources.spool-source.type=spooldir

agent.sources.spool-source.spoolDir=<directory containing the spool file>

agent.sources.spool-source.inputCharset=ASCII

agent.sources.sql-source.type=org.keedio.flume.source.SQLSource

agent.sources.sql-source.hibernate.connection.url=jdbc:postgresql://<db-ip-address>/sourcedb?schema=public

agent.sources.sql-source.hibernate.connection.user=postgres

agent.sources.sql-source.hibernate.connection.password=<db-password>

agent.sources.sql-source.table=customer

agent.sources.sql-source.columns.to.select=*

agent.sources.sql-source.status.file.path=<path-for-status-file>

agent.sources.sql-source.status.file.name=sql-source.status

As seen from the above configuration, we are configuring two
sources of data in this Flume configuration, i.e. SQL source and
SPOOL source.
Please replace the following with specific values as per your
environment.

<db-password> with the database password as in your setup.
<directory containing the spool file> with the complete path of directory,
should not include the spool file name
<db-ip-address> with the ip address of the PostgreSQL database
<path-for-status-file> with complete path of a directory where status file
can be written

3. The next step would be to configure channel, which in this case is
Kafka. With Kafka as a channel all the messages would flow into Kafka
before the data is ingested into HDFS. Since we have two sources, we
will need to configure two channels as shown below (in the same file
namely customer-data-kafkaChannel-flume-conf.properties):

agent.channels = kafkaCustomerLocationLogChannel kafkaCustomerDBChannel

agent.channels.kafkaCustomerLocationLogChannel.type =org.apache.flume.channel.kafka.KafkaChannel

agent.channels.kafkaCustomerLocationLogChannel.kafka.bootstrap.servers=<kafka-broker-ip>:9092

agent.channels.kafkaCustomerLocationLogChannel.kafka.topic=customerLocation

agent.sources.spool-source.channels = kafkaCustomerLocationLogChannel

agent.channels.kafkaCustomerLocationLogChannel.parseAsFlumeEvent = true

agent.channels.kafkaCustomerDBChannel.type =org.apache.flume.channel.kafka.KafkaChannel

agent.channels.kafkaCustomerDBChannel.kafka.bootstrap.servers=<kafka-broker-ip>:9092

agent.channels.kafkaCustomerDBChannel.kafka.topic=customer

agent.sources.sql-source.channels = kafkaCustomerDBChannel

In the above configuration, please replace <kafka-broker-ip> with the
IP address of Kafka broker as per your environment. Here we have
defined separate topics for each of the data source.

4. Now let us launch the flume process with the following command:

${FLUME_HOME}/bin/flume-ng agent --conf ${FLUME_HOME}/conf/ -f ${FLUME_HOME}/conf/customer-data-kafkaChannel-flume-conf.properties -n agent -Dflume.root.logger=INFO,console

If the above command runs successfully the Spool file would be
renamed by appending COMPLETED by the Flume process.

5. As soon as Flume process starts we would observe that messages from
both the sources, i.e. database as well as log are streamed into respective
Kafka topics for Flink processes to consume. This can be verified with
the following commands, that would display the respective queue depths
for the topics namely customer and customerLocation.

${KAFKA_HOME}/bin/kafka-run-class.sh kafka.tools.GetOffsetShell --broker-list <kafka-broker-ip>:9092 --topic customer

${KAFKA_HOME}/bin/kafka-run-class.sh kafka.tools.GetOffsetShell --broker-list <kafka-broker-ip>:9092 --topic customerLocation

Flink Processors
Since we are working with two types of data sources with different data
structures, we have streamed them into two different topics respectively. This
will require us to build two execution Flink pipelines in Flume that would be
working in parallel.

The fundamental code remains the same as in chapter08/flume-example1 in both
the cases since the messages are originating from Kafka topic and are then
stored in HDFS. But the message types for both have very different
structures, hence we will need to modify the Deserialization schema
implementation as shown below. The source for this class can be found in
chapter08/flink-customer-db project. The class is well documented for easy
understanding of its working.

public class Tuple2CustomerProfileMessageDeserializationSchema implements DeserializationSchema {

private static final ObjectMapper MAPPER = new ObjectMapper();

public Object deserialize(byte[] bytes) throws IOException {

 String message = new String(bytes);

 message=message.replace("\",\"", ",");

 message=message.substring(message.indexOf("\"")+1, message.lastIndexOf(

 String[] data = message.split(",");

 Customer cust = new Customer();

 cust.setId(Integer.parseInt(data[0]));

 cust.setFirstName(data[1]);

 cust.setLastName(data[2]);

 DateTimeFormatter formatter = DateTimeFormatter.ofPattern("yyyy-MM-dd"

 LocalDate date = LocalDate.parse(data[3], formatter);

 cust.setDob(java.sql.Date.valueOf(date));

 String customerMessage = MAPPER.writeValueAsString(cust);

 Tuple2<IntWritable, Text> tuple = new Tuple2<IntWritable, Text>();

 tuple.setFields(new IntWritable(cust.getId()), new Text(customerMessage));

return tuple;

 }

public boolean isEndOfStream(Object o) {

return false;

 }

public TypeInformation<Tuple2<IntWritable, Text>> getProducedType() {

return new TupleTypeInfo<Tuple2<IntWritable, Text>>(TypeExtractor.createTypeInfo

 }

}

Code 07: Customer Profile Message Deserialization Schema

As shown in the above code, the customer datails captured into the Customer
Object and then serialized into the Tuple2 object so that it can be written into
HDFS. The following arguments should be passed for running the
CustomerDBMessageProcessor class. Use the below command to execute the class
in command prompt:

java -cp target/flink-customer-db-1.0-SNAPSHOT.jar com.laketravels.ch08.ingestor.customer.CustomerDBMessageProcessor --topic customer --bootstrap.servers <kafka-server-ip>:9092 --zookeeper.connect <zookeeper-ip>:2181 --group.id 1 --auto.offset.reset earliest

If things go well you should see Flink consuming messages from Kafka topic
(customer) and persisting into HDFS which can be viewed in HDFS browser
within Hue. Similar to the code snippet shows the deserialisation schema for
the customer location:

 public class Tuple2CustomerLocationMessageDeserializationSchema implements DeserializationSchema {

 private static final ObjectMapper MAPPER = new ObjectMapper();

 public Object deserialize(byte[] bytes) throws IOException {

 //Spooled messages have 2 bytes of leading unicode chars

 String message = new String(bytes, 2, bytes.length-2);

 if (message.trim().length()>0) {

 String[] locationAttributes = message.split(",");

 ObjectNode locationObject = MAPPER.createObjectNode();

 for (String attribute : locationAttributes) {

 String[] attributeElments = attribute.split(":");

 String attributeName = attributeElments[0].replaceAll(""", "");

 String attributeValue = attributeElments[1].replaceAll(""",

 "");

 locationObject.put(attributeName, attributeValue);

 }

 Tuple2<IntWritable, Text> tuple = new Tuple2<IntWritable, Text>();

 tuple.setFields(new IntWritable(locationObject.get("id").asInt()),

 new Text(locationObject.toString()));

 return tuple;

 } else {

 return null;

 }

 }

 public boolean isEndOfStream(Object o) {

 return false;

 }

 public TypeInformation<Tuple2<IntWritable, Text>> getProducedType() {

 return new TupleTypeInfo<Tuple2<IntWritable, Text>>

 (TypeExtractor.createTypeInfo(IntWritable.class),

 TypeExtractor.createTypeInfo(Text.class));

 }

}

Code 08: Customer Location Flink Processor Serialization Schema

As shown in the previous code snippet, for customer location message, the
deserialization is flexible and will also work even if there are any additional
attributes added in the future.

For processing the customer location data via Flink, please pass the following
arguments to the CustomerLocationMessageProcessor class from chapter08/flink-
customer-log project folder. Use the below command to execute the class in
Command Prompt:

java -cp target/flink-customer-log-1.0-SNAPSHOT.jar com.laketravels.ch08.ingestor.location.CustomerLocationMessageProcessor --topic customerLocation --bootstrap.servers <KAFKA_SERVER_IP>:9092 --zookeeper.connect <ZOOKEEPER_IP>:2181 --group.id 1

 We can observe the data written into HDFS via Namenode Server UI as shown
in the following figure, which can be accessed by opening the URL
http://<hadoop-server-ip>:50070/ and navigating to Browse the file system menu
option.

Figure 26: Data From Multiple Sources Stored in HDFS via Flink

The following figure sums up quite well as to how our SCV use case gels
with the Flink technology. In our use case, Flink

applies appropriate processing of stream data as and when it flows into our
Data Lake:

Figure 27: Flink in purview of SCV use case

When to use Flink
Select Flink as your data processing technology when:

You need high performance. Flink at the moment is one of the best in
performance for stream processing.
Your use case needs machine learning. Flink’s native closed loop
iterations operators make the processing perform much faster.
Your use case needs graph processing. Again, because of the preceding
same feature, Flink will process data faster.
You require high throughput rates with guaranteed consistency.
You need exactly one time processing. This also eliminates duplicate
record processing.
You want to avoid handling memory manually and leave that to the
framework. Flink has automatic memory management.
You need to deal with intermediate results and Flink follows the data
flow approach making it easy to do this.
You need less configuration. Many aspects in Flink are abstracted away
from the user and this makes configuration simple.
You need to deal with both batch and stream data using the same
framework. Flink is a hybrid framework capable of dealing with both
batch and stream.
You need different deployment options.

When not to use Flink
Try to avoid using Flink and go for other options when:

You need a more matured framework compared to other competitors in
the same space
You need more API support apart from the Java and Scala languages

There isn't many disadvantages associated with Apache Flink making it ideal
choice for our use case.

Other options
The following figure shows other options which can be considered as
alternates to Apache Flink, which is our choice of technology in this space.

Figure 28: Data Processing engine alternates

Apache Spark
If Apache Flink wasn't selected as technology of choice, Apache Spark would
have been the most apt choice.

Apache Spark is an open-source cluster-computing framework. Originally
developed at the University of California, Berkeley's AMPLab, the Spark
codebase was later donated to the Apache Software Foundation, which has
maintained it since. Spark provides an interface for programming entire
clusters with implicit data parallelism and fault-tolerance.

- Wikipedia

Apache Spark is one of the most well-known data processing technologies in
the open source community with a huge user base and contributors. The base
working of Apache Spark is based on micro-batching and this is one of the
main reasons for choosing Apache Flink as against Spark as this can be one
of the problems to cater to many use cases in the future (many use cases
require data processing to be in real-time as against micro-batch).

Spark can be deployed and run in multiple topologies and on different
technology platforms. It also has integration support with multiple data
sources including HDFS, Cassandra, and so on. It's easy to make use of
SPark with API’s in Java, Scala, Python, and R. This aspect is quite an
advantage with Spark as against Flink. It is also highly performant with
processing happening with low latency.

Apache Storm
Apache Storm is a distributed stream processing computation framework
written predominantly in the Clojure programming language. Originally
created by Nathan Marz and team at BackType, the project was open sourced
after being acquired by Twitter. It uses custom created "spouts" and "bolts"
to define information sources and manipulations to allow batch, distributed
processing of streaming data. The initial release was on 17 September 2011.

- Wikipedia

Storm is an open source real-time data processing framework and it can be
worked with any programming language. Storm like Spark and Flink is
distributed, high-performing, and fault-tolerant and also supports message
delivery guarantees. Storm integrates with many technologies with ease,
making it apt for implementing many use cases.

Apache Tez
Apache Tez is an extensible framework for building high performance batch
and interactive data processing applications, coordinated by YARN in
Apache Hadoop. Tez improves the MapReduce paradigm by dramatically
improving its speed, while maintaining MapReduce’s ability to scale to
petabytes of data. Important Hadoop ecosystem projects like Apache Hive
and Apache Pig use Apache Tez, as do a growing number of third party data
access applications developed for the broader Hadoop ecosystem.

- hortonworks.com (http://hortonworks.com/apache/tez/)

Apache Tez is designed for Yarn on top of Hadoop 2. Tez is designed for
high performance, functioning at low latency mainly for processing. Tez is
developed with extensibility in mind and allows us to plugin many
technologies for data transfer use cases quite easily. One of the main reasons
for the evolution of this framework is taking away the limitations imposed by
native MapReduce. Since Hadoop is still the core at any big data technology,
Tez can be quite handy in that case as it natively supports HDFS.

http://hortonworks.com/apache/tez/

Summary
In this chapter, as with any other chapter in this part of the book, we started
with introducing the layer where the technology would fall. Then we
introduced the chosen technology in this layer, namely Apache Flink. We
slowly went into the details of Apache Flink. Its architecture was
elaborated and many core aspects of this all-important framework were
covered in brief. We then got our hands dirty with an actual implementation
of Apache Flink technology pertaining to our use case--SCV. We finally
explained when to use and when not to use Flink, and closed the chapter with
alternatives to Apache Flink.

After reading this chapter, you should have a fair idea of the Data Ingestion
layer and the full working and functioning of Apache Flink. Now you also
know about Flink’s architecture along with its core components and working.
You should have also got hands-on working experience with Flink and
a high-level view of the alternatives to Flink.

Data Store Using Apache Hadoop
We acquired data, then we processed data, and now we will have to store this
data. This chapter aims at covering this all important aspect of the Data Lake.

One of the core principles that we will follow in our Data Lake
implementation is to store all the data as is in the lake as against storing only
processed or sanitized data. This is key as data that is not significant today
can become significant at a later stage and, during that time, we can make use
of this stored raw data.

In this chapter, like other chapters in this part of the book, we will start off by
introducing the layer and then go into technology mapping. After that, we
will delve deeply into the chosen technology and then ensure that you are
introduced to all the important aspects of this technology.

As the title of this chapter says, the chosen technology is Apache Hadoop, for
storing non-indexed data in raw format for our Data Lake. We will, as with
the other chapters, start with reasons for choosing this technology in this
layer and then go in-depth on its architecture. We will then go into its various
architecture components and tools then make it our choice. We will then get
your hands dirty with a walk through of the actual code and data store layer
implementation. Finally, we will cover some other options/alternatives that
you can choose instead of Hadoop, and we will also give a final picture of
our SCV use case implementation.

Get ready, let's persist data that we have got in hand.

Context for Data Lake - Data
Storage and lambda Batch layer
In our Data Lake implementation, we have a dedicated layer where the data
permanently resides and this is the Data Storage Layer. The data gathered
from various sources is persisted in various stores capable of handling
different types and forms of data. In this chapter, we are storing non-indexed
raw data in our Data Lake.

We have chosen Apache Hadoop as our technology for this data storage
capability. I am sure there was not much debate when we chose this
technology in this layer, obviously because of the fantastic features this
technology. Also, the level of maturity and support this technology possesses
is quite astonishing over the short span of its existence.

The following sections of this chapter aim at covering Hadoop in detail so
that you get a clear picture of this technology as well as get to know the data
storage layer in detail.

Data Storage and the Lambda
Batch Layer
In Chapter 2, Comprehensive Concepts of a Data Lake, you got a glimpse into
the data storage layer. This layer’s responsibility is to persist gathered data
into a permanent place in our Data Lake. The Lambda Batch Layer’s
responsibility is to create batch views for the data stored in the Data Storage
layer. The following figure will refresh your memory and give you a good
pictorial view of this layer:

Figure 01: Data Lake - Data Storage and Lambda Batch Layer

The Data Storage Layer is one of the very important layers, which should
persist different types of raw data coming from different source systems, and
it also should be easy to scale according to need. It's very important for this
layer to have a defined IOPS (see info) as this can be one of the deciding
factors of how much and how frequently the data from the source system can
be taken into the data lake. For unstructured data, Hadoop is one of the de-
facto technologies used for this purpose. There are other mechanisms, such
as NoSQL (see info) and NewSQL (see info).

Input/output operations per second (IOPS, pronounced eye-
ops) is a performance measurement used to characterize

computer storage devices, such as hard disk drives (HDDs),
Solid State Drives (SSDs), and Storage Area Networks (SANs).

A NoSQL (originally referring to non-SQL, non relational, or
not only SQL) database provides a mechanism for the storage
and retrieval of data, which is modeled by means other than the
tabular relations used in relational databases.

NewSQL is a class of modern relational database management
systems that seek to provide the same scalable performance of
NoSQL systems for online transaction processing (OLTP)
read-write workloads while still maintaining the ACID
guarantees of a traditional database system.

- Wikipedia

The storage layer should be able to handle the following:

Support for a wide variety of analytics tool to be bound on top of it for
various queries
Different types of data in different modes (batch and real-time)
Different formats of data, such as structured, unstructured, and semi-
structured data, with ease
Different scaling requirements
Various compression methodologies for efficient persistence and
efficiency
Different data velocities (KB per second, MB per second, and so on)
Different querying mechanism and language capabilities for extracting
relevant data out of the lake for various analysis, as the case may be

Data Storage and Lambda Batch
Layer - technology mapping
To cover our use case and to build the Data Lake, we use multiple stores.
This chapter aims at covering storage mechanism for non-indexed raw data.
This chapter delve deeply into Hadoop, which is our choice for this
capability.

The following figure brings in the technology aspects of the conceptual
architecture that we will be following throughout this book. We will keep
explaining each technology and its relevance in the overall architecture
before we bring all the technologies together in the final part of this book
(part 3):

Figure 02: Technology mapping for Data Storage and Lambda Batch Layer

For our use case, SCV, we have already gathered data from various source
system data stores, and we will just be persisting these raw data in Hadoop,
as shown in the preceding figure.

The subsequent sections of this chapter give more details on Hadoop and will

make you conversant with many important components of the Hadoop
architecture.

What is Apache Hadoop?
Before going into Hadoop in detail, let's give you a high-level idea of what
Hadoop is. This is the approach we have followed, and let's stick to that
pattern for consistency.

Apache Hadoop is a framework capable of using a cluster of computers (need
not be a server range but can be normal computers that you use in day-to-day
life) to do distributed computing and also to store large amount of varied
formats of data. Yes, you read it correctly, it can also be used for computing
and this aspect is one of the fundamental aspects of Hadoop. We will be
using Hadoop’s computing aspect, but a more important aspect of Hadoop
that we will use is its capability for distributed data storage.

Due to its sheer capabilities and popularity, Hadoop has embedded itself in
the technology stack of almost all organizations, and we are sure your
organization will already have this, making it easy for the Data Lake
implementation using this as a store.

Why Hadoop?
For me, the question Why Hadoop? is not really a question. In the industry as
of now, for big data Apache Hadoop is indispensable. There are alternatives,
but most of them work in conjunction with Hadoop. Listed here are some of
the prominent reasons why Hadoop is technology of choice for the technical
capability that we are looking for in a Data Lake implementation:

It can handle high volumes of structured, semi-structured, and
unstructured data with ease.
It is less costly to implement as it can start off using commodity
hardware and scale according to organization all requirement.
It has the ever growing Apache community to support it with frequent
releases, releasing bug fixes and enhancements alike. Hadoop, as you
know, has two core layers, namely the compute and data (HDFS) layers.
The compute layer adds new frameworks and libraries, such as Pig and
Hive, on top of the Hadoop ecosystem, making Hadoop all the more
relevant for many use cases.
The library of Hadoop itself is built with availability in mind and is not
reliant on underlying hardware to do this capability. This is quite useful
for organizations starting to build a Hadoop-based data lake from
commodity hardwares as a start.
It's flexible to handle a wide variety of data, and this is because of
Hadoop’s inherent schema-less capability of handling data.
Recently, with the ever-growing Hadoop ecosystem, Hadoop is
becoming more real-time as against its conventional batch data
operation.
Hadoop is inherently cloud capable, so hosting a full-fledged Hadoop in
cloud is simple to implement and more cost-effective for organizations
taking baby steps in the direction of big data and Data Lake.
It has built-in robust and fault-tolerance.
It has a very good compute layer, making it ideal for intensive
computations required for deriving meaningful analytic requirements.
It has a high speed of execution. It can handle complex computational
logic quite easily.

It runs on the majority of operating systems, such as Linux, Mac,
Windows, and Solaris.

History of Hadoop
Doug Cutting, after getting inspiration from Google’s MapReduce (published
in 2004, where an application is broken down into multiple blocks/fragments
and then run on multiple nodes belonging to the same cluster), created this
framework and named it Hadoop (in 2006), after his child’s stuffed yellow
elephant toy. According to him, the name was short, unique, and relatively
easy to spell and pronounce. In the same year (2006), Doug joined Yahoo and
in the year 2008, he created a Hadoop cluster comprising of 4,000 nodes in
Yahoo, using which Yahoo breaks the TeraByte sort benchmark (http://sortbenc
hmark.org/). The following figure explains Hadoop's history in a more readable
and pictorial fashion:

Figure 03: Apache Hadoop's brief history

Let's decipher the preceding figure in more detail. Doug Cutting (creator of
Hadoop), in the year 2002, created Nutch, which is a crawl and search
system. In the year 2003, Sanjay Ghemawat, Howard Gobioff, and Shun Tak
Leung published the Google File System (GFS) paper. Following that
publication, Sanjay Ghemawat and Jeffrey Dean published another paper
(MapReduce: Simplified Data Processing on Large Cluster) in the year 2004.
Doug rearchitected the Nutch project inspired by MapReduce paper and, in
the year 2006, created the Hadoop sub-project. Owen O’Malley was the first
committer added to the Hadoop project in 2006. Hadoop 0.1.0 was released

http://sortbenchmark.org/

in April 2006. In 2008, Hadoop became a top-level project in Apache
Software Foundation (ASF) and in 2009, Hadoop’s first commercial
distribution was released. In 2011, Hortonworks was established by Rob
Bearden partnering with Yahoo, including key Hadoop team members,
namely Arun Murthy, Devaraj Das, Sanjay Radia, Suresh Srinivas, Alan
Gates, and all-important Owen O’Malley.

Advantages of Hadoop
The Why Hadoop? section covered some of the reasons we chose Hadoop,
which are in turn the core advantages. The following list reiterates those
points with much more in-depth details and coverage in a crisp and easy-to-
read manner:

Scalability: It is capable of handling a huge volume and variety of data.
You can add more nodes to keep handling more data (linearly scalable).
Flexibility: There is no structured schema (schema-less). It is capable of
handling different types of data (big data V, namely Variety).
High performance: It is capable of high performance for these huge
volumes of data.
Low cost: It is capable of running on commodity hardware, making it a
less costly prospect for implementation. It's open source with a vibrant
community, so things keep moving, and it is never stagnant.
Advanced analytics: It is capable of the high computing output needed
for producing advanced analytics.
Large ecosystem: Hadoop ecosystem, especially its computing layer, is
growing at a rapid pace with the introduction of new open source
projects in an ongoing manner.
Data warehouse: It a good alternative to a data warehouse for an
organization with lots of flexibility built in.
Capablility: It is capable of handling or catering to a wide variety of
organizational and important use cases, such as sentiment analysis, click
stream behavioral data analysis, and fraud detection.

Disadvantages of Hadoop
Hadoop’s advantages outweigh its disadvantages; it does suffer from
disadvantages, which are listed here:

Hadoop stores data in chunks and, because of this, reading data will
have to be done by querying the whole file. This can make random data
access problematic with Hadoop as the data store.
If your data is small (in our case, it isn't), usage of Hadoop can be
troublesome or will not reap the benefits envisaged.
Execution of advanced algorithms, which demands more specific
hardware requirements, can be problematic using Hadoop.
Getting niche/skilled people was a problem early on, but this skill is
increasing in the market day by day. However, this is still an issue
rolling out the Hadoop ecosystem in an organization.
Security issues/concerns exist as Hadoop was not thought through with
enterprise-grade security in mind. So, this tends to be when Hadoop is
used to store enterprise-grade customer information (PII - see the
following information box).
Deficiency in tooling is again improving, but this is still a problem as
many aspects have to be still handcoded (skills come into play here as
well).
Hadoop runs on commodity hardware, but to make it enterprise-grade,
the organization invests in costly hardware. So, even though it is less
costly theoretically, it is considered costly for enterprises.

Personally identifiable information (PII), or sensitive personal
information (SPI), as used in information security and privacy
laws, is information that can be used on its own or with other
information to identify, contact, or locate a single person, or to
identify an individual in context.

- Wikipedia

Working of Hadoop
Let's now see the internals of Hadoop and its components, it's architecture,
and how it works in this section. We will start off by understanding some of
Hadoop’s core architecture principles, and then we will explain its
architecture and important components in detail.

Hadoop core architecture principles
Hadoop was built and conceived with well-defined architecture goals and
principles, as listed here, (the following are in no way authoritative as we
can't find one; rather we gathered this from https://goo.gl/3nvERl):

Linear scalability (Scale-Out rather than Scale-Up): Add more nodes
for scalability to increase data storage and computing power.
Bring code to data rather than data to code: In big data, data is
usually huge and code working on data is small. So, this principle states
that bring or distribute code to the nodes/machines where it can act on
data and not distribute or move data. In essence, it means minimize data
transfer and distribute code instead.
Deal with failures as they are common: Bring reliability and fault-
tolerance by actually anticipating and dealing with these situations.
Simple computational model: Reliability and fault-tolerance demands
distribution and concurrency; hide these details from the user and give
an abstracted layer to deal with it. This is one of the main reasons for the
high adoption of Hadoop.
Sequential data processing: Avoid random access reads.
Auto managing: Manage many aspects common to distributed
applications/framework automatically, rather than depending on manual
intervention.
Parallel processing: By default, embrace parallel processing in an
automated fashion.

Scale-Out (Horizontal Scaling) refers to adding more
nodes/machines having less memory and processing power.
Considered less costly and cheaper option, it is a more
practical option.

Scale-Up (Vertical Scaling) refers to adding more memory and
processing power to the existing node/server. This, in general,
is considered costly as against the scale-out option. It is a less
practical option over a period of time and can cause a

https://goo.gl/3nvERl

maintenance havoc.

Figure 04: Scale-Up and Scale-Out architectures

Hadoop architecture
Let's get into Hadoop’s architecture. We are covering both the Hadoop 1.x
and Hadoop 2.x versions to give you in context and evolution of this
wonderful framework. In our use case implementation and example, we are
using the Hadoop 2.x version.

Hadoop architecture 1.x
It's important to know that there was Hadoop first generation, many aspects
were bundled and performed by the MapReduce component, such as resource
management, job scheduling, and job processing. To address this aspect,
Hadoop second generation was envisaged and is used widely now. To
understand the Hadoop 2.x architecture, it's good to know the basics of the
Hadoop 1.x architecture and that's what we will do in a very brief fashion in
this section.

The following figure shows the conceptual architecture of the Hadoop 1.x
framework:

Figure 05: High-level Hadoop 1.x conceptual architecture

Let's delve deeply into each of the components in the preceding figure from
the bottom up:

Hadoop Core/Common Module: It contains the base Hadoop API used
by all the preceding components. Hadoop is written in Java, so these are
packaged along with Hadoop as a JAR file (see the following
information box). This is a mandatory component required for other

components to work and contains reusable code and utilities.
HDFS (V1): This is short for Hadoop Distributed File System. It's
important to note that in Hadoop 1.x, V1 of HDFS is being used. It's also
referred to as HDFS V1, and we will be using this name further in this
book. This is the core component responsible for giving Hadoop the
distributed storage functionality. It has a default block size of 64 MB,
which can be flexibly changed according to your use case. HDFS V1 is
divided into two sub-components:

NameNode
DataNode

It's important to know that being distributed in nature, it does have the
concept of Master-Slave. In HDFS V1, the NameNode exists in the
master node and is responsible for storing metadata for the successful
working of Hadoop.

The DataNode resides on the slave node and stores the application's
data in blocks defined by size (the default being 64 MB). The
NameNode stores metadata such as how many slave nodes there are
and the number of blocks in each data node.

MapReduce (V1): This is the distributed data processing system in the
Hadoop framework. Based on Google’s MapReduce algorithm, it is also
known as MRV1 or Classic MapReduce. Similar to HDFS, MapReduce
also has two sub-components, again following the master-slave model,
as follows:

JobTracker
TaskTracker

Very much similar to the HDFS component, JobTracker resides in
the Master node and TaskTracker in the Slave node. JobTracker, as
the name suggests, assigns tasks to the TaskTracker and also records
and maintains the status of each of the TaskTrackers. TaskTracker, on
the other hand, executes the assigned tasks and sends the status back
to JobTracker after execution.

Hadoop Ecosystem: All the various Hadoop external tools and libraries
work on top of these core components: HDFS V1 and MapReduce V1.

A JAR file is a Java archive (JAR) file used by the Java
Runtime Environment (JRE), a framework used for executing
Java programs. JAR files may serve as program libraries or as
standalone programs that run if the JRE is installed on the
computer or mobile device.

- https://fileinfo.com

The following figure shows a more detailed Hadoop 1.x conceptual
architecture inline with the detailed explanation given earlier:

Figure 06: Low-level Hadoop 1.x conceptual architecture

The preceding figure is quite self-explanatory. As you would have already
understood, both the master and slave nodes have two core components:
HDFS V1 and MapReduce V1. According to the master and slave node,
various sub-components within these core components become active and
take effect for the full functioning of Hadoop. The slave node’s HDFS sub-
component, TaskTracker, contains two tasks, namely Map Task and Reduce
Task, inline with the MapReduce algorithm.

https://fileinfo.com

Hadoop architecture 2.x
We hope that by now you understand the Hadoop 1.x architecture; let's dive
into the version that we will be using in our book, which is Hadoop 2.7.3
(2.x).

The following figure shows the various components of the Hadoop 2.x
architecture at a high level:

Figure 07: High-level Hadoop 2.x conceptual architecture

The core aspects of the Hadoop 2.x architecture are very much similar to the
Hadoop 1.x architecture. As shown in the preceding figure, the main
components in the Hadoop architecture are as follows:

Hadoop Core/Common Module: As detailed earlier, it refers to the
core modules in the form of a JAR file that all the other modules depend
on and make use of to accomplish their core functionality.
HDFS (V2): HDFS V1 with some enhanced features constitutes HDFS
V2.
YARN (MR V2): This stands for Yet Another Resource Negotiator

and forms one of the core components, which is a differentiator from its
predecessor.
MapReduce (V1): The same component used in Hadoop 1.x is taken
along in Hadoop 2.x architecture as well. However, in Hadoop 2.x, it
does the job of data processing and all the rest is offloaded into the
mighty hands of YARN.
Hadoop Ecosystem: The Hadoop ecosystem works on top of these
explained core components.

Having got an initial high-level explanation for each of the components, it's
time to delve deeply into each of the components and to arrive at the Hadoop
Architecture in detail. From now on, we will only discuss Hadoop 2.x, so we
will not explicitly mention the version; rather it will be termed as Hadoop.

For comparison purposes, the following figure lays both the Hadoop 1.x and
Hadoop 2.x architecture components side by side:

Figure 08: Hadoop 1.x and 2.x side by side

Let's now detail each of the core components of Hadoop 2.x. At the end, we
will explain the Hadoop 2.x architecture in detail similarly to what we have
for Hadoop 1.x.

Hadoop architecture components
Let's delve into each component of Hadoop in this section.

HDFS
As detailed earlier, Hadoop follows the Master-Slave architecture pattern for
both data storage and computing. For data storage, it uses HDFS as the main
component. Two sub-components, namely NameNode and DataNode, are
present in master and slave nodes respectively. The DataNode stores the
application data and NameNode stores the filesystem metadata. The
communication between NameNode and DataNode is through TCP-based
protocols and is quite reliable and high-performant.

The following figure shows the Master-Slave architecture used in HDFS,
with the NameNode and DataNode components:

Figure 09: Master-Slave architecture of HDFS showing NameNode and
DataNode

HDFS, in working, is a distributed filesystem similar to the Google File
System (GFS). The application data is split into multiple blocks of a fixed
size (64 MB by default, but can be configured according to requirement) and
then distributed to multiple nodes in the Hadoop cluster, making adequate
data replication according to the replication factor setup in the cluster. This
replication makes Hadoop fault-tolerant and reliable.

The HDFS filesystem allows you to write once, and random writes are
forbidden. Also, HDFS is not good for random data access inherently, but is
highly optimized for streaming reads of files.

YARN
A handy addition to Hadoop (as against Hadoop 1.x) is the resource
negotiator YARN, enabling Hadoop to utilize resources in a dynamic fashion,
allowing applications to do the job rather than figuring out their impact on the
resources. It allows Hadoop to effectively and efficiently use each of the
nodes in a cluster. YARN in Hadoop 2.x is also called MR V2 (MapReduce
V2).

The following figure shows YARN’s architecture and its components in
detail along with how it works:

Figure 10: YARN (MR V2) architecture showing off its components

These are the important components constituting the YARN architecture:

ResourceManager (RM): This is the main agent that manages
resources from within the cluster nodes and them allocates accordingly.
It is entrusted with managing cluster resources efficiently and is the
Master node of YARN and the real negotiator. ResourceManager has
two sub-components, namely the following:

Application Manager
Scheduler caters to scheduler requirements for applications,
monitors them, and then tracks them

NodeManager (NM): Each node has one NodeManager and resources
within a node are allocated and handled. It's considered as the Slave
node of YARN. It accepts requests from Resource Manager and reports
back on the health and resources of the nodes.
ApplicationMaster (AM): ApplicationMaster exists for each
application, and is entrusted with the application life cycle, and it's task
allocation and execution.

MapReduce
One of the important paradelvems on which the Hadoop framework
processes large datasets is using the MapReduce programming model. Again,
MapReduce also uses the master-slave concept, in which the input file is first
broken into smaller ones and then each piece is fed to worker nodes, which
process (map task) the data and then the master collects it (reduce task) and
sends it back. This is depicted in a pictorial fashion in the following figure:

Figure 11: Working of MapReduce programming model in Hadoop

As shown in the preceding figure, Map sends the queries (code to data) to the
nodes and then reduce collects the results and collates and sends them back.
YARN does the parallel processing job here, and MapReduce gives a
framework by which to distribute the code (query) across multiple nodes for
execution/processing. MapReduce is a Java-based programming model
inspired from Google.

Hadoop ecosystem
Hadoop ecosystem has a section by itself as there is so much to cover under
that heading. The next main heading covers on this subject.

Hadoop architecture in detail
We have now detailed each of the components in Hadoop in detail in the
previous section. Now, it's time to discuss the Hadoop 2.x architecture in
detail, looking at each of its components and sub-components.

The next figure delves into each component and sub-component in the
Hadoop 2.x architecture in detail:

Figure 12: Low-level Hadoop 2.x conceptual architecture

The primary challenge that Hadoop 2.x solved over the Hadoop1 framework
was around removing a single point of failure, which was the NameNode in
Hadoop 1.x.

This has been achieved by the inclusion of the YARN framework as part of
Hadoop 2.x. As seen from the preceding architecture, the ResourceManager
manages the applications and also contains a scheduler for job management.
The resource manager works in coordination with NodeManager (which is
per machine agent). NodeManager is responsible for containers, resource

monitoring, and reporting for the specific machine. This information is used
by ResourceManager to allocate and distribute resources across all the
applications. The Application Master is a per-application process that
negotiates resources with ResourceManager and works with NodeManager
to execute and monitor tasks. The scheduler is responsible for the allocation
of resources to various applications based on their resource requirements. A
scheduler does not perform any role for status tracking or monitoring of the
applications. The ApplicationManager manages job submissions and failure
recovery in coordination with Application Master.

With this architecture in place, the single point of failure is completely
eliminated with critical dependency on NameNode of job management taken
up by the YARN framework in Hadoop 2.x.

Hadoop ecosystem
Apart from the core components, Hadoop contains many tools and libraries
existing on top of the core, collectively called the Hadoop ecosystem.

The following figure just lists a few commonly-used frameworks constituting
the Hadoop ecosystem:

Figure 13: Hadoop Ecosystem (a few important components shown)

The following section tries to categorize these frameworks on top of Hadoop
according to its core capability and briefly explains them. Getting into the
details of each one is not possible and the section is intended for a skim
knowledge so that you are well aware of Hadoop’s capabilities and choices.

The following section covers various frameworks in the Hadoop ecosystem,

categorizing each into a capability. The various capabilities are these:

Data access/processing components
Data storage components
Monitoring, management, and orchestration components
Data integration components

Apart from the components discussed, there are many components created
and managed by the open source community, but the ones discussed are the
more prominent and widely known ones.

Data access/processing components
Components in Hadoop ecosystem, which allow us to access and process data
stored in HDFS by having a component on top of HDFS, fall into this
category. Let's discuss some of the very well-known components and see
how they works.

Apache Pig
Apache Pig is a platform developed by Yahoo for data access and processing,
which works on top of HDFS dealing with large datasets. Pig has two
components, namely these:

A high-level data flow language, called Pig Latin, which has a SQL-like
command structure
Pig runtime, where the Pig Latin language gets executed

A Pig job abstracts the MapReduce complexity, fires the MapReduce job in
the background and executes it in a sequential manner. Apart from
MapReduce, Pig’s Hadoop job can be executed with Apache Tez and
Apache Spark. Pig gives Hadoop Ecosystem a data flow capability
abstracting ETL-like functionality away from the user. It allows us to extract
a large dataset from HDFS, then allows it to do necessary functions (such as
grouping and filtering), and then either persists the results back to HDFS or
dumps the results back, as demanded by your use case. Pig’s data flow
language provides extensibility by allowing its users to write a User Defined
Function (UDF), using which the user can write the required functionality in
a variety of languages, namely Groovy, Python, Java, JavaScript, and Ruby.

The following figure shows the basic working of Apache Pig:

Figure 14: Working of Apache Pig

One of the more common use-cases that can be performed using Apache Pig
is to search and mask confidential data in a large dataset stored in HDFS.

For more details, refer to the Apache Pig documentation at http://pig.apache.org
/docs/r0.16.0/.

http://pig.apache.org/docs/r0.16.0/

Apache Hive
Apache Hive was created by Facebook, and provides data warehouse
capability on top of Hadoop. Its main capability is data summarization and
ad-hoc query execution on Hadoop.

Hive contains two components, namely these:

Hive Command Line: An interface used to execute HiveQL
JDBC (Java DataBase Connectivity)/ODBC (Object DataBase
Connectivity) driver: This is to establish connectivity to the data storage

Query execution is done through uses of Hive Query Language (HQL or
HiveQL), very much similar to SQL. Query results produced are performant
and real time using various indexing capabilities. Apache Hive is capable of
batch and real-time data processing alike.

Similar to Apache Pig, Hive also allows you to write User Defined Function
(UDF), User Defined Aggregate Functions (UDAF), and User Defined
Table Functions (UDTF) to cater to your specific use-case requirements.
Again, similar to Pig, query execution can use MapReduce, Apache Spark,
and Apache Tez, as required by the user.

Apache Hive is not a suitable candidate for OnLine Transaction
Processing (OLTP), rather it is more suited for warehousing capabilities
(OLAP--OnLine Analytical Processing). It is, however, capable of handling
huge datasets of the scale of petabytes quite easily.

The main use case that Hive supports lies in ad-hoc data analysis and
reporting. It does have very good support for well-known BI tools, such as
MicroSTRategy (MSTR), Tableau and BO (Business Objects).

For more details, refer to the Apache Hive documentation at http://hive.apache.
org/.

http://hive.apache.org/

Data storage components
Components in Hadoop ecosystem that allow us to store data and to execute a
query by giving an abstraction fall into this category. Let's discuss some very
well-known components and see how they work.

Apache HBase
Apache HBase is the Data storage component on top of Hadoop using HDFS
as the storage. HBase is non-relational (NoSQL) and distributed in nature and
belongs to column family oriented database. It is good for random reads and
batch operations. HBase is capable of handling large datasets with millions of
rows and columns.

Apache HBase is modeled after Google’s Bigtable and is considered one of
the best implementations of it in the industry and internally, it is a sorted map
in implementation.

HBase has multiple APIs, the main one being the Java API. In addition to
this, it also has the REST (for HTTP access) and Thrift (for other language
programming access) APIs.

HBase is quite useful for handling use cases dealing with real-time data
analysis; also, it is very good for real-time data monitoring. In our examples,
we are using the 1.1.8 version of HBase.

For more details, refer to the Apache HBase documentation at http://hbase.apac
he.org/.

http://hbase.apache.org/

Monitoring, management and
orchestration components
Components in Hadoop ecosystem that allows us to monitor, manage, and
orchestrate many moving parts in Hadoop fall into this category. Let's discuss
some very well-known components and see how they work.

Apache ZooKeeper
Apache ZooKeeper is a popular open source Distributed Coordination
service. It can work as a centralized service capable of doing many operations
such as configuration management and other common coordination services
required for a distributed systems.

ZooKeeper works with a group of servers (an odd number ideally),
commonly known as an ensemble. When the ensemble is started, one of the
servers is elected as leader and the others automatically become followers.
The data residing in each server (so-called state) is broadcasted, because of
which each server has an up-to-date state with it. After leader election, all the
write requests are routed to the leader and all the followers get the data from
the chosen leader server. If due to any reason a leader perishes, a new leader
is elected and continues its operation. A client connects to only one server in
the ensemble. The client establishes a connection with the ZooKeeper service
and all requests are sent through this session connected via the TCP protocol.
The ZooKeeper session orders the incoming requests and follows FIFO
(First In First Out) pattern (Queue). The following figure shows the basic
working of ZooKeeper:

Figure 15: Working of Apache ZooKeeper

Many well-known projects use ZooKeeper for the distributed coordination
service capability. Some of them are as follows:

Apache YARN
Apache HBase
Apache Kafka
Neo4j

For more details, refer to the Apache ZooKeeper documentation at https://zoo
keeper.apache.org/.

https://zookeeper.apache.org/

Apache Oozie
Apache Oozie is an open source Java-based web application used for pipeline
creation, and it is well integrated with the Hadoop stack.

Oozie can be used to schedule and run Oozie jobs in a Hadoop cluster. It can
combine small jobs into more complex ones and can do this according to the
pipeline configured to achieve the required use case. Oozie triggers the
configured workflow and leverages the Hadoop engine to execute the
individual jobs in the workflow.

Job completion of Oozie tasks is detected by two mechanisms, namely,
callback and polling. When a job is configured, a callback URL can be
configured, which is invoked when the job is completed.

This figure shows the basic working of Oozie:

Figure 16: Basic working of Oozie

The Oozie client invokes the server that stores the workflow definitions and
job execution details in a database along with the execution details of a
triggered Oozie task. The database also holds the status and URL callbacks
for all the jobs in the workflow. The Oozie server then uses the Hadoop

engine for actual execution of the jobs and receives callback triggers when
the jobs are completed and when the whole workflow is completed.

For more details, refer to Apache Oozie documentation at http://oozie.apache.org
/.

http://oozie.apache.org/

Apache Ambari
Apache Ambari is a software project of the Apache Software Foundation.
Ambari enables system administrators to provision, manage, and monitor a
Hadoop cluster, and also to integrate Hadoop with the existing enterprise
infrastructure. Ambari was a sub-project of Hadoop, but it is now a top-level
project in its own right.

- Wikipedia

The following figure shows the basic working of Apache Ambari:

Figure 17: Apache Ambari architecture

It operates on the client-server model in which the Ambari server exposes
various RESTful endpoints that are consumed and used for various pages in
the Ambari web application. Users interact with Ambari using this Web UI.
Each node in the Hadoop cluster is installed with Ambari Agent, which sends
and stores data in the Ambari server. Monitoring in Ambari leverages two
open source technologies, namely Ganglia and Nagios.

For more details, refer to Apache Ambari documentation at https://ambari.apach

https://ambari.apache.org/

e.org/.

Data integration components
Components in Hadoop ecosystem that allow us to integrate Hadoop
with other data stores in other technologies (legacy) fall into this category.
Let's discuss some very well-known components and see how they work.

Apache Sqoop
We have already covered Apache Sqoop in detail in Chapter 5, Data
Acquisition of Batch Data with Apache Sqoop, so we don't want to repeat
ourselves here in any manner.

For more details, you can also refer to Apache Sqoop documentation at http://s
qoop.apache.org/.

http://sqoop.apache.org/

Apache Flume
Again, Apache Flume has already been covered quite extensively in Chapter 6,
Data Acquisition of Stream Data with Apache Flume. Again, we really don't
want any sort of repetition.

For more details, refer to the Apache Flume documentation at http://flume.apach
e.org/.

http://flume.apache.org/

Hadoop distributions
One of the first technologies in the open source world to deal with big data
for use cases apart from the mining and searching was Hadoop. Hadoop put
big data into the hands of enterprises to deal with the so called data existing
within the organization.

Being open source, there is a huge community base and backing from big
enterprises. The same is the case with Apache Hadoop and earlier, Hadoop
distribution was released by Cloudera in 2008. Every distributor adds on
many features and also enriches or enhances existing features, making it
more attractive for people to adopt and use.

Cloudera is still the most widely used distribution of Hadoop. MapR soon
followed by releasing its Hadoop distribution in 2009 and in 2011,
Hortonworks released its own distribution. These three players control by far
the largest part of the market share at this time.

These distributions not only enhance the existing features; they also try to
and integrate many open source products to produce a whole bundle ideal for
any enterprise to purchase and use along with enterprise-grade support. Also,
these distributions hide the complexities of various versions and upgrade the
process, making it easy for implementation.

Some of the features for enterprises from these distributions are as listed:

Easy upgrade of versions
Ensuring that each of the distinct projects works well in tandem
Various operating system-compliant distributions
Enterprise-grade support contract
Good abstraction avoiding complexities in the form of additional scripts
for execution and various Hadoop commands
On-time critical bug fix and application
Rich enhancements often needed by enterprises
Deployment and other infrastructure consultancy and support

As discussed earlier, here are some of the main Hadoop distributions and
their details:

Cloudera Distribution for Hadoop (CDH)
Leader in industry
Popular Hadoop distribution
The first to enrich and enhance Hadoop features in the industry
Offers support for enterprises under Cloudera Enterprise
subscription service
Two options, free and premium (based on cluster size), available

Hortonworks Data Platform (HDP)
Completely open source
Amazon and IBM offer this distribution as a service
Looks for standardization and, because of this, will be the most
supported distribution over a period of time

MapR Distribution
Similar to Cloudera and Hortonworks
Integrates its own database system--MapR DB
High speed and quite powerful
Own filesystem as against HDFS, supported
Two versions, free and premium, available

Altiscale
Hadoop-as-a-Service
Acquired by SAP

Amazon Elastic MapReduce
Hadoop on cloud (on-demand Hadoop)
Amazon’s slightly different varient of Apache Hadoop as well as
MapR distribution available

In this section, you would have clearly understood the various Hadoop
distribution options available in the market. According to your organization
and its requirements, choose wisely or you can very well choose the
community maintained Hadoop.

HDFS and formats
Hadoop stores data in blocks of 64/128/256 MB. Hadoop also detects many
of the common file formats and deals accordingly when stored. It supports
compression, but the compression methodology can support splitting and
random seeks, but in a non-splittable format. Hadoop has a number of default
codecs for compression. They are as follows:

File-based: It is similar to how you compress various files on your
desktop. Some formats support splitting while some don't, but most of
these be persisted in Hadoop. This codec compresses the whole file as
is, that too, any file format coming its way.
Block-based: As we know, data in Hadoop is stored in blocks, and this
codec compresses each block.

However, compression increases CPU utilization and also degrades
performance. Hadoop supports a variety of traditional file formats to be
stored. However, Hadoop does very specific filesystem for data, as shown:

Text storage (CSV--Comma Separated Values, TSV--Tab Separated
Values, JSON--JavaScript Object Notation, and so on): Text files
where data is stored in a line with some delimiter at the end to demarcate
each record. You can also use well-defined JSON as a record and store it
in Hadoop. When using this, it's common to use compression as these
formats inherently support this.
Avro: It's a file format with some built-in serialization and
deserialization capability. It allows storing simple and complex objects
and abstracts many of the complexities away from you and also has
many tools at your disposal to be used for easy management of this data.
It also supports block-level compression and is one of the favorite
Hadoop file formats.
Sequence File: It is designed by MapReduce, so the support by Hadoop
is quite extensive. Each record is an encoded key and value that supports
block-level compression.
Columnar File format: As the name suggests, it partitions data in

horizontal (row) and vertical (column) fashion in the Hadoop system for
easy access of subsets of data (data stored for all records in a column,
for example). If you plan to query data and want to do slide and dice,
this format can be quite handy as against row-only kind of data:

Parquet: It is most widely used in columnar file format
RCFile (Record Columnar File): It is the first columnar file format
in Hadoop created by Doug Cutting (founder of Hadoop), and has
good compression and performance.
ORC File (Optimized RC File): This is a compressed and
optimized RCFile; it compresses and performs better than RCFile

Choose the right format suiting your use case and its requirements. Ensure
that when selection is made, some important aspects, such as how you want
to read the data and how fast you want it (performance), are to be considered.

Hadoop for near real-time
applications
Hadoop has been popular for its capability for fast and performant batch
processing of large amounts of varied data with considerable variance and
high velocity. However, there was always an inherent need for handling data
for near real-time applications as well.

While Flume did provide some level of stream based processing in the
Hadoop ecosystem, it required considerable amount of implementation for
custom processing. Most of the source and sink implementations of flume are
performing data ETL roles. For any flume processing requirement, it required
implementation of custom sinks.

A more mature implementation for near real-time processing of data came
with Spark Streaming, which works with HDFS, based on micro-batches as
discussed earlier, and provided greater capabilities compared to flume, as
pipeline-based processing in near real time.

However, even if the data was processed in near real time and stored in the
Hadoop File System, there was an even greater challenge of how to access
data randomly from HDFS, it being primarily a sequential filesystem.

In order to solve the problem of random access of data, HBase was
implemented based on Google’s Bigtable architecture. Though it
allows random access of data, it is key value oriented. The data can be
directly looked up only if the key of the data is available. For any partial
match scenarios, this is not appropriate as it can potentially cause file scans
within HDFS.

Hadoop deployment modes
Hadoop supports three deployment modes, which are briefly (don't want to
deviate too far from the crux of this chapter) detailed here:

Standalone (Local) Mode
Default mode
Single Java (JVM) process
Non-distributed or non-clustered architecture
The easiest setup of the three
Mostly used for learning and running examples and for
development
Very useful for debugging purposes

Pseudo Distributed Mode (single node cluster)
Single-node installation
Each daemon runs in its own Java (JVM) process
Can be used for simulating multi-node installation/support issues in
a single node itself (mini cluster setup on single node)
Much easier to setup than fully distributed Hadoop installation
Similar to the first mode, it is non-distributed installation

Fully Distributed Mode (multi-node cluster)
Fully distributed clustered architecture
Mostly used for production deployment
Can be set using a few to thousands of nodes, as the requirement
demands
On each node, Hadoop installation and then clustering
configuration has to be done
Uses YARN and its capabilities bring in true distribution and
clustering capabilities internally
Highly configurable and supports high availability and security
Good support for monitoring and manageability (does offer various
web UI for visual depiction of Hadoop components)

Choose the deployment you want to go with wisely. The code done remains
the same for any of these deployment modes and can be changed from one to

another, as required at any point.

Hadoop working examples
This section covers the full working example using Apache Hadoop as the
data storage in conjunction with our SCV use case.

Installation
We have already covered the pseudo-distributed deployment of Hadoop in
the earlier chapters. We will continue with the same setup for understanding
the examples in this chapter.

Data preparation
For Hadoop examples, we will expand the data generation utility of customer
profile even further. For batch processes it is generally expected that the
volume of data is quite substantial.

Hence we will try and generate about 2 million customer records and their
related information for batch processing.

We shall use the same data generation utility as before for populating the data
in the database, the only difference being that we will be generating 2 million
customer records in the DB. Generating these many rows in relational
database may take some time depending on the machine configuration.

If you would like to cleanup the PostgreSQL database before running the data
generation utilities, please run the following queries, in the order specified.

DELETE from address;

DELETE from customer;

Execute the following command from the directory containing data
generation libraries as covered in Chapter 8, Data Processing using Apache
Flink.

java -jar client-generator-1.0-SNAPSHOT.jar config/db.properties 2000000

Now that we have created 2 million records in our database, let us generate 2
million records for customer contact information as well, the only difference
being that, we will be creating this information as a text file, with comma
delimited data. Execute the following command from the directory containing
data generation libraries as covered in Chapter 8, Data Processing using
Apache Flink:

java -jar web-generator-1.0-SNAPSHOT.jar contacts.log 2000000 contact

A rough schema of the text file generated executing the previous command is
as:

cust_id:int cell_number:string work_phone:string email_address:string

In these examples we would also want to visualize data as Hive tables, hence
we would also need to install and configure Hive service. As part of Hadoop
ecosystem we have covered Apache Hive in high-level which can be referred.

Hive installation
1. Download the latest stable release of Hive from the following location,

using the command:

wget http://www-us.apache.org/dist/hive/hive-2.1.1/apache-hive-2.1.1-bin.tar.gz

2. Change to a user directory and extract the contents of the tar using
the following command:

tar -xzvf ${DOWNLOAD_DIR}/apache-hive-2.1.1-bin.tar.gz

3. Configure and export the environment variable ${HIVE_HOME} pointing to
the extracted directory and append its binaries to the path. Append the
same to ~/.bashrc file

export HIVE_HOME=<Hive directory>

export PATH=$PATH:$HIVE_HOME/bin

4. Install latest SASL (Simple Authentication and Security Layer) packages for
your operating system as Hive has dependency on this. For CentOS,
these can be installed with following command:

sudo yum install *sasl*

5. Hive provides services which needs a metadata store for managing
metadata information. Let us configure PostgreSQL server as the metadata
server using the following commands using psql (interactive terminal for
working with PostgreSQL) client in shell/Command Prompt.:

Create postgresql user as hiveuser and the database as metastore with
the following commands:

sudo -u postgres psql

The previous command initializes and starts the psql client
(the shell would show postgres=#) for running queries. Now
let us create the user and database for Hive metastore with
following queries:

 postgres=# CREATE USER hiveuser WITH PASSWORD 'mypassword';

 postgres=# CREATE DATABASE metastore;

Configure permissions on the metastore for hiveuser with the
following commands:

postgres=# \c metastore

metastore=# \pset tuples_only on

metastore=# \o /tmp/grant-privs

metastore=# SELECT 'GRANT SELECT,INSERT,UPDATE,DELETE ON "' || schemaname || '". "' ||tablename ||'" TO hiveuser ;'

metastore-# FROM pg_tables

metastore-# WHERE tableowner = CURRENT_USER and schemaname = 'public';

metastore=# \o

metastore=# \pset tuples_only off

metastore=# \i /tmp/grant-privs

Copy the ${HIVE_HOME}/conf/hive-default.xml.template to
${HIVE_HOME}/conf/hive-site.xml file with following command:

cp ${HIVE_HOME}/conf/hive-default.xml.template ${HIVE_HOME}/conf/hive-site.xml

Configure the following properties in ${HIVE_HOME}/conf/hive-
site.xml:

HIVE Property Suggested Value

hive.exec.scratchdir /tmp/hive

hive.exec.local.scratchdir

/tmp/hive/centos

Here, centos is the user account under which
the hive queries will be executed

hive.downloaded.resources.dir /tmp/hive/${hive.session.id}_resources

javax.jdo.option.ConnectionPassword

hivepass

The password created in PSQL client.

javax.jdo.option.ConnectionURL

jdbc:postgresql://<POSTGRESQL_SERVER_IP:PORT>/

metastore

javax.jdo.option.ConnectionDriverName org.postgresql.Driver

javax.jdo.option.ConnectionUserName hiveuser

hive.server2.enable.doAs false

Copy the PostgreSQL driver JAR in Hive lib directory, i.e. in
${HIVE_HOME}/lib, in the same way as was done for Sqoop setup. The
PostgreSQL driver can be downloaded from the following location
with the command. As part of Sqoop setup this should be already
existing in the download folder.

wget https://jdbc.postgresql.org/download/postgresql-9.4.1212.jre6.jar

6. Configure the ${HADOOP_HOME}/etc/hadoop/core-site.xml with the following
entries. Change hadoop.proxyuser.centos to your user account, instead
of centos, in the following sample configurations:

<property>

 <name>hadoop.proxyuser.centos.hosts</name>

 <value>*</value>

</property>

<property>

 <name>hadoop.proxyuser.centos.groups</name>

 <value>*</value>

</property>

7. Restart the DFS service using the following commands:

stop-dfs.sh

start-dfs.sh

8. Configure ${HUE_HOME}/desktop/conf/hue.ini to make Hue work with the
Hive service with following properties. Search for this property in
hue.ini and change the CentOS to your user account name:

hive_conf_dir=/home/centos/apache-hive-2.1.1-bin/conf

9. Restart the hue service by gracefully stopping (find the supervisor
process and then kill it) and starting it with following command:

${HUE_HOME}/build/env/bin/supervisor -d

10. Use the schematool to generate schema with the following command:

${HIVE_HOME}/bin/schematool -dbType postgres -initSchema --verbose

Go to pgAdmin and you should see a new database namely
metastore containing the various tables generated by the schematool

11. Verify the install by following steps:
1. Check for hive shell by running the given command:

${HIVE_HOME}/bin/hive

If things go well you should see the hive shell. You can run
various Hive queries using this shell if needed.

2. Launch the hiveserver2 service with the following command.
Hiveserver2 is the remoting process which enables Hue integration
with Hive and enable Hue to run queries in Hue UI.:

${HIVE_HOME}/bin/hive --service hiveserver2 -hiveconf hive.root.logging=console

3. After successful start of hiveserver2, open Hue and navigate to
Query Editor|HIVE, which should open without any errors being
reported.

Now that we have all the required components installed and working, we will
look at a few examples. The initial example would cover loading aspect of
the data and as we proceed through these examples we will also see the
processing aspects of Hadoop layer.

Example - Bulk Data Load
Now, let us look at how we can load data in bulk into the Hadoop layer and
see the support provided by Hadoop ecosystem in achieving this.

File Data Load
1. Files from a linux machine can be easily copied into HDFS cluster by

using fs put command. This command is part of Hadoop client which
can be installed on any Linux machine. In our case, Hadoop client is
available as part of Hadoop pseudo-distributed setup.

A general syntax of this command is as given:

hdfs dfs -put /local/path/test.file

hdfs://namenode:9000/user/stage

2. For this example, let us create a raw area of data in HDFS (a folder in
HDFS). This area would contain the data in its most natural form as
acquired from the source using the command:

hdfs dfs -mkdir -p /<any-path>/raw/txt

Once the previous command is executed, it will create the folder
structure (<any-path>/raw/txt) in HDFS which can be viewed using the
NameNode UI.

3. Now change the directory into where the generated file of contacts exists
and run the following command:

hdfs dfs -put contacts.log hdfs://<hadoop-namenode-ip-address>:9000/<any-path>/raw/txt/contact.log

4. The content of this file can now be viewed in Hue as shown in the
following screenshot:

Figure 18: Text file loaded in HDFS via dfs put

RDBMS Data Load
As discussed earlier in Chapter 5, Data Acquisition of Batch Data using
Apache Sqoop the bulk load from RDBMS can be done by using Sqoop. The
same command that we discussed in Sqoop chapter can be used to achieve
this.

Example - MapReduce processing
Now let us load this data using a MapReduce process from the same file,
contacts.log. A very simple MapReduce program can be used for doing this,
which is shown in the following code snippet. The source code for all the
code in this chapter can be found in chapter09 folder on GitHub repository
which we have cloned earlier. The following code block can be found in
chapter09/contacts-loader-mr project:

import org.apache.hadoop.conf.Configuration;

import org.apache.hadoop.fs.Path;

import org.apache.hadoop.io.LongWritable;

import org.apache.hadoop.io.Text;

import org.apache.hadoop.mapreduce.Job;

import org.apache.hadoop.mapreduce.Mapper;

import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;

import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;

import java.io.IOException;

import java.util.Random;

public class ContactsLoader {

 public static void main(String[] args) throws Exception {

 //Define Job Configurations

 Configuration conf = new Configuration();

 Job job = Job.getInstance(conf, "Contacts Loader - Simple Mapper");

 job.setJarByClass(ContactsLoader.class);

 job.setMapperClass(LoadMapper.class);

 //Included support for file:// and hdfs:// file schemes

 conf.set("fs.hdfs.impl",

 org.apache.hadoop.hdfs.DistributedFileSystem.class.getName()

);

 conf.set("fs.file.impl",

 org.apache.hadoop.fs.LocalFileSystem.class.getName()

);

 //Set Input and Output Paths

 FileInputFormat.addInputPath(job, new Path(args[0]));

 FileOutputFormat.setOutputPath(job, new Path(args[1]));

 System.exit(job.waitForCompletion(true) ? 0 : 1);

 }

 private static class LoadMapper extends Mapper<Object, Text,

 LongWritable, Text> {

 @Override

 protected void setup(Context context) throws IOException,

 InterruptedException {

 super.setup(context);

 }

 @Override

 protected void map(Object key, Text value, Context context) throws

 IOException, InterruptedException {

 String line = value.toString();

 try {

 context.write(new LongWritable(Long.parseLong(line.substring(0,

 line.indexOf(",")))), value);

 } catch (Exception e) {

 e.printStackTrace();

 }

 }

 }

}

Code 01: Simple Mapper Code for loading contacts from external file

In order to compile this code, go to the folder chapter09/contacts-loader-mr and
run the following command:

mvn install

Once compiled, it creates a self executable JAR with all the dependencies
included such that MapReduce job can be launched. This is achieved by
using the following maven POM file configuration, including shaded plugin
(used to create self-executable JAR). In this POM file, we have included few
Hadoop dependencies and shaded plugin configuration (in build section) with
ManifestResourceTransformer for main class declaration and
ServiceResourceTransformer to omit unwanted files from dependent JARs.

<?xml version="1.0" encoding="UTF-8"?>

<project xmlns="http://maven.apache.org/POM/4.0.0"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/xsd/maven-4.0.0.xsd"

<modelVersion>4.0.0</modelVersion>

<parent>

<groupId>com.laketravels</groupId>

<artifactId>chapter09</artifactId>

<version>1.0-SNAPSHOT</version>

</parent>

<groupId>com.laketravels.batch</groupId>

<artifactId>contacts-loader-mr</artifactId>

<packaging>jar</packaging>

<dependencies>

<dependency>

<groupId>org.apache.hadoop</groupId>

<artifactId>hadoop-client</artifactId>

<version>2.7.3</version>

</dependency>

<dependency>

<groupId>org.apache.hadoop</groupId>

<artifactId>hadoop-hdfs</artifactId>

<version>2.7.3</version>

</dependency>

</dependencies>

<build>

<plugins>

<plugin>

<groupId>org.apache.maven.plugins</groupId>

<artifactId>maven-shade-plugin</artifactId>

<version>3.0.0</version>

<executions>

<execution>

<phase>package</phase>

<goals>

<goal>shade</goal>

</goals>

<configuration>

<transformers>

<transformer

 implementation="org.apache.maven.plugins.shade.resource.ManifestResourceTransformer"

<mainClass>com.laketravels.ch09.batch.mr.loader.ContactsLoader</mainClass>

</transformer>

<transformer implementation="org.apache.maven.plugins.shade.resource.ServicesResourceTransformer"

</transformers>

</configuration>

</execution>

</executions>

</plugin>

</plugins>

</build>

</project>

Code 02: POM Configuration for MapReduce

Navigate to contacts-loader-mr project where the JAR is generated and run it
by using the following command:

java -jar target/contacts-loader-mr-1.0-SNAPSHOT.jar file:///<any-path>/contacts.log hdfs://<hadoop-namenode-ip-address>:9000/<any-path>/raw/contact/mr

For visualizing and querying capabilities, we can also create Hive tables on
the underlying data. Hive has a concept of EXTERNAL table which helps
linking files to the Hive tables. This is extremely helpful in a Data Lake
implementation as we can keep writing files and the the Hive tables keeps
reflecting the newly added/updated data. We will see examples of Hive
support for Avro data and Parquet storage using in-built Serializer-
Deserializer(SerDe) provided by Hive in later examples in this book.

Text Data as Hive Tables
In this section we will visualize the output from bulk data upload and
MapReduce examples explained in previous sections in Hive tables. In order
to achieve this, let us follow given steps:

1. Open Hue and navigate to Query Editor | HIVE.
2. In the Query box, lets run a DDL command to create a Hive table over

the contacts file uploaded earlier:

Text File Visualization with Hive Table MapReduce Output with Hive Table

CREATE EXTERNAL TABLE IF NOT EXISTS

ContactsText(

 id STRING,

 cell STRING,

 phone STRING,

 email STRING)

 ROW FORMAT DELIMITED

 FIELDS TERMINATED BY ','

 STORED AS TEXTFILE

 location '<hdfs-path-to-txt-file>';

CREATE EXTERNAL TABLE IF NOT EXISTS

ContactsMR(

 id STRING,

 cell STRING,

 phone STRING,

 email STRING)

 ROW FORMAT DELIMITED

 FIELDS TERMINATED BY ','

 STORED AS TEXTFILE

 location '<hdfs-path-to-mr-upload-data>';

3. Once Hive returns with a success message, run a select query to verify
the data as shown the following command:

Figure 19: Hive External Table view of text file

As observed from the previous result set, the data has been correctly
represented in the Hive table. The following figure shows the
uploaded content from MapReduce process from contactsMR table
as visible in Hive UI:

Figure 20: Text file loaded in HDFS via MapReduce

As we see here, the id column of contacts does not look right, since the
Hadoop file is a sequential file written with tuples of keys and values. The
ID is seen twice because it is for the tuple (example record is: 101 101, 1-796-
079-4366, 1-596-679-6710 x481, elna.nienow@yahoo.com) containing the complete
contact record as value which contains the id as well.

Avro Data as HIVE Table
In order to create Avro data from the contacts text file, we will make use of
INTERNAL Hive table. They come with in-built mechanisms to convert text
data to Avro data. However, having an EXTERNAL table for Avro data
would be more practical as discussed before from integration perspective
with Sqoop, Flume and Flink.

In order to see this in action we will need to execute the following steps:

1. Avro schema for contacts namely contact.ascv (schema file) could be
represented as shown the following command:

{

 "namespace": "example.avro",

 "type": "record",

 "name": "Contact",

 "fields": [

 {"name": "id", "type": "string"},

 {"name": "cell", "type": "string"},

 {"name": "phone", "type": "string"},

 {"name": "email", "type": "string"}

]

}

All Avro objects are dependent on schema definition and at the
storage layer these Avro objects are serialized into Avro data files.
The Avro serializers need to have reference to this schema to perform
serialization. Avro serializations should be incremental in nature so
that external tables can be created over Avro data files. When a Sqoop
job is run to load the data as Avro data files, a default schema is
generated by Ssqoop to serialize data into Avro data files.

As seen previously, Avro schema definition is similar to JSON
schema draft specification. But, there are differences in data type
support and the structure of the Avro schema declaration.

2. In the Hive editor run the following command to create another Hive
table, but this time with Avro data format with inline schema definition

CREATE TABLE contactsAvro

ROW FORMAT SERDE 'org.apache.hadoop.hive.serde2.avro.AvroSerDe'

STORED AS INPUTFORMAT 'org.apache.hadoop.hive.ql.io.avro.AvroContainerInputFormat'

OUTPUTFORMAT 'org.apache.hadoop.hive.ql.io.avro.AvroContainerOutputFormat'

TBLPROPERTIES (

 'avro.schema.literal'='{"namespace": "example.avro",

 "type": "record",

 "name": "Contact",

 "fields": [

 {"name": "id", "type": "string"},

 {"name": "cell", "type": "string"},

 {"name": "phone", "type": "string"},

 {"name": "email", "type": "string"}

]

 }

');

3. Now let us load the data into this Hive table using INSERT OVERWRITE query
in the Hive Query Builder. This may take some time as internally it
triggers MapReduce jobs for this data load:

INSERT OVERWRITE TABLE contactsAvro SELECT id, cell, phone, email FROM contactsText;

4. Querying from the newly created table (contactsAvro) gives us the same
output as we saw before, but if we look into the Hive warehouse we see
Avro data files created from the data load operation as shown the
following command:

Figure 21: Avro Data Backed HIVE Table - Data Loaded with INSERT

OVERWRITE

The following figure shows Avro data files shown in the Hive warehouse
folder:

Figure 22: Generated Avro Data Files

The following screenshot shows the content of one of the Avro data files :

Figure 23: View of Avro Data file

Similarly, even for Parquet storage Hive tables can be defined and the data
would be stored in Parquet format. The only difference would be in the way
table is created, with a different SERDE.

Hadoop in purview of SCV use case
From the perspective of SCV use case, we can load the data from DB as well
as generated contact file to provide complete view of customer and enable
query execution across all these tables. Let us now see how we can build this
step by step.

As discussed earlier, we had loaded 2 million records in database and
generated 2 million contacts in text file format. We consider this as raw data
existing in the source system, let us define the RAW storage area for our
 Data Lake.

Initial directory setup
Create the following directories in HDFS by running the following
command:

hdfs dfs -mkdir -p /datalake/raw/customer

hdfs dfs -mkdir -p /datalake/raw/address

hdfs dfs -mkdir -p /datalake/raw/contacts

Data loads
Now, let's load data from our database, one table at a time, so that we can
store it in different RAW areas:

1. Loading of Customer Data:
1. Run a Sqoop Job for importing customer profile from DB with the

following command:

${SQOOP_HOME}/bin/sqoop import --connect jdbc:postgresql://<DB-SERVER-ADDRESS>/sourcedb?schema=public --table customer --m 10 --username postgres --password <DB-PASSWORD> --as-avrodatafile --append --target-dir /datalake/raw/customer

2. Once the Sqoop MapReduce jobs are complete, the customer
directory can be seen populated with a number of Avro data files as
shown in the following figure:

Figure 24: Avro Data loaded in RAW Storage via Sqoop for Customer
Profile

2. Loading of Customer Address Data:
1. Run a Sqoop Job for importing customer address with following

command:

${SQOOP_HOME}/bin/sqoop import --connect jdbc:postgresql://<DB-SERVERADDRESS>/sourcedb?schema=public --table address --m 10 --username postgres --password <DB-PASSWORD> --as-avrodatafile --append --target-dir /datalake/raw/address

2. Once the Sqoop MapReduce jobs are complete, the address
directory can be seen populated with a number of Avro data files as
shown the following command:

Figure 25: Avro data loaded in RAW Storage via Sqoop for customer address

3. Loading of Contacts Data from Log File:

1. Let us consider running a more complete MapReduce program (as
against the sample that we ran earlier in this chapter) to load data
from the log file stored in an external file system into the Hadoop
directory with YARN job monitoring capability.

2. The following code which can be found in chapter09/contacts-
loader-mr-avro project is a MapReduce code that will help us load
the data into Hadoop. Change the configurations fs.defaultFS,
mapreduce.jobtracker.address and yarn.resourcemanager.address as
needed in the code before compiling and running it:

package com.laketravels.ch09.batch.mr.loader;

import org.apache.avro.Schema;

import org.apache.avro.generic.GenericData;

import org.apache.avro.generic.GenericRecord;

import org.apache.avro.mapred.AvroKey;

import org.apache.avro.mapreduce.AvroJob;

import org.apache.avro.mapreduce.AvroKeyOutputFormat;

import org.apache.hadoop.conf.Configuration;

import org.apache.hadoop.conf.Configured;

import org.apache.hadoop.fs.Path;

import org.apache.hadoop.io.LongWritable;

import org.apache.hadoop.io.NullWritable;

import org.apache.hadoop.io.Text;

import org.apache.hadoop.mapreduce.Job;

import org.apache.hadoop.mapreduce.Mapper;

import org.apache.hadoop.mapreduce.Reducer;

import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;

import org.apache.hadoop.mapreduce.lib.input.TextInputFormat;

import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;

import org.apache.hadoop.util.Tool;

import org.apache.hadoop.util.ToolRunner;

import java.io.IOException;

public class ContactsLoader extends Configured implements Tool{

public static void main(String[] args) throws Exception {

int exitCode= ToolRunner.run(new ContactsLoader(),args);

 System.out.println("Exit code "+exitCode);

 }

public int run(String[] args) throws Exception {

 Configuration conf = new Configuration();

//Integrate with YARN endpoints for Job Control and Monitoring

 conf.set("fs.defaultFS", "hdfs://192.168.0.117:9000");

 conf.set("mapreduce.jobtracker.address", "192.168.0.117:54311"

 conf.set("mapreduce.framework.name", "yarn");

 conf.set("yarn.resourcemanager.address", "192.168.0.117:8032"

//Included support for file:// and hdfs:// file schemes

 conf.set("fs.hdfs.impl",

 org.apache.hadoop.hdfs.DistributedFileSystem.class

);

 conf.set("fs.file.impl",

 org.apache.hadoop.fs.LocalFileSystem.class.getName()

);

 Job job= Job.getInstance(conf,"Contacts Loader");

 job.setJarByClass(ContactsLoader.class);

//Set Input and Output Paths

 FileInputFormat.setInputPaths(job, new Path(args[0]));

 FileOutputFormat.setOutputPath(job, new Path(args[1]));

//Configure Schema for avro data load

 Schema.Parser parser = new Schema.Parser();

 Schema schema=parser.parse(Thread.currentThread().getContextClassLoader()

 .getResourceAsStream("contacts.avsc"

//Overide default class loading policy to load application specific libraries first

 job.getConfiguration().setBoolean(

 Job.MAPREDUCE_JOB_USER_CLASSPATH_FIRST, true);

//Configure Job Mapper and Reducer classes

 job.setMapperClass(LoadMapper.class);

 job.setReducerClass(LoadReducer.class);

//Set Map Output Value Format, Input Format and final Output Format Class

 job.setMapOutputValueClass(NullWritable.class);

 job.setInputFormatClass(TextInputFormat.class);

 job.setOutputFormatClass(AvroKeyOutputFormat.class);

//Set Avro Job schema parameters for Map Output and Reducer Output

 AvroJob.setMapOutputKeySchema(job, schema);

 AvroJob.setOutputKeySchema(job, schema);

int status = job.waitForCompletion(true) ? 0 : 1;

return status;

 }

private static class LoadMapper extends Mapper<LongWritable, Text, AvroKey<GenericRecord>, NullWritable> {

 Schema schema;

@Override

 protected void setup(Context context) throws IOException, InterruptedException {

super.setup(context);

//Setup initializes the contacts schema

 Schema.Parser parser = new Schema.Parser();

schema=parser.parse(Thread.currentThread().getContextClassLoader()

 .getResourceAsStream("contacts.avsc"));

 }

@Override

 protected void map(LongWritable key, Text value, Context context)

try {

//Schema and Data used for Record population

 GenericRecord record = new GenericData.Record(

 String inputRecord=value.toString();

 String[] values = inputRecord.split(",");

 record.put("id", values[0]);

 record.put("cell", values[1]);

 record.put("phone", values[2]);

 record.put("email", values[3]);

 context.write(new AvroKey(record), NullWritable.

 } catch (Exception e) {

 e.printStackTrace();

 }

 }

 }

private static class LoadReducer extends Reducer<AvroKey<GenericRecord>,NullWritable,AvroKey<GenericRecord>,NullWritable> {

@Override

 public void reduce(AvroKey<GenericRecord> key, Iterable<NullWritable> value, Context context)

try {

 context.write(key, NullWritable.get());

 } catch (Exception e) {

 e.printStackTrace();

 }

 }

 }

}

The code has inline comments to explain the code segments.

3. The code has inline comments to explain the code segments. After
doing relevant configuration changes in the source code, navigate
to chapter09/contacts-loader-mr-avro folder and execute the following
command to compile the source:

mvn install

4. Please ensure YARN is properly setup. In order to configure yarn,
please add the following configurations in
${HADOOP_HOME}/etc/hadoop/yarn-site.xml:

<property>

 <name>yarn.nodemanager.aux-services</name>

 <value>mapreduce_shuffle</value>

</property>

<property>

 <name>yarn.nodemanager.aux-services.mapreduce_shuffle.class</name>

 <value>org.apache.hadoop.mapred.ShuffleHandler</value>

</property>

5. In order to launch YARN process run following command:

${HADOOP_HOME}/sbin/start-yarn.sh

Executing the jps command should show NodeManager
and ResourceManager processes.

6. The preceding code can be run with this command to be run with
YARN:

yarn -jar target/contacts-loader-mr-avro-1.0-SNAPSHOT.jar file:///<any-path>/contacts.log hdfs://<hadoop-namenode-ip-address>:9000/datalake/raw/contacts/load1

7. Monitor the job at the following YARN URL:

http://<YARN_BINDING_ADDRESS>:8088

The following figure shows RUNNING Applications screen in YARN UI:

Figure 26: YARN view of applications in running state

The following figure shows the Scheduler screen in the YARN UI:

Figure 27: YARN view of scheduler state

8. Once the job is completed, the Avro data file is generated as shown in
the Hue UI (HDFS Browser).

Figure 28: Avro data load via MapReduce in Hue UI

Data visualization with HIVE tables
Now let us visualize the loaded data by creating Hive tables over the binary
Avro data by executing the following Hive table scripts (using Hive Query
Editor):

1. Create a customer Hive table by executing the following script:

CREATE EXTERNAL TABLE customer

ROW FORMAT SERDE 'org.apache.hadoop.hive.serde2.avro.AvroSerDe'

STORED AS INPUTFORMAT 'org.apache.hadoop.hive.ql.io.avro.AvroContainerInputFormat'

OUTPUTFORMAT 'org.apache.hadoop.hive.ql.io.avro.AvroContainerOutputFormat'

LOCATION '/datalake/raw/customer'

TBLPROPERTIES (

 'avro.schema.literal'='{"namespace": "example.avro",

 "type": "record",

 "name": "Customer",

 "fields": [

 {"name": "id", "type": "int"},

 {"name": "first_name", "type": "string"},

 {"name": "last_name", "type": "string"},

 {"name": "dob", "type": "long"}

]}'

);

2. Create address Hive table by executing the following script:

CREATE EXTERNAL TABLE address

ROW FORMAT SERDE 'org.apache.hadoop.hive.serde2.avro.AvroSerDe'

STORED AS INPUTFORMAT 'org.apache.hadoop.hive.ql.io.avro.AvroContainerInputFormat'

OUTPUTFORMAT 'org.apache.hadoop.hive.ql.io.avro.AvroContainerOutputFormat'

LOCATION '/datalake/raw/address'

TBLPROPERTIES (

 'avro.schema.literal'='{"namespace": "example.avro",

 "type": "record",

 "name": "Address",

 "fields": [

 {"name": "id", "type": "int"},

 {"name": "street1", "type": "string"},

 {"name": "street2", "type": "string"},

 {"name": "city", "type": "string"},

 {"name": "state", "type": "string"},

 {"name": "country", "type": "string"},

 {"name": "zip_pin_postal_code", "type": "string"}

]}'

);

3. Create contacts Hive table by executing the following script:

CREATE EXTERNAL TABLE contacts

ROW FORMAT SERDE 'org.apache.hadoop.hive.serde2.avro.AvroSerDe'

STORED AS INPUTFORMAT 'org.apache.hadoop.hive.ql.io.avro.AvroContainerInputFormat'

OUTPUTFORMAT 'org.apache.hadoop.hive.ql.io.avro.AvroContainerOutputFormat'

LOCATION '/datalake/raw/contacts/load1'

TBLPROPERTIES (

 'avro.schema.literal'='{"namespace": "example.avro",

 "type": "record",

 "name": "Contact",

 "fields": [

 {"name": "id", "type": "string"},

 {"name": "cell", "type": "string"},

 {"name": "phone", "type": "string"},

 {"name": "email", "type": "string"}

]}'

);

Now we have all the data ingested into Hadoop represented as external Hive
tables, which have been actually sourced differently, but are all now coming
together into the Data Lake in a way that enables querying and further
processing. With the mechanisms explained in this chapter the whole Data
Lake is coming together as shown in the figure (Figure 29) from coverage
perspective.:

Figure 29: Single Customer View Coverage

When not to use Hadoop
Not all use cases require Hadoop, and when used in a use case that doesn't
require Hadoop, it can be a maintenance havoc.

Hadoop should not be used if you need the following things:

To do graph-based data processing. You might have to bring another
Hadoop ecosystem product (say, Apache Tez) to do this.
To process real-time data processing. However, using many products in
Hadoop ecosystem, this can also be done, but it has to be analysed and
then decided. Apache Flink or Spark on top of HDFS can be an option
that can be considered.
To process data stored in relational databases. Using Hive over HDFS
can be an option though which could be considered.
Access to shared state for processing data. Hadoop works by splitting
data across multiple nodes in a cluster and tends to do jobs in parallel
fashion, which is stateless in nature.
To process small datasets.

Other Hadoop Processing Options
Apache Hadoop is something that will always pop up whenever a big data
term is used. It has almost become a mandatory piece when dealing with Big
Data. There is no doubt that Hadoop is an excellent choice, but it does have
some inherent aspects that put a doubt in developers' minds when the choice
has to be made, especially when big data and its processing is ever increasing
in any enterprise, obviously due to changing business dynamics. Some of its
pointed disadvantages are Hadoop's complexity and the way it actually does
execution. Due to these reasons, there have been some recent innovations to
simplify Hadoop processing further, and some of these simplifications have
been brought in by the advent of Pig scripts and Apache Spark.

Pig scripts provide a good alternate to simplify MapReduce activity with pig
Latin language, while still enabling non-Java developers to perform
MapReduce via a simpler programming style.

Apache Spark streaming, on the other hand, has simplified the querying
mechanism via programming languages, such as Scala, Java, and Python. If
we might have observed in the examples covered, HIVE is good at querying
HDFS data, but when it comes to joining one table with another, it kicks into
more complex MapReduce jobs with high probability of failure. Hence, the
HIVE MapReduce has been deprecated as the same action can be performed
in a very optimized way with Apache Spark and Apache Tez.

Summary
In this chapter, similar to the other chapters in this part of the book, we
started with the layer where Apache Hadoop was discussed in detail. We then
mapped the technology, namely Hadoop, to this layer. Once we named the
technology, we went into detail on the Hadoop technology.

First of all, we gave reasons for choosing this technology and then got into its
history, advantages, and disadvantages. Soon, we delved into Hadoop’s
working by explaining both Hadoop 1.x and Hadoop 2.x architecture. Since
we are using Hadoop 2.x, we explained Hadoop’s architecture components.
We then looked at some of the very important components in Hadoop
Ecosystem, and we will be using some of these in implementing our SVC use
case.

We then delved into some of the other aspects of Hadoop, namely its
distributions, HDFS, and its various formats and finally, various deployment
modes. We then dived deep into hands on coding using Hadoop and also saw
how SCV use case is using the Hadoop technology. Finally, we wrapped up
with two sections where we explained when to and when not to use Hadoop.
As always, we finally discussed some of the alternatives that can be
considered in place of Hadoop.

After reading this chapter, you would have a clear idea of the Data Storage
layer and Hadoop technology. Full coverage of Hadoop technology is out of
scope of this book, so we briefly discussed the core aspects of Hadoop
that are key to implementing our use case.

Hadoop is one of the core technologies in our Data Lake implementation, and
we are sure you have another technology under your kitty after going through
this chapter.

Well done! You are one step close to knowing the full technology stack of
our Data Lake.

Indexed Data Store using
Elasticsearch
In the previous chapter on Hadoop, we persisted the data in hand onto
Hadoop (HDFS). Reading/querying data from Hadoop at a fast pace is an
issue, and that's when an indexed data store such as Elasticsearch and its
significance come forth in our Data Lake implementation.

As in other chapters in this part of the book, we will start off the chapter by
explaining the layer where this technology will be used. We will then explain
the reason for choosing this technology for this capability and start diving
deep into Elasticsearch and its working. We will cover enough details on
Elasticsearch so that you have adequate details to understand this technology.
As always we will only give enough details and full deep dive is beyond the
scope of this book.
We would then take you through a hands-on coding session, where you will
first learn to install this technology and then see it in action. We will also
make sure to connect you to the SCV use case that we are trying to
implement using Data Lake.
Finally we will see scenarios where we should and should not use this
indexed data store. We will wrap the chapter by looking into other
technology options that could be used in place of Elasticsearch.

Let's dig into it!

Context in Data Lake: data storage
and lambda speed layer
The Data Storage Layer is where data is persisted. Our core persistent store is
HDFS but because of its inherent slowness in querying, we need to have a
technology on top of it for fast reading/querying. After indexing, the
appropriate speed views are created and kept in the Lambda Speed Layer.
The Lambda Speed Layer is entrusted with indexing the data stored in HDFS
for high performance and scalable querying of required data.

Elasticsearch is our choice of technology capable of doing this effectively.
Elasticsearch is one of the de-facto choices for such a capability, and with not
much deliberation this technology choice was made.

The following sections of this chapter aim at covering Elasticsearch in detail
so that you get a clear picture of this technology as well as get to know the
data storage layer in detail.

Data Storage and Lambda Speed
Layer
In Chapter 2, Comprehensive Concepts of a Data Lake, you would have got a
glimpse of Data Storage and Lambda Speed layer. The Data Storage layer’s
responsibility is to persist the gathered data into a permanent place in our data
lake. The Lambda Speed Layer’s responsibility is to index the data stored in
Data Storage layer and create appropriate speed views. The following figure
would refresh your memory and give you a good pictorial view of this layer:

Figure 01: Data Lake: Data Storage and Lambda Speed Layer

We have given enough details in a previous chapter on the Data Storage
Layer so we don't want to repeat ourselves. The Lambda Speed layer stores
the various speed views created from the data storage layer. Since it was just
the previous chapter, your memory would also be quite fresh.

Data Storage and Lambda Speed
Layer: technology mapping
This chapter aims at covering the storage mechanism for an indexed data
store. This chapter dives deep into Elasticsearch, which is our choice for this
capability.

The following figure (Figure 02), brings in the technology aspect to the
conceptual architecture that we will be the following throughout this book.
We will keep explaining each technology and its relevance in the overall
architecture before we bring all the technologies together in the final part of
this book (Part 3).

Figure 02: Technology mapping for Data Storage and Lambda Speed Layer

For our use case, SCV, we have already gathered data from various source
system data stores and persisted in HDFS. Elasticsearch is a layer on top of
HDFS, which does data indexing and makes sure that querying required data
is very fast.

The next sections of this chapter give more details on Elasticsearch and will
make you conversant with many important aspects and working of this
technology.

What is Elasticsearch?
The Wikipedia description of Elasticsearch is as follows:

Elasticsearch is a search engine based on Lucene. It provides a distributed,
multitenant-capable full-text search engine with an HTTP web interface and
schema-free JSON documents. Elasticsearch is developed in Java and is
released as open source under the terms of the Apache License. Official
clients are available in Java, .NET (C#), Python, Groovy and many other
languages.

The given description does cover every aspect of what Elasticsearch is and
also gives some details on how exactly it works and its core capabilities. It is
distributed, scalable, enterprise-grade, and offers high performance querying
and it does this by indexing the data available in HDFS. It also has rich API’s
and also supports a variety of languages. Let's keep this section crisp as we
have this entire chapter explaining Elasticsearch and its working.

Why Elasticsearch
For the capability that we are looking for, Elasticsearch is the leading
technology and that's the main reason for this choice.

Some of the prominent reasons why Elasticsearch has been chosen as the
technology of choice for the technical capability that we are looking for in
our Data Lake implementation:

Compatibility with Hadoop (as this is our persistent store)
Distributed
Scalable
Capability of indexing data
Highly performant (fast query and search)
Battle hardened technology (enterprise-grade having all the capabilities
required by an enterprise)
Capability of handling a huge volume and variety of data
Failover and data redundancy capability

History of Elasticsearch
Compared to other technologies in the Big Data arena, Elasticsearch is more
recent with a short history. This doesn't mean that the technology is
immature; rather, it is one of the mature (70+ Million product downloads)
and well adopted technologies with a vibrant community (70,000+
community members) backing.

In March 2015, the company Elasticsearch changed their name to Elastic.

A brief history of Elasticsearch in a pictorial manner, similar to how we have
been covering this section for other technologies, is given in the following
figure:

 Figure 03: History of Elasticsearch

Elasticsearch is where it is because of some of the other products in the
industry, and the following figure shows Elasticsearch and its evolution with
other products; knowing this is quite significant to know the history of
Elasticsearch in a holistic fashion.

Figure 04: Other products and their rise along with Elasticsearch

The previous figure is a bit cluttered but shows the various Elasticsearch
assisting products and its history side by side.

Advantages of Elasticsearch
Some of the advantages of Elasticsearch are:

Open source (Apache 2 License) with strong community backup
Distributed by birth
RESTful (JSON over HTTP) in nature
Really fast in operation
Feature-rich search capabilities: capable of supporting a variety of
search related use cases
Faceted (see info) search/analysis capability
Full-featured and powerful query DSL (Domain Specific Language)
Can be extended via use of plugins available in industry or by creating
new ones
Very good visualization support (use of Kibana built-in)
Multiple deployment topology support out of the box
Multi-tenancy capability
Cloud-ready
Developer friendly. Familiar syntax to work with
Built-in efficient cache mechanism to make queries fast
Highly scalable: single node to hundreds of nodes. It scales horizontally.
Handles petabytes of data with ease by scaling as needed.
High availability and resiliency built in
Built-in management and monitoring capability giving adequate details
to help maintain the product for an enterprise (formerly known as
Marvel, now packaged as x-pack)
Highly reliable and predictable in nature
Multi-language support to interact and deal with Elasticsearch
Security is well thought through, and this makes it enterprise ready as
against many big data products in the market
Has good integration capability with other products, especially many of
the Big Data products, Hadoop being one of the very important ones

The term "software multitenancy" refers to a software architecture in which a
single instance of software runs on a server and serves multiple tenants. A

tenant is a group of users who share a common access with specific
privileges to the software instance. With a multitenant architecture, a
software application is designed to provide every tenant a dedicated share of
the instance: including its data, configuration, user management, tenant
individual functionality and non-functional properties.

Faceted search, also called faceted navigation or faceted browsing, is a
technique for accessing information organized according to a faceted
classification system, allowing users to explore a collection of information by
applying multiple filters. A faceted classification system classifies each
information element along multiple explicit dimensions, called facets,
enabling the classifications to be accessed and ordered in multiple ways
rather than in a single, pre-determined, taxonomic order.

- Wikipedia

Disadvantages of Elasticsearch
Elasticsearch should be used for its strengths as there are core principles
based on which it is created. However, it does end up being used for other
capabilities where it shouldn't be. When used in certain use cases, it will
backfire, and those aspects are listed as disadvantages:

Should not be used as a primary persistence store. So, apart from
Elasticsearch, we need to have another store for actual persistence.
Elasticsearch is not ACID-compliant out of the box.
Even though Hadoop in a production environment is not run on
commodity hardware, theoretically it does support this. In the
production state, Elasticsearch inherently doesn't run on commodity
hardware.
Elasticsearch has Garbage Collection (GC) issues.
Product updates can be troublesome at times. Index rebuild, data merge
and so on can be quite tedious in production environments.
For effective management in production, Elasticsearch is often said to
have a steep learning curve. This point is quite subjective and we
acknowledge that.
Minimal supports for achieving use cases requiring transaction.
Not really a choice when it comes to searching large data scans and
advanced computations on data retrieved.

Working of Elasticsearch
In this section, we will get more into the working of Elasticsearch, its
architecture, its main components, various terminologies and important
concepts. This is the most interesting aspect of this chapter, which is aimed at
making you understand this technology before getting your hands dirty with
the actual coding session.

Elasticsearch core architecture
principles
The core Elasticsearch architecture principles are as mentioned here:

Elasticsearch is largely memory driven, with the index and data being
served from memory, while being stored on storage devices for
persistence.
Elasticsearch is based on Apache Lucene engine at the core, with the
core indexing capabilities still driven by Lucene engine, while index
distribution, scalability and other features are managed by
Elasticsearch.
Elasticsearch has been built for distribution from the ground up with
scalability in mind; hence it has a scale-out architecture at its core.
Elasticsearch is fundamentally built as a more available system, and less
consistent system, with eventual consistency.
Supports replication of indexes and data that can be altered dynamically
for read and write availability.
With its highly distributed architecture, it can easily scale to petabytes of
data for both structured as well as unstructured data.
Use of analyzers and tokenizers must be carefully considered. Wherever
possible use analyzers and tokenizers that produce the optimal number
of tokens for better search efficiency.
Have partitioning a schema for indexes such that the indexes are
partitioned by key attributes and can be independently dropped.
Use a separate master cluster for large cluster deployments (>10 nodes).
Small clusters may have both the roles of master as well as data.
All the Elastic nodes must be of same type of infrastructure for a
balanced cluster
All the elastic nodes must be within the same network, so that the
distance to each node can be accurately determined and avoid split brain
scenarios.
Single clusters may not span across data centers. A cross data center
cluster would be possible only if the end to end network latency is less

than 10 ms. A cross-data-center deployment may also limit cluster
extensibility.

Elasticsearch terminologies
The Elasticsearch architecture is quite simple to understand and it is
important for you to understand its various terminology in detail before we
explain its simple working. This section aims at explaining its terminologies.
It's quite hard to go through these terminologies in order as these
terminologies get used when we talk about a term interchangeably. Rest
assured, keep reading and at the end of these sections, you will have a clear
grasp of all terms and this is quite important for understanding the rest of the
chapter.

Document in Elasticsearch
Data in Elasticsearch is stored in the form of documents. These documents
are addressable and have identifiable attributes that can be queried from the
store. A sample document (JSON format) is shown in the figure:

Figure 05: Sample document in Elasticsearch

Similar to String objects in Java, documents in Elasticsearch are immutable,
so once created, you cannot update them. If you would want to update one,
you have to either reindex or replace it.

Apart from the real data, a document does have additional information about
the document itself, called document metadata. The most important metadata
for a document are as follows:

_index: Logical grouping where documents having a common reason to
exist in Elasticsearch are grouped together. For example, all the
customer index in an organization could be saved in customer index and
so on. The _index value cannot start with an underscore nor can it contain
commas and should be in lowercase.
_type: Class of object which the document belongs to or represents. This
allows Elasticsearch to logically partition data inside an index. These are
usually subcategories existing inside an index in Elasticsearch. The _type

cannot start with an underscore or a period but can be either lowercase
or uppercase; similar to _index, they cannot contain commas and are
limited to 256 character length.
_id: Uniquely identifies a document when this string (_id) is combined
with _index and _type. It can either be explicitly provided or Elasticsearch
would automatically put a value for this.

In object-oriented and functional programming, an immutable
object (unchangeable object) is an object whose state cannot be
modified after it is created.

- Wikipedia

Figure 06: Multiple documents (string format) in Elasticsearch

Index in Elasticsearch
Elasticsearch stores the data in a logical grouping called an index. In an index
you store documents sharing similar characteristics. One of the very
important terms that you will use with Elasticsearch as defining this has huge
impact on how you work with Elasticsearch, doing searching, updating and
so on. In a cluster, you can define any number of indexes according to your
requirement, but it does look into how the node and cluster is configured for
Elasticsearch. An index can store a large amount of data (billions of
documents) amounting to 1TB in an index. But storing this much data on a
single index could affect its performance when searching or selecting data.
When an index is being created you can specify the numbers of shards and
replicas it need to have.

What is Inverted Index?
There is a very important concept called as Inverted Index in Elasticsearch.
The Lucene text processing library is used in Elasticsearch for breaking down
raw text into a series of terms. Once terms are broken these are stored in what
is known as Inverted Index. The figure (Figure 07) shows an Inverted Index,
which is in turn is a map data structure with key as term and value as list of
document ID’s where this term exists in the document. Now you know why it
is called Inverted Index, because in this data structure we have term as key
and value as ID:

Figure 07: Document and Index (Inverted Index)

Shard in Elasticsearch
The data in Elasticsearch is stored and indexed in so-called Shards and the
index brings in a logical grouping of one or more shards containing data
stored having a common sense. Shard is something quite internal to
Elasticsearch and index is something that we have to know of in
Elasticsearch. The shard is the self-contained part in Elasticsearch, which can
be distributed across multiple nodes in an Elasticsearch cluster. Shard allows
Elasticsearch’s ability to scale horizontally (Scale out).

An index can be replicated into one or more shards as needed. Once
replicated, an index has:

Primary shards: Shard from which the replicated shards were created
Replicated shards: Copy from the original (primary) shard

An index can define the number of shards and replicas that it needs to have
when the index is created.

Nodes in Elasticsearch
A node is a server in an Elasticsearch cluster which can consist of one or
more nodes (servers). A node in an Elasticsearch cluster is unique and
assigned a UUID when the cluster is started by default but can also be given
any unique name as needed. This name is an important aspect and is used for
various administration purposes. A node joins by default to a cluster named
Elasticsearch but can also be configured to join a particular cluster name if
needed. Even if only one node is there in a cluster, Elasticsearch forms a
cluster with this only node when started.

A universally unique identifier (UUID) is a 128-bit number used to identify
information in computer systems. When generated according to the standard
methods, UUIDs are for practical purposes unique, without depending for
their uniqueness on a central registration authority or coordination between
the parties generating them, unlike most other numbering schemes. While the
probability that a UUID will be duplicated is not zero, it is so close to zero as
to be negligible.

- Wikipedia

Cluster in Elasticsearch
As detailed in the previous section, a cluster consists of one or more nodes
(servers) and act as an Elasticsearch instance participating in various
Elasticsearch query options. This figure brings in cluster, node and shards
(primary and replica) together in a working scenario:

Figure 08: A typical Elasticsearch cluster showing nodes and shards
(primary and replicas)

Elastic Stack
With Elasticsearch 1.x and Elasticsearch 2.x, the various products which
work together have to be chosen and dealt with individually. Many aspects
are purely decided based on prior Elastic Stack experience. With Elastic
Stack (5.x), these products (Elasticsearch, Logstash, Kibana, Beats and X-
Pack) have all come together and now really form a stack (platform) with
minimal trial and error on various versions. This aspect has made
implementing Elasticsearch very easier as compared to earlier versions.

This figure shows the Elastic Stack with harmonized working of all
components:

Figure 09: Elastic Stack 5.x (all icons courtesy of https://www.elastic.co/v5)

In the next subsections, we will discuss each of the components forming
Elastic Stack in adequate detail for your understanding. Again, these wouldn't
delve too deep into each component, but would give adequate details for
playing with the examples in this chapter.

Elastic Stack - Kibana
Your Window into the Elastic Stack.

Kibana gives shape to your data and is the extensible user interface for
configuring and managing all aspects of the Elastic Stack.

- elastic.co/v5

Kibana give eye to the data residing in Elastic Stack. It has a wide range of
visualization capabilities which can be used to make the data residing in
Elastic a visual insight. Kibana has visualizations ranging from classic line
graph, bar graph, histograms and so on to more complex visualizations such
as Time series visualization, graph data visualization and geospatial (map)
data visualization.

The following figures (Figure 10A and Figure 10B) show the Kibana
dashboard representing data in classic pie and bar graphs:

http://elastic.co/v5

Figure 10A: Sample visualization in Kibana

Similar to the preceding figure, Figure 10B shows the Kibana dashboard with
more graph choices for easy visualization:

Figure 10B: Sample visualization in Kibana

Kibana also gives a visual representation of the Elastic Stack itself by helping
administrators manage and monitor the Elastic Stack more efficiently. One
such example of the management screen in Kibana is shown in the following
figure:

Figure 11: Kibana Elastic Stack Management screen

Kibana also offers developer tools (console, for example), using which you
could query elastic data. It also gives features such as auto-completion, which
is quite useful for the developer community.

Elastic Stack - Elasticsearch
Search, analyze and store your data. The heart of Elastic Stack

Elasticsearch is a distributed, JSON-based search and analytics engine
designed for horizontal scalability, maximum reliability, and easy
management.

- elastic.co

Elasticsearch is called the heart of Elastic Stack. It stores data which could be
discovered and analyzed for a number of modern day enterprise use cases. It
also has RESTful APIs, using which data residing could be indexed and
searched.

The Elasticsearch aggregation methodology helps in searching huge volumes
of log data originating from source systems to make useful deductions.
Above all, Elasticsearch gives these a full-text search capability on data with
high performance. Not only is Elasticsearch distributed but is also highly
scalable and is able to run on commodity hardware or enterprise grade
servers alike, from one server to a series of server (hundreds of nodes) as
demanded by the use case.

Elasticsearch is also highly available and fault-tolerant. It also has API’s
exposed, using which it can be monitored and managed quite easily by
administrators.

Elasticsearch also allows the client to be written in a variety of languages
such as Java, Python and so on and deals with JSON and RESTful API’s.

http://elastic.co

Elastic Stack - Logstash
Centralize, Transform & Stash Your Data.

Logstash is a dynamic data collection pipeline with an extensible plugin
ecosystem and strong Elasticsearch synergy.

Logstash is an open source, server-side data processing pipeline that ingests
data from a multitude of sources simultaneously, transforms it, and then
sends it to your favorite “stash.” (Ours is Elasticsearch, naturally.)

- elastic.co

The main features of Logstash (from the original elastic website at https://ww
w.elastic.co/products/logstash) are as follows:

Logstash allows data to be ingested of different types (variety) and sizes
(volume) from a variety of source systems existing in an enterprise.
Logstash has the concept of filters, using which the ingested data
(stream of data) could be parsed, transformed (using filter) and
converted into a single format for easy and fast analysis of data as
dictated by the use case. There are rich logstash filters available in the
market, maintained and managed by open-source contributors, which
can be found at this link: https://www.elastic.co/guide/en/logstash/current/filter-p
lugins.html.
Once the data is ingested and transformed, Logstash allows us to stash
the output into a variety of stores (in our case, we will storing the
indexed data in Elasticsearch itself). The full list of supported output
stores can be found at https://www.elastic.co/guide/en/logstash/current/output-plu
gins.html.
Logstash is built with extensibility in mind and this can be utilized by
writing so-called plugins. Using these plugins judiciously, any required
data pipeline can be formed and dealt with. There is already a rich
ecosystem of plugins and it is ever growing with support from open
source contributors.

http://elastic.co
https://www.elastic.co/products/logstash
https://www.elastic.co/guide/en/logstash/current/filter-plugins.html
https://www.elastic.co/guide/en/logstash/current/output-plugins.html

Figure 12: Working on Logstash in Elastic Stack (image taken from https://ww
w.elastic.co/products/logstash)

https://www.elastic.co/products/logstash

Elastic Stack - Beats
Lightweight Data Shippers.

Beats is a platform for lightweight shippers that send data from edge
machines to Logstash and Elasticsearch.

Beats is the platform for single-purpose data shippers. They install as
lightweight agents and send data from hundreds or thousands of machines to
Logstash or Elasticsearch.

- elastic.co

Beats sits on the server and according to the type of data employs so-called
shippers to collect data. The data collected by these shippers can be directly
sent to Elasticsearch or can be passed to Logstash for appropriate
transformation as needed and then sent to Elasticsearch (or in fact any output
stores as detailed in a previous section).

Some built-in shippers in Beats are listed here, but if needed, they can also be
extended. There are many shippers maintained and managed by contributors;
the complete list is at https://www.elastic.co/guide/en/beats/libbeat/current/community-
beats.html:

Filebeat: Lightweight shipper for collecting logs generated in a server.
It does this by forwarding log lines to either Logstash or Elasticsearch.
Metricbeat: Lightweight shipper for collecting metrics. Metricbeat is
used to collect a variety of metric information of the server (memory,
CPU and so on) and also other technologies (Nginx, Redis and so on)
and forward it to either Logstash or Elasticsearch. These metrics when
logged can be visualized in a very decent manner using Kibana. A
variety of modules allow collection of these metric data from various
technologies and as always it is extensible, so anything newly required
could be easily built.
Packetbeat: Shipper for network data collection and visualization. It

http://elastic.co
https://www.elastic.co/guide/en/beats/libbeat/current/community-beats.html

supports a variety of protocols and again allows extensibility by
allowing to write our own and plugging it in.
Winlogbeat: Shipper for windows event logs.
Heartbeat: Shipper which can be used for uptime monitoring of
applications hosted on the server.

The following figure shows the working of Beats:

Figure 13: Working of Beats

Elastic Stack - X-Pack
One Pack. Loads of Possibilities.

Built and maintained by Elastic engineers, X-Pack is a single extension that
integrates handy features you can trust across the Elastic Stack.

- elastic.co

The overarching component spans across all the components that we've
discussed in Elastic Stack so far. Prior to Elastic 5.x, all these were separate
and had to be brought together for getting a fully functional enterprise ready
Elasticsearch instance. With Elastic Stack, this is no more the case and we
have a fully functional, fully integrated stack with all the versions of these
components working in harmony with each other. These are features built
and maintained by the Elastic engineers and from now on will make sure that
each one works with the other without any issues when Elastic Stack
undergoes regular upgrades.

Most of the non-functional aspects of Elastic Stack are taken care of by this
component. Some of the key ones are as follows:

Security: Can be used to enable security to your cluster. It also has
built-in authorization in the form of roles and permissions for easy
administration. Capable of integrating with Active Directory (AD) and
Lightweight Directory Access Protocol (LDAP), it is also capable of
integrating with custom Identity and Access Management (IDAM)
systems within your organization. Security can be enforced even at the
data level using X-Pack’s security capability. It also allows securing the
infrastructure by enabling SSL communication between nodes and the
ability to secure and mask data as demanded by specific use cases. X-
Pack’s security feature also audits various system and user activity as
part of its auditing capability.
Alerting: Helps to configure various alerts. One example can be
triggering alerts by looking into various cluster health-related indicators.

http://elastic.co

It helps look into various system level parameters and can trigger
configured alerts as needed. It also has the ability to look for changes in
data residing in Elasticsearch and can trigger configured alerts. There
are many existing integrations in X-Pack, using which the alerting
mechanism can be chosen. There are built-in mechanisms such as E-
mail, Slack, PagerDuty, and HipChat to choose from for the alerting
mechanism. It also has the concept of WebHook, using which any URL
can be configured and when necessary rules are met, this URL is called
and this can act as a mechanism for dealing with such alerts.
Monitoring: Gives you a view of how Elastic Stack is running. It
monitors cluster, nodes forming the cluster, various indices in
Elasticsearch, Kibana, and Logstash and visualizes this data for easy
analysis. It also stores the variously collected data for a period as
necessary, which can be used for historical analysis as well as
contemporary analysis.
Reporting: Allows creating various reports. These reports can be
scheduled, triggered based on various rules set up, and then sent in
various formats using different mechanisms.
Graph: Helps in analyzing the relationships of data stored in
Elasticsearch. This aspect gives a new way of looking at the data and
can provide deep and new insights.

A WebHook in web development is a method of augmenting or altering the
behavior of a web page, or web application, with custom callbacks. These
callbacks may be maintained, modified, and managed by third-party users
and developers who may not necessarily be affiliated with the originating
website or application.

- Wikipedia

Elastic Cloud
Official Elasticsearch-as-a-Service managed by the Elastic folks, fully loaded
and ready for enterprises. Easy to scale, Elastic Stack is always kept updated.
For more details on this, visit https://www.elastic.co/cloud/enterprise.

https://www.elastic.co/cloud/enterprise

Apache Lucene
The Elasticsearch component in Elastic Stack is based on Apache Lucene.
Elasticsearch uses the main concept of Inverted Indexes and this aspect is the
base on which Apache Lucene indexes documents.

Apache Lucene is a high-performance, full-featured text search engine
library written entirely in Java. It is a technology suitable for nearly any
application that requires full-text search, especially cross-platform.

- Apache Lucene

Doug Cutting, the creator of Hadoop, is the creator of Lucene. Apache
Lucene is a high-performance search engine library capable of providing
advanced search options, utilizing the inverted index methodology in which
the terms in a document are extracted and stored as keys. Each term has a
value containing the document IDs (Elasticsearch is a document-oriented
store). Each document has many indexes and each index has multiple
documents. Each document contains multiple fields and each field has
multiple attributes.

Some of the important aspects Elasticsearch brings are:

Provides a convenient abstraction layer on top of core Lucene, and this
makes the use of Elasticsearch more easy and convenient
Is based on shards, and each shard is a separate Lucene instance
Brings distributed computing on top of Lucene with different API’s
available on top of it to interact with the core Lucene
Also brings many features on top of Lucene and has extensive
monitoring and management features

How Lucene works
The primary role played by Lucene is to support search requirements in an
application. While an application may implement an end-to-end use case,
searching may need some very specialized capability, which can be provided
by Lucene.

The basic unit of operation for Lucene is information stored as a document.
While the information may be captured by external mechanisms, the
information is stored as a Lucene Document. The primary motive to keep
information/content in a document is to keep the information/content in a
format that can be easily interpreted by the Lucene engine.

Once the document is created and stored, the document is analyzed based on
the schema/mapping provided, wherein the Lucene engine determines what is
to be indexed and what is not to be indexed. After the document analysis is
complete, the specific areas/attributes of the document undergo the indexing
process, which includes applying the required tokenizers on the content of the
document to produce tokens. These are mapped to the document identifier to
create, which are actually inverted indexes. At this stage, we have terms that
are ready to be searched.

Optionally, the tokenizer can also include multiple token filters, such that a
certain token generations could be customized. One can also program a
custom token filter and use it with a tokenizer, and we can also have a chain
of such token filters defined.

The Lucene engine also provides us with a query interface that can be used
for performing queries on the documents stored. Lucene provides its own
query language, which is also referred to as Lucene Query language. Once a
query is executed, the query terms are used to match against the inverted
index of tokens, which refers to the document identifier, and can also return
the document source if the document source was stored along with the
document indexes.

Figure 14: Inverted Indexing operation in Lucene

The previous figure shows the working of an inverted index in the context of
Apache Lucene and the following figure shows the same Lucene inverted
index in the context of Elasticsearch:

Figure 15: Elasticsearch and Lucene Index

Elasticsearch DSL (Query DSL)
Elasticsearch DSL is a library abstracted on top of Elasticsearch, using which
you can write and run queries against the data stored. It in turn wraps
Lucene’s query syntax and makes these interactions easy by allowing a query
to be composed using a JSON syntax.

A sample query of customer data in Elasticsearch is shown here:

Curl -XPOST ‘http://localhost:9200/customer/_search?pretty=true’ -H 'Content-Type: application/json' -d ‘

{ “from” : 0,

“Size”: 20,

“query”: <QUERY_JSON>,

<FILTER_JSON>,

<SORT_JSON>

}’

In the previous code <QUERY_JSON> can be { "match_all": {} } and <SORT_JSON>
can be "sort": { "name": { "order": "desc" } }.

Code 01: Sample Elasticsearch DSL query

Important queries in Query DSL
The following are some of the important queries showing off Query DSL:

match_all: Matches all the documents. The default query that runs when
nothing is specified. This can be used in conjunction with filter and
returns all the documents satisfying the filter condition.

{

 “match_all”: {}

}

match: Used when you need full text or exact match on any of the fields
in the document:

{

 “match”: {

 “field_name”: “phrase_which_has_to_be_searched”

 }

}

multi_match: Can be used to match multiple fields in a document. It is like
executing multiple match queries:

{

 “multi_match”: {

 “query”: “phrase_which_has_to_be_searched”,

 “fields”: [“field1”, “field2”]

 }

}

range: Used for numbers or date fields that fall in between a particular
specified value:

{

 "range": {

 "field_name": {

 "<gt or gte>": 5,

 "<lt or lte>": 50

 }

 }

 }

term: Used for an exact value search:

{

 “term”: {

 “field_name”: “search_text”

 }

}

terms: The same as a term query but allows us to enter multiple search
texts, which can be searched on:

{

 “terms”: {

 “field_name”: [“search_text1”, “search_text2”, “search_text3”]

 }

}

Nodes in Elasticsearch
As detailed earlier, a node in Elasticsearch is one of the servers forming the
cluster. A node in a cluster can be configured to work as different node types
as follows:

Master node
Data node
Client node

Elasticsearch - master node
Any node in a cluster is eligible to become the master node if the node.master
property is set to true in the elasticsearch.yml file. Once the master node is
elected automatically by the cluster, this node is entrusted with some key
responsibilities, as follows:

Allocate of shards across various nodes within the cluster.
Create and delete indexes.
Broadcast the cluster state to all the nodes in the cluster and in turn
receives confirmations from each of those nodes back.
Take necessary actions when a node joins or leaves the cluster.
Ping all the nodes periodically and all nodes ping back the master
periodically. If the master fails due to any reason, one of the other
master-eligible nodes is elected as master by the cluster.

Elasticsearch - data node
Any node in the cluster is eligible to become the data node. For big clusters,
it is de-facto to have a master dedicated to do that job and not store data
(don't be data node along with being master by setting node.data property to
false). The main responsibilities are as follows:

The node that stores data in the form of shards
Performs indexing, aggregating, and searching data

By setting the property node.master as false, you can make sure that a node
will become a data node within the cluster. For an enterprise setup, this is
how the cluster in general is set up, and it's more reliable and predictable.

Elasticsearch - client node
Any node which is neither a master (node.master is set to false) nor data
(node.data is set to false) becomes the client node. Being the client node, it
behaves as a load balancer that routes the requests and search to the right
nodes. In general, this type of node existing in a cluster is not really required
because Data Node would be able to do these themselves. However, a big
installation having dedicated nodes would reduce the additional work being
done by other important nodes within the cluster.

The following figure shows all the types of nodes within an Elasticsearch
cluster:

Figure 16: Different types of nodes within an Elasticsearch cluster

Elasticsearch and relational
database
We did cover Elasticsearch terminologies in detail in the section. However,
Elasticsearch and its terminologies are not that different from a database,
which is known common to many in the industry now as well. So let's see a
comparison, so that whenever these terminologies are used in Elasticsearch,
you could relate these to more RDBMS terminologies:

Elasticsearch Terminology RDBMS Terminology

Node DB Instance

Cluster DB Cluster

Index Database

Type Table

Mapping Schema

Shard Physical Partition

Route Logical Partition

Document Row

Field Column

Elasticsearch DSL (Query DSL) SQL

Table 02: Elasticsearch and RDBMS terminologies

Elasticsearch ecosystem
The Elasticsearch ecosystem does have some very important components and
some of the important ones, especially for us are as detailed in this section.

Elasticsearch analyzers
Elasticsearch stores data in a very systematic and easily accessible and
searchable fashion. To make data analysis easy and data more searchable,
when the data is inducted into Elasticsearch, the following steps are done:

1. Initial tidying of the string received (sanitizing). This is done by a
character filter in Elasticsearch. This filter can sanitize the string before
actual tokenization. It can also take out unnecessary characters or can
even transform certain characters as needed.

2. Tokenize the string into terms for creating an Inverted Index. This is
done by Tokenizers in Elasticsearch. Various types of tokenizers exist
that can do the job of actually splitting the string to terms/tokens.

3. Normalize the data and search terms to make the search easier and
relevant (further filtering and sanitizing). This is done by Token Filter in
Elasticsearch. These filters can either take out certain tokens that are not
so relevant for the search (a, the, and so on) or can change the token as
needed.

Figure 17: Working of Analyzer

Elasticsearch provides many built-in character filters, tokenizers, and token
filters. These components can be combined in any way as needed and this
forms the so-called Analyzer.

There are two kinds of Analyzers, as follows:

Built-in Analyzers
Custom Analyzers

Built-in analyzers
Elasticsearch does have built-in analyzers packaged and shipped with it.
These analyzers would be good enough for many use cases that are
commonly needed. Some of the most used built-in analyzers are detailed
briefly:

Whitespace analyzer: Uses whitespace to split the string and then
generate the terms and put them in Elasticsearch.
Standard analyzer: An analyzer used by default if not specified
explicitly. Should be enough for most common use cases. It could be
used for text in any language and it converts to lowercase after
everything is done.
Simple analyzer: Splits the letter when encountered with anything that
isn't a letter and then finally converts it to lowercase.
Language analyzer: As the name suggests, these are for particular
languages to understand language-specific characteristics and deal with
them. There are many language analyzers built in and shipped with
Elasticsearch.

Custom analyzers
As detailed before, if these built-in analyzers are not what you are looking
for, you could very well mix these various components to form your own
custom analyzers for your use case.

Elasticsearch plugins
Elastic Stack has useful plugins already packaged as part of the X-Pack
component. However, other plugins are available in the industry and could be
used to get more insight into Elasticsearch. Some of those external plugins
are as follows:

Head plugin: Classic monitoring and health plugin for Elasticsearch
clusters. Not available with X-Pack in favor of the Kopf plugin
Kopf plugin: Monitoring and health plugin that is included as part of X-
Pack along with Elastic Stack
BigDesk plugin: Packed with X-Pack and is capable of generating live
charts and statistics for the Elasticsearch cluster
Elasticsearch-SQL plugin: Not available as part of X-Pack but could
be used for querying Elasticsearch similar to RDBMS
Paramedic: Packed with X-Pack by default

Elasticsearch deployment options
Elasticsearch supports a scale-out deployment architecture, with the main
priority on availability. The Elasticsearch cluster is composed of nodes
playing master and data node roles. Quorum based availability drives cluster
availability in general.

While the most common deployment is that of single data center deployment,
which can comprise dedicated master nodes and dedicated data nodes, for
larger clusters, multiple data center deployments are also required for very
high availability of critical applications.

It is generally not a very good idea to deploy Elasticsearch clusters across
data centers, since the Elasticsearch leader election algorithm and data node
selection are based on network distance, which assumes that all the nodes are
identical in terms of all resources; it is expected that in a cluster all nodes are
equidistant. This can go wrong in cross data center clusters at times, and is
not worth the risk.

Hence it is generally recommended to have independent clusters in each of
the data centers, and there are patterns available to support data availability in
terms of ingestions at both the data centers, which are primarily around,
either doing a dual drop of a message at both cluster at all times, or having a
cross data center mirroring mechanism of data with capabilities such as
Kafka Mirror.

Clients for Elasticsearch
Using the Java programming language the following are the ways by which
Elasticsearch can be communicated.

Transport Client: Used by REST clients internally. Full support from
Elasticsearch as these are used by Elasticsearch internally to achieve
various tasks. The most efficient methodology for communication and is
quite fast. It uses a binary protocol for communication, the same
protocol Elasticsearch uses internally. The following code shows how
can you acquire the transport client to communicate with the
Elasticsearch. More details on this can be found in elastic's official blog
here https://goo.gl/0ZKZIk:

TransportAddress address = new InetSocketTransportAddress(InetAddress.getByName("localhost"), 9200);

Settings settings = Settings.builder().put("cluster.name", "dataLakeCluster").build();

Client client = new PreBuiltTransportClient(settings).addTransportAddress(address);

Java REST Client: Communicates with Elasticsearch using HTTP.
Compatible with most Elasticsearch versions. Uses Apache HTTP
Async Client internally for sending HTTP requests. More detail on this
can be found in the official elastic blog here https://goo.gl/IKui5X:

RestClient restClient = RestClient.builder(new HttpHost("localhost", 9200, "http")).build();

Response response = restClient.performRequest("GET", "/", Collections.singletonMap("pretty", "true"));

Jest: Apart from the default REST client by Elasticsearch, this is an
alternative HTTP-based Elasticsearch client. The following Java code
shows how you can obtain a Jest client:

Client JestClientFactory factory = new JestClientFactory();

factory.setHttpClientConfig(new HttpClientConfig.Builder("http://localhost:9200").multiThreaded(true) .build());

JestClient client = factory.getObject();

Spring Data Elasticsearch: Spring is a very popular framework in Java.
It has abstracted many low-level details for many data stores using a
module called Spring Data. Spring has a specific module to abstract
Elasticsearch from its low-level details in the Spring Data Elasticsearch

https://goo.gl/0ZKZIk
https://goo.gl/IKui5X

module.

Elasticsearch for fast streaming
layer
Analyzing real-time data is demanded by all enterprises in this digital age
where data is at its core. Elasticsearch can play a very important role in
dealing with such real-time data along with other stream processors (in our
case, it is Apache Flink). The following figure shows a typical setup used for
such data handling and is quite relevant with regard to our technology choice
and use case implementation. In place of Flink, any other stream processors
could be used, say Spark Streaming, to achieve the architecture mentioned
here:

Figure 18: Elasticsearch setup in real-time data handling in conjunction with
Flink

This architecture is quite relevant and useful because Flink can do analysis
and transformation of data and after that Elastic Stack can be used in the
serving layer for fast queries on that data. The built-in component, namely
Kibana, in Elastic Stack is an eye into the data in Elasticsearch and is quite
complete in many aspects. This makes it easy for visualizations and building
a new UI is not required at all.

In the case of Lambda or Kappa architectures, the Elasticsearch technology
component plays a very important role in the speed and serving layer. The
serving layer can get the real-time views from Elasticsearch and batch views
from Hadoop (or other data stores such as Cassandra) to merge and build a

consolidated view needed for enterprise applications.

Elasticsearch as a data source
In general, Elasticsearch shouldn’t (subjective, yes we do acknowledge this)
be used as a primary data store. However, this question is more use case-
driven and for some use cases it could very well be used as a data store.
Elasticsearch does fall into the NoSQL type of database and doesn't support
the ACID property of a typical relational data store, mostly used for
transaction-oriented use cases. But it does have features such as optimistic
locking and eventual consistency making it apt for certain pointed use cases.
For a data lake implementation, it could very well act as a data store because
the real data store (system of record) is with the source systems. In the case
of any failure, the data could very well be warmed into Elasticsearch (in
practical scenarios this is not that straight forward.. smiley) from these source
system or even from our Hadoop and back to working condition (obviously
depending on the volume of data in your data lake… smiley).

Because of its NoSQL nature it does offer capabilities such as distributed,
robustness, and schema-less (schema flexibility) making it definitely a good
choice for a data store, but one size doesn't fit all and we would recommend
evaluating it use case by use case.

Elasticsearch for content indexing
A typical problem attributed to many Content Management
Systems (CMS) is their lack of scalability and performance because of
their tight coupling with some data stores, mostly traditional RDBMS. This
could be avoided by keeping the CMS disconnected by publishing the content
to a more robust NoSQL data store, and definitely Elasticsearch is one of the
strong contenders. The core feature of Elasticsearch is its full-text indexing
and searching capability and for a CMS; this capability is required, and the
inherently strong capabilities of Elasticsearch as a store could be utilized.
Elasticsearch is also supported by many of the CMSes available in the
market, making it a more apt technology choice. Because of this reason and
more, many platforms in CMS and Digital Asset Management (DAM) use
Elasticsearch as one of the components internally.

A full explanation of this pattern is beyond the scope of this chapter and
would take us into a different world of content management and websites.
However, we wanted you to understand this capability of Elasticsearch.

Elasticsearch and Hadoop
In big data, Hadoop is a core component/technology that cannot be ignored.
Elasticsearch has very good support for Hadoop and Elastic Stack has a
product for achieving this integration called ES-Hadoop. We will discuss
that in some detail in this section. For more details, we urge you to go to the
elastic official page here: https://www.elastic.co/products/hadoop.

Hadoop is considered to be good for batch analytics but, for modern
applications as well as enterprises dealing with batch and real-time data,
performing meaningful analysis is crucial. For dealing with real-time data,
this integration of Elasticsearch and Hadoop is apt. Elasticsearch brings the
real-time analytics capability on top of Hadoop. ES-Hadoop is a connector
shipped as a product by elastic along with the Elastic Stack.

This connector works with Hadoop 1.x and 2.x versions and works like a
charm with a variety of other big data technologies by enabling data to flow
to and fro between Hadoop and Elasticsearch.

This figure shows the exact working of the ES-Hadoop connector:

Figure 19: ES-Hadoop connector in action (image inferred from
www.elastic.co)

https://www.elastic.co/products/hadoop

As shown in this figure, ES-Hadoop has native support for many of the big
data technologies, allowing data to be read/queried from Elasticsearch. ES-
Hadoop has a variety of security options, using which security considerations
can also be met.

The full details on this library are beyond the scope of this section, so we
urge you to read the elastic documentation at https://goo.gl/NSwCVE for more
in-depth details on this integration, which is a must for our Data Lake.

https://goo.gl/NSwCVE

Elasticsearch working example
As we have gone through the various capabilities of Elasticsearch in this
chapter, we will now try to look at some of the main capabilities via working
examples. Let's start by installing Elastic Stack.

Installation
1. Download the Elastic Stack 5.x binary from the following location using

the following command:

wget https://artifacts.elastic.co/downloads/elasticsearch/elasticsearch-5.3.0.tar.gz

2. Change the directory to a user location and extract the contents of the
Elastic Stack 5.x binary using the following command:

tar -zxvf ${DOWNLOAD_DIR}/elasticsearch-5.3.0.tar.gz

3. Let's refer to the extracted Elasticsearch folder as ${ES_HOME} and set it as
environment variable as shown here. Append the same into the ~/.bashrc
file:

export ES_HOME=<path-to-elasticsearch-folder>

export PATH=$PATH:$ES_HOME/bin

4. Edit the ${ES_HOME}/config/elasticsearch.yml file with the following:

network.host : 0.0.0.0

5. Make sure that the following limits are configured in
/etc/security/limits.conf. If these limits are not configured, then
configure it by editing the file with sudo user. A sample sudo command
with VI editor can be used as given here, followed by the limits
configurations:

sudo vi /etc/security/limits.conf

* softnproc65536

* hard nproc 65536

* soft nofile 65536

* hard nofile 65536

6. Change the system parameter vm.max_map_count by editing the
/etc/sysctl.conf file as a root user (su - root). Add the following
configuration at the end of the file:

vm.max_map_count = 262144

The preceding configurations are required to increase the resources
availability for any of the processes running in Linux environment.
From Elasticsearch 5.x onwards these changes have been mandated
for successful start of Elasticsearch process.

7. Restart the machine for the preceding changes to apply and launch the
Elastic process via the following command. Ensure that before restart,
all critical processes are gracefully shut down:

${ES_HOME}/bin/elasticsearch

The preceding steps would launch Elasticsearch in default configuration with
Master and Data node roles. These steps are common and consistent across
multiple versions of Elasticsearch.

In order to work through most of the examples outlined in this chapter, we
would be using the Sense plugin, which works over Kibana. Hence the next
step would be to run Kibana with the Sense plugin.

The Kibana installation package is specific to target operating system (OS).
For Linux platforms, they are available as tarballs as well as RPMs with 32-
bit and 64-bit variants. For the purpose of our examples, we would be
installing tarball for 64-bit Linux. Follow these steps:

1. Download the tarball from the following location, using the following
command:

wget https://artifacts.elastic.co/downloads/kibana/kibana-5.3.0-linux-x86_64.tar.gz

2. Change to a user directory and extract the contents of the tarball using
the following command:

tar -xzvf ${DOWNLOAD_DIR}/kibana-5.3.0-linux-x86_64.tar.gz

3. Set the environment variable ${KIBANA_HOME} pointing to the
extracted Kibana folder, using the following commands. Add the same
to ~/.bashrc file.

export KIBANA_HOME=<path-to-kibana-directory>

export PATH=$PATH:$KIBANA_HOME/bin

3. Edit ${KIBANA_HOME}/config/kibana.yml with the following setting for
remote connectivity:

To allow connections from remote users, set this parameter to a non-loopback address.

server.host: 0.0.0.0

4. Launch Kibana with the following command:

${KIBANA_HOME}/bin/kibana

This would launch Kibana and the landing page can be seen by navigating to
http://localhost:5601 as shown as follows (localhost can be substituted with
IP/machine name if accessing remotely). The Dev Tools (left-hand side
menu) shows a console to work with Elasticsearch server. This was known as
the Sense plugin till Elasticsearch 2.x and had to be installed separately for
those versions.

The reason we have briefly mentioned Elastic 2.x here is that
some of the frameworks such as Flink are yet to support Elastic
5.x completely. We may need to switch to Elastic 2.x for Flink-
specific integrations, however, the examples outlined here do
not change whether we use Elastic 5.x or Elastic 2.x. The only
thing that changes is its installation and setup.

Figure 20: Kibana Landing Page

Kibana 5.x includes Dev Tools console, which we will leverage across all our
examples, as shown here. The small Play button beside the command GET
_search is used to execute the query and the results are shown in the right-
hand split of the window:

Figure 21: Kibana Console for Query Execution

We have now installed both Elasticsearch and Kibana. This completes our
toolset to run our examples. Let's see Elasticsearch in action now in the
following sections.

Creating and Deleting Indexes
An Index in Elasticsearch cluster can be created by following command
(curl), that can be run in Linux’s ssh console:

1. Request:

curl -XPUT http://<es-server-ip>:9200/datalake -d '{"settings":{"number_of_shards": 2, "number_of_replicas": 2}}'

2. Response:

{"acknowledged":true,"shards_acknowledged":true}

The reason that we installed Kibana was to simplify such query executions.
We can also run the same query using Kibana as shown here. This approach
is a much more convenient and user-friendly (REST UI). We would be using
this UI for the remaining examples in this chapter; however, the preceding
indicates that simple curl commands can also be used from machines that do
not have Kibana installed.

With Kibana Dev Tools UI

Before we use the Kibana Dev Tools UI to create the index, we will have to
remove the existing one because the index names are unique in an
Elasticsearch data repository:

DELETE datalake

Figure 22: Index removal via the Console

Now let's create the same index again using the following query:

PUT datalake { “settings” :{“number_of_shards”: 2, “number_of_replicas”: 2 } }

Figure 23: Index Creation Query

Indexing Documents
Now that we have the index created, we can indexed a document into the
index. The only requirement for a document to be indexed is that it should be
a JSON document as Elasticsearch is schema-less and derives the storage
schema based on the document structure indexed.

As shown in the following figure, the command to index a document is PUT
{index-name}/{type}/{id}:

PUT datalake/contacts/101

{

 "id":101,

 "cell":"(478) 531-2026",

 "work":”1-906-774-1226",

 "email":"vincenzo.hickle@yahoo.com"

}

Figure 24: Document Creation Query

As the document is indexed, Elasticsearch internally creates document
mapping based on the data in the initial document. This mapping can be
accessed as shown here:

GET datalake/_mapping/contacts

Figure 25: Retrieving Document Mapping via Query

A few observations from the preceding screenshot:

Keyword analyzer is the default analyzer used for schema-less indexing
Based on the input type, the type information in the schema has been
derived
Certain default validations have been put in place for text fields

These are very powerful features for a flexible indexing capability of a semi-
structured or unstructured information.

Getting Indexed Document
Now that we have document indexed, let's access it and observe how it looks
after getting stored in Elasticsearch.

In order to perform this, we would access the document by Id. Getting
document by Id is a very important way to access the document from
Elasticsearch as it is always real-time, and does not depend on refresh cycles.

A general syntax to access the document by Id is GET {index-name}/{type}/{id},
as shown here:

GET datalake/contacts/101

Figure 26: Query to Get Document By Id

As we see in the preceding snapshot:

1. The document is created with the same _id attribute as provided while
indexing the document.

2. The attribute id, on the other hand, is like any other attribute and is not
the _id attribute that Elasticsearch uses for lookup.

3. The version is 1, indicating that the document is just created and has not
been updated. With every update, this version will increment.

4. The index name is datalake and type is contacts.
5. The _source contains the entire document provided for indexing. This is

optional but is enabled by default. This is useful to keep the entire
document along with the indexed fields.

Searching Documents
The documents has to be indexed for it to be searched in Elasticsearch. The
document that we have indexed can be searched via the _search url with any
of the following queries (each query has a different purpose):

GET {index-name}/_search

Searches for all the documents in an index are as shown here:

GET datalake/_search

Figure 27: Query to Get All Documents In an Index via Search URI

GET {index-name}/{type}/_search

Searches for all the documents belonging to a type in an index are as shown
here:

GET datalake/contacts/_search

Figure 28: Query to Get All Documents of a Type in an Index

POST {index-name}/{type}/_search

Searches for all the documents belonging to a type in an index searched by
the parameters specified in the POST are as shown here:

POST datalake/contacts/_search

{

 "query": {

 "term": { "email" : "vincenzo.hickle"}

 }

}

POST datalake/contacts/_search

{

 "query": {

 "term": { "email" : "yahoo.com"}

 }

}

POST datalake/contacts/_search

{

 "query": {

 "term": { "email" : "vincenzo.hickle@yahoo.com"}

 }

}

Figure 29: Different variations of search patterns by terms

As you see, there are 3 different types of POST queries and the observations
are as given here:

The first query tries to find matches for the email address, which it gets
and responds with a hit with a partial e-mail address
The second query also tries to find matches for the email address and
gets it with the other part of the email address
The third query, which has a complete email address, does not respond
with any successful match since such a token does not exist

The main reason for the third query not to respond with any matching records
is due to the keyword analyzer applied on the email field. If we want the
email field to also match with the complete email address then we will need
to multi-index (a field indexed using multiple analyzers) the email field.

Apart from the multiple patterns of matching, the _search URL supports a
large number of additional functions including pagination, sort, aggregations,
and multiple match functions.

Updating Documents
Now let's try and update the same document with a change in the email
address. The update command has a form of POST {index-name}/{type}/{id} and
the request body as shown here:

POST datalake/contacts/101

{

 "id":101,

 "cell":"(478) 531-2026",

 "work":"1-906-774-1226",

 "email":"vincenzo2.hickle@yahoo.com"

}

Figure 30: Document Update Query

Few observations here in the preceding response are:

The version is updated to 2.
The flag created is set to false and the result indicates a successful
update.
Total shards affected are 3 since our index was configured to have 2
replicas and 4 shards. That means there are 3 shards having the affected
data; one is the primary and the other two are replica shards.

Deleting a document
Deleting a document can be performed by a command of the form DELETE
{index-name}/{type}/{id}, as shown here:

DELETE datalake/contacts/101

Figure 31: Query to Delete a Document

As seen earlier the result indicates a deleted document. The DELETE in
Elasticsearch is generally performed by id; however, deletion by query is also
supported but it is a costlier operation. Again, the number of shards affected
is 3 due to the same reason as stated earlier.

A point to remember here is that deletion does not reclaim the space
immediately, till the deleted documents are expunged by the internal
optimization/compaction processes.

Elasticsearch in purview of SCV use
case
We have seen a high-level working of Elasticsearch via some basic examples.
Let's put Elasticsearch to work with other components for our single
customer view use case in the following sub-sections. This time we will be
storing the data in PARQUET format and since this is one of our last
examples with all components working together, we will try to build the Data
Lake from scratch to understand the sequence of integrations involved
starting with data preparation. We will only cover main commands as you
can always refer to the previous chapter for more details if needed.

Data preparation
We will be using the same set of data as used before, that is, 2 million
customer records, addresses, and contacts.

But before we proceed, let's clean the data created in previous chapters by
following the steps explained here. Ensure the required processes are up and
running for the cleanup, i.e. Hue, DFS, hiveserver2, Zookeeper and Kafka.

Initial Cleanup
Drop the tables from the Hive metadata with commands as shown here in
Hue UI. Drop any other additional tables if present:

drop table customer;

drop table address;

drop table contacts;

Stop the dfs service (stop-dfs.sh) and clean up the Hadoop storage by
formatting the Hadoop NameNode with the following command:

${HADOOP_HOME}/bin/hdfs namenode -format

Create new Hadoop directories with the following commands:

hdfs dfs -mkdir -p /datalake/raw/customer

hdfs dfs -mkdir -p /datalake/raw/address

hdfs dfs -mkdir -p /datalake/raw/contact

Remove the topics from Kafka servers to ensure we start clean, by using the
following commands:

1. Get a list of all the topics:

${KAFKA_HOME}/bin/kafka-topics.sh --list --zookeeper 0.0.0.0:2181

2. For every topic, issue the following delete command (except for topic
names prefixed with _):

${KAFKA_HOME}/bin/kafka-topics.sh --delete --topic <topic-name> --zookeeper 0.0.0.0:2181

Data Generation
Generate the data using the following commands as done in earlier chapters.
For this example, we will target to generate 1 million rows for each of the
entities:

Populate database

We will be reusing the database tables of customer and address for this
example. In case the database tables are empty due to any reasons, the
database can be re-populated using the same utility as before. The related
command is again specified here briefly for quick reference. This command
needs to be run from the location where we had extracted these utilities from
the tar files:

java -jar client-generator-1.0-SNAPSHOT.jar config/db.properties 2000000

Generate Spool File

We can reuse the contacts.log file generated earlier. In case the file does not
exist, it can be generated again as explained in the earlier chapter containing
customer contacts. The following command is given for quick reference and
needs to be run from the same location where these generators were extracted
from their tar file:

java -jar web-generator-1.0-SNAPSHOT.jar contact.log 200000 contact

Once the spool file is available, move the spool file to the ${FLUME_DATA}
folders for Flume processing.

Customer data import into
Hive using Sqoop
The following configuration may be required to be added in
${HADOOP_HOME}/etc/hadoop/core-site.xml so that hue can impersonate the user
creating the Parquet file:

<property>

 <name>hadoop.proxyuser.hue.hosts</name>

 <value>*</value>

</property>

<property>

 <name>hadoop.proxyuser.hue.groups</name>

 <value>*</value>

</property>

Once the preceding configurations are added, we will need to restart the dfs
service with the following command:

${HADOOP_HOME}/sbin/stop-dfs.sh && ${HADOOP_HOME}/sbin/start-dfs.sh

Import the customer records from database to Hadoop RAW storage using
Sqoop job which would write the data in Parquet format, using the following
command:

${SQOOP_HOME}/bin/sqoop import --connect jdbc:postgresql://<DB_SERVER_ADDRESS>/sourcedb?schema=public --table customer --m 1 --username postgres --password <DB_PASSWORD> --as-parquetfile --append --target-dir /datalake/raw/customer/$(date +%Y-%m-%d--%H-%M)

A few observations from the preceding command:

We are using Parquet file to store customer information.
We have used 1 mapper (--m 1)
We are partitioning the customer data by minute ($(date +%Y-%m-%d--%H-
%M))

The Parquet file output can be compressed by snappy codec by specifying
additional parameter --compression-codec. Further in this example, we will be
partitioning data in HDFS by minute for consistency:

Figure 32: Customer Data Sqooped into HDFS as Parquet Files

Data acquisition via Flume into
Kafka channel
Now let's use Flume to acquire the address data as well as contacts data from
the database and spool file, respectively (same as we did in the previous
chapter). In order to achieve this, we will define a single Flume configuration
file, ${FLUME_HOME}/conf/customer-address-contact-conf.properties, with dedicated
Kafka channels to convert the data of both the sources into events.

The complete Flume configuration is as shown here:

agent.sources = sql-source spool-source

agent.sources.spool-source.type=spooldir

agent.sources.spool-source.spoolDir=<spool-file-data-dir>

agent.sources.spool-source.inputCharset=ASCII

agent.sources.sql-source.type=org.keedio.flume.source.SQLSource

agent.sources.sql-source.hibernate.connection.url=jdbc:postgresql://localhost/sourcedb?schema=public

agent.sources.sql-source.hibernate.connection.user=postgres

agent.sources.sql-source.hibernate.connection.password=<db-password>

agent.sources.sql-source.hibernate.dialect=org.hibernate.dialect.PostgreSQLDialect

agent.sources.sql-source.hibernate.connection.driver_class=org.postgresql.Driver

agent.sources.sql-source.custom.query= SELECT id, customer_id, street1, street2, city, state, country, zip_pin_postal_code from address WHERE id > $@$ ORDER BY id ASC

agent.sources.sql-source.status.file.path=/data1/var/lib/flume/customer-db

agent.sources.sql-source.status.file.name=<path-of-status-file>

agent.sources.sql-source.batch.size = 5000

agent.sources.sql-source.max.rows = 5000

agent.sources.sql-source.read.only=true

agent.sources.sql-source.hibernate.c3p0.min_size=10

agent.sources.sql-source.hibernate.c3p0.max_size=10

agent.sources.sql-source.hibernate.connection.provider_class = org.hibernate.connection.C3P0ConnectionProvider

The channel can be defined as follows.

agent.channels = contactChannel addressChannel

agent.channels.contactChannel.type =org.apache.flume.channel.kafka.KafkaChannel

agent.channels.contactChannel.kafka.bootstrap.servers=<kafka-broker-ip-addr>:9092

agent.channels.contactChannel.kafka.topic=contacts

agent.sources.spool-source.channels = contactChannel

agent.channels.addressChannel.type =org.apache.flume.channel.kafka.KafkaChannel

agent.channels.addressChannel.kafka.bootstrap.servers=<kafka-broker-ip-addr>:9092

agent.channels.addressChannel.kafka.topic=address

agent.sources.sql-source.channels = addressChannel

Code 02: Flume Configuration

As shown in the preceding configuration, the address data is streamed as
events into the address topic and the contacts spool file data is streamed as
events into contacts topic. The previous configuration is slightly different
from other configuration we have seen so far for sql-source, since the sql-
source has a tendency to repeat/duplicate records at large volumes. Here, for
sql-source we are specifying custom query with a special string $@$, which
acts as a tracker and helps prevent duplication of records.

Launch the Flume agent with the preceding configuration as shown in the
following command:

${FLUME_HOME}/bin/flume-ng agent --conf ${FLUME_HOME}/conf/ -f ${FLUME_HOME}/conf/customer-address-contact-conf.properties -n agent -Dflume.root.logger=INFO,console

Address data from the database and contacts data from the Spool file would
be converted into events and pushed into the respective Kafka topics.

The progress may be checked by looking into the topic offsets with following
commands

${KAFKA_HOME}/bin/kafka-run-class.sh kafka.tools.GetOffsetShell --broker-list <broker-ip-address>:9092 --topic address

${KAFKA_HOME}/bin/kafka-run-class.sh kafka.tools.GetOffsetShell --broker-list <broker-ip-address>:9092 --topic contacts

Data ingestion via Flink to HDFS
and Elasticsearch
As the events are queued into the respective Kafka topics, the Flink
processing pipeline gets triggered and starts consuming Kafka events from
these topics.

Taking as a reference the Flink example covered in an earlier chapter, we
build two pipelines here, one for address and the other for contacts. Both of
these pipelines would stream the events into two sinks, HDFS and
Elasticsearch, respectively so that both of these ingestions are part of the
same transaction.

Building over the earlier Flink example, which we ran from IDE, we would
now package it in such a way that we can also deploy the code in the Flink
container. This aspect of Flink deployment is new and not covered in the
earlier chapters.

In order to achieve this, let's start looking at some of the key elements of the
Flink pipeline project. The complete source code for this project can be found
in chapter10/speed-address-flink-ingestor (address Flink pipeline) and
chapter10/speed-contacts-flink-ingestor (contacts Flink pipeline). In order to
simplify, we will be discussing the entire code section by section.

Packaging via POM file
The POM file structure, as shown here includes all the required dependency.
Also, it has both Shade and Avro plugin configured, which helps in
packaging all the dependencies into a self-executable JAR. The Avro plugin
generates the Avro classes based on Avro schema as part of the maven build:

<project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/xsd/maven-4.0.0.xsd"

<modelVersion>4.0.0</modelVersion>

<parent>

…..PARENT POM LINKAGE…..

</parent>

<groupId>com.laketravels</groupId>

<artifactId>speed-address-flink-ingestor</artifactId>

<dependencies>

<dependency>

<groupId>org.apache.kafka</groupId>

<artifactId>kafka-clients</artifactId>

<version>0.10.1.1</version>

</dependency>

 …..OTHER DEPENDENCIES…..

</dependencies>

<build>

<plugins>

<plugin>

<groupId>org.apache.maven.plugins</groupId>

<artifactId>maven-shade-plugin</artifactId>

<version>3.0.0</version>

<executions>

<execution>

<phase>package</phase>

<goals>

<goal>shade</goal>

</goals>

<configuration>

<artifactSet>

<excludes>

<exclude>org.apache.flink:flink-shaded-*</exclude>

<exclude>org.apache.flink:flink-core</exclude>

 …..OTHER EXCLUDES THAT ARE PROVIDED BY FLINK CONTAINER…..

</excludes>

</artifactSet>

<filters>

<filter>

<artifact>org.apache.flink:*</artifact>

<excludes>

 …..FOLDER EXCLUDES FOR FLINK SHADED AND WEB-DOCS…..

</excludes>

</filter>

<filter>

<!- EXCLUDE SIGNATURES -->

<artifact>*:*</artifact>

<excludes>

<exclude>META-INF/*.SF</exclude>

 …..OTHER SIGNATURE EXCLUDES…..

</excludes>

</filter>

</filters>

<transformers>

 …...TRANSFORMERS TO INCLUDE MAIN CLASS AND RESOURCE TRANSFORMER…..

<createDependencyReducedPom>false</createDependencyReducedPom>

</configuration>

</execution>

</executions>

</plugin>

<plugin>

<groupId>org.apache.avro</groupId>

<artifactId>avro-maven-plugin</artifactId>

<version>1.7.7</version>

<executions>

<execution>

 …..AVRO PLUGIN CONFIGURATION FOR GENERATE SOURCE PHASE WITH TARGET CLASS GENERATION FOLDERS…..

</execution>

</executions>

</plugin>

</plugins>

</build>

</project>

Avro schema definitions
The parquet file format uses Avro schema for object definition. These Avro
schemas are placed in the src/main/resources folder in both the projects. A
typical Avro schema for address is as shown here:

{

 "namespace": "example.avro",

 "type": "record",

 "name": "Contact",

 "fields": [

 {"name": "id", "type": "string"},

 {"name": "customerId", "type": "string"},

 {"name": "street1", "type": "string"},

 {"name": "street2", "type": "string"},

 {"name": "city", "type": "string"},

 {"name": "state", "type": "string"},

 {"name": "country", "type": "string"},

 {"name": "zipCode", "type": "string"}

]

}

Code 03: Avro Schema

Schema deserialization class
As discussed in the earlier chapter, this class is used for converting a Kafka
event into Tuple2 so that they can be written to HDFS. Once the event is
converted into Tuple2, it can also be used to write/put into Elasticsearch (ES).
Since we want to have both HDFS and ES sinks as part of the same
transaction, such a conversion would help.

This deserialization is slightly different for address and contacts, since both
are being streamed via different sources. As seen from the Flume
configuration, address is sourced from database using sql-source which adds
a timestamp and are comma separated elements, while contacts is sourced
from spool file, which add the 2 byte character before every Flume event and
contains a spool line having comma separated values. Because of this, there
is slight difference in deserialization as shown here.

The following is the Deserialization Schema for Address objects:

public class Tuple2CustomerAddressDeserializationSchema implements DeserializationSchema {

 private static final ObjectMapper MAPPER = new ObjectMapper();

 private static final int KAFKA_TIMESTAMP_LENGTH = 28;

 public Object deserialize(byte[] bytes) throws IOException {

 String message = new String(bytes,KAFKA_TIMESTAMP_LENGTH,

 bytes.length-(KAFKA_TIMESTAMP_LENGTH));

 if (message.trim().length()>0) {

 Address address = new Address();

 String[] fields = message.replaceAll(""","").split(",");

 address.setId(Integer.parseInt(fields[0].trim()));

 address.setCustomerId(Integer.parseInt(fields[1].trim()));

 address.setStreet1(fields[2]);

 address.setStreet2(fields[3]);

 address.setCity(fields[4]);

 address.setState(fields[5]);

 address.setCountry(fields[6]);

 address.setZipCode(fields[7]);

 Tuple2<IntWritable, Text> tuple = new Tuple2<IntWritable, Text>();

 tuple.setFields(new IntWritable(address.getId()),

 new Text(MAPPER.writeValueAsString(address)));

 return tuple;

 } else {

 return null;

 }

 }

 public boolean isEndOfStream(Object o) {

 return false;

 }

 public TypeInformation<Tuple2<IntWritable, Text>> getProducedType() {

 return new TupleTypeInfo<Tuple2<IntWritable, Text>>

 (TypeExtractor.createTypeInfo(IntWritable.class),

 TypeExtractor.createTypeInfo(Text.class));

 }

}

Code 04: Address Event Deserialization Schema

Shown is the Deserialization Schema for Contact objects:

public class Tuple2CustomerContactDeserializationSchema implements DeserializationSchema {

 private static final ObjectMapper MAPPER = new ObjectMapper();

 public Object deserialize(byte[] bytes) throws IOException {

 //Spooled messages have 2 bytes of leading unicode chars

 String message = new String(bytes, 2, bytes.length-2);

 if (message.trim().length()>0) {

 String[] contactFields = message.split(",");

 Contact contact = new Contact();

 contact.setId(Integer.parseInt(contactFields[0].trim()));

 contact.setCell(contactFields[1]);

 contact.setWork(contactFields[2]);

 contact.setEmail(contactFields[3]);

 Tuple2<IntWritable, Text> tuple = new Tuple2<IntWritable, Text>();

 tuple.setFields(new IntWritable(contact.getId()),

 new Text(MAPPER.writeValueAsString(contact)));

 return tuple;

 } else {

 return null;

 }

 }

 public boolean isEndOfStream(Object o) {

 return false;

 }

 public TypeInformation<Tuple2<IntWritable, Text>> getProducedType() {

 return new TupleTypeInfo<Tuple2<IntWritable, Text>>

 (TypeExtractor.createTypeInfo(IntWritable.class),

 TypeExtractor.createTypeInfo(Text.class));

 }

}

Code 05: Contacts Deserialization Schema

Writing to HDFS as parquet files
Since we want to write Parquet files into HDFS, we would be using the same
BucketSink as used before but with a custom Parquet Writer and a
DateTimeBucketer with a minute-based partition, as shown as follows. The
Bucket sink path is passed as a command line argument, hdfsPath, which we
will discuss later. Update the HADOOP_USER_NAME system property in the code to
your user account name in CentOS:

System.setProperty("HADOOP_USER_NAME", "centos");

//HDFS Sink

BucketingSink<Tuple2<IntWritable, Text>> hdfsSink = new BucketingSink<Tuple2<IntWritable, Text>>(parameterTool.getRequired("hdfsPath"));

hdfsSink.setBucketer(new DateTimeBucketer("yyyy-MM-dd--HH-mm"));

hdfsSink.setWriter(new SinkParquetWriter<Tuple2<IntWritable, Text>>("address.avsc"));

hdfsSink.setBatchSize(1024 * 1024 * 1);

messageStream.addSink(hdfsSink);

Code 06: HDFS Bucket Sink

The custom Parquet writer writes a specific data object as an Avro Record to
HDFS. It is then converted to Parquet format using the AvroParquet class with
SNAPPY compression enabled as shown here for the address data object:

private static class SinkParquetWriter<T> implements Writer<T> {

transient ParquetWriter writer = null;

 String schema = null;

transient Schema schemaInstance = null;

final ObjectMapper MAPPER = new ObjectMapper();

public SinkParquetWriter(String schema) {

this.writer = writer;

this.schema = schema;

try {

this.schemaInstance = new Schema.Parser().parse(getClass().getClassLoader()

 .getResourceAsStream(schema));

 } catch (IOException e) {

throw new RuntimeException(e);

 }

 }

public void open(FileSystem fileSystem, Path path) throws IOException {

writer = AvroParquetWriter.builder(path)

 .withSchema(this.schemaInstance)

 .withCompressionCodec(CompressionCodecName.SNAPPY)

 .build();

 }

public long flush() throws IOException {

return writer.getDataSize();

 }

public long getPos() throws IOException {

return writer.getDataSize();

 }

public void close() throws IOException {

writer.close();

 }

public void write(T t) throws IOException {

final Tuple2<IntWritable, Text> tuple = (Tuple2<IntWritable, Text>) t;

final List values = new ArrayList();

 GenericRecord record = new GenericData.Record(schemaInstance);

 String inputRecord=tuple.f1.toString();

 Address address = MAPPER.readValue(inputRecord,

 Address.class);

 record.put("id", String.valueOf(address.getId()));

 record.put("customerId", address.getCustomerId());

 record.put("street1", address.getStreet1());

 record.put("street2", address.getStreet2());

 record.put("city", address.getCity());

 record.put("state", address.getState());

 record.put("country", address.getCountry());

 record.put("zipCode", address.getZipCode());

writer.write(record);

 }

public Writer<T> duplicate() {

return new SinkParquetWriter<T>(schema);

 }

}

Code 07: Custom Parquet Writer

Writing into Elasticsearch
Flink supports various connectors which are included as part of the Flink
distribution. There is also a connector available for Elasticsearch as part of
the Flink distribution. As we see here, we are also writing the documents with
the same id as contained in the document, instead of depending on randomly
generated document id. Additionally, we are specifying the bulk size and
bulk flush interval for optimum throughput with Elasticsearch connector.

The next code snippet uses Elasticsearch ink for Address. A similar code is
used for contacts as well. Certain properties such as esHost and esPort are
passed as command line arguments. As we see here, we are also writing the
documents with the same id as contained in the document, instead of
depending on randomly generated document id. Additionally, we are
specifying the bulk size and bulk flush interval for optimum throughput with
elasticsearch connector:

//Elasticsearch Sink

Map<String, String> config = Maps.newHashMap();

config.put("bulk.flush.max.actions", "1000");

config.put("bulk.flush.interval.ms", "250");

config.put("cluster.name", "elasticsearch");

List<InetSocketAddress> transports = new ArrayList<InetSocketAddress>();

transports.add(new InetSocketAddress(InetAddress.getByName(parameterTool.getRequired(

 Integer.parseInt(parameterTool.getRequired(

));

messageStream.addSink(new ElasticsearchSink<Tuple2<IntWritable, Text>>(config, transports,

new ElasticsearchSinkFunction<Tuple2<IntWritable,Text>>() {

public IndexRequest createIndexRequest(Tuple2<IntWritable, Text> element) {

return Requests.indexRequest()

 .index("address")

 .type("address")

 .id(element.f0.toString())

 .source(((Text) element.getField(1)).toString());

 }

public void process(Tuple2<IntWritable, Text> intWritableTextTuple2, RuntimeContext runtimeContext, RequestIndexer requestIndexer) {

 requestIndexer.add(createIndexRequest(intWritableTextTuple2));

 }

 }));

Code 08: Elasticsearch Sink

Command line arguments
In order to run the Flink ingestors, we need to compile the code into a
standalone executable JAR, using the following command within the project
chapter10 folder.

mvn install

This will generate two JAR files for deployment within Flink, one as speed-
address-flink-ingestor-SNAPSHOT-1.0.jar and the other as speed-contacts-flink-
ingestor-SNAPSHOT-1.0.jar in their respective project folders.

Once the JAR is generated, we will need to deploy it within Flink and pass
command line arguments in the following pattern as shown here, so that code
has all the required details for execution. The same approach is used while
running the Flink pipeline from within the Flink container. The arguments are
as shownhereow for address and contacts processing, respectively:

--topic address --bootstrap.servers <kafka-ip-address>:9092 --zookeeper.connect <zk-ip-address>:2181 --group.id 1 --hdfsPath hdfs://<hadoop-namenode-ip-address>:9000/datalake/raw/address --esHost <es-ip-address> --esPort 9300 --auto.offset.reset earliest

--topic contacts --bootstrap.servers <kafka-ip-address>:9092 --zookeeper.connect <zk-ip-address>:2181 --group.id 1 --hdfsPath hdfs://<hadoop-namenode-ip-address>:9000/datalake/raw/contact --esHost <es-ip-address> --esPort 9300 --auto.offset.reset earliest

In the next section, we will see how we can deploy these JARS inside the
Flink container as Flink jobs.

Flink deployment
Deployment of the Flink pipeline is a simple process. However, it can pose
challenges in terms of version mismatch between various libraries. As a rule
of thumb, it would be better to reuse the Flink libraries that are available as
part of the distribution and then add other libraries which are not available as
part of the Flink distribution.

While submitting the JAR as a Flink job, Flink looks for dependencies in its
classpath, and if it is not able to find any libraries, it is not able to run the job.

In order to provision all the dependencies in the Flink classpath, it is helpful
to copy the shaded jar into ${FLINK_HOME}/lib folder before submitting the JAR
as a job for execution. This takes care of all Hadoop and Avro related
dependencies.

However, there would be few libraries which needs to be added additionally
to the Flink classpath. With respect to this example, we need to copy flink-
hadoop-compatibility jar using the following commands (assuming that flink-
hadoop-compatibility jar was installed while building from source):

cp ~/.m2/repository/org/apache/flink/flink-hadoop-compatibility_2.10/1.3.0/flink-hadoop-compatibility_2.10-1.3.0.jar ${FLINK_HOME}/lib

For Flink to get the other dependencies to the class, we suggest also copying
on the jars (speed-address-flink-ingestor-1.0-SNAPSHOT.jar or speed-contacts-
flink-ingestor-1.0-SNAPSHOT.jar) into ${FLINK_HOME}/lib. You can use the
following command if you have build the JAR files in your local machine:

scp <source-file-jar> <centos_user>@<ip-of-vm>:~/

Additionally, we need to ensure that all the required systems are running that
would be required by the Flink pipeline. These include HDFS, KAFKA,
ZOOKEEPER and ELASTICSEARCH.

Once these prerequisites are in place, we can build the example and deploy
them as Flink pipeline into the Flink container by following these steps:

1. Launch the local Flink Container using the following command:

${FLINK_HOME}/bin/start-local.sh

2. Navigate to the Flink URL (http://ip-of-vm:8081) to submit the job by
providing the same command line arguments as discussed earlier and
upload the Flink ingestor JARS as shown here. Ensure that the
command line arguments are provided to the respective jobs being
submitted. The difference would be the topic name and the HDFS path.
The complete set of arguments is specified here for reference:

--topic address --bootstrap.servers <kafka-ip-address>:9092 --zookeeper.connect <zk-ip-address>:2181 --group.id 1 --hdfsPath hdfs://<hadoop-namenode-ip-address>:9000/datalake/raw/address --esHost <es-ip-address> --esPort 9300 --auto.offset.reset earliest

Figure 33: Flink Job Deployment

To check whether Elasticsearch is receiving the messages from Kafka,
run the following command and you should see document count in
Elasticsearch increasing:

curl -XGET <ip-of-VM>:9200/_cat/indices?v

If the count is not getting shown, we would say running the Flume command

as detailed earlier to start pumping messages into the Kafka queue. This
would definitely trigger Flink processing of messages.

3. Once the job is submitted, the Flink UI navigates to a job status and
management page, as shown in the following figure:

Figure 34: Job Status Page

4. Similarly, the address job can also be deployed to the Flink pipelines in
parallel. You can see that events from the respective topics are
consumed and then written to both HDFS and Elasticsearch.

Parquet data visualization as
Hive tables
Parquet data files, once ingested, can be easily viewed using Hive tables by
creating Hive external tables using the scripts given here. This can be
executed via the Hue UI (Hive Query Builder) as detailed in earlier chapters:

SET mapred.input.dir.recursive=true;

CREATE EXTERNAL TABLE customer(id int, first_name string, last_name string, dob BIGINT)

STORED AS PARQUET LOCATION '/datalake/raw/customer';

CREATE EXTERNAL TABLE address(id string,

 customerId string,

 street1 string,

 street2 string,

 city string,

 state string,

 country string,

 zipCode string

)

STORED AS PARQUET LOCATION '/datalake/raw/address';

CREATE EXTERNAL TABLE contact(id string, cell string, phone string, email string)

STORED AS PARQUET LOCATION '/datalake/raw/contact';

Code 09: Parquet File Backed HIVE Table Creation Scripts

The tables created using the preceding scripts are as shown in the following
figure. The data shown is being sourced from the Parquet files:

Figure 35: Parquet Backed Hive Tables

Data indexing from Hive
Now that we can visualize all the data loaded into Hadoop via Hive tables,
we have complete customer data in Hadoop. The address and contacts data is
there in both Elasticsearch and Hadoop, using Flink pipeline. Also, customer
profile data is available in Hadoop, using Sqoop job. But, we don't have
customer profile data in Elasticsearch.

For this, we can export the Hive data as Elasticsearch indices. This can be
achieved by using ES-Hadoop framework, which is part of Elastic Stack.

For ES-Hadoop framework to work with Hive, a quick setup and
configuration are required, as summarized here:

1. Download the ES-Hadoop binaries from the following location using the
following command

wget http://download.elastic.co/hadoop/elasticsearch-hadoop-5.4.0.zip

2. Change to a user directory and unzip the binaries using the following
command:

unzip ${DOWNLOAD_DIR}/elasticsearch-hadoop-5.4.0.zip

3. Let's refer to the extracted folder as ${ES_HADOOP_HOME}.
4. Configure ${HIVE_HOME}/conf/hive-site.xml with following configuration

(the property placeholder would already be available in the file).
Replace ${ES_HADOOP_HOME} with the complete path:

<property>

 <name>hive.reloadable.aux.jars.path</name>

 <value>

${ES_HADOOP_HOME}/dist/elasticsearch-hadoop-hive-5.4.0.jar

 </value>

 <description>

 Jars can be renewed by executing reload command. And these

 jars can be used as the auxiliary classes like creating a UDF or

 SerDe.

 </description>

</property>

5. Launch or restart the Hive server after stopping with the following
command:

${HIVE_HOME}/bin/hive --service hiveserver2 -hiveconf hive.root.logging=info

Now let's put ES-Hadoop to action by creating an external Hive table with the
Elasticsearch storage by executing the following script in the Hue UI (Hive
Query Builder):

CREATE EXTERNAL TABLE customer_index (

 id string,

 firstName string,

 lastname string,

 dob bigint

)

STORED BY 'org.elasticsearch.hadoop.hive.EsStorageHandler'

TBLPROPERTIES('es.resource' = 'customer/customer',

 'es.url' = '<es-server-ip-addr>:9200',

'es.mapping.id' = 'id'

);

Code 10: Hive Index Table Definition Backed by Elasticsearch

Once the external table is created, run the following query to load the external
table with data. This would get indexed into the Elasticsearch server with
index name as customer and _type as customer as per the preceding table
definition:

SET mapred.input.dir.recursive=true;

INSERT OVERWRITE TABLE customer_index select id, first_name, last_name, dob from customer;

Code 11: Data Loading from Hive into Elasticsearch

We have now created a Hive view over an Elasticsearch storage using ES-
Hadoop framework. The customer mapping is inferred from the data, since
elasticsearch supports schema-less indexing:

GET customer/_count

GET _mapping/customer

Figure 36: Customer Index Document Count and Type Mapping

Query data from ES (customer,
address, and contacts)
We now have all the data in Elasticsearch including the customer profile data
merged from the Hadoop layer. We can query them by taking advantage of
the Lambda architecture, as shown here:

POST customer/_search

{

 "query" : {

 "term":{"id" : "18000"}

 }

}

Figure 37: Queries retrieving indexed records

The query shown in the previous figure when executed, shows the result in
the Sense Chrome plugin as shown in the following screenshot:

Figure 38: Response of Queries from Elasticsearch

As shown in the previous figure, we are performing a search operation on the
id field. However, a better approach could have been by performing a lookup
using id from a performance perspective for light-weight and absolute real
time access.

Getting the document by _id (internal id of every document in Elasticsearch)
can also be done here, however, we wanted to show lookup by search as
another possibility. If we had not specified explicit mapping of id during
indexing processes, Elasticsearch would have auto generated an internal id
for the documents before ingesting. This would limit us from doing a lookup
by id.

Figure 39: SCV use case with Elasticsearch technical component

When to use Elasticsearch
Use Elasticsearch when:

You want to do a lot of text based searches.
You want to analyse huge amounts of data which are non-relational. For
example, analyse varied logs from applications which are non-relational
and require text based searching to make sense of it.
You are looking for lightning fast query results, especially if you are
looking for text based search for dealing with autocompletion in your
application.
You are looking for a schema-less data store (explicitly it is really good
to store JSON documents).

When not to use Elasticsearch
Don't use Elasticsearch or use it with caution if:

You are looking for catering to transaction handling.
You are planning to do a highly intensive computational job in the data
store layer.
You are looking to use this as a primary data store. If this is a
requirement, when data is inserted, Elasticsearch has to re-index and this
would take some time and wouldn't be available as and when the data
was inserted and updated.
You are looking for an ACID compliant data store.
You are looking for a durable data store.

Other options
We have chosen Elastic Stack as our indexed data store. Even though this is a
strong technology choice in this space, we do have options which could be
considered and chosen as the case may be. One main contender in this space
is Apache Solr and we will discuss that in brief here.

Apache Solr
Apache Solr is the popular, blazing-fast, open source enterprise search
platform built on Apache Lucene. Solr is a standalone enterprise search
server with a REST-like API. You put documents in it (called "indexing") via
JSON, XML, CSV or binary over HTTP. You query it via HTTP GET and
receive JSON, XML, CSV or binary results.

- http://lucene.apache.org/solr/

The features at http://lucene.apache.org/solr/features.html are listed here, making it
an ideal choice for the capability that we are looking for in our Data Lake
implementation:

Advanced and optimized full-text search: Powered by Lucene's
advanced matching and searching capability
Capable of handling high-volume traffic
Standards based open interfaces: XML, JSON and HTTP: because of
the following standards, easy to code applications and also easy to
maintain
Comprehensive administration interfaces: Built-in responsive
administrative user interface
Easy monitoring: Publishes various metrics via Java Management
eXtensions (JMX)
Highly scalable and fault-tolerant: Uses Apache ZooKeeper internally
for scaling out easily and also distributable
Flexible with adaptable configuration
Near real-time indexing: Uses Lucene’s real-time indexing capability
to achieve this.
Extensible with plugin architecture: built-in packaged
plugins/extensions and easy creation of custom ones as needed.
Support for both schema and schema-less documents
Faceted search and filtering capability
Capable of geospatial search: Location based search features built-in
Highly configurable text analysis: Built-in support for many languages

http://lucene.apache.org/solr/
http://lucene.apache.org/solr/features.html

and also has other text analysis tools built-in
Configurable and extensible caching
Built-in security: SSL, authentication and role-based authorization
Diverse and advanced storage options
Capable of rich document parsing: Apache Tika built-in, is making it
easy to index rich content in the form of PDF, Word, and so on

These are some of the features that could be looked upon if this technology
has to be chosen for your specific use cases.

Summary
As with other chapters in this part of the book, we covered the layer and its
technology. We gave the reason this technology was chosen and then soon
delved deep into the working of this technology, its architecture, its
components and so on.

We then explained some of the important aspects of this technology and
delved deep into an actual working example. We brought the SCV use case in
conjunction with this technology; we closed off this chapter with sections
detailing when and when not to use Elasticsearch and closing with other
options that could be used in place of the chosen Elasticsearch.

This technology aspect in our Data Lake is significant, and we are sure it is
one of the handy technology additions. With this technology detailed, we are
almost done with this part of book. With this chapter, we have indeed
covered almost all the technologies in our Data Lake; also we have now
connected some links between the technologies in our Data Lake. We have
seen part of the SCV use case already implemented, and in our next part we
will start making final touches and connections so that other layers in our
Data Lake (namely Lambda Batch Layer, Lambda Speed Layer, and Lambda
Serving Layer) become alive and kicking.

After going through this chapter, you should have a good understanding of
Elasticsearch as a data indexing framework and various data analyzers
provided by the framework for efficient searches. You'd also know how
Elasticsearch can be leveraged for data lakes and data at scale with efficient
sharding and distribution mechanisms for consistent performance. Your
understanding on how Elasticsearch can be used for fast streaming and how it
can used for high-performance applications should be much better now.

Data Lake Components Working
Together
Pat on your back for reaching this far! Fabulous!

By this time, if you have followed chapter by chapter and also done your
coding side by side, you would have unknowingly implemented almost the
complete Data Lake.

Here in this chapter, we are tying some of the loose ends in the Data Lake
implemented so far and also making some recommendations and
considerations that you can think of while implementing the Data Lake for
your organization.

We will start of this chapter with the SCV use case, see where we have
reached, and then try closing the gaps. We will then give some aspects of the
Data Lake implementation that we haven't covered in detail when we were
going through the previous chapters.

We will also give some advice that you could take when going through the
Data Lake implementation.

The approach of this book has been that while going through previous part,
you would have almost done with the implementation of Data Lake but not
really gotten the full picture. Hopefully in this chapter, we can show you that
full picture and then close off some of the leftover portions.

Where we stand with Data Lake
This figure shows where we have reached with our Data Lake after covering
part 2 of this book:

Figure 01: Data Lake implemented so far in this book

HDFS Distributed File Storage

MapReduce Batch Processing Engine

YARN Resource Negotiator

HBase Columnar and Key Value NoSQL database that runs on
HDFS

Hive Query engine that provides SQL like access to HDFS

Impala Fast Query Engine for analytical queries on HDFS

Sqoop Data Acquisition and Ingestion

Flume Data Acquisition and Ingestion via streamed flume events

Kafka Highly Scalable Distributed Messaging Engine

Flink All purpose Real Time data processing and ingestion with
Batch Support

Spark All purpose Fast Batch Processing and ingestion with
support for real time processing via micro-batches

Elasticsearch Fast Distributed Indexing Engine built on Lucene, also
used as a Document based NoSQL data store.

By this time, in your Data Lake data would have flown from various source
systems, through various Data Lake components and persisted. You also
would have some mechanisms by that you could view the data in the Data
Lake and do some analysis.

This is not the end of Data Lake implementation as we have so many
additional capabilities that can be build on top of this base Data Lake to make
the best use of it for your organization.

In the following sections we will cover those capabilities and also will try and
give our recommendation on technology choice to achieve that capabilities.

We will also give some considerations and recommendation that we feel
important while implementing such a Data Lake. These are just some
thoughts and it is not to be considered as authoritative, rather, some areas that
you could think off now and in future in regards to Data Lake.

In some scenarios we will cover some new technologies but, we will cover
these in a very high-level as delving deep into each is not in scope of this
chapter.

Core architecture principles of Data
Lake
We did cover some of the core principles that we have followed when we
were actually implementing the Data Lake. But, explicitly we haven't
mentioned these because bringing these points upfront can be a daunting and
might not enlighten your brain as you are just stepping into a Data Lake
implementation. Since you now have a base Data Lake working, it's good
time to bring these core principles together and we feel these has to be always
remembered when bringing in new capabilities and technologies into your
Data Lake ecosystem. This again in no way authoritative, rather, it's just
some guiding principles that we thought quite useful.

Accept any data in raw format (immutable data) into the Data Lake. All
data in an enterprise has value attached to it. Don't try getting the value
in the first go, rather just ingest and try deriving its value going forward.
During time of data ingestion don't look for value out of the data getting
ingested.
Be ready to accept any type of data (structured and unstructured).
Be ready to accept any quantity of data.
Don't restrain data storage, the way by that you can query the data from
Data Lake. Bring in varied technologies according to requirement, for
various analysis.
Give easy way for enterprise applications to ingest data. Initially these
data could not make much sense but over period of time, these data
could be collaborated with other data elements in Data Lake and could
result in value propositions for enterprise.
Don't worry about data normalization while storing.
Adding data source should be quick, easy and cheap (highly scalable).
Should be able to serve Enterprise data in various formats as required by
consuming applications.
Should help in supporting required data intelligence requirements with
data aggregations and processing at scale.
Should be able to de-dup and cleanse the data, either in motion or at rest.

Should be able to support various security mechanisms for inflight as
well as data at rest.
Must be highly available as it serves critical Enterprise data.
Don't force the incoming data to change it's format according to your
data format, rather accept the data in the form that is required by the
incoming data.
Try as many ways as possible to reduce the data size and
network/bandwidth requirement. Use different methodologies like
compression to achieve this.

Challenges faced by enterprise Data
Lake
It's good to be aware of challenges that you could face while building and
managing an enterprise Data Lake. Here we are only discussing the various
technical challenges, adoption and business buy-in for a Data Lake and
support for this initiative from higher management and so on is not discussed
here. Some of those challenges along with our suggested mitigation are as
given:

Challenge #1: If you are using open source freely available technologies for
building your Data Lake, keeping up with the pace with that these
technologies grow can be quite challenging and daunting task.
Mitigation #1: Going with commercial products like Cloudera, Hortonworks
and so on can be an option if the Data Lake is adopted in a positive manner
by the business.

Challenge #2: If you Data Lake incorporate good amount of technologies to
achieve the desired results, keeping with the pace of technology and it's
dependencies with other technologies in the Data Lake landscape can again
be quite challenging.
Mitigation #2: Similar to the preceding mitigation, going with a
commercially supported platforms can be option to mitigate this problem.

Challenge #3: Getting skilled people in Big Data space was quite a challenge
sometime back. But, that has improved now, but it's quite hard to get really
skilled hands-on people to maintain and manage this diverse technology
landscape Data Lake.
Mitigation #3: Building a Centre of Excellence (CoE) with the enterprise
with programs to keep rejuvenating this team with more resources in a timely
manner can be considered.

Challenge #4: Integration challenges within and external to Data Lake with
components evolving independently can be challenging.

Mitigation #4: Bringing in a layer of indirection dealing with integration
challenge with both internal and external applications can be considered. This
layer hides the details and gives a consistent way in that data flows into the
Data Lake.

Challenge #5: Because of diverse application in enterprise, ingesting data
into Data Lake can be big challenge. The issue becomes more problematic if
the applications existing in an enterprise is a mix of in-house and vendor
applications, written in a variety of programming languages having varied
data ingestion capabilities.
Mitigation #5: If applications can be given a very easy way of ingesting data,
say for Java applications (especially built in-house), given then a Java
annotation to be put on models, which automagically ingests the data to the
Data Lake can be quite tempting for data ingestion of their application data
into the Data Lake.

Challenge #6: Being a common data store, departments pose a problem,
stating authorization (security and privacy) of data as a big issue.
Mitigation #6: Bring in adequate security for data and all of the Data Lake
components with strict control on who does what and how. This can be
limiting for disruptive data analysis, but again, it depends on what data is in
the Data Lake and who wants to access these.

Challenge #7: Even if data ingestion is fine with regards to a data source,
often data quality can be a concern. Data governance can be a challenge.
Need domain knowledge to make sure data falling into Data Lake is of
highest quality.
Mitigation #7: Implementing a proper data governance framework during
data ingestion and keep checking on the data quality in a timely manner as a
process. Imbibe this as a culture in the organization over a period of time.

Challenge #8: Usually big organizations lack information/business
architecture spanning all departments. Because of this it's quite hard to build
a proper data model on top of the raw data. This creates undue dependency to
IT departments to create these changing data models for various analysis by
business users.
Mitigation #8: Use Data Lake to start building an information/business
architecture and start modelling data in the Data Lake using this newly agreed

data model.

Challenge #9: Quite hard to achieve full automation and this poses
maintenance challenges. This can lead to high maintenance cost often not
exceeding advantages derived out of it.
Mitigation #9: aim for small automation and keep pushing it for full
automation over a period of time.

Expectations from Data Lake
Data lake does cost money to build and manage. So, the expectation from
various parties from Data Lake is quite demanding and varied in nature. Let's
divide these expectation into two based on parties involved.

Expectation from business users:

Analysis is always running on right data with good quality attributes.
Capability to easily manage data governance.
Setup security measures whereby the data visibility can be controlled in
more fine grained fashion. Easy data masking capability, when needed
by employing appropriate transformations controlled by authorizations
mechanisms.
Self service capability with minimal technical knowledge for a broad
spectrum of people.
More easy representation of data lineage and traceability
Should be able to support metadata management

Data lineage is defined as a data life cycle that includes the data's origins
and where it moves over time. It describes what happens to data as it goes
through diverse processes. It helps provide visibility into the data analytics
pipeline and simplifies tracing errors back to their sources.

- Wikipedia

Expectation from technical department:

Easy ingestion of data from varied kinds of application. For example,
cloud application, in-house built applications, applications written in
varied technologies and so on.
Cost effective and easy/simple management and maintenance of Data
Lake.
Easy to bring in people (skills) capable of maintaining Data Lake as
needed from the industry.
Should be able perform required data processing at scale and derive data

intelligence
Should be able to manage requirements around machine learning and
other data algorithms
Fail-safety and availability mechanisms must be in place for easy
recovery and continued availability without business interruptions

Data Lake for other activities
With Data Lake and its huge and expensive infrastructure (in production
deployment, ideally we use high-end machines and not commodity
hardware), there are potential other uses for which it could be used. The main
challenge with high end infrastructure is its effective utilization. While a high
end infrastructure may be required for solving a problem, it may not be
effectively utilized at all times. This is where we need to think of mechanisms
that can help us extract required utilization of the infrastructure.

One of the most practical ways to do this is via multi-tenancy of the Hadoop
infrastructure. If we look at Hadoop or any storage systems, there are two
fundamental actions performed at the storage layer; one is to read and the
other is to write the data for the purpose of data storage and processing.

This can be achieved at a basic level by leveraging security mechanisms
supported by various components in the entire infrastructure such that
security realms and groups can provide required isolation on shared
infrastructure. The security permissions must be provisioned to allow for
intended use by various groups and users. This would also help prevent the
issue of Data Lake silos within an organization.

These capabilities can be used as a way to attract applications and groups
with the organization to come and ingest data into Data Lake. Two
fundamentals areas are:

Store data (HDFS: Distributed File System): At the core of Data Lake
is the great Apache Hadoop, capable of storing huge amounts of data in
a variety of formats. The Data Lake could be a potential candidate to
store huge amount of application data (data such as auditing and
logging, for example), and this can also be exploited by an application to
store a huge amount of data in a very cheap and easily accessible
fashion. This also could be used as an archival solution for an enterprise
(a more centralized one with easy data retrieval capability).
Processing data (MapReduce programming model): Hadoop has

huge potential for performing huge data processing capabilities. For
various use cases internal and external to Data Lake, this capability
could be exploited and used. For many use cases, huge processing is
deemed necessary. Using Hadoop’s MapReduce, this could be offloaded
to Data Lake infrastructure, and processed data could then be taken to
the application data store for further needs.

Knowing more about data storage
Storage is one of the most critical parts of a Data Lake. Apache Hadoop
(HDFS) is the core of data storage for our Data Lake. The following figure
sums up this aspect quite clearly, showing batch and stream data storage
components in our Data Lake, along with other technologies within Hadoop
Ecosystem with regards to various aspects dealing with the storage:

Figure 02: Apache Hadoop (HDFS) as data storage

We will now understand some important concepts in data storage area. We
will also concentrate explicitly on batch and speed data and how these gets
stored in the Data Lake and also see some specific details in regards to these
data types.

Zones in Data Storage
Even though the data in the storage need not follow a certain pattern, but for
an organization while going with a Data Lake, it's good to have some clear
directions and principles on how the data need to be put in the Data Lake.
These are just some of our recommendations that could be considered or kept
in mind while structure the data in the storage.

These data can be organized in a multitude of ways, which depends on
organization and its structure. On a very high-level we see division of data as
follows:

Master data: The area in a Data Lake where the master data resides.
Usually this data is accessible to all of the enterprise and can be made
over time as single source of truth. This data is quite significant for all
the analysis as transaction data is merged with this master data to show
meaningful visualization to the data analysts or to the business for that
matter.
Raw data: Area in the storage where raw data from various source
systems flow in and get persisted. This is an area that is fully controlled
and only the Data Lake core technical people and data scientists get
access to these. The data here would contain almost anything in the
enterprise and could have sensitive information held very close to
certain departments within the organization.
Enhanced or enterprise data: The area where data is modeled from
raw data and is more generic across the organization is kept. This area is
also quite well controlled but according to the models created out of raw
data, these can be used by a variety of applications in the enterprise. The
models are derived from information model (business architecture)
created for the organization. The models in here would be well
understood by both business and IT departments alike. At the time of
creating these models, there could still be many attributes in the raw data
that is not really picked or understood well enough to be included in
these models.
Application/curated specific data: The area where more commonly

used or so called curated models reside in the storage. Usually Data
Lake is for enterprises, so application specific models are not
encouraged but this is again more generic but could have been created
initially for a requirement very specific for a business application. This
is one of the reasons some business applications are ready to ingest data
to get the power of Data Lake and it's processing power. This is a more
pragmatic approach when we start off Data Lake within an enterprise
and have a give and take policy for business applications to pump data
into Data Lake.

These zones could also be used to segregate the data residing in the storage
into different storage classes having different requirements (low cost storage,
highly available storage and so on). the following figure does show this high-
level divisions/zones in the storage area that could be considered.

Figure 03: Zones in data storage layer

High-level division in the storage is fine, but in practical scenarios the
following are some of the aspects by which this high-level division can be
further divided (more subjective, just our thoughts, these changes
significantly according to organization where Data Lake is implemented):

Data asset classification (business impact): Security classification of
data asset or business deemed asset classification.

High
Medium

Low
Data Archival policy: According to the retention of data in the Data
Lake.

Short
Medium
Long

Business domain: Based on business domain, where the data comes
from into the Data Lake.

Customer
Sales and so on

Source: Source from where the data arrived in Data Lake.
Internal or External

All in all, these divisions are kept in the storage so as to give good visibility
to the data scientists to deduce useful insights into the data for deriving
meaningful business decisions.

In the next sessions, we will delve a bit more into batch and speed data
storage and some of it's nuances that has to be kept in mind.

Data Schema and Model
The raw data when ingested may not have the schema in desired structure,
and may get stored in its native format in Data Lake. Data must exist in a
target schema structure when the data is being queried from the storage. In
order to convert/res-structure the data from its native schema to the target
schema, the data needs to be processed. In our case, the final batch views
when created will have a defined schema against that the views are build and
exposed.

Storage options
We have come across multiple ways of storing data in previous chapters. In
order to appreciate different storage options it would be good to understand
these options to some extent.

Hadoop enables us to load data in its natural form using basic
HDFS commands, and this can be used for visualizing this data into HIVE or
Impala views. We saw this in action in earlier chapters. In addition to these
we also used certain Serialization Deserialization (SerDe) adaptors to tell
the views how to handle the data.

While handling the RAW files, containing data in its most natural form, the
files and data is loaded in Hadoop for further processing. If the data in these
RAW files is in a standard format like a CSV file or TAB delimited file it is
easier to visualize this data by simply creating a view over it. However we
may have data in non standard format as well in these RAW files that
necessitates further processing and hence needs additional storage formats to
be defines. The natively supported formats at Hadoop layer have been Plain
text files (CSV/TAB Delimited Files), sequence files, Avro files and Parquet
files as some of the major formats.

The choice of a format needs to be driven by the purpose of data to be stored.
A quick comparison of purpose and option analysis can be considered as
given here:

Text Format Sequence
File Format Avro Format Parquet Format

The text
format for
instance
would provide

Sequence
Files are
generally
used to pack

Avro format is a
binary format that
provides schema

The Parquet
storage is another
binary format

ease of data
loads at an
expense of
lesser
compression
and query
overheads

small files
that can be
used to
transfer data
between
map-reduce
jobs

based data storage
and supports block
compression and
provides IO gains
for faster and more
efficient queries

storage that
stores data
column oriented
and is generally
useful for queries
on specific
columns

These formats are the formats supported by HDFS in general, however
depending on where the data is stored, there would be variation in patterns of
storage as well. In order to better understand this statement, let us consider
the two NoSQL data stores that we came across in this book, that is, HBase
and Elasticsearch. While both of them belong to NoSQL data store families,
each of them employs different ways to store and handle data. HBase is
natively non-indexed data store running over HDFS, and stores data as
column families, while Elasticsearch is an indexed data stores, which stored
data as JSON documents and needs a direct storage mechanism for efficient
queries.

Apache HCatalog (Hive Metastore)
If Apache Hive is there in your Data Lake as a technology, including
HCatalog would be quite handy to deal with the diverse technology
ecosystem (especially data processing tools) with a wide variety of storage
formats.

HCatalog is a table and storage management layer for Hadoop that enables
users with different data processing tools — Pig, MapReduce — to more
easily read and write data on the grid. HCatalog’s table abstraction presents
users with a relational view of data in the Hadoop distributed file system
(HDFS) and ensures that users need not worry about where or in what
format their data is stored — RCFile format, text files, SequenceFiles, or
ORC files.

HCatalog supports reading and writing files in any format for that a SerDe
(serializer-deserializer) can be written. By default, HCatalog supports
RCFile, CSV, JSON, and SequenceFile, and ORC file formats. To use a
custom format, you must provide the InputFormat, OutputFormat, and
SerDe.

- https://cwiki.apache.org/confluence/display/Hive/HCatalog+UsingHCat

The preceding excerpt from the HCatalog confluence page quite well
describes what the exact function of HCatalog (also known as HCat) is and
we don't feel we need to expand it anymore, nor we have scope to cover this
in more detail as part of this chapter.

The following figure (again as detailed in HCatalog confluence page) is quite
self explanatory:

Figure 04: Working of Apache HCatalog

Compression methodologies
In previous part of the book, we did touch this aspect of compression in brief.
Since this is an important aspect for Data Lake, this is revisited in a bit more
detail here.

While storing data, to optimize storage (reduce space) and to utilize network
bandwidth, often compression methodologies are employed. Data lake deals
with massive amount of data and data compression is quite significant. This
aspect definitely makes the Data Lake more scalable and brings in lot of
flexibility.

In many scenarios existing in an enterprise, the data commonly ingested into
Data Lake are in different text formats (CSV, TSV, XML, JSON and so on).
These are human readable but occupies huge amount of storage space. In
Data Lake, however the data is read by machines and as long as that is
possible, it's fine. Compression technologies, using serialization, compresses
these human readable into machine readable and in the due course makes
sure that the space needed for storage is drastically reduced. The following
are some of the well-known and commonly used compression formats (called
codecs that allows data compression/serialization and
decompression/deserialization):

Gzip (file extension .gz): GNU Zip (GZip), well-known compression
format and is used quite heavily in the web/internet world. The request
and response can be compressed used this format for efficient usage of
bandwidth of a website/web application.
Snappy (file extension .snappy): Codec developed by Google
(previously known as Zippy). Supposed to be the fastest
(serialization/deserialization) with a moderate compression ratio. Speed
is more relevant aspect for this format as against the compression ratio.
One of the formats, most widely used, obviously because of it's
performance.
LZO (file extension .lzo): licensed under GNU Public License (GPL),
it is very much similar to snappy having fast compression and

decompression with moderate compression ratio.
Bzip2 (file extension .bz2): More or less similar to GZip, with more
compression ratio than GZip. The speed by that the data deserializes is
slower than GZip as expected. One of the important aspect of this is that,
it supports splitting and this is quite important when used HDFS is used
as the storage. If data has to be just stored and not queries (which is not
our case), this compression can be quite a good choice.

Lempel–Ziv–Oberhumer (LZO) is a lossless data compression algorithm that
is focused on decompression speed.

- Wikipedia

Each of the preceding compression algorithms has advantages and
disadvantages associated with it. If the compression ratio is high (after
compression the space is reduced to a larger extend), the decompression
usually takes time and is slow and vice versa. There is no magic pill using
that we could choose a method and go with it. It depends on the data coming
in and has to be selected on a case-by-case basis.

When you are in a situation to select a compression algorithm, these are some
of the options:

Divide the files into chunks (piece) and then compress using any
algorithm as deemed suitable. Since Hadoop (HDFS) is our persistence
mechanism, make sure that these chunks and after compression fits into
these desired memory slots (configured in HDFS).
Select a compression format that allows splitting and then compressing.
Select a container file format that allows splitting and compressing such
as Avro and Parquet. These can again be mixed with various
compression formats to arrive at right speed and compression ration
demanded by your use case. Of the two container file format, Avro is
matured and used widely in the industry. Let's discuss these two
container file formats in brief:

Avro: Uses self-describing (creates schema in the background)
binary format to serialize data. When data is serialized, a schema is
stored along with it fully describing the data being serialized.
Because of this very reason many programming languages can read

these file formats quite easily. Many of the technologies in the
Hadoop Ecosystem like Spark, Pig and so on; therefore it can read
these file format and deal with it quite easily. Avro is quite an
efficient format for sending data across network in a compressed
format. It can also use compression formats like Snappy for higher
order compression, if required.
Parquet: Licensed under Apache License, it's an open source
columnar storage format built from the ground up. It gets its name
from patterns in Parquet flooring. Parquet have a very efficient
compression and encoding schemes. Similar to Avro many Hadoop
ecosystem technologies is actively supporting Parquet because of
it's advantages and also Parquet is under heavy developments
adding new capabilities in every release.

Choose the right option according to your use case requirement. Using
container file format with a suitable compression algorithm, having a right
balance between speed and compression ration would be our
recommendation.

Data partitioning
Data partitioning is a very common technique by that data stored in a
persistent store is segregated into sections for faster queries and easy
management and monitoring (being segregated, the data to be managed
becomes small and more manageable). This is a technique used in RDBMS
and it's the same that could be employed in HDFS. HDFS, being a file
system, partitioning is achieved using file partitioning. For an enterprise wide
Data Lake, data partitioning is a needed aspect that needs serious thought and
consideration. In previous section we did see different zones in data storage,
this section expands on that aspect by bringing in the implementation aspect
using data partitioning.

A table stored in HDFS has a number of rows (each record is a row)
consisting of a number of columns (attributes in a record). Partitioning can be
achieved in two ways:

Horizontal partitioning: partitioning based on row/record. In this
partitioning technique you divide the rows in a table in different
partitions.
Vertical partitioning: it partitions data based on column values. This is
one of the more common way of partitioning and if the queries that are
going to be executed is known (especially the parameters), this approach
is quite useful and aids in performance gains. The next figure shows
sample data stored in HDFS (folder structure) being partitioned into
different levels using a particular column value. In the first folder
structure division, the data is partitioned based on year and in
subsequent partitioning it is divided according to the month.

Figure 05: Vertical partitioning using a column value (multiple level
partitioning)

Knowing more about Data
processing
Data processing is one of the important capabilities in a Data Lake
implementation. Our Data Lake is no exception and does participate in data
processing, both in batch and speed layer. In this section we will cover some
important topics that needs to be looked upon with respect to Data Lake
dealing with data processing. With Hadoop 1.x, MapReduce was one of the
main processing done in Hadoop. With Hadoop 2.x and with more data
ingestion methodologies, more options in the real time/streaming area have
also come in and these two aspects with some important considerations are
detailed here.

Data validation and cleansing
Validating data before it gets into the persistence layer of Data Lake is a very
important step. Validation in the context of Data Lake means two aspects as
follows:

Origin of data: Making sure right data from right source is ingested into
the Data Lake. The source from where data originates should be known
and also the data coming in also should be authorized by Data Lake to
be ingested.
Quality of data: Making sure that certain data that are ingested into
Data Lake has some initial checks done on its attributes to make sure
that the data coming in and it's format qualifies to the format it states.
For example data attribute in a record stating it as an email could be
checked/validated for a proper email format.

Validation and appropriate cleansing of data is quite a significant aspect in
modern day Data Lake as in modern age there are so many source systems
capable of pumping huge volume of data into the Data Lake. If you don't do
this soon your Data Lake can be quite dirty and turn into a swarm, hard to get
data and also see what is in it to do various analysis. Creating zones in
Hadoop can be a good step to achieve some control and quality control on the
data that lives in the lake. When the data move from one zone to another,
various pre-configured rules could be executed to make sure that the data is
of utmost quality and meets the common data rules for a particular attribute
(mostly these are different for different organizations and rules are to be build
according to this requirement in mind).

There should also be rules to make sure that certified sources can only ingest
data into the lake and each data from these source need to be verified. One of
the mechanisms to enforce the validations is to have schema based storage in
place so that any data in ingested into the Data Lake is validated, and any
invalid data is separately bucketed to be processed differently as exceptions.
For such use cases, using a schema based storage mechanisms like Avro are
very helpful.

Cleansing is as important as validation of data. By doing validation, in turn
you are doing a bit of cleaning. But, you lake needs periodic cleaning to
make sure it doesn't grow out of proportion, so that most valuable and
needful insights can be performed quite easily without trouble. You need to
have a process by that to identify data that have over time exhausted itself or
become irrelevant for the organization and take necessary approach by that to
remove it from so called production-grade data in the Data Lake. Data
cleansing can be achieved in a number of ways, some of the basic mechanism
includes usage of HIVE/Impala queries to process the data and cleanse it as
the data moves from one table to another, however such operations via query
engines can be very heavy and resource intensive. Instead, cleaning such data
with map-reduce based processing can be very efficient and can also integrate
with standard libraries that can further simplify the cleansing process.

There is no science on this as this is fully reliant on the enterprise and there
isn't a one size fits all solution. However, it is a very important aspect and
needs consideration and implementation. For both batch and speed data,
validation as well as cleansing is an important aspect that need attention and
consideration.

Machine learning
Machine learning is the data science behind building adaptive and continuous
learning systems for drawing valuable insights from data. These are at the
base level set of algorithms that can help us derive more meaning from the
data. These algorithms generally work on the inputs, correlation with historic
data, probabilities of various related events and the training data to provide an
enhanced experience as an output in form of recommendations or decisions.

Machine learning algorithms are broadly classified into following categories

1. Supervised Algorithms: These types of algorithms need supervision in
form of training data to get tuned and provide outcomes with expected
accuracies. While this can be applied for neural network programing,
however the most common implementation of these algorithms has been
Naive Bayes, which can classify the incoming events based on training
data and pre-defined categories. This is also used in sentiment analysis
based on the positive and negative words used in conversations.

2. Unsupervised Algorithms: These algorithms are capable of deriving
meaning from the data without any training data by continuously
analyzing patterns and trends in datasets. These are mostly used for
solving problems that require self clustering of data and events into
logical groups. Most common algorithm in this space has been K-means,
as this algorithm can be directly applied on a wide variety of data to
continuously derive data groups.

While the data resides in batch layers, it gives good opportunity to run such
algorithms to produce high quality insights from the data. Many of these
algorithms can also be leveraged for near real time processing that would
continuously provide data insights with fair amount of accuracy. One such
framework that has been extremely useful in Hadoop landscape has been
Apache Mahout, which has pre-configured routines and algorithms to apply
on Hadoop data readily. Application of such algorithms easily extend into
Fraud detection, biometrics, facial recognition, digital signal processing of

machine data and many others. Most popular example in this space has been
the recommendation engine of Amazon, which is very responsive in
recommending the possible buying options for a customer based on
customer’s behaviours and past buying patterns

Scheduler/Workflow
Data lake ingests data in raw format. However, for meaningful analytics on
the data, this raw data needs to undergo a certain level of processing. As we
have seen in previous section, there are certain zones in the storage and data
processing that make sure to convert the raw data to something more useful
for various analytics. While this can be done with a series of map-reduce
jobs, the main challenge is orchestrating these jobs across these zones and at
a scheduled interval or at triggers. Also, since the Hadoop landscape
comprises multiple technologies and frameworks, there could be different
types of tasks to be executed from one data zone to another. We will cover
the mechanisms to achieve this using oozie framework that it achieves via
two of its components, that is, workflows and coordinators.

Apache Oozie
Oozie source code is available for download and it needs to be built from
source for installation. Oozie installation can be performed with the following
steps.

Database setup and configuration
Oozie requires a metastore to store information for Oozie jobs, workflows
and coordinators, hence we will need to create a metastore database. As done
earlier for other technologies in regards to metastore,we will create and
configure this metastore in PostgreSQL Follow the steps below to configure
PostgreSQL as our metastore database:

1. Login into PostgreSQL prompt in ssh/command line within CentOS
VM:

psql -U postgres

2. Create the Oozie user by running the following query:

CREATE ROLE oozie LOGIN ENCRYPTED PASSWORD 'oozie' NOSUPERUSER INHERIT CREATEDB NOCREATEROLE;

3. Create the Oozie database by running the below query:

CREATE DATABASE "oozie" WITH OWNER = oozie

ENCODING = 'UTF8'

TABLESPACE = pg_default

LC_COLLATE = 'en_US.UTF-8'

LC_CTYPE = 'en_US.UTF-8'

CONNECTION LIMIT = -1;

We have now created and configured a metastore database with the name
 oozie, having a user role as Oozie for storing and managing Oozie metadata
and job information.

Build from Source
In the next step we will build the Oozie from source and start using it.

1. Download the Oozie source tarball from the following location, using
the following command:

wget http://www-eu.apache.org/dist/oozie/4.3.0/oozie-4.3.0.tar.gz

2. Change to the user directory and extract the contents of tar ball using the
following command:

tar -zxvf ${DOWNLOAD_DIR}/oozie-4.3.0.tar.gz

3. Change into the Oozie source directory, let us refer to it as
${OOZIE_SRC_HOME}, and run the following command to create the build:

${OOZIE_SRC_HOME}/bin/mkdistro.sh -Phadoop-2 -DskipTests

4. Once the build is complete, the binary tarball can be extracted from
${OOZIE_SRC_HOME}/distro/target into a user directory, lets us refer this
directory as ${OOZIE_HOME}. In order to do this, change into the
${OOZIE_HOME} directory and run the following command:

tar -zxvf ${OOZIE_SRC_HOME}/distro/target/oozie-4.3.0-distro.tar.gz

5. Configure the environment variable ${OOZIE_HOME} to point to the Oozie
directory using the following commands. Also, append these commands
to the ~/.bashrc file:

export OOZIE_HOME=<directory-containing-oozie-install>

export PATH=$PATH:${OOZIE_HOME}/bin

6. Once the contents are extracted, configure the ${OOZIE_HOME}/conf/oozie-
site.xml with proxy users and database settings by using the below
properties as shown below. All the paths mentioned should be complete
paths, since the environment variables do not get resolved. The
environment variables have been mentioned for reference only:

<configuration>

<property>

 <name>oozie.service.ProxyUserService.proxyuser.centos.hosts</name>

 <value>*</value>

</property>

<property>

 <name>oozie.service.ProxyUserService.proxyuser.centos.groups</name>

 <value>*</value>

</property>

<property>

 <name>oozie.service.ProxyUserService.proxyuser.hue.hosts</name>

 <value>*</value>

</property>

<property>

 <name>oozie.service.ProxyUserService.proxyuser.hue.groups</name>

 <value>*</value>

</property>

<property>

 <name>oozie.service.ProxyUserService.proxyuser.oozie.hosts</name>

 <value>*</value>

</property>

<property>

 <name>oozie.service.ProxyUserService.proxyuser.oozie.groups</name>

 <value>*</value>

</property>

<property>

 <name>oozie.service.JPAService.jdbc.driver</name>

 <value>org.postgresql.Driver</value>

</property>

<property>

 <name>oozie.service.JPAService.jdbc.url</name>

 <value>jdbc:postgresql://localhost:5432/oozie</value>

</property>

<property>

 <name>oozie.service.JPAService.jdbc.username</name>

 <value>oozie</value>

</property>

<property>

 <name>oozie.service.JPAService.jdbc.password</name>

 <value>oozie</value>

</property>

<property>

 <name>oozie.service.WorkflowAppService.system.libpath</name>

 <value>/user/centos/share/lib</value>

</property>

<property>

 <name>oozie.service.HadoopAccessorService.hadoop.configurations</name>

 <value>*=${HADOOP_HOME}/etc/hadoop</value>

</property>

<property>

 <name>oozie.service.HadoopAccessorService.action.configurations</name>

 <value>*=${HADOOP_HOME}/etc/hadoop</value>

</property>

</configuration>

Code 01: Oozie-site.xml configuration

7. Configure the ${HADOOP_HOME}/etc/hadoop/core-site.xml with the following
additional settings:

<property>

 <name>hadoop.proxyuser.oozie.hosts</name>

 <value>*</value>

</property>

<property>

 <name>hadoop.proxyuser.oozie.groups</name>

 <value>*</value>

</property>

Code 02: core-site.xml configuration

8. Restart the dfs service by using the following command

stop-dfs.sh && start-dfs.sh

9. Configure ${HADOOP_CONF_DIR} environment variable using the following
command and add it to ~/.bashrc file:

export ${HADOOP_CONF_DIR}=${HADOOP_HOME}/etc/hadoop

10. Create a folder libext under ${OOZIE_HOME}. We are doing this to copy the
Hadoop JARS in this folder for Oozie shared lib configuration and
execute various jobs

mkdir ${OOZIE_HOME}/libext

11. Copy all the Hadoop JARS from ${HADOOP_HOME} into ${OOZIE_HOME}/libext.
Execute the following commands:

cp ${HADOOP_HOME}/share/hadoop/common/lib/* ${OOZIE_HOME}/libext

cp ${HADOOP_HOME}/share/hadoop/common/*.jar ${OOZIE_HOME}/libext

cp ${HADOOP_HOME}/share/hadoop/hdfs/lib/* ${OOZIE_HOME}/libext

cp ${HADOOP_HOME}/share/hadoop/hdfs/*.jar ${OOZIE_HOME}/libext

cp ${HADOOP_HOME}/share/hadoop/mapreduce/lib/* ${OOZIE_HOME}/libext

cp ${HADOOP_HOME}/share/hadoop/mapreduce/*.jar ${OOZIE_HOME}/libext

12. Configure Oozie in HDFS for shared library path with following
commands:

Create Oozie folder in HDFS

hdfs dfs -mkdir /user/oozie

Assign the ownership of the folder to the Oozie user

hdfs dfs -chown oozie:oozie /user/oozie

Import the Oozie shared libs into HDFS

${OOZIE_HOME}/bin/oozie-setup.sh sharelib create -fs hdfs://<hadoop-namenode-ip>:9000 -locallib ${OOZIE_HOME}/oozie-sharelib-4.3.0.tar.gz

13. Start the Oozie server with following command:

${OOZIE_HOME}/bin/oozie-run.sh

If Oozie starts without problem, the console should print INFO: Server startup
in xx ms.

Now launch the Hue console and login to see the Oozie landing page (can be
accesses by clicking Workflows | Editors | Workflows menu) as shown in
the following screenshot:

Figure 06: Oozie landing page in Hue

Oozie Workflows
Oozie provides workflow capability to define the flow of processing from
one point to another and supports a variety of Hadoop frameworks. An Oozie
workflow defines what components would participate in a defined flow of
execution as a single job. In the Oozie workflow editor click on Create (in
right hand side of the page), which will allows us to visually create
workflows. A sample workflow is as shown in the following screenshot:

Figure 07: Oozie workflow designer in Hue

In this example, we are creating a directory and then renaming it in the next
step. This is done by dragging and dropping the HDFS component from the
Documents toolbar and provide the required commands as shown in previous

screenshot.

When we execute this workflow by manually submitting it, the execution
status or outcome is indicated in the UI as shown in the screenshot:

Figure 08: Oozie workflow execution in Hue

In production systems, it may not be possible to manually submit the
workflow in a system which has continuous incoming data, hence in such
situation we may want to schedule such submissions. This can be achieved by
using Oozie coordinator, which is explained in next section.

Oozie coordinator
In order to wrap workflows into a coordinator configuration, we need to
create a coordinator configuration and add workflow to it. In doing so, we
can also define the schedule/interval for the coordinator to run the configured
workflows as shown in the following screenshot:

Figure 09: Coordinator scheduling in Hue

Hue UI also exposes the dashboard to summarize the execution outcomes
which gives a single view status snapshots of the running/completed jobs.
This can help drill down into logs of individual oozie jobs, if required. A
snapshot of the dashboard is as shown in the following screenshot:

Figure 10: Oozie dashboards in Hue

Complex event processing
During our discussion of Flink framework, we came across various
mechanisms by that Flink can perform in stream analysis since it supports
exactly once processing of events and also enables windowing functions. One
of the main components of CEP engine is accurate data aggregation that
would be possible only if the events are processed only once. These are some
of the building blocks of full fledged CEP engine and with these capabilities
specific CEP capabilities can be built from ground up.

However in order to build a complete CEP engine, it may need considerable
efforts and some use cases may demand use of a complete CEP engine right
away. For such scenarios there are embeddable CEP engines like Esper that
can be embedded in such real-time processing channels and provide the
required analysis capabilities on streaming data.

Complex Event Processing includes rules execution, event correlations,
statistical analysis of event and pattern based analysis of multiple input
events for enabling automated recommendations and decisions in near real
time.

Thoughts on data security
One of the very important capabilities required for a Data Lake
implementation in an enterprise is security. In a Data Lake we are bringing in
data from around the enterprise into one place. You have convinced all the
departments who has agreed to ingest data into the Data Lake that the data in
the lake is secured and only authenticated and authorized users have access to
the data. So, this aspect needs some serious thought so that data is secured
and these departments are quite happy with the access rules for their all
important data. In addition to security setup, proper governance through
adequate processes also should be setup to make security quite sturdy but
quite easy for users having access to it to do their deep analysis work.

By data security, it refers to in-flight transaction data (stream), date at rest
(batch), both authentication and authorization (attributes).

Data lake does pose a different risk as it is entrusted to bring data from
various silos into one and this create even more data security problem as it
allows combining data from disparate systems making it easy for more
diverse analytics and if not secured can have adverse effect for your business.

There are number of open source projects that could be integrated with Data
Lake helping with various security capabilities, some of that are as detailed in
the followingsub-sections.

the following figure clearly and easy to decipher fashion (courtesy
Hortonworks) shows security rings around Hadoop, which could be build
according to security requirement demanded by your Data Lake in your
enterprise. The figure shows various security capability along with
technology mapping.

Figure 11: Security rings around Hadoop

Apache Knox
The Apache Knox Gateway is a REST API Gateway for interacting with
Apache Hadoop clusters. The Knox Gateway provides a single access point
for all REST interactions with Apache Hadoop clusters. In this capacity, the
Knox Gateway is able to provide valuable functionality to aid in the control,
integration, monitoring and automation of critical administrative and
analytical needs of the enterprise.

- https://knox.apache.org/

Hadoop inherently supports Kerberos authentication and authorization can be
implemented using its default UNIX based file and directory permissions. In
this Hadoop setup, where Hadoop is secured, Apache Knox can complement
and add value. Knox can also work with Hadoop clusters that doesn't
implement any security.

The following figure shows the working of Apache Knox:

Figure 12: Working of Apache Knox

As detailed in Knox documentation (https://knox.apache.org/), it functions as a
reverse proxy providing perimeter security with possibility of extension (for
various security policy compliance checks) in the form of plugin’s. It
supports various security policy enforcement like authentication,
authorization, host mapping and so on by chaining these extensions one after
the other (in required order) as specified in topology deployment descriptor.
Knox has support for many of the products/technologies in the Hadoop
ecosystem like Ambari, Oozie, Hive and so on, which is added advantage.

https://knox.apache.org/

Apache Ranger
Ranger is a framework to enable, monitor and manage comprehensive data
security across the Hadoop platform. The vision with Ranger is to provide
comprehensive security across the Apache Hadoop ecosystem.

- http://ranger.apache.org/

The following figure shows the working of Apache Ranger. Ranger provides
authorization capabilities for a wide range of products and technologies in the
Hadoop ecosystem.

Figure 13: Working of Apache Ranger (figure inferred from Hortonworks)

Ranger’s authorization methodology is based on Attribute Based Access
Control (ABAC). ABAC is based on four attributes namely subject, action,
resource and environment.

As shown in the preceding figure, the Ranger plugin is installed along with
the product for that authorization needs to be enforced. Ranger synchronizes
user data with the enterprise directory (where user credential are stored) and
uses that to set up appropriate security policies by security administrators.
These security policies are set by the administrators and is persisted. When a
user tries to access data in the products where Ranger plugin is installed, it
retrieves the policies stored and does appropriate checks before user getting
access to the data that they require. Apache Ranger supports HDFS, Hive,
HBase, Storm, Solr, Kafka and Knox in the Hadoop ecosystem.

In addition to authorization (it's core capability), it also captures and persists
various audit activities. These captured data can be quite useful when track
and trace of a particular activity has to be conducted.

Apache Ranger is started and owned by Hortonworks and because of this it
has good compatibility with the Hortonworks Hadoop distribution.

Apache Ranger work in conjunction with Apache Knox and in fact
complements each other in many ways to achieve the objective of security.

Apache Sentry
Apache Sentry is a system for enforcing fine grained role based authorization
to data and metadata stored on a Hadoop cluster.

- https://sentry.apache.org/

The working of Apache Sentry is very much similar to Apache Ranger. This
figure shows the working of Sentry:

Figure 14: Working of Apache Sentry

Sentry plugin needs to be installed on any of the data processing technologies
(Hive, Impala and so on). Any access to data in these technology is first
intercepted by the plugin and if it meets all the security policies defined in the
policy metadata clubbed with Sentry Server, it allows access. The Sentry
server is entrusted to manage all the authorization metadata and is in constant
touch with plugin’s installed with the data processing technology. This is
security project started by Cloudera and this makes it more compatible with
Cloudera Hadoop distribution. Sentry supports HDFS, Hive, Impala and Solr
in the Hadoop ecosystem.

Both Ranger and Sentry are good choices to implement security for your
Data Lake. If you have decided to go with Cloudera, choosing Sentry is a
natural choice. If you have chosen Hortonworks as the Hadoop distribution,
choosing Ranger is apt.

Thoughts on data encryption
Data in a Data Lake is highly critical for the organization and it has to be
secured at all times. In addition, to meet various regulatory and security
policies standards within an organization, encryption of data is a must along
with authentication and authorization. Encryption should be done to:

Data at rest and
Data in transit

The following figure shows both the data in rest and in transit and how
encryption enables securing the data:

Figure 15: Data Encryption

Before we enable authentication and authorization, it's important to secure the
channel through that the credentials would pass through. For this the channel
should be secured paving way for data in transit to be transferred in an
encrypted fashion. Various technologies in the Hadoop ecosystem
communicated with one another using a variety of protocols such as RPC,
TCP/IP, HTTP(S) and so on According to the protocol, the channel securing
methodologies differ and would have to be dealt with accordingly.

Hadoop key management server
Apache Hadoop now include an in built Key Management Server (KMS)
that secures the transport protocol over HTTP. It provides both client and
server REST APIs for securing the communication channel.

The Hadoop Key Management Server is basically a Jetty application that
includes support for java key store that can hold multiple keys and also
includes API to access and manage key metadata. From functional security
perspective, it includes Access Control List (ACL) based access as well as
support for multiple authentication and authorization protocols like
Kerberos, Active Directory and LDAP coupled with SSL based channel
security. Hadoop KMS include end to end data encryptions that covers both
data at rest and data in motion. As soon as data is written into HDFS, it is
encrypted using specific algorithm and assigned to a security zone.

Figure 16: Hadoop Key Management Server

Metadata management and
governance
These are two areas, metadata management and governance, in that many
technologies in big data space needs to innovate and evolve a lot. Some
technologies does provide some limited functionality in these areas but isn't
sufficient enough to be called as a solution suited for enterprises. However,
recently there are some serious work being undertaken by various players in
this area to address these two areas. We will discuss a bit of these in this
section. Before going further, let's first understand these two terminologies in
detail along with some other making more sense in this area.

Metadata
Metadata is structured information that describes, explains, locates, or
otherwise makes it easier to retrieve, use, or manage an information
resource. Metadata is often called data about data or information about
information.

- National Information Standards Organization (http://www.niso.org/publications/
press/UnderstandingMetadata.pdf)

As detailed in Wikipedia (https://en.wikipedia.org/wiki/Metadata), metadata is
classified into three:

Descriptive metadata: information/data for a resource making it
possible for discovery and identification falls under this category of
metadata
Structural metadata: information/data of a container that describes
how compound objects inside is composed or build or put together
Administrative metadata: information/data that helps in managing a
resource and contains data attributes like, when the object was created,
it's filetype and other technical information

Metadata management is really a crucial capability when you deal with data.
When the data becomes big (volume) and of different types (variety), this
capability becomes even more important. Our Data Lake is based on many
Hadoop ecosystem technologies and is diverse and surely requires such a
management. Also, our Data Lake doesn't keep data in a normalized fashion
and this makes replicas of data with a variety of models to cater to consuming
applications.For a Data Lake, this is very important as it allows enterprises to
ensure some of the important non functional requirement, important ones are
as follows:

Discovery of data: Allows to discover data and its various properties
Quality of data: From where it arrives into the Data Lake and how
reliable these data is?

http://www.niso.org/publications/press/UnderstandingMetadata.pdf
https://en.wikipedia.org/wiki/Metadata

Availability of data: Availability of these data

It has many advantages, but for it to deliver these values, these metadata need
to be managed well and time has to be invested to make sure that their quality
(correctness and completeness) and availability is also met time and again.

Data governance
Data governance is a control that ensures that the data entry by an
operations team member or by automated processes meets precise standards,
such as a business rule, a data definition and data integrity constraints in the
data model.

Data governance is a set of processes that ensures that important data assets
are formally managed throughout the enterprise. Data governance ensures
that data can be trusted and that people can be made accountable for any
adverse event that happens because of low data quality.

- Wikipedia

Data governance gives the right control and trust in the data present inside the
Data Lake. This gives the confidence to the business performing analytics
against the Data Lake to make important business decisions and process
changes as suggested by the Data Lake.

The importance of data governance have even prompted enterprises to create
a new role in the organization know as Chief Data Officer (CDO) to govern
and control the data in the enterprise.

Data lineage
Data lineage is defined as a data life cycle that includes the data's origins
and where it moves over time. It describes what happens to data as it goes
through diverse processes. It helps provide visibility into the data analytics
pipeline and simplifies tracing errors back to their sources.

- Wikipedia

Data lineage in a visual representation tracks data flow from origin to
destination. Metadata is a key aspect to have such a visual representation.
Data lineage also represents various processes and transformation in the data
flow and also tracks various dependencies in the flow.

Data lineage also identifies the right source within an enterprise having
multiple systems for a particular data element. It helps in avoiding data
redundancy and establishes data quality and it's completeness.

How can we achieve?
Some of the options by that this can be achieved are detailed briefly. This is
just our opinion and in no way authoritative information. We hope we have
been able to convey the importance of metadata management and
governance.

Apache Atlas
Atlas is a scalable and extensible set of core foundational governance
services – enabling enterprises to effectively and efficiently meet their
compliance requirements within Hadoop and allows integration with the
whole enterprise data ecosystem.

- http://atlas.apache.org/

As of writing this book, Apache Atlas is an incubating project in the Apache
Software Foundation, by Hortonworks. The project is aimed at solving
data governance issue in Apache Hadoop and also helps integrating well with
other enterprise data applications in the organization.

High-level Atlas architecture as detailed in http://atlas.apache.org/Architecture.html
is as given in the following figure:

There are few other existing commercial offerings in this space like
Informatica with Big Data adaptors that can track lineage of information
across the information lifecycle. Similar capabilities are being developed by
various Big Data technology providers like Cloudera, Hortonworks and
MapR. This capability enables effective governance around information
architecture and handling.

http://atlas.apache.org/
http://atlas.apache.org/Architecture.html

Figure 17: High level architecture of Apache Atlas

Let's quickly run through the working (layers) of Atlas from bottom up. The
Atlas core has four blocks:

Ingest/Export: as the name suggest it's the component that ingests and
exports the metadata. As shown in the previous figure these are stored in
the metadata store
Type System: Atlas allows to define the model of how metadata need to
be stored. It uses so called type to do that and this block allows doing
exactly this functionality.
Graph Engine: metadata in Atlas is stored in the graph model in Atlas
and this is the block that allows to do this.
Titan: Atlas uses Titan (http://titan.thinkaurelius.com/) as the graph
database to store the metadata.

The next layer namely Integration is the layer that allows so called integration
between Atlas and eternal components. The following are the two ways by
that Atlas can be contacted with:

API: Most of the functions in Atlas is exposed as a REST API and this

http://titan.thinkaurelius.com/

component allows this to happen
Messaging: Atlas can also be contacted or rather integrated using classic
messaging and it uses Kafka as the topic to do this

Apache Atlas out of the box supports variety of sources to collect the
metadata. The following are the ones supported out of box as of now:

Hive: http://atlas.apache.org/Bridge-Hive.html
Sqoop: http://atlas.apache.org/Bridge-Sqoop.html
Falcon: http://atlas.apache.org/Bridge-Falcon.html
Storm: http://atlas.apache.org/StormAtlasHook.html

There are applications that serve as window to Atlas. They are:

Admin UI: Web application using that Atlas can be administered
Ranger Tag based Policies: Ranger can be integrated with Atlas for
security policy governance
Business Taxonomy: Component that allows connecting business
objects with the metadata stored in Atlas

http://atlas.apache.org/Bridge-Hive.html
http://atlas.apache.org/Bridge-Sqoop.html
http://atlas.apache.org/Bridge-Falcon.html
http://atlas.apache.org/StormAtlasHook.html

WhereHows
WhereHows is a metadata management tool used within LinkedIn, open
source under Apache License recently, which we feel can be used to achieve
metadata management and governance. Usage of WhereHows is an opinion
that we might consider in our Data Lake implementation to achieve this very
important capability.

WhereHows is a data discovery and lineage tool built at LinkedIn. It
integrates with all the major data processing systems and collects both
catalog and operational metadata from them.

- WhereHows Github project

More detail on this project could be found in their Github project (https://github
.com/linkedin/WhereHows).

https://github.com/linkedin/WhereHows

Thoughts on Data Auditing
In perspective of Data Lake, auditing is quite an important feature needed.
The data comes from various sources, various departments, various asset
classification (secret, public and so on) and just because of these variations,
some data requires special security requirements and handling. Certain data
in the lake need tracking of changes that it undergo as well as who accesses
that for various legal and contractual aspects.

In the source system, data is kept for time it is really necessary to carry day to
day activity (production period). After that, the data is usually categorized as
non-production in nature and archived or taken offline. For a Data Lake, there
isn't really a concept of archived data and because of this the data needs
access control and auditing (changes that it undergoes like various
transformation and so on) at all times. Not all data in the lake might require
this, but some data does require it and have to be dealt with.

Doing this is a big ask but it will benefit in long run, especially for data that
is categorised as highly secure. Auditing requires capturing of old data and
the changed (new) data, along with some metadata such as who has done the
change, when was it done and so on.

The Data Lake as detailed earlier could be zoned according to data asset
classification (high, medium, low) and then auditing can be enabled for data
that demands it. Once the auditing is enabled, according to certain rules
configured, the lake should be capable of triggering appropriate alerts to
admins and also produce reports showing risks and compliance as the case
may be.

Having all the preceding capabilities completes the auditing requirement. To
recap, these are the ones:

Appropriate controls to access data
Tracking data change
The capability to trigger risks based on configured rules

Configuring Apache Atlas (we briefly discussed this technology earlier)
along with Apache Ranger (again in security section we discussed this
technology in brief) could give us the data auditing capability that we are
looking for.

Atlas does the necessary auditing function and Ranger can do the
authorization aspect for the data in the Data Lake.

Thoughts on data traceability
Traceability is the ability to verify the history, location, or application of an
item by means of documented recorded identification.

- Wikipedia

Data traceability means the path followed by data in moving from one
location (origin) to another (destination), various processes and
transformation it undergoes while doing so before reaching its intended
destination. We have already seen what data lineage is, so what is the
difference between lineage and traceability?

Data lineage is often associated with metadata management and governance
and has a difference to what data traceability means.

Data lineage is more technical in nature and shows each and every important
step the data undergoes when going from origin to destination. This is a very
important capability/resource for a technical team but doesn't give much
sense to a non-technical business or other users in the enterprise.

Data traceability brings a non-technical layer on top of this to bring enough
details in a non-technical manner to a variety of users in the enterprise.

There isn't a tool that we can suggest to do this automatically but this has to
be maintained and managed as a holistic diagram and shared with different
users in different departments, so that when they have to take any decisions
for the enterprise, they are well aware of its repercussions to data and other
department dependencies.

Knowing more about Serving Layer
The layer in our Data Lake that interacts with the outside world is the serving
layer. The layer where data in the lake is served to varied number for people
according to the requirement. We will discuss in brief some of the important
aspects that needs to be considered in regards to this layer. This layer does
employ a number of technologies to help serve data to the end users. Most of
the technologie fall in the category of persistent store apt for the data it
serves. It can have relational databases, NoSQL databases, document stores,
Key-Value stores, Column databases and so on.

Principles of Serving Layer
We have delved a bit deep into the serving layer in part 1 of this book. This is
just a recap as these principles drive choice of various technologies in this
layer.

Fast access/high performance: capability of serving data at high pace
to the end users
Low latency reads and updates: Reading and updating data with
lowest latency possible enabling faster results to the end users
Capability of random reads: Indexing capability allowing random
reads and also serving small portion of the huge data set quite fast
High scalability: Serving layer is window to the Data Lake and because
of this it has to be highly scalable to serve a variety of use cases to a
variety of customers
Fault tolerant: Over the period the dependency on Data Lake for an
enterprise can grow and because of this, it has to be fault tolerant to keep
serving people and their use case
Capable of serving multiple models (same data different models):
Denormalized data model, helping in serving the apt data to the end
users by doing appropriate pre-computation and storing

Service Types
In serving layer one of the ways by that you can expose data for analysis is
by exposing Representational State Transfer (REST) endpoints over
HTTP(S). You could very well expose web services based on Simple Object
Access Protocol (SOAP). that option is better, REST or SOAP, is not the
question to be answered here. We are using REST over SOAP because of
some advantages as follows:

REST is easy compared to SOAP
REST can exposed services in various data formats, JSON being one of
them and is considered lightweight and easy on network and
easier/faster to parse
Works quite well with the internet protocol (HTTP)
Using RESTful services over HTTP brings in all advantages of inherent
HTTP protocol like:

Understood by many technologies
Can be cached (many technology support this by default)
Security over wire using SSL/TLS
Can use HTTP default methods like PUT, PATCH, POST, GET and DELETE
to deal with resources
Various encryption methodologies can be used, which are well
established

Various services could be exposed from the serving layer. We are
categorising services exposed from this layer into two, data services and
business services.

GraphQL
Since we have already covered why we have chosen REST over SOAP, we
thought we have to definitely bring GraphQL as well into a brief discussion.

One of the main requirements from a Data Lake is to cater to a variety of
consumers. Each consumer has different requirements on what are the
attributes that they want and in what format. Usually according to
requirement of the consumer more endpoints have to be created. Over the
period of time this can grow and can soon become a maintenance problem.

GraphQL takes out some aspects of this but not having to write different
services according to attribute requirements for a model catering to a
consumer.

GraphQL is a query language for APIs and a runtime for fulfilling those
queries with your existing data. GraphQL provides a complete and
understandable description of the data in your API, gives clients the power to
ask for exactly what they need and nothing more, makes it easier to evolve
APIs over time, and enables powerful developer tools.

- http://graphql.org/

GraphQL can be indeed considered providing a layer on top of existing
REST endpoints to deal with diverse requirements for a model catering to
consumer requirements (especially filtering attributes from a model).

http://graphql.org/

Data Lake with REST API
Various data models in the Data Lake could be exposed in the form of
RESTful endpoints over HTTP(S) serving data in the form of JSON. This is
the main way by that we are exposing our services for the end users.

Documenting web services is quite a tedious job. If these exposed web
services are not documented, the lake can soon become like a black box and
wouldn't be useful as no one know what exactly is in there.

Swagger is a very powerful and open source framework using that
documenting REST endpoints can be really painless.

Swagger is a powerful open source framework backed by a large ecosystem
of tools that helps you design, build, document, and consume your RESTful
APIs.

- http://swagger.io/

Each API can be quite easily documented using Swagger. If you enterprise
has an API gateway, you could very well expose the API’s in API gateway
and again can use the documentation done in Swagger as most of these
gateways support Swagger inherently.

Business services
Data lake is never used as a store (persistence mechanism) for transactional
systems. However, many business services exposed in the Data Lake can be
used by OLTP systems to cater many use case requirements. Business
services typically consume multiple data services to provide a business
capability, while data services operate at data level, ensuring that the data is
exposed in the its most natural form from the data platform, without any
influence of business logic or business processing. Business logic and
business processing should happen at Business services level so that we can
achieve a loosely coupled services ecosystem while keeping data services at
its purest forms.

One of the examples that we could think of around Business Service is as
follows:

Consider you have an OLTP application used for selling a product. You have
already pumped good amount of data in your Data Lake and have analytic
logic build in for finding recommended products for a customer. This product
recommendation could be exposed as a business endpoint (REST over
HTTP) and could be sued by your OLTP application to show product
recommendation when customer is in your website. This recommendation
analysis in Data Lake can make use of really old customer behaviour data
(this data being old would have already gone away from production
datastore, stored in our Lambda Batch Layer) and new data (present
transaction data, in our Lambda Speed Layer, flown in real-time from the
OLTP application).

Serving Layer components
In the Data Lake both real-time transaction data as well as historic transaction
data exists in unison. Most of the analytics that needs to be done in a Data
Lake require both these data to arrive at meaningful and useful business
insights.

From Data Lake you could ask for specific services against present OLTP
data (real-time data services) as well as from old historic OLTP data (batch
data service). In our Lambda Architecture, this is achieved through Speed and
Batch layer respectively.

Data Services
As discussed before, data services provide a mechanism to deliver data based
on a contract to a consuming application over light weight protocols. This
component exists in the serving layer of a Data Lake and serves as a pull
based mechanism from the consumer applications. While the data may reflect
into the underlying data stores in near real time, it also depends on when the
consuming applications pull the data via services. Theses services being
light-weight can satisfy near real time requirements from the Data Lake
serving layer that may be populated via speed layer.

Elasticsearch & HBase
Elasticsearch is one of the data stores that can be considered for quick lookup
and near real time queries for searches, and can form a part of the serving
layer as well. What we mean by real time here is that document is available
for retrieval as soon as it is ingested. Elasticsearch supports key based
document lookup in absolute real-time as well as supports near real-time
searches as needed for data service and its contract. This storage layer should
be ideally placed behind the data services as the data store fulfilling data
requirements of the data services. It is an eventually consistent system that
does not support ACID transactions but does support lightweight optimistic
locking for minimum level of transactional consistency. This option is good
for scenarios that require partial matches and searches and need complete
document representation of data.

Other options may include NoSQL stores like HBase and Cassandra that are
proven for very fast key based lookup and can also be invoked using Java
based drivers. Both HBase and Cassandra provide column family based
storage that can facilitate access pattern based key design for real-time
lookup scenarios. The key advantage here with HBase is that it works over
HDFS storage and does not require direct attached storage like Elasticsearch.

Apache Hive & Impala
While we have seen Apache HIVE more as a Data Lake storage and query
component, this can as well play a role into the serving layer, if the data
exposed via HIVE views is a modelled data and meant for consumption by
other applications. Both types of paradigms may exist here, that is, push and
pull. Since HIVE supports access via JDBC driver, other application can pull
the processed information over JDBC channel. Also, since it is a part of
Hadoop storage layer required ETL mechanisms can be put in place for
pushing the data out of the HIVE views containing modelled data.

Apache Impala is general purpose SQL query engine (also known as
interactive SQL for Hadoop), quite an apt addition to our Data Lake
implementation. It has inherent support to a variety of Hadoop file formats
like Avro, Parquet and so on It's quite fast in it's operation and that's the main
reason for it's inclusion.

It was developed by Cloudera (based on Google’s 2010 published Dremel
paper) and then open sourced into ASF and is now incubating with a version
of 2.7.0. It has support and integration with a wide range of products in the
Hadoop ecosystem. More details on this can be found in http://impala.apache.org
/ and https://github.com/apache/incubator-impala. It's highly performant (in-
memory query execution and directly accesses data), flexible and horizontally
scalable by adding more nodes as needed. It is shipped or packaged with
most of the commercial Hadoop distributions, because of these benefits.

You should definitely consider this technology as a good addition to your
Data Lake implementation for performing fast analytical queries on large sets
of Hadoop data. Impala utilizes the same HIVE metastore and can perform
parallel queries on underlying Hadoop storage via Impala tables. Impala
tables can also be accessed using JDBC drivers, which make them viable for
data access from consuming applications. All this combined with optimized
IO usage helps queries to run faster and avoid investments into costly ETL
tools. Impala provides comparatively a more real time query execution when
compared to HIVE while utilizing the same shared resource as HIVE for

http://impala.apache.org/
https://github.com/apache/incubator-impala

shorter running jobs.

Depending on whether the data process resulting into processed data is a long
running job or a short running job, choice of HIVE or Impala view can be
made however both have very similar data serving mechanisms.

RDBMS
Mention of an RDBMS as a potential serving layer component may seem to
be unexpected, but any layer that can serve a consumer application can be
considered as a serving layer component. Many times the consumer may
want the data access using relational model. Such relational model can only
be persisted in a relational database. A Data Lake may as well need to store
processed and modelled data into a relational database as well and expose
data views to the consuming application. The primary consideration here
should be that, traditionally relational databases have not been built for Big
Data scenarios, hence the data in such serving layer components should be as
concise as possible and limited to what is required operationally to be
accessed by consumer applications.

Data exports
Exposing data using RESTful endpoints (web service) is quite useful and
functional for many use cases, but there are use cases that requires data from
the lake in a more scheduled manner, and that too, quite huge amount of data.
In that case you could even bring in Apache Sqoop as a way by that to expose
or transfer data from the lake to other consuming application’s data store.
Other mechanisms may include scheduling jobs to extract transform and load
data out of Hadoop using Map-Reduce jobs that are scheduled to be triggered
and push the data to ftp locations using scripts or ETL tools that support
HDFS integration like Talend and Pentaho’s Data Integration.

Such exports are best to be done from batch storage since batch storage is
design for such large batch processes. Running such jobs on data stores
meant for near real time scenarios, would impact the responsiveness of such
systems and their purpose.

Polyglot data access
Polyglot is a very common word in computing, which means, multiple.

In the serving layer there will be multiple data stores (persistence
mechanism) being used to store the same data in a variety of models as
dictated by the use cases. We really don't know whether there is a term like
Polyglot data access in the industry. By polyglot data access, we mean,
existence of multiple data stores in the serving layer, which are being used by
serving layer to churn various data services to the end users.

In our Data Lake we already have polyglot data access in action by using
Elasticsearch, Hive and HBase as the data access stores.

The concept of Polyglot access can be further extended into persisting parts
of information held by an object into multiple target data stores and access
them as well. There are frameworks today support such mechanisms for Big
Data technologies as well.

One of the very prominent use cases of polyglot access has been to to store
the indexes and the data separately, such that the indexing technologies are
primarily used for indexing and data technologies are primarily used for
efficient storage. There a number of options for polyglot persistence
frameworks in context of Big Data, with Hibernate like JPA interface to
enable developers to define objects using standard persistence configurations
and annotations.

Example: serving layer
Let us see an example of serving layer with data devices in action, as we have
discussed in this chapter. Data Services are expected to deliver the data from
data repositories of the serving layer. Such repositories should support fast
and random access of data; Elasticsearch could be one such repository.

Let us build data services over and above the data that we have ingested into
Elasticsearch server in the previous chapter, wherein we had ingested
customer, address and contact data. For this example, we will build a Spring
Boot based JAX-RS 2.0 REST data services with Swagger UI that would
provide the service definitions.

This example has been covered in the project named chapter11 in the source
repository and reuses the the same data model which we have been using
throughout the book. Some of the important aspects of this example are; the
JAX-RS 2.0 annotations which we can have a quick look and the main
service implementation with Swagger annotations as shown below.

A data service implementation like this gives complete freedom as to how we
can combine the data for the single customer view. Here, we can see that the
customer service is combining the customer address and customer contact
with customer profile data and then sending the response back.

The below code shows how such services can be realized by using spring
boot with springmvc-jersey bridge dependency, so that we can leverage
standard JAX-RS 2.0 annotation. If you are new to Spring framework based
application, we would suggest just running this example to see the services in
action. The more important parts we would suggest for your focus would be,
data services as REST endpoint and how such services should be
described/documented using swagger UI. This code can be found in the file
chapter11/src/main/java/com/laketravels/ch11/service/endpoint/CustomerEndpoint.java

@Controller

@EnableAutoConfiguration

@Api(value = "customer", description = "This is the customer resource that provides"

 + " customer information ")

@Path("customer")

public class CustomerEndpoint {

private ObjectMapper MAPPER = new ObjectMapper();

public CustomerEndpoint() {

MAPPER.setSerializationInclusion(JsonInclude.Include.NON_NULL);

MAPPER.configure(MapperFeature.ACCEPT_CASE_INSENSITIVE_PROPERTIES, true);

MAPPER.configure(DeserializationFeature.FAIL_ON_UNKNOWN_PROPERTIES, false);

MAPPER.setDateFormat(new SimpleDateFormat("yyyy-MM-dd"));

 }

@Autowired

 private ESUtil esUtil;

private Logger logger = LoggerFactory.getLogger(CustomerEndpoint.class);

@Path("{customerId}")

@GET

 @ApiOperation(value = "profile", consumes = MediaType.TEXT_PLAIN, produces = MediaType.

 response = Customer.class,

 notes = "This endpoint is used to get customer profile")

public Customer getCustomer(@PathParam("customerId") String customerId) throws

return getCustomerProfile(customerId);

 }

@Path("{customerId}/address")

@GET

 @ApiOperation(value = "address", consumes = MediaType.TEXT_PLAIN, produces = MediaType.

 response = Address.class,

 notes = "This endpoint is used to get customer address")

public Address getAddress(@ApiParam(

 name = "customerId",

 required = true,

 value = "Contains customer Id"

) @PathParam("customerId") String customerId) throws IOException {

return getCustomerAddress(customerId);

 }

@Path("{customerId}/contact")

@GET

 @ApiModelProperty(required = true, dataType = "org.joda.time.LocalDate")

@ApiOperation(value = "contact", consumes = MediaType.TEXT_PLAIN, produces = MediaType.

 response = Contact.class,

 notes = "This endpoint is used to get customer contact")

public Contact getContact(@ApiParam(

 name = "customerId",

 required = true,

 value = "Contains customer Id"

) @PathParam("customerId") String customerId) throws IOException {

return getCustomerContact(customerId);

 }

private Customer getCustomerProfile(String customerId) throws IOException {

 SearchRequestBuilder reqBuilder = esUtil.getConnection().prepareSearch();

 reqBuilder.setIndices("customer").setTypes("customer");

 TermQueryBuilder termQueryBuilder = QueryBuilders.termQuery("id", customerId);

 reqBuilder.setQuery(termQueryBuilder);

 SearchHits hits = reqBuilder.get().getHits();

long numHits = hits.totalHits();

 Customer customer = null;

if (numHits > 0) {

 customer = MAPPER.readValue(hits.getAt(0).getSourceAsString(),

 Customer.class);

 customer.setAddress(getCustomerAddress(customerId));

 customer.setContact(getCustomerContact(customerId));

 }

return customer;

 }

private Address getCustomerAddress(String customerId) throws IOException {

 SearchRequestBuilder reqBuilder = esUtil.getConnection().prepareSearch();

 reqBuilder.setIndices("address").setTypes("address");

 TermQueryBuilder termQueryBuilder = QueryBuilders.termQuery("id", customerId);

 reqBuilder.setQuery(termQueryBuilder);

 SearchHits hits = reqBuilder.get().getHits();

long numHits = hits.totalHits();

 Address address = null;

if (numHits > 0) {

 address = MAPPER.readValue(hits.getAt(0).getSourceAsString(),

 Address.class);

 }

return address;

 }

private Contact getCustomerContact(String customerId) throws IOException {

 SearchRequestBuilder reqBuilder = esUtil.getConnection().prepareSearch();

 reqBuilder.setIndices("contacts").setTypes("contact");

 TermQueryBuilder termQueryBuilder = QueryBuilders.termQuery("id", customerId);

 reqBuilder.setQuery(termQueryBuilder);

 SearchHits hits = reqBuilder.get().getHits();

long numHits = hits.totalHits();

 Contact contact = null;

if (numHits > 0) {

 contact = MAPPER.readValue(hits.getAt(0).getSourceAsString(),

 Contact.class);

 }

return contact;

 }

}

Code 03: Spring Boot Service Implementation

Please run the following command to compile the project, if not already done
from the root in source repository. Please make sure that the chapter08/data-
model project folder is already compiled before compiling this project.

mvn install

Once the compilation is done, please configure chapter11/config/dev.yml as per
your environment. We can run the example by using the following command
from within the chapter11 project folder:

java -jar target/chapter11-1.0-SNAPSHOT.jar -DconfigFile=config/dev.yml -Dspring.logging.config=config/logback.xml

Once the spring boot server is initialized, navigate to the following URL to
open the swagger UI: http://localhost:8080/swagger/index.html.

Figure 18: Swagger UI Landing Page

In the swagger UI, try invoking the customer endpoint as shown next with a
customer Id and you will see a similar figure as follows: Swagger UI is the
eye through that we could see the data residing in the Data Lake. For a non-
technical person, this is a very important component and should be
considered in a Data Lake implementation:

Figure 19: Customer Service Response in Swagger UI

The complete response as provided by the service is as shown next:

Figure 20: Response from the Customer Service

In this example, we have covered the following:

We have built REST service endpoints to access customer data and all
the related entities.
All the endpoints are leveraging GET HTTP verb which in a way signifies
that all of them are read- only services. Service endpoints could also be
POST endpoints for submitting request body, which is useful if we have a
large number of input parameters.
The Swagger UI deduces the model and model schema via the
annotations and service interface in the endpoint class namely
com.laketravels.ch11.service.endpoint.CustomerEndpoint.
All the endpoints are in context of a particular customer which aligns to
some of the basic REST endpoints.

Summary
In this chapter, we brought together all the technologies and capabilities that
we have discussed throughout Part 2 of this book. We tried to explain some
important aspects with the whole Data Lake in mind. We introduced you to
certain more capabilities like metadata management, governance, auditing,
traceability and so on, which are very important one for a typical
implementation within an enterprise. We managed to give our technology
opinions for each of these capabilities but kept delving deep into it away. We
were not able to get deep into some of the technologies discussed in this
chapter intentionally to keep the book concise and to the point on main
technologies/capabilities in a Data Lake.

After reading this chapter, you would now have a full picture of an
operational Data Lake. You would also have brief idea of some other
capabilities needed for an enterprise Data Lake, which are usually omitted
when a Data Lake is first implemented in an enterprise.

These additional capabilities are required for a true Data Lake, but to cover
the scope of the book and to stay within the limit we have to let it go by
giving just the right amount of details. We haven't covered much of code in
this chapter. Some of the choices of technology are just our opinions. Please
take these with a grain of salt. Having said that, we encourage you to build
these capabilities in your Data Lake implementation and not omit these.

This chapter was quite an ask as we covered many diverse aspects in brief
and can be quite exhausting at this moment. Take a break, and let's come
back and complete next two chapter quite quickly.

Data Lake Use Case Suggestions
It's quite exhausting to write a book spanning nearly 500 pages, and its quite
a big challenge going through these pages to understand what the author has
been trying t o explain. In doing so, you would also have to do the hands-on
coding so that everything read can be put into action. Indeed, you need a
great appreciation for coming this far, going through the pages and also
getting your hands dirty in actually implementing a Data Lake, which is
considered quite a challenge as it involves myriad technologies. Hats off!
Thanks for staying with us through out the book! I hope you have enjoyed
reading every page, as we enjoyed writing each one.

This chapter aims at introducing some of the well-known data lake uses in an
enterprise. Many companies have this already in some form or other and
some are in the process of creating one.

These use cases can be considered as a way by which we prove the capability
of a data lake in an organization and then use those success stories to keep
building new use cases.

These suggestions are in no way exhaustive in nature, but we do feel that if
you have read parts 1 and 2 of this book, you are very well capable of
executing these use cases without much trouble. The area that changes is the
source data, plus the analytics your enterprise is keen on implementing in
each of the use case. However, depending on the business domains, there
could be different processing requirements from a business perspective.

Establishing cybersecurity practices
in an enterprise
Data is growing day by day. People are becoming tech savvy. Worms and
viruses are being created more often and getting stronger than ever. In such a
digital environment, enterprises need to be more vigilant with the data they
hold and also the applications that are the core of their operations/businesses.

A siloed security team is now turning itself into a full-fledged operations
centre. This team is entrusted with the role of looking at data and all
applications within an enterprise.

With such a growing scenario of data and application usage, having a
platform to monitor various security-related concerns is a must. It is this
requirement that makes construction of a data lake for security-related aspects
inevitable.

Data is ingested from a variety of sources into the data lake, and then analysts
carry out various analyses to create meaningful visualizations and act on
certain discrepancies proactively.

Having a central-lake-only security aspect monitoring can aid in identifying
breaches quite early and can be proactively acted upon. Data can be collected
for network analysis to assess security compliance and various operational
activity (more inline with security), and be dealt with according to the
security policies defined by an enterprise.

A security analyst can look at various data, visualize it in a more meaningful
manner, and then take the necessary action to deal with these threats in a
more proactive rather than reactive manner. Integrating a security lake with
other pieces of software can trigger various alerting mechanisms according to
the set rules configured within the lake. Various complex event processing
techniques and machine learning techniques could also be employed on the
arriving data to derive additional analytics, which can again be proactively

looked upon and actioned.

Apache Metron is an incubating project in ASF, sponsored by Hortonworks,
which makes use of the data lake technologies that we have discussed before,
particularly in the security landscape. The approach of building a data lake
for security is very much similar to ours, but security does require data
collection from a variety of sources which can be dealt with quite easily using
various tools and Apache Metron can then do security related threat detection
on data. Internally, Apache Metron uses many of the technologies that we
have already detailed in part 2 of this book and would be quite familiar for
you to understand. For more details on Apache Metron, we suggest you go
through the Apache official site at http://metron.apache.org/ and also the official
Apache wiki at https://cwiki.apache.org/confluence/display/METRON/Metron+Wiki.
You could also get some details on Hortonworks site in https://hortonworks.com/
apache/metron/.

Cybersecurity as an enterprise capability may broadly involve business
functions like intrusion/anomaly detection, identification of threat levels,
response to the threat with alerts/notifications, performing critical protection
activities, and recovering from the threat either by eliminating it or by
introducing quarantine mechanisms.

Figure 01: Cybersecurity Lifecycle

http://metron.apache.org/
https://cwiki.apache.org/confluence/display/METRON/Metron+Wiki
https://hortonworks.com/apache/metron/

Know the customers dealing with
your enterprise
In the age of digital transformation and digital disruption, getting to know
each customer and their preferences is key. Also, using these preferences and
choices, customizing products and offering personalized versions suitable for
a specific customer is a necessary function.

Quite often in enterprises, customer data lives in discrete business
applications and they don't necessarily exchange data with each other. Our
single customer view is one way of bringing customer data from various
sources into one and creating this so called single customer view. But that
isn't enough in this digital world as customers tend to expect more and this
demands enriching the customer data with more personalized data so as to
analyse those details and start offering products and services quite targeted
and personalized in nature. This makes products and services that are relevant
and irresistible for a customer and they also feel taken care off as these are
individually targeted as against a generic offer for a group of customers
falling into a segment.

A data lake capable of knowing a lot about the customer and their needs can
be a great asset for any business and transactional applications could seek the
help of a data lake serving layer to get customer insights and start
personalizing their whole offering.

Having a data lake capable of knowing a customer and their needs can give
the customer true omni-channel experience throughout the day whether they
are using a web application on a desktop, a mobile web application on a
mobile or a mobile app on a smartphone. This centralized lake gives that
consistency and also avoids duplicate campaigns and advertising targets.
What we mean by this is, if the customer has indicated through your web
application that they don't want a particular type of campaign, they expect
that it is also reflected in other customer interaction channels where business
connects with the customer and the centralize lake knowing these nitty-

gritties of customer choices and their preferences enables organizations to
achieve this.

The huge amount of data footprint left by the customer in various digital
platforms is quite massive to tackle in normal transaction systems, and this is
the time that a data lake as a capability for an enterprise becomes quite
significant.

In addition to data from transaction systems, there is tonnes of data that is
getting collected, like behavioral data (mostly client-side scripts) and also
data flowing in from various social media channels. In addition to behavioral
data, certain devices can capture location and gestures, which can be further
processed to support the Internet of Things (IOT) use cases with derived
recommendations and suggestions.

There is also a requirement to look for content posted in social media for a
company to analyze (sentiment analysis for that matter) and deal with them
according to a defined set of rules.

Figure 02: A typical Know Your Customer (KYC) process

Bring efficiency in warehouse
management
This is a more business-specific use case where a data lake can come in really
handy in many decision making scenarios. If your company has a production
line or is dealing with cargo and logistics, this use case can be quite relevant
and apt for data lake implementation.

In modern day warehouse, the Internet of Things (IoT) comes in all forms
and sizes. These devices could be used in various movable devices in the
warehouse, can be held in each product for tracking and monitoring and so
on. Tagging these devices is fine, but to make use of the huge amount of data
flowing from these devices, data lake is a perfect solution to collect these and
start making sense of them using a defined set of rules. This can add huge
operational efficiency in the warehouse operation, in turn increase revenue
and profit.

If this data flows in from various transactional application linked with these
IoT devices, proactively using past data analytics for new orders placed can
make sure that the warehouse is performing at optimal level. Again, if people
management system data is also integrated it can also try effectively
distributing work and putting their valuable time to good use.

Having a data lake, and properly analyzing data in it, can aid business in
redefining their business and can also help take business decisions more
confidently and promptly. These recommendations and decisions can play a
vital role for achieving a cost and time optimized services delivery. One such
indicative example is shown here:

Figure 03: Warehouse management

Developing a brand and marketing
of the enterprise
Business has changed a lot, especially in the last decade or so, and has
become more of a customer driven society. Customers want to be known well
and taken care of accordingly. Many customers are willing to share their
details just so that businesses can understand them more, start giving more
targeted offers, and also customize their services to cater to their preferences
over a variety of channels available in this digital age.

The buyer is king and you have to keep him/her happy at all times. Data
analysis in the Data Lake can help you understand customers better. It can be
used as a way to develop your brand value and used in a very good way to
engage, target and market your products.

Data analysis can help your business keep up with trends in the market in a
proactive way, helping your business make better decisions and also
proactively take new directions.

Whether you like it or not, you will have to gather data from a variety of
sources, especially publicly available data, to shape your business decisions
and analyses. This can only be possible if we have a Data Lake type setup
with huge and varied analyses possible at your fingertips. Usually, publicly
available data is of huge volume, and analysis is only possible using big data
technologies.

Bringing in new products will bring in new trends into to business and
analysis can help you do this. Analysis can help promote your company as a
brand that consumers can trust.

All of these stated things require a huge amount of research, marketing, and
advertising. A Data Lake can be one of the capabilities that could be
exploited to do exactly this. Various analyses can be used to find new
markets where you could start selling your products and expand your

marketing and brand value.

Personalization is very big these days and a data lake can help you gather
good amount of knowledge of your customer and can learn from these
analysis and start selling and targeting right products to the consumers.

Nowadays getting to know a customer's sentiments by going through his/her
interaction with social media and listening to them in a timely manner is quite
key. Your Data Lake can be the listener and can do a bit of initial filtering to
make sure that the most important customer is handled in a priority fashion,
using the latest and greatest technologies in the space of Artificial
Intelligence (AI) and Machine Learning. Handling these emotions will be the
distinctive feature, will make your brand well-known and also makes it more
valuable.

Data Lake cannot only be used to analyze your business data but also to
analyze your competitors' publicly available data; using these analyses, your
business processes and decisions could be tweaked accordingly for the
benefit of your business.

Figure 04: Brand Marketing and Offers via Sentiment Analysis

Achieve a higher degree of
personalization with customers
As detailed before in various use cases, personalization is one of the very
important aspects in the digital world.

Personalization, sometimes known as customization, consists of tailoring a
service or a product to accommodate specific individuals, sometimes tied to
groups or segments of individuals. A wide variety of organizations use
personalization to improve customer satisfaction, digital sales conversion,
marketing results, branding, and improved website metrics as well as for
advertising. Personalization is a key element in social media and
recommender systems.

-Wikipedia

This definition clearly defines what is meant by personalization. In the
modern day, customers expect them to be known by the business through a
variety of channels and in a consistent way. They need the business to
understand when they are browsing on a browser on a desktop or on mobile
phone, and when they actually come into your store or organization, through
various IoT mechanisms.

Web personalization can be considered as looking at behavior data (collected
from the user's browsing history and other client-side aspects) and real
transaction data (actual transaction data that the users have done with your
business application such as customer details, order details, payment details
and so on) from the Data Lake. Usually this transaction data is not owned by
the Data Lake; rather it is flown in from various transactional source systems
and consolidated in a holistic fashion. When browsing online, this data is
used to actually personalize the site itself or the recommendations. These
transactional applications are usually quite limited in various analyses and are
always in silos (don't really talk with other business applications and don't
know whether the other applications would have already interacted with the

customer in the past) and because of this it doesn't clearly don't have a
holistic notion of each customer. It is this aspect that a Data Lake can help
and can be used to avoid sending in a second recommendation of a product if
the customer has already declined an offer of the same nature in one of the
other channels. Say, for example, if in mobile app your business would have
pushed a campaign for a particular product via a mobile app, and the
customer has declined or not interacted. This can be used as a means to avoid
sending in same offer when the customer interacts with the business using
their website. Rather they could push another offer and see the interaction
level of the customer. This can only be possible if there is a holistic view of
 all the data in one place for various analysis purpose, which then can be used
in various transaction systems.

With more channels expected to come up in the near future, with a huge
digital footprint for each customer, this is a must and the only distinguishing
factor for any business; it should not be delayed in any way.

Bringing IoT data analysis at your
fingertips
The Internet of things (IoT) is the inter-networking of physical devices,
vehicles (also referred to as "connected devices" and "smart devices"),
buildings, and other items—embedded with electronics, software, sensors,
actuators, and network connectivity that enable these objects to collect and
exchange data.

-Wikipedia

The world of IoT is evolving at a very rapid pace. Every business has to
invest time and money in this space for various aspects to be successful or to
be on par with their competitors. The IoT churns huge amounts of data, and a
Data Lake is the only way by which you can analyze this huge volume of
data from these devices and then make sense of it for the business.

The devices would be used in various parts of business, both internal and
external and according to various set rules you could use the data from them
to carry out many useful business scenarios. For example, you could use IoT
to manage your warehouse, maintain and manage various assets in your
warehouse, track various products in your warehouse and so on. However,
this can only be possible if you have a way by which to get this frequently
flowing data from these devices and then run various rules against it to derive
meaningful insights for the business to take necessary actions.

In customer-facing stores, this devices can be installed at various parts of the
store and when they are near or in vicinity, use the customer data to start the
personalization. For example, if your customer has installed your mobile app
and has already enabled Bluetooth on their device, when they walk into your
store, the mobile device starts communicating using Bluetooth with another
Bluetooth-enabled device in your store. Using this, for example, the display
device in your store can customize and store offers more apt for customers
viewing or near the display in a subtle way without too much intrusion into

their private data. This is just one of the use cases, but there are a variety of
use cases possible using various devices available now to start using this in a
more useful manner according to business needs and desires.

More practical and useful data
archival
Any transactional system in your enterprise keeps data in the so-called
production data store, which is more relevant and needed for data-to-data
operation (also known as operational data). However, these historical data
pieces are gold mines for the business and their operation. Historical data
would give valuable insights into changing business operations and also pave
the way for various operational changes in future business operations.

Today, historical data, when not needed or moved away from the
transactional data store, is often persisted in hard tapes. The data once
persisted in hard tapes is usually ignored and lies there without any
usefulness. In place of hard tapes, Data Lakes could be used as an active
archival storage for storing data that is considered non-productive. This can
be quite useful as it is much easier to bring back this data alive if it lives in
the Data Lake, as opposed to hard tapes, which is quite hard to bring back to
life.

Compliment the existing data
warehouse infrastructure
Analysis prior to Big Data was done in a traditional Data Warehouse setup.
Big Data has paved the way for analysis to be done in a more performant
manner with a lot of flexibility. However, traditional data warehouses would
still exist for a variety of reasons going forward and are not going away soon.

A Data Lake in your organization can augment and support the data
warehouse in a variety of ways. A Data Warehouse can be used for a variety
of easy canned report generations. The business can create these on the fly
using the semantic data warehouse models on top of the transactional data
model, which the transactional application deals with on a day to day basis.

Also, certain data warehouse requirements could very well be fulfilled by
this Data Lake infrastructure and since they have huge historical data with
them, it can be quite useful in many business situations.

Achieving telecom security and
regulatory compliance
This is more of an industry specific use case wherein nationwide Telecom
companies are driven by regulatory compliance to implement all security
protocols for Law Enforcement Agencies for investigation of any cyber crime
and to perform occasional audits. These regulations have become much more
strict with the advancement of technologies, social footprints and multiple
ways by which cyber criminals can perform unethical activities. This has
greatly expanded the scope of Telecom companies from regulatory
compliance perspective, which today gets into more real-time and percolation
driven detection along with batch analysis of network data. The data records
can be analyzed in depth to establish a communication graph for every caller
over a period of time such that this time series data can be replayed whenever
required. These mechanisms prove very useful to Law Enforcement Agencies
for their investigations. Here we are discussing massive data that flows
through networks of various telecom providers, which may add up to
petabytes of data across couple of months. The only way to achieve all the
capabilities discussed above is by leveraging Big Data capabilities for data
collection, processing and analysis.

Figure 05: Communication Graph Analysis

Summary
This chapter has intended to give you several data lake use cases to think of.
We made sure that we haven't tied any of these use cases to a particular
industry. We hope that reading through these use cases gives you enough
brain trickles to derive your own use cases for your organization and their
operation.

We hope we have successfully sufficient additional use cases, which could be
used as an input for you to convey the real value of a Data Lake to your
organization's leadership/management team.

	Preface
	What this book covers
	What you need for this book
	Who this book is for
	Conventions
	Reader feedback
	Customer support
	Downloading the example code
	Errata
	Piracy
	Questions

	Introduction to Data
	Exploring data
	What is Enterprise Data?
	Enterprise Data Management
	Big data concepts
	Big data and 4Vs

	Relevance of data
	Quality of data
	Where does this data live in an enterprise?
	Intranet (within enterprise)
	Internet (external to enterprise)
	Business applications hosted in cloud
	Third–party cloud solutions
	Social data (structured and unstructured)

	Data stores or persistent stores (RDBMS or NoSQL)
	Traditional data warehouse
	File stores

	Enterprise’s current state
	Enterprise digital transformation
	Enterprises embarking on this journey
	Some examples

	Data lake use case enlightenment
	Summary

	Comprehensive Concepts of a Data Lake
	What is a Data Lake?
	Relevance to enterprises

	How does a Data Lake help enterprises?
	Data Lake benefits

	How Data Lake works?
	Differences between Data Lake and Data Warehouse
	Approaches to building a Data Lake
	Lambda Architecture-driven Data Lake
	Data ingestion layer - ingest for processing and storage
	Batch layer - batch processing of ingested data
	Speed layer - near real time data processing
	Data storage layer - store all data
	Serving layer - data delivery and exports
	Data acquisition layer - get data from source systems
	Messaging Layer - guaranteed data delivery
	Exploring the Data Ingestion Layer
	Exploring the Lambda layer
	Batch layer
	Speed layer
	Serving layer
	Data push
	Data pull

	Data storage layer
	Batch process layer
	Speed layer
	Serving layer

	Relational data stores
	Distributed data stores

	Summary

	Lambda Architecture as a Pattern for Data Lake
	What is Lambda Architecture?
	History of Lambda Architecture
	Principles of Lambda Architecture
	Fault-tolerant principle
	Immutable Data principle
	Re-computation principle

	Components of a Lambda Architecture
	Batch layer
	Speed layer
	CAP Theorem
	Eventual consistency

	Serving layer

	Complete working of a Lambda Architecture
	Advantages of Lambda Architecture
	Disadvantages of Lambda Architectures
	Technology overview for Lambda Architecture
	Applied lambda
	Enterprise-level log analysis
	Capturing and analyzing sensor data
	Real-time mailing platform statistics
	Real-time sports analysis
	Recommendation engines
	Analyzing security threats
	Multi-channel consumer behaviour

	Working examples of Lambda Architecture
	Kappa architecture
	Summary

	Applied Lambda for Data Lake
	Knowing Hadoop distributions
	Selection factors for a big data stack for enterprises
	Technical capabilities
	Ease of deployment and maintenance
	Integration readiness

	Batch layer for data processing
	The NameNode server
	The secondary NameNode Server
	Yet Another Resource Negotiator (YARN)
	Data storage nodes (DataNode)
	Speed layer
	Flume for data acquisition
	Source for event sourcing
	Interceptors for event interception
	Channels for event flow
	Sink as an event destination

	Spark Streaming
	DStreams
	Data Frames
	Checkpointing

	Apache Flink

	Serving layer
	Data repository layer
	Relational databases
	Big data tables/views
	Data services with data indexes
	NoSQL databases

	Data access layer
	Data exports
	Data publishing

	Summary

	Data Acquisition of Batch Data using Apache Sqoop
	Context in data lake - data acquisition
	Data acquisition layer
	Data acquisition of batch data - technology mapping

	Why Apache Sqoop
	History of Sqoop
	Advantages of Sqoop
	Disadvantages of Sqoop

	Workings of Sqoop
	Sqoop 2 architecture
	Sqoop 1 versus Sqoop 2
	Ease of use
	Ease of extension
	Security
	When to use Sqoop 1 and Sqoop 2

	Functioning of Sqoop
	Data import using Sqoop
	Data export using Sqoop

	Sqoop connectors
	Types of Sqoop connectors

	Sqoop support for HDFS
	Sqoop working example
	Installation and Configuration
	Step 1 - Installing and verifying Java
	Step 2 - Installing and verifying Hadoop
	Step 3 - Installing and verifying Hue
	Step 4 - Installing and verifying Sqoop
	Step 5 - Installing and verifying PostgreSQL (RDBMS)
	Step 6 - Installing and verifying HBase (NoSQL)

	Configure data source (ingestion)
	Sqoop configuration (database drivers)
	Configuring HDFS as destination
	Sqoop Import
	Import complete database
	Import selected tables
	Import selected columns from a table
	Import into HBase

	Sqoop Export
	Sqoop Job
	Job command
	Create job
	List Job
	Run Job
	Create Job

	Sqoop 2
	Sqoop in purview of SCV use case

	When to use Sqoop
	When not to use Sqoop
	Real-time Sqooping: a possibility?
	Other options
	Native big data connectors
	Talend
	Pentaho’s Kettle (PDI - Pentaho Data Integration)

	Summary

	Data Acquisition of Stream Data using Apache Flume
	Context in Data Lake: data acquisition
	What is Stream Data?
	Batch and stream data
	Data acquisition of stream data - technology mapping
	What is Flume?
	Sqoop and Flume

	Why Flume?
	History of Flume
	Advantages of Flume
	Disadvantages of Flume

	Flume architecture principles
	The Flume Architecture
	Distributed pipeline - Flume architecture
	Fan Out - Flume architecture
	Fan In - Flume architecture
	Three tier design - Flume architecture
	Advanced Flume architecture
	Flume reliability level

	Flume event - Stream Data
	Flume agent
	Flume agent configurations

	Flume source
	Custom Source

	Flume Channel
	Custom channel

	Flume sink
	Custom sink

	Flume configuration
	Flume transaction management
	Other flume components
	Channel processor
	Interceptor
	Channel Selector
	Sink Groups
	Sink Processor
	Event Serializers

	Context Routing
	Flume working example
	Installation and Configuration
	Step 1: Installing and verifying Flume
	Step 2: Configuring Flume
	Step 3: Start Flume

	Flume in purview of SCV use case
	Kafka Installation
	Example 1 - RDBMS to Kafka
	Example 2: Spool messages to Kafka
	Example 3: Interceptors
	Example 4 - Memory channel, file channel, and Kafka channel

	When to use Flume
	When not to use Flume
	Other options
	Apache Flink
	Apache NiFi

	Summary

	Messaging Layer using Apache Kafka
	Context in Data Lake - messaging layer
	Messaging layer
	Messaging layer - technology mapping
	What is Apache Kafka?

	Why Apache Kafka
	History of Kafka
	Advantages of Kafka
	Disadvantages of Kafka

	Kafka architecture
	Core architecture principles of Kafka
	Data stream life cycle
	Working of Kafka
	Kafka message
	Kafka producer
	Persistence of data in Kafka using topics
	Partitions - Kafka topic division
	Kafka message broker
	Kafka consumer
	Consumer groups

	Other Kafka components
	Zookeeper
	MirrorMaker

	Kafka programming interface
	Kafka core API’s
	Kafka REST interface

	Producer and consumer reliability
	Kafka security
	Kafka as message-oriented middleware
	Scale-out architecture with Kafka
	Kafka connect
	Kafka working example
	Installation
	Producer - putting messages into Kafka
	Kafka Connect

	Consumer - getting messages from Kafka
	Setting up multi-broker cluster
	Kafka in the purview of an SCV use case

	When to use Kafka
	When not to use Kafka
	Other options
	RabbitMQ
	ZeroMQ
	Apache ActiveMQ

	Summary

	Data Processing using Apache Flink
	Context in a Data Lake - Data Ingestion Layer
	Data Ingestion Layer
	Data Ingestion Layer - technology mapping
	What is Apache Flink?

	Why Apache Flink?
	History of Flink
	Advantages of Flink
	Disadvantages of Flink

	Working of Flink
	Flink architecture
	Client
	Job Manager
	Task Manager
	Flink execution model

	Core architecture principles of Flink
	Flink Component Stack
	Checkpointing in Flink
	Savepoints in Flink
	Streaming window options in Flink
	Time window
	Count window
	Tumbling window configuration
	Sliding window configuration

	Memory management

	Flink API’s
	DataStream API
	Flink DataStream API example
	Streaming connectors

	DataSet API
	Flink DataSet API example
	Table API

	Flink domain specific libraries
	Gelly - Flink Graph API
	FlinkML
	FlinkCEP

	Flink working example
	Installation
	Example - data processing with Flink
	Data generation
	Step 1 - Preparing streams
	Step 2 - Consuming Streams via Flink
	Step 3 - Streaming data into HDFS

	Flink in purview of SCV use cases
	User Log Data Generation
	Flume Setup
	Flink Processors

	When to use Flink
	When not to use Flink
	Other options
	Apache Spark
	Apache Storm
	Apache Tez

	Summary

	Data Store Using Apache Hadoop
	Context for Data Lake - Data Storage and lambda Batch layer
	Data Storage and the Lambda Batch Layer
	Data Storage and Lambda Batch Layer - technology mapping
	What is Apache Hadoop?

	Why Hadoop?
	History of Hadoop
	Advantages of Hadoop
	Disadvantages of Hadoop

	Working of Hadoop
	Hadoop core architecture principles
	Hadoop architecture
	Hadoop architecture 1.x
	Hadoop architecture 2.x

	Hadoop architecture components
	HDFS
	YARN
	MapReduce
	Hadoop ecosystem

	Hadoop architecture in detail

	Hadoop ecosystem
	Data access/processing components
	Apache Pig
	Apache Hive

	Data storage components
	Apache HBase

	Monitoring, management and orchestration components
	Apache ZooKeeper
	Apache Oozie
	Apache Ambari

	Data integration components
	Apache Sqoop
	Apache Flume

	Hadoop distributions
	HDFS and formats
	Hadoop for near real-time applications
	Hadoop deployment modes
	Hadoop working examples
	Installation
	Data preparation
	Hive installation
	Example - Bulk Data Load
	File Data Load
	RDBMS Data Load

	Example - MapReduce processing
	Text Data as Hive Tables
	Avro Data as HIVE Table

	Hadoop in purview of SCV use case
	Initial directory setup
	Data loads
	Data visualization with HIVE tables

	When not to use Hadoop
	Other Hadoop Processing Options
	Summary

	Indexed Data Store using Elasticsearch
	Context in Data Lake: data storage and lambda speed layer
	Data Storage and Lambda Speed Layer
	Data Storage and Lambda Speed Layer: technology mapping

	What is Elasticsearch?
	Why Elasticsearch
	History of Elasticsearch
	Advantages of Elasticsearch
	Disadvantages of Elasticsearch

	Working of Elasticsearch
	Elasticsearch core architecture principles
	Elasticsearch terminologies
	Document in Elasticsearch
	Index in Elasticsearch
	What is Inverted Index?

	Shard in Elasticsearch
	Nodes in Elasticsearch
	Cluster in Elasticsearch

	Elastic Stack
	Elastic Stack - Kibana
	Elastic Stack - Elasticsearch
	Elastic Stack - Logstash
	Elastic Stack - Beats
	Elastic Stack - X-Pack

	Elastic Cloud
	Apache Lucene
	How Lucene works

	Elasticsearch DSL (Query DSL)
	Important queries in Query DSL

	Nodes in Elasticsearch
	Elasticsearch - master node
	Elasticsearch - data node
	Elasticsearch - client node

	Elasticsearch and relational database
	Elasticsearch ecosystem
	Elasticsearch analyzers
	Built-in analyzers
	Custom analyzers

	Elasticsearch plugins

	Elasticsearch deployment options
	Clients for Elasticsearch
	Elasticsearch for fast streaming layer
	Elasticsearch as a data source
	Elasticsearch for content indexing
	Elasticsearch and Hadoop
	Elasticsearch working example
	Installation
	Creating and Deleting Indexes
	Indexing Documents
	Getting Indexed Document
	Searching Documents
	Updating Documents
	Deleting a document
	Elasticsearch in purview of SCV use case
	Data preparation
	Initial Cleanup
	Data Generation

	Customer data import into Hive using Sqoop
	Data acquisition via Flume into Kafka channel
	Data ingestion via Flink to HDFS and Elasticsearch
	Packaging via POM file
	Avro schema definitions
	Schema deserialization class
	Writing to HDFS as parquet files

	Writing into Elasticsearch
	Command line arguments

	Flink deployment
	Parquet data visualization as Hive tables
	Data indexing from Hive
	Query data from ES (customer, address, and contacts)

	When to use Elasticsearch
	When not to use Elasticsearch
	Other options
	Apache Solr

	Summary

	Data Lake Components Working Together
	Where we stand with Data Lake
	Core architecture principles of Data Lake
	Challenges faced by enterprise Data Lake
	Expectations from Data Lake
	Data Lake for other activities
	Knowing more about data storage
	Zones in Data Storage
	Data Schema and Model
	Storage options
	Apache HCatalog (Hive Metastore)

	Compression methodologies
	Data partitioning

	Knowing more about Data processing
	Data validation and cleansing
	Machine learning
	Scheduler/Workflow
	Apache Oozie
	Database setup and configuration
	Build from Source
	Oozie Workflows
	Oozie coordinator

	Complex event processing

	Thoughts on data security
	Apache Knox
	Apache Ranger
	Apache Sentry

	Thoughts on data encryption
	Hadoop key management server

	Metadata management and governance
	Metadata
	Data governance
	Data lineage
	How can we achieve?
	Apache Atlas
	WhereHows

	Thoughts on Data Auditing
	Thoughts on data traceability
	Knowing more about Serving Layer
	Principles of Serving Layer
	Service Types
	GraphQL
	Data Lake with REST API
	Business services

	Serving Layer components
	Data Services
	Elasticsearch & HBase
	Apache Hive & Impala
	RDBMS

	Data exports
	Polyglot data access
	Example: serving layer

	Summary

	Data Lake Use Case Suggestions
	Establishing cybersecurity practices in an enterprise
	Know the customers dealing with your enterprise
	Bring efficiency in warehouse management
	Developing a brand and marketing of the enterprise
	Achieve a higher degree of personalization with customers
	Bringing IoT data analysis at your fingertips
	More practical and useful data archival
	Compliment the existing data warehouse infrastructure
	Achieving telecom security and regulatory compliance
	Summary

