

inside	front	cover	-	page	intentionally	left	blank

by

Ken	Puls	&
Miguel	Escobar
Holy	Macro!	Books
PO	Box	541731

Merritt	Island,	FL	32953
M	is	for	(Data)	Monkey
©	2016	Tickling	Keys,	Inc.

All	rights	reserved.	No	part	of	this	book	may	be	reproduced	or	transmitted	in
any	form	or	by	any	means,	electronic	or	mechanical,	including	photocopying,
recording,	 or	 by	 any	 information	 or	 storage	 retrieval	 system	 without
permission	from	the	publisher.	Every	effort	has	been	made	to	make	this	book
as	complete	and

accurate	as	possible,	but	no	warranty	or	fitness	is	implied.	The	information	is
provided	on	an	“as	is”	basis.	The	authors	and	the	publisher	shall	have	neither
liability	nor	responsibility	to	any	person	or	entity	with	respect	to	any	loss	or
damages	arising	from	the	information	contained	in	this	book.

Authors:	Ken	Puls	and	Miguel	Escobar

Layout:	Jill	Bee

Copyediting:	Kitty	Wilson

Technical	Editor:	Roger	Govier

Cover	Design:	Shannon	Mattiza	6’4	Productions

Indexing:	Nellie	Jay

Ape	Illustrations:	Walter	Agnew	Moore

Cover	Illustration:	Irdan	Teras

Published	by:	Holy	Macro!	Books,	PO	Box	541731,	Merritt	 Island	FL	32953,
USA

Distributed	by:	Independent	Publishers	Group,	Chicago,	IL

First	Printing:	October,	2015.	This	edition	generated	May	3,	2016	with	new
margins.

ISBN:	 978-1-61547-034-1	 Print,	 978-1-61547-223-9	 PDF,	 978-1-61547-345-8
ePub,	978-1-61547-034-1	Mobi

LCCN:	2015940635

Table	of	Contents
Foreword	How	Power	Query	Changed	Our	Lives

Introduction:	A	New	Revolution

Chapter	1	Importing	Basic	Data

Chapter	2	Overriding	Power	Query	Defaults

Chapter	3	Basic	Append	Operations

Chapter	4	Importing	All	Files	in	a	Folder

Chapter	5	Aggregating	Excel	Worksheets

Chapter	6	Unpivoting	Data

Chapter	7	Importing	Nondelimited	Text	Files

Chapter	8	Importing	from	Databases

Chapter	9	Merging	Tables	and	Queries

Chapter	10	Query	Loading	Destinations

Chapter	11	Defining	Data	Types

Chapter	12	Importing	Web	Data

Chapter	13	Loading	Data	from	Exchange

Chapter	14	Grouping	and	Summarizing

Chapter	15	Transposing	and	Unpivoting	Complex	Data

Chapter	16	Automating	Refreshing

Chapter	17	Power	Query	Formulas

Chapter	18	Conditional	Logic	in	Power	Query

Chapter	19	Power	Query	Objects

Chapter	20	Understanding	the	M	Language

Chapter	21	Creating	Custom	Functions

Chapter	22	Advanced	Conditional	Logic

Chapter	23	Dynamic	Parameter	Tables

Chapter	24	Dynamic	Calendar	Tables

Chapter	25	Query	Organization

Index

Foreword	How	Power	Query	Changed
Our	Lives
Ken’s	Story:	“Coffee	&	Power	Query”
It’s	the	name	on	the	meeting	in	my	Outlook	calendar	from	back	in	November
2013.	 It	 was	 during	 one	 of	 the	Microsoft	 MVP	 summits,	 the	 product	 had
recently	had	 its	name	changed	from	Data	Explorer,	and	 I	was	meeting	with
Miguel	Llopis	and	Faisal	Mohamood	from	the	Power	Query	team	over	coffee
to	 talk	 about	 the	 good	 and	 the	 bad	 of	 the	 tool	 from	 an	 Excel	 users’
perspective.

In	that	conversation,	I	told	them	both	that	Power	Query	was	great,	but	it	was
a	 lousy	 replacement	 for	 SQL	 Services	 Management	 Studio.	 I	 distinctly
remember	 that	 part	 of	 the	 conversation.	 I’d	 been	working	 with	 SSMS	 and
Power	Query	a	 lot	at	the	time,	and	was	struggling	with	the	fact	that	Power
Query	 did	 some	 of	 the	 same	 tasks,	 but	 not	 all.	 I	 was	 frustrated,	 as	 I	 was
struggling	with	the	tool,	 trying	to	make	 it	behave	the	same	as	SSMS,	but	 it
just	wasn’t	doing	it.

What	happened	after	I	 laid	out	my	concerns	flipped	my	complaints	on	their
head.	 I’m	paraphrasing	 from	my	memory,	but	 the	 response	was	 something
like	this:

“Ken,	this	tool	isn’t	a	replacement	for	SSMS.	We	built	this	for	Excel	people…
our	intent	is	that	they	never	need	to	use	or	learn	SQL	at	all.”

For	 anyone	 that	 knows	 me	 well,	 they	 know	 that	 I’m	 very	 seldom	 left
speechless,	 but	 that	was	 just	 about	 enough	 to	do	 it.	 That	 statement	upset
the	balance	of	my	world.

Understand	 that	 I’m	 not	 a	 normal	 Excel	 pro.	 I	 know	 enough	 SQL	 to	 be
dangerous,	 I’m	 extremely	 accomplished	 with	 VBA,	 and	 have	 working
knowledge	of	VB.NET,	C#,	XML	and	a	few	other	 languages.	And	while	 I	 love
technology	and	challenges,	the	true	reason	I	know	as	many	languages	as	I	do
today	 is	 that	 I	 taught	 myself	 out	 of	 necessity.	 Typically	 my	 needs	 were
complicated,	 and	 that	 involved	 a	 painful	 journey	 of	 jumping	 into	 the	 deep
end	with	a	“sink	or	swim”	approach.

No	Excel	pro	should	need	to	work	with	SSMS	 in	order	 to	get	 the	data	 they
need.	But	 years	of	working	with	data	 and	 fighting	 issue	after	 issue	 left	me
assuming	that	Power	Query	was	an	Excel	focused	replacement	for	that	tool.

It	 never	 occurred	 to	me,	 somehow,	 that	 it	 was	 being	 designed	 to	 actually
make	the	life	of	the	Excel	pro	so	much	easier	that	they	wouldn’t	even	need
to	reach	to	SQL	at	all.

That	meeting	 changed	my	view	of	Power	Query	 forever.	 I	 took	a	 step	back
and	looked	at	it	in	a	new	light.	And	I	started	to	use	it	as	it	was	intended	to	be
used…	 on	 its	 own,	 driving	 everything	 through	 the	 user	 interface,	 avoiding
writing	SQL	wherever	possible.	And	you	know	something…	it	started	working
better,	 it	 allowed	me	 to	 go	more	 places,	 it	 allowed	me	 to	 solve	 things	 I’d
never	been	able	to	do	before.

I	love	this	tool.	Not	because	of	what	I	can	do	with	it,	but	because	of	how	easy
it	makes	it	to	get	things	done	for	a	business	pro	without	the	need	for	coding.
I	love	it	because	the	people	we	teach	pick	it	up	rapidly	and	can	add	real	value
in	an	incredibly	short	amount	of	time.	This	product	is	truly	centered	around
the	Excel	pro,	allowing	us	to	build	complex	solutions	via	one	of	the	best	user
interface	designs	I’ve	seen	in	a	long	time.	And	while	we	do	teach	the	coding
techniques	in	this	book,	the	best	part	is	that	it’s	optional,	just	extending	the
capabilities	further.

Miguel’s	Story:	The	Underdog
I	 truly	don’t	 remember	 the	exact	moment	when	 I	 got	 introduced	 to	Power
Query.	 I	believe	 it	was	early	2013	when	 I	downloaded	 the	 tool	and	started
playing	 with	 it.	 At	 first	 it	 just	 seemed	 like	 a	 neat	 tool	 that	 could	 help	me
transform	data,	but	I	still	felt	that	Power	Pivot	was	going	to	be	the	center	of
attention	in	the	data	story.	Back	then	Power	Query	was	called	‘Data	Explorer’
and	–	like	today	–	it	focused	on	delivering	a	rich	user	interface,	allowing	you
to	do	amazing	 things	without	ever	needing	 to	 look	at	 the	 code.	 Little	did	 I
know	that	this	‘neat’	tool	would	solve	almost	all	of	my	data	problems.

At	first,	Power	Query	might	seem	to	you	like	what	it	seemed	to	me	–	just	a
guided	end-user	tool	that	can	do	some	really	cool	data	transformations.	But
then	you’ll	realize	the	true	power	and	flexibility	that	the	Power	Query	engine
brings	to	the	table.	Today,	 I	feel	that	Power	Query	is	as	 important	as	Power
Pivot,	as	how	you	shape	your	data	will	ultimately	determine	how	well	your
Power	Pivot	Data	Model	works.

Power	Query	is	the	new	underdog	of	Business	Intelligence	tools.	It’s	a	major
breakthrough	in	self-service	Business	Intelligence	and	data	manipulation	for
the	 end-user	 or	 data	 steward.	 Our	 goal	 with	 this	 book	 is	 to	 change
everyone’s	perspective	of	the	tool	forever.

This	is	the	time	for	the	underdog	to	rise	and	claim	a	victory	–	a	victory	for	us
all	that	work	with	data	on	a	daily	basis.	A	victory	for	those	who	want	to	make
the	data	work	for	us	and	not	the	other	way	around.

Author	Acknowledgements
As	with	any	book,	there	are	a	bunch	of	people	who	are	quite	influential	with
making	things	happen.	Without	the	influence	of	the	people	below,	this	book
would	never	have	come	to	fruition:

Bill	 Jelen	–	A	 lot	of	publishers	would	have	laughed	us	out	of	the	room	with
the	 title	 of	 this	 book,	 but	 Bill	 loved	 it.	 He’s	 been	 incredibly	 enthusiastic,
accommodating	with	the	timeline,	and	we	really	appreciate	his	support.

Rob	Collie	–	Rob	is	synonymous	with	Power	Pivot	and	Power	BI.	He’s	also	a
friend,	 and	 the	 guy	 that	 suggested	 we	 (Ken	 &	Miguel)	 work	 together	 and
write	a	Power	Query	book.	 It’s	very	 likely	 that	without	Rob’s	prodding,	 this
never	would	have	happened.

Miguel	Llopis	–	From	the	very	first	meeting	over	coffee,	Miguel	has	been	our
go-to	guy	at	Microsoft,	even	 joking	that	his	 full	 time	 job	 is	answering	Ken’s
emails.	He’s	been	super	supportive	since	day	one,	has	responded	to	feature
design	requests,	bugs	and	so	much	more.	Viva	el	Atleti!

Roger	Govier	–	A	tech	book	 isn’t	worth	anything	unless	 it’s	gone	through	a
proper	 tech	 review.	 Every	 page	 of	 this	 book	 was	 reviewed	 by	 our	 friend
Roger,	and	 the	book	 is	 so	much	better	 for	 it.	 From	wording	suggestions,	 to
exposing	 issues,	 Roger’s	 input	 was	 invaluable,	 even	 inspiring	 a	 whole	 new
chapter	in	the	process.

Matt	 Masson,	 Curt	 Hagenlocher,	 Gil	 Raviv,	 Faisal	 Mohamood,	 Miguel
Martinez,	 Samuel	 Zhang	 and	 all	 the	 others	 on	 the	 Power	 Query/Power	 BI
team	that	have	answered	our	many	questions	and	 responded	 to	our	many
emails.	 Your	 help	 and	 clarifications	 have	 been	 incredibly	 helpful	 in	 turning
out	the	finished	product.

Chris	Webb	and	Bill	Szysz	for	pushing	the	Power	Query	boundaries,	as	well	as
countless	others	that	have	commented	on	our	blogs	and	videos	in	an	effort
to	 show	 different	 and	 better	 ways	 to	 accomplish	 solutions.	 Your	 creativity
and	 alternate	 approaches	 have	 helped	 us	 explore	 new	 methods,	 develop
techniques,	and	have	a	lot	of	fun	with	this	program.

Ken	would	like	to	thank:

Over	the	past	few	months	I’ve	started	my	own	consulting	practice	in	addition
to	 writing	 this	 book.	 None	 of	 that	 would	 have	 been	 possible	 without	 the
support	of	my	wife	Deanna	and	my	daughter	Annika.	Even	more	than	being	a
rock	in	my	corner,	though,	Deanna	did	the	initial	proof	read	of	every	page	of
this	book,	 clearing	up	 the	odd	wording	 that	 I	 sometimes	write	down	when
my	brain	is	a	paragraph	further	than	my	typing.

I	don’t	think	I	could	ever	write	a	book	without	thanking	my	good	friend	and
mentor	 Jim	 Olsen.	 I	 worked	 with	 Jim	 for	 16	 years,	 and	 the	 support	 and
freedom	he	gave	me	to	explore	technology	 is	the	fundamental	reason	I	am
where	 I	 am	 today.	 He	 let	 me	 experiment	 with	 new	 technology,	 develop
cutting	edge	solutions	and	test	them	in	our	work	environment.	Without	that
experience	 there	 is	 no	 way	 that	 I	 would	 have	 been	 able	 to	 develop	 the
knowledge	in	order	to	complete	this	project.

I	also	want	 to	 thank	my	co-author,	Miguel.	 It	was	Miguel’s	 idea	and	energy
that	 led	 to	 the	 creation	 of	 http://powerquery.training	 and	 the	 online
workshop	that	we	teach	there.	Without	his	devotion	to	the	project,	it	would
not	have	come	to	fruition.	And	without	the	workshop,	we	probably	wouldn’t
have	a	book	that	is	this	well	organized,	this	fluid,	as	the	layout	and	material	is
based	on	the	things	we	teach	and	have	learned	from	that	experience.

Miguel	would	like	to	thank:
I’d	 like	to	thank	YOU	for	reading	this.	Yes…YOU!	You’re	a	crucial	part	of	our
main	objective	and	our	 intention	with	 this	book	 is	 to	provide	you	with	 the
resources	so	you	can	become	a	Data	Hero.	I’d	like	to	thank	you	in	advance	for
making	this	world	a	better	place	–	at	least	in	the	context	of	business	decision
making	and	the	world	of	data.	:-)

I’d	also	like	to	thank	all	of	the	Excel	and	BI	practitioners	worldwide	that	have
shown	 their	 support	 towards	 our	 book	 and	 our	 Power	 Query	 related
endeavors.	It	is	truly	an	honor	to	be	part	of	this	worldwide	community	and	I
invite	you	to	join	us	by	simply	using	this	tool.

Let’s	 not	 forget	 about	 a	 crucial	 part	 of	my	 life:	 Friends	 and	 Family.	 I’m	not
putting	names	in	here	as	I’m	afraid	I	might	leave	someone	out	of	it	–	so	I’m
playing	it	safe	here!	:)

Special	 thanks	 to	 Ken	 for	 being	 extremely	 supportive	 and	 being	 able	 to
overcome	 the	 language	 barrier	 at	 times	 with	 me!	 “Spanglish”	 gets	 me
sometimes,	yet	Ken	distinguishes	what	I’m	trying	to	say	and	makes	a	better
version	of	it.

http://powerquery.training

Let’s	hope	that	Canada	and	Panama	can	go	to	the	FIFA	World	Cup	in	2018!

Members	of	the	Power	Query
Revolution
We’ve	received	some	 incredible	support	 from	the	Power	Query	community
as	well,	 including	 those	who	 pre-ordered	 the	 book	 or	 attended	 our	 online
workshop	 at	 http://powerquery.training/course	 (or	 both).	 Your	 support
means	so	much	to	us!	The	following	is	a	list	of	those	people	who	jumped	at
the	chance	to	be	listed	as	part	of	the	M	is	for	Data	Monkey	supporters	club:

And	finally…
We’d	like	to	thank	YOU.	For	both	buying	the	book,	putting	your	trust	 in	our
teaching	methods,	and	for	becoming	part	of	the	Power	Query	movement.

This	book	was	written	for	you,	in	an	effort	to	help	you	master	your	data.	We
truly	hope	it	does,	and	that	you’ll	find	it	to	be	the	most	impactful	Excel	book
you’ve	ever	purchased.

http://powerquery.training/course

Introduction:	A	New	Revolution
Whether	 we	 are	 performing	 basic	 data	 entry,	 building	 simple	 reports,	 or
designing	 full-blown	 business	 intelligence	 solutions	 using	 VBA,	 SQL,	 and
other	languages,	we	Excel	pros	all	deal	with	data	to	a	certain	extent.	Our	skill
sets	 vary	 greatly,	 but	 the	 overall	 jobs	 we	 are	 usually	 trying	 to	 perform
include:

Transforming	data	to	meet	our	needs
Appending	one	data	set	to	another
Merging	multiple	data	sets	together
Enriching	our	data	for	better	analysis

We	 may	 get	 tagged	 with	 the	 name	 “data	 monkey,”	 but	 we	 are	 actually
information	workers.	But	no	matter	what	we	call	ourselves	in	our	formal	job
descriptions,	 our	 role	 is	 to	 clean	 up	 data	 and	 turn	 it	 into	 information.	Our
jobs	may	not	be	glorious,	but	they	are	essential,	and	without	our	work	done
correctly,	the	end	results	of	any	analysis	are	suspect.

While	Excel	has	an	amazing	toolset	to	help	us	build	business	intelligence	out
of	data,	converting	raw	data	into	consumable	data	has	been	a	challenge	for
years.	 In	 fact,	 it’s	 this	 issue	 that	 we	 often	 spend	 most	 of	 our	 time	 on—
prepping	data	for	analysis	and	getting	it	into	a	nice	tabular	format	to	expose
Excel’s	most	powerful	analytical	and	reporting	tools.

Figure	1 Behind	the	curtains,	we	are	all	 information	workers	trying	to	reach	our	desired	goal	with
data.

Despite	the	moniker	“data	monkey,”	we	information	workers	are	often	more
like	data	magicians.	Our	data	seldom	enters	our	world	in	a	ready-to-consume

format;	 it	 can	 take	 hours	 of	 cleaning,	 filtering,	 and	 reshaping	 to	 get	 things
ready	to	go.

Once	 our	 data	 is	 prepared	 and	 ready,	 we	 can	 perform	 a	 vast	 array	 of
powerful	 analytical	 processes	 with	 ease.	 Tools	 including	 conditional
formatting,	 filters,	 pivot	 tables,	 charts,	 slicers,	 and	more	 let	 us	work	magic
and	impress	our	audience.

But	getting	the	data	prepped	and	ready	is	the	hard	part.	We’re	served	dirty
data,	 held	 in	 collections	of	 text	 and	Excel	 files	 (maybe	a	database,	 if	we’re
very	lucky),	and	we	somehow	have	to	clean	it	up	and	get	it	ready	to	use.	Our
end	 goal	 is	 simple:	Get	 the	 data	 into	 an	 Excel	 table	 as	 quickly	 as	 possible,
while	making	sure	it	is	scoped	to	our	needs	and	accurate.	And	every	solution
needs	a	different	combination	of	data	coming	from	different	sources	…	which
takes	magic.

Figure	2 Black	magic	is	what	really	happens	to	data	before	consumption.

The	Benefits	and	Dangers	of	Black
Magic
The	true	wizards	of	Excel	use	many	different	techniques	to	make	their	magic
happen—sometimes	 on	 their	 own	 and	 sometimes	 in	 combination.	 These
types	of	magic	include:

Excel	 formulas—These	 are	 some	 of	 the	 first	 techniques	 that	 the
magician	will	often	reach	to,	leveraging	their	knowledge	of	formulas
using	 functions	 such	 as	 VLOOKUP(),	 INDEX(),	 MATCH(),	 OFFSET(),
LEFT(),	LEN(),	TRIM(),	CLEAN(),	and	many	more.	While	formulas	tend
to	be	used	by	most	 Excel	 users,	 the	 complexity	 of	 these	 formulas
varies	by	the	user’s	experience	and	comfort.

Visual	 Basic	 for	 Applications	 (VBA)—This	 powerful	 language	 can
help	 you	 create	 powerful	 and	 dynamic	 transformations	 for	 your
data.	VBA	techniques	tend	to	be	used	by	advanced	users	due	to	the
discipline	required	to	truly	master	them.
SQL	 statements—SQL	 is	 another	 powerful	 language	 for
manipulating	 data,	 and	 it	 can	 be	 extremely	 useful	 for	 selecting,
sorting,	 grouping,	 and	 transforming	 data.	 The	 reality,	 however,	 is
that	this	language	is	also	typically	only	used	by	advanced	users,	and
even	many	Excel	pros	don’t	know	where	to	get	started	with	it.	This
language	is	often	thought	of	as	being	the	sole	domain	of	database
professionals,	although	every	Excel	pro	should	 invest	some	time	in
learning	it.

All	 these	 tools	 have	 something	 in	 common:	 For	 many	 years,	 they	 were
essentially	 the	 only	 tools	 available	 for	 cleaning	 and	 transforming	 data	 into
something	 useful.	 Despite	 their	 usefulness,	 many	 of	 these	 tools	 also	 have
two	serious	weaknesses:	 They	 require	 time	 to	build	a	 solution	and	 time	 to
master	the	techniques.

While	 it’s	 true	 that	 truly	 savvy	 magicians	 can	 use	 these	 tools	 to	 build
solutions	to	automate	and	import	raw	data	in	a	clean	format,	this	takes	years
of	 learning	 advanced	 languages	 as	 well	 as	 a	 significant	 amount	 of	 time
scoping,	 developing,	 testing,	 and	maintaining	 the	 solutions.	 Depending	 on
the	complexity	of	the	solutions	built,	fixing	the	solutions	for	a	minor	change
in	the	import	format	or	extending	them	to	embrace	another	source	could	be
horrendous.

One	hidden	danger	of	having	a	true	wizard	in	a	company	is	that	the	person
may	build	an	incredible	solution	that	works	until	long	after	he	or	she	has	left
the	company.	At	some	point,	though,	others	at	the	company	realize	that	they
don’t	 understand	 the	 solution	 and	 don’t	 have	 anyone	 to	 fix	 it	 when	 it
eventually	breaks.

On	the	flip	side,	many	people	tasked	with	this	data	cleanup	didn’t	have	time
or	 opportunity	 to	 learn	 these	 advanced	 magic	 techniques.	 And	 while	 we
could	 say	 that	 maybe	 they’re	 better	 off	 never	 having	 a	 massive	 system
collapse	 without	 anyone	 to	 fix	 it,	 instead	 they	 waste	 hours,	 days,	 weeks,
months,	 and	 years	 of	 labor	 time	 and	 money	 performing	 repetitive	 data
cleanup	and	imports	on	a	regular	basis.

Take	 a	 moment	 and	 think	 about	 how	 many	 hours	 are	 consumed	 on	 a
monthly	basis	in	your	company	simply	performing	repetitive	data	import	and

cleanup	tasks	in	Excel.	Multiply	those	hours	by	the	average	wage	rate	in	your
company	…	and	by	the	number	of	companies	in	your	industry	worldwide	and
…	you	get	the	idea.	The	cost	of	productivity	in	this	area	is	staggering.

Enter	a	product	that	tackles	all	these	problems—one	that	is	easy	to	learn	and
that	 others	 can	 pick	 up	 and	 understand	 with	 limited	 instruction.	 It’s	 a
product	that	 lets	you	automate	the	import	and	cleanup	of	data,	so	you	can
focus	 on	 turning	 that	 data	 into	 information,	 adding	 true	 value	 to	 your
company.	That	product	is	called	Power	Query.

The	Future	Transforms
Power	Query	solves	the	problems	related	to	the	toolsets	just	described.	It	is
very	 easy	 to	 learn	 and	 has	 one	 of	 the	most	 intuitive	 user	 interfaces	we’ve
ever	worked	with.	It’s	easy	to	maintain,	as	it	shows	each	step	of	the	process,
which	you	can	review	or	update	later.	And	everything	done	in	Power	Query
can	be	refreshed	with	a	couple	of	clicks.

We	have	spent	years	building	solutions	using	black	magic	techniques,	and	we
see	Power	Query	as	a	game	changer	for	many	reasons.	One	of	those	 is	the
speed	with	which	it	can	be	learned.

When	it	comes	to	importing,	cleaning,	and	transforming	data	to	get	it	ready
for	 analysis,	 you	 can	 learn	 Power	 Query	 faster	 than	 you	 can	 learn	 Excel
formulas,	and	it	handles	complex	sources	much	more	easily	than	VBA.

Figure	3 Power	 Query	was	 designed	 to	 be	 an	 easy-to-use	 data	 transformation	 and	manipulation
tool.

Its	 ease	 of	 use	 makes	 Power	 Query	 the	 answer	 to	 the	 vanishing	 data
magician	problem	that	many	businesses	face.	Even	if	a	modern-day	magician
builds	 something	 complex	 in	 Power	 Query,	 you	 can	 have	 someone	 up	 to
speed	 and	 able	 to	maintain	 or	 fix	 the	 query	 with	minimal	 training—we’re
talking	hours,	not	weeks.

As	hard	as	 it	 is	for	true	Excel	pros	to	understand,	many	users	actually	don’t
want	to	master	Excel	formulas.	They	simply	want	to	open	up	a	tool,	connect
it	 to	their	data	source,	click	a	 few	buttons	to	clean	 it	up	and	 import	 it,	and
build	 the	 chart	 or	 report	 they	 need.	 It’s	 for	 exactly	 this	 reason	 that	 Power
Query	 can	 reach	 even	 further	 than	 formulas.	 With	 the	 menu-driven
interface,	 in	 many	 cases	 a	 user	 can	 avoid	 ever	 having	 to	 learn	 a	 single
formula	or	line	of	code.

Figure	4 Power	Query’s	ease	of	use	will	impact	more	users	than	any	of	the	classic	methods.

There	is	no	doubt	in	our	minds	that	Power	Query	will	change	the	way	Excel
pros	work	with	data	forever.

We	 want	 to	 make	 it	 quite	 clear	 that	 we	 are	 not	 discounting	 the	 value	 of
formulas,	VBA,	or	SQL.	In	fact,	we	couldn’t	live	without	those	tools.	You	can
quickly	 knock	 out	 formulas	 to	 do	 many	 things	 outside	 the	 transformation
context	that	Power	Query	will	never	do.	VBA	has	a	far	greater	reach	in	sheer
capability	 and	 power,	 allowing	 you	 to	 reach	 to	 other	 applications,	 create
programs	to	pull	and	push	data,	and	so	many	other	things.	And	a	SQL	query
written	by	a	SQL	wizard	will	always	be	faster	and	better	than	one	created	by
Power	Query.

In	 the	 context	 of	 simply	 connecting	 to,	 cleaning,	 and	 importing	 data,
however,	Power	Query	offers	more	for	less,	allowing	you	to	automate	the	job
more	quickly	and	in	less	time.

The	good	news	 for	 true	wizards	of	data	 is	 that	Power	Query	 is	yet	another
tool	 that	 you	 have	 access	 to.	 You	 can	 provide	 your	 own	 SQL	 queries	 if
needed,	 refresh	 them	 with	 VBA	 when	 desired,	 load	 your	 Power	 Query–
created	queries	directly	to	Power	Pivot,	and	much	more.

Why	Power	Query	Is	Magic
The	 number-one	 issue	 Excel	 pros	 face	 when	 building	 robust	 and	 stable
solutions	 has	 been	 accessing,	 cleaning,	 and	 transforming	 the	 data.	 What
we’ve	needed,	and	yet	many	of	us	have	never	heard	of,	is	an	ETL	tool—that
is,	a	tool	for	extracting,	transforming,	and	loading	data.

Figure	5 ETL:	extract,	transform,	load.

Power	Query	 is	 an	ETL	 tool;	 its	 function	 is	 to	extract	data	 from	almost	any
source,	transform	 it	 as	 desired,	 and	 then	 load	 it.	 But	what	 does	 that	 truly
mean	to	us	as	Excel	pros?

Extract
Extraction	can	be	targeted	against	one	or	more	data	sources,	 including	text
files,	CSV	files,	Excel	files,	databases,	and	web	pages.	In	addition,	the	Power
Query	team	has	built	many	connectors	to	data	sources	that	have	otherwise
been	tough	to	get	at—Microsoft	Exchange,	Facebook,	Salesforce,	and	other
Software-as-a-Service	(SaaS)	sources.

Transform
When	we	talk	about	transformation,	we	include	each	of	the	following	areas:

Data	 cleaning—Data	 cleaning	 could	 involve	 filtering	 out
departments	 from	 a	 database	 or	 removing	 blank	 or	 garbage	 rows
from	 a	 text	 file	 import.	 Other	 uses	 include	 changing	 cases	 from
uppercase	 to	 lowercase,	 splitting	 data	 into	multiple	 columns,	 and
forcing	 dates	 to	 import	 in	 the	 correct	 format	 for	 a	 particular
country.	Data	 cleaning	 is	 anything	you	need	 to	do	 to	your	data	 to
clean	it	up	so	it	can	be	used.
Data	integration—If	you	use	VLOOKUP()	or	INDEX()/MATCH(),	then
you’re	probably	integrating	multiple	data	sets.	Power	Query	can	join
data	in	either	vertical	or	horizontal	fashion,	allowing	you	to	append
two	 tables	 (creating	 one	 long	 table)	 or	 merge	 tables	 together
horizontally,	without	 having	 to	write	 a	 single	VLOOKUP()	 function.
You	can	also	perform	other	operations,	such	as	grouping.
Data	 enrichment—These	 tasks	 include	 adding	 new	 columns	 or
doing	 calculations	 over	 a	 data	 set.	 Power	Query	makes	 it	 easy	 to
perform	 mathematical	 calculations	 like	 creating	 Gross	 Sales	 by
multiplying	Sales	Quantity	*	Sales	Price	or	add	new	formats	of	dates
based	on	your	 transaction	date	column.	 In	 fact,	with	Power	Query
you	can	even	create	entire	tables	dynamically,	based	on	the	value	in
an	 Excel	 cell.	 Need	 a	 dynamic	 calendar	 table	 that	 runs	 five	 years
back	from	today’s	date?	Look	no	further	than	Power	Query.

Power	 Query	 allows	 you	 to	 perform	 many	 transformations	 through	 menu
commands	 rather	 than	 having	 to	write	 formulas	 or	 code	 to	 do	 them.	 This
tool	was	built	for	Excel	pros,	and	with	no	coding	experience	whatsoever,	you
can	 use	 Power	Query	 to	 perform	 transformations	 that	would	 be	 incredibly
complex	in	SQL	or	VBA.	That’s	a	great	thing!

If	you’re	the	type	of	person	who	likes	to	get	under	the	covers	and	tinker	with
formulas	or	code,	however,	you	can.	While	there	 is	no	requirement	to	ever
learn	it,	Power	Query	records	everything	in	a	language	called	M.	(Languages
A	 through	 L	 were	 taken.)	 And	 if	 you’re	 a	 wizard	 who	 decides	 to	 take
advantage	of	this	language,	you	can	build	even	more	efficient	queries	and	do
even	more	amazing	things	than	without	it.

Load
With	Power	Query	you	can	load	data	into	one	of	four	places:

Excel	tables
The	Power	Pivot	Data	Model

Power	BI
Connections	only

The	last	point	might	seem	a	bit	mysterious,	but	it	simply	means	that	you	can
create	a	query	that	can	be	used	by	other	queries.	This	allows	for	some	very
interesting	use	cases	that	we’ll	explore	more	fully	in	the	book.

While	 it’s	 interesting	 to	 look	 at	 where	 the	 data	 loads,	 that	 really	 isn’t	 the
important	 part	 of	 the	 loading	 process	 in	 this	 ETL	 tool.	 It’s	how	 it	 loads	 or
rather	how	to	load	it	again.

Power	Query	is	essentially	a	macro	recorder	that	keeps	track	of	every	bit	of
the	extract	and	transform	steps.	You	can	define	a	query	once	and	determine
where	 you’d	 like	 to	 load	 it.	 After	 you’ve	 done	 that,	 you	 can	 simply	 refresh
your	query	to	run	it	again.

Figure	6 Define	the	transformation	process	once	and	consume	anytime.

Consider	this	for	a	moment:	You	need	a	particular	TXT	file,	and	it	takes	you
20	minutes	to	import	and	clean	it	before	you	can	use	it.	Power	Query	enables
you	to	accomplish	the	same	task	in	10	minutes,	which	saves	you	10	minutes
the	 first	 time	you	use	 it.	 Then	next	month	comes	along,	and	you	need	 the
new	version	of	the	same	TXT	file.	Without	Power	Query,	you	have	to	roll	up
your	sleeves	and	relive	the	20	minutes	of	Excel	exuberance	where	you	show
Excel	that	you’re	a	master	at	reliving	the	past,	performing	those	exhilarating
steps	 over	 and	 over	 again	 each	 month.	 Wait	 …	 you	 don’t	 find	 that
exhilarating?	 In	 that	 case,	 just	 save	your	new	TXT	 file	over	 the	old	one,	 go
into	Excel,	and	click	Data	→	Refresh	All.	You’re	finished.	Seriously.

This	is	where	you	see	the	real	power	of	Power	Query.	It’s	easy	to	use,	and	it’s
also	easy	to	reuse.	It	changes	your	hard	work	into	an	investment	and	frees	up
your	time	during	the	next	cycle	to	do	something	worthwhile.

Power	Query	Versions

Before	we	 tell	 you	where	 to	get	Power	Query,	 let’s	 talk	about	 the	updates.
Yes,	 that	 may	 seem	 like	 putting	 the	 cart	 before	 the	 horse,	 but	 there	 is	 a
pretty	solid	reason	for	this.

The	Update	Cycle
The	Power	Query	team	releases	monthly	updates.	We’re	not	talking	bug	fixes
(although	 those	 are	 certainly	 included);	 we’re	 talking	 new	 features	 and
performance	enhancements.	While	some	are	small,	others	are	much	 larger.
In	 February	 2014	 the	 team	 added	 the	 ability	 to	 connect	 to	 Microsoft
Exchange	as	a	data	source.	 In	early	2015	the	team	released	an	update	that
cut	query	 load	time	by	30%.	In	July	2015	the	team	released	an	update	that
solved	some	very	serious	issues	with	refreshing	to	Power	Pivot.

Are	 there	 risks	 involved	 in	 installing	 the	 latest	 updates	 as	 soon	 as	 they
become	 available?	 Sure	 there	 are.	 Bugs	 happen,	 particularly	 in	 complex
software.	But	 the	 reality	 is	 that	 the	Power	Query	 team	works	very	 hard	 to
address	 serious	 bugs	 in	 the	 software.	 If	 you’re	 particularly	 concerned,
download	 the	 installer	 and	 save	 it	 rather	 than	 installing	 directly	 from	 the
web.	This	will	allow	you	to	roll	back	if	the	need	ever	arises.

If	 you	 currently	 have	Power	Query	 installed,	make	 sure	 you	update	 it.	 This
book	was	written	using	version	2.24,	 released	 in	 July	2015,	and	you	should
be	on	at	least	this	update.

Where	Do	I	Get	Power	Query?
The	answer	depends	on	the	version	of	Excel	that	you	have:

Excel	 2010	 and	 Excel	 2013—Download	 it	 from
http://go.microsoft.com/fwlink/?LinkId=317450.
Excel	2016—You	already	have	Power	Query	installed,	but	the	entry
point	 is	 a	 bit	 different	 than	 in	 the	 Excel	 2010	 and	 Excel	 2013
versions.
Power	 BI	 Desktop—Wait,	 what?	What	 does	 this	 have	 to	 do	 with
Excel?	 A	 little	 and	 a	 lot,	 really.	 The	 short	 story	 is	 that	 Power	 BI
Desktop	 is	 a	 standalone	 program	 for	 sourcing	 and	modeling	 your
data.	 As	 it	 happens,	 Power	 Query	 is	 the	 tool	 used	 to	 source	 and
transform	 the	 data	with	 Power	 BI	 Desktop,	 so	 you’re	 going	 to	 be
learning	 a	 skill	 in	 this	 book	 that	 is	 portable	 to	 other	 applications.
The	Power	BI	Desktop	can	be	downloaded	from	www.powerbi.com.

http://go.microsoft.com/fwlink/?LinkId=317450
http://www.powerbi.com

Note:	 Even	 though	 Power	 Query	 handles	 data	 sourcing	 for	 Power	 BI
Desktop,	this	book	is	written	by	Excel	pros	for	Excel	pros.	Every	solution
in	the	pages	of	this	book	is	illustrated	with	Excel.

How	to	Use	This	Book
This	 book	 is	 intended	 to	 be	 your	 number-one	 resource	 for	 understanding
Power	Query	and	the	M	language	from	a	practical	point	of	view	as	an	Excel
pro.	Our	goal	is	to	address	Excel	problems	that	Excel	pros	commonly	face	and
show	you	how	to	use	Power	Query	to	solve	them.	We	also	cover	some	more
advanced	scenarios	as	well,	incorporating	Power	Query	and	M	best	practices
throughout,	 to	 help	 you	 understand	 not	 only	 how	 to	 build	 Power	 Query
solutions	but	how	to	make	them	last.

The	Learning	Map
After	 working	 with	 Power	 Query	 for	 a	 long	 time,	 we’ve	 come	 up	 with	 a
method	 that	 we	 believe	 is	 the	 optimal	 way	 to	 teach	 how	 to	 use	 this
incredible	 tool.	 It’s	 one	 that	 we’ve	 tested	 and	 refined	 in	 our	 online
http://powerquery.training	 workshops,	 and	 it	 involves	 carefully	 layering
techniques	that	build	on	each	other.	The	learning	map	is	shown	below.

Figure	7 An	optimal	learning	path	to	master	Power	Query	and	the	M	language.

http://powerquery.training

Where	to	Find	the	Power	Query	Commands
Power	Query	was	initially	released	after	Excel	2013	as	a	free	add-in	for	Excel,
and	it	was	(rather	shockingly)	backward	compatible	with	Excel	2010.	In	both
of	those	versions,	a	unique	ribbon	tab	holds	all	the	Power	Query	commands.

Because	Power	Query	is	so	incredibly	useful,	it	only	made	sense	to	integrate
the	tool	 into	Excel	2016.	Due	to	concerns	about	bloating	the	user	interface,
though,	Power	Query	was	not	given	its	own	ribbon	tab	in	Excel	2016	but	was
instead	squished	down	into	the	Get	&	Transform	group	on	the	Data	tab.	The
image	below	shows	where	Power	Query	is	accessible	in	each	application.

Figure	8 Locating	Power	Query	in	Excel	2010,	Excel	2013,	Excel	2016,	and	Power	BI	Desktop.

Creating	New	Queries
Since	 the	 routes	 to	 access	 the	 Power	 Query	 commands	 are	 different	 in
different	versions	of	Excel,	we	have	settled	on	using	the	following	command
structure	to	describe	how	to	get	started	for	each	query:

Create	a	new	query	→	From	File	→	From	CSV

When	you	see	this	structure,	you	need	to	interpret	it	as	follows:

Excel	2016:	Data	tab	→	New	Query	→	From	File	→	From	CSV

Excel	2010/2013:	Power	Query	tab	→	From	File	→	From	CSV

Figure	9 Creating	a	query	from	a	CSV	file	in	Excel	2016	vs	Excel	2010/2013.

So	let’s	put	this	to	the	test.	 If	we	want	you	to	grab	data	from	an	Azure	SQL
Database,	our	directions	read:

Create	 a	 new	 query	→	 From	 Azure	→	 From	Microsoft	 Azure	 SQL
Database

The	process	for	Excel	2016	and	for	Excel	2013	would	look	as	shown	below.

Figure	10 Creating	a	query	from	an	Azure	SQL	database	in	Excel	2016	vs	Excel	2010/2013.

Example	Files
Before	you	read	any	further,	we	highly	recommend	that	you	download	all	the
files	used	in	this	book	so	you	can	follow	along	with	us.	You	can	get	them	all	at
http://www.powerquery.training/book-files/.

It’s	time	to	explore	this	amazing	tool	in	depth.	Let’s	get	started.

Special	Elements

http://www.powerquery.training/book-files

Notes	 will	 appear	 in	 an	 indented	 green	 paragraph.	 These	 delicious
paragraphs	point	out	special	features,	quirks,	or	software	tricks	that	will
help	increase	your	productivity	with	Power	Query.

Warnings	appear	in	a	yellow	shaded	paragraph.	Pay	special	attention	to
the	caution	boxes	as	they	can	cause	you	to	slip	up.	We	want	to	prevent
you	 from	 heading	 down	 a	 path	 that	 will	 make	 the	 query	 experience
problems	in	the	future.

Chapter	1	Importing	Basic	Data
If	 you’re	 an	 Excel	 pro,	 it’s	 highly	 likely	 that	 your	 life	 is	 all	 about	 importing,
manipulating,	and	transforming	data	so	that	you	can	use	it.	Sadly,	many	of	us
don’t	have	access	to	big	databases	with	curated	data.	 Instead,	we	are	fed	a
steady	 diet	 of	 TXT	 or	 CSV	 files	 and	 have	 to	 go	 through	 the	 process	 of
importing	them	into	our	Excel	solutions	before	we	can	start	our	analysis.	For
us,	critical	business	information	is	stored	in	the	following	formats:

TXT	files,	which	are	delimited	by	characters
CSV	files,	which	are	delimited	by	commas
Excel	worksheets

Fortunately,	Power	Query	was	built	for	us,	and	it	allows	us	to	import	our	data
from	any	of	these	sources.

Importing	Delimited	Files
The	process	of	importing	a	delimited	file	such	as	a	.CSV	or	tab-delimited	.TXT
file	is	fairly	straightforward,	and	follows	the	basic	ETL	(extract,	transform,	and
load)	process,	as	described	in	the	following	sections.

Extract	(from	the	File)
The	download	package	for	this	chapter	contains	two	delimited	files,	either	of
which	will	work	 for	 this	 example.	 Both	 are	 named	Ch01-Delimited,	 though
one	is	a	comma-delimited	CSV	file	and	the	other	is	a	tab-delimited	TXT	file.
To	import	either	delimited	file	using	Power	Query	you	can:

Open	a	new	(blank)	workbook
Create	a	new	query	→	From	File	→	From	CSV	(or	From	Text	 if	you
used	the	TXT	file)
Browse	to	the	Ch01	Examples\Ch01-Delimited	file	and	double-click
it

Note:	 In	different	versions	of	Excel,	 you	use	 slightly	different	methods
for	 creating	a	new	query.	 To	 learn	how	 to	 create	a	new	query	 in	 your
version	 of	 Excel,	 see	 the	 section	 “Creating	 New	 Queries”	 in	 the
Introduction.

Excel	launches	a	new	window,	the	Power	Query	editor,	which	looks	like	this:

Figure	11 The	Power	Query	editor	with	an	imported	delimited	file.

Transform	(into	the	Desired	Output)
This	 Power	 Query	 editor	 view	 above	 shows	 some	 important	 pieces	 of
information	that	are	worth	taking	notice	of:

The	data	appears	in	a	nice	tabular	format	with	column	headers
The	query	has	been	automatically	given	a	name	 (the	name	of	 the
file)
There	are	three	steps	listed	in	the	Applied	Steps	box

It’s	the	last	point	that	is	the	most	salient	here.	If	you	try	clicking	the	Source
step,	you	see	a	slightly	different	view	of	your	data:

Figure	12 The	data	as	Power	Query	originally	imported	it,	shown	by	clicking	the	Source	step.

The	 impact	 of	 this	 is	 fairly	 important.	 Power	 Query	 imported	 your	 data,
analyzed	 it,	 and	 noticed	 some	 trends.	 What	 you	 don’t	 see	 is	 that	 Power
Query	 determined	 that	 your	 data	 is	 columnar	 (based	 on	 the	 fact	 that	 CSV

files	have	their	columns	separated	by	commas),	so	 it	 (correctly)	split	 it	 into
columns.	That	data	landed	in	the	Source	step.

Power	Query	then	analyzed	your	data	further	and	identified	that	the	first	row
had	 text	 headers	 that	were	 inconsistent	with	 the	 values	 in	 the	 columns.	 It
therefore	added	the	step	Promoted	Headers	to	promote	the	first	row	to	be
the	column	headers	for	your	table.

Next,	 Power	 Query	 attempted	 to	 identify	 and	 set	 the	 data	 types	 in	 the
columns.	 It	 made	 the	 assumption	 that	 the	 TranDate	 column	 is	 dates,	 the
Account	and	Dept	columns	are	numbers,	and	the	Sum	of	Amount	column	is
values.	It	then	applied	those	data	types	in	the	Changed	Type	step	you	see	in
the	Applied	Steps	box.

The	 great	 thing	 here	 is	 that	 you	 can	 step	 backward	 and	 forward	 through
these	steps	to	see	what	Power	Query	did	to	the	data.

You	can	make	some	modifications	to	clean	up	the	data	…	like	fixing	the	terms
in	the	column	headers	to	be	more	readable.	To	do	this,	follow	these	steps:

Select	Changed	Type	in	the	Applied	Steps	box
Right-click	the	header	of	the	TranDate	column	→	Rename	→	Date
Right-click	Sum	of	Amount	→	Rename	→	Amount

The	Power	Query	editor	now	looks	like	this:

Figure	13 The	data	set	with	renamed	columns.

Take	another	 look	at	the	Applied	Steps	box	right	now.	If	you	were	watching
closely	as	you	did	this,	you’d	have	noticed	that	a	new	step	was	created	when
you	renamed	the	Date	column.	But	another	step	was	not	created	when	you
renamed	the	Amount	column.	Instead,	the	two	steps	were	merged	together.

Power	Query	tries	to	keep	things	efficient	by	merging	like	operations	as	you
are	building	a	query.

The	 query	 is	 looking	 pretty	 nice,	 but	 what	 if	 you	 don’t	 agree	 with	 Power
Query’s	 data	 type	 choices?	 For	 example,	 the	 Account	 and	 Dept	 column
values	should	be	formatted	as	text,	not	numbers.	Fixing	this	is	no	problem:

Select	the	Account	column
Hold	down	the	Ctrl	key	and	select	the	Dept	column
Right-click	either	column	header	→	Change	Type	→	Text

The	Account	and	Dept	fields	are	now	aligned	to	the	left	of	the	column,	which
indicates	 that	 they	are	 formatted	as	 text,	not	values,	 consistent	with	Excel.
You	can	also	see	a	new	step	in	the	Applied	Steps	box,	called	Changed	Type1:

Figure	14 The	data	set,	looking	all	pretty	and	ready	for	loading.

So	why	didn’t	 the	type	changes	merge	back	 into	the	original	Changed	Type
step?	 The	 answer	 is	 that	 Power	Query	 doesn’t	 know	 if	 you	 did	 something
important	in	the	preceding	step,	so	it	reacts	the	safe	way	and	creates	a	new
step.

Power	Query	essentially	works	as	a	sequential	macro	recorder:	It	will	execute
exactly	these	steps,	in	exactly	this	order,	each	time	you	refresh	the	data.

Load
It’s	 now	 time	 to	 finalize	 the	 query,	with	 the	 load	 step.	 Before	 you	 commit
your	 query,	 you	 should	 give	 it	 a	 more	 descriptive	 name	 than	 the	 default.
Excel	will	use	the	name	you	provide	here	as	the	name	of	your	output	table	or
query.	Follow	these	steps:

Change	the	name	from	Ch01-Delimited	to	Transactions

Go	to	the	File	menu	→	Close	&	Load

By	 default,	 the	 data	 is	 loaded	 into	 an	 Excel	 table	 bearing	 the	 name	of	 the
query.	You	can	actually	see	the	table	get	created	in	a	gray	color	scheme	and
then	turn	green.	Each	table	query	goes	through	this	process	whenever	 it	 is
refreshed—first	turning	gray	and	then	turning	green	when	it	is	good	to	go.

You’ll	also	notice	a	new	task	pane,	 the	Workbook	Queries	pane,	pop	up	on
the	right	side	of	your	Excel	window.	This	useful	 interface	provides	you	with
key	 information	 about	 your	 queries	 (such	 as	 number	 of	 rows	 loaded	 and
errors	 encountered),	 and	 it	 also	 allows	 you	 to	 locate	 and	 manage	 your
queries	in	the	future.

Figure	15 The	Workbook	Queries	task	pane,	showing	the	results	of	the	query.

Note:	 If	 you’re	working	 along	with	 the	 book	 and	 your	 query	 shows	 a
significant	number	of	 errors,	 don’t	panic.	 This	 simply	means	 that	 your
regional	settings	are	not	set	to	a	U.S.	format.	Right	now	we	are	focused
on	 how	 to	 use	 the	 Power	 Query	 interface	 to	 import	 data,	 but	 rest
assured	that	we	will	show	you	how	to	address	this	specific	issue	(among
others)	in	Chapter	2.

With	the	data	loaded	in	the	table,	you	now	have	the	ability	to	refresh	it	any
time	via	a	few	different	methods:

Right-click	the	table	in	the	Excel	worksheet	→	Refresh
Right-click	the	query	in	the	Workbook	Queries	pane	→	Refresh
Go	to	the	Data	tab	→	Refresh	All

Each	 time	one	of	 these	commands	 is	 issued,	Excel	 triggers	Power	Query	 to
open	the	file,	process	each	of	the	steps	you	recorded,	and	place	the	data	in
the	table.	As	long	as	you	save	the	new	transactions	file	on	top	of	the	one	you
used	 to	build	 your	 solution,	 and	as	 long	as	 the	data	 structure	 is	 the	 same,
you’ve	just	automated	your	import	process	down	to	a	couple	of	clicks!

Note:	If	you	dismiss	the	Workbook	Queries	pane,	you	can	show	it	again
via	Data	tab	→	Show	Queries	in	Excel	2016	or	Power	Query	tab	→	Show

Pane	in	Excel	2010/2013.

Warning:	 In	 order	 to	 preserve	 the	 table	 and	 other	 features	 of	 Power
Query,	this	file	must	be	saved	in	a	valid	Excel	file	format,	such	as	XLSX,
XLSB,	or	XLSM.

Importing	Excel	Data
You	can	import	three	general	formats	of	Excel	data	from	a	workbook.	You	can
import	data	held	in:

Excel	tables
Named	ranges
Dynamic	named	ranges

Note:	Chapter	5	covers	importing	data	from	worksheets	without	tables
and	data	contained	in	other	workbooks.

Connecting	to	Excel	Tables
Rather	than	connect	to	an	official	Excel	table,	in	this	case	you	will	connect	to
data	that	is	in	a	tabular	format	but	with	no	table	style	yet	applied.	The	data
to	 use	 for	 this	 is	 located	 in	 the	 Ch01	 Examples\Excel	 Data.xlsx	 file	 on	 the
Table	worksheet,	and	it	looks	like	this:

Figure	16 Raw	data	in	an	Excel	worksheet.

To	pull	this	data	into	Power	Query,	follow	these	steps:

Click	any	cell	inside	the	data	range
Create	a	new	query	→	From	Table

At	this	point,	Excel	kicks	off	the	process	of	creating	an	official	Excel	table	for
you,	prompting	you	 to	confirm	 the	 table	boundaries	and	whether	 the	data
set	includes	headers.	Once	you	confirm	the	details,	you	are	launched	into	the
Power	Query	interface.

Note:	 If	 you	 started	 with	 an	 official	 Excel	 table,	 you	 would	 just	 be
launched	directly	into	the	Power	Query	editor,	without	being	prompted
to	confirm	the	range.

As	shown	below,	this	interface	has	some	differences	from	when	you	pulled	in
data	from	a	delimited	file.

Figure	17 Data	loaded	from	an	Excel	table.

Note	the	differences:

The	 table	 headers	 were	 imported	 from	 the	 table,	 so	 there	 is	 no
Promoted	Headers	step.
The	 query	 name	 is	 inherited	 based	 on	 the	 newly	 created	 table
name.

Note:	 When	 you	 click	 Close	 &	 Load,	 Excel	 attempts	 to	 create	 a	 new
table,	using	the	name	of	the	query	shown	in	the	Power	Query	editor.	If
the	name	conflicts	with	the	name	of	an	existing	table,	Excel	appends	an
underscore	 and	 a	number	 to	 the	newly	 created	 table	name	 to	 ensure
that	there	are	no	duplicated	names.

Finalize	this	query	with	these	steps:

Change	the	name	from	Table1	to	FromTable
Go	to	Home	→	Close	&	Load

A	new	worksheet	is	created,	and	it	contains	a	duplicate	of	the	original	table.
The	only	differences	at	this	point	are	the	table	name	and	that	Power	Query
now	has	a	connection	to	the	data.

Note:	 There	 is	 very	 little	 reason	 to	 create	 a	 duplicate	 of	 your	 table
without	 performing	 any	 transformations	 in	 the	 process.	We	 show	 this
process	 merely	 to	 illustrate	 how	 to	 connect	 and	 load	 from	 an	 Excel
table.

Connecting	to	Named	Ranges
Pulling	data	from	Excel	tables	is	by	far	the	easiest	way	to	pull	Excel	data	into
Power	Query,	but	it	isn’t	the	only	method.

The	 challenge	 with	 applying	 a	 table	 style	 in	 Excel	 is	 that	 it	 locks	 column
headers	 in	 place	 (breaking	 dynamic	 table	 headers	 driven	 by	 formulas),
applies	color	banding,	and	makes	other	stylistic	changes	to	your	worksheet
that	 you	 may	 not	 want.	 This	 might	 be	 a	 problem	 if	 you’ve	 spent	 a	 large
amount	of	time	building	an	analysis,	and	you	don’t	want	a	table	style	applied
to	the	data	range.

The	 good	 news	 is	 that	 you	 can	 also	 connect	 to	 Excel	 ranges,	 not	 just	 to
tables.	To	do	this,	you	can	use	the	NamedRange	worksheet	in	the	Ch01-Excel
Data.xlsx	 sample	 file.	 The	 data	 in	 it	 is	 identical	 to	 the	 data	 in	 the	 previous
example,	but	it’s	still	in	raw	form,	with	no	table	style	applied.

Pulling	 data	 into	 Power	Query	 from	 a	 named	 range	 involves	 three	 distinct
steps:

Defining	a	named	range	that	covers	the	data,
Selecting	the	named	range,	and	then
Creating	a	new	query.

Follow	these	steps	with	the	NamedRange	worksheet:

Select	cells	A5:F42
Go	to	the	Name	box	→	enter	the	name	Data	→	press	Enter

Figure	18 Creating	a	named	range.

Note:	 After	 you’ve	 created	 this	 name,	 you	 can	 select	 it	 by	 using	 the
drop-down	 arrow	 on	 the	 left.	 No	 matter	 where	 you	 are	 in	 your
workbook,	 you	will	 then	 jump	 to	 this	worksheet,	 and	 the	 data	 in	 the
named	range	will	be	selected.

Ensure	that	the	entire	named	range	is	selected	and	that	its	name	is
showing	in	the	Name	box
Create	a	new	query	→	From	Table

Note:	 If	 the	 named	 range	 is	 selected	 when	 you	 use	 the	 From	 Table
command,	Power	Query	does	not	 force	a	 table	style	on	your	data	and
instead	refers	directly	to	the	data	in	the	named	range.

As	you	can	see	below,	now	the	Power	Query	interface	looks	the	way	it	looks
when	you	import	delimited	files	rather	than	how	it	looks	when	you	connect
to	an	Excel	table:

Figure	19 Data	imported	via	a	named	range.

One	of	the	features	of	Excel	tables	is	that	they	have	a	predefined	header	row.
Since	that	doesn’t	exist	with	a	named	range,	Power	Query	has	to	connect	to
the	raw	data	source	and	run	its	analysis	to	figure	out	how	to	treat	the	data.

Much	 like	 with	 delimited	 text	 files,	 it	 identifies	 a	 row	 that	 appears	 to	 be
headers,	 promotes	 the	 headers,	 and	 attempts	 to	 apply	 data	 types	 to	 the
columns.

Notice	that	the	default	name	of	the	query	is	the	name	of	the	named	range.
Again,	 it’s	a	good	idea	to	change	this,	as	Excel	will	append	a	number	to	the
table’s	name	when	it	is	created	because	a	table’s	name	cannot	be	identical	to
any	other	table	or	named	range.	Follow	these	steps:

Change	the	query	name	to	FromNamedRange
Go	to	Home	→	Close	&	Load

Dynamic	Named	Ranges
Excel	 tables	 automatically	 expand	 both	 vertically	 and	 horizontally	 as	 new
data	is	added.	This	is	one	of	the	great	features	of	Excel	tables.	But	again,	the
challenge	is	that	they	carry	a	bunch	of	formatting	with	them.	Named	ranges
don’t	carry	all	that	formatting,	but	they	lack	the	automatic	expansion	ability
that	 is	 so	 fantastic	 with	 Excel	 tables.	 As	 a	 workaround,	 you	 can	 create	 a
dynamic	named	range	that	automatically	expands	as	the	data	grows.

On	the	DynamicRange	worksheet	of	 the	Ch01-Excel	Data.xlsx	 file	you’ll	 find
another	 copy	 of	 the	 original	 data.	 Follow	 these	 steps	 to	 set	 up	 a	 dynamic
named	range	that	expands	as	new	records	are	added:

Go	to	the	Formulas	tab	→	Name	Manager	→	New
Change	the	name	to	DynamicRange
Enter	the	following	formula	in	the	formula	bar:
=Dynamic!A5:INDEX(Dynamic!$F:$F,MATCH(99^99,Dynamic!$A:$A))

Click	OK

The	challenge	now	is	that	you	can	refer	to	this	named	range	in	Power	Query,
but	because	it	is	a	dynamic	name,	you	cannot	select	it	from	the	Name	box	in
Excel.	So	if	you	can’t	select	it,	how	can	you	attach	to	it	with	Power	Query	in
the	 first	 place?	 The	 secret	 is	 to	 create	 a	 blank	 query	 and	 then	 tell	 Power
Query	which	range	you	want	to	connect	to.	Here’s	how:

Create	a	new	query	→	From	Other	Sources	→	Blank	Query

Note:	If	you	don’t	see	the	formula	bar	in	the	Query	Editor	between	the
ribbon	and	the	data	area,	go	to	the	View	tab	and	click	the	Formula	Bar

checkbox.

In	the	formula	bar,	type	the	following:
=Excel.CurrentWorkbook()

Press	Enter

As	 shown	 below,	 you	 see	 a	 table	 that	 lists	 all	 the	 Excel	 objects	 in	 this
workbook	that	you	can	connect	to.

Figure	20 A	list	of	all	the	objects	Power	Query	sees	in	the	current	Excel	workbook.

There	at	the	bottom	is	the	DynamicRange	object	you	just	created.	Click	the
green	word	Table	in	the	Content	column	to	the	left	of	DynamicRange.	Power
Query	drills	into	the	range,	as	shown	below.

Figure	21 The	contents	of	the	DynamicRange	named	range.

By	looking	at	the	Applied	Steps	box,	you	can	see	that	you	took	these	steps:

Connected	to	the	source	of	the	data	(the	Excel	workbook)
Navigated	in	to	the	DynamicRange	table

In	addition,	Power	Query	made	 some	assumptions	about	 the	data	 for	 you,
and	 it	 took	 the	 liberty	 of	 applying	 a	 few	 more	 steps,	 such	 as	 promoting
column	headers	and	setting	the	data	types.	All	you	have	to	do	now	is	follow
these	steps:

Rename	the	query	FromDynamicRange
Go	to	Home	→	Close	&	Load

Considerations
Where	possible,	 it	 is	preferable	 to	build	your	solutions	against	Excel	 tables.
They	are	easier	to	set	up	than	the	alternatives,	easier	to	maintain,	and	quite
transparent	about	where	the	data	is	stored.

In	specific	situations,	you	might	have	reasons	to	avoid	tables,	however,	and
you	 can	 do	 that	where	 needed.	We	 recommend	 that	 you	 should	 generally
reach	to	these	techniques	only	when	you	have	good	reasons	to	do	so.

Chapter	2	Overriding	Power
Query	Defaults
Your	job	is	tough	when	everyone	follows	the	rules.	But	every	now	and	then
when	you’re	 trying	 to	 import	a	data	 file	 into	Excel,	you’re	 likely	 to	discover
that	 the	 report	programmer	didn’t	 follow	 the	proper	 report	 standards.	The
file	may	have	a	particular	file	extension	that	implies	it	should	follow	a	certain
standard,	but	 it	 is	actually	 just	masquerading	as	 that	 type	of	 file.	Yet	when
you	open	it	up,	you	find	something	that	is	not	compliant	with	the	standard,
and	it	doesn’t	work	correctly.

Malformed	File	Example
Say	that	you’re	working	with	a	CSV	data	set	that	looks	like	this	when	viewed
in	Notepad:

Figure	22 A	raw	look	at	a	malformed	CSV	file,	which	has	an	extra	header	row.

So	what’s	wrong	with	this	data	set?	Starting	on	row	2,	it	has	a	nice	consistent
list	of	data	showing	in	a	proper	comma-separated	format,	with	one	a	header
row	and	four	columns	of	data,	separated	by	commas.	The	issue	here	is	that
there	 is	 an	 extra	 row	 at	 the	 top	 of	 the	 page,	 with	 no	 commas	 in	 it.	 In	 a
normal	 CSV	 setup,	 this	 should	 not	 occur,	 as	 most	 programs	 work	 out	 the
column	count	based	on	the	first	row.

Interestingly,	when	Excel	opens	this	file,	it	handles	it	without	issue:

Figure	23 Malformed	CSV	file	loaded	into	Excel.

Power	Query,	 unfortunately,	 doesn’t	 handle	 this	 quite	 as	 gracefully,	 as	 you
can	see	if	you	follow	these	steps:

Open	a	blank	workbook
Create	a	new	query	→	From	File	→	From	CSV
Browse	to	Ch02	Examples\MalformedCSV.csv

When	Power	Query	launches,	the	data	is	imported	as	follows:

Figure	24 Malformed	CSV	file	loaded	into	Power	Query.

This	is	obviously	not	good.	You’re	looking	at	a	single	column	of	data.	Worse,
it	appears	that	Power	Query	recognized	the	column	as	delimited,	and	it	failed
to	import	the	last	three	columns!

The	challenge	here	is	that	Power	Query	relies	on	the	CSV	file	being	a	proper
CSV	 file	 because	 it	 wants	 to	 split	 the	 data	 based	 on	 the	 commas.	 It	 then
reads	the	first	row	to	determine	how	many	columns	exist.	Since	there	are	no
commas	in	that	line,	Power	Query	figures	that	it	must	be	a	single	column.	It
then	starts	to	read	each	row	and	stops	at	the	first	comma.

Normally	this	process	works	just	fine.	But	in	the	case	of	this	file,	Power	Query
ignores	a	large	part	of	the	data	you	need.	The	good	news	is	that	you	can	fix
this	by	telling	Power	Query	how	the	file	needs	to	be	treated.

Overriding	Power	Query’s	Default
Choices
Power	Query	loves	to	be	helpful	by	trying	to	make	assumptions	about	data.
While	 it’s	 often	 right,	 it	 can	 occasionally	 be	 wrong	 and	 needs	 some
manipulation.

There	are	two	main	ways	these	issues	manifest	in	the	user	interface:	Power
Query	 sometimes	 inserts	 extra	 steps	 that	 are	 incorrect/irrelevant,	 and
sometimes	 it	 misconfigures	 steps.	 You	 deal	 with	 these	 two	 problems
differently,	as	discussed	in	the	following	sections.

Removing	Power	Query	Steps

Of	 the	 two	 Power	 Query	 problems	 just	 mentioned,	 removing	 extra	 added
steps	is	by	far	the	easier.

In	 the	 case	of	 the	 import	 shown	earlier	 in	 this	 chapter,
Power	Query	 did	 two	 things.	 First,	 it	 imported	 the	 file,
and	then	it	set	the	data	type	on	Column1.	The	challenge
here	is	that	you	need	to	change	the	import	format,	and
you	may	not	be	sure	if	you’ll	even	have	a	Column1	after
this	 is	 done.	 For	 that	 reason,	 you	 need	 to	 delete	 the
Changed	 Type	 step.	 This	 is	 very	 easy	 to	 do—simply
mouse	over	 the	 step	 in	 the	Applied	Steps	box	and	click
the	 little	x	on	the	 left	 side	of	 the	step	to	delete	 it	 from
the	Power	Query	sequence:

Figure	25 Removing	 a	 step	 in
Power	Query.

Warning:	Be	aware	that	if	you	delete	steps	in	the	middle	of	a	query	that
are	 important	to	the	end	result,	you	may	cause	the	query	to	throw	an
error	by	the	end.	In	addition,	there	is	no	undo	functionality	in	this	area
of	the	user	interface!

In	 this	 case,	 deleting	 the	 Changed	 Type	 step	 doesn’t	 appear	 to	 change
anything	 in	the	query	view	at	this	point.	 (After	all,	Power	Query	 just	forced
the	 text	 to	 be	 treated	 as	 text.)	 It	 does,	 however,	 help	 you	 avoid	 potential
errors	as	you	fix	the	true	problem,	described	next.

Reconfiguring	Steps
Now	you	need	to	change	the	way	Power	Query	handles	the	file	at	import.	To
do	that,	you	need	to	click	the	little	gear	icon	on	the	right	side	of	the	Source
step.	When	you	do	that,	you’re	launched	into	a	configuration	window:

Figure	26 Changing	the	details	of	the	file	to	be	imported.

This	 dialog	 allows	 you	 to	 change	 a	 few	 important	 things	 about	 the	 file,
including	the	file	path	and	what	type	of	file	Power	Query	should	assume	this
is	when	trying	to	 import	 it.	Because	the	file	 in	this	case	carries	the	CSV	file
type	extension,	Power	Query	chose	the	Csv	Document	type.

Note:	Each	of	the	example	files	for	this	book	has	a	“Completed”	version.
In	order	to	get	them	to	refresh,	you	need	to	click	the	gear	 icon	on	the
Source	step	and	change	the	folder	location	to	the	location	on	your	PC.

At	this	point	you	need	to	tell	Power	Query	that	CSV	is	not	the	correct	format
for	this	document,	even	though	it	is	masquerading	under	a	CSV	extension.	To
do	this,	click	the	dropdown	next	to	Open	File	As	→	select	Text	File	→	OK.

Figure	27 The	different	options	available	for	data	imports.

The	results	are	much	more	comforting,	although	there	is	definitely	a	bit	more
work	to	do	now:

Figure	28 All	of	the	data	is	showing	again!

It	looks	like	you’ll	need	to	manually	split	this	data	up	into	columns,	but	that’s
not	a	huge	deal.	At	 least	 it	 is	comma	delimited,	and	that	will	make	things	a
bit	 easier.	 Now	 you	 need	 to	 go	 through	 the	 steps	 that	 you	 probably	 wish
Power	Query	had	done	for	you:

On	the	Home	tab	→	Remove	Rows	→	Remove	Top	Rows	→	1
Go	to	the	Transform	tab	→	Split	Column	→	By	Delimiter

Choose	to	split	by	Comma	→	At	Each	Occurrence	of	the	Delimiter	→
OK
Go	to	the	Transform	tab	→	Use	First	Row	as	Headers	→	OK

The	import	now	looks	much	better:

Figure	29 The	data	the	way	you	wanted	it	imported.

Note:	 You	might	 think	 that	 you	could	 skip	 this	process	by	 choosing	 to
import	 From	 Text	 instead	 of	 From	 CSV.	 Unfortunately,	 because	 Power
Query	is	so	helpful,	it	will	override	your	choice	and	still	import	the	file	as
a	CSV	anyway.

Reordering	Steps
When	you	review	the	steps	in	the	Applied	Steps	box,	you	can	see	that	after
you	split	the	columns	by	delimiter,	Power	Query	automatically	inserts	a	step
to	change	the	column	types.	Unfortunately,	the	data	is	lined	up	to	the	left,	so
you	know	that	Power	Query	configured	everything	as	text.

You	need	to	fix	that,	but	if	you	step	back	to	the	Changed	Type	step	and	start
converting	the	data	types	to	dates	and	values,	you’ll	cause	errors	across	row
1.	(They	are	all	text	values	and	haven’t	been	promoted	to	headers	yet.)	So	it
really	 makes	 sense	 to	 change	 the	 column	 types	 after	 you’ve	 promoted
headers,	 not	 before.	 Try	 moving	 that	 Changed	 Type	 step	 down	 by	 right-
clicking	the	Changed	Type	step	→	Move	Down.

The	step	moves,	but	it	causes	an	error	when	doing	so:

Figure	30 Power	Query	tells	you	it	can’t	find	a	specific	column	anymore.

The	reason	this	error	shows	up	is	that	the	Changed	Type	step	was	setting	the
data	types	on	Column1.1.	But	since	you	promoted	the	column	headers,	there
is	no	Column1.1	anymore;	it’s	now	TranDate.

Moving	steps	in	Power	Query	can	be	a	very	handy	feature,	but	you	have	to
watch	out	for	errors	like	the	one	just	shown.

As	you	become	more	comfortable	with	Power	Query,	you	may	decide	to	just
fix	a	problem	 like	 this	by	editing	 the	 formula	step	directly,	but	 for	now	the
easiest	way	to	fix	this	specific	issue	is	simply	to	delete	the	step	and	re-create
it:

Remove	the	Changed	Type	step	by	deleting	 it	 in	the	Applied	Steps
box
Right-click	Amount	→	Change	Type	→	Decimal	Number

Note:	If	you	get	an	error	in	the	column	when	you	do	this,	you	can	fix	it
by	doing	the	following:	Select	the	Promoted	Headers	step	→	right-click
the	Amount	column	→	Replace	Values.	Replace	the	$	sign	with	nothing.
At	this	point,	things	will	work	when	you	select	the	Changed	Type	step.
The	root	cause	of	the	issue	is	that	your	regional	settings	use	a	–	sign	for
negative	 numbers	 as	 opposed	 to	 putting	 negative	 numbers	 in
parentheses.

You’re	almost	done.	You	just	have	the	date	column	left	to	go.	For	now,	go	to
Home	→	Close	&	Load	to	finalize	the	query.

Forcing	Date	Types
A	huge	 issue	 for	 Excel	pros,	particularly	 those	outside	 the	United	States,	 is
importing	dates	and	getting	them	correct.

Once	data	is	in	Excel,	dates	are	no	big	issue.	No	matter	where	the	workbook
goes,	the	dates	will	render	correctly	and	can	easily	be	switched	to	display	in
the	 format	 the	 reader	needs,	wherever	 in	 the	world	 they	are	or	whichever
standard	they	wish	to	follow.	The	difficulty	is	in	importing	data	representing
dates	in	the	first	place.

The	problem	is	that	Excel	and	Power	Query	need	to	interpret	the	date	from
the	external	data	 source,	determine	what	date	 it	 is,	 and	 return	 the	correct
date	serial	number.	What	makes	the	job	difficult	is	the	fact	that	not	all	of	the
software	we	use	 in	our	daily	 jobs	 is	written	using	 the	 same	date	 standards

that	our	country	uses	as	a	standard.	In	fact,	 if	there	is	a	mismatch	between
the	data	source	and	the	regional	settings	on	your	PC,	you’ll	have	issues.

Warning:	 The	 examples	 and	 illustrations	 in	 this	 chapter	 have	 been
constructed	using	a	PC	with	a	U.S.	date	standard	format.	If	your	system
settings	are	in	a	different	format,	the	results	may	be	different	from	what
is	shown	here.

Demonstrating	Date	Issues
The	see	this	problem,	follow	these	steps:

Start	a	new	query	→	From	File	→	From	Text
Browse	to	and	open	Ch02	Examples\Dates.txt

The	 view	you	 get	 depends	on	 the	Windows	 regional	 settings	 in	 your	 PC.	 If
you	 have	 your	 settings	 configured	 to	 use	 the	 U.S.	 date	 standard
MM/DD/YYYY,	your	import	will	appear	as	shown	below.	If	your	system	uses	a
DD/MM/YYYY	 setting,	however,	 you’ll	 find	 that	 the	 first	 column	will	 be	 left
aligned,	and	the	second	column	will	be	right	aligned.

Figure	31 Dates	imported	and	formatted	using	U.S.	standards.

Change	the	format	of	the	left-aligned	column	to	Date	by	right-clicking	it	and
choosing	Change	Type	→	Date.	The	result	should	look	similar	to	that	shown
below	(although	the	column	you	selected	may	vary):

Figure	32 Applying	a	Date	format	to	data	sourced	from	a	different	region.

Notice	that	a	couple	of	issues	present	themselves	immediately.	First,	the	days
and	months	appear	flipped,	and	second,	you	get	errors	in	the	column.

With	the	Windows	regional	settings	set	to	MM/DD/YYYY,	Power	Query	tries
to	interpret	all	dates	in	that	format.	And	when	it	hits	a	date	like	17/6/2015,	it

throws	an	error	because	there	are	only	12	months	in	the	year.

Fixing	Date	Issues
The	secret	to	avoiding	the	problems	just	discussed	is	explicitly	telling	Power
Query	the	format	of	the	data	being	imported.	And	while	it’s	easy	to	do	this
once	you	know	how,	the	terminology	used	to	label	this	feature	wasn’t	put	in
terms	that	Excel	pros	recognize.

To	 force	 Power	 Query	 to	 read	 the	 dates	 using	 the	 correct	 setup	 for	 each
column,	follow	these	steps:

Remove	the	existing	Changed	Type	step
Right-click	 the	 MM/DD/YYYY	 column	 →	 Change	 Type	 →	 Using
Locale
Change	the	Data	Type	to	Date
Change	the	Locale	to	English	(United	States),	as	shown	below
Right-click	 the	 DD/MM/YYYY	 column	 →	 Change	 Type	 →	 Using
Locale
Change	the	Data	Type	to	Date
Change	the	Locale	to	English	(United	Kingdom)

Figure	33 Setting	the	region	your	data	comes	from.

As	 shown	 below,	 now	 the	 dates	 all	 render	 consistently	 according	 to	 the
format	declared	in	the	regional	settings	of	your	Windows	Control	Panel.	This
is	because	the	dates—no	matter	their	original	format—have	been	converted
to	the	date	settings	on	your	system.

Figure	34 A	consistent	view	of	dates	originally	contained	in	two	different	formats.

Note:	 If	 you	 don’t	 know	 which	 date	 standard	 your	 country	 uses,
experiment	and	choose	one	that	returns	the	correct	results.

If	 there	 is	 any	 chance	 that	 your	 data	 may	 be	 shipped	 to	 someone	 using
different	regional	settings,	it	is	highly	advisable	that	you	force	the	date	input
formats.	This	will	eliminate	the	chance	of	surprising	errors	occurring	and	is	a
practice	that	we	follow	throughout	this	book.

You	can	now	finalize	this	query	by	going	to	Home	→	Close	&	Load,	and	you
can	edit	the	MalformedCSV	query	to	force	the	dates	to	load	correctly:

In	the	Workbook	Queries	pane,	right-click	the	MalformedCSV	query
→	Edit
Right-click	the	TranDate	column	→	Change	Type	→	Using	Locale
Set	to	Date	→	English	(United	States)	→	OK

The	query	now	looks	as	follows	and	is	ready	to	be	loaded	to	the	worksheet.

Figure	35 The	query	is	ready	to	be	loaded	to	the	worksheet.

Warning:	Changed	Type	with	Locale	steps	will	not	merge	with	Changed
Type	steps.	If	a	Changed	Type	step	includes	a	date	conversion,	you	must
remove	 that	 step.	 The	 reason	 the	 query	 above	 worked	 is	 that	 the
Changed	Type	step	did	not	set	the	data	type	for	the	TranDate	column.

Chapter	3	Basic	Append
Operations
One	of	the	jobs	that	Excel	pros	do	on	a	regular	basis	is	appending	one	file	to
another	one.	Particularly	 in	organizations	where	data	 is	shared	by	CSV,	TXT,
or	Excel	files,	the	process	usually	boils	down	to	the	following:

Import	and	transform	file	#1
Import	and	transform	file	#2
Copy	file	#1’s	data	and	paste	it	at	the	end	of	file	#2
Save	the	file	as	Consolidated

The	user	then	builds	a	business	intelligence	solution	in	the	Consolidated	file.
When	 the	next	month	comes	along,	 the	data	 from	 the	next	monthly	 file	 is
copied	into	the	Consolidated	file,	the	solution	is	updated,	and	all	is	good.

But	the	process	is	plainly	not	all	sunshine	and	rainbows,	and	there	are	some
very	 obvious	 issues	 here.	 This	 chapter	 does	 not	 solve	 the	 issue	 of	 a	 user
making	a	mistake	in	the	transformations	(although	future	chapters	do),	but	it
does	 show	 you	 how	 Power	 Query	 can	 consolidate	 two	 or	 more	 data	 sets
without	ever	worrying	about	a	user	pasting	over	the	last	few	rows	of	data.

Importing	Data	Files
The	 Ch03	 Examples	 folder	 contains	 three	 CSV	 files:	 Jan	 2008.csv,	 Feb
2008.csv,	 and	 Mar	 2008.csv.	 This	 section	 walks	 through	 the	 process	 of
importing	and	appending	each	file.

Importing	the	files	is	fairly	straightforward:

Create	a	new	query	→	From	File	→	From	CSV
Browse	to	the	Ch03	Examples\Jan	2008.csv	→	Open

Power	Query	opens	 the	 file	and	executes	 the	 following	 steps	automatically
for	this	data	source:

Promotes	 the	 first	 row	 to	 headers,	 showing	 TranDate,	 Account,
Dept,	and	Sum	of	Amount.

Sets	 the	 data	 types	 to	 Date,	Whole	Number,	Whole	Number,	 and
Decimal	Value.

To	 be	 safe,	 you	 should	 remove	 the	 Changed	 Type	 step	 and	 re-create	 it	 to
force	the	dates	to	import	based	on	the	U.S.	standard	that	they	came	from:

Remove	the	Changed	Type	step
Right-click	 TranDate	 →	 Change	 Type	 →	 Using	 Locale	 →	 Date	 →
English	(United	States)	→	OK
Right-click	Account	→	Change	Type	→	Whole	Number
Right-click	Dept	→	Change	Type	→	Whole	Number
Right-click	Amount	→	Change	Type	→	Decimal	Number

Note:	 Remember,	 if	 your	 number	 format	 is	 set	 to	 display	 negative
numbers	with	 a	 –	 sign	 instead	of	 using	parentheses,	 you	may	have	 to
also	have	to	remove	the	$	signs	from	the	Sum	of	Amount	column	before
changing	that	column	to	a	decimal	number	in	order	to	avoid	errors.	To
do	this,	select	the	Changed	Type	with	Locale	step	→	right-click	the	Sum
of	Amount	column	→	Replace	Values	→	Replace	$	with	nothing.	After
you’ve	 performed	 these	 steps,	 select	 the	 Changed	 Type	 step	 again	 to
make	sure	you’re	at	the	end	of	the	query	before	continuing.

In	addition,	you	should	also	make	the	following	transformations:

Select	 the	 TranDate	 column	→	Home	→	Reduce	Rows	→	Remove
Errors
Right-click	the	TranDate	column	header	→	Rename	→	Date
Right-click	 the	 Sum	 of	 Amount	 column	 header	 →	 Rename	 →
Amount

Note:	Errors	are	explored	in	detail	in	Chapter	7.

At	this	point,	the	query	should	look	as	shown	below.

Figure	36 The	Jan2008	query	before	loading	to	the	worksheet.

Go	 to	 Home	 and	 click	 Close	 &	 Load	 to	 load	 the	 Jan2008	 query	 to	 the
worksheet.

You	now	need	to	replicate	the	process	with	both	the	Feb	2008.csv	and	Mar
2008.csv	 files.	 The	 import	 process	 uses	 exactly	 the	 same	 steps,	 and	when
you’re	done,	you	should	have	three	new	tables	in	your	Excel	workbook	in	all:

Jan_2008
Feb_2008
Mar_2008

Appending	One	Table	to	Another
Next,	you	need	to	append	the	Jan_2008	and	Feb_2008	tables.	To	do	this	you
need	 to	 create	 a	 new	 query,	 but	 this	 time	 you	want	 an	 append	 query.	 To
create	one,	follow	these	steps:

Excel	2016:	Go	to	New	Query	→	Combine	Queries	→	Append
Excel	2010/2013:	Go	to	the	Combine	group	→	Append

The	Append	dialog	appears,	and	in	it	you	can	choose	the	queries	you’d	like	to
append:

Figure	37 The	Append	dialog.

You	need	to	understand	a	couple	of	tricks	here:

This	 dialog	 only	 allows	 you	 to	 combine	 Power	Query	 queries,	 not
Excel	tables.
The	 query	 you	 choose	 in	 the	 top	 drop-down	 appears	 first	 in	 the
query	output.

Clicking	OK	opens	the	Power	Query	editor	with	a	new	query	called	Append1,
which	has	a	single	Source	step.

At	 this	 point	 you	may	be	 tempted	 to	 scroll	 down	 the	query	 to	 see	 if	 all	 of
your	records	are	actually	there.	Unfortunately,	this	won’t	really	work.	Power
Query	 doesn’t	 actually	 load	 all	 your	 data	 in	 the	 initial	 window;	 rather,	 it
shows	a	preview	of	your	data.	The	number	of	rows	it	shows	you	varies	with
the	 number	 of	 columns	 you	 add,	 but	 you	 can	 see	 this	 in	 the	 bottom-left
corner	of	the	Power	Query	editor:

Figure	38 Power	Query	shows	you	how	many	preview	rows	it	can	handle	right	now.

The	reason	for	this	behavior	is	that	Power	Query	can	be	used	to	handle	large
data	sets.	 Imagine	for	a	second	that	you	want	to	connect	to	a	data	set	that
has	5	million	rows,	but	you	only	want	to	pull	 in	the	records	for	department
150.	 The	 Power	Query	 team	 describes	 the	 preview	 as	 “looking	 at	 the	 first
inch	of	water	in	the	fire	hose,”	under	the	assumption	that	the	preview	should
give	you	enough	information	to	determine	the	key	structure	of	the	data.	You
then	make	your	transformations	on	the	preview	data	and	create	a	pattern.	At
load	 time,	 Power	 Query	 processes	 this	 pattern	 against	 the	 data,	 pulling	 in
only	the	records	it	needs	to	give	you	your	output.	This	is	much	more	efficient
than	loading	all	the	data	to	the	workbook	and	then	processing	every	row	and
column.	But	if	you	can’t	see	all	the	data,	how	do	you	know	it	worked?

The	answer	is	to	finalize	the	query.	Here’s	how:

Change	the	name	of	the	query	to	Transactions
Go	to	Home	→	Close	&	Load

A	new	table	is	created	in	the	worksheet,	and	you	see	some	key	information
in	the	Workbook	Queries	pane:

Figure	39 The	Workbook	Queries	pane	show	that	the	record	counts	match.

Still,	you	shouldn’t	just	believe	that	everything	has	worked.	You	can	create	a
PivotTable	to	make	sure	Excel	isn’t	lying	to	you:

Select	any	cell	in	the	Transactions	table	→	Insert	→	PivotTable
Place	the	PivotTable	in	cell	F2	of	the	current	worksheet
Drag	Amount	to	the	Values	area
Drag	Date	to	the	Rows	area

If	you’re	using	Excel	2010	or	2013,	you	also	need	to	take	these	steps:

Right-click	cell	F3	→	Group	→	by	Days	and	Months	→	OK
Right-click	cell	F3	→	Expand	Collapse	→	Collapse	Entire	Field

You	 end	 up	 with	 a	 PivotTable	 that	 shows	 that	 both	 tables	 were	 indeed
consolidated	into	one:

Figure	40 January	and	February	transactions	are	now	in	one	PivotTable.

Appending	Additional	Tables
Say	that	you	want	to	add	the	March	records	to	the	query	as	well.	You	might
be	tempted	to	head	back	to	the	same	spot	to	append	the	March	records:

Figure	41 Setting	up	to	merge	March’s	records.

But	wait!	Will	this	actually	work?	Won’t	this	create	a	new	query?	Yes,	that’s
absolutely	the	case.	Doing	this	will	kick	off	a	new	append	query,	which	won’t
make	any	sense	at	all.	The	PivotTable	is	already	built	against	the	Transactions
table,	so	you	really	need	to	go	back	and	modify	that	table	to	append	March’s
records	as	well.	But	how	do	you	do	that?

The	answer	is	to	cancel	the	Append	dialog	shown	above	and	go	back	to	the
Workbook	 Queries	 pane,	 where	 you	 right-click	 the	 Transactions	 query	 →
Edit.

In	 the	 Power	 Query	 editor,	 you	 can	modify	 your	 existing	 query.	 And,	 as	 it
happens,	 there	 is	 a	 really	 inviting	 button	 on	 the	 Home	 tab	 that	 looks
promising:	 the	 Append	 Queries	 button	 in	 the	 Combine	 group	 (the	 second
group	from	the	right).

Unlike	the	Append	button	in	the	Excel	user	interface,	the	button	in	the	Power
Query	user	 interface	asks	 for	only	a	single	 table,	as	 it	already	knows	which
query	to	append	it	to	(the	one	you’re	currently	in).

Interestingly,	the	options	include	not	only	the	other	Power	Queries	you	have
set	up	but	also	the	query	you	are	currently	building:

Figure	42 Options	to	append	include	the	table	you	are	working	with.

Note:	Selecting	the	table	listed	as	current	would	append	a	copy	of	the
query	 to	 that	 point,	 essentially	 duplicating	 the	 data	 set.	While	 this	 is
certainly	not	something	that	most	users	would	use	on	a	frequent	basis,
it’s	nice	to	know	that	the	capability	exists.

At	this	point,	you	should	choose	the	Mar	2008	query,	and	it	will	be	appended
to	the	Transactions	query	that	already	holds	Jan	and	Feb	records:

Select	Mar	2008	→	OK
Go	to	Home	→	Close	&	Load

Now	you	see	an	unfortunate	issue	with	Power	Query	queries.	When	you	look
at	 the	 worksheet	 that	 holds	 your	 PivotTable,	 you	 can	 see	 that	 the
Transactions	query	(and,	therefore,	the	Excel	table)	does	hold	all	6,084	rows
—the	combined	totals	of	the	three	previous	data	sets.	Yet	the	PivotTable	has
not	changed:

Figure	43 The	Transactions	actions	table	has	updated,	yet	the	PivotTable	has	not.

This	 is	 a	minor	 inconvenience,	 but	 you’ll	 need	 to	 refresh	 the	 PivotTable	 as
well	in	order	to	have	the	updated	values	flow	through.	To	do	that,	right-click
the	PivotTable	→	Refresh.	And	it	does,	indeed,	update:

Figure	44 The	January	through	March	records	are	now	showing	in	a	single	PivotTable.

Combining	Queries	with	Different
Headers
When	you’re	appending	queries,	as	long	as	the	headers	of	the	queries	being
combined	are	 identical,	 the	second	query	will	 just	be	appended	to	the	 first
one,	as	you’d	expect.	But	what	 if	 the	columns	don’t	have	the	same	column
headers?

In	 the	 case	 of	 the	 image	 below,	 the	 user	 forgot	 to	 rename	 the	 TranDate
column	in	the	Mar	2008	query.	Everything	was	fine	as	the	user	merged	the
Jan	2008	and	Feb	2008	 records	 together.	But	when	 the	user	appended	 the
Mar	2008	records	to	the	table,	things	broke	down:

Figure	45 The	TranDate	column	full	of	null	values	in	January	and	the	Date	column	full	of	null	values	in
March.

When	you	append	one	 table	 to	another,	Power	Query	 loads	 the	data	 from
the	 first	 query.	 It	 then	 scans	 the	 header	 row	 of	 the	 second	 query	 and	 all
subsequent	 queries.	 If	 any	 of	 the	 headers	 are	 not	 present	 in	 the	 results
retrieved	 to	 date,	 Power	 Query	 adds	 the	 new	 column(s).	 It	 then	 fills	 the
appropriate	record	into	each	column	for	each	data	set,	filling	any	gaps	with
null	values.

In	the	scenario	above,	this	means	that	the	TranDate	column	is	filled	with	null
values	in	January,	since	the	Jan	2008	query	doesn’t	have	a	TranDate	column.

On	the	flip	side,	because	the	user	forgot	to	rename	the	TranDate	column,	the
Mar	 2008	 query	 has	 no	 Date	 column.	 For	 this	 reason,	 the	 Date	 column	 is
filled	 with	 null	 values	 for	 each	 March	 record,	 while	 the	 TranDate	 column
holds	the	values	that	were	intended	to	be	in	the	Date	column.

The	fix	for	this	is	to	do	the	following:

Go	to	the	Workbook	Queries	pane	→	right-click	the	Mar	2008	query
→	Edit
Right-click	the	TranDate	column	→	Rename	→	Date
Save	the	Mar	2008	query
Go	 to	 the	Workbook	 Queries	 pane	→	 right-click	 the	 Transactions
query	→	Edit

As	soon	as	you	open	the	Transactions	query,	you	see	that	it	has	already	fixed
itself.

Implications	of	Append	Queries
The	implications	of	the	ability	to	append	queries	are	numerous.	Consider	for
a	 second	 that	 you	 have	 just	 reached	 out	 to	 three	 separate	 files,	 imported
them,	combined	them	into	a	single	table,	and	built	a	PivotTable	from	them.
That	is	one	PivotTable	from	three	separate	files.

And	when	you	want	to	refresh	the	solution,	you	simply	need	to	go	to	Data	→
Refresh	All	to	refresh	it.	Power	Query	kicks	off	the	refresh	of	the	Transactions
table,	which	kicks	off	the	refresh	of	the	three	individual	data	tables	to	feed	it.

Assume	now	 that	 this	 solution	was	built	 on	 files	 that	weren’t	 date	 specific
but	were	instead	Product	1,	Product	2,	and	Product	3.	Say	that	you’ve	built	a
solution	by	loading	in	the	CSV	files	that	hold	the	pertinent	data,	and	you’ve
built	a	PivotTable	against	them.	And	then	the	next	month	comes	along	…	and
the	 IT	 department	 sends	 you	 replacement	 files	 with	 new	 transactions	 for
each	product.

You	save	the	new	Product	1	file	over	the	old	one,	and	you	do	the	same	for
Product	2	and	Product	3.	Then	you	click	Refresh	All,	and	you’re	done.

Seriously,	let	that	sink	in	for	a	moment:	You’re	done.

You’ve	cut	your	work	time	to	a	fraction	of	what	was	required	in	the	previous
process,	and	there	is	no	risk	of	having	users	accidentally	paste	over	existing
data,	 as	Power	Query	doesn’t	work	using	 cut	 and	paste.	 It	 simply	 appends
one	set	to	the	other	and	removes	the	duplicated	headers.	You	get	the	best	of
both	speed	and	consistency	in	a	single	solution.

Note,	 however,	 that	 the	 process	 of	 appending	 queries	 is	 not	 specific	 to
working	 with	 external	 CSV	 or	 TXT	 files.	 Say	 that	 you	 have	 tables	 of
transactions	 such	 as	 the	 promotional	 gift	 certificates	 your	 company	 has
issued	this	year.	The	author	of	the	workbook	set	up	12	tables,	one	for	each
month	of	 the	year,	 stored	on	separate	worksheets.	You	can	see	 that	 in	 this
case,	you	could	easily	consolidate	those	individual	tables	into	one	master	list
for	analysis.

Chapter	4	Importing	All	Files	in	a
Folder
The	 classic	 way	 that	 Excel	 pros	 deal	 with	 importing	 all	 files	 in	 a	 folder	 is
incredibly	 tedious	 and	 error	 prone.	 Each	 file	 needs	 to	 be	 imported,
transformed,	 copied,	 and	pasted	 into	 the	master	 table.	Depending	on	how
big	and	complex	the	transformations	are,	how	many	files	there	are,	and	how
long	the	solutions	have	been	running,	this	process	can	be	terrifying.

You’ve	 already	 seen	 that	 Power	 Query	 can	 eliminate	 the	 copying/pasting
dangers	involved	with	importing	and	appending	files	on	a	one-by-one	basis,
but	what	about	these	pretty	serious	issues:

Importing	multiple	files	is	tedious.
Repeating	complex	transformation	steps	is	error	prone.

The	 good	 news	 is	 that	 Power	Query	 has	 a	way	 to	 deal	with	 both	 of	 these
issues	as	well.

Note:	 This	 chapter	 focuses	 on	 importing	 binary	 files,	 such	 as	 TXT	 and
CSV	files.	Chapter	5	covers	importing	data	from	multiple	workbooks.

Sourcing	All	Files	in	a	Folder
The	example	files	for	this	chapter	are	broken	down	into	four	subfolders:

Begin
2008	–	More
2009
2010

Each	folder	contains	a	variety	of	text	files	that	you	will	combine.

Extracting	the	Files	Listing
To	get	started,	open	a	blank	workbook:

Start	a	new	query	→	From	File	→	From	Folder
Click	Browse

You	are	presented	with	the	dialog	that	Power	Query	uses	to	select	folders.

Locate	the	Ch04	Examples\Begin	folder	→	select	 it	→	OK	(to	close
the	folder	picker	dialog)
Click	OK	(to	load	the	folder	to	Power	Query)

You	 now	 see	 a	 new	 Power	 Query	 window.	 This	 time,	 things	 look	 quite
different	than	what	you’ve	seen	so	far.	Instead	of	transactions,	you	see	a	list
of	files	and	their	properties:

Figure	46 The	list	of	files	in	the	Begin	folder.

Future-Proofing	File	Selection
In	this	chapter,	you	will	be	combining	all	the	CSV	files	from	the	four	folders.
Before	you	go	any	further,	you	should	filter	this	 list	to	ensure	that	only	CSV
files	are	present.	Even	though	you	see	only	CSV	files	in	the	screen	above,	you
just	never	know	when	someone	else	will	decide	to	store	an	Excel	workbook
in	 this	 folder.	 If	 that	 happens,	 it’s	 sure	 to	 break	 your	 solution	 right	 when
you’re	 at	 your	 busiest.	 For	 the	 amount	 of	 effort	 it	 takes,	 a	 little	 future-
proofing	is	well	worth	the	time.

To	 filter	 to	 just	 CSV	 files,	 you’d	 normally	 click	 the	 filter	 arrow	 on	 the
Extension	 column,	 uncheck	 the	 (Select	 All)	 option,	 and	 then	 check	 CSV.
Unfortunately,	 because	 you	 only	 have	 CSV	 files	 in	 the	 list	 right	 now,	 doing
that	rechecks	the	(Select	All)	option,	which	is	not	going	to	help.	You’re	going
to	need	 to	go	a	bit	deeper	 to	protect	yourself	here	and	 force	your	 filter	 to
CSV.

Before	 you	 do	 that,	 however,	 you	 also	 need	 to	 guard	 against	 accidentally
filtering	 out	 “CSV”	 files	 when	 you	 filter	 for	 “csv”	 (as	 text	 filters	 are	 case
sensitive).	To	deal	with	this,	follow	these	steps:

Right-click	the	Extension	column	→	Transform	→	Lowercase
Select	the	Extension	column’s	filter	arrow	→	Text	Filters	→	Equals
Set	the	filter	to	Equals	.csv

Warning:	Don’t	forget	the	period	in	front	of	the	csv!	If	you	forget	it,	you
won’t	get	any	files,	as	csv	is	not	the	same	as	.csv.

Click	OK

Even	though	things	don’t	look	any	different	after	you	take	these	steps,	you’ve
now	forced	the	system	to	only	accept	CSV	files	for	your	operations,	reducing
the	chance	of	contaminated	data	blowing	apart	your	solution.

Combining	Files
Now	the	time	has	come	to	combine	files.	Provided	that	you	are	working	with
binary	files	such	as	TXT	or	CSV	files,	this	is	incredibly	easy	once	you	know	the
trick.

Combining	the	Initial	File	Set
Take	 a	 careful	 look	 at	 the	 icons	 in	 the	 first	 three	 columns	 of	 the	 current
query:

Figure	47 The	first	three	columns	of	the	current	query.

The	Name	column	shows	an	unfiltered	filter	icon,	and	the	Extension	column
shows	 a	 filter	 that	 is	 currently	 being	 used.	 But	 what	 about	 the	 Content
column?	What	is	that	icon?

It’s	 incredible,	 that’s	 what	 it	 is.	 That	 tiny	 little	 button	 appears	 on	 columns
containing	binary	files,	and	when	you	click	it,	magic	happens:

Figure	48 Magic	in	action	(combining	binaries).

A	lot	of	stuff	happens	when	you	clicked	that	magic	button,	and	looking	at	the
Applied	Steps	box	lets	you	retrace	all	of	it.

In	this	example,	we	were	on	the	Filtered	Rows	step	when	we	clicked.	From
there	 Power	Query	 combined	 all	 the	 individual	 files	 into	 one	massive	 CSV,
imported	it,	scanned	it,	promoted	the	first	row	to	headers,	and	made	a	guess
about	the	data	types.	All	this	happened	with	the	click	of	one	tiny	button!

That	seems	too	good	to	be	true,	and	naturally	the	preview	window	is	saying
that	you’ve	got	999+	rows,	so	you	can’t	even	verify	that	it	worked.	You	need
to	finalize	this	query	and	pivot	it	so	that	you	can	reassure	yourself	that	this	is
working.	Follow	these	steps:

Remove	the	Changed	Type	step
Right-click	 TranDate	 →	 Change	 Type	 →	 Using	 Locale	 →	 Date	 →
English	(United	States)	→	OK
Right-click	Account	→	Change	Type	→	Whole	Number
Right-click	Dept	→	Change	Type	→	Whole	Number
Right-click	Amount	→	Change	Type	→	Decimal	Number
Rename	the	query	from	Query1	(or	Begin	in	2013)	to	Transactions
Select	TranDate	→	Home	→	Reduce	Rows	→	Remove	Errors
Right-click	TranDate	→	Rename	→	Date
Right-click	Sum	of	Amount	→	Rename	→	Amount
Home	→	Close	&	Load

The	 data	 lands	 6,084	 rows	 in	 an	 Excel	 worksheet,	 which	 looks	 promising.
Now	you	can	pivot	it:

Select	a	cell	in	the	table	→	Insert	→	PivotTable
Create	the	PivotTable	on	the	same	worksheet	in	cell	F2
Drag	Amount	to	Values
Drag	Date	to	Rows
Right-click	F3	→	Group	→	Select	Months	&	Years	→	OK

You	can	see	below	that	you	are	indeed	looking	at	the	data	from	all	three	files
—and	 you	 didn’t	 have	 to	 pre-import	 each	 file	 and	 then	 append	 them
manually!

Figure	49 Data	representing	all	files	imported	from	a	single	folder.

Adding	More	Files
One	of	the	things	that	makes	Power	Query	so	great	is	the	ability	to	refresh	a
solution	at	will	and	see	it	work.	So	far	in	this	book	the	examples	have	been
targeted	 at	 specific	 files	 and,	without	 changing	 the	 details	 of	 the	 files,	 it’s
hard	to	see	that	a	refresh	has	any	effect.	That	changes	now.

Go	back	 to	 the	Ch04	Example	 Files	 folder.	Remember	 that	 there	were	 four
folders	 in	 there,	 and	you	 targeted	a	 solution	against	 the	Begin	 folder.	Now
you’re	going	to	simulate	the	process	of	adding	new	files	to	the	solution:

Drag	the	2008	–	More	folder	into	the	Begin	folder
Return	to	Excel	→	Data	→	Refresh	All

Power	 Query	 kicks	 off	 the	 refresh	 process	 and	 updates	 the	 Transactions
table,	 showing	 that	 it	 has	 loaded	 25,700	 rows.	 However,	 once	 again,	 the
PivotTable	doesn’t	update:

Figure	50 Plainly	you’ve	got	more	files,	but	why	aren’t	they	in	the	PivotTable?

It’s	an	easy	fix.	Either	right-click	the	PivotTable	→	Refresh,	or	just	use	Data	→
Refresh	All	again.	Here’s	what	you	end	up	with:

Figure	51 The	PivotTable	properly	updates,	proving	that	you	pulled	in	the	records.

How	about	you	add	even	more	files?

Drag	the	2009	folder	into	the	Begin	folder
Drag	the	2010	folder	into	the	Begin	folder
Return	to	Excel	→	Data	→	Refresh	All	→	Refresh	All

Warning:	Using	a	double	Refresh	All	approach	works	fine	for	small	data
sets.	 When	 they	 get	 large,	 however,	 you	 might	 want	 to	 use	 VBA	 to
automate	the	process	of	refreshing	the	queries	first	and	the	PivotTables
second,	 as	 that	 avoids	 duplicate	 calls	 to	 the	 data	 source.	 This	 topic	 is
covered	in	Chapter	16.

Absolute	magic!

Figure	52 60,136	records	at	the	click	of	a	button	(or	two).

With	a	 solution	built	 in	 this	manner,	 all	 you	have	 to	do	each	month	 is	 add
your	 data	 files	 to	 the	 subfolder	 as	 you	 receive	 them	 and	 then	 refresh	 the
solution.

Recursion
One	of	the	really	interesting	factors	in	this	solution	is	that	you	didn’t	need	to
drop	the	files	directly	into	the	root	of	the	Begin	folder	in	order	to	have	them
pulled	 into	 the	 Power	Query	 solution.	 Power	Query	 practices	 recursion	 by
default,	meaning	 that	 it	 examines	 the	 folder	 and	all	 its	 subfolders	 for	 files.
This	allows	you	to	keep	your	data	 files	subclassified	by	year,	 if	desired,	and
the	solution	will	still	work.

Note:	 If	you	go	back	and	edit	 the	query,	 refresh	the	preview	and	then
returning	to	the	Source	step,	you	see	that	the	folder	path	for	each	file	is
also	 listed	 in	 the	 Folder	 Path	 column.	 Using	 this,	 you	 could	 filter	 to
include	 only	 the	 root	 folder	 or	 exclude	 certain	 subfolders	 should	 that
need	arise.

Preserving	File	Properties	on	Import
Being	able	 to	 import	all	 files	 in	one	shot	 is	a	huge	 time	saver,	but	consider
the	following	real-world	scenario.

A	 system	was	 set	 up	 to	 export	 a	 list	 of	 transactions	 to	 a	 file	 and	 name	 it
based	on	the	last	month	and	the	year	(for	example,	Feb	2008.csv).	The	issue
in	 this	 particular	 case	 is	 that	 the	 system	 was	 not	 set	 up	 to	 include	 a
transaction	date	 inside	 the	 file,	as	all	 transactions	were	assumed	to	be	 the

month-end	date.	The	user	who	imported	these	files	was	expected	to	import
all	transactions	and	place	the	appropriate	month-end	date	on	each	row,	and
he	had	two	years’	worth	of	files	to	process.	Unfortunately,	when	combining
files	using	the	method	outlined	earlier	in	this	chapter	for	combining	binaries,
you	lose	access	to	the	filenames,	which	were	a	key	component	in	solving	this
solution.

Does	this	mean	you	can’t	use	Power	Query	to	do	the	job?	Not	at	all.	You	just
need	to	use	some	different	tricks,	described	next.

Setting	Up	the	Import
The	initial	steps	in	setting	up	the	import	are	the	same	as	outlined	earlier	 in
the	chapter,	with	the	only	difference	being	that	you’ll	now	get	a	large	list	of
files	 (since	 you	 moved	 the	 extra	 folders	 into	 the	 Begin	 folder).	 Start	 by
following	these	steps,	which	are	the	same	ones	you	took	earlier:

New	Query	→	From	File	→	From	Folder
Select	the	Begin	Folder
Right-click	the	Extension	column	→	Transform	→	Lowercase
Select	the	Extension	column’s	filter	arrow	→	Text	Filters	→	Equals	→
Equals	.csv

From	here,	things	change	from	what	you’ve	done	before

Removing	Extraneous	Columns
There	 are	 a	 lot	 of	 columns	 in	 the	 Power	 Query	 editor	 right	 now,	 and	 you
really	don’t	need	them	for	the	next	steps.	You	should	get	rid	of	the	irrelevant
ones	so	you	can	focus	on	the	ones	that	truly	matter:

Select	 the	Name	 column	→	 hold	 down	 Ctrl	→	 select	 the	 Content
column
Right-click	one	of	the	columns	→	Remove	Other	Columns

Note:	 Power	Query	works	 as	 a	 sequential	macro	 recorder,	 processing
each	 step	 before	 moving	 on.	 This	 means	 that	 unlike	 Excel,	 it	 doesn’t
require	 precedent	 columns	 to	 stick	 around.	 Given	 that,	 and	 because
you’ve	already	filtered	CSV	files,	you	can	remove	that	column	as	well.

These	steps	had	two	effects.	The	first	is	that	you	removed	all	the	extraneous
columns	 in	 the	 easiest	 fashion	 possible	 (which	 is	 more	 future-proofing	 in

case	the	Power	Query	team	decides	to	add	another	column	to	this	view	in	a
future	 update).	 Second,	 because	 of	 the	 order	 in	 which	 you	 selected	 the
columns,	 you	 flipped	 the	 order	 in	 which	 they	 are	 presented	 in	 the	 Power
Query	editor,	as	shown	below:

Figure	53 Columns	thinned	down	and	reordered	in	the	Power	Query	editor.

Converting	Text	to	Dates
The	next	task	is	to	convert	the	filenames	into	valid	dates	for	the	month	end.
Power	Query	actually	has	some	very	good	facilities	for	this,	but	in	order	for
them	 to	work,	 the	 data	 needs	 to	 look	 like	 a	 date,	which	 takes	 a	 couple	 of
tricks:

Right-click	the	Name	column	→	Replace	Values
Set	Value	to	Find	to	.csv	→	leave	Replace	With	blank	→	OK
Right-click	the	Name	column	→	Replace	Values
Set	 Value	 to	 Find	 to	 a	 single	 space	→	 set	 Replace	With	 to	 “	 1,	 ”
(space	 number	 one	 comma	 space—but	 without	 the	 quotation
marks)	→	OK

The	data	should	now	look	as	follows:

Figure	54 Data	that	looks	like	a	date	but	is	still	text.

At	this	point	you	can	force	the	data	to	be	a	valid	date	and	increment	it	to	the
last	day	of	the	month:

Right-click	the	Name	column	→	Change	Type	→	Date
Go	to	the	Transform	tab	→	Date	→	Month	→	End	of	Month

Right-click	the	Name	column	→	Rename	→	Date

You	 now	 have	 the	 month-end	 dates	 prepared	 to	 merge	 with	 your
transactional	records:

Figure	55 Proper	dates	in	the	Date	column.

Note:	 There	 is	 no	 need	 to	 force	 this	 set	 of	 dates	 to	 import	 using	 the
locale	settings,	as	Power	Query	will	correctly	recognize	a	full	text	date.

Merging	File	Properties	with	Binary	Content
At	this	point	you	are	ready	to	merge	the	month-end	dates	with	all	the	rows
inside	the	binary	files.	The	big	challenge	is	that	clicking	the	Combine	Binaries
button	 just	 throws	 away	 the	 Date	 column	 you	worked	 so	 hard	 on.	 So	 you
need	to	extract	the	contents	of	each	binary	file.	Here’s	what	you	do:

Go	to	the	Add	Column	tab	→	Add	Custom	Column
Enter	the	following	formula:
=Csv.Document([Content])

Click	OK

Warning:	 Power	Query	 formulas	 are	 case	 sensitive,	 so	make	 sure	 that
everything	is	cased	correctly,	or	it	won’t	work.

Note:	If	you	don’t	want	to	type	a	long	field	name,	you	can	just	double-
click	 it	 in	 the	 field	 list	 when	 you	 are	 building	 your	 custom	 column
formula.	 This	 will	 place	 the	 field	 list	 in	 your	 formula,	 surrounded	 by
square	braces.

The	 result	 is	 a	 new	 column	 called	 Custom,	which	 is	 filled	with	 a	 bunch	 of
tables:

Figure	56 A	column	of	tables.

Stop	and	think	about	that	formula	for	a	second.	The	Csv.Document()	function
is	the	function	you	can	use	to	turn	the	contents	of	a	binary	file	into	a	table.
[Content]	simply	refers	to	the	column	name.

Note:	 Although	 you	 might	 expect	 one,	 there	 is	 no	 Txt.Document()
function.	If	you	want	to	convert	the	contents	of	a	text	file	into	a	table,
you	use	the	Csv.Document()	function.

To	 see	what	 is	 inside	one	of	 those	 files,	 click	 in	 the	whitespace	beside	 the
word	Table.	 (If	you	actually	click	the	word	Table,	Power	Query	will	drill	 into
the	table,	but	if	you	click	to	the	right	side,	you	see	a	preview	at	the	bottom	of
the	screen,	as	shown	below.)

Figure	57 A	preview	of	the	Feb	2009	binary	files	contents	in	table	format.

With	that	content	now	available	to	you,	how	do	you	get	to	it?	First,	clear	out
the	noise	by	right-clicking	the	Content	column	→	Remove.

It’s	finally	time.	There	is	a	new	little	double-headed	arrow	symbol	at	the	top
right	of	the	Custom	column.	Click	it,	and	you	get	this:

Figure	58 Expanding	tables	into	columns.

This	 dialog	 allows	 you	 to	 choose	 which	 columns	 to	 expand.	 If	 there	 were
columns	 you	 didn’t	want,	 you	would	 simply	 uncheck	 them.	 You’ve	 already
seen	 via	 the	 preview	 that	 each	 of	 these	 four	 columns	 contains	 useful
information,	so	in	this	case,	you	can	keep	them	all.

The	only	change	that	you’ll	want	to	make	here	is	to	uncheck	the	Use	Original
Column	 Name	 as	 Prefix	 checkbox.	 If	 you	 leave	 this	 set,	 Power	 Query	 will
prefix	 each	 column	 with	 Custom,	 so	 you	 get	 Custom.Column1,
Custom.Column2,	and	so	on.

When	 you	 click	 OK,	 your	 columns	 all	 expand,	 but	 this	 time	 Power	 Query
preserves	 the	 Date	 column	 (unlike	 the	 Combine	 Binaries	 feature,	 which
removed	it):

Figure	59 The	dates	stick	around	when	the	column	is	expanded.

It’s	unfortunate	that	Power	Query	doesn’t	try	to	take	any	liberties	and	help
you	out	with	data	types	and	such	here.	You	have	to	do	that	manual	cleanup
yourself,	but	at	least	this	is	a	one-time	thing,	as	it	will	just	refresh	in	future.
Here’s	what	you	need	to	do:

Go	to	the	Transform	tab	→	Use	First	Row	as	Headers
Right-click	Column	1	→	Rename	→	Month	End

Right-click	 TranDate	 →	 Change	 Type	 →	 Using	 Locale	 →	 Date	 →
English	(US)
Select	TranDate	→	Home	→	Reduce	Rows	→	Remove	Errors
Right-click	TranDate	→	Rename	→	Date
Right-click	Sum	of	Amount	→	Rename	→	Amount
Right-click	Account	→	Change	Type	→	Whole	Number
Right-click	Dept	→	Change	Type	→	Whole	Number
Right-click	Amount	→	Change	Type	→	Decimal	Number

The	query	is	now	shaped	up	to	be	consistent	with	the	previous	output:

Figure	60 All	files	imported	from	a	folder,	preserving	data	based	on	the	file	properties.

Finally,	you	can	complete	the	query:

Change	the	query	name	to	ManualCombine
Home	→	Close	&	Load
And	 at	 this	 point	 you	 can	 build	 a	 PivotTable	 and	 prove	 that	 it
matches	 the	 results	you	got	 in	 the	previous	 section,	with	 the	only
difference	being	that	you’ve	 included	a	new	field	that	was	derived
from	 the	 properties—something	 that	 is	 impossible	 using	 the	 easy
Combine	Binaries	method.

Implications	of	the	From	Folder
Feature
Importing	 files	on	an	 individual	basis	as	described	 in	Chapter	2	 is	generally
the	 way	 people	 start	 building	 Power	 Query	 solutions.	 That	 approach	 can
work	well	in	any	of	the	following	scenarios:

Where	the	data	set	will	grow	slowly	over	time

Where	the	transformation	requirements	are	different	for	each	file	in
the	folder
Where	you	didn’t	 realize	 the	 solution	would	expand	over	multiple
files

If,	however,	you	suspect	that	a	solution	may	grow	to	be	bigger	than	one	file,
and	the	data	setup	will	be	consistent,	there	is	nothing	to	stop	you	from	using
the	approach	in	this	chapter	as	follows:

Set	up	a	subfolder
Move	your	single	file	into	that	folder
Leverage	the	Import	From	Folder	functionality	against	the	subfolder

Yes,	there	 is	only	one	file	 in	there	today,	but	so	what?	As	you	get	new	files
that	pertain	to	the	solution,	you	just	throw	them	in	the	subfolder,	and	they
are	instantly	part	of	your	solution!

Sometimes	a	little	foresight	can	go	a	long	way	in	building	solutions	that	stand
the	test	of	time.

Chapter	5	Aggregating	Excel
Worksheets
So	 far,	 each	 of	 the	 techniques	 demonstrated	 for	 appending	 data	 has	 been
based	on	pulling	data	from	external	CSV	or	TXT	files.	As	any	Excel	pro	knows,
however,	 the	 world	 of	 data	 is	 much	 bigger	 than	 just	 these	 types	 of	 files.
There	is	a	huge	amount	of	data	stored	inside	Excel	files	as	well,	and	you	need
the	ability	to	combine	those	data	sources	together.	For	example,	you	might
want	to	be	able	to	append	all	tables	in	a	workbook.	Or	you	might	want	to	be
able	to	append	all	worksheets	in	a	workbook	(where	tables	haven’t	been	set
up).	 And,	 naturally,	 you	 need	 to	 be	 able	 to	 accomplish	 these	 goals	 from
within	the	active	workbook	or	from	an	external	one.

While	 the	 good	 news	 is	 that	 these	 feats	 can	 all	 be	 accomplished,	 the	 bad
news	is	that	there	is	no	easy	way	to	accomplish	these	tasks	via	the	standard
user	interface.	Each	of	them	requires	some	minor	manipulation	of	the	Power
Query	 formula	bar—although	nothing	more	 serious	 than	what	you’ve	 seen
so	far.

It’s	important	to	understand	here	that	the	methods	for	dealing	with	data	in
your	active	workbook	are	quite	different	from	those	for	pulling	data	from	an
external	file.

Aggregating	Tables	and	Ranges	in	the
Current	File
Pulling	data	from	within	the	current	file	works	like	this:

Start	with	a	blank	query
Enter	the	following	function	in	the	Power	Query	formula	bar:
=Excel.CurrentWorkbook()

Filter	and	expand	the	tables	or	ranges	you	need

This	process	gives	you	access	to	the	following	objects:

Excel	tables
Named	ranges
Workbook	connections

Unfortunately,	this	process	doesn’t	allow	you	to	enumerate	all	worksheets	in
the	file.

Consolidating	Tables
Let’s	 look	 at	 some	 specific	 examples,	 starting	 with	 the	 Ch05	 Example
Files\Consolidate	Tables-Start.xlsx.

In	this	file	you’ll	find	three	worksheets	that	list	gift	certificates	issued	by	a	spa
for	the	current	month.	The	clerk	who	created	the	workbook	never	added	any
issue	dates	to	the	certificates,	although	she	did	dutifully	create	table	names
in	the	format	Jan_2008,	Feb_2008,	and	so	on.

In	 order	 to	 analyze	 these	 transactions,	 the	 data	 obviously	 needs	 to	 be
consolidated,	 and	 Power	Query	 is	 the	 perfect	 tool	 for	 doing	 that.	 Let’s	 get
started:

Create	a	new	query	→	From	Other	Sources	→	Blank	Query
Type	the	following	into	the	formula	bar:
=Excel.CurrentWorkbook()

You	now	see	your	list	of	tables:

Figure	61 The	list	of	tables	in	the	current	workbook.

As	you	learned	in	Chapter	4,	you	can	click	in	the	whitespace	beside	the	dark
green	words	in	the	Content	column	to	preview	the	data.	You	also	know	that	if
you	click	the	double-headed	arrow	at	the	top	of	that	column,	you’ll	be	able
to	 expand	 the	 columns	 of	 the	 tables	 without	 losing	 the	 Name	 column’s
details.	Here’s	what	you	do:

Click	the	double-headed	arrow	to	expand	the	Content	column
Uncheck	Use	Original	Column	Name	as	Prefix	→	OK

The	data	expands	nicely,	keeping	the	name	column	in	place,	allowing	you	to
continue	on	and	convert	the	table	names	into	dates:

Right-click	the	Name	column	→	Replace	Values
Replace	 the	 _	 character	 with	 “	 1,	 ”	 (space	 number	 one	 comma
space—but	without	the	quotation	marks)
Right-click	the	Name	column	→	Change	Type	→	Date
Go	to	the	Transform	tab	→	Date	→	Month	→	End	of	Month
Right-click	the	Name	column	→	Rename	→	Month	End
Change	the	name	of	the	query	to	Gift	Certificates

The	completed	query	now	looks	as	follows:

Figure	62 Completed	query,	ready	to	go.

Everything	looks	good	here,	but	when	you	choose	Close	&	Load,	you	trigger	a
bunch	of	errors:

Figure	63 It	looked	so	good!	How	can	there	be	62	errors?

So	what	happened?	Go	back	and	step	through	the	query	by	right-clicking	the
Gift	Certificate	query	→	Edit	→	Select	 the	Source	 step.	At	 this	point,	 you’ll
notice	that	you’ve	got	one	more	table	listed	than	you	did	earlier.	It’s	the	Gift
Certificates	table	that	was	created	as	an	output	from	this	query!

Figure	64 The	finalized	query	appears	in	the	list	of	tables.

Warning:	When	using	=Excel.CurrentWorkbook()	to	enumerate	tables	or
ranges,	 remember	 that	 the	output	query	will	 also	be	 recognized	upon
refresh.	To	deal	with	this,	some	future-proofing	steps	may	be	required,
depending	 on	 how	 you	 built	 your	 query.	 These	 steps	 could	 include
filtering	to	avoid	potential	duplication	or	errors,	changing	data	types,	or
changing	anything	else	that	you	set	up	in	advance	to	guard	against	the
possibilities	of	your	query	breaking.

You	 should	 now	 step	 through	 each	 step	 of	 the	 query,	 paying	 attention	 to
what	happens.

When	 you	 get	 to	 the	 Replaced	 Value	 step,	 scroll	 down	 to	 row	 63.	 Do	 you
notice	anything	dangerous	unfolding	here?

Figure	65 Problems	arising	in	the	values	to	be	converted	to	dates.

When	the	Changed	Types	step	is	evaluated	next,	it	tries	to	convert	all	data	in
the	Name	column	to	dates,	which	it	obviously	can’t	do	for	Gift	1,	Certificates.
Instead,	 it	 places	an	error	 value	 in	 the	 column	 for	each	 cell	 that	 contained
that	text:

Figure	66 Invalid	dates	converted	into	errors.

This	issue	actually	works	in	your	favor,	as	everything	from	the	Gift	Certificates
table	is	a	duplication	of	the	data.	With	those	rows	throwing	errors,	you	can
simply	filter	them	out:

Make	sure	the	Changed	Type	step	is	selected
Select	 the	 Name	 column	 →	 Home	 →	 Reduce	 Rows	 →	 Remove
Errors
Confirm	that	you’d	like	to	insert	a	new	step	into	the	middle	of	your
query
Go	to	Home	→	Close	&	Load

Figure	67 There	 are	 62	 rows	 loaded
from	3	tables.

With	 the	 filtering	 done,	 you	 get	 a	 positive	 result
from	 Power	 Query	 loading	 only	 62	 rows	 of	 data—
with	no	errors.

Consolidating	Ranges	and	Worksheets
Now	 what	 if	 the	 worksheets	 didn’t	 have	 tables,	 but	 the	 clerk	 named	 the
worksheets	instead?	In	that	case,	could	you	consolidate	all	the	worksheets?
Yes,	but	as	mentioned	before,	there	is	no	built-in	facility	to	do	this.	Instead,
you	 have	 to	 make	 use	 of	 the	 ability	 to	 talk	 to	 named	 ranges	 by	 calling	 a
specific	named	range.

The	trick	is	to	define	a	print	area.	Why?	Because	the	print	area’s	name	is,	in
fact,	a	dynamic	range	name.	So	to	pull	a	print	range	 into	Power	Query,	you
need	to	follow	the	steps	to	connect	to	a	dynamic	named	range,	as	explained
in	Chapter	1:

Select	the	Jan	2008	worksheet	→	go	to	the	Page	Layout	tab	→	Print
Titles
In	the	Print	area	box	enter	A:D	→	OK
Repeat	this	process	for	the	Feb	2008	and	Mar	2008	worksheets
Create	a	new	query	→	From	Other	Sources	→	Blank	Query
Enter	the	following	in	the	formula	bar:
=Excel.CurrentWorkbook()

You	 now	 see	 a	 list	 of	 all	 the	 tables	 and	 named	 ranges,	 including	 the	 print
areas!

Figure	68 Excel.CurrentWorkbook()	showing	the	print	areas.

You	 currently	 have	 both	 tables	 and	 the	 print	 areas,	 but	 you	 can	 filter	 this
down	and	expand	it	to	see	what	you	get:

Filter	the	Name	column	→	Text	Filters	→	Ends	With	→	Print_Area	→
OK
Click	the	Expand	button	at	the	top	of	the	Content	column
Leave	 all	 columns	 selected	 →	 uncheck	 the	 Use	 Original	 Column
Name	as	Prefix	→	OK

Notice	 that	 things	 are	 different	 here.	 You	 have	 the	 entire	 worksheet,
including	each	column	in	your	print	range:

Figure	69 A	raw	look	at	the	worksheet.

This	obviously	means	that	more	data	cleanup	needs	to	be	done	 in	order	to
aggregate	these	ranges	and	turn	them	into	clean	tables,	but	the	good	news	is
that	it	can	be	done.	To	clean	up	this	particular	data	set,	follow	these	steps:

Go	to	Home	→	Remove	Rows	→	Remove	Top	Rows	→	2	→	OK
Transform	→	Use	First	Row	as	Headers
Filter	the	Cert	Number	column	→	uncheck	null
Right-click	 the	 Cert	 Number	 column	 →	 Change	 Type	 →	 Whole
Number
Select	the	Cert	Number	column
Go	to	Home	→	Reduce	Rows	→	Remove	Errors	→	OK

Select	 the	 Cert	 Number	 column	→	 hold	 down	 Shift	→	 select	 the
Service	column
Right-click	 one	 of	 the	 selected	 column	 headers	→	 Remove	 Other
Columns
Change	the	query	name	to	AllSheets	→	OK
Go	to	Home	→	Close	&	Load

When	working	with	print	areas,	it	is	a	good	idea	to	try	to	restrict	a	print	area
to	only	the	rows	and	columns	you	need—for	two	reasons.	The	first	reason	is
that	 it	 takes	 Power	Query	 longer	 to	 process	more	data	 points.	 The	 second
reason	 is	 that	each	column	 is	 just	 referred	 to	as	Column#	 in	 the	expansion
window,	 which	makes	 it	 very	 easy	 to	 pull	 in	 extraneous	 columns	 that	 just
need	to	be	removed	later.

Aggregating	Data	from	Other
Workbooks
Say	that	you	are	building	a	solution	that	relies	on	data	stored	in	other	Excel
workbooks.	 In	 this	case,	 the	user	 is	 storing	data	 in	worksheets	named	with
the	month	and	year,	but	only	one	quarter	per	workbook.	Those	workbooks
are	stored	in	a	folder	on	the	network,	and	you	need	to	consolidate	the	data
within	them.

The	methods	used	earlier	 in	this	chapter	have	been	targeted	at	the	objects
inside	 the	 current	 workbook,	 and	 they	 don’t	 work	 when	 you’re	 talking	 to
external	 workbooks.	 Instead,	 you	 actually	 need	 to	 generate	 a	 list	 of	 Excel
workbooks	and	extract	 their	contents,	 similar	 to	what	you	did	 in	Chapter	4
when	you	extracted	the	contents	of	CSV	files.

Sourcing	the	Data
You	start	the	data	sourcing	process	from	a	blank	workbook:

Create	a	new	query	→	From	File	→	From	Folder
Select	the	Ch05	Examples\Source	Files	folder

When	Power	Query	lists	the	files,	you	can	see	that	you	already	have	several
files	in	here	that	are	non-Excel	files:

Figure	70 Non-Excel	files	mixed	in	with	the	files	you	actually	want.

You	 need	 to	 filter	 those	 files	 out	 of	 the	 list,	 as	 you	 only	 want	 Excel
workbooks:

Right-click	the	Extension	column	→	Transform	→	Lowercase
Filter	the	Extension	column	→	Text	filters	→	Begins	with	→	.xls
Select	 the	 Content	 and	 Name	 columns	 →	 right-click	 →	 Remove
Other	Columns

At	this	point	you	might	be	tempted	to	click	the	Combine	Binaries	button,	and
unfortunately	 Power	Query	will	 let	 you	do	 it.	 If	 you	do,	 though,	 you’ll	 find
that	Power	Query	combines	the	files	but	can’t	import	them:

Figure	71 Power	Query	says	it	can’t	combine	Excel	binaries.

Note:	If	you	actually	clicked	the	Combine	Binaries	button,	you	now	need
to	go	to	the	Applied	Steps	box	and	remove	both	the	Imported	Excel	and
Combined	Binaries	steps.

So	if	you	can’t	combine	and	import	the	files	using	the	easy	method,	you	have
to	do	it	the	hard	way:

Go	to	the	Add	Column	tab	→	Add	Custom	Column
Enter	the	following	formula:
=Excel.Workbook([Content])

Click	OK
Right-click	the	Content	column	→	Remove

Your	 new	 custom	 column	 now	 contains	 a	 column	 of	 tables,	 which	 contain
each	 of	 the	 objects	 you	 can	 connect	 to—including	 all	 Excel	 tables,	 named
ranges,	and	even	worksheets	in	the	Excel	file:

Figure	72 Previewing	the	parts	of	the	Named	Range.xlsx	file.

Expanding	the	Excel	File	Contents
The	 Custom	 column	 has	 the	 double-headed	 arrow	 (the	 expand	 icon)	 in	 its
header,	 so	 it	 can	be	 expanded.	When	 you	 click	 on	 the	 expand	 icon	on	 the
Custom	column,	you	get	a	list	of	all	the	different	workbook	parts:

Figure	73 All	workbook	parts	expanded.

At	 this	point,	 it	 is	 critical	 that	 you	 recognize	what	 you	have	here.	 The	Kind
column	 shows	 that	 you	 have	 Sheet,	 DefinedName,	 and	 Table	 objects.
Remember,	however,	that	you	can	define	names	over	specific	cells	in	a	table
and/or	 worksheet	 and	 that	 tables	 exist	 in	 worksheets.	 It	 is	 very	 easy	 to
duplicate	data	in	your	import	if	you	don’t	filter	this	area	appropriately.

Warning:	 Importing	 objects	 of	 different	 types	 as	 listed	 in	 the	 Kind
column	could	lead	to	duplication	of	data!

You	want	to	extract	the	worksheet	data	only,	so	follow	these	steps:

Filter	the	Kind	column	to	show	only	Sheet	data	types
Filter	the	Name	column	to	remove	the	Named	Range.xlsx	file

Select	 the	 Name,	 Name.1	 and	 Data	 columns	 →	 right-click	 →
Remove	Other	Columns
Expand	all	 three	columns	contained	 in	 the	Data	column	(and	clear
the	prefix	setting)

The	query	now	looks	as	follows:

Figure	74 Excel	data	imported	from	an	External	workbook.

Transforming	the	Data
Obviously,	the	data	in	this	example	still	needs	some	cleanup.	You	should	do
that	now	and	finalize	the	query:

Go	to	Transform	→	Use	First	Row	as	Headers
Right-click	the	Workbook1.xlsx	column	→	Rename	→	Source	File
Right-click	the	Jan	2008	column	→	Rename	→	Month
Right-click	the	Amount	column	→	Change	Type	→	Decimal	Number
Select	 the	 Amount	 column	→	 Home	→	 Reduce	 Rows	→	 Remove
Errors
Change	the	name	of	the	query	to	FromExcelFiles
Go	to	Home	→	Close	&	Load

The	data	is	loaded	into	a	table,	so	you	can	create	a	PivotTable	configured	as
follows	in	order	to	see	what	you	pulled	in.	Use	these	settings:

Source	File	and	Month	on	Rows

Month	and	Amount	on	Values

Here	you	can	see	that	you’ve	successfully	pulled	data	from	two	different	files
and	three	worksheets	within	each,	for	a	total	of	more	than	12,000	records:

Figure	75 The	results	of	your	hard	work.

Considerations
When	working	through	the	techniques	described	in	this	chapter,	there	are	a
couple	things	you	need	to	keep	in	mind.

Using	=Excel.CurrentWorkbook()
The	 biggest	 thing	 to	 remember	 about	 building	 solutions	 using	 the
Excel.CurrentWorkbook()	function	is	that	this	function	reads	all	the	objects	in
the	 current	 file.	 Since	 this	 affects	 the	 calculation	 chain,	 you	 get	 hit	with	 a
recursion	 effect,	 meaning	 that	 as	 the	 new	 tables	 are	 built,	 Power	 Query
recognizes	them	and	reads	them	as	potential	content	as	well.

The	implications	of	this	appear	at	refresh,	when	the	query	attempts	to	load
itself,	 thereby	 duplicating	 the	 data	 in	 the	 output.	When	working	 with	 this
method,	it	is	important	to	remember	this	and	guard	against	it.	Strategies	to
protect	against	problems	here	range	from	filtering	errors	on	key	columns	to
using	naming	standards	for	both	your	input	and	output	columns	so	you	can
filter	out	the	ones	you	don’t	need.

Note:	 Whatever	 method	 you	 choose,	 make	 sure	 to	 test	 it	 through	 a
couple	refreshes	before	releasing	it	to	production!

Using	=Excel.Workbook([Content])
Unlike	 with	 Excel.CurrentWorkbook(),	 using	 the	 Excel.Workbook()	 function
doesn’t	cause	any	recursion	issues.	The	reason	is	that	Excel.Workbook()	reads
from	the	most	 recently	 saved	copy	of	an	external	Excel	workbook.	This	 can
obviously	have	implications	if	a	user	is	in	the	process	of	updating	the	file	but

hasn’t	 saved	 it,	 as	 you	 won’t	 get	 the	 most	 current	 data	 that	 you	 might
expect.

The	other	key	concern	when	using	the	Excel.Workbook()	function	to	extract
the	contents	of	a	workbook	is	that	 it	pulls	worksheets	 in	addition	to	ranges
and	tables.	This	makes	it	very	easy	to	duplicate	data	if	you	are	not	careful,	as
all	 named	 ranges	 and	 tables	 exist	 in	 worksheets.	 Pay	 careful	 attention	 to
filtering	the	Kind	column	to	avoid	this	issue.

Note:	Even	if	there	is	only	one	kind	of	data	in	the	workbook	when	you
build	 the	 solution,	 it’s	not	a	bad	 idea	 to	 future-proof	 your	 solution	by
forcing	a	 filter	 to	accept	only	 the	desired	kind.	This	will	prevent	 issues
when	a	user	adds	a	table	to	a	data	file	that	never	had	one.

It	 should	 also	 be	 recognized	 that	 it	 is	 entirely	 possible	 to	 use
Excel.Workbook()	 to	read	from	the	current	workbook,	thereby	exposing	the
ability	 to	 read	 worksheet	 content.	 (This	 is	 useful	 if	 you	 can’t	 define	 print
ranges	or	other	ranges	over	your	data.)	Remember,	however,	that	the	query
will	 read	 from	 the	most	 recently	 saved	 copy	of	 the	workbook,	 not	 the	 live
copy.	This	has	the	unfortunate	side	effect	of	still	 facing	the	recursion	 issues
from	the	Excel.CurrentWorkbook()	function,	but	you	may	not	see	them	until
the	next	time	you	open	the	file.

Chapter	6	Unpivoting	Data
One	of	the	big	issues	we	Excel	pros	face	is	that	no	matter	where	we	get	our
data,	it	doesn’t	always	arrive	in	a	useful	state.	So	not	only	do	we	waste	time
getting	the	data	into	a	workbook	to	begin	with,	we	then	have	to	spend	even
more	time	cleaning	it	up	and	changing	its	layout	in	order	to	work	with	it.

The	Curse	of	Pivoted	Data
Say	that	a	user	has	started	tracking	his	sales	on	a	daily	basis,	and	he	sends	his
data	to	you	in	the	format	shown	below:

Figure	76 The	dreaded	pivoted	data	set.

Naturally,	after	tracking	his	sales	in	this	way	for	days	or	weeks,	he	brings	it	to
you	and	asks	you	to	build	a	variety	of	different	reports	from	it.	The	answer	to
this	dilemma	is,	of	course,	to	build	PivotTables	against	the	data	source.	But
the	issue	is	that	this	data	set	is	already	pivoted.

This	problem	comes	up	for	Excel	pros	all	the	time.	PivotTables	were	built	to
quickly	turn	tables	of	data	into	reports	that	users	can	more	easily	consume.
The	challenge	is	that	users	think	in	this	kind	of	output	format,	not	in	tabular
format,	 so	 they	 tend	 to	 build	 their	 data	 in	 the	 format	 that	 a	 PivotTable
produces,	not	in	a	format	that	a	PivotTable	consumes.

Many	users	think	that	a	simple	transposing	of	the	data	set	will	work,	but	you
know	that	this	only	changes	the	look	of	the	data—it	doesn’t	truly	convert	it
into	a	format	that	PivotTables	are	ready	to	consume.

Figure	77 Transposed	data	(on	the	left)	vs	properly	unpivoted	data	(on	the	right).

The	worst	part	about	this	issue	is	that	in	the	past,	there	was	no	tool	to	easily
convert	 the	 data	 back	 from	 pivoted	 to	 unpivoted,	 which	 meant	 a	 huge
amount	of	labor	was	needed	to	pull	this	off.	But	here’s	another	place	where
Power	Query	comes	to	the	rescue.

Unpivoting	with	Ease
This	example	shows	how	your	life	truly	changes	with	Power	Query.	Open	the
Ch06	Examples\UnPivot.xlsx	file	and	get	ready	to	unpivot	the	data	set	within:

Figure	78 Raw	data	build	in	a	pivoted	format.

Preparing	the	Data
As	 you	 can	 see,	 the	 data	 is	 contained	 in	 a	 worksheet,	 but	 it	 has	 no	 table
associated	 with	 it.	 You	 already	 know	 that	 you	 can	 fix	 that,	 so	 click
somewhere	in	the	data	and	create	a	new	query:

Create	 a	 new	 query	 →	 From	 Table	 →	 OK	 (to	 confirm	 the	 table
boundaries)
In	Excel	2010/2013	adjust	the	range	to	A4:I7	(removing	the	last
row)

The	data	 lands	 in	Power	Query,	 and	 you	now	have	 the	ability	 to	make	any
transformations	 or	 manipulations	 you	 need.	 The	 overall	 goal	 here	 is	 to
unpivot	 the	 data,	 but	 there	 is	 a	 column	 you	 really	 don’t	 need.	 The	 Total
column	can	be	removed	because	you	can	simply	rebuild	it	with	a	PivotTable.
So	right-click	the	Total	column	→	Remove.	You’re	now	left	with	just	the	key
data:	the	Sales	Category	column	and	a	column	for	each	day.

Unpivoting	Columns
To	unpivot	the	data	set	in	UnPivot.xlsx,	follow	these	steps:

Select	 the	 1/1/2014	 column	 →	 hold	 down	 Shift	 →	 select	 the
1/7/2014	column
Right-click	one	of	the	columns	→	Unpivot	Columns

The	results	are	simply	astounding:	You’re	already	done.

Figure	79 Unpivoting	magic	in	action.

You	have	only	a	couple	more	changes	to	make	here	before	you	finalize	your
data	set:

Right-click	the	Attribute	column	→	Change	Type	→	Date
Right-click	the	Attribute	column	→	Rename	→	Date
Right-click	the	Value	column	→	Rename	→	Units
Rename	the	query	to	DailySales
Go	to	Home	→	Close	&	Load

Can	you	believe	how	easy	this	is?

Note:	Notice	that	there	is	no	need	to	use	Change	Type	Using	Locale	in
this	 instance.	Since	 the	data	already	resides	 inside	Excel,	Power	Query
will	recognize	this	data	correctly	no	matter	what	your	regional	settings
are.

Repivoting
Next	you	can	build	a	couple	of	PivotTables	from	this	data.	First,	you	rebuild
the	user’s	existing	data:

Select	a	cell	in	the	table	→	Insert	PivotTable
Insert	the	PivotTable	in	F1	of	the	same	worksheet
Place	 Sales	 Category	 on	 Rows,	 Date	 on	 Columns,	 and	 Units	 on
Values

Now	you	can	build	an	alternate	view	from	the	same	data	set:

Select	a	cell	in	the	table	→	Insert	PivotTable

Insert	the	PivotTable	in	F11	of	the	same	worksheet
Place	Sales	Category	on	Rows,	Date	on	Rows	(below	Category),	and
Units	on	Values
Right-click	F12	→	Expand/Collapse	→	Collapse	Entire	Field

Now	you	have	two	completely	different	sets	created	very	easily	from	a	set	of
unpivoted	data:

Figure	80 Two	PivotTables	built	from	an	unpivoted	data	set.

Surviving	an	Update
At	this	point,	you’d	probably	be	fairly	comfortable	saving	the	file,	returning	it
to	 the	 user,	 and	 letting	 him	 continue	 to	 update	 it.	 After	 all,	 Power	 Query
solutions	can	be	refreshed	at	any	time.

But	say	that	you	do	so	and	the	user	makes	updates	and	sends	it	back	to	you.
Upon	opening	the	file,	you	see	that	the	user	has	done	things	that	only	an	end
user	could	think	of	as	acceptable:

Figure	81 The	table,	as	returned	by	the	end	user.

Looking	through	the	changes,	you’re	astounded	to	see	the	following	issues:

The	new	day	is	added	after	the	total	column.
A	new	sales	category	has	been	injected	with	retroactive	data.
The	user	didn’t	complete	the	total	on	the	new	column.

How	will	 the	refresh	 fare,	given	these	changes?	To	 find	out,	go	to	 the	Data
tab	and	click	Refresh	All	two	times	(once	for	the	Power	Query	and	once	for
the	PivotTables).

The	results	are	nothing	short	of	amazing,	as	you	can	see	below:

Figure	82 Your	PivotTables	still	work,	despite	your	end	user’s	actions.

Every	 issue	 that	 your	user	 threw	at	 you	was	handled.	The	 totals	are	 there,
the	data	is	in	the	right	order,	and	the	historical	values	have	been	updated.

Understanding	the	Unpivot	Functions
There	 are	 actually	 two	 unpivot	 functions	 on	 the	 right-click	menu	 in	 Power
Query:	Unpivot	Columns	and	Unpivot	Other	Columns.

How	Unpivot	Other	Columns	Works
To	be	fair,	we	had	you	make	some	unnecessary	steps	in	the	example	above.
Instead	of	selecting	the	1/1/2014	through	1/7/2014	columns,	you	could	have
just	 right-clicked	 the	 Sales	Category	 column	and	 chosen	 the	Unpivot	Other
Columns	command.	What	this	command	does	is	unpivot	every	column	other
than	 the	 one(s)	 you	 selected.	 From	 a	 logical	 point	 of	 view,	 it	 would	 have
made	complete	sense	when	the	solution	was	updated	that	it	just	worked	as
well.

Having	said	this,	the	demo	was	set	up	this	way	for	a	reason—to	explain	what
really	happens	when	you	use	the	Unpivot	Columns	command.

How	Unpivot	Columns	Actually	Works
Based	 on	 the	 terminology	 of	 the	 user	 interface,	 you	would	 have	 expected
that	 when	 you	 recorded	 the	 step	 above	 to	 unpivot	 the	 1/1/2014	 through
1/7/2014	columns,	Power	Query	would	hard	code	those	specific	columns.	It
should	be	plainly	obvious	now	that	this	is	not	the	case.

Here’s	what	Power	Query	actually	did:	It	looked	at	all	the	columns	in	the	data
set	 and	 determined	 that	 there	was	 one	 column	 you	did	 not	 select.	 Rather
than	 build	 you	 a	 specific	 “unpivot	 these	 columns”	 command,	 it	 actually
recorded	 code	 that	 says	 “unpivot	 everything	 except	 the	 column(s)	 that
weren’t	 selected.”	 In	 this	 case,	 that	 was	 “unpivot	 everything	 except	 Sales
Category.”

While	 this	 change	 seems	 subtle,	 it	 actually	 has	 some	 fairly	 large	 impacts,
both	good	and	bad.

The	 good	 news	 is	 that	 it	 is	 very	 difficult	 to	 make	 a	 mistake	 and	 build	 a
scenario	that	blows	up	when	new	daily	data	columns	are	added.	Essentially,
it	future-proofs	your	solution	for	new	dates,	as	they	will	always	be	pulled	in.

The	bad	news	is	that	there	is	no	way	through	the	user	interface	to	lock	in	a
specific	“unpivot	this	column	only”	command.	This	means	that	if	you	have	an
Unpivot	Columns	command	in	your	query,	and	you	add	a	new	column	to	the
data	table,	it	will	be	unpivoted	as	well.

Locking	Columns	to	Unpivot
While	this	need	should	be	unusual,	there	may	come	a	time	when	you	need
the	ability	to	lock	in	a	specific	column	or	columns	that	you	want	to	unpivot
and	ensure	that	new	columns	added	to	your	source	data	are	not	unpivoted
by	default.	Doing	so	takes	some	manipulation	of	the	formula	in	the	formula
bar.

Assume	 that	 you	 only	want	 to	 unpivot	 the	 Total	 column,	 for	 example.	 You
would	take	the	following	steps:

Create	a	new	query	→	From	Table
Right-click	the	Total	column	→	Unpivot	Column
The	query	at	this	point	would	look	similar	to	this,	with	the	final	two
columns	being	the	unpivoted	totals:

Figure	83 The	Total	column	has	been	unpivoted.

Use	the	V	icon	at	the	right	of	the	formula	bar	to	expand	the	formula
bar
At	this	point	the	formula	in	the	formula	bar	would	read	as	follows:
=	Table.UnpivotOtherColumns(#“Changed	Type”,	{“Sales
Category”,	“1/1/2014”,	“1/2/2014”,	“1/3/2014”,	“1/4/2014”,
“1/5/2014”,	“1/6/2014”,	“1/7/2014”,	“1/8/2014”},	“Attribute”,
“Value”)

Here’s	how	this	code	breaks	down:

Table.UnpivotOtherColumns()	is	the	function	to	be	executed
#”Changed	Type”	is	the	name	of	the	previous	step	from	the	Applied
Steps	box
{	…	}	is	a	list	of	all	the	columns,	separated	by	commas
“Attribute”	 is	 the	 name	 of	 the	 new	 column	 that	 will	 hold	 the
unpivoted	text
“Value”	 is	 the	 name	 of	 the	 column	 that	 will	 hold	 the	 unpivoted
values

If	 you	wanted	 to	 lock	your	 code	 to	make	 sure	 that	no	other	 columns	were
ever	 unpivoted,	 you	 would	 need	 to	 change	 this	 from	 the
Table.UnpivotOtherColumns	function	to	use	the	Table.Unpivot	function.

Like	 Table.UnpivotOtherColumns,	 the	 Table.Unpivot	 function	 takes	 four
parameters:

The	step	name	you	want	to	unpivot:	#”Changed	Type”
A	list	of	the	columns	you	want	to	unpivot:	{“Total”}
The	name	of	the	column	to	hold	the	unpivoted	text:	“Attribute”
The	name	of	the	column	to	hold	the	unpivoted	values:	“Value”

So	the	overall	formula	would	read	as	follows:
=Table.Unpivot(#“Changed	Type”,{“Total”},“Attribute”,“Value”)

And	the	effect	would	look	exactly	the	same	as	the	version	that	was	produced
above	with	the	original	code.	The	difference	is	that	any	other	column	added
to	 the	 source	 data	 table	 after	 the	 fact	would	 not	 also	 get	 unpivoted	 upon
refresh.

Note:	In	order	to	lock	the	unpivot	of	multiple	columns,	you	just	provide
the	 full	 list	 of	 the	 columns	 to	unpivot	between	 the	 {}	 characters,	with
each	column	header	surrounded	in	quotes	and	separated	by	commas.

Chapter	7	Importing
Nondelimited	Text	Files
One	of	the	biggest	challenges	for	many	Excel	pros	is	importing	and	cleaning
nondelimited	text	files.	If	you’ve	ever	dealt	with	one	of	these,	you	know	how
painful	it	can	be.	They	typically	arrive	with	some	default	name	like	ASCII.TXT
and	 are	 essentially	 character-by-character	 representations	 of	 what	 the
output	should	look	like	when	printed.	This	means	that	they’re	subject	to	all
kinds	of	crazy	issues,	including	the	following:

Characters	aligned	by	position	instead	of	delimited	by	a	character
Inconsistent	alignment
Nonprinting	characters	(such	as	control	codes)
Repeating	header	rows

A	 major	 part	 of	 the	 job	 for	 many	 Excel	 pros	 is	 importing	 this	 type	 of
information	into	Excel	and	cleaning	it.	And	all	this	has	to	happen	before	they
can	get	to	the	analysis	that	actually	adds	business	value.

If	you’ve	been	there,	you	know	the	process	follows	this	general	flow:

1.	Import	the	file	into	Excel	via	Data	→	From	Text.

2.	 Work	 in	 a	 postage	 stamp–sized	 Import	 Wizard	 window,	 trying	 to
determine	how	the	columns	are	delimited	and	which	to	skip.

3.	Dump	the	results	of	the	Import	Wizard	into	a	worksheet.

4.	Turn	the	data	into	a	proper	Excel	table.

5.	Sort	and	filter	the	table	to	remove	garbage	rows.

6.	Clean	and	trim	the	text	in	the	columns.

And	 the	best	part	 is	 that	next	month,	when	you	get	 the	updated	data	 file,
you	 get	 to	 relive	 this	 exciting	 process	all	 over	 again.	Wouldn’t	 it	 be	 nice	 if
there	were	a	better	way?	Great	news!	There	is,	and	you’ve	found	it.

Connecting	to	the	File
You	 connect	 to	 a	 nondelimited	 text	 file	 the	 same	way	 you	 connect	 to	 any
other	text	file:

Create	a	New	Query	→	From	File	→	From	Text
Browse	to	Ch07	Examples	→	GL	Jan-Mar.TXT

Power	Query	puts	the	data	in	a	single	column:

Figure	84 The	Power	Query	view	of	a	nondelimited	text	file.

The	first	benefit	you’ll	notice	over	the	standard	Excel	 import	process	 is	that
you	get	to	work	in	a	full-sized	window.	That’s	a	massive	improvement	all	on
its	own,	as	you	can	actually	see	what	is	going	on.

Note:	If	your	column	is	too	narrow,	just	mouse	over	the	right	side	of	the
column	header,	hold	down	the	left	mouse	button,	and	drag	it	wider.

You’ll	 also	 notice	 that,	 since	 the	 file	 is	 not	 delimited	 with	 any	 consistent
delimiters,	Power	Query	has	not	made	any	guesses	about	your	data.	Instead,
it	 has	 left	 the	 entire	 process	 to	 you.	 Given	 the	 state	 of	 this	 file,	 that	 is
probably	not	a	bad	thing.

Note:	 Before	 we	 dig	 any	 further	 into	 this	 topic,	 note	 that	 there	 are
many	ways	to	import	nondelimited	text	files,	and	none	of	them	are	right
or	wrong.	The	example	 in	this	chapter	has	been	architected	to	show	a
great	 deal	 of	 transformations	 via	 the	 user	 interface,	 as	 well	 as	 the
typical	 way	 an	 Excel	 pro	 might	 approach	 this	 task.	 With	 more
experience,	 you’ll	 find	 that	 quicker	 routes	 to	 the	 end	 goal	 are	 almost
certainly	possible.

Cleaning	Nondelimited	Files
The	general	goal	when	starting	to	clean	up	a	nondelimited	file	is	to	try	to	get
the	 data	 into	 a	 semblance	 of	 columnar	 data	 as	 quickly	 as	 possible.	 In	 this
case,	 the	 top	 10	 rows	 don’t	 seem	 to	 add	much	 value,	while	 the	 11th	 row

looks	like	it	may	be	column	headers.	Therefore,	go	to	Home	→	Reduce	Rows
→	Remove	Rows	→	Remove	top	Rows	→	10	→	OK.

The	rows	disappear	and	will	not	be	imported	into	the	end	solution:

Figure	85 The	top	rows	are	removed,	bringing	the	headers	closer	to	the	top.

Next,	you	need	 to	choose	a	direction	 to	break	 into	 this	data.	You	could	 try
breaking	 in	 from	 the	 left	 or	 right,	 but	 currently	 there	 are	 a	 ton	 of	 extra
leading	 spaces,	 and	 there	are	duplicated	 spaces	 in	 the	middle.	 It	would	be
nice	to	get	rid	of	those.

In	Excel	 it	 is	a	standard	practice	to	run	textual	data	through	the	TRIM()	and
CLEAN()	 functions	 in	 order	 to	 remove	 all	 leading,	 trailing,	 and	 duplicate
spaces,	as	well	as	 remove	all	nonprinting	characters.	Power	Query	also	has
this	functionality,	and	here’s	how	you	apply	that	now:

Right-click	Column1	→	Transform	→	Trim
Right-click	Column1	→	Transform	→	Clean

The	data	looks	a	bit	better:

Figure	86 Data	trimmed	and	cleaned.

At	 this	point,	you	may	notice	 that	Power	Query’s	 trim	 functionality	doesn’t
work	 quite	 the	 same	 as	 Excel’s.	While	 Excel’s	 TRIM()	 function	 removes	 all
leading	and	trailing	spaces	and	replaces	any	duplicate	spaces	in	the	middle	of

the	data	with	a	single	space,	Power	Query’s	doesn’t	do	that	last	part.	Instead,
it	only	trims	off	the	leading	and	trailing	spaces.

The	CLEAN()	function	in	Power	Query	does	line	up	with	Excel’s,	although	it’s
more	difficult	to	see.	Nonprinting	characters	are	rendered	as	a	little	question
mark	in	a	box	within	the	Excel	user	interface.	In	Power	Query	they	show	as	a
space.	Regardless,	if	you	step	back	and	forth	between	the	Trimmed	Text	and
Cleaned	Text	steps	in	the	Applied	Steps	box,	you’ll	see	that	the	spaces	around
the	&	in	Avis	&	Davis	have	been	cleaned	away	by	the	Cleaned	Text	step.

Splitting	Columns	by	Position
The	next	 step	 is	 to	 start	 splitting	apart	 the	columns.	The	basic	approach	at
this	point	is	to	split	by	the	number	of	characters,	making	an	educated	guess
about	how	many	you	need	and	then	refining	that	guess.	Since	the	number	of
characters	in	the	date	is	10	characters,	you	can	try	12	for	a	first	go:

Go	to	Home	→	Split	Column	→	By	Number	of	Characters	→	12	→
Repeatedly	→	OK

That	plainly	didn’t	work	out!	As	you	can	see	below,	the	date	column	may	be
fine,	but	the	others	sure	aren’t:

Figure	87 The	data	didn’t	split	as	well	as	you’d	intended.

This	 is	 not	 a	 big	 deal,	 as	 you	 can	 just	 try	 again	 by	 refining	 your	 original
efforts:

Remove	the	Changed	Type	step
Click	the	gear	beside	the	Split	Column	by	Position	step
Change	it	to	15	→	OK

The	result	is	much	better:

Figure	88 A	much	more	inspiring	view	of	the	data.

Note:	 It	 is	 also	worth	mentioning	 that	 there	 is	 nothing	 forcing	 you	 to
choose	the	Repeatedly	setting	in	the	options	when	splitting	columns.	If
the	 document	 is	 inconsistent,	 you	 can	 choose	 to	 split	 once	 from	 the
left/right	 side.	 This	 allows	 you	 very	 granular	 control,	 on	 a	 column-by-
column	basis.

You	 can	 now	 make	 two	 more	 changes.	 Since	 the	 Changed	 Type	 step	 just
declares	all	the	columns	as	text	(which	they	won’t	be	when	you’re	done),	you
can	 remove	 the	 Changed	 Type	 step	 because	 it’s	 irrelevant.	 You	 can	 then
promote	the	first	row	to	column	headers.	Follow	these	steps:

Remove	the	Changed	Type	step
Go	to	the	Transform	tab	→	Use	First	Row	as	Headers

The	Beauty	of	Errors	in	Power	Query
The	 data	 is	 now	 starting	 to	 look	 somewhat	 cleaned,	 even	 if	 you’d	 like	 to
change	 some	 of	 the	 column	 headers	 as	 you	 go	 along.	 At	 this	 point,	 it’s
typically	recommended	that	you	work	from	left	to	right,	cleaning	up	as	much
of	the	columnar	data	as	you	can	and	making	sure	it’s	all	valid.

If	you	scroll	down	at	this	point,	you’ll	find	that	there	are	a	lot	of	garbage	rows
in	this	data,	mostly	from	the	repeating	page	headers	and	section	breaks	that
were	included	in	the	document.	The	first	block	of	these	issues	occurs	at	row
40	and	introduces	a	bunch	of	ugliness:

Figure	89 Irrelevant	rows	mixed	in	with	real	data.

The	question	is	how	to	deal	with	these.	Some	are	dates,	some	are	text,	some
are	nulls.	Try	this:

Right-click	the	Tran	Date	column	→	Change	Type	→	Using	Locale	→
Date	→	English	(US)	→	OK

The	result	is	a	bunch	of	errors	in	the	Tran	Date	column:

Figure	90 Errors	that	result	from	trying	to	convert	to	dates.

Unlike	 in	any	other	program,	errors	are	 truly	exciting	 in	Power	Query.	They
are	 exciting	 because	 you	 can	 control	 them	 and	 react	 to	 them.	 If	 you	 look
carefully	 at	 this	 data,	 you’ll	 see	 that	 errors	were	 caused	 only	 in	 rows	 that
happen	to	be	part	of	the	rows	that	you	want	to	filter	out	anyway.	In	addition,
every	 row	 that	 has	 a	 null	 in	 the	 Tran	 Date	 column	 holds	 values	 in	 the
subsequent	columns	that	are	also	not	part	of	the	transactional	data	that	you
want	to	keep.	So	you	can	get	rid	of	both	of	those:

Select	 the	 Tran	 Date	 column	 →	 Home	 tab	 →	 Reduce	 Rows	 →
Remove	Errors

Filter	the	Tran	Date	column	→	uncheck	null

The	results	are	quite	encouraging,	and	you	now	have	a	TranDate	column	with
valid	dates	from	top	to	bottom:

Figure	91 The	TranDate	column	showing	valid	dates	from	top	to	bottom.

Now,	 you	 should	 recognize	 that	 there	 are	 a	 few	 rows	 that	 still	 appear	 but
don’t	belong	 in	this	data	set.	The	challenge	 is	that	you	don’t	really	want	to
filter	 out	 those	 dates	 as	 some	 of	 them	might	 be	 valid	 one	 day	 (maybe	 on
3/1/0123).	 So	 you	 can	move	 on	 to	 the	 next	 column	 and	 see	 if	 you	 can	 fix
these	issues	there:

Right-click	the	Tran	Date	column	→	Rename	→	Date	→	OK
Right-click	the	Tran	Amount	column	→	Rename	→	Amount
Right-click	the	Amount	column	→	Change	Type	→	Decimal	Number

Power	Query	attempts	 to	set	all	 the	entries	 to	values	with	decimals,	which
triggers	some	errors.	Remove	those	and	the	nulls	out	of	the	data	set:

Select	 the	 Amount	 column	→	 Home	→	 Reduce	 Rows	→	 Remove
Errors
Filter	the	Amount	column	→	uncheck	null

If	you	now	check	the	data	set	around	row	40	(and	further),	you’ll	see	that	all
the	garbage	rows	are	completely	gone.

Removing	Garbage	Columns
Removing	 extra	 columns	 is	 very	 simple:	 You	 just	 need	 to	 follow	 a	 process
when	doing	so.	That	process	is	simply	this:

Filter	the	column
Ensure	that	the	values	in	the	column	are	all	blank	or	null

Right-click	and	remove	the	column

Checking	 each	 of	 the	 columns	 in	 the	 data	 set,	 you	 can	 see	 that	 the	 third
column	(with	a	blank	header)	appears	to	hold	only	blank	values.	That	column
can	be	removed.

Likewise,	if	you	scroll	all	the	way	over	to	column9,	you	see	that	this	column
holds	only	null	values.	That	column	can	also	be	removed.

Aggregating	Columns
At	this	point,	it	is	fairly	clear	that	your	initial	splitting	of	the	columns	was	a	bit
aggressive.	 It	 seems	 that	 you	 have	 four	 columns	 that	 were	 broken	 apart
incorrectly,	as	shown	below.

Figure	92 Columns	split	apart	in	error.

Fortunately,	all	is	not	lost	here,	and	you	certainly	don’t	need	to	go	back	and
start	over.	You	just	need	to	put	the	columns	back	together	again.	Here’s	how:

Select	 the	 Reference	 Infor	 column	 →	 hold	 down	 Shift	 →	 select
Column8
Right-click	one	of	the	column	headers	→	Merge	Columns

You’re	then	given	the	option	of	using	a	separator	and	providing	a	new	name
for	 the	 (new)	 column.	 In	 this	 case	 you	don’t	need	a	 separator	of	 any	 kind.
And	since	you’re	going	to	split	this	column	up	differently	in	a	second	anyway,
the	 name	 really	 isn’t	 important.	 Click	 OK,	 and	 your	 columns	 are	 put	 back
together:

Figure	93 Humpty	Dumpty	wishes	he	had	Power	Query!

Splitting	Columns	by	Delimiter
The	re-aggregated	data	makes	 it	very	clear	 that	 the	new	Merged	column	 is
delimited	by	the	-	character.	This	means	you	have	something	you	can	use	to
break	 it	 apart	 into	 its	 components.	One	 thing	 to	 take	 into	 consideration	 is
that	you	don’t	know	if	there	is	a	vendor	who	uses	a	hyphen	in	 its	company
name,	 so	 you	 don’t	want	 to	 go	 too	 aggressive	with	 a	 split	 based	 on	 the	 -
character.	Follow	these	steps:

Right-click	the	Merged	column	→	Split	Column	→	By	Delimiter
Choose	—Custom—	from	the	list	of	delimiters	and	enter	a	-	(minus
sign)
Choose	to	split	At	the	Left-most	Delimiter

Note:	 You	 are	 not	 limited	 to	 delimiters	 of	 a	 single	 character	 when
splitting	by	delimiter.	In	fact,	if	you	want	to	split	by	an	entire	word,	you
can	enter	that	word	as	your	delimiter.

The	data	 is	 then	 split	 into	 two	 separate	 columns:	Merged.1	 and	Merged.2.
These	should	be	renamed	to	something	more	sensible:

Right-click	Merged.1	→	Rename	→	Category
Right-click	Merged.2	→	Rename	→	Vendor

The	result	is	a	data	set	that	is	almost	perfect:

Figure	94 The	data	set	is	now	almost	perfect.

Trimming	Duplicate	Spaces
The	 last	thing	you	need	to	deal	with	 in	this	data	set	 is	the	duplicate	spaces
that	 have	 been	 left	 between	words	 in	 the	Vendor	 column.	 Since	 you	 can’t
rely	on	Power	Query’s	trim	function,	you	need	to	take	care	of	this	yourself:

Right-click	Vendor	→	Replace	Values
Set	Value	to	Find	to	2	spaces
Set	Replace	With	to	1	space

You	now	have	a	completely	clean	data	set	that	can	be	loaded	into	a	table.

Note:	 Unfortunately,	 there	 is	 no	 function	 that	 easily	 removes	 internal
“whitespace”	 from	 a	 text	 string.	 If	 you	 suspect	 that	 you	 have	 some
instances	of	two	spaces,	you	may	have	to	run	this	trim	process	a	couple
times	in	order	to	completely	clean	the	data.

At	this	point,	you	can	finalize	your	query	and	actually	build	a	report	from	it.
Naturally,	 you’ll	 do	 that	 by	 creating	 a	 PivotTable.	 Before	 you	 can	 do	 that,
follow	these	steps:

Change	the	query	name	to	Transactions
Go	to	Home	→	Close	&	Load

Power	Query’s	Moment	to	Shine
At	 this	 point,	 you	 should	 pause	 and	 recognize	 something	 important:	 Your
data	 is	 clean.	Unlike	when	 you	 load	data	 using	 Excel’s	 standard	method	 to
import	 from	 a	 text	 file,	 no	 further	 cleanup	 is	 necessary.	 You	were	 able	 to
load,	 clean,	 and	 transform	 the	 data	 in	 one	 user	 interface	 dedicated	 to	 the
process.	You’re	now	sitting	in	a	position	where	the	data	can	actually	be	used.

Click	anywhere	in	the	table	and	choose	to	insert	a	new	PivotTable.	Place	it	in
G2	of	the	current	worksheet	and	configure	it	as	follows:

Date	on	Rows,	grouped	by	Month
Vendor	on	Rows,	under	Group
Category	on	Columns
Amount	on	Values

Your	PivotTable	should	look	as	follows:

Figure	95 A	PivotTable	built	from	this	chapter’s	text	file.

This	PivotTable	is	certainly	handy,	but	face	it:	Everything	accomplished	in	this
chapter	 so	 far	 is	 entirely	 possible	with	 just	 standard	 Excel.	 So	why	 do	 you
need	 Power	 Query?	 Is	 it	 the	 full-sized	 window?	 That’s	 cool,	 but	 it’s	 not
critical.

You	see	why	Power	Query	is	so	critical	when	you	deal	with	the	next	part	of
the	equation.	Next	quarter	comes	along,	and	you	get	a	new	data	file.	 In	an
Excel	 pro’s	 world,	 that	 means	 another	 tedious	 afternoon	 of	 importing,
cleaning,	 and	 reformatting.	 But	 armed	with	Power	Query,	 all	 that	 changes.
Thanks	to	Power	Query,	this	is	all	you	do:

Locate	your	query	in	the	Workbook	Queries	pane
Right-click	the	query	→	Edit
Go	back	to	the	Source	step	and	click	the	gear	icon
Update	the	file	path	to	Ch07	Examples\GL	Apr-Jun.TXT
Go	to	Home	→	Close	&	Load

The	query’s	output	updates	the	table,	but	you	have	to	force	the	PivotTable	to
update.	So	do	that	by	right-clicking	the	PivotTable	→	Refresh.

Now	you	see	the	benefit	of	using	Power	Query:

Figure	96 The	same	PivotTable,	now	updated	for	the	next	quarter.

There	 are	 new	 vendors,	 new	 transactions,	 and	 new	 dates,	 and	 they’re	 all
working	with	no	 issues.	 It’s	 revolutionary,	and	you’re	going	 to	wonder	how
you	ever	did	your	job	without	this	help	from	Power	Query.

Note:	If	you	just	save	the	new	file	over	the	old	one,	you	don’t	even	have
to	edit	the	Source	step	to	update	the	file	path.	Instead,	you	simply	go	to
Data	→	Refresh	All	(twice)	to	update	the	solution.

You	should	also	recognize	that	this	isn’t	the	end	of	the	journey.	In	this	case,
you	still	had	to	manually	edit	the	Source	step	to	update	the	path	to	the	new
file.	Consider	 the	 impact	 if	 you’d	 sourced	 the	data	 file	 via	 the	From	File	→
From	Folder	method	described	in	Chapter	4.	If	you	did,	you’d	be	able	to	take
the	list	of	files	in	the	folder	and:

Sort	the	Date	Modified	column	in	descending	order
Filter	to	Keep	Top	Rows	→	1
Drill	into	the	single	remaining	binary	file	in	the	Content	column
Perform	the	rest	of	the	steps	listed	in	this	chapter

What	would	you	have	at	this	point?	You’d	have	a	solution	that	pulled	in	the
data	 from	 the	 most	 recently	 modified	 file	 in	 the	 subfolder.	 The	 need	 to
manually	change	the	file	path	in	the	query	each	quarter	would	be	a	thing	of
the	past.	As	each	new	quarter’s	file	got	added	to	the	folder,	you’d	be	able	to
just	refresh	your	solution	and	bring	in	the	most	current	data	automatically.

Warning:	If	you	decide	to	use	the	route	listed	above,	be	aware	that	the
Date	Modified	 property	 is	 changed	 each	 time	 the	 file	 is	 saved.	While

Power	Query	won’t	 change	 this	property	by	 reading	 from	the	 file,	any
modifications	made	 and	 saved	 by	 a	 user	will	 force	 the	Date	Modified
property	 to	 update.	 If	 this	 is	 a	 concern,	 the	 Date	 Accessed	 and	 Date
Created	properties	may	provide	better	options	for	you	to	use	as	filters,
depending	on	your	end	goals.

Chapter	8	Importing	from
Databases
Your	organization	may	grant	you	direct	access	to	the	company	databases,	and
if	that’s	the	case,	you’re	lucky:	Such	a	database	is	by	far	the	best	source	from
which	 to	 get	 your	 data.	 Not	 only	 are	 you	 guaranteed	 to	 get	 access	 to	 the
most	up-to-date	data,	but	loading	from	databases	is	generally	more	efficient
than	loading	from	files.

It	doesn’t	matter	much	what	 type	of	database	you’re	connecting	 to,	as	 the
experience	of	collecting,	filtering,	and	summarizing	database	data	is	virtually
identical	 no	 matter	 which	 database	 is	 connected	 to.	 The	 connection
experience	 does	 have	 some	 very	 minor	 differences,	 but	 the	 interface	 for
connecting	 to	 each	 type	 of	 database	 will	 guide	 you	 through	 the	 process,
which	essentially	boils	down	to	the	following	three	steps:

1.	Provide	the	location	of	the	database.

2.	Enter	your	authentication	credentials.

3.	Select	the	table(s)	you	wish	to	work	with.

The	 goal	 of	 this	 book	 is	 to	 show	 you	 situations	 that	 you	 will	 most	 likely
encounter	 in	 the	 real	 world.	 For	 this	 reason,	 it’s	 important	 that	 you
experience	how	Power	Query	works	with	the	most	common	SQL	database	on
the	planet:	Microsoft’s	SQL	Server.

As	SQL	Server	databases	aren’t	easily	portable,	we	are	hosting	an	SQL	Azure
database	on	Microsoft’s	Azure	web	service	in	order	for	you	to	practice	these
techniques.	 This	 is	 essentially	 an	SQL	Server	database	 that	 is	hosted	 in	 the
cloud	and	 is	available	 for	you	to	 freely	access	and	explore.	This	means	that
no	matter	where	in	the	world	you	are,	you	can	connect	and	explore	the	data
within	this	database.

Loading	Data	from	a	Database
Power	Query	supports	connecting	to	a	large	variety	of	databases	without	the
need	to	install	any	additional	drivers.	The	connections	available	can	be	found
in	three	separate	areas	in	the	Excel	user	interface:

New	query	→	From	Database
New	query	→	From	Azure

New	query	→	From	Other	Sources

If	you	can’t	find	the	one	you	need,	don’t	lose	hope.	If	you	install	the	vendor’s
ODBC	driver,	you	should	be	able	 to	connect	 to	your	database	via	 the	From
Other	Sources	→	ODBC	Connector.

Connecting	to	the	Database
For	this	example,	you’ll	connect	to	the	AdventureWorks	database	contained
in	 our	 SQL	 Server	 and	 analyze	 the	 total	 sales	 by	 year	 by	 region	 for	 the
AdventureWorks	company.

Note:	 In	 an	effort	 to	make	 sure	 you	don’t	 cause	 yourself	 issues	when
making	your	initial	database	connection,	we	highly	recommend	that	you
read	 the	 steps	 below	 (up	 to	 the	 “Managing	 Connections”	 section)
before	attempting	to	actually	make	a	connection.

To	get	started,	you	need	to	go	through	the	following	steps:

Create	 a	 new	 query	→	 From	 Azure	→	 From	Microsoft	 Azure	 SQL
Database
Connect	to	the	following	database:
Server:	azuredb.powerqueryworkshop.com
Database:	AdventureWorks2012

Figure	97 Connecting	to	the	Azure	database.

Warning:	When	 you’re	 connecting	 to	databases,	 there	 is	 an	option	 to
provide	a	custom	SQL	statement.	 (This	can	be	accessed	by	clicking	the
triangle	shown	in	the	image	above.)	Avoid	using	this	option	unless	you

are	an	SQL	ninja	and	can	write	deadly	efficient	code.	If	you	can’t,	using
this	feature	will	actually	hurt	the	performance	of	your	queries.

At	this	point,	you	are	prompted	to	enter	the	credentials	needed	to	connect
to	the	database.	You	have	a	few	options	here:

The	default	option	 is	 to	use	the	Windows	credentials	 that	you	use
to	log	on	to	your	computer.	If	you	are	working	on	a	database	that	is
within	 your	 organization	 and	 the	 IT	 department	 has	 allowed
Windows	authentication,	this	will	most	likely	work	for	you.
You	are	also	able,	on	 the	 same	 tab,	 to	provide	an	alternate	 set	of
Windows	 credentials.	 This	 is	 useful	 if	 you	 need	 to	 connect	 to	 the
database	using	a	different	set	of	user	credentials.
To	connect	to	the	database	in	this	case,	however,	you	need	to	flip	to
the	Database	tab	of	the	dialog,	as	we’ve	used	database	security,	not
Windows	security,	when	creating	our	user	IDs.	On	that	tab	you	need
to	enter	the	following	credentials:
Username:	DataMonkey@ptypanama
Password:	D4t4M0nk3y!

Once	you	have	the	credentials	correct,	click	the	Connect	button:

Figure	98 Connecting	to	the	database	using	database	security	credentials.

Warning:	When	you	are	prompted	about	Encryption	support,	 just	click
OK.

Note:	 The	 user	 credentials	 you	 used	 are	 cached	 in	 a	 file	 that	 resides
within	 your	 local	 user	 settings.	 This	 means	 that	 the	 username	 and
password	 do	 not	 (and	 cannot	 currently	 be	 set	 to)	 travel	 with	 the
solution	 when	 it	 is	 emailed	 or	 even	 opened	 by	 another	 user.	 This
security	 feature	 ensures	 that	 each	 user	 actually	 has	 the	 proper
credentials	to	access	and	refresh	the	data.

Managing	Connections
If	you	mistype	the	name	of	your	connection,	database,	user	ID,	or	password
and	need	to	modify	anything,	you	can	do	so	by	going	through	the	following
steps:

Excel	2016:	Data	→	New	Query	→	Data	Source	Settings
Excel	2010/2013:	Power	Query	→	Settings	→	Data	Source	Settings

This	will	launch	you	into	the	Data	Source	Settings	box:

Figure	99 The	Data	Source	Settings	interface,	filtered	for	the	term	powerquery.

This	dialog	can	become	very	crowded	over	time,	so	it’s	very	handy	that	you
can	filter	 it	by	using	the	search	pane.	 In	the	 image	above,	we’ve	filtered	to
find	 the	 term	powerquery	because	we	know	that	 it	was	part	of	 the	URL	 to
the	Azure	database.

From	here	you	have	two	options:

Delete	the	connection—This	is	a	good	option	if	you	want	to	remove
the	 data	 source	 from	 the	 cached	 connections,	 forcing	 you	 to	 re-
authenticate	 the	 next	 time	 you	 connect	 to	 it.	 This	 is	 also	 a	 great
option	 if	 you	 have	messed	 up	 the	 initial	 connection	 and	 want	 to
start	over.
Edit	 the	 connection—This	 is	 a	 good	 option	 if	 you	 just	 need	 to
update	 the	username	and	password	or	 if	 you	want	 to	 change	 the
connection	privacy	levels	for	some	reason.

You	can	click	the	Edit	button	to	see	the	connection	type:

Figure	100 The	Data	Source	Settings	box	for	the	Azure	database.

You	 can	 also	 trigger	 the	 window	 to	 update/replace	 the	 username	 and
password	by	clicking	the	Edit	button	in	the	Credentials	section,	if	needed.

Using	the	Navigator
Once	 Power	 Query	 has	 connected	 to	 the	 database,	 you’ll	 find	 yourself
launched	into	the	Navigator	interface,	which	allows	you	to	select	the	table(s)
that	you’d	 like	to	connect	to.	 In	this	case,	you	want	to	pull	some	data	from
the	SalesOrders	table.	There	are	a	lot	of	tables,	and	you	can	use	the	search
feature	to	narrow	down	the	list:

Enter	salesorder	into	the	search	area
Click	on	the	Sales.SalesOrderHeader	table

The	preview	pane	reaches	out	to	the	database	and	gives	you	a	glimpse	into
the	data	that	is	stored	within	that	table:

Figure	101 Using	the	Navigator.

The	data	in	here	looks	fairly	useful.	Click	Edit	and	see	what	useful	information
you	can	glean	from	it.

Exploring	the	Data
After	you	click	Edit	in	the	Navigator,	the	first	thing	you’ll	notice	is	that	there
are	 two	 steps	 in	 the	 Applied	 Steps	window:	 Source	 and	Navigation.	 If	 you
select	 the	Source	step,	you	see	 that	 it	goes	back	 to	 the	 raw	schema	of	 the
database,	allowing	you	to	see	what	other	tables,	views,	and	objects	exist	 in
the	database.	The	Navigation	step	then	drills	into	the	table	you	selected.

The	second	thing	you’ll	notice	is	that	there	is	a	lot	of	data	here.	You	can	thin
it	down	a	bit:

Select	 the	 columns	 OrderDate,	 SalesOrderNumber,	 SubTotal,
TaxAmt,	Freight,	and	Sales.SalesTerritory
Right-click	one	of	the	headers	→	Remove	Other	Columns
Right-click	the	OrderDate	column	→	Transform	→	Year
Right-click	the	OrderDate	column	→	Rename	→	Year
Right-click	the	SalesOrderNumber	column	→	Rename	→	Order#

The	query	is	now	a	lot	more	compact	and	focused.

Figure	102 Trimming	down	the	SalesOrderHeader	table.

Figure	103 Every	 record	 containing	 a	 period
shows	a	related	table.

Most	 of	 the	 column	 headers	 make	 perfect
sense,	but	 there	 is	 something	 significant	 about
the	 Sales.SalesTerritory	 column.	 That	 column
isn’t	showing	values	from	the	SalesOrderHeader
table;	 it’s	 showing	 the	 related	 values	 from	 the
SalesTerritory	table!

This	is	one	of	the	great	things	about	connecting
to	 databases:	 Most	 databases	 support
automatic	 relationship	 detection,	 so	 you	 can
browse	 through	 the	 related	 records	 without
even	having	to	set	up	a	relationship	yourself	or
perform	 any	 merges	 at	 all.	 Even	 better,	 when
you	 go	 to	 expand	 that	 column,	 you	 see	 that
there	 are	 even	more	 fields	 coming	 from	 other
tables.	To	see	how	this	works:

Click	the	double-headed	arrow	at	the
top	 right	 of	 the	 Sales.SaleTerritory
column

Power	Query	 asks	which	 columns	 you	want	 to
expand	as	shown	in	Figure	103.

While	it’s	incredible	that	you	can	keep	drilling	in	to	related	tables,	you	really
only	 need	 the	 Group	 field	 from	 the	 SalesTerritory	 table,	 so	 expand	 that
column	to	pull	only	that	record:

Uncheck	(Select	All	Columns)
Check	Group
Remove	the	check	from	Use	Original	Column	Name	as	Prefix
Click	OK

Rename	the	query	RegionByYear

The	data	set	is	now	ready	to	be	loaded	for	analysis:

Figure	104 The	data	is	now	ready	to	be	loaded	and	analyzed.

You	can	now	go	to	the	Home	tab	and	click	Close	&	Load	to	load	the	data	into
an	 Excel	 worksheet.	 After	 a	 short	 wait,	 the	 table	 turns	 green,	 and	 you’re
ready	to	build	a	PivotTable.	Then	follow	these	steps:

Select	a	cell	in	the	table	→	Insert	→	PivotTable
Place	the	table	on	the	same	worksheet,	starting	in	cell	H2
Configure	the	PivotTable	as	follows:
Put	Year	and	Group	on	Rows
Put	SubTotal,	Tax	Amt,	and	Freight	on	Values
Set	each	column	to	show	in	an	accounting	style,	with	no	decimals	or
symbols.

The	result	is	a	nice	PivotTable	that	you	can	update	at	any	time:

Figure	105 The	PivotTable	created	from	a	Windows	Azure	SQL	database.

The	beauty	of	this	solution	is	that	you	could	also	add	slicers,	PivotCharts,	and
other	 items	to	the	worksheet	to	display	the	data	as	you	want	to	see	 it.	But
the	best	part	 is	 that	with	a	 simple	Data	→	Refresh	All,	 you	can	 refresh	 the
data	from	the	online	database	at	any	time	to	update	the	solution	as	needed.

Using	SSAS	as	a	Source
SQL	 Server	 Analysis	 Services	 (SSAS)	 is	 one	 of	 the	 many	 sources	 that	 you
might	find	in	a	corporate	environment.	SSAS	can	be	divided	into	the	tabular
models	and	multidimensional	models,	both	of	which	can	easily	be	pulled	into
Power	Query.

Note:	 Please	note	 that	 all	 numbers	used	 in	 the	 following	data	 set	 are
completely	fictitious	and	were	randomly	seeded	in	the	database.

Connecting	to	SSAS	Sources
In	 order	 to	 connect	 to	 SSAS	 you’ll	 need	 to	 create	 a	 new	 query	 →	 From
Database	 →	 From	 SQL	 Server	 Analysis	 Services	 Database.	 Power	 Query
launches	a	new	window	where	you	need	to	enter	the	name	(or	address)	of
your	server.

Figure	106 Enter	your	server	address	in	order	to	connect	to	it.

The	example	 in	this	section	 is	built	against	a	summary	of	box	office	results,
housed	on	a	 local	SSAS	 instance.	After	authenticating	 to	 the	SSAS	 instance,
you’re	 immediately	presented	with	the	Navigator,	 just	as	you	are	when	you
connect	to	any	other	database:

Figure	107 This	new	window	gives	you	a	tree	view	to	navigate	through	the	SSAS	server.

From	here,	you	can	select	the	dimensions,	measures,	and	KPIs	that	you	want
from	 your	 model	 by	 simply	 checking	 the	 boxes	 beside	 them.	 For	 this
example,	 assume	 that	 you	 select	 the	 FILM_NAME	 dimension	 from	 the
TAB_FILMS	table,	as	well	as	a	few	measures	 like	Screens,	Locations,	Sum	of
BORTot,	and	Sum	of	ADM.	(These	measures	give	the	numerical	values	related
to	the	overall	information	of	the	box	office	performance	for	each	film.)

Building	queries	against	an	SSAS	source	is	quite	different	from	a	normal	SQL
connection.	 In	 a	 normal	 SQL	 instance,	 you	 connect	 to	 the	 entire	 table	 and
filter	out	the	columns	you	do	not	want	to	include.	With	an	SSAS	instance,	you
approach	the	job	the	other	way	around,	checking	the	columns	you	do	want
to	include,	building	the	output	table	column-by-column	as	you	go.

Figure	108 The	preview	window	creates	your	table	as	you	select	items	on	the	left.

When	the	table	preview	meets	your	expectations,	you	can	go	ahead	and	click
the	Edit	button	to	be	launched	into	the	Power	Query	editor.

This	window	 looks	 a	 bit	 different	 than	 the	 one	 you’ve	 seen	 before.	 Unlike
previous	 instances,	 where	 you	 are	 given	 commands	 related	 to	 table
operations,	this	time	you	find	that	the	Cube	Tools	contextual	ribbon	is	active,
giving	you	the	options	Add	Items	and	Collapse	Columns:

Figure	109 Three	applied	steps,	one	table,	and	two	mysterious	new	buttons.

This	particular	model	has	information	for	the	entire	Central	Americas	region,
but	 say	 that	you	want	 to	 focus	 in	on	one	specific	 film:	Titanic.	 In	 this	case,
you	need	to	filter	the	TAB_FILMS_FILM_NAME	column	down	to	just	that	one
movie.

Adding	Fields	Missed
Now	say	that	you’d	like	to	know	the	breakdown	by	country.	The	only	problem
here	is	that	you	missed	selecting	the	column	that	holds	that	information.	To
fix	this	little	issue,	you	click	the	Add	Items	button,	find	the	field	that	has	the
name	of	the	countries,	and	select	it:

Figure	110 The	Add	Items	button	lets	you	select	more	fields.

The	new	column	 is	 immediately	added	 to	 the	 table	output	on	 the	 far	 right
side	of	the	table:

Figure	111 The	newly	added	item	is	added	to	the	far	right	of	the	table.

Note:	 Although	 the	 Cube	 Tools	 contextual	 ribbon	 is	 still	 enabled,	 that
doesn’t	mean	you	can’t	use	the	other	ribbons	you’ve	used	before.	The
Cube	Tools	ribbon	simply	offers	you	new	features	when	you	connect	to
this	special	type	of	data	source.

Collapsing	Fields
You’ve	 seen	 how	 to	 add	 new	 fields,	 but	 what	 does	 the	 Collapse	 Columns
button	do?

After	 looking	 at	 the	 results	 for	Titanic,	 say	 that	 you	 decide	 that	 you	 really
want	to	see	a	different	view	of	the	data.	You	therefore	go	back	and	remove
the	Filtered	Rows	step.	As	a	result,	all	the	films	are	listed,	with	a	breakdown
by	each	country	as	well:

Figure	112 Showing	all	films,	broken	down	by	country.

Next,	you	can	remove	the	TAB_FILMS.FILM_NAME	column	in	an	attempt	to
show	the	box	office	totals	by	country.	Rather	than	right-clicking	the	column
and	 choosing	 Remove,	 you	 select	 the	 TAB_FILMS.FILM_NAME	 column	 →
Collapse	Columns.	Here’s	the	result:

Figure	113 The	effects	of	the	Collapse	Columns	command.

As	you	can	see,	 the	Collapse	Columns	command	removes	 the	column	from
the	 data	 source.	 It	 does	more	 than	 that,	 however.	 If	 you’d	 just	 chosen	 to
remove	the	column,	you’d	still	have	unaggregated	data	by	country	(with	no
film	 title).	 The	 Collapse	 Columns	 feature	 re-aggregates	 the	 data	 and	 then
removes	itself	from	the	query.

Google	Analytics	and	Other	Sources
The	 same	 behavior	 explained	 for	 the	 SSAS	 source	 can	 be	 found	 for	 other
sources.	One	example	of	these	is	Google	Analytics.

Note:	 Unfortunately,	 Google	 Analytics	 is	 only	 available	 in	 Power	 BI
Desktop,	not	Excel.

Sources	 like	Google	Analytics	and	other	SSAS	databases	most	 likely	have	all
the	data	pre-aggregated	for	you,	ready	for	consumption.	In	these	cases,	the
main	use	of	Power	Query	is	not	data	cleaning	but	rather	providing	a	method
for	 the	 end	 users	 to	 discover	what	 they	 need	 and	 integrate	 this	 data	with
other	tables.	Of	course,	you	can	still	use	the	functionality	of	the	Power	Query
user	interface	to	further	enrich	the	tables	as	well.

Figure	114 The	Google	Analytics	connector	in	the	Power	BI	Desktop	uses	an	SSAS	format.

Query	Folding	and	Optimization
One	of	the	great	features	that	databases	offer	is	the	ability	to	take	advantage
of	 query	 folding	 to	 optimize	 query	 performance.	 While	 the	 technology	 is
built	 in	 and	 will	 work	 by	 default	 for	 you	 when	 you	 build	 solutions	 using
Power	 Query’s	 user	 interface,	 you	 can	 also	 accidentally	 break	 it,	 in	 which
case	 your	 queries	will	 be	 processed	 by	 Excel	 alone.	 To	 understand	 how	 to
avoid	this	mistake,	you	need	to	understand	what	query	folding	is	and	how	it
works	at	a	rudimentary	level.

What	Is	Query	Folding?
Most	people	don’t	tend	to	think	about	what	is	happening	behind	the	scenes
as	 they’re	 clicking	 the	 various	 commands	 to	 select,	 filter,	 sort,	 and	 group
data.	As	you’re	aware	by	now,	each	of	these	steps	is	recorded	in	the	Applied
Steps	box,	letting	you	build	a	sequential	macro.	What	you	may	not	be	aware
of,	 however,	 is	 that	 Power	 Query	 is	 also	 translating	 as	 many	 of	 those
commands	as	it	can	into	SQL	and	sending	those	to	the	database.

What	is	even	more	amazing	is	that	a	server	that	has	query	folding	capabilities
will	 accept	 those	 individual	 queries	 and	 then	 attempt	 to	 fold	 them	 into	 a
more	 efficient	 query.	 The	 impact	 of	 this	 is	 evident	 when	 you’re	 issuing
subsequent	 commands	 such	 as	 Select	 All	 Records	 in	 the	 Table	 followed	 by
Filter	to	Exclude	All	Departments	Except	150.

In	lay	terms,	instead	of	loading	all	100,000	records	and	then	filtering	down	to
the	1,500	for	that	department,	the	server	instead	takes	the	queries	to	build	a
more	efficient	query	that	reads:

Select	*	From	tblTransactions	WHERE	Dept	=	‘150’

The	impact	of	this	is	massive:	It	saves	the	processing	time	involved	in	dealing
with	98,500	records.

While	 not	 all	 commands	 can	 be	 folded,	 a	 great	 many	 can,	 pushing	 the
processing	workload	to	the	server.

Note:	 Query	 folding	 technology	 is	 restricted	 to	 databases.	 While	 it
would	 be	 nice	 to	 have	 this	 functionality	 for	 TXT,	 CSV,	 and	 Excel	 files,
those	files	are	not	databases	and	therefore	have	no	engine	to	fold	the
queries.	You	should	also	be	aware	that	not	all	databases	support	query
folding.

Note:	If	the	file	or	database	you	are	connecting	to	is	incapable	of	folding
the	 queries,	 then	 Excel	 will	 just	 download	 the	 full	 set	 of	 data	 and

perform	 the	 requested	 steps	 using	 its	 own	 engine	 to	 process	 them.
Everything	will	still	work,	but	it’s	just	not	as	efficient.

Optimization
Power	Query	can	be	slow.	It’s	an	unfortunate	fact,	and	one	that	Microsoft	is
keenly	aware	of	and	constantly	 trying	to	 improve.	Until	Microsoft	conquers
this	problem,	it	is	important	that	you	have	some	strategies	to	try	to	maximize
performance	where	you	can.

The	first	strategy	is	to	never	provide	a	custom	SQL	statement	when	setting	up
your	 initial	query.	 (The	only	exception	to	this	rule	 is	 if	you	are	an	SQL	ninja
and	are	confident	that	you	can	provide	a	more	efficient	query	than	the	query
folding	 steps	can	build	 for	you.)	By	providing	a	 custom	SQL	 statement,	 you
immediately	 break	 the	 query	 folding	 capabilities	 for	 any	 subsequent	 steps,
potentially	hurting	your	long-term	performance.

Note:	Remember	that	Power	Query	was	not	built	as	a	replacement	for
SQL	 Server	Management	 Studio	 (SSMS).	 It	 was	 built	 as	 a	 tool	 to	 help
Excel	 pros,	 who	 generally	 know	 very	 little—if	 any—SQL	 syntax,	 to
extract,	 filter,	 sort,	and	manipulate	data.	Power	Query’s	 job	 is	 to	build
your	SQL	code	for	you.

The	second	strategy	 is	to	give	preference	to	connecting	to	tables	instead	of
views.	Power	Query	can	read	the	keys	or	indexes	of	a	table	but	not	of	a	view.
This	leads	to	Power	Query	making	different	choices	when	trying	to	load	the
data	 from	a	view—choices	 that	may	not	be	as	efficient	as	 those	 related	 to
reading	the	indexes	and	keys	from	a	table.	Power	Query	also	cannot	perform
relationship	 detection	 across	 views,	 which	 makes	 the	 initial	 design
experience	more	difficult	in	the	first	place.

The	third	strategy	is	to	try	to	push	as	much	work	to	the	database	as	possible.
For	 example,	 query	 folding	 pushes	 the	workload	 to	 the	 server,	 rather	 than
being	performed	using	Power	Query	on	the	local	workstation.	As	databases
are	designed	to	process	data	efficiently,	this	will	help	with	performance.

The	 fourth	 consideration	 is	 to	 try	 to	 do	 as	much	work	 as	 possible	 in	 your
initial	query	design	using	the	Power	Query	user	 interface	commands	rather
than	 reaching	 to	 custom	 M	 code.	 While	 it	 will	 be	 tempting	 to	 inject
parameters	dynamically	 to	 control	 filters	 (especially	 after	 you	 read	Chapter
23	on	parameter	tables),	you	should	be	aware	that	this	will	break	the	query
folding	capability.

Warning:	 Query	 folding	 cannot	 be	 executed	 against	 any	 line	 that
contains	 a	 custom	 M	 or	 SQL	 statement.	 Even	 worse,	 M	 or	 an	 SQL
statement	stops	any	further	query	folding	from	taking	place.

Chapter	9	Merging	Tables	and
Queries
One	of	 the	classic	 issues	 that	has	presented	 itself	 to	Excel	pros	 for	years	 is
aggregating	two	separate	data	tables	into	one	in	order	to	serve	a	PivotTable.
The	route	was	to	use	a	VLOOKUP()	or	INDEX(MATCH())	combination	in	order
to	read	data	from	one	table	into	the	other.

The	challenge	with	this	 is	that	many	users	were	terrified	of	VLOOKUP()	and
didn’t	 understand	 the	 INDEX()	 and	 MATCH()	 functions	 either.	 And	 while
PowerPivot	 now	 allows	 you	 to	 aggregate	 two	 tables	 without	 using	 any
VLOOKUP()	 functions,	 it	 carries	 its	 own	 complexities.	 Yet	 still	 the	 issue
remains:	Sometimes	you	just	need	an	easy	way	to	merge	two	tables’	records
together.

When	 Power	 Query	 hit	 the	 scene,	 it	 introduced	 yet	 another	 method	 to
combine	 two	 tables	 together—one	 that	 didn’t	 involve	 learning	 Excel
formulas	or	building	a	relational	database	structure.

Merging	Tables	via	Power	Query
For	this	example,	say	that	you	have	two	separate	tables	that	exist	in	an	Excel
worksheet.	 The	 first	 is	 the	 Sales	 table,	which	 holds	 the	 Sale	 Date,	 Product
SKU	 (number),	 Brand,	 and	 Sales	 Quantity	 of	 the	 sales	 transactions.	 But	 it
doesn’t	hold	any	 information	about	 the	price	or	 cost	of	 the	products.	 That
information	(and	more)	is,	however,	held	in	the	Inventory	table.	You’d	like	to
merge	 the	 two	 tables	 together	 in	 order	 to	 get	 a	 comprehensive	 list	 of
products	with	their	finer	details.

Creating	“Pointer”	Queries
In	order	to	merge	or	append	queries	together,	the	queries	must	exist.	Having
a	table	in	Excel	isn’t	good	enough;	Power	Query	actually	needs	to	recognize
the	data	as	a	query.	Yet	it	seems	somewhat	crazy	to	have	to	take	an	existing
table,	pull	it	into	a	Power	Query,	and	then	load	it	to	an	Excel	table	in	order	to
reference	it.	And,	indeed,	you	don’t	actually	need	to	do	that.

You	do	still	need	to	pull	the	original	table	into	Power	Query,	but	the	output	is
where	you	make	a	change.

Inside	 the	 Ch09	 Examples\Merge.xlsx	 file,	 you’ll	 find	 two	 tables	 set	 up:	 an
Inventory	 table	 and	 a	 Sales	 table.	 In	 order	 to	 let	 Power	 Query	 read	 the

contents	of	the	Inventory	table	you	need	to:

Click	any	cell	inside	the	Inventory	table
Create	a	new	query	→	From	Table

Power	 Query	 opens	 its	 editor	 so	 you	 can	 make	 any	 transformations	 you
need.	 In	 this	 case,	 however,	 you	 actually	 don’t	 need	 to	make	 any.	 All	 you
want	to	do	is	create	something	that	you	can	connect	to	later.

On	the	Home	tab,	click	the	drop-down	on	the	bottom	of	the	Close	&
Load	button
Choose	Close	&	Load	To…
In	 the	 Load	 To	 dialog,	 which	 now	 asks	 where	 to	 save	 your	 data,
select	Only	Create	Connection

Figure	115 Choosing	to	create	a	connection-only	query.

Click	Load

You	 see	 your	 query	 show	 up	 in	 the	 Workbook	 Queries	 pane,	 but	 Power
Query	doesn’t	create	a	new	table	for	you.

Figure	116 A	new	query	created	as	a	connection-only	query.

Note:	If	you	make	a	mistake	and	create	a	query	with	a	table,	you	can	fix
it	 by	 right-clicking	 the	 query	 in	 the	 Workbook	 Queries	 pane	 and

choosing	Load	To….	Power	Query	warns	you	that	you’re	going	to	delete
data	when	you	commit	the	change,	as	you	will	be	removing	the	newly
created	table.	You	can	also	add	a	table	if	you	created	a	connection-only
query	 by	 editing	 the	 Load	 To…	 behavior	 as	 above	 and	 changing	 the
selected	load	behavior	from	Only	Create	Connection	to	Table.

With	the	Inventory	table	now	available	 in	Power	Query,	you	need	to	repeat
this	process	for	the	Sales	table:

Click	any	cell	 inside	the	Sales	table	→	create	a	new	query	→	From
Table
Home	→	Close	&	Load	To…	→	Only	Create	Connection	→	OK

You’re	all	set	up	and	ready	to	merge	the	tables	together.

Performing	the	Merge
You	 create	 a	merged	 table	 in	 the	 same	place	where	 you	 create	 an	append
query	from	the	Excel	user	interface.	Here’s	what	you	do:

Create	a	new	query	→	Combine	→	Merge

The	Merge	 dialog	 appears.	 Its	 two	 drop-downs	 allow	 you	 to	 pick	 the	 two
tables	that	you’d	like	to	merge	together.

Choose	Sales	as	the	top	table
Choose	Inventory	as	the	bottom	table

Oddly,	after	you	take	these	actions,	the	OK	button	is	still	not	enabled:

Figure	117 You’ve	chosen	tables,	but	why	can’t	you	proceed?

The	issue	at	hand	is	that	Power	Query	doesn’t	know	which	fields	you	want	to
use	to	perform	the	merge.

In	order	to	perform	a	merge,	you	ideally	want	to	have	a	column	that	contains
unique	values	in	one	table	but	has	repeating	records	in	the	other	table.	This
is	called	a	one-to-many	structure,	and	using	it	is	the	best	way	to	ensure	that
you	end	up	with	results	that	match	what	you’d	expect.

Note:	 Power	 Query	 supports	 one-to-one	 and	 many-to-many	 joins,	 as
you’ll	see	shortly.

In	 this	 case,	 the	 SKU	 Number	 column	 contains	 unique	 products	 in	 the
Inventory	table,	and	it	repeats	many	times	in	the	Sales	table,	so	you	can	use
those:

Click	the	SKU	Number	header	in	each	table
Click	OK

Power	Query	opens	the	editor,	where	you	see	a	nice	new	column	of	tables	on
the	right	side	of	the	Sales	table:

Figure	118 A	new	column	of	tables,	containing	the	matching	Inventory	table	records.

You	 know	 what	 to	 do	 with	 a	 column	 of	 tables:	 Expand	 them!	 The	 only
question	 here	 is	 which	 columns	 you	 need.	 Because	 the	 SKU	 Number	 and
Brand	columns	already	exist	in	the	sales	table,	you	don’t	need	those,	so	make
sure	to	exclude	them	during	the	expansion.	Follow	these	steps:

Click	the	expand	icon
Uncheck	the	SKU	Number	and	Brand	columns
Uncheck	the	column	prefix	option	→	OK

As	 you	 can	 see,	 you	 now	 have	 the	 product	 details	 merged	 into	 the	 Sales
table:

Figure	119 Details	from	the	Inventory	table	merged	into	the	Sales	table.

Now	you	can	finalize	this	query	by	using	the	following	steps:

Rename	the	query	OneToMany
Go	to	Home	→	Close	&	Load

You’ll	find	that	you	have	20	records,	one	for	each	transaction	in	the	original
Sales	table,	exactly	replicating	VLOOKUP()’s	exact	match	scenario.

Many-to-Many	Merges
When	 building	 a	 merge,	 you	 need	 to	 be	 careful	 to	 merge	 based	 on	 the
correct	columns.	If	you	try	setting	up	a	merge	as	follows,	you’ll	find	that	your
output	differs	slightly:

Create	a	new	query	→	Combine	→	Merge

Choose	Sales	as	the	top	table
Choose	Inventory	as	the	bottom	table
Click	the	Brand	header	in	each	table
Click	OK
Click	the	expand	icon
Uncheck	the	SKU	Number	and	Brand	columns	→	OK
Uncheck	the	column	prefix	option	→	OK
Rename	the	query	ManyToMany
Go	to	Home	→	Close	&	Load

As	you	can	see,	the	only	two	changes	here	are	the	column	used	to	merge	the
tables	and	the	final	query	name	(which	won’t	affect	the	output).	Yet	this	time
there	are	22	records	in	the	output	table—2	more	than	the	original	count	of
transactions.

To	 understand	 why	 this	 is	 happening,	 you	 need	 to	 edit	 the	 ManyToMany
query	and	step	back	to	the	Source	step.	If	you	go	down	the	table	to	record	19
and	click	in	the	whitespace	beside	the	word	Table,	you	get	a	preview	of	the
data	in	the	table	that	will	be	merged	into	your	Sales	table.

Figure	120 A	many-to-many	merge	in	action.

In	 the	 previous	merge,	 you	 created	 the	merge	 based	 on	 the	 SKU	 number,
meaning	 that	 records	 would	 only	 be	 matched	 up	 if	 their	 item	 numbers
matched.	 In	 this	 case,	however,	you	matched	based	on	 the	brand.	Because
the	 OK	 Springs	 brand	 shows	 twice	 in	 the	 Inventory	 table,	 when	 the	 Sales
table	has	 the	brand	OK	Springs,	 it	 creates	 two	matches.	 The	 fact	 that	 they
have	different	SKUs	 is	 irrelevant	 to	Power	Query,	 as	 you	asked	 for	a	match
based	on	brand,	not	SKU.

You	 can	 see	 from	 this	 example	 that	 you	 need	 to	 be	 careful	when	 creating
matches.	This	feature	can	be	very	useful,	but	it	can	also	be	dangerous	if	you
are	not	paying	attention	and	are	expecting	a	one-to-many	match.

Dynamic	Table	Headers
Excel	tables	are	fantastic,	they	truly	are.	But	one	issue	with	them	is	that	they
lock	down	the	header	 row	 into	hard-coded	values.	That	prohibits	you	 from
having	dynamic	headers	on	your	tables,	driven	by	formulas.

The	 file	 Ch09	 Examples\Dynamic	Headers.xlsx	 contains	 a	 spreadsheet	 used
for	 budgeting	 green	 fee	 rounds	 for	 a	 golf	 course.	 The	 author	 has	 set	 up	 a
tabular	setup	and	is	able	to	change	the	year	in	B1	and	update	all	headers	in
rows	3	and	32	of	the	document:

Figure	121 A	budget	document	with	dynamic	headers.

The	Issue
The	 challenge	 here	 is	 that	 you	 need	 to	 load	 and	 unpivot	 the	 Recap	 table
(rows	32:36).	Since	using	Power	Query	is	the	easiest	way	to	unpivot	data,	you
obviously	want	 to	use	 it,	but	 there	are	some	challenges	 in	getting	 the	data
into	Power	Query	in	the	first	place:

Loading	the	data	via	a	table	would	cause	the	column	headers	to	be
locked	in,	and	you	would	lose	the	dynamic	feel.
Loading	 the	 data	 using	 a	 named	 range	 would	 allow	 the	 column
headers	to	change	in	the	worksheet	but	would	potentially	break	any
hard-coded	steps	in	the	query	when	the	dates	change.

The	workaround	 in	this	case	 is	 to	create	a	translation	table	and	merge	that
back	into	the	query.

Creating	a	Translation	Table

The	 translation	 table	 for	 this	 example	needs	 to	be	able	 to	 come	up	with	a
logical	way	to	translate	a	static	column	header	to	the	current	dates.	Using	the
notation	CYMx	(Current	Year,	Month	x),	you	can	build	a	table	to	hold	these
dates.	Create	the	table	as	follows:

Enter	in	cell	A40:	Period
Enter	in	cell	B40:	Date
Enter	in	cell	A41:	CYM1
Extend	A41	down	to	A52	so	that	it	reads	CYM2,	CYM3,	and	so	on
Select	A40:B52	→	Home	→	Format	as	Table
Table	 Tools	 →	 Design	 →	 Table	 Name	 →	 name	 the	 table
DateTranslation
Copy	B32:M32
Right-click	B41	→	PasteSpecial
Choose	 to	 paste	 Formulas	 &	 Number	 Formats	 and	 check	 the
Transpose	box

Your	table	should	now	be	set	up	as	follows:

Figure	122 The	DateTranslation	table.

Naturally,	in	order	to	merge	this	into	another	table,	you	need	Power	Query	to
also	know	that	it	exists,	so	follow	these	steps:

Select	any	cell	in	the	table
Create	a	new	query	→	From	Table
Home	→	Close	&	Load	To…	→	Only	Create	Connection

With	a	connection	set	up	to	this	table,	you’re	now	ready	to	go.

Retrofitting	the	Source	Table
Next,	you	need	to	pull	in	the	Summary	table.	But	in	order	to	merge	the	data
together,	 it	 will	 obviously	 need	 to	 have	 headers	 consistent	 with	 the	 CYM
format.	Yet	at	the	same	time,	you’d	 like	to	keep	the	current	dates	showing.
This	is	no	big	deal—you	can	fake	it:

Copy	row	32
Right-click	row	33	→	Insert	Copied	Cells
Copy	cells	A42:A53
Right-click	B33	→	Paste	Special	→	Values	+	Transpose

The	data	range	is	now	set	up	and	ready	for	to	use,	and	you	just	need	to	add	a
table	to	it:

Figure	123 The	summary	table	now	has	the	alternate	header.

The	 trick	 here	 is	 that	 you	 need	 to	 make	 sure	 the	 table	 only	 covers	 rows
33:37,	as	you	don’t	want	to	lock	down	row	32’s	formulas.	Follow	these	steps:

Click	inside	the	data	range	→	Home	→	Format	as	Table
Adjust	the	range	to	read	=A33:M37
OK	→	set	the	table	name	to	StatsData
Hide	row	33

Depending	 on	 the	 style	 you	 choose,	 you	 can	 even	 hide	 all	 evidence	 that
you’ve	been	tinkering	with	this	and	setting	it	up	as	a	table:

Figure	124 Table?	What	table?

Merging	the	Tables
And	now	for	the	magic	moment—combining	these	tables:

Click	inside	the	StatsData	table	→	create	a	new	query	→	From	Table
Right-click	the	Month	column	→	UnPivot	Other	Columns
Right-click	the	Month	column	→	Replace	Values	→	“Total	”	(with	a
trailing	space	and	no	quotation	marks)	with	nothing	→	OK

At	this	point	the	query	is	looking	fairly	decent.	It’s	unpivoted,	and	it’s	ready
to	be	merged.	And	guess	what?	You	don’t	even	have	to	leave	Power	Query	to
do	it!

Go	to	Home	→	Merge	Queries
Pick	the	DateTranslation	table
Choose	the	Attribute	and	Period	columns	→	OK
Expand	the	Date	field	(only)	from	the	new	column	(unchecking	the
prefix)	→	OK
Right-click	the	Date	column	→	Change	Type	→	Date
Right-click	the	Attribute	column	→	Remove
Right-click	the	Value	column	→	Rename	→	Rounds
Change	the	query	name	to	Budget
Go	to	Home	→	Close	&	Load

The	 output	 is	 a	 very	 nice	 unpivoted	 set	 of	 data,	 with	 the	 correct	 dates
associated	with	each	transaction:

Figure	125 The	unpivoted	data	set.

But	how	well	does	it	update?	Try	this	to	see:

Go	to	the	Data	worksheet
Update	cell	B1	to	2015

It	looks	like	the	data	entry	worksheet	is	working:

Figure	126 The	data	entry	worksheet	is	still	reacting	dynamically.

Now	check	the	Power	Query:

Select	the	worksheet	that	holds	the	Budget	table
Go	to	Data	→	Refresh	All

It	looks	like	the	table	is	working	nicely	as	well!

Figure	127 The	output	table	updates	to	reflect	the	current	dates.

With	 the	 table	headers	now	essentially	dynamic	and	your	ability	 to	quickly
unpivot	 the	data	 into	a	 table,	 you’ve	now	opened	up	great	possibilities	 for
the	data.	From	merging	this	to	other	data	sets	to	feeding	it	into	PivotTables

or	Power	Pivot,	the	possibilities	are	truly	endless—and	you	still	have	a	user-
friendly	front	end.

Chapter	10	Query	Loading
Destinations
While	the	majority	of	the	examples	in	this	book	to	this	point	have	focused	on
landing	 the	Power	Query	output	 into	 Excel	 tables,	 that	 is	 certainly	 not	 the
only	option	for	where	to	place	Power	Query	data.

In	fact,	you	have	three	different	loading	destination	options,	some	of	which
can	be	used	in	combination:

Excel	tables
Connection-only	queries
The	Power	Pivot	Data	Model

Note:	The	ability	to	load	directly	to	the	Power	Pivot	Data	Model	 is	not
supported	in	Excel	2010.	Having	said	that,	just	because	it	isn’t	supported
doesn’t	mean	that	 it	can’t	be	done.	You’ll	 find	out	how	to	do	 it	 in	this
chapter.

Query	Loading	Methods
Each	of	the	different	 loading	options	has	different	benefits,	drawbacks,	and
caveats	associated	with	it,	which	we	will	explore	here.

Excel	Tables
Excel	 tables	 are	 the	 default	 loading	 experience	 for	 Power	 Query	 queries.
When	 you	 simply	 click	 Close	 &	 Load	 in	 the	 Power	 Query	 interface,	 Excel
creates	 a	 new	 table	 on	 a	 new	worksheet	 to	 hold	 the	 query’s	 output.	 The
newly	created	table	inherits	the	name	of	the	query,	with	a	few	modifications:

Any	spaces	are	converted	to	underscores.
If	 the	query’s	name	 is	already	used	 for	an	existing	table	or	named
range,	it	will	then	have	an	_#	appended	to	the	end.

Warning:	One	caveat	to	be	aware	of	here	is	that	you	should	never	give	a
query	 the	 same	 name	 as	 an	 existing	 Excel	 function.	 Excel	 tries	 to
interpret	 named	 ranges	 before	 functions,	 so	 having	 a	 table	 named
something	like	ROUND	or	LEFT	will	cause	all	cells	using	these	functions
to	return	#N/A	errors.

If	you	are	simply	reading	data	from	a	table	and	making	no	manipulations	to
it,	using	the	default	option	does	give	you	a	connection	to	the	data	in	Power
Query,	but	 it	also	duplicates	the	data	on	another	worksheet,	 increasing	the
file	size	and	adding	memory	overhead	to	your	file.

Connection-Only	Queries
As	you	saw	in	Chapter	9,	connection-only	queries	are	set	up	to	avoid	landing
data	 into	 a	 worksheet,	 but	 they	 still	 allow	 you	 to	 connect	 to	 the	 data	 via
other	Power	Query	queries.

This	 option	 is	 a	 fantastic	 one	 that	 gets	 used	 frequently	 in	 practice,	 as	 the
queries	set	up	 in	 this	 fashion	are	 loaded	on	demand	only	when	called	by	a
subsequent	query.	Since	they	don’t	load	any	data	directly	to	the	worksheet,
they	also	don’t	 increase	the	file	size	or	memory	overhead	required	to	store
the	query	output.

Note:	 Loading	 to	 a	 table	 and	 creating	 a	 connection-only	 query	 are
mutually	exclusive	options.	You	can	choose	only	one	or	the	other.

For	 example,	 when	 you	 open	 Ch10	 Examples\Load	 Destinations.xlsx,	 you’ll
find	that	the	workbook	contains	two	tables	of	sales	items	for	a	pet	store.	The
analyst	 wants	 to	 merge	 these	 tables	 together	 for	 use	 in	 a	 business
intelligence	solution.	How	does	she	do	it?

She	could	load	each	table	into	a	query,	load	the	queries	into	worksheets,	and
then	 create	 an	 append	query	 that	would	 also	be	 loaded	 into	 a	worksheet.
She	 would	 essentially	 create	 three	 copies	 of	 the	 data,	 which	 seems	 a	 bit
ridiculous.

A	better	 alternative	 is	 to	use	 connection-only	queries	 to	 create	pointers	 to
the	 original	 data	 tables	 and	 then	 create	 an	 append	 query	 against	 those
connections	and	land	the	output	in	a	table.	The	final	table	would	act	as	the
source	 for	 the	 analyst’s	 PivotTables,	 and	 there	 would	 not	 be	 an	 extra
duplication	step	in	the	middle.

To	set	up	this	solution,	you	would	follow	these	steps:

Open	Ch10	Examples\Load	Destinations.xlsx
Select	a	cell	in	the	range	of	data	on	the	May	worksheet
Create	a	new	query	→	From	Table
Change	the	query	name	to	Sales-May
Go	to	Home	→	Close	&	Load	To…	→	Only	Create	Connection

Select	a	cell	in	the	range	of	data	on	the	Jun	worksheet
Create	a	new	query	→	From	Table
Change	the	query	name	to	Sales-Jun
Go	to	Home	→	Close	&	Load	To…	→	Only	Create	Connection

This	process	gives	you	two	connection-only	queries,	without	duplicating	any
data	in	the	workbook:

Figure	128 Two	connection-only	queries,	ready	for	use.

You	 can	 now	 create	 an	 append	 query	 to	 merge	 the	 two	 connection-only
queries	together:

Right-click	the	Sales-May	query	→	Append
Choose	to	append	Sales-Jun	→	OK
Rename	the	query	Sales
Right-click	the	Date	column	→	Change	Type	→	Date
Go	to	Home	→	Close	&	Load

Power	Query	creates	a	new	table	that	holds	all	 the	data	and	 is	ready	to	be
pivoted:

Figure	129 An	append	query	created	from	two	connection-only	queries.

Note:	When	creating	a	new	query	against	a	connection-only	query,	it	is
not	 necessary	 to	 load	 the	 output	 to	 an	 Excel	 table.	 You	 could	 just	 as
easily	load	it	to	another	connection-only	query	if	needed.

Loading	to	Power	Pivot	(Excel	2010)
There	are	actually	two	ways	to	load	Power	Query	data	to	Power	Pivot	in	Excel
2010.	But	only	one	is	officially	supported:	loading	via	linked	tables.

To	link	this	data	into	the	Power	Pivot	Data	Model,	you	select	anywhere	inside
the	Sales	table,	go	to	the	Power	Pivot	tab,	and	click	Create	Linked	Table.	The
end	result	is	a	data	flow	that	follows	this	process:

Excel	 table	 →	 connection-only	 query	 →	 append	 query	 →	 Excel	 table	 →
Power	Pivot

Note:	 You	might	 think	 it	would	be	easier	 to	 just	go	directly	 from	your
monthly	 sales	 tables,	 link	 both	 tables	 to	 Power	 Pivot,	 and	 create	 a
relationship—avoiding	the	necessity	of	creating	the	append	query.	The
issue	 here	 is	 that	 Power	 Pivot	 is	 great	 at	 creating	 relationships
horizontally	 (replicating	 VLOOKUP()	 functionality)	 but	 it’s	 lousy	 at
stacking	two	tables	on	top	of	each	other	(appending	data).

The	challenges	with	this	approach	are	two-fold:

Your	data	gets	duplicated	because	it	is	loaded	to	the	worksheet	first
and	then	to	the	Data	Model.
Your	 Power	 Pivot	 tables	 are	 capped	 at	 a	 maximum	 of	 1,048,575
rows	of	data	(1	less	than	the	number	of	rows	in	the	worksheet).

So	 while	 this	 works	 and	 is	 the	 supported	 method,	 using	 Power	 Query’s
supported	 loading	 methods	 definitely	 has	 some	 drawbacks	 for	 serious
modelers.

Loading	to	the	Data	Model	(Excel	2013+)
In	Excel	2013	and	higher,	the	process	of	linking	to	the	Data	Model	is	actually
much	easier:	Excel	gives	you	a	little	box	that	you	can	check	to	have	Excel	do
the	job	for	you.	To	see	this	in	action,	you	can	modify	the	existing	Sales	table
connection:

In	 the	Workbook	Queries	pane,	 right-click	 the	Sales	query	→	Load
To…
Select	Only	Create	Connection

Check	the	Add	This	Data	to	the	Data	Model	checkbox
Click	Load

Figure	130 Changing	the	query	loading	options.

Making	 these	 changes	 triggers	 a	 warning	 about	 possible	 data	 loss.	 This
happens	because	changing	from	Table	to	Only	Create	Connection	tells	Excel
that	 you	 would	 like	 to	 remove	 the	 table	 that	 Power	 Query	 landed	 in	 the
worksheet.	Because	that	is	to	be	expected,	you	can	simply	acknowledge	the
warning	by	clicking	Continue.

Note:	Should	you	need	to,	you	are	able	to	load	the	data	to	both	a	table
in	a	worksheet	as	well	as	the	Data	Model.

After	Power	Query	takes	a	little	bit	of	time	to	remove	the	table	and	set	things
up	with	the	Data	Model,	you	can	head	in	to	Power	Pivot	and	go	to	the	Power
Pivot	tab	→	Manage.

Figure	131 The	data	is	comfortably	loaded	into	the	Power	Pivot	Data	Model.

You’ll	also	find	that	updates	to	the	Power	Query	tables	flow	seamlessly	into
Power	Pivot.	Add	a	new	column	to	the	Sales	table	in	Power	Query	to	see	how
Power	Pivot	handles	it:

Return	to	Excel	and	edit	the	Sales	query
Select	the	Date	column	→	Add	Column	→	Date	→	Month	→	Month
Go	to	Home	→	Close	&	Load
Return	to	Power	Pivot

The	 data	 is	 automatically	 updated	 for	 you,	 and	 you	 don’t	 even	 need	 to
trigger	a	refresh.

Figure	132 A	query	update	pushed	directly	into	the	Data	Model.

Changing	the	Default	Query	Loading	Settings
If	 you	 find	 that	 you’re	 doing	 a	 lot	 of	 modifications	 to	 the	 default	 loading
experience,	 you	 can	make	 changes	 to	 your	 default	 experience.	Where	 you
make	these	changes	depends	on	your	version	of	Excel:

Excel	2016:	Data	→	New	Query	→	Query	Options
Excel	2010/2013:	Power	Query	→	Settings	→	Options

Following	either	of	these	sets	of	instructions	opens	the	Query	Options	dialog,
where	you	can	change	your	default	loading	behavior:

Figure	133 Changing	the	default	loading	settings.

To	overrule	the	default	settings,	select	Specify	Custom	Default	Load	Settings
and	 then	 configure	 these	 settings	 as	 you	 wish.	 The	 trick	 here	 is	 that	 by
unchecking	Load	to	Worksheet,	you	create	a	connection-only	query.	You	can
then	 optionally	 select	 the	 option	 Load	 to	 Data	 Model	 (in	 Excel	 2013	 or
higher.)

Loading	Directly	to	Power	Pivot	in
Excel	2010
Let’s	be	fair:	Having	to	load	data	into	the	Excel	2010	Data	Model	via	a	table
seems	 crazy.	 And,	 in	 fact,	 there	 is	 a	way	 to	 go	 directly	 to	 the	 Data	Model
without	going	 through	a	 linked	 table	 first.	A	 full	 caveat	on	 this,	however,	 is
that	this	is	not	supported	by	Microsoft,	which	means	you	do	this	at	your	own
risk.

Connecting	to	the	Data	Model
Connecting	directly	 to	 the	Data	Model	 in	Excel	2013	or	higher	 is	very	easy,
but	in	Excel	2010	you	need	to	do	a	bit	more	work	to	pull	it	off.	To	see	how	it
works,	you’ll	use	the	Ch10	Examples\Load	Destinations	–	Pre	DataModel.xlsx
workbook,	which	 contains	 the	 Sales	 query	 you	 created	 earlier,	 loaded	 to	 a
worksheet	but	not	yet	linked	to	Power	Pivot.

As	with	working	with	Excel	2013	or	higher,	you	want	this	to	be	a	connection-
only	query,	as	the	entire	point	is	to	avoid	loading	to	a	worksheet	first.	So	you
need	to	convert	it:

Open	the	Workbook	Queries	pane	→	right-click	Sales	→	Load	To…
→	Only	Create	Connection	→	Load
Click	Continue	to	accept	the	possible	data	loss	warning

Now	you	need	to	link	the	Sales	query	directly	to	Power	Pivot’s	Data	Model.
This	is	done	inside	the	Power	Pivot	window:

Go	to	Power	Pivot	→	Power	Pivot	Window
Go	to	Design	→	Existing	Connections	→	scroll	down	to	the	end

This	is	perfect:	The	queries	are	all	listed	in	Power	Pivot	already!

Figure	134 The	Power	Query	queries	are	existing	connections!

Double-click	Query	–	Sales	→	Next

You	now	see	the	following	screen,	which	allows	you	to	specify	the	SQL	query
to	 read	 from	 your	 query.	 Strangely,	 however,	 you	 can’t	 edit	 the	 SQL
statement.

Figure	135 The	query	with	un-editable	SQL.

Warning:	This	is	your	only	chance	to	set	the	Power	Pivot	table	name	…
ever.	Update	the	name	of	the	query	to	something	more	logical	here	and
make	a	mistake	at	your	peril	as	it	is	un-editable	after	this	point.

Change	the	query	name	to	Sales	→	Finish

The	query	is	now	loaded	to	the	Data	Model:

Figure	136 A	query	loaded	directly	to	the	Excel	Data	Model.

Adding	Columns	to	the	Query
Now,	what	about	adding	that	Month	column?	Go	back	to	the	Sales	query	and
add	it:

Edit	the	Sales	query
Select	the	Date	column	→	Add	Columns	→	Date	→	Month	→	Month
Go	to	Home	→	Close	&	Load

Now,	take	a	look	at	how	it	updates:

Return	to	Power	Pivot
Go	to	Home	→	Refresh

Things	do	not	go	well:

You	get	an	error	immediately.	And	clicking	on	Error	Details	yields	a	message
that	says	this	(and	more):

The	query	‘Sales’	or	one	of	its	inputs	was	modified	in	Power
Query	after	this	connection	was	added.	Please	disable	and	re-
enable	loading	to	the	Data	Model	for	this	query.

This	is	obviously	not	good.	So	how	do	you	fix	it?

The	 issue	 is	 that	 Power	 Query	 queries	 are	 compiled	 into	 a	 complicated
connection	string.	And	every	time	a	source	query	is	modified,	the	connection
string	 is	changed.	Because	you	linked	to	the	connection	string	when	setting
up	this	query,	you	need	to	update	that	string,	and	this	is	how	you	do	it:

Dismiss	the	error
Return	to	Excel
Go	to	Data	→	Connections
Select	Query	–	Sales	→	Properties	→	Definition
Click	inside	the	Connection	String	box	→	press	Ctrl+A	to	select	the
entire	connection	string
Press	Ctrl+C	to	copy	the	entire	connection	string
Click	OK	→	Close
Return	to	Power	Pivot	→	Design	→	Existing	Connections	→	Query	–
Sales	→	Edit
Select	everything	inside	the	connection	string	(Ctrl+A	does	not	work
here)
Press	Ctrl+V	to	paste	the	entire	connection	string	you	copied	earlier
Click	Save	→	Close
Go	to	Home	→	Refresh

But	 what’s	 this?	 While	 the	 connection	 now	 refreshes,	 the	 new	 Month
column	isn’t	present?

As	 if	 the	 initial	 process	 weren’t	 long	 enough,	 you	 need	 to	 re-confirm	 the
table	query	as	well	by	going	to	Design	→	Table	Properties	→	Save.

Now	 you’re	 done.	 A	 simple	 open	 and	 save,	 and	 you	 finally	 see	 your	 new
column:

Figure	137 The	new	month	column	finally	arrives	in	Power	Pivot.

Removing	Columns	from	a	Query
How	 do	 you	 remove	 columns	 from	 a	 query?	 A	 similar	 update	 process	 is
required:

Return	to	Excel
Go	to	Workbook	Queries	→	right	click	the	Sales	query	→	Edit
Delete	the	Inserted	Month	step	in	the	Applied	Steps	window
Go	to	Home	→	Close	&	Load
Go	to	Data	→	Connections
Select	Query	–	Sales	→	Properties	→	Definition
Click	inside	the	Connection	String	box	→	press	Ctrl+A	to	select	the
entire	connection	string
Press	Ctrl+C	to	copy	the	entire	connection	string
Click	OK	→	Close
Return	to	Power	Pivot	→	Design	→	Existing	Connections	→	Query	–
Sales	→	Edit
Select	everything	inside	the	connection	string	(Ctrl+A	does	not	work
here)
Press	Ctrl+V	to	paste	the	entire	connection	string	you	copied	earlier
Save	→	Close
Go	to	Design	→	Table	Properties	→	Save
Go	to	Home	→	Refresh

This	process	may	seem	incredibly	painful,	but	if	you	follow	these	steps,	you
can	easily	update	an	Excel	2010	Power	Pivot	table	when	changes	are	made	to
your	Power	Query	queries.	The	process	is	tedious,	but	at	least	it’s	always	the
same.

Note:	The	problem	with	loading	directly	to	Power	Pivot	in	Excel	2010	is
that	both	Power	Query	and	Power	Pivot	were	separate	add-ins	for	Excel
2010.	Power	Pivot	was	 integrated	 into	Excel	2013	and	Power	Query	 in
2016.	So	from	Excel	2013	on,	Power	Query	and	Power	Pivot	were	able
to	start	talking	to	each	other	properly,	and	Excel	can	handle	this	process
without	manual	intervention.

Data	Model	Dangers	in	Excel	2010	and
2013
Because	Power	Query	is	a	separate	add-in	from	Excel	2010	and	2013,	there
are	some	very	dangerous	idiosyncrasies	that	you	need	to	be	aware	of	when
working	with	Power	Query.	 Fortunately,	 these	have	been	 solved	with	Excel
2016	 and	 for	 some	 people	 using	 Excel	 2013,	 but	 if	 you	 are	 developing	 in
earlier	 versions,	 you	 either	 need	 to	 go	 “all	 in”	with	 Power	Query	 or	 avoid
using	it.

How	to	Corrupt	Your	Model
Corrupting	your	model	is	deadly	easy,	and	the	worst	part	is	that	you	may	not
realize	for	months	that	you’ve	done	it.	Here	is	a	very	easy	way	to	do	it	(and
it’s	safe	to	try	it	here,	so	go	for	it!):

Open	 the	 Ch10	 Examples\Load	 Destinations	 –	 Complete	 that
pertains	to	your	version
Open	Power	Pivot
Rename	the	Sales	worksheet	Transactions

Your	model	 is	broken,	but	 it	certainly	doesn’t	 look	 like	 it,	does	 it?	 In	fact,	 it
continues	to	refresh	whether	you	go	to	Home	→	Refresh	 in	Power	Pivot	or
Data	→	Refresh	All	in	Excel.	So	what’s	the	big	deal?

Figure	138 The	model	still	refreshes,	so	what’s	the	problem?

The	model	is	damaged,	but	your	workbook	will	continue	to	refresh,	possibly
for	months,	before	you	 figure	 it	out.	What	will	 trigger	 the	 issue	 to	actually
rear	its	ugly	head?	Any	change	to	the	underlying	query.

To	see	what	we	mean,	go	back	and	add	that	month	column	again,	using	the
steps	outlined	earlier	 in	 this	chapter.	Whether	you	use	Excel	2010	or	2013,
once	you’ve	followed	the	normal	steps	to	update	your	table,	the	data	will	fail
to	load	to	the	Power	Pivot	Data	Model:

Figure	139 An	error?	But	it	refreshed	yesterday!

What’s	 even	 worse	 is	 that	 the	 error	message	 provided	 only	 indicates	 that
there	is	something	wrong	with	the	connection—but	not	what	or	how	to	fix	it.

Can	you	even	check	a	model	to	see	if	it’s	damaged?	Yes,	you	can:

In	Excel	go	to	Data	→	Connections

Select	your	Power	Query	query	→	Properties	→	Definition

If	the	connection	string	is	grayed	out	and	you	get	a	message	in	the	bottom-
left	 corner	 that	 reads	 “Some	 properties	 cannot	 be	 changed	 because	 this
connection	was	modified	using	the	PowerPivot	Add-in,”	you’re	too	late.	The
damage	has	been	done,	and	it’s	irreversible.

Figure	140 Power	Query’s	game	over	screen.

The	most	awful	news	about	this	is	that	there	is	only	one	fix.	You	must:

1.	Delete	the	table,	including	any	measures	and	calculated	fields	that	live	on
it,	and	then

2.	Rebuild	the	table,	measures,	and	calculated	fields	from	scratch.

It’s	horrendous,	it’s	ugly,	and	it’s	feared.	It’s	also	totally	avoidable	if	you	are
disciplined.

Critical	 Do’s	 and	 Don’ts	 to	 Avoid	 Corrupting
Your	Model
Using	 Power	 Query	 to	 source	 data	 for	 your	 Power	 Pivot	 Data	 Model	 is
completely	stable,	provided	that	you	follow	certain	rules.

If	 your	 data	 has	 been	 loaded	 to	 the	 Power	 Pivot	 Data	Model	 from	 Power
Query,	then	you	should	never	do	any	of	the	following:

Change	the	table	name	in	Power	Pivot
Rename	an	imported	column	in	Power	Pivot
Delete	an	imported	column	in	Power	Pivot

Any	 of	 these	 actions	will	 immediately	 corrupt	 the	model,	 setting	 the	 table
into	 a	 non-refreshable	 state	 the	 next	 time	 the	 Power	 Query	 query	 is
modified.

Keep	in	mind	that	it	is	safe	to	perform	the	following:

Add/modify/remove	custom	columns	in	Power	Pivot
Add/modify/remove	relationships	in	Power	Pivot
Add/modify/remove	measures	(calculated	fields)	in	Power	Pivot
Make	any	modifications	to	the	table	in	Power	Query

The	basic	 rule	of	 thumb	 is	 this:	 If	you	 loaded	your	data	 from	Power	Query,
make	all	your	modifications	 to	 that	 table	 in	Power	Query.	 If	you	 follow	this
rule,	you	won’t	ever	experience	the	problem	of	corrupting	your	model.

Chapter	11	Defining	Data	Types
As	 Power	 Query	 matures,	 it	 is	 getting	 better	 and	 better	 at	 automatically
setting	 appropriate	 data	 types	 on	 columns	 of	 data.	 Even	 so,	 there	 are	 still
times	when	it	pops	up	with	an	odd	choice	(or	no	choice	at	all).	This	can	leave
hidden	traps	in	data	sets	that	can	rear	their	ugly	heads	when	you	least	expect
it	and	can	cause	all	kinds	of	confusion.

What	Data	Types	Are	Recognized?
Power	Query	recognizes	several	data	types—more,	 in	 fact,	 than	Excel	does.
The	complete	list	of	Power	Query’s	data	types	is:

Number:	Decimal	Number,	Whole	Number,	Currency
Date/times:	Date/Time,	Date,	Time,	Date/Time/Timezone,	Duration
Text:	Text
Boolean:	True/False
Object:	Binary
Undefined:	Any

The	true	killer	is	in	the	last	data	type.	Any	is	a	variant	data	type	that	Power
Query	will	 use	 to	 indicate	 that	 it	 isn’t	 sure	of	 the	data	 type.	 The	 challenge
here	 is	 that	 data	 defined	 as	Any	 could	 take	 a	 variety	 of	 forms	when	being
loaded	or	referenced	in	the	future.

Why	Data	Types	Are	Important?
To	demonstrate	 the	 importance	of	 defining	 data	 types,	 in	 this	 chapter	 you
will	create	a	new	query	and	remove	the	data	types	that	Power	Query	defines
for	you.	This	will	give	you	a	good	understanding	of	why	declaring	data	types
is	important	and	not	something	you	should	leave	to	chance.

Tables	and	the	Any	Data	Type
Start	by	loading	a	query	with	no	defined	data	types	into	an	Excel	table:

Open	Ch11	Examples\Defining	Data	Types
Select	a	cell	 in	 the	May	data	table	→	create	a	new	query	→	From
Table

Remove	the	Changed	Type	step

At	this	point,	the	data	has	no	data	types	defined	at	all,	which	you	can	see	by
selecting	a	cell	in	the	column	and	then	looking	on	the	Transform	tab:

Figure	141 The	Date	column	with	a	date	type	of	Any.

Interestingly,	each	column	in	this	data	set	has	the	same	data	type,
Any,	 yet	 they	 all	 look	 different.	 The	 dates	 look	 like	 they	 are	 in
Date/Time	format,	and	the	numbers	look	like	they	are	the	Number
data	type.	So	what’s	the	big	deal?	Follow	these	steps	to	find	out:
Rename	the	query	May
Go	to	Home	→	Close	&	Load

Here’s	the	Excel	table	that	shows	up:

Figure	142 What	happened	to	that	Date	column?

As	you	can	see,	Excel	didn’t	recognize	the	Date	column	as	dates	but	instead
placed	the	date	 serial	 numbers.	While	 this	 is	 easily	 rectified	 (by	 formatting
the	column	as	dates),	it	is	indicative	of	a	more	serious	problem.

Power	Pivot	and	the	Any	Data	Type

At	this	point,	make	a	change	to	the	query	and	load	it	to	the	Data	Model:

In	 the	Workbook	 Queries	 pane	 right-click	 the	May	 query	→	 Load
To…
Check	 the	 Add	 to	 Data	Model	 checkbox	 (leaving	 the	 table	 option
selected)	→	Load	→	Continue

Once	you	commit	this	change,	the	Excel	table	in	the	worksheet	also	changes!

Figure	143 Strange	changes	that	occur	when	you	add	the	data	to	the	Data	Model.

This	 is	 probably	one	of	 the	oddest	 changes	 you’ll	 see	 in	Power	Query.	 The
mere	act	of	adding	this	connection	to	the	Power	Pivot	Data	Model	changes
the	field	back	to	a	date	in	the	Excel	table—or	does	it?	To	see	if	it	does:

Select	column	A	→	Home	→	Comma	Style

There	are	no	changes!	In	fact,	you	can	apply	any	numeric	style	to	the	data	in
column	 A	 that	 you	 like,	 and	 it	 will	 not	 change	 it.	 The	 data	 is	 now	 being
treated	as	text,	not	as	a	date	at	all.

What	about	 inside	Power	Pivot?	 If	 you	open	Power	Pivot,	you	see	 that	 the
data	is	there,	and	it	 looks	like	a	valid	Date/Time	value.	But	when	you	select
the	column,	you	can	plainly	see	that	the	data	type	has	been	set	to	Text.	That
certainly	won’t	help	when	creating	a	relationship	to	your	calendar	table!

Figure	144 Dates	that	aren’t	really	dates	inside	Power	Pivot.

Dealing	with	Any	Data	Types
The	 fix	 for	 these	 issues	 is	 very	 simple.	 You	edit	 the	May	query	and	 set	 the
data	types,	like	this:

In	the	Workbook	Queries	pane	right-click	May	→	Edit
Set	the	Date	column	to	a	Date	data	type
Set	the	Inventory	Item	and	Sold	By	columns	to	a	Text	data	type
Set	the	Cost	and	Price	columns	to	a	Whole	Number	data	type
Set	the	Commission	column	to	a	Decimal	Number	data	type
Go	to	Home	→	Close	&	Load

If	you	now	check	the	table	and	Power	Pivot	model,	you’ll	find	that	everything
is	being	treated	as	the	data	types	you’d	expect.

Note:	Remember	 that	Power	Pivot	 formats	valid	dates	 in	a	Date/Time
format,	with	00:00:00	being	0	minutes	 after	midnight	of	 the	provided
date.

Combining	Queries	with	Different	Data
Types
One	of	the	tasks	you’re	likely	to	perform	often	is	appending	two	tables.	But
what	happens	when	the	columns	in	those	tables	have	different	data	types?

Since	you’ve	already	got	the	May	query	corrected,	you	can	now	create	a	new
query	for	the	June	data	without	data	types	and	see	what	happens	when	you
append	them:

Select	the	June	table	→	create	a	new	query	→	From	Table
Remove	the	Changed	Type	step
Rename	the	query	June
Go	to	Home	→	Close	&	Load	To…	→	Only	Create	Connection

Appending	Defined	to	Any	Data	Types
Now	you	can	append	the	two	queries:

In	the	Workbook	Queries	pane	right-click	the	June	query	→	Append
Select	the	May	query	→	OK

At	this	point,	if	you	check	the	data	type	in	the	Date	column,	you’ll	see	that	it
is	Any:

Figure	145 Combined	tables	with	differing	data	types.

This	probably	isn’t	very	surprising.	After	all,	you	started	with	a	query	where
the	Date	column	was	defined	as	Any,	so	appending	something	else	to	an	Any
should	probably	yield	a	column	of	the	same	data	type.

You	 can	 finalize	 this	 query	 and	 see	what	 happens	 if	 you	 attack	 it	 from	 the
other	side:

Rename	the	query	Jun+May
Go	to	Home	→	Close	&	Load	To…	→	Only	Create	Connection

Appending	Any	to	Defined	Data	Types

Now	try	this	 from	the	other	direction,	starting	with	a	column	that	did	have
the	data	types	defined:

Go	to	 the	Workbook	Queries	pane	→	right-click	 the	May	query	→
Append
Select	the	June	query	→	OK

The	data	certainly	looks	better,	but	when	you	inspect	the	Date	column,	it	still
shows	as	an	Any	data	type:

Figure	146 The	Date	column	still	shows	as	an	Any	data	type.

By	now	it’s	fairly	clear	that	it	doesn’t	matter	in	which	order	you	append	the
queries:	 If	 the	 data	 types	 are	 mismatched	 between	 the	 sets,	 they	 will	 be
converted	to	Any	data	types.

You	can	now	finalize	this	query	and	see	what	happens	if	you	correct	the	issue
in	the	underlying	table:

Rename	the	query	May+Jun
Go	to	Home	→	Close	&	Load	To…	→	Only	Create	Connection

Appending	Consistent	Data	Types
Since	you	already	know	the	data	types	are	defined	in	the	May	query,	you	can
make	the	data	 types	consistent	 in	 the	 June	query	and	see	how	that	affects
the	append	queries:

In	the	Workbook	Queries	pane	right-click	June	→	Edit
Set	the	Date	column	to	a	Date	data	type

Set	the	Inventory	Item	and	Sold	By	columns	to	a	Text	data	type
Set	the	Cost	and	Price	columns	to	a	Whole	Number	data	type
Set	the	Commission	column	to	a	Decimal	Number	data	type
Go	to	Home	→	Close	&	Load

And	now	you	can	return	to	one	of	the	two	append	queries	to	see	the	effects.
No	matter	which	you	choose,	you’ll	find	that	the	values	in	the	Date	column
show	up	properly	defined	as	Date	data	types.

Figure	147 The	Date	data	type	is	now	applied	to	the	append	query’s	column.

Data	Type	Best	Practices
While	it	can	be	tempting	to	just	rely	on	Power	Query	to	assign	data	types	and
continue	on,	we	strongly	recommend	that	you	review	the	final	step	of	every
output	 query	 and	 define	 your	 data	 types	 there.	 Even	 though	Microsoft	 is
constantly	 improving	 the	 interface,	 there	 are	 still	 commands	 in	 the	 Power
Query	 interface	 that	 will	 return	 an	 Any	 data	 type,	 even	 if	 it	 was	 defined
before.

Until	recently,	an	example	of	this	was	creating	a	month	end	from	a	date.	Even
though	 the	 column	 with	 the	 date	 was	 properly	 formatted	 as	 a	 date,	 the
Month	End	function	returned	a	value	that	looked	like	a	Date	but	was,	in	fact,
an	Any.	Although	this	specific	 issue	is	now	fixed,	there	are	bound	to	still	be
issues	like	this	lurking	in	the	program.

In	 addition,	 there	 are	 also	 certain	 commands	 that	will	 not	 run	on	 columns
where	 the	 data	 type	 is	 defined	 as	 Any.	One	 such	 command	 is	 the	 Replace
Values	 command,	which	won’t	 always	 find	 certain	 values.	 If	 the	 column	 is
converted	to	Text,	however,	the	command	functions	properly	again.

As	you’ve	seen,	the	risk	of	having	your	data	defined	as	an	Any	data	type	can
cause	issues	in	both	Excel	and	Power	Pivot,	and	these	problems	can	manifest
in	different	ways.	Remember	also	that	you	fixed	the	two	append	queries	 in
this	chapter	simply	by	changing	the	underlying	data	type.	The	flip	side	of	this
is	that	it	would	be	just	as	easy	to	break	things	when	modifying	an	underlying
query	and	cause	the	final	query	to	render	Any	data	types.	For	the	amount	of
effort	 compared	 to	 the	 peace	 of	mind,	 it	 is	 highly	 recommended	 that	 you
create	a	habit	of	defining	data	types	for	each	and	every	column	as	the	final
step	of	a	production	query,	even	if	the	data	types	have	been	defined	earlier.
While	it	might	seem	tedious,	remember	that	it	is	a	one-time	task	for	a	query
that	could	be	rerun	every	single	day	of	the	year.

Chapter	12	Importing	Web	Data
One	of	the	really	interesting	use	cases	for	Power	Query	is	when	leveraging	it
to	pull	data	relevant	to	your	business	from	the	web.

Power	Query	works	very	well	when	website	data	is	stored	in	tables,	and	on
occasion	it	even	lets	you	directly	access	a	text	file	that	is	holding	information.
If	the	data	isn’t	formatted	with	table	tags	in	the	HTML	code,	however,	things
become	very	difficult,	even	if	you	have	some	HTML	knowledge.

Connecting	to	Pages	with	Tables
For	the	example	in	this	chapter,	you	will	take	the	role	of	a	marketing	person
who	is	trying	to	figure	out	the	best	countries	in	which	to	market	a	product.
The	 primary	 statistic	 that	 you	 want	 to	 figure	 out	 up	 front	 is	 which	 10
countries	 have	 the	 largest	 populations,	 as	 that	 seems	 to	 be	 a	 factor	 that
could	be	reasonably	construed	to	drive	sales.

In	 order	 to	 get	 this	 information,	 you	 have	 been	 exploring	 the	 CIA	 World
Factbook	 website,	 and	 you	 have	 come	 across	 a	 web	 page	 that	 lists	 the
populations	of	the	countries	of	the	world.	You	would	like	to	pull	this	data	into
Excel	so	that	you	can	use	it	with	other	tables.	Follow	these	steps:

Create	a	new	query	→	From	Other	Sources	→	From	Web
When	 prompted	 for	 the	 URL,	 enter	 the	 following:
https://www.cia.gov/library/publications/the-world-
factbook/rankorder/2119rank.html
Click	OK

You	are	now	prompted	with	a	set	of	authentication	options:

https://www.cia.gov/library/publications/the-world-factbook/rankorder/2119rank.html

Figure	148 The	web	authentication	dialog.

There	are	 several	options	down	 the	 left	 side	of	 the	dialog,	 allowing	you	 to
choose	 from	Windows	 or	 basic	 authentication,	 provide	 a	Web	 API	 key,	 or
even	provide	your	Office	365	credentials.	The	 important	one	 to	you	at	 this
point	is	the	Anonymous	option.

The	question	you	are	being	asked	here	is	if	you’d	like	to	use	these	credentials
for	the	specific	page	or	the	root	domain.	While	there	are	sometimes	reasons
to	choose	the	specific	page,	chances	are	that	you’re	probably	going	to	want
to	 stick	with	 the	 default—the	 root	 domain—in	most	 cases.	 So	 ensure	 that
the	first	option	is	selected	and	click	Connect.

At	this	point,	Power	Query	inspects	the	document,	looking	for	tables.	Once	it
has	worked	out	the	content	it	recognizes,	it	sends	you	to	the	Navigator	pane.
In	this	case,	there	are	two	options	to	choose	from—Table	0	or	Document:

Figure	149 Previewing	Table	0	in	the	Navigator.

In	 this	 case,	 Power	 Query	 recognizes	 that	 the	 HTML	 document	 contains	 a
table	denoted	by	table	tags	in	the	page	code.	It	presents	that	table	for	you	in
an	easy-to-use	format.

If	 you	 select	 the	 Document	 option,	 you	 see	 that	 it	 doesn’t	 look	 nearly	 as
pretty:

Figure	150 No	good	can	come	from	this.

Note:	 The	 reality	 here	 is	 that	 it	 is	 going	 to	 be	much	more	 difficult	 to
extract	your	data	via	the	document	interface	than	via	a	table.

Fortunately,	the	data	looked	pretty	good	in	the	preview	of	the	Table	0	table.
It	was	already	organized	in	a	beautiful	table	format,	with	headers	in	place.	It
was	even	already	sorted	into	ascending	order,	just	as	it	was	in	the	web	page.
Your	real	goal	is	to	filter	to	get	the	top	10	countries,	so	follow	these	steps:

Select	Table	0	→	Edit
Rename	the	query	Top	10	Population
Go	to	Home	→	Keep	Rows	→	Keep	Top	Rows	→	10	→	OK

This	is	what	you	have	now:

Figure	151 You	have	your	top	10	countries.

The	query	is	now	finished,	so	you	can	finalize	it	by	selecting	Home	→	Close	&
Load.

Connecting	to	Web-Hosted	Files
As	 it	happens,	the	World	Factbook	page	actually	makes	use	of	a	text	file	to
feed	the	data	displayed	in	the	web	page.

Now,	if	you	happen	to	know	the	URL	to	the	text	file,	can	you	connect	directly
to	it?	The	answer	is	yes,	and	here’s	how	it	works:

Create	a	new	query	→	From	Other	Sources	→	From	Web
Enter	 the	 URL	 as	 follows:
https://www.cia.gov/library/publications/the-world-
factbook/rankorder/rawdata_2119.txt
Click	OK

You	are	launched	directly	into	the	Power	Query	editor.

Note:	Notice	this	time	that	you	bypass	the	website	authentication	step.
The	 reason	 for	 this	 is	 that	 you	 specified	 that	 you	 wanted	 the
authentication	settings	to	apply	to	the	website	root	(www.cia.gov)	when
you	 created	 the	 previous	 query.	 Had	 you	 not	 done	 that	 earlier,	 you
would	have	been	prompted	to	provide	the	authentication	method.

Figure	152 Connecting	directly	to	a	text	file	over	the	web.

Based	on	the	data	you	get	back,	you	can	assume	that	the	column	headers	are
not	stored	in	the	text	file	but	rather	were	provided	by	the	HTML	of	the	web
page.	 This	 is	 no	 big	 deal	 though,	 as	 you	 can	 fix	 this	 to	 make	 your	 data
consistent	with	the	previous	experience:

Go	to	Home	→	Keep	Rows	→	Keep	Top	Rows	→	10	→	OK
Right-click	Column1	→	Rename	→	Rank
Right-click	Column2	→	Rename	→	Country
Right-click	Column3	→	Rename	→	Population
Rename	the	query	From	Text

It	appears	that	the	estimate	date	was	also	provided	by	the	HTML	page,	not
the	text	file,	but	since	that’s	not	a	huge	deal	to	you,	you’re	not	worried	about
it.

https://www.cia.gov/library/publications/the-world-factbook/rankorder/rawdata_2119.txt

The	 truly	 important	 thing	 here	 is	 that	 you	 can	 connect	 directly	 to	 a	 file
hosted	on	the	web	without	going	through	the	whole	web	page	interface	…	if
you	know	where	it	is.

Connecting	to	Pages	Without	Tables
If	the	web	page	you’re	connecting	to	doesn’t	contain	table	tags	in	the	HTML
source	code,	you’re	 left	with	a	horrendous	experience	of	 trying	to	drill	 into
the	 HTML	 elements.	 This	 experience	 is	 about	 as	much	 fun	 as	 navigating	 a
subterranean	labyrinth	using	a	candle	for	light,	where	every	signpost	simply
says	“This	way	out.”

The	best	way	to	get	help	in	this	situation	is	to	open	your	web	browser,	turn
on	the	developer	tools,	and	try	to	find	the	element	you	want	to	extract.	The
following	 is	 the	element	 inspector	 in	Chrome	 (which	 you	open	by	 pressing
F12)	for	the	CIA	web	page:

Figure	153 HTML	hell.

The	 trick	 to	 this	 is	 to	 first	 expand	 the	<html	class	 tag	 at	 the	 top.	 You	 then
mouse	over	every	arrow	and	watch	what	it	highlights	in	the	main	document
window.	When	the	highlighting	covers	your	table,	you	expand	that	element

by	clicking	on	the	arrow	that	points	right.	(In	this	case,	<body>	needs	to	be
expanded.)

The	 arrow	 then	 rotates	 down,	 exposing	more	 elements,	 and	 you	 continue
the	 process	 until	 you	 find	 your	 data.	 Next,	 you	 expand	 <div	 class=”main-
block”>	and	then	<section	id=”main”>	and	then	the	second	div	class,	and	so
on.

If	you	accidentally	travel	into	a	hole	that	doesn’t	have	your	data,	you	go	back
up	 one	 level	 and	 collapse	 that	 block	 of	 code	 by	 clicking	 the	 arrow.	 This
rotates	the	arrow	back	from	pointing	down	to	pointing	right,	and	it	collapses
the	elements	contained	within	that	tag.

Once	you	have	navigated	through	the	process	and	found	your	data,	you	can
begin	the	painful	second	portion:	replicating	the	navigation	in	Power	Query.
Here’s	what	you	do:

Create	a	new	query	→	From	Other	Sources	→	From	Web
Enter	 the	 URL	 you	 used	 for	 the	 first	 example:
https://www.cia.gov/library/publications/the-world-
factbook/rankorder/2119rank.html
Click	OK	→	Document	→	Edit

You’re	now	looking	at	this	rather	unfriendly	view	in	the	Power	Query	editor:

Figure	154 A	most	uninspiring	view.

Now	 you	 need	 to	 very	 carefully	 replicate	 the	 steps	 you	 took	 in	 the	 web
developer	interface,	drilling	into	Power	Query’s	corresponding	table	element.
There	are	some	parallels	between	the	two	programs	to	help,	but	even	so,	it	is
easy	to	get	lost.

The	 trick	 to	 navigating	 this	 process	 is	 to	 recognize	 that	 the	 Name	 field	 in
Power	Query	contains	the	element	shown	in	the	web	developer	tools.	In	this
case,	you	have	HTML,	and	in	Chrome	you	saw	<html	class	at	the	top.	These
two	items	are	the	same.

Click	on	Table	in	the	Children	column	to	drill	into	it:

https://www.cia.gov/library/publications/the-world-factbook/rankorder/2119rank.html

Figure	155 Children	of	the	HTML	element.

You	now	see	 the	HEAD	and	BODY	 tags.	Based	on	 the	HTML	you	expanded,
you	know	you	need	to	drill	 into	the	Body	tag.	You	click	the	Table	there	and
keep	going.

The	killer	with	this	process	is	that	in	the	HTML,	the	tags	all	have	names,	but
in	Power	Query	you	don’t	see	them,	so	it’s	very	easy	to	get	lost.	In	addition,
the	Applied	Steps	box	doesn’t	trace	the	route;	it	just	keeps	combining	steps
together,	giving	you	no	way	to	back	up	one	level.	When	that	happens,	your
only	recourse	is	to	start	over	again	from	the	beginning.

And	as	if	that	weren’t	bad	enough,	at	the	end	of	this	navigation	process,	you
end	up	extracting	columns	to	drill	into	the	detail,	and	it	ends	up	stacked	in	a
vertical	table:

Figure	156 So	much	for	a	nice	clean	table!

The	steps	to	make	this	table	 into	a	nice	clean	one	are	beyond	the	scope	of
this	 chapter,	 so	we	are	going	 to	abandon	 this	 approach	at	 this	point.	 (Rest
assured,	the	steps	are	covered,	just	not	until	Chapter	15.)

The	 steps	 to	 complete	 this	 process	 have,	 however,	 been	 saved	 in	 the
completed	example,	which	 can	be	 found	at	Ch12	Examples\Importing	Web
Data	–	Complete.xlsx.	This	particular	query	has	been	saved	as	TheHardWay.
Even	with	that	query	to	review,	you’ll	need	to	recognize	that	the	Navigation
step	was	generated	as	documented	below.

Starting	from	the	initial	table:

Figure	157 Starting	the	journey	into	HTML	Hell.

Drill	into	Table	in	the	Children	column	for:

HTML	(row	1)
Body	(row	3)
DIV	(row	4)
The	1st	DIV	(row	4)
SECTION	(row	2)
The	2nd	DIV	(row	4)
The	2nd	DIV	(row	4)
ARTICLE	(row	4)
DIV	(row	4)
The	5th	DIV	(row	12)
TABLE	(row	2)
TBODY	(row	2)

If	you	follow	this	drill-down	carefully,	you’ll	see	that	you	drilled	 into	exactly
the	same	place	as	displayed	in	the	Navigation	step	of	the	TheHardWay	query,
and	you	can	follow	the	rest	of	the	steps	through	to	the	end.

The	job	of	drilling	into	the	HTML	document	can	be	done,	which	is	better	than
the	 alternative.	 However,	 it	 is	 not	 for	 the	 faint	 of	 heart	 and	 can	 be	 an
incredibly	frustrating	process.

Caveats	and	Frustrations	with	the	From
Web	Experience
The	 From	 Web	 experience	 is	 certainly	 a	 weakness	 in	 Power	 Query’s
otherwise	incredible	arsenal	of	tools.	There	are	several	things	that	we	hope
could	be	improved	in	this	area,	and	there	are	things	to	watch	out	for	as	you
develop	solutions	based	on	web	data.

None	 of	 the	 factors	 discussed	 below	 should	 be	 seen	 as	 reasons	 not	 to
develop	solutions	based	on	website	data.	Instead,	they	are	intended	to	make

sure	you	go	into	this	area	with	both	eyes	open,	seeing	not	only	the	benefits
but	also	the	risks	of	relying	on	web-sourced	data	you	don’t	control.

The	Collecting	Data	Experience
Building	solutions	against	web	data	can	be	a	very	painful	experience	in	Power
Query.	If	there	are	table	tags	in	the	HTML	code,	everything	works	well.	If	not,
however,	all	bets	are	off.

Compare	this	to	Excel’s	classic	Data	→	From	Web	experience,	which	kicks	off
a	web	browser	 that	allows	you	to	navigate	 the	web	to	 find	 the	data	you’re
looking	for.	Power	Query	does	not	give	you	this	facility	but	instead	leaves	you
to	navigate	web	pages	using	a	different	browser.

In	itself,	this	may	not	seem	like	a	big	deal,	except	for	the	issue	that	it	is	very
difficult	to	tell	if	the	data	you	are	seeing	in	the	web	browser	is	in	an	easy-to-
use	table	or	not,	without	looking	at	the	code.

The	challenge	here	is	that	you’ll	grab	the	promising	URL,	drop	it	in	the	Power
Query	interface,	and	then	spend	a	huge	amount	of	time	expanding	columns,
chasing	each	route	down	the	rabbit	hole	of	HTML	tags,	trying	to	find	the	data
you’re	looking	for.	Even	if	you	do	understand	the	web	debugging	tools,	it	still
doesn’t	make	the	job	easy.	Because	Excel	pros	are	not	web	developers,	this	is
really	an	unnecessary	burden	that	is	being	placed	upon	them.

Ideally,	this	experience	should	kick	off	a	web	browser,	let	you	navigate	to	the
page	and	select	the	data	range	you’d	like	to	import,	and	then	do	the	leg	work
of	breaking	the	HTML	down	to	do	that	for	you.	Until	that	happens,	however,
importing	data	that	is	not	formatted	in	a	tabular	fashion	will	continue	to	be
difficult.

Data	Integrity
Another	major	concern	with	web	data	is	the	source	and	integrity	of	the	data.
Be	cautious	of	connecting	and	importing	data	from	sites	such	as	Wikipedia	or
other	sites	that	you	don’t	have	a	business	relationship	with.

While	 demos	 love	 to	 use	Wikipedia	 as	 a	 great	 example,	 the	 reality	 is	 that
relying	on	this	site	can	be	dangerous.	The	content	is	curated,	but	it	can	also
be	changed	by	users.	Although	the	site	makes	a	great	effort	to	curate	data,
the	information	there	is	far	from	perfect	and	may	not	be	entirely	factual.

The	other	issue	is	how	readily	the	data	is	updated.	Imagine	investing	time	in
building	a	 complicated	query	against	a	web	page,	only	 to	 find	out	 that	 the
owner/curator	doesn’t	update	 it	on	a	 timely	basis.	You	need	 to	be	assured

that	when	 you	 refresh	 the	data,	 the	 routine	 isn’t	merely	 refreshing	out-of-
date	data	but	rather	that	it’s	refreshing	current	data.	You’re	likely	to	invest	a
significant	 amount	 of	 time	 and	make	business	 decisions	 assuming	 that	 the
last	refresh	you	did	pulled	the	most	recent	data.

Solution	Stability
There	is	another	very	real	concern	when	building	your	business	logic	against
web	sources	that	you	do	not	own	or	control.	Like	your	company,	every	other
company	 that	 provides	 these	 feeds	 and	 pages	 wants	 to	 better	 serve	 its
customers.	Unfortunately	for	us,	that	doesn’t	mean	that	they	are	interested
in	putting	out	a	consistent	experience	that	never	changes.	In	fact,	quite	the
opposite	 is	 true.	 They	 are	 also	 trying	 to	 update	 things,	 changing	 the	 web
pages	to	add	new	bells	or	whistles,	or	make	the	sites	more	attractive	to	the
human	 eye.	 This	 has	 the	 very	 real	 side	 effect	 of	 blowing	 queries	 apart,
usually	 without	 notice,	 and	 oftentimes	 when	 you	 don’t	 have	 time	 to	 fix
them.

Chapter	13	Loading	Data	from
Exchange
In	 the	 past,	 trying	 to	 get	 data	 out	 of	Microsoft	 Exchange	was	 an	 absolute
nightmare.	 It	 involved	 complex	 VBA	 scripts,	 significant	 development,	 and
painful	 maintenance.	 The	 unfortunate	 part	 of	 this	 was	 that	 there	 is	 a
significant	amount	of	information	buried	in	your	email	and	calendar	that	can
add	great	business	value	to	you,	but	with	it	being	so	difficult	to	get	at,	it	was
a	nonstarter.	Power	Query	has	changed	that,	allowing	an	easy	way	to	connect
to	your	Exchange	database	and	start	pulling	out	key	drivers	that	can	impact
your	business	intelligence	solutions.

Accessible	Data
There	 are	 five	 main	 aspects	 that	 you	 can	 connect	 to	 in	 your	 Exchange
database:

Mail
Calendar	appointments
People
Tasks
Meeting	requests

Each	of	 these	 can	 be	 pulled	 in	 to	 Power	Query,	 cleaned	 and	 turned	 into	 a
table,	and	then	served	up	to	a	table	or	the	Power	Pivot	Data	Model.

Potential	Use	Cases
The	most	difficult	question	to	wrap	your	head	around	related	to	Exchange	as
a	data	source	is	not	how	to	connect	to	it	but	rather	why	you	would	want	to.
The	main	reason	for	this	is	that	you’ve	never	had	the	ability,	so	you	haven’t
thought	about	it	much.	Consider	the	following	scenarios	and	how	connection
to	your	Exchange	server	could	be	used	in	your	organization.

Aggregating	Survey	Data
With	Power	Query’s	ability	 to	 read	email,	you	could	create	a	simple	survey
with	a	table	in	the	body	and	send	it	out	to	your	audience.	You	could	then	use
Power	 Query	 to	 read	 all	 the	 replies,	 extract	 the	 information	 from	 the

individual	tables,	and	combine	the	tables	into	a	data	source.	Better	yet,	you
don’t	have	to	worry	if	someone	sends	in	a	copy	late,	as	you	can	just	refresh
the	data	source	to	pull	it	in.

Aggregating	Budget	Requests
It’s	 a	 common	 practice	 for	 accountants	 to	 send	 Excel	 workbooks	 to	 key
personnel	 and	 ask	 them	 to	 fill	 in	 budget	 information	 and	 return	 the
spreadsheet	via	email.	What	 if	you	could	then	use	Power	Query	to	scan	for
all	 emails	 with	 a	 certain	 subject	 and/or	 attachment	 and	 then	 open	 and
combine	each	attachment	and	extract	the	data?	This	is	entirely	possible	with
Power	Query.

Building	an	IT	Alert	Dashboard
In	IT,	we	often	get	numerous	email	alerts	from	various	servers	and	pieces	of
equipment.	Some	are	informational	and	some	critical,	but	depending	on	the
volume	of	equipment	you	have	and	the	frequency	of	alerts,	they	can	quickly
turn	 into	 information	 overload.	 Oftentimes	 these	 emails	 are	 automatically
routed	to	a	folder	and	ignored.	But	think	about	this:	You	can	now	use	Power
Query	to	aggregate	the	emails,	chart	the	volume	and	severity,	and	build	an
entire	systems	alert	dashboard	from	previously	useless	email.

Endless	Possibilities
From	extracting	 and	matching	 contact	 details	 to	 appointments	 and	 emails,
the	real	question	today	is	not	if	you	can	use	this	feature	but	how.	Maybe	you
need	 a	 dashboard	 of	 interaction	 you’ve	 had	 with	 a	 client,	 or	 you	 need	 to
track	 who	 has	 replied	 to	 a	 critical	 email	 you	 sent	 out.	 There	 is	 a	 ton	 of
valuable	 information	sitting	 in	your	 inbox	 that	you	now	have	access	 to	 in	a
way	you	never	did	before.

Building	an	Email	Dashboard
For	 this	 example,	 you’ll	 take	 the	 role	 of	 a	 website	 owner	 to	 see	 how
previously	useless	email	can	be	turned	into	something	interesting.	While	you
won’t	be	able	to	replicate	the	steps	in	this	chapter	yourself	(they	are	specific
to	 the	 website	 owner’s	 inbox),	 you’ll	 see	 the	 process	 used	 to	 strip	 key
information	out	of	previously	unread	emails	to	drive	a	dashboard.

To	begin	with,	you	need	to	connect	to	Microsoft	Exchange.	This	 is	done	via
the	following	process:

Create	a	new	query	→	From	Other	Sources	→	Microsoft	Exchange

Enter	your	username	and	password
Click	 Allow	 when	 you’re	 prompted	 to	 allow	 the	 Exchange
Autodiscover	Service

Figure	158 Trusting	the	Autodiscover	Service.

Note:	This	service	is	configured	by	your	IT	department	and	needs	to	be
trusted	 in	 order	 to	 access	 the	 Exchange	 server.	 It	 is	 typically	 already
installed	 and	 configured	 to	 allow	 cell	 phones	 to	 access	 their	 email
remotely.

After	a	short	delay	while	Power	Query	connects	to	the	Exchange	server,	you
are	taken	to	a	Navigator	window.

Select	Mail	→	Edit

Warning:	Don’t	ever	click	the	Load	button	after	choosing	the	Mail	table
in	the	Navigator.	You’ll	be	waiting	for	a	long	time	as	it	loads	your	entire
inbox!

Power	Query	launches	and	provides	you	with	a	preview	of	your	inbox:

Figure	159 A	list	of	emails	in	your	inbox.

In	order	to	reduce	the	number	of	emails	to	search	through,	you	routed	the
relevant	emails	to	a	folder	via	a	rule.	This	means	that	you	need	to	filter	the
Folder	Path	column	in	order	to	locate	only	the	emails	that	have	been	routed

to	 that	 specific	 folder.	 Interestingly,	when	you	attempt	 to	 set	 the	 filter,	 the
relevant	folder	isn’t	listed:

Figure	160 Locating	the	appropriate	folder.

If	 you	 ever	 find	 that	 the	 values	 you’re	 sure	 should	 be	 in	 the	 column	 just
aren’t	there,	look	for	the	Load	More	option	at	the	bottom	right.	By	default,
this	 list	 is	shortened	to	the	 limited	amount	of	data	showing	 in	the	preview,
but	clicking	the	Load	More	button	brings	up	all	the	folders	in	the	inbox.

When	 the	 list	 appears	 in	 full,	 you	 select	 the	 correct	 folder,	 and	 the	 list	 of
emails	 is	 filtered	 to	 show	 only	 those	 of	 interest—the	 earned	 commission
emails	from	a	specific	affiliate	source:

Figure	161 A	list	of	emails	with	exciting	subject	lines.

While	they	don’t	show	in	the	image,	a	huge	variety	of	columns	are	included
with	email,	 including	such	useful	 fields	as	To,	CC,	Sender,	Attachments,	and
more.	For	the	purposes	of	this	dashboard,	however,	only	the	DateTimeSent
and	Body	fields	are	required.	For	that	reason,	you	select	those	two	columns
and	 use	 the	 Remove	 Other	 Columns	 command	 to	 remove	 the	 extraneous
data:

Figure	162 A	column	full	of	records.

The	interesting	part	of	the	Body	column	is	that	it	is	full	of	records,	which	you
can	 think	of	 as	 the	 individual	 cells	 of	 a	 table.	As	 it	 happens,	 these	 records
contain	some	very	interesting	information	in	the	body	of	the	email.	You	can
also	 see	 the	 expansion	 arrow	 at	 the	 top-right	 corner	 of	 the	 Body	 column,
which	means	it	 is	possible	to	expand	these	records	into	a	column.	Doing	so
gives	 you	 another	 option:	 the	 choice	 between	 TextBody	 and	 HTMLBody.
Since	working	with	text	is	far	easier	than	working	with	HTML,	you	will	usually
elect	to	expand	TextBody	only	and	then	clean	and	trim	the	resulting	records.

The	result	is	a	consistent	data	set,	which	can	then	be	further	cleaned:

Figure	163 The	body	of	all	matching	emails.

At	this	point,	the	email	body	can	be	pared	down	the	email	to	get	at	the	only
part	of	real	interest:	the	money.

One	 of	 the	 great	 things	 about	 Power	 Query	 is	 the	 preview	 window	 that
appears	when	you	select	any	cell	in	the	Power	Query	grid.	Not	only	can	you
see	the	data,	you	can	select	the	data	in	that	window	and	copy	it.	Rather	than
split	by	 the	$	 sign	and	have	 to	 remove	a	 column	afterward	or	 type	a	huge
amount	of	text	in	the	replace	window,	why	not	just	replace	the	leading	text
with	nothing?	To	do	this,	follow	these	steps:

Copy	the	text	from	the	preview	window,	starting	with	Hi	and	ending
with	$
Right-click	the	TextBody	column	→	Replace	Values…
Paste	the	copied	text	string	into	the	Value	to	Find	field
Leave	the	Replace	With	field	blank
Click	OK

The	results	are	shown	below,	with	the	money	at	the	left	side	of	the	column:

Figure	164 The	TextBody	column	now	starts	with	the	important	part—the	money.

Next,	you	need	to	get	rid	of	the	portion	after	the	money.	The	reality,	though,
is	 that	 you	 aren’t	 sure	 if	 the	 rest	 of	 the	 email	 is	 consistent,	 as	 you	 lost
interest	 and	 stopped	 reading	 after	 you	 saw	 the	 dollar	 signs.	What	 you	 do
know	is	that	after	each	dollar	value	there	is	a	space.	So	you	just	split	based
on	the	leftmost	space	in	that	column	and	remove	the	subsequent	column.

After	setting	the	data	types	and	renaming	the	columns,	you	are	left	with	data
that	looks	much	better:

Figure	165 Date	sourced	from	email,	cleaned	and	ready	to	be	used.

The	final	step	for	this	data	source	is	to	load	it	to	Excel	and	build	a	PivotChart
from	it:

Figure	166 A	profit-tracking	chart	built	from	previously	useless	email.

Consider	the	impact	here	where	you’ve	been	collecting	these	emails	for	the
better	part	of	 two	years	and	never	 reading	 them.	Suddenly	 they	now	have
business	value.	These	emails	can	be	used	as	part	of	an	email	dashboard	to
review	 the	 profitability	 of	 one	 of	 the	 income	 streams	 that	 supports	 your
website.

Best	Practices	for	Exchange	Sources
There	 are	 two	main	 issues	 to	 consider	 when	 building	 a	 solution	 against	 a
Microsoft	Exchange	service:	portability	and	performance.

Portability
The	very	first	thing	you	need	to	take	into	account	is	how	long	this	solution	is
intended	to	survive	and	whether	we	will	need	to	pass	it	on	to	another	user.
Why?	Because	you	are	targeting	your	own	email	account.	Building	a	solution
against	your	email	account	locks	it	down	so	that	only	you	can	use	it.	It	can’t
be	shared,	and	it’s	difficult	to	port	to	others	later,	as	the	source	files	for	the
solution	(emails,	attachments,	and	so	on)	are	in	your	inbox.

The	reality	is	that	if	you	leave	the	organization,	voluntarily	or	otherwise,	the
solution	will	most	 likely	 become	useless	 to	others.	And	 if	 you	 stay	 and	 get
promoted,	you’ll	be	stuck	updating	the	solution	that	is	bound	to	your	email
account.

If	you	intend	to	use	the	solution	for	a	longer	period,	or	it	serves	other	users,
it	may	be	best	to	try	to	figure	out	how	to	extract	the	data	from	your	 inbox
first	and	build	the	solution	against	that	source.	For	email	attachments,	that	is
fairly	 easy:	 Just	 save	 them	 to	 a	 folder.	 For	 the	 email	 itself,	 it	 may	 not	 be

practical,	and	maybe	Power	Query	is	the	method	to	use	to	extract	the	emails
and	archive	 them	 in	 another	 format.	 Regardless,	 you	 should	definitely	 give
some	 thought	 to	 a	 succession	 plan	 for	 your	 solution	 once	 it	 starts	 to	 get
reused.

Performance
The	other	major	consideration	you	should	take	into	account	is	performance,
including	speed.

Let’s	 face	 it:	 Most	 of	 us	 don’t	 keep	 extremely	 organized	 email	 inboxes.
Instead,	 they	 are	 huge	 buckets	 of	 email	 spanning	 back	 sometimes	months
but	more	often	years.	As	a	result,	retrieving	data	from	Exchange	can	be	very
slow.

The	 solution	 to	 this	 is	 to	 use	 rules	 to	 reroute	 key	 emails	 into	 subfolders.
When	the	subfolders	contain	only	relevant	data,	retrieving,	transforming,	and
loading	the	finished	product	will	happen	much	more	quickly.

Chapter	14	Grouping	and
Summarizing
In	many	ways,	 grouping	and	 summarizing	 sums	up	 the	 life	of	 an	Excel	pro.
You’ve	 got	 all	 kinds	 of	 tools	 for	 the	 purpose,	 including	 Excel’s	 ability	 to
subtotal,	aggregate,	and	perform	various	other	operations	using	PivotTables.
Sometimes,	however,	when	working	with	large	data	sets	you	need	to	group
the	records	at	the	source	before	analysis.

Power	Query	adds	another	set	of	tools	that	you	can	use	to	quickly	group	and
summarize	data.	Interestingly,	it	even	gives	you	the	ability	to	quickly	remove
extra	columns,	thereby	thinning	the	data	set	to	a	truly	manageable	level.

Applying	Grouping
To	demonstrate	how	grouping	works	in	Power	Query,	consider	the	case	of	a
T-shirt	manufacturer	that	has	provided	this	table	of	data:

Figure	167 A	list	of	sales	transactions.

Your	goal	is	to	take	this	list	and	figure	out	two	things:

Total	sales	for	each	day	by	channel
The	largest	product’s	proportion	as	a	percentage	of	daily	sales

Connecting	to	the	Data
Start	by	loading	your	data	in	Power	Query:

Open	Ch14	Examples\Grouping.xlsx
Select	 a	 cell	 in	 the	 table	on	 the	 Sales	worksheet	→	new	query	→
From	Table

Right-click	the	Date	column	→	Change	Type	→	Date

You	now	have	your	table	in	a	nice	state,	ready	to	group	and	summarize	the
data:

Figure	168 The	table	is	ready	to	summarize.

Grouping	the	Data
To	group	the	data	by	date	and	by	channel.

Select	the	Date	column
Go	to	Transform	→	Group	By

In	this	interface,	you	have	the	ability	to	define	the	items	you	want	to	group
by,	as	well	as	how	you’d	like	them	grouped.	Power	Query	starts	with	only	the
Date	 column	 in	 the	 Group	 By	 section.	 If	 you	 left	 that	 setting	 as	 is,	 you
wouldn’t	 have	 the	 data	 broken	 down	 by	 Date	 and	 ChannelName,	 so	 you
need	to	change	that:

Click	the	+	beside	the	Group	By	header

Figure	169 Adding	grouping	levels

Next,	you	need	to	determine	how	you	want	the	data	grouped.	Because	you
are	 looking	 for	a	 total	of	all	 channels,	as	well	 as	a	 total	of	 the	products	by
channel,	you	need	to	take	the	following	steps:

Change	the	new	column	name	from	Count	to	Products	Sold
Click	the	+	next	to	Column	on	the	right	side	to	add	a	new	calculation
Give	 the	 new	 column	 a	 name	 of	 Sales	 $	 and	 set	 it	 to	 Sum	 the
Amount	column

Figure	170 The	grouping	level	is	configured	correctly.

Click	OK

The	data	is	grouped	for	you,	as	shown	below:

Figure	171 The	data	is	nicely	grouped	by	Date	and	ChannelName.

Notice	that	the	grouping	feature	works	quite	nicely	to	get	your	data	grouped,
and	you	can	have	multiple	levels	stacked	very	easily	for	both	grouping	levels
and	calculations.	You	can	aggregate	the	data	 in	different	ways	here	as	well,
including	counting	rows,	counting	distinct	rows,	or	performing	Sum,	Average,
Median,	Min,	or	Max	operations.

As	an	added	bonus,	the	Group	By	feature	removes	all	columns	that	were	not
specified	in	the	original	Group	By	section	at	the	top	of	the	dialog.	This	saves
you	 the	 step	 of	 removing	 the	 unneeded	 columns	 before	 or	 after	 the
operation	is	complete.

Now	you	can	load	this	data	to	a	table:

Change	the	query	name	to	Grouped
Go	to	Home	→	Close	&	Load

Creating	Summary	Statistics
You’ve	managed	to	accomplish	the	first	of	your	goals	in	grouping	the	data	by
Date	 and	 by	 ChannelName.	 Now	 you	 need	 to	 work	 out	 the	 top-selling
product	 in	 each	 segment	 and	what	 it	 represented	 as	 a	 percentage	of	 total
sales	for	that	group.

Duplicating	Queries
In	order	to	accomplish	your	goal,	you	actually	need	to	modify	and	add	some
steps	 to	 the	 original	 query.	 Rather	 than	 potentially	 break	 it,	 it’s	 not	 a	 bad
idea	 to	create	a	copy	 to	work	 from.	That	gives	you	a	 fallback	plan	 if	 things
don’t	work	out	the	way	you	wanted:

Display	the	Workbook	Queries	pane

Right-click	the	Grouped	query	→	Duplicate
Change	the	query	name	to	Performance

You	now	have	an	exact	copy	of	 the	previous	query	that	we	can	 load	to	the
workbook:

Figure	172 An	exact	copy	of	the	Grouped	query.

Determining	the	Top	Seller
Now	you	can	set	about	determining	the	top-selling	product.	To	do	this,	you
are	going	to	modify	the	Grouped	Rows	step	and	add	another	step:

Click	the	gear	beside	the	Grouped	Rows	step
Add	a	new	column	at	the	bottom	of	the	query
Set	the	column	name	to	Details	and	set	the	Operation	to	All	Rows
Click	OK

This	adds	a	column	of	tables	to	your	query.	These	tables,	however,	are	quite
special.	They	contain	the	details	of	which	rows	from	the	previous	step	were
summarized	in	order	to	come	up	with	each	row’s	totals!

Figure	173 A	peek	at	which	rows	were	used	to	generate	the	grouped	values.

The	question	is,	how	can	you	use	these	tables?

Your	goal	here	is	to	work	out	the	top-selling	sales	item	for	each	day.	You	can
identify	that	by	looking	at	the	highest	value	in	the	Amount	column	shown	in
the	preview	for	each	table.	But	how	do	you	extract	it?	The	answer	is	to	reach
to	a	custom	column	and	use	a	formula.	To	do	so,	follow	these	steps:

Go	to	Add	Column	→	Add	Custom	Column
Call	the	column	MaxRecord	and	use	the	following	formula
=Table.Max([Details],“Amount”)

Click	OK

You	now	have	a	column	of	records	listed:

Figure	174 A	column	of	…	records?

Let’s	circle	back	for	a	moment	and	look	at	what	happened	first	and	then	look
at	what	you	got	from	it.

The	formula	you	used	examines	a	table	and	extracts	the	max	value	from	the
given	 column.	 For	 the	parameters,	 you	provide	 the	 [Details]	 column	of	 the
query,	as	that	holds	the	tables	to	be	examined.	The	column	within	that	table,
Amount,	was	then	provided,	wrapped	in	quotes	as	the	function	requires.

Unlike	previous	formulas	you’ve	seen,	however,	this	function	doesn’t	return
just	the	value.	It	returns	a	record.	This	is	fantastic	because	the	record	doesn’t
just	hold	the	maximum	value.	It	holds	all	of	the	details	that	go	with	that	data
point.

Note:	You’ll	learn	more	about	records	in	Chapter	19.

In	 addition,	 you	 can	 expand	 the	 MaxRecord	 column	 by	 using	 the	 double-
headed	 arrows	 on	 the	 top	 right	 to	 get	 the	 individual	 components	 into

columns:

Click	the	Expand	arrow	on	the	MaxRecord	column
Expand	 the	 ProductName	 and	 Amount	 columns	 and	 uncheck	 the
Prefix	option	at	the	bottom	→	OK
Right-click	the	Details	column	→	Remove
Right-click	the	ProductName	column	→	Rename	→	TopSeller
Right-click	the	Amount	column	→	Rename	→	TopSeller	$

The	result	 is	 that	you	now	have	a	 table	 that	summarizes	sales	by	Date	and
Channel	and	clearly	shows	the	top-selling	item,	as	well	as	its	contribution:

Figure	175 The	data	grouped	by	Date	and	Channel	with	TopSeller	details.

There	is	only	one	thing	left	to	do:	work	out	the	percentage	that	the	top	seller
represents	of	the	total	daily	sales.	That	is	easily	accomplished	with	a	simple
calculation:

Go	to	Add	Column	→	Add	Custom	Column
Set	 the	 column	 name	 to	 TS	 %	 of	 Sales	 and	 enter	 the	 following
formula:
[#“TopSeller	$”]/[#“Sales	$”]

Note:	 Don’t	 let	 the	 hash	 marks	 and	 quotes	 mess	 you	 up	 here.	 The
easiest	way	 to	 build	 the	 formula	 is	 by	 clicking	 the	 field	 names	on	 the
right,	and	Power	Query	will	put	them	in	for	you.	You’ll	learn	more	about
why	they	show	up	when	you	read	Chapter	21.

The	 result	 is	 a	 little	 ugly,	 with	 some	 numbers	 showing	 no	 decimals,	 some
showing	one,	and	others	showing	a	ton.	You	can	round	them	off	quite	easily:

Select	 the	 TS	 %	 of	 Sales	 column	 →	 Transform	 →	 Rounding	 →
Round…	→	2

Warning:	Make	 sure	 you	 return	 to	 the	 Transform	 tab	 to	 perform	 this
operation.	If	you	don’t,	Power	Query	will	create	a	new	column	for	you,
and	you’ll	have	to	remove	the	previous	column	manually.

The	results	are	nicely	rounded	for	you,	but	they	do	show	as	decimal	values
like	1,	 0.66,	 and	 so	on.	 They	 certainly	don’t	 show	as	nice	percentages,	 but
that’s	okay.	You	can	load	the	query	to	an	Excel	table	and	apply	a	percentage
style	to	the	column	there.	As	you	can	see,	this	gets	you	to	your	original	goal:

Figure	176 The	completed	analysis.

Note:	 Number	 styles	 applied	 to	 a	 table	 column	 stay	 in	 place	 after	 a
Power	Query	query	is	updated.

Chapter	15	Transposing	and
Unpivoting	Complex	Data
When	 working	 with	 real-world	 data,	 Excel	 pros	 often	 encounter	 data	 that
needs	 to	 be	 treated	 in	 a	 variety	 of	 ways.	 While	 unpivoting	 is	 extremely
common,	on	occasion	you	may	need	to	reverse	this	process	and	pivot	data
before	making	more	 complex	 transformations.	 Another	 technique	 that	 can
be	extremely	useful	is	transposing	data—for	example,	flipping	data	that’s	laid
out	in	a	vertical	manner	and	so	that	it’s	displayed	horizontally	(or	vice	versa).
Both	 of	 these	 functions	 are,	 fortunately,	 built	 in	 to	 the	 Power	 Query	 user
interface	and	can	aid	in	transforming	data	into	useful	tables.

Unpivoting	Subcategorized	Tables
The	 first	 complex	 issue	 we	 will	 deal	 with	 in	 this	 chapter	 is	 unpivoting	 a
subcategorized	 table.	 While	 we	 looked	 at	 unpivoting	 in	 Chapter	 6,	 this
scenario,	 based	 on	 the	 figure	 below,	 adds	 an	 additional	 dimension	 to	 the
issue.

Figure	177 A	challenging	unpivot	scenario

What	makes	this	problem	any	more	challenging	than	a	standard	unpivot?	It’s
the	additional	level	of	having	the	month	with	the	measure	type.

When	 you	 unpivot,	 the	 data	 is	 de-aggregated,	 using	 the	 column	 names	 as
data	points.	But	what	should	the	column	names	be	here?	If	you	promote	the
second	row	to	headers,	you	will	lose	some	key	information	about	the	month.
It’s	just	not	going	to	work.

But	there	is	most	certainly	a	way	to	unpivot	this	data;	you’ll	just	need	to	use
a	bit	of	imagination	and	some	more	advanced	tricks.

Loading	the	Data
For	 this	 example,	 you	 will	 unpivot	 the	 financial	 statement	 found	 in	 Ch15
Examples\UnPivot	Sub	Categories.xlsx:

Figure	178 A	challenging	data	set	to	unpivot.

You	begin	by	loading	the	data	into	Power	Query.	You	can	do	that	by	setting
up	a	named	range,	as	you	don’t	really	want	to	lock	down	the	column	headers
with	a	table.	Follow	these	steps:

Select	A8:H21	→	Formulas	→	Defined	Names	→	Define	Name
Enter	Statement	in	the	Name	field	→	OK
Create	a	new	query	→	From	Table

Power	Query	opens,	showing	you	a	somewhat	ugly	yet	 informative	view	of
the	data:

Figure	179 The	data	set	is	rife	with	null	values.

There	are	some	key	points	to	notice	in	this	data	set:

Every	blank	cell	in	the	original	data	table	has	come	in	as	a	null
Column4’s	row	1	value	is	also	null

Now	you	have	to	figure	out	what	you	are	going	to	do	with	this.	You	can	start
by	looking	at	Column1.

Filling	Vertically
You	can’t	get	rid	of	Column1	because	it	contains	information	that	tells	if	the
account	is	a	revenue	classification	or	an	expense	classification.	The	problem
is	that	the	account	classification	doesn’t	exist	in	the	same	row	as	the	account
description	 and	 values.	 This	 means	 you	 need	 to	 find	 a	 way	 to	 get	 the
classification	to	fill	down	into	the	null	areas.

As	it	happens,	this	is	exactly	how	Power	Query’s	Fill	Down	command	works:

Select	Column1	→	Transform	→	Fill	→	Down

Now	you’ve	got	your	classifications	on	each	row	where	required:

Figure	180 The	account	classification	has	been	filled	down.

Power	Query’s	Fill	Down	command	fills	the	value	above	into	any	cell	that	is
null,	but	 it	does	not	overwrite	any	other	data.	The	Fill	Up	command	works
the	same	way	but	fills	up	instead	of	down.

Note:	A	blank	cell	is	not	the	same	as	a	null.	If	you	need	to	fill	into	blank
areas,	 you	must	 replace	 the	data	on	 the	 column,	 asking	 to	 replace	an
empty	value	(leave	the	field	blank)	with	null.	Power	Query	will	convert
the	text-based	null	to	null.

You	now	need	a	strategy	to	deal	with	the	column	headers.	They	seem	to	have
the	same	issue,	with	April	being	in	Column3	and	missing	from	Column4	and
Column5.	Unfortunately,	there	is	no	Fill	Right	command	in	Power	Query.	So
how	do	you	deal	with	this?

Transposing	Data
In	order	to	fill	data	to	the	right	in	Power	Query,	you	must	transpose	the	table,
flipping	it	on	its	ear:

Go	to	Transform	→	Transpose

The	view	changes	drastically,	with	the	former	column	headers	now	becoming
rows	and	vice	versa:

Figure	181 The	result	of	transposing	the	table.

This	opens	up	a	couple	of	useful	features.	One	of	the	issues	you	had	earlier	is
that	 you	 couldn’t	 fill	 right,	 but	 now	 you	 can	 fill	 down	 on	 Column1.	 In
addition,	the	main	challenge	with	unpivoting	subcategorized	data	is	that	you
have	to	unpivot	based	on	the	column	names,	which	means	you	can’t	use	two
rows	 of	 column	 names	 to	 perform	 the	 task.	 But	 what	 if	 you	 were	 to
temporarily	merge	Column1	and	Column2,	resulting	in	a	single	header?	Try	it
to	see	what	happens:

Select	Column1	→	Transform	→	Fill	→	Down
Select	Column1	→	hold	down	Ctrl	→	select	Column2	→	Transform
→	Merge	Columns
Set	a	Custom	delimiter	of	a	|	(pipe)	character	→	OK

Note:	The	reason	you	use	a	|	character	is	that	this	character	is	seldom
found	 in	 the	 average	 data	 set.	 This	means	 you	 can	 use	 this	 character
later,	confident	that	you’re	not	going	to	accidentally	pick	up	a	character
that	already	existed	in	the	data.

You	now	have	a	single	column	of	labels	that	you	can	use	for	headers:

Figure	182 Merging	the	categories	and	subcategories	into	a	single	column.

Now	you	can	flip	the	data	back	and	promote	the	new	headers:

Go	to	Transform	→	Transpose
Go	to	Transform	→	Use	First	Row	as	Headers
Right-click	the	|	column	→	Rename	→	Class
Right-click	the	|_1	column	→	Rename	→	Account

Figure	183 You’re	getting	closer!

Unpivoting	the	Data
The	rest	of	the	process	 is	fairly	straightforward	and	standard	for	an	unpivot
scenario:

Filter	the	Account	column	to	remove	null	values
Select	the	Class	and	Account	columns
Right-click	the	selected	headers	→	Unpivot	Other	Columns

Now	you	have	an	unpivoted	list:

Figure	184 The	list	is	finally	unpivoted.

Finally,	you	need	to	split	the	Attribute	column	back	into	its	respective	pieces
and	clean	up	the	column	headers:

Right-click	the	Attribute	column	→	Split	Column	→	By	Delimiter	→
Custom	→	|	→	OK
Right-click	the	Attribute.1	column	→	Rename	→	Month
Right-click	the	Attribute.2	column	→	Rename	→	Measure
Select	 the	 Class,	 Account,	 Month	 and	Measure	 columns	→	 right-
click	→	Change	Type	→	Text
Right-click	the	Value	column	→	Change	Type	→	Decimal	Number
Right-click	the	Value	column	→	Rename	→	Amount

The	query	is	now	finished,	unpivoted,	and	ready	to	load:

Figure	185 The	subcategorized	list,	fully	unpivoted.

Method	Recap
As	 you’ve	 seen	 in	 this	 chapter,	 the	 process	 for	 unpivoting	 subcategories
involves	the	following	eight-step	process:

1.	Load	the	data.

2.	Transpose	the	data.

3.	Fill	the	major	heading	into	null	areas.

4.	Merge	the	major	headings	and	subheadings	into	a	single	column.

5.	Transpose	the	data	back.

6.	Promote	the	consolidated	headings	into	header	rows.

7.	Unpivot	the	data.

8.	Split	the	consolidated	headings	back	into	their	individual	components.

This	technique	is	not	limited	to	only	two	levels	of	headings.	The	secret	is	to
combine	all	 the	headings	and	 subheadings	 into	one	 text	 string	 that	 can	be
promoted	to	headers.	As	long	as	you’ve	done	that,	you	can	unpivot	a	dozen
levels	of	subheadings	if	needed.

Replicating	the	Original	Data
With	 the	data	 completely	unpivoted,	 the	original	 data	 table	 can	quickly	be
rebuilt	using	a	PivotTable	with	the	following	configuration:

Class	and	Account	on	Rows
Month	and	Measure	on	Columns
Amount	on	Values

However,	 in	order	to	rebuild	the	PivotTable	so	it’s	 laid	out	consistently	with
the	original	data,	you	also	need	to	make	the	following	modifications:

Go	to	PivotTable	Tools	→	Design	→	Subtotals	→	Show	all	Subtotals
at	Bottom	of	Group
Select	 the	Revenues	 cell	 in	 the	 first	 column	and	drag	 it	 above	 the
Expenses	row
Right-click	the	April	column	header	→	uncheck	Subtotal	Month
Right-click	any	value	cell	→	Value	Field	Settings	→	Number	Format
Choose	Accounting	→	2	decimals	→	No	Symbol
Click	OK	(twice)	to	return	to	the	worksheet

At	this	point,	you	should	have	replicated	the	original	report	so	that	it	looks	as
shown	below:

Figure	186 The	original	data,	reconstructed	via	a	PivotTable.

Transposing	Stacked	Tables
Another	complicated	transformation	scenario	 is	one	where	the	details	for	a
transaction	 are	 stacked	 vertically	 on	 top	 of	 each	 other,	 with	 blank	 rows
separating	the	transactions:

Figure	187 Data	where	repeating	the	transpose	operation	is	necessary.

In	 this	 scenario,	you	essentially	need	to	 transpose	each	block	of	data,	 then
stack	the	blocks	into	one	tall	table.	The	issue,	however,	is	that	Power	Query
doesn’t	really	have	an	out-of-the-box	command	to	do	this.	 If	you	transpose
the	table,	you’ll	get	one	row	of	data	and	a	 large	number	of	columns	rather
than	getting	each	record	transposed	individually	the	way	you	need.

Again,	 getting	 the	 outcome	 you	want	 is	 entirely	 possible,	 but	 it	 requires	 a
little	creative	thinking	and	some	tricks.

Loading	the	Data
In	this	example,	you	will	transpose	the	list	of	credit	card	transactions	found	in
Ch15	Examples\Transpose	Stacked	Tables.xlsx:

Figure	188 A	stacked	list	of	transactions	in	a	single	column.

Before	you	can	do	anything	else,	you	need	to	get	the	data	into	Power	Query:

Select	A1	→	create	a	new	query	→	From	table
Extend	the	table	boundaries	to	cover	A1:A17

The	data	is	now	ready	for	you,	and	it’s	time	to	figure	out	how	to	approach	it.

Creating	a	Modulo	Column
Rather	than	try	to	transpose	the	records	at	this	point,	you’re	going	to	take	a
different	approach.	You’re	going	to	number	the	records,	and	you’re	going	to
do	it	twice.	To	make	this	happen:

Go	to	Add	Column	→	Add	Index	Column	→	From	0

At	this	point,	you	have	a	numeric	list	of	the	transactions,	starting	from	0:

Figure	189 Each	line	of	the	file	now	has	an	index	number.

You	 currently	 have	 a	 number	 indicating	 the	 numeric	 data	 line	 in	 the	 file.
What	 we	 actually	 want	 is	 a	 number	 as	 it	 corresponds	 to	 each	 line	 of	 the
transaction.	 In	 other	 words,	 the	 transaction	 date	 should	 always	 be	 0,	 the
vendor	1,	and	so	on.	To	get	that,	you	need	to	add	a	modulo	column.

Before	you	do	this,	you	need	a	key	piece	of	information	from	the	table:	You
need	to	know	the	value	in	the	first	row	of	the	second	record.	In	this	case,	the
value	you	are	 looking	for	 is	6,	as	shown	in	the	Index	column.	(Power	Query
starts	counting	from	0,	not	1.)	That	number	is	going	to	be	the	factor	for	the
modulo	calculation.

The	modulo	 essentially	 takes	 a	 value,	 subtracts	 the	 closest	multiple	 of	 the
factor	from	the	value	provided,	and	returns	the	remainder.	So	if	the	value	is
8,	the	modulo	subtracts	6	and	returns	the	remainder,	which	is	2.	Try	it	out:

Select	the	Index	column
Go	to	Add	Column	→	From	Number	→	Standard	→	Modulo	→	6

You	now	have	a	list	of	the	transaction	line	numbers!

Figure	190 You	now	have	a	transaction	line	number	for	each	item.

This	looks	interesting,	but	why	set	this	up	in	the	first	place?	The	answer	lies
in	the	solution	to	this	data	set.

Pivoting	the	Data
When	 you	 have	 a	 list	 of	 repeating	 transaction	 numbers	 as	 you	 do	 in	 this
example,	you	can	pivot	 them.	 It	will	 look	a	 little	ugly	at	 first,	but	you’ll	 see
how	incredible	this	truly	is.

Select	the	Inserted	Modulo	column	→	Transform	→	Pivot	Column

Now	comes	the	tricky	part:	The	pivot	needs	to	be	set	up	correctly.

By	default,	when	you	ask	to	pivot	a	column,	the	values	in	that	column	will	be
used	as	the	column	headers.	Power	Query	then	asks	which	values	you	want
in	 the	 values	 (or	 body)	 area	 of	 the	 pivoted	 data	 set.	 The	 trick	 here	 is	 that

pivoting	 data	 is	 usually	 done	 to	 summarize	 the	 values,	 and	 you	 aren’t
interested	in	doing	that.	You	want	the	original	values,	so	follow	these	steps:

Set	the	Values	column	to	Transactions
Expand	the	Advanced	Options
Set	the	Aggregate	Value	Function	to	Don’t	Aggregate
Click	OK

The	table	changes	shape	and	fills	with	null	values	everywhere:

Figure	191 The	pivoted	table,	full	of	null	values.

This	is	actually	amazing.

Filling	in	the	Blanks
The	next	step	is	to	fill	in	the	holes	in	the	pivoted	data	set:

Select	column	1	→	hold	down	Shift	→	select	column	5
Go	to	Transform	→	Fill	→	Up

The	transactions	now	cascade	up	to	fill	in	the	blanks:

Figure	192 The	data,	filled	up.

Believe	it	or	not,	you’re	very	close	to	finished	here:

Filter	column	0	→	uncheck	(null)
Select	columns	0	through	3	→	right-click	→	Remove	Other	Columns

You	now	have	a	data	set	that	has	been	fully	transposed	from	a	single	column
of	stacked	records:

Figure	193 The	transformation	from	stacked	tables	to	useful	data	is	almost	complete.

The	final	thing	to	do	to	this	query	is	to	provide	better	column	names	and	set
the	data	types.	As	soon	as	that’s	done,	you’re	finished!

Rename	column	0	Dates	and	format	it	as	Date
Rename	column	1	Vendor	and	format	it	as	Text
Rename	column	2	TransactionID	and	format	it	as	Whole	Number
Rename	column	3	Amount	and	format	it	as	Decimal	Number
Rename	the	query	Transactions
Go	to	Home	→	Close	&	Load

The	data	is	finally	transformed:

Figure	194 The	transformed	data	set.

Method	Recap
This	is	the	process	for	transposing	and	pivoting	a	single	column	of	data:

1.	Load	the	data.

2.	Add	an	Index	column	from	0.

3.	Add	a	modulo	column,	using	the	value	that	indicates	the	first	value	in	the
second	data	set.

4.	Pivot	the	modulo	column	using	the	text	as	values	with	aggregation.

5.	Fill	the	data	up	for	every	column	after	the	initial	one.

6.	Filter	out	null	rows	in	the	first	data	column.

7.	Do	the	final	cleanup.

With	 practice,	 this	 process	 actually	 becomes	 quite	 quick,	 which	 is	 a	 good
thing.	 You’ll	 be	 amazed	 how	 many	 times	 you	 need	 to	 do	 this	 in	 the	 real
world.

Chapter	16	Automating
Refreshing
As	you	build	more	and	more	solutions	that	leverage	Power	Query,	and	as	you
realize	 how	 much	 time	 it	 saves	 you,	 you’re	 bound	 to	 become	 hungry	 for
more	 automation	 in	 your	 life.	 Yes,	 you	 can	 simply	 right-click	 a	 table	 that
comes	 from	 Power	 Query,	 but	 even	 that	 will	 begin	 to	 feel	 so	 …	 manual.
Wouldn’t	it	be	better	if	you	could	just	schedule	an	update,	or	maybe	control
the	order	in	which	things	update?

Options	for	Automating	Refreshing
You	can	actually	use	a	few	different	methods	of	automating	the	refreshing	of
Power	Query	solutions:

Refresh	when	the	workbook	is	opened
Refresh	every	x	minutes
Refresh	a	connection	on	demand	via	VBA
Refresh	all	connections	on	demand	via	VBA
Schedule	refreshes	via	a	third-party	add-in

Each	works	differently	and	has	its	own	benefits	and	drawbacks,	as	you’ll	see
in	this	chapter.

Scheduling	Refreshes	Without	Code
The	first	two	methods	for	automating	refreshing	that	we’ll	explore	are	both
set	through	the	user	 interface	and	don’t	require	any	VBA	code	whatsoever.
They	 can	 be	 configured	 on	 a	 connection-by-connection	 basis,	 and	 you	 can
even	 automate	 the	 refresh	 to	 Power	 Pivot	 if	 desired.	 Each	 of	 these
connections	is	controlled	by	navigating	to	the	Workbook	Connections	dialog
in	Excel	(not	Power	Query):

Go	to	Data	→	Connections	→	select	your	query	→	Properties

This	 launches	 the	 following	dialog,	where	you	can	check	 the	box	 to	update
the	query	when	the	file	is	opened:

Figure	195 Setting	connection	options.

Background	Refreshing
In	 the	 Connection	 Properties	 dialog,	 notice	 that	 the	 Enable	 Background
Refresh	 checkbox	 is	 selected	 by	 default.	 This	 setting	 allows	 you	 to	 specify
whether	you’d	like	to	keep	working	in	Excel	while	the	data	refreshes.	 If	you
uncheck	this	box,	you	could	potentially	decrease	the	amount	of	time	it	takes
to	 refresh	 your	 solution,	 but	 you’ll	 also	 lock	 out	 the	 user	 interface,	 which
means	you	won’t	be	able	to	do	other	things	until	it	is	complete.

If	 you	 want	 to	 prevent	 users	 from	 working	 with	 the	 data	 until	 it	 is	 fully
refreshed,	 you	want	 to	 disable	 this	 setting.	 If	 you	 need	 to	 do	 other	 things
while	you	wait,	however,	this	setting	is	best	left	alone.

Refreshing	Every	x	Minutes
The	 next	 available	 setting	 in	 the	 Connection	 Properties	 dialog	 lets	 you	 tell
Excel	to	refresh	the	Power	Query	query	every	x	minutes.	When	you	check	the
box,	you	can	set	how	often	you’d	like	the	data	to	be	refreshed.	This	setting	is
fantastic	if	you’re	pulling	data	from	a	web	source	that	is	constantly	changing
or	if	you	are	targeting	a	database	that	is	being	updated	regularly,	as	it	assures
you	that	your	data	is	always	kept	up-to-date	while	you’re	in	the	file.

Keep	in	mind	that	the	workbook	needs	to	be	open	in	order	for	this	refresh	to
occur.	And	if	you’re	going	to	be	scheduling	frequent	refreshes	while	you	are
actively	 working	 in	 the	 workbook,	 you’ll	 want	 to	 make	 sure	 the	 Enable
Background	Refresh	setting	is	checked.

Note:	 Valid	 values	 for	 this	 setting	 run	 from	1	 to	32,767,	which	means
you	can	refresh	once	every	minute	up	to	once	every	22.75	days.

Refreshing	When	the	Workbook	is	Opened
This	 selection	 in	 the	 Connection	 Properties	 dialog	 actually	 allows	 you	 to
specify	two	components:

Refreshing	the	data	when	opening	the	file
Removing	the	data	before	saving

The	 first	 one	 is	 rather	 self-explanatory,	 and	 checking	 the	 box	 for	 this	 will
change	the	behavior	of	the	workbook	to	do	exactly	what	it	says:	refresh	the
data	each	time	you	open	the	file.	This	helps	ensure	that	your	data	is	always
up-to-date	when	you	start	working	with	the	file.

If	 you	 have	 a	 significant	 number	 of	 data	 sources,	 or	 if	 the	 data	 takes	 a
significant	amount	of	time	to	refresh,	then	it	may	be	a	good	idea	to	leave	the
Enable	 Background	 Refresh	 setting	 enabled	 so	 that	 you	 can	 use	 the
workbook	while	the	refresh	is	occurring.

The	 second	 choice	 in	 this	 section	 controls	whether	 to	 save	 the	data	 in	 the
workbook	 or	 only	 the	 query	 definition.	 This	 setting	 is	 actually	 a	 security
setting,	 as	 it	 ensures	 that	 your	users	 have	 access	 to	 the	data	 source	when
they	open	the	workbook.	If	they	don’t,	they’ll	be	greeted	by	a	blank	table,	as
the	 connection	 cannot	be	 refreshed.	 If	 they	do	have	access,	 the	query	will
run	and	bring	in	the	data.

Warning:	There	is	currently	a	bug	in	all	versions	of	Excel	that	affects	the
last	option.	 If	you	open	Excel	and	then	open	the	workbook,	 the	query
will	refresh,	and	the	data	will	be	loaded.	If	you	then	close	the	workbook
and	 reopen	 it	 (without	 closing	 Excel),	 the	 data	 will	 not	 refresh
automatically.	Closing	Excel	fixes	the	problem.

Automating	Query	Refreshing	with	VBA
The	options	described	so	far	in	this	chapter	allow	you	to	refresh	Power	Query
queries	with	no	macro	security	warnings	at	all.	In	addition,	workbooks	using
the	 options	 described	 above	 are	 easier	 to	 port	 to	 Power	 BI,	 as	 they	 don’t
cause	any	blocking	issues.

If	you’re	working	purely	in	a	desktop	Excel	instance,	however,	there	are	times
when	you	may	want	to	give	a	user	an	easy-to-use	and	obvious	way	to	update

your	 Power	 Query	 solutions.	 This	 can	 be	 accomplished	 via	 recording	 VBA
macros.

Refreshing	a	Single	Connection
You	 can	 build	 a	macro	 to	 refresh	 a	 single	 Power	Query	 connection.	 To	 see
how	this	works,	open	Ch16	Examples\Automating	Refresh.xlsx	and	navigate
to	the	Transactions	worksheet.

On	this	worksheet	you’ll	find	a	Transactions	table,	as	well	as	a	PivotTable.	Say
that	you’d	 like	to	create	a	macro	to	update	the	Transactions	table	and	then
the	PivotTable.

To	do	this,	you	can	record	a	simple	macro	by	using	the	following	steps:

Navigate	to	the	Developer	tab

Note:	 If	 you	 don’t	 see	 the	 Developer	 tab,	 right-click	 any	 tab	 on	 the
ribbon	and	choose	Customize	Ribbon.	Check	the	box	on	the	right-hand
side,	next	to	Developer,	and	then	click	OK.

In	the	upper-left,	click	Record	Macro

Figure	196 Start	recording	a	macro.

Warning:	Once	you’ve	 clicked	 this	button,	Excel	 starts	 recording	every
worksheet	 click,	 every	 keystroke,	 and	 every	mistake	 you	make.	 Follow
the	steps	below	with	precision	to	make	sure	you	get	a	clean	macro!

Name	the	Macro	Refresh	and	store	it	in	This	Workbook	→	OK
Go	 to	 Data	 →	 Connections	 →	 Power	 Query	 –	 Transactions	 →
Refresh
Click	Close
Right-click	the	PivotTable	→	Refresh
Go	to	Developer	→	Stop	Recording

The	macro	is	now	recorded	and	ready	to	use.	To	test	it:

Go	to	Developer	→	Macros

You	now	see	the	Macro	dialog,	which	allows	you	to	see	what	macros	are	in
your	file	and	run	any	of	them.	Select	the	Refresh	macro—it	may	be	the	only
one	you	have—and	click	Run:

Figure	197 Running	your	macro.

When	you	run	the	macro,	you	can	see	that	the	Transactions	table	refreshes,
followed	 by	 the	 PivotTable.	 (Of	 course,	 this	 would	 be	more	 obvious	 if	 the
data	changed,	but	the	data	source	is	static.)

As	great	as	this	 is,	sending	your	users	back	to	the	Developer	tab	to	run	the
macro	on	a	regular	basis	 is	a	 little	scary.	Rather	 than	do	that,	why	not	give
them	a	button	to	refresh	the	macro?	Follow	these	steps:

Go	to	Developer	→	Insert	→	choose	the	top-left	icon
Find	an	empty	space	on	the	worksheet
Hold	down	the	left	mouse	button	→	drag	down	and	right	→	let	go
of	the	mouse

The	Assign	Macro	dialog	pops	up	with	your	macro	in	it.

Select	the	Refresh	macro	→	OK
Right-click	the	button	→	Edit	Text
Rename	it	Refresh
Click	any	cell	in	the	worksheet

You	now	have	a	nice,	shiny,	new	button,	all	ready	to	use:

Figure	198 Launch	button,	ready	to	activate!

Go	ahead	and	click	the	Refresh	button	and	revel	in	the	fact	that	any	user	can
now	refresh	your	query.

Note:	 If	you	ever	need	to	edit	the	button,	right-click	it.	When	the	little
white	 bubbles	 surround	 it,	 it	 is	 in	 Design	mode	 and	 can	 be	modified.
Select	a	cell	in	the	worksheet	to	remove	the	selection	handles	and	put	it
back	into	Active	mode.

Refreshing	Multiple	Connections
The	next	concern	that	you	might	want	to	tackle	is	adding	more	queries	to	the
macro	 and	 controlling	 the	 order	 in	 which	 they	 refresh.	 You	 can	 easily	 do
these	things	by	modifying	the	macro.

Go	to	Developer	→	Macros	→	Refresh	→	Edit.

At	this	point	you	see	code	like	this:
Sub	Refresh()

‘

‘	Refresh	Macro

‘

‘

ActiveWorkbook.Connections(“Power	Query	-	Transactions”).Refresh

Range(“G6”).Select

ActiveSheet.PivotTables(“PivotTable1”).PivotCache.Refresh

End	Sub

Here’s	what	this	macro	code	does:

The	first	four	lines	after	the	Sub	Refresh()	line	are	simply	comments,
so	you	really	don’t	need	to	keep	them.
The	line	that	starts	with	ActiveWorkbook	refreshes	the	connection.
The	next	line	selects	a	range	on	the	active	worksheet.
The	final	line	refreshes	the	PivotTable	on	the	active	worksheet.

You	can	make	some	modifications	to	this	macro	to	not	only	control	the	order
in	 which	 all	 the	 connections	 refresh	 but	 also	 make	 the	 code	 a	 bit	 more
bulletproof.	(Right	now	it	would	fail	if	someone	tried	to	run	it	from	a	different
worksheet	since	it	wouldn’t	have	the	PivotTable	on	it.)	Here’s	what	the	code
should	look	like	after	you	revise	it:

Sub	Refresh()

ActiveWorkbook.Connections(“Power	Query	-	Jan2008”).Refresh

ActiveWorkbook.Connections(“Power	Query	-	Feb2008”).Refresh

ActiveWorkbook.Connections(“Power	Query	-	Mar2008”).Refresh

ActiveWorkbook.Connections(“Power	Query	-	Transactions”).Refresh

Worksheets(“Transactions”).PivotTables(“PivotTable1”).	_

PivotCache.Refresh

End	Sub

Note:	The	space	and	underscore	characters	are	the	characters	you	use
to	indicate	a	line	break	in	VBA	code.	The	code	will	run	equally	well	if	the
PivotCache.Refresh	 line	 remains	 on	 the	 same	 line	 as
Worksheets(“Transactions”).PivotTables(“PivotTable1”).	 Just	 make	 sure
that	there	is	no	space	between	the	period	at	the	end	of	the	first	line	and
PivotCache.Refresh.

You	 can	 see	 that	 you	 need	 to	 remove	 the	 unneeded	 code	 comments	 first.
After	 that	 you	 simply	 inject	 new	 lines	 in	 order	 to	 refresh	 the	 specific
connections	in	the	order	in	which	you	want	them	refreshed.

In	 addition,	 by	 specifying	 Worksheets(“Transactions”)	 in	 place	 of
ActiveSheet,	 you	 eliminate	 the	 need	 to	 select	 the	 PivotTable,	 and	 you	 also
ensure	 that	 you	 are	 always	 refreshing	 the	 PivotTable	 on	 the	 Transactions
worksheet.

Be	aware	that	connections	may	or	may	not	include	the	name	Power	Query.
These	 names	 must	 match	 the	 names	 that	 are	 shown	 in	 the	 Workbook
Connections	dialog,	as	shown	below:

Figure	199 Determining	the	names	of	your	query	connections.

Note:	 In	midsummer	2015	Microsoft	 decided	 to	 rebrand	 (or	 debrand)
Power	 Query	 due	 to	 concern	 that	 the	 term	 Power	 scared	 users	 away
from	the	feature	set.	To	this	end,	queries	that	you	create	today	are	not
prefixed	with	“Power	Query	–”	as	they	are	in	the	dialog	above.

When	you	click	 the	Refresh	button	now,	each	query	 refresh	 is	kicked	off	 in
turn,	and	the	PivotTable	is	refreshed.

Warning:	 One	 thing	 to	 be	 aware	 of	 is	 that	 you	 cannot	 save	 your
workbook	in	XLSX	format	once	you	have	a	macro	inside	it.	Instead,	you
need	 to	 save	 the	 workbook	 in	 XLSMor	 XLSB	 format	 to	 preserve	 the
macros.	 This	 way,	 users	 get	 a	 macro	 security	 warning	message	 when
they	open	the	workbook	before	they	can	use	your	button	to	refresh	the
data.

Refreshing	All	Power	Query	Queries
In	order	to	refresh	all	Power	Query	queries	in	a	workbook,	you	need	to	use	a
slightly	 different	 block	 of	 code.	 The	 following	 macro	 will	 look	 through	 all
connections	 in	 the	 workbook	 and	 identify	 whether	 they	 are	 created	 by
Power	Query	(and	it	ignores	all	others):

Public	Sub	UpdatePowerQueriesOnly()

Dim	lTest	As	Long,	cn	As	WorkbookConnection

On	Error	Resume	Next

For	Each	cn	In	ThisWorkbook.Connections

lTest	=	InStr(1,	cn.OLEDBConnection.Connection,	_

“Provider=Microsoft.Mashup.OleDb.1”)

If	Err.Number	<>	0	Then

Err.Clear

Exit	For

End	If

If	lTest	>	0	Then	cn.Refresh

Next	cn

End	Sub

This	macro	 can	be	 stored	 in	 the	 same	workbook	as	 the	one	 created	 in	 the
previous	section,	or	it	can	replace	the	previous	code	(although	you’d	need	to
relink	your	button	to	the	new	macro	instead).

Warning:	Be	aware	that	the	code	above	will	not	necessarily	refresh	the
queries	 in	 the	 order	 in	 which	 they	 need	 to	 be	 refreshed,	 as	 Excel
refreshes	queries	in	alphabetical	order.	Fortunately,	you	can	change	the
name	of	the	queries	by	going	to	Data	→	Connections	→	Properties	and
modifying	 the	 connection	 name.	 You	 can	 rename	 each	 query	 into	 an
order	 such	 as	 01-Jan2008,	 02-Feb2008,	 03-Mar2008,	 99-Transactions.
By	 doing	 this,	 you	 can	 ensure	 that	 a	 Power	Query	 refresh	 runs	 in	 the
correct	order.

Automating	Refreshing	and	more	via
Third-Party	Add-ins
While	 VBA	 works	 well	 on	 desktop	 solutions,	 it	 is	 a	 total	 nonstarter	 if	 you
want	 to	 port	 solutions	 to	 the	 web,	 whether	 to	 SharePoint,	 Office	 365,	 or
Power	 BI.	 For	 this	 reason,	 the	 team	 at	 power-planner.com	 built	 an	 add-in
called	Power	Update	to	help	solve	these	issues.

Here’s	how	the	company	describes	the	product	in	its	own	words:

Power	Update	 is	a	brand-new	software	utility	designed	from	the	ground-up
as	 a	 “companion”	 to	 Power	 Pivot,	 Power	 Query,	 and	 the	 entire	 Power	 BI
stack.

It	allows	you	to	schedule	ANY	Power	Pivot	/	Power	BI	workbook	for	refresh,
regardless	 of	 data	 sources	 used,	 and	 automatically	 deploys/publishes	 the
resulting	 workbook	 to	 a	 destination	 of	 your	 choice:	 SharePoint	 (both	 on-
premises	 and	 cloud),	 OneDrive,	 Power	 BI	 online,	 file	 folders	 and	 network
shares,	and	even	Tabular	SSAS	servers.	

Even	when	paired	with	O365,	Power	BI,	or	other	cloud	server,	Power	Update
does	 NOT	 require	 the	 configuration	 of	 gateways,	 VPN’s,	 or	 firewall	 ports.
Furthermore,	 Power	 Update	 supports	 auto-refresh	 of	 Power	 Query
workbooks	 as	 well	 as	 loading	 Power	 Query	 and	 PowerPivot	 data	 into	 SQL
Server,	finally	allowing	the	industry	to	utilize	PQ	in	“on-premises”	production
environments.

Finally,	 Power	 Update	 is	 NOT	 restricted	 to	 “once	 a	 day”	 refresh,	 nor	 is	 it
subject	 to	 “rowset	 throttling”	 by	 Power	 BI	 version	 2’s	 10k	 rows/hr	 (free
version)	or	1MM	rows/hr	(Pro)	limitations.

If	this	product	sounds	interesting	to	you,	or	if	you’d	like	to	read	more	about
the	features	 in	Power	Update,	see	the	following	blog	posts	by	Rob	Collie	of
PowerPivotPro.com:

http://mrx.cl/intropowerupdate,	 http://mrx.cl/freepowerupdate,
http://mrx.cl/ssisalternative,

http://mrx.cl/buildingdatazen

The	free	version	of	the	Power	Update	tool	can	be	downloaded	directly	from:

http://www.power-planner.com/Products/ProdID/10

Chapter	17	Power	Query
Formulas
Power	Query’s	user	interface	is	amazing,	and	many	of	the	things	you	need	to
do	are	already	built	in.	Having	said	that,	there	are	sure	to	be	times	when	you
need	to	do	things	that	aren’t	built	in	to	the	user	interface.	Even	without	easy-
to-click	buttons,	there	are	ways	to	get	such	jobs	done.	You	just	have	to	reach
in	to	Power	Query’s	programming	language:	M.

Getting	Started	with	M
While	 aspects	 of	 M	 can	 get	 quite	 technical,	 the	 easiest	 way	 to	 get	 some
exposure	to	the	language	is	to	start	with	custom	columns	and	add	formulas
to	them.

Because	 Power	 Query	 was	 built	 for	 Excel	 pros,	 you	 might	 expect	 that	 its
formula	 language	 would	 be	 just	 like	 Excel’s—much	 like	 Power	 Pivot’s	 DAX
formulas	are	identical	in	name	to	those	from	Excel.	Unfortunately,	this	is	not
the	case,	as	you’ll	see,	and	you’ll	have	to	temper	your	initial	instincts	to	use
those	formulas	as	you	learn	a	new	formula	syntax.

Creating	Custom	Columns
It	 is	relatively	straightforward	to	create	a	custom	column.	While	 inside	your
query:

Go	to	Add	Column	→	Add	Custom	Column

You	see	this	dialog,	which	allows	you	to	create	a	new	formula:

Figure	200 The	Add	Custom	Column	dialog.

Three	portions	to	this	dialog	that	are	important:

New	Column	Name—Whatever	 you	 type	here	will	 be	used	as	 the
name	of	the	column	you	are	creating	when	you	click	OK.
Available	Columns—This	box	 lists	 the	names	of	all	 the	columns	 in
your	 query.	 Double-clicking	 any	 item	 in	 this	 box	 places	 it	 into	 the
formula	area	with	the	correct	syntax	to	refer	to	the	field.
Custom	 Column	 Formula—This	 is	 where	 you	 actually	 create	 the
formula	that	will	be	used.

You	can	easily	do	simple	aggregations	in	the	formula	area,	using	syntax	that
you’re	used	 to	 in	 Excel.	 For	 example,	 to	 join	 the	 two	 fields	 listed	 above	 as
text,	you	would	build	a	formula	in	the	following	manner:

Double-click	Column1	in	the	Available	Columns	list
Type	the	&	character
Double-click	Column	#2	in	the	Available	Columns	list

From	this,	Power	Query	would	build	the	following	formula:
=[Column1]&[#“Column	#2”]

The	great	thing	about	using	the	double-click	interface	is	that,	at	this	point,	it
doesn’t	matter	 to	you	 that	 the	 syntax	of	Column1	and	Column	#2	must	be

handled	differently.	 The	 interface	will	 get	 it	 right,	 and	 you	 can	get	on	with
completing	the	job.

Note:	This	specific	syntax	is	explained	in	Chapters	19	and	20.

As	 you	might	 expect,	 you	 can	 perform	 regular	 mathematical	 equations	 as
well,	including	the	following:

Operation Power	Query	Formula	Equivalent

Addition =[Column1]+[#“Column	#2”]

Subtraction =[Column1]-[#“Column	#2”]

Multiplication =[Column1]*[#“Column	#2”]

Division =[Column1]/[#“Column	#2”]

Interestingly,	however,	the	exponent	operator	^	that	you	are	used	to	in	Excel
will	not	work.	Exponentiation	requires	a	custom	formula:

=Number.Power([Column1],[#“Column	#2”])

Discovering	New	Formulas
Currently,	Power	Query	doesn’t	have	any	IntelliSense,	so	it	can	be	difficult	to
determine	which	 formulas	 exist.	While	 this	 is	 something	 that	we	hope	will
change	 in	 future,	 it	 leaves	 us	 hunting	 when	 we	 need	 to	 work	 out	 which
formulas	exist.

For	 this	 reason,	 in	 the	Add	Custom	Column	dialog,	 there	 is	a	hyperlink	 just
underneath	the	Custom	Column	Formula	box.

Figure	201 How	to	find	more	Power	Query	formulas.

Click	 this	 link	 to	 go	 to	 a	 web	 page	 that	 promises	 to	 help	 you	 learn	 about
Power	 Query	 formulas.	 If	 you	 scroll	 down	 that	 page,	 you’ll	 find	 a	 link	 to
Power	Query	Formula	Categories,	which	then	links	you	through	to	the	MSDN
documentation	 site.	 This	 site	 lists	 all	 formula	 categories	 and	 allows	 you	 to
browse	and	find	the	ones	you	need.

Note:	 We	 highly	 recommend	 bookmarking	 the	 landing	 page	 for	 the
MSDN	site.	This	will	prevent	you	from	having	to	open	the	Add	Custom
Column	dialog	in	order	to	access	this	documentation.

Formula	Gotchas
Power	 Query	 and	 Excel	 have	 some	 significant	 differences	 in	 terms	 of	 how
they	handle	inputs.	The	following	table	summarizes	some	of	the	issues	that
will	certainly	frustrate	you	in	the	beginning:

Excel Power	Query

Formulas	are	not	case	sensitive Formulas	are	case	sensitive

Counts	using	base	1 Counts	using	base	0

Data	type	conversions	are	implicit Observes	strict	data	typing

Case	Sensitivity
The	case	sensitivity	aspect	is	a	headache	but	something	you	get	used	to.	The
trick	to	remember	here	is	that	in	99%	of	cases,	the	first	letter	of	each	word	in
a	Power	Query	 formula	 is	 capitalized,	and	 the	 rest	are	 lowercase.	Whereas
Excel	doesn’t	care	which	case	you	use	and	converts	formulas	to	uppercase	by
default,	Power	Query	just	returns	an	error.

Base	0	versus	Base	1
The	difference	between	base	0	and	base	1	 is	where	the	number	 line	starts.
Consider	the	following	word:	Excel.	If	you	were	to	ask	yourself	the	position	of
the	x	character,	you’d	probably	say	2.	Character	E	is	1,	and	x	is	2.	Does	that
sound	correct?

Counting	 in	this	 fashion	follows	a	base	1	rule,	where	the	first	character	has
an	 index	position	of	1,	 the	 second	character	2,	and	so	on.	 It’s	 the	way	you
count,	and	it’s	the	way	Excel	counts.

If	 you	 were	 to	 ask	 Power	 Query	 the	 same	 question,	 it	 would	 return	 an
answer	 of	 1.	 That’s	 a	 bit	 of	 a	 head-scratcher	 at	 first,	 especially	 since	 Excel
counts	 in	a	base	1	 fashion.	You’d	kind	of	expect	Power	Query	to	 follow	the
same	rules,	but	it	doesn’t.	Power	Query	starts	counting	at	0,	not	1.	So	in	the
word	Excel,	the	E	is	character	0,	and	the	x	is	character	1.

Ultimately,	this	doesn’t	generate	issues	that	can’t	be	dealt	with,	but	 it	does
mean	that	when	you’re	building	formulas	in	Power	Query,	you	can	end	up	off
by	one	position	very	easily.

Data	Type	Conversions
Excel	 formulas	are	very	 forgiving	with	data	 types,	using	 implicit	conversion,
unlike	 Power	 Query	 explicit	 Conversion.	 To	 understand	 what	 that	 means,
consider	the	following	scenarios.

In	 Excel	 you	 can	 add	 a	 value	 to	 a	 date	 and	 increment	 it	 to	 the	 next	 day.
Because	all	dates	are	really	just	serial	numbers	anyway,	adding	1	to	the	date
will	work	perfectly.

In	 Power	 Query,	 if	 the	 date	 is	 formatted	 as	 a	 date	 type,	 you	 must	 use	 a
specific	formula	to	add	days	to	it.	And	if	you	try	to	use	the	same	formula	to
add	days	to	a	number,	Power	Query	will	give	you	an	error	as	it’s	not	a	date.
This	means	you	need	to	explicitly	convert	your	fields	to	the	data	type	before
using	them	in	formulas.

In	Excel	you	can	join	two	cells	together	by	using	the	&	function.	Whether	the
cells	 contain	 text	 or	 values	 is	 completely	 irrelevant.	 Excel	 will	 implicitly
convert	them	both	to	text	and	then	join	them	together:

Figure	202 Implicit	conversion	in	action:	Number	and	text	converted	to	text.

Observe	what	happens	when	you	pull	this	data	into	Power	Query	and	create
a	new	column	using	the	following	formula:

=[Column1]&[Column2]

As	you	can	see,	you	get	a	completely	different	result:

Figure	203 Power	Query	can’t	join	numbers	and	text	together.

In	order	 to	 fix	 this	 issue,	you	have	to	 tell	Power	Query	explicitly	 to	convert
the	number	to	text	before	it	tries	to	join	the	two	text	strings	together.	You	do
that	by	wrapping	Column1’s	input	in	a	conversion	function:

=Text.From([Column1])&[Column2]

When	 you	 explicitly	 convert	 the	 data	 in	 Column1	 to	 a	 text	 value,	 the
concatenation	will	work	as	you	originally	intended:

Figure	204 Explicit	conversion	of	data	types	ensures	that	the	formula	works.

There	are	actually	two	ways	to	deal	with	data	types	in	Power	Query:

Set	the	data	type	for	the	column	you	are	referring	to	before	using	it
in	a	custom	function.

Use	a	data	type	conversion	function	to	force	the	input	to	convert	to
the	required	data	type.

Useful	Data	Type	Conversion	Functions
There	 are	 several	 data	 type	 conversion	 functions	 in	 Power	Query.	 Some	of
the	most	important	of	them	are	described	in	the	following	sections.

Converting	to	Text
For	the	most	part,	if	you	need	to	convert	the	values	in	a	column	to	text,	you
just	use	the	Text.From()	 function.	There	are	also	some	additional	 functions,
however,	 you	 can	 use	 to	 keep	 your	 data	 typing	 even	 more	 explicit.	 The
following	 table	 shows	 how	 to	 convert	 different	 data	 types	 into	 a	 Text	 data
type:

To	Convert Formula Example

Anything Text.From() Text.From([Column1])

A	date Date.ToText() Date.ToText([Column1])

A	time Time.ToText() Time.ToText([Column1])

A	number Number.ToText() Number.ToText([Column1])

Keep	 in	 mind	 that	 Text.From()	 will	 do	 the	 job	 of	 all	 the	 others,	 whereas
Time.ToText()	will	not	convert	a	number	to	a	text	value.

Dates
There	are	two	types	of	dates	that	you	need	to	be	concerned	with:	those	that
are	 based	 on	 numbers,	 and	 those	 that	 come	 as	 textual	 dates.	 Different
conversion	functions	are	provided	for	each	data	type	 in	order	to	turn	them
into	a	Date	data	type:

To	Convert Formula Example

Numeric	dates Date.From() Date.From([Column1])

Date.From(42986)

Text	dates Date.FromText() Date.FromText([Column1])

Date.FromText(“Jan	31,	2015”)

Again,	 Date.From()	 actually	 performs	 the	 function	 of	 Date.FromText,
although	the	reverse	case	is	not	true.

Times
Like	 dates,	 time	 values	 can	 arrive	 as	 either	 numeric	 time	 values	 or	 textual
ones.	Again,	there	are	two	functions	for	these:

To	Convert Formula Example

Numeric	times Time.From() Time.From([Column1])

Time.From(0.586)

Text	times Time.FromText() Time.FromText([Column1])

Time.FromText(“2:03	PM”)

And,	 just	 as	 with	 dates,	 Time.From()performs	 the	 function	 of
Time.FromText(),	but	again,	the	reverse	case	is	not	true.

Durations
A	duration	is	the	difference	between	two	date/time	values,	and	it	allows	you
to	work	out	the	days,	hours,	minutes,	and	seconds	to	complete	a	task.	Two
functions	exist,	where	the	.From()	variant	can	perform	the	job	of	the	other:

To	Convert Formula Example

Numeric	durations Duration.From() Duration.From([Column1])

Duration.From(2.525)

Text	durations Duration.FromText() Duration.FromText([Column1])

Duration.FromText(“15:35”)

Values
There	 are	 actually	 a	 large	 variety	 of	 numeric	 conversion	 functions.	 Again,
while	Number.From()	will	 perform	 the	 job	 of	 all	 of	 them,	 there	 are	 others
included	 as	 well,	 in	 case	 you	 want	 to	 force	 your	 numbers	 to	 a	 specific
numeric	type:

Convert	Value	To Formula Example

Decimal	number Number.From() Decimal.From([Column1])

Number.From(2.525)

Decimal	number	(from	text) Number.FromText() Number.FromText([Column1])

Number.FromText(“15.35”)

Decimal	number Decimal.From() Number.From([Column1])

Decimal.From(15)

Whole	number Int64.From() Int64.From([Column1])

Int64.From(2)

Currency Currency.From() Currency.From([Column1])

Currency.From(2.52)

Comparing	Excel	and	Power	Query	Text
Functions
When	we	Excel	pros	are	trying	to	land	and	clean	data,	we	often	need	to	clean
and	split	text.

If	you’ve	worked	with	Excel’s	 text	 functions	 for	a	 long	 time,	you’ll	 find	 that
you	 are	 naturally	 inclined	 to	 try	 to	 use	 them	 to	 extract	 components	 from
your	data.	And	you’ll	 find	that	they	 just	don’t	work.	For	that	reason,	 in	this
section	you’ll	explore	how	to	replicate	Excel’s	five	most	commonly	used	text
functions.

Each	of	the	examples	in	this	section	can	be	found	in	Ch17	Examples\5	Useful
Text	Functions.xlsx.	Each	of	the	examples	in	this	section	begins	with	a	set	of
data	like	the	one	below:

Figure	205 A	sample	of	the	data	you’ll	work	with.

There	is	a	set	of	words	down	the	left	column,	and	there	are	some	extractions
in	 the	 right	 column.	 Each	 of	 these	 extractions	 was	 performed	 with	 Excel
formulas,	using	the	function	listed	in	the	header	of	the	second	column.

The	following	sections	compare	how	to	get	Power	Query	to	accomplish	the
same	thing	using	different	functions.

Note:	 In	 August	 2015,	 the	 Power	 Query	 team	 added	 the	 ability	 to
extract	the	first	character,	the	 last	character,	and	a	range	of	characters
to	the	Transform	tab.	Despite	this,	the	following	sections	walk	through
the	 process	 of	 replicating	 and	 comparing	 these	 formulas	 to	 those	 of
Excel	 as	 this	 not	only	provides	 an	understanding	of	 how	 to	work	with
the	M	code	formulas	but	also	allows	you	to	build	more	robust	solutions
than	you	can	with	the	user	interface	commands	alone.

Replicating	Excel’s	LEFT()	Function
Follow	these	steps	to	pull	the	data	into	Power	Query:

Select	a	cell	in	the	table	of	data	on	the	LEFT	worksheet	→	create	a
new	query	→	From	Table
Rename	the	query	pqLeft
Go	to	Add	Column	→	Add	Custom	Column
Call	the	new	column	pqLeft(x,4)	and	enter	the	following	formula:
=LEFT([Word],4)

This	should	work,	shouldn’t	it?	Power	Query	certainly	isn’t	 indicating	that	it
won’t:

Figure	206 Power	Query	seems	comfortable	with	the	formula.

Click	OK,	and	despite	the	green	checkmark,	things	are	not	as	good	as	you’d
hoped:

Figure	207 You’re	pretty	sure	you	spelled	left	correctly.

So	despite	the	tool	being	built	for	Excel	pros,	the	design	team	elected	to	use
a	completely	different	formula	term	to	refer	to	the	x	left	characters	of	a	cell.
Here	is	a	direct	comparison	of	the	syntax	between	the	two	programs:

Syntax Example Result

Excel =LEFT(text,num_chars) =LEFT(“Excel”,2) Ex

Power	Query =Text.Start(text,num_chars) =Text.Start(“Excel”,2) Ex

This	means	you	need	to	edit	the	formula:

Click	the	gear	icon	next	to	the	Added	Custom	step
Modify	the	formula	to	read	as	follows:
=Text.Start([Word],4)

Click	OK

Warning:	 Don’t	 forget	 that	 the	 formula	 is	 case	 sensitive.	 Text.start,
TEXT.START,	and	other	variants	will	return	errors!

This	 works,	 and	 better	 yet,	 it	 delivers	 results	 consistent	 with	 the	 Excel
formula	set:

Figure	208 Replicating	Excel’s	LEFT()	function	with	Text.Start().

You	can	now	finalize	the	query:

Go	to	Home	→	Close	&	Load	To…	→	Only	Create	Connection

Warning:	 Never	 use	 the	 name	 of	 an	 existing	 function	 as	 your	 Power
Query	 table	 name.	 If	 you	 had	 called	 this	 table	 LEFT,	 you	 would
experience	 #N/A	 errors	 in	 the	 original	 table’s	 Excel	 formulas,	 as	 table
names	are	evaluated	before	functions.

Replicating	Excel’s	RIGHT()	Function
Based	on	what	you	know	about	LEFT(),	you’ve	probably	guessed	 that	using
=RIGHT()	won’t	work	 in	Power	Query,	and	you’re	correct.	Again,	 the	Power
Query	team	chose	a	different	function	name,	as	shown	below:

Syntax Example Result

Excel =RIGHT(text,num_chars) =RIGHT(“Excel”,2) el

Power	Query =Text.End(text,num_chars) =Text.End(“Excel”,2) el

Follow	these	steps	to	see	how	the	results	stack	up:

Select	a	cell	in	the	table	of	data	on	the	RIGHT	worksheet	→	create	a
new	query	→	From	Table
Rename	the	query	pqRight
Go	to	Add	Column	→	Add	Custom	Column
Call	the	new	column	pqRight(x,4)	and	enter	the	following	formula:
=Text.End([Word],4)

Click	OK

The	results	are	shown	below:

Figure	209 Replicating	Excel’s	RIGHT()	function	with	Text.End().

Once	again,	the	results	are	consistent	with	Excel’s,	which	is	a	good	thing.	You
can	now	finalize	this	query	as	well:

Go	to	Home	→	Close	&	Load	To…	→	Only	Create	Connection

Replicating	Excel’s	LEN()	Function
This	 isn’t	 looking	 difficult	 so	 far,	 is	 it?	 Now	 try	 the	 LEN()	 function,	 whose
syntax	is	listed	below:

Syntax Example Result

Excel =LEN(text) =LEN(“Excel”) 5

Power	Query =Text.Length(text) =Text.Length(“Excel”) 5

Based	on	this,	the	results	should	be	exactly	the	same	as	Excel’s.	Follow	these
steps	to	see	what	happens:

Select	a	cell	 in	the	table	of	data	on	the	LEN	worksheet	→	create	a
new	query	→	From	Table
Rename	the	query	pqLen
Go	to	Add	Column	→	Add	Custom	Column
Call	the	new	column	pqLen(x)	and	enter	the	following	formula:
=Text.Length([Word])

Click	OK

The	results	are	shown	below:

Figure	210 Replicating	Excel’s	LEN()	function	with	Text.Length().

The	results	line	up	perfectly	again.	You’re	ready	to	load	them	to	a	connection
as	well:

Go	to	Home	→	Close	&	Load	To…	→	Only	Create	Connection

Replicating	Excel’s	FIND()	Function
By	now	you’re	wondering	what	 the	big	deal	 is.	 It’s	obvious	 that	 the	Power
Query	team	 just	changed	the	way	we	reference	 formulas.	 In	 fact,	 the	team
has	even	injected	some	logic	to	group	all	the	text	formulas	together,	as	they
all	start	with	Text.FunctionName.

But	 the	 changes	 are	 actually	 a	 bit	 bigger.	 Let’s	 take	 a	 look	 by	 replicating
Excel’s	FIND()	function.

The	following	base	table	is	using	the	FIND()	function	to	find	a	lowercase	o	in
the	words.	Naturally,	 that	works	 in	 some	cases,	and	 it	 returns	errors	 in	 the
case	of	words	that	don’t	contain	the	specified	character.

Figure	211 The	FIND()	function	you	want	to	replicate.

Follow	these	steps	to	see	how	Power	Query	handles	this:

Select	a	cell	in	the	table	of	data	→	create	a	new	query	→	From	Table
Change	the	query	name	to	pqFind

Before	you	add	the	custom	column,	you	should	know	that	the	new	name	for
FIND	in	Power	Query	 is	Text.PositionOf().	Based	on	the	syntax	of	the	FIND()
function,	that	means	that	you	should	be	able	to	go	with	this:

=Text.PositionOf(“o”,[Word])

Try	it:

Go	to	Add	Column	→	Add	Custom	Column
Name	the	new	column	pfFind(“o”,x)	and	enter	the	formula	above
Click	OK

The	results	are	far	from	what	you’d	predict:

Figure	212 What	the	heck	is	going	on	here?

In	 Power	 Query,	 the	 -1	 result	 for	 the	 function	 informs	 you	 that
Text.PositionOf()	 found	 no	 match.	 But	 how	 is	 that	 possible?	 The	 letter	 o
plainly	appears	in	a	bunch	of	those	words.

To	find	the	answer,	examine	the	full	syntax	for	this	function,	as	compared	to
Excel’s:

Syntax Example Result

Excel =FIND(find_text,within_text) =FIND(“xc”,”Excel”) 2

Power	Query =Text.PositionOf(text,	find_text) =Text.PositionOf(“Excel”,”xc”) 1

Do	you	see	the	big	difference?	Not	only	is	the	FIND()	function	masquerading
under	 a	 new	name,	 but	 the	order	 of	 the	parameters	 has	 flipped!	 That	will
certainly	cause	an	issue.	Now	you	need	to	follow	these	steps:

Click	the	gear	icon	next	to	the	Added	Custom	step
Modify	the	formula	to	flip	the	order	of	the	parameters:
=Text.PositionOf([Word],“o”)

Click	OK

The	results	are	better	but	still	not	quite	consistent	with	Excel:

Figure	213 Every	result	is	off	by	one.

It	looks	like	the	values	returned	here	follow	the	base	0	rule.	(Counting	F	as	0,
the	first	o	in	Football	would	be	character	1,	not	character	2.)

This	 is	not	a	huge	 issue;	 it	 just	means	that	you	need	to	modify	the	formula
and	add	1	to	the	result	in	order	to	make	it	consistent	with	Excel.	Follow	these
steps	to	do	so:

Click	the	gear	icon	next	to	the	Added	Custom	step
Modify	the	formula	as	follows:
=Text.PositionOf([Word],“o”)+1

Click	OK

And	now	things	are	looking	…	almost	the	same:

Figure	214 The	numeric	results	line	up	nicely,	but	the	errors	don’t.

This	case	is	actually	an	interesting	one,	as	Power	Query	actually	gives	a	nicer
result	than	Excel	when	a	value	isn’t	found.	Wouldn’t	it	be	great	if	you	didn’t
have	to	wrap	your	FIND()	function	in	an	error	handler	 in	case	the	character
wasn’t	located?	You	can	now	finalize	this	query:

Go	to	Home	→	Close	&	Load	To…	→	Only	Create	Connection

Note:	One	thing	you	cannot	do	is	replicate	the	#VALUE!	error.	Trying	to
replace	0	with	#VALUE!	will	 fail	unless	you	convert	 the	column	to	 text
first.	 Even	 if	 you	 did	 so,	 you	 would	 then	 land	 a	 column	 of	 textual
numbers	 into	 Excel,	which	would	 obviously	 impact	 your	 ability	 to	 use
the	values	in	formulas.

Replicating	Excel’s	MID()	Function
The	last	function	you	will	attempt	to	replicate	is	Excel’s	MID()	function.	This	is
a	tricky	one,	as	it	actually	throws	an	additional	wrinkle	into	the	mix	as	well.

In	 order	 to	 replicate	 the	 MID()	 function,	 you	 need	 to	 use	 Power	 Query’s
Text.Range()	function,	which	has	the	following	syntax:

Syntax Example Result

Excel =MID(text,start,num_chars) =MID(“Excel”,2,2) ex

Power	Query =Text.Range(text,	start,num_chars) =Text.Range(“Excel”,2,2) ce

As	you	can	 see,	 the	 function	has	a	different	name,	but	 the	parameters	are
listed	in	the	same	order	as	the	Excel	equivalent.	That	is	good	news,	at	least.
And	yet,	as	you	can	see,	 the	end	result	 seems	to	be	a	character	off.	This	 is
due	to	the	fact	that	Power	Query	counts	letters	using	base	0	instead	of	base
1,	 as	 Excel	 does.	 But	 armed	 with	 this	 information,	 you	 should	 be	 able	 to
make	this	work.	To	start	the	process:

Select	a	cell	 in	the	table	of	data	on	the	MID	worksheet	→	create	a
new	query	→	From	Table
Rename	the	query	pqMid
Go	to	Add	Column	→	Add	Custom	Column
Name	 the	 new	 column	 pqMid(x,5,4)	 and	 enter	 the	 following
formula:
=Text.Range([Word],5,4)

Click	OK

The	results	are,	once	again,	underwhelming:

Figure	215 A	couple	of	these	worked,	but	why	not	all?

This	is	a	bit	of	a	shock.	You	were	expecting	the	word	to	be	off	by	a	character
but	not	to	have	errors	everywhere.	What	happened?

Before	 dealing	 with	 the	 errors,	 you	 need	 to	 correct	 the	 position	 of	 the
starting	character.	You	can	see	that	Bookkeeper	should	be	returning	“keep,”
and	it’s	coming	in	late	by	one	letter,	returning	“eepe.”	That’s	doesn’t	require

a	huge	fix;	you	just	need	to	adjust	the	formula	to	subtract	1	from	the	starting
parameter:

Click	the	gear	icon	next	to	the	Added	Custom	step
Modify	the	formula	as	follows:
=Text.Range([Word],5-1,4)

Click	OK

Interestingly,	the	results	look	much	better:

Figure	216 Why	are	these	formulas	now	returning	consistent	results?

One	of	the	great	features	of	Excel’s	MID()	function	is	that	you	never	have	to
worry	about	how	many	characters	are	remaining	in	the	text	string.	If	the	final
parameter	you	provide	is	higher	than	the	number	of	characters	remaining,	it
will	simply	return	all	remaining	characters	without	triggering	an	error.	Not	so
in	Power	Query.

In	order	to	fix	this,	you	obviously	have	to	make	a	modification	to	how	many
characters	are	being	returned,	as	you	don’t	want	to	provide	a	number	higher
than	the	number	of	characters	remaining.	In	other	words,	you	want	to	return
the	minimum	of	four	characters,	or	the	number	of	characters	still	remaining
in	the	text	string.

You’re	going	to	learn	a	lot	more	about	required	functions	in	Chapter	20.	Right
now,	 however,	 just	 know	 that	 you	 need	 to	 use	 a	 List	 function	 to	 do	 this,
specifically	List.Min().

Rather	than	just	try	to	build	this	into	your	function,	follow	these	steps	to	see
if	you	can	build	this	in	a	separate	column:

Go	to	Add	Column	→	Add	Custom	Column
Enter	the	following	formula
=List.Min({Text.Length([Word])-(5-1),4})

Click	OK

You	can	see	that	you	have	a	 table	 that	clearly	 indicates	 that	Truck	has	only
one	extra	character:

Figure	217 You	have	determined	the	number	of	characters	remaining.

You’ll	 get	 a	 lot	 more	 exposure	 to	 lists	 in	 Chapter	 19,	 but	 here’s	 a	 quick
breakdown	of	the	formula:

Text.Length([Word])-(5-1)	simply	takes	the	length	of	the	word	in	the
Word	column	and	subtracts	the	starting	position.	You	used	(5-1)	as
you	wanted	the	fifth	character,	but	you	need	to	correct	it	for	base	0.
(You	could	simplify	this	to	4	if	desired.)
The	final	4	represents	the	maximum	number	of	characters	you	want
to	return
In	 order	 to	 use	 these	 in	 the	 List.Min()	 function,	 they	 need	 to	 be
surrounded	by	curly	braces	and	separated	by	commas.

With	 this	 working,	 you	 can	 simply	 edit	 your	 original	 column	 to	 use	 this
formula	in	place	of	the	final	4:

Click	the	gear	icon	next	to	the	Added	Custom	1	step
Copy	the	formula	you	just	wrote
Click	OK
Click	the	gear	icon	next	to	the	Added	Custom	step
Modify	the	formula	and	nest	the	copied	formula	in	place	of	the	final
4:
=Text.Range([Word],5-1,	List.Min({Text.Length([Word])-(5-
1),4}))

Click	OK

When	 you	 preview	 the	 Added	 Custom	 step,	 your	MID	 function	 equivalent
should	now	be	working:

Figure	218 The	query	is	working	for	all	but	the	last	line.

Once	 you	 are	 comfortable	 that	 the	 query	 is	 working,	 you	 can	 take	 the
following	steps:

Remove	the	Added	Custom	1	step
Go	to	Home	→	Close	&	Load

Despite	the	error,	you	can	call	this	done	and	load	the	query	to	an	Excel	table.
Why?	Because	errors	just	show	up	as	empty	cells	anyway:

Figure	219 Errors	disappear	when	loaded	to	a	table,	giving	the	output	a	consistent	feel.

Observations
It	 is	 a	 real	 shame	 that	 not	 all	 the	 functions	 in	 Power	 Query	 have	 full
equivalency	with	 those	 in	 Excel,	 especially	 since	 Power	Query	 is	 a	 tool	 for
Excel	users.	Hopefully	 this	will	 change	 in	 future	versions;	we’d	 like	 to	see	a
new	 library	 of	 functions	 added	 that	 allow	 you	 to	 port	 your	 existing	 Excel
formula	knowledge	directly	into	Power	Query	without	needing	to	learn	new
formula	names	 and	 syntaxes.	Until	 that	 time,	 however,	 it	 is	 important	 that
you	test	the	results	from	the	Power	Query	functions	that	seem	to	be	Excel’s
equivalents	 and	 make	 sure	 they	 match	 what	 you	 expect,	 as	 you	 will
occasionally	have	to	tinker	with	the	output	to	get	it	to	line	up	correctly.

Chapter	18	Conditional	Logic	in
Power	Query
As	you	build	more	solutions	using	Power	Query,	you’re	bound	to	come	across
a	scenario	where	you	need	to	perform	some	kind	of	 logic	 in	a	column.	And
while	Power	Query	has	a	method	to	do	this,	it’s	not	consistent	with	the	way
an	Excel	Pro	would	approach	this	issue.

IF	Scenarios	in	Power	Query
This	example	looks	at	the	issues	that	appear	when	you	import	the	following
timesheet	from	a	text	file:

Figure	220 A	text	file	with	some	challenges.

The	data	doesn’t	seem	so	bad	at	first	glance.	And	it	seems	like	even	less	of	an
issue	when	you	realize	that	you	don’t	really	need	the	top	four	rows,	as	the
dates	 are	 included	 on	 each	 row	 of	 the	 data	 table.	 But	 then	 you	 notice	 an
issue:	The	employee	name	is	not	included	in	rows	but	rather	is	buried	in	the
middle	of	the	data.	How	do	you	get	it	out	of	there?

The	challenge	in	this	scenario	is	to	figure	out	how	to	get	the	employee	name
associated	 with	 each	 row	 of	 data—and	 that	 is	 not	 going	 to	 be	 possible
without	some	conditional	logic.

Connecting	to	the	Data
You	need	to	connect	to	the	data	to	see	how	it	looks	in	Power	Query,	as	this
may	give	you	some	ideas	about	how	to	proceed:

Starting	 in	 a	 new	workbook,	 create	 a	 new	 query	→	 From	 File	→
From	Text

Browse	to	Ch18	Examples\2015-03-14.txt
Go	to	Home	→	Reduce	Rows	→	Remove	Rows	→	Remove	Top	Rows
→	4	→	OK
Transform	→	Use	First	Row	as	Headers

And	the	problem	is	now	fully	exposed:

Figure	221 John	Thompson,	hanging	out	in	the	Out	column.

At	 first	 glance,	 you	might	 be	 tempted	 to	 transpose	 this	 data	 and	 fill	 John
Thompson’s	name	down.	But	there	are	other	rows	as	well,	and	you	have	no
idea	 how	 many.	 Building	 a	 solution	 to	 use	 this	 approach	 could	 be	 very
difficult	to	maintain,	so	you	need	to	find	a	better	way.

A	more	sensible	approach	in	this	case	would	be	to	add	a	new	column	and	put
a	formula	in	it—a	formula	that	checks	whether	the	Out	column	is	a	time	and
pulls	the	data	in	that	column	if	the	test	fails.	But	how	do	you	do	that?

Replicating	Excel’s	IFERROR()	Function
Try	an	experiment	here:

Right-click	the	Out	column	→	Change	Type	→	Time

As	you’d	expect,	the	times	all	convert	nicely,	but	the	employee	name	returns
an	error:

Figure	222 John	Thompson	doesn’t	have	the	time.

This	 is	 entirely	 to	 be	 expected,	 but	 can	 you	 use	 your	 knowledge	 of	 this
behavior	 to	solve	the	problem?	What	 if	you	tested	to	see	 if	converting	this

column	to	a	time	data	type	returns	an	error?	If	it	did,	then	you	could	return
null,	and	if	it	did	not,	you	could	return	the	time.

You	can	use	Power	Query’s	Time.From()	 function	to	attempt	to	convert	 the
data	 to	 a	 valid	 time.	 And	 based	 on	 your	 Excel	 knowledge,	 you’d	 kind	 of
expect	this	to	work:

=IFERROR(Time.From([Out]),null)

Unfortunately,	this	will	get	you	nothing	but	an	error,	as	Power	Query	doesn’t
recognize	 the	 IFERROR	 function.	 All	 is	 not	 lost,	 however,	 as	 Power	 Query
does	have	a	function	to	do	this,	although	the	syntax	is	very	different:

=try	<operation>	otherwise	<alternate	result>

Just	like	Excel’s	IFERROR(),	Power	Query’s	try	statement	attempts	to	perform
the	 operation	 provided.	 If	 it	 succeeds,	 that	 result	 will	 be	 returned.	 If,
however,	 the	 result	 is	an	error,	 then	 it	will	 return	 the	value	 (or	other	 logic)
specified	in	the	otherwise	clause.

This	means	that	IFERROR()	can	be	written	in	Power	Query	as	follows:
=try	Time.From([Out])	otherwise	null

It	should	return	null	for	any	row	that	contains	an	employee	name	in	the	Out
column	and	the	time	for	any	row	that	has	a	valid	time	in	it.	Give	it	a	try:

Remove	the	Changed	Type	step
Add	Column	→	Add	Custom	Column
Leave	the	name	as	is	but	enter	the	formula	above
Click	OK

The	new	column	is	added,	and	it	works	nicely	to	meet	the	current	goal:

Figure	223 Returning	null	instead	of	an	error.

Note:	 You	 may	 get	 a	 different	 time	 format,	 like	 18:00:00	 instead	 of
6:00:00	PM,	depending	on	the	regional	settings	in	your	computer.

This	 is	 fantastic,	as	 it	means	you	can	now	do	some	other	 tests	 to	work	out
what	you	really	want	to	know.

Replicating	Excel’s	IF()	Function
You’ve	 now	 got	 something	 you	 can	 test	 using	 simple	 logic:	 If	 the	 Custom
column	contains	null,	then	give	us	the	value	in	the	Out	column.	If	it	doesn’t,
return	null.

This	 should	 be	 pretty	 easy—just	 create	 a	 custom	 column	 and	 use	 the
following	function,	right?

=IF([Custom]=null,[Out],null)

Not	so	fast!	That	isn’t	going	to	work	either.

Power	Query	doesn’t	use	the	same	syntax	as	Excel	does	for	its	IF()	function,
either.	Instead,	the	Power	Query	syntax	is	as	follows:

=if	<logical_test>	then	<result>	else	<alternate_result>

Yes,	you’re	reading	that	correctly.	You	actually	have	to	spell	the	whole	thing
out	for	Power	Query.	Try	it:

Add	Column	→	Add	Custom	Column
Set	the	new	column	name	to	Employee
Enter	the	following	formula:
=	if	[Custom]=null	then	[Out]	else	null

Click	OK

The	column	is	added	to	the	data,	and	you	can	see	some	real	potential	here:

Figure	224 John	Thompson	finally	has	his	own	column.

Naturally,	 with	 this	 in	 place,	 you	 can	 fill	 the	 employee	 name	 into	 the	 null
areas:

Right-click	the	Employee	column	→	Fill	→	Down

Even	better,	because	Power	Query	processes	the	steps	 in	the	Applied	Steps
box	as	completely	self-sufficient	steps	in	sequential	order,	you	don’t	need	to
keep	 the	 precedent	 information	 around.	 You	 can	 remove	 that	 column	 and
clean	up	the	rest	of	the	data,	like	this:

Right-click	the	Custom	column	→	Remove
Right-click	the	Work	Date	column	→	Change	Type	→	Date
Select	the	Work	Date	column	→	Home	→	Reduce	Rows	→	Remove
Errors
Right-click	the	Out	column	→	Change	Type	→	Time
Select	the	Reg	Hrs	through	Expense	columns	→	Transform	→	Data
Type	→	Decimal	Number
Right-click	the	Employee	column	→	Change	Type	→	Text
Rename	the	query	to	Timesheet

The	query	is	now	final	and	ready	to	be	loaded:

Figure	225 The	timesheet	with	employees	filled	down	the	last	column.

Note:	 The	 key	 to	 working	 with	 Power	 Query’s	 logic	 functions	 is	 to
remember	to	spell	them	out	in	full	and	make	sure	to	keep	the	function
names	in	all	lowercase.

Chapter	19	Power	Query	Objects
Before	 we	 take	 a	 closer	 look	 at	 programming	 with	 Power	 Query’s	 M
language,	we	 first	need	 to	 take	a	detailed	 look	at	 the	different	objects	and
functions	that	are	available.	Having	a	sound	understanding	of	how	to	create
these	objects,	sometimes	from	each	other,	will	be	useful	when	working	with
more	advanced	programming	concepts.

Be	aware	that	the	focus	on	this	chapter	 is	not	how	to	use	these	new-found
powers	 in	 anything	 extremely	 practical.	 This	 chapter	 focuses	 on	 how	 to
actually	talk	to	these	objects,	providing	a	reference	for	you	to	return	to	when
you	need	to	talk	to	these	objects	(or	portions	thereof)	when	working	in	more
complex	scenarios.

If	you’re	following	along	on	your	own	computer,	you’ll	notice	that	all	of	the
key	objects	in	this	chapter	(tables,	lists,	records,	values,	binaries,	and	errors)
show	up	in	a	green	font	when	included	in	a	column.	In	addition,	each	can	be
previewed	by	clicking	the	whitespace	beside	that	key	word.

Tables
Table	 objects	 can	 show	 up	 in	 numerous	 places	 in	 Power	 Query,	 and	 we
always	appreciate	it	when	they	do,	as	they	are	very	easy	to	work	with.	Follow
these	steps	to	see	for	yourself:

Open	Ch19	Examples\Power	Query	Objects.xlsx
Create	a	new	query	→	From	Other	Sources	→	Blank	Query
Type	the	following	formula	in	the	formula	bar:
=Excel.CurrentWorkbook()

You	can	see	that	there	is	one	table	in	the	workbook:

Figure	226 The	sole	table	in	the	workbook	being	previewed.

The	benefits	of	tables	are	numerous	in	Power	Query:

You	can	preview	the	data	in	a	table.
The	data	contained	 in	a	table	has	rows	and	columns	(even	though
you	can’t	guarantee	that	a	header	row	will	already	be	in	place).
You	can	drill	into	specific	tables	listed	in	the	column	or	expand	them
all.
Once	you’ve	expanded	a	table,	you	have	a	full	set	of	transformation
ribbon	 tabs	 available	 to	 you,	 and	 you	 can	 use	 them	 to	 further
transform	and	manipulate	the	data.

Tables	do	not,	 of	 course,	 only	mean	Excel	workbook	 tables—far	 from	 it,	 in
fact.	 You	 can	 find	 tables	 in	 many	 data	 sources,	 including	 those	 extracted
using	 formulas	 like	 Excel.CurrentWorkbook(),	 Csv.Document(),	 database
tables,	and	more,	as	you’ve	seen	in	earlier	chapters.

You	should	finalize	this	query	before	you	move	on:

Rename	the	query	Table
Go	to	Home	→	Close	&	Load	To…	→	Only	Create	Connection

Lists
Power	Query	 lists	are	 incredibly	 robust	and	useful,	 and	 in	many	cases	 they
are	required	in	order	to	use	some	of	Power	Query’s	most	powerful	formulas.

The	main	way	 that	 lists	 differ	 from	 tables	 is	 that,	when	 viewed,	 a	 list	 only
ever	has	a	single	column	of	data.	 If	you	picture	a	 list	as	being	equivalent	to
your	grocery	 list,	you	would	simply	 list	the	names	of	the	items	you	want	to
purchase.	As	soon	as	you	start	adding	price	comparisons	between	different
stores,	you	have	moved	from	a	list	to	a	table.

Syntax
When	working	with	Power	Query,	a	list	can	be	identified	by	the	presence	of
curly	 braces,	with	 the	 list	 items	 separated	 by	 commas.	 In	 addition,	 textual
items	must	 be	 surrounded	by	quotes,	 just	 as	 they	would	need	 to	be	 in	 an
Excel	formula.	Here	are	two	examples	of	lists:

A	list	of	numbers:
={1,2,3,4,5,6,7,8,9,10}

A	list	of	text	values:
={“A”,“B”,“C”,“D”,“E”,“F”,“G”,“H”,“I”,“J”}

Lists	are	not	restricted	to	containing	only	numeric	values,	however.	They	can
mix	any	data	types	at	all,	including	other	lists:

={1,465,“M”,“Data	Monkey”,{999,234}}

The	 key	 items	 to	 remember	 here	 are	 that	 the	 individual	 list	 items	 are
separated	by	commas,	and	each	individual	list	is	surrounded	by	curly	braces.

Creating	Lists	from	Scratch
You	will	now	create	some	 lists	 from	scratch	 to	see	how	they	work,	 starting
with	a	list	of	individual	numbers:

Create	a	new	query	→	From	Other	Sources	→	Blank	Query
In	the	formula	bar,	type	the	following	formula:
={1,2,3}

Press	Enter

You	now	have	a	nice	list	of	numbers	from	1	through	3:

Figure	227 Creating	a	list	from	scratch.

In	addition	to	the	fact	that	you’ve	created	a	 list	of	values,	you’ll	also	notice
that	 you’re	 now	 working	 with	 the	 List	 Tools	 →	 Transform	 contextual	 tab
active.	Virtually	all	of	the	commands	on	the	other	tabs	will	be	inactive	at	this
point,	making	this	feel	like	a	very	limited	experience.	Despite	this,	you’ll	see
that	you	still	have	access	to	keeping/removing	rows,	sorting,	de-duplicating,
and	even	performing	some	basic	statistical	operations	on	your	data.

Now,	as	great	as	it	is	to	be	able	to	create	a	list	from	scratch	like	this,	creating
a	list	of	numbers	from	1	to	365	would	be	a	bit	of	a	pain.	For	this	reason,	you
also	have	the	ability	to	use	a	coding	shortcut	to	create	a	consecutive	list	from

one	number	through	another.	Change	the	formula	in	the	formula	bar	to	read
as	follows:

={1..365}

You	get	a	nice	consecutive	list	from	1	to	365:

Figure	228 Using	the	..	characters	to	create	a	consecutive	list.

Note:	 You	 can	 create	 consecutive	 alphabetical	 lists	 in	 this	 manner	 as
well,	 provided	 that	 you	wrap	 the	 characters	 in	 quotes	 and	 use	 only	 a
single	character.	For	example,	={“A”..”J”}	will	work,	but	={“AA”..”ZZ”}	will
not.

You	 can	 also	 use	 commas	 inside	 lists,	 provided	 that	 they	 are	 inside	 the
quotes.	Replace	the	formula	in	the	formula	bar	with	the	following:

=	{“Puls,Ken”,“Escobar,Miguel”}

Upon	committing	it,	you	get	two	list	items,	showing	the	names	of	this	book’s
authors:

Figure	229 You	can	still	use	commas	in	list	output.

Converting	Lists	into	Tables
Say	that	you	really	want	to	split	your	data	into	two	columns,	but	that	is	not
possible	with	a	 list	as	 lists	are	 restricted	 to	a	 single	 column	of	data.	 In	 this
case,	you	really	need	the	richer	transformational	toolset	that	tables	offer.

Not	to	worry:	It	is	super	easy	to	transform	a	list	into	a	table.	Just	click	the	big
To	Table	button	in	the	top	left	of	the	List	Tools	contextual	tab.	This	interesting
dialog	appears:

Figure	230 What’s	this	about	delimiters?

You	can	set	the	delimiter	setting	to	Comma	and	click	OK,	and	your	data	will
load	nicely	into	a	two-column	table:

Figure	231 Data	loaded	from	a	comma-separated	list.

Note:	This	dialog	shows	up	whether	there	are	delimiters	in	your	data	or
not.	 If	 you	 don’t	 have	 delimiters,	 just	 click	OK,	 and	 the	 dialog	will	 go
away.

Finalize	this	query:

Change	the	query	name	to	List_Authors
Go	to	Home	→	Close	&	Load	To…	→	Only	Create	Connection

Creating	Lists	from	Table	Columns
Sometimes	you’ll	want	 to	extract	 the	data	 from	a	single	column	of	a	query
into	a	list.	To	see	how	this	works,	connect	to	the	Sales	table:

Go	to	the	Sales	worksheet	and	select	any	cell	in	the	Sales	table
Create	a	new	query	→	From	Table

You	now	have	the	full	table	showing:

Figure	232 The	raw	table	of	data.

Now,	what	would	you	do	if	you	wanted	to	get	a	unique	list	of	the	inventory
items?	 If	 you	were	comfortable	 leaving	 it	 in	 the	 form	of	a	 table,	 you	could
simply	remove	all	 the	other	columns	and	then	go	to	the	Transform	tab	and
remove	duplicates.	The	challenge	here	is	that	it	would	still	be	in	table	form,
and	you	wouldn’t	be	able	to	feed	it	into	a	function	if	you	needed	to.	Instead,
you’d	 like	 to	 get	 those	 unique	 items,	 but	 as	 a	 list,	 which	 gives	 you	 that
flexibility.	Follow	these	steps:

Remove	the	Changed	Type	step	from	the	Applied	Steps	box
Right-click	the	Inventory	Item	column	→	Drill	Down

You	now	see	a	list	of	all	the	inventory	items:

Figure	233 The	column	extracted	to	a	list.

Before	you	move	on,	 look	at	 the	 formula	bar.	 In	 there,	 you	 see	 this	 line	of
code:

=Source[Inventory	Item]

This	 line	 of	 code	 refers	 to	 the	 Inventory	 Item	 column,	 as	 it	was	 calculated
during	the	Source	step	of	this	query.	This	gives	you	the	M	code	shortcut	to
extract	 all	 column	 values	 into	 a	 list	 without	 using	 the	 user	 interface
commands—something	you’ll	find	very	useful	later.

With	the	column	contents	extracted	to	a	list,	you	are	able	to	perform	further
list	operations	on	it,	such	as	de-duplicating	the	data,	like	this:

Go	to	List	Tools	→	Transform	→	Remove	Duplicates

You	 now	 have	 a	 list	 of	 unique	 items	 that	 you	 could	 feed	 into	 a	 different
function.

It’s	time	to	finalize	this	query:

Rename	the	query	List_FromColumn
Go	to	Home	→	Close	&	Load	To…	→	Only	Create	Connection

Creating	Lists	of	Lists
We	mentioned	 earlier	 that	 it	 is	 possible	 to	 create	 lists	 of	 lists.	 This	 might
seem	like	an	odd	concept,	so	let’s	explore	this	scenario.

Say	 that	 you	 have	 four	 employee	 IDs	 (from	 1	 through	 4)	 involved	 in	 your
sales	table.	These	values	represent	Fred,	John,	Jane,	and	Mary,	in	that	order.
Wouldn’t	 it	 be	 nice	 to	 be	 able	 to	 convert	 those	 values	 to	 their	 names,
without	having	 to	create	a	separate	 table?	Follow	these	steps	 to	see	 if	you
can	use	a	list	to	do	this:

Create	a	new	query	→	From	Other	Sources	→	Blank	Query
Create	a	new	list	in	the	formula	bar	as	follows:
=	{{1,“Fred”},{2,“John”},{3,“Jane”},{4,“Mary”}}

Notice	 that	 here	 you	 have	 four	 separate	 lists,	 each	 surrounded	 by	 curly
braces	and	separated	by	commas.	These	four	lists	are	in	turn	surrounded	by
a	 single	 set	 of	master	 curly	 braces,	 defining	 a	master	 list	made	 up	 of	 four
sublists.	When	 you	 commit	 this	 formula	 to	 the	 formula	 bar,	 Power	 Query
gives	you	a	list	containing	four	lists:

Figure	234 A	list	of	lists.

As	you	can	see,	previewing	the	first	 list	shows	that	 it	 is	a	 list	that	holds	the
values	1	and	Fred.	This	is	interesting,	but	can	you	use	this?

Converting	this	list	to	a	table	returns	a	single	column	that	still	contains	lists,
but	 it	 has	 an	 expansion	 arrow	 in	 the	 top	 left.	 Click	 that	 and	 look	 at	 the
results:

Figure	235 The	lists	have	expanded	vertically,	not	horizontally!

Plainly,	 aggregating	 the	 lists	 combines	 them	 by	 stacking	 the	 rows,	 not
treating	each	as	an	 individual	 row.	While	you	could	 transform	this	by	using
the	 index/modulo/pivot	 approach	 from	 Chapter	 15,	 it	 is	 a	 bunch	 of	 extra
work	that	you	should	be	able	to	avoid.

Note:	 In	 order	 to	make	 this	 work,	 you	 would	 have	 needed	 to	 define
your	list	as	is	done	in	the	author	example	above—not	as	a	list	of	lists	but
rather	as	a	list	of	items	with	the	commas	inside	the	quotes.

Finish	this	example	with	the	following	steps:

Rename	the	query	List_of_Lists
Go	to	Home	→	Close	&	Load	To…	→	Only	Create	Connection

There	are	two	key	things	to	recognize	here	when	working	with	lists:

Lists	can	contain	other	lists
Expanding	lists	of	lists	does	not	change	their	orientation

Let’s	look	at	an	alternative.

Records
While	a	list	can	be	described	as	a	single	vertical	column	of	data,	a	record	is	a
list’s	horizontal,	multi-column	counterpart.	A	record	can	be	visualized	as	one
row	 of	 a	 database,	 containing	 all	 the	 pertinent	 information	 related	 to	 a
particular	customer	or	transaction.

In	 Power	 Query,	 records	 can	 appear	 in	 table	 columns	 or	 in	 lists	 as	 you
retrieve	data.	They	can	also	be	created	on-the-fly	if	needed.

Syntax
Records	are	slightly	more	complex	than	lists	in	that	they	need	to	have	a	value
of	some	kind,	and	you	must	also	define	the	column	names,	like	this:

=[Name=“Ken	Puls”,	Country=“Canada”,	Languages	Spoken=2]

Observe	these	key	syntax	points:

Every	complete	record	is	surrounded	by	square	brackets.
Every	record	field	(column)	needs	a	name	defined,	followed	by	the	=
character.
The	 data	 for	 the	 field	 is	 then	 provided,	 surrounded	 by	 quotes	 for
textual	data.
Each	field	name	and	data	pair	is	then	separated	by	commas.

Note:	Field	 (column)	names	do	not	need	any	punctuation	surrounding
them,	whether	they	include	spaces	or	not.

What	 happens	 when	 you	 need	 to	 create	 multiple	 records	 at	 once?	 The
answer	is	that	you	reach	to	a	list:

={[Name=“Ken	Puls”,	Country=“Canada”,	Languages	Spoken=2],

[Name=“Miguel	Escobar”,	Country=“Panama”,	Languages	Spoken=2]}

Creating	a	Record	from	Scratch
It’s	 time	 to	 circle	back	 to	 your	prior	 attempt	at	building	 the	 records	 for	 an
employee	ID	table:

Create	a	new	query	→	From	Other	Sources	→	Blank	Query

Here	you	need	to	create	a	single	record:

In	the	formula	bar,	enter	the	following	formula:
=[EmployeeID=1,EmployeeName=“Fred”]

Press	Enter

Power	Query	returns	your	record:

Figure	236 Your	first	record.

As	you	 can	 see,	 the	 record’s	 field	names	are	 listed	down	 the	 left,	with	 the
corresponding	 data	 down	 the	 right.	 Interestingly,	 the	 data	 is	 arranged
vertically,	not	horizontally,	as	you’d	expect.	This	isn’t	an	issue,	just	something
to	get	used	to.

Also	notice	that	you	have	a	new	Record	Tools	→	Convert	contextual	tab	and,
if	 you	 explore	 the	 rest	 of	 the	 ribbon	 tabs,	 you’ll	 find	 out	 that	 they	 are	 all
grayed	out.

Converting	a	Record	into	a	Table
Since	there’s	obviously	not	a	lot	that	you	can	do	with	records,	you	can	just	go
ahead	and	turn	this	one	into	a	table	to	see	what	happens:

Go	to	Record	Tools	→	Convert	→	Into	Table

The	result	is	probably	not	exactly	what	you	expected:

Figure	237 A	single	record	converted	to	a	table.

You	may	have	expected	that	this	would	show	up	with	the	field	names	across
the	top	and	the	values	in	the	first	row.	Although	it	doesn’t	work	this	way,	it’s
easy	to	fix	since	it’s	now	a	table:

Go	to	Transform	→	Transpose
Transform	→	First	Row	as	Headers

The	result	looks	more	like	what	you	would	have	originally	expected:

Figure	238 The	record	now	looks	like	a	proper	table.

In	this	case,	this	is	fine,	but	what	is	going	to	happen	if	you	have	a	bunch	of
records	 that	you	need	 to	 convert	 to	a	 table?	Finalize	 the	query	 so	you	can
move	on	to	the	next	section	and	find	out:

Rename	the	query	Record_Single
Go	to	Home	→	Close	&	Load	To…	→	Only	Create	Connection

Creating	Multiple	Records	from	Scratch
Now	say	that	you	want	to	build	your	table	out	so	that	it	encompasses	all	the
employees.	You	need	to	build	a	list	of	records	to	do	that:

Create	a	new	query	→	From	Other	Sources	→	Blank	Query
Enter	the	following	in	the	formula	bar:
=	{[EmployeeID=1,EmployeeName=“Fred”],
[EmployeeID=2,EmployeeName=“John”],

[EmployeeID=3,EmployeeName=“Jane”],

[EmployeeID=4,EmployeeName=“Mary”]}

Notice	 that	you	are	still	using	 the	same	format	you	use	 for	a	single	 record,
but	you’ve	separated	the	records	with	commas	and	surrounded	them	in	the
curly	braces	needed	to	indicate	that	they	are	part	of	a	list.

When	you	commit	the	formula	above,	it	returns	a	list	of	records:

Figure	239 A	list	of	records,	with	the	preview	showing	that	you	got	it	right.

Note:	 The	 arrow	 in	 the	 top	 right	 of	 the	 formula	 bar	 allows	 you	 to
expand	it	to	show	multiple	lines	at	once.

Converting	Multiple	Records	into	a	Table
Now	you	 can	 convert	 this	 list	 of	 records	 to	 a	 table	 and	 see	what	 kind	of	 a
disaster	you	have	on	your	hands:

Go	to	List	Tools	→	Transform	→	To	Table	→	OK

The	result	is	a	column	of	records	that	can	be	expanded.	Interestingly,	clicking
that	expand	icon	indicates	that	there	are	columns	to	be	expanded:

Figure	240 This	is	looking	better!

Clicking	 OK	 returns	 a	 nice	 set	 of	 columns	 and	 rows,	 exactly	 as	 you	 were
looking	for	with	the	single	record!

Figure	241 You	just	built	a	table	from	scratch!

It	 goes	 against	 conventional	wisdom,	but	 creating	multiple	 records	 actually
feels	like	it	unwinds	into	a	table	more	logically	than	a	single	record.	The	true
difference	 is	 that	 you	 convert	 a	 list	 of	 records	 into	 a	 table	 in	 the	 second
instance,	not	a	single	record	into	a	table.	With	the	records	in	a	table	column,
Power	Query	then	reads	the	record	information	correctly	in	order	to	expand
it	into	the	requisite	column	and	rows.

You’re	now	at	a	stage	where	this	table	can	be	saved—and	even	merged	into
other	queries	if	you	like.	Save	it	like	this:

Rename	the	query	Table_From_Records
Go	to	Home	→	Close	&	Load	To…	→	Only	Create	Connection

Creating	a	Record	from	a	Table	Row
When	you	were	working	with	 lists,	you	saw	how	you	can	convert	a	column
into	a	list	 if	you	ever	need	to	do	this	for	any	reason.	You	can	also	convert	a
row	into	a	record.	To	do	this,	you	can	start	with	a	new	query:

Go	to	the	Sales	worksheet	and	select	any	cell	in	the	Sales	table
Create	a	new	query	→	From	Table

As	with	earlier	examples,	you	now	have	the	full	table	showing.	To	extract	the
first	record,	you	need	to	create	a	blank	query	step.	To	do	this:

Click	on	the	Source	step	in	Applied	Steps	→	OK
Click	the	fx	button	next	to	the	formula	bar

Figure	242 Creating	a	blank	query	step.

You	now	get	a	new	step	with	the	following	formula	in	the	formula	bar:
=Source

Modify	this	formula	to	add	{0}	to	it:
=Source{0}

The	result	is	your	first	record:

Figure	243 {0}	=	Record	1?

What	just	happened	here?

When	treated	in	this	way,	the	Source	step	returns	a	list	of	records.	Because
Power	Query	 is	base	0,	 record	0	 returns	 the	 first	 value	 in	 the	 list.	 (If	 you’d
made	this	=Source{1},	you	would	have	retrieved	the	record	for	the	Talkative
Parrot.)

Even	more	interestingly,	you	can	drill	 in	even	further	by	appending	the	field
name	in	square	brackets.	Try	modifying	the	query	to	the	following:

=Source{0}[Price]

As	you	can	see,	you	 just	drilled	right	 in	and	extracted	the	price	for	the	first
record	in	the	table:

Figure	244 Drilling	into	record	0’s	price.

To	understand	the	relevance	of	this,	consider	a	situation	where	you	need	to
drill	 into	a	specific	record	in	order	to	control	filters.	In	Chapter	20	you’ll	see
where	this	technique	allows	you	to	do	exactly	that.

You	can	now	finalize	the	query:

Rename	the	query	Record_From_Table
Go	to	Home	→	Close	&	Load	To…	→	Only	Create	Connection

Creating	Records	from	Each	Table	Row
To	 convert	 each	 row	 in	 a	 table	 into	 records,	 you	 need	 to	 use	 a	 little	 trick.
Start	like	this:

Go	to	the	Sales	worksheet	and	select	any	cell	in	the	Sales	table
Create	a	new	query	→	From	Table

Next,	you	want	to	convert	each	row	in	the	table	to	a	record.	The	challenge	is
that	you	need	the	index	number	of	each	row	to	do	that.	So	you	can	reach	to
the	Index	column:

Go	to	Add	Column	→	Add	Index	Column	→	From	0

Now	you	are	going	to	rename	this	step	(not	the	column)	in	the	Applied	Steps
box:

Right-click	the	Added	Index	step	→	Rename	→	AddedIndex	(without
a	space)

The	query	now	looks	as	follows:

Figure	245 The	Index	column	has	been	added,	and	the	step	has	been	renamed	without	the	space.

Now	you	can	reach	to	a	custom	column	to	convert	your	rows	to	records.	The
trick	in	this	is	creating	an	Index	column,	as	you	now	have	the	value	you	need
to	 extract	 your	 records.	 Why	 do	 you	 need	 this	 trick?	 You’re	 not	 going	 to
operate	on	the	current	row	but	rather	on	the	AddedIndex	step’s	output.	This
way,	 rather	 than	 getting	 a	 specific	 value	 (such	 as	 the	 first	 row),	 you	 can
dynamically	feed	it	into	the	query	to	get	each	row.	Follow	these	steps:

Go	to	Add	Column	→	Add	Custom	Column
Name	the	column	Records
Use	the	following	formula:
=AddedIndex{[Index]}

The	 result	 is	 that	 a	 new	 column	 is	 created,	 and	 it	 contains	 the	 rows	 as
records:

Figure	246 A	column	of	records.

Note:	 Strictly	 speaking,	 you	 didn’t	 need	 to	 rename	 the	 Added	 Index
column	to	remove	the	space.	Doing	that	just	makes	things	a	lot	easier	in
the	user	interface.

At	this	point,	you	could	remove	all	other	columns,	and	you’d	simply	have	a
column	of	records:

Right-click	the	Records	column	→	Remove	Other	Columns
Rename	the	query	Records_From_Table
Go	to	Home	→	Close	&	Load	To…	→	Connection	Only

Values
If	 you	 are	 working	 with	 databases,	 you	 will	 occasionally	 see	 columns
containing	values:

Figure	247 The	elusive	value	object.

This	particular	object	shows	up	only	in	certain	cases.	In	order	for	it	to	appear,
you	must	be	working	with	a	database	that	has	a	primary	key	and	foreign	key
relationship	set	up	between	the	tables.	What’s	really	strange	is	that	a	value	is
just	the	way	a	database	returns	a	record.

Note:	 This	 particular	 table	 can	be	 located	 in	 the	AdvertureWorks2012
database	that	you	connected	to	in	Chapter	8.	Use	the	same	method	to
connect	 as	 described	 in	 Chapter	 8,	 connect	 to	 the	 Sales.SalesTerritory
table,	and	remove	the	columns	other	than	those	shown.

Once	 you	 know	what	 values	 you	 have,	 working	 with	 them	 is	 the	 same	 as
working	with	the	other	data	types	that	they	are	related	to.

Note:	The	direction	of	the	relationship	determines	what	is	returned	to	a
related	column	when	you’re	working	with	a	database.	If	you	are	in	a	fact
table,	and	the	link	is	going	to	the	dimension	table,	you’ll	receive	a	value
(record).	 If	you	are	 in	a	dimension	table	and	the	 link	 is	going	 to	a	 fact
table,	you’ll	receive	a	table.

Binaries
Binaries	 are	 essentially	 files.	 Some	 can	 be	 combined	 and	 read	 by	 using
functions	like	Csv.Document(),	whereas	others,	like	Excel	workbooks,	cannot
be	combined	and	must	be	read	using	the	Excel.Workbook()	function.

The	process	of	extracting	data	from	these	workbooks	is	covered	extensively
in	Chapters	3	and	4,	 so	we	don’t	explore	 them	 further	here,	other	 than	 to
mention	that	they	are	a	Power	Query	object	that	you	will	encounter.

Errors
There	 are	 two	 types	 of	 error	 messages	 that	 you	 can	 encounter	 in	 Power
Query:	step-level	errors	and	row-level	errors.

Row-Level	Errors
Row-level	 errors	 typically	 occur	 when	 you’re	 trying	 to	 convert	 data	 to	 the
wrong	data	type	or	trying	to	operate	on	data	before	it	has	been	converted	to
the	 correct	 type.	 You’ve	 seen	 several	 examples	 of	 these	 types	 of	 errors
throughout	this	book.	Here’s	one:

Figure	248 A	row-level	error	triggered	by	trying	to	convert	countries	to	a	Date	data	type.

These	 errors	 generally	 aren’t	 show-stoppers,	 and	 they	 can	 even	 be	 very
useful	when	you’re	cleaning	data,	as	they	can	be	treated	in	two	ways:

Used	as	filters	to	keep/remove	rows
Replaced	 with	 other	 data	 using	 the	 Transform	 →	 Replace	 Errors
command

Despite	 the	 fact	 that	 there	 is	 no	 debugging	 engine	 in	 Power	 Query,	 these
errors	are	usually	identifiable	and	often	(although	not	always)	are	related	to
incorrect	data	types.

Step-Level	Errors

Step-level	 errors	 are	 a	 bit	more	 serious	 to	 deal	with	 than	 row-level	 errors.
These	 messages	 block	 Power	 Query	 from	 showing	 anything	 in	 the	 output
window	except	the	error,	like	these	examples:

Figure	249 An	expression	syntax	error,	triggered	by	a	missing)	at	the	end	of	the	line.

Figure	250 A	general	expression	error,	triggered	by	referring	to	SQL	rather	than	Sql.

Unfortunately,	Power	Query’s	debugging	tools	are	particularly	weak,	as	you
can	see	with	the	following	issue:

Figure	251 A	 syntax	 error	 caused	 by	 a	missing	 }	 character	 but	with	 the	 error	message	 asking	 for	 a
comma.

The	error	message	debugging	offering	is	presented	on	a	single	row	(though	it
had	to	be	cut	and	wrapped	for	this	image).	At	the	very	end	of	the	string	is	a
helpful	^	character	which	 indicates	where	Power	Query	 thinks	you	need	 to
place	your	comma.	The	issue,	however,	is	that	a	curly	brace	was	not	provided
to	close	the	YTD	Sales	list,	as	indicated	by	the	upward-pointing	red	arrow.

These	 issues	 today	 are	 challenges.	 It’s	 a	 shame	 that	 we	 have	 no	 built-in
formula	 indenter,	 coloring,	 or	 IntelliSense	 today	 to	 help	 with	 such	 issues.
Power	 Query	 is	 frequently	 being	 updated,	 though,	 and	 we	 hope	 to	 see
changes	 in	 this	 area	 in	 the	 future.	Until	 that	happens,	 however,	 debugging
must	 be	 done	 the	 painful	 way:	 reviewing	 the	 line	 and	 watching	 for	 key
opening	and	closing	syntax	marks,	commas,	and	the	like.

Functions

The	last	type	of	object	that	you	will	encounter	in	Power	Query	is	a	function.
Functions	can	occur	in	two	places:

1.	They	can	be	inside	a	database,	where	they	indicate	a	stored	procedure.

2.	They	can	be	returned	in	a	list	from	Power	Query.

You’ll	 learn	more	about	using	and	 invoking	 functions	 later	 in	 the	book,	but
here	you’ll	learn	a	trick	you	can	use	to	see	how	functions	manifest	and	also
to	discover	the	Power	Query	function	list.	Try	this:

Create	a	new	query	→	From	Other	Sources	→	Blank	Query
In	the	formula	bar	enter	the	following	formula:
=#shared

Go	to	Record	Tools	→	Convert	→	Into	Table

Power	 Query	 generates	 a	 table	 of	 all	 Power	 Query	 tables	 in	 the	 current
workbook,	but	more	importantly,	it	follows	the	list	of	tables	with	a	list	of	all
functions	included	in	the	product.	You	can	access	the	documentation	for	any
function	from	this	list:

Figure	252 A	table	of	functions.

How	 do	 you	 use	 this?	 To	 see,	 filter	 the	 first	 column	 for	 Max	 (with	 an
uppercase	M):

Filter	the	Name	column	→	Text	Filters	→	Contains	→	Max

The	search	turns	up	four	offers:

Figure	253 All	functions	containing	Max.

If	 you	 click	 on	 Function	 beside	 Table.Max,	 you	 see	 two	 things	 happen—
documentation	pops	up	behind	and	an	invocation	dialog	pops	up	in	front:

Figure	254 An	invocation	dialog	appears	in	front	of	the	documentation.

This	box	allows	you	to	test	the	function	out,	but	clicking	Cancel	makes	it	go
away.	Behind	it	you’ll	find	the	full	documentation	for	the	function,	so	you	can
determine	whether	it	does	what	you	need.

Note	that	you’re	not	restricted	to	using	the	#shared	command	from	a	blank
query.	Any	 time	you	want	 to	check	Power	Query’s	 formula	documentation,
you	can	do	the	following:

1.	Click	the	fx	on	the	formula	bar	to	add	a	new	step

2.	Replace	the	code	in	the	new	step	with	=#Shared

3.	Convert	the	records	to	a	table

4.	Drill	into	the	function	you	want	to	explore

You	 can	 then	 step	 back	 into	 the	 earlier	 steps	 in	 the	 Applied	 Steps	 box	 to
implement	the	function,	and	you	can	delete	all	the	#Shared	steps	when	you
are	finished.

Chapter	20	Understanding	the	M
Language
Now	that	you’ve	explored	the	different	objects	you	can	use	in	Power	Query,
it	 is	 time	 to	 take	a	deeper	 look	at	 the	M	 language	 that	 is	used	 to	perform
Power	 Query’s	 magic.	 While	 mastering	 M	 isn’t	 truly	 necessary,	 it	 will
certainly	add	some	incredible	power	to	your	arsenal	and	allow	you	to	work
with	situations	that	others	can’t.

M	Query	Structure
To	 get	 started,	 you’ll	 pull	 a	 table	 into	 Power	Query	 and	 then	 examine	 the
code	that	is	working	behind	the	scenes:

Open	Ch20	Examples\Understanding	M.xlsx	→	select	any	cell	in	the
Sales	table
Create	a	new	query	→	From	Table
Delete	the	Changed	Type	step

Your	query	should	now	look	like	this:

Figure	255 The	initial	query	is	ready	to	examine.

Query	Form
So	 far,	 everything	 you’ve	 seen	has	 been	driven	 through	 the	 user	 interface.
You’ve	seen	Power	Query	act	as	a	macro	recorder,	and	you	have	been	able	to
interact	 with	 it	 via	 the	 Applied	 Steps	 box.	 You’ve	 also	 had	 some	 limited
interaction	 via	 the	 formula	 bar.	 What	 you	 haven’t	 seen	 yet	 is	 the
programming	language	that	resides	underneath	the	covers	of	this	incredible
tool.	It’s	time	to	change	that.

Go	to	Home	→	Advanced	Editor

The	Advanced	Editor	window	appears,	and	it	contains	the	code	for	the	entire
query	created	to	date:

Figure	256 Power	Query’s	Advanced	Editor.

You	can	 see	 that	 the	 feature	 set	 at	 this	 time	 is	 very	 limited.	 The	Advanced
Editor	is	essentially	just	a	text	editor	with	a	syntax	checker	in	the	bottom-left
corner.	This	area	will	no	doubt	see	some	investment	in	future,	but	right	now
it	is	essentially	just	a	text	box.

Note:	Before	you	get	frustrated	trying	to	resize	the	editor	to	make	it	as
small	as	the	image	shown	above,	be	aware	that	you	can’t.	(We	shrunk	it
with	 photo	 editing	 to	 save	 page	 space.)	 The	 Advanced	 Editor	 can	 be
expanded	 to	make	 it	 bigger,	 but	 it	 can’t	 collapse	much	more	 than	 the
default	size	when	you	first	open	it.

Take	a	look	at	the	code	inside	the	window	shown	above:
let

Source	=	Excel.CurrentWorkbook(){[Name=“Sales”]}[Content]

in

Source

There	are	some	key	pieces	here	that	are	required	to	build	a	successful	query,
so	we’ll	break	this	down	line	by	line.

The	first	line	of	every	query	must	begin	with	the	word	let.	(This	changes	for
functions,	which	are	covered	in	Chapter	21.)	Nothing	else	goes	on	this	line	at
all.

The	second	line	begins	with	the	word	Source.	This	is	important,	as	this	is	the
step	name	from	the	Applied	Steps	box.	 It’s	via	this	step	name	that	you	can
work	out	which	line	of	code	relates	to	the	step	you	want	to	examine.	In	this
case,	you	can	see	that	when	the	new	query	From	Table	was	created,	Power
Query	invoked	the	Excel.CurrentWorkbook()	function.	It	then	appended	a	list
of	 the	 records	 (the	 Excel	 table)	 that	 it	 imported.	 Finally,	 it	 drilled	 into	 the
content	records	for	that	table	object.

The	second-to-last	line	of	every	query	is	the	sole	word	in.

The	 last	 line	 is	 a	 single	word	 that	 refers	 to	 the	 step	 containing	 the	 output
you’d	like	to	return	at	the	end	of	the	query.	This	is	usually	the	previous	step
but	doesn’t	have	to	be.

Now	you	can	add	another	step	to	this	query:

Close	the	Advanced	Editor	by	clicking	Done
Right-click	the	Price	column	→	Change	Type	→	Decimal	Number
Go	to	Home	→	Advanced	Editor

You	can	see	that	a	new	step	has	been	added	to	the	window:

Figure	257 A	new	step	has	been	added	to	the	query.

There	are	a	few	things	worth	noticing	here.	First,	a	comma	has	been	added
to	the	end	of	the	Source	line.	(If	you	check	back	to	the	prior	code,	you’ll	see
that	 the	 comma	 was	 not	 there.)	 This	 is	 incredibly	 important:	 Every	 line
between	the	 let	and	 in	 lines	must	have	a	comma	at	the	end	except	 the	 last
line	before	the	in	line,	which	can	never	have	a	comma	at	the	end.	In	this	case,
the	Source	line	ends	with	a	comma,	but	the	#”Changed	Type”	line	does	not,
as	it	is	the	last	line	before	the	in	statement.

Note:	To	put	this	in	Power	Query	terms,	you	are	providing	a	list	of	steps
between	the	let	and	in	lines.	As	you	know,	all	items	in	a	list	need	to	be
separated	from	each	other	via	a	comma,	but	you	don’t	put	a	comma	at
the	end.

The	Meaning	of	#”syntax”

The	 second	 thing	 you	 should	 notice	 in	 the	 previous	 screenshot	 is	 that	 the
step	reads	Changed	Type	in	the	Applied	Steps	box	but	comes	into	the	code	as
#”Changed	Type”.

The	 challenge	 here	 is	 that	 the	 space	 between	 Changed	 and	 Type	 causes
Power	Query	to	treat	the	two	words	as	separate	terms.	To	deal	with	this	and
treat	Changed	Type	as	a	single	term,	Power	Query	prefixes	the	term	with	the
#	character	and	then	wraps	the	term	in	quotes.	Sadly,	you’ll	see	this	kind	of
thing	 happening	 frequently	 in	 Power	Query,	 as	 the	 default	 names	 given	 to
steps	usually	have	spaces	in	them.	This	results	in	a	whole	lot	of	hash	marks
and	quotes	in	longer	code	blocks.

If	you	wanted	to,	you	could	change	this	to	avoid	those	characters.	You	can	do
this	in	two	different	ways:

Right-click	the	step	name	in	the	Applied	Steps	box	(before	entering
the	Advanced	Editor)	and	renaming	the	step.
Replace	every	instance	of	#”Changed	Type”	in	the	Advanced	Editor
with	a	new	term	like	NewType.

Regardless	of	which	method	you	choose,	your	code	will	end	up	looking	 like
this:

Figure	258 Updating	code	to	remove	the	#”awkwardness”

Warning:	If	you	make	your	modifications	manually,	remember	that	your
new	term	must	be	identical	in	all	instances	(no	case	changes),	and	don’t
forget	to	also	rename	the	last	step!

Tying	the	Steps	Together
The	next	 thing	 to	understand	 is	how	the	 individual	 lines	 link	 to	each	other.
Notice	that	in	the	NewType	line,	there	is	a	reference	to	Source:

Figure	259 The	Source	step	referenced	in	the	NewType	line.

It’s	 this	 referencing	 that	 allows	 Power	 Query	 to	 chain	 all	 the	 commands
together.	You	can	basically	read	the	NewType	line	as	follows:

Give	us	the	output	of	the	Source	step
Transform	the	column	types	of	that	step	and	set	Price	to	a	type	of
number

Using	Line	Breaks
Another	piece	of	this	equation	that	 is	 interesting	 is	that	the	code	as	shown
above	is	equivalent	to	this	block:

let

Source	=	Excel.CurrentWorkbook(){[Name=“Sales”]}[Content],

NewType	=	Table.TransformColumnTypes

(Source,{{“Price”,	type	number}})

in

NewType

But	this	violates	the	rule	about	having	a	comma	at	the	end	of	all	lines	except
the	line	preceding	the	in	statement,	doesn’t	it?	Not	exactly.

When	 Power	 Query	 reads	 your	 code,	 it	 looks	 for	 keywords,	 including	 the
comma	and	the	in	keyword.	As	it	reads	a	line,	it	ignores	any	commas	that	are
enclosed	 within	 matching	 parentheses,	 curly	 braces,	 square	 brackets,	 or
quotes.	Once	 it	 encounters	a	 lone	comma,	 it	 recognizes	 that	as	 the	end	of
the	 current	 code	 line	 and	 starts	 reading	 the	 next	 line	 of	 code	 as	 an
independent	step.	Alternatively,	if	it	finds	the	in	keyword,	it	now	knows	that
the	query	is	going	to	end	and	looks	to	see	which	step	to	return.

Why	 is	 this	 important?	 It	means	 that	you	can	actually	place	a	 line	break	 in
the	middle.	 Because	 Power	 Query	 hasn’t	 found	 either	 a	 comma	 or	 the	 in
keyword	at	the	end	of	the	initial	NewType	line,	it	keeps	moving	on,	assuming
that	 the	 next	 line	 is	 still	 part	 of	 the	 first.	 In	 essence,	 this	means	 that	 this
code:

NewType	=	Table.TransformColumnTypes(Source,{{“Price”,	type
number}})

Is	equivalent	to	this	code:
NewType	=	Table.TransformColumnTypes

(Source,{{“Price”,	type	number}})

Or	this	code:

NewType	=	Table.TransformColumnTypes(

Source,

{

{“Price”,	type	number}

}

)

The	key	to	understand	here	is	that	you	can’t	place	a	hard	return	in	the	middle
of	a	 function	name	or	word,	but	breaking	at	any	punctuation	mark	 is	okay.
Looked	at	on	a	grander	scale,	this	query	will	run	perfectly	well:

let

Source	=	Excel.CurrentWorkbook(){[Name=“Sales”]}[Content],

NewType	=	Table.TransformColumnTypes

(

Source,

{

{“Price”,	type	number}

}

)

in

NewType

Why	would	you	even	want	to	do	this?

This	technique	can	be	very	useful	when	you’re	trying	to	debug	things	like	lists
of	 lists,	 which	 have	 numerous	 pairs	 of	 list	 items.	 When	 making	 manual
tweaks	to	code,	 it	 is	very	easy	to	get	 lost	 in	the	braces	and	not	realize	that
you	missed	closing	one.	When	you	do	that,	you	get	unbalanced	code	that	will
not	 compile	 and	 that	 can	 be	 very	 difficult	 to	 correct,	 especially	 with	 the
current	 lack	 of	 good	 debugging	 tools	 in	 Power	 Query.	 By	 separating	 the
opening	 and	 closing	 curly	 braces	 and	 separating	 the	 list	 item	 pairs	 onto
individual	lines,	you	have	a	much	better	chance	of	keeping	your	opening	and
closing	braces	in	balance.	Another	bonus	of	this	approach	is	that	it’s	also	very
easy	to	add	new	columns	to	the	TransformColumnTypes	step	(at	least	when
you	know	what	data	types	to	assign).

Add	the	data	types	for	all	the	columns	as	follows:

Column(s) Data	Type

Date Date

Inventory	Item Text

EmployeeID,	Quantity Number

You	 can	 recognize	 from	 the	 curly	 braces	 after	 the	 Source	 keyword	 in	 the
NewType	step	that	you	need	to	provide	a	list	of	columns	and	data	types	in	a
list	 format.	 Since	 you	 already	 know	 from	Chapter	 19	 that	 all	 the	 list	 items
need	to	be	separated	by	commas,	you	know	that	this	should	work:

let

Source	=	Excel.CurrentWorkbook(){[Name=“Sales”]}[Content],

NewType	=	Table.TransformColumnTypes

(

Source,

{

{“Price”,	type	number},

{“Date”,	type	date},

{“Inventory	Item”,	type	text},

{“EmployeeID”,	type	number},

{“Quantity”,	type	number}

}

)

in

NewType

If	you	click	Done	to	commit	 this	code	 (exactly	as	written),	you	see	that	 the
query	 returns	 your	 desired	 results,	 with	 each	 data	 type	 converted	 as	 you
requested:

Figure	260 Not	only	are	the	dates	time-free,	but	check	out	the	indentation	in	the	formula	bar!

Code	Comments
The	last	sets	of	characters	you	need	to	know	how	to	create	are	those	that	let
you	 leave	comments	 in	 code.	These	can	be	very	useful	 for	 leaving	notes	 in

code	or	temporarily	disabling	a	line	of	code.

To	mark	 a	 single	 line	 of	 code	 as	 a	 comment,	 you	 place	 two	 slashes	 at	 the
beginning	of	the	line,	as	shown	here:

let

//	Retrieve	the	Sales	table	from	Excel

Source	=	Excel.CurrentWorkbook(){[Name=“Sales”]}[Content],

Power	Query	will	not	read	the	//	Retrieve	…	 line,	and	this	 line	also	will	not
appear	in	the	Applied	Steps	box,	but	it	is	there	to	remind	you	of	the	purpose
of	the	following	row.

Sometimes	you	need	longer	comments	that	don’t	fit	on	one	line.	In	this	case,
you	place	the	characters	/*	prior	to	the	code	you	don’t	want	executed	and
the	characters	*/	at	the	end	of	the	section,	like	this:

/*	I	broke	this	code	comment	across	multiple	lines

(by	reading	M	is	for	Data	Monkey)	*/

Summary	of	Special	Characters
The	 following	 table	 provides	 a	 list	 of	 the	 special	 characters	 that	 you	 will
encounter	in	your	Power	Query	coding	journey:

Character Purpose

(Parameters) Surrounding	function	parameters

{List} Surrounding	list	items

[Record] Surrounding	records

“Text” Surrounding	text

#“Step
Name”

Referring	 to	 a	 step	 name	 that	 contains	 spaces	 or	 other	 reserved
characters

//comment Commenting	a	single	line	of	code

/*	 comment
*/

Commenting	multiple	lines	of	code

Operating	on	Each	Row	in	a	Column

There	is	one	more	very	important	construct	to	understand	in	M:	how	to	read
and	modify	 code	 that	operates	on	each	 row	 in	a	 column.	To	get	 this	 code,
you	 can	 take	 your	existing	query	 and	add	a	 column	 to	determine	 the	 total
sales	by	row:

Make	sure	you	are	out	of	the	Advanced	Editor
Select	the	Quantity	and	Price	columns	→	Add	Column	→	Standard
→	Multiply
Right-click	the	Multiply	column	→	Rename	→	Gross	Sales
Right-click	the	Inserted	Multiplication	step	→	Rename	→	CalcSales
Right-click	the	Renamed	Columns	step	→	Rename	→	Rename

The	query	will	now	looks	like	this:

Figure	261 The	query	with	a	Gross	Sales	column.

Viewing	the	code	in	the	Advanced	Editor	yields	two	new	lines	of	code	at	the
end	 of	 the	 query	 (wrapped	 lines	 have	 been	 indented	 here	 for	 ease	 of
identification):

CalcSales	=	Table.AddColumn(NewType,	“Multiply”,	each

List.Product({[Quantity],	[Price]}),	type	number),

Rename	=	Table.RenameColumns(CalcSales,{{“Multiply”,

“Gross	Sales”}})

While	 you	may	not	 necessarily	 recognize	 the	 function	used	 in	 the	Rename
step,	you	can	fairly	easily	recognize	that	the	Table.RenameColumns	function
refers	 to	 the	previous	 step	and	 then	provides	a	 list	of	 the	previous	column
names	and	the	new	name	you’d	like	them	to	take.	In	addition,	based	on	the
fact	 that	you	see	the	 list	open	with	two	{{	characters,	you	can	 identify	 that
you	could	provide	a	list	of	lists	here	and	rename	multiple	columns	at	once.

The	CalcSales	 line,	however,	has	a	new	keyword	 in	 it	 that	you	haven’t	seen
before.	The	Table.AddColumn	function	first	 refers	to	the	NewType	step	and

then	provides	the	value	“Multiply”.	Since	Multiply	was	the	name	given	to	the
new	column,	this	means	that	you	could	probably	just	change	this	line	to	use
“Gross	 Sales”	 instead	 of	 “Multiply”,	 avoiding	 the	 step	 of	 renaming	 the
column	later.

Following	the	column’s	name	is	a	new	keyword	you	haven’t	encountered	yet:
each.	The	each	keyword	indicates	to	Power	Query	that	you	want	this	action
performed	 for	 each	 row	 in	 the	 query.	 Following	 this,	 you	 see	 the
List.Product()	 function,	 which	 indicates	 which	 columns	 to	 multiply	 against
each	other	and	the	data	type	the	output	should	take.

You	can	now	make	some	modifications	to	make	the	code	shorter:

Replace	“Multiply”	in	the	CalcSales	line	with	“Gross	Sales”
Remove	the	comma	from	the	end	of	the	CalcSales	line
Remove	the	entire	Rename	line
Change	the	last	line	to	read	“CalcSales”	instead	of	“Rename”

Your	query	should	now	look	similar	to	this:

Figure	262 Modifications	made	to	the	query.

Note:	Your	line	breaks	may	not	appear	in	the	same	places—or	they	may
not	appear	at	all.	The	key	pieces	to	remember	are	(1)	the	CalcSales	line
is	being	treated	as	one	complete	line	of	code	since	it	was	split	onto	two
lines	in	the	middle	of	the	function,	and	(2)	the	line	does	not	end	with	a
comma	since	this	line	precedes	the	in	keyword.

Click	Done

Notice	that	the	Rename	step	is	gone,	but	the	Gross	Sales	column	still	exists:

Figure	263 The	Gross	Sales	column,	generated	without	needing	to	be	renamed.

The	end	effect	of	this	code	modification	is	that	it	now	sets	the	column	name
up	front,	avoiding	the	need	to	rename	the	column	later.	Saving	a	step	makes
the	code	more	efficient	by	preventing	processing	steps	later.

In	 addition,	 you	 now	 recognize	 another	 keyword	 in	 the	 Power	 Query
programming	language.	When	you	see	the	each	keyword,	you	now	know	that
the	formula	after	this	keyword	will	be	applied	to	each	row	in	the	table.

You	can	now	finalize	the	query:

Rename	the	query	GrossSales
Go	to	Home	→	Close	&	Load

Referring	to	Steps	or	Rows
Consider	 a	 scenario	where	 you	have	 a	 text	 file	 that	 contains	 data	 like	 that
shown	below:

Figure	264 Tab-delimited	data	with	a	specific	requirement.

This	data	throws	a	few	interesting	wrinkles:

The	data	is	tab	delimited,	but	the	first	row	doesn’t	contain	any	tabs.
This	means	you	will	need	to	manually	trigger	the	column	splits.
The	number	of	rows	prior	to	ID	Number	is	variable.	There	could	be
5	or	5,000	rows	before	the	row	that	contains	the	ID	Number	text.
The	 number	 of	 rows	 between	 and	 after	 the	 ID	 Total	 row	 is	 also
variable.

Your	overall	challenge	here	is	that	you	need	to	extract	rows	from	the	middle
of	 a	 data	 set	 and	 make	 it	 dynamic	 to	 deal	 with	 however	 many	 rows	 are
evident	before,	in	the	middle	of,	and	after	the	needed	data.

In	addition,	as	one	final	wrinkle,	you’d	like	to	determine	the	number	of	days
between	 each	 order	 date	 compared	 to	 the	 previous	 order.	 This	 task	 will
entail	 trying	 to	 subtract	 the	 date	 on	 one	 row	 from	 the	 data	 on	 another—
something	that	can’t	be	done	via	the	Power	Query	user	interface.

Connecting	to	the	Data
You	need	to	connect	to	the	data	and	then	figure	out	which	rows	you	need	in
order	to	perform	your	goals:

Open	a	blank	workbook
Create	 a	 new	 query	 →	 From	 File	 →	 From	 Text	 →	 Ch20
Examples\Varying	Header	Rows.txt	→	OK
Go	to	Add	Column	→	Add	Index	Column	→	From	0
Filter	Column1	→	Text	Filters	→	Begins	With
Set	the	filter	to	Begins	With	ID	Number	OR	Begins	With	ID	Total
Right-click	and	rename	the	Filtered	Rows	step	to	RowNumbers

Note:	 You	 could	 accomplish	 the	 same	 goal	 by	 filtering	 to	 rows	 that
begin	with	ID,	but	you	don’t	know	if	there	are	other	rows	in	the	data	set
that	 begin	with	 ID.	 By	making	 the	 terms	 as	 tight	 as	 possible,	 you	 can
reduce	 the	 chance	 of	 errors	 in	 the	 future.	 (Of	 course,	 if	 another	 ID
Number	row	enters	the	data,	you	will	still	have	to	work	out	how	to	deal
with	this.)

The	query	should	now	look	as	follows:

Figure	265 The	query	shows	just	the	row	indexes	you	need.

You	now	have	a	very	cut-down	view,	showing	the	row	numbers	for	both	the
ID	Number	and	ID	Total	rows.	Keep	in	mind	that	these	are	fully	dynamic,	as
no	matter	how	many	rows	precede,	follow,	or	are	in	the	middle	of	the	data,
the	steps	you	have	taken	will	still	generate	the	correct	rows.

Combining	Power	Query	Steps
Now,	could	you	make	 this	 code	 shorter	 if	 you	wanted	 to?	You	are	going	 to
need	 the	Source	 step	again,	but	 the	Added	 Index	 step	 isn’t	 something	 you
absolutely	need	in	the	Applied	Steps	box.	It	is,	however,	possible	to	combine
these	 two	 steps	 into	one.	 You	 can	 look	at	 the	 code	 for	 those	 two	 steps	by
going	to	Home	→	Advanced	Editor:

#“Added	Index”	=	Table.AddIndexColumn(Source,	“Index”,	0,	1),

RowNumbers	=	Table.SelectRows(#“Added	Index”,	each
Text.StartsWith([Column1],	“ID	Number”)	or
Text.StartsWith([Column1],	“ID	Total”))

Notice	 how	 the	 #”Added	 Index”	 step	 contains	 the	 Table.AddIndexColumn
function.	 On	 the	 RowNumbers	 line,	 you	 also	 see	 that	 the	 #”Added	 Index”
step	 is	 the	 first	 parameter	 fed	 into	 the	 Table.SelectRows()	 function.	 If	 you
want	to	avoid	having	a	separate	#”Added	 Index”	step,	all	you	need	to	do	 is
substitute	 the	 actual	 code	within	 the	 #”Added	 Index”	 step	 in	 place	 of	 that
term	in	the	next	line.

Warning:	Remember	when	substituting	code	in	this	way	that	you	want
everything	between	the	equals	sign	and	the	final	comma	only.

By	substituting	the	code	in	place,	adding	some	line	breaks,	and	removing	the
#”Added	Index”	line	completely,	you	end	up	with	nested	code,	as	follows:

RowNumbers	=	Table.SelectRows(

Table.AddIndexColumn(Source,	“Index”,	0,	1),

each	Text.StartsWith([Column1],	“ID	Number”)

or	Text.StartsWith([Column1],	“ID	Total”))

As	you	can	see,	this	code	still	runs	flawlessly,	but	it	removes	the	Added	Index
step	from	the	Applied	Steps	box:

Figure	266 Eliminating	the	Added	Index	step	while	preserving	the	function.

Creating	New	Query	Steps
Next,	you	need	to	be	able	to	use	this	data	in	your	query,	but	there	is	an	issue:
Power	Query	works	as	a	sequential	macro	recorder,	which	means	you’ve	left
your	original	source	data	behind.	So	how	do	you	get	it	back?

The	answer	is	to	click	the	fx	button	in	the	formula	bar:

Figure	267 Manually	creating	a	new	query	step.

If	you’re	not	paying	attention	when	you	click	 this	button,	you’d	be	 forgiven
for	thinking	that	nothing	happened.	The	data	in	the	preview	window	doesn’t
appear	at	all.	You	will	see,	however,	that	you	have	a	new	step	in	the	Applied
Steps	box	called	Custom1,	and	the	formula	in	the	formula	bar	has	changed	to
this:

=RowNumbers

Clicking	 the	 fx	 button	 always	 creates	 a	 new	 query	 step	 that	 refers	 to	 the
previous	step.	So	how	is	that	useful?	Change	the	formula	to	this:

=Source

You	now	see	that	you	are	back	looking	at	the	original	data.

Note:	 If	 you	 check	 the	 Advanced	 Editor,	 you	 see	 that	 you	 could	 have
typed	this	in	manually	by	adding	a	new	step	right	before	the	in	keyword,
as	 follows:	 Custom1	 =	 Source	 Of	 course,	 in	 order	 to	 keep	 the	 code
working,	you	would	also	need	to	add	a	comma	to	the	preceding	line	and
change	the	term	after	the	in	keyword	to	Custom1	from	RowNumbers.

You’re	now	in	good	shape	here,	as	you	can	select	 the	RowNumbers	step	to
see	 the	 first	and	 last	 rows	you	want	 to	 find,	 then	step	back	 to	Custom1	so
that	you	can	start	doing	exactly	that.

Referring	to	a	Previous	Applied	Step
You	now	want	to	restrict	your	data	to	just	the	necessary	rows.

To	start	with,	you	set	up	your	command	via	the	user	interface.	The	reason	for
this	 is	 that	 it	 will	 give	 you	 the	 syntax	 for	 the	 functionality	 you’re	 after—
instead	 of	 looking	 up	 the	 function	 and	 doing	 things	 manually	 from	 the
beginning.

The	 index	number	 for	 the	 last	 row	 is	9	as	 the	data	set	currently	sits.	 If	you
filtered	 out	 the	 rows	 from	 the	 top	 first,	 however,	 this	 would	 need	 to	 be
updated.	 Rather	 than	 complicate	 things,	 you	 can	 remove	 the	 bottom	 rows
first,	 as	 the	 index	 for	 the	 top	 rows	 won’t	 change	 when	 we	 remove	 the
bottom	rows.

The	 approach	 you’re	 going	 to	 use	 here	 to	 remove	 the	 bottom	 rows	 isn’t
actually	 driven	 by	 the	 Remove	 Rows	 feature,	 as	 it	 requests	 the	 number	 of
rows	to	remove.	This	means	that	you’d	need	to	calculate	all	rows	in	the	data
set,	work	out	the	last	row,	and	perform	some	math	to	determine	how	many
rows	to	remove.	Rather	than	do	that,	you	can	identify	that	the	final	row	you
need	is	in	row	9,	so	you	can	use	the	Keep	Top	Rows	feature	instead,	to	keep
the	top	9	rows:

Go	to	Home	→	Keep	Rows	→	Keep	Top	Rows	→	9

You	now	get	a	table	filtered	to	show	only	the	top	9	rows:

Figure	268 The	data	now	shows	the	top	9	rows.

Notice	 that	 you	 don’t	 have	 the	 row	 that	 starts	with	 ID	 Total.	 This	 is	 to	 be
expected	because	the	ID	Total	row	was	actually	the	tenth	row	in	the	file,	but
you	used	a	base	0	 index	 to	 count	 rows.	By	pulling	 the	ninth	 row,	however,
you	get	the	data	you’re	after,	without	the	total	row	(which	you’d	just	need	to
filter	out	anyway).

Now	how	do	you	make	this	dynamic?	Look	at	the	code	in	the	formula	bar:
=Table.FirstN(Custom1,9)

In	theory,	you	just	need	to	replace	the	9	with	a	reference	to	the	correct	value
from	the	RowNumbers	step.	This	can	be	done	by	referring	to	a	previous	step
and	extracting	the	value	from	the	Index	column	in	that	step.	To	do	this,	you
would	use	the	following	code:

RowNumbers[Index]{1}

As	 you	 can	 see,	 you	 refer	 to	 the	 RowNumbers	 Applied	 Step,	 provide	 the
[Index]	column,	and	then	drill	into	the	row	you	need.	In	this	case,	you	want
to	use	{1},	as	this	would	refer	to	the	second	row	of	the	column.	(Remember
that	{0}	returns	the	first	value	in	a	base	0	system,	{1}	returns	the	second,	and
so	on.)

This	means	you	can	rewrite	the	formula	in	the	formula	bar	as	follows	to	pull
the	value	dynamically	from	the	table:

=Table.FirstN(Custom1,RowNumbers[Index]{1})

Can	you	do	even	better	than	this?

If	you	check	back	on	the	code	 for	 the	Custom1	step,	you	see	that	 it	 simply
refers	 to	 Source.	 Can	 you	 skip	 using	 the	 Custom1	 step	 and	 just	 refer	 to
Source	in	the	formula?	You	bet	you	can!	Update	that	formula	again:

=Table.FirstN(Source,RowNumbers[Index]{1})

The	result	still	gives	you	exactly	what	you	need:

Figure	269 The	updated	formula	still	works	nicely.

And	 now,	 since	 the	 formula	 refers	 to	 the	 Source	 step,	 you	 don’t	 need	 the
Custom1	step	any	more	at	all.

Delete	the	Custom1	step	from	the	Applied	Steps	box

With	 that	 step	 cleaned	 up,	 you’re	 now	 down	 to	 a	 three-step	 query,	 and
you’re	on	your	way.	Add	your	dynamic	filter	to	filter	out	the	top	rows	as	well:

Go	to	Home	→	Remove	Rows	→	Remove	Top	Rows	→	4	→	OK
Rename	the	Removed	Top	Rows	step	ExtractRows
Update	the	formula	bar	from	this:
=	Table.Skip(#“Kept	First	Rows”,4)

To	this:
=	Table.Skip(#“Kept	First	Rows”,	RowNumbers[Index]{0})

The	result	 is	a	set	of	 rows	 limited	to	 the	header	 row	and	the	raw	data	you
need:

Figure	270 The	code	is	now	dynamically	pulling	in	both	the	starting	and	ending	rows.

You	can	consolidate	the	last	two	steps	as	well,	just	to	keep	the	code	cleaner
to	this	point:

Go	to	Home	→	Advanced	Editor
Edit	the	following	code:
#“Kept	First	Rows”	=	Table.FirstN(Source,RowNumbers[Index]
{1}),

ExtractRows	=	Table.Skip(#“Kept	First	Rows”,RowNumbers[Index]
{0})

By	 nesting	 the	 #”Kept	 First	 Rows”	 step	 into	 the	 second	 line	 as
follows:
ExtractRows	=	Table.Skip(

Table.FirstN(Source,RowNumbers[Index]{1}),

RowNumbers[Index]{0})

Click	Done

Once	 again,	 you	 have	 shortened	 the	 number	 of	 applied	 steps,	 and	 you’ve
ended	up	with	compact	code	that	dynamically	retrieves	the	raw	data	set	you
need:

Figure	271 The	dynamic	data	set	is	ready	for	cleanup.

The	next	steps	are	just	run-of-the-mill	cleanup	steps:

Go	to	Transform	→	Split	Column	→	By	Delimiter	→	Tab	→	At	Each
Occurrence	→	OK
Delete	 the	 automatically	 created	 Changed	 Type	 step	 (It	 sets	 all
columns	to	text,	which	won’t	be	accurate	in	the	long	term)
Go	to	Transform	→	Use	First	Row	as	Headers
Right-click	 the	 ID	 Number	 column	 →	 Change	 Type	 →	 Whole
Number

Right-click	the	Amount	column	→	Change	Type	→	Whole	Number
Right-click	the	OrderDate	column	→	Change	Type	→	Date

The	result	is	a	perfectly	clean	data	set:

Figure	272 The	data	set,	all	cleaned	up	and	ready	to	use.

So	far	you	have	managed	to	import	a	set	of	data	and	dynamically	restrict	the
rows	that	you	wish	to	use.	At	this	point,	no	matter	how	many	rows	of	data
exist	before	the	ID	Number	row,	the	query	will	still	start	in	the	right	place.	In
addition,	 regardless	 of	 how	many	 rows	 exist	 after	 the	 ID	 Total	 row,	 you’ll
never	 see	 them	 in	 your	 output	 query,	 and	 the	 query	 will	 also	 pull	 in	 any
number	of	rows	between	those	two	headers.

Compacting	 the	 code	 is	 an	 entirely	 optional	 step.	 You	 are	 able	 to	 keep
nesting	your	 code	by	copying	 the	previous	 step	and	substituting	 it	 into	 the
next	step	in	place	of	the	previous	step	name.	While	this	can	make	your	code
more	compact	and	efficient,	be	aware	that	it	can	also	drastically	affect	your
ability	to	debug	your	code	in	the	case	that	something	goes	wrong.	The	trick	is
to	find	a	happy	medium	that	makes	sense	to	you.

Referring	to	the	Previous	Row	Dynamically
There	 is	 one	more	 task	 to	 accomplish	 with	 this	 data	 set:	 working	 out	 the
number	 of	 days	 since	 the	 previous	 order.	 Unfortunately,	while	 it	would	 be
incredible	to	just	click	a	button	to	make	this	happen,	you’re	not	so	lucky,	as
Power	Query	doesn’t	have	this	functionality	built	in.	You	can	still	accomplish
your	goal,	but	you	have	to	do	it	manually.

To	make	this	work,	you	need	to	figure	out	a	way	to	create	a	new	column	that
holds	the	previous	order’s	date.

You	already	know	how	to	refer	to	a	previous	step,	and	you	even	know	how	to
refer	to	the	column	within	that	step.	You	also	know	that	you	can	provide	a
row	number	between	curly	braces	to	pull	back	a	specific	row.	All	you	need	to
do	here	is	extend	that	logic	a	little	bit	and	provide	a	number	that	is	one	less
than	the	current	row	number.

In	order	 to	work	 that	out,	 you	need	 the	 index	number	 for	each	 row	 in	 the
data	 set.	As	 you	are	going	 to	be	using	 this	new	step	 in	 future	 calculations,
you	should	also	rename	it	to	avoid	#”	coding	awkwardness:

Go	to	Add	Column	→	Add	Index	Column	→	From	0
Right-click	the	Added	Index	step	→	Rename	→	Transactions

You	are	now	set	up	and	ready	to	build	a	formula	that	spans	rows:

Figure	273 You	have	everything	you	need	to	build	cross-row	formulas.

Add	a	new	column:

Go	to	Add	Column	→	Add	Custom	Column
Name	the	Column	PreviousOrder
Enter	the	following	formula:
=Transactions[OrderDate]{[Index]-1}

In	this	case,	you	are	referring	to	the	Transactions	step,	and	you	want	a	value
from	the	OrderDate	column.	It’s	the	next	part	that	is	the	tricky	piece.	[Index]
is	inside	the	curly	braces,	and	it	isn’t	prefixed	by	a	step	name.	This	means	it	is
still	 referring	 to	 the	 current	 step	 rather	 than	 previous	 step’s	 value.	 In
addition,	 since	 it	was	 entered	 in	 the	Add	Custom	Column	dialog,	 it	will	 be

prefixed	by	the	each	keyword,	operating	on	each	row	individually.	You	simply
take	 the	 Index	value	 for	each	row,	subtract	1,	and	that	will	be	 the	row	you
return	from	the	Transactions	step.

Note:	The	[Index]	column	is	generated	so	that	you	can	tell	Power	Query
which	 row	you	want	 to	 retrieve	 from	 the	 target	data	 set,	but	 it	 is	not
necessary	 to	 have	 the	 Index	 column	 present	 in	 that	 target.	 You	 could
just	as	easily	use	the	formula	=#”Changed	Type”	[OrderDate]{[Index]-1},
and	 it	 would	 work,	 despite	 the	 Changed	 Type	 step	 not	 containing	 an
Index	column.

Everything	 isn’t	 perfect,	 however,	 as	 you’ll	 see	 when	 you	 commit	 the
formula:

Figure	274 Ugh.	An	error.

The	very	first	record	returns	an	error,	even	though	the	rest	of	the	records	are
working	well.	Why?

On	this	row,	what	is	the	Index	value?	It’s	0.	Subtract	1	from	that,	and	you	get
-1.	Which	row	would	[OrderDate]{-1}	return?	Since	you’re	working	in	a	base
0	system,	the	first	row	is	{0},	so	you	can’t	start	at	{-1}.	This	is	the	reason	for
the	error.

So	 what	 should	 this	 value	 return?	 If	 there	 is	 no	 previous	 record,	 why	 not
return	the	OrderDate	instead?	That	way,	when	you	do	your	calculation,	you’ll
just	have	0	days	since	the	previous	order.

To	fix	this,	you	need	to	use	the	try	statement,	as	described	in	Chapter	18:

Click	the	gear	icon	next	to	the	Added	Custom	step
Modify	the	formula	to	use	the	try	statement	as	follows:
=try	Transactions[OrderDate]{[Index]-1}	otherwise	[OrderDate]

The	results	make	you	much	happier:

Figure	275 The	PreviousOrder	column	returns	the	previous	order	date.

With	 those	 dates	 in	 place,	 you	 can	 now	 calculate	 the	 number	 of	 days
between	them:

Select	 the	 Order	 Date	 column	 →	 hold	 down	 Ctrl	 →	 select	 the
PreviousOrder	column
Go	to	Add	Column	→	Date	→	Subtract	Days

And	you	have	it:

Figure	276 The	date	difference	has	been	calculated.

Note:	The	order	 in	which	you	select	columns	here	 is	 important.	 If	you
select	the	PreviousOrder	column	first	and	then	the	OrderDate	column,
your	difference	will	show	up	as	negative.

At	this	point,	the	only	thing	left	to	do	is	the	final	cleanup:

Right-click	the	Index	column	→	Remove
Right-click	the	PreviousOrder	column	→	Change	Type	→	Date
Right-click	 the	 DateDifference	 column	 →	 Rename	 →
DaysSinceLastOrder
Go	to	Home	→	Close	&	Load

At	this	point,	you	can	test	the	query	by	opening	the	Ch20	Examples\Varying
Header	Rows.txt	file	and	making	modifications	to	the	file.	Here’s	what	you’ll
see	when	you	play	with	the	data:

Rows	added	before	the	ID	Number	row	or	after	the	ID	Total	row	will
not	show	up	when	you	refresh	the	query.
Rows	inserted	between	the	ID	Number	and	ID	Total	rows	will	show
up,	 but	 you	 need	 to	make	 sure	 you	 enter	 them	 in	 the	 format	 ID
Number	<tab>	Amount	<tab>	Date	<Enter>.

Chapter	21	Creating	Custom
Functions
If	you	think	way	back	to	Chapters	3	and	4,	you	might	remember	a	couple	of
issues	with	the	way	that	Excel	pros	have	historically	imported	and	appended
data	sets.	This	was	the	classic	method	to	consolidate	these	files:

1.	Import	and	transform	file	#1.

2.	Import	and	transform	file	#2.

3.	Copy	file	#2’s	data	and	paste	it	at	the	end	of	file	#1.

4.	Save	file	#1	as	a	consolidated	file.

And	then,	as	each	new	month	came	along,	a	similar	import,	clean,	copy	and
paste	workflow	would	follow.

This,	of	course,	 led	to	several	dangers	 in	both	the	transformation	steps	and
the	copy	and	paste.	The	more	complicated	the	transformations	required,	the
longer	the	process	ran	and	the	more	the	job	turned	over	into	new	hands,	the
more	likely	something	would	go	wrong.	Steps	would	be	missed	or	performed
incorrectly,	resulting	in	a	compromised	data	set.

While	 you	can	 solve	many	of	 these	 issues	by	 creating	append	queries,	 and
with	enough	foresight	you	can	import	all	files	in	a	folder,	what	happens	in	the
following	situations?

You	 built	 a	 query	with	 significant	 transformations	 against	 a	 single
file.	 The	 boss	 liked	 it	 so	 much	 that	 it	 turned	 into	 the	 business
intelligence	 system	 and	 now	 needs	 to	 be	 performed	 on	 each
monthly	file	and	appended.
You	attempted	 to	 import	all	 files	 in	a	 folder,	but	 the	 files	 required
transformation	before	being	appended.

Either	 of	 these	 scenarios	 creates	 problems,	 but	 each	 can	 be	 solved	 by
creating	a	custom	function.	These	functions	can	be	used	to	take	an	existing
set	of	Power	Query	code,	package	it	up,	and	allow	it	to	be	executed	multiple
times.	 In	 the	 case	 of	 the	 first	 scenario,	 you	 can	 reuse	what	 you’ve	 already
built	 and	 apply	 it	 consistently	 to	 each	 new	 file	 (reducing	 the	 human	 error
factor).	 In	 the	 case	 of	 the	 latter,	 you	 can	 apply	 the	 process	 to	 each	 file,

landing	the	result	of	each	preprocessed	set	of	data	 into	a	column	of	 tables
that	can	then	be	combined.

And	the	best	part?	It’s	actually	not	that	difficult!

Building	a	Custom	Function
In	order	to	build	a	custom	function,	you	basically	follow	a	three-step	process:

1.	Build	a	single-use	scenario	first.

2.	Convert	the	single-use	scenario	into	a	function.

3.	Call	the	function	from	another	query.

This	 sounds	 easy	 enough	 in	 practice.	 Let’s	 take	 a	 look	 how	 to	 put	 it	 all
together.

Rather	than	build	a	new	use	scenario,	you	will	fall	back	on	the	scenario	from
Chapter	 18	 on	 conditional	 logic,	 where	 you	 imported	 the	 2015-03-14.txt
timesheet	 file.	 In	 that	 chapter	 you	 already	 built	 the	 code	 to	 perform	 the
import	you	needed,	targeted	at	a	specific	timesheet.

Not	 surprisingly,	 you’d	 now	 like	 to	 apply	 the	 same	 logic	 to	 a	 different	 file.
Rather	 than	 just	change	 the	source,	however,	you’d	also	 like	 to	consolidate
those	 files	and	any	others	 that	are	 later	added	 to	 the	directory.	To	do	 this,
you	can	use	a	custom	function.

Building	a	Single-Use	Scenario
You	already	built	the	single-use	scenario	previously,	and	you	can	just	load	it
to	begin	your	work	here.	Open	the	Ch21	Examples\Custom	Functions.xlsx	file
to	get	a	copy	of	the	routine	that	you	built	previously.	This	file	contains	code
identical	to	what	was	built	in	Chapter	18,	with	one	exception:	The	file	path	is
pointed	to	a	subfolder	called	Source	Files,	which	now	contains	three	separate
files	(including	the	original	2015-03-14.txt	file).

When	you	go	 to	 Edit	Query,	 you	get	 an	error	message	because	 the	 Source
step	 refers	 to	 a	 location	 that	 is	 different	 from	where	 you	 have	 copied	 the
sample	files.	To	resolve	this:

1.	Click	the	Go	to	Error	button	at	the	top	right	of	the	yellow	error	message
bar.	Power	Query	shows	the	path	that	is	currently	being	used.

2.	 Click	 the	 Edit	 Settings	 button,	 and	 in	 the	 dialog	 box	 that	 opens	 in	 the
middle	of	your	screen,	click	Browse.

3.	 Navigate	 to	 the	 folder	 where	 you	 have	 copied	 the	 source	 files,	 select
2015-03-14.txt	and	click	OK,	and	then	click	OK	again.

Remember	that	the	query	built	loads	the	records	from	the	text	file,	extracts
the	 employees	 into	 a	 new	 column,	 and	 fills	 them	 down	 before	 removing
helper	column	and	extraneous	rows:

Figure	277 The	query	to	reformat	the	timesheet.

Converting	the	Query	into	a	Function
Next,	 you	 need	 to	 convert	 the	 query	 into	 a	 function.	 This	 involves	 three
steps:

1.	Come	up	with	a	name	for	the	variable	that	will	hold	the	data	you	wish	to
replace.

2.	Edit	the	query	and	place	the	following	text	at	the	beginning:
(variable_name)=>

3.	Scan	your	query	for	the	data	you	wish	to	replace	and	overwrite	it	with	the
variable	name.

It’s	 a	 good	 idea	 to	 come	 up	 with	 a	 variable	 name	 that	 is	 somewhat
descriptive	of	the	data	it	will	hold,	as	this	helps	self-document	your	M	code.
The	goal	here	is	to	convert	the	single-use	scenario	into	a	function	where	you
can	dynamically	update	the	file	path,	so	you	should	use	something	similar	to
filepath	to	describe	what	 it	holds.	(Ultimately,	you	get	to	choose	the	name.
Just	make	sure	it	doesn’t	contain	any	spaces	or	special	characters.)

Warning:	 Windows	 File	 Explorer	 has	 a	 set	 of	 rules	 about	 which
characters	 are	 allowed	 for	 file	 names	 and	 paths.	 Power	 Query	 uses
slightly	different	rules,	however.	For	example,	if	you	set	up	a	folder	such
as	D:\!!Data	Monkey,	it	can	be	read	by	Windows,	but	Power	Query	will

choke	on	it,	as	Power	Query	will	not	allow	a	file	path	to	start	with	the	!
character.

Now	 that	 you’ve	 determined	 your	 variable	 name,	 edit	 the	 query	 to	 turn	 it
into	a	function:

Edit	the	Timesheet	Query	→	Home	→	Advanced	Editor
Place	your	cursor	right	in	front	of	the	let	statement
Type	the	following:
(filepath)=>

Press	Enter

Your	code	should	now	start	like	this:

Figure	278 The	filepath	variable	is	now	in	place.

Note:	At	this	point,	you’ve	already	converted	your	query	into	a	function.
Because	you	haven’t	subbed	the	variable	name	into	the	code,	however,
the	function	won’t	actually	change	anything.

The	next	 step	 is	 to	scan	 the	code,	 find	 the	existing	 file	path,	and	 replace	 it
(and	any	quotes	that	surround	it)	with	the	variable	name:

Locate	the	full	file	path	in	the	line	that	starts	with	Source
Select	 the	 file	 path,	 being	 careful	 to	 exclude	 the	 quotes	 on	 both
ends
Press	Ctrl+C	to	copy	the	file	path	(for	later	use)
Press	the	Delete	key	to	clear	it	and	remove	the	quotes	on	both	ends
of	your	selection
Enter	filepath	as	the	variable	name

Your	code	should	now	look	like	this:

Figure	279 The	filepath	variable	subbed	into	the	code	in	place	of	the	full	file	path.

Warning:	When	you	go	to	select	the	file	path	using	the	mouse,	Power
Query	selects	extra	characters	as	well,	 including	the	parentheses.	It’s	a
better	 idea	 to	click	 in	 front	of	 the	 first	quote,	hold	down	the	Shift	key
and	arrow	to	the	right	to	select	the	code	you	want	to	replace.	Selecting
text	in	this	way	doesn’t	automatically	grab	extra	characters.

At	this	point	you	can	click	OK,	and	your	query	changes	drastically:

Figure	280 What	happened	to	my	query??

These	 changes	 are,	 unfortunately,	 entirely	 to	 be	 expected.	While	 it’s	 great
that	it	 is	obviously	now	a	function	and	not	a	query,	and	it	plainly	states	the
variable	that	needs	to	be	input,	you’ll	notice	that	you’ve	lost	all	items	in	the
Applied	Steps	box.	Don’t	worry:	They’re	still	all	there,	but	you	just	can’t	see
them	right	now.

Testing	the	Function
It’s	a	good	idea	to	test	that	everything	still	works	at	this	point.	To	do	that:

Click	the	Invoke	button
Press	Ctrl+V	to	paste	the	file	path	you	copied	earlier

Note:	If	you	included	the	quotes	when	you	copied	the	file	path	earlier,
you	need	to	remove	them	from	both	ends	of	the	pasted	value,	as	Power
Query	can’t	read	the	path	properly	when	it’s	surrounded	by	quotes.

When	you	click	OK,	the	query	loads	the	information	from	the	file	and	runs	it
through	all	the	steps	that	you	originally	wrote:

Figure	281 The	data	loaded	from	a	dynamic	file	path.

Notice	also	that	you	now	have	a	new	step	in	the	Applied	Steps	box.	This	step
shows	 that	 you	 invoked	 the	 function.	 While	 this	 is	 great	 for	 testing	 the
function,	 it	 essentially	 breaks	 the	 function’s	 ability	 to	 be	 called	 from
anywhere	else.	Now	 that	you’ve	 tested	your	 function,	 you	need	 to	 remove
this	step:

Remove	the	Invoked	FunctionTimesheet	step
Rename	the	query	fnGetTimesheet
Go	to	Home	→	Close	&	Load

Notice	 that	 the	 Timesheet	 table	 that	 resided	 in	 the	 Timesheet	 worksheet
disappears.	This	is	because,	despite	just	clicking	Close	&	Load,	the	query	has
been	changed	from	a	query	to	a	function.	Functions,	by	their	very	makeup,
can	only	be	created	in	a	Connection	Only	format:

Figure	282 The	query	is	now	a	function.

Calling	the	Function
Now	 that	 you’ve	 done	 the	 hard	 work,	 you	 need	 to	 call	 this	 query	 from
another	function.	Since	your	end	goal	is	to	consolidate	all	the	timesheets	in	a
folder,	you	can	kick	off	a	new	query	to	import	all	the	timesheets	at	once:

Create	a	new	query	→	From	File	→	From	Folder
Navigate	to	the	Ch21	Examples\Source	Files	folder	→	OK
Select	the	Folder	Path	and	Name	columns	→	right-click	→	Remove
Other	Columns

Even	though	you’ve	restricted	the	data	to	just	the	folder	path	and	filename,
you	have	everything	you	need	to	add	a	custom	column	and	call	the	function.
So	do	exactly	that:

Add	Column	→	Add	Custom	Column
Enter	the	following	formula	in	the	Add	Custom	Column	dialog:
=fnGetTimesheet([Folder	Path]&[Name])

Click	OK

The	 trick	here	 is	 to	 remember	 the	name	of	your	 function	and	get	 the	case
right.	 Once	 you’ve	 done	 that,	 it’s	 as	 easy	 as	 filling	 it	 with	 the	 appropriate
data.	 In	 this	 case,	 you	 simply	 concatenated	 the	 file	 path	 and	 file	 name
together	using	the	&	character,	 just	as	you	can	do	in	an	Excel	formula.	That
gave	 you	 the	 full	 file	 path,	 which	 was	 then	 passed	 into	 the	 function.	 The
function	then	executed	all	the	steps	contained	in	the	function	and	returned	a
table	to	the	column	representing	the	processed	data	set	for	each	file,	as	you
can	see	here:

Figure	283 Previewing	the	new	data	import.

You	 can	 now	 remove	 the	 Folder	 Path	 and	Name	 columns	 and	 import	 your
data,	thereby	consolidating	the	files	together:

Remove	the	Folder	Path	and	Name	columns
Click	the	Expand	arrow	on	the	Custom	column	→	uncheck	the	prefix
option	→	OK
Rename	the	query	Timesheets

There’s	one	last	thing	to	check	before	you	commit	this	query:	the	data	types.
This	is	a	bit	of	a	shame,	but	even	though	the	original	query	you	built	defined
the	 data	 types,	 you’ll	 find	 that	 none	 of	 those	 settings	 persisted	when	 you
turned	it	into	a	function	and	combined	the	files	in	this	way:

Figure	284 Beware	the	evil	Any	datatype!

To	safeguard	against	poor	interpretations	by	Excel	or	Power	Pivot,	it’s	a	good
idea	to	set	those	data	types	now.	Set	them	as	follows:

Text:	Employee
Decimal	Number:	Expenses,	Misc	Hrs,	OT	Hrs,	Reg	Hrs
Time:	Out
Date:	Work	Date

With	that	done,	you	can	finally	load	the	query:

Home	→	Close	&	Load	To…
Select	Existing	Worksheet	→	Timesheet	→	A1

Solution	Impact
The	ramifications	of	the	process	described	here	are	rather	extensive.	Even	if
you	 build	 a	 single-use	 scenario,	 you	 can	 now	 convert	 it	 to	 be	 consistently
applied	 across	 multiple	 files.	 That	 is	 a	 huge	 benefit	 that	 was	 previously
unavailable	to	Excel	pros,	at	least	in	easy-to-deploy	fashion.

You	 can	 deal	 with	 situations	 where	 your	 data	 footprint	 expands	 across
multiple	 files	 and	where	 transformations	would	be	 too	 complex	 if	 the	 files
were	all	combined	into	one	before	being	processed.	By	building	a	single-use
case,	you	can	perfect	the	transformation	on	a	smaller	scale	and	then	append
the	end	results.

Debugging	Custom	Functions
One	of	the	painful	pieces	of	working	with	custom	functions	is	that	you	lose
the	 ability	 to	 step	 through	 them	 easily.	 That	 makes	 debugging	 custom
functions	a	bit	of	a	challenge.

While	it’s	not	ideal,	there	is	a	way	to	convert	a	function	back	into	a	query	so
that	 you	 can	 test	 it.	 The	 unfortunate	 part	 of	 this	 process	 is	 that	 it	 is	 a
temporary	 state	 because	 converting	 the	 function	 into	 a	 debuggable	 state
converts	 it	 out	 of	 function	mode,	 breaking	 any	 subsequent	 queries	 during
the	debugging	process.	However,	it	is	the	only	way	to	accomplish	the	goal,	so
you’ll	learn	about	it	next.

Restoring	Query	Steps	to	the	Applied	Steps	Box
In	order	to	restore	the	Applied	Steps	box	so	that	you	can	debug	a	function,
you	actually	need	to	turn	it	back	into	a	query.	To	do	this	you	need	to	do	two
things:

1.	Comment	out	the	line	that	turns	the	query	into	a	function

2.	Duplicate	the	variable	used	in	the	initial	line	and	assign	it	a	value

Failure	to	do	either	of	these	steps	will	cause	you	to	end	up	with	a	query	or
function	that	returns	the	wrong	results	at	best	or	errors	at	worst.

To	 comment	 out	 a	 line	 in	 M	 code,	 you	 insert	 the	 characters	 //	 at	 the
beginning	of	the	 line.	This	tells	the	Power	Query	engine	that	the	remaining
characters	on	the	line	should	not	be	executed.

To	duplicate	the	variable,	you	need	to	set	up	a	new	step	after	the	initial	 let
line	to	create	and	assign	a	value	to	the	variable.	That	line	must	be	built	using
the	following	syntax:

Variable_name	=	assign_value_here	,

The	 variable	 name	 must	 be	 the	 variable	 that	 is	 currently	 enclosed	 in	 the
opening	parentheses	for	the	function,	and	the	line	must	end	with	a	comma.
Take	a	look:

Edit	the	fnGetTimesheet	query	→	Home	→	Advanced	Editor

Wait	…	something	is	different	than	the	last	time	you	looked	at	this	code:

Figure	285 New	lines	of	code	injected	into	the	solution.

Where	did	those	new	lines	come	from?

They	 were	 injected	 when	 you	 clicked	 the	 Invoke	 button.	 They’re	 entirely
unnecessary	for	the	function	to	operate	and	can	just	be	removed	so	that	the
function	starts	with	(filepath)	again.

Once	you’ve	removed	those	portions,	modify	the	first	three	lines	to	read:
//(filepath)=>

let

filepath	=	“C:\yourfilepath\Source	Files\2015-03-14.txt”,

Warning:	Don’t	 forget	 the	 final	 comma	at	 the	end	of	 the	 line,	or	your
code	won’t	work!

When	you’re	done,	the	code	should	look	similar	to	this:

Figure	286 The	modified	code	to	convert	this	back	into	a	query.

When	 you	 click	OK,	 you	 can	 step	 through	 and	 verify	what	 is	 happening	 in
your	query:

Figure	287 The	steps	are	back.

The	nice	thing	here	is	that	you	can	even	click	the	filepath	step	to	see	the	path
you	set,	and	then	you	can	review	each	step	to	see	how	it	 is	reacting.	 If	you
find	errors	 in	the	way	your	data	 is	handled,	you	can	correct	them	and	then
turn	your	query	back	into	a	function	again.

Warning:	 While	 your	 function	 is	 in	 debug	 mode,	 any	 subsequent
queries	that	refer	to	it	will	not	function!

Restoring	“Function”ality
To	turn	the	query	back	into	a	function,	you	again	need	to	edit	the	M	code	to
do	two	things:

Remove	the	//	characters	from	the	initial	row
Place	the	//	characters	in	front	of	the	row	that	is	currently	declaring
the	filepath	variable

Once	these	things	are	done,	your	function	will	resume	its	normal	operation
method,	and	all	queries	using	this	function	will	be	able	to	use	it	again.

Warning:	 Forgetting	 to	 comment	 out	 the	 temporary	 variable	 line	 will
result	in	that	line	overwriting	any	variable	passed	into	the	function.	You
don’t	want	to	forget	to	comment	that	line!

Chapter	22	Advanced	Conditional
Logic
In	Chapter	18,	 you	 learned	how	 to	 replicate	 the	 functionality	of	Excel’s	 IF()
and	IFERROR()	functions.	Of	course,	the	IF()	and	IFERROR()	functions	are	not
the	only	functions	in	Excel	that	you	use	to	implement	conditional	outputs	or
matches.

Unlike	the	formulas	examined	previously,	replicating	other	formulas	in	Excel’s
conditional	 logic	 library	 involves	 a	 bit	 more	 complicated	 techniques,
including	using	lists	and	custom	functions.

Multicolumn	Logic
Occasionally,	as	you	are	trying	to	filter	down	raw	data,	you	may	need	to	filter
based	on	multiple	criteria.	Consider	the	following	data	set,	which	is	included
in	the	Ch22	Examples\Multi-Column	Logic.xlsx	file:

Figure	288 A	raw	data	set.

Replicating	Excel’s	OR()	Function
What	 if	 your	 boss	 asked	 you	 to	 list	 only	 data	 where	 you	 sold	 a	 Talkative
Parrot	or	the	item	was	sold	by	Fred?	If	this	were	an	and	scenario,	it	would	be
easy:	Just	filter	the	Inventory	Item	column	to	Talkative	Parrot	and	then	filter
the	Sold	By	column	to	Fred.	But	that	won’t	work	in	this	case	because	you’d
lose	any	Talkative	Parrots	sold	by	John	or	Jane,	and	you’d	also	lose	any	other
items	sold	by	Fred.

If	the	data	is	stored	in	an	Excel	table,	you	could	solve	this	by	using	Advanced
Filter	or	by	adding	a	column	using	the	following	formula	and	filtering	to	only
results	that	are	listed	as	true:

=OR([@[Inventory	Item]]=“Talkative	Parrot”,[@[Sold	By]]=“Fred”)

But	what	if	the	data	doesn’t	originate	in	an	Excel	table?	What	if	it	is	sourced
from	a	database,	a	web	page,	or	a	text	file?	Plainly,	that	won’t	work.

Pull	the	data	into	Power	Query	to	see	how	you	should	approach	this:

Select	any	cell	in	the	table	on	the	May	worksheet
Create	a	new	query	→	From	Table
Right-click	the	Date	column	→	Change	Type	→	Date

Since	you	can’t	filter	your	data	without	losing	required	records,	you’re	going
to	need	to	add	a	custom	column	and	apply	a	formula	to	examine	each	row:

Go	to	Add	Column	→	Add	Custom	Column
Name	the	column	Match?

You	know	that	you’re	going	to	need	to	test	whether	a	certain	criterion	is	true
or	false,	using	a	basic	formula	framework	along	the	lines	of	the	following:

=	if	logic_test	then	“Meets	Criteria!”	else	“No	Match”

The	 challenge	here	 is	 coming	up	with	 that	 logic	 test.	 Power	Query	doesn’t
have	an	OR()	function,	so	what	is	the	equivalent?

When	you’re	looking	for	text	comparisons,	it	is	helpful	to	quickly	scan	the	list
of	list	functions	contained	in	the	Power	Query	formula	categories.

Note:	Remember	that	you	can	access	the	list	of	Power	Query	formulas
by	clicking	the	Learn	About	Power	Query	formulas	link	at	the	bottom	of
the	Custom	Column	dialog	and	then	clicking	the	Power	Query	 formula
categories	 link	 partway	 down	 the	 page.	 You	 end	 up	 at	 the
https://msdn.microsoft.com/en-us/library/mt296612.aspx	web	page.

Within	 the	 list	 functions,	 you’ll	 find	 that	 there	 is	 a	 List.AnyTrue	 function,
which	 sounds	 somewhat	 promising.	 Selecting	 that	 item	 in	 the
documentation	reveals	the	following	example:

List.AnyTrue({2=0,	false,	1	<	0	})	equals	false

Based	 on	 this,	 you	 can	 see	 that	 the	 function	 contains	 a	 list	 of	 values,	 as
indicated	by	the	curly	braces	within	the	parentheses.	 It	also	shows	that	the
function	will	return	false	if	none	of	the	items	are	true.

Try	to	nest	this	formula	in	place	of	the	logic	test:
=if	List.AnyTrue(

{[Inventory	Item]=“Talkative	Parrot”,[Sold	By]=“Fred”}

https://msdn.microsoft.com/en-us/library/mt296612.aspx

)

then	“Meets	Criteria!”

else	“No	Match”

Note:	 Remember	 that	 you	need	 to	 separate	 the	 criteria	with	 commas
and	 then	 surround	 the	entire	 list	 of	 criteria	with	 curly	braces	because
the	List.AnyTrue()	function	requires	a	list	as	a	parameter.

Upon	clicking	OK,	you	can	see	that	the	formula	returns	your	message	in	any
case	where	the	sales	 item	equals	Talkative	Parrot	or	 the	Sold	By	 field	holds
Fred:

Figure	289 Replicating	Excel’s	OR()	function	using	List.AnyTrue().

Since	 the	 function	returns	 true	 if	any	of	 the	criteria	are	 true,	any	 instances
where	 Fred	 sold	 a	 Talkative	 Parrot	 would	 also	 display	 the	 result	 Meets
Criteria!	in	the	Match?	column.

You	can	now	finalize	this	query	by	taking	the	following	steps:

Filter	the	Match?	column	to	only	include	only	Meets	Criteria!	values
Change	the	query	name	to	pqOR
Go	to	Home	→	Close	and	Load

Power	Query	returns	a	table	containing	a	total	of	88	rows	out	of	the	original
332.

Replicating	Excel’s	AND()	Function
While	 it’s	 true	 that	 you	 can	 reduce	 records	 by	 filtering	 a	 table	 column-by-
column,	 what	 if	 you	 only	 want	 to	 tag	 records	 where	 a	 condition	 exists	 in
multiple	columns?	For	this	you	need	to	replicate	Excel’s	AND()	function.

The	trick	to	this	is	essentially	the	same	as	the	trick	with	replicating	the	OR()
function	 with	 List.AnyTrue(),	 except	 that	 for	 AND()	 you	 need	 to	 use	 the
List.AllTrue()	function.	This	function	returns	a	true	value	only	if	every	 logical
test	provided	returns	a	true	value—just	like	Excel’s	AND()	function.

Take	a	look	at	how	it	differs	from	the	previous	function:

Go	to	the	Workbook	Queries	pane	→	right-click	pqOR	→	Duplicate
Rename	the	query	name	pqAND
Select	 the	 Added	 Custom	 step	→	 click	 the	 gear	 icon	 (to	 edit	 the
formula)
Replace	List.AnyTrue	with	List.AllTrue
Select	the	Filtered	Rows	step

As	 you	 can	 see,	 the	 results	 are	 quite	 different	 than	 the	 results	 you	 get	 by
using	the	original	List.AnyTrue()	function:

Figure	290 Using	the	List.AllTrue()	function	to	tag	records	based	on	multiple-column	criteria.

While	this	example	obviously	filtered	the	data	based	on	the	results	from	the
formula	output,	the	great	thing	about	this	function	is	that	you	can	easily	tag
records	without	filtering	first.	This	allows	you	more	flexibility	in	building	more
complicated	 logic	 while	 still	 preserving	 your	 original	 data—something	 that
can’t	be	done	if	you	filter	columns	to	drill	into	the	end	values.

Replicating	Excel’s	VLOOKUP()
Function
As	much	as	 some	people	 try	 to	 avoid	VLOOKUP(),	 it	 is	 an	 incredibly	 useful
function	for	Excel	pros.	Those	who	love	it	will	certainly	want	to	replicate	its
functionality	 in	Power	Query	at	 some	point.	However,	depending	on	which
version	of	VLOOKUP()	you	need,	it	can	be	quite	tricky	to	implement.

VLOOKUP()	Using	an	Exact	Match

In	truth,	you	don’t	need	to	do	anything	special	to	emulate	VLOOKUP’s	exact
match,	as	 this	 functionality	 can	be	 replicated	by	 simply	merging	 two	 tables
together,	as	described	in	Chapter	9.

VLOOKUP()	Using	an	Approximate	Match
Replicating	 VLOOKUP()’s	 approximate	match	 is	 a	 totally	 different	 case	 than
the	 exact	 match	 scenario.	 It	 requires	 some	 logic	 to	 emulate	 those	 steps
because	you’re	not	 trying	 to	match	 records	against	each	other	but	actually
trying	to	find	the	closest	record	to	our	request	without	going	over.	While	you
won’t	 create	 the	 function	 from	 scratch	here,	 you	will	 see	 the	 function	 and
how	it	works.

To	 get	 started,	 open	 Ch22	 Examples\Emulating	 VLOOKUP.xlsx.	 In	 this	 file
you’ll	find	two	tables:	BandingLevels	and	DataTable.

Figure	291 The	BandingLevels	table.

Figure	292 The	DataTable	table.

If	you	review	the	functions	in	columns	B:D	of	the	DataTable	table,	you’ll	see
that	 they	 contain	 VLOOKUP()	 functions,	 as	 shown	 in	 the	 column	 headers.
Each	column	is	looking	up	the	value	shown	in	column	A	for	that	row	against

the	 BandingLevels	 table.	 Columns	 B	 and	 D	 are	 returning	 the	 value	 from
column	 2	 of	 the	 BandingLevels	 table,	 and	 column	 C	 is	 returning	 the	 value
from	the	Alt	Band	column	of	the	BandingLevels	table.

In	addition,	notice	that	columns	B	and	C	are	returning	approximate	matches
because	 the	 fourth	 parameter	 has	 either	 been	 set	 to	 True	 or	 omitted.
Column	D,	however,	is	asking	for	an	exact	match	(as	the	fourth	parameter	has
been	set	to	False),	resulting	in	all	records	returning	#N/A	except	for	the	very
last	one.

You	should	set	up	 the	Power	Query	 function	we	need	now,	and	then	you’ll
see	how	it	replicates	Excel’s	version	of	VLOOKUP():

Using	Windows	Explorer	go	to	Ch22	Examples\pqVLOOKUP.txt
Open	the	file	and	copy	the	entire	contents	of	the	file
Return	to	Excel
Create	a	new	query	→	From	Other	Sources	→	Blank	Query
Open	the	Advanced	Editor	→	select	all	the	code	in	the	window
Paste	the	contents	of	the	text	file	(replacing	all	of	the	existing	code)
Click	Done
Rename	the	function	pqVLOOKUP
Go	to	Home	→	Close	&	Load

With	the	function	created,	you	need	a	pointer	to	the	BandingLevels	table:

Select	any	cell	in	the	BandingLevels	table	→	create	a	new	query	→
From	Table
Go	to	Home	→	Close	&	Load	To…	→	Only	Create	Connection

We	are	now	ready	to	see	how	it	works.	Pull	in	the	DataTable,	and	remove	all
of	the	Excel	versions	of	the	functions.

Select	any	cell	in	the	DataTable	table	→	create	a	new	query	→	From
Table
Right-click	the	Values	column	→	Remove	Other	Columns

You	are	now	down	to	a	single	column	of	data:

Figure	293 Ready	to	try	the	pqVLOOKUP	function.

To	see	if	the	pqVLOOKUP	function	works	for	you,	you	can	try	to	replicate	the
following	formula:

=VLOOKUP([Values],BandingLevels,2,true)

To	do	that,	you	can	take	the	following	steps:

Go	to	Add	Column	→	Add	Custom	Column
Name	the	column	2,True
Use	the	following	formula:
=pqVLOOKUP([Values],BandingLevels,2,true)

The	results	are	identical	to	what	Excel	would	show:

Figure	294 Replicating	VLOOKUP()	with	an	explicitly	defined	approximate	match.

This	looks	good.	Now	try	leaving	the	,true	off	the	end	and	returning	the	third
column	from	the	lookup	table	instead	of	the	second:

Go	to	Add	Column	→	Add	Custom	Column
Name	the	column	3,default
Use	the	following	formula:
=pqVLOOKUP([Values],BandingLevels,3)

The	results	are	again	identical	to	what	Excel	would	show:

Figure	295 Replicating	VLOOKUP()	with	an	implicit	approximate	match.

Try	 one	 more.	 What	 if	 you	 wanted	 to	 define	 an	 exact	 match	 against	 the
second	column	of	the	lookup	table?	To	do	this:

Go	to	Add	Column	→	Add	Custom	Column
Name	the	column	2,false
Use	the	following	formula:
=pqVLOOKUP([Values],BandingLevels,2,false)

Once	again,	the	results	are	spot	on	with	what	Excel	delivers:

Figure	296 Replicating	VLOOKUP()	with	an	exact	match.

Warning:	 Even	 though	 you	 can	 use	 this	 function	 to	 emulate
VLOOKUP()’s	 exact	 match,	 you	 shouldn’t.	 The	 reason	 is	 that	 you	 can
accomplish	 an	 exact	 match	 effect	 by	 merging	 tables	 together—a
method	 that	 will	 be	much	 faster.	 If	 you	 need	 the	 approximate	match
functionality,	however,	this	is	a	viable	method.

Finalize	the	query:

Go	to	Home	→	Close	&	Load

At	this	point,	you	should	be	aware	of	one	minor	difference	between	Excel’s
VLOOKUP()	 and	 the	 pqVLOOKUP	 function:	 the	 #N/A	 value	 returned	 by
pqVLOOKUP	is	actually	text,	not	a	true	error,	as	you	can	see	below.

Figure	297 pqVLOOKUP’s	#N/A	“errors”	are	actually	text.

Returning	text	 is	as	close	as	you	could	get	when	returning	error,	as	there	 is
no	way	to	output	a	true	#N/A	error	in	Power	Query.

Understanding	the	pqVLOOKUP	Function
So	how	does	the	pqVLOOKUP	function	work?	Take	a	look	at	the	code:

(lookup_value	as	any,	table_array	as	table,	col_index_number	as
number,	optional	approximate_match	as	logical)	as	any	=>

let

/*Provide	optional	match	if	user	didn’t	*/

matchtype	=

if	approximate_match	=	null

then	true

else	approximate_match,

/*Get	name	of	return	column	*/

Cols	=	Table.ColumnNames(table_array),

ColTable	=	Table.FromList(Cols,	Splitter.SplitByNothing(),	null,

null,	ExtraValues.Error),

ColName_match	=	Record.Field(ColTable{0},“Column1”),

ColName_return	=	Record.Field(ColTable{col_index_number	-	1},

“Column1”),

/*Find	closest	match	*/

SortData	=	Table.Sort(table_array,

{{ColName_match,	Order.Descending}}),

RenameLookupCol	=

Table.RenameColumns(SortData,{{ColName_match,	“Lookup”}}),

RemoveExcess	=	Table.SelectRows(

RenameLookupCol,	each	[Lookup]	<=	lookup_value),

ClosestMatch=

if	Table.IsEmpty(RemoveExcess)=true

then	“#N/A”

else	Record.Field(RemoveExcess{0},“Lookup”),

/*What	should	be	returned	in	case	of	approximate	match?	*/

ClosestReturn=

if	Table.IsEmpty(RemoveExcess)=true

then	“#N/A”

else	Record.Field(RemoveExcess{0},ColName_return),

/*Modify	result	if	we	need	an	exact	match	*/

Return	=

if	matchtype=true

then	ClosestReturn

else

if	lookup_value	=	ClosestMatch

then	ClosestReturn

else	“#N/A”

in	Return

The	code	 is	 fairly	 long	and	complex,	 and	 it	uses	a	 variety	of	 tricks,	but	 the
basic	methodology	is	this:

1.	Pull	in	the	data	table.

2.	Sort	it	descending	by	the	first	column.

3.	Remove	all	records	greater	than	the	value	being	searched	for.

4.	Return	 the	value	 in	 the	requested	column	for	 the	 first	 remaining	 record
unless	an	exact	match	was	specified.

5.	If	an	exact	match	was	specified,	test	to	see	if	the	return	is	a	match.	If	it	is,
return	the	value.	If	it	is	not,	return	#N/A.

Note	the	following	in	the	code:

Each	 of	 the	 variables	 in	 the	 parameters	 has	 an	 explicit	 data	 type
declared.	 This	 is	 to	prevent	 the	user	 from	accidentally	providing	a
table	where	a	numeric	column	number	is	required.
The	 approximate_match	 variable	 is	 defined	 as	 optional,	 meaning
the	user	can	ignore	it.
The	matchtype	variable	tests	to	see	if	a	match	type	was	specified.	If
a	match	type	was	specified,	it	is	assigned	to	the	matchtype	variable,
but	 if	 not	 (approximate_match	 is	 null),	 a	 value	 of	 true	 will	 be
assigned.
The	name	of	the	column	to	be	returned	is	pulled	by	reviewing	the
column	 headers	 of	 the	 table,	 splitting	 them	 into	 a	 list	 of	 records,
and	 pulling	 out	 the	 record	 whose	 index	 matches	 the	 requested
column	(less	1	to	adjust	to	base	0).
The	data	is	sorted	in	descending	order,	based	on	the	column	to	be
searched.	All	records	greater	than	the	requested	value	are	removed
(by	 selecting	all	 rows	where	 the	value	 is	 less	 than	or	equal	 to	 the
value	being	searched	for).
If	 no	 rows	 remain,	 a	 #N/A	 result	 is	 then	 stored,	 but	 if	 there	 are
rows,	the	first	record	in	the	lookup	column	is	stored.	This	result	can
later	be	checked	to	see	if	 it	matches	the	record	being	searched	for
(which	is	important	for	the	exact	match	scenario).
The	approximate	match	value	is	then	(always)	calculated,	even	if	an
exact	match	was	requested.	If	no	rows	are	present	in	the	data	set,	a
#N/A	result	is	stored;	otherwise,	the	closest	value	is	pulled	from	the
return	column.
The	 final	 test	 checks	 the	 type	 of	 match	 requested.	 If	 it	 is	 an
approximate	 match,	 then	 the	 closest	 match	 is	 always	 returned
(which	 may	 be	 #N/A).	 If,	 however,	 the	 match	 type	 was	 an	 exact
match,	the	code	will	return	#N/A	instead	of	the	closest	match	unless
the	lookup	column’s	value	matched	the	value	being	sought	exactly.

It	should	go	without	saying	that	this	is	not	a	function	you’ll	knock	out	in	a	few
minutes.	It	is	long	and	complicated,	and	it	took	several	hours	of	development
and	 debugging	 in	 order	 to	 get	 it	 correct.	 It	 is,	 however,	 a	 fairly	 robust
function	 in	 the	 way	 it	 works,	 and	 it	 showcases	 how	 to	 build	 complex
functions	using	Power	Query.

Replicating	Power	Pivot’s	SWITCH()

Replicating	Power	Pivot’s	SWITCH()
Function
Power	Pivot	has	a	function	called	SWITCH()	that	allows	you	to	perform	multi-
condition	 logic	 by	 declaring	 a	 table	 of	 index	 values	 and	 results	 and	 then
passing	 in	 a	 variable	 index	 value.	 The	 function	 then	 looks	 up	 the	 provided
index	value	and	returns	the	matching	result.	This	 is	easier	to	maintain	than
several	 levels	 of	 nested	 IF()	 statements,	 so	 it	 sometimes	 makes	 sense	 to
replicate	the	SWITCH()	function	in	Power	Query.

The	syntax	for	this	function	in	Power	Pivot	is	as	follows:
=SWITCH(expression,value_1,result_1,[value_2,result_2],…,[Else])

One	 example	 of	 where	 this	 can	 be	 really	 useful	 is	 when	 breaking	 down
encoded	 patterns	 like	 customer	 billing	 codes,	 where	 each	 character
represents	something	specific.	Take	a	code	like	the	MP010450SP,	where	the
ninth	character	could	be	one	of	the	following:

E	=	Employee,	S	=	Yacht	Club,	N	=	Non-Taxable,	R	=	Restricted,

I	=	Inactive,	L	=	Social,	M	=	Medical,	U	=	Regular

To	break	this	apart	 in	Excel,	you	could	build	a	function	with	many	nested	IF
statements	 and	 build	 a	 VLOOKUP()	 based	 on	 the	 letter	 options.	 In	 Power
Pivot,	though,	it’s	much	easier	with	the	SWITCH()	function,	as	follows:

=SWITCH([Column],“E”,“Employee”,“S”,“Yacht	Club”,

“N”,“Non-Taxable”,“R”,“Restricted”,“I”,“Inactive”,

“L”,“Social”,“M”,“Medical”,“U”,“Regular”,“Undefined”)

Note:	 There	 are	 several	 ways	 to	 accomplish	 this	 goal.	 You	 could,	 for
example,	 extract	 just	 the	 ninth	 letter	 and	merge	 the	 results	 against	 a
table.	The	purpose	of	this	section	is	to	give	you	yet	another	alternative.

Building	a	Power	Query	SWITCH()	Function
Building	the	function	isn’t	overly	difficult	once	you	know	the	basic	structure.
Here’s	how	you	get	started:

Open	Ch22	Examples\Emulating	SWITCH.xlsx
Create	a	new	query	→	From	Other	Sources	→	Blank	Query
Name	the	query	fnSWITCH
Go	to	Home	→	Advanced	Editor
Enter	the	M	code	shown	below:
(input)	=>

let

values	=	{

{result_1,	return_value_1},

{input,	“Undefined”}

},

Result	=	List.First(List.Select(values,	each	_{0}=input)){1}

in

Result

This	 code	 is	 the	basic	 framework	 for	 any	 SWITCH()	 function.	 These	are	 the
key	parts	to	recognize	here:

result_1	 is	 the	 first	 of	 the	 possibilities	 that	 you	 may	 pass	 to	 the
function
return_value_1	is	the	value	that	you’d	like	to	return	if	the	first	value
is	result_1
If	 you	need	more	values,	 you	 just	 insert	another	 comma	after	 the
{result_1,	 return_value_1}	 section	 and	 put	 in	 a	 {result_2,
return_value_2}	section
You	can	keep	adding	as	many	values	as	you	need
The	input	value	in	the	list	will	return	the	text	Undefined	if	the	value
you	pass	isn’t	in	your	provided	list	of	options	(it’s	the	Else	portion	of
the	SWITCH()	statement)

Using	this	structure,	you	can	modify	the	fnSWITCH	function	for	your	scenario
as	follows:

(input)	=>

let

values	=	{

{“E”,	“Employee”},

{“S”,	“SCYC”},

{“N”,	“Non-Taxable”},

{“R”,	“Restricted”},

{“I”,	“Inactive”},

{“L”,	“Social”},

{“M”,	“Medical”},

{“U”,	“Regular”},

{input,	“Undefined”}

},

Result	=	List.First(List.Select(values,	each	_{0}=input)){1}

in

Result

The	 changes	 you	made	 here	were	 simply	 to	 replace	 value_1	 with	 “E”	 and
return_value_1	with	“Employee”	and	then	to	add	more	list	pairs	of	potential
inputs	and	desired	values	to	return.	Note	that	you’re	not	restricted	to	looking
up	 single	 characters.	 You	 can	 look	 up	 values	 or	 longer	 text	 strings	 just	 as
easily;	just	make	sure	that	your	options	are	always	entered	in	pairs	between
curly	braces	and	have	a	comma	at	the	end	of	the	line.

When	you’re	done	making	the	modifications:

Click	Done
Go	to	Home	–>	Close	&	Load

Using	the	fnSWITCH	Function
Now	that	the	fnSWITCH()	function	has	been	created,	you	can	use	it	to	extract
the	billing	type	from	each	customer	record	in	this	file.

Select	any	cell	in	the	table	on	the	Customers	worksheet	→	create	a
new	query	→	From	Table

The	data	loads	into	Power	Query	as	follows:

Figure	298 The	raw	data	table.

The	fnSWITCH()	function	is	designed	to	convert	the	ninth	character	from	the
BillingCode	 into	 the	 corresponding	 customer	 type.	 In	 order	 to	 use	 it,	 you
need	to	extract	that	character:

Go	to	Add	Column	→	Add	Custom	Column
Name	the	column	Customer	Type
Enter	the	following	formula:
=fnSWITCH(Text.Range([BillingCode],8,1))

Note:	Remember	 that	you	need	to	start	at	character	8	 in	order	 to	get
the	ninth	character	because	Power	Query	uses	base	0	indexing	for	this
parameter	of	the	Text.Range	function,	as	shown	in	Chapter	17.

The	results	are	perfect:

Figure	299 Results	of	the	fnSWITCH	function.

You’ll	 find	 that	 all	 the	 sample	 codes	 in	 the	 data	 work	 just	 fine	 and	 that
nothing	comes	back	as	undefined.	Follow	these	steps	to	see	how	the	query
reacts	to	different	items:

Change	the	query	name	to	Billing
Go	to	Home	→	Close	&	Load
Change	 the	 second-to-last	 letter	 of	 any	 billing	 code	 to	 something
else

When	you	refresh	the	table,	 it	evaluates	the	new	character	and	returns	the
appropriate	 result.	Here	 you	 can	 see	what	happens	when	 the	 first	 record’s
billing	code	is	updated	to	MP010450XP:

Figure	300 X	is	not	a	valid	character	for	the	billing	code.

Note	that	 the	 function	as	written	above	 is	case	sensitive,	meaning	that	 the
code	MP010450uP	would	also	return	Undefined,	even	though	MP010450UP
is	a	valid	code.	In	the	case	of	the	original	source	of	the	data,	this	was	entirely
expected	because	valid	codes	are	made	up	of	uppercase	letters.

If	 you	wanted	 to	accept	either	uppercase	or	 lowercase,	you	would	need	 to
modify	 the	 Billing	 query	 (not	 the	 function)	 and	 force	 the	 results	 of	 the
Text.Range	function	to	uppercase:

Right-click	the	Billing	query	in	the	Workboook	Queries	pane	→	Edit
Select	the	Added	Custom	step	→	click	the	gear	icon
Update	the	formula	to	read:
=fnSWITCH(Text.Upper(Text.Range([BillingCode],8,1)))

Click	OK
Go	to	Home	→	Close	&	Load

As	you	can	see	below,	 this	adjustment	allows	you	 to	pass	 lowercase	values
into	the	function	and	still	get	a	positive	result:

Figure	301 The	customer	type	is	calculated	consistently	for	uppercase	and	lowercase	letters.

Chapter	23	Dynamic	Parameter
Tables
In	Chapter	21	we	explored	how	custom	functions	can	be	used	to	preprocess
data	 sets	 prior	 to	 merging.	 While	 this	 is	 a	 fantastic	 benefit	 of	 custom
functions,	it	is	far	from	the	only	one.

Consider	the	example	in	the	last	chapter,	of	pulling	timesheets	from	a	folder.
Say	that	you’ve	built	the	master	consolidation	file,	saved	it	in	H:\Payroll,	and
for	 months	 have	 been	 storing	 the	 timesheets	 in	 the	 subfolder
H:\Payroll\Timesheets.	 After	 working	 hard	 all	 year,	 you	 finally	 get	 a	 few
weeks	off	and	have	to	pass	the	solution	to	someone	else	to	maintain	while
you’re	gone.	There’s	a	problem,	 though:	Their	 system	has	 the	path	 to	your
solution	mapped	as	 J:\HR\Payroll.	Rather	 than	recode	the	solution	 for	your
replacement	and	then	have	to	recode	it	again	when	you	return,	you’d	really
like	to	make	the	path	relative	to	where	the	workbook	is	located.	That	way,	if
the	 user	 opens	 it	 up	 from	 J:\HR\Payroll	 or	 H:\Payroll	 or	 something	 else,	 it
shouldn’t	make	a	difference.

The	 real	 challenge?	 There	 is	 currently	 no	 function	 in	 the	M	 language	 that
allows	you	to	work	out	the	path	to	the	workbook	you’re	using.	Interestingly,
an	Excel	formula	can	do	this	work.

Warning:	 Before	 we	 embark	 on	 the	 journey	 of	 making	 the	 file	 path
dynamic,	 there	 is	 something	 you	 should	 know	 about	 this	 technique:
Queries	 where	 data	 access	 happens	 inside	 a	 function	 and	 where	 the
data	source	is	dependent	on	parameters	to	the	function	can’t	currently
be	 refreshed	 in	 Power	 BI.	 This	 is	 because	 Microsoft	 performs	 static
analysis	of	the	query	to	discover	the	data	source,	and	the	static	analysis
can’t	yet	handle	this	scenario.

This	does	not	mean	that	the	functionality	is	not	useful,	and	it	doesn’t	mean
that	it	won’t	be	supported	one	day.	It	simply	means	that	you	should	rely	on	it
only	if	the	solution	is	going	to	live	in	Desktop	Excel	and	not	on	the	web.

Implementing	Dynamic	Parameter
Tables
There	are	three	steps	to	implementing	parameter	tables	into	your	solution:

1.	Create	a	parameter	table	in	Excel.

2.	Create	the	function	to	extract	the	values	from	the	table.

3.	Retrofit	your	existing	queries	to	call	the	function.

We	 will	 walk	 through	 each	 step	 of	 this	 process	 using	 the	 Ch	 23
Examples\Parameter	Tables.xlsx	file.

Upon	 opening	 this	 file,	 you’ll	 recognize	 that	 it	 is	 a	 continuation	 of	 the
Timesheets	 file	 that	 you’ve	 built	 over	 a	 couple	 of	 chapters.	 The	 challenge
with	 this	 file	 is	 that	currently	 the	paths	are	all	hard	coded	 to	your	PC,	 (the
author’s	 in	 the	 case	of	 the	example	 file,)	 and	now	you’d	 like	 to	deliver	 the
solution	so	that	it	works	no	matter	where	you	store	it.

Step	1:	Creating	a	Parameter	Table
The	first	thing	you	need	to	do	is	create	a	table	to	hold	your	parameters.	This
table	should	 take	a	specific	 form,	and	 it	needs	 to	have	certain	components
set	up	correctly.

Create	the	table	shown	below	in	cell	A7:B8	of	the	Info	worksheet:

Figure	302 The	barebones	Parameters	table.

Notice	several	key	characteristics	of	this	table:

The	first	column’s	header	is:	Parameter
The	second	column’s	header	is:	Value
The	table	has	a	name	of:	Parameters

Warning:	 Each	of	 these	 characteristics	must	be	 correct	 if	 you	want	 to
copy	and	paste	a	function	you’ve	been	provided	in	the	download	files.	If
even	one	of	these	items	is	spelled	differently,	you	will	need	to	debug	the
table	or	the	function.

The	table	is	now	set	up	to	hold	every	piece	of	data	that	you	want	to	use	as	a
dynamic	variable	in	your	solution.	Simply	provide	the	name	of	the	parameter
on	the	left	and	the	value	for	the	parameter	in	the	Values	column.

Note:	The	items	in	the	Values	column	can	be	hard	coded	text	or	values,
they	 can	 be	 driven	 by	 data	 validation	 lists,	 or	 they	 can	 use	 formulas.
How	you	get	the	correct	value	in	the	cell	is	completely	up	to	you	as	the
solution	designer.

Next,	you	need	to	determine	the	file	path	to	the	current	workbook.	Enter	the
formula	below	into	cell	B8:

=LEFT(CELL(“filename”,A1),FIND(“[“,CELL(“filename”,A1),1)-1)

Warning:	 If	you	haven’t	 saved	your	 file,	 this	 function	won’t	 return	 the
path	as	it	can’t	determine	where	the	workbook	lives.	Saving	the	file	will
fix	this	issue	for	you.

Upon	doing	so,	you	should	see	the	file	path	to	the	workbook	listed.	The	only
challenge	is	that	you	actually	want	this	file	path	to	point	to	the	Source	Files
folder,	 which	 is	 where	 the	 timesheets	 are	 stored.	 Update	 the	 formula	 as
below:

=LEFT(CELL(“filename”,A1),FIND(“[“,CELL(“filename”,A1),1)-1)&“Source
Files"

Figure	303 Dynamically	returning	the	file	path	using	an	Excel	formula.

Step	 2:	 Implementing	 the	 fnGetParameter
Function
With	the	parameter	table	now	in	a	state	that	can	hold	any	variable	you	need,
you	need	to	give	Power	Query	a	method	to	read	those	values.	This	portion
can	be	done	by	using	the	following	custom	function:

(ParameterName	as	text)	=>

let

ParamSource	=	Excel.CurrentWorkbook()

{[Name=“Parameters”]}[Content],

ParamRow	=	Table.SelectRows(ParamSource,

each	([Parameter]=ParameterName)),

Value=

if	Table.IsEmpty(ParamRow)=true

then	null

else	Record.Field(ParamRow{0},“Value”)

in

Value

Note:	 This	 function	 is	 contained	 in	 the	 fnGetParameter.txt	 file	 in	 the
Ch23	 Examples	 folder.	 In	 addition	 to	 the	 code,	 it	 also	 contains
instructions	to	use	the	function,	as	well	as	the	formula	to	return	the	file
path	 from	 a	 cell.	 The	 file	 is	 provided	 to	 give	 you	 a	 template	 you	 can
store	and	use	multiple	times.

This	code	connects	to	the	Parameters	table	in	the	workbook	and	then	selects
the	 row	 of	 the	 table	 where	 the	 dynamic	 parameter’s	 value	 matches	 the
record	in	the	Parameter	column	of	the	Excel	table.	With	that	match	in	place,
it	then	returns	what	it	finds	in	the	Value	column.	It	is	because	each	of	these
names	is	hard	coded	in	the	function	that	both	the	table	and	column	names
for	the	Excel	table	match	what	was	specified	above.

Rather	 than	 retype	 this	 entire	 block	 of	 code,	 open	 the	 Ch23
Examples\fnGetParameter.txt	file	and	copy	all	lines	inside	the	file.	With	those
in	 the	paste	buffer,	 it	will	be	deadly	simple	 to	 implement	 this	 function	 into
your	solution:

Create	a	new	query	→	From	Other	Sources	→	From	Blank	Query
Go	to	Home	→	Advanced	Editor
Highlight	all	rows	of	code	in	the	window
Press	Ctrl+V	to	paste	in	the	content	of	the	text	file
Click	Done
Change	the	function’s	name	to	fnGetParameter

And	you’re	done.

Step	3:	Calling	the	fnGetParameter	Function
With	the	parameter	table	built,	and	the	function	in	place,	the	last	step	is	to
retrofit	the	existing	query	to	actually	use	it.	Doing	so	will	allow	you	to	source
the	file	path	from	the	cell	and	use	that	in	your	query.	Because	the	file	path
updates	when	the	workbook	is	recalculated,	it	will	always	be	accurate,	which
means	 the	 solution	 will	 always	 look	 for	 the	 timesheet	 files	 in	 the
subdirectory	of	where	the	solution	resides.

To	 retrofit	 the	 Timesheets	 query,	 you	 don’t	 even	 have	 to	 leave	 the	 Power
Query	editor.	You	can	just	click	the	 little	arrow	on	the	 left	next	to	the	word
Queries	to	expand	the	Navigator	window:

Figure	304 Expanding	the	Navigator	window.

The	Navigator	allows	you	to	select	any	of	your	queries	or	 functions,	so	you
can	very	quickly	flip	back	and	forth,	making	changes	and	testing	the	effects
that	they	have	on	other	queries.	Here’s	what	you	do	now:

Right-click	the	Timesheets	query	→	Advanced	Editor
Insert	the	following	line	of	code	immediately	after	the	let	line:
fullfilepath	=	fnGetParameter(“File	Path”),

The	query	should	now	look	like	this:

Figure	305 Calling	the	fnGetParameter	function.

You	have	created	a	new	variable	called	fullfilepath	to	hold	the	value	from	the
File	Path	row	of	the	Excel	table.

It	is	also	worth	noting	here	that	you	are	not	strictly	required	to	create	a	new
variable	 in	order	 to	use	our	 function.	You	could	 skip	 this	 step	and	 just	nest
the	fnGetParameter	call	 in	place	of	the	file	path	on	the	next	row.	By	adding
this	 call	 on	 a	 separate	 line,	 however,	 you	make	 the	 query	much	 easier	 to
debug,	as	you’ll	see	now:

Click	Done
Select	the	fullfilepath	step	in	the	Applied	Steps	box

The	full	file	path	to	the	folder	is	displayed	nicely	in	the	editor,	giving	you	the
comfort	that	you	have	that	part	correct:

Figure	306 The	fullfilepath	variable	is	correctly	pulling	the	file	path.

Now	 that	 you	 know	 that	 the	 function	 is	 returning	 the	 correct	 path	 via	 the
Excel	formula,	you	can	slipstream	the	variable	in	place	of	the	hard-coded	file
path	in	the	Source	step:

Go	to	Home	→	Advanced	Editor
Locate	the	file	path	in	the	Source	line
Select	the	entire	file	path	(including	the	quotes)	and	replace	it	with
fullfilepath

The	first	three	lines	of	the	query	should	now	read	as	follows:
let

fullfilepath	=	fnGetParameter(“File	Path”),

Source	=	Folder.Files(fullfilepath),

Note:	You	must	edit	the	M	code	manually	to	make	this	work.	It	can’t	be
accomplished	 by	 clicking	 the	 gear	 icon	 next	 to	 the	 Source	 step,	 as
fullfilepath	is	not	a	valid	folder	to	the	Windows	operating	system.

When	you’ve	made	the	modifications,	you	can	click	Done,	and	you’ll	see	that
every	step	of	the	query	still	functions	correctly.

Figure	307 The	retrofitted	query	still	works.

Implications	of	Parameter	Tables
Referencing	 a	 parameter	 table	 gives	 us	 a	 huge	 amount	 of	 flexibility	 when
building	 solutions.	 Whether	 you	 are	 building	 solutions	 internally	 in	 your
company	and	need	to	share	them	with	team	members	or	other	divisions,	you
can	now	set	them	up	to	read	from	dynamic	folder	structures	relative	to	your
solution	 path.	 If	 you	 develop	 solutions	 for	 clients,	 this	 is	 also	 hugely
impactful,	 as	 it	 is	 doubtful	 that	 you’ll	 ever	 have	 exactly	 the	 same	 file
structure	on	your	system	as	your	client	does.	The	last	thing	you	want	to	do	in
either	of	these	situations	is	send	the	end	user	a	file	with	instructions	on	how
to	edit	the	M	code.

But	the	power	of	parameter	tables	doesn’t	end	there.	Consider	each	of	the
following	tasks	that	you	may	wish	to	perform:

Build	 a	 calendar	 table	 based	 on	 the	 dates	 in	 cells	 in	 an	 Excel
worksheet
Drive	a	filter	for	a	table	based	on	the	value	in	an	Excel	cell
Determine	which	of	four	Excel	tables	to	load	into	a	solution

By	setting	up	and	using	a	custom	function	to	read	from	an	Excel	table,	we	can
accomplish	 any	 of	 these	 goals.	 This	 affords	 us	 not	 only	 the	 ability	 to
dynamically	drive	our	content,	but	also	gives	us	the	ability	to	generate	data
in	 an	 environment	 more	 familiar	 to	 us,	 and	 in	 some	 cases	 do	 things	 that
Power	Query	wouldn’t	otherwise	allow	us	to	do.

Again,	we	need	to	call	out	the	caveat	that	if	you	are	publishing	to	Power	BI,
this	 solution	 won’t	 work	 for	 you,	 as	 Power	 BI	 doesn’t	 currently	 support
dynamically	 generating	 paths	 to	 databases	 and	 the	 like.	 If	 you	 are

developing	 your	 content	 in	 an	 Excel	 desktop	 environment,	 however,	 you’ll
find	this	to	be	one	of	the	most	useful	techniques	in	this	book.

Chapter	24	Dynamic	Calendar
Tables
When	working	with	Power	Pivot	in	Excel	2010	and	2013,	you	need	to	provide
your	own	calendar	table	for	your	models.	This	is	really	easy	in	organizations
with	a	cooperative	IT	department	that	publishes	a	calendar	for	users.

If	 you	 don’t	 live	 in	 an	 organization	 like	 that,	 however,	 things	 are	 more
difficult.	 You	 can	 reach	 out	 to	 web	 sources,	 but	 those	 don’t	 work	 when
you’re	 tinkering	with	your	model	while	sitting	 in	an	airplane	or	on	 the	way
out	 to	 visit	 your	 operations	 in	 that	mine	 in	 Africa.	 You	 can	 also	 build	 your
calendar	in	an	Excel	table,	but	this	leads	to	challenges	when	the	data	keeps
expanding,	as	the	date	table	doesn’t	automatically	expand	for	you.

For	 those	 users,	 Power	 Query	 has	 come	 to	 the	 rescue.	 As	 you’ll	 see,	 it	 is
super	easy	to	set	up	a	fully	dynamic	calendar	in	Excel	using	Power	Query.	And
building	on	the	techniques	from	Chapter	23,	you	can	drive	the	whole	thing
based	on	the	value	in	a	few	Excel	cells.

Creating	a	Dynamic	Calendar	Table
Creating	 a	 full	 dynamic	 calendar	 for	 your	 solution	 requires	 a	 total	 of	 four
steps:

1.	Add	a	parameter	table	to	hold	the	calendar	boundaries.

2.	Implement	the	fnGetParameter	function	to	retrieve	the	boundaries.

3.	Build	the	basic	dynamic	calendar	framework.

4.	Add	the	required	calendar	columns.

Building	 on	 the	methods	 explored	 in	 Chapter	 23,	 in	 this	 chapter	 you’ll	 see
that	this	process	is	actually	quite	quick	to	set	up.

Step	1:	Adding	a	Parameter	Table
For	 this	 example,	 you’ll	 start	 from	 a	 completely	 blank	workbook,	 although
you	could	easily	retrofit	this	into	an	existing	model	as	well.	If	you	happen	to
already	 have	 a	 Parameter	 table	 in	 your	 solution,	 you	 can	 simply	 add	 new
fields	to	it.	If	not,	you’ll	have	to	build	the	table	from	scratch.

Remember	the	key	pieces	here	as	you	build	your	table:

The	table	must	be	called	Parameters
There	must	be	a	Parameter	column	and	a	Value	column

You	should	build	the	table	to	hold	the	start	and	end	dates:

Start	Date	1/1/2014
End	Date	=EOMONTH(TODAY(),0)

When	the	setup	is	complete,	the	table	will	look	as	shown	below:

Figure	308 The	Parameters	table.

The	EOMONTH()	function	has	the	following	syntax:
=EOMONTH(start_date,months)

If	you	use	0	for	the	months	parameter,	the	function	will	return	the	last	day	of
the	given	month.	If	you	provide	-1,	it	will	be	the	end	of	the	previous	month,
and	if	you	use	a	positive	value	of	3,	the	function	will	give	you	the	end	of	the
month	3	months	after	 the	provided	date.	This	 function	 is	very	useful	when
driving	your	calendar	table.

Step	 2:	 Implementing	 the	 fnGetParameter
Function
Once	the	table	is	built,	you	can	create	the	fnGetParameter	function:

Open	the	Ch24	Examples\fnGetParameter.txt	file
Copy	the	entire	contents	of	the	text	file
Create	a	new	query	→	From	Other	Sources	→	Blank	Query
Go	to	Home	→	Advanced	Editor
Highlight	all	the	code	in	the	window	→	Ctrl+V	→	Done

Rename	the	query	fnGetParameter

The	fnGetParameter	function	is	now	installed	as	well,	ready	to	be	used:

Figure	309 The	fnGetParameter	function	is	ready	to	go.

Step	3:	Building	the	Basic	Calendar	Framework
With	the	groundwork	quickly	laid,	you	can	now	get	to	the	real	task	at	hand:
building	 the	 calendar.	 Rather	 than	 exit	 the	 Power	 Query	 editor,	 you	 can
create	a	new	query	right	inside	it:

Go	to	Home	→	New	Source	→	Other	Sources	→	Blank	Query
Rename	the	query	Calendar

You	now	have	a	new	query	with	nothing	in	it	at	all:

Figure	310 Starting	the	calendar	from	a	clean	slate.

An	easier	way	to	start	building	the	calendar,	believe	it	or	not,	is	to	start	from
a	simple	list.	Click	inside	the	formula	bar	and	enter	the	following	formula:

={1..10}

This	creates	a	list	from	one	to	ten:

Figure	311 You	now	have	a	simple	list.

Next,	convert	 this	 list	 into	a	 table	and	see	what	happens	 if	you	change	the
resulting	column	into	dates:

Go	to	List	Tools	→	Transform	→	To	Table
Leave	the	default	options	and	click	OK
Right-click	Column1	→	Change	Type	→	Date
Right-click	Column	1	→	Rename	→	Date

Although	it’s	not	exactly	the	date	range	you’re	after,	you	do	actually	get	the
beginning	of	a	calendar	table:

Figure	312 It’s	a	calendar	table	but	a	little	out	of	date!

Even	 though	 it	 doesn’t	 necessarily	 look	 like	 it,	 you’re	 in	 really	 good	 shape
here.	 Remember	 that	 parameter	 table	 you	 set	 up?	What	 if	 you	 inserted	 a
couple	of	 steps	 at	 the	beginning	of	 this	query	 to	extract	 the	 start	 and	end
dates	and	tried	to	feed	those	into	the	list	instead	of	using	1	to	10?	Try	it:

Go	to	Home	→	Advanced	Editor
Immediately	 after	 the	 let	 line,	 add	 the	 following	 two	 lines	 of	 M
code:
startdate	=	fnGetParameter(“Start	Date”),

enddate	=	fnGetParameter(“End	Date”),

Click	Done

At	this	point,	it’s	a	good	idea	to	just	check	both	steps	and	make	sure	they	are
actually	returning	the	date	that	you’re	expecting	them	to	return.

Figure	313 startdate	is	returning	a	date	as	expected.

With	 the	variables	now	holding	 the	start	and	end	dates,	you	can	sub	 them
into	the	Source	line,	replacing	the	1	and	10	you	put	in	as	placeholders	earlier:

Select	the	Source	step
Edit	the	formula	in	the	formula	bar	to	read	as	shown	below:
=	{startdate..enddate}

Press	Enter

Unfortunately,	things	go	sideways:

Figure	314 What	in	the	world	does	this	mean?

This	error	message	isn’t	extremely	clear.	Better	wording	would	indicate	that
Power	Query	can’t	use	the	..	operator	unless	it	has	numbers	on	either	side.
You	 provided	 dates,	 not	 numbers.	 And	while	 you	 know	 that	 dates	 are	 just
numbers	anyway,	Power	Query	isn’t	quite	as	forgiving.

This	 is	 not	 a	 show-stopper	 by	 any	means.	 It	 just	means	 that	 you	 need	 to
convert	 these	 dates	 into	 their	 date	 serial	 numbers.	 Once	 they	 are	 values,
Power	Query	will	be	able	to	work	with	them.	Here’s	what	you	do:

Go	to	Home	→	Advanced	Editor
Replace	the	startdate	and	enddate	lines	with	the	following:
startdate	=	Number.From(fnGetParameter(“Start	Date”)),

enddate	=	Number.From(fnGetParameter(“End	Date”)),

Click	Done
Select	the	startdate	step

startdate	is	now	converted	to	the	date’s	serial	number,	41640.	If	you	step	to
the	end	of	the	query,	you	can	see	that	you	now	have	a	working	calendar	that
runs	from	January	1,	2014,	through	the	ending	date	provided	by	your	Excel
table:

Figure	315 The	Calendar	table	is	ready	for	use.

Step	4:	Adding	Required	Calendar	Columns
With	the	Calendar	table	set	up	and	covering	your	date	range,	it’s	now	time	to
add	the	required	columns	to	it.	This	is	actually	pretty	easy:

Select	the	Date	column	→	Add	Column	→	Date	→	Year	→	Year
Select	the	Date	column	→	Add	Column	→	Date	→	Month	→	Month
Select	the	Date	column	→	Add	Column	→	Date	→	Day	→	Day

As	you	can	see,	the	Calendar	table	is	really	starting	to	take	shape:

Figure	316 Building	out	the	required	columns	in	the	Calendar	table.

Power	Query	has	a	variety	of	formats	that	are	very	easy	to	add	to	the	table.
However,	there	are	also	some	formats	that	don’t	exist.

Power	Query	Date	Functions
Many	 of	 Power	 Query’s	 date	 functions	 are	 different	 from	 Excel’s—some
subtly	and	others	not	so	subtly.	Therefore,	the	following	pages	give	you	the
means	to	easily	work	out	in	Power	Query	what	you	already	know	how	to	do
in	Excel.

Excel	Date	Functions
Excel	 has	 a	 variety	 of	 date	 functions	 that	 can	 be	 of	 great	 benefit	 when
building	 the	 Parameters	 table	 to	 drive	 your	 calendar.	 Each	 of	 them	 is
explicitly	for	use	in	Excel	(not	Power	Query)	and	can	be	used	to	drive	either
start	or	end	dates	to	give	yourself	a	range	that	is	scoped	nicely	to	your	needs.

To	Return Formula

The	current	date TODAY()

End	of	the	current	month EOMONTH(TODAY(),0)

End	of	last	month EOMONTH(TODAY(),-1)

End	of	next	month EOMONTH(TODAY(),1)

End	of	the	current	year EOMONTH(TODAY(),12-MONTH(TODAY()))

End	of	year	for	date	in	B25 EOMONTH(B25,12-MONTH(B25))

Date	 Function	 Equivalents:	 Extracting	 Date
Parts
Like	Excel,	Power	Query	also	has	functions	specifically	targeted	at	returning
parts	 of	 dates	 or	 offsetting	 dates.	 Some	 key	 conversions	 you	 will	 want	 to
know	are	listed	here:

Excel	Formula Power	Query	Version

DAY([Date]) Date.Day([Date])

MONTH([Date]) Date.Month([Date])

YEAR([Date]) Date.Year([Date])

WEEKNUM([Date]) Date.WeekOfYear([Date])

WEEKDAY([Date]) Date.DayOfWeek([Date])

EOMONTH([Date],0) Date.EndOfMonth([Date])

EOMONTH([Date],-1)+1 Date.StartOfMonth([Date])

Date	Function	Equivalents:	Adding	Dates
You’re	 likely	 to	be	frustrated	 if	you	try	to	take	a	valid	date	or	 time	and	 just
add	 a	 value	 to	 it	 in	 order	 to	 increment	 it.	 Even	 though	 you	 know	 that	 all
dates	 are	 based	 on	 a	 date	 serial	 number,	 Power	 Query	 cannot	 implicitly
convert	the	data	type	like	Excel	can.	For	this	reason,	there	are	a	collection	of
Date.Addx	functions	to	use	for	this	purpose:

Adding	x Excel	Formula Power	Query	Version

Days [Date]+x Date.AddDays([Date],x)

Months EDATE([Date],x) Date.AddMonths([Date],x)

Years EDATE([Date],12*x) Date.AddYears([Date],x)

Weeks [Date]+7*x Date.AddWeeks([Date],x)])

Date	 Function	 Equivalents:	 Returning	 Text
Dates
In	order	to	convert	and	return	dates	in	a	textual	format,	you	would	use	the
TEXT()	 function	 in	 Excel.	 In	 Power	 Query,	 the	 equivalent	 functions	 are
provided	by	Date.ToText(),	 but	 they	 have	 an	 additional	wrinkle:	Not	 only	 is
the	function	case	sensitive,	but	so	are	the	parameters.

To	Return Excel	Formula Power	Query	Version

Sun Text([Date],“ddd”) Date.ToText([Date],“ddd”)

Sunday Text([Date],“dddd”) Date.ToText([Date],“dddd”)

Aug Text([Date],“mmm”) Date.ToText([Date],“MMM”)

August Text([Date],“mmmm”) Date.ToText([Date],“MMMM”)

Aug	9,	2015 Text([Date],“mmm	d,	yyyy”) Date.ToText([Date],“MMM	d,	yyyy”)

Aug	09,	2015 Text([Date],“mmm	dd,	yyyy”) Date.ToText([Date],“MMM	dd,	yyyy”)

Dealing	with	Date	Conversion	Errors
Many	of	the	functions	listed	above	require	a	date	or	datetime	data	type	as	an
input	and	will	return	an	error	if	an	alternate	data	type	is	provided.	To	guard
against	 this	 situation,	 you	 can	 wrap	 the	 [Date]	 column	 input	 with	 the
Date.From	function	as	shown	here:

=Date.AddDays(Date.From([DateColumn]),1)

Chapter	25	Query	Organization
With	all	the	work	you’ve	done	learning	Power	Query,	you	wouldn’t	expect	to
suddenly	get	hit	by	an	error	when	trying	to	merge	two	tables.	Unfortunately,
this	is	a	real	possibility	if	the	tables	come	from	two	different	data	sources.

The	Formula.Firewall	Error
One	of	 the	 things	 that	 you	haven’t	 seen	 so	 far	 in	 this	 book	 is	 the	dreaded
Formula.Firewall	error,	but	it	can	be	quite	a	shock	when	it	hits	you.	And	while
there	are	strategies	for	avoiding	it,	it	is	best	if	you	know	up	front	what	causes
this	nasty	error	message	to	appear.

Triggering	the	Formula.Firewall	Error
In	the	timesheet	example	that	was	used	through	several	chapters,	recall	that
you	 built	 a	 fairly	 robust	 solution.	 The	 solution	 file	 is	 saved	 in	 a	 specific
location,	 and	 the	 data	 files	 are	 stored	 in	 the	 Source	 Files	 subfolder,	 which
hangs	off	 the	solution	directory.	You’ve	repurposed	code	to	 import	a	single
timesheet,	 turning	 it	 into	a	 function	and	 leveraging	 it	 to	preprocess	 all	 the
files	 in	 the	Source	Files	directory	 so	you	can	combine	 them	afterward.	The
data	lands	nicely	in	an	Excel	worksheet	(or	the	Power	Pivot	Data	Model	if	you
were	inclined	to	push	it	there).	What	could	possibly	go	wrong?

A	scope	change.	That’s	what.	Suppose	your	manager	tells	you	that	he	wants
the	department	for	each	employee	merged	in	with	the	data	set.

You’ve	 got	 the	 employee	 records	 stored	 in	 another	 Excel	 file	 with	 each
employee’s	name	and	department.	You	know	you	can	import	from	Excel	files,
and	you	know	how	to	merge	data	sets	together.	How	hard	can	it	be?	Try	it	to
see:

Open	Ch25	Examples\Query	Organization.xlsx
Create	a	new	query	→	From	File	→	From	Excel	Workbook
Navigate	to	Ch25	Examples\Departments.xlsx
Select	the	EmployeeDepts	table

Figure	317 Importing	the	EmployeeDepts	table.

This	table	looks	pretty	good.	In	fact,	it	looks	so	good,	you	try	just	loading	it	to
a	connection	right	away,	as	it	really	doesn’t	need	any	modification	at	all:

Click	 the	 arrow	 on	 the	 Load	 option	 →	 Load	 To…	→	 Only	 Create
Connection

You	get	a	nice	new	EmployeeDepts	query	 in	your	Workbook	Queries	pane,
and	all	is	looking	good	so	far.

Figure	318 Things	 are	 looking	 positive	 so
far.

Now	merge	these	tables	together:

Right-click	the	Timesheets	query	→	Edit
Go	to	Home	→	Merge	Queries
Choose	 to	 merge	 the	 EmployeeDepts
table
Select	 the	 Employee	 column	 on	 each
table

Oddly,	Power	Query	is	unable	to	determine	how	many	rows	will	match:

Figure	319 Why	is	Power	Query	having	matching	issues?

Never	 mind	 this.	 Click	 OK	 and	 hope	 for	 the	 best.	 And	 boom,	 you	 get	 the
dreaded	Formula.Firewall	message:

Figure	320 The	dreaded	Formula.Firewall	rears	its	ugly	head.

This	message	 is	a	bit	 intimidating.	 In	English,	what	 it	 is	 trying	 to	say	 is	 that
you	 have	 connected	 to	 two	 completely	 different	 data	 sets	 using	 the	 same
query.	 It	 doesn’t	matter	 if	 you	are	working	with	 two	 tables	 from	 the	 same
workbook;	they	are	seen	as	two	data	sets,	and	Power	Query	doesn’t	like	this.

Avoiding	the	Formula.Firewall	Error
So	how	do	you	fix	this	problem?	You	avoid	the	issue,	and	here’s	how:

Delete	the	Merged	Queries	step
Close	the	Power	Query	editor
Go	 to	 the	 Workbook	 Queries	 pane	 →	 right-click	 the	 Timesheets
query	→	Load	To…
Change	the	query’s	load	behavior	to	Only	Create	Connection
Confirm	that	you’re	okay	with	Excel	removing	the	table

You	now	have	a	connection-only	pointer	set	up	to	both	the	Timesheets	data
and	the	EmployeeDepts	data.	Create	a	new	query	to	merge	them:

Right-click	the	Timesheets	query	→	Merge
Choose	the	EmployeeDepts	table

Select	the	Employee	column	on	both	tables

Notice	that	this	time	Power	Query	identifies	the	matches:

Figure	321 This	is	much	more	promising.

With	the	merges	apparently	going	to	happen,	you	can	continue	on:

Click	OK
Rename	the	query	to	Consolidated
Expand	NewColumn	→	no	prefix	→	only	the	Department	column
Go	to	Home	→	Close	&	Load	To…	→	Existing	Worksheet
Load	the	data	to	A1	of	the	Timesheets	worksheet

This	time,	it	works:

Figure	322 The	departments	are	merged	into	the	data	set.

Creating	Staging/Loading	Queries

The	 secret	 to	 avoiding	 the	 Formula.Firewall	 error	 is	 to	 separate	 the	 job	 of
connecting	to	the	database	and	loading	to	the	end	destination.	We	call	these
staging	queries	and	loading	queries.

You	use	staging	queries	to	ensure	that	you	create	separate	queries	to	extract
the	initial	data	from	each	data	source.	You	then	do	as	many	transformations
as	possible	in	the	staging	query	in	order	to	get	the	data	into	a	shape	where	it
can	 be	 used	 by	 as	 many	 other	 queries	 as	 possible.	 What	 you	 never	 do,
however,	is	try	to	merge	to	another	data	source	or	load	the	end	result	into	a
worksheet	of	the	Data	Model.	Both	of	those	tasks	are	reserved	for	a	loading
query.

A	 loading	query	 is	 designed	 to	pull	 data	 from	one	or	more	 staging	queries
and	merge	 or	 append	 as	 required	 before	making	 any	 final	 transformations
that	are	needed.	You	then	set	up	these	queries	to	load	the	output	to	the	final
destination,	whether	it’s	the	worksheet	or	the	Data	Model.

Visually,	the	process	looks	as	follows:

Figure	323 Organizing	staging	and	loading	queries.

Technically,	 combining	 any	 two	 different	 data	 sources	 can	 cause	 a
Formula.Firewall	error	to	appear;	even	trying	to	inject	a	parameter	from	an
Excel	 parameter	 table	 can	 trigger	 the	 error.	 If	 you	 get	 a	 Formula.Firewall
error	when	trying	to	nest	a	dynamic	parameter	call	in	the	middle	of	a	query,
try	 to	 declare	 your	 variable	 up	 front	 rather	 than	 avoid	 the	 variable
declaration	and	nest	the	function	later	in	your	code.	This	often	resolves	that
issue.

Caveats
When	working	with	 staging	 and	 loading	queries,	 you	need	 to	 be	 careful	 in
certain	 cases,	 especially	 when	 the	 data	 source	 you	 connect	 to	 can	 take
advantage	of	 query	 folding	 to	 improve	performance.	 The	 reason	 for	 this	 is

that	query	folding	can	be	executed	only	from	the	primary	connection	to	the
data	source	(the	staging	query).

When	 using	 a	 staging/loading	 approach	 against	 a	 database	 that	 supports
query	 folding,	 you	 should	 always	 try	 to	 accomplish	 as	 many	 filtering	 and
grouping	 operations	 as	 you	 can	 in	 the	 staging	 query.	 This	will	 allow	Power
Query	to	pass	the	processing	job	back	to	the	database.	As	soon	as	you	move
out	 of	 your	 staging	 query	 into	 a	 secondary	 staging	 query	 or	 the	 loading
query,	no	more	commands	can	be	passed	back	to	the	database	to	be	folded,
which	 means	 Power	 Query	 has	 to	 do	 the	 processing	 work.	 This	 can
significantly	slow	down	the	process.	It	may	also	make	sense	to	make	several
connections	 to	 the	 database	 to	 pull	 individual	 data	 sets,	 allowing	 the
database	to	do	the	heavy	lifting	for	you	since	databases	are	optimized	for	the
sorting,	filtering,	and	grouping	operations.

By	 contrast,	 if	 you	 are	 targeting	 your	 solution	 against	 sources	 that	 don’t
support	query	folding	(such	as	text	or	Excel	 files),	 it’s	a	good	 idea	to	create
one	staging	query	 to	pull	 in	 the	data	and	cut	 it	down	as	much	as	possible.
Then	you	can	create	as	many	secondary	staging/loading	queries	to	reshape
the	data	as	needed	in	order	to	get	it	into	your	model.	Since	there	is	no	ability
to	 take	advantage	of	a	more	efficient	processing	engine,	you	want	 to	bring
the	data	in	once	and	try	to	make	sure	each	step	works	with	as	few	records	as
possible	to	improve	processing	time.

You	 should	 also	 be	 conscious	 of	 not	 trying	 to	 set	 up	 too	 many	 levels	 of
staging	queries	between	your	data	source	and	your	loading	queries.	Whereas
using	 one	 staging	 query	 feeding	 one	 loading	 query	 can	 be	 quite	 easy	 to
follow,	 things	 get	 much	 more	 complicated	 when	 you	 start	 feeding	 data
through	 five	 or	more	 intermediate	 staging	 queries	 on	 the	 way	 to	 the	 end
result.	 It’s	a	 longer	trail	 to	process,	which	could	have	performance	 impacts,
and	most	certainly	there	will	be	a	 longer	trail	to	audit	should	something	go
wrong.	 Keeping	 the	 query	 flow	 tighter	will	 help	 you	when	 you’re	 trying	 to
debug	and	maintain	your	queries.

You	 should	 also	 be	 aware	 that	 Power	 BI	 doesn’t	 generally	 appreciate	 long
trails	 of	 queries	 using	 the	 staging	 and	 loading	 query	 approach.	 If	 you	 are
intending	to	push	your	solution	to	Power	BI,	 it	 is	a	good	 idea	to	try	to	keep
the	approach	to	a	single	query	if	possible	and	limit	the	number	of	steps	if	not.

Keeping	Queries	Organized
As	 you	 build	more	 and	more	 Power	 Query	 queries,	 you’ll	 find	 that	 things
start	to	get	a	bit	unorganized	in	the	Workbook	Queries	pane.	As	it	happens,

there	are	a	couple	ways	you	can	keep	a	handle	on	this	issue.

Changing	Query	Display	Order
As	you	start	building	queries,	Power	Query	will	just	add	them	to	the	bottom
of	the	list,	in	sequential	order.	You	can,	however,	change	the	order	in	which
these	 queries	 are	 presented	 in	 the	 Workbook	 Queries	 pane	 (and	 Power
Query	Navigator	 inside	 the	Power	Query	editor).	 To	 change	where	a	query
shows	in	relation	to	the	others,	follow	these	steps:

Right-click	your	query
Choose	Move	Up	(or	Move	Down)

Figure	324 Moving	query	positions.

Grouping	Queries
Ordering	 is	 great,	 but	 it	 doesn’t	 help	 you	 categorize	 queries	 very	 easily.
Especially	when	using	the	staging	and	loading	approach,	it	is	very	helpful	to
create	groups	in	which	to	store	each	query.	Here’s	how:

Right-click	 the	 fnGetTimesheet	 query	 →	 Move	 to	 Group	 →	 New
Group…
Call	the	new	group	Functions

Figure	325 Classifying	functions.

You	can	now	move	the	fnGetParameter	into	the	Functions	group	as	well:

Right-click	fnGetParameter	→	Move	to	Group	→	Functions

It’s	 then	 just	 a	 simple	 matter	 of	 creating	 new	 groups	 for	 the	 staging	 and
loading	queries	as	well:

Figure	326 All	queries,	nicely	organized.

This	 approach	 works	 very	 nicely	 for	 keeping	 things	 organized,	 and	 it	 also
gives	you	the	ability	to	quickly	scan	the	queries	to	see	 if	 they	are	set	up	as
expected.	 If	 you	 see	 the	 text	 “x	 rows	 loaded”	 under	 a	 staging	 query,	 you
know	it’s	not	actually	taking	a	specific	staging	role,	and	you	can	either	fix	it	or
move	it	to	the	Load	group.

In	addition	to	being	able	to	perform	the	reordering	and	grouping	in	the	Excel
interface,	 these	 features	 are	 also	 supported	 in	 the	Power	Query	editor,	 via
the	Navigator	pane:

Figure	327 Organizing	Power	Query	queries	in	the	Navigator	pane.

Index
A
Add	index	column	159,	223

Adding	dates	269

Add	items	92

Addition	175

AdventureWorks	81

Aggregating	while	grouping	144

All	files	in	a	folder	41

AND()	equivalent	245

Any	data	type	119

Appending	any	type	122

Appending	operations	33

Append	query	35

Excel	vs	Power	Query	icons	37

At	the	left-most	delimiter	77

Authentication	options

for	web	data	127

Averaging	145

Azure	81

B
Banding	levels	246

Base	0	versus	base	1	176

Begins	with	xls	58

Benefit	versus	time	3

Binaries	209

Blank	query	20

Budget	requests	via	e-mail	137

C
Calendar

appointments	from	Exchange	137

tables	263

Calling	a	function	237

Case	sensitive	formulas	176

Changing	type	15

Chrome	developer	tools	131

CLEAN()	equivalent	72

Close	&	load	16

Collapsing	fields	93

Combining	worksheets	53

Comments	220

Concatenation	issues	177

Conditional	logic	191

Configuration	window	24

Connection-only	query	97

Connections,	managing	84

Consecutive	numbers	198

Consolidating	tables	53

Content	column	42

Corrupting	your	model	115

Counting	145

Csv.Document	48

CSV,	importing	from	13

Currency.From	179

Custom.Column1	49

Custom	columns	173

Custom	functions	233

D
Dangers	115

Databases	81

Data	math	177

Data	model	dangers	115

Data	monkey	1

Data	refresh	error	113

Data	types	119

best	practices	124

Date.From	178

Date.FromText	178

Date	functions	267

Date	modified	79

Date	serial	numbers	120

Dates	from	text	47

Date.ToText	178

Date	types	28

DD/MM/YYYY	28

Debugging	239

Decimal.From	179

Define	once	6

Distinct	count	145

Division	175

Don’t	aggregate	160

Double-headed	arrow	49,	86

Duplicate	spaces	73

Duplication	of	data	60

Duration.From	179

Duration.FromText	179

Dynamic	headers	101

Dynamic	named	ranges	19

Dynamic	parameter	tables	257

E
Each	row	220

End	of	month	47

Ends	with	57

Errors	209

are	exciting	75

filtering	56

row-level	209

step-level	209

ETL	5

Example	files	10

Excel.CurrentWorkbook()	53,	62

Excel.Workbook([Content])	62

Exchange	data	137

best	practices	141

Expand	icon	59

for	lists	201

Expand	solution	to	many	files	50

Explicit	vs	implicit	conversion	177

Exponents	use	power	not	^	175

Extracting	date	parts	268

Extract,	transform,	load	5

F
File	from	folder	79

File	properties,	preserving	46

Files

listing	from	a	folder	41

sample	workbooks	for	book	10

Filling

horizontally	153

vertically	152

Filtering	errors	56

FIND()	equivalent	185

Fire	hose	first	inch	36

First	row	as	headers	26

fnGetParameter()	259

fnSWITCH()	254

Folder,	import	all	files	41

Formula.Firewall	error	271

Formulas	173

case	sensitive	176

discovering	functions	175

From	web	127

Functions	210

Future-proofing	41

fx	button	225

G
Garbage	columns	76

Gear	icon	24

Google	analytics	94

Grouping	queries	276

Grouping	via	a	query	143

H
Header	rows,	extra	23

HTML	navigating	131

I
Icon	to	load	all	42

IF()	equivalent	193

IFERROR()	equivalent	192

Implicit	vs	explicit	conversion	177

Importing	13

Excel	data	16

from	dynamic	ranges	19

from	named	ranges	18

web	data	127

Inconsistent	alignment	71

INDEX()	19

Int64.From	179

IT	alert	dashboard	137

K
KPIs	89

L
Learning	map	7

LEFT()	equivalent	180

LEN()	equivalent	183

Line	breaks	in	M	218

Linking	steps	in	M	217

List	files	in	folder	41

List	from	table	columns	199

List	objects	196

Lists	of	lists	200

List	Tools	tab	in	ribbon	196

List	to	table	198

Live	versus	saved	62

Loading

connection	only	107

from	Exchange	137

to	data	model	109

to	Power	Pivot	2010	109,	111

to	tables	107

Locale	29

Logical	expressions	191

M
M

each	row	220

getting	started	with	173

line	breaks	218

special	characters	220

#“syntax”	217

tying	steps	together	217

understanding	215

Mail,	loading	137

Managing	connections	84

Many-to-many	joins	100

Max	145

Median	145

Meeting	requests	137

Merge	columns	76

Merging	steps	15

Merging	tables	97

Middle	of	data	set	223

MID()	equivalent	187

Min	145

MM/DD/YYYY	28

Modulo	column	159

Most	recently	modified	79

Move	down	27

Multiplication	175

N
Name	conflicts	18

Named	ranges,	defining	18

Navigating	HTML	131

Navigator	85

Nondelimited	text	71

Nonprinting	characters	71

Null	values	39

Number.From	179

Number.FromText	179

Number.ToText	178

O
Objects	195

Functions	210

Lists	196

Record	201

Tables	195

Values	208

ODBC	81

OK	is	greyed	out	98

One-to-one	joins	99

Operating	on	each	row	220

Optimization	96

OR()	equivalent	243

Organizing	queries	275

P
Parameter	tables	257

People,	from	Exchange	137

Percentage	of	total	149

PivotTable

inserting	43

refreshing	38

Pointer	queries	97

Portability	of	Exchange	queries	141

Power	for	exponents	175

Power	Update	171

pqVLOOKUP	247

Preserving	file	properties	46

Preview	a	field	48

Preview	window	140

Previous	order	date	229

Previous	row	229

Print	area	as	dynamic	range	56

Promoted	headers	14

Q
Query	folding	95

Query	name	107

R
Reach	of	tools	4

Rearranging	steps	27

Recently	modified	file	79

Record	objects	201

from	table	row	205

to	table	203

Recursion	of	folders	46

Reduce	rows	56,	72

Referring	to	previous	step	225

Refresh	all	45

Refreshing	165

every	x	minutes	166

methods	for	16

on	workbook	open	166

via	Power	Update	171

via	properties	165

with	VBA	166

Regional	settings	29

Relationship	detection	86

Remove	errors	56

Remove	other	columns	86

Removing	rows	26

Removing	steps	24

Renaming	column	14

Repeating	groups	63

Repeating	headers	71

Repivoting	data	65

Replace	$	with	nothing	33

Retroactive	data	66

Retrofitting	for	translation	102

Returning	text	dates	269

RIGHT()	equivalent	182

Rounding	149

Row-level	errors	209

S

Sample	files	10

Saved	versus	live	62

Sequential	nature	46

Single	column	error	24

Source,	changing	78

Spaces,	duplicate	73

Split	by	column	26

Split	by	position	73

SQL	ninja	96

SQL	Server	81

SQL	Server	Analysis	Services	88

SSAS	88

SSMS	96

Stacked	tables	158

Staging/loading	queries	274

Step-level	errors	209

Subtraction	175

Summing	145

Survey	data	via	e-mail	137

SWITCH()	equivalent	252

T
Table.Max	147

Table	name	in	Power	Pivot	112

Tables

objects	195

official	Excel	table	17

versus	ranges	21

versus	views	96

Tasks,	from	Exchange	137

Text

functions	179

non-delimited	71

to	dates	47

txt	instead	of	CSV	25

Text.From	177

Time.From	179

Time.FromText	179

Time.ToText	178

Top	seller	147

To	table	198

Training	workshops	7

Translation	table	102

Transposing	data	153

stacked	tables	158

TRIM()	equivalent	72

Try	…	otherwise	192

U
Unpivoting	data	63

locking	columns	68

with	subcategories	151

Unpivot	other	columns	67

Use	original	column	name	as	prefix	49

V
Values	objects	208

Views	versus	tables	96

VLOOKUP()

for	merging	97

Power	Query	equivalent	245

W
Web	data	127

Web-hosted	files	129

Where	to	find	8

Wikipedia	dangers	134

Workbook	queries	pane,	showing	16

Workbooks,	combining	57

Worksheets,	combining	53

Y
Years,	converting	to	86

Continue	the	Journey

Sharpen	your
Power	Pivot,	Power	Map,
Power	Map,	and	Excel	
skills	with	books	from	
leading	authors.

inside	back	cover	-	page	intentionally	left	blank

	Foreword How Power Query Changed Our Lives
	Introduction: A New Revolution
	Chapter 1 Importing Basic Data
	Chapter 2 Overriding Power Query Defaults
	Chapter 3 Basic Append Operations
	Chapter 4 Importing All Files in a Folder
	Chapter 5 Aggregating Excel Worksheets
	Chapter 6 Unpivoting Data
	Chapter 7 Importing Nondelimited Text Files
	Chapter 8 Importing from Databases
	Chapter 9 Merging Tables and Queries
	Chapter 10 Query Loading Destinations
	Chapter 11 Defining Data Types
	Chapter 12 Importing Web Data
	Chapter 13 Loading Data from Exchange
	Chapter 14 Grouping and Summarizing
	Chapter 15 Transposing and Unpivoting Complex Data
	Chapter 16 Automating Refreshing
	Chapter 17 Power Query Formulas
	Chapter 18 Conditional Logic in Power Query
	Chapter 19 Power Query Objects
	Chapter 20 Understanding the M Language
	Chapter 21 Creating Custom Functions
	Chapter 22 Advanced Conditional Logic
	Chapter 23 Dynamic Parameter Tables
	Chapter 24 Dynamic Calendar Tables
	Chapter 25 Query Organization
	Index

