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PREFACE

The last thing one discovers in composing a work is what to put irst.

—Blaise Pascal

The intended audience for this book are students who like probability. With that pre-

requisite, I am conident that you will love stochastic processes.

Stochastic, or random, processes is the dynamic side of probability. What dif-

ferential equations is to calculus, stochastic processes is to probability. The material

appeals to those who like applications and to those who like theory. It is both excellent

preparation for future study, as well as a terminal course, in the sense that we do not

have to tell students to wait until the next class or the next year before seeing the good

stuff. This is the good stuff! Stochastic processes, as a branch of probability, speaks

in the language of rolling dice, lipping coins, and gambling games, but in the service

of applications as varied as the spread of infectious diseases, the evolution of genetic

sequences, models for climate change, and the growth of the World Wide Web.

The book assumes that the reader has taken a calculus-based probability course and

is familiar with matrix algebra. Conditional probability and conditional expectation,

which are essential tools, are offered in the introductory chapter, but may be skimmed

over depending upon students’ background. Some topics assume a greater knowledge

of linear algebra than basic matrices (such as eigenvalues and eigenvectors) but these

are optional, and relevant sections are starred. The book does not assume background

in combinatorics, differential equations, or real analysis. Necessary mathematics is

introduced as needed.

A focus of this book is the use of simulation. I have chosen to use the popular statis-

tical freeware R, which is an accessible interactive computing environment. The use
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of simulation, important in its own right for applied work and mathematical research,

is a powerful pedagogical tool for making theoretical concepts come alive with prac-

tical, hands-on demonstrations. It is not necessary to use R in order to use this book;

code and script iles are supplemental. However, the software is easy—and fun—to

learn, and there is a tutorial and exercises in an appendix for bringing students up to

speed.

The book contains more than enough material for a standard one-semester course.

Several topics may lend themselves to individual or group projects, such as card shuf-

ling, perfect sampling (coupling from the past), queueing theory, stochastic calculus,

martingales, and stochastic differential equations. Such specialized material is con-

tained in starred sections.

An undergraduate textbook poses many challenges. I have struggled with trying

to ind the right balance between theory and application, between conceptual under-

standing and formal proof. There are, of course, some things that cannot be said.

Continuous-time processes, in particular, require advanced mathematics based on

measure theory to be made precise. Where these subjects are presented I have empha-

sized intuition over rigor.

Following is a synopsis of the book’s nine chapters.

Chapter 1 introduces stochastic and deterministic models, the generic features of

stochastic processes, and simulation. This is essential material. The second part of

the chapter treats conditional probability and conditional expectation, which can be

reviewed at a fast pace.

The main features of discrete-timeMarkov chains are covered in Chapters 2 and 3.

Many examples of Markov chains are introduced, and some of them are referenced

throughout the book. Numerical and simulation-based methods motivate the discus-

sion of limiting behavior. In addition to basic computations, topics include stationary

distributions, ergodic and absorbing chains, time reversibility, and the strong Markov

property. Several important limit theorems are discussed in detail, with proofs given

at the end of the chapter. Instructors may choose to limit how much time is spent on

proofs.

Branching processes are the topic of Chapter 4. Although branching processes

are Markov chains, the methods of analysis are different enough to warrant a sepa-

rate chapter. Probability-generating functions are introduced, and do not assume prior

exposure.

The focus of Chapter 5 is Markov chain Monte Carlo, a relatively new topic but

one with exponentially growing application. Instructors will ind many subjects to

pick and choose. Several case studies make for excellent classroom material, in par-

ticular (i) a randomized method for decoding text, from Diaconis (2009), and (ii) an

application that combines ecology and counting matrices with ixed row and column

totals, based on Cobb and Chen (2003). Other topics include coupling from the past,

card shufling, and rates of convergence of Markov chains.

Chapter 6 is devoted to the Poisson process. The approach emphasizes three alter-

nate deinitions and characterizations, based on the (i) counting process, (ii) arrival

process, and (iii) ininitesimal description. Additional topics are spatial processes,

nonhomogeneous Poisson processes, embedding, and arrival time paradoxes.
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Continuous-time Markov chains are discussed in Chapter 7. For continuous-time

stochastic processes, here and in Chapter 8, there is an emphasis on intuition,

examples, and applications. In addition to basic material, there are sections

on queueing theory (with Little’s formula), absorbing processes, and Poisson

subordination.

Brownian motion is the topic of Chapter 8. The material is more challenging.

Topics include the invariance principle, transformations, Gaussian processes, mar-

tingales, and the optional stopping theorem. Examples include scoring in basketball

and animal tracking. The Black–Scholes options pricing formula is derived.

Chapter 9 is a gentle introduction to stochastic calculus.Gentlemeans no measure

theory, sigma ields, or iltrations, but an emphasis on examples and applications.

I decided to include this material because of its growing popularity and application.

Stochastic differential equations are introduced. Simulation and numerical methods

help make the topic accessible.

Book appendices include (i) getting started with R, with exercises, (ii) probability
review, with short sections on the main discrete and continuous probability distribu-

tions, (iii) summary table of common probability distributions, and (iv)matrix algebra

review. Resources for students include a suite of R functions and script iles for gen-

erating many of the processes from the book.

The book contains more than 200 examples, and about 600 end-of-chapter

exercises. Short solutions to most odd-numbered exercises are given at the end of

the book. A web site www.people.carleton.edu/rdobrow/stochbook is established. It

contains errata and relevant iles. All the R code and script iles used in the book are

available at this site. A solutions manual with detailed solutions to all exercises is

available for instructors.

Much of this book is a relection of my experience teaching the course over the

past 10 years. Here is a suggested one-semester syllabus, which I have used.

1. Introduction and review—1.1, 1.2, 1.3 (quickly skim 1.4 and 1.5)

2. One-day introduction to R—Appendix A

3. Markov chains—All of chapters 2 and 3

4. Branching processes—Chapter 4

5. MCMC—5.1, 5.2

6. Poisson process—6.1, 6.2, 6.4, 6.5, 6.8

7. Continuous-time Markov chains—7.1, 7.2, 7.3, 7.4

8. Brownian motion—8.1, 8.2, 8.3, 8.4, 8.5, 8.7

If instructors have questions on syllabus, homework assignments, exams, or

projects, I am happy to share resources and experiences teaching this most rewarding

course.

Stochastic Processes is a great mathematical adventure. Bon voyage!

www.people.carleton.edu/rdobrow/stochbook
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1
INTRODUCTION AND REVIEW

We demand rigidly deined areas of doubt and uncertainty!

–Douglas Adams, The Hitchhiker’s Guide to the Galaxy

1.1 DETERMINISTIC AND STOCHASTIC MODELS

Probability theory, the mathematical science of uncertainty, plays an ever growing

role in how we understand the world around us—whether it is the climate of the

planet, the spread of an infectious disease, or the results of the latest news poll.

The word “stochastic” comes from the Greek stokhazesthai, which means to aim

at, or guess at. A stochastic process, also called a random process, is simply one

in which outcomes are uncertain. By contrast, in a deterministic system there is no

randomness. In a deterministic system, the same output is always produced from a

given input.

Functions and differential equations are typically used to describe deterministic

processes. Random variables and probability distributions are the building blocks for

stochastic systems.

Consider a simple exponential growthmodel. The number of bacteria that grows in

a culture until its food source is exhausted exhibits exponential growth. A common

Introduction to Stochastic Processes with R, First Edition. Robert P. Dobrow.
© 2016 John Wiley & Sons, Inc. Published 2016 by John Wiley & Sons, Inc.



2 INTRODUCTION AND REVIEW

deterministic growth model is to assert that the population of bacteria grows at a

ixed rate, say 20% per minute. Let y(t) denote the number of bacteria present after

tminutes. As the growth rate is proportional to population size, the model is described

by the differential equation
dy

dt
= (0.20)y.

The equation is solved by the exponential function

y(t) = y0e
(0.20)t,

where y0 = y(0) is the initial size of the population.

As the model is deterministic, bacteria growth is described by a function, and no

randomness is involved. For instance, if there are four bacteria present initially, then

after 15minutes, the model asserts that the number of bacteria present is

y(15) = 4e(0.20)15 = 80.3421 ≈ 80.

The deterministic model does not address the uncertainty present in the repro-

duction rate of individual organisms. Such uncertainty can be captured by using

a stochastic framework where the times until bacteria reproduce are modeled

by random variables. A simple stochastic growth model is to assume that the

times until individual bacteria reproduce are independent exponential random

variables, in this case with rate parameter 0.20. In many biological processes, the

exponential distribution is a common choice for modeling the times of births and

deaths.

In the deterministic model, when the population size is n, the number of bacteria

increases by (0.20)n in 1minute. Similarly, for the stochastic model, after n bacteria

arise the time until the next bacteria reproduces has an exponential probability dis-

tribution with rate (0.20)n per minute. (The stochastic process here is called a birth

process, which is introduced in Chapter 7.)

While the outcome of a deterministic system is ixed, the outcome of a stochastic

process is uncertain. See Figure 1.1 to compare the graph of the deterministic expo-

nential growth function with several possible outcomes of the stochastic process.

The dynamics of a stochastic process are described by random variables and prob-

ability distributions. In the deterministic growth model, one can say with certainty

how many bacteria are present after t minutes. For the stochastic model, questions of

interest might include:

• What is the average number of bacteria present at time t?

• What is the probability that the number of bacteria will exceed some threshold

after t minutes?

• What is the distribution of the time it takes for the number of bacteria to double

in size?



DETERMINISTIC AND STOCHASTIC MODELS 3

0

0

20

40

P
o
p
u
la

ti
o
n

60

80

5 10

Time

15 20

Figure 1.1 Growth of a bacteria population. The deterministic exponential growth curve

(dark line) is plotted against six realizations of the stochastic process.

In more sophisticated stochastic growth models, which allow for births and deaths,

one might be interested in the likelihood that the population goes extinct, or reaches

a long-term equilibrium.

In all cases, conclusions are framed using probability with the goal of quantifying

the uncertainty in the system.

Example 1.1 (PageRank) The power of internet search engines lies in their ability

to respond to a user’s query with an ordered list of web sites ranked by importance

and relevance. The heart of Google’s search engine is the PageRank algorithm, which

assigns an importance value to each web page, called its page rank. The algorithm is

remarkable given the massiveness of the web with over one trillion web pages, and

is an impressive achievement of mathematics, particularly linear algebra.

Although the actual PageRank algorithm is complex with many technical (and

secret) details, the page rank of a particular web page is easily described by means of

a stochastic model. Consider a hypothetical web surfer who travels across the internet

moving from page to page at random. When the surfer is on a particular web page,

they pick one of the available hypertext links on that page uniformly at random and

then move to that page.
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The model can be described as a random walk by the web surfer on a giant graph

called the webgraph. In the webgraph, vertices (nodes) are web pages. Vertex x is

joined to vertex y by a directed edge if there is a hypertext link on page x that leads

to page y. When the surfer is at vertex x, they choose an edge leading away from x

uniformly at random from the set of available edges, and move to the vertex which

that edge points to.

The random surfer model is an example of a more general stochastic process called

random walk on a graph.

Imagine that the web surfer has been randomly walking across the web for a long,

long time. What is the probability that the surfer will be at, say, page x? To make this

more precise, let pkx denote the probability that the surfer is at page x after k steps.

The long-term probability of being at page x is deined as lim
k→∞

pkx.

This long-term probability is precisely the page rank of page x. Intuitively, the

long-term probability of being at a particular page will tend to be higher for pages

with more incoming links and smaller for pages with few links, and is a measure of

the importance, or popularity, of a page. The PageRank algorithm can be understood

as an assignment of probabilities to each site on the web.

Figure 1.2 shows a simpliied network of ive pages. The numbers under each

vertex label are the long-term probabilities of reaching that vertex, and thus the page

rank assigned to that page.

Many stochastic processes can be expressed as randomwalks on graphs in discrete

time, or as the limit of such walks in continuous time. Thesemodels will play a central

role in this book. ◾

a
0.20

Home
0.27

c
0.13

b
0.22

d
0.18

Figure 1.2 Five-page webgraph. Vertex labels show long-term probabilities of reaching each

page.
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Example 1.2 (Spread of infectious diseases) Models for the spread of infectious

diseases and the development of epidemics are of interest to health scientists,

epidemiologists, biologists, and public health oficials. Stochastic models are

relevant because of the randomness inherent in person-to-person contacts and

population luctuations.

The SIR (Susceptible–Infected–Removed) model is a basic framework, which has

been applied to the spread of measles and other childhood diseases. At time t, let

St represent the number of people susceptible to a disease, It the number infected,

and Rt the number recovered and henceforth immune from infection. Individuals in

the population transition from being susceptible to possibly infected to recovered

(S → I → R).

The deterministic SIR model is derived by a system of three nonlinear differential

equations, which model interactions and the rate of change in each subgroup.

A stochastic SIR model in discrete time was introduced in the 1920s by medi-

cal researchers Lowell Reed and Wade Frost from Johns Hopkins University. In the

Reed–Frost model, when a susceptible individual comes in contact with someone

who is infected there is a ixed probability z that they will be infected.

Assume that each susceptible person is in contact with all those who are infected.

Let p be the probability that a susceptible individual is infected at time t. This is equal

to 1 minus the probability that the person is not infected at time t, which occurs if

they are not infected by any of the already infected persons, of which there are It.

This gives

p = 1 − (1 − z)It .

Disease evolution ismodeled in discrete time, where one time unit is the incubation

period—also the recovery time—of the disease.

The model can be described with a coin-lipping analogy. To ind It+1, the number

of individuals infected at time t + 1, lip St coins (one for each susceptible), where

the probability of heads for each coin is the infection probability p. Then, the number

of newly infected individuals is the number of coins that land heads.

The number of heads in n independent coin lips with heads probability p has a

binomial distribution with parameters n and p. In other words, It+1 has a binomial

distribution with n = St and p = 1 − (1 − z)It .

Having found the number of infected individuals at time t + 1, the number of sus-

ceptible persons decreases by the number of those infected. That is,

St+1 = St − It+1.

Although the Reed–Frost model is not easy to analyze exactly, it is straightforward

to simulate on a computer. The graphs in Figure 1.3 were obtained by simulating the

process assuming an initial population of 3 infected and 400 susceptible individu-

als, with individual infection probability z = 0.004. The number of those infected is

plotted over 20 time units. ◾
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Figure 1.3 Four outcomes of the Reed–Frost epidemic model.

1.2 WHAT IS A STOCHASTIC PROCESS?

In its most general expression, a stochastic process is simply a collection of random

variables {Xt, t ∈ I}. The index t often represents time, and the set I is the index

set of the process. The most common index sets are I = {0, 1, 2,…}, representing

discrete time, and I = [0,∞), representing continuous time. Discrete-time stochastic

processes are sequences of random variables. Continuous-time processes are

uncountable collections of random variables.

The random variables of a stochastic process take values in a common state

space  , either discrete or continuous. A stochastic process is speciied by

its index and state spaces, and by the dependency relations among its random

variables.

Stochastic Process

A stochastic process is a collection of random variables {Xt, t ∈ I}. The set I is

the index set of the process. The random variables are deined on a common state

space  .
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Example 1.3 (Monopoly) The popular board game Monopoly can be modeled as

a stochastic process. Let X0,X1,X2… represent the successive board positions of an

individual player. That is, Xk is the player’s board position after k plays.

The state space is {1,…, 40} denoting the 40 squares of a Monopoly board—from

Go to Boardwalk. The index set is {0, 1, 2,…} Both the index set and state space are

discrete.

An interesting study is to rank the squares of the board in increasing order of

probability. Which squares are most likely to be landed on?

Using Markov chain methods (discussed in Chapter 2), Stewart (1996) shows that

the most landed-on square is Jail. The next most frequented square is Illinois Avenue,

followed byGo, whereas the least frequented location on the board is the third Chance

square from Go. ◾

Example 1.4 (Discrete time, continuous state space) An air-monitoring station

in southern California records oxidant concentration levels every hour in order to

monitor smog pollution. If it is assumed that hourly concentration levels are governed

by some randommechanism, then the station’s data can be considered a realization of

a stochastic process X0,X1,X2,…, where Xk is the oxidant concentration level at the

kth hour. The time variable is discrete. Since concentration levels take a continuum

of values, the state space is continuous. ◾

Example 1.5 (Continuous time, discrete state space) Danny receives text mes-

sages at random times day and night. Let Xt be the number of texts he receives up

to time t. Then, {Xt, t ∈ [0,∞)} is a continuous-time stochastic process with discrete

state space {0, 1, 2,…}.

This is an example of an arrival process. If we assume that the times between

Danny’s texts are independent and identically distributed (i.i.d.) exponential random

variables, we obtain a Poisson process. The Poisson process arises in myriad settings

involving random arrivals. Examples include the number of births each day on a

maternity ward, the decay of a radioactive substance, and the occurrences of oil spills

in a harbor. ◾

Example 1.6 (Random walk and gambler’s ruin) A random walker starts at the

origin on the integer line. At each discrete unit of time the walker moves either right

or left, with respective probabilities p and 1 − p. This describes a simple random walk

in one dimension.

A stochastic process is built as follows. Let X1,X2,… be a sequence of i.i.d.

random variables with

Xk =

{
+1, with probability p,

−1, with probability 1 − p,

for k ≥ 1. Set

Sn = X1 + · · · + Xn, for n ≥ 1,
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with S0 = 0. Then, Sn is the random walk’s position after n steps. The sequence

S0, S1, S2,… is a discrete-time stochastic process whose state space is ℤ, the set of

all integers.

Consider a gambler who has an initial stake of k dollars, and repeatedly wagers $1

on a game for which the probability of winning is p and the probability of losing is

1 − p. The gambler’s successive fortunes is a simple random walk started at k.

Assume that the gambler decides to stop when their fortune reaches $n (n > k),

or drops to 0, whichever comes irst. What is the probability that the gambler is

eventually ruined? This is the classic gambler’s ruin problem, irst discussed by math-

ematicians Blaise Pascal and Pierre Fermat in 1656.

See Figure 1.4 for simulations of gambler’s ruin with k = 20, n = 60, and p = 1∕2.

Observe that four of the nine outcomes result in the gambler’s ruin before 1,000 plays.

In the next section, it is shown that the probability of eventual ruin is (n − k)∕n =

(60 − 20)∕60 = 2∕3. ◾
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Figure 1.4 Random walk and gambler’s ruin.

Example 1.7 (Brownian motion) Brownian motion is a continuous-time, contin-

uous state space stochastic process. The name also refers to a physical process, irst

studied by the botanist Robert Brown in 1827. Brown observed the seemingly erratic,

zigzagmotion of tiny particles ejected from pollen grains suspended in water. He gave

a detailed study of the phenomenon but could not explain its cause. In 1905, Albert

Einstein showed that the motion was the result of water molecules bombarding the

particles.

The mathematical process known as Brownian motion arises as the limiting pro-

cess of a discrete-time randomwalk. This is obtained by speeding up the walk, letting
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the interval between discrete steps tend to 0. The process is used as a model for many

phenomena that exhibit “erratic, zigzag motion,” such as stock prices, the growth of

crystals, and signal noise.

Brownian motion has remarkable properties, which are explored in Chapter 8.

Paths of the process are continuous everywhere, yet differentiable nowhere.

Figure 1.5 shows simulations of two-dimensional Brownian motion. For this case,

the index set is [0,∞) and the state space is ℝ2. ◾

Figure 1.5 Simulations of two-dimensional Brownian motion.

1.3 MONTE CARLO SIMULATION

Advancements in modern computing have revolutionized the study of stochastic

systems, allowing for the visualization and simulation of increasingly complex

models.

At the heart of the many simulation techniques developed to generate random

variables and stochastic processes lies the Monte Carlo method. Given a random

experiment and event A, a Monte Carlo estimate of P(A) is obtained by repeating the



10 INTRODUCTION AND REVIEW

random experiment many times and taking the proportion of trials in which A occurs

as an approximation for P(A).

The name Monte Carlo evidently has its origins in the fact that the mathematician

Stanislaw Ulam, who developed the method in 1946, had an uncle who regularly

gambled at the Monte Carlo casino in Monaco.

Monte Carlo simulation is intuitive and matches up with our sense of how proba-

bilities should behave. The relative frequency interpretation of probability says that

the probability of an event is the long-term proportion of times that the event occurs

in repeated trials. It is justiied theoretically by the strong law of large numbers.

Consider repeated independent trials of a random experiment. Deine the sequence

X1,X2,… , where

Xk =

{
1, if A occurs on the kth trial,

0, if A does not occur on the kth trial,

for k ≥ 1. Then, (X1 + · · · + Xn)∕n is the proportion of n trials in which A occurs. The

Xk are identically distributed with common mean E(Xk) = P(A).

By the strong law of large numbers,

lim
n→∞

X1 + · · · + Xn

n
= P(A), with probability 1. (1.1)

For large n, the Monte Carlo estimate of P(A) is

P(A) ≈
X1 + · · · + Xn

n
.

In this book, we use the software package R for simulation. R is a lexible and

interactive environment. We often use R to illustrate the result of an exact, theoretical

calculation with numerical veriication. The easy-to-learn software allows the user

to see the impact of varying parameters and assumptions of the model. For example,

in the Reed–Frost epidemic model of Example 1.2, it is interesting to see how small

changes in the infection probability affect the duration and intensity of the epidemic.

See the R script ile ReedFrost.R and Exercise 1.36 to explore this question.

If you have not used R before, work through the exercises in the introductory tuto-

rial in Appendix A: Getting Started with R.

1.4 CONDITIONAL PROBABILITY

The simplest stochastic process is a sequence of i.i.d. random variables. Such

sequences are often used to model random samples in statistics. However, most

real-world systems exhibit some type of dependency between variables, and an

independent sequence is often an unrealistic model.

Thus, the study of stochastic processes really begins with conditional

probability—conditional distributions and conditional expectation. These will

become essential tools for all that follows.
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Starting with a random experiment, the sample space Ω is the set of all possible

outcomes. An event is a subset of the sample space. For events A and B, the condi-

tional probability of A given B is

P(A|B) = P(A ∩ B)

P(B)
,

deined for P(B) > 0. Events A and B are independent if P(A|B) = P(A). Equivalently,

A and B are independent if

P(A ∩ B) = P(A)P(B).

Events that are not independent are said to be dependent.

For many problems where the goal is to ind P(A), partial information and

dependencies between events in the sample space are brought to bear. If the sample

space can be partitioned into a collection of disjoint events B1,…,Bk, then A can be

expressed as the disjoint union

A = (A ∩ B1) ∪ · · · ∪ (A ∩ Bk).

If conditional probabilities of the form P(A|Bi) are known, then the law of total prob-

ability can be used to ind P(A).

Law of Total Probability

Let B1,…,Bk be a sequence of events that partition the sample space. That is, the

Bi are mutually exclusive (disjoint) and their union is equal to Ω. Then, for any

event A,

P(A) =

k∑
i=1

P(A ∩ Bi) =

k∑
i=1

P(A|Bi)P(Bi).

Example 1.8 According to the Howard Hughes Medical Institute, about 7% of men

and 0.4% of women are colorblind—either cannot distinguish red from green or see

red and green differently from most people. In the United States, about 49% of the

population is male and 51% female. A person is selected at random. What is the

probability they are colorblind?

Solution Let C,M, and F denote the events that a random person is colorblind, male,

and female, respectively. By the law of total probability,

P(C) = P(C|M)P(M) + P(C|F)P(F)
= (0.07)(0.49) + (0.004)(0.51) = 0.03634.

◾
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Using the law of total probability in this way is called conditioning. Here, we ind

the total probability of being colorblind by conditioning on sex.

Example 1.9 In a standard deck of cards, the probability that the suit of a random

card is hearts is 13∕52 = 1∕4. Assume that a standard deck has one card missing.

A card is picked from the deck. Find the probability that it is a heart.

Solution Assume that the missing card can be any of the 52 cards picked uniformly at

random. LetM denote the event that the missing card is a heart, with the complement

Mc the event that the missing card is not a heart. Let H denote the event that the card

that is picked from the deck is a heart. By the law of total probability,

P(H) = P(H|M)P(M) + P(H|Mc)P(Mc)

=
(
12

51

)
1

4
+
(
13

51

)
3

4
=

1

4
.

The result can also be obtained by appealing to symmetry. Since all cards are

equally likely, and all four suits are equally likely, the argument by symmetry gives

that the desired probability is 1∕4. ◾

Example 1.10 (Gambler’s ruin) The gambler’s ruin problem was introduced in

Example 1.6. A gambler starts with k dollars. On each play a fair coin is tossed and the

gambler wins $1 if heads occurs, or loses $1 if tails occurs. The gambler stops when

he reaches $n (n > k) or loses all his money. Find the probability that the gambler

will eventually lose.

Solution We make two observations, which are made more precise in later chapters.

First, the gambler will eventually stop playing, either by reaching n or by reaching

0. One might argue that the gambler could play forever. However, it can be shown

that that event occurs with probability 0. Second, assume that after, say, 100 wagers,

the gambler’s capital returns to $k. Then, the probability of eventually winning $n is

the same as it was initially. The memoryless character of the process means that the

probability of winning $n or losing all his money only depends on how much capital

the gambler has, and not on how many previous wagers the gambler made.

Let pk denote the probability of reaching n when the gambler’s fortune is k. What

is the gambler’s status if heads is tossed? Their fortune increases to k + 1 and the

probability of winning is the same as it would be if the gambler had started the game

with k + 1. Similarly, if tails is tossed and the gambler’s fortune decreases to k − 1.

Hence,

pk = pk+1

(
1

2

)
+ pk−1

(
1

2

)
,

or

pk+1 − pk = pk − pk−1, for k = 1,…, n − 1, (1.2)
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with p0 = 0 and pn = 1. Unwinding the recurrence gives

pk − pk−1 = pk−1 − pk−2 = pk−2 − pk−3 = · · · = p1 − p0 = p1,

for k = 1,…, n. We have that p2 − p1 = p1, giving p2 = 2p1. Also, p3 − p2 = p3 −

2p1 = p1, giving p3 = 3p1. More generally, pk = kp1, for k = 1,…, n.

Sum Equation (1.2) over suitable k to obtain

n−1∑
k=1

(pk+1 − pk) =

n−1∑
k=1

(pk − pk−1).

Both sums telescope to

pn − p1 = pn−1 − p0,

which gives 1 − p1 = pn−1 = (n − 1)p1, so p1 = 1∕n. Thus,

pk = kp1 =
k

n
, for k = 0,…, n.

The probability that the gambler eventually wins $n is k∕n. Hence, the probability of

the gambler’s ruin is (n − k)∕n. ◾

R : Simulating Gambler’s Ruin

The ile gamblersruin.R contains the function gamble(k,n,p), which sim-

ulates the gambler’s ruin process. At each wager, the gambler wins with prob-

ability p, and loses with probability 1 − p. The gambler’s initial stake is $k.

The function gamble returns 1, if the gambler is eventually ruined, or 0, if the

gambler gains $n.

In the simulation the function is called 1,000 times, creating a list of 1,000

ruins and wins, which are represented by 1s and 0s. The mean of the list gives

the proportion of 1s, which estimates the probability of eventual ruin.

> k <- 20
> n <- 60
> p <- 1/2
> trials <- 1000
> simlist <- replicate(trials, gamble(k,n,p))
> mean(simlist) # Estimate of probability of ruin
[1] 0.664
# Exact probability of ruin is 2/3

Sometimes, we need to ind a conditional probability of the form P(B|A), but what
is given in the problem are reverse probabilities of the form P(A|B) and P(A|Bc).
Bayes’ rule provides a method for inverting the conditional probability.
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Bayes’ Rule

For events A and B,

P(B|A) = P(A|B)P(B)
P(A|B)P(B) + P(A|Bc)P(Bc) .

Bayes’ rule is a consequence of the law of total probability and the deinition of

conditional probability, as

P(B|A) = P(A ∩ B)

P(A)
=
P(A|B)P(B)

P(A)
.

For any event B, the events B and Bc partition the sample space. Given a countable

sequence of events B1,B2,… , which partition the sample space, a more general form

of Bayes’ rule is

P(Bi|A) =
P(A|Bi)P(Bi)∑
jP(A|Bj)P(Bj)

, for i = 1, 2,…

Example 1.11 The use of polygraphs (lie detectors) is controversial, and many sci-

entists feel that they should be banned. On the contrary, some polygraph advocates

claim that they are mostly accurate. In 1998, the Supreme Court (United States v.

Sheffer) supported the right of state and federal governments to bar polygraph evi-

dence in court.

Assume that one person in a company of 100 employees is a thief. To ind the thief

the company will administer a polygraph test to all its employees. The lie detector

has the property that if a subject is a liar, there is a 95% probability that the polygraph

will detect that they are lying. However, if the subject is telling the truth, there is a

10% chance the polygraph will report a false positive and assert that the subject is

lying.

Assume that a random employee is given the polygraph test and asked whether

they are the thief. The employee says “no,” and the lie detector reports that they are

lying. Find the probability that the employee is in fact lying.

Solution Let L denote the event that the employee is a liar. LetD denote the event that

the lie detector reports that the employee is a liar. The desired probability is P(L|D).
By Bayes’ rule,

P(L|D) = P(D|L)P(L)
P(D|L)P(L) + P(D|Lc)P(Lc)

=
(0.95)(0.01)

(0.95)(0.01) + (0.10)(0.99)
= 0.088.

There is less than a 10% chance that the employee is in fact the thief!
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Many people, when irst given this problem and asked to guess the answer, choose

a probability closer to 90%. The mistake is a consequence of confusing the condi-

tional probabilities P(L|D) and P(D|L), the probability that the individual is a liar,

given that the polygraph says they are, with the probability that the polygraph says

they are lying, given that they are a liar. Since the population of truth tellers is rela-

tively big, the number of false positives—truth tellers whom the lie detector falsely

records as being a liar—is also signiicant. In this case, about 10% of 99, or about

10 employees will be false positives. Assuming that the lie detector correctly identi-

ies the thief as lying, there will be about 11 employees who are identiied as liars by

the polygraph. The probability that one of them chosen at random is in fact the thief

is only about 1/11. ◾

Conditional Distribution

The distribution of a random variable X refers to the set of values of X and their

corresponding probabilities. The distribution of a random variable is speciied with

either a probability mass function (pmf), if X is discrete, or a probability density

function (pdf), if X is continuous.

For more than one random variable, there is a joint distribution, speciied by either

a joint pmf or a joint pdf.

If X and Y are discrete random variables, their joint pmf is P(X = x,Y = y), con-

sidered a function of x and y. If X and Y are continuous, the joint density function

f (x, y) satisies

P(X ≤ x,Y ≤ y) = ∫
x

−∞ ∫
y

−∞

f (s, t) dt ds,

for all x, y ∈ ℝ.

For jointly distributed random variables X and Y , the conditional distribution of

Y given X = x is speciied by either a conditional pmf or a conditional pdf.

Discrete Case

The conditional pmf of Y given X = x is

P(Y = y|X = x) =
P(X = x,Y = y)

P(X = x)
,

deined when P(X = x) > 0. The conditional pmf is a function of y, where x is treated

as ixed.

Example 1.12 Max chooses an integer X uniformly at random between 1 and 100.

If X = x, Mary then chooses an integer Y uniformly at random between 1 and x. Find

the conditional pmf of Y given X = x.
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Solution By the structure of this two-stage random experiment, the conditional dis-

tribution of Y given X = x is uniform on {1,…, x}. Thus, the conditional pmf is

P(Y = y|X = x) =
1

x
, for y = 1,…, x.

◾

Note that the conditional pmf is a probability function. For ixed x, the probabilities

P(Y = y|X = x) are nonnegative and sum to 1, as

∑
y

P(Y = y|X = x) =
∑
y

P(X = x,Y = y)

P(X = x)
=
P(X = x)

P(X = x)
= 1.

Example 1.13 The joint pmf of X and Y is

P(X = x,Y = y) =
x + y

18
, for x, y = 0, 1, 2.

Find the conditional pmf of Y given X = x.

Solution The marginal distribution of X is

P(X = x) =

2∑
y=0

P(X = x,Y = y) =
x

18
+
x + 1

18
+
x + 2

18
=
x + 1

6
,

for x = 0, 1, 2. The conditional pmf is

P(Y = y|X = x) =
P(X = x,Y = y)

P(X = x)
=

(x + y)∕18

(x + 1)∕6
=

x + y

3(x + 1)
,

for y = 0, 1, 2. ◾

Example 1.14 A bag contains 2 red, 3 blue, and 4 white balls. Three balls are

picked from the bag (sampling without replacement). Let B be the number of blue

balls picked. Let R be the number of red balls picked. Find the conditional pmf of B

given R = 1.

Solution We have

P(B = b|R = 1) =
P(B = b,R = 1)

P(R = 1)

=

(
3

b

)(
2

1

)(
4

3−b−1

)/(
9

3

)
(
2

1

)(
7

2

)/(
9

3

) =
2
(
3

b

)(
4

2−b

)

42
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=

(
3

b

)(
4

2−b

)

21
=

⎧⎪⎨⎪⎩

2∕7, if b = 0,

4∕7, if b = 1,

1∕7, if b = 2.

◾

Continuous Case

For continuous random variables X and Y , the conditional density function of Y given

X = x is

fY|X(y|x) = f (x, y)

fX(x)
,

where fX is the marginal density function of X. The conditional density is a function

of y, where x is treated as ixed.

Conditional densities are used to compute conditional probabilities. For R ⊆ ℝ,

P(Y ∈ R|X = x) = ∫RfY|X(y|x) dy.

Example 1.15 Random variables X and Y have joint density

f (x, y) = e−x, for 0 < y < x < ∞.

Find P(Y < 2|X = 5).

Solution The desired probability is

P(Y < 2|X = 5) = ∫
2

0

fY|X(y|5) dy.

To ind the conditional density function fY|X(y|x), ind the marginal density

fX(x) = ∫
∞

−∞

f (x, y) dy = ∫
x

0

e−x dy = xe−x, for x > 0.

This gives

fY|X(y|x) = f (x, y)

fX(x)
=

e−x

xe−x
=

1

x
, for 0 < y < x.

The conditional distribution of Y given X = x is uniform on (0, x). Hence,

P(Y < 2|X = 5) = ∫
2

0

fY|X(y|5) dy = ∫
2

0

1

5
dy =

2

5
.

◾
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Example 1.16 Tom picks a real number X uniformly distributed on (0, 1). Tom

shows his number x to Marisa who then picks a number Y uniformly distributed on

(0, x). Find (i) the conditional distribution of Y given X = x; (ii) the joint distribution

of X and Y; and (iii) the marginal density of Y .

Solution

(i) The conditional distribution of Y given X = x is given directly in the statement

of the problem. The distribution is uniform on (0, x). Thus,

fY|X(y|x) = 1

x
, for 0 < y < x.

(ii) For the joint density,

f (x, y) = fY|X(y|x)fX(x) = 1

x
(1) =

1

x
, for 0 < y < x < 1.

(iii) To ind themarginal density of Y , integrate out the x variable in the joint density

function. This gives

fY (y) = ∫
∞

−∞

f (x, y) dx = ∫
1

y

1

x
dx = − ln y, for 0 < y < 1.

◾

1.5 CONDITIONAL EXPECTATION

A conditional expectation is an expectation computed with respect to a conditional

probability distribution. Write E(Y|X = x) for the conditional expectation of Y given

X = x.

Conditional Expectation of Y given X = x

E(Y|X = x) =

⎧⎪⎨⎪⎩

∑
y

yP(Y = y|X = x), discrete,

∫ ∞

−∞
yfY|X(y|x) dy, continuous.

Most important is that E(Y|X = x) is a function of x.

Example 1.17 A school cafeteria has two registers. Let X and Y denote the number

of students in line at the irst and second registers, respectively. The joint pmf of X

and Y is speciied by the following joint distribution table.
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Y

X

0

1

2

3

4

0

0

0.02

0.01

0.01

0

0.01

0.03

0.02

0.01

0.03

0.06

0.10

0.03

0.02

0.14

0.12

0.06

0.01

0

0.15

43210

0.14

0.03

0

0

Find the expected number of people in line at the second register if there is one

person at the irst register.

Solution The problem asks for E(Y|X = 1). We have

E(Y|X = 1) =

4∑
y=0

yP(Y = y|X = 1) =

4∑
y=0

y
P(X = 1,Y = y)

P(X = 1)
.

The marginal probability P(X = 1) is obtained by summing over the X = 1 row of the

table. That is, P(X = 1) = 0.14 + 0.12 + 0.06 + 0.01 + 0 = 0.33. Hence,

E(Y|X = 1) =
1

0.33

4∑
y=0

yP(X = 1,Y = y)

=
1

0.33
[0(0.14) + 1(0.12) + 2(0.06) + 3(0.01) + 4(0)]

= 0.818.
◾

Example 1.18 Let X and Y be independent Poisson random variables with respec-

tive parameters � and �. Find the conditional expectation of Y given X + Y = n.

Solution First ind the conditional pmf of Y given X + Y = n. We use the fact that

the sum of independent Poisson random variables has a Poisson distribution whose

parameter is the sum of the individual parameters. That is, X + Y has a Poisson dis-

tribution with parameter � + �. This gives

P(Y = y|X + Y = n) =
P(Y = y,X + Y = n)

P(X + Y = n)
=
P(Y = y,X = n − y)

P(X + Y = n)

=
P(Y = y)P(X = n − y)

P(X + Y = n)

=
(e−��y∕y!)(e−��n−y∕(n − y)!)

e−(�+�)(� + �)n∕n!
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=
n!

y!(n − y)!

(
�y�n−y

(� + �)n

)

=

(
n

y

)(
�

� + �

)y(
�

� + �

)n−y

,

for y = 0,…, n. The form of the conditional pmf shows that the conditional distri-

bution is binomial with parameters n and p = �∕(� + �). The desired conditional

expectation is the mean of this binomial distribution. That is,

E(Y|X + Y = n) = np =
n�

� + �
.

◾

Example 1.19 Assume that X and Y have joint density

f (x, y) =
2

xy
, for 1 < y < x < e.

Find E(Y|X = x).

Solution The marginal density of X is

fX(x) = ∫
x

1

2

xy
dy =

2 ln x

x
, for 1 < x < e.

The conditional density of Y given X = x is

fY|X(y|x) = f (x, y)

fX(x)
=

2∕(xy)

2 ln x∕x
=

1

y ln x
, for 1 < y < x,

with conditional expectation

E(Y|X = x) = ∫
x

1

yfY|X(y|x) dy = ∫
x

1

y

y ln x
dy =

x − 1

ln x
.

◾

Key properties of conditional expectation follow.

Properties of Conditional Expectation

1. (Linearity) For constants a and b and random variables X, Y , and Z,

E(aY + bZ|X = x) = aE(Y|X = x) + bE(Z|X = x).
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2. If g is a function,

E(g(Y)|X = x) =

{∑
y

g(y)P(Y = y|X = x), discrete,

∫ ∞

−∞
g(y)fY|X(y|x) dy, continuous.

3. (Independence) If X and Y are independent,

E(Y|X = x) = E(Y).

4. If Y = g(X) is a function of X,

E(Y|X = x) = g(x).

Proof. Properties 1 and 2 are consequences of the fact that conditional expectation

is an expectation and thus retains all the properties, such as linearity, of the regu-

lar expectation. For a proof of property 2, which is sometimes called the law of the

unconscious statistician, see Dobrow (2013).

For the independence property in the discrete case, if X and Y are independent,

E(Y|X = x) =
∑
y

yP(Y = y|X = x) =
∑
y

yP(Y = y) = E(Y).

The continuous case is similar. For property 4,

E(Y|X = x) = E(g(X)|X = x) = E(g(x)|X = x) = g(x).
◾

Example 1.20 Consider random variables X, Y , and U, where U is uniformly dis-

tributed on (0, 1). Find the conditional expectation

E
(
UX2 + (1 − U)Y2|U = u

)
.

Solution By linearity of conditional expectation,

E
(
UX2 + (1 − U)Y2|U = u

)
= E

(
uX2 + (1 − u)Y2|U = u

)

= uE
(
X2|U = u

)
+ (1 − u)E

(
Y2|U = u

)
.

If X and Y are also independent of U, the latter expression reduces to

uE
(
X2

)
+ (1 − u)E

(
Y2

)
.

◾
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Extending the scope of conditional expectation, we show how to condition on

a general event. Given an event A, the indicator for A is the 0–1 random variable

deined as

IA =

{
1, if A occurs,

0, if A does not occur.

Conditional Expectation Given an Event

Let A be an event such that P(A) > 0. The conditional expectation of Y

given A is

E(Y|A) = E(YIA)

P(A)
.

For the discrete case, the formula gives

E(Y|A) = 1

P(A)

∑
y

yP({Y = y} ∩ A) =
∑
y

yP(Y = y|A).

Let A1,…,Ak be a sequence of events that partition the sample space. Observe that

IA1 + · · · + IAk = 1,

since every outcome � ∈ Ω is contained in exactly one of the Ais. It follows that

Y =

k∑
i=1

YIAi .

Taking expectations gives

E(Y) =

k∑
i=1

E
(
YIAi

)
=

k∑
i=1

(
E
(
YIAi

)

P(A)

)
P(A) =

k∑
i=1

E(Y|Ai)P(Ai).

The result is known as the law of total expectation. Note the similarity with the law

of total probability.

The law of total expectation is often used with partitioning events {X = x}. This

gives
E(Y) =

∑
x

E(Y|X = x)P(X = x).

In summary, here are two forms of the law of total expectation.

Law of Total Expectation

Let Y be a random variable. Let A1,…,Ak be a sequence of events that partition
the sample space. Then,

E(Y) =

k∑
i=1

E(Y|Ai)P(Ai).
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If X and Y are jointly distributed random variables,

E(Y) =
∑
x

E(Y|X = x)P(X = x).

Example 1.21 A fair coin is lipped repeatedly. Find the expected number of lips

needed to get two heads in a row.

Solution Let Y be the number of lips needed. Consider three events: (i) T , the irst

lip is tails; (ii) HT , the irst lip is heads and the second lip is tails; and (iii) HH, the

irst two lips are heads. The events T ,HT ,HH partition the sample space. By the law

of total expectation,

E(Y) = E(Y|T)P(T) + E(Y|HT)P(HT) + E(Y|HH)P(HH)
= E(Y|T)1

2
+ E(Y|HT)1

4
+ (2)

1

4
.

Consider E(Y|T). Assume that the irst lip is tails. Since successive lips are indepen-

dent, after the irst tails we start over waiting for two heads in a row. Since one lip

has been used, it follows that E(Y|T) = 1 + E(Y). Similarly, after irst heads and then

tails we start over again, having used up two coin tosses. Thus, E(Y|HT) = 2 + E(Y).

This gives

E(Y) = (1 + E(Y))
1

2
+ (2 + E(Y))

1

4
+ (2)

1

4
= E(Y)

3

4
+

3

2
.

Solving for E(Y) gives E(Y)(1∕4) = 3∕2, or E(Y) = 6. ◾

Example 1.22 Every day Bob goes to the pizza shop, orders a slice of pizza, and

picks a topping—pepper, pepperoni, pineapple, prawns, or prosciutto—uniformly at

random. On the day that Bob irst picks pineapple, ind the expected number of prior

days in which he picked pepperoni.

Solution Let Y be the number of days, before the day Bob irst picked pineapple, in

which he picks pepperoni. Let X be the number of days needed for Bob to irst pick

pineapple. Then, X has a geometric distribution with parameter 1∕5.

If X = x, then on the irst x − 1 days pineapple was not picked. And for each of

these days, given that pineapple was not picked, there was a 1∕4 chance of picking

pepperoni. The conditional distribution of Y given X = x is binomial with parameters

x − 1 and 1∕4. Thus, E[Y|X = x] = (x − 1)∕4, and

E(Y) =

∞∑
x=1

E(Y|X = x)P(X = x)
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=

∞∑
x=1

(
x − 1

4

)(
4

5

)x−1 1
5

=

(
1

4

∞∑
x=1

x
(
4

5

)x−1 1
5

)
−

(
1

4

∞∑
x=1

(
4

5

)x−1 1
5

)

=
1

4
E(X) −

1

4
=

5

4
−

1

4
= 1.

◾

R : Simulation of Bob’s Pizza Probability

> trials <- 10000 # simulation repeated 10,000 times
> simlist <- numeric(trials)
> toppings <- c("pepper","pepperoni","pineapple",

"prawns","prosciutto")
> for (i in 1:trials) {
> pineapple <- 0
> pepperoni <- 0 #counts pepperonis before pineapple
> while (pineapple == 0) {

# pick toppings until pineapple is selected
pick <- sample(toppings,1)
if (pick == "pepperoni") pepperoni <-pepperoni + 1
if (pick == "pineapple") pineapple <- 1 }

> simlist[i] <- pepperoni }
> mean(simlist)
[1] 0.9966

The next example illustrates conditional expectation given an event in the contin-

uous case.

Example 1.23 The time that Joe spends talking on the phone is exponentially dis-

tributed with mean 5minutes. What is the expected length of his phone call if he talks

for more than 2minutes?

Solution Let Y be the length of Joe’s phone call. With A = {Y > 2}, the desired

conditional expectation is

E(Y|A) = E(Y|Y > 2) =
1

P(Y > 2) ∫
∞

2

y
1

5
e−y∕5 dy

=
(

1

e−2∕5

)
7e−2∕5 = 7minutes.

Note that the solution can be obtained using the memoryless property of the expo-

nential distribution. The conditional distribution of Y given Y > 2 is equal to the
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distribution of 2 + Z, where Z has the same distribution has Y . Thus,

E(Y|Y > 2) = E(2 + Z) = 2 + E(Z) = 2 + E(Y) = 2 + 5 = 7.
◾

Conditioning on a Random Variable

From conditioning on an event, we introduce the notion of conditioning on a random

variable, a powerful tool for computing conditional expectations and probabilities.

Recall that if X is a random variable and g is a function, then Y = g(X) is a ran-

dom variable, which is a function of X. The conditional expectation E(Y|X = x) is

a function of x. We apply this function to the random variable X and deine a new

random variable called the conditional expectation of Y given X, written E(Y|X). The
deining properties of E(Y|X) are given here.

Conditional Expectation of Y given X

The conditional expectation E(Y|X) has three deining properties.

1. E(Y|X) is a random variable.

2. E(Y|X) is a function of X.

3. E(Y|X) is equal to E(Y|X = x) whenever X = x. That is, if

E(Y|X = x) = g(x), for all x,

then E(Y|X) = g(X).

Example 1.24 Let X be uniformly distributed on (0, 1). If X = x, a second number

Y is picked uniformly on (0, x). Find E(Y|X).

Solution For this two-stage random experiment, the conditional distribution of Y

given X = x is uniform on (0, x), for 0 < x < 1. It follows that E(Y|X = x) = x∕2.

Since this is true for all x, E(Y|X) = X∕2. ◾

It may seem that the difference between E(Y|X) and E(Y|X = x) is just a mat-

ter of notation, with capital letters replacing lowercase letters. However, as much

as they look the same, there is a fundamental difference. The conditional expecta-

tion E(Y|X = x) is a function of x. Its domain is a set of real numbers. The deter-

ministic function can be evaluated and graphed. For instance, in the last example

E(Y|X = x) = x∕2 is a linear function of x with slope 1/2.

On the contrary, E(Y|X) is a random variable. As such, it has a probability dis-

tribution. Since E(Y|X) is a random variable with some probability distribution, it

makes sense to take its expectation with respect to that distribution. The expectation
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of a conditional expectation may seem pretty far out. But it leads to one of the most

important results in probability.

Law of Total Expectation

For random variables X and Y ,

E(Y) = E(E(Y|X)).

We prove this result for the discrete case, and leave the continuous case as an

exercise for the reader.

Proof.

E(E(Y|X)) = ∑
x

E(Y|X = x)P(X = x)

=
∑
x

(∑
y

yP(Y = y|X = x)

)
P(X = x)

=
∑
y

y
∑
x

P(Y = y|X = x)P(X = x)

=
∑
y

y
∑
x

P(X = x,Y = y)

=
∑
y

yP(Y = y) = E(Y).

◾

Example 1.25 Angel will harvest N tomatoes in her garden, where N has a Poisson

distribution with parameter �. Each tomato is checked for defects. The chance that

a tomato has defects is p. Defects are independent from tomato to tomato. Find the

expected number of tomatoes with defects.

Solution Let X be the number of tomatoes with defects. The conditional distribution

of X given N = n is binomial with parameters n and p. This gives E(X|N = n) = np.

Since this is true for all n, E(X|N) = Np. By the law of total expectation,

E(X) = E(E(X|N)) = E(Np) = pE(N) = p�.
◾

Example 1.26 Ellen’s insurance will pay for a medical expense subject to a $100

deductible. Assume that the amount of the expense is exponentially distributed with

mean $500. Find the expectation and standard deviation of the payout.
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Solution Let M be the amount of the medical expense and let X be the insurance

company’s payout. Then,

X =

{
M − 100, ifM > 100,
0, ifM ≤ 100,

where M is exponentially distributed with parameter 1∕500. To ind the expected

payment, apply the law of total expectation, giving

E(X) = E(E(X|M)) = ∫
∞

0

E(X|M = m)�e−�m dm

= ∫
∞

100

E(M − 100|M = m)
1

500
e−m∕500 dm

= ∫
∞

100

(m − 100)
1

500
e−m∕500 dm

= 500e−100∕500 = $409.365.

For the standard deviation, irst ind

E
(
X2

)
= E

(
E
(
X2|M))

= ∫
∞

0

E
(
X2|M = m

)
�e−�m dm

= ∫
∞

100

E
(
(M − 100)2|M = m

) 1

500
e−m∕500 dm

= ∫
∞

100

(m − 100)2
1

500
e−m∕500 dm

= 500000e−1∕5 = 409365.

This gives

SD(X) =
√
Var(X) =

√
E(X2) − E(X)2

=
√
409365 − (409.365)2 = $491.72.

◾

R : Simulation of Ellen’s Payout

> trials <- 100000
> simlist <- numeric(trials)
> for (i in 1:trials) {
> expense <- rexp(1,1/500)
> payout <- max(0, expense-100)
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> simlist[i] <- payout}
> mean(simlist)
[1] 410.0308
> sd(simlist)
[1] 493.5457

Example 1.27 (Random sum of random variables) A stochastic model for the

cost of damage from trafic accidents is given by Van der Lann and Louter (1986).

Let Xk be the amount of damage from an individual’s kth trafic accident. Assume

X1,X2,… is an i.i.d. sequence with mean �. The number of accidents N for an indi-

vidual driver is a random variable with mean �. It is assumed that the number of

accidents is independent of the amount of damages for each accident. That is, N is

independent of the Xk. For an individual driver, ind the total cost of damages.

Solution Let T be the total cost of damages. Then,

T = X1 + · · · + XN =

N∑
k=1

Xk.

The number of summands is random. The random variable T is a random sum of

random variables. By the law of total expectation E(T) = E(E(T|N)). To ind E(T|N),
consider

E(T|N = n) = E

(
N∑
k=1

Xk|N = n

)
= E

(
n∑
k=1

Xk|N = n

)

= E

(
n∑
k=1

Xk

)
=

n∑
k=1

E(Xk) = n�,

where the third equality is becauseN is independent of the Xk. Since the inal equality

holds for all n, E(T|N) = N�. By the law of total expectation,

E(T) = E(E(T|N)) = E(N�) = �E(N) = ��.

The result is intuitive. The expected total cost is the product of the expected number

of accidents and the expected cost per accident.

Note that it would have been incorrect to write

E

(
N∑
k=1

Xk

)
=

N∑
k=1

E(Xk).

Linearity of expectation does not apply here because the number of summands is

random, not ixed. Indeed, this equation does not even make sense as the left-hand
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side is a ixed number (the expectation of a random variable), while the right-hand

side is a random variable. ◾

Computing Probabilities by Conditioning

For an event A, let IA be the indicator for A. Then,

E(IA) = (1)P(A) + (0)P(Ac) = P(A).

From this simple fact, one sees that probabilities can always be expressed as expecta-

tions. As such, the law of total expectation can be used when computing probabilities.

In particular, if X is a discrete random variable,

P(A) = E(IA) = E(E(IA|X))
=
∑
x

E(IA|X = x)P(X = x)

=
∑
x

[(1)P(IA = 1|X = x)P(X = x) + (0)P(IA = 0|X = x)P(X = x)]

=
∑
x

P(A|X = x)P(X = x).

We have recaptured the law of total probability, where the conditioning events are

{X = x} for all x.

If X is continuous with density function fX ,

P(A) = ∫
∞

−∞

E(IA|X = x)fX(x) dx = ∫
∞

−∞

P(A|X = x)fX(x) dx,

which gives the continuous version of the law of total probability.

Example 1.28 Max arrives to class at time X. Mary arrives at time Y . Assume that

X and Y have exponential distributions with respective parameters � and �. If arrival
times are independent, ind the probability that Mary arrives before Max.

Solution Let A = {Y < X} be the event that Mary arrives to class before Max. By

conditioning on Max’s arrival time,

P(A) = P(Y < X) = ∫
∞

−∞

P(Y < X|X = x)fX(x) dx

= ∫
∞

0

P(Y < x|X = x)�e−�x dx

= ∫
∞

0

P(Y < x)�e−�x dx
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= ∫
∞

0

(1 − e−�x)�e−�x dx

= 1 − ∫
∞

0

�e−(�+�)x dx

= 1 −
�

� + �
=

�

� + �
.

The fourth equality is by independence of X and Y . ◾

Example 1.29 (Sums of independent random variables) Assume that X and

Y are independent continuous random variables with density functions fX and fY ,

respectively. (i) Find the density function of X + Y . (ii) Use part (i) to ind the density

of the sum of two independent standard normal random variables.

Solution

(i) Conditioning on Y ,

P(X + Y ≤ t) = ∫
∞

−∞

P(X + Y ≤ t|Y = y)fY (y) dy

= ∫
∞

−∞

P(X ≤ t − y|Y = y)fY (y) dy

= ∫
∞

−∞

P(X ≤ t − y)fY (y) dy.

Differentiating with respect to t gives

fX+Y (t) = ∫
∞

−∞

fX(t − y)fY (y) dy. (1.3)

Equation (1.3) is known as a convolution formula.

(ii) For X and Y independent standard normal random variables, by Equation (1.3),

X + Y has density

fX+Y (t) = ∫
∞

−∞

1√
2�

e−(t−y)
2∕2 1√

2�
e−y

2∕2 dy

=
1√
4�

e−t
2∕4 ∫

∞

−∞

1√
2�(1∕2)

e−(y−t∕2)
2∕2(1∕2) dy (1.4)

=
1√
4�

e−t
2∕4,
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which is the density of a normal distribution with mean 0 and variance 2. The

last equality is because the integrand in Equation (1.4) is the density of a normal

distribution with mean t∕2 and variance 1/2, and thus integrates to 1. ◾

Conditional Variance

Analogous to conditional expectation, the conditional variance is a variance taken

with respect to a conditional distribution. Given random variables X and Y , let

�x = E(Y|X = x). Then, the conditional variance Var(Y|X = x) is deined as

Var(Y|X = x) = E
(
(Y − �x)

2|X = x
)

=

⎧
⎪⎨⎪⎩

∑
y

(y − �x)
2P(Y = y|X = x), discrete,

∫ ∞

−∞
(y − �x)

2fY|X(y|x) dy, continuous.

Compare with the regular variance formula

Var(Y) = E
(
(Y − �)2

)
,

where � = E(Y). Observe that the conditional expectation E(Y|X = x) takes the place

of the unconditional expectation E(Y) in the regular variance formula.

Example 1.30 Let N be a positive, integer-valued random variable. If N = n, lip

n coins, each of which has heads probability p. Let Y be the number of coins which

come up heads. Find Var(Y|N = n).

Solution The conditional distribution of Y given N = n is binomial with parameters

n and p. From the properties of the binomial distribution,

Var(Y|N = n) = np(1 − p).
◾

Properties of the variance transfer to the conditional variance.

Properties of Conditional Variance

1.

Var(Y|X = x) = E
(
Y2|X = x

)
− (E(Y|X = x))2.

2. For constants a and b,

Var(aY + b|X = x) = a2Var(Y|X = x).
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As with the development of conditional expectation, deine the conditional vari-

ance Var(Y|X) as the random variable which is a function of X and which takes the

value Var(Y|X = x) when X = x.

The law of total variance shows how to ind the variance of a random variable by

conditioning.

Law of Total Variance

Var(Y) = E(Var(Y|X)) + Var(E(Y|X)).

The proof is easier than you might think. We have that

E(Var(Y|X)) = E
(
E
(
Y2|X) − (E(Y|X))2)

= E
(
E
(
Y2|X)) − E

(
(E(Y|X))2)

= E
(
Y2

)
− E

(
(E(Y|X))2) .

And

Var(E(Y|X)) = E
(
(E(Y|X))2) − (E(E(Y|X)))2

= E
(
(E(Y|X))2) − (E(Y))2.

Thus,

E(Var(Y|X)) + Var(E(Y|X))
=
(
E(Y2) − E

(
(E(Y|X)2)) + (

E
(
(E(Y|X))2) − (E(Y))2

)

= E
(
Y2

)
− (E(Y))2 = Var(Y).

Example 1.31 A number X is uniformly distributed on (0, 1). If X = x, then Y is

picked uniformly on (0, x). Find the variance of Y .

Solution The conditional distribution of Y given X = x is uniform on (0, x). From
properties of the uniform distribution,

E(Y|X = x) =
x

2
and Var(Y|X = x) =

x2

12
.

This gives E(Y|X) = X∕2 and Var(Y|X) = X2∕12. By the law of total variance,

Var(Y) = E(Var(Y|X)) + Var(E(Y|X)) = E

(
X2

12

)
+ Var

(
X

2

)
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=
1

12
E
(
X2

)
+

1

4
Var(X) =

1

12

(
1

3

)
+

1

4

(
1

12

)

=
7

144
= 0.04861.

◾

R : Simulation of Var(Y)

The structure of this two-stage random experiment makes it especially easy to

simulate in R .

> trials <- 100000
> simlist <- replicate(trials,runif(1,0,runif(1)))
> var(simlist)
[1] 0.04840338

Example 1.32 (Variance of a random sum of random variables) Assume that

X1,X2,… is an i.i.d. sequence with common mean �X and variance �2
X
. Let N be a

positive, integer-valued random variable that is independent of the Xi with mean �N
and variance �2

N
. Let T = X1 + · · · + XN . Find the variance of T .

Solution Random sums of random variables were introduced in Example 1.27 where

the expectation E(T) = �X�N was found using the law of total expectation. By the law

of total variance,

Var(T) = Var

(
N∑
k=1

Xk

)
= E

(
Var

(
N∑
k=1

Xk|N
))

+ Var

(
E

(
N∑
k=1

Xk|N
))

.

We have that

Var

(
N∑
k=1

Xk|N = n

)
= Var

(
n∑
k=1

Xk|N = n

)

= Var

(
n∑
k=1

Xk

)
=

n∑
k=1

Var(Xk)

= n�2
X
.

The second equality is because N is independent of the Xk. The third equality is

because the Xk are independent. This gives

Var

(
N∑
k=1

Xk|N
)

= N�2
X
.
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From results for conditional expectation,

E

(
N∑
k=1

Xk|N
)

= NE(X1) = N�X .

This gives

Var(T) = E

(
Var

(
N∑
k=1

Xk|N
))

+ Var

(
E

(
N∑
k=1

Xk|N
))

= E
(
N�2

X

)
+ Var(N�X)

= �2
X
E(N) + �2

X
Var(N)

= �2
X
�N + �2

X
�2
N
.

◾

Random sums of independent random variables will arise in several contexts.

Results are summarized here.

Random Sums of Random Variables

Let X1,X2,… be an i.i.d. sequence of random variables with common mean �X
and variance �2

X
. LetN be a positive, integer-valued random variable independent

of the Xi with E(N) = �N and Var(N) = �2
N
. Let T =

∑N
i=1 Xi. Then,

E(T) = �X�N and Var(T) = �2
X
�N + �2

N
�2
X
.

EXERCISES

1.1 For the following scenarios identify a stochastic process {Xt, t ∈ I}, describing

(i) Xt in context, (ii) state space, and (iii) index set. State whether the state space

and index set are discrete or continuous.

(a) From day to day the weather in International Falls, Minnesota is either rain,

clear, or snow.

Solution: Let Xt denote the weather on day t. Discrete state space is = {Rain, Clear, Snow}. Discrete index set is I = {0, 1, 2, · · · }.

(b) At the end of each year, a 4-year college student either advances in grade,

repeats their grade, or drops out.
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(c) Seismologists record daily earthquake magnitudes in Chile. The largest

recorded earthquake in history was the Valdivia, Chile earthquake on

May 22, 1960, which had a magnitude of 9.5 on the Richter scale.

(d) Data are kept on the circumferences of trees in an arboretum. The arboretum

covers a two square-mile area.

(e) Starting Monday morning at 9 a.m., as students arrive to class, the teacher

records student arrival times. The class has 30 students and lasts for 60

minutes.

(f) A card player shufles a standard deck of cards by the following method:

the top card of the deck is placed somewhere in the deck at random. The

player does this 100 times to mix up the deck.

1.2 A regional insurance company insures homeowners against lood damage. Half

of their policyholders are in Florida, 30% in Louisiana, and 20% in Texas.

Company actuaries give the estimates in Table 1.1 for the probability that a

policyholder will ile a claim for lood damage over the next year.

(a) Find the probability that a random policyholder will ile a claim for lood

damage next year.

(b) A claim was iled. Find the probability that the policyholder is from Texas.

TABLE 1.1 Probability of Claim for Flood Damage

Florida Louisiana Texas

0.03 0.015 0.02

1.3 Let B1,…,Bk be a partition of the sample space. For events A and C, prove the

law of total probability for conditional probability

P(A|C) =
k∑
i=1

P(A|Bi ∩ C)P(Bi|C).

1.4 See Exercise 1.2. Among all policyholders who live within ive miles of the

Atlantic Ocean, 75% live in Florida, 20% live in Louisiana, and 5% live in

Texas. For those who live close to the ocean the probabilities of iling a claim

increase, as given in Table 1.2.

Assume that a policyholder lives within ive miles of the Atlantic coast. Use the

law of total probability for conditional probability in Exercise 1.3 to ind the

chance they will ile a claim for lood damage next year.

1.5 Two fair, six-sided dice are rolled. Let X1,X2 be the outcomes of the irst and

second die, respectively.
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TABLE 1.2 Probability of Claim for Those

Within Five Miles of Atlantic Coast

Florida Louisiana Texas

0.10 0.06 0.06

(a) Find the conditional distribution of X2 given that X1 + X2 = 7.

(b) Find the conditional distribution of X2 given that X1 + X2 = 8.

1.6 Bob has n coins in his pocket. One is two-headed, the rest are fair. A coin is

picked at random, lipped, and shows heads. Find the probability that the coin

is two-headed.

1.7 A rat is trapped in a maze with three doors and some hidden cheese. If the

rat takes door one, he will wander around the maze for 2minutes and return

to where he started. If he takes door two, he will wander around the maze for

3minutes and return to where he started. If he takes door three, he will ind the

cheese after 1minute. If the rat returns to where he started he immediately picks

a door to pass through. The rat picks each door uniformly at random. How long,

on average, will the rat wander before inding the cheese?

1.8 A bag contains 1 red, 3 green, and 5 yellow balls. A sample of four balls is

picked. Let G be the number of green balls in the sample. Let Y be the number

of yellow balls in the sample.

(a) Find the conditional probability mass function of G given Y = 2 assuming

the sample is picked without replacement.

(b) Find the conditional probability mass function of G given Y = 2 assuming

the sample is picked with replacement.

1.9 Assume that X is uniformly distributed on {1, 2, 3, 4}. If X = x, then Y is uni-

formly distributed on {1,…, x}. Find

(a) P(Y = 2|X = 2)

(b) P(Y = 2)

(c) P(X = 2|Y = 2)

(d) P(X = 2)

(e) P(X = 2,Y = 2).

1.10 A die is rolled until a 3 occurs. By conditioning on the outcome of the irst roll,

ind the probability that an even number of rolls is needed.

1.11 Consider the gambler’s ruin process where at each wager, the gambler wins

with probability p and loses with probability q = 1 − p. The gambler stops

when reaching $n or losing all their money. If the gambler starts with $k, with

0 < k < n, ind the probability of eventual ruin. See Example 1.10.
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1.12 In n rolls of a fair die, let X be the number of times 1 is rolled, and Y the number

of times 2 is rolled. Find the conditional distribution of X given Y = y.

1.13 Random variables X and Y have joint density

f (x, y) = 3y, for 0 < x < y < 1.

(a) Find the conditional density of Y given X = x.

(b) Find the conditional density of X given Y = y. Describe the conditional

distribution.

1.14 Random variables X and Y have joint density function

f (x, y) = 4e−2x, for 0 < y < x < ∞.

(a) Find the conditional density of X given Y = y.

(b) Find the conditional density of Y given X = x. Describe the conditional

distribution.

1.15 Let X and Y be uniformly distributed on the disk of radius 1 centered at the

origin. Find the conditional distribution of Y given X = x.

1.16 A poker hand consists of ive cards drawn from a standard 52-card deck. Find

the expected number of aces in a poker hand given that the irst card drawn is

an ace.

1.17 Let X be a Poisson random variable with � = 3. Find E(X|X > 2).

1.18 From the deinition of conditional expectation given an event, show that

E(IB|A) = P(B|A).
1.19 See Example 1.21. Find the variance of the number of lips needed to get two

heads in a row.

1.20 A fair coin is lipped repeatedly.

(a) Find the expected number of lips needed to get three heads in a row.

(b) Find the expected number of lips needed to get k heads in a row.

1.21 Let T be a nonnegative, continuous random variable. Show

E(T) = ∫
∞

0

P(T > t) dt.

1.22 Find E(Y|X) when (X,Y) is uniformly distributed on the following regions.

(a) The rectangle [a, b] × [c, d].

(b) The triangle with vertices (0, 0), (1, 0), (1, 1).

(c) The disc of radius 1 centered at the origin.
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1.23 Let X1,X2,… be an i.i.d. sequence of random variables with common mean �.
Let Sn = X1 + · · · + Xn, for n ≥ 1.

(a) Find E(Sm|Sn), for m ≤ n.

(b) Find E(Sm|Sn) for m > n.

1.24 Prove the law of total expectation E(Y) = E(E(Y|X)) for the continuous case.
1.25 Let X and Y be independent exponential random variables with respective

parameters 1 and 2. Find P(X∕Y < 3) by conditioning.

1.26 The density of X is f (x) = xe−x, for x > 0. Given X = x, Y is uniformly dis-

tributed on (0, x). Find P(Y < 2) by conditioning on X.

1.27 A restaurant receives N customers per day, where N is a random variable with

mean 200 and standard deviation 40. The amount spent by each customer is

normally distributed with mean $15 and standard deviation $3. The amounts

that customers spend are independent of each other and independent of N. Find

the mean and standard deviation of the total amount spent at the restaurant

per day.

1.28 On any day, the number of accidents on the highway has a Poisson distribution

with parameterΛ. The parameterΛ varies from day to day and is itself a random

variable. Find the mean and variance of the number of accidents per day when

Λ is uniformly distributed on (0, 3).

1.29 If X and Y are independent, does Var(Y|X) = Var(Y)?

1.30 Assume that Y = g(X) is a function of X. Find simple expressions for

(a) E(Y|X).
(b) Var(Y|X).

1.31 Consider a sequence of i.i.d. Bernoulli trials with success parameter p. Let X

be the number of trials needed until the irst success occurs. Then, X has a

geometric distribution with parameter p. Find the variance of X by conditioning

on the irst trial.

1.32 R: Simulate lipping three fair coins and counting the number of heads X.

(a) Use your simulation to estimate P(X = 1) and E(X).

(b) Modify the above to allow for a biased coin where P(Heads) = 3∕4.

1.33 R: Cards are drawn from a standard deck, with replacement, until an ace appears.

Simulate the mean and variance of the number of cards required.

1.34 R: The time until a bus arrives has an exponential distribution with mean

30minutes.

(a) Use the command rexp() to simulate the probability that the bus arrives

in the irst 20minutes.

(b) Use the command pexp() to compare with the exact probability.
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1.35 R: See the script ile gamblersruin.R. A gambler starts with a $60 initial stake.

(a) The gambler wins, and loses, each round with probability p = 0.50. Simu-

late the probability the gambler wins $100 before he loses everything.

(b) The gambler wins each round with probability p = 0.51. Simulate the prob-

ability the gambler wins $100 before he loses everything.

1.36 R: See Example 1.2 and the script ile ReedFrost.R. Observe the effect on the

course of the disease by changing the initial values for the number of people

susceptible and infected. How does increasing the number of infected people

affect the duration of the disease?

1.37 R: Simulate the results of Exercise 1.28. Estimate the mean and variance of the

number of accidents per day.



2
MARKOV CHAINS: FIRST STEPS

Let us inish the article and the whole book with a good example of dependent trials,

which approximately can be considered as a simple chain.

–Andrei Andreyevich Markov

2.1 INTRODUCTION

Consider a game with a playing board consisting of squares numbered 1–10 arranged

in a circle. (Think of miniature Monopoly.) A player starts at square 1. At each turn,

the player rolls a die and moves around the board by the number of spaces shown on

the face of the die. The player keeps moving around and around the board according

to the roll of the die. (Granted, this is not a very exciting game.)

Let Xk be the number of squares the player lands on after k moves, with X0 = 1.

Assume that the player successively rolls 2, 1, and 4. The irst four positions are

(X0,X1,X2,X3) = (1, 3, 4, 8).

Given this information, what can be said about the player’s next location X4? Even

though we know the player’s full past history of moves, the only information relevant

Introduction to Stochastic Processes with R, First Edition. Robert P. Dobrow.
© 2016 John Wiley & Sons, Inc. Published 2016 by John Wiley & Sons, Inc.
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for predicting their future position is their most recent location X3. Since X3 = 8, then

necessarily X4 ∈ {9, 10, 1, 2, 3, 4}, with equal probability. Formally,

P(X4 = j|X0 = 1,X1 = 3,X2 = 4,X3 = 8) = P(X4 = j|X3 = 8) =
1

6
,

for j = 9, 10, 1, 2, 3, 4. Given the player’s most recent locationX3, their future position

X4 is independent of past history X0,X1,X2.

The sequence of player’s locations X0,X1,… is a stochastic process called a

Markov chain. The game illustrates the essential property of a Markov chain: the

future, given the present, is independent of the past.

Markov Chain

Let  be a discrete set. A Markov chain is a sequence of random variables

X0,X1,… taking values in  with the property that

P(Xn+1 = j|X0 = x0,… ,Xn−1 = xn−1,Xn = i)

= P(Xn+1 = j|Xn = i), (2.1)

for all x0,… , xn−1, i, j ∈  , and n ≥ 0. The set  is the state space of the Markov

chain.

We often use descriptive language to describe the evolution of a Markov chain.

For instance, if Xn = i, we say that the chain visits state i, or hits i, at time n.

A Markov chain is time-homogeneous if the probabilities in Equation (2.1) do not

depend on n. That is,

P(Xn+1 = j|Xn = i) = P(X1 = j|X0 = i), (2.2)

for all n ≥ 0. Unless stated otherwise, the Markov chains in this book are

time-homogeneous.

Since the probabilities in Equation (2.2) only depend on i and j, they can be

arranged in a matrix P, whose ijth entry is Pij = P(X1 = j|X0 = i). This is the transi-

tion matrix, orMarkov matrix, which contains the one-step transition probabilities of

moving from state to state.

If the state space has k elements, then the transition matrix is a square k × kmatrix.

If the state space is countably ininite, the transition matrix is ininite.

For the simple board game Markov chain, the sample space is

 = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10},
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with transition matrix

1 2 3 4 5 6 7 8 9 10

P =

1

2

3

4

5

6

7

8

9

10

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1∕6 1∕6 1∕6 1∕6 1∕6 1∕6 0 0 0

0 0 1∕6 1∕6 1∕6 1∕6 1∕6 1∕6 0 0

0 0 0 1∕6 1∕6 1∕6 1∕6 1∕6 1∕6 0

0 0 0 0 1∕6 1∕6 1∕6 1∕6 1∕6 1∕6

1∕6 0 0 0 0 1∕6 1∕6 1∕6 1∕6 1∕6

1∕6 1∕6 0 0 0 0 1∕6 1∕6 1∕6 1∕6

1∕6 1∕6 1∕6 0 0 0 0 1∕6 1∕6 1∕6

1∕6 1∕6 1∕6 1∕6 0 0 0 0 1∕6 1∕6

1∕6 1∕6 1∕6 1∕6 1∕6 0 0 0 0 1∕6

1∕6 1∕6 1∕6 1∕6 16 1∕6 0 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

The entries of every Markov transition matrix P are nonnegative, and each row

sums to 1, as

∑
j

Pij =
∑
j

P(X1 = j|X0 = i) =
∑
j

P(X1 = j,X0 = i)

P(X0 = i)
=
P(X0 = i)

P(X0 = i)
= 1,

for all rows i. A nonnegative matrix whose rows sum to 1 is called a stochastic matrix.

Stochastic Matrix

A stochastic matrix is a square matrix P, which satisies

1. Pij ≥ 0 for all i, j.

2. For each row i, ∑
j

Pij = 1.

2.2 MARKOV CHAIN CORNUCOPIA

Following is a taste of the wide range of applications of Markov chains. Many of

these examples are referenced throughout the book.

Example 2.1 (Heads you win) Successive coin lips are the very model of

independent events. Yet in a fascinating study of how people actually lip coins,

Diaconis (2007) shows that vigorously lipped coins are ever so slightly biased to

come up the same way they started. “For natural lips,” Diaconis asserts, “the chance

of coming up as started is about 0.51.”
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In other words, successive coin lips are not independent. They can be described

by a Markov chain with transition matrix

H T

P =
H

T

(
0.51 0.49
0.49 0.51

)
.

◾

Note on Notation

In Example 2.1, the state space is = {H,T}, and the transitionmatrix is labeled

with row and column identiiers. For many Markov chains, such as this, random

variables take values in a discrete state space whose elements are not necessarily

numbers.

For matrix entries, we can use suitable labels to identify states. For instance,

for this example PHH = PTT = 0.51 and PHT = PTH = 0.49.

Example 2.2 (Poetry and dependent sequences) Andrei Andreyevich Markov,

the Russian mathematician who introduced Markov chains over 100 years ago, irst

applied them in the analysis of the poem Eugene Onegin by Alexander Pushkin. In

the irst 20,000 letters of the poem, Markov counted (by hand!) 8,638 vowels and

11,362 consonants. He also tallied pairs of successive letters. Of the 8,638 pairs that

start with vowels, 1,104 pairs are vowel–vowel. Of the 11,362 pairs that start with

consonants, 3,827 are consonant–consonant. Markov treated the succession of letter

types as a random sequence. The resulting transition matrix is

vowel consonant

P =
v

c

(
1, 104∕8, 638 7, 534∕8, 638
7, 535∕11, 362 3, 827∕11, 362

)
=

(
0.175 0.825
0.526 0.474

)
.

Markov showed that the succession of letter types was not an independent

sequence. For instance, if letter types were independent, the probability of two suc-

cessive consonants would be (11, 362∕20, 000)2 = 0.323, whereas from Pushkin’s

poem the probability is Pcc = 0.474.
Markov’s work was a polemic against a now obscure mathematician who argued

that the law of large numbers only applied to independent sequences. Markov

disproved the claim by showing that the Pushkin letter sequence was a dependent

sequence for which the law of large numbers applied. ◾

Example 2.3 (Chained to the weather) Some winter days in Minnesota it seems

like the snow will never stop. A Minnesotan’s view of winter might be described by

the following transition matrix for a weather Markov chain, where r, s, and c denote
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rain, snow, and clear, respectively.

r s c

P =

r

s

c

⎛
⎜⎜⎝

0.2 0.6 0.2
0.1 0.8 0.1
0.1 0.6 0.3

⎞
⎟⎟⎠
.

For this model, no matter what the weather today, there is always at least a 60%

chance that it will snow tomorrow. ◾

Example 2.4 (I.i.d. sequence) An independent and identically distributed

sequence of random variables is trivially a Markov chain. Assume that X0,X1,… is

an i.i.d. sequence that takes values in {1,… , k} with

P(Xn = j) = pj, for j = 1,… , k, and n ≥ 0,

where p1 + · · · + pk = 1. By independence,

P(X1 = j|X0 = i) = P(X1 = j) = pj.

The transition matrix is

1 2 · · · k

P =

1

2

⋮

k

⎛
⎜⎜⎜⎝

p1 p2 · · · pk
p1 p2 · · · pk
⋮ ⋮ ⋮

p1 p2 · · · pk

⎞
⎟⎟⎟⎠
.

The matrix for an i.i.d. sequence has identical rows as the next state of the chain is

independent of, and has the same distribution as, the present state. ◾

Example 2.5 (Gambler’s ruin) Gambler’s ruin was introduced in Chapter 1. In

each round of a gambling game a player either wins $1, with probability p, or loses

$1, with probability 1 − p. The gambler starts with $k. The game stops when the

player either loses all their money, or gains a total of $n (n > k).

The gambler’s successive fortunes form a Markov chain on {0, 1,… , n} with

X0 = k and transition matrix given by

Pij =

⎧
⎪⎨⎪⎩

p, if j = i + 1, 0 < i < n,
1 − p, if j = i − 1, 0 < i < n,
1, if i = j = 0, or i = j = n,
0, otherwise.
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Here is the transition matrix with n = 6 and p = 1∕3.

0 1 2 3 4 5 6

P =

0

1

2

3

4

5

6

⎛⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0 0

2∕3 0 1∕3 0 0 0 0

0 2∕3 0 1∕3 0 0 0

0 0 2∕3 0 1∕3 0 0

0 0 0 2∕3 0 1∕3 0

0 0 0 0 2∕3 0 1∕3

0 0 0 0 0 0 1

⎞⎟⎟⎟⎟⎟⎟⎟⎠

.

Gambler’s ruin is an example of simple random walk with absorbing boundaries.

Since P00 = Pnn = 1, when the chain reaches 0 or n, it stays there forever. ◾

Example 2.6 (Wright–Fisher model) The Wright–Fisher model describes the

evolution of a ixed population of k genes. Genes can be one of two types, called

alleles: A or a. Let Xn denote the number of A alleles in the population at time n,

where time is measured by generations. Under the model, the number of A alleles

at time n + 1 is obtained by drawing with replacement from the gene population at

time n. Thus, conditional on there being i alleles of type A at time n, the number of A

alleles at time n + 1 has a binomial distribution with parameters k and p = i∕k. This

gives a Markov chain with transition matrix deined by

Pij =

(
k

j

)(
i

k

)j(
1 −

i

k

)k−j
, for 0 ≤ i, j ≤ k.

Observe that P00 = Pkk = 1. As the chain progresses, the population is eventually

made up of all a alleles (state 0) or all A alleles (state k). A question of interest is

what is the probability that the population evolves to the all-A state? ◾

Example 2.7 (Squash) Squash is a popular racket sport played by two or four

players in a four-walled court. In the international scoring system, the irst player to

score nine points is the winner. However, if the game is tied at 8-8, the player who

reaches 8 points irst has two options: (i) to play to 9 points (set one) or to play to 10

points (set two). Set one means that the next player to score wins the game. Set two

means that the irst player to score two points wins the game. Points are only scored

by the player who is serving. A player who wins a rally serves the next rally. Thus,

if the game is tied 8-8, the player who is not serving decides. Should they choose set

one or set two? This endgame play is modeled by a Markov chain in Broadie and

Joneja (1993). The two players are called A and B and a score of xymeans that A has

scored x points and B has scored y points. The states of the chain are deined by the

score and the server. The authors let p be the probability that A wins a rally given

that A is serving, and q be the probability that A wins a rally given that B is serving.

Assumptions are that p and q are constant over time and independent of the current
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score. Following is the transition matrix of the Markov chain for the set two options.

The chain is used to solve for the optimal strategy.

88B 88A 89B 89A 98B 98A 99B 99A A loses A wins

P =

88B

88A

89B

89A

98B

98A

99B

99A

A loses

A wins

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 q 1 − q 0 0 0 0 0 0 0

1 − p 0 0 0 0 p 0 0 0 0

0 0 0 q 0 0 0 0 1 − q 0

0 0 1 − p 0 0 0 0 p 0 0

0 0 0 0 0 q 1 − q 0 0 0

0 0 0 0 1 − p 0 0 0 0 p

0 0 0 0 0 0 0 q 1 − q 0

0 0 0 0 0 0 1 − p 0 0 p

0 0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

◾

Example 2.8 (Random walk on a graph) A graph is a set of vertices and a set

of edges. Two vertices are neighbors if there is an edge joining them. The degree of

vertex � is the number of neighbors of �. For the graph in Figure 2.1, deg(a) = 1,

deg(b) = deg(c) = deg(d) = 4, deg(e) = 3, and deg(f ) = 2.

a b

c

d

e f

Figure 2.1 Graph on six vertices.

Imagine the vertices as lily pads on a pond. A frog is sitting on one lily pad. At

each discrete unit of time, the frog hops to a neighboring lily pad chosen uniformly

at random. For instance, if the frog is on lily pad c, it jumps to b, d, e, or f with

probability 1/4 each. If the frog is on f , it jumps to c or d with probability 1/2 each.

If the frog is on a, it always jumps to b.

Let Xn be the frog’s location after n hops. The sequence X0,X1,… is a Markov

chain. Given a graph G such a process is called simple random walk on G.

For vertices i and j, write i ∼ j if i and j are neighbors. The one-step transition

probabilities are

P(X1 = j|X0 = i) =

{ 1

deg(i)
, if i ∼ j,

0, otherwise.
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The transition matrix for simple random walk on the graph in Figure 2.1 is

a b c d e f

P =

a

b

c

d

e

f

⎛
⎜⎜⎜⎜⎜⎜⎝

0 1 0 0 0 0

1∕4 0 1∕4 1∕4 1∕4 0

0 1∕4 0 1∕4 1∕4 1∕4

0 1∕4 1∕4 0 1∕4 1∕4

0 1∕3 1∕3 1∕3 0 0

0 0 1∕2 1∕2 0 0

⎞
⎟⎟⎟⎟⎟⎟⎠

.

Of particular interest is the long-term behavior of the random walk. What can be said

of the frog’s position after it has been hopping for a long time?

(a) The cycle graph on nine vertices is shown in Figure 2.2. Simple random walk

on the cycle moves left or right with probability 1/2. Each vertex has degree

two. The transition matrix is deined using clock arithmetic. For a cycle with k

vertices,

Pij =

{
1∕2, if j ≡ i ± 1 mod k,
0, otherwise.

2

1

0
8

7

6

5
4

(a) (b)

3

1

2
3

4
5

Figure 2.2 (a) Cycle graph on nine vertices. (b) Complete graph on ive vertices.

(b) In the complete graph, every pair of vertices is joined by an edge. The complete

graph on ive vertices is shown in Figure 2.2. The complete graph on k ver-

tices has
(
k

2

)
edges. Each vertex has degree k − 1. The entries of the transition

matrix are

Pij =

{
1∕(k − 1), if i ≠ j

0, if i = j.

(c) The k-hypercube graph has vertex set consisting of all k-element sequences of

0s and 1s. Two vertices (sequences) are connected by an edge if they differ in

exactly one coordinate. The graph has 2k vertices and k2k−1 edges. Each vertex

has degree k. See Figure 2.3.
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(0,0) (1,0)

(0,1) (1,1)

(0,0,0) (1,0,0)

(0,1,0) (1,1,0)

(0,0,1) (1,0,1)

(0,1,1) (1,1,1)

Figure 2.3 The k-hypercube graphs for k = 2 and k = 3.

Random walk on the k-hypercube can be described as follows. Assume that the

walk is at a particular k-element 0–1 sequence. The next sequence of the walk is found

by picking one of the k coordinates uniformly at random and lipping the bit at that

coordinate. That is, switch from 0 to 1, or from 1 to 0. Here is the transition matrix

for random walk on the 3-hypercube graph.

000 100 010 110 001 101 011 111

P =

000

100

010

110

001

101

011

111

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1∕3 1∕3 0 1∕3 0 0 0

1∕3 0 0 1∕3 0 1∕3 0 0

1∕3 0 0 1∕3 0 0 1∕3 0

0 1∕3 1∕3 0 0 0 0 1∕3

1∕3 0 0 0 0 1∕3 1∕3 0

0 1∕3 0 0 1∕3 0 0 1∕3

0 0 1∕3 0 1∕3 0 0 1∕3

0 0 0 1∕3 0 1∕3 1∕3 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

◾

Example 2.9 (Birth-and-death chain) A birth-and-death Markov chain is a pro-

cess with countably ininite state space and two types of transitions: births from i to

i + 1 and deaths from i to i − 1. Deine transition probabilities

Pij =

⎧⎪⎨⎪⎩

qi, if j = i − 1,
pi, if j = i + 1,
1 − pi − qi, if j = i,
0, otherwise,

for 0 ≤ pi, qi and pi + qi ≤ 1. The ininite, tri-diagonal transition matrix is

0 1 2 3 · · ·

P =

0

1

2

3

⋮

⎛
⎜⎜⎜⎜⎝

1 − p0 p0 0 0 · · ·

q1 1 − q1 − p1 p1 0 · · ·

0 q2 1 − q2 − p2 p2 · · ·

0 0 q3 1 − q3 − p3 · · ·

⋮ ⋮ ⋮ ⋮ ⋱

⎞
⎟⎟⎟⎟⎠
.
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Birth-and-death chains are used to model population size, spread of disease, and the

number of customers in line at the supermarket. The case when pi = p and qi = q are

constant gives random walk on the non-negative integers. ◾

Example 2.10 (The lazy librarian and move-to-front) A library has k books and

one very long bookshelf. Each book’s popularity is measured by a probability. The

chance that book i will be checked out is pi, with p1 + · · · + pk = 1. When patrons

look for books they go to the bookshelf, start at the front (left end), and scan down

the bookshelf, left to right, until they ind the book they want.

The library wants to organize the bookshelf in such a way as to minimize patrons’

search time, measured by how many books they need to scan before they ind the

one they want. If the probabilities pi are known then the best way to organize the

bookshelf is by order of popularity, with the most popular, high probability books at

the front. However, the actual probabilities are not known.

A lazy librarian uses the following method for organizing the books. When a

patron returns a book the librarian simply puts the book at the front of the shelf. All the

other books move down the shelf to the right. For instance, assume that the library has

six books labeled a to f . If the bookshelf is currently ordered (b, c, a, f , e, d) and book
e is chosen, the new ordering of the shelf after the book is returned is (e, b, c, a, f , d).
We assume that one book is chosen and returned at a time.

Such a scheme has the advantage that over time, as books get taken out and

returned, the most popular books will gravitate to the front of the bookshelf and

the least popular books will gravitate to the back. The process is known as the

move-to-front self-organizing scheme. Move-to-front is studied in computer science

as a dynamic data structure for maintaining a linked list.

Let Xn be the order of the books after n steps. Then, the move-to-front process

X0,X1,… is a Markov chain whose state space is the set of all permutations (order-

ings) of k books. The transition matrix has dimension k! × k!. Let � = (�1,… , �k)
and � = (�1,… , �k) denote permutations. Then,

P�,� = P(X1 = �|X0 = �) = px,

if �1 = x and � can be obtained from � by moving item x to the front of �. Here is the
transition matrix for move-to-front for a k = 3 book library.

abc acb bac bca cab cba

P =

abc

acb

bac

bca

cab

cba

⎛⎜⎜⎜⎜⎜⎜⎝

pa 0 pb 0 pc 0

0 pa pb 0 pc 0

pa 0 pb 0 0 pc
pa 0 0 pb 0 pc
0 pa 0 pb pc 0

0 pa 0 pb 0 pc

⎞⎟⎟⎟⎟⎟⎟⎠

.

Move-to-front is related to a card-shufling scheme known as random-to-top.

Given a standard deck of cards, pick a card uniformly at random and move it to the

top of the deck. Random-to-top is obtained from move-to-front by letting k = 52
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and pi = 1∕52, for all i. Of interest is how many such shufles will mix up the deck

of cards. ◾

Example 2.11 (Weighted, directed graphs) A weighted graph associates a posi-

tive number (weight) with every edge. An example is shown in Figure 2.4. The graph

contains loops at vertices b, c, and f , which are edges joining a vertex to itself.

a b

c

d

e f
1

1

3

2

1

2

1

1

1

4

4

2

Figure 2.4 Weighted graph with loops.

For random walk on a weighted graph, transition probabilities are proportional to

the sum of the weights. If vertices i and j are neighbors, let �(i, j) denote the weight
of the edge joining i and j. Let �(i) =

∑
i∼k�(i, k) be the sum of the weights on all

edges joining i to its neighbors. The transition matrix is given by

Pij =

⎧
⎪⎨⎪⎩

�(i, j)

�(i)
, if i ∼ j,

0, otherwise.

For the weighted graph in Figure 2.4, the transition matrix is

a b c d e f

P =

a

b

c

d

e

f

⎛
⎜⎜⎜⎜⎜⎜⎝

0 1 0 0 0 0

1∕9 2∕9 1∕9 3∕9 2∕9 0

0 1∕8 1∕8 1∕8 1∕8 4∕8

0 3∕9 1∕9 0 1∕9 4∕9

0 2∕4 1∕4 1∕4 0 0

0 0 4∕10 4∕10 0 2∕10

⎞
⎟⎟⎟⎟⎟⎟⎠

.

A directed graph is a graph where edges have an associated direction. For every

pair of vertices i and j one can have an edge from i to j and an edge from j to i. In

a weighted, directed graph, there is a weight function �(i, j) which gives the weight

for the directed edge from i to j.

Every Markov chain can be described as a random walk on a weighted, directed

graph whose vertex set is the state space of the chain.We call such a graph a transition

graph for the Markov chain.
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To create a transition graph from a transition matrix P, for each pair of vertices i

and j such that Pij > 0, put a directed edge between i and j with edge weight Pij.

Conversely, given a weighted, directed graph with non-negative weight function

�(i, j), to obtain the corresponding transition matrix let

Pij =
�(i, j)∑
i∼k�(i, k)

=
�(i, j)

�(i)
, for all i, j.

Observe that matrix entries are non-negative and rows sum to 1, as for each i,

∑
j

Pij =
∑
j

�(i, j)

�(i)
=

1

�(i)

∑
j∼i

�(i, j) =
�(i)

�(i)
= 1.

For example, consider the transition matrix

a b c

P =

a

b

c

⎛
⎜⎜⎝

0 1 0

0.1 0.2 0.7
0.4 0 0.6

⎞
⎟⎟⎠
.

Two versions of the transition graph are shown in Figure 2.5. Note that multiplying the

weights in the transition graph by a constant does not change the resulting transition

matrix. ◾

a

b c

a

b c

1

0.7

0.1

0.2

0.4

0.6

10

7

1

2

4

6

Figure 2.5 Markov transition graphs.

Example 2.12 The metastatic progression of lung cancer throughout the body is

modeled in Newton et al. (2012). The 50 possible metastatic locations for cancer

spread are the state space for a Markov chain model. Matrix entries were estimated

from autopsy data extracted from 3,827 patients. The progress of the disease is

observed as a random walk on the weighted, directed graph in Figure 2.6. Site 23

represents the lung.

An important quantity associated with this model is the mean irst-passage time,

the average number of steps it takes to move from the lung to each of the other loca-

tions in the body. ◾
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Figure 2.6 Lung cancer network as a weighted, directed graph (weights not shown). Source:

Newton et al. (2012).

2.3 BASIC COMPUTATIONS

Apowerful feature ofMarkov chains is the ability to usematrix algebra for computing

probabilities. To use matrix methods, we consider probability distributions as vectors.

A probability vector is a row vector of non-negative numbers that sum to 1. Bold

Greek letters, such as �, �, and �, are used to denote such vectors.

Assume that X is a discrete random variable with P(X = j) = �j, for j = 1, 2,… .

Then, � = (�1, �2,…) is a probability vector. We say that the distribution of X is �.

For matrix computations we will identify discrete probability distributions with row

vectors.

For a Markov chain X0,X1,… , the distribution of X0 is called the initial distribu-

tion of the Markov chain. If � is the initial distribution, then P(X0 = j) = �j, for all j.

n-Step Transition Probabilities

For states i and j, and n ≥ 1, P(Xn = j|X0 = i) is the probability that the chain started

in i hits j in n steps. The n-step transition probabilities can be arranged in a matrix.

The matrix whose ijth entry is P(Xn = j|X0 = i) is the n-step transition matrix of the

Markov chain. Of course, for n = 1, this is just the usual transition matrix P.

For n ≥ 1, one of the central computational results for Markov chains is that the

n-step transition matrix is precisely Pn, the nth matrix power of P. To show that
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P(Xn = j|X0 = i) = (Pn)ij, condition on Xn−1, which gives

P(Xn = j|X0 = i) =
∑
k

P(Xn = j|Xn−1 = k,X0 = i)P(Xn−1 = k|X0 = i)

=
∑
k

P(Xn = j|Xn−1 = k)P(Xn−1 = k|X0 = i)

=
∑
k

PkjP(Xn−1 = k|X0 = i),

where the second equality is by the Markov property, and the third equality is by

time-homogeneity.

For n = 2, this gives

P(X2 = j|X0 = i) =
∑
k

PkjP(X1 = k|X0 = i) =
∑
k

PkjPik =
(
P2

)
ij
.

Hence, the two-step transition matrix is P2. Similarly, for n = 3,

P(X3 = j|X0 = i) =
∑
k

PkjP(X2 = k|X0 = i) =
∑
k

PkjP
2
ik
=
(
P3

)
ij
.

The three-step transitionmatrix isP3. Induction establishes the general result. (See

Section 2.6 for an introduction to mathematical induction.)

n-Step Transition Matrix

Let X0,X1,… be a Markov chain with transition matrix P. The matrix Pn is the

n-step transition matrix of the chain. For n ≥ 0,

Pn
ij
= P(Xn = j|X0 = i), for all i, j.

Note that Pn
ij
= (Pn)ij. Do not confuse this with (Pij)

n, which is the number Pij

raised to the nth power. Also note that P0 is the identity matrix. That is,

P0
ij
= P(X0 = j|X0 = i) =

{
1, if i = j,
0, if i ≠ j.

Example 2.13 Consider random walk on the cycle graph consisting of ive vertices

{0, 1, 2, 3, 4}. Describe the six-step transition probabilities of the chain.
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Solution The transition matrix is

0 1 2 3 4

P =

0

1

2

3

4

⎛
⎜⎜⎜⎜⎝

0 1∕2 0 0 1∕2

1∕2 0 1∕2 0 0

0 1∕2 0 1∕2 0

0 0 1∕2 0 1∕2

1∕2 0 0 1∕2 0

⎞
⎟⎟⎟⎟⎠
.

The six-step transition matrix is

0 1 2 3 4

P6 =

0

1

2

3

4

⎛
⎜⎜⎜⎜⎝

5∕16 7∕64 15∕64 15∕64 7∕64

7∕64 5∕16 7∕64 15∕64 15∕64

15∕64 7∕64 5∕16 7∕64 15∕64

15∕64 15∕64 7∕64 5∕16 7∕64

7∕64 15∕64 15∕64 7∕64 5∕16

⎞
⎟⎟⎟⎟⎠
.

This matrix reveals that starting from any vertex on the cycle, in six steps the

walk either (i) visits itself, with probability 5/16, (ii) visits a neighbor, with

probability 7∕64 + 7∕64 = 7∕32, or (iii) visits a non-neighbor, with probability

15∕64 + 15∕64 = 15∕32. ◾

Example 2.14 For gambler’s ruin, assume that the gambler’s initial stake is $3 and

the gambler plays until either gaining $8 or going bust. At each play the gambler

wins $1, with probability 0.6, or loses $1, with probability 0.4. Find the gambler’s

expected fortune after four plays.

Solution The transition matrix is

0 1 2 3 4 5 6 7 8

P =

0

1

2

3

4

5

6

7

8

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0 0 0 0

0.4 0 0.6 0 0 0 0 0 0

0 0.4 0 0.6 0 0 0 0 0

0 0 0.4 0 0.6 0 0 0 0

0 0 0 0.4 0 0.6 0 0 0

0 0 0 0 0.4 0 0.6 0 0

0 0 0 0 0 0.4 0 0.6 0

0 0 0 0 0 0 0.4 0 0.6
0 0 0 0 0 0 0 0 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,
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with

0 1 2 3 4 5 6 7 8

P4 =

0

1

2

3

4

5

6

7

8

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0 0 0 0

0.496 0.115 0 0.259 0 0.130 0 0 0

0.237 0 0.288 0 0.346 0 0.130 0 0

0.064 0.115 0 0.346 0 0.346 0 0.130 0

0.026 0 0.154 0 0.346 0 0.346 0 0.130
0 0.026 0 0.154 0 0.346 0 0.259 0.216
0 0 0.026 0 0.154 0 0.288 0 0.533
0 0 0 0.026 0 0.115 0 0.115 0.744
0 0 0 0 0 0 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

The gambler’s expected fortune is

E(X4|X0 = 3) =

8∑
j=0

jP(X4 = j|X0 = 3) =

8∑
j=0

jP4
3,j

= 0(0.064) + 1(0.115) + 3(0.346) + 5(0.346) + 7(0.130)

= $3.79. ◾

Chapman–Kolmogorov Relationship

For m, n ≥ 0, the matrix identity Pm+n = PmPn gives

Pm+n
ij

=
∑
k

Pm
ik
Pn
kj
, for all i, j.

By time-homogeneity, this gives

P(Xn+m = j|X0 = i) =
∑
k

P(Xm = k|X0 = i)P(Xn = j|X0 = k)

=
∑
k

P(Xm = k|X0 = i)P(Xm+n = j|Xm = k).

The probabilistic interpretation is that transitioning from i to j in m + n steps is

equivalent to transitioning from i to some state k in m steps and then moving from

that state to j in the remaining n steps. This is known as the Chapman–Kolmogorov

relationship.

Distribution of Xn

In general, a Markov chain X0,X1,… is not a sequence of identically distributed

random variables. For n ≥ 1, the marginal distribution of Xn depends on the n-step
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transition matrix Pn, as well as the initial distribution �. To obtain the probability

mass function of Xn, condition on the initial state X0. For all j,

P(Xn = j) =
∑
i

P(Xn = j|X0 = i)P(X0 = i) =
∑
i

Pn
ij
�i. (2.3)

The sum in the last expression of Equation (2.3) can be interpreted in terms of matrix

operations on vectors. It is the dot product of the initial probability vector � with the

jth column of Pn. That is, it is the jth component of the vector–matrix product �Pn.

(Remember: � is a row vector.)

Distribution of Xn

Let X0,X1,… be a Markov chain with transition matrix P and initial distribution

�. For all n ≥ 0, the distribution of Xn is �P
n. That is,

P(Xn = j) = (�Pn)j, for all j.

Example 2.15 Consider the weather chain introduced in Example 2.3. For tomor-

row, the meteorologist predicts a 50% chance of snow and a 50% chance of rain. Find

the probability that it will snow 2 days later.

Solution As the ordered states of the chain are rain, snow, and clear, the initial

distribution is � = (0.5, 0.5, 0). We have

P =

r s c

r

s

c

⎛⎜⎜⎝

0.2 0.6 0.2

0.1 0.8 0.1
0.1 0.6 0.3

⎞⎟⎟⎠
and P2 =

r s c
r

s

c

⎛⎜⎜⎝

0.12 0.72 0.16

0.11 0.76 0.13
0.11 0.72 0.17

⎞⎟⎟⎠

This gives

�P2 = (0.5, 0.5, 0)

⎛
⎜⎜⎝

0.12 0.72 0.16
0.11 0.76 0.13

0.11 0.72 0.17

⎞
⎟⎟⎠
= (0.115, 0.74, 0.145).

The desired probability of snow is P(X2 = s) = (�P2)s = 0.74. ◾

Present, Future, and Most Recent Past

The Markov property says that past and future are independent given the present. It

is also true that past and future are independent, given the most recent past.
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Markov Property

Let X0,X1,… be a Markov chain. Then, for all m < n,

P(Xn+1 = j|X0 = i0,… ,Xn−m−1 = in−m−1,Xn−m = i)

= P(Xn+1 = j|Xn−m = i)

= P(Xm+1 = j|X0 = i) = Pm+1
ij

, (2.4)

for all i, j, i0,… , in−m−1, and n ≥ 0.

Proof. With m = 0, Equation (2.4) reduces to the deining Markov relationship as

stated in Equation (2.1).

Let m = 1. By conditioning on Xn,

P(Xn+1 = j|X0 = i0,… ,Xn−1 = i)

=
∑
k

P(Xn+1 = j|X0 = i0,… ,Xn−1 = i,Xn = k)

× P(Xn = k|X0 = i0,… ,Xn−1 = i)

=
∑
k

P(Xn+1 = j|Xn = k)P(Xn = k|Xn−1 = i)

=
∑
k

P(X1 = j|X0 = k)P(X1 = k|X0 = i)

=
∑
k

PkjPik = P2
ij
.

The third equality is by time-homogeneity. For general m, induction gives the result

by conditioning on Xn−m+1. ◾

Joint Distribution

Themarginal distributions of aMarkov chain are determined by the initial distribution

� and the transition matrix P. However, a much stronger result is true. In fact, � and P

determine all the joint distributions of a Markov chain, that is, the joint distribution of

any inite subset of X0,X1,X2,… . In that sense, the initial distribution and transition

matrix give a complete probabilistic description of a Markov chain.

To illustrate, consider an arbitrary joint probability, such as

P(X5 = i,X6 = j,X9 = k,X17 = l), for some states i, j, k, l.

For the underlying event, the chain moves to i in ive steps, then to j in one step,

then to k in three steps, and then to l in eight steps.With initial distribution �, intuition
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suggests that

P(X5 = i,X6 = j,X9 = k,X17 = l) = (�P5)iPijP
3
jk
P8
kl
.

Indeed, conditional probability, the Markov property, and time-homogeneity give

P(X5 = i,X6 = j,X9 = k,X17 = l)

= P(X17 = l|X5 = i,X6 = j,X9 = k)P(X9 = k|X5 = i,X6 = j)

× P(X6 = j|X5 = i)P(X5 = i)

= P(X17 = l|X9 = k)P(X9 = k|X6 = j)P(X6 = j|X5 = i)P(X5 = i)

= P(X8 = l|X0 = k)P(X3 = k|X0 = j)P(X1 = j|X0 = i)P(X5 = i)

= P8
kl
P3
jk
Pij(�P

5)i.

The joint probability is obtained from just the initial distribution � and the transition

matrix P. For completeness, here is the general formula.

Joint Distribution

Let X0,X1,… be a Markov chain with transition matrix P and initial distribution

�. For all 0 ≤ n1 < n2 < · · · < nk−1 < nk and states i1, i2,… , ik−1, ik,

P(Xn1 = i1, Xn2 = i2,… ,Xnk−1 = ik−1,Xnk = ik)

= (�Pn1 )i1 (P
n2−n1)i1i2 · · · (P

nk−nk−1 )ik−1ik . (2.5)

Example 2.16 Danny’s daily lunch choices are modeled by a Markov chain with

transition matrix

P =

Burrito

Falafel

Pizza

Sushi

Burrito Falafel Pizza Sushi

⎛⎜⎜⎜⎝

0.0 0.5 0.5 0.0

0.5 0.0 0.5 0.0
0.4 0.0 0.0 0.6
0.0 0.2 0.6 0.2

⎞⎟⎟⎟⎠
.

On Sunday, Danny chooses lunch uniformly at random. Find the probability that he

chooses sushi on the following Wednesday and Friday, and pizza on Saturday.

Solution Let b, f , p, s denote Danny’s lunch choices, respectively. Let X0 denote

Danny’s lunch choice on Sunday. The desired probability is

P(X3 = s,X5 = s,X6 = p) = (�P3)sP
2
ssPsp,
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where � = (1∕4, 1∕4, 1∕4, 1∕4). We have

P2 =

b f p s

b

f

p

s

⎛⎜⎜⎜⎝

0.45 0.00 0.25 0.30
0.20 0.25 0.25 0.30
0.00 0.32 0.56 0.12
0.34 0.04 0.22 0.40

⎞⎟⎟⎟⎠
, P3 =

b f p s

b

f

p

s

⎛⎜⎜⎜⎝

0.100 0.285 0.405 0.210
0.225 0.160 0.405 0.210
0.384 0.024 0.232 0.360
0.108 0.250 0.430 0.212

⎞⎟⎟⎟⎠
.

The desired probability is

(�P3)sP
2
ssPsp = (0.248)(0.40)(0.60) = 0.05952. ◾

2.4 LONG-TERM BEHAVIOR—THE NUMERICAL EVIDENCE

In any stochastic—or deterministic—process, the long-term behavior of the system

is often of interest.

The Canadian Forest Fire Weather Index is widely used as a means to estimate the

risk of wildire. The Ontario Ministry of Natural Resources uses the index to classify

each day’s risk of forest ire as either nil, low, moderate, high, or extreme.

Martell (1999) gathered daily ire risk data over 26 years at 15 weather stations

across Ontario to construct a ive-state Markov chain model for the daily changes in

the index. The transition matrix from one location for the early summer subseason is

P =

Nil Low Moderate High Extreme

Nil

Low

Moderate

High

Extreme

⎛
⎜⎜⎜⎜⎝

0.575 0.118 0.172 0.109 0.026
0.453 0.243 0.148 0.123 0.033

0.104 0.343 0.367 0.167 0.019
0.015 0.066 0.318 0.505 0.096
0.000 0.060 0.149 0.567 0.224

⎞
⎟⎟⎟⎟⎠
.

Of interest to forest managers is the long-term probability distribution of the daily

index. Regardless of the risk on any particular day, what is the long-term likelihood

of risk for a typical day in the early summer?

Consider the n-step transition matrix for several increasing values of n.

P2 =

⎛
⎜⎜⎜⎜⎝

0.404 0.164 0.218 0.176 0.038
0.388 0.173 0.212 0.185 0.042

0.256 0.234 0.259 0.210 0.041
0.079 0.166 0.304 0.372 0.079
0.051 0.117 0.277 0.446 0.109

⎞
⎟⎟⎟⎟⎠
,

P3 =

⎛
⎜⎜⎜⎜⎝

0.332 0.176 0.235 0.211 0.046
0.326 0.175 0.235 0.216 0.047

0.283 0.192 0.247 0.229 0.049
0.158 0.183 0.280 0.312 0.067
0.118 0.165 0.286 0.353 0.078

⎞
⎟⎟⎟⎟⎠
,
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P5 =

⎛
⎜⎜⎜⎜⎝

0.282 0.180 0.248 0.239 0.051
0.279 0.180 0.248 0.241 0.052
0.273 0.181 0.250 0.244 0.052
0.235 0.183 0.259 0.266 0.057
0.217 0.183 0.264 0.277 0.060

⎞
⎟⎟⎟⎟⎠
,

P10 =

⎛
⎜⎜⎜⎜⎝

0.264 0.181 0.252 0.249 0.053
0.264 0.181 0.252 0.249 0.054
0.264 0.181 0.252 0.249 0.054
0.263 0.181 0.252 0.25 0.054
0.262 0.181 0.252 0.251 0.054

⎞
⎟⎟⎟⎟⎠
,

P17 =

⎛
⎜⎜⎜⎜⎝

0.264 0.181 0.252 0.249 0.054
0.264 0.181 0.252 0.249 0.054
0.264 0.181 0.252 0.249 0.054
0.264 0.181 0.252 0.249 0.054
0.264 0.181 0.252 0.249 0.054

⎞
⎟⎟⎟⎟⎠
,

P18 =

⎛
⎜⎜⎜⎜⎝

0.264 0.181 0.252 0.249 0.054
0.264 0.181 0.252 0.249 0.054
0.264 0.181 0.252 0.249 0.054
0.264 0.181 0.252 0.249 0.054
0.264 0.181 0.252 0.249 0.054

⎞
⎟⎟⎟⎟⎠
.

Numerical evidence suggests that matrix powers are converging to a limit. Fur-

thermore, the rows of that limiting matrix are all the same. The fact that the rows of

P17 are the same means that the probability of a particular ire index after 17 days

does not depend on today’s level of risk. After 17 days, the effect of the initial state

has worn off, and no longer affects the distribution of the ire index.

Furthermore, P18 = P17 (at least to three decimal places). In fact, Pn = P17, for

n ≥ 17. The latter is intuitive since if the probability of hitting state j in 17 steps is

independent of the initial state, then the probability of hitting j in 17 or more steps is

also independent of the initial state. See also Exercise 2.16.

The long-term ire index distribution taken from the common row of P17 is

Nil Low Moderate High Extreme

0.264 0.181 0.252 0.249 0.054

R : Matrix Powers

The function matrixpower(mat,n) computes the nth power of a square

matrix mat, for n = 0, 1, 2,… The function is found in the R script ile

utilities.R, which includes several useful utility functions for working with

Markov chains.
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R : Fire Weather Index

> P
Nil Low Moderate High Extreme

Nil 0.575 0.118 0.172 0.109 0.026
Low 0.453 0.243 0.148 0.123 0.033
Moderate 0.104 0.343 0.367 0.167 0.019
High 0.015 0.066 0.318 0.505 0.096
Extreme 0.000 0.060 0.149 0.567 0.224
> matrixpower(P,17)

Nil Low Moderate High Extreme
Nil 0.263688 0.181273 0.251976 0.249484 0.0535768
Low 0.263688 0.181273 0.251976 0.249485 0.0535769
Moderate 0.263685 0.181273 0.251977 0.249486 0.0535772
High 0.263671 0.181273 0.251981 0.249495 0.0535789
Extreme 0.263663 0.181274 0.251982 0.249499 0.0535798
# round entries to three decimal places
> round(matrixpower(P,17),3)

Nil Low Moderate High Extreme
Nil 0.264 0.181 0.252 0.249 0.054
Low 0.264 0.181 0.252 0.249 0.054
Moderate 0.264 0.181 0.252 0.249 0.054
High 0.264 0.181 0.252 0.249 0.054
Extreme 0.264 0.181 0.252 0.249 0.054

Example 2.17 Changes in the distribution of wetlands in Yinchuan Plain, China are

studied in Zhang et al. (2011). Wetlands are considered among the most important

ecosystems on earth. AMarkovmodel is developed to track yearly changes in wetland

type. Based on imaging and satellite data from 1991, 1999, and 2006, researchers

measured annual distributions of wetland type throughout the region and estimated

the Markov transition matrix

P =

River Lake Pond Paddy Non

River

Lake

Pond

Paddy

Non

⎛⎜⎜⎜⎜⎝

0.342 0.005 0.001 0.020 0.632
0.001 0.252 0.107 0.005 0.635
0.000 0.043 0.508 0.015 0.434
0.001 0.002 0.004 0.665 0.328
0.007 0.007 0.007 0.025 0.954

⎞⎟⎟⎟⎟⎠
.

The state Non refers to nonwetland regions. Based on their model, the scientists pre-

dict that “The wetland distribution will essentially be in a steady state in Yinchuan

Plain in approximately 100 years.”

With technology one checks that P100 = P101 has identical rows. The common row

gives the predicted long-term, steady-state wetland distribution.
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River Lake Pond Paddy Non

0.010 0.010 0.015 0.068 0.897

R : Limiting Distribution for Wetlands Type

> P
River Lake Pond Paddy Non

River 0.342 0.005 0.001 0.020 0.632
Lake 0.001 0.252 0.107 0.005 0.635
Pond 0.003 0.043 0.507 0.014 0.433
Paddy 0.001 0.002 0.004 0.665 0.328
Non 0.007 0.007 0.007 0.025 0.954
> matrixpower(P,100)

River Lake Pond Paddy Non
River 0.01 0.01 0.015 0.068 0.897
Lake 0.01 0.01 0.015 0.068 0.897
Pond 0.01 0.01 0.015 0.068 0.897
Paddy 0.01 0.01 0.015 0.068 0.897
Non 0.01 0.01 0.015 0.068 0.897

◾

Random Walk on Cycle

Assume that the hopping frog of Example 2.8 now inds itself on a 25-lily pad cycle

graph. If the frog starts hopping from vertex 1, where is it likely to be after many hops?

After a small number of hops the frog will tend to be close to its starting position at

the top of the pond. But after a large number of hops the frog’s position will tend to be

randomly distributed about the cycle, that is, it will tend to be uniformly distributed

on all the vertices. See Figure 2.7 and Table 2.1, where probabilities are shown for

the frog’s position after n steps, for several values of n.

Vertices 24, 25, 1, 2, and 3 are closest to the frog’s starting position. We consider

these vertices near the top of the cycle. Vertices 12, 13, 14, and 15 are the furthest

away. We consider these near the bottom of the cycle. After just 12 hops, the frog is

still relatively close to the starting vertex. The chance that the frog is near the top of

the cycle is 0.61. After 25 steps, the probability of being near the top is eight times

greater than the probability of being near the bottom—0.32 compared with 0.04. Even

after 100 steps it is still almost twice as likely that the frog will be near the starting

vertex as compared to being at the opposite side of the cycle.

After 400 steps, however, the frog’s position is mixed up throughout the cycle and

is very close to being uniformly distributed on all the vertices. The dependency on

the frog’s initial position has worn off and all vertices are essentially equally likely.

Numerical evidence suggests that the long-term distribution of the frog’s position is

uniform on the vertices and independent of starting state.
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Figure 2.7 Frog starts hopping from vertex 1 of the 25-cycle graph.

TABLE 2.1 Probabilities, After n Steps, of the Frog’s Position Near the Top

and Bottom of the 25-Cycle Graph

n 24 25 1 2 3 12 13 14 15

1 0 0.5 0 0.5 0 0 0 0 0

2 0.25 0 0.5 0 0.25 0 0 0 0

6 0.23 0 0.31 0 0.23 0 0 0 0

12 0.19 0 0.23 0 0.19 0 0.00 0.00 0

25 0.00 0.16 0.00 0.16 0.0 0.01 0.01 0.01 0.01

60 0.10 0.00 0.10 0.00 0.10 0.02 0.03 0.03 0.02

100 0.08 0.01 0.08 0.01 0.08 0.03 0.04 0.04 0.03

400 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04

401 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04

402 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04

Not all Markov chains exhibit the kind of long-term limiting behavior seen in

random walk on the 25-cycle graph or in the ire index chain. Consider random walk

on the cycle graph with six vertices. Here are several powers of the transition matrix.
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P =

0 1 2 3 4 5

0

1

2

3

4

5

⎛
⎜⎜⎜⎜⎜⎜⎝

0 0.5 0 0 0 0.5
0.5 0 0.5 0 0 0

0 0.5 0 0.5 0 0

0 0 0.5 0 0.5 0

0 0 0 0.5 0 0.5
0.5 0 0 0 0.5 0

⎞
⎟⎟⎟⎟⎟⎟⎠

,

P2 =

⎛⎜⎜⎜⎜⎜⎜⎝

0.5 0 0.25 0 0.25 0

0 0.5 0 0.25 0 0.25
0.25 0 0.5 0 0.25 0

0 0.25 0 0.5 0 0.25
0.25 0 0.25 0 0.5 0

0 0.25 0 0.25 0 0.5

⎞⎟⎟⎟⎟⎟⎟⎠

,

P3 =

⎛⎜⎜⎜⎜⎜⎜⎝

0 0.375 0 0.25 0 0.375
0.375 0 0.375 0 0.25 0

0 0.375 0 0.375 0 0.25
0.25 0 0.375 0 0.375 0

0 0.25 0 0.375 0 0.375
0.375 0 0.25 0 0.375 0

⎞⎟⎟⎟⎟⎟⎟⎠

,

P8 =

⎛⎜⎜⎜⎜⎜⎜⎝

0.336 0 0.332 0 0.332 0

0 0.336 0 0.332 0 0.332
0.332 0 0.336 0 0.332 0

0 0.332 0 0.336 0 0.332
0.332 0 0.332 0 0.336 0

0. 0.332 0 0.332 0 0.336

⎞⎟⎟⎟⎟⎟⎟⎠

,

P11 =

⎛⎜⎜⎜⎜⎜⎜⎝

0 0.333 0 0.333 0 0.333
0.336 0 0.336 0 0.333 0

0 0.333 0 0.333 0 0.333
0.333 0 0.333 0 0.333 0

0 0.333 0 0.333 0 0.333
0.333 0 0.333 0 0.333 0

⎞⎟⎟⎟⎟⎟⎟⎠

,

P12 =

⎛⎜⎜⎜⎜⎜⎜⎝

0.333 0 0.333 0 0.333 0

0 0.333 0 0.333 0 0.333
0.333 0 0.333 0 0.333 0

0 0.333 0 0.333 0 0.333
0.333 0 0.333 0 0.333 0

0. 0.333 0 0.333 0 0.333

⎞⎟⎟⎟⎟⎟⎟⎠

.

The higher-order transition matrices lip-lop for odd and even powers. If the walk

starts at an even vertex, it will always be on an even vertex after an even number of

steps, and on an odd vertex after an odd number of steps. The parity of the position
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of the walk matches the parity of the starting vertex after an even number of steps.

The parity switches after an odd number of steps.

High powers of the transition matrix do not converge to a limiting matrix. The

long-term behavior of the walk depends on the starting state and depends on how

many steps are taken.

2.5 SIMULATION

Simulation is a powerful tool for studying Markov chains. For many chains that arise

in applications, state spaces are huge and matrix methods may not be practical, or

even possible, to implement.

For instance, the card-shufling chain introduced in Example 2.10 has a state space

of k! elements. The transition matrix for a standard deck of cards is 52! × 52!, which

has about 6.5 × 10135 entries.

Even for a moderately sized 50 × 50 matrix, as in the cancer study of Example

2.12, numerical matrix computations can be dificult to obtain. The researchers of

that study found it easier to derive their results by simulation.

AMarkov chain can be simulated from an initial distribution and transition matrix.

To simulate a Markov sequence X0,X1,… , simulate each random variable sequen-

tially conditional on the outcome of the previous variable. That is, irst simulate X0

according to the initial distribution. If X0 = i, then simulate X1 from the ith row of the

transition matrix. If X1 = j, then simulate X2 from the jth row of the transition matrix,

and so on.

Algorithm for Simulating a Markov Chain

Input: (i) initial distribution �, (ii) transition matrix P, (iii) number of steps n.

Output: X0,X1,… ,Xn

Algorithm:

Generate X0 according to �

FOR i = 1,… , n
Assume that Xi−1 = j

Set p = jth row of P

Generate Xi according to p

END FOR

To simulate a inite Markov chain, the algorithm is implemented in R by the func-

tion markov(init,mat,n), which is contained in the ile utilities.R. The argu-

ments of the function are init, the initial distribution, mat, the transition matrix,

and n, the number of steps to simulate. A call to markov(init,mat,n) generates

the (n + 1)-element vector (X0,… ,Xn). The markov function allows for an optional

fourth argument states, which is the state space given as a vector. If the state space
has k elements, the function assigns the default value to states of (1,… , k).
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Example 2.18 (Lung cancer study) Medical researchers can use simulation to

study the progression of lung cancer in the body, as described in Example 2.12. The

50 × 50 transition matrix is stored in an Excel spreadsheet and can be downloaded

into R from the ile cancerstudy.R. The initial distribution is a vector of all 0s with

a 1 at position 23, corresponding to the lung. See the documentation in the script ile

for the 50-site numbering system. Common sites are 24 and 25 (lymph nodes) and

22 (liver). Following are several simulations of the process for eight steps.

R : Simulating Lung Cancer Growth

> mat <- read.csv("lungcancer.csv",header=TRUE)
> init <- c(rep(0,22),1,rep(0,27))

# all 0s with 1 at site 23 (lung)
> n <- 8
> markov(init,mat,n)
[1] 23 17 24 23 44 6 1 24 28
> markov(init,mat,n)
[1] 23 25 25 19 25 1 24 22 22
> markov(init,mat,n)
[1] 23 18 44 7 22 23 30 24 33
> markov(init,mat,n)
[1] 23 22 24 24 30 24 24 23 24

Newton et al. (2012) use simulation to estimate the mean irst passage time—the

number of steps, on average, it takes for cancer to pass from the lung to each other

location in the body, “something a static autopsy data set cannot give us directly.”

The authors conclude that their study gives “important baseline quantitative insight

into the structure of lung cancer progression networks.” ◾

Example 2.19 University administrators have developed a Markov model to simu-

late graduation rates at their school. Students might drop out, repeat a year, or move

on to the next year. Students have a 3% chance of repeating the year. First-years and

sophomores have a 6% chance of dropping out. For juniors and seniors, the drop-out

rate is 4%. The transition matrix for the model is

P =

Drop Fr So Jr Sr Grad

Drop

Fr

So

Jr

Sr

Grad

⎛⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0

0.06 0.03 0.91 0 0 0

0.06 0 0.03 0.91 0 0

0.04 0 0 0.03 0.93 0

0.04 0 0 0 0.03 0.93
0 0 0 0 0 1

⎞⎟⎟⎟⎟⎟⎟⎠

.
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Eventually, students will either drop out or graduate. See Figure 2.8 for the transition

graph. To simulate the long-term probability that a new student graduates, the chain is

run for 10 steps with initial distribution � = (0, 1, 0, 0, 0, 0), taking X10 as a long-term

sample. (With high probability, a student will either drop out or graduate by 10 years.)

The simulation is repeated 10,000 times, each time keeping track of whether a student

graduates or drops out. The estimated long-term probability of graduating is 0.8037.

Drop Fr So Jr Sr Grad
0.910.06

0.03

0.91

0.06

0.03

0.93

0.04

0.03

0.93

0.04

0.03

1 1

Figure 2.8 Transition graph of the graduation Markov chain.

R : Simulating Graduation, Drop-out Rate

# graduation.R
> init <- c(0,1,0,0,0,0) #Student starts as first-year
> P <- matrix(c(1,0,0,0,0,0,0.06,0.03,0.91,0,

0,0,0.06,0,0.03,0.91,0,0,0.04,0,0,0.03,0.93,0,
0.04,0,0,0,0.03,0.93,0,0,0,0,0,1),nrow=6,byrow=T)

> states <- c("Drop","Fr","So","Jr","Se","Grad")
> rownames(P) <- states
> colnames(P) <- states
> P

Drop Fr So Jr Se Grad
Drop 1.00 0.00 0.00 0.00 0.00 0.00
Fr 0.06 0.03 0.91 0.00 0.00 0.00
So 0.06 0.00 0.03 0.91 0.00 0.00
Jr 0.04 0.00 0.00 0.03 0.93 0.00
Se 0.04 0.00 0.00 0.00 0.03 0.93
Grad 0.00 0.00 0.00 0.00 0.00 1.00
> markov(init,P,10,states)
[1] "Fr" "So" "Ju" "Se" "Grad" "Grad"
[7] "Grad" "Grad" "Grad" "Grad"
> sim <- replicate(10000,markov(init,P,10,states)[11])
> table(sim)/10000

Drop Grad
0.1963 0.8037
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The graduation transition matrix is small enough so that it is possible to use tech-

nology to take high matrix powers. We ind that

P20 = P21 =

Drop Fr So Jr Sr Grad

Drop

Fr

So

Jr

Sr

Grad

⎛
⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0

0.1910 0 0 0 0 0.8090
0.1376 0 0 0 0 0.8624
0.0808 0 0 0 0 0.9192
0.0412 0 0 0 0 0.9588
0 0 0 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎠

.

The interpretation of this limiting matrix as representing long-term probabilities

shows that the probability that a irst-year student eventually graduates is 0.809. The

last column of the matrix gives the probability of eventually graduating for each class

year.

Note that although matrix powers Pn converge to a limiting matrix, as n → ∞,

unlike the forest ire and frog-hopping examples, the rows of this matrix are not iden-

tical. In this case, the long-term probability of hitting a particular state depends on

the initial state. ◾

2.6 MATHEMATICAL INDUCTION*

Mathematical induction is a technique for proving theorems, or properties, which

hold for the natural numbers 1, 2, 3,… An example of such a theorem is that the sum

of the irst n positive integers is

1 + 2 + · · · + n =
(
n + 1

2

)
=
n(n + 1)

2
.

An example for Markov chains is given in Section 2.3. Let X0,X1,… be a Mar-

kov chain with transition matrix P and initial distribution �. Then, for all n ≥ 1, the

distribution of Xn is �P
n. That is,

P(Xn = j) = (�Pn)j =
∑
i

�iP
n
ij
for all states j.

Both of these results can be proven using induction.

The principle of mathematical induction states that (i) if a statement is true for

n = 1, and (ii) whenever the statement is true for a natural number n = k, it is also

true for n = k + 1, then the statement will be true for all natural numbers.

Proving theorems by mathematical induction is a two-step process.

First, the base case is established by proving the result true for n = 1.

Second, one assumes the result true for a given n, and then shows that it is true for

n + 1. Assuming that the result true for a given n is called the induction hypothesis.

To illustrate the proof technique, consider the claim that the sum of the irst n

integers is equal to n(n + 1)∕2.

For the base case, when n = 1, the sum of the irst n integers is trivially equal to

1. And n(n + 1)∕2 = 1(2)∕2 = 1.
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This establishes the base case.

Assume that the property true for a given n. We need to show that the sum of the

irst n + 1 integers is (n + 1)(n + 2)∕2. The sum of the irst n + 1 integers is

n+1∑
k=1

k =

(
n∑
k=1

k

)
+ (n + 1).

By the induction hypothesis, the latter is equal to

n(n + 1)

2
+ (n + 1) =

n(n + 1) + 2(n + 1)

2
=
n2 + 3n + 2

2
=

(n + 2)(n + 1)

2
.

This establishes the sum formula.

For another example of an induction proof, take the Markov chain result that the

distribution ofXn is�P
n. The base case n = 1 is shown in Section 2.3. The distribution

of X1 is �P
1 = �P. Assume the result true for a given n. For the distribution of Xn+1,

condition on Xn. This gives

P(Xn+1 = j) =
∑
i

P(Xn+1 = j|Xn = i)P(Xn = i)

=
∑
i

PijP(Xn = i)

=
∑
i

Pij(�P
n)i

= (�Pn+1)j,

where the next-to-last equality is by the induction hypothesis.

If the reader would like more practice applying induction, see Exercise 2.22.

Figure 2.9 Andrei Andreyevich Markov (1856–1922). Source: Wikimedia Commons,

https://commons.wikimedia.org/wiki/File:AAMarkov.jpg. Public domain.

https://commons.wikimedia.org/wiki/File:AAMarkov.jpg
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EXERCISES

2.1 A Markov chain has transition matrix

P =

1 2 3

1

2

3

⎛⎜⎜⎝

0.1 0.3 0.6
0 0.4 0.6
0.3 0.2 0.5

⎞⎟⎟⎠
with initial distribution � = (0.2, 0.3, 0.5). Find the following:

(a) P(X7 = 3|X6 = 2)

(b) P(X9 = 2|X1 = 2,X5 = 1,X7 = 3)

(c) P(X0 = 3|X1 = 1)

(d) E(X2)

2.2 Let X0,X1,… be a Markov chain with transition matrix

1 2 3

1

2

3

⎛
⎜⎜⎝

0 1∕2 1∕2

1 0 0

1∕3 1∕3 1∕3

⎞
⎟⎟⎠

and initial distribution � = (1∕2, 0, 1∕2). Find the following:

(a) P(X2 = 1|X1 = 3)

(b) P(X1 = 3,X2 = 1)

(c) P(X1 = 3|X2 = 1)

(d) P(X9 = 1|X1 = 3,X4 = 1,X7 = 2)

2.3 See Example 2.6. Consider theWright–Fishermodel with a population of k = 3

genes. If the population initially has one A allele, ind the probability that there

are no A alleles in three generations.

2.4 For the general two-state chain with transition matrix

a b

P =
a

b

(
1 − p p

q 1 − q

)

and initial distribution � = (�1, �2), ind the following:

(a) the two-step transition matrix

(b) the distribution of X1
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2.5 Consider a random walk on {0,… , k}, which moves left and right with respec-

tive probabilities q and p. If the walk is at 0 it transitions to 1 on the next step.

If the walk is at k it transitions to k − 1 on the next step. This is called random

walk with relecting boundaries. Assume that k = 3, q = 1∕4, p = 3∕4, and the

initial distribution is uniform. For the following, use technology if needed.

(a) Exhibit the transition matrix.

(b) Find P(X7 = 1|X0 = 3,X2 = 2,X4 = 2).

(c) Find P(X3 = 1,X5 = 3).

2.6 A tetrahedron die has four faces labeled 1, 2, 3, and 4. In repeated independent

rolls of the die R0,R1,… , let Xn = max{R0,… ,Rn} be the maximum value

after n + 1 rolls, for n ≥ 0.

(a) Give an intuitive argument for why X0,X1,… , is a Markov chain, and

exhibit the transition matrix.

(b) Find P(X3 ≥ 3).

2.7 Let X0,X1,… be a Markov chain with transition matrix P. Let Yn = X3n, for

n = 0, 1, 2,… . Show that Y0,Y1,… is a Markov chain and exhibit its transition

matrix.

2.8 Give the Markov transition matrix for random walk on the weighted graph in

Figure 2.10.

2.9 Give the transition matrix for the transition graph in Figure 2.11.

c

de

a

b

2

1 2

4

1

2

1

3

Figure 2.10
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c

de

a

b

2

1 2

6

4 5

2

1

3

6

2

Figure 2.11

2.10 Consider a Markov chain with transition matrix

a b c d

P =

a

b

c

d

⎛
⎜⎜⎜⎝

0 3∕5 1∕5 1∕5

3∕4 0 1∕4 0

1∕4 1∕4 1∕4 1∕4

1∕4 0 1∕4 1∕2

⎞
⎟⎟⎟⎠
.

(a) Exhibit the directed, weighted transition graph for the chain.

(b) The transition graph for this chain can be given as a weighted graphwithout

directed edges. Exhibit the graph.

2.11 You start with ive dice. Roll all the dice and put aside those dice that come up

6. Then, roll the remaining dice, putting aside those dice that come up 6. And

so on. Let Xn be the number of dice that are sixes after n rolls.

(a) Describe the transition matrix P for this Markov chain.

(b) Find the probability of getting all sixes by the third play.

(c) What do you expect P100 to look like? Use technology to conirm your

answer.

2.12 Two urns contain k balls each. Initially, the balls in the left urn are all red and

the balls in the right urn are all blue. At each step, pick a ball at random from

each urn and exchange them. Let Xn be the number of blue balls in the left urn.

(Note that necessarily X0 = 0 and X1 = 1.) Argue that the process is a Markov

chain. Find the transition matrix. This model is called the Bernoulli–Laplace

model of diffusion and was introduced by Daniel Bernoulli in 1769 as a model

for the low of two incompressible liquids between two containers.
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2.13 See themove-to-front process in Example 2.10. Here is another way to organize

the bookshelf. When a book is returned it is put back on the library shelf one

position forward from where it was originally. If the book at the front of the

shelf is returned it is put back at the front of the shelf. Thus, if the order of

books is (a, b, c, d, e) and book d is picked, the new order is (a, b, d, c, e). This
reorganization method is called the transposition, or move-ahead-1, scheme.

Give the transition matrix for the transposition scheme for a shelf with three

books.

2.14 There are k songs on Mary’s music player. The player is set to shufle mode,

which plays songs uniformly at random, sampling with replacement. Thus,

repeats are possible. Let Xn denote the number of unique songs that have been

heard after the nth play.

(a) Show that X0,X1,… is a Markov chain and give the transition matrix.

(b) If Mary has four songs on her music player, ind the probability that all

songs are heard after six plays.

2.15 Assume that X0,X1,… is a two-state Markov chain on  = {0, 1} with transi-
tion matrix

0 1

P =
0

1

(
1 − p p

q 1 − q

)
.

The present state of the chain only depends on the previous state. One can

model a bivariate process that looks back two time periods by the follow-

ing construction. Let Zn = (Xn−1,Xn), for n ≥ 1. The sequence Z1,Z2,… is a

Markov chain with state space  ×  = {(0, 0), (0, 1), (1, 0), (1, 1)}. Give the

transition matrix of the new chain.

2.16 Assume that P is a stochastic matrix with equal rows. Show that Pn = P, for

all n ≥ 1.

2.17 Let P be a stochastic matrix. Show that � = 1 is an eigenvalue of P. What is

the associated eigenvector?

2.18 A stochastic matrix is called doubly stochastic if its columns sum to 1. Let

X0,X1,… be a Markov chain on {1,… , k} with doubly stochastic transition

matrix and initial distribution that is uniform on {1,… , k}. Show that the dis-

tribution of Xn is uniform on {1,… , k}, for all n ≥ 0.

2.19 Let P be the transition matrix of a Markov chain on k states. Let I denote the

k × k identity matrix. Consider the matrix

Q = (1 − p)I + pP, for 0 < p < 1.

Show that Q is a stochastic matrix. Give a probabilistic interpretation for the

dynamics of a Markov chain governed by the Q matrix in terms of the original

Markov chain.
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2.20 Let X0,X1,… be a Markov chain with transition matrix

1 2 3

P =

1

2

3

⎛
⎜⎜⎝

0 1 0

0 0 1

p 1 − p 0

⎞
⎟⎟⎠
,

for 0 < p < 1. Let g be a function deined by

g(x) =

{
0, if x = 1,
1, if x = 2, 3.

Let Yn = g(Xn), for n ≥ 0. Show that Y0,Y1, … is not a Markov chain.

2.21 Let P and Q be two transition matrices on the same state space. We deine two

processes, both started in some initial state i.

In process #1, a coin is lipped. If it lands heads, then the process unfolds

according to the P matrix. If it lands tails, the process unfolds according to

the Q matrix.

In process #2, at each step a coin is lipped. If it lands heads, the next state

is chosen according to the P matrix. If it lands tails, the next state is chosen

according to the Q matrix.

Thus, in #1, one coin is initially lipped, which governs the entire evolution of

the process. And in #2, a coin is lipped at each step to decide the next step of

the process.

Decide whether either of these processes is aMarkov chain. If not, explain why,

if yes, exhibit the transition matrix.

2.22 Prove the following using mathematical induction.

(a) 1 + 3 + 5 + · · · + (2n − 1) = n2.

(b) 12 + 22 + · · · + n2 = n(n + 1)(2n + 1)∕6.

(c) For all real x > −1, (1 + x)n ≥ 1 + nx.

2.23 R : Simulate the irst 20 letters (vowel/consonant) of the Pushkin poemMarkov

chain of Example 2.2.

2.24 R : Simulate 50 steps of the randomwalk on the graph in Figure 2.1. Repeat the

simulation 10 times. How many of your simulations end at vertex c? Compare

with the exact long-term probability the walk visits c.

2.25 R : The behavior of dolphins in the presence of tour boats in Patagonia,

Argentina is studied in Dans et al. (2012). A Markov chain model is devel-

oped, with state space consisting of ive primary dolphin activities (socializing,
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traveling, milling, feeding, and resting). The following transition matrix is

obtained.

s t m f r

P =

s

t

m

f

r

⎛
⎜⎜⎜⎜⎝

0.84 0.11 0.01 0.04 0.00
0.03 0.80 0.04 0.10 0.03
0.01 0.15 0.70 0.07 0.07
0.03 0.19 0.02 0.75 0.01
0.03 0.09 0.05 0.00 0.83

⎞
⎟⎟⎟⎟⎠
.

Use technology to estimate the long-term distribution of dolphin activity.

2.26 R : In computer security applications, a honeypot is a trap set on a network to

detect and counteract computer hackers. Honeypot data are studied in Kimou

et al. (2010) using Markov chains. The authors obtain honeypot data from a

central database and observe attacks against four computer ports—80, 135,

139, and 445—over 1 year. The ports are the states of a Markov chain along

with a state corresponding to no port is attacked. Weekly data are monitored,

and the port most often attacked during the week is recorded. The estimated

Markov transition matrix for weekly attacks is

80 135 139 445 No attack

P =

80

135

139

445

No

⎛
⎜⎜⎜⎜⎝

0 0 0 0 1

0 8∕13 3∕13 1∕13 1∕13

1∕16 3∕16 3∕8 1∕4 1∕8

0 1∕11 4∕11 5∕11 1∕11

0 1∕8 1∕2 1∕8 1∕4

⎞
⎟⎟⎟⎟⎠
,

with initial distribution � = (0, 0, 0, 0, 1).

(a) Which are the least and most likely attacked ports after 2 weeks?

(b) Find the long-term distribution of attacked ports.

2.27 R : See gamblersruin.R. Simulate gambler’s ruin for a gambler with initial

stake $2, playing a fair game.

(a) Estimate the probability that the gambler is ruined before he wins $5.

(b) Construct the transition matrix for the associated Markov chain. Estimate

the desired probability in (a) by taking high matrix powers.

(c) Compare your results with the exact probability.



3
MARKOV CHAINS FOR THE
LONG TERM

There exists everywhere a medium in things, determined by equilibrium.

—Dmitri Mendeleev

3.1 LIMITING DISTRIBUTION

In many cases, a Markov chain exhibits a long-term limiting behavior. The chain

settles down to an equilibrium distribution, which is independent of its initial state.

Limiting Distribution

Let X0,X1,… be a Markov chain with transition matrix P. A limiting distribution

for the Markov chain is a probability distribution � with the property that for all

i and j,

lim
n→∞

Pn
ij
= �j.

The deinition of limiting distribution is equivalent to each of the following:

(i) For any initial distribution, and for all j,

lim
n→∞

P(Xn = j) = �j.

Introduction to Stochastic Processes with R, First Edition. Robert P. Dobrow.
© 2016 John Wiley & Sons, Inc. Published 2016 by John Wiley & Sons, Inc.
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(ii) For any initial distribution �,

lim
n→∞

�Pn = �.

(iii)

lim
n→∞

Pn = �,

where � is a stochastic matrix all of whose rows are equal to �.

We interpret �j as the long-term probability that the chain hits state j. By the

uniqueness of limits, if a Markov chain has a limiting distribution, then that distribu-

tion is unique.

If a limiting distribution exists, a quick and dirty numerical method to ind it is to

take high matrix powers of the transition matrix until one obtains an obvious limiting

matrix with equal rows. The common row is the limiting distribution. Examples of

this approach have been given in Section 2.5.

Numerical methods, however, have their limits (no pun intended), and the empha-

sis in this chapter is on exact solutions and theoretical results.

For the general two-state Markov chain, matrix powers can be found exactly in

order to compute the limiting distribution.

Example 3.1 (Two-state Markov chain) The transition matrix for a general two-

state chain is

1 2

P =
1

2

(
1 − p p

q 1 − q

)
,

for 0 ≤ p, q ≤ 1. If p + q = 1,

P =

(
1 − p p

1 − p p

)
,

and Pn = P for all n ≥ 1. Thus, � = (1 − p, p) is the limiting distribution.

Assume p + q ≠ 1. To ind Pn, consider the entry Pn
11
. As Pn = P n−1P,

Pn
11

= (Pn−1P)11 = Pn−1
11

P11 + Pn−1
12

P21

= Pn−1
11

(1 − p) + Pn−1
12

q

= Pn−1
11

(1 − p) +
(
1 − Pn−1

11

)
q

= q + (1 − p − q)Pn−1
11

, for n ≥ 1.
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The next-to-last equality uses the fact that Pn−1
11

+ Pn−1
12

= 1, since P n−1 is a stochastic

matrix. Unwinding the recurrence gives

Pn
11

= q + (1 − p − q)Pn−1
11

= q + q(1 − p − q) + (1 − p − q)2Pn−2
11

= q + q(1 − p − q) + q(1 − p − q)2 + (1 − p − q)3Pn−3
11

= · · · = q

n−1∑
k=0

(1 − p − q)k + (1 − p − q)n

= (1 − p − q)n + q
1 − (1 − p − q)n

1 − (1 − p − q)

=
q

p + q
+

p

p + q
(1 − p − q)n.

The matrix entry

Pn
22

=
p

p + q
+

q

p + q
(1 − p − q)n

is found similarly. Since the rows of P n sum to 1,

P n =
1

p + q

(
q + p(1 − p − q)n p − p(1 − p − q)n

q − q(1 − p − q)n p + q(1 − p − q)n

)
. (3.1)

If p and q are not both 0, nor both 1, then |1 − p − q| < 1 and

lim
n→∞

P n =
1

p + q

(
q p

q p

)
.

The limiting distribution is

� =
( q

p + q
,

p

p + q

)
.

Observe that in addition to giving the limiting distribution, Equation (3.1) reveals the

rate of convergence to that limit. The convergence is exponential and governed by the

quantity (1 − p − q)n. ◾

Proportion of Time in Each State

The limiting distribution gives the long-term probability that a Markov chain hits

each state. It can also be interpreted as the long-term proportion of time that the chain

visits each state. To make this precise, let X0,X1,… be aMarkov chain with transition

matrix P and limiting distribution �. For state j, deine indicator random variables

Ik =

{
1, if Xk = j,
0, otherwise,
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for k = 0, 1,… Then,
∑n−1

k=0 Ik is the number of times the chain visits j in the irst

n steps (counting X0 as the irst step). From initial state i, the long-term expected

proportion of time that the chain visits j is

lim
n→∞

E

(
1

n

n−1∑
k=0

Ik|X0 = i

)
= lim

n→∞

1

n

n−1∑
k=0

E(Ik|X0 = i)

= lim
n→∞

1

n

n−1∑
k=0

P(Xk = j|X0 = i)

= lim
n→∞

1

n

n−1∑
k=0

Pk
ij

= lim
n→∞

Pn
ij
= �j.

The next-to-last equality applies a result in analysis known as Cesaro’s lemma. The

lemma states that if a sequence of numbers converges to a limit, then the sequence

of partial averages also converges to that limit. That is, if xn → x, as n→ ∞, then

(x1 + · · · + xn)∕n→ x, as n→ ∞.

Example 3.2 After work, Angel goes to the gym and either does aerobics, weights,

yoga, or gets a massage. Each day, Angel decides her workout routine based on what

she did the previous day according to the Markov transition matrix

Aerobics Massage Weights Yoga

P =

Aerobics

Massage

Weights

Yoga

⎛⎜⎜⎜⎝

0.1 0.2 0.4 0.3
0.4 0.0 0.4 0.2

0.3 0.3 0.0 0.4
0.2 0.1 0.4 0.3

⎞⎟⎟⎟⎠
.

Taking high matrix powers gives the limiting distribution

Aerobics Massage Weight Yoga

0.238 0.164 0.286 0.312

See the following R code, where Angel’s gym visits are simulated for 100 days.

During that time, Angel did aerobics on 26 days, got a massage 14 times, did weights

on 31 days, and did yoga 29 times. The proportion of visits to each state is

Aerobics Massage Weighs Yoga

0.26 0.14 0.31 0.29
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These proportions are relatively close to the actual limiting distribution of the chain

notwithstanding the fact that the estimates are based on just 100 steps. Compare the

results to the million step simulation, also given in the R code. ◾

R: Angel at the Gym

# gym.R
> P

Aerobics Massage Weights Yoga
Aerobics 0.1 0.2 0.4 0.3
Massage 0.4 0.0 0.4 0.2
Weights 0.3 0.3 0.0 0.4
Yoga 0.2 0.1 0.4 0.3
> init <- c(1/4,1/4,1/4,1/4) # initial distribution
> states <- c("a","m","w","y")
# simulate Markov chain for 100 steps
> simlist <- markov(init,P,100,states)
> mwyaaywyayawyayawymwywamwawyawywywyywywyawyamwaway
> amamawywmyawawmawywmwywmwmyaywaywywamwyyymwawamaay
> table(simlist)/100
Aerobics Massage Weights Yoga

0.26 0.14 0.31 0.29
> steps <- 1000000 # one million steps
> simlist <- markov(init,P,steps,states)
> table(simlist)/steps
Aerobics Massage Weights Yoga
0.237425 0.164388 0.285548 0.312640

3.2 STATIONARY DISTRIBUTION

It is interesting to consider what happens if we assign the limiting distribution of a

Markov chain to be the initial distribution of the chain.

For the two-state chain, as in Example 3.1, the limiting distribution is

� =

(
q

p + q
,

p

p + q

)
.

Let � be the initial distribution for such a chain. Then, the distribution of X1 is

�P =
( q

p + q
,

p

p + q

) (
1 − p p

q 1 − q

)

=

(
q(1 − p) + pq

p + q
,
qp + p(1 − q)

p + q

)
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=
( q

p + q
,

p

p + q

)
= �.

That is, �P = �. A probability vector � that satisies �P = � plays a special role for

Markov chains.

Stationary Distribution

Let X0,X1,… be a Markov chain with transition matrix P. A stationary distribu-

tion is a probability distribution �, which satisies

� = �P. (3.2)

That is,

�j =
∑
i

�iPij, for all j.

If we assume that a stationary distribution � is the initial distribution, then

Equation (3.2) says that the distribution of X0 is the same as the distribution of X1.

Since the chain started at n = 1 is also a Markov chain with transition matrix P, it

follows that X2 has the same distribution as X1. In fact, all of the Xn have the same

distribution, as

�P n = (�P)P n−1 = �P n−1 = (�P)P n−2 = �P n−2 = · · · = �P = �.

If the initial distribution is a stationary distribution, then X0,X1,X2,… is a sequence

of identically distributed random variables.

The name stationary comes from the fact that if the chain starts in its stationary

distribution, then it stays in that distribution. We refer to the stationary Markov chain

or the Markov chain in stationarity for the chain started in its stationary distribution.

If X0,X1,X2,… is a stationary Markov chain, then for any n > 0, the sequence

Xn,Xn+1,Xn+2,… is also a stationary Markov chain with the same transition matrix

and stationary distribution as the original chain.

(The fact that the stationary chain is a sequence of identically distributed random

variables does not mean that the random variables are independent. On the contrary,

the dependency structure between successive random variables in a Markov chain is

governed by the transition matrix, regardless of the initial distribution.)

Other names for the stationary distribution are invariant, steady-state, and equi-

librium distribution. The latter highlights the fact that there is an intimate connection

between the stationary distribution and the limiting distribution. If a Markov chain

has a limiting distribution then that distribution is a stationary distribution.

Limiting Distributions are Stationary Distributions

Lemma 3.1. Assume that � is the limiting distribution of a Markov chain with

transition matrix P. Then, � is a stationary distribution.
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Proof. Assume that � is the limiting distribution. We need to show that �P = �. For

any initial distribution �,

� = lim
n→∞

�P n = lim
n→∞

�(P n−1P) =
(
lim
n→∞

�P n−1
)
P = �P,

which uses the fact that if limn→∞ xn = x, then limn→∞ xn−1 = x. ◾

Unfortunately, the converse of Lemma 3.1 is not true—stationary distributions are

not necessarily limiting distributions. For a counterexample, take the Markov chain

with transition matrix

P =

(
0 1

1 0

)
.

Solving �P = �, or

(
�1, �2

) (
0 1

1 0

)
=
(
�1, �2

)
,

gives �1 = �2. Since the stationary distribution is a probability vector, the unique

solution is � = (1∕2, 1∕2). The stationary distribution is uniform on each state. How-

ever, the chain has no limiting distribution. The process evolves by lip-lopping back

and forth between states. As in the case of random walk on a cycle with an even num-

ber of vertices, the position of the walk after n steps depends on the starting vertex

and the parity of n.

Another counterexample is the Markov chain with transition matrix

P =

(
1 0

0 1

)
.

This process is rather boring—the chain simply stays forever in its starting state. The

chain has no limiting distribution, as the long-term state of the chain depends upon

the starting state. However, every probability vector is a stationary distribution since

xP = x, for all vectors x.

Thus, there areMarkov chains with more than one stationary distribution; there are

Markov chains with unique stationary distributions that are not limiting distributions;

and there are even Markov chains that do not have stationary distributions.

However, a large and important class of Markov chains has unique stationary dis-

tributions that are the limiting distribution of the chain. A goal of this chapter is to

characterize such chains.

Regular Matrices

A matrixM is said to be positive if all the entries ofM are positive. We writeM > 0.

Similarly, write x > 0 for a vector x with all positive entries.
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Regular Transition Matrix

A transition matrix P is said to be regular if some power of P is positive. That

is, P n > 0, for some n ≥ 1.

For example,

P =

⎛
⎜⎜⎝

0 1∕2 1∕2

1 0 0

1∕2 1∕2 0

⎞
⎟⎟⎠

is regular, since

P4 =

⎛
⎜⎜⎝

9∕16 5∕16 1∕8

1∕4 3∕8 3∕8

1∕2 5∕16 3∕16

⎞
⎟⎟⎠

is positive. However,

P =

⎛⎜⎜⎝

0 1 0

0 0 1

1 0 0

⎞⎟⎟⎠
is not regular, since the powers of P cycle through the matrices

P =

⎛
⎜⎜⎝

0 1 0

0 0 1

1 0 0

⎞
⎟⎟⎠
, P2 =

⎛
⎜⎜⎝

0 0 1

1 0 0

0 1 0

⎞
⎟⎟⎠
, and P3 =

⎛
⎜⎜⎝

1 0 0

0 1 0

0 0 1

⎞
⎟⎟⎠
.

If the transition matrix of a Markov chain is regular, then the chain has a limiting

distribution, which is the unique stationary distribution of the chain.

Limit Theorem for Regular Markov Chains

Theorem 3.2. A Markov chain whose transition matrix P is regular has a limit-

ing distribution, which is the unique, positive, stationary distribution of the chain.

That is, there exists a unique probability vector � > 0, such that

lim
n→∞

Pn
ij
= �j,

for all i, j, where ∑
i

�iPij = �j.

Equivalently, there exists a positive stochastic matrix � such that

lim
n→∞

P n = �,
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where � has equal rows with common row �, and � is the unique probability

vector, which satisies

�P = �.

The proof of Theorem 3.2 is deferred to Section 3.10.

Example 3.3 Assume that a Markov chain has transition matrix

P =

⎛
⎜⎜⎝

0 1 − p p

p 0 1 − p

1 − p p 0

⎞
⎟⎟⎠
,

for 0 < p < 1. Find the limiting distribution.

Solution We ind that

P2 =

⎛⎜⎜⎝

2p(1 − p) p2 (1 − p)2

(1 − p)2 2p(1 − p) p2

p2 (1 − p)2 2p(1 − p)

⎞⎟⎟⎠
.

Since 0 < p < 1, the matrix P2 is positive. Thus, P is regular. By Theorem 3.2, the

limiting distribution is the stationary distribution.

How to ind the stationary distribution of a Markov chain is the topic of the next

section. However, for now we give the reader a little help and urge them to try

� = (1∕3, 1∕3, 1∕3).
Indeed, �P = �, as

(
1

3
,
1

3
,
1

3

) ⎛
⎜⎜⎝

0 1 − p p

p 0 1 − p

1 − p p 0

⎞
⎟⎟⎠
=
(
1

3
,
1

3
,
1

3

)
.

The uniform distribution � is the unique stationary distribution of the chain, and

thus the desired limiting distribution.

The example is interesting because the limiting distribution is uniform for all

choices of 0 < p < 1. ◾

Here is one way to tell if a stochastic matrix is not regular. If for some power n, all

the 0s in P n appear in the same locations as all the 0s in Pn+1, then they will appear

in the same locations for all higher powers, and the matrix is not regular.
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Example 3.4 A Markov chain has transition matrix

P =

⎛
⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 1
1

4
0 0

1

2

1

4

0 0 1 0 0

0 0
1

2

1

2
0

1

4

1

2
0 0

1

4

⎞
⎟⎟⎟⎟⎟⎟⎠

.

Determine if the matrix is regular.

Solution We ind that

P4 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

9

64

7

32

1

8

3

16

21

64

21

256

11

128

15

32

11

64

49

256

0 0 1 0 0

0 0
15

16

1

16
0

35

256

21

128

7

32

13

64

71

256

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

and P5 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

35

256

21

128

7

32

13

64

71

256

71

1024

49

512

71

128

33

256

155

1024

0 0 1 0 0

0 0
31

32

1

32
0

113

1024

71

512

41

128

47

256

253

1024

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

.

Since the 0s are in the same locations for both matrices, we conclude that P is not

regular. ◾

Finding the Stationary Distribution

Assume that � is a stationary distribution for a Markov chain with transition matrix

P. Then, ∑
i

�iPij = �j, for all states j,

which gives a system of linear equations. If P is a k × k matrix, the system has k

equations and k unknowns. Since the rows of P sum to 1, the k × k systemwill contain

a redundant equation.

For the general two-state chain, with

P =

(
1 − p p

q 1 − q

)
,

the equations are

(1 − p)�1 + q�2 = �1

p�1 + (1 − q)�2 = �2.
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The equations are redundant and lead to �1p = �2q. If p and q are not both zero, then

together with the condition �1 + �2 = 1, the unique solution is

� =

(
q

p + q
,

p

p + q

)
.

Example 3.5 Find the stationary distribution of the weather Markov chain of

Example 2.3, with transition matrix

Rain Snow Clear

P =

Rain

Snow

Clear

⎛⎜⎜⎝

1∕5 3∕5 1∕5

1∕10 4∕5 1∕10

1∕10 3∕5 3∕10

⎞⎟⎟⎠
⋅

Solution The linear system to solve is

(1∕5)�1 + (1∕10)�2 + (1∕10)�3 = �1

(3∕5)�1 + (4∕5)�2 + (3∕5)�3 = �2

(1∕5)�1 + (1∕10)�2 + (3∕10)�3 = �3

�1 + �2 + �3 = 1.

One of the irst three equations is redundant. The unique solution is

� =
(
1

9
,
3

4
,
5

36

)
.

◾

R : Finding the Stationary Distribution

The R function stationary(P) inds the stationary distribution of a Markov

chain with transition matrix P. The function is contained in the utilities.R ile.

> P
Rain Snow Clear

Rain 0.2 0.6 0.2
Snow 0.1 0.8 0.1
Clear 0.1 0.6 0.3
> stationary(P)
[1] 0.1111 0.7500 0.1389
# check that this is a stationary distribution
> stationary(P) %*% P

Rain Snow Clear
[1] 0.1111 0.75 0.1389
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Here is a useful technique for inding the stationary distribution, which reduces

by one the number of equations to solve. It makes use of the fact that if x is a vector,

not necessarily a probability vector, which satisies xP = x, then (cx)P = cx, for all

constants c. It follows that if one can ind a non-negative x, which satisies xP = x,

then a unique probability vector solution � = cx can be gotten by an appropriate

choice of c so that the rows of cx sum to 1. In particular, let c = 1∕
∑

jxj, the reciprocal

of the sum of the components of x.

The linear system
∑

i�iPij = �j, without the constraint
∑

i�i = 1, has one redun-

dant equation. Our solution method consists of (i) eliminating a redundant equation

and (ii) solving the resulting system for x = (1, x2, x3,…), where the irst (or any)

component of x is replaced by 1.

For a Markov chain with k states, this method reduces the problem to solving a

(k − 1) × (k − 1) linear system. If the original chain has a unique stationary distribu-

tion, then the reduced linear system will have a unique solution, but one which is not

necessarily a probability vector. To make it a probability vector whose components

sum to 1, divide by the sum of the components. In other words, the unique stationary

distribution is

� =
1

1 + x2 + · · · + xk
(1, x2,… , xk).

To illustrate the method, consider the transition matrix

P =

⎛
⎜⎜⎝

1∕3 1∕2 1∕6

1∕2 1∕2 0

1∕4 1∕2 1∕4

⎞
⎟⎟⎠
.

To ind the stationary distribution, irst let x = (1, x2, x3). Then, xP = x gives a 3 × 3

linear system. The irst two equations are

(1∕3)(1) + (1∕2)x2 + (1∕4)x3 = 1,

(1∕2)(1) + (1∕2)x2 + (1∕2)x3 = x2,

or

(1∕2)x2 + (1∕4)x3 = 2∕3,

(−1∕2)x2 + (1∕2)x3 = −1∕2,

with unique solution x = (1, 11∕9, 2∕9). The sum of the components is

1 +
11

9
+

2

9
=

22

9
.

The stationary distribution is

� =
9

22

(
1,

11

9
,
2

9

)
=
(
9

22
,
11

22
,
2

22

)
.
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Example 3.6 A Markov chain on {1, 2, 3, 4} has transition matrix

P =

⎛
⎜⎜⎜⎝

p 1 − p 0 0

(1 − p)∕2 p (1 − p)∕2 0

0 (1 − p)∕2 p (1 − p)∕2

0 0 1 − p p

⎞
⎟⎟⎟⎠
,

for 0 < p < 1. Find the stationary distribution.

Solution Let x = (x1, x2, x3, x4), with x1 = 1. Take

xj =

4∑
i=1

xiPij,

for j = 1, 2, and 4. This gives

p+

(
1 − p

2

)
x2 = 1,

1 − p+ px2 +

(
1 − p

2

)
x3 = x2,

(
1 − p

2

)
x3 + px4 = x4,

with solution x2 = x3 = 2 and x1 = x4 = 1. The stationary distribution is

� =
1

1 + 2 + 2 + 1

(
1, 2, 2, 1

)
=
(
1

6
,
2

6
,
2

6
,
1

6

)
.

◾

Example 3.7 (The Ehrenfest dog–leamodel) The Ehrenfest dog–lea model was

originally proposed by physicists Tatyana and Paul Ehrenfest to describe the diffusion

of gases. Mathematician Mark Kac called it “one of the most instructive models in

the whole of physics.”

Two dogs—Lisa and Cooper—share a population of N leas. At each discrete unit

of time, one of the leas jumps from the dog it is on to the other dog. Let Xn denote

the number of leas on Lisa after n jumps. If there are i leas on Lisa, then on the next

jump the number of leas on Lisa either goes up by one, if one of the N − i leas on

Cooper jumps to Lisa, or goes down by one, if one of the i leas on Lisa jumps to

Cooper.

The process is a Markov chain on {0, 1,… ,N}, with transition matrix

Pij =

⎧
⎪⎨⎪⎩

i∕N, if j = i − 1,
(N − i)∕N, if j = i + 1,
0, otherwise.
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Here is the Ehrenfest transition matrix for N = 5 leas:

0 1 2 3 4 5

P =

0

1

2

3

4

5

⎛
⎜⎜⎜⎜⎜⎜⎝

0 1 0 0 0 0

1∕5 0 4∕5 0 0 0

0 2∕5 0 3∕5 0 0

0 0 3∕5 0 2∕5 0

0 0 0 4∕5 0 1∕5

0 0 0 0 1 0

⎞
⎟⎟⎟⎟⎟⎟⎠

.

To ind the stationary distribution for the general Ehrenfest chain, let

x = (x0, x1,… , xN), with x0 = 1. Set

xj =

N∑
i=0

xiPij = xj−1
N − (j − 1)

N
+ xj+1

j + 1

N
, (3.3)

for j = 1,… ,N − 1. Also, 1 = (1∕N)x1, so x1 = N. Solving Equation (3.3) starting at

j = 1 gives x2 = N(N − 1)∕2, then x3 = N(N − 1)(N − 2)∕6. The general term is

xj =
N(N − 1) · · · (N − j + 1)

j!
=

N!

j!(N − j)!
=

(
N

j

)
, for j = 0, 1,… ,N,

which can be derived by induction. The stationary distribution is

�j =
1

∑N
i=0

(
N

i

)
(
N

j

)
=

(
N

j

)
1

2N
, for j = 0,… ,N.

The distribution is a binomial distribution with parameters N and 1/2.

The Ehrenfest transition matrix is not regular, and the chain does not have a

limiting distribution. However, we can interpret the stationary distribution as giving

the long-term proportion of time spent in each state. See Example 3.19 for the

description of a modiied Ehrenfest scheme, which has a limiting distribution. ◾

For the next example, rather than solve a linear system to ind the stationary

distribution, we take a guess at the distribution � based on our intuition for how

the Markov chain evolves. The candidate distribution � is then checked to see if it

satisies � = �P.

Guessing before proving! Need I remind you that it is so that all important discoveries

have been made?
—Henri Poincaré

Example 3.8 (Random walk on a graph) To ind the stationary distribution for

simple random walk on a graph, consider the interpretation of the distribution as the

long-term fraction of time that the walk visits each vertex.
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12

3

4 5

6 7 8 9 10

Figure 3.1 Lollipop graph.

For a concrete example, consider the lollipop graph, shown in Figure 3.1. One

expects that in the long term a random walk on the graph is most likely to be on the

candy at the leftmost end of the graph, and least likely to be at the right end of the

stick. (The candy is a complete graph where all pairs of vertices are joined by edges.)

Intuition suggests that vertices that have more connections are more likely to be

visited. That is, the time spent at vertex � is related to the degree of �.

This suggests considering a distribution on vertices that is related to the degree of

the vertices. One possibility is a distribution that is proportional to the degree of the

vertex. Let

�� =
deg(�)∑
� deg(�)

=
deg(�)

2e
,

where e is the number of edges in the graph. The sum of the vertex degrees is equal to

twice the number of edges since every edge contributes two vertices (its endpoints)

to the sum of the vertex degrees.

It remains to check, for this choice of �, whether in fact � = �P. For vertex �,

(�P)� =
∑
�

��P�� =
∑
�∼�

(
deg(�)

2e

)
1

deg(�)

=
1

2e

∑
�∼�

1 =
deg(�)

2e
= ��.

Indeed, our candidate � is a stationary distribution.

For the lollipop graph in Figure 3.1, the sum of the vertex degrees is 38. Here is

the stationary distribution.

Vertex 1 2 3 4 5 6 7 8 9 10

�� 5/38 5/38 5/38 5/38 5/38 6/38 2/38 2/38 2/38 1/38

◾

Simple random walk on a graph is a special case of random walk on a weighted

graph, with edge weights all equal to 1. The stationary distribution for a weighted

graph has a similar form as for an unweighted graph. If � is a vertex, say that an edge

is incident to � if � is an endpoint of the edge.
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Stationary Distribution for Random Walk on a Weighted Graph

Let G be a weighted graph with edge weight function �(i, j). For random walk

on G, the stationary distribution � is proportional to the sum of the edge weights

incident to each vertex. That is,

�� =
�(�)∑
z�(z)

, for all vertices �, (3.4)

where

�(�) =
∑
z∼�

�(�, z)

is the sum of the edge weights on all edges incident to �.

Stationary Distribution for Simple Random Walk on a Graph

For simple randomwalk on a nonweighted graph, set�(i, j) = 1, for all i, j. Then,

�(�) = deg(�), which gives

�� =
deg(�)∑
z deg(z)

=
deg(�)

2e
,

where e is the number of edges in the graph.

Example 3.9 The two-state Markov chain with transition matrix

1 2

P =
1

2

(
1 − p p

q 1 − q

)

can be expressed as a random walk on the weighted graph in Figure 3.2. Then,

�(1) = q(1 − p) + pq = q and �(2) = pq + p(1 − q) = p. By Equation (3.4), the

stationary distribution is

� =

(
q

p + q
,

p

p + q

)
.

◾

1 2q(1 − p)
pq

p(1 − q)

Figure 3.2 The general two-state Markov chain expressed as a weighted graph.
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The reader may wonder how the weighted graph in Figure 3.2 is derived from the

transition matrix P. The algorithm will be explained in Section 3.7.

Example 3.10 Find the stationary distribution for random walk on the hypercube.

Solution The k-hypercube graph, as described in Example 2.8, has 2k vertices. Each

vertex has degree k. The sum of the vertex degrees is k2k, and the stationary distribu-

tion � is given by

�� =
k

k2k
=

1

2k
, for all �.

That is, the stationary distribution is uniform on the set of vertices. ◾

The hypercube is an example of a regular graph. A graph is regular if all the vertex

degrees are the same. For simple randomwalk on a regular graph, the stationary distri-

bution � is uniform on the set of vertices, since �j is constant for all j. In addition to the

hypercube, examples of regular graphs with uniform stationary distributions include

the cycle graph (deg(�) = 2) and the complete graph on k vertices (deg(�) = k − 1).

The Eigenvalue Connection*

The stationary distribution of a Markov chain is related to the eigenstructure of the

transition matrix.

First, a reminder on notation. For a matrixM, the transpose ofM is denotedMT .

In this book, vectors are considered as row vectors. If x is a vector, xT is a column

vector.

Recall that an eigenvector of M is a column vector xT such that MxT = �xT , for

some scalar �. We call such a vector a right eigenvector of M. A left eigenvector of

M is a row vector y, which satisies yM = �y, for some scalar �. A left eigenvector

ofM is simply a right eigenvector ofMT .

If � is the stationary distribution of a Markov chain and satisies �P = �, then �

is a left eigenvector of P corresponding to eigenvalue � = 1.

Let � denote the column vector of all 1s. Since the rows of a stochastic matrix sum

to 1, P� = � = (1)�. That is, � is a right eigenvector of P corresponding to eigenvalue

� = 1.

Amatrix and its transpose have the same set of eigenvalues, with possibly different

eigenvectors. It follows that � = 1 is an eigenvalue of PT with some corresponding

right eigenvector yT . Equivalently, y is a left eigenvector of P. That is, there exists a

row vector y such that yP = y. If a multiple of y can be normalized so that its compo-

nents are non-negative and sum to 1, then this gives a stationary distribution. However,

some of the entries of y might be negative, or complex-valued, and the vector might

not be able to be normalized to give a probability distribution.

If a Markov chain has a unique stationary distribution, then the distribution is an

eigenvector of PT corresponding to � = 1.
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R: Stationary Distribution and Eigenvectors

TheR commandeigen(P) returns the eigenvalues and eigenvectors of a square

matrix P. These are given in a list with two components: values contains the

eigenvalues, and vectors contains the corresponding eigenvectors stored as a

matrix. If P is a stochastic matrix, an eigenvector corresponding to eigenvalue

� = 1 will be stored in the irst column of the vectorsmatrix. The R command

t(P) gives the transpose of P.
In the following, an eigenvector is found for PT corresponding to � = 1. The

vector is then normalized so that components sum to 1 in order to compute the

stationary distribution. We illustrate on the weather matrix with stationary dis-

tribution � = (1∕9, 3∕4, 5∕36) = (0.111, 0.750, 0.139).

> P
Rain Snow Clear

Rain 0.2 0.6 0.2
Snow 0.1 0.8 0.1
Clear 0.1 0.6 0.3
> eigen(P)
$values
[1] 1.0 0.2 0.1
$vectors

[,1] [,2] [,3]
[1,] 0.5773503 0.6882472 -0.9847319
[2,] 0.5773503 -0.2294157 0.1230915
[3,] 0.5773503 0.6882472 0.1230915
> eigen(P)$values # eigenvalues
[1] 1.0 0.2 0.1
# eigenvalues of P and its transpose are the same
> eigen(t(P))$values
[1] 1.0 0.2 0.1
# eigenvectors of P-transpose
> eigen(t(P))$vectors

[,1] [,2] [,3]
[1,] 0.1441500 -2.008469e-16 7.071068e-01
[2,] 0.9730125 -7.071068e-01 3.604182e-16
[3,] 0.1801875 7.071068e-01 -7.071068e-01

# first column gives eigenvector for eigenvalue 1
> x <- eigen(t(P))$vectors[,1]
> x
[1] 0.1441500 0.9730125 0.1801875
# normalize so rows sum to 1
> x/sum(x)
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[1] 0.1111111 0.7500000 0.1388889

# one-line command to find stationary distribution
> x <- eigen(t(P))$vectors[,1]; x/sum(x)
[1] 0.1111111 0.7500000 0.1388889

3.3 CAN YOU FIND THEWAY TO STATE a?

The long-term behavior of a Markov chain is related to how often states are visited.

Here, we look more closely at the relationship between states and how reachable, or

accessible, groups of states are from each other.

Say that state j is accessible from state i, if Pn
ij
> 0, for some n ≥ 0. That is, there

is positive probability of reaching j from i in a inite number of steps. States i and j

communicate if i is accessible from j and j is accessible from i.

Communication is an equivalence relation, which means that it satisies the

following three properties.

1. (Relexive) Every state communicates with itself.

2. (Symmetric) If i communicates with j, then j communicates with i.

3. (Transitive) If i communicates with j, and j communicates with k, then i

communicates with k.

Property 1 holds since P0
ii
= P(X0 = i|X0 = i) = 1. Property 2 follows since the

deinition of communication is symmetric. For Property 3, assume that i communi-

cates with j, and j communicates with k. Then, there exists n ≥ 0 and m ≥ 0 such that

Pn
ij
> 0 and Pm

jk
> 0. Therefore,

Pn+m
ik

=
∑
t

Pn
it
Pm
tk
≥ Pn

ij
Pm
jk
> 0.

Thus, k is accessible from i. Similarly, i is accessible from k.

Since communication is an equivalence relation the state space can be partitioned

into equivalence classes, called communication classes. That is, the state space can

be divided into disjoint subsets, each of whose states communicate with each other

but do not communicate with any states outside their class.

A modiied transition graph is a useful tool for inding the communication classes

of a Markov chain. Vertices of the graph are the states of the chain. A directed edge

is drawn between i and j if Pij > 0. For purposes of studying the communication

relationship between states, it is not necessary to label the edges with probabilities.
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Example 3.11 Find the communication classes for the Markov chains with these

transition matrices.

P =

a b c d e

a

b

c

d

e

⎛⎜⎜⎜⎜⎝

0 0 0 2∕3 1∕3

1∕2 0 1∕6 0 1∕3

0 1 0 0 0

0 0 3∕4 1∕4 0

0 0 0 0 1

⎞⎟⎟⎟⎟⎠
, Q =

a b c d e f

a

b

c

d

e

f

⎛⎜⎜⎜⎜⎜⎜⎝

1∕6 1∕3 0 0 1∕2 0

0 1 0 0 0 0

0 0 0 0 3∕4 1∕4

1 0 0 0 0 0

4∕5 0 0 1∕5 0 0

0 0 1∕2 0 1∕2 0

⎞⎟⎟⎟⎟⎟⎟⎠

.

Solution The transition graphs are shown in Figure 3.3. For the P-chain, the commu-

nication classes are {a, b, c, d} and {e}. For the Q-chain, the communication classes

are {a, d, e}, {b}, and {c, f }.

a b

cd

e

(i) P-chain (ii) Q-chain

a b c

d e f

Figure 3.3 Transition graphs.

◾

Most important is the case when the states of a Markov chain all communicate

with each other.

Irreducibility

A Markov chain is called irreducible if it has exactly one communication class.

That is, all states communicate with each other.

Example 3.12 The Markov chain with transition matrix

a b c d e f

P =

a

b

c

d

e

f

⎛⎜⎜⎜⎜⎜⎜⎝

0 1 0 0 0 0

1∕2 0 0 0 1∕2 0

0 0 0 0 1 0

0 0 0 0 1 0

1∕4 1∕4 0 1∕4 0 1∕4

0 0 1 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎠
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a b c

d e f

Figure 3.4 Transition graph for an irreducible Markov chain.

is irreducible, which can be seen by examining the transition graph in Figure 3.4.

◾

Recurrence and Transience

Consider the transition graph in Figure 3.5. The communication classes are {a, b}
and {c}. From each state, consider the evolution of the chain started from that state

and the probability that the chain eventually revisits that state.

a

b c

1/3

1/4

2/3

1 1/4

1/2

Figure 3.5

From a, the chain either returns to a in one step, or irst moves to b and then returns

to a on the second step. From a, the chain revisits a, with probability 1.

For the chain started in b, the chain irst moves to a. It may continue to revisit a

for many steps, but eventually it will return to b. This is because the probability that

the chain stays at a forever is the probability that it continually transitions from a to

a, which is equal to

lim
n→∞

(Paa)
n = lim

n→∞

(
1

3

)n
= 0.

Thus, from b, the chain revisits b, with probability 1.

For the chain started in c, the chain may revisit c for many successive steps. But

with positive probability it will eventually move to either a or b. Once it does, it will

never revisit c, as it is now stuck in the {a, b} communication class. From c, there is

positive probability that the chain started in c will never revisit c. In this case, that

probability is 1 − 1∕4 = 3∕4.

The states of a Markov chain, as this example illustrates, exhibit one of two con-

trasting behaviors. For the chain started in a given state, the chain either revisits that



CAN YOU FIND THE WAY TO STATE a? 97

state, with probability 1, or there is positive probability that the chain will never revisit

that state.

Given aMarkov chain X0,X1,…, let Tj = min{n > 0 ∶ Xn = j} be the irst passage

time to state j. If Xn ≠ j, for all n > 0, set Tj = ∞. Let

fj = P(Tj < ∞|X0 = j)

be the probability that the chain started in j eventually returns to j. For the three-state

chain introduced in this section, fa = fb = 1, and fc = 1∕4. We classify the states j of

a Markov chain according to whether or not fj = 1.

Recurrent and Transient States

State j is said to be recurrent if the Markov chain started in j eventually revisits j.

That is, fj = 1.

State j is said to be transient if there is positive probability that the Markov

chain started in j never returns to j. That is, fj < 1.

Whether or not a state is eventually revisited is strongly related to how often that

state is visited.

For the chain started in i, let

In =

{
1, if Xn = j,
0, otherwise,

for n ≥ 0. Then,
∑∞

n=0 In is the number of visits to j. The expected number of visits

to j is

E

(
∞∑
n=0

In

)
=

∞∑
n=0

E(In) =

∞∑
n=0

P(Xn = j|X0 = i) =

∞∑
n=0

Pn
ij
,

where the ininite sum may possibly diverge to +∞. For the chain started in i, the

expected number of visits to j is the ijth entry of the matrix
∑∞

n=0 P
n.

Assume that j is recurrent. The chain started at jwill eventually revisit jwith prob-

ability 1. Once it hits j, the chain begins anew and behaves as if a new version of the

chain started at j. We say the Markov chain regenerates itself. (This intuitive behav-

ior is known as the strong Markov property. For a more formal treatment see Section

3.9.) From j, the chain will revisit j again, with probability 1, and so on. It follows

that j will be visited ininitely many times, and

∞∑
n=0

Pn
jj
= ∞.

On the other hand, assume that j is transient. Starting at j, the probability of even-

tually hitting j again is fj, and the probability of never hitting j is 1 − fj. If the chain
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hits j, the event that it will eventually revisit j is independent of past history. It follows

that the sequence of successive visits to j behaves like an i.i.d. sequence of coin tosses

where heads occurs if j is eventually hit and tails occurs if j is never hit again. The

number of times that j is hit is the number of coin tosses until tails occurs, which has

a geometric distribution with parameter 1 − fj. Thus, the expected number of visits to

j is 1∕(1 − fj), and
∞∑
n=0

Pn
jj
=

1

1 − fj
< ∞.

In particular, a transient state will only be visited a inite number of times.

This leads to another characterization of recurrence and transience.

Recurrence, Transience

(i) State j is recurrent if and only if

∞∑
n=0

Pn
jj
= ∞.

(ii) State j is transient if and only if

∞∑
n=0

Pn
jj
< ∞.

Assume that j is recurrent and accessible from i. For the chain started in i there

is positive probability of hitting j. And from j, the expected number of visits to j is

ininite. It follows that the expected number of visits to j for the chain started in i is

also ininite, and thus
∞∑
n=0

Pn
ij
= ∞.

Assume that j is transient and accessible from i. By a similar argument the expected

number of visits to j for the chain started in i is inite, and thus

∞∑
n=0

Pn
ij
< ∞,

from which it follows that

lim
n→∞

Pn
ij
= 0. (3.5)

The long-term probability that a Markov chain eventually hits a transient state is 0.
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Recurrence and transience are class properties of a Markov chain as described by

the following theorem.

Recurrence and Transience are Class Properties

Theorem 3.3. The states of a communication class are either all recurrent or

all transient.

Proof. Let i and j be states in the same communication class. Assume that i is recur-

rent. Since i and j communicate, there exists r ≥ 0 and s ≥ 0 such that Pr
ji
> 0 and

Ps
ij
> 0. For n ≥ 0,

Pr+n+s
jj

=
∑
k

∑
l

Pr
jk
Pn
kl
Ps
lj
≥ Pr

ji
Pn
ii
Ps
ij
.

Summing over n gives

∞∑
n=0

Pr+n+s
jj

≥ Pr
ji

(
∞∑
n=0

Pn
ii

)
Ps
ji
= ∞.

Since
∞∑
n=0

Pn
jj
≥

∞∑
n=r+s

Pn
jj
=

∞∑
n=0

Pr+n+s
jj

,

it follows that
∑∞

n=0 P
n
jj
diverges to ininity, and thus j is recurrent. Hence, if one state

of a communication class is recurrent, all states in that class are recurrent.

On the other hand, if one state is transient, the other states must be transient. By

contradiction, if the communication class contains a recurrent state then by what was

just proven all the states are recurrent. ◾

Corollary 3.4. For a inite irreducible Markov chain, all states are recurrent.

Proof. The states of an irreducible chain are either all recurrent or all transient.

Assume that they are all transient. Then, state 1 will be visited for a inite amount

of time, after which it is never hit again, similarly with state 2, and with all states.

Since there are initely many states, it follows that none of the states will be visited

after some inite amount of time, which is not possible. ◾

By Corollary 3.4, a inite Markov chain cannot have all transient states. This is not

true for ininite chains, as the following classic example illustrates.

Example 3.13 (Simple random walk) A random walk on the integer line starts

at 0 and moves left, with probability p, or right, with probability 1 − p. For 0 < p < 1,

the process is an irreducible Markov chain, as every state is accessible from every

other state. Is the chain recurrent or transient?
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Solution Since the chain is irreducible, it sufices to examine one state. Choose state

0 and consider
∑∞

n=0 P
n
00
. Observe that from 0 the walk can only revisit 0 in an even

number of steps. So Pn
00

= 0, if n is odd. To move from 0 to 0 in exactly 2n steps

requires that the walk moves n steps to the left and n steps to the right, in some order.

Such a path of length 2n can be identiied with a sequence of n Ls and n Rs. There are(
2n

n

)
such sequences. Each left move occurs with probability p and each right move

occurs with probability 1 − p. This gives

P2n
00

=
(
2n

n

)
pn(1 − p)n.

The binomial coeficient
(
2n

n

)
is estimated using Stirling’s approximation

n! ≈ nne−n
√
2�n, for large n.

The more precise statement is

lim
n→∞

n!

nne−n
√
2�n

= 1.

By Stirling’s approximation, for large n,

(
2n

n

)
=

(2n)!

n!n!
≈

(2n)2ne−2n
√
2�2n(

nne−n
√
2�n

)2
=

4n√
�n

.

Thus, ∞∑
n=0

P2n
00

=

∞∑
n=0

(
2n

n

)
pn(1 − p)n ≈

∞∑
n=1

(4p(1 − p))n√
�n

.

Convergence of the ininite series depends upon p. We have

∞∑
n=0

P2n
00

≈

⎧
⎪⎨⎪⎩

∑∞

n=1

1√
�n

= ∞, if p = 1∕2,

∑∞

n=1

�n√
�n

< ∞, if p ≠ 1∕2,

where � = 4p(1 − p). If p ≠ 1∕2, then 0 < � < 1, and �n → 0, as n → ∞.
For p = 1∕2, the random walk is recurrent. Each integer, no matter how large, is

visited ininitely often. For p ≠ 1∕2, the walk is transient. With positive probability

the walk will never return to its starting point.

Surprises await for random walk in higher dimensions. Simple symmetric ran-

dom walk on the integer points in the plane ℤ2 moves left, right, up, or down, with

probability 1/4 each. The process has been called the drunkard’s walk. As in one

dimension, the walk is recurrent. The method of proof is similar. See Exercise 3.20.

Letting 0 denote the origin in the plane, it can be shown that

∞∑
n=0

Pn
00

≈

∞∑
n=1

1

�n
= ∞.
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Remarkably, in dimensions three and higher simple symmetric random walk is

transient. This was irst shown by George Pólya in 1921 and is known as Pólya’s

Theorem. It can be shown that in ℤ3,

∞∑
n=0

Pn
00

≈

∞∑
n=1

1

(�n)3∕2
< ∞.

The mathematician Shizuo Kakutani is quoted as explaining this result by saying,

“A drunk man will ind his way home, but a drunk bird may get lost forever.” ◾

Canonical Decomposition

A set of states C is said to be closed if no state outside of C is accessible from any

state in C. If C is closed, then Pij = 0 for all i ∈ C and j ∉ C.

Closed Communication Class

Lemma 3.5. A communication class is closed if it consists of all recurrent states.

A inite communication class is closed only if it consist of all recurrent states.

Proof. Let C be a communication class made up of recurrent states. Assume that C

is not closed. Then, there exists states i ∈ C and j ∉ C such that Pij > 0. Since j is

accessible from i, i is not accessible from j, otherwise jwould be contained in C. Start

the chain in i. With positive probability, the chain will hit j and then never hit i again.

But this contradicts the assumption that i is recurrent.

On the other hand, assume that C is closed and inite. By the same argument given

in the proof of Corollary 3.4 the states cannot all be transient. Hence, they are all

recurrent. ◾

The state space  of a inite Markov chain can be partitioned into transient and

recurrent states as  = T ∪ R1 ∪ · · · ∪ Rm, where T is the set of all transient states

and the Ri are closed communication classes of recurrent states. This is called the

canonical decomposition. The computation of many quantities associated with

Markov chains can be simpliied by this decomposition.

Given a canonical decomposition, the state space can be reordered so that the

Markov transition matrix has the block matrix form

T R1 · · · Rm

P =

T

R1

⋮

Rm

⎛⎜⎜⎜⎝

∗ ∗ · · · ∗

� P1 · · · �

⋮ ⋮ ⋱ ⋮

� � · · · Pm

⎞⎟⎟⎟⎠
.
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Each submatrix P1,… ,Pm is a square stochastic matrix corresponding to a closed

recurrent communication class. By itself, each of these matrices is the matrix of an

irreducible Markov chain with a restricted state space.

Example 3.14 Consider the Markov chain with transition matrix

a b c d e f g

P =

a

b

c

d

e

f

g

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

1∕4 0 0 0 0 0 3∕4

1∕8 1∕8 1∕4 0 1∕4 1∕8 1∕8

0 0 2∕5 1∕5 2∕5 0 0

0 0 1∕2 1∕2 0 0 0

0 0 0 1∕2 1∕2 0 0

0 1∕5 0 1∕5 1∕5 1∕5 1∕5

4∕5 0 0 0 0 0 1∕5

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

described by the transition graph in Figure 3.6. Give the canonical decomposition.

a b c

e

dfg

1/4

3/4

1/8

1/8 1/4

1/4

1/8

1/8

2/5

1/5

2/5

1/2

1/21/2

1/5

1/5 1/5

1/5

1/5

4/5 1/5

1/2

Figure 3.6

Solution States b and f are transient. The closed recurrent classes are {a, g} and

{c, d, e}. Reordering states gives the transition matrix in block matrix form

b f a g c d e

P =

b

f

a

g

c

d

e

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

1∕8 1∕8 1∕8 1∕8 1∕4 0 1∕4

1∕5 1∕5 0 1∕5 0 1∕5 1∕5

0 0 1∕4 3∕4 0 0 0

0 0 4∕5 1∕5 0 0 0

0 0 0 0 2∕5 1∕5 2∕5

0 0 0 0 1∕2 1∕2 0

0 0 0 0 0 1∕2 1∕2

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

.

◾
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The canonical decomposition is useful for describing the long-term behavior of a

Markov chain. The block matrix form facilitates taking matrix powers. For n ≥ 1,

T R1 · · · Rm

Pn =

T

R1

⋮

Rm

⎛⎜⎜⎜⎝

∗ ∗ · · · ∗

� Pn
1

· · · �

⋮ ⋮ ⋱ ⋮

� � · · · Pnm

⎞⎟⎟⎟⎠
.

Taking limits gives
T R1 · · · Rm

lim
n→∞

P n =

T

R1

⋮

Rm

⎛⎜⎜⎜⎜⎝

� ∗ · · · ∗

� lim
n→∞

Pn
1

· · · �

⋮ ⋮ ⋱ ⋮

� � · · · lim
n→∞

Pnm

⎞⎟⎟⎟⎟⎠
.

Note that the entries of the columns corresponding to transient states are all 0 as a
consequence of Equation (3.5).

The recurrent, closed communication classes R1,… ,Rm behave like mini-

irreducible Markov chains where all states communicate with each other. The

asymptotic properties of the submatrices P1,… ,Pm lead us to consider the properties

of irreducible Markov chains, which is where our path now goes.

3.4 IRREDUCIBLE MARKOV CHAINS

The next theorem characterizes the stationary distribution � for inite irreducibleMar-

kov chains. It relates the stationary probability �j to the expected number of steps

between visits to j. Recall that Tj = min{n > 0 ∶ Xn = j} is the irst passage time to

state j.

Limit Theorem for Finite Irreducible Markov Chains

Theorem 3.6. Assume that X0,X1,… is a inite irreducible Markov chain. For

each state j, let �j = E(Tj|X0 = j) be the expected return time to j. Then, �j is

inite, and there exists a unique, positive stationary distribution � such that

�j =
1

�j
, for all j. (3.6)

Furthermore, for all states i,

�j = lim
n→∞

1

n

n−1∑
m=0

Pm
ij
. (3.7)

The theorem is proved in Section 3.10.
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Remark:

1. The fact that �j = 1∕�j is intuitive. If there is one visit to j every �j steps, then

the proportion of visits to j is 1∕�j.

2. The theorem does not assert that � is a limiting distribution. The convergence in

Equation (3.7) is a weaker form of convergence than �j = lim
n→∞

Pn
ij
. We discuss

in the next section that an additional assumption is needed for � to be a limiting

distribution.

3. For inite irreducible Markov chains, all states are recurrent, and the expected

return time E(Tj|X0 = j) is inite, for all j. However, for an ininite Markov

chain if j is a recurrent state, even though the chain will eventually revisit j

with probability 1, the expected number of steps between such visits need not

be inite. The theorem can be extended to ininite irreducible Markov chains

for which the expected return time E(Tj|X0 = j) is inite, for all j.

A recurrent state j is called positive recurrent if E(Tj|X0 = j) < ∞, and null

recurrent if E(Tj|X0 = j) = ∞. Thus, the theorem holds for irreducible Mar-

kov chains for which all states are positive recurrent. See Exercise 3.27 for an

example of a Markov chain in which all states are null recurrent.

In many applications, the expected time between visits to a given state is of

particular importance.

Example 3.15 (Earthquake recurrences) The Chiayi–Tainan area of Taiwan was

devastated by an earthquake on September 21, 1999. In Tsai (2002), Markov chains

were used to study seismic activity in the region. A chain is constructed with states

corresponding to Richter scale magnitudes of earthquake intensity. The state space

is {M2,M3,M4,M5}, where Mk denotes an earthquake with a Richter level in the

interval [k, k + 1). A Markov transition matrix is estimated from historical data for

the period 1973–1975:

M2 M3 M4 M5

P =

M2

M3

M4

M5

⎛
⎜⎜⎜⎝

0.785 0.194 0.018 0.003

0.615 0.334 0.048 0.003

0.578 0.353 0.069 0.000

0.909 0.000 0.091 0.000

⎞
⎟⎟⎟⎠
.

The stationary distribution � = (0.740, 0.230, 0.027, 0.003) is found with technology.

Earthquakes of magnitudeM2 or greater tend to occur in this region about once every

four months. If anM5 earthquake occurs, investigators would like to know how long

it will be before another M5 earthquake.

The expected number of Markov chain transitions between M5 earthquakes is

1∕�M5
= 1∕0.003 = 333. If earthquakes occur, on average, every four months, then

according to the model it will take about 333 × (4∕12) = 111 years before another

M5 earthquake. ◾
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Example 3.16 For the frog-jumping random walk on an n-cycle, how many hops

does it take, on average, for the frog to return to its starting lily pad?

Solution In the cycle graph, all vertices have the same degree. Hence, for simple

random walk on the cycle, the stationary distribution is uniform on the set of vertices.

Since �� = 1∕n, for all vertices �, it takes the frog, on average, 1∕�� = n hops to return

to its starting pad. ◾

First-Step Analysis

The expected return time E(Tj|X0 = j) is found by taking the reciprocal of the sta-

tionary probability �j. Another approach is to condition on the irst step of the chain

and use the law of total expectation. This is called irst-step analysis.

Example 3.17 Consider a Markov chain with transition matrix

a b c

P =

a

b

c

⎛⎜⎜⎝

0 1 0

1∕2 0 1∕2

1∕3 1∕3 1∕3

⎞⎟⎟⎠
.

From state a, ind the expected return time E(Ta|X0 = a) using irst-step analysis.

Solution Let ex = E(Ta|X0 = x), for x = a, b, c. Thus, ea is the desired expected

return time, and eb and ec are the expected irst passage times to a for the chain

started in b and c, respectively.

For the chain started in a, the next state is b, with probability 1. From b, the further

evolution of the chain behaves as if the original chain started at b. Thus,

ea = 1 + eb.

From b, the chain either hits a, with probability 1∕2, or moves to c, where the chain

behaves as if the original chain started at c. It follows that

eb =
1

2
+

1

2
(1 + ec).

Similarly, from c, we have

ec =
1

3
+

1

3
(1 + eb) +

1

3
(1 + ec).

Solving the three equations gives

ec =
8

3
, eb =

7

3
, and ea =

10

3
.

The desired expected return time is 10∕3.
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We leave it to the reader to verify that the stationary distribution is

� =
(
3

10
,
2

5
,
3

10

)
.

The expected return time is simulated in the following R code. The chain started

at a is run for 25 steps (long enough to return to awith very high probability), and the

return time to a is found. The mean return time is estimated based on 10,000 trials.

R : Simulating an Expected Return Time

#returntime.R
> P

a b c
a 0.00000 1.00000 0.00000
b 0.50000 0.00000 0.50000
c 0.33333 0.33333 0.33333
> init
[1] 1 0 0
> states
[1] "a" "b" "c"
> markov(init,P,25,states)
"a" "b" "c" "c" "c" "b" "a" "b" "a" "b" "a" "b" "c"
"b" "c" "a" "b" "c" "b" "c" "b" "a" "b" "a" "b" "a"

> trials <- 10000
> simlist <- numeric(trials)
> for (i in 1:trials) {

path <- markov(init,P,25,states)
# find the index of the 2nd occurrence of "a"
# subtract 1 to account for time 0

returntime <- which(path == "a")[2] - 1
simlist[i] <- returntime }

# expected return time to state a
> mean(simlist)
[1] 3.3346

◾

3.5 PERIODICITY

Finite irreducible Markov chains have unique, positive stationary distributions.

Although they may not have limiting distributions, they have almost limiting

behavior in the sense that for all states i and j, the partial averages (1∕n)
∑n−1

m=0 P
m
ij

converge.
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An example of a inite irreducible Markov chain with no limiting distribution is

random walk on the n-cycle, when n is even. The graph is regular (all vertex degrees

are the same) and the unique stationary distribution is uniform. But there is no limiting

distribution since the chain lip-lops back and forth between even and odd states. The

chain’s position after n steps depends on the parity of the initial state.

It is precisely the inite irreducible Markov chains that do not exhibit this type of

periodic behavior, which have limiting distributions.

For a Markov chain started in state i, consider the set of times when the chain can

return to i. For the chain described by the graph in Figure 3.7a, from any state the set of

possible return times is {2, 4, 6, 8,…}. The same is true for the chain in Figure 3.7b.

The chain started from any state returns to that state in multiples of two steps. For the

chain in Figure 3.7c, from each state the set of return times is {3, 6, 9, 12,…} The

chain started in a returns to a in multiples of three steps.

(a) (b)

a

b c

d

(c)

a b c d e f g

Figure 3.7 Periodic Markov chains.

The idea is formalized in the following deinition. Recall that the greatest common

divisor (gcd) of a set of positive integers is the largest integer that divides all the

numbers of the set without a remainder.

Period

For a Markov chain with transition matrix P, the period of state i, denoted d(i),

is the greatest common divisor of the set of possible return times to i. That is,

d(i) = gcd {n > 0 ∶ Pn
ii
> 0}.

If d(i) = 1, state i is said to be aperiodic. If the set of return times is empty,

set d(i) = +∞.

The deinition of period gives that from state i, returns to i can only occur in mul-

tiples of d(i) steps. And the period d(i) is the largest such number with this property.
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Periodicity, similar to recurrence and transience, is a class property.

Periodicity is a Class Property

Lemma 3.7. The states of a communication class all have the same period.

Proof. Let i and j be states in the same communication class with respective periods

d(i) and d(j). Since i and j communicate, there exist positive integers r and s, such

that Pr
ij
> 0 and Ps

ji
> 0. Then,

Pr+s
ii

=
∑
k

Pr
ik
Ps
ki
≥ Pr

ij
Ps
ji
> 0.

Thus r + s is a possible return time for i, and hence d(i) is a divisor of r + s. Assume

that Pn
jj
> 0 for some positive integer n. Then,

Pr+s+n
ii

≥ Pr
ij
Pn
jj
Ps
ji
> 0,

and thus d(i) is a divisor of r + s + n. Since d(i) divides both r + s and r + s + n, it

must also divide n. Thus, d(i) is a common divisor of the set {n > 0 ∶ Pn
jj
> 0}. Since

d(j) is the largest such divisor, it follows that d(i) ≤ d(j). By the same argument with

i and j reversed, we have that d(j) ≤ d(i). Hence, d(i) = d(j). ◾

Example 3.18 Consider the transition graph in Figure 3.8. Identify the communi-

cation classes, their periods, and whether the class is recurrent or transient.

a

b c

d e

f g h i

j

k l

Figure 3.8

Solution Communication classes, with periods, are as follows:

(i) {a} is recurrent with period 1,

(ii) {b, c, d, e, f } is transient with period 2,
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(iii) {g} is transient with period +∞,

(iv) {h, i} is recurrent with period 2, and

(v) {j, k, l} is recurrent with period 1.

Observe that return times for state j can occur in multiples of three (irst k, then l,

then j) or in multiples of two (irst l then j). Since two and three are relatively prime,

their great common divisor is one. Hence, d(j) = d(k) = d(l) = 1. ◾

From Lemma 3.7, it follows that all states in an irreducible Markov chain have the

same period.

Periodic, Aperiodic Markov Chain

A Markov chain is called periodic if it is irreducible and all states have period

greater than 1.

AMarkov chain is called aperiodic if it is irreducible and all states have period

equal to 1.

Note that any state i with the property that Pii > 0 is necessarily aperiodic.

Thus, a suficient condition for an irreducible Markov chain to be aperiodic is that

Pii > 0 for some i. That is, at least one diagonal entry of the transition matrix is

nonzero.

3.6 ERGODIC MARKOV CHAINS

A Markov chain is called ergodic if it is irreducible, aperiodic, and all states have

inite expected return times. The latter is always true for inite chains. Thus, a inite

Markov chain is ergodic if it is irreducible and aperiodic. It is precisely the class of

ergodic Markov chains that have positive limiting distributions.

Fundamental Limit Theorem for Ergodic Markov Chains

Theorem 3.8. Let X0,X1,… be an ergodic Markov chain. There exists a unique,

positive, stationary distribution �, which is the limiting distribution of the chain.

That is,

�j = lim
n→∞

Pn
ij
, for all i, j.

Recall Theorem 3.2, which asserts the same limit result for Markov chains with

regular transition matrices. The proof of the fundamental limit theorem for ergodic
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Markov chains is given in Section 3.10, where it is also shown that a Markov chain

is ergodic if and only if its transition matrix is regular.

Example 3.19 (Modiied Ehrenfest model) In the Ehrenfest scheme of Example

3.7, at each discrete step one of N leas is picked uniformly at random. The lea jumps

from one dog to the other. Our dogs are named Cooper and Lisa. Let Xn be the number

of leas on Lisa after n jumps.

The Ehrenfest chain X0,X1,… is irreducible and periodic with period 2. From state

0, the chain can only return to 0 in an even number of steps.

A modiied Ehrenfest scheme picks a lea uniformly at random and then picks a

dog uniformly at random for the lea to jump to. The transition probabilities are

Pij =

⎧⎪⎨⎪⎩

i∕(2N), if j = i − 1,
(N − i)∕(2N), if j = i + 1,
1∕2, if j = i,
0, otherwise.

Since Pii > 0, the chain is aperiodic, and thus ergodic. The unique stationary dis-

tribution is binomial with parameters N and 1∕2, the same as in the regular Ehrenfest

scheme. (We invite the reader to show this in Exercise 3.24.) By the fundamental

limit theorem, the stationary distribution is the limiting distribution of the chain. The

long-term stationary process can be simply described: for each of the N leas, toss a

fair coin. If heads, the lea jumps to Lisa, if tails it jumps to Cooper.

The modiied Ehrenfest transition matrix for N = 6 leas is

0 1 2 3 4 5 6

P =

0

1

2

3

4

5

6

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

1∕2 1∕2 0 0 0 0 0

5∕12 1∕2 1∕12 0 0 0 0

0 1∕3 1∕2 1∕6 0 0 0

0 0 1∕4 1∕2 1∕4 0 0

0 0 0 1∕6 1∕2 1∕3 0

0 0 0 0 1∕12 1∕2 5∕12

0 0 0 0 0 1∕2 1∕2

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

,

with limiting distribution

� =
(
1

64
,
6

64
,
15

64
,
20

64
,
15

64
,
6

64
,
1

64

)
.

◾
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Example 3.20 Consider a Markov chain with transition matrix

1 2 3 4 · · · n-1 n

P =

1

2

3

4

⋮

n-1

n

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0 1 0 0 · · · 0 0

1∕2 0 1∕2 0 · · · 0 0

1∕3 0 0 2∕3 · · · 0 0

1∕4 0 0 0 · · · 0 0

⋮ ⋮ ⋮ ⋮ ⋱ ⋮ ⋮

1∕(n − 1) 0 0 0 · · · 0 (n − 2)∕(n − 1)

1 0 0 0 · · · 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

.

The transition graph is shown in Figure 3.9. Find the limiting distribution.

1 2 3 4 n − 1 n
1

1/2

1/2

1/3

2/3

1/4
1/(n − 1)

(n − 2)/(n − 1)

1

Figure 3.9

Solution State 1 is accessible from all states. Each state k is accessible from 1 by

transitioning to 2, then 3,… , to k. Thus, the chain is irreducible. It is also aperiodic

for n ≥ 3. For instance, one can reach state 1 from 1 in either two steps or three steps.

Thus, d(1) = 1. The chain is ergodic, and the limiting distribution is gotten by inding

the stationary distribution.

Let x = (x1, x2,… , xn), with x1 = 1. Solving

xj =

n∑
i=1

xiPij = xj−1Pj−1,j, for j = 2,… , n,

gives x2 = x1 = 1 and

xj = xj−1

(
j − 2

j − 1

)
= xj−2

(
j − 3

j − 2

)(
j − 2

j − 1

)

= xj−2

(
j − 3

j − 1

)
= · · · = x2

(
1

j − 1

)
=

1

j − 1
, for j = 3,… , n.

Hence,

�j =

⎧
⎪⎨⎪⎩

1

c
, for j = 1,

1

c(j − 1)
, for j = 2,… , n,

where c = 1 +
∑n−1

k=1 1∕k.
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An ininite version of this chain—see Exercise 3.27—does not have a stationary

distribution. Although the chain is aperiodic and irreducible, it is not positive recur-

rent. That is, the expected return time between visits to the same state is ininite.

◾

Example 3.21 (PageRank) Google’s PageRank search algorithm is introduced in

Chapter 1 in Example 1.1. The model is based on the random surfer model, which

is a random walk on the webgraph. For this graph, each vertex represents an internet

page. A directed edge connects i to j if there is a hypertext link from page i to page j.

When the random surfer is at page i, they move to a new page by choosing from the

available links on i uniformly at random.

Figure 3.10 shows a simpliied network with seven pages. The network is

described by the network matrix

a b c d e f g

N =

a

b

c

d

e

f

g

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 1∕2 1∕2 0

1∕3 0 1∕3 0 0 1∕3 0

0 0 0 1∕2 0 1∕2 0

0 0 0 0 0 1 0

1∕4 0 0 1∕4 0 1∕4 1∕4

1∕2 1∕2 0 0 0 0 0

0 0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

.

a

b

c d

ef g

Figure 3.10

Note that N is not a stochastic matrix, as page g has no out-link. Row g consists

of all 0s.

To insure that the walk reaches all pages in the network, the algorithm needs to

account for (i) pages that have no out-links, called dangling nodes, and (ii) groups

of pages that might result in the walk getting stuck in a subgraph. In the example

network, node g is a dangling node.
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Assume that the webgraph consists of k pages. In the PageRank algorithm, the ix

for dangling nodes is to assume that when the random surfer reaches such a page they

jump to a new page in the network uniformly at random. A new matrix Q is obtained

where each row in the network matrixN corresponding to a dangling node is changed

to one in which all entries are 1∕k. The matrix Q is a stochastic matrix.

For the problem of potentially getting stuck in small subgraphs of the webgraph,

the solution proposed in the original paper by Brin and Page (1998) was to ix a

damping factor 0 < p < 1 for modifying the Q matrix. In their model, from a given

page the random surfer, with probability 1 − p, decides to not follow any links on

the page and instead navigate to a new random page on the network. On the other

hand, with probability p, they follow the links on the page as usual. This deines the

PageRank transition matrix

P = pQ + (1 − p)A,

where A is a k × k matrix all of whose entries are 1∕k. The damping factor used by

Google was originally set to p = 0.85.
With damping factor, the PageRank matrix P is stochastic, and the resulting ran-

dom walk is aperiodic and irreducible. The PageRank of a page on the network is that

page’s stationary probability.

Consider the sample network in Figure 3.10. See the following R code for the

relevant calculations. The PageRank stationary distribution is

a b c d e f g

0.222 0.153 0.071 0.084 0.122 0.294 0.054

Assume that you are searching this network with the query “stochastic process,”

and the search terms are found on pages a, c, e, and f . Ordered by their stationary

probabilities, the PageRank algorithm would return the ordered pages f , a, e, c.

R: PageRank

# pagerank.R
> Q

a b c d e f g
a 0.0000 0.0000 0.0000 0.0000 0.5000 0.5000 0.0000
b 0.3333 0.0000 0.3333 0.0000 0.0000 0.3333 0.0000
c 0.0000 0.0000 0.0000 0.5000 0.0000 0.5000 0.0000
d 0.0000 0.0000 0.0000 0.0000 0.0000 1.0000 0.0000
e 0.2500 0.0000 0.0000 0.2500 0.0000 0.2500 0.2500
f 0.5000 0.5000 0.0000 0.0000 0.0000 0.0000 0.0000
g 0.1429 0.1429 0.1429 0.1429 0.1429 0.1429 0.1429
> A <- matrix(rep(1/7,49),nrow=7)
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> A
a b c d e f g

a 0.1429 0.1429 0.1429 0.1429 0.1429 0.1429 0.1429
b 0.1429 0.1429 0.1429 0.1429 0.1429 0.1429 0.1429
c 0.1429 0.1429 0.1429 0.1429 0.1429 0.1429 0.1429
d 0.1429 0.1429 0.1429 0.1429 0.1429 0.1429 0.1429
e 0.1429 0.1429 0.1429 0.1429 0.1429 0.1429 0.1429
f 0.1429 0.1429 0.1429 0.1429 0.1429 0.1429 0.1429
g 0.1429 0.1429 0.1429 0.1429 0.1429 0.1429 0.1429
# Transition matrix with damping factor p=0.85
> P <- 0.85*Q + 0.15*A
> pr <- stationary(P)
> pr # Stationary probabilities

a b c d e f g
0.2220 0.1527 0.0713 0.0843 0.1223 0.2935 0.0540

◾

3.7 TIME REVERSIBILITY

Some Markov chains exhibit a directional bias in their evolution. Take, for instance,

simple random walk on the integers, which moves from i to i + 1 with probability p,

and from i to i − 1 with probability 1 − p. If p > 1∕2, the walk tends to move in the

positive direction, mostly hitting ever larger integers. Similarly, if p < 1∕2, over time

the chain tends to hit ever smaller integers. However, if p = 1∕2, the chain exhibits

no directional bias.

The property of time reversibility can be explained intuitively as follows. If you

were to take a movie of the Markov chain moving forward in time and then run the

movie backwards, you could not tell the difference between the two.

Time Reversibility

An irreducible Markov chain with transition matrix P and stationary distribution

� is reversible, or time reversible, if

�iPij = �jPji, for all i, j. (3.8)

Equations (3.8) are called the detailed balance equations. They say that for a chain

in stationarity,

P(X0 = i,X1 = j) = P(X0 = j,X1 = i), for all i, j.
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That is, the frequency of transitions from i to j is equal to the frequency of transitions

from j to i.

More generally (see Exercise 3.39), if a stationary Markov chain is reversible then

P(X0 = i0,X1 = i1,… ,Xn = in) = P(X0 = in,X1 = in−1,… ,Xn = i0),

for all i0, i1,… , in.

Example 3.22 A Markov chain has transition matrix

1 2 3

P =

1

2

3

⎛
⎜⎜⎝

0 2∕5 3∕5

1∕2 1∕4 1∕4

1∕2 1∕6 1∕3

⎞
⎟⎟⎠
.

Determine if the chain is reversible.

Solution The chain is irreducible and aperiodic. The stationary distribution is

� = (1∕3, 4∕15, 2∕5). We check the detailed balance equations

�1P12 =
(
1

3

) (
2

5

)
=

2

15
=
(
4

15

) (
1

2

)
= �2P21,

�1P13 =
(
1

3

) (
3

5

)
=

1

5
=
(
2

5

) (
1

2

)
= �3P31,

and

�2P23 =
(
4

15

) (
1

4

)
=

1

15
=
(
2

5

) (
1

6

)
= �3P32.

Thus, the chain is time reversible.

◾

If the stationary distribution of a Markov chain is uniform, it is apparent from

Equation (3.8) that the chain is reversible if the transition matrix is symmetric.

Example 3.23 Consider random walk on the n-cycle with transition matrix

P =

⎧
⎪⎨⎪⎩

p, if j ≡ i + 1 mod n,

1 − p, if j ≡ i − 1 mod n,

0, otherwise.

The stationary distribution is uniform. Hence, the random walk is time reversible for

p = 1∕2. For p ≠ 1∕2, directional bias of the walk will be apparent. For instance, if

p > 1∕2, the frequency of transitions from i to i + 1 is greater than the frequency of

transitions from i + 1 to i. ◾
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Example 3.24 Simple random walk on a graph is time reversible. If i and j are

neighbors, then

�iPij =

(
deg(i)

2e

) (
1

deg(i)

)
=

1

2e
=

(
deg(j)

2e

) (
1

deg(j)

)
= �jPji.

If i and j are not neighbors, Pij = Pji = 0. ◾

Reversible Markov Chains and Random Walk on Weighted Graphs

Randomwalk on a weighted graph is time reversible. In fact, every reversible Markov

chain can be considered as a random walk on a weighted graph.

Given a reversible Markov chain with transition matrix P and stationary distri-

bution �, construct a weighted graph on the state space by assigning edge weights

�(i, j) = �iPij. With these choice of weights, random walk on the weighted graph

moves from i to j with probability

�(i, j)∑
��(i, �)

=
�iPij∑
��iPi�

=
�iPij

�i
= Pij.

Conversely, given a weighted graph with edge weight function �(i, j), the transi-

tion matrix of the corresponding Markov chain is obtained by letting

Pij =
�(i, j)∑
��(i, �)

,

where the sum is over all neighbors of i. The stationary distribution is

�i =

∑
y�(i, y)

∑
x

∑
y�(x, y)

.

One checks that

�iPij =

( ∑
y�(i, y)

∑
x

∑
y�(x, y)

)
�(i, j)∑
y�(i, y)

=
�(i, j)∑

x

∑
y�(x, y)

=

( ∑
y�(j, y)

∑
x

∑
y�(x, y)

)
�(i, j)∑
y�(j, y)

= �jPji.

Thus, the chain is time reversible.
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Example 3.25 A reversible Markov chain has transition matrix

a b c d

P =

a

b

c

d

⎛
⎜⎜⎜⎝

0 4∕5 1∕5 0

4∕6 1∕6 1∕6 0

1∕4 1∕4 0 1∕2

0 0 2∕3 1∕3

⎞
⎟⎟⎟⎠
. (3.9)

Find the associated weighted graph.

Solution The stationary distribution is found to be � = (5∕18, 6∕18, 4∕18, 3∕18).
Arrange the quantities �iPij in a (nonstochastic) matrix

a b c d

R =

a

b

c

d

⎛
⎜⎜⎜⎝

0 4∕18 1∕18 0

4∕18 1∕18 1∕18 0

1∕18 1∕18 0 2∕18

0 0 2∕18 1∕18

⎞
⎟⎟⎟⎠
,

where Rij = �(i, j) = �iPij. The matrix is symmetric. Multiplying the entries by 18

so that all weights are integers gives the weighted graph in Figure 3.11. ◾

a

b

c d4

1

1

1

2
1

Figure 3.11 Weighted graph.

The next proposition highlights a key beneit of reversibility. It is often used to

simplify computations for inding the stationary distribution of a Markov chain.

Proposition 3.9. Let P be the transition matrix of a Markov chain. If x is a

probability distribution which satisies

xiPij = xjPji, for all i, j, (3.10)

then x is the stationary distribution, and the Markov chain is reversible.
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Proof. Assume that x satisies the detailed balance equations. We have to show that

x = xP. For all j,

(xP)j =
∑
i

xiPij =
∑
i

xjPji = xj.

◾

Example 3.26 (Birth-and-death chain) Birth-and-death chains were introduced

in Example 2.9. From i, the process moves to either i − 1, i, or i + 1, with respec-

tive probabilities qi, 1 − pi − qi, and pi. Show that a birth-and-death chain is time

reversible and ind the stationary distribution.

Solution To use Proposition 3.9, consider a vector x which satisies the detailed

balance equations. Then,

xiPi,i+1 = xi+1Pi+1,i, for i = 0, 1,…

giving

xipi = xi+1qi+1, for i = 0, 1,…

Let x0 = 1. Then, x1 = p0∕q1. Also, x2 = x1p1∕q2 = (p0p1)∕(q2q1). The general

pattern is

xk =
p0p1 · · · pk−1

q1q2 · · · qk
=

k∏
i=1

pi−1

qi
, for k = 0, 1,…

Normalizing gives the stationary distribution

�k =
xk∑
j

xj
,

assuming that the ininite sum
∑

jxj converges. Thus, a necessary condition for a sta-

tionary distribution to exist, in which case the birth-and-death chain is time reversible,

is that
∑
j

j∏
i=1

pi−1

qi
< ∞.

Birth-and-death chains encompass a large variety of special models. For instance,

random walk with a partially relecting boundary on {0, 1,… ,N} is achieved as a

birth-and-death chain by letting pi = p and qi = q, for 0 ≤ i ≤ N, with p + q < 1. See

Figure 3.12.

Minor modiication to this derivation gives the stationary probabilities

�k =
xk∑N
i=0 xi

, for k = 0, 1,… ,N,
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0 1 2 N − 2 N − 1 N

p

1 − p

p

1 − p − q 1 − p − q

p

1 − p − q

p

1 − p − q

q

1 − q

qqq

Figure 3.12 Random walk with partially relecting boundaries.

where

xk =

k∏
i=1

(
p

q

)
=

(
p

q

)k

, for k = 0, 1,… ,N.

For p ≠ q, this gives

�k =

(
1 −

p

q

) (
p

q

)k/(
1 −

(
p

q

)N+1
)
, for k = 0, 1,… ,N.

For p = q, the stationary distribution is uniform. ◾

3.8 ABSORBING CHAINS

Many popular board games can be modeled as Markov chains. The children’s game

Chutes and Ladders is based on an ancient Indian game called Snakes and Ladders.

It is played on a 100-square board, as in Figure 3.13. Players each have a token and

take turns rolling a six-sided die and moving their token by the corresponding number

of squares. If a player lands on a ladder, they immediately move up the ladder to a

higher-numbered square. If they move on a chute, or snake, they drop down to a

lower-numbered square. The inishing square 100 must be reached by an exact roll

of the die (or by landing on square 80 whose ladder climbs to the inish). The irst

player to land on square 100 wins.

The game is a Markov chain since the player’s position only depends on their

previous position and the roll of the die. The chain has 101 states as the game starts

with all players off the board (state 0). For the Markov model, once the chain hits

state 100 it stays at 100. That is, if P is the transition matrix, then P100,100 = 1.

Of particular interest is the average number of plays needed to reach the inish.

The R script ile snakes.R contains code for building the 101 × 101 transition matrix

P. Here are the results from several simulations of the game.

R: Snakes and Ladders

> init <- c(1,rep(0,100)) # Start at square 0
> markov(init,P,150,0:100)

[1] 0 6 11 12 6 12 15 20 42 43 44 45 46 47 26
[16] 29 33 37 40 42 44 47 52 55 57 60 61 19 22 24
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[31] 30 44 11 17 42 45 46 50 52 53 53 53 54 60 61
[46] 63 65 68 73 77 78 82 86 92 94 99 100
> markov(init,P,150,0:100)
[1] 0 14 18 24 30 34 40 44 45 67 70 74 100

> markov(init,P,150,0:100)
[1] 0 5 6 8 31 33 44 46 50 53 55 58 63 60 61
[16] 66 72 77 78 100
> markov(init,P,150,0:100)
[1] 0 2 5 8 11 14 20 26 31 37 39 40 42 47 53
[16] 58 63 60 60 65 69 72 76 82 86 24 25 29 31 35
[31] 40 42 26 31 34 35 39 43 45 11 13 19 24 26 32
[46] 35 38 39 42 44 26 84 88 90 96 100
> markov(init,P,150,0:100)
[1] 0 6 31 44 45 26 27 32 38 44 26 30 31 33 44
[16] 46 50 67 73 76 77 78 79 84 88 90 73 76 100
> markov(init,P,150,0:100)
[1] 0 3 31 34 40 42 47 26 30 32 38 44 47 53 59
[16] 19 23 25 31 44 26 29 31 33 37 41 42 26 31 32
[31] 38 43 44 50 52 58 19 24 30 31 35 41 44 46 67
[46] 68 91 97 99 99 99 99 99 99 99 99 99 100
> markov(init,P,150,0:100)
[1] 0 2 7 13 6 10 15 17 23 25 31 37 40 45 11
[16] 17 20 26 31 33 44 46 26 29 35 44 50 67 72 74
[31] 76 100

For these simulations, it took, respectively, 56, 12, 19, 55, 28, 57, and 31 steps to

reach the winning square, for an average of 36.86 steps to win.

An exact analysis of the average time to win the game is given in this section, after

establishing some theory.

In the Snakes and Ladders Markov chain every state, except 100, is transient. State

100 is recurrent. From 100, the chain stays at 100 forever. A state with this property

is called absorbing.

Absorbing State, Absorbing Chain

State i is an absorbing state if Pii = 1. A Markov chain is called an absorbing

chain if it has at least one absorbing state.

Consider an absorbingMarkov chain on k states for which t states are transient and

k − t states are absorbing. The states can be reordered, as in the canonical decompo-

sition, with the transition matrix written in block matrix form

P =

(
Q R

� I

)
(3.11)

where Q is a t × t matrix, R is a t × (k − t) matrix, � is a (k − t) × t matrix of 0s, and

I is the (k − t) × (k − t) identity matrix.
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1 2 3 4 5 6 7 8 9 10

21 22 23 24 25 26 27 28 29 30

41 42 43 44 45 46 47 48 49 50

61 62 63 64 65 66 67 68 69 70

81 82 83 84 85 86 87 88 89 90

11121314151617181920

31323334353637383940

51525354555657585960

71727374757677787980

919293949596979899100

Figure 3.13 Children’s Snakes and Ladders game. Board drawn using TikZ TeX package.

Source: http://tex.stackexchange.com/questions/85411/chutes-and-ladders/. Reproduced with

permission of Serge Ballif.

Computing powers of P is facilitated by the block matrix form. We have

P2 =

(
Q R

� I

)(
Q R

� I

)
=

(
Q2 (I + Q)R

� I

)
,

P3 =

(
Q3 (I + Q + Q2)R

� I

)
,

and, in general,

Pn =

(
Qn (I + Q + · · · + Qn−1)R

� I

)
, for n ≥ 1. (3.12)

To ind the limiting matrix lim
n→∞

P n, we make use of the following lemma from

linear algebra.

http://tex.stackexchange.com/questions/85411/chutes-and-ladders/
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Lemma 3.10. Let A be a square matrix with the property that An → �, as

n→ ∞. Then,
∞∑
n=0

An = (I − A)−1.

The lemma gives the matrix analog of the sum of a geometric series of real

numbers. That is,
∞∑
n=0

rn = (1 − r)−1,

if rn → 0, as n→ ∞.

Proof. For ixed n,

(I − A)(I + A + A2 + · · · + An) = I + A + A2 + · · · + An

− (A + A2 + · · · + An + An+1)

= I − An+1.

If I − A is invertible, then

(I + A + · · · + An) = (I − A)−1(I − An+1).

Taking limits, as n→ ∞, gives

∞∑
n=0

An = (I − A)−1,

since An+1 → �, as n → ∞.

To show that I − A is invertible, consider the linear system (I − A)x = �. Invert-

ibility of I − A is equivalent to the fact that the only solution to this system is x = �.

We have that � = (I − A)x = x − Ax. That is, x = Ax. Iterating gives

x = Ax = A(Ax) = A2x = · · · = Anx, for all n ≥ 1.

Taking limits on both sides of the equation gives

x = lim
n→∞

Anx = �. ◾

To apply Lemma 3.10 to Equation (3.12), observe that Qn
→ �, as n→ ∞. The

matrix Q is indexed by transient states. If i and j are transient,

lim
n→∞

Qn
ij
= lim

n→∞
Pn
ij
= 0,
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as the long-term probability that a Markov chain hits a transient state is 0. Taking

limits in Equation (3.12) gives

lim
n→∞

P n = lim
n→∞

Qn (I + Q + · · · + Qn−1)R

0 I

=
limn→∞ Qn limn→∞(I + Q + · · · + Qn−1)R

0 I

=
0 (I − Q)−1R

0 I
.

Consider the interpretation of the limiting submatrix (I − Q)−1R. The matrix is

indexed by transient rows and absorbing columns. The ijth entry is the long-term

probability that the chain started in transient state i is absorbed in state j. If theMarkov

chain has only one absorbing state, this submatrix will be a (k − 1)-element column

vector of 1s.

Example 3.27 (Gambler’s ruin) A gambler starts with $2 and plays a game where

the chance of winning each round is 60%. The gambler either wins or loses $1 on

each round. The game stops when the gambler either gains $5 or goes bust. Find the

probability that the gambler is eventually ruined.

Solution The game is an absorbing Markov chain with absorbing states 0 and 5. The

transition matrix in canonical form is

1 2 3 4 0 5

P =

1

2

3

4

0

5

⎛
⎜⎜⎜⎜⎜⎜⎝

0 0.6 0 0 0.4 0

0.4 0 0.6 0 0 0

0 0.4 0 0.6 0 0

0 0 0.4 0 0 0.6
0 0 0 0 1 0

0 0 0 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎠

,

with

1 2 3 4 0 5

Q =

1

2

3

4

⎛⎜⎜⎜⎝

0 0.6 0 0

0.4 0 0.6 0

0 0.4 0 0.6
0 0 0.4 0

⎞⎟⎟⎟⎠
and R =

1

2

3

4

⎛⎜⎜⎜⎝

0.4 0

0 0

0 0

0 0.6

⎞⎟⎟⎟⎠
.
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This gives

(I − Q)−1R =

⎛⎜⎜⎜⎝

1 −0.6 0 0

−0.4 1 −0.6 0

0 −0.4 1 −0.6
0 0 −0.4 1

⎞⎟⎟⎟⎠

−1 ⎛⎜⎜⎜⎝

0.4 0

0 0

0 0

0 0.6

⎞⎟⎟⎟⎠
0 5

=

1

2

3

4

⎛⎜⎜⎜⎝

0.616 0.384
0.360 0.640
0.190 0.810
0.076 0.924

⎞⎟⎟⎟⎠
.

If the gambler starts with $2, the probability of their eventual ruin is 0.36.

R: Gambler’s Ruin

Commands for working with matrices in R are explained in Appendix E. The

R command solve(mat) computes the matrix inverse of mat. The command

diag(k) generates a k × k identity matrix.

> P
1 2 3 4 0 5

1 0.0 0.6 0.0 0.0 0.4 0.0
2 0.4 0.0 0.6 0.0 0.0 0.0
3 0.0 0.4 0.0 0.6 0.0 0.0
4 0.0 0.0 0.4 0.0 0.0 0.6
0 0.0 0.0 0.0 0.0 1.0 0.0
5 0.0 0.0 0.0 0.0 0.0 1.0
> Q <- P[1:4,1:4]
> R <- P[1:4,5:6]
> Q

1 2 3 4
1 0.0 0.6 0.0 0.0
2 0.4 0.0 0.6 0.0
3 0.0 0.4 0.0 0.6
4 0.0 0.0 0.4 0.0
> R

0 5
1 0.4 0.0
2 0.0 0.0
3 0.0 0.0
4 0.0 0.6
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> solve(diag(4)-Q) %*% R
0 5

1 0.616114 0.38389
2 0.360190 0.63981
3 0.189573 0.81043
4 0.075829 0.92417

◾

For absorbing Markov chains, the matrix (I − Q)−1 is called the fundamental

matrix. Its importance is highlighted by the next theorem. Recall that if i is transient,

then for the chain started in i, the expected number of visits to i is inite.

Expected Number of Visits to Transient States

Theorem 3.11. Consider an absorbing Markov chain with t transient states. Let

F be a t × t matrix indexed by transient states, where Fij is the expected number

of visits to j given that the chain starts in i. Then,

F = (I − Q)−1.

Two proofs are given. The irst uses the method of irst-step analysis.

Proof #1. Let T be the set of transient states. Assume that i, j ∈ T . Consider the chain

started in i. On the irst step, the chain moves to some state k. If k is an absorbing state,

then the chain will never visit j, unless j = i, in which case it has visited j one time. If

k is a transient state, then the expected number of visits to j is Fkj, if j ≠ i, and 1 + Fki,

if j = i. This gives

Fij =

{∑
k∈TPik(1 + Fki) +

∑
k∉TPik, if j = i,∑

k∈TPikFkj, if j ≠ i,

=

{
1 +

∑
k∈T

QikFki, if j = i,
∑

k∈TQikFkj, if j ≠ i,

= �ij +
∑
k∈T

QikFkj, (3.13)

where �ij = 1, if i = j, and 0, otherwise. The second equality is because if i and k are

transient states, then Pik = Qik.

In matrix terms, Equation (3.13) says thatF = I + QF, or (I − Q)F = I. It follows

that I − Q is invertible and (I − Q)−1 = F. ◾
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Proof #2. For the chain started in i, deine indicator variables

In =

{
1, if Xn = j,
0, otherwise,

for n = 0, 1,… Then,
∑∞

n=0 In is the number of visits to j. The expected number of

visits is

Fij = E

(
∞∑
n=0

In

)
=

∞∑
n=0

E(In)

=

∞∑
n=0

P(Xn = j|X0 = i)

=

∞∑
n=0

Pn
ij
=

∞∑
n=0

Qn
ij
=

(
∞∑
n=0

Qn

)

ij

= (I − Q)−1
ij
,

as a consequence of Lemma 3.10. ◾

Expected Time to Absorption

For an absorbing Markov chain started in transient state i, let ai be the expected

absorption time, the expected number of steps to reach some absorbing state. The

number of transitions from i to an absorbing state is simply the sum of the num-

ber of transitions from i to each of the transient states until eventual absorption. The

expected number of steps from i to transient state j is Fij. It follows that

ai =
∑
k∈T

Fik.

In vector form, a = F�, where � is the column vector of all 1s. That is, the expected

absorption times are the row sums of the fundamental matrix.

We summarize results for absorbing Markov chains.

Absorbing Markov Chains

For an absorbing Markov chain with all states either transient or absorbing, let

F = (I − Q)−1.

1. (Absorption probability) The probability that from transient state i the chain

is absorbed in state j is (FR)ij.

2. (Absorption time) The expected number of steps from transient state i until

the chain is absorbed in some absorbing state is (F1)i.
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Example 3.28 (Snakes and Ladders) We ind the expected absorption time to

square 100 in Snakes and Ladders. See the snakes.R script ile. The transition matrix

is a 101 × 101 matrix stored in the variable P.

R: Snakes and Ladders

> Q <- P[1:100,1:100]
> F <- solve(diag(100)-Q)
> a <- F %*% rep(1,100) # Expected absorption times
> round(t(a),2)

0 1 2 3 4 5 6 7 8 9
39.60 40.25 40.07 39.57 39.84 39.67 39.46 39.23 38.98 39.05

10 11 12 13 14 15 16 17 18 19
39.11 38.64 38.22 37.84 37.50 37.02 36.08 35.82 35.66 35.55

20 21 22 23 24 25 26 27 28 29
35.50 35.50 33.82 34.31 34.66 34.94 35.15 35.30 37.52 37.25

30 31 32 33 34 35 36 37 38 39
36.77 36.60 36.41 36.19 35.93 35.64 35.68 35.55 35.31 34.83

40 41 42 43 44 45 46 47 48 49
34.37 33.93 34.10 34.75 33.87 31.95 31.61 31.27 30.20 28.47

50 51 52 53 54 55 56 57 58 59
28.58 29.88 29.61 29.22 28.75 28.24 29.29 28.28 27.94 26.87

60 61 62 63 64 65 66 67 68 69
25.95 25.16 22.57 22.19 21.16 20.42 20.43 20.44 20.03 19.85

70 71 72 73 74 75 76 77 78 79
19.81 20.50 20.50 20.52 17.59 18.74 19.56 20.12 20.47 20.64

80 81 82 83 84 85 86 87 88 89
24.12 25.62 24.48 23.53 22.56 21.62 20.90 18.54 17.63 17.79

90 91 92 93 94 95 96 97 98 99
16.79 15.94 16.59 14.17 12.14 10.82 10.82 10.82 6.00 6.00

The desired expectation is a0. At the start of the game, it takes, on average, 39.60

moves to reach the ending square. ◾

Example 3.29 (Graduation) Recall the graduation Markov chain of Example

2.19. Students at a 4-year college either drop out, repeat a year, or move on to the

next year. The chain is an absorbing chain with graduating and dropping out as

absorbing states. Relevant matrices are

Fr So Jr Sr Drop Grad

P =

Fr

So

Jr

Se

Drop

Grad

⎛⎜⎜⎜⎜⎜⎜⎝

0.03 0.91 0 0 0.06 0

0 0.03 0.91 0 0.06 0

0 0 0.03 0.93 0.04 0

0 0 0 0.03 0.04 0.93
0 0 0 0 1 0

0 0 0 0 0 1

⎞⎟⎟⎟⎟⎟⎟⎠

,
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Fr So Jr Sr Drop Grad

Q =

Fr

So

Jr

Se

⎛
⎜⎜⎜⎝

0.03 0.91 0 0

0 0.03 0.91 0

0 0 0.03 0.93
0 0 0 0.03

⎞
⎟⎟⎟⎠
, and R =

Fr

So

Jr

Se

⎛⎜⎜⎜⎝

0.06 0

0.06 0

0.04 0

0.04 0.93

⎞⎟⎟⎟⎠
.

This gives

(I − Q)−1R =

⎛
⎜⎜⎜⎝

0.97 −0.91 0 0

0 0.97 −0.91 0

0 0 0.97 −0.93
0 0 0 0.97

⎞
⎟⎟⎟⎠

−1 ⎛
⎜⎜⎜⎝

0.06 0

0.06 0

0.04 0

0.04 0.93

⎞
⎟⎟⎟⎠

Drop Grad

=

Fr

So

Jr

Se

⎛
⎜⎜⎜⎝

0.191 0.809
0.138 0.862
0.081 0.919
0.041 0.959

⎞
⎟⎟⎟⎠
.

For a student who starts as a irst-year, the probability of eventually graduating

is 0.809. ◾

R: Graduation

> P
Fr So Jr Se Drop Grad

Fr 0.03 0.91 0.00 0.00 0.06 0.00
So 0.00 0.03 0.91 0.00 0.06 0.00
Jr 0.00 0.00 0.03 0.93 0.04 0.00
Se 0.00 0.00 0.00 0.03 0.04 0.93
Drop 0.00 0.00 0.00 0.00 1.00 0.00
Grad 0.00 0.00 0.00 0.00 0.00 1.00
> Q <- P[1:4,1:4]
> R <- P[1:4,5:6]
> Absorb <- solve(diag(4)-Q)%*% R
> Absorb

Drop Grad
Fr 0.190975 0.80902
So 0.137633 0.86237
Jr 0.080774 0.91923
Se 0.041237 0.95876

Expected Hitting Times for Irreducible Chains

For an irreducible Markov chain, irst hitting times can be analyzed as absorption

times for a suitablymodiied chain. In particular, assume thatP is the transitionmatrix
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of an irreducible Markov chain. To ind the expected time until state i is irst hit,

consider a new chain in which i is an absorbing state. The transition matrix P̃ for the

new chain is gotten by zeroing out the ith row of the Pmatrix and setting P̃ii = 1. The

resulting Q matrix is obtained from P̃ by deleting the ith row and the ith column of

P. The time that the original P-chain irst hits i is equal to the time that the modiied

P̃-chain is absorbed in i.

Example 3.30 Consider random walk on the weighted graph in Figure 3.14. Start-

ing from each vertex in the graph, ind the expected number of steps until the walk

irst hits f .

a

b

c d

e

f

g1

1

2

3

3

11

12

Figure 3.14

Solution The transition matrix is

a b c d e f g

P =

a

b

c

d

e

f

g

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0 1∕3 2∕3 0 0 0 0

1∕2 0 1∕2 0 0 0 0

2∕5 1∕5 0 2∕5 0 0 0

0 0 1∕3 0 1∕2 1∕6 0

0 0 0 3∕7 0 3∕7 1∕7

0 0 0 1∕5 3∕5 0 1∕5

0 0 0 0 1∕2 1∕2 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

.

By making f an absorbing state, the resulting Q matrix is

a b c d e g

Q =

a

b

c

d

e

g

⎛
⎜⎜⎜⎜⎜⎜⎝

0 1∕3 2∕3 0 0 0

1∕2 0 1∕2 0 0 0

2∕5 1∕5 0 2∕5 0 0

0 0 1∕3 0 1∕2 0

0 0 0 3∕7 0 1∕7

0 0 0 0 1∕2 0

⎞
⎟⎟⎟⎟⎟⎟⎠

,
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which gives

a b c d e g

F = (I − Q)−1 =

a

b

c

d

e

g

⎛
⎜⎜⎜⎜⎜⎜⎝

3.847 2.165 4.412 2.294 1.235 0.176
3.247 2.965 4.412 2.294 1.235 0.176
2.647 1.765 4.412 2.294 1.235 0.176
1.147 0.765 1.912 2.29 1.235 0.176
0.529 0.353 0.882 1.059 1.647 0.235
0.265 0.176 0.441 0.529 0.824 1.118

⎞
⎟⎟⎟⎟⎟⎟⎠

.

Row sums are

a

b

c

d

e

g

⎛
⎜⎜⎜⎜⎜⎜⎝

14.129
14.329
12.529
7.529
4.706
3.353

⎞
⎟⎟⎟⎟⎟⎟⎠

,

which gives the expected numbers of steps, starting from each vertex in the graph, to

irst hit f . ◾

Example 3.31 A coin is lipped repeatedly until three heads in a row appear. What

is the expected number of lips needed?

Solution One approach is to condition on the irst coin lip and use the law of total

expectation. Here is a Markov chain solution.

Let Xn be the most recent run of heads gotten after the nth coin lip. States are

depicted as {∅, H, HH, HHH}, with HHH an absorbing state and ∅ representing the

initial state. Note that if tails is ever lipped then the run of heads starts over again.

Thus, ∅ also represents having gotten tails on the last lip. The transition matrix is

∅ H HH HHH

P =

∅

H

HH

HHH

⎛
⎜⎜⎜⎝

1∕2 1∕2 0 0

1∕2 0 1∕2 0

1∕2 0 0 1∕2

0 0 0 1

⎞
⎟⎟⎟⎠
.

This gives

I − Q =

⎛
⎜⎜⎜⎝

1 0 0

0 1 0

0 0 1

⎞
⎟⎟⎟⎠
−

⎛
⎜⎜⎜⎝

1

2

1

2
0

1

2
0

1

2
1

2
0 0

⎞
⎟⎟⎟⎠
=

⎛
⎜⎜⎜⎝

1

2
−

1

2
0

−
1

2
1 −

1

2

−
1

2
0 1

⎞
⎟⎟⎟⎠

and

F = (I − Q)−1 =

⎛
⎜⎜⎝

8 4 2

6 4 2

4 2 2

⎞
⎟⎟⎠
,
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with expected absorption times

HHH

a = F� =

∅

H

HH

⎛
⎜⎜⎝

14

12

8

⎞
⎟⎟⎠
.

It takes on average 14 lips to get three heads in a row. ◾

Patterns in Sequences

The last example illustrates a general method for problems involving the occurrence

of patterns in random trials. Assume that the elements of a set S are repeatedly sam-

pled. A pattern is a sequence (p1, p2,… , pn), such that each of the pi is an element of

S. In the last example, S = {H, T}, and the desired pattern is (H,H,H).

For k = 1,… , n, let sk = (p1,… , pk) be the subsequence consisting of the

irst k elements of the pattern. A Markov chain is constructed with state space

{∅, s1,… , sn}, where sn, the desired pattern, is an absorbing state. The absorption

time for the Markov chain is equal to the time until the pattern irst appears in

repeated sampling from S.

Example 3.32 A biased coin comes up heads, with probability 2/3, and tails,

with probability 1/3. The coin is repeatedly lipped. How many lips are needed, on

average, until the pattern HTHTH irst appears?

Solution An absorbing Markov chain is constructed with transition matrix

∅ H HT HTH HTHT HTHTH

P =

∅

H

HT

HTH

HTHT

HTHTH

⎛⎜⎜⎜⎜⎜⎜⎝

1∕3 2∕3 0 0 0 0

0 2∕3 1∕3 0 0 0

1∕3 0 0 2∕3 0 0

0 2∕3 0 0 1∕3 0

1∕3 0 0 0 0 2∕3

0 0 0 0 0 1

⎞⎟⎟⎟⎟⎟⎟⎠

.

The fundamental matrix is

F = (I − Q)−1 =

⎛
⎜⎜⎜⎜⎝

2∕3 −2∕3 0 0 0

0 1∕3 −1∕3 0 0

−1∕3 0 1 −2∕3 0

0 −2∕3 0 1 −1∕3

−1∕3 0 0 0 1

⎞
⎟⎟⎟⎟⎠

−1
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=

⎛
⎜⎜⎜⎜⎝

45∕8 81∕4 27∕4 9∕2 3∕2

33∕8 81∕4 27∕4 9∕2 3∕2

33∕8 69∕4 27∕4 9∕2 3∕2

27∕8 63∕4 21∕4 9∕2 3∕2

15∕8 27∕4 9∕4 3∕2 3∕2

⎞
⎟⎟⎟⎟⎠
.

The sum of the irst row of the fundamental matrix is

45

8
+

81

4
+

27

4
+

9

2
+

3

2
=

309

8
= 38.625.

It takes, on average, 38.625 lips before HTHTH irst appears. ◾

R : Simulation of Number of Flips Needed For HTHTH

# pattern.R
# P(Heads) = 2/3, P(Tails) = 1/3
> trials <- 100000
> simlist <- numeric(trials)
> for (i in 1:trials) {
+ pattern <- c(1,0,1,0,1) # 1:Heads, 0:Tails
+ state <- sample(c(0,1),5,prob=c(1/3,2/3),replace=T)
+ k <- 5
+ while (!prod(state==pattern))
+ { flip <- sample(c(0,1),1,prob=c(1/3,2/3))
+ state <- c(tail(state,4),flip)
+ k <- k + 1 }
+ simlist[i] <- k }
> mean(simlist)
[1] 38.67718
# exact expectation is 38.625

In the last example, successive trials (e.g., coin lips) are independent and iden-

tically distributed. However, this is not necessary. In the next example, the trials

themselves form a Markov chain.

Example 3.33 Assume that successive occurrences of DNA nucleotides on a chro-

mosome are modeled by a Markov chain with transition matrix

a c g t

P̃ =

a

c

g

t

⎛
⎜⎜⎜⎝

0.3 0.2 0.3 0.2
0.4 0.3 0.1 0.2
0.25 0.15 0.4 0.2
0.2 0.2 0.3 0.3

⎞
⎟⎟⎟⎠
.

Consider searching sequentially across the chromosome until the pattern accgc irst

appears. On average, how many steps (e.g., successive nucleotides), are needed?
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Solution An absorbing Markov chain is built on {∅, a, ac, acc, accg, accgc}, with
transition matrix

∅ a ac acc accg accgc

P =

∅

a

ac

acc

accg

accgc

⎛
⎜⎜⎜⎜⎜⎜⎝

0.7 0.3 0 0 0 0

0.5 0.3 0.2 0 0 0

0.3 0.4 0 0.3 0 0

0.5 0.4 0 0 0.1 0

0.6 0.25 0 0 0 0.15
0 0 0 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎠

.

To understand the matrix entries, observe, for instance, that from state acc, the

chain moves to (i) accg, with probability P̃cg = 0.1, or to (ii) a, with probability

P̃ca = 0.4, or to (iii) ∅, with the complementary probability 0.5. We have

F = (I − Q)−1 =

⎛
⎜⎜⎜⎜⎝

0.3 −0.3 0 0 0

−0.5 0.7 −0.2 0 0

−0.3 −0.4 1 −0.3 0

−0.5 −0.4 0 0.9 0

−0.6 −0.25 0 0 1

⎞
⎟⎟⎟⎟⎠

−1

=

⎛
⎜⎜⎜⎜⎝

2201.85 1111.11 222.22 66.67 6.67
2198.52 1111.11 222.22 66.67 6.67
2190.19 1106.11 222.22 66.67 6.67
2167.41 1094.44 218.89 66.67 6.67
1870.74 944.444 188.89 56.67 6.67

⎞
⎟⎟⎟⎟⎠
.

The sum of the irst row is

2201.85 + 1111.11 + 222.22 + 66.67 + 6.67 = 3608.52,

which gives the average number of nucleotides needed to reach the desired pattern.

◾

3.9 REGENERATION AND THE STRONG MARKOV PROPERTY*

A Markov chain is sometimes observed from a ixed time n > 0 into the future.

Assume that X0,X1,… is a Markov chain with transition matrix P. Then, the pro-

cess started at n > 0, Xn,Xn+1,Xn+2,… is also a Markov chain with transition matrix

P. This is a consequence of the Markov property, which says that given the present,

past, and future are independent.

The strong Markov property asserts that for certain types of random times called

stopping times, the Markov property holds. If S is a stopping time, then the sequence

XS,XS+1,XS+2,… is a Markov chain. Given that the present time is a stopping time,

past and future are independent.
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An integer-valued random variable S is a stopping time for a Markov chain if, for

each s, the event {S = s} can be determined from X0,… ,Xs. In other words, if the

outcomes X0,… ,Xs are known, then it can be determined whether or not {S = s}

occurs.

An important example of a stopping time is the irst hitting time random variable

Ti = min{n ≥ 0∶ Xn = i},

which is the irst time that a Markov chain hits state i. For instance, consider the

weather Markov chain. Let r denote rain. Then, Tr is the irst day that it rains. For

any day t, If we are given the succession of weather states up to time t, X0,… ,Xt,
then it can be determined whether or not the irst day that it rained was on day t.

This shows that Tr is a stopping time. By the strong Markov property, the sequence

XTr ,XTr+1,… is a Markov chain.

A closely related stopping time for a Markov chain started at i, is the irst return

time

T+
i
= min{n ≥ 1∶ Xn = i}.

The strong Markov property says that the chain started at T+
i
looks the same as the

chain started at i. We say that at time T+
i
the Markov chain regenerates itself and

probabilistically starts anew.

More generally, given a nonempty subset of states A ⊆  , the irst time the chain

hits a state in A

TA = min{n ≥ 0∶ Xn ∈ A}

is a stopping time.

A random time that is not a stopping time is the last visit to state i. Knowing

whether or not the last visit to i occurs at time s cannot be determined from just

X0,… ,Xs. It requires knowledge of the entire Markov sequence X0,X1,…

Strong Markov Property

Let X0,X1,… be a Markov chain with transition matrix P. Let S be a stopping

time. Then, XS,XS+1,… is a Markov chain with transition matrix P.

Proof. For states i, j, i0, i1,…, consider

P(XS+1 = j,XS = i,Xu = iu, 0 ≤ u < S)

=
∑
s

P(S = s,Xs+1 = j,Xs = i,Xu = iu, 0 ≤ u < s)

=
∑
s

P(S = s|Xs+1 = j,Xs = i,Xu = iu, 0 ≤ u < s)

× P(Xs+1 = j|Xs = i,Xu = iu, 0 ≤ u < s)

× P(Xs = i,Xu = iu, 0 ≤ u < s)
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=
∑
s

P(S = s|Xs = i,Xu = iu, 0 ≤ u < s)

× PijP(Xs = i,Xu = iu, 0 ≤ u < s)

= PijP(XS = i,Xu = iu, 0 ≤ u < S).

The third equality is by conditional probability. The fourth equality is because (i) S

is a stopping time and the event {S = s} is determined by X0,… ,Xs, and (ii) by the

Markov property. It follows that

P(XS+1 = j|XS = i,Xu = iu, 0 ≤ u < S)

=
P(XS+1 = j,XS = i,Xu = iu, 0 ≤ u < S)

P(XS = i,Xu = iu, 0 ≤ u < S)

= Pij. ◾

3.10 PROOFS OF LIMIT THEOREMS*

In this section, we prove the main limit theorems from this chapter. Each proof is

given after restating the corresponding theorem.

Limit Theorem for Regular Markov Chains

Theorem 3.2. A Markov chain whose transition matrix P is regular has a limit-

ing distribution, which is the unique, positive, stationary distribution of the chain.

Proof of Theorem 3.2. This is a direct consequence of two forthcoming results: Propo-

sition 3.13, which gives that regular Markov chains are ergodic, and Theorem 3.8, the

fundamental limit theorem for ergodic Markov chains. ◾

Finite Irreducible Markov Chains

Theorem 3.6. Assume that X0,X1,… is a inite irreducible Markov chain. For

each state j, let �j = E(Tj|X0 = j) be the expected return time to j. Then, �j is

inite, and there exists a unique, positive stationary distribution � such that

�j =
1

�j
, for all j. (3.14)

Furthermore, for all i and j,

�j = lim
n→∞

1

n

n−1∑
m=0

Pm
ij
. (3.15)
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Proof of Theorem 3.6. Let X0,X1,… be an irreducible Markov chain with state space

{1,… , k}. Given states i, j, consider the chain started in i. Since the chain is irre-

ducible and all states are recurrent, the chain will visit j ininitely often.

Let Y1 be the time the chain irst hits j. Since j is recurrent, the chain will return

to j ininitely often. For n ≥ 2, let Yn be the number of steps from the (n − 1)st visit

to j to the nth visit to j. By the strong Markov property, each time the chain visits j

it probabilistically restarts itself independently of past history. Thus, Y1,Y2,… is an

i.i.d. sequence with common mean �j = E(Tj|X0 = j).

Assume that �j < ∞. By the strong law of large numbers,

lim
n→∞

Y1 + · · · + Yn

n
= �j, with probability 1. (3.16)

Deine indicator variables

Im =

{
1, if Xm = j,

0, otherwise,

for m = 0, 1,… Then,
∑n−1

m=0 Im is the number of visits to j in the irst n steps of the

chain. The long-term expected proportion of visits to j is

lim
n→∞

E

(
1

n

n−1∑
m=0

Im

)
= lim

n→∞

1

n

n−1∑
m=0

E(Im) = lim
n→∞

1

n

n−1∑
m=0

Pm
ij
.

Since there are n visits to j by time Y1 + · · · + Yn, for large n,

1

n

n−1∑
m=0

Im ≈
n

Y1 + · · · + Yn
,

giving that

lim
n→∞

1

n

n−1∑
m=0

Pm
ij
= lim

n→∞

n

Y1 + · · · + Yn
=

1

�j
,with probability 1. (3.17)

Let �j = 1∕�j, for all j. Then, � = (�1,… , �k) is the desired stationary distribution

by the following four properties.

1. Since the �j are positive and inite, � is positive.

2. Summing the entries of � gives

k∑
j=1

�j =

k∑
j=1

lim
n→∞

1

n

n−1∑
m=0

Pm
ij
= lim

n→∞

1

n

n−1∑
m=0

k∑
j=1

Pm
ij
= lim

n→∞

1

n

n−1∑
m=0

1 = 1.

Thus, � is a probability distribution.
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3. To show � is a stationary distribution, we need to show that

k∑
i=1

1

�i
Pij =

1

�j
.

We have that

k∑
i=1

1

�i
Pij =

k∑
i=1

(
lim
n→∞

1

n

n−1∑
m=0

Pm
ii

)
Pij

= lim
n→∞

1

n

n−1∑
m=0

k∑
i=1

Pm
ii
Pij

= lim
n→∞

1

n

n−1∑
m=0

Pm+1
ij

= lim
n→∞

(
n + 1

n

)(
1

n + 1

)(
n∑

m=0

Pm
ij
− P0

ij

)

=
(
lim
n→∞

n + 1

n

)(
lim
n→∞

1

n + 1

n∑
m=0

Pm
ij

)
− lim

n→∞

P0
ij

n + 1

=
1

�j
.

4. For uniqueness, assume that � = �P is a stationary distribution. Then,

� = �P n, for all n, and thus � = limn→∞�P n. Pointwise,

�j = lim
n→∞

k∑
i=1

�iP
n
ij
= lim

n→∞

1

n

n−1∑
m=0

k∑
i=1

�iP
m
ij

=

k∑
i=1

�i lim
n→∞

1

n

n−1∑
m=0

Pm
ij
=

k∑
i=1

�i
1

�j
=

1

�j
.

For the second equality, we use the fact that if a sequence converges to a limit,

then the sequence of partial averages also converges to that limit. We have

shown that if � is a stationary distribution, then necessarily �j = 1∕�j.

To inish the proof of Theorem 3.6, it remains to show that for a initeMarkov chain

the expected return time �j is inite, for all j. A recurrent state j with inite expected

return time is called positive recurrent. If the expected return time is ininite, the state

is called null recurrent.

To show that the states of a inite irreducible Markov chain are all positive recur-

rent, we show that a inite irreducible Markov chain contains at least one positive

recurrent state. The result will follow as a consequence of the following lemma.



138 MARKOV CHAINS FOR THE LONG TERM

Positive and Null Recurrence are Class Properties

Lemma 3.12. All the states in a recurrent communication class are either

positive recurrent or null recurrent.

Proof of Lemma. Assume that i is a positive recurrent state. Let j be another state

in the same communication class as i. Since both states communicate, there exist

positive integers r and s such that Pr
ji
> 0 and Ps

ij
> 0. Thus,

1

�j
= lim

n→∞

1

n

n−1∑
m=0

Pm
jj

≥ lim
n→∞

1

n

n−1∑
m=r+s

Pr
ji
Pm−r−s
ii

Ps
ij

= lim
n→∞

(
n − r − s

n

)
Pr
ji

(
1

n − r − s

n−1∑
m=r+s

Pm−r−s
ii

)
Ps
ij

= Pr
ji

(
1

�i

)
Ps
ij
> 0.

Hence, �j < ∞ and j is positive recurrent. Having shown that positive recurrence is a

class property, it follows that null recurrence is a class property. For if the communi-

cation class of a null recurrent state contains a positive recurrent state, then all states

in the class are positive recurrent, leading to a contradiction. ◾

A inite irreducible Markov chain is recurrent. We show that at least one state must

be positive recurrent. If not, then all states are null recurrent, and all expected return

times are ininite. See Equation (3.16). Since the Yi are non-negative, this equation

still holds with �j = +∞. And by Equation (3.17),

lim
n→∞

1

n

n∑
m=1

Pm
ij
= 0, for all i, j.

Sum over j to obtain

0 =

k∑
j=1

lim
n→∞

1

n

n∑
m=1

Pm
ij
= lim
n→∞

1

n

k∑
j=1

n∑
m=1

Pm
ij

= lim
n→∞

1

n

n∑
m=1

k∑
j=1

Pm
ij
= lim

n→∞

1

n

n∑
m=1

1 = 1,

a contradiction. Thus, a inite irreducible Markov chain contains at least one positive

recurrent state. By Lemma 3.12, all states are positive recurrent. And Theorem 3.6 is

proved. ◾
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Remark: The theorem holds for ininite irreducible chains that are positive recurrent.

For ininite irreducible chains that are null recurrent, no stationary distribution exists.

Fundamental Limit Theorem for Ergodic Markov Chains

Theorem 3.8. Let X0,X1,… be an ergodic Markov chain. There exists a unique,

positive, stationary distribution �, which is the limiting distribution of the chain.

That is,

�j = lim
n→∞

Pn
ij
, for all i, j.

Proof of Theorem 3.8. Two proofs will be given. One is probabilistic, based on an

elegant technique known as coupling. The other relies on linear algebra and the eigen-

structure of the transition matrix.

Both proofs are a consequence of the following proposition, which says that inite

ergodicMarkov chains are precisely those chains that have regular transitionmatrices.

Recall that a square matrix is regular if some power of the matrix has all positive

entries.

Ergodic Chains and Regular Matrices

Proposition 3.13. Assume that P is the transition matrix of a inite Markov

chain. The Markov chain is ergodic if and only if P is regular.

The proof of this proposition relies on the following lemma.

Lemma 3.14. If i is an aperiodic state, there exists a positive integer N such that

Pn
ii
> 0 for all n ≥ N.

Proof of Lemma. The following is based on Hoel et al. (1986) and uses results from

number theory.

Assume that i is an aperiodic state. Let T = {n > 0 ∶ Pn
ii
> 0}. By deinition,

gcd(T) = 1. The set T is closed under addition, since if m, n ∈ T , then

Pm+n
ii

=
∑
k

Pm
ik
Pn
ki
≥ Pm

ii
Pm
ii
> 0.

That is, m + n ∈ T .

We claim that T contains two consecutive integers. If not, then there exists k,m ∈ T

such that k ≥ 2, k + m ∈ T , and any two integers in T differ by at least k. Furthermore,

since gcd(T) = 1, there is an n ∈ T such that k is not a divisor of n. Write n = qk + r,

where q ≥ 0 and 0 < r < k. Since T is closed under addition, (q + 1)(m + k) ∈ T and

n + (q + 1)m ∈ T . Their difference is

(q + 1)(m + k) − n − (q + 1)m = k + qk − n = k − r > 0.



140 MARKOV CHAINS FOR THE LONG TERM

Thus, we have found two elements of T whose difference is positive and smaller than

k, giving a contradiction.

Hence, T contains consecutive integers, say m and m + 1. Let N = m2. We show

that n ∈ T , for all n ≥ N, which establishes the lemma. For n ≥ N, write n − N =

qm + r, for q ≥ 0 and 0 ≤ r < m. Then,

n = m2 + qm + r = (m − r + q)m + r(m + 1) ∈ T . ◾

Proof of Proposition 3.13. Assume that P is the transition matrix of a inite ergodic

chain. Since the chain is irreducible, for states i and j there exists m ≥ 0, such that

Pm
ij
> 0. The number m = m(i, j) depends on i and j. Let M∗ = max

i,j
m(i, j). We can

take the maximum since the chain is inite.

Since the chain is aperiodic, by Lemma 3.14, there exists N > 0 such that Pn
ii
> 0,

for all n ≥ N. The number N = N(i) depends on i. Let N∗ = max
i
N(i). Then, N∗ does

not depend on i, and for all n ≥ N∗, Pn
ii
> 0, for all i.

Let X = M∗ + N∗. We claim that PX is positive. For states i and j,

PX
ij
= P

(X−m(i,j))+m(i,j)

ij
=

k∑
t=1

P
X−m(i,j)

it
P
m(i,j)

tj
≥ P

X−m(i,j)

ii
P
m(i,j)

ij
> 0.

The last inequality is because (i) P
m(i,j)

ij
> 0, and (ii) P

X−m(i,j)

ii
> 0, since

X − m(i, j) ≥ X −M∗ = N∗.

Thus, P is regular.

Conversely, assume that P is regular. Then, P n > 0 for some positive integer N.

Thus, all states communicate and the chain is irreducible. It sufices to show that

the chain is aperiodic. Stochastic matrices have the property that if P n is positive

then PN+m is positive for all m ≥ 0, a property we leave for the reader to prove.

(See Exercise 3.33.) For any state i, the set of possible return times to i includes

N,N + 1,…, and gcd {N,N + 1,…} = 1. That is, i is aperiodic. ◾

Coupling Proof of Fundamental Limit Theorem

The method of proof is based on coupling, a probabilistic technique irst introduced

by the German mathematician Wolfgang Doeblin in the 1930s.

Here is a bird’s-eye view. LetX0,X1,…be an ergodicMarkov chain on with tran-

sition matrix P. Since the chain is irreducible, it has a unique stationary distribution

�. We need to show that for all i and j,

lim
n→∞

P(Xn = j|X0 = i) = �j.

Consider a second chain Y0,Y1,…with the same transition matrix P, but with initial

distribution �. That is, the Y chain is a stationary chain. For all n ≥ 0, the distribution

of Yn is �.
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The X and Y chains are run independently of each other. Eventually, at some

inite time T , both chains will hit the same state. The chains are then coupled so that

Xn = Yn, for n ≥ T . Since the Y chain is in stationarity, from time T onwards the X

chain is also in stationarity, from which follows the result.

To elaborate, let T = min{n ≥ 0 ∶ Xn = Yn} be the irst time that the X and Y

chains hit the same state. Deine a new process by letting

Zn =

{
Xn, if n < T ,
Yn, if n ≥ T ,

for n ≥ 0. Then, Z0,Z1,… is a Markov chain with the same transition matrix and

initial distribution as the X chain.

Consider the bivariate process (Z0,Y0), (Z1,Y1),… The bivariate process is a Mar-

kov chain on the state space  ×  with transition matrix P̃ deined by

P̃(i,k),(j,l) = PijPkl.

The bivariate process represents a coupling of the original X chain with the stationary

Y chain. The chains are coupled in such a way so that once both chains hit the same

state then from that time onward the chains march forward in lockstep. See Example

3.34 for an illustration of the construction.

We show that the bivariate Markov chain is ergodic. Since the X chain is ergodic,

P is regular, and there exists some N > 0 such that PN > 0. For this choice of N, and

for all i, j, k, l,
P̃N
(i,k),(j,l)

= PN
ij
PN
kl
> 0.

Thus, P̃ is regular, and by Proposition 3.13 the bivariate chain is ergodic. From any

state, the bivariate chain reaches any other state in inite time, with probability 1. In

particular, it eventually hits a state of the form (j, j). The event that (Zn,Yn) = (j, j) for
some j implies that the two chains have coupled by time n. It follows that T , the irst

time the two chains meet, is inite with probability 1. Hence,

lim
n→∞

P(T > n) = lim
n→∞

1 − P(T ≤ n) = 1 − P(T < ∞) = 0.

Consider

P(Yn = j) = P(Yn = j,T ≤ n) + P(Yn = j,T > n).

Taking limits, as n→ ∞, the left-hand side converges to �j, and the rightmost term

converges to 0. Thus, P(Yn = j,T ≤ n) → �j, as n→ ∞.

For any initial distribution,

P(Xn = j) = P(Zn = j)

= P(Zn = j,T ≤ n) + P(Zn = j,T > n)

= P(Zn = j|T ≤ n)P(T ≤ n) + P(Zn = j,T > n)

= P(Yn = j|T ≤ n)P(T ≤ n) + P(Zn = j,T > n)

= P(Yn = j,T ≤ n) + P(Zn = j,T > n).
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Taking limits gives

lim
n→∞

P(Xn = j) = lim
n→∞

P(Yn = j,T ≤ n) + lim
n→∞

P(Zn = j,T > n) = �j,

which completes the proof. ◾

Example 3.34 The coupling construction is illustrated on a two-state chain with

state space  = {a, b} and transition matrix

a b

P =
a

b

(
9∕10 1∕10

1∕5 4∕5

)
.

The chain is ergodic with stationary distribution � = (2∕3, 1∕3).

For the following simulation, the X chain was started at a, the Y chain in �. Both

chains were run independently for 12 steps. The chains coupled at time T = 8.

Chain 0 1 2 3 4 5 6 7 8 9 10 11 12

X a a a a a b b b a a b a a

Y b b b b b a a a a a b b b

Z a a a a a b b b a a b b b

(Z,Y) ab ab ab ab ab ba ba ba aa aa bb bb bb

The transition matrix P̃ of the bivariate process is

aa ab ba bb

P̃ =

aa

ab

ba

bb

⎛⎜⎜⎜⎝

(9∕10)2 (9∕10)(1∕10) (1∕10)(9∕10) (1∕10)2

(9∕10)(1∕5) (9∕10)(4∕5) (1∕10)(1∕5) (1∕10)(4∕5)

(1∕5)(9∕10) (1∕5)(1∕10) (4∕5)(9∕10) (4∕5)(1∕10)

(1∕5)2 (1∕5)(4∕5) (4∕5)(1∕5) (4∕5)2

⎞⎟⎟⎟⎠
aa ab ba bb

=

aa

ab

ba

bb

⎛⎜⎜⎜⎝

81∕100 9∕100 9∕100 1∕100

9∕50 36∕50 1∕50 4∕50

9∕50 1∕50 36∕50 4∕50

1∕25 4∕25 4∕25 16∕25

⎞⎟⎟⎟⎠
.

◾

Linear Algebra Proof of Fundamental Limit Theorem

Asymptotic properties of Markov chains are related to the eigenstructure of the

transition matrix.
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Eigenvalues of a Stochastic Matrix

Lemma 3.15. A stochastic matrix P has an eigenvalue �∗ = 1. All other eigen-

values � of P are such that |�| ≤ 1.

If P is a regular matrix, then the inequality is strict. That is, |�| < 1 for all

� ≠ �∗.

Proof. Let P be a k × k stochastic matrix. Since the rows of P sum to 1, we have

that P� = �, where � is a column vector of all 1s. Thus, �∗ = 1 is an eigenvalue

of P. Let � be any other eigenvalue of P with corresponding eigenvector z. Let

|zm| = max1≤i≤k|zi|. That is, zm is the component of z of maximum absolute value.

Then,

|�‖zm| = |�zm| = |(Pz)m| =
||||||

k∑
i=1

Pmizi

||||||
≤

k∑
i=1

Pmi|zi| ≤ |zm|
k∑
i=1

Pmi = |zm|.

Thus, |�| ≤ 1.

Assume that P is regular. Then, PN > 0, for some N > 0. Since PN is a stochastic

matrix, the irst part of the lemma holds forPN . If � is an eigenvalue ofP, then �N is an

eigenvalue of PN . Let x be the corresponding eigenvector, with |xm| = max1≤i≤k|xi|.
Then,

|�|N|xm| = |(PNx)m| =
||||||

k∑
i=1

PN
mi
xi

||||||
≤

k∑
i=1

PN
mi
|xi| ≤ |xm|

k∑
i=1

PN
mi

= |xm|.

Since the entries of PN are all positive, the last inequality is an equality only if

|x1| = |x2| = · · · = |xk|. And the irst inequality is an equality only if x1 = · · · = xk.

But the constant vector whose components are all the same is an eigenvector asso-

ciated with the eigenvalue 1. Hence, if � ≠ 1, one of the inequalities is strict. Thus,

|�|N < 1, and the result follows. ◾

The fundamental limit theorem for ergodic Markov chains is a consequence of the

Perron–Frobenius theorem for positive matrices.

Perron–Frobenius Theorem

Theorem 3.16. LetM be a k × k positive matrix. Then, the following statements

hold.

1. There is a positive real number �∗ which is an eigenvalue of M. For

all other eigenvalues � of M, |�| < �∗. The eigenvalue �∗ is called the

Perron–Frobenius eigenvalue.

2. The eigenspace of eigenvectors associated with �∗ is one-dimensional.
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3. There exists a positive right eigenvector � associated with �∗, and a positive

left eigenvector � associated with �∗. Furthermore,

lim
n→∞

1

(�∗)n
Mn = ��

T ,

where the eigenvectors are normalized so that �T� = 1.

The proof of the Perron–Frobenius theorem can be found in many advanced linear

algebra textbooks, including Horn and Johnson (1990).

For an ergodic Markov chain, the transition matrix P is regular and PN is a

positive matrix for some integer N. The Perron–Frobenius theorem applies. The

Perron–Frobenius eigenvalue of P n is �∗ = 1, with associated right eigenvector

� = �, and associated left eigenvector �.

If �∗ = 1 is an eigenvalue of PN , then (�∗)1∕N = 1 is an eigenvalue of P, with

associated right and left eigenvectors � and �, respectively. Normalizing � so that

its components sum to 1 gives the unique, positive stationary distribution �, which is

the limiting distribution of the chain. The limiting matrix ��T is a stochastic matrix

all of whose rows are equal to �T . ◾

EXERCISES

3.1 Consider a Markov chain with transition matrix

P =

⎛⎜⎜⎜⎝

1∕2 1∕4 0 1∕4

0 1∕2 1∕2 0

1∕4 1∕4 1∕2 0

0 1∕4 1∕2 1∕4

⎞⎟⎟⎟⎠
.

Find the stationary distribution. Do not use technology.

3.2 A stochastic matrix is called doubly stochastic if its rows and columns sum to 1.

Show that a Markov chain whose transition matrix is doubly stochastic has a

stationary distribution, which is uniform on the state space.

3.3 Determine which of the following matrices are regular.

P =

⎛
⎜⎜⎜⎝

0.4 0.6 0 0

0 0 1 0

0 0 0 1

1 0 0 0

⎞
⎟⎟⎟⎠
, Q =

(
0 1

p 1 − p

)
, R =

⎛
⎜⎜⎝

0 1 0

0.25 0.5 0.25

1 0 0

⎞
⎟⎟⎠
.

3.4 Consider a Markov chain with transition matrix

P =

⎛⎜⎜⎝

1 − a a 0

0 1 − b b

c 0 1 − c

⎞⎟⎟⎠
,

where 0 < a, b, c < 1. Find the stationary distribution.
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3.5 A Markov chain has transition matrix

P =

⎛⎜⎜⎜⎜⎝

0 1∕4 0 0 3∕4

3∕4 0 0 0 1∕4

0 0 1 0 0

0 0 0 1 0

1∕4 3∕4 0 0 0

⎞⎟⎟⎟⎟⎠
.

(a) Describe the set of stationary distributions for the chain.

(b) Use technology to ind limn→∞P
n. Explain the long-term behavior of the

chain.

(c) Explain why the chain does not have a limiting distribution, and why this

does not contradict the existence of a limiting matrix as shown in (b).

3.6 Consider a Markov chain with transition matrix

1 2 3 4 5 · · ·

P =

1

2

3

4

5

⋮

⎛
⎜⎜⎜⎜⎜⎜⎝

1∕2 1∕2 0 0 0 · · ·

2∕3 0 1∕3 0 0 · · ·

3∕4 0 0 1∕4 0 · · ·

4∕5 0 0 0 1∕5 · · ·

5∕6 0 0 0 0 · · ·

⋮ ⋮ ⋮ ⋮ ⋮ ⋱

⎞
⎟⎟⎟⎟⎟⎟⎠

,

deined by

Pij =

⎧
⎪⎨⎪⎩

i∕(i + 1), if j = 1,
1∕(i + 1), if j = i + 1,
0, otherwise.

(a) Does the chain have a stationary distribution? If yes, exhibit the distribution.

If no, explain why.

(b) Classify the states of the chain.

(c) Repeat part (a) with the row entries of P switched. That is, let

Pij =

⎧
⎪⎨⎪⎩

1∕(i + 1), if j = 1,
i∕(i + 1), if j = i + 1,
0, otherwise.

3.7 A Markov chain has n states. If the chain is at state k, a coin is lipped, whose

heads probability is p. If the coin lands heads, the chain stays at k. If the coin

lands tails, the chain moves to a different state uniformly at random. Exhibit the

transition matrix and ind the stationary distribution.
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3.8 Let

P� =

(
1∕4 3∕4

1∕2 1∕2

)
and P� =

(
1∕5 4∕5

4∕5 1∕5

)
.

Consider a Markov chain on four states whose transition matrix is given by the

block matrix

P =

(
P� �

� P�

)
.

(a) Does the Markov chain have a unique stationary distribution? If so, ind it.

(b) Does limn→∞P
n exist? If so, ind it.

(c) Does the Markov chain have a limiting distribution? If so, ind it.

3.9 Let P be a stochastic matrix.

(a) If P is regular, is P2 regular?

(b) If P is the transition matrix of an irreducible Markov chain, is P2 the tran-

sition matrix of an irreducible Markov chain?

3.10 A Markov chain has transition matrix P and limiting distribution �. Further

assume that � is the initial distribution of the chain. That is, the chain is in

stationarity. Find the following:

(a) limn→∞P(Xn = j|Xn−1 = i)

(b) limn→∞P(Xn = j|X0 = i)

(c) limn→∞P(Xn+1 = k,Xn = j|X0 = i)

(d) limn→∞P(X0 = j|Xn = i)

3.11 Consider a simple symmetric random walk on {0, 1,… , k} with relecting

boundaries. If the walk is at state 0, it moves to 1 on the next step. If the walk

is at k, it moves to k − 1 on the next step. Otherwise, the walk moves left or

right, with probability 1/2.

(a) Find the stationary distribution.

(b) For k = 1, 000, if the walk starts at 0, how many steps will it take, on aver-

age, for the walk to return to 0?

3.12 A Markov chain has transition matrix

P =

⎛
⎜⎜⎜⎝

0 0 1 0

0 1∕4 0 3∕4

1∕2 0 1∕2 0

0 3∕4 0 1∕4

⎞
⎟⎟⎟⎠
.

Find the set of all stationary distributions.
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3.13 Find the communication classes of a Markov chain with transition matrix

1 2 3 4 5

P =

1

2

3

4

5

⎛⎜⎜⎜⎜⎝

1∕2 0 0 0 1∕2

1∕3 1∕2 1∕6 0 0

0 1∕4 0 1∕2 1∕4

0 0 0 1 0

1 0 0 0 0

⎞⎟⎟⎟⎟⎠
.

Rewrite the transition matrix in canonical form.

3.14 The California Air Resources Board warns the public when smog levels are

above certain thresholds. Days when the board issues warnings are called

episode days. Lin (1981) models the daily sequence of episode and nonepisode

days as a Markov chain with transition matrix

Nonepisode Episode

P =
Nonepisode

Episode

(
0.77 0.23
0.24 0.76

)
.

(a) What is the long-term probability that a given day will be an episode day?

(b) Over a year’s time about how many days are expected to be episode days?

(c) In the long-term, what is the average number of days that will transpire

between episode days?

3.15 On a chessboard a single random knight performs a simple random walk. From

any square, the knight chooses from among its permissible moves with equal

probability. If the knight starts on a corner, how long, on average, will it take to

return to that corner?

3.16 As in the previous exercise, ind the expected return time from a corner square

for the following chess pieces: (i) queen, (ii) rook, (iii) king, (iv) bishop. Order

the pieces by which pieces return quickest.

3.17 Consider a Markov chain with transition matrix

P =

(
1∕2 1∕2

0 1

)
.

Obtain a closed form expression for Pn. Exhibit the matrix
∑∞

n=0 P
n (some

entries may be +∞). Explain what this shows about the recurrence and tran-

sience of the states.
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3.18 Use irst-step analysis to ind the expected return time to state b for the Markov

chain with transition matrix

a b c

P =

a

b

c

⎛
⎜⎜⎝

1∕2 1∕2 0

1∕4 0 3∕4

1∕2 1∕2 0

⎞
⎟⎟⎠
.

3.19 Consider random walk on the graph in Figure 3.15. Use irst-step analysis to

ind the expected time to hit d for the walk started in a. (Hint: By exploiting

symmetries in the graph, the solution can be found by solving a 3 × 3 linear

system.)

a

b

c

d

e

f

Figure 3.15

3.20 Show that simple symmetric random walk on ℤ
2, that is, on the integer points

in the plane, is recurrent. As in the one-dimensional case, consider the origin.

3.21 Show that simple symmetric random walk on ℤ
3 is transient. As in the

one-dimensional case, consider the origin and show

P2n
00

=
1

62n

∑
0≤j+k≤n

(2n)!

j!j!k!k!(n − j − k)!(n − j − k)!
,

≤
1

22n

(
2n

n

) (
1

3n
n!

(n∕3)!(n∕3)!(n∕3)!

)
.

Then, use Stirling’s approximation.

3.22 Consider the general two-state chain

1 2

P =
1

2

(
1 − p p

q 1 − q

)
,
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where p and q are not both 0. Let T be the irst return time to state 1, for the

chain started in 1.

(a) Show that P(T ≥ n) = p(1 − q)n−2, for n ≥ 2.

(b) Find E(T) and verify that E(T) = 1∕�1, where � is the stationary distribu-

tion of the chain.

3.23 Consider a k-state Markov chain with transition matrix

1 2 3 · · · k − 2 k − 1 k

P =

1

2

3

⋮

k − 2

k − 1

k

⎛⎜⎜⎜⎜⎜⎜⎜⎝

1∕k 1∕k 1∕k · · · 1∕k 1∕k 1∕k

1 0 0 · · · 0 0 0

0 1 0 · · · 0 0 0

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮

0 0 0 · · · 0 0 0

0 0 0 · · · 1 0 0

0 0 0 · · · 0 1 0

⎞⎟⎟⎟⎟⎟⎟⎟⎠

.

Show that the chain is ergodic and ind the limiting distribution.

3.24 Show that the stationary distribution for the modiied Ehrenfest chain of

Example 3.19 is binomial with parameters N and 1/2.

3.25 Read about the Bernoulli–Laplace model of diffusion in Exercise 2.12.

(a) Find the stationary distribution for the cases k = 2 and k = 3.

(b) For general k, show that �j =
(
k

j

)2

∕
(
2k

k

)
, for j = 0, 1,… , k, satisies the

equations for the stationary distribution and is thus the unique limiting dis-

tribution of the chain.

3.26 Assume that (p1,… , pk) is a probability vector. LetP be a k × k transitionmatrix

deined by

Pij =

⎧⎪⎨⎪⎩

pj, if i = 1,… , k − 1,

0, if i = k, j < k,

1, if i = k, j = k.

Describe all the stationary distributions for P.

3.27 Sinclair (2005). Consider the ininiteMarkov chain on the non-negative integers

described by Figure 3.16.

(a) Show that the chain is irreducible and aperiodic.

(b) Show that the chain is recurrent by computing the irst return time to 0 for

the chain started at 0.

(c) Show that the chain is null recurrent.
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0 1 2 3 4
1

1/2

1/2

1/3

2/3

1/4

3/4

1/5

Figure 3.16

3.28 Consider a Markov chain with transition matrix

1 2 3 4 5 6 7

P =

1

2

3

4

5

6

7

⎛⎜⎜⎜⎜⎜⎜⎜⎝

1∕3 1∕3 1∕3 0 0 0 0

2∕3 0 1∕3 0 0 0 0

0 2∕3 1∕3 0 0 0 0

0 1∕4 0 1∕2 0 1∕4 0

0 0 1∕4 0 1∕4 0 1∕2

0 0 0 0 0 0 1

0 1∕8 1∕8 1∕8 1∕8 1∕4 1∕4

⎞⎟⎟⎟⎟⎟⎟⎟⎠

.

Identify the communication classes. Classify the states as recurrent or transient.

For all i and j, determine limn→∞P
n
ij
without using technology.

3.29 Consider a Markov chain with transition matrix

a b c d e f g

P =

a

b

c

d

e

f

g

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0.6 0.2 0 0 0.2 0 0

0 0 0 0 0 0.5 0.5
0 0 0.3 0.7 0 0 0

0 0.3 0.4 0.3 0 0 0

0 0 0 0 1 0 0

0 0.1 0 0 0 0 0.9
0 0.2 0 0 0 0.8 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

.

Identify the communication classes. Classify the states as recurrent or transient,

and determine the period of each state.

3.30 A graph is bipartite if the vertex set can be colored with two colors black and

white such that every edge in the graph joins a black vertex and a white vertex.

See Figure 3.7(a) for an example of a bipartite graph. Show that for simple

random walk on a connected graph, the walk is periodic if and only if the graph

is bipartite.

3.31 For the network graph in Figure 3.17, ind the PageRank for the nodes of the

network using a damping factor of p = 0.90. See Example 3.21.
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a

b

c d

Figure 3.17

3.32 Let X0,X1,… be an ergodic Markov chain with transition matrix P and station-

ary distribution �. Deine the bivariate process Zn = (Xn,Xn−1), for n ≥ 1, with

Z0 = (X0,X0).

(a) Give an intuitive explanation for why Z0,Z1,… is a Markov chain.

(b) Determine the transition probabilities in terms of P. That is, ind

P(Zn = (i, j)|Zn−1 = (s, t)).

(c) Find the limiting distribution.

3.33 Assume that P is a stochastic matrix. Show that if PN is positive, then PN+m is

positive for all m ≥ 0.

3.34 Let P be the transition matrix of an irreducible, but not necessarily ergodic,

Markov chain. For 0 < p < 1, let

P̃ = pP + (1 − p)I,

where I is the identity matrix. Show that P̃ is a stochastic matrix for an ergodic

Markov chain with the same stationary distribution as P. Give an intuitive

description for how the P̃ chain evolves compared to the P-chain.

3.35 LetQ be a k × k stochastic matrix. Let A be a k × kmatrix each of whose entries

is 1∕k. For 0 < p < 1, let

P = pQ + (1 − p)A.

Show that P is the transition matrix for an ergodic Markov chain.

3.36 Let X0,X1,… be an ergodic Markov chain on {1,… , k} with stationary distri-

bution �. Assume that the chain is in stationarity.

(a) Find Cov(Xm,Xm+n).

(b) Find lim
n→∞

Cov(Xm,Xm+n).

3.37 Show that all two-state Markov chains, except for the trivial chain whose tran-

sition matrix is the identity matrix, are time reversible.
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3.38 You throw ive dice and set aside those dice that are sixes. Throw the remaining

dice and again set aside the sixes. Continue until you get all sixes.

(a) Exhibit the transition matrix for the associated Markov chain, where Xn is

the number of sixes after n throws. See also Exercise 2.11.

(b) How many turns does it take, on average, before you get all sixes?

3.39 Show that if X0,X1,… is reversible, then for the chain in stationarity

P(X0 = i0,X1 = i1,… ,Xn = in) = P(Xn = i0,Xn−1 = i1,… ,X0 = in),

for all i0, i1,… , in.

3.40 Consider a biased random walk on the n-cycle, which moves one direction with

probability p and the other direction with probability 1 − p. Determine whether

the walk is time reversible.

3.41 Show that the Markov chain with transition matrix

a b c d

P =

a

b

c

d

⎛
⎜⎜⎜⎝

1∕6 1∕6 0 2∕3

1∕5 2∕5 2∕5 0

0 1∕3 1∕6 1∕2

4∕9 0 1∕3 2∕9

⎞
⎟⎟⎟⎠

is reversible. The chain can be described by a randomwalk on a weighted graph.

Exhibit the graph such that all the weights are integers.

3.42 Consider randomwalk on {0, 1, 2,…}with one relecting boundary. If the walk

is at 0, it moves to 1 on the next step. Otherwise, it moves left, with probability

p, or right, with probability 1 − p. For what values of p is the chain reversible?

For such p, ind the stationary distribution.

3.43 A Markov chain has transition matrix

P =

⎛
⎜⎜⎜⎝

1∕2 1∕4 0 1∕4

p 0 1 − p 0

0 1∕4 1∕2 1∕4

q 0 1 − q 0

⎞
⎟⎟⎟⎠
.

(a) For what values of p and q is the chain ergodic?

(b) For what values of p and q is the chain reversible?

3.44 Markov chains are used to model nucleotide substitutions and mutations in

DNA sequences. Kimura gives the following transition matrix for such a model.

a g c t

P =

a

g

c

t

⎛⎜⎜⎜⎝

1 − p − 2r p r r

p 1 − p − 2r r r

q q 1 − p − 2q p

q q p 1 − p − 2q

⎞⎟⎟⎟⎠
.
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Find a vector x that satisies the detailed-balance equations. Show that the chain

is reversible and ind the stationary distribution. Conirm your result for the case

p = 0.1, q = 0.2, and r = 0.3.

3.45 If P is the transition matrix of a reversible Markov chain, show that P2 is, too.

Conclude that Pn is the transition matrix of a reversible Markov chain for all

n ≥ 1.

3.46 Given a Markov chain with transition matrix P and stationary distribution �,

the time reversal is a Markov chain with transition matrix P̃ deined by

P̃ij =
�jPji

�i
, for all i, j.

(a) Show that a Markov chain with transition matrix P is reversible if and only

if P = P̃.

(b) Show that the time reversal Markov chain has the same stationary distribu-

tion as the original chain.

3.47 Consider a Markov chain with transition matrix

1 2 3

P =

1

2

3

⎛
⎜⎜⎝

1∕3 0 2∕3

1∕2 1∕2 0

1∕6 1∕3 1∕2

⎞
⎟⎟⎠
.

Find the transition matrix of the time reversal chain (see Exercise 3.46).

3.48 Consider a Markov chain with transition matrix

a b c

P =

a

b

c

⎛
⎜⎜⎝

1 − � � 0

0 1 − � �

� 0 1 − �

⎞
⎟⎟⎠
,

where 0 < �, �, � < 1. Find the transition matrix of the time reversal chain (see

Exercise 3.46).

3.49 Consider an absorbing chain with t transient and k − t absorbing states. For

transient state i and absorbing state j, let Bij denote the probability starting at

i that the chain is absorbed in j. Let B be the resulting t × (k − t) matrix. By

irst-step analysis show that B = (I − Q)−1R.

3.50 Consider the following method for shufling a deck of cards. Pick two cards

from the deck uniformly at random and then switch their positions. If the same

two cards are chosen, the deck does not change. This is called the random trans-

positions shufle.

(a) Argue that the chain is ergodic and the stationary distribution is uniform.
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(b) Exhibit the 6 × 6 transition matrix for a three-card deck.

(c) How many shufles does it take on average to reverse the original order of

the deck of cards?

3.51 Adeck of k cards is shufled by the top-to-randommethod: the top card is placed

in a uniformly random position in the deck. (After one shufle, the top card stays

where it is with probability 1∕k.) Assume that the top card of the deck is the

ace of hearts. Consider a Markov chain where Xn is the position of the ace of

hearts after n top-to-random shufles, with X0 = 1. The state space is {1,… , k}.
Assume that k = 6.

(a) Exhibit the transition matrix and ind the expected number of shufles for

the ace of hearts to return to the top of the deck.

(b) Find the expected number of shufles for the bottom card to reach the top

of the deck.

3.52 The board for a modiied Snakes and Ladder game is shown in Figure 3.18.

The game is played with a tetrahedron (four-faced) die.

(a) Find the expected length of the game.

(b) Assume that the player is on square 6. Find the probability that they will

ind themselves on square 3 before inishing the game.

3

9

456

21

87

Figure 3.18

3.53 When an NFL football game ends in a tie, under sudden-death overtime the two

teams play at most 15 extra minutes and the team that scores irst wins the game.

A Markov chain analysis of sudden-death is given in Jones (2004). Assuming

two teams A and B are evenly matched, a four-state absorbing Markov chain is

given with states PA: team A gains possession, PB: team B gains possession, A:

A wins, and B: B wins. The transition matrix is

PA PB A B

P =

PA

PB

A

B

⎛⎜⎜⎜⎝

0 1 − p p 0

1 − p 0 0 p

0 0 1 0

0 0 0 1

⎞⎟⎟⎟⎠
,
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where p is the probability that a team scores when it has the ball. Which team

irst receives the ball in overtime is decided by a coin lip.

(a) If team A receives the ball in overtime, ind the probability that A wins.

(b) An alternate overtime procedure is the irst-to-six rule, where the irst time

to score six points in overtime wins the game. Consider two evenly matched

teams. Let � be the probability that a team scores a touchdown (six points).

Let � be the probability that a team scores a ield goal (three points). Assume

for simplicity that touchdowns and ield goals are the only way points can

be scored. Develop a 10-state Markov chain model for overtime play.

(c) For the 2002 regular NFL season, there were 6,049 possessions, 1,270

touchdowns, and 737 ield goals. Using these data compare the probability

that A wins the game for each of the two overtime procedures.

3.54 A mouse is placed in the maze in Figure 3.19 starting in box A. A piece of

cheese is put in box I. From each room the mouse moves to an adjacent room

through an open door, choosing from the available doors with equal probability.

(a) How many rooms, on average, will the mouse visit before it inds the

cheese?

(b) How many times, on average, will the mouse visit room A before it inds

the cheese?

C

F

HG

ED

BA

I

Figure 3.19 Mouse in a maze.

3.55 In a sequence of fair coin lips, how many lips, on average, are required to irst

see the pattern H-H-T-H?

3.56 A biased coin has heads probability 1/3 and tails probability 2/3. If the coin is

tossed repeatedly, ind the expected number of lips required until the pattern

H-T-T-H-H appears.

3.57 In repeated coin lips, consider the set of all three-element patterns:

{HHH, HHT, HTH, HTT, THH, THT, TTH, TTT}.
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Which patterns take the longest time, on average, to appear in repeated sam-

pling? Which take the shortest?

3.58 A sequence of 0s and 1s is generated by a Markov chain with transition matrix

0 1

P =
0

1

(
1∕4 3∕4

3∕4 1∕4

)
.

The irst element of the sequence is decided by a fair coin lip. On average, how

many steps are required for the pattern 0-0-1-1 to irst appear?

3.59 Consider random walk on the weighted graph in Figure 3.20.

(a) If the walk starts in a, ind the expected number of steps to return to a.

(b) If the walk starts in a, ind the expected number of steps to irst hit b.

(c) If the walk starts in a, ind the probability that the walk hits b

before c.

a b

cd

1
1

2

3

1
2

4

1

Figure 3.20

3.60 For a Markov chain started in state i, let T denote the ifth time the chain visits

state i. Is T a stopping time? Explain.

3.61 Consider the weather Markov chain X0,X1,… of Example 2.3. Let T be the irst

time that it rains for 40 days in a row. Is XT ,XT+1,XT+2,… a Markov chain?

Explain.

3.62 Let S be a random variable that is constant, with probability 1, where that con-

stant is some positive integer. Show that S is a stopping time. Conclude that the

Markov property follows from the strong Markov property.

3.63 R : Hourly wind speeds in a northwestern region of Turkey are modeled by a

Markov chain in Sahin and Sen (2001). Seven wind speed levels are the states
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of the chain. The transition matrix is

1 2 3 4 5 6 7

P =

1

2

3

4

5

6

7

⎛⎜⎜⎜⎜⎜⎜⎜⎝

0.756 0.113 0.129 0.002 0 0 0

0.174 0.821 0.004 0.001 0 0 0

0.141 0.001 0.776 0.082 0 0 0

0.003 0 0.192 0.753 0.052 0 0

0 0 0.002 0.227 0.735 0.036 0

0 0 0 0.007 0.367 0.604 0.022
0 0 0 0 0.053 0.158 0.789

⎞⎟⎟⎟⎟⎟⎟⎟⎠

.

(a) Find the limiting distribution by (i) taking high matrix powers, and (ii)

using the stationary command in the utilities.R ile. How often does

the highest wind speed occur? How often does the lowest speed occur?

(b) Simulate the chain for 100,000 steps and estimate the proportion of times

that the chain visits each state.

3.64 R: The evolution of forest ecosystems in the United States and Canada is studied

in Strigul et al. (2012) using Markov chains. Five-year changes in the state of

the forest soil are modeled with a 12-state Markov chain. The transition matrix

can be found in the R script ile forest.R. About how many years does it take

for the ecosystem to move from state 1 to state 12?

3.65 R: Simulate the gambler’s ruin problem for a gambler who starts with $15 and

quits when he reaches $50 or goes bust. Use your code to simulate the proba-

bility of eventual ruin and compare to the exact probability.

3.66 R: Simulate the expected hitting time for the random walk on the hexagon in

Exercise 3.19.

3.67 R: Simulate the dice game of Exercise 3.38. Verify numerically the theoretical

expectation for the number of throws needed to get all sixes.

3.68 R : Write a function reversal(mat), whose input is the transition matrix

of an irreducible Markov chain and whose output is the transition matrix of the

reversal chain.

3.69 R : Make up your own board game which can be modeled as a Markov chain.

Ask interesting questions and answer them by simulation and/or an exact

analysis.
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BRANCHING PROCESSES

Every moment dies a man, every moment one is born.

—Alfred Tennyson, The Vision of Sin

Every moment dies a man, every moment one and one-sixteenth is born.

—Mathematician Charles Babbage in a letter to Alfred Tennyson

suggesting a change “in your otherwise beautiful poem.”

4.1 INTRODUCTION

Branching processes are a class of stochastic processes that model the growth of pop-

ulations. They are widely used in biology and epidemiology to study the spread of

infectious diseases and epidemics. Applications include nuclear chain reactions and

the spread of computer software viruses. Their original motivation was to study the

extinction of family surnames, an issue of concern to the Victorian aristocracy in 19th

century Britain.

In 1873, the British statistician Sir Francois Galton posed the following question

in the Educational Times.

Problem 4001: A large nation, of whomwewill only concern ourselves with adult males,

N in number, and who each bear separate surnames colonize a district. Their law of

population is such that, in each generation, a0 percent of the adult males have no male

children who reach adult life; a1 have one such male child; a2 have two; and so on up to
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a5 who have ive. Find (1) what proportion of their surnames will have become extinct

after r generations; and (2) how many instances there will be of the surname being held

by m persons.

The Reverend HenryWilliamWatson replied with a solution. The study of branch-

ing processes grew out of Watson and Galton’s collaboration. Their results were

independently discovered by the French statistician Irénée-Jules Bienaymé. The basic

branching process model is sometimes called a Bienaymé–Galton–Watson process.

We use the imagery of populations, generations, children, and offspring. Assume

that we have a population of individuals, each of which independently produces a ran-

dom number of children according to a probability distribution a = (a0, a1, a2,…).

That is, an individual gives birth to k children with probability ak, for k ≥ 0, indepen-

dent of other individuals. Call a the offspring distribution.

The population grows or declines from generation to generation. Let Zn be the size

(e.g., number of individuals) of the nth generation, for n ≥ 0. Assume Z0 = 1. That

is, the population starts with one individual. The sequence Z0,Z1,… is a branching

process. See Figure 4.1 for a realization of such a process through three generations.

Z0 = 1

Z1 = 2

Z2 = 5

Z3 = 6

Figure 4.1 Branching process.

A branching process is a Markov chain since the size of a generation only depends

on the size of the previous generation and the number of their offspring. If Zn is given,

then the size of the next generation Zn+1 is independent of Z0, … ,Zn−1.
Assume 0 < a0 < 1. If a0 = 0, then the population only grows and 0 is not in

the state space. If a0 = 1, then Zn = 0, for all n ≥ 1. We also assume that there is

positive probability that an individual gives birth to more than one offspring, that is,

a0 + a1 < 1.

Galton’s irst question, “What proportion of their surnames will have become

extinct after r generations?” leads one to examine the recurrence and transience prop-

erties of the Markov chain.

It should be clear that 0 is an absorbing state. If a generation has no individuals,

there will be no offspring. Under the initial assumptions, all other states of a branching

process are transient.

Lemma 4.1. In a branching process, all nonzero states are transient.
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Proof. If Zn = 0, say the process has become extinct by generation n. Consider the

probability that a population of size i > 0 goes extinct in one generation, that is,

P(Zn+1 = 0|Zn = i). If a generation has i individuals and the next generation has none,

then each individual produced zero offspring, which occurs with probability (a0)
i, by

independence.

To show i is transient, we need to show that fi, the probability of eventually hitting i

for the chain started in i, is less than one. If the chain starts with i individuals, then the

event that the chain eventually hits i is {Zn = i for some n ≥ 1} ⊆ {Z1 > 0}. Hence,

fi = P(Zn = i for some n ≥ 1|Z0 = i)

≤ P(Z1 > 0|Z0 = i)

= 1 − P(Z1 = 0|Z0 = i)

= 1 − (a0)
i < 1,

since a0 > 0. ◾

Since all nonzero states are transient and the chain has ininite state space, there are

two possibilities for the long-term evolution of the process: either it gets absorbed in

state 0, that is, the population eventually goes extinct, or the population grows without

bound.

4.2 MEAN GENERATION SIZE

In a branching process, the size of the nth generation is the sum of the total offspring

of the individuals of the previous generation. That is,

Zn =

Zn−1∑
i=1

Xi, (4.1)

where Xi denotes the number of children born to the ith person in the (n − 1)th gener-

ation. Because of the independence assumption, X1,X2, … is an i.i.d. sequence with

common distribution a. Furthermore, Zn−1 is independent of the Xi.

Equation (4.1) represents Zn as a random sum of i.i.d. random variables. Results

for such random sums can be applied to ind the moments of Zn.

Let � =
∑∞

k=0 kak be the mean of the offspring distribution. To ind the mean of the

size of the nth generation E(Zn), condition on Zn−1. By the law of total expectation,

E(Zn) =

∞∑
k=0

E(Zn|Zn−1 = k)P(Zn−1 = k)

=

∞∑
k=0

E

(
Zn−1∑
i=1

Xi

||||||
Zn−1 = k

)
P(Zn−1 = k)



MEAN GENERATION SIZE 161

=

∞∑
k=0

E

(
k∑
i=1

Xi

||||||
Zn−1 = k

)
P(Zn−1 = k)

=

∞∑
k=0

E

(
k∑
i=1

Xi

)
P(Zn−1 = k)

=

∞∑
k=0

k�P(Zn−1 = k) = �E(Zn−1),

where the fourth equality is because the Xi are independent of Zn−1. Iterating the

resulting recurrence relation gives

E(Zn) = �E(Zn−1) = �2E(Zn−2) = · · · = �nE(Z0) = �n, for n ≥ 0,

since Z0 = 1.

Three Cases

For the long-term expected generation size,

lim
n→∞

E(Zn) = lim
n→∞

�n =

⎧
⎪⎨⎪⎩

0, if � < 1,

1, if � = 1,

∞, if � > 1.

A branching process is said to be subcritical if � < 1, critical if � = 1, and

supercritical if � > 1. For a subcritical branching process, mean generation size

declines exponentially to zero. For a supercritical process, mean generation size

exhibits long-term exponential growth. The limits suggest three possible regimes

depending on �: long-term extinction, stability, and boundless growth. However,

behavior of the mean generation size does not tell the whole story.

Insight into the evolution of a branching process is gained by simulation. We

simulated 10 generations Z0, … ,Z10 of a branching process with Poisson offspring

distribution, choosing three values for the Poisson mean parameter corresponding to

three types of branching process: � = 0.75 (subcritical), � = 1 (critical), and � = 1.5

(supercritical). Each process was simulated ive times. See the R script ile branch-

ing.R. Results are shown in Table 4.1.

For � = 0.75, all simulated paths result in eventual extinction. Furthermore, the

extinction occurs fairly rapidly.

When � = 1, all but one of the simulations in Table 4.1 become extinct by the 10th

generation.
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TABLE 4.1 Simulations of a Branching Process for Three Choices of �

� Z� Z� Z� Z� Z� Z� Z� Z� Z� Z� Z��

0.75 1 2 3 3 2 1 1 0 0 0 0

0.75 1 0 0 0 0 0 0 0 0 0 0

0.75 1 2 0 0 0 0 0 0 0 0 0

0.75 1 0 0 0 0 0 0 0 0 0 0

0.75 1 3 3 1 3 1 0 0 0 0 0

1 1 1 1 0 0 0 0 0 0 0 0

1 1 2 0 0 0 0 0 0 0 0 0

1 3 6 6 5 6 7 8 8 8 6 5

1 1 3 4 1 2 1 0 0 0 0 0

1 1 2 1 1 2 1 2 1 0 0 0

1.5 1 2 3 10 22 41 93 173 375 763 1,597

1.5 1 1 1 1 2 4 7 9 11 19 29

1.5 1 4 5 18 34 68 127 246 521 1,011 2,065

1.5 1 1 2 0 0 0 0 0 0 0 0

1.5 1 2 5 3 2 6 9 17 18 13 19

Indeed, for a general branching process, in the subcritical and critical cases

(� ≤ 1), the population becomes extinct with probability 1.

In the supercritical case � = 1.5, most simulations in Table 4.1 seem to grow with-

out bound. However, one realization goes extinct. We will see that in the general

supercritical case, the probability that the population eventually dies out is less than

one, but typically greater than zero.

Extinction in the Subcritical Case

Assume that Z0,Z1, … is a subcritical branching process. Let En = {Zn = 0} be the

event that the population is extinct by generation n, for n ≥ 1. Let E be the event that

the population is ultimately extinct. Then,

E = {Zn = 0, for some n ≥ 1} =

∞⋃
n=1

En,

and E1 ⊆ E2 ⊆ · · ·. It follows that the probability that the population eventually goes

extinct is

P(E) = P

(
∞⋃
n=1

En

)
= lim

n→∞
P(En) = lim

n→∞
P(Zn = 0). (4.2)
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The probability that the population is extinct by generation n is

P(Zn = 0) = 1 − P(Zn ≥ 1)

= 1 −

∞∑
k=1

P(Zn = k)

≥ 1 −

∞∑
k=1

kP(Zn = k)

= 1 − E(Zn) = 1 − �n.

Taking limits gives

P(E) = lim
n→∞

P(Zn = 0) ≥ lim
n→∞

1 − �n = 1,

since� < 1. Thus,P(E) = 1.With probability 1, a subcritical branching process even-

tually goes extinct.

Example 4.1 Subcritical branching processes have been used tomodel the spread of

infections and disease in highly vaccinated populations. Farrington and Grant (1999)

cite several examples, including the spread of measles and mumps, the outbreak of

typhoidal salmonellae reported in Scotland in 1967–1990, and outbreaks of human

monkeypox virus in past decades. Becker (1974) inds evidence of subcriticality in

European smallpox data from 1950 to 1970.

Often the goal of these studies is to use data on observed outbreaks to estimate the

unknown mean offspring parameter � as well as the number of generations of spread

until extinction. ◾

Variance of Generation Size

To explore the process of extinction in the critical and supercritical cases (� ≥ 1), we

irst consider the variance of the size of the nth generation Var(Zn). Let �
2 denote the

variance of the offspring distribution. By the law of total variance,

Var(Zn) = Var(E(Zn|Zn−1)) + E(Var(Zn|Zn−1)).
We have shown that

E(Zn|Zn−1 = k) = E

(
k∑
i=1

Xi

)
=

k∑
i=1

E(Xi) = �k,

which gives E(Zn|Zn−1) = �Zn−1. Similarly, Var(Zn|Zn−1) = �2Zn−1, since

Var(Zn|Zn−1 = k) = Var

(
k∑
i=1

Xi

)
=

k∑
i=1

Var(Xi) = �2k,
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using the independence of the Xi. Applying the law of total variance,

Var(Zn) = Var(�Zn−1) + E(�2Zn−1)

= �2Var(Zn−1) + �2�n−1, for n ≥ 1. (4.3)

With Var(Z0) = 0, Equation (4.3) yields

Var(Z1) = �2Var(Z0) + �2 = �2,

Var(Z2) = �2Var(Z1) + �2� = �2�(1 + �), and

Var(Z3) = �2Var(Z2) + �2�2 = �2�2(1 + � + �2).

The general pattern, proved by induction on n, gives

Var(Zn) = �2�n−1
n−1∑
k=0

�k =

{
n�2, if � = 1,

�2�n−1(�n − 1)∕(� − 1), if � ≠ 1.

In the subcritical case, both the mean and variance of generation size tend to 0.

In the critical case, the mean size of every generation is one, but the variance is a

linearly growing function of n.

In the supercritical case, the variance grows exponentially large. The potentially

large difference between the mean �n and variance suggests that in some cases both

extinction and boundless growth are possible outcomes.

To explore the issue more carefully, we will ind the probability of ultimate extinc-

tion when � ≥ 1. First, however, new tools are needed.

4.3 PROBABILITY GENERATING FUNCTIONS

For a discrete random variable X taking values in {0, 1,…}, the probability

generating function of X is the function

G(s) = E
(
sX
)
=

∞∑
k=0

skP(X = k)

= P(X = 0) + sP(X = 1) + s2P(X = 2) + · · ·

The function is a power series whose coeficients are probabilities. Observe that

G(1) = 1. The series converges absolutely for |s| ≤ 1. To emphasize the underlying

random variable X, we may write G(s) = GX(s).

The generating function represents the distribution of a discrete random variable

as a power series. If two power series are equal, then they have the same coeficients.

Hence, if two discrete random variables X and Y have the same probability generating

function, that is, GX(s) = GY (s) for all s, then X and Y have the same distribution.
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Example 4.2 Let X be uniformly distributed on {0, 1, 2}. Find the probability

generating function of X.

Solution

G(s) = E
(
sX
)
=

1

3
+ s

(
1

3

)
+ s2

(
1

3

)
=

1

3
(1 + s + s2).

◾

Example 4.3 Assume that X has a geometric distribution with parameter p. Find

the probability generating function of X.

Solution

G(s) = E
(
sX
)
=

∞∑
k=1

skp(1 − p)k−1 = sp

∞∑
k=1

(s(1 − p))k−1 =
sp

1 − s(1 − p)
,

for |s| < 1. ◾

Probabilities for X can be obtained from the generating function by successive

differentiation. We have that

G(0) = P(X = 0),

G′(0) =

∞∑
k=1

ksk−1P(X = k)
|||||s=0

= P(X = 1),

G′′(0) =

∞∑
k=2

k(k − 1)sk−2P(X = k)
|||||s=0

= 2P(X = 2),

and so on. In general,

G(j)(0) =

∞∑
k=j

k(k − 1) · · · (k − j + 1)sk−jP(X = j)

||||||s=0
= j!P(X = j),

and thus

P(X = j) =
G(j)(0)

j!
, for j = 0, 1,… ,

where G(j) denotes the jth derivative of G.

Example 4.4 A random variable X has probability generating function

G(s) = (1 − p + sp)n.

Find the distribution of X.
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Solution We have P(X = 0) = G(0) = (1 − p)n. For 1 ≤ j ≤ n, the jth derivative of

G is

G( j)(s) = n(n − 1) · · · (n − j + 1)pj(1 − p + sp)n−j,

which gives

P(X = j) =
G( j)(0)

j!

=
n(n − 1) · · · (n − j + 1)

j!
pj(1 − p)n−j

=

(
n

j

)
pj(1 − p)n−j.

For j > n, G(j)(0) = 0, and thus P(X = j) = 0. We see that X has a binomial distribu-

tion with parameters n and p. ◾

Sums of Independent Random Variables

Generating functions are useful tools for working with sums of independent random

variables. Assume that X1,… ,Xn are independent. Let Z = X1 + · · · + Xn. The prob-

ability generating function of Z is

GZ(s) = E
(
sZ
)
= E

(
sX1+···+Xn

)

= E

(
n∏
k=1

sXk

)
=

n∏
k=1

E
(
sXk

)

= GX1
(s) · · ·GXn

(s),

where the fourth equality is by independence. The generating function of an inde-

pendent sum is the product of the individual generating functions. If the Xi are also

identically distributed, then

GZ(s) = GX1
(s) · · ·GXn

(s) = [GX(s)]
n,

where X is a random variable with the same distribution as the Xi.

Example 4.5 In Example 4.4, it is shown that the generating function of a binomial

random variable with parameters n and p is G(s) = (1 − p + ps)n. Here is a deriva-

tion using the fact that a sum of i.i.d. Bernoulli random variables has a binomial

distribution.
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Solution Let X1, … ,Xn be an i.i.d. sequence of Bernoulli random variables with

parameter p. The common generating function of the Xi is

G(s) = E
(
sXi

)
= s0P(Xi = 0) + s1P(Xi = 1) = (1 − p) + sp.

The sum Z = X1 + · · · + Xn has a binomial distribution with parameters n and p. The

probability generating function of Z is thus

GZ(s) = [G(s)]n = (1 − p + ps)n.
◾

Moments

The probability generating function of X can be used to ind the mean, variance, and

higher moments of X. Observe that

G′(1) = E
(
XsX−1

)|||s=1 = E(X).

Also,

G′′(1) = E
(
X(X − 1)sX−2

)|||s=1 = E(X(X − 1)) = E
(
X2

)
− E(X),

which gives

Var(X) = E
(
X2

)
− E(X)2 =

(
E
(
X2

)
− E(X)

)
+ E(X) − E(X)2

= G′′(1) + G′(1) − G′(1)2.

Example 4.6 For a geometric random variable with parameter p, the generating

function is

G(s) =
sp

1 − s(1 − p)
,

as shown in Example 4.3. Use the generating function to ind the mean and variance

of the geometric distribution.

Solution For the mean,

G′(s) =
p

(1 − s(1 − p))2
,

which gives E(X) = G′(1) = 1∕p. For the variance,

G′′(s) =
2p(1 − p)

(1 − s(1 − p))3
, and G′′(1) =

2(1 − p)p

p2
.

This gives

Var(X) = G′′(1) + G′(1) − G′(1)2 =
2(1 − p)p

p2
+

1

p
−

1

p2
=

1 − p

p2
.

We summarize some key properties of probability generating functions. ◾
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Properties of Probability Generating Function

1. LetG(s) = E
(
sX
)
be the probability generating function of a discrete random

variable X. Then,

(a) G(1) = 1,

(b) P(X = k) = G(k)(0)∕k!, for k ≥ 0,

(c) E(X) = G′(1),

(d) Var(X) = G′′(1) + G′(1) − G′(1)2.

2. If X and Y are random variables such that GX(s) = GY (s) for all s, then X and

Y have the same distribution.

3. If X and Y are independent, then GX+Y (s) = GX(s)GY (s).

4.4 EXTINCTION IS FOREVER

Probability generating functions are especially useful for analyzing branching pro-

cesses. We use them to ind the probability that a branching process eventually goes

extinct.

For n ≥ 0, let

Gn(s) =

∞∑
k=0

skP(Zn = k)

be the generating function of the nth generation size Zn. Let

G(s) =

∞∑
k=0

skak

be the generating function of the offspring distribution. We have

Gn(s) = E
(
sZn

)
= E

(
s
∑Zn−1
k=1

Xk

)
= E

(
E

(
s
∑Zn−1
k=1

Xk |Zn−1
))

,

where the last equality is by the law of total expectation. From the independence of

Zn−1 and the Xk,

E

(
s
∑Zn−1
k=1

Xk
|||| Zn−1 = z

)
= E

(
s
∑z
k=1

Xk ||| Zn−1 = z
)

= E
(
s
∑z
k=1

Xk

)
= E

(
z∏

k=1

sXk

)

=

z∏
k=1

E
(
sXk

)
= [G(s)]z,
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for all z. This gives

E

(
s
∑Zn−1
k=1

Xk |Zn−1
)

= [G(s)]Zn−1 .

Taking expectations,

Gn(s) = E
(
G(s)Zn−1

)
= Gn−1(G(s)), for n ≥ 1.

The probability generating function of Zn is the composition of the generating func-

tion of Zn−1 and the generating function of the offspring distribution.

Observe that G0(s) = s, and G1(s) = G0(G(s)) = G(s). From the latter we see that

the distribution of Z1 is the offspring distribution a.

Continuing,

G2(s) = G1(G(s)) = G(G(s)) = G(G1(s)),

and

G3(s) = G2(G(s)) = G(G(G(s))) = G(G2(s)).

In general,

Gn(s) = Gn−1(G(s)) = G(· · ·G(G(s)) · · · )
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

n-fold

= G(Gn−1(s)). (4.4)

The generating function of Zn is the n-fold composition of the offspring distribution

generating function.

Equation (4.4) is typically not useful for computing the actual distribution of Zn.

For an arbitrary offspring distribution, the distribution of Zn will be complicated with

no tractable closed-form expression. However, the equation is central to the proof of

the following theorem, which characterizes the extinction probability for a branching

process.

Extinction Probability

Theorem 4.2. Given a branching process, let G be the probability generating

function of the offspring distribution. Then, the probability of eventual extinction

is the smallest positive root of the equation s = G(s).

If � ≤ 1, that is, in the subcritical and critical cases, the extinction probability

is equal to 1.

Remark: We have already shown that in the subcritical � < 1 case, the population

goes extinct with probability 1. The theorem gives that this is also true for � = 1,

even though for each generation the expected generation size is E(Zn) = �n = 1.

For the supercritical case� > 1, the expected generation sizeZn growswithout bound.



170 BRANCHING PROCESSES

However, the theorem gives that even in this case there is positive probability of even-

tual extinction.

Before proving Theorem 4.2, we offer some examples of its use. Let e denote the

probability of eventual extinction.

Example 4.7 Find the extinction probability for a branching process with offspring

distribution a = (1∕6, 1∕2, 1∕3).

Solution The mean of the offspring distribution is

� = 0(1∕6) + 1(1∕2) + 2(1∕3) = 7∕6 > 1,

so this is the supercritical case. The offspring generating function is

G(s) =
1

6
+
s

2
+
s2

3
.

Solving

s = G(s) =
1

6
+
s

2
+
s2

3

gives the quadratic equation s2∕3 − s∕2 + 1∕6 = 0, with roots s = 1 and s = 1∕2. The

smallest positive root is the probability of eventual extinction e = 1∕2.
◾

Example 4.8 A branching process has offspring distribution

ak = (1 − p)kp, for k = 0, 1,…

Find the extinction probability in the supercritical case.

Solution The offspring distribution is a variant of the geometric distribution. The

generating function is

G(s) =

∞∑
k=0

sk(1 − p)kp = p

∞∑
k=0

(s(1 − p))k =
p

1 − s(1 − p)
, for |s(1 − p)| < 1.

The mean of the offspring distribution is

� = G′(1) =
p(1 − p)

(1 − s(1 − p))2

||||s=1
=

1 − p

p
.

The supercritical case � > 1 corresponds to p < 1∕2.

To ind the extinction probability, solve

s = G(s) =
p

1 − s(1 − p)
,
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which gives the quadratic equation

(1 − p)s2 − s + p = 0,

with roots

s =
1 ±

√
1 − (4(1 − p)p

2(1 − p)
=

1 ± (1 − 2p)

2(1 − p)
.

The roots are 1 and p∕(1 − p). For 0 < p < 1∕2, the smaller root is p∕(1 − p) = 1∕�,

that is, e = 1∕�. ◾

We explore the extinction probability result in Example 4.8 with the use of sim-

ulation. Let p = 1∕4. We simulated a branching process with offspring distribution

ak = (3∕4)k(1∕4), for k ≥ 0. The process is supercritical with � = 3. Results are col-

lected in Table 4.2. Four of the 12 runs went extinct by time n = 10. The exact

extinction probability is e = 1∕3. (The fact that 4 out of 12 is exactly 1∕3 is, we

assure the reader, pure coincidence.)

R: Simulating the Extinction Probability

The branching process is simulated 10,000 times, keeping track of the number of

times the process goes extinct by the 10th generation. See the ile branching.R.

> branch(10,1/4)
1 4 6 16 71 205 569 1559 4588 13726 40800

> trials <- 10000
> simlist <- replicate(trials,branch(10,1/4)[11])
# Estimate of extinction probability
> sum(simlist==0)/trials
[1] 0.332

The function branch(n,p) simulates n steps of a branching process whose

offspring distribution is geometric with parameter p. The replicate com-

mand repeats the simulation 10,000 times, storing the outcome of Z10 for each

trial in the vector simlist. The proportion of 0s in simlist estimates the

extinction probability e.

Our conclusions are slightly biased since we assume that if extinction takes

place it will occur by time n = 10. Of course, extinction could occur later. How-

ever, it appears from the simulations that if extinction occurs it happens very

rapidly.
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TABLE 4.2 Simulation of a Supercritical Branching Process, with � = 3. Four of the

12 runs go extinct by the 10th generation.

Z0 Z1 Z2 Z3 Z4 Z5 Z6 Z7 Z8 Z9 Z10

1 4 25 97 394 1160 3475 10685 31885 95757 287130

1 1 1 3 7 11 47 165 515 1525 4689

1 10 37 115 350 1124 3455 10073 29896 88863 267386

1 1 1 2 2 3 0 0 0 0 0

1 0 0 0 0 0 0 0 0 0 0

1 8 31 71 248 779 2282 6864 19895 59196 178171

1 0 0 0 0 0 0 0 0 0 0

1 4 7 13 34 106 380 1123 3385 10200 30090

1 16 49 163 447 1284 3794 11592 34626 104390 312704

1 1 1 5 16 51 155 559 1730 5378 15647

1 1 3 31 79 267 883 2637 8043 23970 71841

1 0 0 0 0 0 0 0 0 0 0

Example 4.9 (Lotka’s estimate of the extinction probability) One of the earliest

applications of branching processes is contained in the work of Alfred Lotka, consid-

ered the father of demographic analysis, who estimated the probability that amale line

of descent would ultimately become extinct. Based on the 1920 census data, Lotka

itted the distribution of male offspring to a zero-adjusted geometric distribution of

the form

a0 = 0.48235 and ak = (0.2126)(0.5893)k−1, for k ≥ 1.

The generating function of the offspring distribution is

G(s) = 0.48235 + 0.2126

∞∑
k=1

(0.5893)k−1sk = 0.48235 +
(0.2126)s

1 − (0.5893)s
.

Lotka found the extinction probability as the numerical solution to G(s) = s, giving

the value e = 0.819.
The mean of the male offspring distribution is � = 1.26. It is interesting that

despite a mean number of children (sons and daughters) per individual of about 2.5,

the probability of extinction of family surnames is over 80% See Lotka (1931) and

Hull (2001). ◾

Example 4.10 A worm is a self-replicating computer virus, which exploits com-

puter network security vulnerabilities to spread itself. The Love Letter was a famous

worm, which attacked tens of millions of Windows computers in 2000. It was spread

as an attachment to an email message with the subject line ILOVEYOU. When

users clicked on the attachment the worm automatically downloaded onto their

machines.
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Sellke et al. (2008) modeled the spread of computer worms as a branching process.

The worms they analyzed are spread by randomly scanning from the 232 current IP

addresses to ind a vulnerable host. Let V denote the total number of vulnerable hosts.

Then, p = V∕232 is the probability of inding a vulnerable host in one scan. If a worm

scans at most M hosts, then infected hosts represent the individuals of a branching

process whose offspring distribution is binomial with parametersM and p. Since the

mean of the offspring distribution is Mp, it follows that the spread of the worm will

eventually die out, with probability 1, if Mp ≤ 1, or M ≤ 1∕p.

Typically, M is large and p is small and thus the offspring binomial distribution

is well approximated by a Poisson distribution with parameter � = Mp. The total

number of infected hosts T before the worm eventually dies out is the total progeny

of the branching process. See Exercises 4.24 and 4.25, where the mean and variance

of the total progeny of a branching process are derived. If the worm starts out with I

infected hosts then the mean and variance of the total number of infected hosts before

the virus dies out is

E(T) =
I

1 − �
and Var(T) =

I

(1 − �)3
.

◾

Proof of Extinction Probability Theorem 4.2

Proof. Let en = P(Zn = 0) denote the probability that the population goes extinct by

generation n. We have

en = P(Zn = 0) = Gn(0) = G(Gn−1(0))

= G(P(Zn−1 = 0)) = G(en−1), (4.5)

for n ≥ 1. From Equation (4.2), en → e, as n→ ∞. Taking limits on both sides of

Equation (4.5), as n→ ∞, and using the fact that the probability generating function

is continuous, gives e = G(e). Thus, e is a root of the equation s = G(s).

Let x be a positive solution of s = G(s). We need to show that e ≤ x. Since

G(s) =
∑

ks
kP(X = k) is an increasing function on (0, 1], and 0 < x,

e1 = P(Z1 = 0) = G1(0) = G(0) ≤ G(x) = x.

By induction, assuming ek ≤ x, for all k < n,

en = P(Zn = 0) = Gn(0) = G(Gn−1(0)) = G(en−1) ≤ G(x) = x.

Taking limits as n→ ∞, gives e ≤ x. This proves the irst part of the theorem.

The remainder of the theorem is essentially revealed by Figure 4.2. Consider the

intersection of the graph of y = G(s)with the line y = s on the interval [0, 1]. Observe
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Figure 4.2 Graph of G(s).

thatG(0) = a0 andG(1) = 1. Furthermore, the continuous and differentiable function

G is convex (concave up) as

G′′(s) =

∞∑
k=2

k(k − 1)sk−2P(X = k) > 0.

It follows that the graph of y = G(s) can intersect the line y = s at either one or two

points.

What distinguishes the two cases is the derivative of G(s) at s = 1. Recall that

G′(1) = �.

(i) If � = G′(1) ≤ 1, we are in the setting of Figure 4.2(b). Since

G′(s) =

∞∑
k=1

ksk−1P(X = k) > 0

is a strictly increasing function of s, we have G′(s) < G′(1) = 1, for

0 < s < 1. Let h(s) = s − G(s). Then, h′(s) = 1 − G′(s) > 0, for 0 < s < 1.

Since h is increasing and h(1) = 0, it follows that h(s) < 0, for 0 < s < 1. That

is, s < G(s). Hence, the graph of G(s) lies above the line y = s, for 0 < s < 1,

and s = 1 is the only point of intersection. Hence, the extinction probability is

e = 1.

(ii) If � = G′(1) > 1, we are in the setting of Figure 4.2(b). Here,

h(0) = 0 − G(0) = −a0 < 0.

Also, h′(1) = 1 − G′(1) = 1 − � < 0, thus h(s) is decreasing at s = 1. Since

h(1) = 0, there is some 0 < t < 1 such that h(t) > 0. It follows that there is a

number e between 0 and 1 such that h(e) = 0. That is, e = G(e). This is the

desired extinction probability. ◾



EXERCISES 175

EXERCISES

4.1 Consider a branching process with offspring distribution a = (a, b, c), where
a + b + c = 1. Let P be the Markov transition matrix. Exhibit the irst three

rows of P. That is, ind Pij for i = 0, 1, 2 and j = 0, 1, …

4.2 Find the probability generating function of a Poisson random variable with

parameter �. Use the pgf to ind the mean and variance of the Poisson

distribution.

4.3 Let X ∼ Poisson(�) and Y ∼ Poisson(�). Assume that X and Y are independent.

Use probability generating functions to ind the distribution of X + Y .

4.4 If X is a negative binomial distribution with parameters r and p, then X can be

written as the sum of r i.i.d. geometric random variables with parameter p. Use

this fact to ind the pgf of X. Then, use the pgf to ind the mean and variance of

the negative binomial distribution.

4.5 The kth factorial moment of a random variable X is

E(X(X − 1) · · · (X − k + 1)) = E

(
X!

(X − k)!

)
, for k ≥ 0.

(a) Given the probability generating function G of X, show how to ind the kth

factorial moment of X.

(b) Find the kth factorial moment of a binomial random variable with parame-

ters n and p.

4.6 LetX1,X2, … be a sequence of i.i.d. Bernoulli random variables with parameter

p. Let N be a Poisson random variable with parameter �, which is independent

of the Xi.

(a) Find the probability generating function of Z =
∑N

i=1 Xi.

(b) Use (a) to identify the probability distribution of Z.

4.7 Give the probability generating function for an offspring distribution in which

an individual either dies, with probability 1 − p, or gives birth to three children,

with probability p, Also ind the mean and variance of the number of children

in the fourth generation.

4.8 If X is a discrete random variable with generating function G. Show that

P(X is even) =
1 + G(−1)

2
.

4.9 Let Z0,Z1, … be a branching process whose offspring distribution mean is �.

Let Yn = Zn∕�
n, for n ≠ 0. Show that E(Yn+1|Yn) = Yn.

4.10 Show by induction that for � ≠ 1,

Var(Zn) = �2�n−1
�n − 1

� − 1
.



176 BRANCHING PROCESSES

4.11 Use the generating function representation of Zn in Equation (4.4) to ind E(Zn).

4.12 A branching process has offspring distribution a = (1∕4, 1∕4, 1∕2). Find the

following:

(a) �.

(b) G(s).

(c) The extinction probability.

(d) G2(s).

(e) P(Z2 = 0).

4.13 Use numerical methods to ind the extinction probability for a branching process

with Poisson offspring distribution with parameter � = 1.5.

4.14 A branching process has offspring distribution with a0 = p, a1 = 1 − p − q, and

a2 = q. For what values of p and q is the process supercritical? In the supercrit-

ical case, ind the extinction probability.

4.15 Assume that the offspring distribution is uniform on {0, 1, 2, 3, 4}. Find the

extinction probability.

4.16 Consider a branching process where Z0 = k. That is, the process starts with k

individuals. LetG(s) be the probability generating function of the offspring dis-

tribution. LetGn(s) be the probability generating function of Zn for n = 0, 1, …

(a) Find the probability generating function G1(s) in terms of G(s).

(b) True or False: Gn+1(s) = Gn(G(s)), for n = 1, 2, …

(c) True or False: Gn+1(s) = G(Gn(s)), for n = 1, 2, …

4.17 For 0 < p < 1, let a = (1 − p, 0, p) be the offspring distribution of a branching

process. Each individual in the population can have either two or no offspring.

Assume that the process starts with two individuals.

(a) Find the extinction probability.

(b) Write down the general term Pij for the Markov transition matrix of the

branching process.

4.18 Consider a branching process with offspring distribution

a =
(
p2, 2p(1 − p), (1 − p)2

)
, for 0 < p < 1.

The offspring distribution is binomial with parameters 2 and 1 − p. Find the

extinction probability.

4.19 Let T = min{n ∶ Zn = 0} be the time of extinction for a branching process.

Show that P(T = n) = Gn(0) − Gn−1(0), for n ≥ 1.

4.20 Consider the offspring distribution deined by ak = (1∕2)k+1, for k ≥ 0.

(a) Find the extinction probability.

(b) Show by induction that

Gn(s) =
n − (n − 1)s

n + 1 − ns
.

(c) See Exercise 4.19. Find the distribution of the time of extinction.
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4.21 The linear fractional case is one of the few branching process examples in

which the generating functionGn(s) can be explicitly computed. For 0 < p < 1,

let

a0 =
1 − c − p

1 − p
, ak = cpk−1, for k = 1, 2, … ,

where 0 < c < 1 − p is a parameter. The offspring distribution is a geometric

distribution rescaled at 0.

(a) Find �, the mean of the offspring distribution.

(b) Assume that � = 1. Show, by induction, that

Gn(s) =
np − (np + p − 1)s

1 − p + np − nps
.

(c) For � > 1, Athreya and Ney (1972) show

Gn(s) =
(�ne − 1)s + e(1 − �n)

(�n − 1)s + e − �n
,

where e = (1 − c − p)∕(p(1 − p)) is the extinction probability. See

Example 4.9. Observe that Lotka’s model falls in the linear fractional

case. For Lotka’s data, ind the probability that a male line of descent goes

extinct by the third generation.

4.22 Linear fractional case, continued. A rumor-spreading process evolves as fol-

lows. At time 0, one person has heard a rumor. At each discrete unit of time

every person who has heard the rumor decides how many people to tell accord-

ing to the following mechanism. Each person lips a fair coin. If heads, they tell

no one. If tails, they proceed to roll a fair die until 5 appears. The number of

rolls needed determines how many people they will tell the rumor.

(a) After four generations, how many people, on average, have heard the

rumor?

(b) Find the probability that the rumor-spreading process will stop after four

generations.

(c) Find the probability that the rumor-spreading process will eventually stop.

4.23 Let a be an offspring distribution with generating functionG. Let X be a random

variable with distribution a. Let Z be a random variable whose distribution is

that of X conditional on X > 0. That is, P(Z = k) = P(X = k|X > 0). Find the

generating function of Z in terms of G.

4.24 Let Tn = Z0 + Z1 + · · · + Zn be the total number of individuals up through gen-

eration n. Let T = lim
n→∞

Tn be the total progeny of the branching process. Find

E(T) for the subcritical, critical, and supercritical cases.

4.25 Total progeny, continued. Let �n(s) = E
(
sTn

)
be the probability generating

function of Tn, as deined in Exercise 4.24.
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(a) Show that �n satisies the recurrence relation

�n(s) = sG(�n−1(s)), for n = 1, 2, … ,

where G(s) is the pgf of the offspring distribution. Hint: Condition on Z1
and use Exercise 4.16(a).

(b) From (a), argue that

�(s) = sG(�(s)),

where �(s) is the pgf of the total progeny T .

(c) Use (b) to ind the mean of T in the subcritical case.

4.26 In a lottery game, three winning numbers are chosen uniformly at random from

{1, … , 100}, sampling without replacement. Lottery tickets cost $1 and allow

a player to pick three numbers. If a player matches the three winning numbers

they win the jackpot prize of $1,000. For matching exactly two numbers, they

win $15. For matching exactly one number they win $3.

(a) Find the distribution of net winnings for a random lottery ticket. Show that

the expected value of the game is −70.8 cents.

(b) Parlaying bets in a lottery game occurs when the winnings on a lottery

ticket are used to buy tickets for future games. Hoppe (2007) analyzes the

effect of parlaying bets on several lottery games. Assume that if a player

matches either one or two numbers they parlay their bets, buying respec-

tively 3 or 15 tickets for the next game. The number of tickets obtained

by parlaying can be considered a branching process. Find the mean of the

offspring distribution and show that the process is subcritical.

(c) See Exercise 4.19. Let T denote the duration of the process, that is, the

length of the parlay. Find P(T = k), for k = 1, … , 4.

(d) Hoppe shows that the probability that a single parlayed ticket will ulti-

mately win the jackpot is approximately p∕(1 − m), where p is the probabil-

ity that a single ticket wins the jackpot, and m is the mean of the offspring

distribution of the associated branching process. Find this probability and

show that the parlaying strategy increases the probability that a ticket will

ultimately win the jackpot by slightly over 40%.

4.27 Consider a branching process whose offspring distribution is Bernoulli with

parameter p.

(a) Find the probability generating function for the nth generation size Zn.

Describe the distribution of Zn.

(b) For p = 0.9, ind the extinction probability and the expectation of total

progeny.

4.28 In a branching process with immigration, a random number of immigrants Wn

is independently added to the population at the nth generation.
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(a) Let Hn be the probability generating function ofWn. If Gn is the generating

function of the size of the nth generation, show that

Gn(s) = Gn−1(G(s))Hn(s).

(b) Assume that the offspring distribution is Bernoulli with parameter p, and the

immigration distribution is Poisson with parameter �. Find the generating

function Gn(s), and show that

lim
n→∞

Gn(s) = e−�(1−s)∕(1−p).

What can you conclude about the limiting distribution of generation size?

4.29 R: Examine the proof of Theorem 4.2 and observe that

en = G
(
en−1

)
, for n ≥ 1, (4.6)

where en = P(Zn = 0) is the probability that the population goes extinct by gen-

eration n. Since en → e, as n→ ∞, Equation (4.6) is the basis for a numerical,

recursive method to approximate the extinction probability in the supercritical

case. To ind e:

1. Initialize with e0 ∈ (0, 1).

2. Successively compute en = G(en−1), for n ≥ 1.

3. Set e = en, for large n.

Convergence can be shown to be exponentially fast, so that n can often be taken

to be relatively small (e.g., n ≈ 10-20). Use this numerical method to ind the

extinction probability for the following cases.

(a) a0 = 0.8, a4 = 0.1, a9 = 0.1.

(b) Offspring distribution is uniform on {0, 1, … , 10}.

(c) a0 = 0.6, a3 = 0.2, a6 = 0.1, a12 = 0.1.

4.30 R: Simulate the branching process in Exercise 4.12. Use your simulation to

estimate the extinction probability e.

4.31 R: Simulating a branching process whose offspring distribution is uniformly

distributed on {0, 1, 2, 3, 4}.

(a) Use your simulation to estimate the probability that the process goes extinct

by the third generation. Compare with the exact result obtained by numer-

ical methods.

(b) See Exercise 4.15. Use your simulation to estimate the extinction proba-

bility e. Assume that if the process goes extinct it will do so by the 10th

generation with high probability.

4.32 R: Simulate the branching process with immigration in Exercise 4.28(b), with

p = 3∕4 and � = 1.2. Illustrate the limit result in Exercise 4.28(c) with n = 100.
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4.33 R: Simulate the total progeny for a branching process whose offspring distribu-

tion is Poisson with parameter � = 0.60. Estimate the mean and variance of the

total progeny distribution.

4.34 R: Based on the numerical algorithm in Exercise 4.29, write an R function

extinct(offspring) to ind the extinction probability for any branching

process with a inite offspring distribution.



5
MARKOV CHAIN MONTE CARLO

An algorithm must be seen to be believed.

—Donald Knuth

5.1 INTRODUCTION

How to simulate from complex and high-dimensional probability distributions is a

fundamental problem in science, statistics, and numerous applied ields. Markov

chain Monte Carlo (MCMC) is a remarkable methodology, which utilizes Markov

sequences to effectively simulate from what would otherwise be intractable dis-

tributions. MCMC has been described as a “revolution” in applied mathematics,

a “paradigm shift” for the ield of statistics, and one of the “ten most important

algorithms” of the 20th century. See Diaconis (2009), Robert and Casella (2011),

and Dongarra and Sullivan (2000).

Given a probability distribution �, the goal of MCMC is to simulate a random

variable X whose distribution is �. The distribution may be continuous or discrete,

although we assume at the beginning that � is discrete. Often, one wants to esti-

mate an expectation or other function of a joint distribution from a high-dimensional

space.

The MCMC algorithm constructs an ergodic Markov chain whose limiting distri-

bution is the desired �. One then runs the chain long enough for the chain to converge,

Introduction to Stochastic Processes with R, First Edition. Robert P. Dobrow.
© 2016 John Wiley & Sons, Inc. Published 2016 by John Wiley & Sons, Inc.
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or nearly converge, to its limiting distribution, and outputs the inal element or ele-

ments of the Markov sequence as a sample from �.

MCMC relies on the fact that the limiting properties of ergodic Markov chains

have some similarities to independent and identically distributed sequences. In par-

ticular, the strong law of large numbers holds.

Law of Large Numbers

The law of large numbers is one of the fundamental limit theorems of probability.

If Y1,Y2,… is an i.i.d. sequence with common mean � < ∞, then the strong law of

large numbers says that, with probability 1,

lim
n→∞

Y1 + · · · + Yn

n
= �.

Equivalently, let Y be a random variable with the same distribution as the Yi and

assume that r is a bounded, real-valued function. Then, r(Y1), r(Y2),… is also an

i.i.d. sequence with inite mean, and, with probability 1,

lim
n→∞

r(Y1) + · · · + r(Yn)

n
= E(r(Y)).

Remarkably, the i.i.d. assumption of the strong law can be signiicantly

weakened.

Strong Law of Large Numbers for Markov Chains

Theorem 5.1. Assume that X0,X1,… is an ergodic Markov chain with station-

ary distribution �. Let r be a bounded, real-valued function. Let X be a random

variable with distribution �. Then, with probability 1,

lim
n→∞

r(X1) + · · · + r(Xn)

n
= E(r(X)),

where E(r(X)) =
∑

jr(j)�j.

Although Markov chains are not independent sequences, the theorem is a conse-

quence of the fact that, for ergodic chains, successive excursions between visits to the

same state are independent. A proof of the strong law of large numbers for Markov

chains may be found in Norris (1998).

Given an ergodic Markov chain with stationary distribution �, let A be a nonempty

subset of the state space. Write �A =
∑

j∈A�j. From Theorem 5.1, we can interpret �A
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as the long-term average number of visits of an ergodic Markov chain to A. Deine

the indicator variable

IA(x) =

{
1, if x ∈ A,

0, if x ∉ A.

Then,
∑n−1

k=0 IA(Xk) is the number of visits to A in the irst n steps of the chain. Let X

be a random variable with distribution �. With probability 1,

lim
n→∞

1

n

n−1∑
k=0

IA(Xk) = E
(
IA(X)

)
= P(X ∈ A) = �A.

One setting where the strong law for Markov chains arises is when there is a

reward, or cost, function associated with the states of the chain.

Example 5.1 Bob’s daily lunch choices at the cafeteria are described by a Markov

chain with transition matrix

P =

Yogurt Salad Hamburger Pizza

Yogurt

Salad

Hamburger

Pizza

⎛⎜⎜⎜⎝

0 0 1∕2 1∕2

1∕4 1∕4 1∕4 1∕4

1∕4 0 1∕4 1∕2

1∕4 0 1∕4 1∕2

⎞⎟⎟⎟⎠
.

Yogurt costs $3.00, hamburgers cost $7.00, and salad and pizza cost $4.00 each.

Over the long term, how much, on average, does Bob spend for lunch?

Solution Let

r(x) =

⎧⎪⎨⎪⎩

3, if x = yogurt,

4, if x = salad or pizza,

7, if x = hamburger.

The lunch chain is ergodic with stationary distribution

Yogurt Salad Hamburger Pizza

7/65 2/13 18/65 6/13

With probability 1, Bob’s average lunch cost converges to

∑
x

r(x)�x = 3
(
7

65

)
+ 4

(
2

13
+

6

13

)
+ 7

(
18

65

)
= $4.72 per day.

◾
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Armed with the strong law of large numbers for Markov chains, we now describe

the details of MCMC. As is often the case, the knowing is in the doing, so we start

with an expanded example.

Binary Sequences with No Adjacent 1s

The following is a toy problem for which an exact analysis is possible. Consider

sequences of length m consisting of 0s and 1s. Call a sequence good if it has no adja-

cent 1s. What is the expected number of 1s in a good sequence if all good sequences

are equal likely?

For m = 4, there are 24 = 16 binary sequences of 0s and 1s. The eight good

sequences are

(0000), (1000), (0100), (0010), (0001), (1010), (1001), (0101),

and the desired expectation is

1

8
(0 + 1 + 1 + 1 + 1 + 2 + 2 + 2) =

10

8
= 1.25.

For generalm, the expected number of 1s is � =
∑

kk�k, where �k is the probability

that a good sequence of length m has exactly k 1s. While �k can be derived by a

combinatorial argument (see Exercise 5.4), there is no simple closed form expression

for �. So we approach the problem using simulation.

If x is a sequence of 0s and 1s of length m, let r(x) be the number of 1s in the

sequence. Assume that we are able to generate a uniformly random sequence of length

m with no adjacent 1s. Doing this repeatedly and independently, generating good

sequences Y1,Y2,… ,Yn, a Monte Carlo estimate of the desired expectation is

� ≈
r(Y1) + r(Y2) + · · · + r(Yn)

n
,

for large n. This is by the (regular) law of large numbers.

Thus, the problem of estimating � reduces itself to the problem of simulating a

good sequence.

Here is one way to generate such a sequence, which does not use Markov chains,

based on the rejection method. Generate a sequence of 0s and 1s with no constraints.

This is easy to do by just lipping m coins, where heads represents 1 and tails repre-

sents 0. If the resulting sequence is good, then keep it. If the sequence has adjacent

1s then reject it, and try again.

The approach works in principle, but not in practice. Even for moderate m, most

binary sequences will have some adjacent 1s, and thus be rejected. For instance,

for m = 100, there are 2100 ≈ 1030 binary sequences, of which only 1021 are good.

The probability that a binary sequence is good is about 1021∕1030 = 10−9. Thus, the

rejection algorithm will typically see about one billion sequences before one good

sequence appears. This method is prohibitively slow.
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Here is an alternate approach using Markov chains. The idea is to construct an

ergodic Markov chain X0,X1,… whose state space is the set of good sequences and

whose limiting distribution is uniform on the set of good sequences. The Markov

chain is then generated and, as in the i.i.d. case, we take

� ≈
r(X1) + r(X2) + · · · + r(Xn)

n
,

for large n, as an MCMC estimate for the desired expectation.

The Markov chain is constructed as a random walk on a graph whose vertices are

good sequences. The random walk proceeds as follows. From a given good sequence,

pick one of its m components uniformly at random.

If the component is 1, then switch it to 0. Since the number of 1s is reduced, the

resulting sequence is good. The walk moves to the new sequence.

If the component is 0, then switch it to 1 only if the resulting sequence is good.

In that case, the walk moves to the new sequence. However, if the switch to 1 would

result in a bad sequence, then stay put. The walk stays at the current state.

The walk can be described as a random walk on a weighted graph with weights

assigned as follows. Two good sequences that differ in only one component are joined

by an edge of weight 1. Also, each sequence possibly has a loop. The weight of the

loop is such that the sum of the weights of all the edges incident to the sequence is

equal to m.

Since all vertices have the same total weight, the stationary distribution is uniform.

See Figure 5.1 for the weighted graph construction for m = 4.
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Figure 5.1 Weighted graph on sequences with no adjacent 1s.

The MCMC random walk algorithm was implemented for sequences of length

m = 100. The chain was run for 100,000 steps (taking 2 seconds on a laptop
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computer), starting with the sequence of all 0s as the initial state of the chain. The

MCMC estimate for the expected number of 1s is � ≈ 27.833. An exact analysis

gives � = 27.7921.

R : Expected Number of 1s in Good Sequences

> # adjacent.R
> # init: initial sequence
> # n: number of steps to run the chain
> adjacent <- function(init, n)
+ { k <- length(init)
+ tot <- 0 # total number of 1s
+ new <-c(2, init,2) # pad sequence at the ends
+ for (i in 1:n) {

+ index <- 1 +sample(1:k,1)
+ newbit <- 0 + !new[index] # flip the bit
+ if (newbit==0) {

+ new[index] <- 0
+ tot <- tot+sum(new)
+ next} else {

+ if (new[index-1]==1 | new[index+1] ==1) {

+ tot <-tot + sum(new)
+ next}
+ else {new[index] <- 1}
+ tot <- tot + sum(new)}
+ }

+ tot/n- 4 } # subtract both endpoints
> m <- 100
> init <- rep(0,m) # Start at sequence of all 0s
> adjacent(init,100000)
[1] 27.83333

Remarks:

1. The number of vertices of the random walk graph is huge—about 1021 good

sequences for m = 100. However, the number of steps required for the walk to

get suficiently close to the limiting distribution is a small fraction of that—in

this implementation 100,000 steps.

2. The uniform distribution on the set of good sequences assigns probability 1∕c

to each sequence, where c is the number of good sequences. The actual value of

c was never needed in the implementation, and for all practical purposes could

have been unknown.

3. A beneit of the algorithm that cannot be overstated is that it is easily and efi-

ciently coded and is intuitive based on the structure of the problem.
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5.2 METROPOLIS–HASTINGS ALGORITHM

The most common Markov chain Monte Carlo method is the Metropolis–Hastings

algorithm. The algorithm is named after Nicholas Metropolis, a physicist who led the

research group at Los Alamos National Laboratory, which irst proposed the method

in the early 1950s, and W.K. Hastings, a Canadian statistician, who extended the

scope of the algorithm in 1970.

Let � = (�1, �2,…) be a discrete probability distribution. The algorithm

constructs a reversible Markov chain X0,X1,… whose stationary distribution is �.

Let T be a transition matrix for any irreducible Markov chain with the same state

space as �. It is assumed that the user knows how to sample from T. The T chain will

be used as a proposal chain, generating elements of a sequence that the algorithm

decides whether or not to accept.

To describe the transitionmechanism forX0,X1,… , assume that at time n the chain

is at state i. The next step of the chain Xn+1 is determined by a two-step procedure.

1. Choose a new state according to T. That is, choose j with probability Tij. State

j is called the proposal state.

2. Decide whether to accept j or not. Let

a(i, j) =
�jTji

�iTij
.

The function a is called the acceptance function. If a(i, j) ≥ 1, then j is accepted

as the next state of the chain. If a(i, j) < 1, then j is accepted with probability

a(i, j). If j is not accepted, then i is kept as the next step of the chain.

In other words, assume that Xn = i. LetU be uniformly distributed on (0, 1). Set

Xn+1 =

{
j, if U ≤ a(i, j),

i, if U > a(i, j).

Metropolis–Hastings Algorithm

The sequence X0,X1,… constructed by the Metropolis–Hastings algorithm is a

reversible Markov chain whose stationary distribution is �.

Proof. It should be clear that X0,X1,… is in fact a Markov chain, as each Xn+1, given

the past history X0,… ,Xn, only depends on Xn. Let P be the transition matrix of the

chain. The theorem will be proven by showing that the detailed balance equations

�iPij = �jPji are satisied.

For i ≠ j, consider Pij = P(X1 = j|X0 = i). Given X0 = i, then X1 = j if and only

if (i) j is proposed, and (ii) j is accepted. The irst occurs with probability Tij.
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The second occurs if U ≤ a(i, j), where U is uniform on (0, 1). We have that

P(U ≤ a(i, j)) =

{
a(i, j), if a(i, j) ≤ 1,

1, if a(i, j) > 1,

=

{
a(i, j), if �jTji ≤ �iTij,

1, if �jTji > �iTij.

Thus, for i ≠ j,

Pij =

{
Tija(i, j), if �jTji ≤ �iTij,

Tij, if �jTji > �iTij.

The diagonal entries of P are not needed for the proof. They are determined by the

fact that the rows of P sum to 1.

To show the detailed balance equations are satisied, assume that �jTji ≤ �iTij.

Then,

�iPij = �iTija(i, j) = �iTij
�jTji

�iTij
= �jTji = �jPji.

Similarly, if �jTji > �iTij,

�iPij = �iTij = �jTji
�iTij

�jTji
= �jTjia(j, i) = �jPji.

◾

Remarks:

1. The exact form of � is not necessary to implement Metropolis–Hastings. The

algorithm only uses ratios of the form �j∕�i. Thus, � needs only to be speci-

ied up to proportionality. For instance, if � is uniform on a set of size c, then

�j∕�i = 1, and the acceptance function reduces to a(i, j) = Tji∕Tij.

2. If the proposal transition matrix T is symmetric, then a(i, j) = �j∕�i.

3. The algorithmworks for any irreducible proposal chain. Thus, the user has wide

latitude to ind a proposal chain that is eficient in the context of their problem.

4. If the proposal chain is ergodic (irreducible and aperiodic in the inite case)

then the resulting Metropolis–Hastings chain is also ergodic with limiting dis-

tribution �.

5. The generated sequence X0,X1,… ,Xn gives an approximate sample from �.

However, if the chain requires many steps to get close to stationarity, there may

be initial bias. Burn-in refers to the practice of discarding the initial iterations

and retaining Xm,Xm+1,… ,Xn, for somem. In that case, the strong law of large

numbers for Markov chains gives

lim
n→∞

r(Xm) + · · · + r(Xn)

n − m + 1
=
∑
x

r(x)�x.
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Example 5.2 Power-law distributions are positive probability distributions of the

form �i ∝ is, for some constant S. Unlike distributions with exponentially decaying

tails (e.g., Poisson, geometric, exponential, normal), power-law distributions have fat

tails, and thus are often used to model skewed data. Let

�i =
i−3∕2∑∞
k=1 k

−3∕2
, for i = 1, 2,…

Implement a Metropolis–Hastings algorithm to simulate from �.

Solution For a proposal distribution, we use simple symmetric random walk on

the positive integers with relecting boundary at 1. From 1, the walk always moves

to 2. Otherwise, the walk moves left or right with probability 1/2. The proposal chain

transition matrix is

Tij =

⎧
⎪⎨⎪⎩

1∕2, if j = i ± 1 for i > 1,

1, if i = 1 and j = 2,

0 otherwise.

The acceptance function is

a(i, i + 1) =
(

i

i + 1

)3∕2

, and a(i + 1, i) =
(
i + 1

i

)3∕2

, for i ≥ 2,

with

a(1, 2) =
�2T21

�1T12
=
(
1

2

)3∕2 1

2
=
(
1

2

)5∕2

and a(2, 1) = 25∕2.

Observe that a(i + 1, i) ≥ 1, for all i.

The Metropolis–Hastings algorithm can be described as follows. From state

i ≥ 2, lip a fair coin. If heads, go to i − 1. If tails, set p = (i∕(i + 1))3∕2. Flip

another coin whose heads probability is p. If heads, go to i + 1. If tails, stay at i.

If the chain is at 1, then move to 2 with probability (1∕2)5∕2 ≈ 0.177. Otherwise,

stay at 1.

The chain was run for one million steps. See Table 5.1 to compare the simulated

and exact probabilities.

TABLE 5.1 Comparison of Markov chain Monte Carlo Estimates with Exact

Probabilities for Power-Law Distribution

i 1 2 3 4 5 6 7 8 ≥9

Simulation 0.389 0.137 0.075 0.048 0.034 0.026 0.021 0.017 0.252

Exact 0.383 0.135 0.074 0.048 0.034 0.026 0.021 0.017 0.262
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R : Power Law Distribution

# powerlaw.R
> trials <- 1000000
> simlist <- numeric(trials)
> simlist[1] <- 2
> for (i in 2:trials) {

+ if (simlist[i-1] ==1) {

+ p <- (1/2) ̂ (5/2)
+ new <- sample(c(1,2),1,prob=c(1-p,p))
+ simlist[i] <- new
+ } else { leftright <- sample(c(-1,1),1)
+ if (leftright == -1) {

+ simlist[i] <- simlist[i-1] - 1} else {

+ p <- (simlist[i-1]/(simlist[i-1]+1)) ̂ (3/2)
+ simlist[i] <- sample(c(simlist[i-1],

1+simlist[i-1]), 1,prob=c(1-p,p))
+ } } }

> tab <- table(simlist)/trials
> tab[1:8]

1 2 3 4 5 6 7 8
0.389 0.137 0.075 0.048 0.034 0.026 0.021 0.017

◾

Example 5.3 (Cryptography)

ahicainqcaqx ic zqcqwbl bwq zwqbj xjustlicz tlhamx ic jyq kbr ho jybj albxx ho

jyicmqwx kyh ybgq tqqc qnuabjqn jh mchk chjyicz ho jyq jyqhwr ho dwhtbtilijiqx jybj

jyqhwr jh kyiay jyq shxj zlhwihux htpqajx ho yusbc wqxqbway bwq icnqtjqn ohw jyq

shxj zlhwihux ho illuxjwbjihcx

—qnzbw bllqc dhq jyq suwnqwx ic jyq wuq shwzuq

The codedmessagewas formed by a simple substitution cipher—each letter stand-

ing for one letter in the alphabet. The hidden message can be thought of as a coding

function from the letters of the coded message to the regular alphabet. For example,

given an encrypted message xoaaoaaoggo, the function that maps x to m, o to i, a to

s, and g to p decodes the message to mississippi.

If one keeps tracks of all 26 letters and spaces, there are 27! ≈ 1028 possible coding

functions. The goal is to ind the one that decodes the message.

This example is based on Diaconis (2009), who gives a compelling demonstration

of the power and breadth of MCMC applied to cryptography.

My colleague Jack Goldfeather assisted in downloading the complete works of

Jane Austen (about four million characters) from Project Gutenberg’s online site

and recording the number of transitions of consecutive text symbols. For simplicity,
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we ignored case and only kept track of spaces and the letters a to z. The counts

are kept in a 27 × 27 matrix M of transitions indexed by (a, b,… , z, [space]). For
example, there are 6,669 places in Austen’s work where b follows a and thus

Mab = 6, 669.
The encoded message has 320 characters, denoted as (c1,… , c320). For each

coding function f , associate a score

score(f ) =

319∏
i=1

Mf (ci),f (ci+1)
.

The score is a product over all successive pairs of letters in the decrypted text

(f (ci), f (ci+1)) of the number of occurrences of that pair in the reference Austen

library. The score is higher when successive pair frequencies in the decrypted

message match those of the reference text. Coding functions with high scores are

good candidates for decryption. The goal is to ind the coding function of maximum

score.

A probability distribution proportional to the scores is obtained by letting

�f =
score(f )∑
gscore(g)

. (5.1)

From a Monte Carlo perspective, we want to sample from �, with the idea that

a sample is most likely to return a value of high probability. The denominator

in Equation (5.1) is intractable, being the sum of 27! terms. But the beauty of

Metropolis–Hastings is that the denominator is not needed since the algorithm relies

on ratios of the form �f∕�g.

The MCMC implementation runs a random walk on the set of coding functions.

Given a coding function f , the transition to a proposal function f ∗ is made by picking

two letters at random and switching the values that f assigns to these two letters. This

method of random transpositions gives a symmetric proposal matrix T , simplifying

the acceptance function

a(f , f ∗) =
�f ∗Tf ∗, f

�fTf , f ∗
=

�f ∗

�f
=

score( f ∗)

score( f )
.

The algorithm is as follows:

1. Start with any coding function f . For convenience, we use the identity function.

2. Pick two letters uniformly at random and switch the values that f assigns to

these two letters. Call the new proposal function f ∗.

3. Compute the acceptance function a(f , f ∗) = score(f ∗)∕score(f ).

4. Let U be uniformly distributed on (0, 1). If U ≤ a(f , f ∗), accept f ∗. Otherwise,

stay with f .

We ran the algorithm on the coded message at the start of this example. See the

script ile decode.R. At iteration 2658, the message was decoded.
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R : Decoding the Message

[ 100] xlitxisatxau it hatawnc nwa hwand udepocith oclxfu it dra mng ly drnd

xcnuu ly dritfawumrl rnza oaat asexndas dl ftlm tldrith ly dra dralwg ly bwlonoi-

cidiau drnd dralwg dl mrixr dra plud hclwileu lojaxdu ly repnt wauanwxr nwa

itsaodas ylw dra plud hclwileu ly icceudwndiltu – ashnw nccat bla dra pewsawu

it dra wea plwhea

[ 500] gsadgaredgen ad wedeoil ioe woeit ntubcladw clsgyn ad the kif sm thit

glinn sm thadyeon khs hive ceed erugiter ts ydsk dsthadw sm the thesof sm posci-

calataen thit thesof ts khagh the bsnt wlsoasun sczegtn sm hubid oeneiogh ioe

adrecter mso the bsnt wlsoasun sm alluntoitasdn – erwio illed pse the buoreon

ad the oue bsowue

[1000] goidgimedges id wedenal ane wneat strpclidw clogus id the fak oy that

glass oy thiduens fho have ceed emrgatem to udof dothidw oy the theonk oy bno-

cacilities that theonk to fhigh the post wloniors ocxegts oy hrpad neseangh ane

idmectem yon the post wloniors oy illrstnatiods – emwan alled boe the prnmens

id the nre ponwre

[1400] goingidenges in beneral are breat stumplinb plogks in theway of that glass

of thinkers who have peen edugated to know nothinb of the theory of cropapilities

that theory to whigh the most blorious opxegts of human researgh are indepted

for the most blorious of illustrations – edbar allen coe the murders in the rue

morbue

[1600] goingidenges in ceneral are creat stumplinc plogks in the way of that glass

of thinkers who have peen edugated to know nothinc of the theory of bropapilities

that theory to whigh the most clorious opxegts of human researgh are indepted

for the most clorious of illustrations – edcar allen boe the murders in the rue

morcue

[1800] coincidences in general are great stumpling plocks in the way of that class

of thinkers who have peen educated to know nothing of the theory of bropapilities

that theory to which the most glorious opzects of human research are indepted

for the most glorious of illustrations – edgar allen boe the murders in the rue

morgue

[2658] coincidences in general are great stumbling blocks in the way of that class

of thinkers who have been educated to know nothing of the theory of probabilities

that theory to which the most glorious objects of human research are indebted for

the most glorious of illustrations – edgar allen poe the murders in the rue morgue

◾

Example 5.4 (Darwin’s inches) The following example is based on Cobb and

Chen (2003).

Charles Darwin, on his visit to the Galapagos Islands in 1835, discovered several

species of inches, which varied from island to island. It is said that the variation
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and diversity of the birds he observed was a signiicant factor which led Darwin to

develop his theory of natural selection.

Darwin chronicled the presence of 13 species of inches on 17 islands. The data

are presented in the co-occurrence matrix in Figure 5.2. Ecologists use such species-

presence matrices to study levels of competition and cooperation among species.

Islands

Species 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 Total

A 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 17

B 1 1 1 1 1 1 1 1 1 1 1 0 0 1 0 1 1 14

C 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 0 0 14

D 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 13

E 1 0 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 12

F 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 11

G 1 1 1 1 1 0 1 1 0 0 0 0 0 1 0 1 1 10

H 1 1 1 1 1 1 0 1 1 1 1 0 0 0 0 0 0 10

I 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 10

J 1 1 1 1 0 1 1 0 0 0 0 0 0 0 0 0 0 6

K 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 2

L 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2

M 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1

Total 11 10 10 10 10 9 9 9 8 8 7 4 4 4 3 3 3 122

Figure 5.2 Co-occurrence matrix for Darwin’s inches.

A species pair and an island pair constitute a checkerboard if each species appears

on different islands. A checkerboard is a 2 × 2 submatrix of the form
(
1 0

0 1

)
or

(
0 1

1 0

)
.

For instance, in Figure 5.2, species E and G on islands 10 and 14, respectively, form

a checkerboard.

The number of checkerboards in a co-occurrence matrix is a measure of competi-

tion. A large number of checkerboards would indicate a high degree of competition.

For the inches data, there are 333 checkerboards. Is this number large or small?

To explore the question, consider the expected number of checkerboards for a

typical 0–1 co-occurrence matrix, which is constrained by the row and column totals

of the inches matrix.

From a theoretical point of view, the expectation is obtained by listing all such

0–1 matrices, counting the number of checkerboards in each, and taking an overall

average. From a practical point of view, however, things are not so neat.

Counting 0–1 matrices with ixed marginal totals is a well-studied problem in

applied mathematics. The number of matrices with the same row and column sums

as the inches data are not known. Liu (2001) reports that Susan Holmes at Stanford

University estimated the number as about 6.715 × 1016. It is not computationally

feasible to list all such matrices and count the checkerboards in each.
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We implement a Metropolis–Hastings algorithm to generate a uniformly random

co-occurrence matrix and to estimate the probability that such a matrix has at least

333 checkerboards.

Consider the following swap operation. Assume thatM is a co-occurrence matrix

with at least one checkerboard. Pick a checkerboard in the matrix and swap 0s and 1s.

That is, if the chosen checkerboard submatrix is

(
1 0

0 1

)
, then change it to

(
0 1

1 0

)
. If

the submatrix is

(
0 1

1 0

)
, change it to

(
1 0

0 1

)
. LetN be the matrix that results fromM

after the swap operation. The swap operation preserves row and columns sums. That

is, N is a co-occurrence matrix with the same row and column totals asM.

The swap operation is the basis of an MCMC random walk algorithm on a graph

whose vertex set is the set of all co-occurrence matrices with ixed row and column

sums. MatricesM and N are joined by an edge if N can be obtained fromM by one

checkerboard swap.

For example, there are ive 3 × 3 co-occurrence matrices with successive row sums

2, 2, and 1, and column sums 2, 2, and 1. The corresponding graph is shown in

Figure 5.3. Simple random walk on this graph has transition matrix

T =

A B C D E

A

B

C

D

E

⎛⎜⎜⎜⎜⎝

0 1∕3 1∕3 1∕3 0

1∕3 0 1∕3 0 1∕3

1∕4 1∕4 0 1∕4 1∕4

1∕3 0 1∕3 0 1∕3

0 1∕3 1∕3 1∕3 0.

⎞⎟⎟⎟⎟⎠

A

0 1 1

1 0 0

1 1 0

1 1 0

1 0 0

0 1 1

1 1 0

0 0 1

1 1 0

1 0 1

0 1 0

1 1 0

1 1 0

0 1 0

1 0 1

B

C

D E

Figure 5.3 Transition graph for co-occurrence matrices.
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Consider simple random walk on a general co-occurrence graph. Although it is

not completely obvious, such a Markov chain is irreducible (see Ryser 1957) and has

a unique stationary distribution. Unfortunately, the stationary distribution is not the

uniform distribution, which is the one we want. The stationary distribution for simple

random walk is proportional to the vertex degrees. For the graph in Figure 5.3, the

stationary distribution s is

s =
(
sA, sB, sC, sD, sE

)
=
(

3

16
, 3

16
, 4

16
, 3

16
, 3

16

)
.

Let � denote the uniform distribution on the set of co-occurrence matrices with

ixed row and column totals. That is, �M = 1∕c, for all co-occurrence matrices M,

where c is the number of such matrices. For MCMC, simple random walk on the

co-occurrence graph is used as the proposal distribution. Since �i∕�j = 1 for all i and

j, the acceptance function, for adjacent vertices i and j, is

a(i, j) =
�jTji

�iTij
=

deg(j)

deg(i)
=

Number of checkerboards in j

Number of checkerboards in i
.

The algorithm is described as follows. From a co-occurrence matrix i, pick two

rows and two columns uniformly at random, until the resulting submatrix is swap-

pable. Do the swap and let j be the resulting co-occurrence matrix. Count the number

of checkerboards in i and j, and accept the new matrix according to the acceptance

function a(i, j).

The algorithm is implemented in darwin.R for 5,000 steps, obtaining a distri-

bution of the number of checkerboards in an approximately uniform co-occurrence

matrix. See Figure 5.4. Estimates for the mean and standard deviation are 246.9 and

15.4, respectively. Of 5,000 matrices, only two had 333 or more checkerboards. Thus,

a typical co-occurrence matrix contains about 247 checkerboards give or take about

30, and the estimated probability that a random co-occurrence matrix has at least 333

checkerboards is 2∕5, 000 = 0.0004. The large number of co-occurrence matrices in

the data is unusual if the distribution of inches on the islands was random. An ecol-

ogist might conclude that the distribution of inch species in the Galapagos Islands

shows evidence of competition.

◾

Continuous State Space

Although the target distributions in the previous examples are discrete, MCMC

can also be used in the continuous case, when � is a probability density

function.

We have not yet studied continuous state space stochastic processes. Intuitively,

for a continuous state space Markov process a transition function replaces the

transition matrix, where Pij is the value of a conditional density function given

X0 = i.
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Figure 5.4 Simulated distribution of the number of checkerboards in a uniformly random

co-occurrence matrix. The probability of at least 333 checkerboards is 0.0004.

The Metropolis–Hastings algorithm is essentially the same as in the discrete case,

with densities replacing discrete distributions. Without delving into any new theory,

we present the continuous case by example.

Example 5.5 Using only a uniform random number generator, simulate a stan-

dard normal random variable using MCMC.

Solution Write the standard normal density function as �t = e−t
2∕2∕

√
2�. For the

Metropolis–Hastings proposal distribution, we choose the uniform distribution on an

interval of length two centered at the current state. From state s, the proposal chain

moves to t, where t is uniformly distributed on (s − 1, s + 1). Hence, the conditional

density given s is constant, with

Tst =
1

2
, for s − 1 ≤ t ≤ s + 1.

The acceptance function is

a(s, t) =
�tTts

�sTst
=

(
e−t

2∕2

√
2�

)
(1∕2)

/(
e−s

2∕2

√
2�

)
(1∕2) = e−(t

2−s2)∕2.

Notice that the length of the interval for the uniform proposal distribution does not

affect the acceptance function.
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See Figure 5.5 for the results of one million iterations of the MCMC sequence.

The overlaid curve is the standard normal density function.
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Figure 5.5 Simulation of standard normal distribution with MCMC.

R : Standard Normal Simulation

# standardnormal.R
> trials <- 1000000
> simlist <- numeric(trials)
> state <- 0
> for (i in 2:trials) {

+ prop <- runif(1,state-1,state+1)
+ acc <- exp(-(prop ̂ 2 -state ̂ 2)/2)
+ if (runif(1) < acc) state <- prop
+ simlist[i] <- state }

> hist(simlist,xlab="",main="",prob=T)
> curve(dnorm(x),-4,4,add=T)

◾

5.3 GIBBS SAMPLER

The original Metropolis–Hastings algorithm was discovered in 1953 and motivated

by problems in physics. In 1984, a landmark paper by brothers Donald and Stuart

Geman showed how the algorithm could be adapted to the high-dimensional problems
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that arise in Bayesian statistics. Their new algorithm was named after the physicist

Josiah Gibbs with reference to connections to statistical physics.

In the Gibbs sampler, the target distribution � is an m-dimensional joint density

�(x) = �(x1,… , xm).

A multivariate Markov chain is constructed whose limiting distribution is �, and

which takes values in an m-dimensional space. The algorithm generates elements

of the form

X(0),X(1),X(2),…

= (X
(0)

1
,… ,X

(0)
m ), (X

(1)

1
,… ,X

(1)
m ), (X

(2)

1
,… ,X

(2)
m ),…

by iteratively updating each component of an m-dimensional vector conditional on

the other m − 1 components. We show that the Gibbs sampler is a special case of the

Metropolis–Hastings algorithm, with a particular choice of proposal distribution.

The algorithm is sometimes hard to understand because of an abundance of nota-

tion. We start off with a relatively simple two-dimensional example.

Example 5.6 Consider a bivariate standard normal distribution with correlation �.

For background, see Appendix B, Section B.4. The bivariate normal distribution has

the property that conditional distributions are normal. If (X,Y) has a bivariate standard

normal distribution, then the conditional distribution of X given Y = y is normal with

mean �y and variance 1 − �2. Similarly, the conditional distribution of Y given X = x

is normal with mean �x and variance 1 − �2.

The Gibbs sampler is implemented to simulate (X,Y) from a bivariate standard

normal distribution with correlation �. At each step of the algorithm, one compo-

nent of a two-element vector is updated by sampling from its conditional distribution

given the other component. Updates switch back and forth. The resulting sequence

of bivariate samples converges to the target distribution.

1. Initialize: (x0, y0) ← (0, 0)

m← 1.

2. Generate xm from the conditional distribution of X given Y = ym−1. That is,

simulate from a normal distribution with mean �ym−1 and variance 1 − �2.

3. Generate ym from the conditional distribution of Y given X = xm. That is, sim-

ulate from a normal distribution with mean �xm and variance 1 − �2.

4. m← m + 1.

5. Return to Step 2.

We simulated a bivariate standard normal distribution with � = 0.60 using the

Gibbs sampler. The chain was run for 2,000 steps. In R, the output is a 2000 × 2

matrix. A scatterplot of the output is seen in Figure 5.6.

◾
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Figure 5.6 Bivariate standard normal simulation.

R : Bivariate Standard Normal

# bivariatenormal.R
> rho <- -0.60
> trials <- 2000
> sdev <- sqrt(1-rho ̂ 2)
> simlist <- matrix(rep(0,2*trials),ncol=2)
> for (i in 2:trials) {

+ simlist[i,1] <- rnorm(1,rho*simlist[i-1,2],sdev)
+ simlist[i,2] <- rnorm(1,rho*simlist[i,1],sdev) }

> plot(simlist,pch=20,xlab="x",ylab="y",main="")

Example 5.7 The following implementation of the Gibbs sampler for a three-

dimensional joint distribution is a classic example based on Casella and George

(1992). Random variables X, P, and N have joint density

�(x, p, n) ∝
(
n

x

)
px(1 − p)n−x

4n

n!
,

for x = 0, 1,… , n, 0 < p < 1, n = 0, 1,… The p variable is continuous; x and n are

discrete.
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The Gibbs sampler requires being able to simulate from the conditional distribu-

tions of each component given the remaining variables. The trick to identifying these

conditional distributions is to treat the two conditioning variables in the joint density

function as ixed constants.

The conditional distribution of X given N = n and P = p is proportional to(
n

x

)
px(1 − p)n−x, for x = 0, 1,… , n, which is binomial with parameters n and p.

The conditional distribution of P given X = x and N = n is proportional to

px(1 − p)n−x, for 0 < p < 1, which gives a beta distribution with parameters x + 1

and n − x + 1.

The conditional distribution of N given X = x and P = p is proportional to

(1 − p)n−x4n∕(n − x)!, for n = x, x + 1,… This is a shifted Poisson distribution with

parameter 4(1 − p). That is, the conditional distribution is equal to the distribution

of Z + x, where Z has a Poisson distribution with parameter 4(1 − p).

The Gibbs sampler, with arbitrary initial value, is implemented as follows:

1. Initialize: (x0, p0, n0) ← (1, 0.5, 2)
m← 1

2. Generate xm from a binomial distribution with parameters nm−1 and pm−1.

3. Generate pm from a beta distribution with parameters xm + 1 and

nm−1 − xm + 1.

4. Let nm = z + xm, where z is simulated from a Poisson distribution with param-

eter 4(1 − pm).

5. m← m + 1

6. Return to Step 2.

The output of the Gibbs sampler is a sequence of samples

(X0,P0,N0), (X1,P1,N1), (X2,P2,N2),…

In R , the output is stored in a matrix with three columns. Each column gives a sample

from the marginal distribution. Each pair of columns gives a sample from a bivariate

joint distribution. See Figure 5.7 for graphs of joint and marginal distributions.
◾

R : Trivariate Distribution

# trivariate.R
> trials <- 5000
> sim <- matrix(rep(0,3*trials),ncol=3)
> sim[1,] <- c(1,0.5,2)
> for (i in 2:trials) {

+ sim[i,1] <- rbinom(1,sim[i-1,3],simlist[i-1,2])
+ sim[i,2] <- rbeta(1,sim[i,1]+1,sim[i-1,3]-sim[i,1]+1)
+ sim[i,3] <- rpois(1,4*(1-sim[i,2])+sim[i,1] }
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Figure 5.7 Joint and marginal distributions for trivariate distribution.

The Gibbs sampler is a special case of the Metropolis–Hastings algorithm. To see

this, assume that � is anm-dimensional joint distribution. To avoid excessive notation

and simplify the presentation, we just consider one step of the Gibbs sampler when

the irst component is being updated.

Assume that i = (x1, x2,… , xm) is the current state, and j = (x′
1
, x2,… , xm) is the

proposed state. The proposal distribution T is the conditional distribution of X1 given

X2,… ,Xm. The acceptance function is a(i, j) = �jTji∕�iTij.

We have that

�jTji = �(x′
1
, x2,… , xm) fX1|X2,…,Xm

(x1|x2,… , xm)

= �(x′
1
, x2,… , xm)

(
�(x1, x2,… , xm)

∫ �(x, x2,… , xm) dx

)

= �(x1, x2,… , xm)

(
�(x′

1
, x2,… , xm)

∫ �(x, x2,… , xm) dx

)

= �(x1, x2,… , xm) fX1|X2,…,Xm
(x′

1
|x2,… , xm)

= �iTij.
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Thus, a(i, j) = 1. The proposal state is always accepted. The same is true for all of the

m components. The algorithm can be implemented by either successively updating

each component of the m-dimensional distribution, or by selecting components to

update uniformly at random.

The Gibbs sampler is remarkably versatile, and can be applied to a large variety

of complex multidimensional problems.

Example 5.8 (Ising model) The Ising model was originally proposed in physics

as a model for magnetism. It also arises in image processing.

Consider a graph consisting of sites (vertices), in which each site � is assigned a

spin of +1 or −1. A coniguration � is an assignment of spins to each site. That is,

�� = ±1, for all �. We will assume a square n × n grid of sites, where each site is

connected to four neighbors (up, down, left, and right), except at the boundary. Thus,

there are n2 sites and 2n
2
possible conigurations.

Associated with each coniguration � is its energy, deined as

E(�) = −
∑
�∼�

����,

where the sum is over all pairs of sites � and �, which are neighbors. Note that if

most neighbors have similar spins, the energy is negative; if most neighbors have

different spins, the energy is positive; and for a uniformly random assignment of

spins, the energy is about 0. One checks that for the coniguration � in Figure 5.8,

E(�) = 4.

−1 −1 +1

+1+1

+1 +1 −1

−1

Figure 5.8 Sample coniguration � on 3 × 3 grid.

The Gibbs distribution is a probability distribution on the set of conigurations,

deined by

�
�
=

e−�E(�)∑
�e

−�E(�)
,

where the sum in the denominator is over all conigurations. The parameter �

has a physical interpretation as the reciprocal of temperature. If � = 0 (ininite

temperature), the distribution is uniform on the set of conigurations. For � > 0,
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the Gibbs distribution puts more mass on low-energy conigurations, which favors

neighbors of similar spin. For � < 0, the distribution puts more mass on high-energy

conigurations.

The Ising model is studied, in part, because of its phase transition properties. In

two dimensions, the system undergoes a radical change of behavior at the critical

temperature 1∕� = 2∕ ln (1 +
√
2) ≈ 2.269 (� = 0.441). Above that temperature, the

system appears disorganized and chaotic. Below the critical temperature, the system

is magnetized, and a phase transition occurs.

The Gibbs sampler is ideally suited for simulating the Ising model. Given a conig-

uration �, a site � is chosen uniformly at random. The spin at that site is then updated

from the conditional distribution of that site given the other sites of �.

Denote the sites as 1,… ,m. Let �k be the spin at site k. Let

�−k = (�1,… , �k−1, �k+1,… , �m)

denote the other m − 1 sites of the coniguration. For ixed k, write

�
+ = (�1,… , �k−1,+1, �k+1,… , �m)

and

�
− = (�1,… , �k−1,−1, �k+1,… , �m).

Then,

P(�k = +1|�−k) =
P(�+)

P(�−k)
=

P(�+)

P(�+) + P(�−)

=
e−�E(�

+)

e−�E(�
+) + e−�E(�

−)

=
1

1 + e�[E(�
+)−E(�−)]

.

Observe that

E(�+) = −

⎛
⎜⎜⎜⎝

∑
i∼j
i,j≁k

�i�j +
∑
i∼k

�i

⎞
⎟⎟⎟⎠
,

where the irst sum is over all sites that are not neighbors of k. Also,

E(�−) = −

⎛
⎜⎜⎜⎝

∑
i∼j
i,j≁k

�i�j −
∑
i∼k

�i

⎞
⎟⎟⎟⎠
.

This gives

E(�+) − E(�−) = −2
∑
i∼k

�i,



204 MARKOV CHAIN MONTE CARLO

and thus

P(�k = +1|�−k) =
1

1 + e�[E(�
+)−E(�−)]

=
1

1 + e
−2�

∑
i∼k

�i
.

Also, P(�k = −1|�−k) = 1 − P(�k = +1|�−k).

The probabilities are easily computed as they only depend on the neighbors of k.

TheGibbs sampler is implemented by randomly picking sites on the grid and updating

each site according to these conditional distributions.

See Figure 5.9 for simulations of the Ising model on a 60 × 60 grid with vary-

ing values of �. The Gibbs sampler was run for 100,000 steps for each realization.

The state space has 23600 elements. The simulations took less than 10 seconds on a

laptop computer. The model in graph B was run at the critical inverse temperature

� = ln (1 +
√
2)∕2. Simulations B and C are for attractive systems, with � > 0. In

D, � < 0 and the system is repelling. ◾

A B

C D

Figure 5.9 Ising simulation. Parameter values are A: � = 0, B: � = 0.441, C: � = 0.75,

D: � = −1.5.
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R : Ising Model

# ising.R
> par(mfrow=c(2,2))
> betalist <- c(0,0.441,0.75,-1.5)
> for (z in 1:4) {

+ g <- 100
+ beta <- betalist[z]
+ trials <- 100000
+ grid <- matrix(sample(c(-1,1),(g+2) ̂ {2},rep=T), nrow=g+2)
+ grid[c(1,g+2),]<- 0
+ grid[,c(1,g+2)] <-0
+ for (m in 1:trials) {

+ i <- sample(2:(g+1), 1 )
+ j <- sample(2:(g+1),1 )
+ deg <- grid[i,j+1]+grid[i,j-1]+grid[i-1,j]+grid[i+1,j]
+ p <- 1/(1 + exp(-beta*2*deg))
+ if (runif(1) < p) grid[i,j] <- 1 else grid[i,j] <- -1
+ }

+ final <- grid[2:(g+1),2:(g+1)]
+ image(final, yaxt="n", xaxt="n", col=c(0,1)) }

5.4 PERFECT SAMPLING*

A central question when implementingMarkov chainMonte Carlo is how long to run

the chain to get close to stationarity. In the mid-1990s, an algorithm for implementing

MCMC was introduced by Jim Propp and David Wilson, called coupling from the

past. This perfect sampling algorithm “determines on its own when to stop, and then

outputs samples in exact accordance with the desired [stationary] distribution.” (From

Propp and Wilson (1996).)

The idea is disarmingly simple. Assume that an ergodic Markov chain with limit-

ing distribution � is started in the ininite past and run forward in time. Then, at t = 0,

after having run for an ininitely long time, the chain will have reached its station-

ary distribution. Thus, if one could simulate … ,X−2,X−1,X0, then X0 would give a

sample from �.

If a chain is in stationarity then the distribution of the current state is independent

of the initial state. For a k-state chain, the algorithm proceeds by running k copies

of the chain, each started from a different state, but with each chain using the same

source of randomness to determine transitions. Say the chain has coalesced at time t if

all k copies of the chain are at the same state at time t. The algorithmmoves backwards

from t = −1 until there is a time t = s < 0 such that each of the k copies of the chain

Xs,… ,X−2,X−1,X0 have coalesced at t = 0. Then, X0 is taken as a sample—an exact

sample—from �.
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To explain the perfect sampling algorithm more carefully, we represent Markov

transitions with an update function, based on the following basic method for simulat-

ing discrete random variables.

Given a probability distribution p = (p1,… , pk) on (s1,… , sk), the inverse trans-
form method is a simple and intuitive way to simulate an outcome X from p, using a

uniform random number generator. LetU be uniformly distributed on (0, 1). IfU = u,

then set X = sj, where j is the smallest index such that u < p1 + · · · + pj. The method

works since

P(X = sj) = P(p1 + · · · + pj−1 < U < p1 + · · · + pj)

= (p1 + · · · + pj) − (p1 + · · · + pj−1)

= pj.

For example, consider the distribution p = (0.1, 0.2, 0.3, 0.4) on {a, b, c, d}. To
simulate X from p, let U be uniformly distributed on (0, 1). If U = u, set

X =

⎧
⎪⎪⎪⎨⎪⎪⎪⎩

a, if u < 0.1,

b, if 0.1 ≤ u < 0.3,

c, if 0.3 ≤ u < 0.6,

d, if 0.6 ≤ u < 1.

For a Markov chain X0,X1,… , the update function value g(x, u) is the outcome

obtained from the conditional distribution of X1 given X0 = x based on using the

inverse transform method with U = u. For example, for a Markov chain with transi-

tion matrix

P =

a b c d

a

b

c

d

⎛⎜⎜⎜⎜⎝

1∕4 1∕4 1∕4 1∕4

1∕3 1∕3 1∕3 0

0 1∕3 1∕3 1∕3

0 1 0 0

⎞⎟⎟⎟⎟⎠
, (5.2)

the update function is

g(a, u) =

⎧
⎪⎪⎪⎨⎪⎪⎪⎩

a, for 0 ≤ u < 0.25,

b, for 0.25 ≤ u < 0.50,

c, for 0.50 ≤ u < 0.75,

d, for 0.75 ≤ u < 1,

g(b, u) =

⎧⎪⎪⎨⎪⎪⎩

a, for 0 ≤ u < 0.33,

b, for 0.33 ≤ u < 0.67,

c, for 0.67 ≤ u < 1,
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g(c, u) =

⎧⎪⎨⎪⎩

b, for 0 ≤ u < 0.33,

c, for 0.33 ≤ u < 0.67,

d, for 0.67 ≤ u < 1,

and g(d, u) = b, for 0 ≤ u < 1.

For a general Markov chain, we can represent the chain recursively as

Xn+1 = g(Xn,Un), for n = 0, 1,… ,where g is an update function, andU0,U1,…, is an

i.i.d. sequence of uniform (0,1) random variables.

For an ergodic Markov chain on k states, coupling from the past works as

follows:

1. Let U−1,U−2,… be an i.i.d. sequence of uniform (0, 1) random variables.

2. Let t = −1. Run k copies of the chain from time t, each started from a differ-

ent state. For the chain started in x, set X0 = g(x,U−1). Thus, k copies of X0

will be generated, one from each state. The key point of the algorithm is that

even though k different chains are generated, they all use the same source of

randomness U−1. If all the X0 agree, the chains have coalesced, the algorithm

stops, and the common X0 is output as a sample from �.

3. If the chains have not coalesced, move back in time to t = −2. Again, run k

copies of the chain each from different starting states. If X−2 = x, generate

X−1 = g(x,U−2), and X0 = g(X−1,U−1). Thus,

X0 = g(g(x,U−2),U−1).

A new random variable U−2 is used in the simulation, but the old value of U−1

from the previous step is retained. Again, if the chains coalesce at t = 0 return

the common value of X0 as a sample from �.

4. The algorithm proceeds by iteratively moving back in time. Propp and

Wilson suggest, for eficiency, to double the number of steps at each iteration.

Thus, for the next iteration, start at t = −4, then t = −8, and so on. At

t = −4, uniform variables U−4 and U−3 are generated, while retaining U−2

and U−1 from the previous steps.

See Figure 5.10 for an illustration of the algorithm for the transition matrix P of

Equation (5.2). The stationary distribution is � = (2∕11, 9∕22, 3∕11, 3∕22).
At the irst iteration, transitions from each state are based on U−1 = 0.394. This

gives g(a, u−1) = b, g(b, u−1) = b, g(c, u−1) = c, and g(d, u−1) = b. No coalescence

occurs.

At the second iteration, the chain is started from t = −2, with U−2 = 0.741. Keep-
ing the previous value ofU−1, the chain moves forward as shown. Again, coalescence

has not occurred by t = 0.

At the third iteration, the chain is run from t = −4. Two new uniform variables

are generated U−3 = 0.0407 and U−4 = 0.123. Even though coalescence occurs
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Figure 5.10 Perfect sampling on a 4-state chain. Coalescence occurs for the chain started at

time t = −4. The algorithm outputs state c as a sample from the stationary distribution.

at t = −2, the algorithm outputs state c at t = 0 as a sample from �. See the R ile

perfect.R for the implementation.

Monotonicity and the Ising Model

For Markov chains with large state spaces, running copies of the chain from

each state is not practical. However, for chains where the state space exhibits a

certain monotonicity property, the eficiency of the algorithm can be dramatically

improved.

Say a Markov chain with update fuction g is monotone if the state space can be

ordered in such a way that if x ≤ y, then g(x, u) ≤ g(y, u), for 0 < u < 1. For example,

the chain on {1, 2, 3} with transition matrix

P =

1 2 3

1

2

3

⎛
⎜⎜⎝

1∕2 1∕3 1∕6

3∕8 3∕8 1∕4

1∕4 1∕2 1∕4

⎞
⎟⎟⎠
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is monotone. We invite the reader to check this claim with the update function

g(1, u) =

⎧⎪⎨⎪⎩

1, for 0 ≤ u < 0.50,

2, for 0.50 ≤ u < 0.83,

3, for 0.83 ≤ u < 1,

g(2, u) =

⎧⎪⎨⎪⎩

1, for 0 ≤ u < 0.375,

2, for 0.375 ≤ u < 0.75,

3, for 0.75 ≤ u < 1,

and

g(3, u) =

⎧
⎪⎨⎪⎩

1, for 0 ≤ u < 0.25,

2, for 0.25 ≤ u < 0.75,

3, for 0.75 ≤ u < 1.

Assume that there exists a minimal state m and a maximal state M such that for

all x in the state space, m ≤ x ≤ M. Then, a monotone chain has the property that the

path of every chain is sandwiched between the paths of the two chains started in m

and M, respectively. An example is shown in Figure 5.11.

−5 −4 −3 −2 −1 0

6

5

4

3

2

1

Figure 5.11 Monotone chain. All paths are sandwiched between the maximal and minimal

paths.

When implementing coupling from the past for a monotone Markov chain one

need only keep track of the chains started from m and M, since if those two chains

coalesce at a state x, then all other paths of the chain are sandwiched between the

maximal and minimal states and thus also coalesce at x.

The Ising model Gibbs sampler is a chain with an exponentially large state space.

For an n × n grid there are 2n
2
conigurations. Running chains from each state is

practically impossible. However, the Ising model is monotone for � > 0 (the attrac-

tive case), and thus admits a remarkably eficient implementation of coupling from

the past.

Given conigurations � and � , say that �≤ � , if �� ≤ �� for all sites �. This deines

a partial ordering on the set of all conigurations. The coniguration �m, in which all

sites are −1, is the minimal coniguration in this ordering, and the coniguration �M ,

in which all sites are +1, is the maximal coniguration.

To implement the Propp–Wilson algorithm on the Ising model, it sufices at each

step to run the chain from �
m and �

M , checking whether or not coalescence occurs.
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To show the Ising chain is monotone, assume that � ≤ � . Then, for any site �,

∑
i∼�

�i ≤
∑
i∼�

�i.

Updates occur one site at a time. For site �, let X denote the spin at �. For � > 0,

P(X = +1|�−�) =
1

1 + e−2�
∑
i∼��i

≤
1

1 + e−2�
∑
i∼��i

= P(X = +1|�−�),

which gives the result. See Figure 5.12 for a perfect sample of the Ising model at the

critical temperature.

Figure 5.12 An exact sample of the Ising model on a 4200 × 4200 grid at the critical tem-

perature 1∕� = 2.269. Source: Propp andWilson (1996). Reproduced with permission of John

Wiley and Sons, Inc.

5.5 RATE OF CONVERGENCE: THE EIGENVALUE CONNECTION*

Perfect sampling is an impressive algorithm, but limited in its use. For all but the

simplest chains, it is impractical to run simultaneous copies of the chain from each

starting state. And most Markov chains are not monotone. Thus, for all practical

purposes users of MCMC must confront the issue of how long to run the chain

in order to reach convergence, or near convergence, to the targeted stationary

distribution.
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In this section, we show that the second largest eigenvalue of the transition matrix

is a lead actor in the story.

Assume a inite, reversible ergodic Markov chain, with transition matrix P and

limiting distribution � = (�1,… , �k). Let

Q =

⎛
⎜⎜⎜⎝

√
�1 0 · · · 0

0
√
�2 · · · 0

⋮ ⋮ ⋱ ⋮

0 0 · · ·
√
�k

⎞
⎟⎟⎟⎠
.

Since � is positive, the matrix is invertible, and

Q−1 =

⎛⎜⎜⎜⎝

1∕
√
�1 0 · · · 0

0 1∕
√
�2 · · · 0

⋮ ⋮ ⋱ ⋮

0 0 · · · 1∕
√
�k

⎞⎟⎟⎟⎠
.

Let A = QPQ−1. Then,

Aij =

k∑
r=1

k∑
s=1

QirPrsQ
−1
sj

= QiiPijQ
−1
jj

=
√
�iPij

1√
�j
.

Since the chain is reversible,

Aij =
√
�iPij

1√
�j

=
�iPij√
�i
√
�j

=
�jPji√
�i
√
�j

=
√
�jPji

1√
�i

= Aji.

Thus, A is symmetric. That is, A = AT . The eigenvalues of a symmetric matrix are

real. Furthermore, a symmetric matrix is orthogonally diagonalizable. That is, we can

write A = SDST , where D is a diagonal matrix whose diagonal entries are the eigen-

values of A, and S is a matrix whose columns are an orthonormal set of eigenvectors

corresponding to those eigenvalues.

The eigenvalues of a Markov transition matrix are described by Lemma 3.15 in

Section 3.10. Since the chain is ergodic, the transition matrix is regular, and there is

a single largest eigenvalue in absolute value �1 = 1. As the eigenvalues are real, they

can be written in decreasing order

1 = �1 > �2 ≥ �3 ≥ · · · ≥ �k > −1.

Since A = QPQ−1, the matrices P and A are similar and thus have the same eigen-

values. This gives

P = Q−1AQ = Q−1
(
SDST

)
Q =

(
Q−1S

)
D
(
STQ

)
,
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where

D =

⎛⎜⎜⎜⎝

1 0 · · · 0

0 �2 · · · 0

⋮ ⋮ ⋱ ⋮

0 0 · · · �k

⎞⎟⎟⎟⎠
.

For n ≥ 0, Pn =
(
Q−1S

)
Dn

(
STQ

)
. Taking the ijth entry,

Pn
ij
=

k∑
t=1

k∑
u=1

(
Q−1S

)
it
Dn
tu

(
STQ

)
uj

=

k∑
t=1

(
Q−1S

)
it
�nt
(
STQ

)
tj

=

√
�j√
�i

k∑
t=1

�nt SitSjt

=

√
�j√
�i

Si1Sj1 +

√
�j√
�i

k∑
t=2

�nt SitSjt. (5.3)

Equation (5.3) is known as the spectral representation formula for the n-step tran-

sition probabilities. Since Pn
ij
→ �j, as n→ ∞, and �nt → 0, as n→ ∞, for 2 ≤ t ≤ k,

we have that

�j =

√
�j√
�i

Si1Sj1,

and

Pn
ij
− �j =

√
�j√
�i

k∑
t=2

�nt SitSjt.

To bound the difference between the n-step and stationary probabilities,

|Pn
ij
− �j| ≤

√
�j√
�i

k∑
t=2

|�nt SitSjt| ≤
√
�j√
�i

|�∗|n
k∑
t=2

|SitSjt| = |�∗|ncij, (5.4)

where |�∗| = max2≤t≤k|�t|, and cij is a constant that does not depend on n. The quan-
tity �∗ is the second largest eigenvalue in absolute value. The bounds in Equation (5.4)

show that the convergence to stationarity is exponentially fast and the rate of conver-

gence is dominated by the second largest eigenvalue.

5.6 CARD SHUFFLING AND TOTAL VARIATION DISTANCE*

The asymptotic rate of convergence only tells part of the story of a Markov chain’s

path to stationarity. In many applications where a Markov chain is run until it is close

to its limiting distribution, such as MCMC, what a user is interested in is not an
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asymptotic result about what happens at ininity, but rather the more practical issue

of how many steps of the chain are close enough. The issue is illustrated by card

shufling.

Many card shufling schemes can be modeled as Markov chains. For a deck of k

cards, the state space is the set of k! permutations (orderings) of the deck. A shufle

is one step of the chain. If repeated shufles eventually mix up the deck, then the card

shufling scheme is modeled as an ergodic Markov chain whose limiting distribution

is uniform on the set of permutations. If � is a permutation, then �� = 1∕k!.

Theoretically, the uniform distribution is achieved as the number of shufles tends

to ininity. This is not much help to a card player, however, who wants to know how

many shufles are needed to bring the deck suficiently close to random.

To quantify the idea of how far a Markov chain is from its limiting distribution,

a measure of distance is needed between the distribution of the chain at a ixed time

and the limiting distribution. A common measure is total variation distance.

Total Variation Distance

Let P be the transition matrix of an ergodic Markov chain with limiting distribu-

tion �. The total variation distance at time n is

�(n) = max
i∈

max
A⊆

|P(Xn ∈ A|X0 = i) − �A|.

In words, total variation distance at time n is the maximum absolute difference

over all events A and all starting states between the probabilities P(Xn ∈ A) and �A.

The distance measure takes values between 0 and 1. If �(n) = 0, then the chain is

in stationarity at time n. Over time, �(n) → 0, as n→ ∞. It can be shown that the

deinition is equivalent to

�(n) = max
i

1

2

∑
j

|Pn
ij
− �j|.

Example 5.9 Compute total variation distance for the two-state Markov chain with

transition matrix

P =

1 2

1

2

(
1 − p p

q 1 − q

)
.

Solution Recall that

Pn =
1

p + q

(
q + p(1 − p − q)n p − p(1 − p − q)n

q − q(1 − p − q)n p + q(1 − p − q)n

)

and

� =
( q

p + q

p

p + q

)
.
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For i = 1,
2∑
j=1

|Pn
1j
− �j| = 2p

p + q
(1 − p − q)n.

For i = 2,
2∑
j=1

|Pn
2j
= �j| = 2q

p + q
(1 − p − q)n.

Thus,

�(n) =
max(p, q)

p + q
(1 − p − q)n.

Convergence to stationarity, as measured by total variation distance, occurs exponen-

tially fast, with the rate of convergence governed by 1 − p − q. Note that the second

largest eigenvalue of P is �2 = 1 − p − q.

◾

Top-to-Random Shufle

For the top-to-random shufling scheme, a shufle consists of placing the card at the

top of the deck into a uniformly random position in the deck. Howmany such shufles

does it take to mix up a deck of cards?

Admittedly this is not a very eficient shufling method for mixing up cards. But

it is a good example to illustrate our analysis. We show, in a fairly precise sense, that

for a k-card deck it takes about k ln k such shufles to mix up the deck. For a 52-card

deck, that is 52 ln 52, which is about 200 shufles.

Central to the analysis is the notion of a strong stationary time. Recall the dis-

cussion of stopping times and the strong Markov property in Section 3.9. A strong

stationary time is a stopping time. When a Markov chain stops at a strong stationary

time it is in its stationary distribution.

Strong Stationary Time

A strong stationary time for an ergodic Markov chain X0,X1,… is a stopping

time T such that

P(Xn = j,T = n) = �jP(T = n), for all states j and n ≥ 0.

The deinition says that if T is a strong stationary time and T = n, then the Markov

chain is in stationarity at time n. Furthermore, the state of the chain at time T is

independent of T .

In Aldous and Diaconis (1986), the top-to-random shufle is analyzed by con-

structing a suitable strong stationary time.
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Starting with the deck in a ixed order, let b denote the card initially at the bottom

of the deck. As the deck is shufled, cards will eventually be inserted below b, and

the position of b in the deck will rise. We show that as soon as b reaches the top of

the deck and then is inserted in a random position, the deck will be mixed up in the

sense that every ordering is equally likely.

Initially, the probability that the top card is inserted at the bottom of the deck

below b is 1∕k, since there are k available positions. Since successive shufles are

independent, the number of shufles needed for a card to be inserted below b has a

geometric distribution with parameter 1∕k.

After b has moved up one position from the bottom, consider the time until a

second card moves below b. There are now two available slots, and the number of

shufles needed has a geometric distribution with parameter 2∕k. Furthermore, once

two cards are below b, each of the two orderings of those two cards is equally likely.

More generally, assume that there are i − 1 cards below b. The probability that the

top card is inserted below b is i∕k. The number of shufles needed before the top card

is inserted below b has a geometric distribution with parameter i∕k. Once i cards are

below b, each of the i! orderings of the i cards is equally likely.

Finally, after the original bottom card has risen to the top of the deck it takes one

more shufle, which sends b to a uniformly random position, before all k! orderings

of the deck are equally likely. At that (random) time, the deck is mixed up.

Let T be the number of top-to-random shufles needed for the original bottom card

to reach the top of the deck, plus 1. Then, T is a strong stationary time.

The analysis also shows that T can be expressed as the sum of k independent

geometric random variables, with successive parameters 1∕k, 2∕k,… , (k − 1)∕k, 1.
The expectation of a geometric random variable is the reciprocal of the parameter.

Hence,

E(T) =
k

1
+
k

2
+ · · · +

k

k − 1
+
k

k
= k

(
1 +

1

2
+ · · · +

1

k − 1
+

1

k

)
≈ k ln k.

Strong stationary times are used to bound total variation distance by the following

lemma.

Strong Stationary Times and Total Variation Distance

Lemma 5.2. Let T be a strong stationary time for an ergodic Markov chain. For

n > 0,

�(n) ≤ P(T > n).

The lemma is proved at the end of the chapter. To apply the lemma to the

top-to-random shufle, we estimate P(T > n) by relating the strong stationary time T

to the classic coupon collector’s problem.

Assume that a set of k distinct items (coupons) is sampled repeatedly with replace-

ment. Let C be the number of samples needed to obtain a full set of coupons, that is,
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for each distinct item to be sampled at least once. We show that the distributions of

C and T are the same.

Let Ci be the number of trials needed before the ith new coupon has been selected,

for i = 1,… , k, so that C = Ck. Necessarily, C1 = 1. For i = 2,… , k, Ci − Ci−1, the

number of samples needed after the (i − 1)th coupon is picked until the ith new

coupon is picked has a geometric distribution with parameter (k − i + 1)∕k. This is

because after the (i − 1)th coupon is selected, there are k − i + 1 remaining coupons,

and each one can be chosen with probability (k − i + 1)∕k. Furthermore, the random

variables Ci − Ci−1 are independent. We have that

C = C1 + (C2 − C1) + · · · + (Ck − Ck−1)

is a sum of independent geometric random variables with respective parameters

1, (k − 1)∕k,… , 2∕k, 1∕k. It follows that C and T have the same distribution, and

P(T > n) = P(C > n), for all n.

The event {C > n} is the event that after n trials, some coupon has not been sam-

pled. Let Ai denote the event that coupon i has not been picked after n trials. Then,

P(C > n) = P

(
n⋃
i=1

Ai

)
≤

k∑
i=1

P(Ai)

=

k∑
i=1

(
1 −

1

k

)n
≤

k∑
i=1

e−n∕k

= ke−n∕k,

using that 1 − x ≤ e−x, for all x.

For the top-to-random shufle, with Lemma 5.2, this gives

�(n) ≤ P(T > n) = P(C > n) ≤ ke−n∕k. (5.5)

To make total variation distance small, ind a value of n that makes the righthand

side of Equation (5.5) small. For c > 0, let n = k ln k + ck. Then,

�(n) = �(k ln k + ck) ≤ ke−(ln k+c) = e−c ≈ 0.

The bound is interpreted to mean that for a little more than k ln k shufles the distance

to stationarity is small.

Aldous and Diaconis (1986) also show, by a different analysis, that for a little less

than k ln k shufles, that is, for n = k ln k − ck, with c > 0, total variation distance �(n)

stays close to 1.

Thus, the claim that for large k it takes about k ln k top-to-random shufles to mix

up the deck of cards. Fewer than k ln k steps are insuficient. More than k ln k steps

are not necessary.
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The top-to-random shufle exhibits a remarkable property, shared by many card

shuflingMarkov chains, known as the cutoff phenomenon. The approach to stationar-

ity, as measured by total variation distance, behaves like a phase transition in physics.

As the number of shufles increases, the chain stays far from uniform and then, in a

relatively short time window, the chain rapidly gets close to uniform. See Figure 5.13.

n = k In k n

0

v
(n

)

1

Figure 5.13 Cutoff phenomenon for top-to-random shufle.

Seven Shufles is Enough

In 1990, the New York Times reported the “fascinating result,” discovered by mathe-

maticians David Bayer and Persi Diaconis, that, “It takes just seven ordinary, imper-

fect [rifle] shufles to mix a deck of cards thoroughly” (Kolata, 1990). The analysis

by Bayer and Diaconis (1992) was based on calculating the total variation distance

for a Markov model for how most people shufle cards.

The rifle-shufling scheme is known as the Gilbert–Shannon–Reeds model. A

deck of k cards is cut into two piles according to a binomial distribution. That is,

the probability that one pile has i cards, and the other pile has k − i cards, is
(
k

i

)
2−k,

for i = 0, 1,… , k. The two piles are then rifled together by successively dropping

cards from either pile with probability proportional to the size of the pile. Thus, if

there are a cards in the irst pile, and b cards in the second pile, the probability that

the next card dropped comes from the irst pile is a∕(a + b).

Bayer and Diaconis give a thorough analysis of the total variation distance for the

resulting Markov chain. They show that about (3∕2)log2(k) shufles are necessary

and suficient to make total variation distance small. They further demonstrate the

existence of the cutoff phenomenon, as shown in Figure 5.14 and Table 5.2, which

contains values for total variation distance after n rifle shufles of 52 cards.
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Figure 5.14 Total variation distance for rifle shufling.

TABLE 5.2 Total Variation Distance for n Shufles of 52 Cards

n 1 2 3 4 5 6 7 8 9 10

�(n) 1.000 1.000 1.000 1.000 0.924 0.614 0.334 0.167 0.085 0.043

Source: Data from Bayer and Diaconis (1992).

For an introduction to the mathematics of rifle shufling, see Mann (1994).

Proof of Lemma 5.2

Let T be a strong stationary time for a Markov chain X0,X1,…We show that the

deinition of strong stationary time implies that

P(Xn = j,T ≤ n) = �jP(T ≤ n).

We have that

P(Xn = j,T ≤ n) =
∑
m≤n

P(T = m|Xn = j)P(Xn = j)

=
∑
m≤n

∑
x

P(T = m|Xn = j,Xm = x)P(Xm = x|Xn = j)P(Xn = j)

=
∑
m≤n

∑
x

P(T = m|Xm = x)P(Xm = x,Xn = j)

=
∑
m≤n

P(T = m)
∑
x

�x
P(Xm = x,Xn = j)

P(Xm = x)
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= P(T ≤ m)
∑
x

�xP(Xn = j|Xm = x)

= P(T ≤ m)
∑
x

�xP
n−m
xj

= P(T ≤ m)�j.

The third equality is because T is a stopping time and the event {T = m} depends

on X0,… ,Xm, and not on Xn for n > m. The fourth equality is by the deinition of

strong stationary time. The last equality is because � is a stationary distribution and

� Pn−m = �.

For the chain started in i,

P(Xn ∈ A) = P(Xn ∈ A,T ≤ n) + P(Xn ∈ A,T > n)

= �AP(T ≤ n) + P(Xn ∈ A|T > n)P(T > n)

= �A + [P(Xn ∈ A|T > n) − �A]P(T > n),

which gives

|P(Xn ∈ A) − �A| = |P(Xn ∈ A|T > n) − �A|P(T > n) ≤ P(T > n),

where the last inequality is because the absolute difference of two probabilities is at

most 1. Maximizing over initial states i gives the result.

◾

EXERCISES

5.1 Four out of every ive trucks on the highway are followed by a car, while only

one out of every four cars is followed by a truck. At a toll booth, cars pay $1.50

and trucks pay $5.00. If 1,000 vehicles pass through the tollbooth in one day,

how much toll is collected?

5.2 Consider simple random walk on {0, 1,… , k} with relecting boundaries at 0

and k, that is, random walk on the path from 0 to k. A random walker earns $k

every time the walk reaches 0 or k, but loses $1 at each internal vertex (from 1

to k − 1). In 10,000 steps of the walk, how much, on average, will be gained?

5.3 Commuters in an urban center either drive by car, take the bus, or bike to work.

Based on recent changes to local transportation systems, urban planners predict

yearly annual behavior changes of commuters based on a Markov model with

transition matrix

P =

Car Bus Bike

Car

Bus

Bike

⎛⎜⎜⎝

0.7 0.2 0.1

0.1 0.8 0.1

0.05 0.15 0.8

⎞⎟⎟⎠
.
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(a) In a city of 10,000 commuters, 6,000 currently drive cars, 3,000 take the

bus, and 1,000 bike to work. Two years after transportation changes are

made, how many commuters will use each type of transportation? Over the

long term, how many commuters will use each type of transportation?

(b) The European Cyclists Federation reports the following levels of CO2 emis-

sions (in grams) per passenger per kilometer traveled: car: 271, bus: 101,

bike: 21. What is the current average amount of CO2 emissions per kilome-

ter traveled? How does the average change over the long-term?

5.4 The Fibonacci sequence 1, 1, 2, 3, 5, 8, 13,… is described by the recurrence fn =

fn−1 + fn−2, for n ≥ 3, with f1 = f2 = 1.

(a) See the MCMC example for binary sequences with no adjacent 1s. Show

that the number of binary sequences of lengthmwith no adjacent 1s is fm+2.

(b) Let pk,m be the number of good sequences of length m with exactly k 1s.

Show that

pk,m =
(
m − k + 1

k

)
, for k = 0, 1,… , ⌈m∕2⌉.

(c) Let �m be the expected number of 1s in a good sequence of length m under

the uniform distribution. Find �m, for m = 10, 100, 1000.

(d) If you have access to a mathematical symbolic software system, such as

Mathematica, use it to ind

lim
m→∞

�m

m
.

5.5 Exhibit a Metropolis–Hastings algorithm to sample from the distribution

1 2 3 4 5 6

0.01 0.39 0.11 0.18 0.26 0.05

with proposal distribution based on one fair die roll.

5.6 Show how to generate a Poisson random variable with parameter � using

Metropolis–Hastings. Use simple symmetric random walk as the proposal

distribution.

5.7 Exhibit a Metropolis–Hastings algorithm to sample from a binomial distribu-

tion with parameters n and p. Use a proposal distribution that is uniform on

{0, 1,… , n}.

5.8 TheMetropolis–Hastings algorithm is used to simulate a binomial random vari-

able with parameters n = 4 and p = 1∕4. The proposal distribution is simple

symmetric random walk on {0, 1, 2, 3, 4} with relecting boundaries.

(a) Exhibit the T matrix.

(b) Exhibit the transition matrix for the Markov chain created by the

Metropolis–Hastings algorithm.
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(c) Show explicitly that this transition matrix gives a reversible Markov chain

whose stationary distribution is the desired binomial distribution.

5.9 Show how to use the Metropolis–Hastings algorithm to simulate from the dou-

ble exponential distribution, with density

f (x) =
�

2
e−�|x|, for −∞ < x < ∞.

Use the normal distribution as a proposal distribution.

5.10 A Markov chain has transition matrix

P =

1 2 3

1

2

3

⎛
⎜⎜⎝

1∕2 1∕2 0

1∕2 0 1∕2

0 1∕2 1∕2.

⎞
⎟⎟⎠

Show that the chain is monotone.

5.11 Consider the following randomwalk on {1,… , n}. From state 1, thewalkmoves

to 1 or 2 with probability 1/2 each. From state n, the walk moves to n or n − 1

with probability 1/2 each. From all other states i, the walk moves to i − 1 or

i + 1 with probability 1/2 each.

(a) Show that the Markov chain is monotone.

(b) R : Implement perfect sampling, making use of monotonicity, to simulate

the random walk on {1,… , 100}.

5.12 Consider random walk on the k-hypercube graph. At each step, one of k coor-

dinates is selected uniformly at random. A coin is then tossed. If heads, the

coordinate is set to 0. If tails, it is set to 1. Let T be the irst time that all k coor-

dinates are selected. Argue that T is a strong stationary time. What can be said

on how many steps it takes for the walk to get uniformly distributed? (Hint:

consider the coupon collector’s problem.)

5.13 Consider the lazy librarian and move-to-front process as described in Example

2.10. It can be shown that the irst time that all the books have been selected is a

strong stationary time. Assume that pj is the probability that book j is selected,

for j = 1,… , k. Show that

�(n) ≤
k∑
j=1

e−pjn.

5.14 Show that the two deinitions of total variation distance given in Section 5.6 are

equivalent.

5.15 See the description of the Gilbert–Shannon–Reeds model for rifle shufles in

Section 5.6. Give the Markov transition matrix for a three-card deck.
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5.16 See the discussion on rifle shufling and total variation distance. Bayer and

Diaconis (1992) prove the following. If k cards are rifle shufled n times with

n = (3∕2)log2(k) + �, then for large k,

�(n) = 1 − 2Φ

(
−2−�

4
√
3

)
+ g(k), (5.6)

where Φ is the cumulative distribution function of the standard normal distri-

bution, and g(k) is a slow-growing function of order k−1∕4.

(a) Show that total variation distance tends to 1 with � small, and to 0 with �

large.

(b) Verify that Equation (5.6) gives values that are close to the entries in

Table 5.2.

5.17 R : Random variables X and N have joint distribution, deined up to a constant

of proportionality,

f (x, n) ∝
e−3xxn

n!
, for n = 0, 1, 2, … and x > 0.

Note that X is continuous and N is discrete.

(a) Implement a Gibbs sampler to sample from this distribution.

(b) Use your simulation to estimate (i) P
(
X2 < N

)
and (ii) E(XN).

5.18 R : A random variable X has density function, deined up to proportionality,

f (x) ∝ e−(x−1)
2∕2 + e−(x−4)

2∕2, for 0 < x < 5.

Implement a Metropolis–Hastings algorithm for simulating from the distribu-

tion. Use your algorithm to approximate the mean and variance of X.

5.19 R : Implement the algorithm in Exercise 5.7 for n = 50 and p = 1∕4. Use your

simulation to estimate P(10 ≤ X ≤ 15), where X has the given binomial distri-

bution. Compare your estimate to the exact probability.

5.20 R : Consider a Poisson distribution with parameter � = 3 conditioned to be

nonzero. Implement an MCMC algorithm to simulate from this distribution,

using a proposal distribution that is geometric with parameter p = 1∕3. Use

your simulation to estimate the mean and variance.
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The count has arrived …
–Thomas Carlyle, Count Cagliostro

6.1 INTRODUCTION

Text messages arrive on your cell phone at irregular times throughout the day. Acci-

dents occur on the highway in a seemingly random distribution of time and place.

Babies are born at chance moments on a maternity ward.

All of these phenomena are well modeled by the Poisson process, a stochastic

process used to model the occurrence, or arrival, of events over a continuous interval.

Typically, the interval represents time.

A Poisson process is a special type of counting process. Given a stream of events

that arrive at random times starting at t = 0, let Nt denote the number of arrivals that

occur by time t, that is, the number of events in [0, t]. For instance, Nt might be the

number of text messages received up to time t.

For each t ≥ 0, Nt is a random variable. The collection of random variables

(Nt)t≥0 is a continuous-time, integer-valued stochastic process, called a counting

process. Since Nt counts events in [0, t], as t increases, the number of events Nt
increases.

Introduction to Stochastic Processes with R, First Edition. Robert P. Dobrow.
© 2016 John Wiley & Sons, Inc. Published 2016 by John Wiley & Sons, Inc.
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Counting Process

A counting process (Nt)t≥0 is a collection of non-negative, integer-valued random

variables such that if 0 ≤ s ≤ t, then Ns ≤ Nt.

Unlike a Markov chain, which is a sequence of random variables, a counting

process forms an uncountable collection, since it is indexed over a continuous time

interval.

Figure 6.1 shows the path of a counting process in which events occur at times

t1, t2, t3, t4, t5. As shown, the path of a counting process is a right-continuous step

function. If 0 ≤ s < t, then Nt − Ns is the number of events in the interval (s, t].
Note that in the discussion of the Poisson process, we use the word event in a loose,

generic sense, and not in the rigorous sense of probability theory where an event is a

subset of the sample space.
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Figure 6.1 Counting process.

There are several ways to characterize the Poisson process. One can focus on

(i) the number of events that occur in ixed intervals, (ii) when events occur, and the

times between those events, or (iii) the probabilistic behavior of individual events on

ininitesimal intervals. This leads to three equivalent deinitions of a Poisson process,

each of which gives special insights into the stochastic model.

Poisson Process—Deinition 1

A Poisson process with parameter � is a counting process (Nt)t≥0 with the

following properties:

1. N0 = 0.

2. For all t > 0, Nt has a Poisson distribution with parameter �t.



INTRODUCTION 225

3. (Stationary increments) For all s, t > 0, Nt+s − Ns has the same distribution as

Nt. That is,

P(Nt+s − Ns = k) = P(Nt = k) =
e−�t(�t)k

k!
, for k = 0, 1, …

4. (Independent increments) For 0 ≤ q < r ≤ s < t, Nt − Ns and Nr − Nq are

independent random variables.

The stationary increments property says that the distribution of the number of

arrivals in an interval only depends on the length of the interval.

The independent increments property says that the number of arrivals on disjoint

intervals are independent random variables.

SinceNt has a Poisson distribution, E(Nt) = �t. That is, we expect about �t arrivals

in t time units. Thus, the rate of arrivals is E(Nt)∕t = �.

Example 6.1 Starting at 6 a.m., customers arrive at Martha’s bakery according to a

Poisson process at the rate of 30 customers per hour. Find the probability that more

than 65 customers arrive between 9 and 11 a.m.

Solution Let t = 0 represent 6 a.m. Then, the desired probability is P(N5 − N3 > 65).

By stationary increments,

P(N5 − N3 > 65) = P(N2 > 65) = 1 − P(N2 ≤ 65)

= 1 −

65∑
k=0

P(N2 = k)

= 1 −

65∑
k=0

e−30(2)(30(2))k

k!
= 0.2355.

In R , the result is obtained by typing

> 1-ppois(65,2*30)
[1] 0.2355065

◾

Example 6.2 Joe receives text messages starting at 10 a.m. at the rate of 10 texts

per hour according to a Poisson process. Find the probability that he will receive

exactly 18 texts by noon and 70 texts by 5 p.m.

Solution The desired probability is P(N2 = 18,N7 = 70), with time as hours. If 18

texts arrive in [0, 2] and 70 texts arrive in [0, 7], then there are 70 − 18 = 52 texts in
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(2, 7]. That is,

{N2 = 18,N7 = 70} = {N2 = 18,N7 − N2 = 52}.

The intervals [0, 2] and (2, 7] are disjoint, which gives

P(N2 = 18,N7 = 70) = P(N2 = 18,N7 − N2 = 52)

= P(N2 = 18)P(N7 − N2 = 52)

= P(N2 = 18)P(N5 = 52)

=

(
e−2(10)(2(10))18

18!

)(
e−5(10)(5(10))52

52!

)

= 0.0045,

where the second equality is because of independent increments, and the third equal-

ity is because of stationary increments. The inal calculation in R is

> dpois(18,2*10)*dpois(52,5*10)
[1] 0.004481021

Warning: It would be incorrect to write

P(N2 = 18,N7 − N2 = 52) = P(N2 = 18,N5 = 52).

It is not true that N7 − N2 = N5. The number of arrivals in (2, 7] is not necessarily
equal to the number of arrivals in (0, 5]. What is true is that the distribution ofN7 − N2

is equal to the distribution of N5. Note that while N7 − N2 is independent of N2, the

random variable N5 is not independent of N2. Indeed, N5 ≥ N2. ◾

Translated Poisson Process

Let (Nt)t≥0 be a Poisson process with parameter �. For ixed time s > 0, consider the

translated process (Nt+s − Ns)t≥0. The translated process is probabilistically equiva-

lent to the original process.

Translated Poisson Process is a Poisson Process

Proposition 6.1. Let (Nt)t≥0 be a Poisson process with parameter �. For s > 0,

let

Ñt = Nt+s − Ns, for t ≥ 0.

Then, (Ñt)t≥0 is a Poisson process with parameter �.
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We have that
(
Ñt

)
t≥0

is a counting process with Ñ0 = Ns − Ns = 0. By stationary

increments, Ñt has the same distribution as Nt. And the new process inherits sta-

tionary and independent increments from the original. It follows that if Ns = k, the

distribution of Nt+s − k is equal to the distribution of Nt.

Example 6.3 On election day, people arrive at a voting center according to a Pois-

son process. On average, 100 voters arrive every hour. If 150 people arrive during the

irst hour, what is the probability that at most 350 people arrive before the third hour?

Solution Let Nt denote the number of arrivals in the irst t hours. Then, (Nt)t≥0
is a Poisson process with parameter � = 100. Given N1 = 150, the distribution of

N3 − N1 = N3 − 150 is equal to the distribution of N2. This gives

P(N3 ≤ 350|N1 = 150) = P(N3 − 150 ≤ 200|N1 = 150)

= P(N2 ≤ 200)

=

200∑
k=0

e−100 (2)(100(2))k

k!

= 0.519. ◾

6.2 ARRIVAL, INTERARRIVAL TIMES

For a Poisson process with parameter �, let X denote the time of the irst arrival. Then,

X > t if and only if there are no arrivals in [0, t]. Thus,

P(X > t) = P(Nt = 0) = e−�t, for t > 0.

Hence, X has an exponential distribution with parameter �.
The exponential distribution plays a central role in the Poisson process. What is

true for the time of the irst arrival is also true for the time between the irst and

second arrival, and for all interarrival times. A Poisson process is a counting process

for which interarrival times are independent and identically distributed exponential

random variables.

Poisson Process—Deinition 2

Let X1,X2, … be a sequence of i.i.d. exponential random variables with param-

eter �. For t > 0, let

Nt = max{n ∶ X1 + · · · + Xn ≤ t},

with N0 = 0. Then, (Nt)t≥0 deines a Poisson process with parameter �.
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Let

Sn = X1 + · · · + Xn, for n = 1, 2, …

We call S1, S2, … the arrival times of the process, where Sk is the time of the

kth arrival. Furthermore,

Xk = Sk − Sk−1, for k = 1, 2, …

is the interarrival time between the (k − 1)th and kth arrival, with S0 = 0.

The relationship between the interarrival and arrival times for a Poisson process is

illustrated in Figure 6.2.
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Figure 6.2 Arrival times S1, S2, … , and interarrival times X1,X2, …

In the next section, we show that Deinitions 1 and 2 are equivalent. A beneit

of Deinition 2 is that it leads to a direct method for constructing, and simulating, a

Poisson process:

1. Let S0 = 0.

2. Generate i.i.d. exponential random variables X1,X2, …

3. Let Sn = X1 + · · · + Xn, for n = 1, 2, …

4. For each k = 0, 1, … , let Nt = k, for Sk ≤ t < Sk+1.

Two realizations of a Poisson process with � = 0.1 obtained by this method on the

interval [0, 100] are shown in Figure 6.3.

The importance of the exponential distribution to the Poisson process lies in its

unique memoryless property, a topic from probability that merits review.
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Figure 6.3 Realizations of a Poisson process with � = 0.1.

Memorylessness

To illustrate, assume that Amy and Zach each want to take a bus. Buses arrive at a

bus stop according to a Poisson process with parameter � = 1∕30. That is, the times

between buses have an exponential distribution, and buses arrive, on average, once

every 30 minutes. Unlucky Amy gets to the bus stop just as a bus pulls out of the

station. Her waiting time for the next bus is about 30 minutes. Zach arrives at the bus

stop 10 minutes after Amy. Remarkably, the time that Zach waits for a bus also has an

exponential distribution with parameter � = 1∕30. Memorylessness means that their

waiting time distributions are the same, and they will both wait, on average, the same

amount of time!

To prove it true, observe that Zach waits more than t minutes if and only if Amy

waits more than t + 10 minutes, given that a bus does not come in the irst 10 minutes.

Let A and Z denote Amy and Zach’s waiting times, respectively. Amy’s waiting time

is exponentially distributed. Hence,

P(Z > t) = P(A > t + 10|A > 10) =
P(A > t + 10)

P(A > 10)

=
e−(t+10)∕30

e−10∕30
= e−t∕30 = P(A > t),

from which it follows that A and Z have the same distribution. See the R code and

Figure 6.4 for the results of a simulation.

Of course, there is nothing special about t = 10. Memorylessness means that

regardless of how long you have waited, the distribution of the time you still have to

wait is the same as the original waiting time.
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Figure 6.4 Waiting time distributions for Amy and Zach. Zach arrives 10 minutes after Amy.

By memorylessness, the distributions are the same.

R : Bus Waiting Times

# buswaiting.R
> trials <- 5000
> amy <- numeric(trials)
> zach <- numeric(trials)
> for (i in 1:trials) {
+ bus <- rexp(1,1/30)
+ amy[i] <- bus
+ while (bus < 10) { bus <- bus + rexp(1,1/30) }
+ zach[i] <- bus-10 }
> mean(amy)
[1] 29.8043
> mean(zach)
[1] 30.39833
> hist(amy,xlab="Amy",prob=T,ylab="",main="")
> hist(zach,xlab="Zach",prob=T,ylab="",main="")

The exponential distribution is the only continuous distribution that is memoryless.

(The geometric distribution has the honors for the discrete case.) Here is the general

statement of the property.

Memorylessness

A random variable X is memoryless if, for all s, t > 0,

P(X > s + t|X > s) = P(X > t).

Results for the minimum of independent exponential random variables are partic-

ularly useful when working with the Poisson process. We highlight two properties

that arise in many settings.
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Minimum of Independent Exponential Random Variables

Let X1, … ,Xn be independent exponential random variables with respective

parameters �1, … , �n. Let M = min(X1, … ,Xn).

1. For t > 0,

P(M > t) = e−t(�1+···+�n). (6.1)

That is, M has an exponential distribution with parameter �1 + · · · + �n.

2. For k = 1, … , n,

P(M = Xk) =
�k

�1 + · · · + �n
. (6.2)

Proof.

1. For t > 0,

P(M > t) = P(X1 > t, … ,Xn > t) = P(X1 > t) · · ·P(Xn > t)

= e−�1t · · · e−�nt = e−t(�1+···+�n).

2. For 1 ≤ k ≤ n, conditioning on Xk gives

P(M = Xk) = P(min(X1, … ,Xn) = Xk)

= P(X1 ≥ Xk, … ,Xn ≥ Xk)

= ∫
∞

0

P(X1 ≥ t, … ,Xn ≥ t|Xk = t)�ke
−�k t dt

= ∫
∞

0

P(X1 ≥ t, … ,Xk−1 ≥ t,Xk+1 ≥ t, … ,Xn ≥ t)�ke
−�k t dt

= ∫
∞

0

P(X1 ≥ t) · · ·P(Xk−1 ≥ t)P(Xk+1 ≥ t) · · ·P(Xn ≥ t)�ke
−�k t dt

= �k ∫
∞

0

e−t(�1+···+�n) dt =
�k

�1 + · · · + �n
.

◾

Example 6.4 A Boston subway station services the red, green, and orange lines.

Subways on each line arrive at the station according to three independent Poisson

processes. On average, there is one red train every 10 minutes, one green train every

15 minutes, and one orange train every 20 minutes.

(i) When you arrive at the station what is the probability that the irst subway that

arrives is for the green line?
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(ii) How long will you wait, on average, before some train arrives?

(iii) You have been waiting 20 minutes for a red train and have watched three

orange trains go by. What is the expected additional time you will wait for

your subway?

Solution

(i) Let XG, XR, and XO denote, respectively, the times of the irst green, red, and

orange subways that arrive at the station. The event that the irst subway is

green is the event that XG is the minimum of the three independent random

variables. The desired probability is

P(min(XG,XR,XO) = XG) =
1∕15

1∕10 + 1∕15 + 1∕20
=

4

13
= 0.31.

(ii) The time of the irst train arrival is the minimum of XG, XR, and XO, which has

an exponential distribution with parameter

1

10
+

1

15
+

1

20
=

13

60
.

Thus, you will wait, on average 60∕13 = 4.615 minutes. A quick simulation

gives

> sim <- replicate(10000,
+ min(rexp(1,1/10),rexp(1,1/15),rexp(1,1/20)))
> mean(sim)
[1] 4.588456

(iii) Your waiting time is independent of the orange arrivals. By memorylessness

of interarrival times, the additional waiting time for the red line has the same

distribution as the original waiting time. You will wait, on average, 10 more

minutes. ◾

For a Poisson process, each arrival time Sn is a sum of n i.i.d. exponential interar-

rival times. A sum of i.i.d. exponential variables has a gamma distribution.

Arrival Times and Gamma Distribution

For n = 1, 2, … , let Sn be the time of the nth arrival in a Poisson process with

parameter �. Then, Sn has a gamma distribution with parameters n and �. The
density function of Sn is

fSn (t) =
�ntn−1e−�t

(n − 1)!
, for t > 0.
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Mean and variance are

E(Sn) =
n

�
and Var (Sn) =

n

�2
.

For a general gamma distribution, the parameter n does not have to be an integer.

When it is, the distribution is sometimes called an Erlang distribution. Observe that

if n = 1, the gamma distribution reduces to the exponential distribution with param-

eter �.
Two ways to derive the gamma distribution for sums of i.i.d. exponentials are

(i) by induction on n, using the fact that Sn = Sn−1 + Xn, and (ii) bymoment-generating

functions. We leave both derivations to the exercises.

Example 6.5 The times when goals are scored in hockey are modeled as a Poisson

process inMorrison (1976). For such a process, assume that the average time between

goals is 15 minutes.

(i) In a 60-minute game, ind the probability that a fourth goal occurs in the last 5

minutes of the game.

(ii) Assume that at least three goals are scored in a game. What is the mean time

of the third goal?

Solution The parameter of the hockey Poisson process is � = 1∕15.

(i) The desired probability is

P(55 < S4 ≤ 60) =
1

6 ∫
60

55

(1∕15)4t3e−t∕15 dt = 0.068.

In R , the probability is found by typing

> pgamma(60,4,1/15)-pgamma(55,4,1/15)
[1] 0.06766216

(ii) The desired expectation is

E(S3|S3 < 60) =
1

P(S3 < 60) ∫
60

0

t fS3 (t) dt

=
1

P(S3 < 60) ∫
60

0

t
(1∕15)3t2e−t∕15

2
dt

=
25.4938

0.7619
= 33.461 minutes.

◾
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6.3 INFINITESIMAL PROBABILITIES

A third way to deine the Poisson process is based on an ininitesimal description of

the distribution of points (e.g., events) in small intervals.

To state the new deinition, we use little-oh notation. Write f (h) = o(h) to mean

that

lim
h→0

f (h)

h
= 0.

More generally, say that a function f is little-oh of g, and write f (h) = o(g(h)), to mean

that

lim
h→0

f (h)

g(h)
= 0.

Little-oh notation is often used when making order of magnitude statements about

a function, or in referencing the remainder term of an approximation.

For example, the Taylor series expansion of eh with remainder term is

eh = 1 + h +
h2

2
+
h3

6
+ · · · = 1 + h + R(h),

where R(h) = ezh2∕2, for some z ∈ (−h, h). Since R(h)∕h = ezh∕2 → 0, as h→ 0, we

can write

eh = 1 + h + o(h).

Note that if two functions f and g are little-oh of h, then f (h) + g(h) = o(h), since

(f (h) + g(h))∕h→ 0, as h → 0. Similarly, if f (h) = o(h), then cf (h) = o(h), for any

constant c. If f (h) = o(1), then f (h) → 0, as h→ 0.

Poisson Process—Deinition 3

A Poisson process with parameter � is a counting process (Nt)t≥0 with the fol-

lowing properties:

1. N0 = 0.

2. The process has stationary and independent increments.

3. P(Nh = 0) = 1 − �h + o(h).

4. P(Nh = 1) = �h + o(h).

5. P(Nh > 1) = o(h).

Properties 3–5 essentially ensure that there cannot be ininitely many arrivals in a

inite interval, and that in an ininitesimal interval there may occur at most one event.
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It is straightforward to show that Deinition 3 is a consequence of Deinition 1.

If Nh has a Poisson distribution with parameter �h, then

P(Nh = 0) = e−�h = 1 − �h + o(h),

P(Nh = 1) = e−�h�h = (1 − �h + o(h))�h = �h + o(h),

and

P(Nh > 1) = 1 − P(Nh = 0) − P(Nh = 1)

= 1 − (1 − �h + o(h)) − (�h + o(h))

= o(h).

The converse, that Deinition 3 implies Deinition 1, is often shown by deriving and

solving a differential equation. We will forego the rigorous proof, but give a heuristic

explanation, which offers insight into the nature of Poisson arrivals.

Assume that Deinition 3 holds. We need to show thatNt has a Poisson distribution

with parameter �t.
Consider Nt, the number of points in the interval [0, t]. Partition [0, t] into n subin-

tervals each of length t∕n. Properties 3–5 imply that for suficiently large n, each

subinterval will contain either 0 or 1 point with high probability. The chance that a

small subinterval contains 2 or more points is negligible. See Figure 6.5.
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Figure 6.5 A partition of [0, t] where each subinterval contains 0 or 1 point.

A subinterval has the form ((k − 1)t∕n, kt∕n] for some k = 1, … , n. By stationary
increments,

P(Nkt∕n − N(k−1)t∕n = 1) = P(Nt∕n = 1) =
�t

n
+ o

(
t

n

)
, for all k.

Furthermore, by independent increments, whether or not a point is contained in a

particular subinterval is independent of the points in any other subinterval.

Hence, for large n, the outcomes in each subinterval can be considered a sequence

of n i.i.d. Bernoulli trials, where the probability pn that a point is contained in a sub-

interval is

pn =
�t

n
+ o

(
t

n

)
.

Thus, the number of points in [0, t], being the sum of n i.i.d. Bernoulli trials, has a

binomial distribution with parameters n and pn.
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The result that Nt has a Poisson distribution is obtained by letting n tend to ininity

and appealing to the Poisson approximation of the binomial distribution. Since

npn = n
[
�t

n
+ o

(
t

n

)]
= �t + n

[
o
(
t

n

)]
→ �t > 0, as n→ ∞,

the approximation holds, which gives that Nt has a Poisson distribution with param-

eter �t. Note that for the o(t∕n) term, since

lim
1∕n→0

o(t∕n)

t∕n
= 0, then equivalently lim

n→∞
n[o(t∕n)] = 0.

A statement and proof of the Poisson approximation of the binomial distribution

is given in Appendix B, Section B.4.

Equivalence of Poisson Deinitions

Wehave shown that Deinitions 1 and 3 are equivalent. Here, we show that Deinitions

1 and 2 are equivalent.

Assume Deinition 2. That is, let X1,X2, … be an i.i.d. sequence of exponential

random variables with parameter �. For each n, let Sn = X1 + · · · + Xn, with

S0 = 0, and let Nt = max{n ∶ Sn ≤ t}. We show Nt has a Poisson distribution with

parameter �t.
Observe that for k ≥ 0, Nt = k if and only if the kth arrival occurs by time t and

the (k + 1)th arrival occurs after t. That is, Sk ≤ t < Sk + Xk+1. Since Sk is a function

of X1, … ,Xk, Sk and Xk+1 are independent random variables, and their joint density

is the product of their marginal densities. This gives

fSk ,Xk+1 (s, x) = fSk (s) fXk+1(x) =

(
�ksk−1e−�s

(k − 1)!

)
�e−�x, for s, x > 0.

For k ≥ 0,

P(Nt = k) = P(Sk ≤ t ≤ Sk + Xk+1)

= P(Sk ≤ t,Xk+1 ≥ t − Sk)

= ∫
t

0 ∫
∞

t−s

fSk ,Xk+1 (s, x) dx ds

= ∫
t

0 ∫
∞

t−s

(
�ksk−1e−�s

(k − 1)!

)
�e−�x dx ds

=
�k

(k − 1)! ∫
t

0

(
sk−1e−�s

)
e−�(t−s) ds

=
e−�t�k

(k − 1)! ∫
t

0

sk−1 ds =
e−�t(�t)k

k!
,

which gives the desired Poisson distribution.
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The fact that the interarrival times of a Poisson process are memoryless means that

the pattern of arrivals from an arbitrary time s onward behaves the same as the pattern

of arrivals from time 0 onward. It follows that the number of arrivals in the interval

(s, s + t] has the same distribution as the number of arrivals in (0, t]. Stationary, as
well as independent, increments are direct consequences.

Conversely, assume Deinition 1. Consider the distribution of the irst interarrival

time X1. As shown at the beginning of Section 6.2 the distribution is exponential with

parameter �.
For X2, consider P(X2 > t|X1 = s). If the irst arrival occurs at time s, and the sec-

ond arrival occurs more than t time units later, then there are no arrivals in the interval

(s, s + t]. Conversely, if there are no arrivals in (s, s + t] and X1 = s, then X2 > t. Thus,

P(X2 > t|X1 = s) = P(Ns+t − Ns = 0|X1 = s)

= P(Ns+t − Ns = 0)

= P(Nt = 0) = e−�t, for t > 0.

The second equality is because of independent increments. It follows that X1 and X2

are independent, and the distribution of X2 is exponential with parameter �.
For the general case, consider P(Xk+1 > t|X1 = x1,X2 = x2, … ,Xk = xk). If the

kth arrival occurs at time x1 + · · · + xk and Xk+1 > t, then there are no arrivals in the

interval (x1 + · · · + xk, x1 + · · · + xk + t]. See Figure 6.6.

0 x1 x1 + x2 x1 + … + xk x1 + … + xk + t

t

Xk+1

. . . . 

X1 X2

 . . . . 

Figure 6.6 With Xk+1 > t, there are no arrivals between x1 + · · · + xk and x1 + · · · + xk+t.

We have that

P(Xk+1 > t|X1 = x1, … ,Xk = xk)

= P(Nx1+···+xk+t − Nx1+···+xk = 0|X1 = x1, … ,Xk = xk)

= P(Nx1+···+xk+t − Nx1+···+xk = 0)

= P(Nt = 0) = e−�t, for t > 0.

Hence, Xk+1 is independent of X1, … ,Xk, and the distribution of Xk+1 is exponential
with parameter �.
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It follows that X1,X2, … is an i.i.d. sequence of exponential random variables with

parameter �, which gives Deinition 2.

The equivalence of all three deinitions has been established.

6.4 THINNING, SUPERPOSITION

According to the United Nations Population Division, the worldwide sex ratio at birth

is 108 boys to 100 girls. Thus, the probability that any birth is a boy is

p =
108

108 + 100
= 0.519.

That this probability is greater than one-half is said to be nature’s way of balancing

the fact that boys have a slightly higher risk than girls of not surviving birth.

Assume that babies are born on a maternity ward according to a Poisson process

(Nt)t≥0 with parameter �. How can the number of male births and the number of

female births be described?

Babies’ sex is independent of each other. We can think of a male birth as the result

of a coin lip whose heads probability is p. Assume that there are n births by time t.

Then, the number of male births by time t is the number of heads in n i.i.d. coin lips,

which has a binomial distribution with parameters n and p. Similarly the number of

female births in [0, t] has a binomial distribution with parameters n and 1 − p.

LetMt denote the number of male births by time t. Similarly deine the number of

female births Ft. Thus,Mt + Ft = Nt. The joint probability mass function of (Mt,Ft)
is

P(Mt = m,Ft = f ) = P(Mt = m,Ft = f ,Nt = m + f )

= P(Mt = m,Ft = f |Nt = m + f )P(Nt = m + f )

= P(Mt = m|Nt = m + f )P(Nt = m + f )

=
(m + f )!

m! f !
pm(1 − p) f

e−�t(�t)m+f

(m + f )!

=
pm(1 − p) f e−�t(p+(1−p))(�t)m+f

m! f !

=

(
e−�pt(�pt)m

m!

)(
e−�(1−p) t(�(1 − p)t) f

f !

)
,

for m, f = 0, 1, … This shows that Mt and Ft are independent Poisson random vari-

ableswith parameters �pt and �(1 − p)t, respectively. In fact, each process (Mt)t≥0 and

(Ft)t≥0 is a Poisson process, called a thinned process. It is not hard to show that both

processes inherit stationary and independent increments from the original Poisson

birth process.

The birth example with two thinned processes illustrates a general result.
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Thinned Poisson Process

Let (Nt)t≥0 be a Poisson process with parameter �. Assume that each arrival,

independent of other arrivals, is marked as a type k event with probability pk, for

k = 1, … , n, where p1 + · · · + pn = 1. Let N
(k)
t be the number of type k events

in [0, t]. Then,
(
N

(k)
t

)
t≥0

is a Poisson process with parameter �pk. Furthermore,

the processes (
N

(1)
t

)
t≥0

, … ,
(
N

(n)
t

)
t≥0

are independent. Each process is called a thinned Poisson process.

Example 6.6 Consider the male and female birth processes. Assume that births

occur on a maternity ward at the average rate of 2 births per hour.

(i) On an 8-hour shift, what is the expectation and standard deviation of the

number of female births?

(ii) Find the probability that only girls were born between 2 and 5 p.m.

(iii) Assume that ive babies were born on the ward yesterday. Find the probability

that two are boys.

Solution Let (Nt)t≥0, (Mt)t≥0, and (Ft)t≥0 denote the overall birth, male, and female

processes, respectively.

(i) Female births form a Poisson process with parameter

�(1 − p) = 2(0.481) = 0.962.

The number of female births on an 8-hour shift F8 has a Poisson distribution

with expectation

E(F8) = �(1 − p)8 = 2(0.481)8 = 7.696,

and standard deviation

SD(F8) =
√
7.696 = 2.774.

(ii) The desired probability is P(M3 = 0,F3 > 0). By independence,

P(M3 = 0,F3 > 0) = P(M3 = 0)P(F3 > 0)

= e−2(0.519)3
(
1 − e−2(0.481)3

)

= e−3.114
(
1 − e−2.886

)
= 0.042.
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(iii) Conditional on there being ive births in a given interval, the number of boys in

that interval has a binomial distribution with parameters n = 5 and p = 0.519.
The desired probability is

5!

2!3!
(0.519)2(0.481)3 = 0.30.

◾

Related to the thinned process is the superposition process obtained bymerging, or

adding, independent Poisson processes.We state the following intuitive result without

proof:

Superposition Process

Assume that
(
N

(1)
t

)
t≥0

,… ,
(
N

(n)
t

)
t≥0

are n independent Poisson processes with

respective parameters �1, … , �n. Let Nt = N
(1)
t + · · · + N

(n)
t , for t ≥ 0. Then,

(Nt)t≥0 is a Poisson process with parameter � = �1 + · · · + �n.

See Figure 6.7 to visualize the superposition of three independent Poisson pro-

cesses.

N
(1)
t

N
(2)
t

N
(3)
t

N t

Process Rate

λ1

λ2

λ3

λ1 + λ2 + λ3

N t = N
(1)
t + N

(2)
t + N

(3)
t

Figure 6.7 The Nt process is the superposition of N
(1)
t , N

(2)
t , and N

(3)
t .

Example 6.7 (Oh my!) In the land of Oz, sightings of lions, tigers, and bears

each follow a Poisson process with respective parameters, �L, �T , �B, where

the time unit is hours. Sightings of the three species are independent of each

other.

(i) Find the probability that Dorothy will not see any animal in the irst 24 hours

from when she arrives in Oz.

(ii) Dorothy saw three animals one day. Find the probability that each species was

seen.
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Solution

(i) The process of animal sightings (Nt)t≥0 is the superposition of three inde-

pendent Poisson processes. Thus, it is a Poisson process with parameter

�L + �T + �B. The desired probability is

P(N24 = 0) = e−24(�L+�T+�B).

(ii) Let Lt, Tt, and Bt be the numbers of lions, tigers, and bears, respectively, seen

by time t. The desired probability is

P(L24 = 1,B24 = 1,T24 = 1|N24 = 3)

=
P(L24 = 1,B24 = 1,T24 = 1,N24 = 3)

P(N24 = 3)

=
P(L24 = 1,B24 = 1,T24 = 1)

P(N24 = 3)

=
P(L24 = 1)P(B24 = 1)P(T24 = 1)

P(N24 = 3)

=
(e−24�L24�L)(e

−24�T24�T )(e
−24�B24�B)

e−24(�L+�T+�B (24(�L + �T + �B))
3∕3!

=
6�L�B�T

(�L + �B + �T )
3
.

◾

Embedding and the Birthday Problem

Sometimes discrete problems can be solved by embedding them in continuous ones.

The methods in this section were popularized in Blom and Holst (1991) for solving

discrete balls-and-urnmodels, which involve samplingwith andwithout replacement.

We illustrate the method on the famous birthday problem. (If your probability class

did not cover the birthday problem, you should ask for your money back.)

The classic birthday problem asks, “How many people must be in a room before

the probability that some share a birthday, ignoring year and leap days, is at least

50%?”

The probability that two people have the same birthday is 1 minus the probability

that no one shares a birthday, which is

pk = 1 −

k∏
i=1

366 − i

365
= 1 −

365!

(365 − k)!365k
.

One inds that p22 = 0.476 and p23 = 0.507. Thus, 23 people are needed.
Consider this variant of the birthday problem, assuming a random person’s birth-

day is uniformly distributed on the 365 days of the year. People enter a room one by
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one. How many people are in the room the irst time that two people share the same

birthday? Let K be the desired number. We show how to ind the mean and standard

deviation of K by embedding.

Consider a continuous-time version of the previous question. People enter a room

according to a Poisson process (Nt)t≥0 with rate � = 1. Each person is independently

marked with one of 365 birthdays, where all birthdays are equally likely. The pro-

cedure creates 365 thinned Poisson processes, one for each birthday. Each of the

365 processes are independent, and their superposition gives the process of people

entering the room. See Figure 6.8.

Jan. 1

Jan. 2

Jan. 3

...

Dec. 30

Dec. 31

N t

Process  Date Rate

N
(1)
t

N
(2)
t

N
(3)
t

N
(364)
t

N
(365)
t

1/365

1/365

1/365

...
...

1/365

1/365

1

N t = N
(1)
t + · · · + N

(365)
t

Figure 6.8 Embedding the birthday problem in a superposition of Poisson processes.

Let X1,X2, … , be the interarrival sequence for the process of people entering the

room. The Xi are i.i.d. exponential random variables with mean 1. Let T be the irst

time when two people in the room share the same birthday. Then,

T =

K∑
i=1

Xi. (6.3)

Equation (6.3) relates the interarrival times X1,X2, … , the continuous time T , and

the discrete count K.

The Xi are independent of K. The random variable T is represented as a random

sum of random variables. By results for such sums (see Example 1.27),

E[T] = E[K] E[X1] = E[K].

For each k = 1, … , 365, let Zk be the time when the second person marked with

birthday k enters the room. Then, the irst time two people in the room have the same

birthday is T = min1≤k≤365Zk. Each Zk, being the arrival time of the second event of
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a Poisson process, has a gamma distribution with parameters n = 2 and � = 1∕365,

with density

f (t) =
te−t∕365

3652
, for t > 0,

and cumulative distribution function

P(Z1 ≤ t) = ∫
t

0

se−s∕365

3652
ds = 1 −

e−t∕365(365 + t)

365
.

This gives

P(T > t) = P(min(Z1, … ,Z365) > t)

= P(Z1 > t, … ,Z365 > t)

= P(Z1 > t)365 =
(
1 +

t

365

)365

e−t, for t > 0.

The desired birthday expectation is

E(K) = E(T) = ∫
∞

0

P(T > t) dt = ∫
∞

0

(
1 +

t

365

)365

e−t dt. (6.4)

The second equality makes use of a general result for the expectation of a

positive, continuous random variable. (For reference, see Exercise 1.21.) The last

integral of Equation (6.4) is dificult to solve exactly. It can be estimated using a

Taylor series approximation. A numerical software package inds E(K) = 24.617
and Var (K) = 779.23, with standard deviation 27.91.

We invite the reader to use embedding to ind the expected number of people

needed for three people to share the same birthday. See Exercise 6.19.

6.5 UNIFORM DISTRIBUTION

It is common to think of a Poisson process as modeling a completely random

distribution of events, or points, on the positive number line. Although it is not

possible to have a uniform distribution on [0,∞), or any unbounded interval, there

is nevertheless a strong connection between a Poisson process and the uniform

distribution.

If a Poisson process contains exactly n events in an interval [0, t], then the

unordered locations, or times, of those events are uniformly distributed on the

interval.
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For the case of one event, the assertion is easily shown. Consider the distribution

of the time of the irst arrival, conditional on there being one arrival by time t. For

0 ≤ s ≤ t,

P(S1 ≤ s|Nt = 1) =
P(S1 ≤ s,Nt = 1)

P(Nt = 1)
=
P(Ns = 1,Nt = 1)

P(Nt = 1)

=
P(Ns = 1,Nt − Ns = 0)

P(Nt = 1)

=
P(Ns = 1)P(Nt−s = 0)

P(Nt = 1)

=
e−�s�se−�(t−s)

e−�t�t
=
s

t
,

which is the cumulative distribution function of the uniform distribution on [0, t].
To discuss the case of more than one arrival in [0, t], we introduce the topic of

order statistics. Let U1, … ,Un be an i.i.d. sequence of random variables uniformly

distributed on [0, t]. Their joint density function is

fU1,… ,Un
(u1, … , un) =

1

tn
, for 0 ≤ u1, … , un ≤ t.

Arrange the Ui in increasing order U(1) ≤ U(2) ≤ · · · ≤ U(n), where U(k) is the kth

smallest of theUi. The ordered sequence (U(1), … ,U(n)) is called the order statistics

of the original sequence.

The joint density function of the order statistics is

fU(1),… ,U(n)
(u1, … , un) =

n!

tn
, for 0 ≤ u1 < · · · < un ≤ t.

We will not prove this rigorously, but give an intuitive argument. Assume that

U(1) = u1, … ,U(n) = un, for 0 < u1 < · · · < un < t.

Consider a sample of n independent uniform random variables on [0, t]. There are

n! such samples that would give rise to these order statistic values, as there are n!

orderings of the n distinct numbers u1, … , un. The value of the joint density for each
of these uniform samples is equal to 1∕tn. Hence, the ininitesimal probability

fU(1),… ,U(n)
(u1, … , un)du1 · · · dun = n!fU1,… ,Un

(u1, … , un)du1 · · · dun

=
n!

tn
du1 · · · dun,

which establishes the claim.

We can now describe the joint distribution of the arrival times in a Poisson process,

conditional on the number of arrivals.
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Arrival Times and Uniform Distribution

Let S1, S2, … , be the arrival times of a Poisson process with parameter �. Con-
ditional on Nt = n, the joint distribution of (S1, … , Sn) is the distribution of the
order statistics of n i.i.d. uniform random variables on [0, t]. That is, the joint

density function of S1, … , Sn is

f (s1, … , sn) =
n!

tn
, for 0 < s1 < · · · < sn < t. (6.5)

Equivalently, let U1, … ,Un be an i.i.d. sequence of random variables uni-

formly distributed on [0, t]. Then, conditional on Nt = n,

(S1, … , Sn) and (U(1), … ,U(n))

have the same distribution.

Proof. For jointly distributed random variables S1, … , Sn with joint density f ,

f (s1, … , sn) = lim
�1→0

· · · lim
�n→0

P(s1 ≤ S1 ≤ s1 + �1, … , sn ≤ Sn ≤ sn + �n)

�1 · · · �n
.

To establish Equation (6.5), assume that 0 < s1 < s2 < · · · < sn < t and consider

the event

{s1 ≤ S1 ≤ s1 + �1, … , sn ≤ Sn ≤ sn + �n},

given that there are exactly n arrivals in [0, t]. For �1, … , �n suficiently small, this

is the event that each of the intervals (si, si + �i] contains exactly one arrival, and no

arrivals occur elsewhere in [0, t]. By stationary and independent increments,

P(s1 ≤S1 ≤ s1 + �1, … , sn ≤ Sn ≤ sn + �n|Nt = n)

=
P(Ns1+�1 − Ns1 = 1, … ,Nsn+�n − Nsn = 1,Nt = n)

P(Nt = n)

=
��1e

−��1 · · · ��ne
−��ne−�(t−�1−···−�n)

e−�t(�t)n∕n!

=
n!�1 · · · �n

tn
.

Dividing by �1 · · · �n, and letting each �i → 0, gives the result. ◾

There is a lot of information contained in Equation (6.5). From this, one can obtain

joint distributions of any subset of the arrival times, including the marginal distribu-

tions. For instance, the last (irst) arrival time, conditional on there being n arrivals in

[0, t], has the same distribution as themaximum (minimum) of n independent uniform

random variables on (0, t).



246 POISSON PROCESS

Example 6.8 Starting at time t = 0, patrons arrive at a restaurant according to a

Poisson process with rate 20 customers per hour.

(i) Find the probability that the 60th customer arrives in the interval [2.9, 3].

(ii) If 60 people arrive at the restaurant by time t = 3, ind the probability that the

60th customer arrives in the interval [2.9, 3].

Solution

(i) The time of the 60th arrival S60 has a gamma distribution with parameters

n = 60 and � = 20. The desired probability is P(2.9 < S60 < 3). In R, type

> pgamma(3,60,20)-pgamma(2.9,60,20)
[1] 0.1034368

(ii) Given N3 = 60, the arrival time of the 60th customer has the same distribution

as the maximumM of 60 i.i.d. random variables uniformly distributed on (0, 3).
The desired probability is

P(2.9 < S60 < 3|N3 = 60) = P(2.9 < M < 3) = 1 − P(M ≤ 2.9)

= 1 − P(U1 ≤ 2.9, … ,U60 ≤ 2.9)

= 1 − P(U1 ≤ 2.9)60

= 1 −
(
2.9

3

)60

= 1 − 0.131 = 0.869. ◾

Example 6.9 Concert-goers arrive at a show according to a Poisson process with

parameter �. The band starts playing at time t. The kth person to arrive in [0, t] waits
t − Sk time units for the start of the concert, where Sk is the kth arrival time. Find the

expected total waiting time of concert-goers who arrive before the band starts.

Solution The desired expectation is E
(∑Nt

k=1
(t − Sk)

)
. Conditioning on Nt,

E

(
Nt∑
k=1

(t − Sk)

)
=

∞∑
n=1

E

(
n∑
k=1

(t − Sk)|Nt = n

)
P(Nt = n)

=

∞∑
n=1

E

(
tn −

n∑
k=1

Sk|Nt = n

)
P(Nt = n)

=

∞∑
n=1

(
tn − E

(
n∑
k=1

Sk|Nt = n

))
P(Nt = n)

= �t2 −

∞∑
n=1

E

(
n∑
k=1

Sk|Nt = n

)
P(Nt = n).
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Conditional on n arrivals in [0, t], S1 + · · · + Sn has the same distribution as the

sum of the uniform order statistics. Furthermore,
∑n

k=1U(k) =
∑n

k=1Uk. This

gives

∞∑
n=1

E

(
n∑
k=1

Sk|Nt = n

)
P(Nt = n) =

∞∑
n=1

E

(
n∑
k=1

U(k)

)
P(Nt = n)

=

∞∑
n=1

E

(
n∑
k=1

Uk

)
P(Nt = n)

=

∞∑
n=1

nt

2
P(Nt = n)

=
�t2

2
.

The desired expectation is

E

(
Nt∑
k=1

(t − Sk)

)
= �t2 −

�t2

2
=

�t2

2
.

◾

Example 6.10 Students enter a campus building according to a Poisson pro-

cess (Nt)t≥0 with parameter �. The times spent by each student in the building are

i.i.d. random variables with continuous cumulative distribution function F(t). Find

the probability mass function of the number of students in the building at time t,

assuming there are no students in the building at time 0.

Solution Let Bt denote the number of students in the building at time t. Conditioning

on Nt,

P(Bt = k) =

∞∑
n=k

P(Bt = k|Nt = n)P(Nt = n)

=

∞∑
n=k

P(Bt = k|Nt = n)
e−�t(�t)n

n!
.

Assume that n students enter the building by time t, with arrival times S1, … , Sn. Let
Zk be the length of time spent in the building by the kth student, for 1 ≤ k ≤ n. Then,

Z1, … ,Zn are i.i.d. random variables with cdf F, and students leave the building at

times S1 + Z1, … , Sn + Zn. There are k students in the building at time t if and only
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if k of the departure times S1 + Z1, … , Sn + Zn exceed t. This gives

P(Bt = k|Nt = n) = P(k of the S1 + Z1, … , Sn + Zn exceed t|Nt = n)

= P(k of the U(1) + Z1, … ,U(n) + Zn exceed t)

= P(k of the U1 + Z1, … ,Un + Zn exceed t)

=
(
n

k

)
pk(1 − p)n−k,

where

p = P(U1 + Z1 > t) =
1

t ∫
t

0

P(Z1 > t − x) dx =
1

t ∫
t

0

[1 − F(x)] dx.

This gives

P(Bt = k) =

∞∑
n=k

(
n

k

)
pk(1 − p)n−ke−�t

(�t)n

n!

=
pk(�t)k

k!

∞∑
n=k

(1 − p)n−k(�t)n−k

(n − k)!

=
pk(�t)k

k!
e�(1−p)t

=
e−�pt(�pt)k

k!
, for k = 0, 1, …

That is, Bt has a Poisson distribution with parameter �p, where

p = ∫
t

0

[1 − F(x)] dx.

◾

Simulation

Results for arrival times and the uniform distribution offer a new method for simu-

lating a Poisson process with parameter � on an interval [0, t]:

1. Simulate the number of arrivals N in [0, t] from a Poisson distribution with

parameter �t.

2. Generate N i.i.d. random variables uniformly distributed on (0, t).

3. Sort the variables in increasing order to give the Poisson arrival times.
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R: Simulating a Poisson Process on [0, t]

Following is a simulation of the arrival times of a Poisson process with parameter

� = 1∕2 on [0, 30].

# poissonsim.R
> t <- 30
> lambda <- 1/2
> N <- rpois(1,lambda*t)
> unifs <- runif(N,0,t))
> arrivals <- sort(unifs)
> arrivals
[1] 8.943 9.835 11.478 12.039 16.009 17.064 17.568
[8] 17.696 18.663 22.961 24.082 24.440 28.250

6.6 SPATIAL POISSON PROCESS

The spatial Poisson process is a model for the distribution of events, or points, in two-

or higher-dimensional space. Such processes have been used to model the location

of trees in a forest, galaxies in the night sky, and cancer clusters across the United

States. For d ≥ 1 and A ⊆ ℝ
d, let NA denote the number of points in the set A. Write

|A| for the size of A (e.g., area in ℝ2, volume in ℝ3).

Spatial Poisson Process

A collection of random variables (NA)A⊆ℝd is a spatial Poisson process with

parameter � if

1. for each bounded set A ⊆ ℝ
d, NA has a Poisson distribution with parameter

�|A|.
2. whenever A and B are disjoint sets, NA and NB are independent random

variables.

Observe how the spatial Poisson process generalizes the regular one-dimensional

Poisson process. Property 1 gives the analogue of stationary increments, where the

size of an interval is the length of the interval. Property 2 is the counterpart of inde-

pendent increments.

Example 6.11 A spatial Poisson process in the plane has parameter � = 1∕2.

Find the probability that a disk of radius 2 centered at (3, 4) contains exactly

5 points.
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Solution Let C denote the disk. Then, |C| = �r2 = 4�. The desired probability is

P(NC = 5) =
e−�|C|(�|C|)5

5!
=
e−2�(2�)5

5!
= 0.152.

◾

The uniform distribution arises for the spatial process in a similar way to how

it does for the one-dimensional Poisson process. Given a bounded set A ⊆ ℝ
d, then

conditional on there being n points in A, the locations of the points are uniformly

distributed in A. For this reason, a spatial Poisson process is sometimes called a model

of complete spatial randomness.

To simulate a spatial Poisson process with parameter � on a bounded set A, irst

simulate the number of points N in A according to a Poisson distribution with param-

eter �|A|. Then, generate N points uniformly distributed in A.

Four realizations of a spatial Poisson process with parameter � = 100 on the square

[0, 1] × [0, 1] are shown in Figure 6.9. The circle C inside the square is centered at

(0.7, 0.7) with radius r = 0.2. The simulation was repeated 100,000 times, counting

the number of points in the circle at each iteration. Table 6.1 shows the numerical

results. The distribution of counts is seen to be close to the expected counts for a

Poisson distribution with mean �|C| = 100�(0.2)2 = 12.567.

Figure 6.9 Samples of a spatial Poisson process.
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TABLE 6.1 Number of Points in a Circle of Radius r = 0.2 for a Spatial Poisson

Process with � = 100.

Counts 0–4 5–9 10–14 15–19 20–24 25–29

Observed 522 19200 52058 24975 3135 106

Expected 510.0 19130.0 522215.6 24941.5 3075.00 125.9

Simulation is based on 100,000 trials.

R: Simulating a Spatial Poisson Process

# spatialPoisson.R
> lambda <- 100
> squarearea <- 1
> trials <- 100000
> simlist <- numeric(trials)
> for (i in 1:trials) {
+ N <- rpois(1,lambda*squarearea)
+ xpoints <- runif(N,0,1)
+ ypoints <- runif(N,0,1)
+ ct <- sum(((xpoints-0.7) ̂ 2+(ypoints-0.7) ̂ 2)<=0.2 ̂ 2)
+ simlist[i] <- ct } # number of points in circle
> mean(simlist)
[1] 12.57771
> var(simlist)
[1] 12.57435
> # Compare with theoretical mean and variance
> lambda*pi*(0.2) ̂ 2
[1] 12.56637

A spatial Poisson process is a special case of a point process, which is a general

model for the distribution of points in space. There is an abundance of applications of

point processes, which include models that incorporate clustering, attraction, repul-

sion, time and space dependence, and so on. Often one wants to measure how close or

far a given point pattern is from complete spatial randomness, that is, from a spatial

Poisson process. A common measure is the nearest-neighbor distance deined to be

the distance between an arbitrary point and the point of the process closest to it.

Consider a spatial Poisson process in ℝ
2 with parameter �. Let x denote a ixed

point in the plane. Let D be the distance from x to its nearest neighbor. The event

{D > t} occurs if and only if there are no points in the circle centered at x of radius

t. Let Cx denote such a circle. Then,

P(D > t) = P
(
NCx = 0

)
= e−�|Cx| = e−��t

2
, for t > 0.
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Differentiating gives the density function for the nearest-neighbor distance

fD(t) = e−��t
2
2��t, for t > 0,

with mean and variance

E(D) =
1

2
√
�

and Var(D) =
4 − �

4��
.

Example 6.12 (South Carolina swamp forest) Jones et al. (1994) introduce data

for the locations of 630 trees, including 91 cypress trees, in a swamp hardwood

forest in South Carolina for the purpose of studying tree population dynamics.

See Figure 6.10. The data are contained in a 200 × 50 m2 area. The average

nearest-neighbor distance for all tree locations is 1.990 m. For the cypress trees it is

5.08 m.

0

0

25

50

50 100 200150

Figure 6.10 Plot of tree locations in a hardwood swamp in South Carolina. Squares are loca-

tions of cypress trees and dots locations of any other species. Source: Dixon (2012).

Researchers are interested in whether there is evidence of clustering. In a spatial

Poisson process, with points distributed at the rate of 630 per 10,000 m2, the expected

nearest-neighbor distance is

E(D) =
1

2
√
630∕10000

= 1.992 m,

with standard error

SD(D)∕
√
n =

√
4 − �

4�630∕10000

/√
630 = 0.041.

For the 91 cypress trees, a model of complete spatial randomness would yield

E(D) =
1

2
√
91∕100000

= 5.241 m,
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with standard error

SD(D)∕
√
n =

√
4 − �

4�630∕10000

/√
91 = 1.041 m.

As measured by nearest-neighbor distance, the data do not show evidence of cluster-

ing. We note that researchers were able to detect some small evidence of clustering

for these data by using more sophisticated spatial statistic tools. ◾

6.7 NONHOMOGENEOUS POISSON PROCESS

In a Poisson process, arrivals occur at a constant rate, independent of time. However,

for many applications this is an unrealistic assumption. Consider lunch time at a col-

lege cafeteria. The doors open at 11 a.m. Students arrive at an increasing rate until

the noon peak hour. Then, the rate stays constant for 2 hours, after which it declines

until 3 p.m., when the cafeteria closes.

Such activity can be modeled by a nonhomogeneous Poisson process with rate

� = �(t), which depends on t. Such a rate function is called the intensity function.

Nonhomogeneous Poisson Process

A counting process (Nt)t≥0 is a nonhomogeneous Poisson process with intensity

function �(t), if

1. N0 = 0.

2. For all t > 0, Nt has a Poisson distribution with mean

E(Nt) = ∫
t

0

�(x) dx.

3. For 0 ≤ q < r ≤ s < t, Nr − Nq and Nt − Ns are independent random

variables.

A nonhomogeneous Poisson process has independent increments, but not neces-

sarily stationary increments. It can be shown that for 0 < s < t, Nt − Ns has a Poisson

distribution with parameter ∫ t

s
�(x) dx. If �(t) = � is constant, we obtain the regular

Poisson process with parameter �.

Example 6.13 Students arrive at the cafeteria for lunch according to a nonhomo-

geneous Poisson process. The arrival rate increases linearly from 100 to 200 students

per hour between 11 a.m. and noon. The rate stays constant for the next 2 hours, and

then decreases linearly down to 100 from 2 to 3 p.m. Find the probability that there

are at least 400 people in the cafeteria between 11:30 a.m. and 1:30 p.m.
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Solution The intensity function is

�(t) =

⎧⎪⎨⎪⎩

100 + 100t, 0 ≤ t ≤ 1,

200, 1 < t ≤ 3,

500 − 100t, 3 ≤ t < 4,

where t represents hours past 11 a.m. See Figure 6.11.
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Figure 6.11 Intensity function.

The desired probability is P(N2.5 − N0.5 ≥ 400), where N2.5 − N0.5 has a Poisson

distribution with mean

E(N2.5 − N0.5) = ∫
2.5

0.5

�(t) dt = ∫
1

0.5

(100 + 100t) dt + ∫
2.5

1

200 dt = 387.5.

Then,

P(N2.5 − N0.5 ≥ 400) = 1 −

399∑
k=0

e−387.5(387.5)k

k!
= 0.269.

◾

Example 6.14 In reliability engineering one is concerned with the probability that

a system is working during an interval of time. A common model for failure times is

a nonhomogeneous Poisson process with intensity function of the form

�(t) = ��t�−1,
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where �, � > 0 are parameters, and t represents the age of the system. At � = 1, the

model reduces to a homogeneous Poisson process with parameter �. If the system

starts at t = 0, the expected number of failures after t time units is

E(Nt) = ∫
t

0

�(x) dx = ∫
t

0

��x�−1 dx = �t� .

Because of the power law form of the mean failure time, the process is sometimes

called a power law Poisson process.

Of interest, is the reliability R(t), deined as the probability that a system, which

starts at time t, is operational up through time t + c, for some constant c, that is, the

probability of no failures in the interval (t, t + c]. This gives

R(t) = P(Nt+c − Nt = 0) = e− ∫ t+ct �(x) dx = e− ∫ t+ct ��x�−1 dx = e−�((t+c)
�−t� ).

◾

6.8 PARTING PARADOX

How wonderful that we have met with a paradox. Now we have some hope of making

progress.

–Niels Bohr

The following classic is based on Feller (1968). Buses arrive at a bus stop accord-

ing to a Poisson process. The time between buses, on average, is 10 minutes. Lisa

gets to the bus stop at time t. How long can she expect to wait for a bus?

Here are two possible answers:

(i) By memorylessness, the time until the next bus is exponentially distributed

with mean 10 minutes. Lisa will wait, on average, 10 minutes.

(ii) Lisa arrives at some time between two consecutive buses. The expected time

between consecutive buses is 10 minutes. By symmetry, her expected waiting

time should be half that, or 5 minutes.

Paradoxically, both answers have some truth to them! On the one hand, the time

until the next bus will be shown to have an exponential distribution with mean 10

minutes. But the backwards time to the previous bus is almost exponential as well,

with mean close to 10 minutes. Thus, the time when Lisa arrives at the bus stop is

a point in an interval whose length is about 20 minutes. And the argument in (ii)

essentially holds. By symmetry, her expected waiting time should be half that, or 10

minutes.

The surprising result is that the interarrival time of the buses before and after

Lisa’s arrival is about 20 minutes. And yet the expected interarrival time for buses is

10 minutes!
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R : Waiting Time Paradox

APoisson process with parameter � = 1∕10 is generated on [0, 200]. Lisa arrives
at the bus stop at time t = 50. Simulation shows her average wait time is about

10 minutes.

# waitingparadox.R
> mytime <- 50
> lambda <- 1/10
> trials <- 10000
> simlist <- numeric(trials)
> for (i in 1:trials) {
+ N <- rpois(1,300*lambda)
+ arrivals <- sort(runif(N,0,300))
+ wait <- arrivals[arrivals > mytime][1] - mytime
+ simlist[i] <- wait }
> mean(simlist)
[1] 10.04728

To explain the paradox, consider the process of bus arrivals. The rate of one arrival

per 10minutes is an average. The time between buses is random, and buses may arrive

one right after the other, or there may be a long time between consecutive buses.

When Lisa gets to the bus stop, she is more likely to get there during a longer interval

between buses than a shorter interval.

To illustrate the idea, pick a random number between 1 and 200. Do it now before

reading on. Now look at Figure 6.12, which gives arrival times for a Poisson process

with parameter � = 1∕10 on [0, 200]. Find your number. Is your number in a short

interval (length less than 10) or a long interval (length greater than 10)? Most readers

will ind their number in a long interval.

0 20 40 60 80 100 120 140 160 180 200

Figure 6.12 Pick a number from 0 to 200. Is your number in a short or long interval?

This example illustrates the phenomenon of length-biased or size-biased sampling.

If you reach into a bag containing pieces of string of different lengths and pick a string

at random, you tend to pick a longer rather than a shorter piece. Bus interarrival times

are analogous to lengths of string.

Here is another example of size-biased sampling. Suppose you want to estimate

how much time people spend exercising at the gym. If you go to the gym to survey
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people at random, you are likely to get a biased estimate, as you are more likely to

sample people who work out a lot. Those who rarely go to the gym are not likely to

be there when you go!

For the bus waiting problem, the expected length of an interarrival time, which

contains a ixed time t, is larger—about twice as large—than the average interval

length between buses.

Here is an exact analysis. Consider a ixed t > 0. The time of the last bus before

t is SNt . The time of the next bus after t is SNt+1. The expected length of the interval

containing t is

E
(
SNt+1 − SNt

)
= E

(
SNt+1

)
− E

(
SNt

)
.

For E
(
SNt+1

)
, condition on Nt. Consider

E
(
SNt+1|Nt = k

)
= E(Sk+1|Nt = k) = E(Sk+1) =

k + 1

�
.

The second equality is because the (k + 1)th arrival occurs after time t, and is thus

independent of Nt. It follows that E
(
SNt+1|Nt

)
= (Nt + 1)∕�. By the law of total

expectation,

E
(
SNt+1

)
= E

(
E
(
SNt+1|Nt

))
= E

(
Nt + 1

�

)
=

�t + 1

�
= t +

1

�
. (6.6)

For E
(
SNt

)
, we have that E

(
SNt |Nt = k

)
= E(Sk|Nt = k). Conditional onNt = k,

the kth arrival time has the same distribution as the maximum of k i.i.d. uniform

random variables distributed on (0, t). We leave it to the reader to show that this

expectation is equal to tk∕(k + 1). That is, E
(
SNt |Nt = k

)
= tk∕(k + 1) and thus

E
(
SNt |Nt

)
= tNt∕(Nt + 1) = t − t∕(Nt + 1).

This gives

E
(
SNt

)
= E

(
E
(
SNt |Nt

))
= E

(
t −

t

Nt + 1

)
= t − tE

(
1

Nt + 1

)
. (6.7)

We ind

E

(
1

Nt + 1

)
=

∞∑
k=0

(
1

k + 1

) e−�t(�t)k

k!

=
e−�t

�t

∞∑
k=0

(�t)k+1

(k + 1)!
=
e−�t

�t

∞∑
k=1

(�t)k

k!

=
e−�t

�t
(e�t − 1) =

1 − e−�t

�t
.
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Together with Equation (6.7),

E
(
SNt

)
= t −

1

�
+
e−�t

�
.

Finally with Equation (6.6), the expected length of the interval that contains t is

E
(
SNt+1 − SNt

)
=
(
t +

1

�

)
−

(
t −

1

�
+
e−�t

�

)
=

2 − e−�t

�
≈

2

�
,

for large (or even moderate) t.

EXERCISES

6.1 Let (Nt)t≥0 be a Poisson process with parameter � = 1.5. Find the following:

(a) P(N1 = 2,N4 = 6)

(b) P(N4 = 6|N1 = 2)

(c) P(N1 = 2|N4 = 6)

6.2 Let (Nt)t≥0 be a Poisson process with parameter � = 2. Find the following:

(a) E(N3N4)

(b) E(X3X4)

(c) E(S3S4)

6.3 Calls are received at a company call center according to a Poisson process at

the rate of ive calls per minute.

(a) Find the probability that no call occurs over a 30-second period.

(b) Find the probability that exactly four calls occur in the irst minute, and six

calls occur in the second minute.

(c) Find the probability that 25 calls are received in the irst 5 minutes and six

of those calls occur in the irst minute.

6.4 Starting at 9 a.m., patients arrive at a doctor’s ofice according to a Poisson

process. On average, three patients arrive every hour.

(a) Find the probability that at least two patients arrive by 9:30 a.m.

(b) Find the probability that 10 patients arrive by noon and eight of them come

to the ofice before 11 a.m.

(c) If six patients arrive by 10 a.m., ind the probability that only one patient

arrives by 9:15 a.m.
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6.5 Let (Nt)t≥0 be a Poisson process. Explain what is wrongwith the following proof

that N3 is a constant.

E
(
(N3)

2
)
= E(N3N3) = E(N3(N6 − N3))

= E(N3)E(N6 − N3) = E(N3)E(N3)

= E(N3)
2.

Thus, Var(N3) = E
(
(N3)

2
)
− E(N3)

2 = 0, which gives thatN3 is a constant with

probability 1.

6.6 Occurrences of landfalling hurricanes during an El Niño event are modeled as

a Poisson process in Bove et al. (1998). The authors assert that “During an El

Niño year, the probability of two or more hurricanes making landfall in the

United States is 28%.” Find the rate of the Poisson process.

6.7 Ben, Max, and Yolanda are at the front of three separate lines in the cafeteria

waiting to be served. The serving times for the three lines follow independent

Poisson processes with respective parameters 1, 2, and 3.

(a) Find the probability that Yolanda is served irst.

(b) Find the probability that Ben is served before Yolanda.

(c) Find the expected waiting time for the irst person served.

6.8 Starting at 6 a.m., cars, buses, and motorcycles arrive at a highway toll booth

according to independent Poisson processes. Cars arrive about once every 5

minutes. Buses arrive about once every 10 minutes. Motorcycles arrive about

once every 30 minutes.

(a) Find the probability that in the irst 20 minutes, exactly three vehicles—two

cars and one motorcycle—arrive at the booth.

(b) At the toll booth, the chance that a driver has exact change is 1/4, indepen-

dent of vehicle. Find the probability that no vehicle has exact change in the

irst 10 minutes.

(c) Find the probability that the seventh motorcycle arrives within 45 minutes

of the third motorcycle.

(d) Find the probability that at least one other vehicle arrives at the toll booth

between the third and fourth car arrival.

6.9 Show that the geometric distribution is memoryless.

6.10 Assume that X1,X2, … is an i.i.d. sequence of exponential random variables

with parameter �. Let Sn = X1 + · · · + Xn. Show that Sn has a gamma distribu-

tion with parameters n and �

(a) by moment-generating functions,

(b) by induction on n.
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6.11 Show that a continuous probability distribution that is memoryless must be

exponential. Hint: For g(t) = P(X > t), show that g(t) = (g(1))t for all positive,

rational t.

6.12 Starting at noon, diners arrive at a restaurant according to a Poisson process at

the rate of ive customers per minute. The time each customer spends eating at

the restaurant has an exponential distribution with mean 40 minutes, indepen-

dent of other customers and independent of arrival times. Find the distribution,

as well as the mean and variance, of the number of diners in the restaurant at

2 p.m.

6.13 Assume that (Nt)t≥0 is a Poisson process with parameter �. Find the conditional
distribution of Ns given Nt = n, for

(a) s < t,

(b) s > t.

6.14 Red cars arrive at an intersection according to a Poisson process with parame-

ter r. Blue cars arrive, independently of red cars, according to a Poisson process

with parameter b. Let X be the number of blue cars which arrive between two

successive red cars. Show that X has a geometric distribution.

6.15 Failures occur for a mechanical process according to a Poisson process. Failures

are classiied as either major or minor. Major failures occur at the rate of 1.5

failures per hour. Minor failures occur at the rate of 3.0 failures per hour.

(a) Find the probability that two failures occur in 1 hour.

(b) Find the probability that in half an hour, no major failures occur.

(c) Find the probability that in 2 hours, at least two major failures occur or at

least two minor failures occur.

6.16 Accidents occur at a busy intersection according to a Poisson process at the

rate of two accidents per week. Three out of four accidents involve the use of

alcohol.

(a) What is the probability that three accidents involving alcohol will occur

next week?

(b) What is the probability that at least one accident occurs tomorrow?

(c) If six accidents occur in February (four weeks), what is the probability that

less than half of them involve alcohol?

6.17 Let (Nt)t≥0 be a Poisson process with parameter � and arrival times S1, S2, …
Evaluate the expected sum of squares of the arrival times before time t,

E

(
Nt∑
n=1

S2n

)
.

6.18 The planets of the Galactic Empire are distributed in space according to a spatial

Poisson process at an approximate density of one planet per cubic parsec. From

the Death Star, let X be the distance to the nearest planet.
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(a) Find the probability density function of X.

(b) Find the mean distance from the Death Star to the nearest planet.

6.19 Members of a large audience are asked to state their birthdays, one at a time.

Howmany people will be asked before three persons are found to have the same

birthday? Use embedding to estimate the expected number. You will need to use

numerical methods to evaluate the resulting integral.

6.20 Consider a spatial point process in ℝ
2 with parameter �. Assume that A is a

bounded set inℝ2 which contains exactly one point of the process. GivenB ⊆ A,

ind the probability that B contains one point.

6.21 For a Poisson process with parameter � show that for s < t, the correlation

between Ns and Nt is

Corr(Ns,Nt) =

√
s

t
.

6.22 At the Poisson Casino, two dice are rolled at random times according to a Pois-

son process with parameter �. Find the probability that in [0, t] every pair of

dice rolled comes up 7.

6.23 Oak andmaple trees are each located in the arboretum according to independent

spatial Poisson processes with parameters �O and �M , respectively.

(a) In a region of x square meters, ind the probability that both species of trees

are present.

(b) In the arboretum, there is a circular pond of radius 100 m. Find the proba-

bility that within 20 m of the pond there are only oaks.

6.24 Tom is bird watching in the arboretum. The times when he sights a meadowlark

occur in accordance with a Poisson process with parameter �. The times when

he sights a sparrow occur as a Poisson process with parameter �. Assume that

meadowlark and sparrow sightings are independent.

(a) Find the probability that a meadowlark is seen irst.

(b) Find the probability the one bird is seen by time t = 1.

(c) Find the probability that one sparrow and two meadowlarks are seen by

time t = 2.

6.25 Computers in the lab fail, on average, twice a day, according to a Poisson pro-

cess. Last week, 10 computers failed. Find the expected time of the last failure,

and give an approximate time of day when the last failure occurred.

6.26 If (Nt)t≥0 is a Poisson process with parameter �, ind the probability generating
function of Nt.

6.27 In a small parliamentary election, votes are counted according to a Poisson pro-

cess at the rate of 60 votes per minute. There are six political parties, whose

popularity among the electorate is shown by this distribution.



262 POISSON PROCESS

A B C D E F

0.05 0.30 0.10 0.10 0.25 0.20

(a) In the irst 2 minutes of the vote tally, 40 people had voted for parties E and

F. Find the probability that more than 100 votes were counted in the irst

2 minutes.

(b) If vote counting starts at 3 p.m., ind the probability that the irst vote is

counted by the irst second after 3 p.m.

(c) Find the probability that the irst vote for party C is counted before a vote

for B or D.

6.28 Tornadoes hit a region according to a Poisson process with � = 2. The number

of insurance claims iled after any tornado has a Poisson distribution with mean

30. The number of tornadoes is independent of the number of insurance claims.

Find the expectation and standard deviation of the total number of claims iled

by time t.

6.29 Job offers for a recent college graduate arrive according to a Poisson process

with mean two per month. A job offer is acceptable if the salary offered is

at least $35,000. Salary offers follow an exponential distribution with mean

$25,000. Find the probability that an acceptable job offer will be received within

3 months.

6.30 See Example 6.9. Find the variance of total waiting time of concert-goers who

arrive before the band starts.

6.31 See Example 6.9. Find the expected averagewaiting time of concert-goers who

arrive before the band starts.

6.32 Investors purchase $1,000 bonds at the random times of a Poisson process with

parameter �. If the interest rate is r, then the present value of an investment

purchased at time t is 1000e−rt. Show that the expected total present value of

the bonds purchased by time t is 1000�(1 − e−rt)∕r.

6.33 Let S1, S2, … be the arrival times of a Poisson process with parameter �. Given
the time of the nth arrival, ind the expected time E(S1|Sn) of the irst arrival.

6.34 Describe in words the random variable SNt . Find the distribution of SNt by giving

the cumulative distribution function.

6.35 See the deinitions for the spatial and nonhomogeneous Poisson processes.

Deine a nonhomogeneous, spatial Poisson process in ℝ
2. Consider such a

process (NA)A⊆ℝ2 with intensity function

�(x, y) = e−(x
2+y2), for −∞ < x, y < ∞.

Let C denote the unit circle, that is, the circle of radius 1 centered at the origin.

Find P(NC = 0).
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6.36 Starting at 9 a.m., customers arrive at a store according to a nonhomogeneous

Poisson process with intensity function �(t) = t2, for t > 0, where the time unit

is hours. Find the probability mass function of the number of customers who

enter the store by noon.

6.37 A compound Poisson process (Ct)t≥0 is deined as

Ct =

Nt∑
k=1

Xk,

where (Nt)t≥0 is a Poisson process, and X1,X2, … is an i.i.d. sequence of ran-

dom variables that are independent of (Nt)t≥0.

Assume that automobile accidents at a dangerous intersection occur accord-

ing to a Poisson process at the rate of 3 accidents per week. Furthermore, the

number of people seriously injured in an accident has a Poisson distribution

with mean 2. Show that the process of serious injuries is a compound Pois-

son process, and ind the mean and standard deviation of the number of serious

injuries over 1 year’s time.

6.38 Amixed Poisson process, also called aCox process or doubly stochastic process,

arises from a Poisson process where the parameterΛ is itself a random variable.

If (Nt)t≥0 is a mixed Poisson process, then the conditional distribution of Nt
given Λ = � is Poisson with parameter �t. Assume that for such a process Λ

has an exponential distribution with parameter �. Find the probability mass

function of Nt.

6.39 See Exercise 6.38. Assume that (Nt)t≥0 is a mixed Poisson process with rate

parameter uniformly distributed on (0, 1). Find P(N1 = 1).

6.40 Assume that (Nt)t≥0 is a mixed Poisson process whose rate Λ has a gamma

distribution with parameters n and �. Show that

P(Nt = k) =
(
n + k − 1

k

)(
�

� + t

)n( t

� + t

)k
, for k = 0, 1, …

6.41 R : Goals occur in a soccer game according to a Poisson process. The average

total number of goals scored for a 90-minute match is 2.68. Assume that two

teams are evenlymatched. Use simulation to estimate the probability both teams

will score the same number of goals. Compare with the theoretical result.

6.42 R : Simulate the restaurant results of Exercise 6.12.

6.43 R : Simulate a spatial Poisson process with � = 10 on the box of volume 8 with

vertices at the 8 points (±1,±1,±1). Estimate the mean and variance of the

number of points in the ball centered at the origin of radius 1. Compare with

the exact values.
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6.44 R : See Exercise 6.32. Simulate the expected total present value of the bonds if

the interest rate is 4%, the Poisson parameter is � = 50, and t = 10. Compare

with the exact value.

6.45 R : Simulate the birthday problem of Exercise 6.19.



7
CONTINUOUS-TIME
MARKOV CHAINS

Life deies our phrases, it is ininitely continuous and subtle and shaded, whilst our

verbal terms are discrete, rude, and few.
–William James

7.1 INTRODUCTION

In this chapter, we extend the Markov chain model to continuous time.

A continuous-time process allows one to model not only the transitions between

states, but also the duration of time in each state. The central Markov property

continues to hold—given the present, past and future are independent.

The Markov property is a form of memorylessness. This leads to the exponential

distribution. In a continuous-time Markov chain, when a state is visited, the process

stays in that state for an exponentially distributed length of time before moving to

a new state. If one just watches the sequence of states that are visited, ignoring the

length of time spent in each state, the process looks like a discrete-timeMarkov chain.

One of theMarkov chains introduced in this bookwas the three-state weather chain

of Example 2.3, with state space {rain, snow, clear}. Consider a continuous-time

extension. Assume that rainfall lasts, on average, 3 hours at a time. When it snows,

the duration, on average, is 6 hours. And the weather stays clear, on average, for

Introduction to Stochastic Processes with R, First Edition. Robert P. Dobrow.
© 2016 John Wiley & Sons, Inc. Published 2016 by John Wiley & Sons, Inc.
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12 hours. Furthermore, changes in weather states are described by the stochastic tran-

sition matrix

Rain Snow Clear

P̃ =

Rain

Snow

Clear

⎛
⎜⎜⎝

0 1∕2 1∕2

3∕4 0 1∕4

1∕4 3∕4 0

⎞
⎟⎟⎠
. (7.1)

To elaborate, assume that it is currently snowing. Under this model, it snows for an

exponential length of timewith parameter �s = 1∕6. (Remember that the parameter of

an exponential distribution is the reciprocal of the mean.) Then, the weather changes

to either rain or clear, with respective probabilities 3/4 and 1/4. If it switches to rain,

it rains for an exponential length of time with parameter �r = 1∕3. Then, the weather

changes to either snow or clear with equal probability, and so on. Figure 7.1 gives an

example of how the process unfolds over 50 hours.

s s s scr r srcr

States

Snow

Clear

Time
t 100 4020 30 50

Rain

Figure 7.1 Realization of a continuous-time weather chain.

Let Xt denote the weather at time t. Then, (Xt)t≥0 is a continuous-time Markov

chain. The P̃matrix, exponential time parameters (�r, �s, �c) = (1∕3, 1∕6, 1∕12), and

initial distribution completely specify the process. That is, they are suficient for

computing all probabilities of the form P
(
Xt1 = i1,… ,Xtn = in

)
, for n ≥ 1, states

i1,… , in, and times t1,… , tn ≥ 0.

Markov Transition Function

The formal treatment of continuous-time Markov chains begins with the deining

Markov property.

Markov Property

A continuous-time stochastic process (Xt)t≥0 with discrete state space  is a

continuous-time Markov chain if

P(Xt+s = j|Xs = i,Xu = xu, 0 ≤ u < s) = P(Xt+s = j|Xs = i),

for all s, t,≥ 0, i, j, xu ∈ S, and 0 ≤ u < s.
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The process is said to be time-homogeneous if this probability does not depend

on s. That is,

P(Xt+s = j|Xs = i) = P(Xt = j|X0 = i), for s ≥ 0. (7.2)

TheMarkov chains we treat in this book are all time-homogeneous. For each t ≥ 0,

the transition probabilities in Equation (7.2) can be arranged in a matrix function P(t)

called the transition function, with

Pij(t) = P(Xt = j|X0 = i).

Note that for the weather chain, the P̃ matrix in Equation (7.1) is not the transi-

tion function. The P̃ matrix gives the probabilities of moving from state to state in a

discretized process in which time has been ignored.

The transition function P(t) has similar properties as that of the transition matrix

for a discrete-timeMarkov chain. For instance, the Chapman–Kolmogorov equations

hold.

Chapman–Kolmogorov Equations

For a continuous-time Markov chain (Xt)t≥0 with transition function P(t),

P(s + t) = P(s)P(t),

for s, t ≥ 0. That is,

Pij(s + t) = [P(s)P(t)]ij =
∑
k

Pik(s)Pkj(t), for states i, j, and s, t ≥ 0.

Proof. By conditioning on Xs,

Pij(s + t) = P(Xs+t = j|X0 = i)

=
∑
k

P(Xs+t = j|Xs = k,X0 = i)P(Xs = k|X0 = i)

=
∑
k

P(Xs+t = j|Xs = k)P(Xs = k|X0 = i)

=
∑
k

P(Xt = j|X0 = k)P(Xs = k|X0 = i)

=
∑
k

Pik(s)Pkj(t) = [P(s)P(t)]ij,
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where the third equality is because of the Markov property, and the fourth equality is

by time-homogeneity. ◾

Example 7.1 (Poisson process) A Poisson process (Nt)t≥0 with parameter � is

a continuous-time Markov chain. The Markov property holds as a consequence of

stationary and independent increments. For 0 ≤ i ≤ j,

Pij(t) = P(Nt+s = j|Ns = i) =
P(Nt+s = j,Ns = i)

P(Ns = i)

=
P(Nt+s − Ns = j − i,Ns = i)

P(Ns = i)

= P(Nt+s − Ns = j − i)

= P(Nt = j − i) =
e−�t(�t)j−i

(j − i)!
.

The transition function is

0 1 2 3 · · ·

P(t) =

0

1

2

3

⋮

⎛
⎜⎜⎜⎜⎝

e−�t (�t)e−�t (�t)2e−�t∕2 (�t)3e−�t∕6 · · ·

0 e−�t (�t)e−�t (�t)2e−�t∕2 · · ·

0 0 e−�t (�t)e−�t · · ·

0 0 0 e−�t · · ·

⋮ ⋮ ⋮ ⋮ ⋱

⎞
⎟⎟⎟⎟⎠
.

◾

Holding Times and Embedded Chains

By homogeneity, when a Markov chain visits state i its forward evolution from

that time onward behaves the same as the process started in i at time t = 0.

Time-homogeneity and the Markov property characterizes the distribution of the

length of time that a continuous-time chain stays in state i before transitioning to a

new state.

Holding Times are Exponentially Distributed

Let Ti be the holding time at state i, that is, the length of time that a

continuous-time Markov chain started in i stays in i before transitioning to a

new state. Then, Ti has an exponential distribution.

Proof. We show that Ti is memoryless. Let s, t ≥ 0. For the chain started in i, the

event {Ti > s} is equal to the event that {Xu = i, for 0 ≤ u ≤ s}. Since {Ti > s + t}

implies {Ti > s},

P(Ti > s + t|X0 = i) = P(Ti > s + t,Ti > s|X0 = i)
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= P(Ti > s + t|X0 = i,Ti > s)P(Ti > s|X0 = i)

= P(Ti > s + t|Xu = i, for 0 ≤ u ≤ s)P(Ti > s|X0 = i)

= P(Ti > s + t|Xs = i)P(Ti > s|X0 = i)

= P(Ti > t|X0 = i)P(Ti > s|X0 = i),

where the next to last equality is because of theMarkov property, and the last equality

is because of homogeneity. This gives that Ti is memoryless. The result follows since

the exponential distribution is the only continuous distribution that is memoryless.
◾

For each i, let qi be the parameter of the exponential distribution for the hold-

ing time Ti. We assume that 0 < qi < ∞. Technically, a continuous-time process can

be deined where qi = 0 or +∞. In the former case, when i is visited the process

never leaves, and i is called an absorbing state. In the latter case, the process leaves

i immediately upon entering i. This would allow for ininitely many transitions in a

inite interval. Such a process is called explosive.

The evolution of a continuous-time Markov chain which is neither absorbing nor

explosive can be described as follows. Starting from i, the process stays in i for an

exponentially distributed length of time, on average 1∕qi time units. Then, it hits a

new state j ≠ i, with some probability pij. The process stays in j for an exponentially

distributed length of time, on average 1∕qj time units. It then hits a new state k ≠ j,

with probability pjk, and so on.

The transition probabilities pij describe the discrete transitions from state to

state. If we ignore time, and just watch state to state transitions, we see a sequence

Y0,Y1,… , where Yn is the nth state visited by the continuous process. The sequence

Y0,Y1,… is a discrete-time Markov chain called the embedded chain.

Let P̃ be the transition matrix for the embedded chain. That is, P̃ij = pij. Then, P̃

is a stochastic matrix whose diagonal entries are 0.

Example 7.2 (Poisson process) For a Poisson process with parameter �, the hold-

ing time parameters are constant. That is, qi = �, for i = 0, 1, 2,… The process moves

from 0 to 1 to 2, and so on. The transition matrix of the embedded chain is

0 1 2 3 4 · · ·

P̃ =

0

1

2

3

4

⋮

⎛
⎜⎜⎜⎜⎜⎜⎝

0 1 0 0 0 · · ·

0 0 1 0 0 · · ·

0 0 0 1 0 · · ·

0 0 0 0 1 · · ·

0 0 0 0 0 · · ·

⋮ ⋮ ⋮ ⋮ ⋮ ⋱

⎞
⎟⎟⎟⎟⎟⎟⎠

.

◾

Example 7.3 (Two-state chain) A two-state continuous-time Markov chain is

speciied by two holding time parameters as depicted in the transition graph in

Figure 7.2. Edges of the graph are labeled with holding time rates, not probabilities.
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1 2

q1

q2

Figure 7.2 Two-state process.

The embedded chain transition matrix is

1 2

P̃ =
1

2

(
0 1

1 0

)
.

◾

The process stays in state 1 an exponential length of time with parameter q1 before

moving to 2. It stays in 2 an exponential length of time with parameter q2 before

moving to 1, and so on.

7.2 ALARM CLOCKS AND TRANSITION RATES

A continuous-time Markov chain can also be described by specifying transition rates

between pairs of states. Central to this approach is the notion of the exponential alarm

clock.

Imagine that for each state i, there are independent alarm clocks associated with

each of the states that the process can visit after i. If j can be hit from i, then the alarm

clock associated with (i, j) will ring after an exponentially distributed length of time

with parameter qij. When the process irst hits i, the clocks are started simultaneously.

The irst alarm that rings determines the next state to visit. If the (i, j) clock rings irst

and the process moves to j, a new set of exponential alarm clocks are started, with

transition rates qj1, qj2,… Again, the irst alarm that rings determines the next state

hit, and so on.

The qij are called the transition rates of the continuous-time process. From the

transition rates, we can obtain the holding time parameters and the embedded chain

transition probabilities.

Consider the process started in i. The clocks are started, and the irst one that

rings determines the next transition. The time of the irst alarm is the minimum of

independent exponential random variables with parameters qi1, qi2,… Recall results

for the exponential distribution and the minimum of independent exponentials, as

given in Equations (6.1) and (6.2). The minimum has an exponential distribution with

parameter
∑

kqik. That is, the chain stays at i for an exponentially distributed amount
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of time with parameter
∑

kqik. From the discussion of holding times, the exponential

length of time that the process stays in i has parameter qi. That is,

qi =
∑
k

qik.

The interpretation is that the rate that the process leaves state i is equal to the sum of

the rates from i to each of the next states.

From i, the chain moves to j if the (i, j) clock rings irst, which occurs with proba-
bility qij∕

∑
kqik = qij∕qi. Thus, for the embedded chain transition probabilities

pij =
qij∑
kqik

=
qij

qi
.

Example 7.4 The general three-state continuous-time Markov chain is described

by the transition graph in Figure 7.3. In terms of the transition rates, holding time

parameters are

(q1, q2, q3) = (q12 + q13, q21 + q23, q31 + q32),

with embedded chain transition matrix

1 2 3

P̃ =

1

2

3

⎛
⎜⎜⎝

0 q12∕q1 q13∕q1
q21∕q2 0 q23∕q2
q31∕q3 q32∕q3 0

⎞
⎟⎟⎠
.

◾

1

2 3

q12

q13q21

q23

q31

q32

Figure 7.3 Transition rates for three-state chain.

Example 7.5 (Registration line) It is time for students to register for classes,

and a line is forming at the registrar’s ofice for those who need assistance. It takes
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the registrar an exponentially distributed amount of time to service each student, at

the rate of one student every 5 minutes. Students arrive at the ofice and get in line

according to a Poisson process at the rate of one student every 4 minutes. Line size

is capped at 4 people. If an arriving student inds that there are already 4 people

in line, then they try again later. As soon as there is at least one person in line, the

registrar starts assisting the irst available student. The arrival times of the students

are independent of the registrar’s service time.

Let Xt be the number of students in line at time t. Then, (Xt)t≥0 is a continuous-time

Markov chain on {0, 1, 2, 3, 4}.
If there is no one in line, then the size of the line increases to 1 when a student

arrives. If there are 4 people in line, then the number decreases to 3 when the registrar

inishes assisting the student they are meeting with. If there are 1, 2, or 3 students in

line, then the line size can either decrease or increase by 1. If a student arrives at the

registrar’s ofice before the registrar has inished serving the student being helped,

then the line increases by 1. If the registrar inishes serving the student being helped

before another student arrives, the line decreases by 1.

Imagine that when there is 1 person in line two exponential alarm clocks are

started—one for student arrivals, with rate 1/4, the other for the registrar’s service

time, with rate 1/5. If the arrival time clock rings irst, the line increases by one. If

the service clock rings irst, the line decreases by one. The same dynamics hold if

there are 2 or 3 people in line. The process is described by the transition graph in

Figure 7.4.

0 1 2 3 4

1/4 1/4 1/4 1/4

1/51/51/51/5

Figure 7.4 Transition rate graph for registration line Markov chain.

The holding time parameters are

(q0, q1, q2, q3, q4) =
(
1

4
,
9

20
,
9

20
,
9

20
,
1

5

)
,

with embedded chain transition matrix

0 1 2 3 4

P̃ =

0

1

2

3

4

⎛
⎜⎜⎜⎜⎝

0 1 0 0 0

4∕9 0 5∕9 0 0

0 4∕9 0 5∕9 0

0 0 4∕9 0 5∕9

0 0 0 1 0

⎞
⎟⎟⎟⎟⎠
.

Since students arrive in line at a faster rate than the registrar’s service time, the

line tends to grow over time. See a realization of the process on [0, 60] in Figure 7.5.

◾
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States

0

1

2

3

4

6050403020100

Figure 7.5 Realization of the size of the line at the registrar’s ofice.

7.3 INFINITESIMAL GENERATOR

In continuous time, transition rates play a fundamental role when working with Mar-

kov chains. Since the derivative of a function describes its rate of change, it is not

surprising that the derivative of the transition function P′(t) is most important.

Assume that (Xt)t≥0 is a continuous-time Markov chain with transition function

P(t). Assume the transition function is differentiable. Note that

Pij(0) =

{
1, if i = j,
0, if i ≠ j.

If Xt = i, then the instantaneous transition rate of hitting j ≠ i is

lim
h→0+

E(Number of transitions to j in (t, t + h])

h
= lim

h→0+

P(Xt+h = j|Xt = i)

h

= lim
h→0+

P(Xh = j|X0 = i)

h

= lim
h→0+

Pij(h)

h

= lim
h→0+

Pij(h) − Pij(0)

h

= P′
ij
(0).

The irst equality is because for h suficiently small, the number of transitions to

j in (t, t + h] is either 0 or 1. Let Q = P′(0). The off-diagonal entries of Q are the

instantaneous transition rates, which are the transition rates qij introduced in the last

section. That is, Qij = qij, for i ≠ j. In the language of ininitesimals, if Xt = i, then

the chance that Xt+dt = j is qij dt.

The diagonal entries of Q are

Qii = P′
ii
(0) = lim

h→0+

Pii(h) − Pii(0)

h
lim
h→0+

Pii(h) − 1

h
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= lim
h→0+

−

∑
j≠i

Pij(h)

h
= −

∑
j≠i

lim
h→0+

Pij(h)

h

= −
∑
j≠i

Qij = −
∑
j≠i

qij = −qi.

The Q matrix is called the generator or ininitesimal generator. It is the most

important matrix for continuous-time Markov chains. Here, we derived Q from the

transition function P(t). However, in a modeling context one typically starts with Q,

identifying the transition rates qij based on the qualitative and quantitative dynamics

of the process. The transition function and related quantities are derived from Q.

Clearly, the generator is not a stochastic matrix. Diagonal entries are negative,

entries can be greater than 1, and rows sum to 0.

Example 7.6 The ininitesimal generator matrix for the registration line chain of

Example 7.5 is

0 1 2 3 4

Q =

0

1

2

3

4

⎛⎜⎜⎜⎜⎝

−1∕4 1∕4 0 0 0

1∕5 −9∕20 1∕4 0 0

0 1∕5 −9∕20 1∕4 0

0 0 1∕5 −9∕20 1∕4

0 0 0 1∕5 −1∕5

⎞⎟⎟⎟⎟⎠
.

◾

Example 7.7 The generator for a Poisson process with parameter � is

0 1 2 3 4 · · ·

Q =

0

1

2

3

4

⋮

⎛⎜⎜⎜⎜⎜⎜⎝

−� � 0 0 0 · · ·

0 −� � 0 0 · · ·

0 0 −� � 0 · · ·

0 0 0 −� � · · ·

0 0 0 0 −� · · ·

⋮ ⋮ ⋮ ⋮ ⋮ ⋱

⎞⎟⎟⎟⎟⎟⎟⎠

.

◾

For a continuous-time Markov chain, the transition probabilities of the embedded

chain can be derived from irst principles from the transition function and generator

matrix. From i, the probability that if a transition occurs at time t the process moves

to a different state j ≠ i is

lim
h→0+

P(Xt+h = j|Xt = i,Xt+h ≠ i) = lim
h→0+

P(Xh = j|X0 = i,Xh ≠ i)

= lim
h→0+

P(Xh = j,Xh ≠ i,X0 = i)

P(Xh ≠ i,X0 = i)
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= lim
h→0+

P(Xh = j|X0 = i)

P(Xh ≠ i|X0 = i)

= lim
h→0+

Pij(h)∕h

1 − Pii(h)∕h

=
qij

qi
,

which is independent of t. This gives the transition probability pij of the embedded

chain. It also establishes the relationship between instantaneous transition rates, hold-

ing time parameters, and the embedded chain transition probabilities.

Instantaneous Rates, Holding Times, Transition Probabilities

For a continuous-time Markov chain, let qij, qi, and pij be deined as above.

For i ≠ j,

qij = qipij.

For discrete-time Markov chains, there is no generator matrix and the probabilis-

tic properties of the stochastic process are captured by the transition matrix P. For

continuous-time Markov chains the generator matrix Q gives a complete description

of the dynamics of the process. The distribution of any inite subset of the Xt, and all

probabilistic quantities of the stochastic process, can, in principle, be obtained from

the ininitesimal generator and the initial distribution.

Forward, Backward Equations

The transition function P(t) can be computed from the generator Q by solving a

system of differential equations.

Kolmogorov Forward, Backward Equations

A continuous-time Markov chain with transition function P(t) and ininitesimal

generator Q satisies the forward equation

P′(t) = P(t)Q (7.3)

and the backward equation

P′(t) = QP(t). (7.4)

Equivalently, for all states i and j,

P′
ij
(t) =

∑
k

Pik(t)qkj = −Pij(t)qj +
∑
k≠j

Pik(t)qkj



276 CONTINUOUS-TIME MARKOV CHAINS

and

P′
ij
(t) =

∑
k

qikPkj(t) = −qiPij(t) +
∑
k≠i

qikPkj(t).

Proof. The equations are a consequence of the Chapman–Kolmogorov property. For

the forward equation, for h, t ≥ 0,

P(t + h) − P(t)

h
=
P(t)P(h) − P(t)

h

= P(t)

(
P(h) − I

h

)

= P(t)

(
P(h) − P(0)

h

)
.

Taking limits as h→ 0+ gives P′(t) = P(t)Q. The backward equation is derived sim-

ilarly, starting with P(t + h) = P(h)P(t). ◾

Example 7.8 (Poisson process) The transition probabilities for the Poisson pro-

cess with parameter �,

Pij(t) =
e−�t(�t)j−i

( j − i)!
, for j ≥ i,

were derived in Example 7.1. They satisfy the Kolmogorov forward equations

P′
ii
(t) = −�Pii(t),

P′
ij
(t) = −�Pij(t) + �Pi, j−1, for j = i + 1, i + 2,… ,

and the backward equations

P′
ii
(t) = −�Pii(t),

P′
ij
(t) = −�Pij(t) + �Pj+1,i, for j = i + 1, i + 2,…

◾

Example 7.9 (Two-state process) For a continuous-time process with generator

1 2

Q =
1

2

(
−� �
� −�

)
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the forward equations give

P′
11
(t) = −P11(t)q1 + P12(t)q21

= −�P11(t) + (1 − P11(t))�

= � − (� + �)P11(t),

using the fact that the irst row of the matrix P(t) sums to 1. The solution to the linear

differential equation is

P11(t) =
�

� + �
+

�

� + �
e−(�+�)t.

Also,

P′
22
(t) = −P22(t)q2 + P21(t)q12 = � − (� + �)P22(t),

with solution

P22(t) =
�

� + �
+

�

� + �
e−(�+�)t.

The transition function is

1 2

P(t) =
1

� + �

(
� + �e−(�+�)t � − �e−(�+�)t

� − �e−(�+�)t � + �e−(�+�)t

)
. (7.5)

◾

Matrix Exponential

The Kolmogorov backward equation P′(t) = QP(t) is a matrix equation, which bears

a striking resemblance to the nonmatrix differential equation p′(t) = qp(t), where p

is a differentiable function and q is a constant. If p(0) = 1, the latter has the unique

solution

p(t) = etq, for t ≥ 0.

If you are not familiar with solutions to matrix differential equations it might be

tempting to try to solve the backward equation by analogy, and write

P(t) = etQ, for t ≥ 0,

since P(0) = I. Remarkably, this is exactly correct, as long as etQ is deined properly.

Matrix Exponential

Let A be a k × k matrix. The matrix exponential eA is the k × k matrix

eA =

∞∑
n=0

1

n!
An = I + A +

1

2
A2 +

1

6
A3 + · · · .
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The matrix exponential is the matrix version of the exponential function and

reduces to the ordinary exponential function ex when A is a 1 × 1 matrix. The matrix

eA is well-deined as its deining series converges for all square matrices A.

The matrix exponential satisies many familiar properties of the exponential func-

tion. These include

1. e� = I.

2. eAe−A = I.

3. e(s+t)A = esAetA.

4. If AB = BA, then eA+B = eAeB = eBeA.

5.
d

dt
etA = AetA = etAA.

For a continuous-time Markov chain with generator Q, the matrix exponential etQ

is the unique solution to the forward and backward equations. LettingP(t) = etQ gives

P′(t) =
d

dt
etQ = QetQ = etQQ = P(t)Q = QP(t).

Transition Function and Generator

For a continuous-time Markov chain with transition function P(t) and ininitesi-

mal generator Q,

P(t) = etQ =

∞∑
n=0

1

n!
(tQ)n = I + tQ +

t2

2
Q2 +

t3

6
Q3 + · · · (7.6)

Computing the matrix exponential is often numerically challenging. Finding accu-

rate and eficient algorithms is still a topic of current research. Furthermore, the

transition function is dificult to obtain in closed form for all but the most specialized

models. For applied problems, numerical approximation methods are often needed.

The R package expm contains the function expm(mat) for computing the matrix

exponential of a numerical matrix mat.

R: Computing the Transition Function

For the registration line Markov chain of Example 7.5, we ind the transition

function P(t) for t = 2.5.

# matrixexp.R
> install.packages("expm")
> library(expm)
> Q <- matrix(c(-1/4,1/4,0,0,0,1/5,-9/20,1/4,0,0,0,
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+ 1/5,-9/20,1/4,0,0,0,1/5,-9/20,1/4,0,0,0,1/5,-1/5),
+ nrow=5,byrow=T)
> Q

0 1 2 3 4
0 -0.25 0.25 0.00 0.00 0.00
1 0.20 -0.45 0.25 0.00 0.00
2 0.00 0.20 -0.45 0.25 0.00
3 0.00 0.00 0.20 -0.45 0.25
4 0.00 0.00 0.00 0.20 -0.20
> P <- function(t) expm(t*Q)
> P(2.5)

0 1 2 3 4
0 0.610 0.290 0.081 0.016 0.003
1 0.232 0.443 0.238 0.071 0.017
2 0.052 0.190 0.435 0.238 0.085
3 0.008 0.045 0.191 0.446 0.310
4 0.001 0.008 0.054 0.248 0.688

Diagonalization*

If the Q matrix is diagonalizable, then so is etQ, and the transition function can be

expressed in terms of the eigenvalues and eigenvectors ofQ.WriteQ = SDS−1, where

D =

⎛
⎜⎜⎜⎝

�1 0 · · · 0

0 �2 · · · 0

⋮ ⋮ ⋱ ⋮

0 0 · · · �k

⎞
⎟⎟⎟⎠

is a diagonal matrix whose diagonal entries are the eigenvalues of Q, and S is an

invertible matrix whose columns are the corresponding eigenvectors. This gives

etQ =

∞∑
n=0

1

n!
(tQ)n =

∞∑
n=0

tn

n!
(SDS−1)n

=

∞∑
n=0

tn

n!
SDnS−1 = S

(
∞∑
n=0

tn

n!
Dn

)
S−1

= SetDS−1,

where

etD =

∞∑
n=0

tn

n!
Dn =

∞∑
n=0

tn

n!

⎛
⎜⎜⎜⎝

�n
1

0 · · · 0

0 �n
2

· · · 0

⋮ ⋮ ⋱ ⋮

0 0 · · · �n
k

⎞
⎟⎟⎟⎠
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=

⎛⎜⎜⎜⎝

∑∞
n=0 (t�1)

n∕n! 0 · · · 0

0
∑∞

n=0 (t�2)
n∕n! · · · 0

⋮ ⋮ ⋱ ⋮

0 0 · · ·
∑∞

n=0 (t�k)
n∕n!

⎞⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎝

et�1 0 · · · 0

0 et�2 · · · 0

⋮ ⋮ ⋱ ⋮

0 0 · · · et�k

⎞
⎟⎟⎟⎠
.

Example 7.10 For the two-state chain, the generator

Q =

(
−� �
� −�

)

is diagonalizable with eigenvalues 0 and −(� + �), and corresponding eigenvectors(
1

1

)
and

(
−�
�

)
. This gives

Q = SDS−1 =

(
1 −�
1 �

)(
0 0

0 −(� + �)

)(
�∕(� + �) �∕(� + �)
−1∕(� + �) 1∕(� + �)

)
.

The transition function is

P(t) = etQ = SetDS−1

=

(
1 −�
1 �

)(
1 0

0 e−t(�+�)

)(
�∕(� + �) �∕(� + �)
−1∕(� + �) 1∕(� + �)

)

=
1

� + �

(
� + �e−t(�+�) � − �e−t(�+�)

� − �e−t(�+�) � + �e−t(�+�)

)
.

This result was also shown in Example 7.9 as the solution to the Kolmogorov forward

equations. ◾

Example 7.11 (DNA evolution) Continuous-timeMarkov chains are used to study

the evolution of DNA sequences. Numerous models have been proposed for the evo-

lutionary changes on the genome as a result of mutation. Such models are often

speciied in terms of transition rates between base nucleotides adenine, guanine, cyto-

sine, and thymine at a ixed chromosome location.

The Jukes–Cantor model assumes that all transition rates are the same. The

ininitesimal generator, with parameter r > 0, is

a g c t

Q =

a

g

c

t

⎛⎜⎜⎜⎝

−3r r r r

r −3r r r

r r −3r r

r r r −3r

⎞⎟⎟⎟⎠
.
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The generator is diagonalizable with linearly independent eigenvectors

⎛⎜⎜⎜⎝

−1

0

0

1

⎞⎟⎟⎟⎠
,

⎛⎜⎜⎜⎝

−1

0

1

0

⎞⎟⎟⎟⎠
,

⎛⎜⎜⎜⎝

−1

1

0

0

⎞⎟⎟⎟⎠
,

⎛⎜⎜⎜⎝

1

1

1

1

⎞⎟⎟⎟⎠
,

corresponding to eigenvalues −4r,−4r,−4r, and 0. This gives

P(t) = etQ = SetDS−1

=

⎛
⎜⎜⎜⎜⎝

−1 −1 −1 1

0 0 1 1

0 1 0 1

1 0 0 1

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝

e−4rt 0 0 0

0 e−4rt 0 0

0 0 e−4rt 0

0 0 0 1

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎝

−
1

4
−

1

4
−

1

4

3

4

−
1

4
−

1

4

3

4
−

1

4

−
1

4

3

4
−

1

4
−

1

4

1

4

1

4

1

4

1

4

⎞
⎟⎟⎟⎟⎟⎟⎠

=
1

4

⎛
⎜⎜⎜⎜⎝

1 + 3e−4rt 1 − e−4rt 1 − e−4rt 1 − e−4rt

1 − e−4rt 1 + 3e−4rt 1 − e−4rt 1 − e−4rt

1 − e−4rt 1 − e−4rt 1 + 3e−4rt 1 − e−4rt

1 − e−4rt 1 − e−4rt 1 − e−4rt 1 + 3e−4rt

⎞
⎟⎟⎟⎟⎠
.

The Jukes–Cantor model does not distinguish between base types. Nucleotides a

and g are purines, c and t are pyrimidines. Changes from purine to purine or pyrimi-

dine to pyrimidine are called transitions. Changes from purine to pyrimidine or vice

versa are called transversions.

The Kimuramodel, which includes two parameters r and s, distinguishes between

transitions and transversions. The generator is

a g c t

Q =

a

g

c

t

⎛⎜⎜⎜⎝

−(r + 2s) r s s

r −(r + 2s) s s

s s −(r + 2s) r

s s r −(r + 2s)

⎞⎟⎟⎟⎠
.

Thematrix is diagonalizable. The respective matrices of eigenvalues and eigenvectors

are

D =

⎛
⎜⎜⎜⎝

−2(r + s) 0 0 0

0 −2(r + s) 0 0

0 0 −4s 0

0 0 0 0

⎞
⎟⎟⎟⎠

and S =

⎛
⎜⎜⎜⎝

−1 0 −1 1

0 −1 1 1

1 0 −1 1

0 1 1 1

⎞
⎟⎟⎟⎠
.
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The transition function P(t) = etQ = SetDS−1 is

Pxy(t) =

⎧⎪⎨⎪⎩

(
1 + e−4st − 2e−2(r+s)t

)
∕4, if xy ∈ {ag, ga, ct, tc},(

1 − e−4st
)
∕4, if xy ∈ {ac, at, gc, gt, ca, cg, ta, tg},(

1 + e−4st + 2e−2(r+s)t
)
∕4, if xy ∈ {aa, gg, cc, tt}.

Estimating Mutation Rate and Evolutionary Distance

Continuous-time Markov models are used by biologists and geneticists to estimate

the evolutionary distance between species, as well as the related mutation rate. The

following application is based on Durrett (2002).

A statistic for estimating evolutionary distance from DNA sequences is the num-

ber of locations in the sequences that differ. Given two DNA strands and a common

nucleotide site, consider the probability q that the nucleotides in the two strands

are identical given that the most recent common ancestor occurred t time units ago.

Assume at that time that the nucleotide at the given site was a. Then, the probability

that the two sequences are identical, by the Jukes–Cantor model, is

q = (Paa(t))
2 + (Pag(t))

2 + (Pac(t))
2 + (Pat(t))

2

=
(
1

4
+

3

4
e−4rt

)2

+ 3
(
1

4
−

1

4
e−4rt

)2

=
1

4
+

3

4
e−8rt,

which is independent of the starting nucleotide. Thus the probability p that the two

sites are different is

p = 1 − q =
3

4

(
1 − e−8rt

)
.

Solving for rt gives

rt = −
1

8
ln

(
1 −

4p

3

)
.

In the Jukes–Cantor model, nucleotides change at the rate of 3r transitions per time

unit. In two DNA strands we expect 2(3rt) = 6rt substitutions over t years. Let

K denote the number of substitutions that occur over t years. Then,

E(K) = 6rt = −
3

4
ln

(
1 −

4p

3

)
.

To estimate the actual number of substitutions that occurred since the most recent

common ancestor t time units ago, take

K̂ = −
3

4
ln

(
1 −

4p̂

3

)
,

where p̂ is the observed fraction of differences between two sequences.
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The number of nucleotide substitutions per site between two sequences since their

separation from the last common ancestor is called the evolutionary distance between

the sequences. It is an important quantity for estimating the rate of evolution and the

divergence time between species.

Durrett compares the sequence of mitochondrial RNA for the somatotropin gene

(a growth hormone) for rats and humans. The observed proportion of differences

between the two sequences at a ixed site in the gene is p̂ = 0.366. Hence, the estimate

of the number of substitutions at that site that have occurred since divergence of the

two species is

K̂ = −
3

4
ln

(
1 −

4(0.366)

3

)
= 0.502.

Using the fact that rats and humans diverged about 80million years ago, and choosing

0.502 as the number of substitutions per nucleotide, the mutation rate at that position

is estimated as 0.502∕(8 × 107) = 6.275 × 10−9 per year. ◾

Example 7.12 (Using symbolic software) Symbolic software systems, such as

Mathematica andMaple, work in exact integer arithmetic, and can be used to ind the

matrix exponential when the generator matrix contains symbolic parameters. Wol-

fram Alpha, which is freely available on the web, has the command MatrixExp for

computing the matrix exponential.

To ind the transition function for the Jukes–Cantor model from the previous

example, we type the following command from our web browser

> MatrixExp[t{{ − 3r, r, r, r}, {r,−3r, r, r}, {r, r,−3r, r}, {r, r, r,−3r}}],

which gives the output shown in Figure 7.6.
◾

7.4 LONG-TERM BEHAVIOR

For continuous-time Markov chains, limiting and stationary distributions are deined

similarly as for discrete time.

Limiting Distribution

A probability distribution � is the limiting distribution of a continuous-time

Markov chain if for all states i and j,

lim
t→∞

Pij(t) = �j.
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Figure 7.6 Computing the matrix exponential with WolframAlpha. Source: See Wolfram

Alpha LLC (2015).

Stationary Distribution

A probability distribution � is a stationary distribution if

� = �P(t), for t ≥ 0.

That is, for all states j,

�j =
∑
i

�iPij(t), for t ≥ 0.

As in the discrete case, the limiting distribution, if it exists, is a stationary

distribution. However, the converse is not necessarily true and depends on the class

structure of the chain. For characterizing the states of a continuous-time Markov

chain, notions of accessibility, communication, and irreducibility are deined as in

the discrete case. A continuous-time Markov chain is irreducible if for all i and j,

Pij(t) > 0 for some t > 0.

In one regard, the classiication of states is easier in continuous time since

periodicity is not an issue. All states are essentially aperiodic, a consequence of the

following lemma.

Lemma 7.1. If Pij(t) > 0, for some t > 0, then Pij(t) > 0, for all t > 0.
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The result is intuitive since if Pij(t) > 0 for some t, then there exists a path from i

to j in the embedded chain, and for any time s there is positive probability of reaching

j from i in s time units. We forego the complete proof, but show the result for forward

time. Assume that Pij(t) > 0 for some t. Then, for s ≥ 0,

Pij(t + s) =
∑
k

Pik(t)Pkj(s) ≥ Pij(t)Pjj(s) ≥ Pij(t)e
−qjs > 0.

For the penultimate inequality, e−qjs is the probability that there is no transition from

j by time s. The latter event implies that the process started at j is at j at time s, whose

probability is Pjj(s).

A inite-state continuous-time Markov chain is irreducible if all the holding time

parameters are positive. On the contrary, if qi = 0 for some i, then i is an absorbing

state. If we assume that all the holding time parameters are inite, then there are two

possibilities: (i) the process is irreducible, all states communicate, and Pij(t) > 0, for

t > 0 and all i, j or (ii) the process contains one or more absorbing states.

The following fundamental limit theorem is given without proof. Note the analo-

gies with the discrete-time results, for example, Theorems 3.6 and 3.8.

Fundamental Limit Theorem

Theorem 7.2. Let (Xt)t≥0 be a inite, irreducible, continuous-time Markov chain

with transition function P(t). Then, there exists a unique stationary distribu-

tion �, which is the limiting distribution. That is, for all j,

lim
t→∞

Pij(t) = �j, for all initial i.

Equivalently,

lim
t→∞

P(t) = �,

where � is a matrix all of whose rows are equal to �.

Example 7.13 (Two-state process) For the continuous-time Markov chain on two

states,

lim
t→∞

P(t) = lim
t→∞

1

� + �

(
� + �e−(�+�)t � − �e−(�+�)t

� − �e−(�+�)t � + �e−(�+�)t

)
=

1

� + �

(
� �
� �

)
.

The stationary distribution is

� =

(
�

� + �
,

�

� + �

)
.

◾
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The following result links the stationary distribution with the generator.

Stationary Distribution and Generator Matrix

A probability distribution � is a stationary distribution of a continuous-time

Markov chain with generator Q if and only if

�Q = �.

That is, ∑
i

�iQij = 0, for all j.

Proof. Assume that � = �P(t), for all t ≥ 0. Take the derivative of both sides of the

equation at t = 0 to get � = �P′(0) = �Q. Conversely, assume that �Q = �. Then,

� = �QP(t) = �P′(t), for t ≥ 0,

by the Kolmogorov backward equation. Since the derivative is equal to �, �P(t) is a

constant. In particular, P(0) = I, and thus �P(t) = �P(0) = �, for t ≥ 0. ◾

The stationary probability �j can be interpreted as the long-term proportion of time

that the chain spends in state j. This is analogous to the discrete-time case in which the

stationary probability represents the long-term fraction of transitions that the chain

visits a given state.

Example 7.14 (Eat, play, sleep) Jesse is a newborn baby who is always in one of

three states: eat, play, and sleep. He eats on average for 30 minutes at a time; plays on

average for 1 hour; and sleeps for about 3 hours. After eating, there is a 50–50 chance

he will sleep or play. After playing, there is a 50–50 chance he will eat or sleep. And

after sleeping, he always plays. Jesse’s life is governed by a continuous-time Markov

chain. What proportion of the day does Jesse sleep?

Solution The holding time parameters for the three-state chain (in hour units) are

(qe, qp, qs) = (2, 1, 1∕3). The embedded chain transition probabilities are

Eat Play Sleep

P̃ =

Eat

Play

Sleep

⎛⎜⎜⎝

0 1∕2 1∕2

1∕2 0 1∕2

0 1 0

⎞⎟⎟⎠
.
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With qij = qipij, the generator matrix is

Eat Play Sleep

Q =

Eat

Play

Sleep

⎛
⎜⎜⎝

−2 1 1

1∕2 −1 1∕2

0 1∕3 −1∕3

⎞
⎟⎟⎠
.

The linear system �Q = � gives

−2�e + (1∕2)�p = 0,

�e − �p + (1∕3)�s = 0,

�e + (1∕2)�p − (1∕3)�s = 0,

with solution

� = (�e, �p, �s) =
(
1

14
,
4

14
,
9

14

)
= (0.071, 0.286, 0.643).

Jesses spends almost two-thirds of his day sleeping.

Using R, we compute the transition function, and then take P(t) for large t (in this

case t = 100) to ind the approximate limiting distribution. ◾

R: Eat, Play, Sleep

> install.packages("expm")
> library(expm)
> Q = matrix(c(-2,1,1,1/2,-1,1/2,0,1/3,-1/3),
+ nrow=3,byrow=T)
> P <- function(t) {expm(t*Q)}
> P(100)

Eat Play Sleep
Eat 0.07143 0.28571 0.64286
Play 0.07143 0.28571 0.64286
Sleep 0.07143 0.28571 0.64286

Example 7.15 (DNA evolution) The Jukes–Cantor and Kimura models, intro-

duced in Example 7.11, have uniform limiting distribution � = (1∕4, 1∕4, 1∕4, 1∕4).
An objection to these models is that nucleotides are not distributed uniformly on the

genome. For instance, frequencies for human DNA are approximately

a g c t

0.292 0.207 0.207 0.292
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The four-parameter Felsenstein model, introduced in 1981, has generator matrix

a g c t

Q =

a

g

c

t

⎛⎜⎜⎜⎝

−�(1 − pa) �pg �pc �pt
�pa �(1 − pg) �pc �pt
�pa �pg −�(1 − pc) �pt
�pa �pg �pc −�(1 − pt)

⎞⎟⎟⎟⎠
,

where pa + pg + pc + pt = 1 and � > 0. One checks that � = (pa, pg, pc, pt) satisies

�Q = � and is the stationary distribution. The transition function, which we do not

derive, is

Pij(t) =

{
(1 − e−�t)pj, if i ≠ j,

e−�t + (1 − e−�t)pj, if i = j.
◾

Absorbing States

An absorbing Markov chain is one in which there is at least one absorbing state. Let

(Xt)t≥0 be an absorbing continuous-time Markov chain on {1,… , k}. For simplicity,

assume the chain has one absorbing state a. As in the discrete case, the nonabsorbing

states are transient. There is positive probability that the chain, started in a transient

state, gets absorbed and never returns to that state. For transient state i, we derive an

expression for ai, the expected time until absorption.

Let T denote the set of transient states. Write the generator in canonical block

matrix form

a T

Q =
a

T

(
0 �

∗ V

)
,

where V is a (k − 1) × (k − 1) matrix.

Mean Time Until Absorption

Theorem 7.3. For an absorbing continuous-time Markov chain, deine a square

matrix F on the set of transient states, where Fij is the expected time, for the

chain started in i, that the process is in j until absorption. Then,

F = −V−1.

For the chain started in i, the mean time until absorption is,

ai =
∑
j

Fij.

The matrix F is called the fundamental matrix.
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Proof. The proof is based on conditioning on the irst transition. For the chain started

in i, consider the mean time Fij spent in j before absorption.

Assume that j ≠ i and that the process irst moves to k ≠ i. The probability of

moving from i to k is qik∕qi. If k = a is the absorbing state, the time spent in j is 0.

Otherwise, the mean time in j until absorption is Fkj. This gives

Fij =
∑
k∈T
k≠i

qik

qi
Fkj =

1

qi

∑
k∈T
k≠i

VikFkj

=
1

qi
[(VF)ij − ViiFij] =

1

qi
[(VF)ij + qiFij]

=
1

qi
(VF)ij + Fij.

Thus (VF)ij = 0. We have used that Vij = Qij, for i, j ∈ T .

Assume that j = i. The mean time spent in i before transitioning to a new state is

1∕qi. Conditioning on the next state,

Fii =
qia

qi

(
1

qi

)
+
∑
k∈T
k≠i

qik

qi

(
1

qi
+ Fki

)

=
qia

q2
i

+
1

q2
i

∑
k∈T
k≠i

qik +
1

qi

∑
k∈T
k≠i

qikFki

=
−1

q2
i

Qii +
1

qi
[(VF)ii − ViiFii]

=
1

qi
+

1

qi
(VF)ii + Fii.

Hence, (VF)ii = −1.

In summary,

(VF)ij =

{
−1, if i = j,
0, if i ≠ j.

That is, VF = −I. and F = −V−1.

For the chain started in i, the mean time until absorption is the sum of the mean

times in each transient state j until absorption, which gives the inal result. ◾

Example 7.16 (Multistate models) Multistate Markov models are used in med-

icine to model the course of diseases. A patient may advance into, or recover from,

successively more severe stages of a disease until some terminal state. Each stage

represents a state of an absorbing continuous-time Markov chain.
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Bartolomeo et al. (2011) develops such a model to study the progression of liver

disease among patients diagnosed with cirrhosis of the liver. The general form of the

ininitesimal generator matrix for their three-parameter model is

1 2 3

Q =

1

2

3

⎛⎜⎜⎝

−(q12 + q13) q12 q13
0 −q23 q23
0 0 0

⎞⎟⎟⎠
,

where state 1 represents cirrhosis, state 2 denotes liver cancer (hepatocellular carci-

noma), and state 3 is death. The fundamental matrix is

1 2

F = −

(
−(q12 + q13) q12

0 −q23

)−1

=

(
1∕

(
q12 + q13

)
q12∕(q23(q12 + q13))

0 1∕q23

)
,

with mean absorption times

a1 =
1

q12 + q13
+

q12

q23(q12 + q13)
and a2 =

1

q23
.

From a sample of 1,925 patients diagnosed with cirrhosis, and data on the num-

ber of months at each stage of the disease, the authors estimate the parameters of

the model for subgroups depending on age, gender, and other variables. Their mean

parameter estimates are q̂12 = 0.0151, q̂13 = 0.0071, and q̂23 = 0.0284.
Plots of the transition probabilities between states are shown in Figure 7.7. The

fundamental matrix is estimated to be

1 2

F̂ =
1

2

(
45.05 23.95

0.00 35.21

)
.

From the fundamental matrix, the estimated mean time to death for patients with liver

cirrhosis is 45.05 + 23.95 = 69 months. See the foregoing R code for a simulation of

the mean time to death.

R: Simulation of Time to Absorption

# absorption.R
> trials <- 100000
> simlist <- numeric(trials)
> init <- 1 # initial state of liver cirrhosis
> for (i in 1:trials) {

+ state <- init
+ t <- 0
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+ while (TRUE) {

+ if (state == 1) { q12 <- rexp(1,0.0151)
+ q13 <- rexp(1,0.0071) }

+ if (q12 < q13) {t <-t + q12
+ state <- 2}
+ else {t <- t + q13
+ break}
+ if (state == 2) {q23 <- rexp(1,0.0284)
+ t <- t + q23
+ break}
+ }

+ simlist[i] <- t }

> mean(simlist)
[1] 69.01561

◾
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P13(t)

P13(t)

Figure 7.7 Estimated transition probabilities for stages of liver cirrhosis. Source:Bartolomeo

et al. (2011).

Stationary Distribution of Embedded Chain

For a continuous-time Markov chain, the stationary distribution � is not the same as

the stationary distribution of the embedded chain, which we denote as � . Consider a

three-state process with generator

1 2 3

Q =

1

2

3

⎛⎜⎜⎝

−2 1 1

2 −4 2

4 4 −8

⎞⎟⎟⎠
.
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The unique solution of �Q = � is � = (4∕7, 2∕7, 1∕7), which is the stationary dis-

tribution of the continuous-time chain. However, the embedded chain has transition

matrix

1 2 3

P̃ =

1

2

3

⎛
⎜⎜⎝

0 1∕2 1∕2

1∕2 0 1∕2

1∕2 1∕2 0

⎞
⎟⎟⎠
,

with uniform stationary distribution � = (1∕3, 1∕3, 1∕3).

Note the difference in interpretation of the two distributions. The stationary prob-

ability �j is the long-term proportion of time that the process spends in state j. On the

other hand, the embedded chain stationary probability �j is the long-term proportion

of transitions that the process makes into state j.

Each stationary distribution can be derived from the other. From �Q = �, we have

that

�jqj =
∑
i≠j

�iqij, for all j. (7.7)

Deine �̃j = �jqj. Then, Equation (7.7) gives

�̃j =
∑
i≠j

�̃ipij.

Thus �̃ satisies �̃P̃ = �̃ . To obtain a stationary distribution for the embedded chain,

normalize �̃ . Let

�j =
�̃j∑
k�̃k

=
�jqj∑
k�kqk

.

Then, � = � P̃, and � is the stationary distribution of the embedded Markov chain.

Having derived � from �, we can also derive � from � . Since �j = C�jqj, where

C is an appropriate normalizing constant, we have that �j = �j∕(Cqj). This gives,

�j =
�j∕qj∑
k�k∕qk

, for all j.

Example 7.17 The embedded chain of a continuous-time process has transition

matrix

1 2 3

P̃ =

1

2

3

⎛
⎜⎜⎝

0 1 0

1∕3 0 2∕3

0 1 0

⎞
⎟⎟⎠
.

Assume that the process stays at state 1 on average 5 minutes before moving to 2.

From state 2, it stays on average 2 minutes before moving to a new state. From 3, it

stays on average 4 minutes before transitioning to 2. Find the stationary distribution

of the continuous-time chain.
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Solution Solve � P̃ = � to get � = (1∕6, 1∕2, 1∕3). Holding time parameters are

(q1, q2, q3) = (1∕5, 1∕2, 1∕4). The stationary distribution � is proportional to

(�1∕q1, �2∕q2, �3∕q3) = (5∕6, 2∕2, 4∕3),

which gives � = (5∕19, 6∕19, 8∕19). ◾

Global Balance

Assume that � is the stationary distribution of a continuous-timeMarkov chain. From

�Q = �, we have that ∑
i≠j

�iqij = �jqj, for all j. (7.8)

The holding time parameter qj is the transition rate from j . Since �j is the long-term

proportion of time the process visits j, the right-hand side of Equation (7.8) is the

long-term rate that the process leaves j. Also, �iqij is the long-term rate of transition-

ing from i to j. Thus, the left-hand side of Equation (7.8) is the long-term rate that the

process enters j.

Equations (7.8) are known as the global balance equations. They say that in sta-

tionarity the rates in and out of any state are the same.

Example 7.18 In Example 7.17, we have that

(�1q1, �2q2, �3q3) = (1∕19, 3∕19, 2∕19).

By global balance, in the long-term, every 19 minutes the process sees one transition

to and from state 1, three transitions to and from state 2, and two transitions to and

from state 3.

We illustrate one of these facts by simulating the number of transitions to and from

state 2 for the irst 19 minutes of the stationary continuous-time chain.

R: Simulating Global Balance

# globalbalance.R
> trials <- 100000
> simin2 <- simout2 <- numeric(trials)
> for (i in 1:trials) {

+ state <- sample(1:3,1, prob=c(5/19,6/19,8/19))
+ t <- 0 # time
+ in2 <- 0 # counter for transitions to 2
+ out2 <- 0 # counter for transitions from 2
+ while (t < 19) {
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+ if (state == 1) {t <- t+rexp(1,1/5)
+ if (t > 19) {break}
+ state <- 2
+ in2 <- in2 + 1 }

+ if (state == 3) {t <- t + rexp(1,1/4)
+ if (t > 19) {break}
+ state <- 2
+ in2 <- in2 + 1}
+ if (state ==2) { r1 <- rexp(1, (1/2)*(1/3))
+ r3 <- rexp(1, (1/2)*(2/3))
+ if (r1 < r3) { t <- t + r1
+ if (t > 19) {break}
+ out2 <- out2 + 1
+ state <- 1} else { t <- t + r3
+ if (t > 19) {break}
+ out2 <- out2 + 1
+ state <- 3}}
+ }

+ simin2[i] <- in2
+ simout2[i] <- out2}
> mean(simin2) # mean transitions to 2
[1] 2.99994
> mean(simout2) # mean transitions from 2
[1] 3.00264

◾

7.5 TIME REVERSIBILITY

Intuitively, a continuous-time Markov chain is time reversible if the process in for-

ward time is indistinguishable from the process in reversed time. A consequence is

that for all states i and j, the long-term forward transition rate from i to j is equal to the

long-term backward rate from j to i. This is a stronger condition than global balance,

which says that the long-term rate from a given state is equal to the long-term rate

into that state.

Time Reversibility

A continuous-time Markov chain with generator Q and unique stationary distri-

bution � is said to be time reversible if

�iqij = �jqji, for all i, j. (7.9)
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Equations (7.9) give the local balance, or detailed balance, equations. They say

that the long-term transition rate from i to j is equal to the long-term transition rate

from j to i.

The local balance equations are a property of reversible chains, which can be used

to ind the stationary distribution. If a probability distribution � satisies

�iqij = �jqji, for all i, j,

then the continuous-time chain is time reversible and � = � is the unique stationary

distribution of the chain. Summing over i gives
∑
i

�iqij = �j
∑
i

qji = 0.

That is, �Q = �.

Example 7.19 The general, nine-parameter, time reversible model for DNA substi-

tutions has generator matrix

a g c t

Q =

a

g

c

t

⎛⎜⎜⎜⎝

− �pg �pc �pt
�pa − �pc �pt
�pa �pg − �pt
�pa �pg �pc −

⎞⎟⎟⎟⎠
,

where pa + pg + pc + pt = 1, and �, �, �, �, �, � > 0. Diagonal entries are chosen so

that rows sum to 0. One checks that that pxqxy = qyxpy for x, y ∈ {a, g, c, t}. It follows

that the unique stationary distribution is � = (pa, pg, pc, pt). ◾

A continuous-time Markov chain is time reversible if and only if its embedded

discrete-time chain is time reversible. From Equation (7.9), we obtain that

�iqipij = �jqjpji, for all i, j.

Dividing both sides by the normalizing constant
∑

k�kqk gives

�ipij = �jpji, for all i, j.

That is, � satisies the detailed balance equations for the embedded chain. In station-

arity, the frequency of transitions from i to j is the same as that from j to i.

Tree Theorem

A tree is an undirected graph in which any pair of vertices is connected by exactly one

path. Equivalently, a tree is a connected graph that has no cycles. Figure 7.8 shows

three examples of trees.

Consider an undirected transition graph for a continuous-timeMarkov chainwhere

vertices i and j are joined by an edge if qij > 0 or qji > 0. The next theorem, from
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Figure 7.8 Trees.

Kelly (1994), gives a suficient condition for time reversibility based on the structure

of the graph.

Markov Processes on Trees are Time Reversible

Theorem7.4. Assume that the transition graph of an irreducible continuous-time

Markov chain is a tree. Then, the process is time reversible.

The result is shown by means of the following lemma, which is of independent

interest. It states that the long-term transition rate out of any nonempty subset of

states is equal to the long-term transition rate into that set.

Lemma 7.5. Let  denote the state space of a continuous-time Markov chain

with stationary distribution � and generator Q. For any nonempty subset of the

state space A ⊆  , ∑
i∈A

∑
j∉A

�iqij =
∑
i∈A

∑
j∉A

�jqji. (7.10)

Proof of Lemma 7.5. The left-hand side of Equation (7.10) is equal to

∑
i∈A

∑
j∈S

�iqij −
∑
i∈A

∑
j∈A

�iqij = −
∑
i∈A

∑
j∈A

�iqij,

since the rows of Q sum to 0. The right-hand side of Equation (7.10) is equal to

∑
i∈A

∑
j∈S

�jqji −
∑
i∈A

∑
j∈A

�jqji = −
∑
i∈A

∑
j∈A

�iqij,

since � is the stationary distribution and �Q = �. ◾

Proof of Theorem 7.4. Assume that the transition graph is a tree. We show that

�iqij = �jqji, for all i, j.
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If there is no edge between i and j in the transition graph, then qij = qji = 0. Assume

that there is an edge between i and j. A tree has the property, since it contains no

cycles, that removal of any edge cuts the graph into two disconnected components.

Let A denote the set of states connected to i, after removing the edge between i and j.

Since the only vertex connected to i in the original graph, which is not in S, is j,

∑
k∈A

∑
l∉A

�kqkl = �iqij

and

∑
k∈A

∑
l∉A

�lqlk = �jqji.

By Lemma 7.5, the result is proven. ◾

Theorem 7.4 gives a suficient condition for a continuous-time Markov chain to

be time reversible. However, the condition is not necessary. Following is an example

of a reversible Markov chain whose undirected transition graph is not a tree.

Example 7.20 The continuous-timeMarkov chainwith symmetric generator matrix

Q =

⎛
⎜⎜⎝

−2 1 1

1 −2 1

1 1 −2

⎞
⎟⎟⎠

has stationary distribution � = (1∕3, 1∕3, 1∕3). One checks that the local balance

equations are satisied and the process is time reversible. However, the undirected

transition graph is a triangle. ◾

Birth-and-Death Process

Birth-and-death processes form a large class of time reversible, continuous-time

Markov chains, which arise in many applications. For these processes, transitions

only occur to neighboring states. Births occur from i to i + 1 at the rate �i. Deaths
occur from i to i − 1 at the rate �i.

The generator matrix for the general birth-and-death process on {0, 1,…} is

0 1 2 3 · · ·

Q =

0

1

2

3

⋮

⎛⎜⎜⎜⎜⎝

−�0 �0 0 0 · · ·

�1 −(�1 + �1) �1 0 · · ·

0 �2 −(�2 + �2) �2 · · ·

0 0 �3 −(�3 + �3) · · ·

⋮ ⋮ ⋮ ⋮ ⋱

⎞⎟⎟⎟⎟⎠
.
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0 1 2 3

λ0 λ1 λ2

µ3µ2µ1

λ3

µ3

Figure 7.9 Birth-and-death process.

See Figure 7.9 for the directed transition graph. The undirected graph is a path,

which is a tree. By Theorem 7.4, the chain is reversible.

The local balance equations for a birth-and-death process are

�i�i = �i+1�i+1, for i = 0, 1,…

Solving for the stationary distribution,

�1 = �0
�0
�1

,

�2 = �1
�1
�2

= �0
�0�1
�1�2

,

and so on, giving

�k = �0
�0 · · · �k−1
�1 · · ·�k

= �0

k∏
i=1

�i−1
�i

, for k = 0, 1,… , (7.11)

where we use the convention, for k = 0, that an empty product is equal to 1. For the

components of � to sum to 1, we need

1 =

∞∑
k=0

�k = �0

∞∑
k=0

k∏
i=1

�i−1
�i

. (7.12)

A necessary and suficient condition for the stationary distribution to exist is that

∞∑
k=0

k∏
i=1

�i−1
�i

< ∞,

in which case we can solve for �0 in Equation (7.12).

Stationary Distribution for Birth-and-Death Process

For a birth-and-death process with birth rates �i and death rates �i, for

i = 1, 2,… , assume that
∞∑
k=0

k∏
i=1

�i−1
�i

< ∞.
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Then, the unique stationary distribution � is

�k = �0

k∏
i=1

�i−1
�i

, for k = 1, 2,… ,

where

�0 =

(
∞∑
k=0

k∏
i=1

�i−1
�i

)−1

.

Example 7.21 (Continuous-time randomwalk) Consider a continuous-time ver-

sion of simple random walk on {0, 1, 2,…} with relecting boundaries. From 0, the

walk moves to 1 after an exponentially distributed length of time with rate �. From
i > 0, transitions to the left occur at the rate �, and transitions to the right occur at the
rate �. Find the stationary distribution.

Solution The walk is a birth-and-death process with constant birth rate �i = � and

death rate �i = �. For the stationary distribution,

�k = �0

k∏
i=1

�

�
= �0

(
�

�

)k

, for k = 0, 1,… ,

with

�0 =

(
∞∑
k=0

(
�

�

)k
)−1

= 1 −
�

�
,

provided that � < �. In that case,

�k = (1 − �∕�)(�∕�)k, for k = 0, 1,…

For � < �, the stationary distribution is the geometric distribution on {0, 1,…} with

parameter 1 − �∕�. ◾

Example 7.22 (Yule process) The Yule process arises in biology to describe the

growth of a population where each individual gives birth to an offspring at a constant

rate � independently of other individuals. Let Xt denote the size of the population

at time t. If Xt = i, then a new individual is born when one of the i members of the

population gives birth, which occurs at rate i�. A Yule process is a birth-and-death

process with birth rate �i = i� and death rate �i = 0. In a Yule process, all states are

transient and no limiting distribution exists.
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Assume that the initial size of the population is 1. The Yule process satisies the

Kolmogorov forward equations

P′
1, j(t) = −�jP1, j(t) + �(j − 1)P1, j−1(t), for j = 1, 2,… ,

with

P1,1(0) = 1 and P1, j = 0, for j ≥ 2.

The solution to the system of differential equations, whichmay be veriied directly,

is

P1, j(t) = e−�t(1 − e−�t) j−1, for j = 1, 2 … ,

which is a geometric distribution with parameter e−�t.

For the process started with i individuals, the transition function is

Pij(t) =

(
j − 1

i − 1

)
e−�it(1 − e−�t)j−i, for j ≥ i, (7.13)

which is a negative binomial distribution. See Exercise 7.16. ◾

Example 7.23 An academic support center hasN tutors who help students with their

homework. Students arrive at the center according to a Poisson process at rate �. Each
tutor takes an exponential length of time to work with students. Tutors’ service times

and student arrival times are independent. If all the tutors are busy when a student

arrives at the center, the student will leave. Let Xt denote the number of tutors who

are busy at time t. Find the stationary distribution.

Solution Assume that i < N tutors are busy at time t. The number of busy tutors

will increase by one if a student arrives, which occurs at rate �. That is, qi,i+1 = �, for
i = 0,… ,N − 1.

On the other hand, if i > 0 tutors are busy, the number of busy tutors decreases by

one if one of the i busy tutors inishes with their student. Each tutor’s service time is

exponentially distributed with parameter �. Thus, the irst time one of the i tutors is

free is the minimum of i exponential random variables with parameter �, which has

an exponential distribution with parameter i�. This gives qi,i−1 = i�, for i = 1,… ,N.
The process is a inite birth-and-death process with constant birth rate and linear

death rate. The generator for N = 4 tutors is

0 1 2 3 4

Q =

0

1

2

3

4

⎛⎜⎜⎜⎜⎝

−� � 0 0 0

� −(� + �) � 0 0

0 2� −(� + 2�) � 0

0 0 3� −(� + 3�) �
0 0 0 4� −4�

⎞⎟⎟⎟⎟⎠
.
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For general N, the stationary distribution is

�k = �0

k∏
i=1

�

i�
= �0

(�∕�)k

k!
, for k = 0, 1,… ,N,

with

�0 =

(
N∑
k=0

k∏
i=1

�

i�

)−1

=

(
N∑
k=0

(�∕�)k

k!

)−1

.

The distribution is a truncated Poisson distribution on {0, 1,… ,N} with parameter

�∕�. For large N, the distribution is an approximate Poisson distribution, and the

long-term expected number of busy tutors is �∕�. ◾

Common birth-and-death processes are listed in Table 7.1.

TABLE 7.1 Types of Birth-and-Death Processes

Type Birth Rate Death Rate

Pure birth �i �i = 0

Poisson process �i = � �i = 0

Pure death �i = 0 �i
Linear process �i = i�, i > 0 �i = i�
Yule process �i = �i, i, � > 0 �i = 0

Linear with immigration �i = i� + �, i, � > 0 �i = i�

7.6 QUEUEING THEORY

Queueing theory is the study of waiting lines, or queues. In the terminology of queue-

ing theory, customers arrive at a facility for service. If the service is not immediate,

they wait for service, and leave the system when the service is complete. The frame-

work is very general and could describe a diner waiting to be seated at a restaurant, a

computer program waiting to be run, and a machine waiting to be repaired.

The general queueing model can be quite broad with many parameters, which

describe things such as the distribution of arrival times, the distribution of service

times, the number of servers, the capacity of the system, the stages of service, and

how customers line up to be served.

A standard notation of the formA/B/n is used to describe a queueing model, where

A denotes the arrival time distribution, B the service time distribution, and n the num-

ber of servers.

The M/M/1 queue is a basic model. The M stands for Markov or memoryless. In

this model, both arrival and service times have exponential distributions, and there

is one server. The M/M/1 queue is a birth-and-death process with constant birth and

death rates.
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The queueing models we explore in this section are continuous-time Markov

chains where Xt denotes the number of customers in the system at time t.

A central result in queueing theory is Little’s formula, which is deceptively simple

and remarkably diverse.

Little’s Formula

In a queueing system, let L denote the long-term average number of customers

in the system, � the rate of arrivals, and W the long-term average time that a

customer is in the system. Then,

L = �W.

The power of Little’s formula is that it applies to a very broadly deined queueing

system.We will not prove the formula but justify it intuitively with a proof by picture.

The argument is based on Gross et al. (2008).

Consider a realization of a queueing system between the time when a customer

irst enters the system andwhen the system is next empty. Assume that four customers

enter the system in the time interval [0, t] with arrival and departure times

Customer Arrival Time Departure Time

1 t1 t5
2 t2 t4
3 t3 t7
4 t6 t

See Figure 7.10. Let A be the area of the shaded region. Little’s formula is obtained

by computing A in two ways.
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Figure 7.10 Little’s formula is obtained by inding the area of the shaded region two ways.
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The average length of time W that a customer spends in the system is

W =
(t5 − t1) + (t4 − t2) + (t7 − t3) + (t − t6)

4

=
(t − t1) + (t5 − t2) + (t7 − t6) + (t4 − t3)

Number of customers in [0, t]

=
A

Number of customers in [0, t]
. (7.14)

In addition, the average number of customers L in the system is

L =
1

t
[1(t2 − t1) + 2(t3 − t2) + 3(t4 − t3) + 2(t5 − t4)

+1(t6 − t5) + 2(t7 − t6) + 1(t − t7)]

=
A

t
. (7.15)

Equations (7.14) and (7.15) give

L =
A

t
=
W × Number of customers in [0, t]

t
.

For large t, this gives L = �W.

Example 7.24 (At the carwash) Cars arrive at a drive-through carwash according

to a Poisson process at the rate of nine customers per hour. The time to wash a car

has an exponential distribution with mean 5 minutes. Many questions can be asked.

1. How many cars, on average, are at the carwash?

2. How long, on average, is a customer at the carwash?

3. How long, on average, does a customer wait to be served?

4. What is the expected number of cars waiting to be served?

Solution Let Xt denote the number of cars in the system at hour t. The process is

an M/M/1 queueing system, which is a birth-and-death process with constant birth

and death rates. The arrival rate is � = 9. Since the average time to wash a car is

one-twelfth of an hour, the service rate is � = 12. The limiting distribution probabil-

ities (see Example 7.21) are

�k =

(
1 −

�

�

)(
�

�

)k

=
(
1

4

)(
3

4

)k
, for k = 0, 1,… ,

which is a geometric distribution with parameter p = 1 − �∕� = 1∕4.
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1. The long-term expected number of cars at the carwash is the mean of the geo-

metric distribution. A geometric distribution with parameter p, which takes

values on {0, 1,…}, has expectation (1 − p)∕p. The desired expectation is

�∕�

1 − �∕�
=

�

� − �
= 3.

On average, there will be three cars at the carwash. In the notation of Little’s

formula, L = 3.

2. By Little’s formula, the long-term average time W that a customer is at the

carwash is

W =
L

�
=

�∕(� − �)

�
=

1

� − �
=

1

3
.

A customer will be at the carwash, on average, for 20 minutes.

3. LetWq denote the long-term average time a customer spends in the queue wait-

ing to be served. Let Ws be the average time it takes for a car to be washed.

Then,W = Wq +Ws. The service time for a car to be washed is the mean of an

exponential distribution with parameter �. Thus, Ws = 1∕�. This gives

Wq = W −Ws =
1

� − �
−

1

�
=

�

�(� − �)
=

1

4
.

A customer waits, on average, 15 minutes to be served.

4. We can consider the process restricted to just the queue as its own queueing sys-

tem. Little’s formula applies with Lq = �Wq, where Lq denotes the long-term

average number of cars waiting to be served. This gives

Lq = �Wq =
�2

�(� − �)
=

9

4
.

On average, there are 2.25 cars in the queue. ◾

M/M/c Queue

An M/M/c queue has c servers. Consider the dynamics of the process. If there are

0 < k ≤ c customers then k servers are busy. The number of customers will decrease

by one, the irst time one of the servers completes their service. The time until that

happens is the minimum of k independent exponential random variables, which has

an exponential distribution with parameter k�. If there are more than c customers

in the system, then the time until the irst service time is complete is the minimum

of c independent exponential random variables, and thus is exponentially distributed

with parameter c�.
The M/M/c queue is a birth-and-death process with parameters �i = �, for all i,

and

�i =

{
i�, for i = 1,… , c,
c�, for i = c + 1, c + 2, …
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We have that

∞∑
k=0

k∏
i=1

�i
�i

=

c−1∑
k=0

k∏
i=1

�

i�
+

∞∑
k=c

(
c∏
i=1

�

i�

)(
k∏

i=c+1

�

c�

)

=

c−1∑
k=0

(
�

�

)k
1

k!
+

1

c!

∞∑
k=c

(
�

�

)k(
1

c

)k−c

=

c−1∑
k=0

(
�

�

)k
1

k!
+

(�∕�)c

c!

∞∑
k=c

(
�

c�

)k−c

.

The ininite sum converges for 0 < � < c�, in which case the stationary distribution

� exists, with

�0 =

(
c−1∑
k=0

(
�

�

)k
1

k!
+

(�∕�)c

c!

(
1

1 − �∕c�

))−1

.

The stationary probabilities are

�k =

⎧
⎪⎪⎨⎪⎪⎩

�0
k!

(
�

�

)k

, for 0 ≤ k < c,

�0

ck−cc!

(
�

�

)k

, for k ≥ c.

Example 7.25 (At the hair salon) A hair salon has ive chairs. Customers arrive

at the salon at the rate of 6 per hour. The hair stylists each take, on average, half an

hour to service a customer, independent of arrival times.

1. Jill, the owner, wants to know the long-term probability that no customers are

in the salon.

2. Danny, a potential customer, wants to know the average waiting time for a

haircut.

3. Leslie, a hair stylist, wants to know the long-term expected number of cus-

tomers in the salon.

Solution The system is an M/M/5 queue with � = 6, c = 5, and � = 2.

1. The long-term probability that no customers are in the salon is

�0 =

(
4∑
k=0

3k

k!
+

35

5!

(
1

1 − 6∕10

))−1

=
16

343
= 0.0466.
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2. The long-time average waiting time in the queue, in the notation of Little’s

formula, is Wq = Lq∕�. To ind Lq, the expected number of customers in the

queue, observe that there are k people in the queue if and only if there are k + c

customers in the system. This gives

Lq =

∞∑
k=c

(k − c)�k =

∞∑
k=c

(k − c)
�0

ck−cc!

(
�

�

)k

=
�0
c!

(
�

�

)c ∞∑
k=c

(k − c)
1

ck−c

(
�

�

)k−c

=
�0
c!

(
�

�

)c ∞∑
k=0

k

(
�

c�

)k

=
�0
c!

(
�

�

)c
�

c�

(
1

1 − �∕c�

)2

=
�03

5

5!

(
6

10

)(
1

1 − 6∕10

)2

= 0.35423.

By Little’s formula, the expected waiting time in the queue is

Wq =
Lq

�
=

0.35423

6
= 0.059,

or about 3.6 minutes.

3. The long-term expected waiting time in the system is

W = Wq +Ws = Wq +
1

�
= 0.059 + 0.5 = 0.559,

or about 33.54 minutes. The expected number of customers in the system, by

Little’s formula, is

L = �W = 6(0.559) = 3.354.

Note that the last result can also be obtained by inding the expectation with respect

to the stationary distribution

L =

∞∑
k=0

k�k.
◾

7.7 POISSON SUBORDINATION

The times when transitions occur for a continuous-time Markov chain are expo-

nentially distributed with holding time rates q1, q2,… In this section, we present an

interesting representation of a continuous-time Markov chain in which all holding
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time rates are the same, but where transitions from a state to itself are allowed. The

representation is remarkably useful for simulation and numerical computation.

Consider a inite-state, irreducible, discrete-time Markov chain Y0,Y1,… with

transition matrix R. Let (Nt)t≥0 be a Poisson process with parameter �, which is

independent of the Markov chain. Deine a continuous-time process (Xt)t≥0 by

Xt = YNt . That is, transitions for the Xt process occur at the arrival times of the

Poisson process. From state i, the process holds an exponentially distributed amount

of time with parameter � and then transitions to j with probability Rij.

The process (Xt)t≥0 is a continuous-time Markov chain whose transition function

P(t) has a surprisingly simple form. By conditioning on Nt,

Pij(t) = P(Xt = j|X0 = i)

=

∞∑
k=0

P(Xt = j|Nt = k,X0 = i)P(Nt = k|X0 = i)

=

∞∑
k=0

P(Yk = j|Nt = k,X0 = i)P(Nt = k)

=

∞∑
k=0

P(Yk = j|Y0 = i)P(Nt = k)

=

∞∑
k=0

Rk
ij

e−�t(�t)k

k!
.

We say that the (Xt)t≥0 Markov chain is subordinated to a Poisson process.

Not only can we construct a continuous-time Markov chain from a discrete-time

chain and a Poisson process, but conversely many continuous-time Markov chains

can be represented as a chain subordinated to a Poisson process.

Consider a continuous-time Markov chain with generator Q and holding time

parameters q1, q2,… Assume the parameters are uniformly bounded. That is, there

exists a constant � such that qi ≤ �, for all i. This will always be the case if the chain
is inite, and we can take � = maxi qi. Let

R =
1

�
Q + I.

The matrix R is a stochastic matrix. Entries are non-negative and rows sum to 1. The

transition function can be given in terms of R, as

P(t) = etQ = e−�tetQe�t = e−�tet(Q+�I)

= e−�t
∞∑
k=0

1

k!
tk(Q + �I)k

=

∞∑
k=0

(
1

�
Q + I

)k e−�t(�t)k
k!
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=

∞∑
k=0

Rk
e−�t(�t)k

k!
.

The continuous-time chain is represented as a Markov chain subordinated to a

Poisson process. Other names for Poisson subordination are randomization and

uniformization.

Note that theRmatrix is not the matrix of the embeddedMarkov chain. The entries

of the embedded Markov matrix are

P̃ij =

{
qij∕qi, for i ≠ j,

0, for i = j,

while the entries of the R matrix are

Rij =

{
qij∕�, for i ≠ j,

1 − qi∕�, for i = j.

Poisson subordination can be described as follows. From a given state i, wait

an exponential length of time with rate �. Then, lip a coin whose heads probabil-

ity is qi∕�. If heads, transition to a new state according to the R matrix. If tails,

stay at i and repeat. Thus, holding time parameters are constant, and transitions, or

pseudo-transitions, from a state to itself are allowed.

To illustrate, consider a continuous-time Markov chain on {a, b, c} with generator

a b c

Q =

a

b

c

⎛
⎜⎜⎝

−2 1 1

1 −3 2

5 1 −6

⎞
⎟⎟⎠
.

Choose � = max{2, 3, 6} = 6. Then,

R =
1

�
Q + I =

1

6

⎛
⎜⎜⎝

−2 1 1

1 −3 2

5 1 −6

⎞
⎟⎟⎠
+

⎛
⎜⎜⎝

1 0 0

0 1 0

0 0 1

⎞
⎟⎟⎠
=

⎛
⎜⎜⎝

2∕3 1∕6 1∕6

1∕6 1∕2 1∕3

5∕6 1∕6 0

⎞
⎟⎟⎠
.

See Figure 7.11 for a comparison of the dynamics of the original chain with the

subordinated process.

Long-Term Behavior, Simulation, Computation

For a Markov chain subordinated to a Poisson process, the discrete R-chain has the

same stationary distribution as the original chain. We have that

�Q = ��(R − I) = ��R − ��.

Thus, �Q = � if and only if �R = �.
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2

a

6c 3 b

1/2

1/2 1/3

2/3

5/6

1/6

6

a

6c 6 b

2/3

1/6

1/6 1/6

1/21/3

5/6

1/6

Figure 7.11 Both graphs describe the same Markov chain. Nodes are labeled with holding

time parameters, edges are labeled with transition probabilities. The graph on the right shows

the chain subordinated to a Poisson process. Holding time parameters are constant, and tran-

sitions to the same state are allowed.

Example 7.26 Consider a Markov chain (Xt)t≥0 with generator

Q =

⎛
⎜⎜⎝

−2 1 1

1 −3 2

0 1 −1

⎞
⎟⎟⎠
.

Letting � = max{q1, q2, q3} = 3 gives

R =
1

3
Q + I =

⎛
⎜⎜⎝

1∕3 1∕3 1∕3

1∕3 0 2∕3

0 1∕3 2∕3

⎞
⎟⎟⎠
.

Observe that � = (1∕8, 2∕8, 5∕8) is the stationary distribution for both the original
chain and the discrete-time R-chain. ◾

Poisson subordination leads to an eficient method to simulate a continuous-time

Markov chain, since transitions rates are constant and thus not dependent on the

current state. Here, we simulate the distribution of X1.5 for the Markov chain in

Example 7.26.

R: Simulation of the Distribution of X1.5

# Psubordination.R
> Q

1 2 3
1 -2 1 1
2 1 -3 2
3 0 1 -1
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> lambda <- 3
> R <- (1/lambda)*Q+diag(3)
> R

1 2 3
1 0.3333333 0.3333333 0.3333333
2 0.3333333 0.0000000 0.6666667
3 0.0000000 0.3333333 0.6666667
> trials <- 100000
> simlist <- numeric(trials)
> for (i in 1:trials) {

+ s <- 0 # time
+ state <- 1
+ newstate <- 1
+ while(s < 1.5) {

+ state <- newstate
+ s <- s+rexp(1,lambda)
+ newstate <- sample(1:3,1,prob=r[state,]) }

+ simlist[i] <- state
+ }

> table(simlist)/trials
simlist

1 2 3
0.16274 0.24958 0.58768
> expm(1.5*Q)[1,] # Compare with exact values

1 2 3
1 0.163 0.249 0.588

Another beneit of Poisson subordination is that it gives a numerically stable

method for computing a Markov transition function, as compared with the matrix

exponential. For large matrices, the matrix exponential is notoriously dificult to

compute. The ininite sum
∑∞

k=0 (tQ)
k∕k! converges slowly. The matrix Q contains

positive and negative numbers, some of which may be greater than 1, and thus Qk

may contain large positive and negative numbers, a source of numerical instability.

On the other hand, with Poisson subordination the transition function

Pij(t) =

∞∑
k=0

Rk
ij

e−�t(�t)k

k!
(7.16)

can be computed numerically by truncating the ininite sum to a desired level of

accuracy. Consider the approximation

P̂ij(t) =

N∑
k=0

Rk
ij

e−�t(�t)k

k!
, (7.17)
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for some N. The absolute error of the approximation is

|Pij(t) − P̂ij(t)| =
||||||

∞∑
k=0

Rk
ij

e−�t(�t)k

k!
−

N∑
k=0

Rk
ij

e−�t(�t)k

k!

||||||
=

∞∑
k=N+1

Rk
ij

e−�t(�t)k

k!

≤

∞∑
k=N+1

e−�t(�t)k

k!

= P(Y > N),

where Y is a Poisson random variable with parameter �t. The inequality holds since

Rk is a stochastic matrix, all of whose entries are between 0 and 1.

To obtain an absolute error in the approximation of at most �, choose N such that

P(Y > N) ≤ �.
The following example is small enough so that exact calculations are possible

and numerical approximations are not necessary. However, it illustrates the general

method.

Example 7.27 Consider a birth-and-death process on {0,… , 5}with constant death
rate �i = 2 and linear birth rates �i = i, for i = 1,… , 4. The generator is

0 1 2 3 4 5

Q =

0

1

2

3

4

5

⎛⎜⎜⎜⎜⎜⎜⎝

−1 1 0 0 0 0

2 −4 2 0 0 0

0 2 −5 3 0 0

0 0 2 −6 4 0

0 0 0 2 −7 5

0 0 0 0 2 −2

⎞⎟⎟⎟⎟⎟⎟⎠

.

Find P(1.5) to within four-digit accuracy.

Solution Let � = 7, and set

0 1 2 3 4 5

R =
1

�
Q + I =

0

1

2

3

4

5

⎛
⎜⎜⎜⎜⎜⎜⎝

6∕7 1∕7 0 0 0 0

2∕7 3∕7 2∕7 0 0 0

0 2∕7 2∕7 3∕7 0 0

0 0 2∕7 1∕7 4∕7 0

0 0 0 2∕7 0 5∕7

0 0 0 0 2∕7 5∕7

⎞
⎟⎟⎟⎟⎟⎟⎠

.
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Choose N such that P(Y > N) < 0.5 × 10−4, where Y is a Poisson random variable

with parameter 7 × 1.5 = 10.5. In R, we ind that

> 1-ppois(24,10.5)
[1] 9.933169e-05
> 1-ppois(25,10.5)
[1] 3.921504e-05

Thus, truncate the ininite series at N = 25. This gives

P̂(1.5) =

25∑
k=0

Rk
e−�(1.5)((1.5)t)k

k!

=

⎛
⎜⎜⎜⎜⎜⎜⎝

0.50706 0.18466 0.09985 0.06535 0.05600 0.08703
0.36932 0.15278 0.10063 0.08480 0.09944 0.19299
0.19970 0.10063 0.08741 0.10025 0.15741 0.35457
0.08713 0.05653 0.06683 0.10241 0.19880 0.48826
0.03734 0.03315 0.05247 0.09940 0.21813 0.55948
0.02321 0.02573 0.04728 0.09765 0.22379 0.58230

⎞
⎟⎟⎟⎟⎟⎟⎠

.

For this example, we can compare the numerical approximation with the matrix

exponential computation P(1.5) = e1.5Q, which can be found with software. The tran-

sition function, to ive decimal places, is

P(1.5) =

⎛⎜⎜⎜⎜⎜⎜⎝

0.50708 0.18467 0.09985 0.06535 0.05601 0.08704
0.36933 0.15278 0.10064 0.08480 0.09945 0.19300
0.19970 0.10064 0.08741 0.10025 0.15742 0.35458
0.08714 0.05653 0.06683 0.10241 0.19881 0.48828
0.03734 0.03315 0.05247 0.09940 0.21814 0.55950
0.02321 0.02573 0.04728 0.09766 0.2238 0.58232

⎞⎟⎟⎟⎟⎟⎟⎠

.

By inspection, we see that our approximation is accurate to the desired level of

accuracy.

By contrast, if we truncate the ininite sum in the matrix exponential to 25 terms

we get

e1.5Q ≈

25∑
k=0

(1.5Q)k∕k!

=

⎛
⎜⎜⎜⎜⎜⎜⎝

−4.06 22.01 −69.10 170.51 −284.73 166.39
44.01 −208.29 661.43 −1629.30 2723.19 −1590.05

−138.20 661.43 −2099.20 5174.13 −8648.70 5051.54
227.34 −1086.20 3449.42 −8503.51 14216.90 −8302.93

−189.82 907.73 −2882.90 7108.44 −11884.80 6942.40
44.37 −212.01 673.54 −1660.59 2776.96 −1621.28

⎞
⎟⎟⎟⎟⎟⎟⎠

,

which is not close to converging. In fact, it takes almost twice as many terms in this

case before reaching the desired level of accuracy. ◾
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EXERCISES

7.1 A continuous-time Markov chain has generator matrix

a b c

Q =

a

b

c

⎛⎜⎜⎝

−1 1 0

1 −2 1

2 2 −4

⎞⎟⎟⎠
.

Exhibit (i) the transition matrix of the embedded Markov chain and (ii) the

holding time parameter for each state.

7.2 A Markov chain on {1, 2, 3, 4} has nonzero transition rates

q12 = q23 = q31 = q41 = 1 and q14 = q32 = q34 = q43 = 2.

(a) Exhibit the (i) generator, (ii) holding time parameters, and (iii) transition

matrix for the embedded Markov chain.

(b) If the chain is at state 1, how long on average will it take before moving to

a new state?

(c) If the chain is at state 3, how long on average will it take before moving to

state 4?

(d) Over the long term, what proportion of visits will be to state 2?

7.3 A three-state Markov chain has distinct holding time parameters a, b, and c.

From each state, the process is equally likely to transition to the other two

states. Exhibit the generator matrix and ind the stationary distribution.

7.4 During lunch hour, customers arrive at a fast-food restaurant at the rate of 120

customers per hour. The restaurant has one line, with three workers taking food

orders at independent service stations. Each worker takes an exponentially dis-

tributed amount of time—on average 1 minute—to service a customer. Let Xt
denote the number of customers in the restaurant (in line and being serviced)

at time t. The process (Xt)t≥0 is a continuous-time Markov chain. Exhibit the

generator matrix.

7.5 For the fast-food restaurant chain of the previous exercise, assume that

customers turn away from the store if all three service stations are busy. Let

Yt denote the number of service stations busy at time t. Then, (Yt)t≥0 is a

continuous-time Markov chain. Exhibit the generator matrix.

7.6 A Markov chain (Xt)t≥0 on {1, 2, 3, 4} has generator matrix

Q =

⎛
⎜⎜⎜⎝

−2 1 1 0

1 −3 1 1

2 2 −4 0

1 2 3 6

⎞
⎟⎟⎟⎠
.
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Use technology as needed for the following:

(a) Find the long-term proportion of time that the chain visits state 1.

(b) For the chain started in state 2, ind the long-term probability that the chain

visits state 3.

(c) Find P(X1 = 3|X0 = 1).

(d) Find P(X5 = 1,X2 = 4|X1 = 3).

7.7 A Markov chain has generator matrix

Q =

⎛⎜⎜⎝

−1 1 0

0 −2 2

3 0 −3

⎞⎟⎟⎠
.

(a) Exhibit the Kolmogorov backward equations.

(b) Find the transition function by diagonalizing the generator and inding the

matrix exponential.

(c) Find the transition function using a symbolic software system such asWol-

fram Alpha.

7.8 Consider the Jukes–Cantor model for DNA nucleotide substitution in

Example 7.11. Find the transition function P(t) by solving the backward, or

forward, equations.

7.9 Consider the Felsenstein DNA model of Example 7.15.

(a) Show that � = (pa, pc, pc, pt) is the stationary distribution.

(b) For � = 2 and the parameter values given in the example, ind the proba-

bility that an a nucleotide mutates to a c nucleotide in 1.5 time units.

7.10 Unlike the Felsenstein DNA model, introduced in Example 7.15, the

Hasegawa, Kishino, Yao model distinguishes between transitions and

transversions. The generator matrix is

a g c t

Q =

a

g

c

t

⎛⎜⎜⎜⎝

−�pg − �pr �pg �pc �pt
�pa −�pa − �pr �pc �pt
�pa �pg −�pt − �ps �pt
�pa �pg �pc −�pc − �ps

⎞⎟⎟⎟⎠
,

where pr = pc + pt, ps = pa + pg, pa + pg + pc + pt = 1, and �, � > 0. Show

that � = (pa, pg, pc, pt) is the stationary distribution of the chain.

7.11 Let A be a square matrix. Show that

d

dt
etA = AetA = etAA.
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7.12 The following result from linear algebra relates the determinant and trace of a

matrix A:

det eA = etr A.

Prove this for the case that A is diagonalizable.

7.13 Assume that � is the limiting distribution of a continuous-time chain. Show

that � is a stationary distribution. (Hint: start with the forward equation.)

7.14 For the Markov chain with transition rate graph shown in Figure 7.12, ind

(a) the generator matrix,

(b) the stationary distribution of the continuous-time Markov chain,

(c) the transition matrix of the embedded chain,

(d) the stationary distribution of the embedded chain.

1

2 3

4

1

6

6

2

Figure 7.12

7.15 Let (Nt)t≥0 be a Poisson process with parameter � = 1. Deine the process

Xt = Nt mod 4, for t ≥ 0. Then, (Xt)t≥0 is a continuous-time Markov chain on

{0, 1, 2, 3}.

(a) Exhibit the generator matrix.

(b) Use a symbolic software system such asWolfram Alpha to ind the transi-

tion function P(t).

7.16 For a Yule process started with i individuals, derive the transition probabilities

Pij(t) =

(
j − 1

i − 1

)
e−�it(1 − e−�t)j−i, for j ≥ i.

Hint: Relate the process to a Yule process started with one individual.
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7.17 Each individual in a population gives birth to an offspring at the rate of 1.5

per unit time independently of other individuals. If the population starts with

4 individuals, ind the mean and variance of the size of the population at time

t = 8.

7.18 For a general birth-and-death process with birth rates �i and death rates �i, let
Ti denote the time, from state i, for the process to hit state i + 1.

(a) Show that

E[Ti] =
1

�i
+

�i
�i
E[Ti−1], for i = 1, 2,…

Hint: Condition on whether the irst transition is a birth or a death.

(b) Solve E[Ti] for the case �i = � and �i = �, for all i.

7.19 Taxis arrive at a taxi stand according to a Poisson process with parameter �.
Customers arrive, independently of taxis, at the rate �. If there are no taxis

when a customer arrives at the stand they will leave. Assume that � < �. What

is the long-term probability that an arriving customer gets a taxi?

7.20 The M/M/∞ queue has ininitely many servers. Show that the limiting distri-

bution is Poisson and ind the mean number of customers in the system.

7.21 For an M/M/∞ queue with � = � = 1, ind the mean time until state 4 is hit for

the process started in state 1.

7.22 Tom is taking an online exam in which there are four questions of increas-

ing dificulty. Tom needs to complete each question before moving on to the

next question. It takes on average 10, 20, 30, and 40 minutes, respectively, to

answer each question. The times spent for each question are independent and

exponentially distributed.

(a) Find the probability that after 45 minutes Tom has completed the exam.

(b) Find the probability that after 45 minutes Tom is still on the third question.

7.23 A facility has four machines, with two repair workers to maintain them. Indi-

vidual machines fail on average every 10 hours. It takes an individual repair

worker on average 4 hours to ix a machine. Repair and failure times are inde-

pendent and exponentially distributed.

(a) Find the generator matrix.

(b) In the long term, how many machines are typically operational?

(c) If all four machines are initially working, ind the probability that only two

machines are working after 5 hours.

7.24 Customers arrive at a busy food truck according to a Poisson process with

parameter �. If there are i people already in line, the customer will join the line

with probability 1∕(i + 1). Assume that the chef at the truck takes, on average,

� minutes to process an order.

(a) Find the long-term average number of people in line.

(b) Find the long-term probability that there are at least two people in line.
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7.25 Over the long term, a continuous-timeMarkov chain on {1, 2, 3, 4}makes 10%

of its transitions to 1 and 30% each to 2, 3, and 4, respectively. From state i, it

stays on average i minutes before moving to a new state, for i = 1, 2, 3, 4.

(a) Find the stationary distribution of the embedded discrete-time chain.

(b) Find the stationary distribution of the continuous-time chain.

7.26 A facility has three machines and three mechanics. Machines break down at

the rate of one per 24 hours. Breakdown times are exponentially distributed.

The time it takes a mechanic to ix a machine is exponentially distributed with

mean 6 hours. Only one mechanic can work on a failed machine at any given

time. Let Xt be the number of machines working at time t. Find the long-term

probability that all machines are working.

7.27 Recall the discrete-time Ehrenfest dog–lea model of Example 3.7. In the

continuous-time version, there are N leas distributed between two dogs. Fleas

jump from one dog to another independently at rate �. Let Xt denote the

number of leas on the irst dog.

(a) Show that the process is a birth-and-death process. Give the birth and death

rates.

(b) Find the stationary distribution.

(c) Assume that leas jump at the rate of 2 per minute. If there are 10 leas on

Cooper and no leas on Lisa, how long, on average, will it take for Lisa to

get 4 leas?

7.28 A linear birth-and-death process with immigration (see Table 7.1) has param-

eters � = 3, � = 4, and � = 2. Find the stationary distribution.

7.29 Consider an absorbing, continuous-timeMarkov chain with possibly more than

one absorbing states.

(a) Argue that the continuous-time chain is absorbed in state a if and only if

the embedded discrete-time chain is absorbed in state a.

(b) Let

1 2 3 4 5

Q =

1

2

3

4

5

⎛⎜⎜⎜⎜⎝

0 0 0 0 0

1 −3 2 0 0

0 2 −4 2 0

0 0 2 −5 3

0 0 0 0 0

⎞⎟⎟⎟⎟⎠

be the generator matrix for a continuous-time Markov chain. For the chain

started in state 2, ind the probability that the chain is absorbed in state 5.

7.30 Cars arrive at a toll booth according to a Poisson process at the rate of two cars

per minute. The time taken by the attendant to collect the toll is exponentially

distributed with mean 20 seconds.

(a) Find the long-term mean number of cars in line at the toll booth.
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(b) Find the long-term probability that there are more than three cars at the toll

booth.

7.31 See the last exercise. Assume that the toll booth has two attendants on duty.

Find the long-term probability there are no cars at the toll booth.

7.32 Calls come in to a computer help center at the rate of 15 calls per hour. There are

three tech support workers on duty, and the times they take to provide assistance

are exponentially distributed with a mean of 10 minutes.

(a) Find the average number of callers waiting to be helped.

(b) Find the average amount of time that a caller spends waiting.

7.33 Consider an M/M/1 queue. Assume that the arrival and service time rates are

both increased by a factor of k. What effect does this have on

(a) the long-term expected number of customers in the system?

(b) the long-term expected time that a customer is in the system?

7.34 You are a frequent customer at a coffee shop, where you typically wait 3 min-

utes to be served. Furthermore, on average you spend $4 per visit. Over many

months you estimate that on a typical day there are 20 customers in the shop,

which is open from 6 a.m. to 10 p.m. Estimate the shop’s total revenue per day.

7.35 Consider a continuous-time Markov chain with generator

Q =

⎛⎜⎜⎝

−1 0 1

1 −2 1

1 3 −4

⎞⎟⎟⎠
.

Represent the process as a Markov chain subordinated to a Poisson process.

Exhibit the transition function P(t) in terms of R.

7.36 A discrete-time Markov chain has transition matrix

P =

(
p q

p q

)
,

for p + q = 1. Extend the process to continuous time by allowing transitions to

occur at the points of a Poisson process with parameter �. Find the transition

function P(t).

7.37 R: Consider a continuous-time Markov chain with generator

Q =

⎛
⎜⎜⎜⎝

−4 1 2 1

2 −3 0 1

3 3 −9 3

4 2 0 −6

⎞
⎟⎟⎟⎠
.

(a) To use Poisson subordination to estimate P(0.8) to three signiicant digits,
how many terms of the series are needed?
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(b) Use (a) and compute P(0.8).

(c) Use R’s matrix exponential command to ind P(0.8) and check that your

result in (a) is accurate to three digits.

7.38 R: Simulate Tom’s online exam in Exercise 7.22 and estimate the probabilities

in that problem.

7.39 R: Simulate an M/M/∞ queue and verify the result of Exercise 7.20, choosing

your own values for � and �.

7.40 R: A multistate Markov model for the progression of HIV infection is devel-

oped in Hendricks et al. (1996). A sample of 467 HIV-positive men were

monitored between 1984 and 1993. A 7-state absorbing chain is developed

where stages 1–6 represent a range of values of an immunological marker for

HIV, and state 7 corresponds to AIDS. The researchers give the following esti-

mates for the monthly transition rates of the model.

�12 �21 �23 �32 �34 �43 �45 �47 �54 �56 �57 �65 �67

0.055 0.008 0.060 0.008 0.039 0.008 0.033 0.006 0.009 0.029 0.007 0.002 0.042

(a) Find the mean time to develop AIDS from each HIV state.

(b) Starting from the irst stage of HIV infection, estimate the probability of

developing AIDS within k years, for k = 5, 10, 15, 20.



8
BROWNIAN MOTION

Observe what happens when sunbeams are admitted into a building and shed light on

its shadowy places. You will see a multitude of tiny particles mingling in a multitude of

ways … their dancing is an actual indication of underlying movements of matter that

are hidden from our sight.… It originates with the atoms which move of themselves

[i.e., spontaneously]. Then those small compound bodies that are least removed from

the impetus of the atoms are set in motion by the impact of their invisible blows and in

turn cannon against slightly larger bodies. So the movement mounts up from the atoms

and gradually emerges to the level of our senses, so that those bodies are in motion that

we see in sunbeams, moved by blows that remain invisible.

—Lucretius, On the Nature of Things, 60 B.C.

8.1 INTRODUCTION

Brownian motion is a stochastic process, which is rooted in a physical phenomenon

discovered almost 200 years ago. In 1827, the botanist Robert Brown, observing

pollen grains suspended in water, noted the erratic and continuous movement of tiny

particles ejected from the grains. He studied the phenomenon for many years, ruled

out the belief that it emanated from some “life force” within the pollen, but could not

explain the motion. Neither could any other scientist of the 19th century.

In 1905, Albert Einstein solved the riddle in his paper, On the movement of small

particles suspended in a stationary liquid demanded by the molecular-kinetic the-

ory of heat. Einstein explained the movement by the continual bombardment of the

Introduction to Stochastic Processes with R, First Edition. Robert P. Dobrow.
© 2016 John Wiley & Sons, Inc. Published 2016 by John Wiley & Sons, Inc.
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immersed particles by the molecules in the liquid, resulting in “motions of such

magnitude that these motions can easily be detected by a microscope.” Einstein’s

theoretical explanation was conirmed 3 years later by empirical experiment, which

led to the acceptance of the atomic nature of matter.

The description of the motion of dust particles in the classic poem On the Nature

of Things, written by the Roman philosopher Lucretius over 2,000 years ago as an

ancient proof of the existence of atoms, could have been a summary of Einstein’s

work!

Einstein showed that the position x of a particle at time t was described by the

partial differential heat equation

�

�t
f (x, t) =

1

2

�2

�x2
f (x, t),

where f (x, t) represents the density (number of particles per unit volume) at position

x and time t. The solution to that equation is

f (x, t) =
1√
2�t

e−x
2∕2t,

which is the probability density function of the normal distribution with mean 0 and

variance t.

The mathematical object we call Brownian motion is a continuous-time,

continuous-state stochastic process, also called the Wiener process, named after

the American mathematician Norbert Wiener. The British mathematician Bertrand

Russell inluenced Wiener to take up the theory of Brownian motion as had been

studied by Einstein. In his 1956 autobiography, Wiener writes,

The Brownian motion was nothing new as an object of study by physicists. There were

fundamental papers by Einstein and Smoluchowski that covered it. But whereas these

papers concerned what was happening to any given particle at a speciic time, or the

long-time statistics of many particles, they did not concern themselves with the mathe-

matical properties of the curve followed by a single particle.

Here the literature was very scant, but it did include a telling comment by the French

physicist Perrin in his book Les Atomes, where he said in effect that the very irregular

curves followed by particles in the Brownian motion led one to think of the supposed

continuous non-differentiable curves of the mathematicians.

Standard Brownian Motion

A continuous-time stochastic process (Bt)t≥0 is a standard Brownian motion if it

satisies the following properties:

1. B0 = 0.
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2. (Normal distribution) For t > 0, Bt has a normal distribution with mean 0 and

variance t.

3. (Stationary increments) For s, t > 0, Bt+s − Bs has the same distribution as Bt.

That is,

P(Bt+s − Bs ≤ z) = P(Bt ≤ z) = ∫
z

−∞

1√
2�t

e−x
2∕2t dx,

for −∞ < z < ∞.

4. (Independent increments) If 0 ≤ q < r ≤ s < t, then Bt − Bs and Br − Bq are

independent random variables.

5. (Continuous paths) The function t → Bt is continuous, with probability 1.

The normal distribution plays a central role in Brownian motion. The reader may

ind it helpful to review properties of the univariate and bivariate normal distributions

in Appendix B, Section B.4. We write X ∼ Normal(�, �2) to mean that the random

variable X is normally distributed with mean � and variance �2.

Brownian motion can be thought of as the motion of a particle that diffuses ran-

domly along a line. At each point t, the particle’s position is normally distributed

about the line with variance t. As t increases, the particle’s position is more diffuse;

see Figure 8.1.

t

Figure 8.1 Brownian motion path. Superimposed on the graph are normal density curves

with mean 0 and variance t.

It is not at all obvious that a stochastic process with the properties of Brownian

motion actually exists. AndWiener’s fundamental contribution was proving this exis-

tence. A rigorous derivation of Brownian motion is beyond the scope of this book,

and requires measure theory and advanced analysis. The dificult part is showing the

existence of a process that has stationary and independent increments together with

continuous paths. The issue is touched upon at the end of the next section. First,

however, we get our hands dirty with some calculations.
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Computations involving Brownian motion are often tackled by exploiting station-

ary and independent increments. In the following examples, the reader may recog-

nize similarities with the Poisson process, another stochastic process with stationary

and independent increments. Unless stated otherwise, Bt denotes standard Brownian

motion.

Example 8.1 For 0 < s < t, ind the distribution of Bs + Bt.

Solution Write Bs + Bt = 2Bs + (Bt − Bs). By independent increments, Bs and Bt −

Bs are independent random variables, and thus 2Bs and Bt − Bs are independent. The

sum of independent normal variables is normal. Thus, Bs + Bt is normally distributed

with mean E(Bs + Bt) = E(Bs) + E(Bt) = 0, and variance

Var(Bs + Bt) = Var(2Bs + (Bt − Bs)) = Var(2Bs) + Var(Bt − Bs)

= 4Var(Bs) + Var(Bt−s) = 4s + (t − s)

= 3s + t.

The second equality is because the variance of a sum of independent random variables

is the sum of their variances. The third equality uses stationary increments. We have

that Bs + Bt ∼ Normal(0, 3s + t). ◾

Example 8.2 A particle’s position is modeled with a standard Brownian motion.

If the particle is at position 1 at time t = 2, ind the probability that its position is at

most 3 at time t = 5.

Solution The desired probability is

P(B5 ≤ 3|B2 = 1) = P(B5 − B2 ≤ 3 − B2|B2 = 1)

= P(B5 − B2 ≤ 2|B2 = 1)

= P(B5 − B2 ≤ 2)

= P(B3 ≤ 2) = 0.876.

The third equality is because B5 − B2 and B2 are independent. The penultimate equal-

ity is by stationary increments. The desired probability in R is

> pnorm(2,0,sqrt(3))
[1] 0.8758935

Note that in R commands involving the normal distribution are parameterized by stan-

dard deviation, not variance. ◾



324 BROWNIAN MOTION

Example 8.3 Find the covariance of Bs and Bt.

Solution For the covariance,

Cov(Bs,Bt) = E(BsBt) − E(Bs)E(Bt) = E(BsBt).

For s < t, write Bt = (Bt − Bs) + Bs, which gives

E(BsBt) = E(Bs(Bt − Bs + Bs))

= E(Bs(Bt − Bs)) + E
(
B2
s

)

= E(Bs)E(Bt − Bs) + E
(
B2
s

)

= 0 + Var(Bs) = s.

Thus, Cov(Bs,Bt) = s. For t < s, by symmetry Cov(Bs,Bt) = t. In either case,

Cov(Bs,Bt) = min{s, t}.
◾

Simulating Brownian Motion

Consider simulating Brownian motion on [0, t]. Assume that we want to generate n

variables at equally spaced time points, that is Bt1 ,Bt2 , … ,Btn , where ti = it∕n, for

i = 1, 2, … , n. By stationary and independent increments, with Bt0 = B0 = 0,

Bti = Bti−1 +
(
Bti − Bti−1

)
d
= Bti−1 + Xi,

where Xi is normally distributed with mean 0 and variance ti − ti−1 = t∕n, and is inde-

pendent of Bti−1 . The notation X
d
= Y means that random variables X and Y have the

same distribution.

This leads to a recursive simulation method. Let Z1,Z2, … ,Zn be independent

and identically distributed standard normal random variables. Set

Bti = Bti−1 +
√
t∕nZi, for i = 1, 2, … , n.

This gives

Bti =

√
t

n
(Z1 + · · · + Zn).

In R, the cumulative sum command

> cumsum(rnorm(n,0,sqrt(t/n)))
generates the Brownian motion variables Bt∕n,B2t∕n, … ,Bt.

Simulations of Brownian motion on [0, 1] are shown in Figure 8.2. The paths were
drawn by simulating n = 1, 000 points in [0, 1] and then connecting the dots.
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Figure 8.2 Sample paths of Brownian motion on [0, 1].

R: Simulating Brownian Motion

# bm.R
> n <- 1000
> t <- 1
> bm <- c(0, cumsum(rnorm(n,0,sqrt(t/n))))
> steps <- seq(0,t,length=n+1)
> plot(steps,bm,type="l")

More generally, to simulate Bt1 ,Bt2 ,…,Btn , for time points t1 < t2 < · · · < tn, set

Bti = Bti−1 +
√
ti − ti−1Zi, for i = 1, 2, … , n,

with t0 = 0.

Sample Space for Brownian Motion and Continuous Paths*

Consider the ifth deining property of Brownian motion: the function t → Bt is

continuous.
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A continuous-time stochastic process (Xt)−∞<t<∞ is a collection of random vari-

ables deined on a common sample space, or probability space,Ω. A random variable

is really a function on a probability space. If X ∶ Ω → IR is a random variable, then

X takes values depending on the outcome � ∈ Ω. Thus, we can write X = X(�) to

emphasize the dependence on the outcome �, although we usually suppress � for

simplicity.

In the context of stochastic processes, Xt = Xt(�) is a function of two variables:

t and �. For ixed t ∈ IR, Xt is a random variable. Letting Xt(�) vary as � ∈ Ω

generates the different values of the process at the ixed time t. On the other hand,

for ixed � ∈ Ω, Xt(�) is a function of t. Letting t vary generates a sample path or

realization. One can think of these realizations as random functions.

For instance, each of the graphs in Figure 8.2, is one realization of such a random

function. Using function notation, we could write f (t) = Bt(�), for −∞ < t < ∞. For

ixed �, it makes sense to ask whether f is continuous, differentiable, etc.

A more precise statement of Property 5 is that

P(� ∈ Ω ∶ Bt(�) is a continuous function of t) = 1.

Implicit in this statement is the existence of (i) the probability space Ω and (ii) a

suitable probability function, or probability measure, P, which is consistent with the

other deining properties of Brownian motion.

A probability space Ω is easy enough to identify. Let Ω be the set of all contin-

uous functions on [0,∞). Each � ∈ Ω is a continuous function. Then, Bt(�) = �t,

the value of � evaluated at t. This is the easiest way to insure that Bt has continuous

sample paths. The hard part is to construct a probability function P on the set of con-

tinuous functions, which is consistent with the properties of Brownian motion. This

was precisely Norbert Wiener’s contribution. That probability function, introduced

by Wiener in 1923, is called Wiener measure.

8.2 BROWNIAN MOTION AND RANDOM WALK

Continuous-time, continuous-state Brownian motion is intimately related to

discrete-time, discrete-state random walk. Brownian motion can be constructed from

simple symmetric random walk by suitably scaling the values of the walk while

simultaneously speeding up the steps of the walk.

Let X1,X2, … be an i.i.d. sequence with each Xi taking values ±1 with probability

1/2 each. Set S0 = 0 and for integer t > 0, let St = X1 + · · · + Xt. Then, S0, S1, S2, …

is a simple symmetric random walk with E(St) = 0 and Var(St) = t for t = 0, 1, ….

As a sum of i.i.d. random variables, for large t, St is approximately normally dis-

tributed by the central limit theorem.

The random walk has independent increments. For integers 0 < q < r < s < t,

St − Ss = Xs+1 + · · · + Xt, and Sr − Sq = Xq+1 + · · · + Xr. Since Xs+1, … ,Xt is inde-

pendent of Xq+1, … ,Xr, it follows that St − Ss and Sr − Sq are independent random

variables. Furthermore, for all integers 0 < s < t, the distribution of St − Ss and St−s
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is the same since they are both a function of t − s distinct Xi. Thus, the walk has

stationary increments.

The simple random walk is a discrete-state process. To obtain a continuous-time

process with continuous sample paths, values are connected by linear interpolation.

Recall that ⌊x⌋ is the loor of x, or integer part of x, which is the largest integer not

greater than x. Extending the deinition of St to real t ≥ 0, let

St =

{
X1 + · · · + Xt, if t is an integer,

S⌊t⌋ + X⌊t⌋+1 (t − ⌊t⌋) , otherwise.

Observe that if k is a positive integer, then for k ≤ t ≤ k + 1, St is the linear interpola-

tion of the points (k, Sk) and (k + 1, Sk+1). See Figure 8.3 to visualize the construction.
We have E(St) = 0 and

Var(St) = Var(S⌊t⌋ + X⌊t⌋+1 (t − ⌊t⌋))

= Var(S⌊t⌋) + (t − ⌊t⌋)2Var(X⌊t⌋+1)

= ⌊t⌋ + (t − ⌊t⌋)2 ≈ t,

as 0 ≤ t − ⌊t⌋ < 1.

1086420 1086420

−1

0

1

2

St, t = 0, 1, . . . , 10

−1

0

1

2

St, 0 < t < 10

(b)(a)

Figure 8.3 (a) Realization of a simple random walk. (b) Walk is extended to a continuous

path by linear interpolation.

The process is now scaled both vertically and horizontally. Let S
(n)
t = Snt∕

√
n, for

n = 1, 2, … On any interval, the new process has n times as many steps as the original

walk. And the height at each step is shrunk by a factor of 1∕
√
n. The construction is

illustrated in Figure 8.4.

The scaling preserves mean and variance, as E
(
S
(n)
t

)
= 0 and Var

(
S
(n)
t

)
=

Var(Snt)∕n ≈ t. Sample paths are continuous and for each n, the process retains

independent and stationary increments. Considering the central limit theorem, it is

reasonable to think that as n→ ∞, the process converges to Brownian motion. This,

in fact, is the case, a result proven by Monroe Donsker in 1951.

We have not precisely said what convergence actually means since we are

not talking about convergence of a sequence of numbers, nor even convergence

of random variables, but rather convergence of stochastic processes. We do not
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Figure 8.4 Top graph is a simple symmetric randomwalk for 100 steps. Bottom graphs show

the scaled process S
(n)
t = Snt∕

√
n, for n = 1, 2, 4, 10.

give a rigorous statement. Nevertheless, the reader can trust their intuition that

for large n,
(
Snt∕

√
n
)

t≥0
behaves like a standard Brownian motion process

(Bt)t≥0.

Invariance Principle*

The construction of Brownian motion from simple symmetric random walk can be

generalized so that we start with any i.i.d. sequence X1, … ,Xn with mean 0 and

variance 1. Let Sn = X1 + · · · + Xn. Then, Snt∕
√
n converges to Bt, as n→ ∞. This

is known as Donsker’s invariance principle. The word invariance is used because

all random walks with increments that have mean 0 and variance 1, regardless of

distribution, give the same Brownian motion limit.

A consequence of the invariance principle and continuity is that functions

of the discrete process Snt∕
√
n converge to the corresponding function of
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Brownian motion, as n→ ∞. If g is a bounded, continuous function, whose

domain is the set of continuous functions on [0, 1], then g
(
Snt∕

√
n
)
≈ g(Bt), for

large n.

Functions whose domain is a set of functions are called functionals. The invariance

principle means that properties of random walk and of functionals of random walk

can be derived by considering analogous properties of Brownian motion, and vice

versa.

For example, assume that f is a continuous function on [0, 1]. Let g(f ) = f (1),

the evaluation of f (t) at t = 1. Then, g(Snt∕
√
n) = Sn∕

√
n and g(Bt) = B1. By the

invariance principle, Sn∕
√
n→ B1, as n→ ∞. The random variable B1 is normally

distributed with mean 0 and variance 1, and we have thus recaptured the central limit

theorem from Donsker’s invariance principle.

Example 8.4 For a simple symmetric random walk, consider the maximum value

of the walk in the irst n steps. Let g( f ) = max
0≤t≤1

f (t). By the invariance principle,

lim
n→∞

g

(
Stn√
n

)
= lim

n→∞
max
0≤t≤1

Stn√
n
= lim

n→∞
max
0≤k≤n

Sk√
n
= g

(
Bt
)
= max

0≤t≤1
Bt.

This gives max0≤k≤nSk ≈
√
nmax0≤t≤1Bt, for large n.

In Section 8.4, it is shown that the random variable M = max0≤t≤1Bt has density

function

fM(x) =

√
2

�
e−x

2∕2, for x > 0.

Mean and standard deviation are

E(M) =

√
2

�
≈ 0.80 and SD(M) =

� − 2

�
≈ 0.60.

With these results, we see that in the irst n steps of simple symmetric random walk,

the maximum value is about (0.80)
√
n give or take (0.60)

√
n. In n = 10, 000 steps,

the probability that a value greater than 200 is reached is

P

(
max
0≤k≤n

Sk > 200

)
= P

(
max
0≤k≤n

Sk

100
> 2

)

= P

(
max
0≤k≤n

Sk√
n
> 2

)

≈ P(M > 2)

= ∫
∞

2

√
2

�
e−x

2∕2 dx = 0.0455.

◾
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R: Maximum for Simple Symmetric Random Walk

# maxssrw.R
> n <- 10000
> sim <- replicate(10000,

+ max(cumsum(sample(c(-1,1),n,replace=T))))
> mean(sim)
[1] 79.7128
> sd(sim)
[1] 60.02429
> sim <- replicate(10000,

+ if(max(cumsum(sample(c(-1,1),n,rep=T)))>200)
1 else 0)

> mean(sim) # P(max > 200)
[1] 0.0461

8.3 GAUSSIAN PROCESS

The normal distribution is also called the Gaussian distribution, in honor of Carl

Friedrich Gauss, who introduced the distributionmore than 200 years ago. The bivari-

ate and multivariate normal distributions extend the univariate distribution to higher

inite-dimensional spaces. A Gaussian process is a continuous-time stochastic pro-

cess, which extends the Gaussian distribution to ininite dimensions. In this section,

we show that Brownian motion is a Gaussian process and identify the conditions for

when a Gaussian process is Brownian motion.

(Gauss, considered by historians to have been one of the greatest mathematicians

of all time, irst used the normal distribution as a model for measurement error in

celestial observations, which led to computing the orbit of the planetoid Ceres. The

story of the discovery of Ceres, and the contest to compute its orbit, is a mathematical

page-turner. See The Discovery of Ceres: How Gauss Became Famous by Teets and

Whitehead (1999).)

We irst deine the multivariate normal distribution and establish some of its key

properties.

Multivariate Normal Distribution

Random variables X1, … ,Xk have a multivariate normal distribution if for all

real numbers a1, … , ak, the linear combination

a1X1 + · · · + akXk
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has a univariate normal distribution. A multivariate normal distribution is com-

pletely determined by its mean vector

� = (�1, … , �k) = (E(X1), … ,E(Xk))

and covariance matrix V, where

Vij = Cov(Xi,Xj), for 1 ≤ i, j ≤ k.

The joint density function of the multivariate normal distribution is

f (x) =
1

(2�)k∕2|V|1∕2
exp

(
−
1

2
(x − �)TV−1(x − �)

)
,

where x = (x1, … , xk) and |V| is the determinant of V.

The multivariate normal distribution has the remarkable property that all marginal

and conditional distributions are normal. If X1, … ,Xk have a multivariate normal

distribution, then the Xi are normally distributed, joint distributions of subsets of the

Xi have multivariate normal distributions, and conditional distributions given subsets

of the Xi are normal.

If X1, … ,Xk are independent normal random variables, then their joint dis-

tribution is multivariate normal. For jointly distributed normal random variables,

independence is equivalent to being uncorrelated. That is, if X and Y are jointly

distributed normal random variables, then X and Y are independent if and only if

E(XY) = E(X)E(Y).

A Gaussian process extends the multivariate normal distribution to stochastic

processes.

Gaussian Process

A Gaussian process (Xt)t≥0 is a continuous-time stochastic process with the

property that for all n = 1, 2, … and 0 ≤ t1 < · · · < tn, the random variables

Xt1 , … ,Xtn have a multivariate normal distribution.

A Gaussian process is completely determined by its mean function E(Xt), for

t ≥ 0, and covariance function Cov(Xs,Xt), for s, t ≥ 0.

Standard Brownian motion is a Gaussian process. The following characterization

gives conditions for when a Gaussian process is a standard Brownian motion.
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Gaussian Process and Brownian Motion

A stochastic process (Bt)t≥0 is a standard Brownian motion if and only if it is a

Gaussian process with the following properties:

1. B0 = 0.

2. (Mean function) E(Bt) = 0, for all t.

3. (Covariance function) Cov(Bs,Bt) = min{s, t}, for all s, t.

4. (Continuous paths) The function t → Bt is continuous, with probability 1.

Proof. Let (Bt)t≥0 be a standard Brownian motion. Consider (Bt1 ,Bt2 , … ,Btk ),
for 0 < t1 < t2 < · · · < tk. For constants a1, a2, … , ak, we need to show that

a1Bt1 + a2Bt2 + · · · + akBtk has a univariate normal distribution. By independent

increments, Bt1 ,Bt2 − Bt1 , … ,Btk − Btk−1 are independent normal random variables,

whose joint distribution is multivariate normal. Write

a1Bt1 + a2Bt2 + · · · + akBtk

= (a1 + · · · + ak)Bt1 + (a2 + · · · + ak)(Bt2 − Bt1 )

+ · · · + (ak−1 + ak)(Btk−1 − Btk−2 ) + ak(Btk − Btk−1 ),

which is a linear combination of Bt1 ,Bt2 − Bt1 , … ,Btk − Btk−1 , and thus has a uni-

variate normal distribution.

The mean and covariance functions for Brownian motion are

E(Bt) = 0 and Cov(Bs,Bt) = min{s, t}.

It follows that standard Brownian motion is the unique Gaussian process with these

mean and covariance functions.

Conversely, assume that (Bt)t≥0 is a Gaussian process that satisies the stated prop-

erties. We need to show the process has stationary and independent increments.

Since the process is Gaussian, for s, t ≥ 0, Bt+s − Bs is normally distributed with

mean E(Bt+s − Bs) = E(Bt+s) − E(Bs) = 0, and variance

Var(Bt+s − Bs) = Var(Bt+s) + Var(Bs) − 2Cov(Bt+s,Bs) = (t + s) + s − 2s = t.

Thus, Bt+s − Bs has the same distribution as Bt, which gives stationary increments.

For 0 ≤ q < r ≤ s < t,

E((Br − Bq)(Bt − Bs)) = E(BrBt) − E(BrBs) − E(BqBt) + E(BqBs)

= Cov(Br,Bt) − Cov(Br,Bs) − Cov(Bq,Bt) + Cov(Bq,Bs)

= r − r − q + q = 0.
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Thus, Br − Bq and Bt − Bs are uncorrelated. Since Br − Bq and Bt − Bs are normally

distributed, it follows that they are independent.

We have shown that (Bt)t≥0 is a standard Brownian motion. ◾

Example 8.5 For a > 0, let Xt = Bat∕
√
a, for t ≥ 0. Show that (Xt)t≥0 is a standard

Brownian motion.

Solution For 0 ≤ t1 < · · · < tk and real numbers a1, … , ak,

k∑

i=1

aiXti =

k∑

i=1

ai√
a
Bati ,

which has a univariate normal distribution, since (Bt)t≥0 is a Gaussian process. Thus,

(Xt)t≥0 is a Gaussian process. Clearly, X0 = 0. The mean function is

E(Xt) = E

(
1√
a
Bat

)
=

1√
a
E(Bat) = 0.

The covariance function is

Cov(Xs,Xt) = Cov

(
1√
a
Bas,

1√
a
Bat

)
=

1

a
Cov(Bas,Bat)

=
1

a
min{as, at} = min{s, t}.

Finally, path continuity of (Xt)t≥0 follows from the path continuity of standard

Brownian motion, as the function t → Bat∕
√
a is continuous for all a > 0, with

probability 1. ◾

Nowhere Differentiable Paths

The property illustrated in Example 8.5 shows that Brownian motion preserves its

character after rescaling. For instance, given a standard Brownian motion on [0, 1],
if we look at the process on, say, an interval of length one-trillionth (= 10−12) then

after resizing by a factor of 1∕
√
10−12 = 1, 000, 000, what we see is indistinguishable

from the original Brownian motion!

This highlights the invariance, or fractal, structure of Brownian motion sample

paths. It means that the jagged character of these paths remains jagged at all time

scales. This leads to the remarkable fact that Brownian motion sample paths are

nowhere differentiable. It is hard to even contemplate a function that is continuous at

every point on its domain, but not differentiable at any point. Indeed, for many years,

mathematicians believed that such a function was impossible, until Karl Weierstrass,

considered the founder of modern analysis, demonstrated their existence in 1872.
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The proof that Brownian motion is nowhere differentiable requires advanced anal-

ysis. Here is a heuristic argument. Consider the formal derivative

d

dt
Bt = lim

h→0

Bt+h − Bt

h
.

By stationary increments, Bt+h − Bt has the same distribution as Bh, which is normal

with mean 0 and variance h. Thus, the difference quotient (Bt+h − Bt)∕h is normally

distributed with mean 0 and variance 1∕h. As h tends to 0, the variance tends to inin-

ity. Since the difference quotient takes arbitrarily large values, the limit, and hence

the derivative, does not exist.

8.4 TRANSFORMATIONS AND PROPERTIES

In addition to invariance under rescaling, Brownian motion satisies numerous

relection, translation, and symmetry properties.

Transformations of Brownian Motion

Let (Bt)t≥0 be a standard Brownian motion. Then, each of the following

transformations is a standard Brownian motion.

1. (Relection) (−Bt)t≥0.

2. (Translation) (Bt+s − Bs)t≥0, for all s ≥ 0.

3. (Rescaling) (a−1∕2Bat)t≥0, for all a > 0.

4. (Inversion) The process (Xt)t≥0 deined by X0 = 0 and Xt = tB1∕t, for

t > 0.

We leave the proofs that relection and translation are standard Brownian motions

as exercises. Rescaling was shown in Example 8.5. For inversion, let t1 < · · · < tk.

For constants a1, … , ak,

a1Xt1 + · · · + akXtk = a1t1B1∕t1
+ · · · + aktkB1∕tk

is normally distributed and thus (Xt)t≥0 is a Gaussian process. The mean function is

E(Xt) = E(tB1∕t) = tE(B1∕t) = 0, for t > 0. Covariance is

Cov(Xs,Xt) = Cov(sB1∕s, tB1∕t) = E(sB1∕stB1∕t)

= stE(B1∕sB1∕t) = st Cov(B1∕s,B1∕t)

= stmin{1∕s, 1∕t} = min{t, s}.



TRANSFORMATIONS AND PROPERTIES 335

Continuity, for all t > 0, is inherited from (Bt)t≥0. What remains is to show the process

is continuous at t = 0. We do not prove this rigorously. Sufice it to show that

0 = lim
t→0

Xt = lim
t→0

tB1∕t, with probability 1

is equivalent to

0 = lim
s→∞

Bs

s
, with probability 1,

and the latter is intuitive by the strong law of large numbers.

For real x, the process deined by Xt = x + Bt, for t ≥ 0, is called Brownian motion

started at x. For such a process, X0 = x and Xt is normally distributed with mean func-

tion E(Xt) = x, for all t. The process retains all other deining properties of standard

Brownian motion: stationary and independent increments, and continuous sample

paths.

See Figure 8.5 for examples of transformations of Brownian motion.

Bt, t > 0   

0

0 s

0 s

0 s

a

−Bt, t > 0  

(a) (b)

−a

0

a + Bt, t > 0

(c)

a

a

Bs+t, t > 0   

(d)

0

0

Bs

Figure 8.5 Transformations of Brownian motion. (a) Standard Brownian motion. (b) Relec-

tion across t-axis. (c) Brownian motion started at a. (d) Translation.

Example 8.6 Let (Xt)t≥0 be a Brownian motion process started at x = 3. Find

P(X2 > 0).

Solution Write Xt = Bt + 3. Then,

P(X2 > 0) = P(B2 + 3 > 0) = P(B2 > −3) = ∫
∞

−3

1√
4�

e−x
2∕4 dx = 0.983.
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In R, type

> 1-pnorm(-3,0,sqrt(2))
[1] 0.9830526 ◾

Markov Process

Brownian motion satisies the Markov property that conditional on the present, past

and future are independent. This is a consequence of independent increments. Brown-

ian motion is an example of aMarkov process. A continuous-state stochastic process

(Xt)t≥0 is a Markov process if

P(Xt+s ≤ y|Xu, 0 ≤ u ≤ s) = P(Xt+s ≤ y|Xs), (8.1)

for all s, t ≥ 0 and real y. The process is time-homogeneous if the probability in

Equation (8.1) does not depend on s. That is,

P(Xt+s ≤ y|Xs) = P(Xt ≤ y|X0).

For a continuous-state Markov process, the transition function, or transition

kernel, Kt(x, y) plays the role that the transition matrix plays for a discrete-state

Markov chain. The function Kt(x, ⋅) is the conditional density of Xt given X0 = x.

If (Xt)t≥0 is Brownian motion started at x, then Xt is normally distributed with

mean x and variance t. The transition kernel is

Kt(x, y) =
1√
2�t

e−(y−x)
2∕2t.

The transition kernel of a Markov process satisies the Chapman–Kolmogorov

equations. For continuous-state processes, integrals replace sums. The equations are

Ks+t(x, y) = ∫
∞

−∞

Ks(x, z)Kt(z, y) dz, for all s, t, (8.2)

as

∫
y

−∞

Ks+t(x, �) d� = P(Xs+t ≤ y|X0 = x)

= ∫
∞

−∞

P(Xs+t ≤ y|Xs = z,X0 = x)Ks(x, z) dz

= ∫
∞

−∞

P(Xt ≤ y|X0 = z)Ks(x, z) dz

= ∫
∞

−∞

(

∫
y

−∞

Kt(z, �) d�

)
Ks(x, z) dz

= ∫
y

−∞

(

∫
∞

−∞

Ks(x, z)Kt(z, �) dz

)
d�.

Taking derivatives with respect to y gives Equation (8.2).
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First Hitting Time and Strong Markov Property

Brownian motion satisies the strong Markov property. Recall that Brownian motion

translated left or right by a constant is also a Brownianmotion. For s > 0, withBs = x,

the process (Bt+s)t≥0 is a Brownian motion started at x.

By the strong Markov property this also holds for some random times as well.

If S is a stopping time, (Bt+S)t≥0 is a Brownian motion process. See Section 3.9 to

reference the strong Markov property for discrete-time Markov chains.

A common setting is when Brownian motion irst hits a particular state or set of

states. Let Ta = min{t ∶ Bt = a} be the irst hitting time that Brownian motion hits

level a. See Figure 8.6. The random variable Ta is a stopping time. Moving forward

from Ta, the translated process is a Brownian motion started at a.

t
Ta

a

Figure 8.6 Ta is the irst time Brownian motion hits level a.

The strong Markov property is used to ind the distribution of Ta. Consider stan-

dard Brownian motion. At any time t, Bt is equally likely to be above or below the line

y = 0. Assume that a > 0. For Brownian motion started at a, the process is equally

likely to be above or below the line y = a. This gives,

P(Bt > a|Ta < t) = P(Bt > 0) =
1

2
,

and thus,

1

2
= P(Bt > a|Ta < t) =

P(Bt > a,Ta < t)

P(Ta < t)
=
P(Bt > a)

P(Ta < t)
.

The last equality is because the event {Bt > a} implies {Ta < t} by continuity of

sample paths. We have that

P(Ta < t) = 2P(Bt > a) (8.3)

= 2∫
∞

a

1√
2�t

e−x
2∕2t dx

= 2∫
∞

a∕
√
t

1√
2�

e−x
2∕2 dx. (8.4)
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If a < 0, the argument is similar with 1∕2 = P(Bt < a|Ta < t). In either case,

P(Ta < t) = 2∫
∞

|a|∕
√
t

1√
2�

e−x
2∕2 dx.

Differentiating with respect to t gives the probability density function of the irst

hitting time.

First Hitting Time Distribution

For a standard Brownian motion, let Ta be the irst time the process hits level a.

The density function of Ta is

fTa (t) =
|a|

√
2�t3

e−a
2∕2t, for t > 0. (8.5)

Example 8.7 Aparticlemoves according to Brownianmotion started at x = 1. After

t = 3 hours, the particle is at level 1.5. Find the probability that the particle reaches

level 2 sometime in the next hour.

Solution For t ≥ 3, the translated process is a Brownian motion started at x = 1.5.

The event that the translated process reaches level 2 in the next hour, is equal to the

event that a standard Brownian motion irst hits level a = 2 − 1.5 = 0.5 in [0, 1]. The

desired probability is

P(T0.5 ≤ 1) = ∫
1

0

0.5√
2�t3

e−(0.5)
2∕2t dt = 0.617.

◾

The irst hitting time distribution has some surprising properties. Consider

P(Ta < ∞) = lim
t→∞

P(Ta < t) = lim
t→∞

2∫
∞

|a|∕
√
t

1√
2�

e−x
2∕2 dx

= 2∫
∞

0

1√
2�

e−x
2∕2 dx = 2

(
1

2

)
= 1. (8.6)

Brownian motion hits level a, with probability 1, for all a, no matter how large.

On the contrary,

E(Ta) = ∫
∞

0

t|a|
√
2�t3

e−a
2∕2t dt = +∞.

The expected time to irst reach level a is ininite. This is true for all a, no matter how

small!
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Relection Principle and the Maximum of Brownian Motion

Brownian motion relected at a irst hitting time is a Brownian motion. This prop-

erty is known as the relection principle and is a consequence of the strong Markov

property.

For a standard Brownian motion, and irst hitting time Ta, consider the process(
B̃t

)

t≥0
deined by

B̃t =

{
Bt, if 0 ≤ t ≤ Ta,

2a − Bt, if t ≥ Ta.

This is called Brownian motion relected at Ta. The construction is shown in

Figure 8.7. The relected portion a − (Bt − a) = 2a − Bt is a Brownian motion

process started at a by the strong Markov property and the fact that −Bt is a standard

Brownian motion. Concatenating the front of the original process (Bt)0≤t≤Ta to the

relected piece preserves continuity.

Ta

a

t

Figure 8.7 Relection principle.

Another way of thinking of the relection principle is that it establishes a

one-to-one correspondence between paths that exceed level a at time t and paths that

are below a at time t and have hit a by time t.

The relection principle is applied in the following derivation of the distribution of

Mt = max0≤s≤tBs, the maximum value of Brownian motion on [0, t].

Let a > 0. If at time t, Bt exceeds a, then the maximum on [0, t] is greater than a.

That is, {Bt > a} implies {Mt > a}. This gives

{Mt > a} = {Mt > a,Bt > a} ∪ {Mt > a,Bt ≤ a}

= {Bt > a} ∪ {Mt > a,Bt ≤ a}.

As the union is disjoint, P(Mt > a) = P(Bt > a) + P(Mt > a,Bt ≤ a).

Consider a sample path that has crossed a by time t and is at most a at time t. By

the relection principle, the path corresponds to a relected path that is at least a at
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time t. This gives that P(Mt > a,Bt ≤ a) = P
(
B̃t ≥ a

)
= P(Bt > a). Thus,

P(Mt > a) = 2P(Bt > a) = ∫
∞

a

√
2

�t
e−x

2∕2t dx, for a > 0.

The distribution of Mt is equal to the distribution of |Bt|, the absolute value of a

normally distributed random variable with mean 0 and variance t.

Since we have already found the distribution of Ta, a different derivation of the

distribution ofMt is possible, using the fact thatMt > a if and only if the process hits

a by time t, that is Ta < t. This gives

P(Mt > a) = P(Ta < t) = ∫
t

0

a√
2�s3

e−a
2∕2s ds (8.7)

= ∫
∞

a

√
2

�t
e−x

2∕2t dx, for a > 0. (8.8)

The last equality is achieved by the change of variables a2∕s = x2∕t.

Example 8.8 A laboratory instrument takes annual temperature measurements.

Measurement errors are assumed to be independent and normally distributed. As pre-

cision decreases over time, errors are modeled as standard Brownian motion. For how

many years can the lab be guaranteed that there is at least 90% probability that all

errors are less than 4 degrees?

Solution The problem asks for the largest t such that P(Mt ≤ 4) ≥ 0.90. We have

0.90 ≤ P(Mt ≤ 4) = 1 − P(Mt > 4) = 1 − 2P(Bt > 4) = 2P(Bt ≤ 4) − 1.

This gives

0.95 ≤ P(Bt ≤ 4) = P

(
Z ≤ 4√

t

)
,

where Z is a standard normal random variable. The 95th percentile of the standard

normal distribution is 1.645. Solving 4∕
√
t = 1.645 gives

t =
(

4

1.645

)2

= 5.91 years.

◾
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Zeros of Brownian Motion and Arcsine Distribution

Brownian motion reaches level x, no matter how large x, with probability 1. Brownian

motion also returns to the origin ininitely often. In fact, on any interval (0, �), no

matter how small �, the process crosses the t-axis ininitely many times.

The times when the process crosses the t-axis are the zeros of Brownian motion.

That Brownian motion has ininitely many zeros in any interval of the form (0, �) is

a consequence of the following.

Zeros of Brownian Motion

Theorem 8.1. For 0 ≤ r < t, let zr,t be the probability that standard Brownian

motion has at least one zero in (r, t). Then,

zr,t =
2

�
arccos

(√
r

t

)
.

With r = 0, the result gives that standard Brownian motion has at least one zero

in (0, �) with probability

z0,� = (2∕�) arccos(0) = (2∕�)(�∕2) = 1.

That is, Bt = 0, for some 0 < t < �. By the strong Markov property, for Brownian

motion restarted at t, there is at least one zero in (t, �), with probability 1. Continuing

in this way, there are ininitely many zeros in (0, �).

The arcsine distribution arises in the proof of Theorem 8.1 and other results related

to the zeros of Brownian motion. The distribution is a special case of the beta distri-

bution, and has cumulative distribution function

F(t) =
2

�
arcsin

(√
t
)
, for 0 ≤ t ≤ 1. (8.9)

The arcsine density function is

f (t) = F′(t) =
1

�
√
t(1 − t)

, for 0 ≤ t ≤ 1.

The density is bimodal and symmetric, as shown in Figure 8.8.

Proof of Theorem 8.1. Conditioning on Br,

zr,t = P(Bs = 0 for some s ∈ (r, t))

= ∫
∞

−∞

P(Bs = 0 for some s ∈ (r, t)|Br = x)
1√
2�r

e−x
2∕2r dx. (8.10)
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Figure 8.8 Arcsine distribution.

Assume that Br = x < 0. The probability that Bs = 0 for some s ∈ (r, t) is equal to
the probability that for the process started in x, the maximum on (0, t − r) is greater

than 0. By translation, the latter is equal to the probability that for the process started

in 0, the maximum on (0, t − r) is greater than x. That is,

P(Bs = 0 for some s ∈ (r, t)|Br = x) = P(Mt−r > x).

For x > 0, consider the relected process −Bs started in −x. In either case, with

Equations (8.7) and (8.10),

zr,t = ∫
∞

−∞

P(Mt−r > |x|) 1√
2�r

e−x
2∕2r dx

= ∫
∞

−∞ ∫
t−r

0

1√
2�s3

|x|e−x2∕2s ds 1√
2�r

e−x
2∕2r dx

=
1

� ∫
t−r

0

1√
rs3

∫
∞

0

xe−x
2(r+s)∕2rs dx ds

=
1

� ∫
t−r

0

1√
rs3

∫
∞

0

e−z(r+s)∕rs dz ds

=
1

� ∫
t−r

0

1√
rs3

(
rs

r + s

)
ds

=
1

� ∫
1

r∕t

1√
x(1 − x)

dx.
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The last equality is by the change of variables r∕(r + s) = x. The last expression is an

arcsine probability, which, by Equation (8.9), gives

zr,t =
2

�

(
arcsin

(√
1
)
− arcsin

(√
r

t

))

= 1 −
2

�
arcsin

(√
r

t

)
=

2

�
arccos

(√
r

t

)
.

◾

Last Zero Standing

Corollary 8.2. Let Lt be the last zero in (0, t). Then,

P(Lt ≤ x) =
2

�
arcsin

(√
x

t

)
, for 0 < x < t.

Proof of corollary. The last zero occurs by time x < t if and only if there are no zeros

in (x, t). This occurs with probability

1 − zx,t = 1 −
2

�
arccos

(√
x

t

)
=

2

�
arcsin

(√
x

t

)
.

◾

Example 8.9 (Fluctuations in Coin Tossing)

We shall encounter theoretical conclusions which not only are unexpected but actu-

ally come as a shock to intuition and common sense. They will reveal that commonly

accepted notions concerning chance luctuations are without foundation and that the

implications of the law of large numbers are widely misconstrued.

—William Feller

Feller, the author of the quotation and of the classic and ground-breaking prob-

ability textbook An Introduction to Probability Theory and Its Applications, was

discussing luctuations in coin tossing and random walk. As a discrete process ran-

dom walk is often studied with counting and combinatorial tools. Because of the

connection between random walk and Brownian motion many discrete results can be

obtained by taking suitable limits and invoking the invariance principle.

Consider a fair coin-tossing game between two players, A and B. If the coin lands

heads, A pays B one dollar. If tails, B pays A. The coin is lipped n = 10, 000 times.

To test your “intuition and common sense,” when would you guess is the last time

the players are even? That is, at what point will the remaining duration of the game

see one player always ahead?

Perhaps you think that in an evenly matched game there will be frequent changes

in the lead and thus the last time the players are even is likely to be close to n, near

the end of the game?
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Let L̃n be the last time, in n plays, that the players are tied. This is the last zero

for simple symmetric randomwalk on {0, 1, … , n}. Before continuing, we invite the

reader to sketch their guesstimate of the distribution of L̃n.

We simulated the coin-lipping game 5,000 times, generating the histogram of L̃n
in Figure 8.9. The distribution is symmetric. It is equally likely that the last zero of

the random walk is either k or n − k. Furthermore, the probabilities near the ends are

the greatest. There is a surprisingly large probability of one player gaining the lead

early in the game, and keeping the lead throughout. After just 20% of the game, there

is almost 30% probability that one player will be in the lead for the remainder.
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Figure 8.9 Last time players are tied in 10,000 coin lips.

It is no accident, of course, that the histogram bears a striking resemblance to

the arcsine density curve in Figure 8.8. Let 0 < t < 1. The probability that the last

zero of the random walk occurs by step tn, that is, after 100t percent of the walk, is

approximately the probability that the last zero of Brownian motion on [0, 1] occurs

by time t. For large n,

P
(
L̃n ≤ tn

)
≈ P(L1 ≤ t) =

2

�
arcsin

(√
t
)
.

Simulated probabilities for the random walk and theoretical values for Brownian

motion are compared in Table 8.1.

TABLE 8.1 Random Walk and Brownian Motion Probabilities for the Last Zero

(n = 10, 000)

t 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

P
(
L̃n ≤ tn

)
0.207 0.297 0.367 0.434 0.499 0.565 0.632 0.704 0.795

P(L1 ≤ t) 0.205 0.295 0.369 0.436 0.500 0.564 0.631 0.705 0.795
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R: Random Walk and Coin Tossing

# coinflips.R
trials <- 10000
simlist <- numeric(trials)
for (i in 1:trials) {
rw <- c(0,cumsum(sample(c(-1,1),(trials-1),
replace=T)))
simlist[i] <- tail(which(rw==0),1)
}

mean(simlist)
hist(simlist,xlab=“”,ylab=“Counts”,main=“”)

◾

8.5 VARIATIONS AND APPLICATIONS

Standard Brownian motion is often too simple a model for real-life applications.

Many variations arise in practice. Brownian motion started in x has a constant mean

function. A common variant of Brownian motion has linear mean function as well as

an additional variance parameter.

Brownian Motion with Drift

For real � and � > 0, the process deined by

Xt = �t + �Bt, for t ≥ 0,

is called Brownian motion with drift parameter � and variance parameter �2.

Brownian motion with drift is a Gaussian process with continuous sample paths

and independent and stationary increments. For s, t > 0, Xt+s − Xt is normally dis-

tributed with mean �s and variance �2s.

Example 8.10 Find the probability that Brownian motion with drift parameter

� = 0.6 and variance �2 = 0.25 takes values between 1 and 3 at time t = 4.

Solution Write Xt = (0.6)t + (0.5)Bt. The desired probability is

P(1 ≤ X4 ≤ 3) = P(1 ≤ (0.6)4 + (0.5)B4 ≤ 3) = P(−2.8 ≤ B4 ≤ 1.2)

= ∫
1.2

−2.8

1√
8�

e−x
2∕8 dx = 0.645.

◾
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Example 8.11 (Home team advantage) A novel application of Brownian motion

to sports scores is given in Stern (1994). The goal is to quantify the home team advan-

tage by inding the probability in a sports match that the home team wins the game

given that they lead by l points after a fraction 0 ≤ t ≤ 1 of the game is completed.

The model is applied to basketball where scores can be reasonably approximated by

a continuous distribution.

For 0 ≤ t ≤ 1, let Xt denote the difference in scores between the home and visiting

teams after 100t percent of the game has been completed. The process is modeled

as a Brownian motion with drift, where the mean parameter � is a measure of home

team advantage. The probability that the home team wins the game, given that they

have an l point lead at time t < 1, is

p(l, t) = P(X1 > 0|Xt = l) = P(X1 − Xt > −l)

= P(X1−t > −l) = P(�(1 − t) + �B1−t > −l)

= P

(
B1−t <

l + �(1 − t)

�

)

= P

(
Bt <

√
t[l + �(1 − t)]

�
√
1 − t

)
.

The last equality is because Bt has the same distribution as
√
t∕(1 − t)B1−t.

The model is applied to the results of 493 National Basketball Association games

in 1992. Drift and variance parameters are it from the available data with estimates

�̂ = 4.87 and �̂ = 15.82.

Table 8.2 gives the probability of a home team win for several values of l and

t. Due to the home court advantage, the home team has a greater than 50% chance

of winning even if it is behind by two points at halftime (t = 0.50). Even in the last

TABLE 8.2 Table for Basketball Data Probabilities p(l, t) that the Home Team Wins

the Game Given that they are in the Lead by l Points After a Fraction t of the Game is

Completed

Lead

Time t l = −10 l = −5 l = −2 l = 0 l = 2 l = 5 l = 10

0.00 0.62

0.25 0.32 0.46 0.55 0.61 0.66 0.74 0.84

0.50 0.25 0.41 0.52 0.59 0.65 0.75 0.87

0.75 0.13 0.32 0.46 0.56 0.66 0.78 0.92

0.90 0.03 0.18 0.38 0.54 0.69 0.86 0.98

1.00 0.00 0.00 0.00 1.00 1.0 1.0

Source: Stern (1994).
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ive minutes of play (t = 0.90), home team comebacks from ive points are not that

unusual, according to the model, with probability 0.18.

We recommend this paper to the mathematically inclined sports fan. It is both

accessible and readable. The author discusses model assumptions and limitations,

the extent to which theoretical predictions follow empirical results, and an interesting

extension from basketball to baseball. ◾

Brownian Bridge

The two ends of a bridge are both secured to level ground. A Brownian bridge is a

Brownian motion process conditioned so that the process ends at the same level as

where it begins.

Brownian Bridge

From standard Brownian motion, the conditional process (Bt)0≤t≤1 given that

B1 = 0 is called a Brownian bridge. The Brownian bridge is tied down to 0 at the

endpoints of [0, 1].

Examples of Brownian bridge are shown in Figure 8.10. Let (Xt)t≥0 denote a

Brownian bridge. For 0 ≤ t ≤ 1, the distribution ofXt is equal to the conditional distri-

bution of Bt given B1 = 0. Since the conditional distributions of a Gaussian process

are Gaussian, it follows that Brownian bridge is a Gaussian process. Continuity of

sample paths, and independent and stationary increments are inherited from standard

Brownian motion.
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0.0

0.9

0.0 0.5 1.0

−0.8

0.0
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0.0
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Figure 8.10 Brownian bridge sample paths.
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To ind the mean and covariance functions results are needed for bivariate normal

distributions. We encourage the reader to work through Exercise 8.5(b) and show that

for 0 < s < t,

E(Bs|Bt = y) =
sy

t
and Var(Bs|Bt = y) =

s(t − s)

t
.

This gives the mean function of Brownian bridge

E(Xt) = E(Bt|B1 = 0) = 0, for 0 ≤ t ≤ 1.

For the covariance, Cov(Xs,Xt) = E(XsXt). By the law of total expectation,

E(XsXt) = E(E(XsXt)|Xt) = E(XtE(Xs|Xt))

= E

(
Xt
sXt

t

)
=
s

t
E
(
X2
t

)
=
s

t
E
(
B2
t |B1 = 0

)

=
s

t
Var(Bt|B1 = 0) =

(
s

t

) t(1 − t)

1
= s − st.

By symmetry, for t < s, E(XsXt) = t − st. In either case, the covariance function is

Cov(Xs,Xt) = min{s, t} − st.

Example 8.12 Let Xt = Bt − tB1, for 0 ≤ t ≤ 1. Show that (Xt)0≤t≤1 is a Brownian

bridge.

Solution The process is a Gaussian process since (Bt)t≥0 is a Gaussian process.

Sample paths are continuous, with probability 1. It is sufice to show that the process

has the same mean and covariance functions as a Brownian bridge.

The mean function is E(Xt) = E(Bt − tB1) = E(Bt) − tE(B1) = 0. The covariance

function is

Cov(Xs,Xt) = E(XsXt) = E((Bs − sB1)(Bt − tB1))

= E(BsBt) − tE(BsB1) − sE(BtB1) + stE(B2
1
)

= min{s, t} − ts − st + st = min{s, t} − st,

which is the covariance function of Brownian bridge.

The construction described in this example gives a direct method for simulating a

Brownian bridge used to draw the graphs in Figure 8.10.

R: Simulating Brownian Bridge

# bbridge.R
> n <- 1000
> t <- seq(0,1,length=n)
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> bm <- c(0,cumsum(rnorm(n-1,0,1)))/sqrt(n)
> bb <- bm - t*bm[n]
> plot(t,bb,type="l")

◾

Example 8.13 (Animal tracking) In Analyzing Animal Movements Using

Brownian Bridges, ecologists Horne et al. (2007) develop a Brownian bridge model

for estimating the expected movement path of an animal. The model is based on a

two-dimensional Brownian motion, where Za,bt = Zt is deined to be the position

in IR2 of an animal at time t ∈ [0,T], which starts at a and ends at b. Each Zt is

normally distributed with mean vector E(Zt) = a +
t

T
(b − a) and covariance matrix

�2
t =

t(T − t)

T
�2
mI,

where I is the identity matrix and �2
m is a parameter related to the mobility of the

animal. The probability that the animal is in regionA at time t isP(Zt ∈ A). Themodel

is applied to animal location data, often obtained through global positioning system

telemetry, which allows for monitoring animal movements over great distances.

An objective of the researchers is to estimate the frequency of use of a region over

the time of observation. Let IA(x) be the usual indicator function, which takes the

value 1, if x ∈ A, and 0, otherwise. The occupation time for region A is deined as the

random variable

∫
T

0

IA(Zt) dt.

The expected fraction of time an animal occupies A is then

E

(
1

T ∫
T

0

IA(Zt) dt

)
=

1

T ∫
T

0

P(Zt ∈ A) dt,

a quantity used to estimate the home range of a male black bear in northern Idaho

and the fall migration route of 11 caribou in Alaska.

The authors argue that the Brownian bridge movement model (BBMM) has the

advantage over other methods in that BBMM assumes successive animal locations

are not independent and explicitly incorporates the time between locations into the

model. ◾

Example 8.14 (Kolmogorov–Smirnov statistic) Following are 40 measurements,

which take values between 0 and 1. We would like to test the claim that they are an

i.i.d. sample from the uniform distribution on (0, 1). The Brownian bridge arises in

the analysis of the Kolmogorov–Smirnov test, a common statistical method to test

such claims.
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0.100 0.296 0.212 0.385 0.993 0.870 0.070 0.815 0.123 0.588

0.332 0.035 0.758 0.362 0.453 0.047 0.134 0.389 0.147 0.424

0.060 0.003 0.800 0.011 0.085 0.674 0.196 0.715 0.342 0.519

0.675 0.799 0.768 0.721 0.315 0.009 0.109 0.835 0.044 0.152

Given a sample X1, … ,Xn, deine the empirical distribution function

Fn(t) =
1

n

n∑

i=1

I{Xi≤t},

where I{Xi≤t} is the indicator function equal to 1, if Xi ≤ t, and 0, otherwise. The

empirical distribution function gives the proportion of values in the sample that are

at most t. If the data are a sample from a population with cumulative distribution

function F, then Fn(t) is an estimate of P(Xi ≤ t) = F(t).

If the data in our example is an i.i.d. sample from the uniform distribution on

(0, 1), then F(t) = t, for 0 ≤ t ≤ 1, and we would expect Fn(t) ≈ t. Figure 8.11

shows the empirical distribution function for these data plotted alongside the line

y = t.
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Figure 8.11 Empirical distribution function for sample data.

For a given cdf F, the Kolmogorov–Smirnov statistic is

Dn = max
0≤t≤1

|Fn(t) − F(t)|,

the maximum absolute distance between the empirical cdf and F. If the data are a

sample from F, we expect Fn(t) ≈ F(t) and the value of Dn to be close to 0. Further-

more, large values ofDn are evidence against the hypothesis that the data are a sample



VARIATIONS AND APPLICATIONS 351

from F. For the test of uniformity, F(t) = t, and

Dn = max
0≤t≤1

|Fn(t) − t|.

For our data, the Kolmogorov–Smirnov test statistic isD40 = 0.223. Is this large or
small? Does it support or contradict the uniformity hypothesis? A statistician would

ask: if the data do in fact come from a uniform distribution, what is the probability

that D40 would be as large as 0.223? The probability P(D40 > 0.223) is the P-value
of the test. A small P-value means that it is unusual for D40 to be as large as 0.223,

which would be evidence against uniformity. The distribution of Dn is dificult to

obtain, which leads one to look for a good approximation.

If X1, … ,Xn is an i.i.d. sample from the uniform distribution on (0, 1), then for

0 < t < 1,

Fn(t) − t =

n∑

i=1

I{Xi≤t} − t

n

is a sum of i.i.d. random variables with common mean

E

(
I{Xi≤t} − t

n

)
=
P(Xi ≤ t) − t

n
=
t − t

n
= 0

and variance

Var

(
I{Xi≤t} − t

n

)
=

1

n2
Var(I{Xi≤t}) =

P(Xi ≤ t)(1 − P(Xi ≤ t))

n2
=
t(1 − t)

n2
.

Thus, Fn(t) − t has mean 0 and variance t(1 − t)∕n. For ixed 0 < t < 1, the central

limit theorem gives that
√
n(Fn(t) − t)∕

√
t(1 − t) converges to a standard normal ran-

dom variable, as n → ∞. That is, for all real x,

lim
n→∞

P
(√

n(Fn(t) − t) ≤ x
)
= ∫

x

−∞

1√
2�t(1 − t)

e−z
2∕(2t(1−t)) dz = P(Y ≤ x),

where Y ∼ Normal(0, t(1 − t)).

By Donsker’s invariance principle, it can be shown that the process
√
n(Fn(t) − t),

for 0 ≤ t ≤ 1, converges to Bt − tB1. The limiting process (Bt − tB1)0≤t≤1 is a Brown-
ian bridge. The invariance principle further gives that

√
nDn =

√
n max
0≤t≤1 |Fn(t) − t|

converges to the maximum of a Brownian bridge. For large n, the distribution of Dn

is approximately that of M∕
√
n, where M is the maximum of a Brownian bridge.

We simulated the maximum of a Brownian bridge to ind the P-value for our data,

which is found to be

P
(
D40 > 0.223

)
≈ P(M∕

√
40 > 0.223) = P(M > 1.41) ≈ 0.018.
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The exact distribution of the maximum of a Brownian bridge is known. By using

that distribution, the P-value is 0.0157. The P-value for the Kolmogorov–Smirnov

test is obtained in R with the command ks.test.
The interpretation is that if the data were in fact uniformly distributed then the

probability thatD40 would be as large as 0.223 is less than 2%. Since the P-value is so

small, we reject the claim and conclude that the data do not originate from a uniform

distribution.

R: Test for Uniformity: Finding the P-value

# kstest.R
> trials <- 10000
> n <- 1000
> simlist <- numeric(trials)
> for (i in 1:trials) {
+ t <- seq(0,1,length=n)
# Brownian motion
+ bm <- c(0,cumsum(rnorm(n-1,0,1)))/sqrt(n)
+ bb <- bm-t*bm[n] # Brownian bridge
+ z <- max(bb) # maximum of Brownian bridge on [0,1]
+ simlist[i] <- if (z > 0.223*sqrt(40)) 1 else 0
}
> mean(simlist) # P-value = P(Z>1.41)
[1] 0.018
> ks.test(data,“punif”,0,1)$p. value # exact P-value
[1] 0.015743

◾

Geometric Brownian Motion

Geometric Brownian motion is a nonnegative process, which can be thought of as a

stochastic model for exponential growth or decay. It is a favorite tool in mathematical

inance, where it is used extensively to model stock prices.

Geometric Brownian Motion

Let (Xt)t≥0 be a Brownian motion with drift parameter � and variance parameter

�2. The process (Gt)t≥0 deined by

Gt = G0e
Xt , for t ≥ 0,

where G0 > 0, is called geometric Brownian motion.
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Taking logarithms, we see that ln Gt = ln G0 + Xt is normally distributed with

mean

E( ln Gt) = E( ln G0 + Xt) = ln G0 + �t

and variance

Var( ln Gt) = Var( ln G0 + Xt) = Var(Xt) = �2t.

A random variable whose logarithm is normally distributed is said to have a

lognormal distribution. For each t > 0, Gt has a lognormal distribution.

We leave as an exercise the derivation of mean and variance for geometric Brown-

ian motion

E(Gt) = G0e
t(�+�2∕2) and Var(Gt) = G2

0
e2t(�+�

2∕2)(et�
2
− 1). (8.11)

The exponential mean function shows that, on average, geometric Brownian motion

exhibits exponential growth with growth rate � + �2∕2.

Geometric Brownian motion arises as a model for quantities which can be

expressed as the product of independent random multipliers. For s, t ≥ 0, consider

the ratio
Gt+s

Gt

=
G0e

�(t+s)+�Xt+s

G0e
�t+�Xt

= e�s+�(Xt+s−Xt),

which has the same distribution as e�s+�Xs = Gs∕G0, because of stationary increments

for the (Xt)t≥0 process. For 0 ≤ q < r ≤ s < t,

Gt

Gs

= e�(t−s)+�(Xt−Xs) and
Gr

Gq

= e�(r−q)+�(Xr−Xq)

are independent random variables, because of independent increments for (Xt)t≥0.

Let Yk = Gk∕Gk−1, for k = 1, 2, … Then, Y1,Y2, … is an i.i.d. sequence, and

Gn =

(
Gn

Gn−1

)(
Gn−1

Gn−2

)
· · ·

(
G2

G1

)(
G1

G0

)
G0 = G0Y1Y2 · · ·Yn−1Yn.

Example 8.15 Stock prices are commonly modeled with geometric Brownian mo-

tion. The process is attractive to economists because of several assumptions.

Historical data for many stocks indicate long-term exponential growth or decline.

Prices cannot be negative and geometric Brownian motion takes only positive values.

Let Yt denote the price of a stock after t days. Since the price on a given day is prob-

ably close to the price on the next day (assuming normal market conditions), stock

prices are not independent. However, the percent changes in price from day to day

Yt∕Yt−1, for t = 1, 2, … might be reasonably modeled as independent and identically

distributed. This leads to geometric Brownian motion. In the context of stock prices,

the standard deviation � is called the volatility.
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A criticism of the geometric Brownian motion model is that it does not account

for extreme events like the stock market crash on October 19, 1987, when the world’s

stock markets lost more than 20% of their value within a few hours.

Assume that XYZ stock currently sells for $80 a share and follows a geometric

Brownian motion with drift parameter 0.10 and volatility 0.50. Find the probability

that in 90 days the price of XYZ will rise to at least $100.

Solution Let Yt denote the price of XYZ after t years. Round 90 days as 1/4 of a

year. Then,

P(Y0.25 ≥ 100) = P
(
80e�(0.25)+�B0.25 ≥ 100

)

= P((0.1)(0.25) + (0.5)B0.25 ≥ ln 1.25)

= P(B0.25 ≥ 0.396) = 0.214.

In R, type

> x <- (log(100/80)-(0.1)/4)/0.5
> 1-pnorm(x,0,sqrt(1/4))
[1] 0.214013

Simulations of the stock price are shown in Figure 8.12. ◾
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Figure 8.12 Fifty sample paths of a stock’s price over 90 days modeled as geometric Brown-

ian motion. Dotted lines are drawn at the mean function, and the mean plus or minus two

standard deviations.
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Example 8.16 (Financial options) An option is a contract that gives the buyer the

right to buy shares of stock sometime in the future at a ixed price. In Example 8.13,

we assumed that XYZ stock currently sells for $80 a share. Assume that an XYZ

option is selling for $10. Under the terms of the option, in 90 days you may buy a

share of XYZ stock for $100.

If you decide to purchase the option, consider the payoff. Assume that in 90 days

the price of XYZ is greater than $100. Then, you can exercise the option, buy the

stock for $100, and turn around and sell XYZ for its current price. Your payoff would

be G90∕365 − 100, where G90∕365 is the price of XYZ in 90 days.

On the other hand, if XYZ sells for less than $100 in 90 days, you would not

exercise the option, and your payoff is nil. In either case, the payoff in 90 days is

max{G90∕365 − 100, 0}. Your inal proit would be the payoff minus the initial $10

cost of the option.

Find the future expected payoff of the option, assuming the price of XYZ follows

a geometric Brownian motion.

Solution Let G0 denote the current stock price. Let t be the expiration date,

which is the time until the option is exercised. Let K be the strike price, which is

how much you can buy the stock for if you exercise the option. For XYZ, G0 = 80,

t = 90∕365 (measuring time in years), and K = 100.

The goal is to ind the expected payoff E(max{Gt − K, 0}), assuming (Gt)t≥0 is a

geometric Brownian motion. Let f (x) be the density function of a normal distribution

with mean 0 and variance t. Then,

E(max{Gt − K, 0}) = E
(
max{G0e

�t+�Bt − K, 0}
)

= ∫
∞

−∞

max{G0e
�t+�x − K, 0}f (x) dx

= ∫
∞

�

(G0e
�t+�x − K)f (x) dx

= G0e
�t ∫

∞

�

e�xf (x) dx − KP

(
Z >

�
√
t

)
,

where � =
(
ln (K∕G0) − �t

)
∕�, and Z is a standard normal random variable.

By completing the square, the integral in the last expression is

∫
∞

�

e�xf (x) dx = ∫
∞

�

e�x
1√
2�t

e−x
2∕2t dx

= e�
2t∕2 ∫

∞

�

1√
2�t

e−(x−�t)
2∕2t dx
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= e�
2t∕2 ∫

∞

(�−�t)∕
√
t

1√
2�

e−x
2∕2 dx

= e�
2t∕2P

(
Z >

� − �t
√
t

)
.

This gives

E(max{Gt − K, 0})

= G0e
t(�+�2∕2)P

(
Z >

� − �t
√
t

)
− KP

(
Z >

�
√
t

)
. (8.12)

Assume that XYZ stock follows a geometric Brownianmotionwith drift parameter

� = 0.10 and variance �2 = 0.25. Then,

� =
ln (K∕G0) − �t

�
=

ln (100∕80) − (0.10)(90∕365)

0.5
= 0.3970,

which gives

E(max{G90∕365−100, 0})

= 80e(90∕365)(0.10+0.25∕2)P

(
Z >

0.397 − 0.5(90∕365)
√
90∕365

)

− 100P

(
Z >

0.397√
90∕365

)

= 1.788.

Given that the initial cost of the option is $10, your expected proit is 1.788 − 10 < 0.

So you can expect to lose money.

For this example, we set an arbitrary initial cost of the option. A fundamental ques-

tion in inance is how such an option should be priced. This leads to the Black–Scholes

model for option pricing, which is introduced in the next section. ◾

8.6 MARTINGALES

Amartingale is a stochastic process that generalizes the notion of a fair game. Assume

that after n plays of a gambling game your winnings are x. Then, by fair, we mean

that your expected future winnings should be x regardless of past history.
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Martingale

A stochastic process (Yt)t≥0 is a martingale, if for all t ≥ 0,

1. E(Yt|Yr, 0 ≤ r ≤ s) = Ys, for all 0 ≤ s ≤ t.

2. E(|Yt|) < ∞.

A discrete-time martingale Y0,Y1, … satisies

1. E(Yn+1|Y0, … ,Yn) = Yn, for all n ≥ 0.

2. E(|Yn|) < ∞.

A most important property of martingales is that they have constant expectation.

By the law of total expectation,

E(Yt) = E(E(Yt|Yr, 0 ≤ r ≤ s)) = E(Ys),

for all 0 ≤ s ≤ t. That is,

E(Yt) = E(Y0), for all t.

Example 8.17 (Random walk) Show that simple symmetric random walk is a

martingale.

Solution Let

Xi =

{
+1, with probability 1∕2,
−1, with probability 1∕2,

for i = 1, 2, … For n ≥ 1, let Sn = X1 + · · · + Xn, with S0 = 0. Then,

E(Sn+1|S0, … , Sn) = E(Xn+1 + Sn|S0, … , Sn)

= E(Xn+1|S0, … , Sn) + E(Sn|S0, … , Sn)

= E(Xn+1) + Sn = Sn.

The third equality is because Xn+1 is independent of X1, … ,Xn, and thus independent
of S0, S1, … , Sn. The fact that E(Sn|S0, … , Sn) = Sn is a consequence of a general

property of conditional expectation, which states that if X is a random variable and g

is a function, then E(g(X)|X) = g(X).

The second part of the martingale deinition is satisied as

E(|Sn|) = E(

(|||||

n∑

i=1

Xi

|||||

)
≤ E

(
n∑

i=1

|Xi|
)

=

n∑

i=1

E(|Xi|) = n < ∞.

◾
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Since simple symmetric randomwalk is a martingale, the next example should not

be surprising.

Example 8.18 (Brownian motion) Show that standard Brownian motion (Bt)t≥0
is a martingale.

Solution We have that

E(Bt|Br, 0 ≤ r ≤ s) = E(Bt − Bs + Bs|Br, 0 ≤ r ≤ s)

= E(Bt − Bs|Br, 0 ≤ r ≤ s) + E(Bs|Br, 0 ≤ r ≤ s)

= E(Bt − Bs) + Bs = Bs,

where the second equality is because of independent increments. Also,

E(|Bt|) = ∫
∞

−∞

|x| 1√
2�t

e−x
2∕2t dx = ∫

∞

0

x

√
2

�t
e−x

2∕2t dx =

√
2t

�
< ∞.

◾

The following extension of the martingale deinition is used frequently.

Martingale with Respect to Another Process

Let (Xt)t≥0 and (Yt)t≥0 be stochastic processes. Then, (Yt)t≥0 is a martingale with
respect to (Xt)t≥0, if for all t ≥ 0,

1. E(Yt|Xr, 0 ≤ r ≤ s) = Ys, for all 0 ≤ s ≤ t.

2. E(|Yt|) < ∞.

The most common application of this is when Yt is a function of Xt. That is,

Yt = g(Xt) for some function g. It is useful to think of the conditioning random vari-

ables (Xr)0≤r≤s as representing past information, or history, of the process up to time s.

Following are several examples of martingales that are functions of Brownian

motion.

Example 8.19 (Quadratic martingale) Let Yt = B2
t − t, for t ≥ 0. Show that

(Yt)t≥0 is a martingale with respect to Brownian motion. This is called the quadratic

martingale.
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Solution For 0 ≤ s < t,

E(Yt|Br, 0 ≤ r ≤ s) = E
(
B2
t − t|Br, 0 ≤ r ≤ s

)

= E
(
(Bt − Bs + Bs)

2|Br, 0 ≤ r ≤ s
)
− t

= E
(
(Bt − Bs)

2 + 2(Bt − Bs)Bs + B2
s |Br, 0 ≤ r ≤ s

)
− t

= E
(
(Bt − Bs)

2
)
+ 2BsE(Bt − Bs) + B2

s − t

= (t − s) + B2
s − t = B2

s − s = Ys.

Furthermore,

E(|Yt|) = E
(
|B2

t − t|
)
≤ E

(
B2
t + t

)
= E

(
B2
t

)
+ t = 2t < ∞.

◾

Example 8.20 Let Gt = G0e
Xt be a geometric Brownian motion, where (Xt)t≥0 is

Brownian motion with drift � and variance �2. Let r = � + �2∕2. Show that e−rtGt

is a martingale with respect to standard Brownian motion.

Solution For 0 ≤ s < t,

E
(
e−rtGt|Br, 0 ≤ r ≤ s

)
= e−rtE

(
G0e

�t+�Bt |Br, 0 ≤ r ≤ s
)

= e−rtE
(
G0e

�(t−s)+�(Bt−Bs)e�s+�Bs |Br, 0 ≤ r ≤ s
)

= e−rte�s+�BsE
(
G0e

�(t−s)+�(Bt−Bs)
)

= e−rte�s+�BsE(Gt−s)

= e−t(�+�
2∕2)e�s+�BsG0e

(t−s)(�+�2∕2)

= e−s(�+�
2∕2)G0e

�s+�Bs

= e−rsGs.

Also,

E(|e−rtGt|) = e−rtE(Gt) = e−t(�+�
2∕2)G0e

t(�+�2∕2) = G0 < ∞, for all t.
◾

Example 8.21 (Black–Scholes) In Example 8.16, the expected payoff for a inan-

cial option was derived. This leads to the Black–Scholes formula for pricing options,

a fundamental formula in mathematical inance.

The formula was irst published by Fisher Black and Myron Scholes in 1973 and

then further developed by Robert Merton. Merton and Scholes received the 1997

Nobel Prize in Economics for their work. The ability to price options and other inan-

cial derivatives opened up amassive global market for trading ever-more complicated
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inancial instruments. Black–Scholes has been described both as a formula which

“changed the world” and as “the mathematical equation that caused the banks to

crash.” See Stewart (2012).

There are several critical assumptions underlying the Black–Scholes formula. One

is that stock prices follow a geometric Brownianmotion. Another is that an investment

should be risk neutral. What this means is that the expected return on an investment

should be equal to the so-called risk-free rate of return, such as what is obtained by a

short-term U.S. government bond.

Let r denote the risk-free interest rate. Starting with P dollars, because of com-

pound interest, after t years of investing risk free your money will grow to P(1 + r)t

dollars. Under continuous compounding, the future value is F = Pert. This gives the

future value of your present dollars. On the other hand, assume that t years from now

you will be given F dollars. To ind its present value requires discounting the future

amount by a factor of e−rt. That is, P = e−rtF.

Let Gt denote the price of a stock t years from today. Then, the present value

of the stock price is e−rtGt. The Black–Scholes risk neutral assumption means that

the discounted stock price process is a fair game, that is, a martingale. For any time

0 < s < t, the expected present value of the stock t years from now given knowledge

of the stock price up until time s should be equal to the present value of the stock

price s years from now. In other words,

E(e−rtGt|Gx, 0 ≤ x ≤ s) = e−rsGs. (8.13)

In Example 8.20, it was shown that Equation (8.13) holds for geometric Brownian

motion if r = � + �2∕2, or � = r − �2∕2. The probability calculations for the

Black–Scholes formula are obtained with this choice of �. In the language of

Black–Scholes, this gives the risk-neutral probability for computing the options

price formula. The Black–Scholes formula for the price of an option is then the

present value of the expected payoff of the option under the risk-neutral probability.

See Equation (8.12) for the future expected payoff of a inancial option. The

present value of the expected payoff is obtained by multiplying by the discount

factor e−rt. Replace � with r − �2 to obtain the Black–Scholes option price formula

e−rtE(max{Gt − K, 0}) = G0P

(
Z >

� − �t√
t

)
− e−rtKP

(
Z >

�√
t

)
,

where

� =
ln (K∕G0) − (r − �2∕2)t

�
.

For the XYZ stock example, G0 = 80, K = 100, �2 = 0.25, and t = 90∕365.

Furthermore, assume r = 0.02 is the risk-free interest rate. Then,

� =
ln (100∕80) − (0.02 − 0.25∕2)(90∕365)

0.5
= 0.498068,
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and the Black–Scholes option price is

80P

(
Z >

� − 0.50(90∕365)

0.5

)
− e−0.02(90∕365)(100)P

(
Z >

�

0.5

)
= $2.426.

Remarks:

1. For a given expiration date and strike price, the Black–Scholes formula depends

only on volatility � and the risk-free interest rate r, and not on the drift param-

eter �. In practice, volatility is often estimated from historical price data. The

model assumes that � and r are constant.

2. The original derivation of the Black–Scholes formula in the paper by Black and

Scholes was based on deriving and solving a partial differential equation

�V

�t
+

�2S2

2

�2V

�S2
+ rS

�V

�S
= rV ,

where V = V(S, t) is the value of the option, a function of stock price S and

time t. This is known as the Black–Scholes equation, and can be reduced to the

simpler heat equation.

3. The Black–Scholes formula in the example is for a European call option, in

which the option can only be exercised on the expiration date. In an American

call option, one can exercise the option at any time before the expiration date.

There are many types of options and inancial derivatives whose pricing struc-

ture is based on Black–Scholes.
◾

Optional Stopping Theorem

Amartingale (Yt)t≥0 has constant expectation. For all t ≥ 0, E(Yt) = E(Y0). The prop-

erty holds for all ixed, deterministic times, but not necessarily for random times. If

T is a random variable, which takes values in the index set of a martingale, it is not

necessarily true that E(YT ) = E(Y0). For instance, let T be the irst time that a stan-

dard Brownian motion hits level a. Then, BT = a = E(BT ). However, E(Bt) = 0, for

all t ≥ 0.

The optional stopping theorem gives conditions for when a random time T satisies

E(YT ) = E(Y0). While that might not sound like a big deal, the theorem is remark-

ably powerful. As mathematicians David Aldous and Jim Fill write in Reversible

Markov chains and randomwalks on graphs, “Modern probabilists regard the martin-

gale optional stopping theorem as one of the most important results in their subject.”

(Aldous and Fill, 2002.)

In Section 3.9, we introduced the notion of a stopping time in the context of

discrete-time Markov chains. For a stochastic process (Yt)t≥0, a nonnegative random

variable T is a stopping time if for each t, the event {T ≤ t} can be determined from

{Ys, 0 ≤ s ≤ t}. That is, if the outcomes of Ys are known for 0 ≤ s ≤ t, then it can be

determined whether or not {T ≤ t} occurs.
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On the interval [0, 1], the irst time Brownian motion hits level a is a stopping time.

Whether or not a is irst hit by time t can be determined from {Bs, 0 ≤ s ≤ t.} On the
other hand, the last time a is hit on [0, 1] is not a stopping time. To determine whether

or not a was last hit by time t < 1 requires full knowledge of Bs, for all s ∈ [0, 1].

Optional Stopping Theorem

Let (Yt)t≥0 be a martingale with respect to a stochastic process (Xt)t≥0. Assume

that T is a stopping time for (Xt)t≥0. Then, E(YT ) = E(Y0) if one of the following

is satisied.

1. T is bounded. That is, T ≤ c, for some constant c.

2. P(T < ∞) = 1 and E(|Yt|) ≤ c, for some constant c, whenever T > t.

The proof of the optional stopping theorem is beyond the scope of this book. There

are several versions of the theorem with alternate sets of conditions.

In the context of a fair gambling game, one can interpret the optional stopping

theorem to mean that a gambler has no reasonable strategy for increasing their initial

stake. Let Yt denote the gambler’s winnings at time t. If a gambler strategizes to stop

play at time T , their expected winnings will be E(YT ) = E(Y0) = Y0, the gambler’s

initial stake.

The word martingale has its origins in an 18th century French gambling strategy.

Mansuy (2009) quotes the dictionary of the Académie Française, that “To play the

martingale is to always bet all that was lost.”

Consider such a betting strategy for a game where at each round a gambler can

win or lose one franc with equal probability. After one turn, if you win you stop.

Otherwise, bet 2 francs on the next round. If you win, stop. If you lose, bet 4 francs

on the next round. And so on. Let T be the number of bets needed until you win. The

random variable T is a stopping time. If the gambler wins their game after k plays,

they gain

2k − (1 + 2 + · · · + 2k−1) = 2k − (2k − 1) = 1 franc,

and, with probability 1, the gambler will eventually win some bet. Thus, T seems to

be a winning strategy.

However, if Yn denotes the gambler’s winnings after n plays, then

E(YT ) = 1 ≠ 0 = E(Y0). The random variable T does not satisfy the conditions

of the optional sampling theorem. The reason this martingale gambling strategy is

not reasonable is that it assumes the gambler has ininite capital.

The optional stopping theorem gives elegant and sometimes remarkably simple

solutions to seemingly dificult problems.
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Example 8.22 Let a, b > 0. For a standard Brownian motion, ind the probability

that the process hits level a before hitting level −b.

Solution Let p be the desired probability. Consider the time T that Brownian motion

irst hits either a or −b. That is, T = min{t ∶ Bt = a or Bt = −b}. See Figure 8.13.

t

a

−b

T

Figure 8.13 First hitting time T that Brownian motion hits level a or −b.

The random variable T is a stopping time. Furthermore, it satisies the conditions

of the optional stopping theorem. From Equation (8.6), the irst hitting time Ta is

inite with probability 1. By the strong Markov property, from a, the irst time to hit

−b is also inite with probability 1. Thus, the irst part of condition 2 is satisied.

Furthermore, for t < T , Bt ∈ (−b, a). Thus, |Bt| < max{a, b}, and the second part of
condition 2 is satisied.

Observe that BT = a, with probability p, and BT = −b, with probability 1 − p. By

the optional stopping theorem

0 = E(B0) = E(BT ) = pa + (1 − p)(−b).

Solving for p gives p = b∕(a + b). ◾

Example 8.23 (Expected hitting time) Apply the optional stopping theorem with

the same stopping time as in Example 8.22, but with the quadratic martingale B2
t − t.

This gives

E
(
B2
T
− T

)
= E

(
B2
0
− 0

)
= 0,

from which it follows that

E(T) = E
(
B2
T

)
= a2

(
b

a + b

)
+ b2

(
a

a + b

)
= ab.

We have thus discovered that the expected time that standard Brownian motion irst

hits the boundary of the region deined by the lines y = a and y = −b is ab. ◾
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Example 8.24 (Gambler’s ruin) It was shown that discrete-time simple symmet-

ric random walk S0, S1, … is a martingale. As with the quadratic martingale, the

process S2n − n is a martingale. The results from the last two examples for Brown-

ian motion can be restated for gambler’s ruin on {− b,−b + 1, … , 0, … , a − 1, a}
starting at the origin. This gives the following:

1. The probability that the gambler gains a before losing b is b∕(a + b).

2. The expected duration of the game is ab. ◾

Example 8.25 (Time to irst hit the line y = a− bt) For a, b > 0, let

T = min{t ∶ Bt = a − bt} be the irst time a standard Brownian motion hits

the line y = a − bt. The random variable T is a stopping time, which satisies the

optional stopping theorem. This gives

0 = E(B0) = E(BT ) = E(a − bT) = a − bE(T).

Hence, E(T) = a∕b. For the line y = 4 − (0.5)t in Figure 8.14, the mean time to irst

hit the line is 4∕(0.5) = 8.
◾

t

y = 4 − 0.5t

BT

T

Figure 8.14 First time T Brownian motion hits the line y = 4 − 0.5t.

Example 8.26 (Time to reach a for Brownian motion with drift) Assume that

(Xt)t≥0 is a Brownian motion process with drift parameter � and variance parameter

�2, where � > 0. For a > 0, ind the expected time that the process irst hits level a.

Solution Let T = min{t ∶ Xt = a} be the irst time that the process hits level a.

Write Xt = �t + �Bt. Then, Xt = a if and only if

Bt =
a − �t

�
=
a

�
−
(
�

�

)
t.

Applying the result of Example 8.25, E(T) = (a∕�)∕(�∕�) = a∕�. ◾
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Example 8.27 (Variance of irst hitting time) Assume that (Xt)t≥0 is a Brownian

motion process with drift � and variance �2. Let T = min{t ∶ Xt = a} be the irst

hitting time to reach level a. In the last example, the expectation of T was derived.

Here, the variance of T is obtained using the quadratic martingale Yt = B2
t − t.

Solution Since T is a stopping time with respect to Bt,

0 = E(Y0) = E(YT ) = E
(
B2
T
− T

)
= E

(
B2
T

)
− E(T).

Thus, E
(
B2
T

)
= E(T) = a∕�. Write Xt = �t + �Bt. Then, XT = �T + �BT , giving

BT =
XT − �T

�
=
a − �T

�
.

Thus,

Var(T) = E
(
(T − E(T))2

)
= E

((
T −

a

�

)2
)

=
1

�2
E
(
(�T − a)2

)
=

�2

�2
E

((
a − �T

�

)2
)

=
�2

�2
E
(
B2
T

)
=

�2

�2

(
a

�

)
=
a�2

�3
.

◾

R: Hitting Time Simulation for Brownian Motion with Drift

Let (Xt)t≥0 be a Brownian motion with drift � = 0.5 and variance �2 = 1. Con-

sider the irst hitting time T of level a = 10. Exact results are

E(T) = a∕� = 20 and Var(T) = a�2∕�3 = 80.

Simulated results are based on 1,000 trials of a Brownian motion process on

[0, 80]. See Figure 8.15 for several realizations.

# bmhitting.R
> mu <- 1/2
> sig <- 1
> a <- 10
> simlist <- numeric(1000)
> for (i in 1:1000) {

t <- 80
n <- 50000
bm <- c(0,cumsum(rnorm(n,0,sqrt(t/n))))
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xproc <- mu*seq(0,t,t/n) + sig*bm
simlist[i] <- which(xproc >= a)[1] * (t/n) }

> mean(simlist)
[1] 20.07139
> var(simlist)
[1] 81.31142

0
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T = 8.45

0
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20
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40

T = 16.85

604020060402006040200

0

10

20

T = 23.71

Figure 8.15 First time T to hit a = 10 for Brownian motion with drift � = 0.5 and variance

�2 = 1.

EXERCISES

8.1 Show that

f (x, t) =
1√
2�t

e−x
2∕(2t),

satisies the partial differential heat equation

�f

�t
=

1

2

�2f

�x2
.

8.2 For standard Brownian motion, ind

(a) P(B2 ≤ 1)

(b) E(B4|B1 = x)

(c) Corr(Bt+s,Bs)

(d) Var(B4|B1)

(e) P(B3 ≤ 5|B1 = 2).

8.3 For standard Brownian motion started at x = −3, ind

(a) P(X1 + X2 > −1)

(b) The conditional density of X2 given X1 = 0.

(c) Cov(X3,X4)

(d) E(X4|X1).



EXERCISES 367

8.4 In a race between Lisa and Cooper, let Xt denote the amount of time (in

seconds) by which Lisa is ahead when 100t percent of the race has been

completed. Assume that (Xt)0≤t≤1 can be modeled by a Brownian motion with

drift parameter 0 and variance parameter �2. If Lisa is leading by �∕2 seconds

after three-fourths of the race is complete, what is the probability that she is the

winner?

8.5 Consider standard Brownian motion. Let 0 < s < t.

(a) Find the joint density of (Bs,Bt).

(b) Show that the conditional distribution of Bs given Bt = y is normal, with

mean and variance

E(Bs|Bt = y) =
sy

t
and Var(Bs|Bt = y) =

s(t − s)

t
.

8.6 For s > 0, show that the translation (Bt+s − Bs)t≥0 is a standard Brownian

motion.

8.7 Show that the relection (−Bt)t≥0 is a standard Brownian motion.

8.8 Find the covariance function for Brownian motion with drift.

8.9 Let Wt = B2t − Bt, for t ≥ 0.

(a) Is (Wt)t≥0 a Gaussian process?

(b) Is (Wt)t≥0 a Brownian motion process?

8.10 Let (Bt)t≥0 be a Brownian motion started in x. Let

Xt = Bt − t(B1 − y), for 0 ≤ t ≤ 1.

The process (Xt)t≥0 is a Brownian bridge with start in x and end in y. Find the

mean and covariance functions.

8.11 A standard Brownian motion crosses the t-axis at times t = 2 and t = 5. Find

the probability that the process exceeds level x = 1 at time t = 4.

8.12 Show that Brownian motion with drift has independent and stationary incre-

ments.

8.13 Let (Xt)t≥0 denote a Brownian motion with drift � and variance �2. For

0 < s < t, ind E(XsXt).

8.14 A Brownian motion with drift parameter � = −1 and variance �2 = 4 starts at

x = 1.5. Find the probability that the process is positive at t = 3.

8.15 See Example 8.11 on using Brownian motion to model the home team advan-

tage in basketball. In Stern (1994), Table 8.3 is given based on the outcomes of

493 basketball games played in 1992.

Here, Xt is the difference between the home team’s score and the visiting

team’s score after t(100) percent of the game is played. The data show the mean
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TABLE 8.3 Results by Quarter of 493 NBA Games

Quarter Variable Mean Standard Deviation

1 X0.25 1.41 7.58

2 X0.50 − X0.25 1.57 7.40

3 X0.75 − X0.50 1.51 7.30

4 X1 − X0.75 0.22 6.99

and standard deviation of these differences at the end of each quarter. Why

might the data support the use of a Brownian motion model? What aspects of

the data give reason to doubt the Brownian motion model?

8.16 Let (Xt)t≥0 and (Yt)t≥0 be independent, standard Brownian motions. Show that

Zt = a(Xt − Yt) deines a standard Brownian motion for some a. Find a.

8.17 For a > 0, show that for standard Brownian motion the irst hitting time Ta has

the same distribution as 1∕X2, where X is a normal random variable with mean

0 and variance 1∕a2.

8.18 Show that the irst hitting time Ta has the same distribution as a2T1.

8.19 Find themean and variance of themaximum value of standard Brownianmotion

on [0, t].

8.20 Use the relection principle to show

P(Mt ≥ a,Bt ≤ a − b) = P(Bt ≥ a + b), for a, b > 0. (8.14)

8.21 From standard Brownian motion, let Xt be the process deined by

Xt =

{
Bt, if t < Ta,
a, if t ≥ Ta,

where Ta is the irst hitting time of a > 0. The process (Xt)t≥0 is called Brownian

motion absorbed at a. The distribution of Xt has discrete and continuous parts.

(a) Show

P(Xt = a) =
2√
2�t ∫

∞

a

e−x
2∕2t dx.

(b) For x < a, show

P(Xt ≤ x) = P(Bt ≤ x) − P(Bt ≤ x − 2a) =
1√
2�t ∫

x

x−2a

e−z
2∕2t dz.

Hint: Use the result of Exercise 8.20.
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8.22 Let Z be the smallest zero of standard Brownian motion past t. Show that

P(Z ≤ z) =
2

�
arccos

√
t

z
, for z > 0.

8.23 Let 0 < r < s < t.

(a) Assume that standard Brownian motion is not zero in (r, s). Find the prob-

ability that standard Brownian motion is not zero in (r, t).

(b) Assume that standard Brownian motion is not zero in (0, s). Find the prob-

ability that standard Brownian motion is not zero in (0, t).

8.24 Derive the mean and variance of geometric Brownian motion.

8.25 The price of a stock is modeled with a geometric Brownian motion with drift

� = −0.25 and volatility � = 0.4. The stock currently sells for $35. What is the

probability that the price will be at least $40 in 1 year?

8.26 For the stock price model in Exercise 8.25, assume that an option is available

to purchase the stock in six months for $40. Find the expected payoff of the

option.

8.27 Assume that Z0,Z1, … is a branching process whose offspring distribution has

mean �. Show that Zn∕�
n is a martingale.

8.28 An urn contains two balls—one red and one blue. At each discrete step, a ball

is chosen at random from the urn. It is returned to the urn along with another

ball of the same color. Let Xn denote the number of red balls in the urn after

n draws. (Thus, X0 = 1.) Let Rn = Xn∕(n + 2) be the proportion of red balls

in the urn after n draws. Show that R0,R1, … is a martingale with respect to

X0,X1, … The process is called Polya’s Urn.

8.29 Show that
(
B3
t − 3tBt

)

t≥0
is a martingale with respect to Brownian motion.

8.30 ABrownian motion with drift � = 2 and variance �2 = 4 is run until level a = 3

is irst hit. The process is repeated 25 times. Find the approximate probability

that the average irst hitting time of 25 runs is between 1 and 2.

8.31 Consider standard Brownian motion started at x = −3.

(a) Find the probability of reaching level 2 before −7.

(b) When, on average, will the process leave the region between the lines y = 2

and y = −7?

8.32 Let (Nt)t≥0 be a Poisson process with parameter �. Let Xt = Nt − �t, for t ≥ 0.

Show that Xt is a martingale with respect to Nt.

8.33 Let X1,X2, … be i.i.d. random variables with mean � < ∞. Let Zn =∑n
i=1(Xi − �), for n = 0, 1, 2, …

(a) Show that Z0,Z1, … is a martingale with respect to X0,X1, …
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(b) Assume thatN is a stopping time that satisies the conditions of the optional

stopping theorem. Show that

E

(
N∑

i=1

Xi

)
= E(N)�.

This result is known as Wald’s equation.

8.34 Let (Nt)t≥0 be a Poisson process with parameter �.

(a) Find the quantity m(t) such that Mt = (Nt − �t)2 − m(t) is a martingale.

(b) For ixed integer k > 0, let T = min{t ∶ Nt = k} be the irst time k arrivals

occur for a Poisson process. Show that T is a stopping time that satisies the

conditions of the optional stopping theorem.

(c) Use the optional stopping theorem to ind the standard deviation of T .

8.35 For a > 0, let T be the irst time that standard Brownian motion exits the interval

(−a, a).

(a) Show that T is a stopping time that satisies the optional stopping theorem.

(b) Find the expected time E(T) to exit (−a, a).

(c) Let Mt = B4
t − 6tB2

t + 3t2. Then, (Mt)t≥0 is a martingale, a fact that you do

not need to prove. Use this to ind the standard deviation of T .

8.36 Let (Xt)t≥0 be a Brownian motion with drift � ≠ 0 and variance �2. The goal of

this exercise is to ind the probability p that Xt hits a before −b, for a, b > 0.

(a) Let Yt = e−tc
2∕2+cBt , where Bt denotes standard Brownian motion. Show

that (Yt)t≥0 is a martingale for constant c ≠ 0.

(b) Let T = min{t ∶ Xt = a or − b}. Then, T is a stopping time that satisies

the optional stopping theorem. Use (a) and appropriate choice of c to show

E

(
e
−

2�XT

�2

)
= 1.

(c) Show that

p =
1 − e2�b∕�

2

e−2�a∕�
2
− e2�b∕�

2
. (8.15)

8.37 Consider a Brownian motion with drift � and variance �2. Assume that � < 0.

The process tends to −∞, with probability 1. Let M be the maximum value

reached.

(a) See Exercise 8.36. By letting b→ ∞ in Equation (8.15), show

P(M > a) = e2�a∕�
2
, for a > 0.

Conclude that M has an exponential distribution.
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(b) A particle moves according to a Brownian motion with drift � = −1.6 and
variance �2 = 0.4. Find the mean and standard deviation of the largest level

reached.

8.38 Let T = min{t ∶ Bt ∉ (−a, a)}. Show that

E
(
e−�T

)
=

2

ea
√
2� + e−a

√
2�

=
1

cosh(a
√
2�)

.

(a) Apply the optional stopping theorem to the exponential martingale in

Exercise 8.36(a) to show that

E
(
e
√
2�BT e−�T

)
= 1.

(b) Show that

P(BT = a,T < x) = P(BT = −a,T < x) =
1

2
P(T < x)

and conclude that BT and T are independent, and thus establish the result.

8.39 R: Simulate a Brownian motion (Xt)t≥0 with drift � = 1.5 and variance �2 = 4.

Simulate the probability P(X3 > 4) and compare with the exact result.

8.40 R: Use the script ile bbridge.R to simulate a Brownian bridge (Xt)t≥0. Estimate

the probability P(X3∕4 ≤ 1∕3). Compare with the exact result.

8.41 R: The price of a stock is modeled as a geometric Brownian motion with drift

� = −0.85 and variance �2 = 2.4. If the current price is $50, ind the probability

that the price is under $40 in 2 years. Simulate the stock price, and compare with

the exact value.

8.42 R: Simulate the mean and standard deviation of the maximum of standard

Brownian motion on [0, 1]. Compare with the exact values.

8.43 R: Write a function for pricing an option using the Black–Scholes formula.

Option price is a function of initial stock price, strike price, expiration date,

interest rate, and volatility.

(a) Price an option for a stock that currently sells for $400 and has volatility

40%. Assume that the option strike price is $420 and the expiration date is

90 days. Assume a risk-free interest rate of 3%.

(b) For each of the ive parameters in (a), how does varying the parameter,

holding the other four ixed, effect the price of the option?

(c) For the option in (a), assume that volatility is not known. However, based

on market experience, the option sells for $30. Estimate the volatility.



9
A GENTLE INTRODUCTION TO
STOCHASTIC CALCULUS*

The study of mathematics, like the Nile, begins in minuteness but ends in magniicence.

–Charles Caleb Colton

9.1 INTRODUCTION

Brownian motion paths are continuous functions. Continuous functions are inte-

grable. Integration of Brownian motion opens the door to powerful calculus-based

modeling tools, such as stochastic differential equations (SDEs). Stochastic calculus

is an advanced topic, which requires measure theory, and often several graduate-level

probability courses. Our goal in this section is to introduce the subject by empha-

sizing intuition, and whet your appetite for what is possible in this fascinating

ield.

We will make sense of integrals such as

∫
t

0

Bs ds and ∫
t

0

Bs dBs.

In the irst integral, Brownian motion is integrated over the interval [0, t]. Think of
the integral as representing the area under the Brownian motion curve on [0, t]. The
fact that the integrand is random means that the integral is random, hence a random

variable. As a function of t, it is a random function, that is, a stochastic process.

Introduction to Stochastic Processes with R, First Edition. Robert P. Dobrow.
© 2016 John Wiley & Sons, Inc. Published 2016 by John Wiley & Sons, Inc.
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If that is not strange enough, in the second integral Brownian motion appears

in both the integrand and the integrator, where dBs replaces the usual ds. Here,

Brownian motion is integrated with respect to Brownian motion. To make sense of

this will require new ideas, and even new rules, of calculus.

To start off, for 0 ≤ a < b, consider the integral

∫
b

a

Bs ds.

For each outcome �, Bs(�) is a continuous function, and thus the integral

∫
b

a

Bs(�) ds

is well deined in the usual sense as the limit of a Riemann sum. For a partition

a = t0 < t1 < · · · < tn−1 < tn = b of [a, b], deine the Riemann sum

I(n)(�) =

n∑
k=1

Bt∗
k
(�)(tk − tk−1),

where t∗
k
∈ [tk−1, tk] is an arbitrary point in the subinterval [tk−1, tk]. The integral

∫ b

a
Bs(�) ds is deined as the limit of the Riemann sum as n tends to ininity and

the length of the longest subinterval of the partition converges to 0.

For each n ≥ 1, the Riemann sum I(n) is a random variable, which is a linear com-

bination of normal random variables. Since Brownian motion is a Gaussian process,

I(n) is normally distributed. As this is true for all n, it is reasonable to expect that

lim
n→∞

I(n) is normally distributed.

Let It = ∫ t

0
Bs ds, for t ≥ 0. It can be shown that (It)t≥0 is a Gaussian process with

continuous sample paths. The mean function is

E(It) = E

(
∫

t

0

Bs ds

)
= ∫

t

0

E(Bs) ds = 0,

where the interchange of expectation and integral can be justiied.

For s ≤ t, the covariance function is

Cov(Is, It) = E(IsIt) = E

(
∫

s

0

Bx dx∫
t

0

By dy

)

= ∫
s

0 ∫
t

0

E(BxBy) dy dx = ∫
s

0 ∫
t

0

min{x, y} dy dx

= ∫
s

0 ∫
x

0

y dy dx + ∫
s

0 ∫
t

x

x dy dx

=
s3

6
+

(
ts2

2
−
s3

3

)
=

3ts2 − s3

6
.
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Letting s = t gives Var(It) = t3∕3.

Thus, the stochastic integral ∫ t

0
Bs ds is a normally distributed random variable

with mean 0 and variance t3∕3. The integral ∫ t

0
Bs ds is called integrated Brownian

motion. See Figure 9.1 for realizations when t = 1.
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0.0
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Figure 9.1 Realizations of the stochastic integral ∫ 1

0
Bs ds. The integral is normally dis-

tributed with mean 0 and variance 1∕3.

We next introduce the Riemann–Stieltjes integral of g with respect to f

∫
t

0

g(x)df (x),

where f and g are continuous, and nonrandom, functions. The integral is deined as

the limit, as n tends to ininity, of the approximating sum

n∑
k=1

g(t∗
k
)
(
f (tk) − f (tk−1)

)
,

where 0 = t0 < t1 < · · · < tn−1 < tn = t is a partition of [0, t], and t∗
k
∈ [tk−1, tk]. The

deinition generalizes the usual Riemann integral by letting f (x) = x. The integral

can be interpreted as a weighted summation, or weighted average, of g, with weights

determined by f .

If f is differentiable, with continuous derivative, then

∫
t

0

g(x)df (x) = ∫
t

0

g(x)f
′
(x) dx,
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which gives the usual Riemann integral. In probability, if X is a continuous random

variable with density function f and cumulative distribution function F, and g is a

function, the expectation E(g(X)) can be written as

E(g(X)) = ∫
∞

−∞

g(x)f (x) dx = ∫
∞

−∞

g(x)F
′
(x) dx = ∫

∞

−∞

g(x)dF(x),

that is, as a Riemann–Stieltjes integral of gwith respect to the cumulative distribution

function F.

Based on the Riemann–Stieltjes integral, we can deine the integral of a function g

with respect to Brownian motion

It = ∫
t

0

g(s) dBs. (9.1)

Technical conditions require that g be a bounded and continuous function, and satisfy

∫ ∞

0
g2(s) ds < ∞. By analogy with the Riemann–Stieltjes integral, for the partition

0 = t0 < t1 < · · · < tn−1 < tn = t,

let

I
(n)
t =

n∑
k=1

g(t∗
k
)
(
Btk − Btk−1

)
,

where t∗
k
∈ [tk−1, tk]. Since Btk − Btk−1 is normally distributed with mean 0 and vari-

ance tk − tk−1, the approximating sum I
(n)
t is normally distributed for all n. It can be

shown that in the limit, as n→ ∞, the approximating sum converges to a normally dis-

tributed random variable, whichwe take to be the stochastic integral of Equation (9.1).

Furthermore,

E(It) = E
(
lim
n→∞

I
(n)
t

)
= lim

n→∞
E

(
n∑
k=1

g(t∗
k
)
(
Btk − Btk−1

))

= lim
n→∞

n∑
k=1

g(t∗
k
)E
(
Btk − Btk−1

)
= 0.

By independent increments,

Var
(
I
(n)
t

)
=

n∑
k=1

g2(t∗
k
)Var

(
Btk − Btk−1

)
=

n∑
k=1

g2(t∗
k
)(tk − tk−1).

The last expression is a Riemann sumwhose limit, as n tends to ininity, is ∫ t

0
g2(s) ds.

In summary,

∫
t

0

g(s) dBs ∼ Normal

(
0,∫

t

0

g2(s) ds

)
. (9.2)
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In fact, it can be shown that (It)t≥0 is a Gaussian process with continuous sample

paths, independent increments, mean function 0, and covariance function

Cov(Is, It) = E

(
∫

s

0

g(x) dBx ∫
t

0

g(y) dBy

)
= ∫

min{s,t}

0

g2(x) dx.

Example 9.1 Evaluate

∫
t

0

dBs.

Solution With g(x) = 1, the integral is normally distributed with mean 0 and variance

∫ t

0
ds = t. That is, the stochastic integral has the same distribution as Bt. Further-

more, the integral deines a continuous Gaussian process with mean 0 and covariance

function

∫
min{s,t}

0

dx = min{s, t}.

That is,
(∫ t

0
dBs

)
t≥0 is a standard Brownian motion, and

∫
t

0

dBs = Bt.

◾

Example 9.2 Evaluate

∫
t

0

es dBs.

Solution The integral is normally distributed with mean 0 and variance

∫
t

0

(es)2 ds = ∫
t

0

e2s ds =
1

2
e2t.

◾

The stochastic integral

∫
b

a

g(s) dBs

has many familiar properties. Linearity holds. For functions g and h, for which the

integral is deined, and constants �, �,

∫
b

a

[�g(s) + �h(s)] dBs = � ∫
b

a

g(s) dBs + � ∫
b

a

h(s) dBs.

For a < c < b,

∫
b

a

g(s) dBs = ∫
c

a

g(s) dBs + ∫
b

c

g(s) dBs.
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The integral also satisies an integration-by-parts formula. If g is differentiable,

∫
t

0

g(s) dBs = g(t)Bt − ∫
t

0

Bsg
′(s) ds.

By letting g(t) = 1, we capture the identity

∫
t

0

dBs = Bt. (9.3)

Example 9.3 Evaluate

∫
t

0

s dBs

in terms of integrated Brownian motion.

Solution Integration by parts gives

∫
t

0

s dBs = tBt − ∫
t

0

Bs ds.

See Figure 9.2 for simulations of the process. ◾
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Figure 9.2 Simulations of
(∫ t

0
s dBs

)
0≤t≤5. The light gray curve is the underlying standard

Brownian motion.
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White Noise

If Brownian motion paths were differentiable, Equation (9.3) could be written as

Bt = ∫
t

0

dBs = ∫
t

0

dBs

ds
ds.

The “process”Wt = dBt∕dt is called white noise. The reason for the quotation marks

is because Wt is not a stochastic process in the usual sense, as Brownian motion

derivatives do not exist. Nevertheless, Brownian motion is sometimes described as

integrated white noise.

Consider the following formal treatment of the distribution of white noise. Letting

Δt represent a small incremental change in t,

Wt ≈
Bt+Δt − Bt

Δt

.

The random variable Wt is approximately normally distributed with mean 0

and variance 1∕Δt. We can think of Wt as the result of letting Δt → 0. White

noise can be thought of as an idealized continuous-time Gaussian process, where

Wt is normally distributed with mean 0 and variance 1∕dt. Furthermore, for

s ≠ t,

E(WsWt) = E

(
dBs

ds

dBt

dt

)
=

1

ds dt
E
(
(Bs+ds − Bs)(Bt+dt − Bt)

)
= 0,

by independent increments. Hence, Ws and Wt are independent, for all s ≠ t.

It is hard to conceive of a real-world, time-indexed process in which all variables,

no matter how close in time, are independent. Yet white noise is an extremely use-

ful concept for real-world modeling, particularly in engineering, biology, physics,

communication, and economics. In a physical context, white noise refers to sound that

contains all frequencies in equal amounts, the analog of white light. See Figure 9.3.

Applied to a time-varying signal g, the stochastic integral ∫ t

0
g(s) dBs can be inter-

preted as the output after the signal is transformed by white noise. For the case

g(s) = s, see again Figure 9.2.

9.2 ITO INTEGRAL

We are now ready to consider a more general stochastic integral of the form

It = ∫
t

0

Xs dBs,
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0.0

0

0.2 0.4 0.6 0.8 1.0

Figure 9.3 Simulation of white noise signal.

where (Xt)t≥0 is a stochastic process, and (Bt)t≥0 is standard Brownian motion. By

analogy with what has come before, it would seem that a reasonable deinition for

the integral would be

∫
t

0

Xs dBs = lim
n→∞

n∑
k=1

Xt∗
k

(
Btk − Btk−1

)
, (9.4)

for ever-iner partitions 0 = t0 < t1 < · · · < tn−1 < tn = t, where t∗
k
∈ [tk−1, tk].

Unfortunately, the deinition does not work. Unlike previous integrals, the choice

of point t∗
k
in the subinterval [tk−1, tk] matters. The integral is not well-deined for

arbitrary t∗
k
∈ [tk−1, tk]. Furthermore, the integral requires a precise deinition of the

meaning of the limit in Equation (9.4), as well as several regularity conditions for

the process (Xt)t≥0.
This brings us to the Ito integral, named after Kiyoshi Ito, a brilliant 20th

century Japanese mathematician whose name is most closely associated with

stochastic calculus. The Ito integral is based on taking each t∗
k
to be the left endpoint1

of the subinterval [tk−1, tk]. That is,

∫
t

0

Xs dBs = lim
n→∞

n∑
k=1

Xtk−1

(
Btk − Btk−1

)
. (9.5)

1A different type of stochastic integral, called the Stratonovich integral, is obtained by choosing

t∗
k
= (tk−1 + tk)∕2 to be the midpoint of the subinterval [tk−1, tk].
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The Ito integral requires

1. ∫ t

0
E
(
X2
s

)
ds < ∞.

2. Xt does not depend on the values {Bs ∶ s > t} and only on {Bs ∶ s ≤ t}. We say

that Xt is adapted to Brownian motion.

3. The limit in Equation (9.5) is deined in the mean-square sense. A sequence

of random variables X0,X1, … is said to converge to X in mean-square if

lim
n→∞

E
(
(Xn − X)2

)
= 0.

The Ito integral has many familiar properties, such as linearity. However, new rules

of stochastic calculus will be needed for computations.

One of the most important properties of the Ito integral is that the process

(
∫

t

0

Xs dBs

)

t≥0
is a martingale with respect to Brownian motion.

The following properties of the Ito integral are summarized without proof.

Properties of the Ito Integral

The Ito integral

It = ∫
t

0

Xs dBs

satisies the following:

1. For processes (Xt)t≥0 and (Yt)t≥0, and constants �, �,

∫
t

0

(
�Xs + �Ys

)
dBs = � ∫

t

0

Xs dBs + � ∫
t

0

Ys dBs.

2. For 0 < r < t,

∫
t

0

Xs dBs = ∫
r

0

Xs dBs + ∫
t

r

Xs dBs.

3.

E(It) = 0.

4.

Var(It) = E

((
∫

t

0

Xs dBs

)2
)

= ∫
t

0

E
(
X2
s

)
ds.

5. (It)t≥0 is a martingale with respect to Brownian motion.
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The Ito integral does not satisfy the usual integration-by-parts formula. Consider

∫
t

0

Bs dBs.

A formal application of integration by parts gives

∫
t

0

Bs dBs = B2
t − B2

0
− ∫

t

0

Bs dBs = B2
t − ∫

t

0

Bs dBs,

which leads to ∫ t

0
Bs dBs = B2

t ∕2. However, this must be wrong as the Ito integral has

mean 0, and thus E
(∫ t

0
Bs dBs

)
= 0. However, E

(
B2
t ∕2

)
= t∕2.

To evaluate ∫ t

0
Bs dBs, consider the approximating sum

n∑
k=1

Btk−1

(
Btk − Btk−1

)

=

n∑
k=1

(
1

2

(
Btk + Btk−1

)
−

1

2

(
Btk − Btk−1

))(
Btk − Btk−1

)

=
1

2

n∑
k=1

(
B2
tk
− B2

tk−1

)
−

1

2

n∑
k=1

(
Btk − Btk−1

)2

=
1

2
B2
t −

1

2

n∑
k=1

(
Btk − Btk−1

)2

.

It can be shown that
∑n

k=1

(
Btk − Btk−1

)2

converges to the constant t in mean-square,

that is,

lim
n→∞

E

⎛
⎜⎜⎝

(
n∑
k=1

(Btk − Btk−1 )
2 − t

)2⎞
⎟⎟⎠
= 0.

This gives

∫
t

0

Bs dBs =
1

2

(
B2
t − t

)
,

which is a martingale. Recall that B2
t − t is the quadratic martingale, shown

in Example 8.19. Multiplying a martingale by a constant, does not change the

martingale property.

ITO’S LEMMA

If one disqualiies the Pythagorean Theorem from contention, it is hard to think of a

mathematical result which is better known and more widely applied in the world today
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than “Ito’s Lemma.” This result holds the same position in stochastic analysis that New-

ton’s fundamental theorem holds in classical analysis. That is, it is the sine qua non of

the subject.

–National Academy of Sciences

The most important result in stochastic calculus is Ito’s Lemma, which is the

stochastic version of the chain rule. It has been called the fundamental theorem of

stochastic calculus.

Ito’s Lemma

Let g be a real-valued function that is twice continuously differentiable. Then,

g(Bt) − g(B0) = ∫
t

0

g
′
(Bs) dBs +

1

2 ∫
t

0

g
′′
(Bs) ds.

This is often written in shorthand differential form

dg(Bt) = g′(Bt)dBt +
1

2
g
′′
(Bt)dt.

Example 9.4 Let g(x) = x2. By Ito’s Lemma,

B2
t = ∫

t

0

2Bs dBs +
1

2 ∫
t

0

2 ds = 2∫
t

0

Bs dBs + t.

That is,

∫
t

0

Bs dBs =
1

2
B2
t −

t

2
.

◾

Example 9.5 Evaluate d(sinBt).

Solution Let g(x) = sin x. By Ito’s Lemma,

d(sinBt) = cosBt dBt −
1

2
sinBt dt.

In integral form,

sinBt = ∫
t

0

cosBs dBs −
1

2 ∫
t

0

sinBs ds.

◾

Example 9.6 Evaluate

∫
t

0

B2
s dBs and ∫

t

0

(B2
s − s) dBs.
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Solution

(i) Use Ito’s Lemma with g(x) = x3. This gives

B3
t = ∫

t

0

3B2
s dBs +

1

2 ∫
t

0

6Bs ds.

Rearranging gives

∫
t

0

B2
s dBs =

1

3
B3
t − ∫

t

0

Bs ds.

(ii) By linearity of the Ito integral,

∫
t

0

(
B2
s − s

)
dBs = ∫

t

0

B2
s dBs − ∫

t

0

s dBs

=
1

3
B3
t − ∫

t

0

Bs ds −

(
tBt − ∫

t

0

Bs ds

)

=
1

3
B3
t − tBt.

The second equality is by integration by parts, which is valid for stochastic integrals

with deterministic integrands.

Since Ito integrals are martingales, the process
(
1

3
B3
t − tBt

)
t≥0 is a martingale.

◾

Here is a heuristic derivation of Ito’s Lemma. For a function g, consider its Taylor

series expansion

g(t + dt) = g(t) + g
′
(t)dt +

1

2
g
′′
(t)(dt)2 + · · · .

Higher-order terms, starting with (dt)2, are negligible. Hence,

dg(t) = g(t + dt) − g(t) = g
′
(t)dt.

For a given function h,

g(h(t) + dh(t)) = g(h(t)) + g
′
(h(t))dh(t) +

1

2
g
′′
(h(t))(dh(t))2 + · · · .

Under suitable regularity conditions, the higher-order terms drop out, giving the usual

chain rule dg(h) = g
′
(h)dh.

Replacing h(t) with Bt, the Taylor series expansion is

g(Bt + dBt) = g(Bt) + g
′
(Bt)dBt +

1

2
g
′′
(Bt)(dBt)

2 +
1

6
g
′′′
(Bt)(dBt)

3 + · · · .

However, what is different for Brownian motion is that the term (dBt)
2 is not

negligible and cannot be eliminated. Intuitively, dBt = Bt+dt − Bt is a stochastic
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element with the same distribution as Bdt, which is normally distributed with mean

0 and variance dt. Thus, Bdt takes values on the order of the standard deviation√
dt. This gives (dBt)

2 ≈
(√

dt
)2

= dt. Thus, the (dBt)
2 = dt term is retained in the

expansion.

Higher-order terms beyond the quadratic term are dropped from the expansion, as

(dBt)
k ≈

(√
dt
)k

= (dt)k∕2, which is negligible for k > 2. This leaves

dg(Bt) = g(Bt + dBt) − g(Bt) = g
′
(Bt)dBt +

1

2
g
′′
(Bt)dt,

the differential form of Ito’s Lemma.

Here are the heuristic stochastic calculus rules for working with stochastic differ-

entials:

(dt)2 = 0, (dt)(dBt) = 0, (dBt)
2 = dt.

An extended version of Ito’s Lemma allows g to be a function of both t and Bt.

The extended result can be motivated by considering a second-order Taylor series

expansion of g.

Extension of Ito’s Lemma

Let g(t, x) be a real-valued function whose second-order partial derivatives are

continuous. Then,

g(t,Bt) − g(0,B0) = ∫
t

0

(
�

�t
g(s,Bs) +

1

2

�2

�x2
g(s,Bs)

)
ds

+∫
t

0

�

�x
g(s,Bs) dBs.

In shorthand differential form,

dg =

(
�g

�t
+

1

2

�2g

�x2

)
dt +

�g

�x
dBt.

We regret possible notational confusion in the statement of the lemma. It is com-

mon to use the letter t as the time variable, and thus t appears both as the upper limit

of integration and as the dummy variable for the function g and its derivative. We

trust the reader will safely navigate their way.

Example 9.7 Evaluate d
(
tB2

t

)
.

Solution Let g(t, x) = tx2. Partial derivatives are

�g

�t
= x2,

�g

�x
= 2tx, and

�2g

�x2
= 2t.
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By Ito’s Lemma,

d
(
tB2

t

)
=
(
B2
t + t

)
dt + 2tBt dBt.

Observe that the usual product rule would give the incorrect answer

d
(
tB2

t

)
= B2

t dt + 2tBt dBt. ◾

Example 9.8 Use Ito’s Lemma to evaluate d
(
B3
t

)
and E

(
B3
t

)
.

Solution Let g(t, x) = x3. By Ito’s Lemma,

d
(
B3
t

)
= 3Bt dt + 3B2

t dBt,

and

B3
t = 3∫

t

0

Bs ds + 3∫
t

0

B2
s dBs.

Taking expectations gives

E
(
B3
t

)
= 3∫

t

0

E(Bs) ds + 3E

(
∫

t

0

B2
s dBs

)
= 3(0) + 0 = 0.

◾

9.3 STOCHASTIC DIFFERENTIAL EQUATIONS

To motivate the discussion, consider an exponential growth process, be it the spread

of a disease, the population of a city, or the number of cells in an organism. Let Xt
denotes the size of the population at time t. The deterministic exponential growth

model is described by an ordinary differential equation

dXt

dt
= �Xt, and X0 = x0,

where x0 is the initial size of the population, and � is the growth rate. The equation

says that the population growth rate is proportional to the size of the population, where

the constant of proportionality is �. A solution of the differential equation is a function

Xt, which satisies the equation. In this case, the solution is uniquely speciied

Xt = x0e
�t, for t ≥ 0.

The most common way to incorporate uncertainty into the model is to add a ran-

dom error term, such as a multiple of white noise Wt, to the growth rate. This gives

the stochastic differential equation

dXt

dt
= (� + �Wt)Xt = �Xt + �Xt

dBt

dt
,
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or

dXt = �Xt dt + �Xt dBt, (9.6)

where � and � are parameters, and X0 = x0. Equation (9.6) is really a shorthand for

the integral form

Xt − X0 = � ∫
t

0

Xs ds + � ∫
t

0

Xs dBs. (9.7)

A solution to the SDE is a stochastic process (Xt)t≥0, which satisies Equation (9.7).

For the stochastic exponential model, we show that geometric Brownian motion

deined by

Xt = x0e

(
�−

�2

2

)
t+�Bt

, for t ≥ 0, (9.8)

is a solution. Let

g(t, x) = x0e

(
�−

�2

2

)
t+�x

with partial derivatives

�g

�x
= �g,

�2g

�x2
= �2g, and

�g

�t
=

(
� −

�2

2

)
g.

By the extended version of Ito’s Lemma,

g(t,Bt) − g(0,B0) = x0e

(
�−

�2

2

)
t+�Bt

− x0

=

(
� −

�2

2
+

�2

2

)
∫

t

0

x0e

(
�−

�2

2

)
s+�Bs

ds

+ � ∫
t

0

x0e

(
�−

�2

2

)
s+�Bs

dBs,

which reduces to the solution

Xt − X0 = � ∫
t

0

Xs ds + � ∫
t

0

Xs dBs.

Geometric Brownian motion can be thought of as the stochastic analog of the

exponential growth function.

Differential equations are the meat and potatoes of applied mathematics.

Stochastic differential equations are used in biology, climate science, engineering,

economics, physics, ecology, chemistry, and public health.

Example 9.9 (Logistic equation) Unfettered exponential growth is typically

unrealistic for biological populations. The logistic model describes the growth of
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a self-limiting population. The standard deterministic model is described by the

ordinary differential equation

dPt

dt
= rPt

(
1 −

Pt

K

)
,

where Pt denotes the population size at time t, r is the growth rate, and K is the

carrying capacity, the maximum population size that the environment can sustain.

If Pt ≈ 0, then dPt∕dt ≈ rPt, and the model exhibits near-exponential growth.

On the contrary, if the population size is near carrying capacity and Pt ≈ K, then

Pt∕dt ≈ 0, and the population exhibits little growth.

The solution of the deterministic equation—obtained by separation of variables

and partial fractions—is

Pt =
KP0

P0 + (K − P0)e
−rt

, for t ≥ 0. (9.9)

Observe that Pt → K, as t → ∞; that is, the population size tends to the carrying

capacity.

A stochastic logistic equation is described by the SDE

dPt = rPt

(
1 −

Pt

K

)
dt + �Pt dBt,

where � > 0 is a parameter. Let (Xt)t≥0 be the geometric Brownian motion process

deined by

Xt = e

(
r−

�2

2

)
t+�Bt

.

It can be shown that the solution to the logistic SDE is

Pt =
P0KXt

K + P0r ∫ t

0
Xs ds

.

When � = 0, Xt = ert and the solution reduces to Equation (9.9). See Figure 9.4 for

sample paths of the stochastic logistic process. ◾

Example 9.10 Stochastic models are used in climatology to model long-term cli-

mate variability. These complex models are typically multidimensional and involve

systems of SDEs. They are relevant for our understanding of global warming and

climate change.

A simpliied system that models the interaction between the atmosphere and the

ocean’s surface is described in Vallis (2010). Let TAt and TSt denote the atmosphere

and sea surface temperatures, respectively, at time t. The system is
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Figure 9.4 Sample paths for the logistic SDE, with P0 = 2, r = 0.06, and K = 300. Smooth

curve is the deterministic logistic function.

cS
dTS

dt
= aTA − bTS,

cA
dTA

dt
= cTS − dTA + �Bt,

where cA and cS describe the heat capacity of the atmosphere and sea, respectively,

and a, b, c, d, and � are parameters. The model is based on Newton’s law of cool-

ing, by which the rate of heat loss of an object is proportional to the difference in

temperature between the object and its surroundings. The Brownian motion term �Bt
accounts for random luctuations that affect the atmosphere.

Assuming the heat capacity of the ocean surface is much greater than that of

the atmosphere, the model inds that rapid changes of atmospheric temperatures can

affect long-term luctuations in the ocean temperature, over possibly decades or cen-

turies. The inding has signiicance in understanding how temperature changes at time

scales greater than a year can occur in the earth’s climate. ◾

Ito’s Lemma is an important tool for working with stochastic differential

equations. The Lemma can be extended further to include a wide class of stochastic

processes, which are solutions to SDEs of the form

dXt = a(t,Xt)dt + b(t,Xt)dBt, (9.10)
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where a and b are functions of t and Xt.

The integral form is

Xt − X0 = ∫
t

0

a(s,Xs) ds + ∫
t

0

b(s,Xs) dBs.

Such processes are called diffusions or Ito processes. A diffusion is a Markov

process with continuous sample paths. The functions a and b are called, respectively,

the drift coeficient and diffusion coeficient.

Standard Brownianmotion is a diffusion with a(t, x) = 0 and b(t, x) = 1. The intro-

ductory example of this section shows that geometric Brownian motion is a diffusion

with a(t, x) = �x and b(t, x) = �x, for parameters �, �.

Ito’s Lemma for Diffusions

Let g(t, x) be a real-valued function whose second-order partial derivatives are

continuous. Let (Xt)t≥0 be an Ito process as deined by Equation (9.10). Then

g(t,Xt) − g(0,X0) = ∫
t

0

(
�g

�t
+

�g

�x
�(s,Xs) +

1

2

�2g

�x2
�2(s,Xs)

)
ds

+∫
t

0

(
�g

�x
�(s,Xs)

)
dBs.

In shorthand differential form,

dg =

(
�g

�t
+

�g

�x
�(t,Xt) +

1

2

�2g

�x2
�2(t,Xt)

)
dt +

�g

�x
�(t,Xt)dBt.

We showed in the introductory example that geometric Brownian motion is a solu-

tion to the SDE of Equation (9.6). However, we did not solve the equation directly.

Rather, we offered a candidate process and then veriied that it was in fact a solution.

In general, solving an SDE may be dificult. A closed-form solution might not

exist, and numerical methods are often needed. However, for the stochastic exponen-

tial growth model, the SDE can be solved exactly with the help of Ito’s Lemma for

diffusions.

From Equation (9.6), divide through by Xt to obtain

dXt

Xt
= � dt + � dBt.

The left-hand side suggests the function dx∕x, whose integral is ln x. This suggests

applying Ito’s Lemma with g(t, x) = ln x. Derivatives are

�g

�t
= 0,

�g

�x
=

1

x
, and

�2g

�x2
= −

1

x2
.
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This gives

d ln Xt =

(
1

Xt
�Xt −

1

2X2
t

�2X2
t

)
dt +

1

Xt
�Xt dBt =

(
� −

�2

2

)
dt + � dBt.

Integrating gives

ln Xt − ln x0 =

(
� −

�2

2

)
t + �Bt,

with solution

Xt = x0e

(
�−

�2

2

)
t+�Bt

.

Example 9.11 (Ornstein–Uhlenbeck process) Mathematical Brownian motion

is not necessarily the best model for physical Brownian motion. If Bt denotes the

position of a particle, such as a pollen grain, at time t, then the particle’s position is

changing over time and it must have velocity. The velocity of the grain would be the

derivative of the process, which does not exist for mathematical Brownian motion.

The Ornstein–Uhlenbeck process, called the Langevin equation in physics, arose

as an attempt to model this velocity. In inance, it is known as the Vasicek model and

has been used to model interest rates. The process is called mean-reverting as there

is a tendency, over time, to reach an equilibrium position.

The SDE for the Ornstein–Uhlenbeck process is

dXt = −r(Xt − �)dt + �Bt,

where r, �, and � > 0 are parameters. The process is a diffusion with

a(t, x) = −r(x − �) and b(t, x) = �.

If � = 0, the equation reduces to an ordinary differential equation, which can be

solved by separation of variables. From

dXt

Xt − �
= −r dt,

integrating gives

ln(Xt − �) = −rt + C,

where C = ln(X0 − �). This gives the deterministic solution

Xt = � + (X0 − �)e−rt.

Observe that Xt → �, as t → ∞.

The SDE can be solved using Ito’s Lemma by letting g(t, x) = ertx, with partial

derivatives
�g

�t
= rertx,

�g

�x
= ert, and

�2g

�x2
= 0.
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By Ito’s Lemma,

d
(
ertXt

)
=
(
rertXt − ertr(Xt − �)

)
dt + ert�dBt

= r�ertdt + ert� dBt.

This gives

ertXt − X0 = r� ∫
t

0

ers ds + � ∫
t

0

ers dBs = �(ert − 1) + � ∫
t

0

ers dBs,

with solution

Xt = � + (X0 − �)e−rt + � ∫
t

0

e−r(t−s) dBs.

See Figure 9.5 for realizations of the Ornstein–Uhlenbeck process.
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Figure 9.5 Realizations of the Ornstein–Uhlenbeck process with X0 = 2 and � = −1.

(a) r = 0.5, � = 0.1. (b) r = 0.3, � = 0.2.

If X0 is constant, then by Equation (9.2), Xt is normally distributed with

E(Xt) = � + (X0 − �)e−rt

and
Var(Xt) = �2 ∫

t

0

e−2r(t−s) ds =
�2

2r

(
1 − e−2rt

)
.

The limiting distribution, as t → ∞, is normal with mean � and variance �2∕2r. ◾

Numerical Approximation and the Euler–Maruyama Method

The differential form of a stochastic differential equation lends itself to an intuitive

method for simulation. Given the SDE

dXt = a(t,Xt)dt + b(t,Xt)dBt,
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the Euler–Maruyama method generates a discrete sequence X0,X1, … ,Xn, which
approximates the process Xt on an interval [0,T]. The method extends the popular

Euler method for numerically solving deterministic differential equations.

Partition the interval [0,T] into n equally spaced points

0 = t0 < t1 < · · · < tn−1 < tn = T ,

where ti = iT∕n, for i = 0, 1, … , n. The differential dti is approximated by

ti − ti−1 = T∕n. The stochastic differential dBti is approximated by Bti − Bti−1 , which

is normally distributed with mean 0 and variance ti − ti−1 = T∕n. Thus, dBti can be

approximated by
√
T∕nZ, where Z is a standard normal random variable. Let

Xi+1 = Xi + a(ti,Xi)T∕n + b(ti,Xi)
√
T∕nZi, for i = 0, 1, … , n − 1,

where Z0,Z1, … ,Zn−1 are independent standard normal random variables. The

sequence X0,X1, … ,Xn is deined recursively and gives a discretized approximate

sample path for (Xt)0≤t≤T .

Example 9.12 (Ornstein–Uhlenbeck process) To simulate the solution of the

Ornstein–Uhlenbeck SDE

dXt = −r(Xt − �)dt + � dBt, for 0 ≤ t ≤ T ,

let

Xi+1 = Xi − r(Xi − �)T∕n + �
√
T∕nZi, for i = 0, 1, … , n − 1.

With n = 1000, we generate the process with X0 = 2, � = −1, r = 0.5, and

� = 0.1. Realizations are shown in Figure 9.5(a). ◾

R : Ornstein–Uhlenbeck Simulation

# ornstein.R
> mu <- -1
> r <- 0.5
> sigma <- 0.1
> T <- 10
> n <- 1000
> xpath <- numeric(n+1)
> xpath[1] <- 2 # initial value
> for (i in 1:n) {

+ xpath[i+1] <- xpath[i]-r*(xpath[i]-mu)*T/n
+ + sigma*sqrt(T/n)*rnorm(1) }

> plot(seq(0,T,T/n),xpath,type="l")
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To simulate the random variable XT , for ixed T , it is not necessary to store past

outcomes Xt, for t < T . To generate one outcome of XT the code simpliies.

> x <- 2 # initial value
> for (i in 1:n) {

+ x <- x - r*(x-mu)*T/n + sigma*sqrt(T/n)*rnorm(1) }

> x
[1] -0.9404498

Here, we simulate the mean of X10 based on 10,000 trials.

> trials <- 10000
> simlist <- numeric(trials)
> for (k in 1: trials) {

> x <- 2
> for (i in 1:n) {

+ x <- x - r*(x-mu)*T/n + sigma*sqrt(T/n)*rnorm(1) }

> simlist[k] <- x }

> mean(simlist)
[1] -0.9978892

From Example 9.11, the exact mean is

E(X10) = � + (X0 − �)e−r(10) = −1 + 3e−5 = −0.9798.

Example 9.13 (Random genetic drift) The SDE

dXt =
√
Xt(1 − Xt) dBt, for 0 ≤ t ≤ 1

arises as a model for random genetic drift. It is a continuous version of the

discrete-time Wright–Fisher Markov chain introduced in Example 2.6. The latter is a

model for the evolution of a population of N genes consisting of two alleles A and a.

In the discrete-time process, the number of A alleles is obtained by drawing from

replacement from the gene population. Given i A alleles at time n, the number of A

alleles at time n + 1 has a binomial distribution with parameters 2N and p = i∕2N.

The Markov chain is absorbing with absorbing states 0 and 2N.

The discrete-time process extends to a continuous-time diffusion (Xt)t≥0 by a suit-
able scaling of time and space, where Xt denotes the proportion of A alleles in the

gene population at time t. The diffusion process is absorbing with absorbing states

0 and 1.

Solving the SDE exactly is beyond the scope of this book. However, numerical

methods are used (i) to approximate the sample paths of the process on the time
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interval [0, 1.5] and (ii) to simulate the probability density function of Xt, for

t = 0.1, 0.2, 0.4, 1. See Figures 9.6 and 9.7.2
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Figure 9.6 Sample paths for the solution of the random genetic drift SDE.

R: Euler–Maruyama Method for Simulating SDE

The following code generates the histograms in Figure 9.7.

# drift.R
> par(mfrow=c(2,2))
> times <- c( 0.1, 0.2,0.35,1)
> n = 100 # number of subintervals
> trials <- 10000
> for (k in 1:4) {

> t = times[k]
> simlist <- numeric(trials)

2In the Euler–Maruyama R code, to insure that the argument to the square foot function is non-negative,

the absolute value of x(1 − x) is taken. This gives an equivalent model to the original SDE.
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> for (j in 1:trials) {

> x <- 1/2 # initial state
> for (i in 2:n) {

x <- x + sqrt(abs(x*(1-x)))*sqrt(t/n)*rnorm(1) }

> simlist[j] <- x }

> hist(simlist,freq=F,main="", col="gray") }

◾
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Figure 9.7 Simulating the distribution of Xt in the random genetic drift model, for

t = 0.1, 0.2, 0.35, 1.0 (top-left to bottom-right).

Example 9.14 (Stochastic resonance) Stochastic resonance is a remarkable phe-

nomenon whereby a signal, which is too weak to be detected, can be boosted by

adding noise to the system. The idea is counter-intuitive, since we typically expect

that noise (e.g., random error) makes signal detection more dificult. Yet the theory

has found numerous applications over the past 25 years in biology, physics, and engi-

neering, and has been demonstrated experimentally in the operation of ring lasers and

in the neurons of crayish.

The phenomenon was irst introduced by Roberto Benzi in 1980 in the context of

climate research, where it was proposed as a mechanism to explain how dramatic
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climactic events such as the almost periodic occurrence of the ice ages might be

caused byminute changes in the earth’s orbit around the sun. The theory has prompted

discussions of whether rapid climate change is a hallmark of human impact (e.g.,

noise in the system).

As explained in Benzi (2010), stochastic resonance can be observed by considering

the SDE

dXt = (Xt − X3
t + A sin t)dt + � dBt.

Think of the sinusoidal term, called a periodic forcing, as representing a weak, exter-

nal signal, with amplitude A. We are interested in studying the effect of the noise

parameter � on detection of the forcing signal.

The process is simulated using the Euler–Maruyama method.

R : Stochastic Resonance

# stochresonance.R
> T <- 100
> n <- 10000
> A <- 0.3
> sigma <- 0.2
> w <- 2*pi/40
> xpath <- numeric(n+1)
> xpath[1]<- 0
> for (i in 2:(n+1)) {

+ x[i]<-x[i-1]+(x[i-1]-x[i-1] ̂ 3+A*sin(w*T*(i-1)/n))
+ *T/n+ sigma*sqrt(T/n)*rnorm(1)
> plot(seq(0,T,T/n),x,type="l",ylim=c(-2.8,2.8),
+ xaxt="n",xlab="",ylab="",yaxt="n",lwd=0.5)
> axis(2,c(-1,0,1))
> axis(1,c(0,25,50,75,100))
> curve(A*sin(w*x),0,100,lty=2,add=TRUE)

The process (Xt)t≥0 has two stable points, at ±1. For small � (little noise), paths

tend to stay near one of these values, although jumps may occur from one stable point

to another. Three sample paths are shown in Figure 9.8 for � = 0.2. The periodic

forcing function (dashed curve) is not detectable. For this example, the amplitude of

the sine function is A = 0.3, which is signiicantly smaller than the distance between

the two stable points.

The effect of a relatively large random error term, with � = 2.0, is apparent in

Figure 9.9. The noise swamps any underlying structure. Again, the periodic forcing

function is not detectable.



EXERCISES 397

For Figure 9.10, an optimal value of � is chosen at � = 0.8. The hidden periodic

forcing is now apparent. The added noise is suficient for paths of the process to inter-

sect with the range of the sine wave, which facilitates switching states. The system

exhibits stochastic resonance.
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◾

EXERCISES

9.1 Find the distribution of the stochastic integral It = ∫ t

0
sBs ds.

9.2 Show that Brownian motion with drift coeficient � and variance parameter �2

is a diffusion.

9.3 Find E
(
B4
t

)
by using Ito’s Lemma to evaluate d

(
B4
t

)
.
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9.4 Use Ito’s Lemma to show that

E
(
Bkt
)
=
k(k − 1)

2 ∫
t

0

E
(
Bk−2s

)
ds, for k ≥ 2.

Use this result to ind E
(
Bkt
)
, for k = 1, … , 8.

9.5 Use the methods of Example 9.6 to derive a martingale that is a fourth-degree

polynomial function of Brownian motion.

9.6 Consider the stochastic differential equation

dXt = (1 − 2Xt)dt + 3 dBt.

(a) Use Ito’s Lemma to ind d(ertXt).

(b) For suitable choice of r, simplify the drift coeficient in the resulting SDE.

Solve the SDE and ind the mean of Xt, and the asymptotic mean of the

process.

9.7 Consider the SDE for the square root process

dXt = dt + 2
√
Xt dBt.

With X0 = x0, show that Xt = (Bt + x0)
2 is a solution.

9.8 R : Show how to use the Euler–Maruyama method to simulate geometric

Brownian motion started at G0 = 8, with � = 1 and �2 = 0.25.

(a) Generate a plot of a sample path on [0, 2].

(b) Simulate the mean and variance of G2. Compare with the theoretical mean

and variance.

9.9 R Use the Euler–Maruyama method to simulate the square root process of

Exercise 9.7 with x0 = 1.

(a) Estimate E(X3), Var(X3), and P(X3 < 5).

(b) Using the fact that Xt = (Bt + x0)
2 is a solution to the SDE, compare your

simulations in (a) with the exact results.

9.10 R: The random drift model of Example 9.13 is an absorbing process with two

absorbing states. Use the Euler-Marayuma method to estimate the expectation

and standard deviation of the time until absorption.

9.11 R : The Cox–Ingersoll–Ross (CIR) model

dXt = −r(Xt − �)dt + �
√
XtdBt

has been used to describe the evolution of interest rates. The diffusion

has the same drift coeficient as the Ornstein–Uhlenbeck process and is also

mean-reverting. TheCIRmodel has the advantage over theOrnstein–Uhlenbeck
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process as a model for interest rates since, unlike the latter, the process is

non-negative. However, unlike that process, the CIR model has no closed-form

solution.

With X0 = 0, � = 1.25, r = 2, and � = 0.2, simulate the CIR process. Esti-

mate the asymptotic mean and variance by taking t = 100. Demonstrate that the

process is mean-reverting.



APPENDIX A

GETTING STARTEDWITH R

There are many excellent R primers and tutorials on the web. To learn more about

R, the best starting place is the homepage of the R Project for Statistical Comput-

ing at http://www.r-project.org/. Go there to download the software. The
site contains links to books, manuals, demonstrations, and other resources. For this

introduction, we assume that you have R up and running on your computer.

1. R as a calculator

When you bring up R the irst window you see is the R console. You can type

directly on the console, using R like a calculator.

> 1+1
[1] 2
> 2-2
[1] 0
> 3*3
[1] 9
> 4/4
[1] 1
> 5 ̂ 5
[1] 3125

Introduction to Stochastic Processes with R, First Edition. Robert P. Dobrow.
© 2016 John Wiley & Sons, Inc. Published 2016 by John Wiley & Sons, Inc.

http://www.r-project.org/
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R has many built-in math functions. Their names are usually intuitive. R is case

sensitive. All commands are in lowercase letters. The # symbol is for com-

ments. Anything appearing after # is ignored by R.

> pi
[1] 3.141593
> cos(pi)
[1] -1
> exp(1) # e1

[1] 2.718282
> abs(-6) # |-6|
[1] 6
> factorial(4)
[1] 24
> sqrt(9)
[1] 3

Exercises:

1.1. How many orderings are there of a standard 52-card deck?

1.2. An isosceles right triangle has two legs of length 5. Find the length of the

hypotenuse.

1.3. Find the tangent of a 60-degree angle.

1.4. The hyperbolic sine is the function

h(x) =
ex − e−x

2
.

Evaluate the hyperbolic sine at x = 1. The R command for hyperbolic sine

is sinh(x). Verify that sinh(1) gives the same results.

2. Navigating the keyboard

Each command you type in R is stored in history. The up arrow (↑) key scrolls

back along this history; the down arrow (↓) scrolls forward. These keystrokes

are enormously helpful for navigating your R session.

Suppose you want to calculate log 8 and you type

> Log(8)
Error: could not find function “Log”

You got an error because R commands start with lower case letters. Rather than

retype the command, hit the up arrow key and ix the previously entered entry.

> log(8)
[1] 2.079442
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You can use the <ESC> (escape) key to interrupt a running calculation or out-

put. If R is expecting more input it will preface a line at the console with the

+ symbol. You can use escape to start anew. In the following, we forget the

end parentheses. Repeatedly hitting the return key generated the + symbol as

R is expecting the right parentheses to inish the command. By inally typing

<ESC>, the command is voided.

> exp(1
+
+
+
>

3. Asking for help

Prefacing any R command with ? will produce a help ile in another window.

> ?log

Reading the help ile for the log function you learn that the function has

the form log(x, base = exp(1)). The base argument defaults to

exp(1) = e. That is, log(x) returns the natural logarithm of x. For logarithms

in other bases give a second argument to log.

> log(8,2)
[1] 3
> log(100,10)
[1] 2

Exercises:

3.1. Read the help ile for the factorial command to ind the R command

for computing the binomial coeficient
(
n

k

)
, also called “n choose k.” Now

compute the number of 5-card Poker hands in a standard 52-card deck(
52

5

)
.

3.2. Use the up arrow key, and replace the 5 in the previous exercise with 13

to ind the number of 13-card bridge hands in a standard 52-card deck.

4. Vectors

The real power of R lies in its ability to work with lists of numbers, called

vectors. If a and b are integers, the command a:b creates a vector of integers

from a to b.

> 1:10
[1] 1 2 3 4 5 6 7 8 9 10
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> -3:5
[1] -3 -2 -1 0 1 2 3 4 5

For more control generating vectors, use the sequence command seq.

> seq(1,10)
[1] 1 2 3 4 5 6 7 8 9 10
> seq(1,20,2)
[1] 1 3 5 7 9 11 13 15 17 19
> seq(20,1,-4)
[1] 20 16 12 8 4

Create and manipulate vectors using the c concatenate command.

> c(2,3,5,7,11)
[1] 2 3 5 7 11

Assign a vector to a variable with the assignment operator <-. Here, the irst
ive prime numbers are assigned to a variable called primes. The primes
vector is then lengthened by concatenating three more primes to the original

vector.

> primes <- c(2,3,5,7,11)
> primes
[1] 2 3 5 7 11
> primes <- c(primes,13,17,19)
> primes
[1] 2 3 5 7 11 13 17 19

Elements of vectors are indexed with brackets [ ]. Bracket arguments can be

single integers or vectors.

> primes[4]
[1] 7
> primes[1:4]
[1] 2 3 5 7
> primes[c(1,4,5,10)]
[1] 2 7 11 NA

For the last command we asked for the irst, fourth, ifth, and tenth element of

primes. There is no tenth element so R returns an NA.

One often wants to ind the elements of a vector that satisfy some property, such

as those primes that are less than 10. This is done with the which command,

which returns the indices of the vector that satisfy the given property.
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> primes
[1] 2 3 5 7 11 13 17 19
> which(primes < 10)
[1] 1 2 3 4
> index <- which(primes < 10)
> primes[index]
[1] 2 3 5 7

Vectors can consist of numbers, characters, and even strings of characters.

> y <- c(“Probability”, “is”, “very”, “very”,
“cool”)

> y
[1] “Probability” “is” “very” “very” “cool”
> y[c(1,2,5)]
[1] “Probability” “is” “cool”

When performing mathematical operations on vectors, the entire vector is

treated as a single object.

> dog <- seq(0,30,4)
> dog
[1] 0 4 8 12 16 20 24 28
> dog+1
[1] 1 5 9 13 17 21 25 29
> dog*3
[1] 0 12 24 36 48 60 72 84
> 1/dog
[1] Inf 0.25000 0.12500 0.08333 0.06250 0.05000
[7] 0.041667 0.035714
> cat <- dog+1
> cat
[1] 1 5 9 13 17 21 25 29
> dog*cat
[1] 0 20 72 156 272 420 600 812

Notice that when a single number is added to a vector, that number gets added

to each element of the vector. But when two vectors of the same length are

added together, then corresponding elements are added. This applies to most

binary operations.

Many mathematical functions can take vector arguments, returning vectors as

output.

> factorial(1:7)
[1] 1 2 6 24 120 720 5040
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> sqrt(seq(0,900,100)) #
√
0,

√
100,

√
200, …,

√
900

[1] 0.000 10.000 14.142 17.321 20.000 22.361
[7] 24.495 26.458 28.284 30.000

Here are some common, and intuitive, commands for working with vectors.

> x <- c(67.6, 68.7, 66.3, 66.2, 65.5, 70.2, 71.1)
> sum(x)
[1] 475.6
> mean(x)
[1] 67.943
> length(x)
[1] 7
> sort(x)
[1] 65.5 66.2 66.3 67.6 68.7 70.2 71.1
> sort(x,decreasing=T)
[1] 71.1 70.2 68.7 67.6 66.3 66.2 65.5

Exercises: Use vector operations:

4.1. Compute the squares of the irst ten integers.

4.2. Compute the powers of 2 from 21 to 220.

4.3. For n = 6, use the choose command to compute the binomial coefi-

cients
(
n

k

)
, for k = 0, … , n.

4.4. Let x be an n-element vector deined by xk = 2�k∕n, for k = 1, … , n.

Find (cos x1, … , cos xn) for n = 5. Repeat for n = 13, using the up arrow

key rather than retyping the full command.

4.5. Compute the sum of the cubes of the irst 100 integers.

4.6. Among the cubes of the irst 100 integers, how many are greater than

10,000? Use which and length.

5. Generating random numbers

The sample command generates a random sample of a given size from the

elements of a vector. The syntax is sample(vec, size, replace=,
prob=). Samples can be taken with or without replacement (the default is

without). A probability distribution on the elements of vec can be speciied.

The default is that all elements of vec are equally likely.

> sample(1:10,1)
[1] 8
> sample(1:4,4)
[1] 3 1 4 2
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> sample(c(-8,0,1,4,60),6,replace=T)
[1] 60 -8 1 1 4 60

To simulate ten rolls of a six-sided die, type

> sample(1:6,10,replace=T)
[1] 6 3 6 1 3 6 5 3 2 1

According to the Red Cross, the distribution of blood types in the United States

is O: 44%, A: 42%, B: 10%, and AB: 4%. The following simulates a random

sample of 10 people’s blood types.

> sample(c(“O”,“A”,“B”,“AB”),8,replace=T,
prob=c(0.44,0.42,0.10,0.04))

[1] “A” “O” “O” “O” “A” “A” “A” “AB”

In a random sample of 50,000 people, how many have blood type B? Use the

which command and the logical connective ==.

> samp <- sample(c(“O”,“A”,“B”,“AB”),50000,
replace=T,prob=c(0.44,0.42,0.10,0.04))

> index <- which(samp=="B")
> length(index)
[1] 5042

Other logical connectives are given in Table A.1.

TABLE A.1 Logical Connectives

== equal to & and

! = not equal to | or

> greater than ! not

>= greater than or equal to

< less than

<= less than or equal to

In the sample of 50,000 people, how many are either type B or type AB?

> length(which(samp=="AB" | samp=="B"))
[1] 7085

What proportion of people in the sample are not type O?

> length(which(samp != “O”))/50000
[1] 0.56388
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Exercises:

5.1. Consider a probability distribution on {0, 2, 5, 9} with respective proba-

bilities 0.1, 0.2, 0.3, 0.4. Generate a random sample of size ive.

5.2. For the above-mentioned distribution, generate a random sample of size

onemillion and determine the proportion of sample values which are equal

to 9.

5.3. Represent the cards of a standard 52-card deck with the numbers 1 to 52.

Show how to generate a random ive-card Poker hand from a standard

52-card deck. Let the numbers 1, 2, 3, and 4 represent the four aces in the

deck. Write a command that will count the number of aces in a random

Poker hand. Use which and length.

5.4. Generate 100,000 integers uniformly distributed between 1 and 20 and

count the proportion of samples between 3 and 7.

6. Probability distributions

There are four commands for working with probability distributions in R . The

commands take the root name of the probability distribution (see Table A.2) and

preix the root with d, p, q, or r. These give, respectively, continuous density
or discrete probability mass function (d), cumulative distribution function (p),
quantile (q), and random variable (r).

TABLE A.2 Probability Distributions in R

Distribution Root Distribution Root

beta beta log-normal lnorm

binomial binom multinomial multinom

Cauchy cauchy negative binomial nbinom

chi-squared chisq normal norm

exponential exp Poisson pois

F f Student’s t t

gamma gamma uniform unif

geometric geom Weibull weibull

hypergeometric hyper

Generate six random numbers uniformly distributed on (0, 1).

> runif(6,0,1)
[1] 0.06300 0.44851 0.70231 0.20649 0.14377 0.74398

Generate 9 normally distributed variables with mean � = 69 and standard devi-

ation � = 2.5.
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> rnorm(9,69,2.5)
[1] 69.548 69.931 68.923 71.153 71.779 68.975
[7] 67.429 65.621 70.148

FindP(X ≤ 2.5), whereX has an exponential distributionwith parameter � = 1.

> pexp(2.5,1)
[1] 0.91792

Suppose SAT scores are normally distributed with mean � = 500 and standard

deviation � = 100. Find the 95th quantile of the distribution of SAT scores.

> qnorm(0.95,500,100)
[1] 664.49

Find P(X = 10), where X has a binomial distribution with parameters n = 20

and p = 0.5.

> dbinom(10,20,0.5)
[1] 0.1762

7. Plots and graphs

To graph functions and plot data, use plot. This workhorse command has

enormous versatility. Here is a simple plot comparing two vectors.

> radius <- 1:20
> area <- pi*radius ̂ 2
> plot(radius,area, main=“Area as
function of radius”)

To graph smooth functions, you can also use the curve command. See

Figures A.1 and A.2 . The syntax is curve(expr,from=,to=), where
expr is an expression that is a function of x.

> curve(pi*x ̂ 2,1,20,xlab="radius",ylab="area",
+ main=“Area as function of radius”)

For displaying data, a histogram is often used, obtained with the command

hist(vec). The default is a frequency histogram of counts. A density his-

togram has bars whose areas sum to one and is obtained using the hist com-

mand with parameter freq=F. A continuous density curve can be overlaid on

the histogram by including the parameter add=T.

For example, male adult heights in the United States are normally distributed

with mean 69 inches and standard deviation 2 inches. Here, we simulate 1,000
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observations from such a distribution and plot the resulting data. The histogram

is irst graphed with counts, then with relative frequencies, and then overlaid

with a normal density curve. See Figure A.3.

> heights <- rnorm(1000,69,2.0)
> hist(heights,main=“Distribution of heights”)
> hist(heights,main=“Distribution of heights”,
freq=F)

> hist(heights,main=“Distribution of heights”,
freq=F)

> curve(dnorm(x,69,2),60,80,add=T)
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8. Script iles

When you have many R commands to manage, it is useful to keep your work

in a script ile. A script is a plain text ile that contains R commands. The ile

can be saved and edited and you can execute the entire ile or portions of it as

you please. Many of the R examples in this book are contained in script iles

that you can download, execute, and modify.

Script iles can be written in your favorite text editor. They can also be managed

directly in your R environment.

In the Mac environment, click on File: New Document to bring up a new win-

dow for typing your R commands. To execute a portion of your code, highlight

the text that you want to execute, and then hit Command-Return. The high-

lighted code will appear in the R console and be executed.

In the PC environment, click on File: New Script to bring up a new window

for a script ile. To execute a portion of your code, highlight the text. Under the

task bar, press the Run line or selection button (third from the left) to execute

your code.

Open the R script ile scriptsample.R. The ile contains two blocks of code.

The irst block contains commands for plotting the area of a circle as a function

of radius for radii from 1 to 20. Highlight the three lines of R code in the irst

part of the ile. Execute the code and you should see a plot similar to that in

Figure A.1.

# scriptsample.R
### Area of circle
radius <- 1:20
area <- pi*radius ̂ 2
plot(radius,area, main=“Area as function of radius”)
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### Coin flips
n <- 1000 # Number of coin flips
coinflips <- sample(0:1,n,replace=TRUE)
heads <- cumsum(coinflips)
prop <- heads/(1:n)
plot(1:n,prop,type="l",xlab=“Number of coins”,

ylab=“Running average”,
main=“Running proportion of heads in 1000
coin flips”)

abline(h=0.5)

The second block of code simulates lipping 1,000 coins, with 1 representing

heads and 0 representing tails. The running proportion of heads is plotted from

1 to 1,000. The vector coinflips contains the outcome of 1,000 lips. The

cumsum command generates a cumulative sum and stores the resulting vector

in heads. The kth element of heads gives the number of heads in the irst

k coin lips. The proportion of heads is then computed and stored in prop.
Finally, the running proportions are plotted as in Figure A.4. We see that the

proportion of heads appears to converge to 1/2, an illustration of the law of

large numbers.
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Exercises:

8.1. Modify the scriptsample.R ile to compute the volume of a sphere. Plot

the volume as a function of radius for radii from 1 to 100.

8.2. Modify the scriptsample.R ile so that the coin lips are biased and the

probability of heads is 0.51. What happens to the resulting plot?
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8.3. Given a list of numbers x1, … , xn, the sample standard deviation is

s =

√√√√ 1

n − 1

n∑
i=1

(xi − x)2,

where x =
1

n

∑n
i=1 xi is the average of the xi, obtained in R with the mean

command.Write a command to compute the sample standard deviation for

the integers from 1 to n. Use a script ile. Compute the standard deviation

for n = 2, 10, 10000. TheR command for the standard deviation issd(x),
where x is a vector. Compare the results of your command with that of the

R command.

9. Functions

You can create your own functions in R . The syntax is

> name <- function(arg1, arg2, . . . ) expression

A function can have one, several, or no arguments. Here is a function to

compute the area of a circle of given radius.

> area <- function(radius) pi*radius ̂ 2

The name of the function is area. It is a function of one variable.

> area(1)
[1] 3.141593
> area(7.5)
[1] 176.7146

The function cone computes the volume of a cone of height h and circular

base of radius r.

> cone <- function(r,h) (1/3)*pi*r ̂ 2*h
> cone(1,1)
[1] 1.047198
> cone(3,10)
[1] 94.24778

If the function deinition contains more than one line of code, enclose the

code in curly braces {}. The function allsums takes a vector vec as its

input and outputs the sum, sum of squares, and sum of cubes of the elements

of vec.
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> allsums <- function(vec) {
s1 <- sum(vec)
s2 <- sum(vec ̂ 2)
s3 <- sum(vec ̂ 3)
c(s1,s2,s3) }
> allsums(1:5)
[1] 15 55 225
> allsums(-5:5)
[1] 0 110 0

Exercises:

9.1. Write a function that takes as input the lengths of two sides of a right

triangle and returns the length of the hypotenuse.

9.2. A tetrahedron die is a four-sided die with labels {1, 2, 3, 4}. Write a func-

tion with argument n that rolls n tetrahedron dice and computes their

average value. Implement your function for n = 1, 1000, and 1,000,000.

10. Other useful commands

> table(c(0,1,1,1,1,1,2,2,6,6,6,6,6,6,6))
# create a frequency table

0 1 2 6
1 5 2 7

> min(0:20) # minimum element
[1] 0

> max(0:20) # maximum element
[1] 20

> round(pi,3) # rounds to a given number of
decimal places

[1] 3.142

The replicate command is powerful and versatile. The syntax is

replicate(n,expr). The expression expr is repeated n times and

output as a vector.

> replicate(6,2)
[1] 2 2 2 2 2 2

Choose 1,000 numbers uniformly distributed between 0 and 1 and ind their

mean. Then repeat the experiment ive times.

> replicate(5,mean(runif(1000,0,1)))
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[1] 0.51168 0.50591 0.48371 0.49162 0.50879

A Poisson distribution with parameter � has mean � = � and standard devia-

tion � =
√
�. To illustrate the central limit theorem we generate 80 obser-

vations X1, … ,X80 from a Poisson distribution with parameter � = 4 and

compute the normalized sum

(X1 + · · · + Xn)∕n − �

�∕
√
n

=
(X1 + · · · + X80)∕80 − 4

2∕
√
80

.

The simulation is repeated 100,000 times and the resulting data are graphed

as a histogram together with a standard normal density curve. See Figure A.5.
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Figure A.5

> normsum <- function() (mean(rpois(80,4))-4)/
(2/sqrt(80))

> normsum()
[1] -0.50312
> normsum()
[1] 1.062132
> data <- replicate(100000,normsum())
> hist(data,freq=F)
> curve(dnorm(x),-4,4,add=T)
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11. Working with matrices

The matrix command is used to create matrices from vectors. Specify the

number of rows or columns. The default is to ill the matrix by columns. To

ill the entries of a matrix from left to right, top to bottom, add the parameter

byrow=T.

> matrix(1:9,nrow=3)
[,1] [,2] [,3]

[1,] 1 4 7
[2,] 2 5 8
[3,] 3 6 9
> matrix(1:9,nrow=3,byrow=T)

[,1] [,2] [,3]
[1,] 1 2 3
[2,] 4 5 6
[3,] 7 8 9

If x is a scalar, then x + A results in adding x to each component of A. If A and

B are matrices, then A + B adds entries componentwise. The same is true for

all binary operators.

> A <- matrix(c(1,3,0,-4),ncol=2,byrow=T)
> B <- matrix(1:4,ncol=2,byrow=T)
> A

[,1] [,2]
[1,] 1 3
[2,] 0 -4
> B

[,1] [,2]
[1,] 1 2
[2,] 3 4
> 2+A

[,1] [,2]
[1,] 3 5
[2,] 2 -2
> 3*B

[,1] [,2]
[1,] 3 6
[2,] 9 12
> A+B

[,1] [,2]
[1,] 2 5
[2,] 3 0
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> A-B
[,1] [,2]

[1,] 0 1
[2,] -3 -8
> 2 ̂ B

[,1] [,2]
[1,] 2 4
[2,] 8 16
> A/B

[,1] [,2]
[1,] 1 1.5
[2,] 0 -1.0

For matrix multiplication, or matrix–vector multiplication use the matrix

multiplication operator %*%.

> A %*% A
[,1] [,2]

[1,] 1 -9
[2,] 0 16
> x <- c(2,1)
> A %*% x

[,1]
[1,] 5
[2,] -4
> y <- matrix(c(1,3),nrow=2)
y %*% x

[,1] [,2]
[1,] 2 1
[2,] 6 3

Surprisingly, R does not have a primitive or built-in command for taking

matrix powers. Here is a function that will take integer powers of a matrix.

matrixpower <- function(mat,k) {
out <- mat
for (i in 2:k) {
out <- out %*% mat
}

out
}

> mat <-matrix(c(0.1,0.9,0.6,0.4),nrow=2,byrow=T)
> mat
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[,1] [,2]
[1,] 0.1 0.9
[2,] 0.6 0.4
> matrixpower(mat,2)

[,1] [,2]
[1,] 0.55 0.45
[2,] 0.30 0.70

> matrixpower(mat,10)
[,1] [,2]

[1,] 0.4005859 0.5994141
[2,] 0.3996094 0.6003906
> matrixpower(mat,50)

[,1] [,2]
[1,] 0.4 0.6
[2,] 0.4 0.6

For AT , the transpose of A, type t(A).

> A <- matrix(c(3,1,-2,0,0,4),nrow=2,byrow=T)
> A

[,1] [,2] [,3]
[1,] 3 1 -2
[2,] 0 0 4
> t(A)

[,1] [,2]
[1,] 3 0
[2,] 1 0
[3,] -2 4
> A %*% t(A)

[,1] [,2]
[1,] 14 -8
[2,] -8 16

To solve the linear system Ax = b, type solve(A,b). If A is invertible,

typing solve(A) without the second argument returns the inverse A−1.

> A <- matrix(c(2,0,1,1,-1,4,3,1,0),nrow=3,byrow=T)
> A

[,1] [,2] [,3]
[1,] 2 0 1
[2,] 1 -1 4
[3,] 3 1 0
> b <- c(0,1,1)
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> solve(A,b)
[1] -0.5 2.5 1.0
> A %*% c(-.5,2.5,1)

[,1]
[1,] 0
[2,] 1
[3,] 1

> solve(A)
[,1] [,2] [,3]

[1,] 1 -0.25 -0.25
[2,] -3 0.75 1.75
[3,] -1 0.50 0.50
> A %*% solve(A)

[,1] [,2] [,3]
[1,] 1 0 0
[2,] 0 1 0
[3,] 0 0 1

For integer n, diag(n) gives the n × n identity matrix. If x is a vector,

diag(x) returns a diagonal matrix whose diagonal elements are x. If A is a

matrix, diag(A) gives the diagonal elements of A.

> diag(3)
[,1] [,2] [,3]

[1,] 1 0 0
[2,] 0 1 0
[3,] 0 0 1
> A <- diag(c(1,4,0,2))
> A

[,1] [,2] [,3] [,4]
[1,] 1 0 0 0
[2,] 0 4 0 0
[3,] 0 0 0 0
[4,] 0 0 0 2
> diag(A)
[1] 1 4 0 2

For an n × n matrix A, the command eigen(A) returns the eigenvalues and

eigenvectors of A in a two-component list. The irst component of the list

eigen(A)$values is a vector containing the n eigenvalues. The second

component eigen(A)$vectors is an n × n matrix whose columns con-

tain the corresponding eigenvectors. To illustrate, we diagonalize the matrix

A =

⎡
⎢⎢⎣

1 1 1

1 1 1

1 1 1

⎤
⎥⎥⎦
. That is, we ind an invertible matrix S, and a diagonal matrix D
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such that A = SDS−1. The diagonal elements of D are the eigenvalues of A.

The columns of S are the corresponding eigenvectors.

> A <- matrix(replicate(9,1),nrow=3)
> A

[,1] [,2] [,3]
[1,] 1 1 1
[2,] 1 1 1
[3,] 1 1 1
> eigen(A)$values
[1] 3 0 0
> eigen(A)$vectors

[,1] [,2] [,3]
[1,] 0.57735027 0.70710678 0.40824829
[2,] 0.57735027 -0.70710678 0.40824829
[3,] 0.57735027 0.00000000 -0.81649658
> D <- diag(eigen(A)$values)
> D

[,1] [,2] [,3]
[1,] 3 0 0
[2,] 0 0 0
[3,] 0 0 0
> S <- eigen(A)$vectors
> S

[,1] [,2] [,3]
[1,] 0.57735027 0.70710678 0.40824829
[2,] 0.57735027 -0.70710678 0.40824829
[3,] 0.57735027 0.00000000 -0.81649658
> S %*% D %*% solve(S) # SDS-1 = A

[,1] [,2] [,3]
[1,] 1 1 1
[2,] 1 1 1
[3,] 1 1 1

Exercises:

11.1. Let A =

⎛
⎜⎜⎝

1 3 −1

2 1 0

4 −2 3

⎞
⎟⎟⎠
. Find the following:

(i) A3

(ii) AT

(iii) A−1

(iv) p(A), where p(x) = x5 − 3x2 + 7.
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11.2. Construct a random 4 × 4 matrix each of whose elements is uniformly

distributed on (0, 1). Find the eigenvalues.

11.3. Solve the linear system

2x + 3y − z = 1,

x + y + z = 2,

x + 2y − 3z = 3.

TABLE A.3 Summary of R Commands for Matrix Algebra

Command Description

matrix(vec) Creates a matrix from a vector

A+B Matrix addition

s*A Scalar multiplication

A*B Elementwise multiplication

A %*% B Matrix multiplication

x %*% y If x and y are vectors, returns dot product

solve(A) Inverse A−1

solve(A,b) Solves the linear system Ax = b.

t(A) Transpose AT

det(A) Determinant of A

diag(s) If s is a scalar, creates the s × s identity matrix

diag(x) If x is a vector, creates diagonal matrix whose

diagonal elements are x

diag(A) If A is a matrix, returns the diagonal elements

eigen(A) Eigenvalues and eigenvectors of A

eigen(A)$values is vector of eigenvalues

eigen(A)$vectors is matrix of eigenvectors



APPENDIX B

PROBABILITY REVIEW

This review of the basics of probability theory focuses on random variables and their

distributions. Few results are proven and we refer the reader to a standard under-

graduate probability textbook for more complete results. Conditional probability and

conditional distribution are discussed in Chapter 1.

Probability begins with a random experiment, which is loosely deined as an exper-

iment for which the outcome is uncertain. Given such an experiment, the sample

spaceΩ is the set of all possible outcomes. Individual outcomes, that is, the elements

of the sample space, are denoted by �. An event A is a subset of the sample space.

Say that A occurs if the outcome of the experiment is contained in A.

A probability P is a function that assigns to each event a number between 0 and 1

in such a way that the following conditions are satisied:

1. 0 ≤ P(A) ≤ 1, for all A ⊆ Ω.

2. P(Ω) = 1.

3. Given a sequence of disjoint events A1,A2, … ,

P

(
∞⋃
i=1

Ai

)
=

∞∑
i=1

P(Ai).

We interpret P(A) to mean the probability that A occurs.

A random variable is a real-valued function deined on a sample space. That is, the

outcomes of a random variable are determined by a random experiment. For instance,

Introduction to Stochastic Processes with R, First Edition. Robert P. Dobrow.
© 2016 John Wiley & Sons, Inc. Published 2016 by John Wiley & Sons, Inc.
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assume that three coins are lipped. Let X be the number of heads. Then, X is a random

variable that takes values 0, 1, 2, or 3, depending on the outcome of the coin lips.

Write P(X = x) for the probability that X takes the value x, and P(X ≤ x) for the

probability that X takes a value less than or equal to x. More generally, for R ⊆ ℝ,

write P(X ∈ R) for the probability that X takes a value that is contained in R. The

notation {X ∈ R} is shorthand for {� ∶ X(�) ∈ R}, which is the set of all outcomes

� with the property that X(�) is contained in R.

The distribution of a random variable X describes the set of values of X and their

corresponding probabilities.

The function F(x) = P(X ≤ x) is the cumulative distribution function (cdf) of X.

The cdf takes values between 0 and 1 and is deined for all real numbers. The cdf

gives complete probabilistic information about a random variable in the sense that

knowing the cdf is equivalent to knowing the distribution of the random variable.

Example B.1 For the random experiment of lipping a fair coin three times, let X

denote the number of heads that occur. Letting H denote heads, T denote tails, and

keeping track of the order of coin lips, the sample space is

Ω = {HHH,HHT ,HTH,HTT ,THH,THT ,TTH,TTT}.

If all outcomes are equally likely, then each of the eight outcomes occurs with prob-

ability 1∕8. This gives

P(X = x) =

⎧
⎪⎨⎪⎩

P({TTT}) = 1∕8, if x = 0,

P({HTT ,THT ,TTH}) = 3∕8, if x = 1,

P({HHT ,HTH,THH}) = 3∕8, if x = 2,

P({HHH}) = 1∕8, if x = 3,

and cdf

F(x) = P(X ≤ x) =

⎧
⎪⎪⎨⎪⎪⎩

0, if x < 0,

1∕8, if 0 ≤ x < 1,

4∕8, if 1 ≤ x < 2,

7∕8, if 2 ≤ x < 3,

1, if x ≥ 3.
◾

B.1 DISCRETE RANDOM VARIABLES

A random variable that takes values in a inite or countably ininite set is called a

discrete random variable. As a function of x, the function P(X = x) is the probability

mass function (pmf) of X. The pmf describes the distribution of a discrete random

variable. For R ⊆ ℝ,

P(X ∈ R) =
∑
x∈R

P(X = x).
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The expectation, or mean, of a discrete random variable X is deined as

E(X) =
∑
x

xP(X = x).

The expectation is a weighted average of the values of X, with weights given by the

pmf. Intuitively, the expectation of X is the long-run average value of X over repeated

trials.

If g is a function and X is a random variable, then Y = g(X) is a function of a

random variable, which itself is a random variable that takes the value g(x)whenever

X takes the value x. A useful formula for computing the expectation of a function of

a random variable is

E(Y) = E(g(X)) =
∑
x

g(x)P(X = x). (B.1)

The expectation is also computed asE(Y) =
∑

yyP(Y = y), which requires knowledge

of the distribution of Y .

Example B.2 The radius R of a circle is a random variable that takes values 1, 2,

4, and 8 with respective probabilities 0.1, 0.2, 0.3, and 0.4. Find the expected area of

the circle.

Solution Let Y be the area of the circle. The expected area is

E(Y) = E
(
�R2

)

=

4∑
r=1

�r2P(R = r)

= � (1(0.1) + 4(0.2) + 16(0.3) + 64(0.4))

= 31.3�. ◾

The expectation of a linear function of a random variable is a linear function of

the expectation. From Equation (B.1), for constants a and b,

E(aX + b) =
∑
x

(ax + b)P(X = x)

= a
∑
x

xP(X = x) + b
∑
x

P(X = x)

= aE(X) + b,

The variance of a random variable is a measure of variability or discrepancy from

the mean. It is deined as
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Var(X) = E
(
(X − E(X))2

)
=
∑
x

(x − E(X))2P(X = x).

A computationally useful formula is Var(X) = E
(
X2

)
− (E(X))2. For constants a

and b,

Var(aX + b) = E
(
((aX + b) − (aE(X) + b))2

)

= E
(
a2(X − E(X))2

)

= a2Var(X).

The standard deviation of a random variable is deined as SD(X) =
√
Var(X).

B.2 JOINT DISTRIBUTION

The joint probability mass function of X and Y is P(X = x,Y = y), which is a function

of x and y. The joint cumulative distribution function is

F(x, y) = P(X ≤ x,Y ≤ y) =
∑
i≤x

∑
j≤y

P(X = i,Y = j).

From the joint pmf of X and Y one can obtain the individual, or marginal, distri-

butions of each random variable. For instance,

P(X = x) = P(X = x,−∞ < Y < ∞) =
∑
y

P(X = x,Y = y).

Similarly, P(Y = y) =
∑

xP(X = x,Y = y).

The covariance is a measure of linear association between two random variables.

It is deined as

Cov (X,Y) = E ((X − E(X))(Y − E(Y))) = E(XY) − E(X)E(Y).

The correlation between X and Y is

Corr(X,Y) =
Cov (X,Y)

SD(X) SD(Y)
.

The correlation satisies −1 ≤ Corr(X,Y) ≤ 1 and is equal to ±1 if one random

variable is a linear function of the other.

If g(x, y) is a function of two variables, and X and Y are random variables, then

g(X,Y) is a random variable whose expectation is

E(g(X,Y)) =
∑
x

∑
y

g(x, y)P(X = x,Y = y).
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In the case when g(x, y) = x + y,

E(X + Y) =
∑
x

∑
y

(x + y)P(X = x,Y = y)

=
∑
x

x
∑
y

P(X = x,Y = y) +
∑
y

y
∑
x

P(X = x,Y = y)

=
∑
x

xP(X = x) +
∑
y

yP(Y = y)

= E(X) + E(Y),

which gives the important linearity property of expectation. For random variables

X1, … ,Xn,
E(X1 + · · · + Xn) = E(X1) + · · · + E(Xn).

Example B.3 The solution of the classic matching problem is an elegant applica-

tion of the linearity of expectation.

At the baseball stadium a group of n people wearing baseball hats all throw their

hats into the air when their favorite player hits a home run. If the hats are mixed up

at random when they fall to the ground, and each person picks up one hat, how many

people, on average, will get their own hat back?

Solution Let I1, … , In be a sequence of random variables where

Ik =

{
1, if the kth person gets their hat back,
0, otherwise,

for k = 1, … , n. Then, X = I1 + · · · + In is the number of people who get their hat

back. For each k,

E(Ik) = (1)P(kth person gets their hat)

+ (0)P(kth person does not get their hat)

= P(kth person gets their hat)

=
1

n
,

since there are n hats to choose from and exactly one belongs to the kth person. By

linearity of expectation,

E(X) = E(I1 + · · · + In) = E(I1) + · · · + E(In) =

n∑
k=1

1

n
= 1.

On average, one person gets their hat back. Remarkably, the solution does not depend

on n. ◾
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For the variance of a sum of random variables,

Var (X + Y) = Var (X) + Var (Y) + 2 Cov (X,Y).

More generally,

Var

(
n∑
i=1

Xi

)
=

n∑
i=1

Var (Xi) + 2
∑
i<j

Cov (Xi,Xj).

Events A and B are independent if P(A ∩ B) = P(A)P(B). Intuitively, events are

independent if knowledge of whether or not one occurs has no inluence on the prob-

ability of whether or not the other occurs.

We say that discrete random variables X and Y are independent if

P(X = x,Y = y) = P(X = x)P(Y = y) for all x, y.

Equivalently,

P(X ∈ R,Y ∈ S) = P(X ∈ R)P(Y ∈ S) for all R, S ⊆ ℝ.

If X and Y are independent random variables, then

E(XY) =
∑
x

∑
y

xyP(X = x,Y = y)

=
∑
x

∑
y

xyP(X = x)P(Y = y)

=
∑
x

xP(X = x)
∑
y

yP(Y = y) = E(X)E(Y),

and thus Cov (X,Y) = 0. Hence, for independent random variables, Var (X + Y) =

Var (X) + Var (Y).

Sequences of independent and identically distributed (i.i.d.) random variables are

common models. For instance, an ininite sequence of fair coin lips can be modeled

as an independent sequence X1,X2, … , where for each k, Xk = 1, if the kth lip is

heads, and 0, if the kth lip is tails. The random variable Sn = X1 + · · · + Xn is the

number of heads in the irst n coin lips.

In statistics, one often models a simple random sample as an i.i.d. sequence of

random variables from a common population.

B.3 CONTINUOUS RANDOM VARIABLES

A continuous random variable takes values in an uncountable set, most commonly

ℝ, (0,∞) or (a, b), with a < b. For continuous random variables P(X = x) = 0 for all

x, and probabilities are computed by integrating the probability density function. The

density function plays a role analogous to the pmf for discrete variables for computing

probabilities.
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A function f is a probability density function of X if

1. f (x) ≥ 0, for all x

2. ∫ ∞

−∞
f (x) dx = 1,

3. For all R ⊆ ℝ, P(X ∈ R) = ∫
R
f (x) dx.

The cumulative distribution function of X is

F(x) = P(X ≤ x) = ∫
x

−∞

f (t) dt.

Differentiating with respect to x gives

d

dx
F(x) = f (x).

That is, the density is the derivative of the cdf.

Example B.4 Let X be a continuous random variable with density function

f (x) = cx2, for 0 < x < 3.

(i) Find the constant c. (ii) Find P(1 < X < 2). (iii) Find the density function of

Y = X2.

Solution

(i) To ind c, solve

1 = ∫
∞

−∞

f (x) dx = ∫
3

0

cx2 dx = 9c,

which gives c = 1∕9.

(ii) The desired probability is

P(1 < X < 2) = ∫
2

1

f (x) dx = ∫
2

1

x2

9
dx =

7

27
.

(iii) To ind the density of Y irst ind the cdf of Y and then differentiate. Since

X takes values between 0 and 3, Y = X2 takes values between 0 and 9. For

0 < y < 9,

P(Y ≤ y) = P
(
X2 ≤ y

)
= P

(
X ≤

√
y
)
.

Taking the derivative with respect to y and applying the chain rule gives

fY (y) =
d

dy
P
(
X ≤

√
y
)
=

1

2
√
y
fX
(√

y
)
=

1

2
√
y

y

9
=

√
y

18
,

for 0 < y < 9. ◾
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Formulas for expectation and variance are analogous to the discrete formulas with

density function replacing pmf and integrals replacing sums. Thus, for a continuous

random variable X with density function f ,

E(X) = ∫
∞

−∞

xf (x) dx and Var (X) = ∫
∞

−∞

(x − E(X))2f (x) dx.

If g is a function, then E(g(X)) = ∫ ∞

−∞
g(x)f (x) dx.

For continuous random variables, the joint density of X and Y is the function f (x, y)
that satisies

P((X,Y) ∈ R) = ∫ ∫
R

f (x, y) dx dy, for all R ⊆ ℝ
2.

The joint cdf of X and Y is the function

F(x, y) = P(X ≤ x,Y ≤ y) = ∫
x

−∞ ∫
y

−∞

f (s, t) dt ds.

If X and Y are independent, then P(X ≤ x,Y ≤ y) = P(X ≤ x)P(Y ≤ y) for all x

and y. Equivalently, the joint density function factors into the product of the marginal

densities. That is,

f (x, y) = fX(x) fY (y), for all x, y.

B.4 COMMON PROBABILITY DISTRIBUTIONS

Uniform (Discrete) Distribution

The simplest model for a random variable X taking values in a inite set is that all

outcomes are equally likely. We say that X has a uniform distribution. Historically,

probability began by considering equally likely outcomes, mostly in games of chance.

For a inite set R, let |R| denote the number of elements of R. If X is uniformly

distributed on S = {s1, … , sk}, then

P(X = si) =
1

k
, for i = 1, … , k

and

P(X ∈ R) =
|R|
|S| =

|R|
k
, for R ⊆ S.

In the discrete uniform case, probability reduces to counting. The probability that X

is contained in R is the number of elements of R divided by the number of elements

of the sample space.
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Mean and variance are

E(X) =
s1 + · · · + sk

k
and Var (X) =

(
s2
1
+ · · · + s2

k

k

)
−

(
s1 + · · · + sk

k

)2

.

For the case S = {1, … , k}, this gives

E(X) =
k + 1

2
and Var (X) =

k2 − 1

12
.

Bernoulli Distribution

A Bernoulli random variables takes values 1 and 0, with probabilities p and 1 − p,

respectively. It is common to refer to the dichotomous values of a Bernoulli variable

as success and failure.

If X has a Bernoulli distribution with parameter 0 < p < 1, then

E(X) = p and Var (X) = p(1 − p).

Binomial Distribution

Assume that X1, … ,Xn is an i.i.d. sequence of Bernoulli random variables with com-

mon parameter p, where each Xi represents success or failure on the ith trial. Let

X = X1 + · · · + Xn. Then, X counts the number of successes in n trials, and has a

binomial distribution with parameters n and p.

The pmf of the binomial distribution is derived by a counting argument using the

fact that the event {X = k} can be expressed as the set of all 0-1 sequences of length

n with exactly k 1s. The number of such sequences is counted by the binomial coef-

icient
(
n

k

)
. It follows that

P(X = k) =
(
n

k

)
pk(1 − p)n−k, for k = 0, 1, … , n,

with

E(X) = np and Var (X) = np (1 − p).

Example B.5 Whether or not tomato seeds germinate in Angel’s garden ismodeled

as independent Bernoulli random variables with germination (success) probability

p = 0.8. If 100 seeds are planted, ind the probability that at least 75 germinate.

Solution Let X be the number of seeds that germinate. Then, X has a binomial

distribution with parameters n = 100 and p = 0.8. The desired probability is

P(X ≥ 75) =

100∑
k=75

(
100

k

)
(0.8)k(0.2)100−k = 0.9125.
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Since P(X ≥ 75) = 1 − P(X < 75) = 1 − P(X ≤ 74), the probability is obtained in R
by typing

> 1-pbinom(74,100,0.8)
[1] 0.9125246 ◾

Geometric Distribution

Given a sequence X1,X2, … of i.i.d. Bernoulli variables with parameter p, with Xi
representing success or failure on the ith trial, let N be the index of the irst trial in

which success occurs. That is {N = k} if and only if Xi = 0 for all i < k and Xk = 1.

Then, N has a geometric distribution with parameter p and

P(N = k) = (1 − p)k−1p, for k = 1, 2, … ,

with

E(N) =
1

p
and Var (N) =

1 − p

p2
.

Example B.6 In Texas hold ’em poker, players are initially dealt two cards. If the

deck is reshufled after each play, ind the expected number of deals until a player

gets at least one ace.

Solution The outcome of each deal is modeled as a Bernoulli variable with parameter

p = P(Player gets at least one ace)

= 1 − P(Player gets no aces)

= 1 −
(
48

52

)(
47

51

)
=

33

221
= 0.1493.

The number of deals required for a player to get at least one ace has a geometric distri-

bution with parameter p. The expected number of required deals is 1∕p = 221∕33 =

6.697. ◾

Poisson Distribution

The Poisson distribution arises as a model for counts of independent events that occur

in some ixed region of time or space. Examples include the number of trafic acci-

dents along a stretch of highway, the number of births on a hospital ward, and the

number of wrong numbers to your cell phone. The distribution is sometimes called

the law of rare events and arises when the chance that some event occurs in a small

interval of time or space is small.
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The distribution depends on a parameter � > 0, which can be interpreted as the

rate of occurrence in a unit interval. A random variable X has a Poisson distribution

with parameter �, if

P(X = k) =
e−��k

k!
, for k = 0, 1, …

The distribution has the property that mean and variance are both equal to �. For the

mean,

E(X) =

∞∑
k=0

kP(X = k) =

∞∑
k=0

k
e−��k

k!
=

∞∑
k=1

e−��k

(k − 1) !

= e−��

∞∑
k=1

�k−1

(k − 1) !
= e−��

∞∑
k=0

�k

k!
= e−��e� = �.

Example B.7 During the peak month of May, tornados hit Oklahoma at the rate of

about 21.7 per month, according to the NationalWeather Service. Find the probability

that there will be fewer than 15 tornados next May.

Solution If it is assumed that successive tornado hits are independent events, then the

Poisson distribution is a reasonable model. Let X be the number of tornados which

hit Oklahoma next May. Then,

P(X < 15) = P(X ≤ 14) =

14∑
k=0

e−21.7(21.7)k

k!
= 0.054.

In R, type

> ppois(14,21.7)
[1] 0.05400056 ◾

The Poisson distribution is closely related to the binomial distribution and arises as

a limiting distribution when the number of trials is large and the success probability is

small. If X has a binomial distribution with large n and small p, then the distribution

of X will be approximately equal to a Poisson distribution with parameter � = np.

Poisson Approximation of Binomial Distribution

Consider the binomial distribution with parameters n and pn. Assume that

lim
n→∞

pn = 0 and lim
n→∞

npn = � > 0.
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Then, the binomial pmf converges to the pmf of a Poisson distribution with

parameter �. That is, for k = 0, 1, … ,

lim
n→∞

n!

k!(n − k) !
pkn(1 − pn)

n−k =
e−��k

k!
.

Proof. Consider the binomial probability with p = �∕n, which gives

n!

k!(n − k) !
pk(1 − p)n−k =

n!

k!(n − k) !

(
�

n

)k(
1 −

�

n

)n−k

=
n(n − 1) · · · (n − k + 1)

k!

(
�

n

)k(
1 −

�

n

)n−k

=
nk

(
1 −

1

n

)
· · ·

(
1 −

k−1

n

)

k!

(
�

n

)k(
1 −

�

n

)−k(
1 −

�

n

)n

=
�k

k!

[(
1 −

1

n

)
· · ·

(
1 −

k − 1

n

)](
1 −

�

n

)−k(
1 −

�

n

)n
. (B.2)

Take the limit as n→ ∞, and consider the four factors on the right-hand side of

Equation (B.2).

(i) Since � and k are constants, �k∕k! stays unchanged in the limit.

(ii) For ixed k,

lim
n→∞

(
1 −

1

n

)
· · ·

(
1 −

k − 1

n

)
= 1k−1 = 1.

(iii)

lim
n→∞

(
1 −

�

n

)−k

= 1−k = 1.

(iv) Recall that the constant e = 2.71827 … is deined as the limit

lim
x→∞

(
1 +

1

x

)x
= e.

Make the substitution 1∕x = −�∕n, so that n = −�x. This gives

lim
n→∞

(
1 −

�

n

)n
= lim

x→∞

(
1 +

1

x

)−�x

=

[
lim
x→∞

(
1 +

1

x

)x]−�
= e−�.

Plugging in the four limits in Equation (B.2) gives the result. ◾
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Example B.8 Mutations in DNA sequences occur from environmental factors and

mistakes when a cell copies its DNA in preparation for cell division. The mutation

rate per nucleotide of human DNA has been estimated at about 2.5 × 10−8. There are

about 3.3 × 109 nucleotide bases in the human DNA genome. Find the probability

that exactly 80 DNA sites mutate in a random person’s DNA.

Solution Let X be the number of mutations. If successive mutations are indepen-

dent, then X has a binomial distribution with n = 3.3 × 109 and p = 2.5 × 10−8. The

distribution is approximated by a Poisson distribution with parameter

� = np = (33 × 109)(2.5 × 10−8) = 82.5.

The desired probability is

P(X = 80) ≈
e−82.5(82.5)80

80!
= 0.043.

Note that the exact probability using the binomial distribution is

P(X = 80) =

(
3.3 × 109

80

)
(2.5 × 10−8)80(1 − 2.5 × 10−8)3.3×10

9−80.

The approximate probability using the Poisson distribution can be compared with the

exact probability in R. We display 12 signiicant digits, and see that the approximation

is good to nine digits.

> options(digits=12)
> dpois(80,82.5)
[1] 0.0428838140788
> dbinom(80,3.3*10 ̂ 9,2.5*10 ̂ (-8))
[1] 0.042883814558 ◾

Multinomial Distribution

The multinomial distribution generalizes the binomial distribution. Consider a

sequence of n i.i.d. random variables, where each variable takes one of k possible

values. Assume that the ith value occurs with probability pi, with p1 + · · · + pk = 1.

For i = 1, … , k, let Xi denote the number of times outcome i occurs. Then,

(X1, … ,Xk) has a multinomial distribution with parameters n, p1, … , pk. The joint

pmf is

P(X1 = x1, … ,Xk = xk) =
n!

x1! · · · xk!
p
x1
1
· · · p

xk
k
, for x1 + · · · + xk = n.

Marginally, each Xi has a binomial distribution with parameters n and pi.
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Example B.9 According to the Red Cross, the distribution of blood types in the

United States is as follows: O: 44%, A: 42%, B: 10%, and AB: 4%. In a sample of

six people, ind the probability that three are type O, two are A, one is B, and none

are AB.

Solution Let XO, XA, XB, and XAB denote the number of people in the sample with the

respective blood types. Then, (XO,XA,XB,XAB) has a multinomial distribution with

parameters 6, 0.44, 0.42, 0.10, 0.04. The desired probability is

P(XO = 3,XA = 2,XB = 1,XAB = 0)

=
6!

3!2!1!0!
(0.44)3(0.42)2(0.10)1(0.04)0

= 0.09016. ◾

Uniform (Continuous) Distribution

For a < b, the uniform distribution on (a, b) is a continuous model for equally likely

outcomes on a bounded interval. The density function is constant. A random variable

X is uniformly distributed on (a, b) if the density of X is

f (x) =
1

b − a
, for a < x < b.

Mean and variance are

E(X) =
a + b

2
and Var (X) =

(b − a)2

12
.

For a < c < d < b,

P(c < X < d) =
d − c

b − a
=

Length of (c, d)

Length of (a, b)
.

Exponential Distribution

The exponential distribution is a positive continuous distribution which often arises as

a model for arrival, or waiting, times. Applications include the time when customers

arrive at a queue, when electronic components fail, and when calls come in to a call

center. The distribution depends on a parameter � > 0, which has the interpretation

of the arrival rate.

A random variable X has an exponential distribution with parameter �, if the den-

sity function of X is

f (x) = �e−�x, for x > 0.
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The cdf is

F(x) = P(X ≤ x) = ∫
x

0

�e−�t dt = 1 − e−�x, for x > 0.

Mean and variance are

E(X) =
1

�
and Var (X) =

1

�2
.

The exponential distribution plays a prominent role in probability models because

of its memoryless property. A random variable X is memoryless if

P(X > s + t|X > s) = P(X > t) , for all s, t > 0.

The exponential distribution is the only continuous distribution which is memoryless.

Example B.10 The lifetime of an electronic component is modeled with an expo-

nential distribution. If components fail on average after 1,200 hours, ind the proba-

bility that the component lasts more than 1,300 hours.

Solution Let X be the time until the component fails. Since the parameter of an

exponential distribution is the reciprocal of the mean, model X with an exponential

distribution with parameter � = 1∕1200. The desired probability is

P(X > 1300) = ∫
∞

1300

f (x) dx

= ∫
∞

1300

1

1200
e−x∕1200 dx

= e−1300∕1200 = 0.3385.

In R, type

> 1-pexp(1300,1/1200)
[1] 0.3384654 ◾

Normal Distribution

The normal distribution plays a central role in statistics, is a common model for

numerous natural and biological phenomenon, and arises as the limit for many ran-

dom processes and distributions. It is also called the Gaussian distribution after Carl

Friedrich Gauss who discovered its utility as a model for astronomical measurement

errors. The distribution is parameterized by two numbers � and �2, which are the

mean and variance, respectively, of the distribution.
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A random variable X has a normal distribution with parameters � and �2, if the

density function of X is

f (x) =
1√
2��2

e
−

(x−�)2

2�2 , for −∞ < x < ∞.

The shape of the density is the famous bell curve. The density is symmetric about

the line x = �. The inlection points, where the curvature of the density changes sign,

occur one standard deviation from the mean, at the points � ± �.

The normal distribution has the property that a linear function of a normal random

variable is normal. If X is normally distributed with mean � and variance �2, then

Y = aX + b is normally distributed with mean

E(Y) = E(aX + b) = aE(X) + b = a� + b

and variance

Var (Y) = Var (aX + b) = a2Var (X) = a2�2.

A common heuristic for working with the normal distribution is the 68–95–99.7

rule, which says that for a normal distribution, the probability of being one, two, and

three standard deviations from the mean is, respectively about 0.68, 0.95, and 0.997.

The standard normal distribution is a normal distribution with mean 0 and

variance 1.

Example B.11 Assume that babies’ birth weights are normally distributed with

mean 120 ounces and standard deviation 20 ounces. (i) Find the approximate prob-

ability that a random baby’s birth weight is between 100 and 140 ounces. (ii) Find

the exact probability that a baby’s birth weight is less than 136 ounces. (iii) Low birth

weight is deined as the 5th percentile of the birth weight distribution. At what weight

is a baby’s birth weight considered low?

Solution

(i) Let X be a random baby’s birth weight. The desired probability is

P(100 < X < 140). Observe that 100 is one standard deviation below

the mean and 140 is one standard deviation about the mean. The event

{100 < X < 140} is the event that the birth weight is within one standard

deviation of the mean. By the 68–95–99.7 rule, the probability is about 0.68.

(ii) The desired probability is

P(X < 136) = ∫
136

−∞

f (x) dx = ∫
136

−∞

1√
2�(202)

e
−

(x−120)2

2(20)2 dx.

There is no elementary closed form for the cdf of the normal distribution, and

numerical methods are needed to solve integrals such as this. In R, type
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> pnorm(136,120,20)
[1] 0.78814460

(iii) The problem asks for the 5th percentile of the normal distribution. Equiva-

lently, we seek the number q such that P(X ≤ q) = 0.05. In R, use the quantile
function.

> qnorm(0.05,120,20)
[1] 87.102927461

Babies with birth weights less than 87 ounces are considered to have low

birth weight. ◾

Bivariate Normal Distribution

The bivariate normal distribution forX and Y , and themultivariate normal distribution

for X1, … ,Xm, are generalizations of the normal distribution to higher dimensions.

The bivariate normal distribution is speciied by ive parameters: �X , �Y , �
2
X
, �2

Y
, �.

These are the means and variances of X and Y , and their correlation. If

�X = �Y = 0 and �2
X
= �2

Y
= 1, this gives the bivariate standard normal distribution

with joint density

f (x, y) =
1

2�
√
1 − �2

e
−
x2−2�xy+y2

2(1−�2) ,

for −∞ < x, y < ∞ and −1 < � < 1.

The marginal and conditional distributions of a bivariate normal distribution are

normal. In particular, the conditional distribution of X given Y = y is normal with

mean �y and variance 1 − �2. Similarly, the conditional distribution of Y given X = x

is normal with mean �x and variance 1 − �2.

If X and Y have a bivariate normal distribution, then aX + bY is normally

distributed for all nonzero constants a and b.

If � = 0, we say that X and Y are uncorrelated. If normal random variables are

uncorrelated, then they are independent. Note that this is not true for random variables

in general. If two random variables X and Y are uncorrelated it does not necessarily

mean that they are independent.

Gamma Distribution

The gamma distribution is a nonnegative continuous distribution which depends on

two parameters. The distribution encompasses a large family of unimodal, skewed

and symmetric distribution shapes and is a popular distribution for modeling positive

continuous processes. It also arises naturally as the distribution of a sum of i.i.d.

exponential random variables.
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A random variable X has a gamma distribution with parameters r > 0 and � > 0,

if the density function of X is

f (x) =
1

Γ(r)
�rxr−1e−�x, for x > 0,

where Γ(r) is the gamma function

Γ(r) = ∫
∞

0

tr−1e−t dt.

If r is a positive integer, then Γ(r) = (r − 1)! For a gamma random variable,

E(X) =
r

�
and Var (X) =

r

�2
.

A sum of n independent exponential random variables with common parameter �

has a gamma distribution with parameters n and �.

Example B.12 Bella is ishing and the time it takes to catch a ish is exponentially

distributed with mean 20 minutes. Every time she catches a ish, she throws it back

in the water, and continues ishing. Find the probability that she will catch ive ish

in the irst hour.

Solution Let X1 denote how long it takes for Bella to catch her irst ish. For

k = 2, … , 5, let Xk be the time from when she throws her (k − 1)th ish in the water

to when she catches her kth ish. Then, X1, … ,X5 are i.i.d. exponential random

variables with parameter � = 1∕20, and S = X1 + · · · + X5 is the total time it takes

for Bella to catch ive ish. The random variable S has a gamma distribution with

parameters r = 5 and � = 1∕20. The desired probability is

P(S ≤ 60) = ∫
60

0

1

Γ(5)

(
1

20

)5

x4e−x∕20 dx = 0.185.
◾

Beta Distribution

The beta distribution is a continuous distribution on (0, 1) that depends on two param-

eters. It is a generalization of the uniform distribution. A random variableX has a beta

distribution with parameters a > 0 and b > 0, if the density function of X is

f (x) =
1

B(a, b)
xa−1(1 − x)b−1, for 0 < x < 1,
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where

B(a, b) = ∫
1

0

xa−1(1 − x)b−1 dx =
Γ(a)Γ(b)

Γ(a + b)
.

For a beta random variable,

E(X) =
a

a + b
and Var (X) =

ab

(a + b + 1)(a + b)2
.

The uniform distribution on (0, 1) is obtained for a = b = 1.

B.5 LIMIT THEOREMS

The classic limit theorems of probability are concerned with sequences of i.i.d. ran-

dom variables. If X1,X2, … is such a sequence with common mean � = E(X1) < ∞,

let Sn = X1 + · · · + Xn. The law of large numbers says that the sequence of averages

Sn∕n converges to �, as n→ ∞. There are two versions of the law—weak and strong.

Theorem B.1. (Weak law of large numbers). For any � > 0,

lim
n→∞

P

(||||
Sn

n
− �

|||| < �

)
= 1.

While the weak law asserts that for large n, the average Sn∕n is with high proba-

bility close to �, it does not say that having come close to �, the sequence of averages

will always stay close to �.

If a sequence of numbers x1, x2, … converges to a limit x then eventually, for n

suficiently large, the terms xn, xn+1, xn+2, … will all be arbitrarily close to x. That is,

for any � > 0, there is some index N such that |xn − x| ≤ �, for all n ≥ N.

The strong law of large numbers asserts that with probability 1 the sequence of

averages S1∕1, S2∕2, S3∕3, … behaves precisely in this way.

Theorem B.2. (Strong law of large numbers).

P

(
lim
n→∞

Sn

n
= �

)
= 1.

By the law of large numbers, Sn∕n − � converges to 0, as n→ ∞. The central limit

theorem asserts that (Sn∕n − �)∕(�∕
√
n) converges to a normally distributed random

variable. Remarkably, this is true for any i.i.d. sequence X1,X2, … with inite mean

and variance.
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Theorem B.3. (Central limit theorem). For all t,

lim
n→∞

P

(
Sn∕n − �

�∕
√
n

≤ t

)
= P(Z ≤ t),

where Z has a standard normal distribution.

The central limit theorem gives that for large n, X1 + · · · + Xn has an approximate

normal distribution with mean n� and variance n�2.

Example B.13 The number of accidents per week in a stretch of highway has a

Poisson distribution with parameter � = 2. If the number of accidents is independent

from week to week, what is the probability that over a year’s time there will be more

than 100 accidents?

Solution Let X1, … ,X52 be the number of accidents, respectively, during each week

of the year. Then, S52 = X1 + · · · + X52 is the total number of accidents in a year. The

Xi are i.i.d. with common mean and variance � = 2. By the central limit theorem,

P(S52 > 100) = P

(
S52∕52 − �

�∕
√
52

>
100∕52 − 2√

2∕
√
52

)

≈ P(Z > −0.392) = 0.652.

We can compare the central limit approximation with the exact result. The sum of

independent Poisson random variables has a Poisson distribution, and X1 + · · · + X52

has a Poisson distribution with parameter 52� = 104. The exact probability is

P(S52 > 100) = 1 − P(S52 ≤ 100) = 1 −

100∑
k=0

e−104104k

k!
= 0.629. ◾

B.6 MOMENT-GENERATING FUNCTIONS

Moment-generating functions are remarkably versatile tools for proving results

involving sums and limits of random variables. Let X be a random variable. The

moment-generating function (mgf) of X is the function m(t) = E
(
etX

)
, deined for

all t for which the expectation exists.

The name moment-generating comes from the fact that the moments of X can be

derived by taking successive derivatives of the mgf. In particular,

m′(t) =
d

dt
E
(
etX

)
= E

(
d

dt
etX

)
= E

(
XetX

)
,



MOMENT-GENERATING FUNCTIONS 441

and m′(0) = E(X). In general, the kth derivative of the mgf gives

m(k)(0) = E
(
Xk

)
, for k = 1, 2, …

Example B.14 Let X be a Bernoulli random variable with success parameter p.

Find the mgf of X.

Solution The mgf of X is

m(t) = E
(
etX

)
= et(1)p + et(0)(1 − p) = 1 − p + pet. ◾

Example B.15 Let X have a standard normal distribution. Find the mgf.

Solution The mgf is

m(t) = ∫
∞

−∞

etx
1√
2�

e−x
2∕2 dx =

1√
2� ∫

∞

−∞

e−(x
2−2tx)∕2 dx

= et
2∕2 1√

2� ∫
∞

−∞

e−(x−t)
2∕2 dx = et

2∕2,

as the last integral gives the density of a normal distributionwithmean t and variance 1

which integrates to 1. Check that m′(0) = 0 = E(X) and m′′(0) = 1 = E
(
X2

)
. ◾

Here are four key properties of the mgf.

Properties of Moment-Generating Functions

1. If X and Y are independent, then the mgf of X + Y is the product of their

respective mgfs. That is,

mX+Y (t) = E
(
et(X+Y)

)
= E

(
etXetY

)
= E

(
etX

)
E
(
etY

)

= mX(t)mY (t).

2. For constant c,

mcX(t) = mX(ct).

3. Moment-generating functions uniquely determine the underlying probability

distribution. That is, if mX(t) = mY (t) for all t, then the distributions of X and

Y are the same.



442 PROBABILITY REVIEW

4. Continuity Theorem: Let X1,X2, … be a sequence of random variables with

corresponding mgfs mX1
,mX2

, … Assume that X is a random variable such

that for all t, mXn
(t) → mX(t), as n→ ∞. Then,

lim
n→∞

P(Xn ≤ x) = P(X ≤ x),

at each x for which P(X ≤ x) is continuous.

Example B.16 Let X and Y be independent Poisson random variables with respec-

tive parameters �1 and �2. Use moment-generating functions to show that X + Y has

a Poisson distribution with parameter �1 + �2.

Solution The mgf of a Poisson random variable with parameter � is

m(t) =

∞∑
k=0

etk
e−��k

k!
= e−�

∞∑
k=0

(�et)k

k!
= e−�e�e

t
= e�(e

t−1).

Hence, the mgf of X + Y is

mX+Y (t) = mX(t)mY (t) = e�1(e
t−1)e�2(e

t−1) = e(�1+�2)(e
t−1),

which is the mgf of a Poisson random variable with parameter �1 + �2. ◾



APPENDIX C

SUMMARY OF COMMON
PROBABILITY DISTRIBUTIONS

DISCRETE DISTRIBUTIONS

Distribution PMF, Expectation, Variance

Uniform (1, … , n) P(X = k) =
1

n
, k = 1, … , n

E(X) =
n + 1

2
Var(X) =

n2 − 1

12

Binomial P(X = k) =
(
n

k

)
pk(1 − p)n−k, k = 0, 1, … , n

E(X) = np Var(X) = np(1 − p)

Poisson P(X = k) =
e−��k

k!
, k = 0, 1, 2, …

E(X) = � Var(X) = �

Geometric P(X = k) = (1 − p)k−1p, k = 1, 2, …

E(X) =
1

p
Var(X) =

1 − p

p2

P(X > t) = (1 − p)t

Negative binomial P(X = k) =
(
k − 1

r − 1

)
pr(1 − p)k−r,

k = r, r + 1, … , r = 1, 2, …

E(X) =
r

p
Var(X) =

r(1 − p)

p2

Hypergeometric P(X = k) =

(
D

k

)(
N − D

n − k

)

(
N

n

) , k = 0, 1, … , n

E(X) =
nD

N
Var(X) =

nD(N − D)

N2

(
1 −

n − 1

N − 1

)

Introduction to Stochastic Processes with R, First Edition. Robert P. Dobrow.
© 2016 John Wiley & Sons, Inc. Published 2016 by John Wiley & Sons, Inc.
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CONTINUOUS DISTRIBUTIONS

Distribution Density, CDF, Expectation, Variance

Uniform (a, b) f (x) =
1

b − a
, a < x < b

F(x) =
x − a

b − a
, a < x < b

E(X) =
a + b

2
Var(X) =

(b − a)2

12

Exponential f (x) = �e−�x, x > 0

F(x) = 1 − e−�x, x > 0

E(X) =
1

�
Var(X) =

1

�2

Normal f (x) =
1

�
√
2�

exp

(
−(x − �)2

2�2

)
, −∞ < x < ∞

E(X) = � Var(X) = �2

Gamma f (x) = �e−�x
(�x)r−1

Γ(r)
, x > 0,

where

Γ(r) = ∫ ∞

0
tr−1e−t dt

E(X) =
r

�
Var(X) =

r

�2

Beta f (x) =
1

B(�, �)
x�−1(1 − x)�−1, 0 < x < 1,

where

B(�, �) =
Γ(�)Γ(�)

Γ(� + �)
.

E(X) =
�

� + �
Var(X) =

��

(� + � + 1)(� + �)2



APPENDIX D

MATRIX ALGEBRA REVIEW

D.1 BASIC OPERATIONS

A matrix is a rectangular array of elements. Rectangles are arranged in rows and

columns. The general form of an m × n matrix (m rows and n columns) is

A =

⎛
⎜⎜⎜⎝

a11 a12 · · · a1n
a21 a22 · · · a2n
⋮ ⋮ ⋱ ⋮

am1 am2 · · · amn

⎞
⎟⎟⎟⎠
.

The element aij is the entry in the ith row and jth column of A. An n × n matrix is

said to be square.

A row vector is a 1 × n matrix. A column vector is an n × 1 matrix. Matrices are

denoted with bold uppercase letters. Vectors are denoted with bold lowercase letters.

The ith component of the vector x is denoted xi. The Euclidean space ℝn consists of

all n-element vectors of real numbers.

Given n-element vectors x and y, the dot product, or inner product, of x and y is

the number

x ⋅ y = x1y1 + · · · + xnyn =

n∑
i=1

xiyi.

Introduction to Stochastic Processes with R, First Edition. Robert P. Dobrow.
© 2016 John Wiley & Sons, Inc. Published 2016 by John Wiley & Sons, Inc.
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A real number is called a scalar. If s is a scalar and A a matrix, then scalar mul-

tiplication is deined as the product sA, which is the matrix obtained by multiplying

each of the elements of A by s. For example,

(−3)

(
4 0

−1 1

)
=

(
−12 0

3 −3

)
.

Matrix addition is the operation of adding two matrices of the same dimension.

Corresponding elements are added. For example,

(
3 1 0

2 −4 1

)
+

(
2 1 −2

0 −4 5

)
=

(
5 2 −2

2 −8 6

)
.

Linear Combination

A linear combination of vectors x�,… , xk is a vector of the form

s1x� + · · · + skxk,

where s1,… , sk are scalars. The si are called the coeficients of the linear

combination.

Observe that
(
8 −1 −3

)
is a linear combination of

(
1 1 0

)
,
(
2 −1 1

)
, and(

3 3 3
)
since

(
8 −1 −3

)
= (2)

(
1 1 0

)
+ (3)

(
2 −1 1

)
+ (0)

(
3 3 3

)
.

The coeficients of this linear combination are 2, 3, and 0.

We deine the matrix–vector product Ax of anm × nmatrixA and an n × 1 column

vector x. Write the columns of A as a�,… , an. Then, Ax is deined as the m × 1 col-

umn vector, which is the linear combination of the columns of A whose coeficients

are the components of x. That is,

Ax =

⎛
⎜⎜⎝

| | · · · |
a� a� · · · an| | · · · |

⎞
⎟⎟⎠

⎛⎜⎜⎜⎝

x1
x2
⋮

xn

⎞⎟⎟⎟⎠
= x1a� + x2a� + · · · + xnan.

The ith component of Ax is

(Ax)i =

n∑
j=1

aijxj, for i = 1,… ,m.

Equivalently, the ith component of Ax is the dot product of the ith row of A and the

vector x. For example,
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⎛⎜⎜⎜⎝

2 1 1

3 −1 2

1 0 −4

4 2 1

⎞⎟⎟⎟⎠

⎛
⎜⎜⎝

1

1

−2

⎞
⎟⎟⎠
=

⎛⎜⎜⎜⎝

2(1) + 1(1) + 1(−2)

3(1) + (−1)(1) + 2(−2)

1(1) + 0(1) + (−4)(−2)

4(1) + 2(1) + 1(−2)

⎞⎟⎟⎟⎠
=

⎛⎜⎜⎜⎝

1

−2

9

4

⎞⎟⎟⎟⎠

= (1)

⎛
⎜⎜⎜⎝

2

3

1

4

⎞
⎟⎟⎟⎠
+ (1)

⎛
⎜⎜⎜⎝

1

−1

0

2

⎞
⎟⎟⎟⎠
+ (−2)

⎛
⎜⎜⎜⎝

1

2

−4

1

⎞
⎟⎟⎟⎠
.

D.2 LINEAR SYSTEM

A linear system of m equations in n unknowns is a collection of linear equations of

the form
a11x1 + a12x2 + · · · + a1nxn = b1
a21x1 + a22x2 + · · · + a2nxn = b2
⋮ ⋮ ⋮ ⋮

am1x1 + am2x2 + · · · + amnxn = bm

Such a system can be written succinctly in matrix form as

Ax = b,

where

A =

⎛
⎜⎜⎜⎝

a11 a12 · · · a1n
a21 a22 · · · a2n
⋮ ⋮ ⋱ ⋮

am1 am2 · · · amn

⎞
⎟⎟⎟⎠
, x =

⎛
⎜⎜⎜⎝

x1
x2
⋮

xn

⎞
⎟⎟⎟⎠
, and b =

⎛
⎜⎜⎜⎝

b1
b2
⋮

bm

⎞
⎟⎟⎟⎠
.

Linear systems can have no solutions, ininitely many solutions, or exactly one

solution. For instance, the system

2x1 + x2 = 5

2x1 + x2 = 4

has no solutions. The system

2x1 + x2 = 5

4x1 + 2x2 = 10

has ininitely many solutions of the form

x =

(
x1
x2

)
=

(
a

5 − 2a

)
, for all real a.
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And the system
2x1 + x2 = 5

x1 − x2 = −2

has the unique solution x =

(
1

3

)
.

D.3 MATRIX MULTIPLICATION

IfA is anm × nmatrix andB is an n × pmatrix, then the matrix productAB is deined

as the m × p matrix whose ith column is the matrix–vector product of A and the ith

column of B. Writing

B =

⎛⎜⎜⎝

| | · · · |
b� b� · · · bp
| | · · · |

⎞⎟⎟⎠
gives

AB = A

⎛⎜⎜⎝

| | · · · |
b� b� · · · bp
| | · · · |

⎞⎟⎟⎠
=

⎛⎜⎜⎝

| | · · · |
Ab� Ab� · · · Abp
| | · · · |

⎞⎟⎟⎠
.

The ijth element of AB is

(AB)ij =

n∑
k=1

aikbkj.

Equivalently, the ijth element of AB is the dot product of the ith row of A and the jth

column of B. For example,

(
0 1 4

1 2 0

)⎛
⎜⎜⎝

2 3

1 0

1 3

⎞
⎟⎟⎠
=

(
5 12

4 3

)
.

Matrix multiplication is not commutative That is, AB does not necessarily equal BA.

D.4 DIAGONAL, IDENTITY MATRIX, POLYNOMIALS

Given an n × n matrix A, the entries a11,… , ann are called the diagonal elements

of A. An n × n matrix A is a diagonal matrix if aij = 0, for all i ≠ j.

The n × n identity matrix, denoted In, is the diagonal matrix all of whose diagonal

elements are 1. The columns of the n × n identity matrix are called the standard basis

vectors of ℝn, denoted e�,… , en. That is, ek is the n-element column vector of all 0s

except for a 1 in the kth position.

If A is an n × n matrix, then AIn = InA = A.
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If A is a square matrix, then AA = A2 is also a square matrix. Similarly, Ak is

well-deined for all integer k. It follows that if p(x) is a polynomial function and A

is a square matrix, then p(A) is well-deined. For instance, let p(x) = x3 − 5x + 6 and

A =

(
1 1

1 0

)
. Then,

p(A) = A3 − 5A + 6I =

(
3 2

2 1

)
− (5)

(
1 1

1 0

)
+ (6)

(
1 0

0 1

)
=

(
4 −3

−3 7

)
.

D.5 TRANSPOSE

Given an m × n matrix A, the transpose AT is the n × m matrix whose ijth element is

the jith element of A.

AmatrixA is symmetric ifA = AT . That is, aij = aji for all i, j. A symmetric matrix

is necessarily square.

D.6 INVERTIBILITY

A square matrix A is invertible if there exists a matrix B such that AB = BA = I. The

matrix B is denoted A−1 and is called the inverse of A.

Since AA−1 = I, it follows that the ith column of A−1 is the solution of the linear

system Ax = ei, where ei is the ith standard basis vector.

The solution of a general linear system Ax = b is unique if and only if A is invert-

ible. In that case, the solution is x = A−1b.

Properties of Inverse, Transpose

1. (AT )T = A

2. (A−1)−1 = A

3. (AT )−1 = (A−1)T

4. (AB)T = BTAT

5. (AB)−1 = B−1A−1

D.7 BLOCK MATRICES

It is sometimes convenient to partition a matrix A into smaller blocks, such as

A =

⎛
⎜⎜⎜⎝

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

⎞
⎟⎟⎟⎠
=

(
B C

D E

)
,



450 MATRIX ALGEBRA REVIEW

where

B =

⎛
⎜⎜⎝

1 2 3

5 6 7

9 10 11

⎞
⎟⎟⎠
, C =

⎛
⎜⎜⎝

4

8

12

⎞
⎟⎟⎠
, D =

(
13 14 15

)
, and E =

(
16
)
.

Matrix operations on block matrices can be carried out by treating the blocks as

matrix elements. Thus,

A2 =

(
B C

D E

)(
B C

D E

)

=

(
B2 + CD BC + CE

DB + ED DC + E2

)

=

⎛
⎜⎜⎜⎝

90 100 110 120

202 228 254 280

314 356 398 440

426 484 542 600

⎞
⎟⎟⎟⎠
.

D.8 LINEAR INDEPENDENCE AND SPAN

Given a set of vectors, if at least one vector can be written as a linear combination of

the others, then the vectors are called linearly dependent. If none of the vectors in the

set can be written as a linear combination of the other vectors, then the vectors are

called linearly independent.

The vectors

⎧⎪⎨⎪⎩

⎛
⎜⎜⎝

2

−1

3

⎞
⎟⎟⎠
,
⎛
⎜⎜⎝

0

1

−1

⎞
⎟⎟⎠
,
⎛
⎜⎜⎝

4

−3

7

⎞
⎟⎟⎠

⎫⎪⎬⎪⎭
are linearly dependent, as

⎛⎜⎜⎝

4

−3

7

⎞⎟⎟⎠
= (2)

⎛⎜⎜⎝

2

−1

3

⎞⎟⎟⎠
+ (−1)

⎛⎜⎜⎝

0

1

−1

⎞⎟⎟⎠
.

The vectors {e�, e�, e�} =

⎧
⎪⎨⎪⎩

⎛⎜⎜⎝

1

0

0

⎞⎟⎟⎠
,
⎛⎜⎜⎝

0

1

0

⎞⎟⎟⎠
,
⎛⎜⎜⎝

0

0

1

⎞⎟⎟⎠

⎫
⎪⎬⎪⎭
are linearly independent.

The span of a set of vectors is the set of all linear combinations of those vectors.

The span of

⎧
⎪⎨⎪⎩

⎛⎜⎜⎝

1

0

0

⎞⎟⎟⎠
,
⎛⎜⎜⎝

0

1

0

⎞⎟⎟⎠

⎫
⎪⎬⎪⎭
is the set of all vectors of the form

a

⎛⎜⎜⎝

1

0

0

⎞⎟⎟⎠
+ b

⎛⎜⎜⎝

0

1

0

⎞⎟⎟⎠
=

⎛⎜⎜⎝

a

b

0

⎞⎟⎟⎠
, for scalars a and b.

Geometrically, this set is the x–y plane in ℝ3.
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D.9 BASIS

A basis forℝn is a set of n vectors {b�,… , bn} inℝ
n, which are linearly independent

and span ℝ
n. The fact that {b�,… , bn} span ℝ

n means that every vector in ℝ
n can

be written as a linear combination of the bi. Together with linear independence we

obtain the following result.

Theorem D.1. If {b�,… , bn} is a basis for ℝ
n, then every vector in ℝn can be

written uniquely as a linear combination of the bi.

To obtain this unique representation for a given set of vectors {b�,… , bn}, let B
be the square matrix obtained by making the bi the columns of B. That is,

B =

⎛
⎜⎜⎝

| | · · · |
b� b� · · · bn| | · · · |

⎞
⎟⎟⎠
.

The matrix B is invertible. If x = s1b� + · · · + snbn for some choice of s1,… , sn, then

x =

⎛
⎜⎜⎝

| | · · · |
b� b� · · · bn| | · · · |

⎞
⎟⎟⎠

⎛
⎜⎜⎝

s1
⋮

sn

⎞
⎟⎟⎠
= B

⎛
⎜⎜⎝

s1
⋮

sn

⎞
⎟⎟⎠

and thus ⎛⎜⎜⎝

s1
⋮

sn

⎞⎟⎟⎠
= B−1x.

D.10 VECTOR LENGTH

The length (also magnitude or norm) of a vector x is deined as

∥ x ∥=

√
x2
1
+ · · · + x2n =

√
x ⋅ x.

A vector x has unit length if ∥ x ∥= 1. For any nonzero vector �, the vector
(

1

∥�∥

)
�

has unit length, since

‖‖‖‖‖

(
1

∥ � ∥

)
�

‖‖‖‖‖
=

(
1

∥ � ∥

)
∥ � ∥= 1.

A most important inequality in linear algebra is the Cauchy–Schwarz inequality,

which says that for any n-element vectors x and y,

|x ⋅ y| ≤∥ x ∥∥ y ∥ .
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For example, letting x =
(
1 · · · 1

)
and y =

(
y1 · · · yn

)
, the inequality yields

|y1 + · · · + yn| ≤ √
n

√
y2
1
+ · · · + y2n.

Equivalently,

(y1 + · · · + yn)
2 ≤ n(y2

1
+ · · · + y2n).

D.11 ORTHOGONALITY

Vectors x and y are said to be orthogonal if x ⋅ y = 0. Geometrically, orthogonal vec-

tors are perpendicular.

A set of vectors {�1,… , �k} is orthonormal if the vectors have unit length and are
pairwise orthogonal. That is,

�i ⋅ �j =

{
1, if i = j,
0, if i ≠ j.

A square matrix whose columns are orthonormal is called an orthogonal matrix.

If U is an orthogonal matrix, then U is invertible and U−1 = UT . The latter follows

from the deinition of orthonormal vectors since the ijth element of UTU is the dot

product of the ith column of U and the jth column of U.

The matrix

U =

⎛
⎜⎜⎜⎝

1∕
√
3 1∕

√
3 1∕

√
3

1∕
√
6 1∕

√
6 −

√
2∕3

−1∕
√
2 1∕

√
2 0

⎞
⎟⎟⎟⎠

is an orthogonal matrix as

⎛
⎜⎜⎜⎝

1∕
√
3 1∕

√
3 1∕

√
3

1∕
√
6 1∕

√
6 −

√
2∕3

−1∕
√
2 1∕

√
2 0

⎞
⎟⎟⎟⎠

⎛
⎜⎜⎜⎝

1∕
√
3 1∕

√
6 −1∕

√
2

1∕
√
3 1∕

√
6 1∕

√
2

1∕
√
3 −

√
2∕3 0

⎞
⎟⎟⎟⎠
=

⎛⎜⎜⎝

1 0 0

0 1 0

0 0 1

⎞⎟⎟⎠
.

D.12 EIGENVALUE, EIGENVECTOR

LetA be a square matrix. If there exists a scalar � and nonzero (column) vector x such

that Ax = �x, we say that � is an eigenvalue of A with corresponding eigenvector x.

For example, let A =

(
3 0

1 −4

)
. Observe that

(
3 0

1 −4

)(
0

1

)
=

(
0

−4

)
= (−4)

(
0

1

)
,



DIAGONALIZATION 453

which shows that � = −4 is an eigenvalue of Awith corresponding eigenvector

(
0

1

)
.

Further observe that

(
3 0

1 −4

)(
7

1

)
=

(
21

3

)
= (3)

(
7

1

)
,

which shows that � = 3 is an eigenvalue of A with corresponding eigenvector

(
7

1

)
.

One can show that � = −4 and � = 3 are the only eigenvalues of A.

D.13 DIAGONALIZATION

A square matrix A is diagonalizable if there exists an invertible matrix S and a diag-

onal matrix D such that A = SDS−1. If A is diagonalizable then the entries of D are

the eigenvalues of A and the columns of S are corresponding eigenvectors.

For example, let A =

⎛⎜⎜⎝

6 −3 7

6 −3 6

0 0 −1

⎞⎟⎟⎠
. The eigenvalues of A are � = 3,−1, 0, with

respective eigenvectors

⎧
⎪⎨⎪⎩

⎛⎜⎜⎝

1

1

0

⎞⎟⎟⎠
,
⎛⎜⎜⎝

−1

0

1

⎞⎟⎟⎠
,
⎛⎜⎜⎝

1

2

0

⎞⎟⎟⎠

⎫
⎪⎬⎪⎭
.

Let S =

⎛⎜⎜⎝

1 −1 1

1 0 2

0 1 0

⎞⎟⎟⎠
, with S−1 =

⎛⎜⎜⎝

2 −1 2

0 0 1

−1 1 −1

⎞⎟⎟⎠
. This gives

SDS−1 =

⎛
⎜⎜⎝

1 −1 1

1 0 2

0 1 0

⎞
⎟⎟⎠

⎛
⎜⎜⎝

3 0 0

0 −1 0

0 0 0

⎞
⎟⎟⎠

⎛
⎜⎜⎝

2 −1 2

0 0 1

−1 1 −1

⎞
⎟⎟⎠

=

⎛⎜⎜⎝

6 −3 7

6 −3 6

0 0 −1

⎞⎟⎟⎠
= A.

That is, A is diagonalizable.

A suficient condition for an n × n matrix to be diagonalizable is that there exists

n distinct eigenvalues. The following theorem gives a necessary and suficient condi-

tion for diagonalizability.

Theorem D.2. An n × n matrix A is diagonalizable if and only if there exists a

basis for ℝn consisting of eigenvectors of A.
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One advantage of diagonalizability is that it simpliies matrix products. If A is

diagonalizable, then

Ak = (SDS−1)k = SDkS−1.

In the previous example, for k ≥ 1,

Ak = SDkS−1 =

⎛⎜⎜⎝

1 −1 1

1 0 2

0 1 0

⎞⎟⎟⎠

⎛⎜⎜⎝

3k 0 0

0 (−1)k 0

0 0 0

⎞⎟⎟⎠

⎛⎜⎜⎝

2 −1 2

0 0 1

−1 1 −1

⎞⎟⎟⎠

=

⎛
⎜⎜⎝

(2)3k −3k (2)3k − (−1)k

(2)3k −3k (2)3k

0 0 (−1)k

⎞
⎟⎟⎠
.

A square matrix A is orthogonally diagonalizable if there exists an orthogonal

matrix U and a diagonal matrix D such that A = UDUT .

Theorem D.3 (Spectral Theorem). A matrix is orthogonally diagonalizable if

and only if it is symmetric.



ANSWERS TO SELECTED
ODD-NUMBERED EXERCISES

Solutions for Chapter 1

1.1 .(b) Xt is the student’s status at the end of year t.

State space (discrete):  = {Drop Out, Frosh, Sophomore, Junior, Senior,

Graduate}.

Index set (discrete): I = {0, 1, 2, … }.

.(e) Xt is the arrival time of student t.

State space (continuous): [0, 60]
Index set (discrete): {1, 2,… , 30}.
.(f) Xt is the order of the deck of cards after t shufles.

State space (discrete): Set of all orderings of the deck (52! elements).

Index set (discrete): {0, 1, 2, … }

1.3 .
k∑
i=1

P(A|Bi ∩ C)P(Bi|C) =
k∑
i=1

(
P(A ∩ Bi ∩ C)

P(Bi ∩ C)

)(
P(Bi ∩ C)

P(C)

)

=

k∑
i=1

P(A ∩ Bi ∩ C)

P(C)
=

1

P(C)

k∑
i=1

P(A ∩ Bi ∩ C)

=
P(A ∩ C)

P(C)
= P(A|C).

Introduction to Stochastic Processes with R, First Edition. Robert P. Dobrow.
© 2016 John Wiley & Sons, Inc. Published 2016 by John Wiley & Sons, Inc.
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1.5 .(a) Uniform on {1, 2, 3, 4, 5, 6 }.

.(b) Uniform on {2, 3, 4, 5, 6 }.

1.7 .Let X denote the time until the rat inds the cheese. Let 1, 2, and 3 denote each

door, respectively. Then,

E(X) = E(X|1)P(1) + E(X|2)P(2) + E(X|3)P(3)

= (2 + E(X))
1

3
+ (3 + E(X))

1

3
+ (1)

1

3

= 2 + E(X)
2

3
.

Thus, E(X) = 6 minutes.

1.11 .Let xk be the probability of reaching n when the gambler’s fortune is k. As in

Example 1.10.

xk = xk+1p + xk−1q, for 1 ≤ k ≤ n − 1,

with x0 = 0 and xn = 1, which gives

xk+1 − xk = (xk − xk−1)
p

q
, for 1 ≤ k ≤ n − 1.

It follows that

xk − xk−1 = · · · = (x1 − x0)(p∕q)
k−1 = x1(p∕q)

k−1, for all k.

This gives xk − x1 =
∑k

i=2 x1(p∕q)
k−1, or

xk =

k∑
i=1

x1(p∕q)
k−1 = x1

1 − (p∕q)k

1 − p∕q
.

For k = n, this gives

1 = xn = x1
1 − (p∕q)n

1 − p∕q
.

Thus, x1 = (1 − p∕q)∕(1 − (p∕q)n), which gives

xk =
1 − (p∕q)k

1 − (p∕q)n
, for k = 0,… , n.

1.13 .(a) fY|X(y|x) = 2y∕(1 − x2), for x < y < 1.

.(b) The conditional distribution is uniform on (0, y).
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1.15 .The area of the circle is �. The equation of the circle is x2 + y2 = 1. The joint

density is

f (x, y) =
1

�
, for − 1 < x < 1,−

√
1 − x2 < y <

√
1 − x2

Integrating out the y term gives the marginal density

fX(x) = ∫
√
1−x2

−
√
1−x2

1

�
dy =

2
√
1 − x2

�
, for − 1 < x < 1.

The conditional density is

fY|X(y|x) =
f (x, y)

fX(x)
=

1∕�

2
√
1 − x2∕�

=
1

2
√
1 − x2

,

for −1
√
1 − x2 < y <

√
1 − x2. The conditional distribution of Y given X = x

is uniform on
(
−
√
1 − x2,

√
1 − x2

)
.

1.17 .E(X|X > 2) = 4.16525.

1.21 .

∫
∞

0

P(T > t) dt = ∫
∞

0 ∫
∞

t

f (s) ds dt = ∫
∞

0 ∫
s

0

f (s) dt ds

= ∫
∞

0

sf (s) ds = E(T).

1.23 .(b) For m > n,

E(Sm|Sn) = E(Sn + Xn+1 + · · · + Xm|Sn)
= E(Sn|Sn) + E(Xn+1 + · · · + Xm|Sn)

= Sn +

m∑
i=n+1

E(Xi|Sn) = Sn +

m∑
i=n+1

E(Xi)

= Sn + (m − n)�.

1.27 .Let T be the total amount spent at the restaurant. Then,

E(T) = 200(15) = $3000,

and

Var(T) = 9(200) + 152(402) = 361800, SD(T) = $601.50.

1.29 .Yes.
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Solutions for Chapter 2

2.1 .(a) 0.6;

.(b) P2
32

= 0.27;
.(c) P31�3∕(�P)1 = (0.3)(0.5)∕(0.17) = 15∕17 = 0.882;

.(d) (0.182, 0.273, 0.545) ⋅ (1, 2, 3) = 2.363.

2.3 . P3
10

= 0.517.

2.5 .(a)

0 1 2 3

P =

0

1

2

3

⎛
⎜⎜⎜⎝

0 1 0 0

1∕4 0 3∕4 0

0 1∕4 0 3∕4

0 0 1 0

⎞
⎟⎟⎟⎠
.

.(b) 19∕64.

.(c) 0.103.

2.9 . a b c d e

P =

a

b

c

d

e

⎛
⎜⎜⎜⎜⎝

0 0 3∕5 0 2∕5

1∕7 2∕7 0 0 4∕7

0 2∕9 2∕3 1∕9 0

0 1 0 0 0

3∕4 0 0 1∕4 0

⎞
⎟⎟⎟⎟⎠
.

2.11 .(b) P3
0,5

= 0.01327.

2.25 .
Socializing Traveling Milling Feeding Resting

0.148 0.415 0.096 0.216 0.125

Solutions for Chapter 3

3.1 . � =
(
1

5
,
1

3
,
2

5
,
1

15

)
.

3.3 .P and R are regular. Q is regular for 0 < p < 1.

3.5 .(a) All non-negative vectors of the form (a, a, b, c, a), where 3a + b + c = 1.

3.7 .The transition matrix is doubly stochastic. The stationary distribution is

uniform.

3.11 .(a)
�j =

{
1∕(2k), if j = 0, k,

1∕k, if j = 1,… , k − 1.

.(b) 2,000 steps.
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3.13 .Communication classes are {4} (recurrent, absorbing); {1, 5} (recurrent); {2, 3}
(transient). All states have period 1.

2 3 1 5 4

P =

2

3

1

5

4

⎛
⎜⎜⎜⎜⎝

1∕2 1∕6 1∕3 0 0

1∕4 0 0 1∕4 1∕2

0 0 1∕2 1∕2 0

0 0 1 0 0

0 0 0 0 1

⎞
⎟⎟⎟⎟⎠
.

3.17 .
Pn =

(
1∕2n 1 − 1∕2n

0 1

)
and lim

n→∞
Pn =

(
2 +∞

0 +∞

)
.

3.19 .Let px be the expected time to hit d for the walk started in x. By symmetry,

pb = pe and pc = pe. Solve

pa =
1

2
(1 + pb) +

1

2
(1 + pc),

pb =
1

2
(1 + pa) +

1

2
(1 + pc),

pc =
1

4
(1 + pb) +

1

4
+

1

4
(1 + pa) +

1

4
(1 + pc).

This gives pa = 10.

3.23 . �i = 2(k + 1 − i)∕(k(k + 1)), for i = 1,… , k.

3.25 .(a) For k = 2, � = (1∕6, 2∕3, 1∕6). For k = 3, � = (1∕20, 9∕20, 9∕20, 1∕20).

3.29 .Communication classes are: (i) {a} transient; (ii) {e} recurrent; (iii) {c, d} tran-

sient; and (iv) {b, f , g} recurrent. The latter class has period 2. All other states

have period 1.

3.33 .For all states i and j, and m > 0,

PN+m
ij

=
∑
k

Pm
ik
PN
kj
.

Since PN
kj
> 0 for all k, the only way the expression above could be zero is if

Pm
ik
= 0 for all k, which is not possible since Pm is a stochastic matrix whose

rows sum to 1.

3.43 .(a) The chain is ergodic for all 0 ≤ p, q ≤ 1, except p = q = 0 and p = q = 1.

.(b) The chain is reversible for all p = q, with 0 < p < 1.
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3.47 . 1 2 3

P =

1

2

3

⎛
⎜⎜⎝

1∕3 4∕9 2∕9

0 1∕2 1∕2

1∕2 0 1∕2

⎞
⎟⎟⎠
.

3.53 .(a) The probability that A wins is 1∕(2 − p).

.(c) � = 1270∕6049 ≈ 0.210 and � = 737∕6049 ≈ 0.122. For the irst method,

A wins with probability 0.599. For the second method, A wins with probability

0.565.

3.61 .Yes. T is a stopping time.

3.63 .

� = (0.325, 0.207, 0.304, 0.132, 0.030, .003, .0003).

3.67 . > allsixes <- function() {
+ i <- 0
+ ct <- 0
+ while (ct < 5)
+ { x <- sample(1:6,5-ct,replace=T)
+ sixes <- sum(x==6)
+ ct <- ct + sixes
+ i <- i+1 }
+ i
+ }
> sim <- replicate(10000, allsixes())
> mean(sim)
[1] 13.0873

Solutions for Chapter 4

4.1 .P0,j = 1, if j = 0, and 0, otherwise.

P1, j =

⎧
⎪⎪⎨⎪⎪⎩

a, if j = 0,

b, if j = 1,

c, if j = 2.

For the second row of P,

0 1 2 3 4 5 · · ·

2
(
a2 2ab 2ac + b2 2bc c2 0 · · ·

)
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4.3 .From Exercise 4.2, GX(s) = e�(s−1) and GY (s) = e�(s−1). Then,

GX+Y (s) = GX(s)GY (s) = e�(s−1)e�(s−1) = e(�+�)s−1.

Thus, X + Y has a Poisson distribution with parameter � + �.

4.7 . G(s) = (1 − p) + ps3.

� = G′(1) = 3p.

�2 = G′′(1) + G′(1) − G′(1)2 = 6p + 3p − (3p)2 = 9p(1 − p).

E
(
Z4

)
= �4 = (3p)4 = 81p4.

Var
(
Z4

)
= 9p(1 − p)(3p)3(81p4 − 1)∕(3p − 1).

4.11 . E(Zn) = G′1n(1) = G′(Gn−1(1))G
′

n−1
(1) = G′(1)G

′

n−1
(1)

= �G
′

n−1
(1) = �E(Zn−1).

The result follows by induction.

4.15 .Solve s = 1∕4 + s∕4 + s2∕4 + s3∕4. e = 0.414.

4.17 .(a)

e =

{
(1 − p)∕p, if p > 1∕2,

1, if p ≤ 1∕2.

.(b)

P2i,2j =

(
2i

2j

)
p2j(1 − p)2i.

4.21 .(a) � = c∕(1 − p)2

.(c) 0.693, 0.803

4.23 . GZ(s) =
1

a0
(G(s) − a0).

4.29 .(a)

> pgf <- function(s) {

+ 0.8 + 0.1*s ̂ 4 + 0.1*s ̂ 9
+ }

> x <- 0.5 # initial value
> e <- pgf(x)
> for (i in 1:100) {
+ e <- pgf(e)
+ }

> e
[1] 0.9152025

.(b) 0.101138
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4.33 .> branch <- function(n,lam) { ## Poisson
+ z <- c(1,rep(0,n))
+ for (i in 2:(n+1)) {

+ z[i] <- sum(rpois(z[i-1],lam))
+ }

+ return(z) }

# Assume extinction occurs by 50th generation
> n <- 10000
> simlist <- replicate(n, sum(branch(50,0.60)))
> mean(simlist)
[1] 2.5308
> var(simlist)
[1] 9.594811

Solutions for Chapter 5

5.1 .Let

P =

Truck Car

Truck

Car

(
1∕5 4∕5

1∕4 3∕4

)
,

with stationary distribution � = (5∕21, 16∕21). By the strong law of large

numbers the toll collected is about

1000
(
5
(
5

21

)
+ 1.5

(
16

21

))
= $2333.33.

5.3 .(a) Compute (10000) × �P2, with � = (0.6, 0.3, 0.1). This gives Car: 3,645, Bus:

4,165, Bike: 2,190.

For long-term totals, ind the stationary distribution and compute (10000) × �

to get Car: 2083, Bus: 4583, Bike: 3333.

.(b) Current: 271(0.6) + 101(0.3) + 21(0.1) = 195 g. Long-term: 271(0.208) +

101(0.458) + 21(0.333) = 109.75 g.

5.7 .Assume that the chain is currently at state i. Let j be the proposal state, chosen

uniformly on {0, 1,… , n}. Let U ∼ Uniform(0, 1). Accept j as the next state of

the chain if

U <

(
n

j

)
pj(1 − p)n−j

(
n

i

)
pi(1 − p)n−i

=
i!(n − i)!

j!(n − j)!

(
p

1 − p

)j−i

.

Otherwise, stay at state i.
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5.15 .

P =

123 132 213 231 312 321

123

132

213

231

312

321

⎛⎜⎜⎜⎜⎜⎜⎝

1∕2 1∕8 1∕8 1∕8 1∕8 0

1∕8 1∕2 1∕8 0 1∕8 1∕8

1∕8 1∕8 1∕2 1∕8 0 1∕8

1∕8 0 1∕8 1∕2 1∕8 1∕8

1∕8 1∕8 0 1∕8 1∕2 1∕8

0 1∕8 1∕8 1∕8 1∕8 1∕2

⎞⎟⎟⎟⎟⎟⎟⎠

.

5.19 .> trials <- 20000
> n <- 50
> p <- 1/4
> sim <- numeric(trials)
> for (k in 1:trials) {

+ state <- 0
+ # run chain for 60 steps to be near stationarity
+ for (i in 1:60) {

+ y <- sample(0:n,1)
+ acc <- factorial(state)*factorial(n-state)/
(factorial(y)*factorial(n-y))

+ *(p/(1-p)) ̂ (y-state)
+ if (runif(1) < acc) state <- y
+ }

+ sim[k] <- if (state >= 10 & state <= 15) 1 else 0
+ }

> mean(sim) # estimate of P(10 <= X <= 15)
[1] 0.6712
# exact probability
> pbinom(15,n,p)-pbinom(9,n,p)
[1] 0.6732328

Solutions for Chapter 6

6.1 .(a) 0.048;

.(b) 0.1898;

.(c) 0.297.

6.3 .(a) 0.082;

.(b) 0.0257;

.(c) 0.01299.

6.7 .(a) 1/2;

.(b) 1/4;

.(c) 1/6.
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6.9 .Let X be geometrically distributed with parameter p. The cumulative distribu-

tion function for X is

P(X ≤ x) =

x∑
k=1

P(X = k) =

x∑
k=1

(1 − p)k−1p = p
1 − (1 − p)x

1 − (1 − p)
= 1 − (1 − p)x.

This gives,

P(X > s + t|X > s) =
P(X > s + t)

P(X > s)
=

(1 − p)s+t

(1 − p)s
= (1 − p)t = P(X > t).

6.11 .Let X be a memoryless, continuous random variable. Let g(t) = P(X > t). By

memorylessness,

P(X > t) = P(X > s + t|X > s) =
P(X > s + t)

P(X > s)
.

Thus, g(s + t) = g(s)g(t). It follows that

g(t1 + · · · + tn) = g(t1) · · · g(tn).

Let r = p∕q =
∑p

i=1
(1∕q). Then, g(r) = (g(1∕q))p. Also,

g(1) = g

(
q∑
i=1

1

q

)
= g

(
1

q

)q

,

or g(1∕q) = g(1)1∕q. This gives

g(r) = g(1)p∕q = g(1)r = er ln g(1),

for all rational r. By continuity, for all t > 0, g(t) = e−�t, where

� = − ln g(1) = − ln P(X > 1).

6.15 .(a) 0.112.

.(b) 0.472.

.(c) 0.997.

6.17 .
E

(
Nt∑
n=1

S2n

)
=

�t3

3
.

6.19 .E(T) = 88.74.

6.25 .The expected time of failure was 8:43 a.m. on the last day of the week.
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6.27 .(a) 0.747;

.(b) 0.632;

.(c) 0.20.

6.29 .0.77.

6.35 .P(NC = 0) = e(1−e
−1)� = 0.137.

6.39 .P(N1 = 1) = (e − 2)∕e = 0.264.

6.41 .The goal scoring Poisson process has parameter � = 2.68∕90. Consider two

independent thinned processes, each with parameter p�, where p = 1∕2. By

conditioning on the number of goals scored in a 90-minute match, the desired

probability is

∞∑
k=0

(
e−90�∕2(90�∕2)k

k!

)2

=

∞∑
k=0

(
e−1.341.34k

k!

)2

= 0.259.

6.43 .Mean and variance are 41.89.

Solutions for Chapter 7

7.3 .
Q =

⎛⎜⎜⎝

−a a∕2 a∕2

b∕2 −b b∕2

c∕2 c∕2 −c

⎞⎟⎟⎠
.

� =
(

bc

ac + bc + ab
,

ac

ac + bc + ab
,

ab

ac + bc + ab

)
.

7.7 .(a)

P
′

11
(t) = −P11(t) + 3P13(t)

P
′

12
(t) = −2P12(t) + P11(t)

P
′

13
(t) = −3P13(t) + 2P12(t)

P
′

21
(t) = −P21(t) + 3P23(t)

P
′

22
(t) = −2P22(t) + P21(t)

P
′

23
(t) = −3P23(t) + 2P22(t)

P
′

31
(t) = −P31(t) + 3P33(t)

P
′

32
(t) = −2P32(t) + P31(t)

P
′

33
(t) = −3P33(t) + 2P32(t)
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.(b)

P(t) =

⎛⎜⎜⎝

−1 0 1

−3 1 1

3 0 1

⎞⎟⎟⎠

⎛⎜⎜⎝

e−4t 0 0

0 e−2t 0

0 0 1

⎞⎟⎟⎠

⎛⎜⎜⎝

−1∕4 0 1∕4

−3∕2 1 1∕2

3∕4 0 1∕4

⎞⎟⎟⎠

=
1

4

⎛
⎜⎜⎝

3 + e−4t 0 1 − e−4t

3 + 3e−4t − 6e−2t 4e−2t 1 − 3e−4t + 2e−2t

3 − 3e−4t 0 1 + 3e−4t.

⎞
⎟⎟⎠

7.11 .
d

dt
etA =

d

dt

∞∑
n=0

tn

n!
An =

∞∑
n=0

1

n!
An

d

dt
tn =

∞∑
n=1

1

n!
Anntn−1

= A

∞∑
n=1

tn−1

(n − 1)
An−1 = A

∞∑
n=0

tn

n!
An = AetA.

The second equality is done similarly.

7.13 .Taking limits on both sides ofP′(t) = P(t)Q gives that � = �Q. This uses the fact

that if a differentiable function f (t) converges to a constant then the derivative

f ′(t) converges to 0.

7.15 .(a)
0 1 2 3

Q =

0

1

2

3

⎛⎜⎜⎜⎝

−1 1 0 0

0 −1 1 0

0 0 −1 1

1 0 0 −1

⎞⎟⎟⎟⎠
.

7.17 .The population process is a Yule process. The distribution of X8, the size of the

population at t = 8, is negative binomial, with mean and variance

E(X8) = 651, 019 and SD(X8) = 325, 509.

7.21 .Make 4 an absorbing state. We have

(−V)−1 =

⎛
⎜⎜⎜⎝
−

⎛
⎜⎜⎜⎝

−1 1 0 0

1 −2 1 0

0 2 −3 1

0 0 3 −4

⎞
⎟⎟⎟⎠

⎞
⎟⎟⎟⎠

−1

=

⎛
⎜⎜⎜⎝

10 9 4 1

9 9 4 1

8 8 4 1

6 6 3 1

⎞
⎟⎟⎟⎠
,

with row sums (24, 23, 21, 16). The desired mean time is 23.

7.25 .(a) � = (0.1, 0.3, 0.3, 0.3).

.(b) We have that (q1, q2, q3, q4) = (1, 1∕2, 1∕3, 1∕4). The stationary distribution

� is proportional to (0.1, 0.3(2), 0.3(3), 0.3(4)). This gives

� =
1

2.8
(0.1, 0.6, 0.9, 1.2) = (0.036, 0.214, 0.321, 0.428).
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7.27 .(a) If the irst dog has i leas, then the number of leas on the dog increases by

one the irst time that one of the N − i leas on the other dog jumps. The time of

that jump is the minimum of N − i independent exponential random variables

with parameter �. Similarly, the number of leas on the irst dog decreases by

one when one of the i leas on that dog irst jumps.

.(b) The local balance equations are �i(N − i)� = �i+1(i + 1)�. The equations

are satisied by the stationary distribution

�k =
(
N

k

)(
1

2

)k
, for k = 0, 1,… ,N,

which is a binomial distribution with parameters N and p = 1∕2.

.(c) 0.45 minutes.

7.29 .(b) The embedded chain transition matrix, in canonical form, is

1 5 2 3 4

P̃ =

1

5

2

3

4

⎛
⎜⎜⎜⎜⎝

1 0 0 0 0

0 1 0 0 0

1∕3 0 0 2∕3 0

0 0 1∕2 0 1∕2

0 3∕5 0 2∕5 0

⎞
⎟⎟⎟⎟⎠
.

By the discrete-time theory for absorbing Markov chains, write

Q̃ =

⎛⎜⎜⎝

0 2∕3 0

1∕2 0 1∕2

0 2∕5 0

⎞⎟⎟⎠
and R̃ =

⎛⎜⎜⎝

1∕3 0

0 0

0 3∕5

⎞⎟⎟⎠
.

The matrix of absorption probabilities is

1 5

(I − Q̃)−1R̃ =

2

3

4

⎛
⎜⎜⎝

4∕7 3∕7

5∕14 9∕14

1∕7 6∕7

⎞
⎟⎟⎠
.

The desired probability is 3∕7.

7.31 .The process is anM/M/2 queue with � = 2, � = 3, and c = 2. The desired prob-

ability is

�0 =
(
1 +

2

3
+

1

3

)−1

=
1

2

7.33 .(a) The long-term expected number of customers in the queue L is the mean

of a geometric distribution on 0, 1, 2, … , with parameter 1 − �∕�, which is

�∕(� − �). If both � and � increase by a factor of k, this does not change the

value of L.

.(b) The expected waiting time is W = L∕�. The new waiting time is

L∕(k�) = W∕k.
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7.37 .(c) Choose N such that P(Y > N) < 0.5 × 10−3, where Y is a Poisson random

variable with parameter 9 × 0.8 = 7.2. This gives N = 17.

Solutions for Chapter 8

8.3 .(a) 0.013.

.(b) fX2|X1 (x|0) =
1√
2�
e−x

2∕2, for −∞ < x < ∞.

.(c) 3.

.(d) X1.

8.5 .(a) For the joint density of Bs and Bt, since

{Bs = x,Bt = y} = {Bs = x,Bt − Bs = y − x},

it follows that

fBs,Bt (x, y) = fBs (x)fBt−s(y − x) =
1√
2�s

e−x
2∕2s 1√

2�(t − s)
e−(y−x)

2∕2(t−s).

.(b) E(Bs|Bt = y) = sy∕t and Var(Bs|Bt = y) = s(t − s)∕t.

8.7 .One checks that the relection is a Gaussian process with continuous paths. Fur-

thermore, the mean function is E(−Bt) = 0 and the covariance function is

E((−Bs)(−Bt)) = E(BsBt) = min{s, t}

8.11 .0.11.

8.13 .E(XsXt) = st�2 + �2s.

8.19 .E(Mt) =

√
2t

�
and Var(Mt) = (1 − 2∕�)t.

8.23 .(a) arcsin (
√
r∕t)∕ arcsin (

√
r∕s).

.(b)
√
s∕
√
t.

8.25 .0.1688.

8.27 .Write Zn+1 =
∑Zn

i=1
Xi. Then,

E

(
Zn+1

�n+1
|Zn, … ,Z0

)
=

1

�n+1
E

(
Zn∑
i=1

Xi|Zn, … ,Z0

)

=
1

�n+1
E

(
Zn∑
i=1

Xi|Zn
)

=
1

�n+1
Zn� =

Zn

�n
.
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8.31 .(a) 4∕9.

.(b) 20.

8.35 .SD(T) =
√
2∕3a2.

8.43 .(a) Black–Scholes price is $35.32.

.(b) Price is increasing in each of the parameters, except strike price, which is

decreasing.

.(c) �2 ≈ 0.211.

Solutions for Chapter 9

9.1 .The distribution is normal, with

E

(
∫

t

0

sBs ds

)
= ∫

t

0

sE(Bs) ds = 0,

and

Var

(
∫

t

0

sBs ds

)
= E

((
∫

t

0

sBs ds

)2
)

= ∫
t

x=0 ∫
t

y=0

E(xBxyBy) dy dx

= ∫
t

x=0 ∫
x

y=0

xyE(BxBy) dy dx + ∫
t

x=0 ∫
t

y=x

xyE(BxBy) dy dx

= ∫
t

x=0 ∫
x

y=0

xy2 dy dx + ∫
t

x=0 ∫
t

y=x

x2y dy dx

= ∫
t

x=0

x4

3
dx + ∫

t

x=0

x2
(
t2

2
−
x2

2

)
dx

=
t5

15
+
t5

6
−
t5

10
=

2t5

15
.

9.3 .By Ito’s Lemma, with g(t, x) = x4,

d(B4
t ) = 6B2

t dt + 4B3
t dBt,

which gives

B4
t = 6∫

t

0

B2
s ds + 4∫

t

0

B3
s dBs,

and

E(B4
t ) = 6∫

t

0

E(B2
s ) ds = 6∫

t

0

s ds = 3t2.

9.5 .The desired martingale is B4
t − 6tB2

t + 3t2.

9.9 .(b) E(X3) = 4; Var(X3) = 30; P(X3 < 5) = 0.7314.
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relection principle, 339

simulation, 324

standard, 321

strong Markov property, 337
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coding function, 190

coin tossing, 343

Colton, Charles Caleb, 372

complete spatial randomness, 250

conditional distribution, 15

conditional expectation, 18

conditional variance, 31

continuous-time Markov chain, 265

absorbing, 288

birth-and-death, 297

detailed balance, 295

embedded chain, 268

exponential alarm clock, 270

forward, backward equation, 275

fundamental matrix, 288

generator, 273

global balance, 293

holding time, 268

limiting distribution, 283

local balance, 295

Poisson subordination, 306

stationary distribution, 284

time reversibility, 294

transition rates, 270

tree theorem, 295

uniformization, 306

Yule process, 299

counting process, 223

coupling, 140

coupling from the past, 205

coupon collector’s problem, 216

Cox–Ingersoll–Ross model, 398

cryptography, 190

cutoff phenomenon, 217

damping factor, 113

Darwin, Charles, 192

detailed balance equations, 114

Diaconis, Persi, 42, 190, 217

diffusion, 389

DNA sequence, 280

evolutionary distance, 282

Felsenstein model, 288

Hasegawa, Kishino, Yao model, 314

Jukes–Cantor model, 280

Kimura model, 281

Doeblin, Wolfgang, 140

Donsker, Monroe, 327

doubly stochastic matrix, 73, 144

Ehrenfest model, 88, 110, 317, 459

Einstein, Albert, 320

embedding, 241

empirical distribution function, 350

Eugene Onegin, 43

Euler–Maruyama method, 391

expected return time, 103, 105, 135

Fermat, Pierre, 8

Fibonacci sequence, 220

Fill, Jim, 361

irst hitting time, 134

irst passage time, 103

irst return time, 149

irst-step analysis, 125

fundamental matrix, 125

Galapagos Islands, 192

Galton, Sir Francois, 158

gambler’s ruin, 7, 12, 44, 123

Gauss, Carl Friedrich, 330

Gaussian process, 330

Geman, Donald, 197

Geman, Stuart, 197

Gibbs distribution, 202

Gibbs sampler, 197

Gibbs, Josiah, 197, 198

Gilbert–Shannon–Reeds model, 217

Goldfeather, Jack, 190

graph

bipartite, 459

complete, 47

cycle, 47, 62

directed, 50

hypercube, 47

lollipop, 90

weighted, 50

graphic

regular, 92

greatest common divisor, 107

Hastings, W.K., 187

independent increments, 224, 321

invariance principle, 328

Ising model, 202

Ito integral, 379

Ito process, 389

Ito’s lemma, 381

diffusion, 389

Ito, Kiyoshi, 379

James, William, 265

Kac, Mark, 88

Kakutani, Shizuo, 101

Knuth, Donald, 181

Kolmogorov–Smirnov statistic, 349
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law of large numbers, 182

law of total expectation, 22

law of total probability, 11

law of total variance, 32

length-biased sampling, 256

limit theorem

coupling proof, 140

ergodic Markov chains, 109, 139

inite irreducible Markov chains, 103, 135

linear algebra proof, 142

regular Markov chains, 83, 135

Little’s formula, 302

little-oh notation, 234

logistic equation, 386

lognormal distribution, 353

Lotka, Alfred, 172

Love Letter, 172

Lucretius, 320

M/M/∞ queue, 316

M/M/1 queue, 301

M/M/c queue, 304

Markov chain

absorbing, 119, 126

aperiodic, 109

birth-and-death, 48, 118

canonical decomposition, 101

closed class, 101

communication, 94

deinition, 41

eigenvalue, 92

eigenvector, 92

ergodic, 109, 139

irst-step analysis, 105

irreducible, 95, 103

limiting distribution, 76

periodic, 109

periodicity, 106

recurrent state, 97

null recurrent , 104, 137

positive recurrent , 104, 137

regular, 83, 135

simulation, 65

stationary distribution, 80

time reversal, 153

time reversibility, 114

time-homogenous, 41

transient state, 97

Markov chain Monte Carlo
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