
M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED

O F F I C I A L M I C R O S O F T L E A R N I N G P R O D U C T

20761A
Querying Data with Transact-SQL

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
ii Querying Data with Transact-SQL

Information in this document, including URL and other Internet Web site references, is subject to change
without notice. Unless otherwise noted, the example companies, organizations, products, domain names,
e-mail addresses, logos, people, places, and events depicted herein are fictitious, and no association with
any real company, organization, product, domain name, e-mail address, logo, person, place or event is
intended or should be inferred. Complying with all applicable copyright laws is the responsibility of the
user. Without limiting the rights under copyright, no part of this document may be reproduced, stored in
or introduced into a retrieval system, or transmitted in any form or by any means (electronic, mechanical,
photocopying, recording, or otherwise), or for any purpose, without the express written permission of
Microsoft Corporation.

Microsoft may have patents, patent applications, trademarks, copyrights, or other intellectual property
rights covering subject matter in this document. Except as expressly provided in any written license
agreement from Microsoft, the furnishing of this document does not give you any license to these
patents, trademarks, copyrights, or other intellectual property.

The names of manufacturers, products, or URLs are provided for informational purposes only and
Microsoft makes no representations and warranties, either expressed, implied, or statutory, regarding
these manufacturers or the use of the products with any Microsoft technologies. The inclusion of a
manufacturer or product does not imply endorsement of Microsoft of the manufacturer or product. Links
may be provided to third party sites. Such sites are not under the control of Microsoft and Microsoft is not
responsible for the contents of any linked site or any link contained in a linked site, or any changes or
updates to such sites. Microsoft is not responsible for webcasting or any other form of transmission
received from any linked site. Microsoft is providing these links to you only as a convenience, and the
inclusion of any link does not imply endorsement of Microsoft of the site or the products contained
therein.

© 2016 Microsoft Corporation. All rights reserved.

Microsoft and the trademarks listed at
http://www.microsoft.com/about/legal/en/us/IntellectualProperty/Trademarks/EN-US.aspx are trademarks of
the Microsoft group of companies. All other trademarks are property of their respective owners

Product Number: 20761A

Part Number (if applicable): X20-96724

Released: 04/2016

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED

MICROSOFT LICENSE TERMS
MICROSOFT INSTRUCTOR-LED COURSEWARE

These license terms are an agreement between Microsoft Corporation (or based on where you live, one of its
affiliates) and you. Please read them. They apply to your use of the content accompanying this agreement which
includes the media on which you received it, if any. These license terms also apply to Trainer Content and any
updates and supplements for the Licensed Content unless other terms accompany those items. If so, those terms
apply.

BY ACCESSING, DOWNLOADING OR USING THE LICENSED CONTENT, YOU ACCEPT THESE TERMS.
IF YOU DO NOT ACCEPT THEM, DO NOT ACCESS, DOWNLOAD OR USE THE LICENSED CONTENT.

If you comply with these license terms, you have the rights below for each license you acquire.

1. DEFINITIONS.

a. “Authorized Learning Center” means a Microsoft IT Academy Program Member, Microsoft Learning

Competency Member, or such other entity as Microsoft may designate from time to time.

b. “Authorized Training Session” means the instructor-led training class using Microsoft Instructor-Led

Courseware conducted by a Trainer at or through an Authorized Learning Center.

c. “Classroom Device” means one (1) dedicated, secure computer that an Authorized Learning Center owns

or controls that is located at an Authorized Learning Center’s training facilities that meets or exceeds the
hardware level specified for the particular Microsoft Instructor-Led Courseware.

d. “End User” means an individual who is (i) duly enrolled in and attending an Authorized Training Session

or Private Training Session, (ii) an employee of a MPN Member, or (iii) a Microsoft full-time employee.

e. “Licensed Content” means the content accompanying this agreement which may include the Microsoft
Instructor-Led Courseware or Trainer Content.

f. “Microsoft Certified Trainer” or “MCT” means an individual who is (i) engaged to teach a training session
to End Users on behalf of an Authorized Learning Center or MPN Member, and (ii) currently certified as a
Microsoft Certified Trainer under the Microsoft Certification Program.

g. “Microsoft Instructor-Led Courseware” means the Microsoft-branded instructor-led training course that
educates IT professionals and developers on Microsoft technologies. A Microsoft Instructor-Led
Courseware title may be branded as MOC, Microsoft Dynamics or Microsoft Business Group courseware.

h. “Microsoft IT Academy Program Member” means an active member of the Microsoft IT Academy
Program.

i. “Microsoft Learning Competency Member” means an active member of the Microsoft Partner Network

program in good standing that currently holds the Learning Competency status.

j. “MOC” means the “Official Microsoft Learning Product” instructor-led courseware known as Microsoft

Official Course that educates IT professionals and developers on Microsoft technologies.

k. “MPN Member” means an active Microsoft Partner Network program member in good standing.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED

l. “Personal Device” means one (1) personal computer, device, workstation or other digital electronic device
that you personally own or control that meets or exceeds the hardware level specified for the particular
Microsoft Instructor-Led Courseware.

m. “Private Training Session” means the instructor-led training classes provided by MPN Members for
corporate customers to teach a predefined learning objective using Microsoft Instructor-Led Courseware.
These classes are not advertised or promoted to the general public and class attendance is restricted to
individuals employed by or contracted by the corporate customer.

n. “Trainer” means (i) an academically accredited educator engaged by a Microsoft IT Academy Program

Member to teach an Authorized Training Session, and/or (ii) a MCT.

o. “Trainer Content” means the trainer version of the Microsoft Instructor-Led Courseware and additional
supplemental content designated solely for Trainers’ use to teach a training session using the Microsoft
Instructor-Led Courseware. Trainer Content may include Microsoft PowerPoint presentations, trainer
preparation guide, train the trainer materials, Microsoft One Note packs, classroom setup guide and Pre-
release course feedback form. To clarify, Trainer Content does not include any software, virtual hard
disks or virtual machines.

2. USE RIGHTS. The Licensed Content is licensed not sold. The Licensed Content is licensed on a one copy
per user basis, such that you must acquire a license for each individual that accesses or uses the Licensed
Content.

2.1 Below are five separate sets of use rights. Only one set of rights apply to you.

a. If you are a Microsoft IT Academy Program Member:

i. Each license acquired on behalf of yourself may only be used to review one (1) copy of the Microsoft
Instructor-Led Courseware in the form provided to you. If the Microsoft Instructor-Led Courseware is
in digital format, you may install one (1) copy on up to three (3) Personal Devices. You may not
install the Microsoft Instructor-Led Courseware on a device you do not own or control.

ii. For each license you acquire on behalf of an End User or Trainer, you may either:
1. distribute one (1) hard copy version of the Microsoft Instructor-Led Courseware to one (1) End

User who is enrolled in the Authorized Training Session, and only immediately prior to the
commencement of the Authorized Training Session that is the subject matter of the Microsoft
Instructor-Led Courseware being provided, or

2. provide one (1) End User with the unique redemption code and instructions on how they can
access one (1) digital version of the Microsoft Instructor-Led Courseware, or

3. provide one (1) Trainer with the unique redemption code and instructions on how they can
access one (1) Trainer Content,

provided you comply with the following:
iii. you will only provide access to the Licensed Content to those individuals who have acquired a valid

license to the Licensed Content,
iv. you will ensure each End User attending an Authorized Training Session has their own valid licensed

copy of the Microsoft Instructor-Led Courseware that is the subject of the Authorized Training
Session,

v. you will ensure that each End User provided with the hard-copy version of the Microsoft Instructor-
Led Courseware will be presented with a copy of this agreement and each End User will agree that
their use of the Microsoft Instructor-Led Courseware will be subject to the terms in this agreement
prior to providing them with the Microsoft Instructor-Led Courseware. Each individual will be required
to denote their acceptance of this agreement in a manner that is enforceable under local law prior to
their accessing the Microsoft Instructor-Led Courseware,

vi. you will ensure that each Trainer teaching an Authorized Training Session has their own valid
licensed copy of the Trainer Content that is the subject of the Authorized Training Session,

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED

vii. you will only use qualified Trainers who have in-depth knowledge of and experience with the
Microsoft technology that is the subject of the Microsoft Instructor-Led Courseware being taught for
all your Authorized Training Sessions,

viii. you will only deliver a maximum of 15 hours of training per week for each Authorized Training
Session that uses a MOC title, and

ix. you acknowledge that Trainers that are not MCTs will not have access to all of the trainer resources
for the Microsoft Instructor-Led Courseware.

b. If you are a Microsoft Learning Competency Member:

i. Each license acquired on behalf of yourself may only be used to review one (1) copy of the Microsoft
Instructor-Led Courseware in the form provided to you. If the Microsoft Instructor-Led Courseware is
in digital format, you may install one (1) copy on up to three (3) Personal Devices. You may not
install the Microsoft Instructor-Led Courseware on a device you do not own or control.

ii. For each license you acquire on behalf of an End User or Trainer, you may either:
1. distribute one (1) hard copy version of the Microsoft Instructor-Led Courseware to one (1) End

User attending the Authorized Training Session and only immediately prior to the
commencement of the Authorized Training Session that is the subject matter of the Microsoft
Instructor-Led Courseware provided, or

2. provide one (1) End User attending the Authorized Training Session with the unique redemption
code and instructions on how they can access one (1) digital version of the Microsoft Instructor-
Led Courseware, or

3. you will provide one (1) Trainer with the unique redemption code and instructions on how they
can access one (1) Trainer Content,

provided you comply with the following:
iii. you will only provide access to the Licensed Content to those individuals who have acquired a valid

license to the Licensed Content,
iv. you will ensure that each End User attending an Authorized Training Session has their own valid

licensed copy of the Microsoft Instructor-Led Courseware that is the subject of the Authorized
Training Session,

v. you will ensure that each End User provided with a hard-copy version of the Microsoft Instructor-Led
Courseware will be presented with a copy of this agreement and each End User will agree that their
use of the Microsoft Instructor-Led Courseware will be subject to the terms in this agreement prior to
providing them with the Microsoft Instructor-Led Courseware. Each individual will be required to
denote their acceptance of this agreement in a manner that is enforceable under local law prior to
their accessing the Microsoft Instructor-Led Courseware,

vi. you will ensure that each Trainer teaching an Authorized Training Session has their own valid
licensed copy of the Trainer Content that is the subject of the Authorized Training Session,

vii. you will only use qualified Trainers who hold the applicable Microsoft Certification credential that is
the subject of the Microsoft Instructor-Led Courseware being taught for your Authorized Training
Sessions,

viii. you will only use qualified MCTs who also hold the applicable Microsoft Certification credential that is
the subject of the MOC title being taught for all your Authorized Training Sessions using MOC,

ix. you will only provide access to the Microsoft Instructor-Led Courseware to End Users, and
x. you will only provide access to the Trainer Content to Trainers.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED

c. If you are a MPN Member:
i. Each license acquired on behalf of yourself may only be used to review one (1) copy of the Microsoft

Instructor-Led Courseware in the form provided to you. If the Microsoft Instructor-Led Courseware is
in digital format, you may install one (1) copy on up to three (3) Personal Devices. You may not
install the Microsoft Instructor-Led Courseware on a device you do not own or control.

ii. For each license you acquire on behalf of an End User or Trainer, you may either:
1. distribute one (1) hard copy version of the Microsoft Instructor-Led Courseware to one (1) End

User attending the Private Training Session, and only immediately prior to the commencement
of the Private Training Session that is the subject matter of the Microsoft Instructor-Led
Courseware being provided, or

2. provide one (1) End User who is attending the Private Training Session with the unique
redemption code and instructions on how they can access one (1) digital version of the
Microsoft Instructor-Led Courseware, or

3. you will provide one (1) Trainer who is teaching the Private Training Session with the unique
redemption code and instructions on how they can access one (1) Trainer Content,

provided you comply with the following:
iii. you will only provide access to the Licensed Content to those individuals who have acquired a valid

license to the Licensed Content,
iv. you will ensure that each End User attending an Private Training Session has their own valid licensed

copy of the Microsoft Instructor-Led Courseware that is the subject of the Private Training Session,
v. you will ensure that each End User provided with a hard copy version of the Microsoft Instructor-Led

Courseware will be presented with a copy of this agreement and each End User will agree that their
use of the Microsoft Instructor-Led Courseware will be subject to the terms in this agreement prior to
providing them with the Microsoft Instructor-Led Courseware. Each individual will be required to
denote their acceptance of this agreement in a manner that is enforceable under local law prior to
their accessing the Microsoft Instructor-Led Courseware,

vi. you will ensure that each Trainer teaching an Private Training Session has their own valid licensed
copy of the Trainer Content that is the subject of the Private Training Session,

vii. you will only use qualified Trainers who hold the applicable Microsoft Certification credential that is
the subject of the Microsoft Instructor-Led Courseware being taught for all your Private Training
Sessions,

viii. you will only use qualified MCTs who hold the applicable Microsoft Certification credential that is the
subject of the MOC title being taught for all your Private Training Sessions using MOC,

ix. you will only provide access to the Microsoft Instructor-Led Courseware to End Users, and
x. you will only provide access to the Trainer Content to Trainers.

d. If you are an End User:
For each license you acquire, you may use the Microsoft Instructor-Led Courseware solely for your
personal training use. If the Microsoft Instructor-Led Courseware is in digital format, you may access the
Microsoft Instructor-Led Courseware online using the unique redemption code provided to you by the
training provider and install and use one (1) copy of the Microsoft Instructor-Led Courseware on up to
three (3) Personal Devices. You may also print one (1) copy of the Microsoft Instructor-Led Courseware.
You may not install the Microsoft Instructor-Led Courseware on a device you do not own or control.

e. If you are a Trainer.
i. For each license you acquire, you may install and use one (1) copy of the Trainer Content in the

form provided to you on one (1) Personal Device solely to prepare and deliver an Authorized
Training Session or Private Training Session, and install one (1) additional copy on another Personal
Device as a backup copy, which may be used only to reinstall the Trainer Content. You may not
install or use a copy of the Trainer Content on a device you do not own or control. You may also
print one (1) copy of the Trainer Content solely to prepare for and deliver an Authorized Training
Session or Private Training Session.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED

ii. You may customize the written portions of the Trainer Content that are logically associated with

instruction of a training session in accordance with the most recent version of the MCT agreement.
If you elect to exercise the foregoing rights, you agree to comply with the following: (i)
customizations may only be used for teaching Authorized Training Sessions and Private Training
Sessions, and (ii) all customizations will comply with this agreement. For clarity, any use of
“customize” refers only to changing the order of slides and content, and/or not using all the slides or
content, it does not mean changing or modifying any slide or content.

2.2 Separation of Components. The Licensed Content is licensed as a single unit and you may not
separate their components and install them on different devices.

2.3 Redistribution of Licensed Content. Except as expressly provided in the use rights above, you may
not distribute any Licensed Content or any portion thereof (including any permitted modifications) to any
third parties without the express written permission of Microsoft.

2.4 Third Party Notices. The Licensed Content may include third party code tent that Microsoft, not the
third party, licenses to you under this agreement. Notices, if any, for the third party code ntent are included
for your information only.

2.5 Additional Terms. Some Licensed Content may contain components with additional terms,
conditions, and licenses regarding its use. Any non-conflicting terms in those conditions and licenses also
apply to your use of that respective component and supplements the terms described in this agreement.

3. LICENSED CONTENT BASED ON PRE-RELEASE TECHNOLOGY. If the Licensed Content’s subject

matter is based on a pre-release version of Microsoft technology (“Pre-release”), then in addition to the
other provisions in this agreement, these terms also apply:

a. Pre-Release Licensed Content. This Licensed Content subject matter is on the Pre-release version of

the Microsoft technology. The technology may not work the way a final version of the technology will
and we may change the technology for the final version. We also may not release a final version.
Licensed Content based on the final version of the technology may not contain the same information as
the Licensed Content based on the Pre-release version. Microsoft is under no obligation to provide you
with any further content, including any Licensed Content based on the final version of the technology.

b. Feedback. If you agree to give feedback about the Licensed Content to Microsoft, either directly or

through its third party designee, you give to Microsoft without charge, the right to use, share and
commercialize your feedback in any way and for any purpose. You also give to third parties, without
charge, any patent rights needed for their products, technologies and services to use or interface with
any specific parts of a Microsoft technology, Microsoft product, or service that includes the feedback.
You will not give feedback that is subject to a license that requires Microsoft to license its technology,
technologies, or products to third parties because we include your feedback in them. These rights
survive this agreement.

c. Pre-release Term. If you are an Microsoft IT Academy Program Member, Microsoft Learning

Competency Member, MPN Member or Trainer, you will cease using all copies of the Licensed Content on
the Pre-release technology upon (i) the date which Microsoft informs you is the end date for using the
Licensed Content on the Pre-release technology, or (ii) sixty (60) days after the commercial release of the
technology that is the subject of the Licensed Content, whichever is earliest (“Pre-release term”).
Upon expiration or termination of the Pre-release term, you will irretrievably delete and destroy all copies
of the Licensed Content in your possession or under your control.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED

4. SCOPE OF LICENSE. The Licensed Content is licensed, not sold. This agreement only gives you some
rights to use the Licensed Content. Microsoft reserves all other rights. Unless applicable law gives you more
rights despite this limitation, you may use the Licensed Content only as expressly permitted in this
agreement. In doing so, you must comply with any technical limitations in the Licensed Content that only
allows you to use it in certain ways. Except as expressly permitted in this agreement, you may not:
• access or allow any individual to access the Licensed Content if they have not acquired a valid license

for the Licensed Content,
• alter, remove or obscure any copyright or other protective notices (including watermarks), branding

or identifications contained in the Licensed Content,
• modify or create a derivative work of any Licensed Content,
• publicly display, or make the Licensed Content available for others to access or use,
• copy, print, install, sell, publish, transmit, lend, adapt, reuse, link to or post, make available or

distribute the Licensed Content to any third party,
• work around any technical limitations in the Licensed Content, or
• reverse engineer, decompile, remove or otherwise thwart any protections or disassemble the

Licensed Content except and only to the extent that applicable law expressly permits, despite this
limitation.

5. RESERVATION OF RIGHTS AND OWNERSHIP. Microsoft reserves all rights not expressly granted to
you in this agreement. The Licensed Content is protected by copyright and other intellectual property laws
and treaties. Microsoft or its suppliers own the title, copyright, and other intellectual property rights in the
Licensed Content.

6. EXPORT RESTRICTIONS. The Licensed Content is subject to United States export laws and regulations.
You must comply with all domestic and international export laws and regulations that apply to the Licensed
Content. These laws include restrictions on destinations, end users and end use. For additional information,
see www.microsoft.com/exporting.

7. SUPPORT SERVICES. Because the Licensed Content is “as is”, we may not provide support services for it.

8. TERMINATION. Without prejudice to any other rights, Microsoft may terminate this agreement if you fail

to comply with the terms and conditions of this agreement. Upon termination of this agreement for any
reason, you will immediately stop all use of and delete and destroy all copies of the Licensed Content in
your possession or under your control.

9. LINKS TO THIRD PARTY SITES. You may link to third party sites through the use of the Licensed

Content. The third party sites are not under the control of Microsoft, and Microsoft is not responsible for
the contents of any third party sites, any links contained in third party sites, or any changes or updates to
third party sites. Microsoft is not responsible for webcasting or any other form of transmission received
from any third party sites. Microsoft is providing these links to third party sites to you only as a
convenience, and the inclusion of any link does not imply an endorsement by Microsoft of the third party
site.

10. ENTIRE AGREEMENT. This agreement, and any additional terms for the Trainer Content, updates and

supplements are the entire agreement for the Licensed Content, updates and supplements.

11. APPLICABLE LAW.

a. United States. If you acquired the Licensed Content in the United States, Washington state law governs
the interpretation of this agreement and applies to claims for breach of it, regardless of conflict of laws
principles. The laws of the state where you live govern all other claims, including claims under state
consumer protection laws, unfair competition laws, and in tort.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED

b. Outside the United States. If you acquired the Licensed Content in any other country, the laws of that
country apply.

12. LEGAL EFFECT. This agreement describes certain legal rights. You may have other rights under the laws
of your country. You may also have rights with respect to the party from whom you acquired the Licensed
Content. This agreement does not change your rights under the laws of your country if the laws of your
country do not permit it to do so.

13. DISCLAIMER OF WARRANTY. THE LICENSED CONTENT IS LICENSED "AS-IS" AND "AS

AVAILABLE." YOU BEAR THE RISK OF USING IT. MICROSOFT AND ITS RESPECTIVE
AFFILIATES GIVES NO EXPRESS WARRANTIES, GUARANTEES, OR CONDITIONS. YOU MAY
HAVE ADDITIONAL CONSUMER RIGHTS UNDER YOUR LOCAL LAWS WHICH THIS AGREEMENT
CANNOT CHANGE. TO THE EXTENT PERMITTED UNDER YOUR LOCAL LAWS, MICROSOFT AND
ITS RESPECTIVE AFFILIATES EXCLUDES ANY IMPLIED WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.

14. LIMITATION ON AND EXCLUSION OF REMEDIES AND DAMAGES. YOU CAN RECOVER FROM

MICROSOFT, ITS RESPECTIVE AFFILIATES AND ITS SUPPLIERS ONLY DIRECT DAMAGES UP
TO US$5.00. YOU CANNOT RECOVER ANY OTHER DAMAGES, INCLUDING CONSEQUENTIAL,
LOST PROFITS, SPECIAL, INDIRECT OR INCIDENTAL DAMAGES.

This limitation applies to
o anything related to the Licensed Content, services, content (including code) on third party Internet

sites or third-party programs; and
o claims for breach of contract, breach of warranty, guarantee or condition, strict liability, negligence,

or other tort to the extent permitted by applicable law.

It also applies even if Microsoft knew or should have known about the possibility of the damages. The
above limitation or exclusion may not apply to you because your country may not allow the exclusion or
limitation of incidental, consequential or other damages.

Please note: As this Licensed Content is distributed in Quebec, Canada, some of the clauses in this
agreement are provided below in French.

Remarque : Ce le contenu sous licence étant distribué au Québec, Canada, certaines des clauses
dans ce contrat sont fournies ci-dessous en français.

EXONÉRATION DE GARANTIE. Le contenu sous licence visé par une licence est offert « tel quel ». Toute
utilisation de ce contenu sous licence est à votre seule risque et péril. Microsoft n’accorde aucune autre garantie
expresse. Vous pouvez bénéficier de droits additionnels en vertu du droit local sur la protection dues
consommateurs, que ce contrat ne peut modifier. La ou elles sont permises par le droit locale, les garanties
implicites de qualité marchande, d’adéquation à un usage particulier et d’absence de contrefaçon sont exclues.

LIMITATION DES DOMMAGES-INTÉRÊTS ET EXCLUSION DE RESPONSABILITÉ POUR LES
DOMMAGES. Vous pouvez obtenir de Microsoft et de ses fournisseurs une indemnisation en cas de dommages
directs uniquement à hauteur de 5,00 $ US. Vous ne pouvez prétendre à aucune indemnisation pour les autres
dommages, y compris les dommages spéciaux, indirects ou accessoires et pertes de bénéfices.
Cette limitation concerne:

• tout ce qui est relié au le contenu sous licence, aux services ou au contenu (y compris le code)
figurant sur des sites Internet tiers ou dans des programmes tiers; et.

• les réclamations au titre de violation de contrat ou de garantie, ou au titre de responsabilité
stricte, de négligence ou d’une autre faute dans la limite autorisée par la loi en vigueur.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED

Elle s’applique également, même si Microsoft connaissait ou devrait connaître l’éventualité d’un tel dommage. Si
votre pays n’autorise pas l’exclusion ou la limitation de responsabilité pour les dommages indirects, accessoires
ou de quelque nature que ce soit, il se peut que la limitation ou l’exclusion ci-dessus ne s’appliquera pas à votre
égard.

EFFET JURIDIQUE. Le présent contrat décrit certains droits juridiques. Vous pourriez avoir d’autres droits
prévus par les lois de votre pays. Le présent contrat ne modifie pas les droits que vous confèrent les lois de votre
pays si celles-ci ne le permettent pas.

Revised July 2013

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
Querying Data with Transact-SQL xi

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
xii Querying Data with Transact-SQL

Acknowledgements
Microsoft Learning would like to acknowledge and thank the following for their contribution towards
developing this title. Their effort at various stages in the development has ensured that you have a good
classroom experience.

Aaron Johal – Content Developer

Aaron Johal is a Microsoft Certified Trainer who splits his time between training, consultancy, content
development, contracting and learning. Since he moved into the non-functional side of the Information
Technology business. He has presented technical sessions at SQL Pass in Denver and at sqlbits in London.
He has also taught and worked in a consulting capacity throughout the UK and abroad, including Africa,
Spain, Saudi Arabia, Netherlands, France, and Ireland. He enjoys interfacing functional and non-functional
roles to try and close the gaps between effective use of Information Technology and the needs of the
Business.

Caroline Eveleigh – Content Developer

Caroline Eveleigh is a Microsoft Certified Professional and SQL Server specialist. She has worked with SQL
Server since version 6.5 and, before that, with Microsoft Access and dBase. Caroline works on database
development and Microsoft Azure projects for both corporates, and small businesses. She is an
experienced business analyst, helping customers to re-engineer business processes, and improve decision
making using data analysis. Caroline is a trained technical author and a frequent blogger on project
management, business intelligence, and business efficiency. Between development projects, Caroline is a
keen SQL Server evangelist, speaking and training on SQL Server and Azure SQL Database.

Ed Harper – Content Developer

Ed Harper is a database developer specializing in Microsoft SQL Server. Ed has worked with SQL Server
since 1999, and has developed and designed transaction-processing and reporting systems for cloud
security, telecommunications, and financial services companies.

Jamie Newman – Content Developer

Jamie Newman became an IT trainer in 1997, first for an IT training company and later for a university,
where he became involved in developing courses as well as training them. He began to specialize in
databases and eventually moved into database consultancy. In recent years he has specialized in SQL
Server and has set up multi user systems that are accessed nationwide. Despite now being more involved
with development work, Jamie still likes to deliver IT training courses when the opportunity arises!

John Daisley – Content Developer
John Daisley is a mixed vendor Business Intelligence and Data Warehousing contractor with a wealth of
data warehousing and Microsoft SQL Server database administration experience. Having worked in the
Business Intelligence arena for over a decade, John has extensive experience of implementing business
intelligence and database solutions using a wide range of technologies and across a wide range of
industries including airlines, engineering, financial services, and manufacturing.

Nick Anderson – Content Developer
Nick Anderson MBCS MISTC has been a freelance Technical Writer since 1987 and Trainer since 1999. Nick
has written internal and external facing content in many business and technical areas including
development, infrastructure and finance projects involving SQL Server, Visual Studio and similar tools.
Nick provides services for both new and existing document processes from knowledge capture to
publishing.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
Querying Data with Transact-SQL xiii

Phil Stollery – Content Developer
Phil has been providing IT consultancy to South West England since graduating in Computer Science. He
has worked with small and large organizations to improve their use of SQL Server, predominantly focusing
on business information and surrounding technologies such as SharePoint. Most recently, Phil worked
with the National Health Service in Gloucestershire on a custom intranet built on SharePoint. A trusted
partner, he can communicate at all levels, from technical staff to senior management. Phil brings a wealth
of experience that enhances any project.

Rachel Horder – Content Developer
Rachel Horder graduated with a degree in Journalism and began her career in London writing for The
Times technology supplement. After discovering a love for programming, Rachel became a full-time
developer, and now provides SQL Server consultancy services to businesses across a wide variety of
industries. Rachel is MCSA certified, and continues to write technical articles and books, including What's
New in SQL Server 2012. As an active member of the SQL Server community, Rachel organizes the Bristol
SQL Server Club user group, runs the Bristol leg of SQL Relay, and is a volunteer at SQLBits.

Simon Butler – Content Developer
Simon Butler FISTC is a highly-experienced Senior Technical Writer with nearly 30 years' experience in the
profession. He has written training materials and other information products for several high-profile
clients. He is a Fellow of the Institute of Scientific and Technical Communicators (ISTC), the UK
professional body for Technical Writers/Authors. To gain this, his skills, experience and knowledge have
been judged and assessed by the Membership Panel. He is also a Past President of the Institute and has
been a tutor on the ISTC Open Learning course in Technical Communication techniques. His writing skills
are augmented by extensive technical skills gained within the computing and electronics fields.

Geoff Allix – Technical Reviewer
Geoff Allix is a Microsoft SQL Server subject matter expert and professional content developer at Content
Master—a division of CM Group Ltd. As a Microsoft Certified Trainer, Geoff has delivered training courses
on SQL Server since version 6.5. Geoff is a Microsoft Certified IT Professional for SQL Server and has
extensive experience in designing and implementing database and BI solutions on SQL Server
technologies, and has provided consultancy services to organizations seeking to implement and optimize
database solutions.

Lin Joyner – Technical Reviewer

Lin is an experienced Microsoft SQL Server developer and administrator. She has worked with SQL Server
since version 6.0 and previously as a Microsoft Certified Trainer, delivered training courses across the UK.
Lin has a wide breadth of knowledge across SQL Server technologies, including BI and Reporting Services.
Lin also designs and authors SQL Server and .NET development training materials. She has been writing
instructional content for Microsoft for over 15 years.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
xiv Querying Data with Transact-SQL

Contents
Module 1: Introduction to Microsoft SQL Server 2016

Module Overview 1-1

Lesson 1: The Basic Architecture of SQL Server 1-2

Lesson 2: SQL Server Editions and Versions 1-6

Lesson 3: Getting Started with SQL Server Management Studio 1-9

Lab: Working with SQL Server 2016 Tools 1-16

Module Review and Takeaways 1-19

Module 2: Introduction to T-SQL Querying
Module Overview 2-1

Lesson 1: Introducing T-SQL 2-2

Lesson 2: Understanding Sets 2-12

Lesson 3: Understanding Predicate Logic 2-15

Lesson 4: Understanding the Logical Order of Operations in SELECT
Statements 2-17

Lab: Introduction to T-SQL Querying 2-22

Module Review and Takeaways 2-25

Module 3: Writing SELECT Queries
Module Overview 3-1

Lesson 1: Writing Simple SELECT Statements 3-2

Lesson 2: Eliminating Duplicates with DISTINCT 3-6

Lesson 3: Using Column and Table Aliases 3-11

Lesson 4: Writing Simple CASE Expressions 3-16

Lab: Writing Basic SELECT Statements 3-19

Module Review and Takeaways 3-25

Module 4: Querying Multiple Tables
Module Overview 4-1

Lesson 1: Understanding Joins 4-2

Lesson 2: Querying with Inner Joins 4-7

Lesson 3: Querying with Outer Joins 4-11

Lesson 4: Querying with Cross Joins and Self Joins 4-15

Lab: Querying Multiple Tables 4-19

Module Review and Takeaways 4-24

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
Querying Data with Transact-SQL xv

Module 5: Sorting and Filtering Data
Module Overview 5-1

Lesson 1: Sorting Data 5-2

Lesson 2: Filtering Data with Predicates 5-6

Lesson 3: Filtering Data with TOP and OFFSET-FETCH 5-10

Lesson 4: Working with Unknown Values 5-16

Lab: Sorting and Filtering Data 5-20

Module Review and Takeaways 5-25

Module 6: Working with SQL Server 2016 Data Types
Module Overview 6-1

Lesson 1: Introducing SQL Server 2016 Data Types 6-2

Lesson 2: Working with Character Data 6-11

Lesson 3: Working with Date and Time Data 6-21

Lab: Working with SQL Server 2016 Data Types 6-27

Module Review and Takeaways 6-33

Module 7: Using DML to Modify Data
Module Overview 7-1

Lesson 1: Adding Data to Tables 7-2

Lesson 2: Modifying and Removing Data 7-8

Lesson 3: Generating Automatic Column Values 7-13

Lab: Using DML to Modify Data 7-16

Module Review and Takeaways 7-19

Module 8: Using Built-In Functions
Module Overview 8-1

Lesson 1: Writing Queries with Built-In Functions 8-2

Lesson 2: Using Conversion Functions 8-8

Lesson 3: Using Logical Functions 8-14

Lesson 4: Using Functions to Work with NULL 8-18

Lab: Using Built-in Functions 8-22

Module Review and Takeaways 8-26

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
xvi Querying Data with Transact-SQL

Module 9: Grouping and Aggregating Data
Module Overview 9-1

Lesson 1: Using Aggregate Functions 9-2

Lesson 2: Using the GROUP BY Clause 9-10

Lesson 3: Filtering Groups with HAVING 9-16

Lab: Grouping and Aggregating Data 9-20

Module Review and Takeaways 9-26

Module 10: Using Subqueries
Module Overview 10-1

Lesson 1: Writing Self-Contained Subqueries 10-2

Lesson 2: Writing Correlated Subqueries 10-7

Lesson 3: Using the EXISTS Predicate with Subqueries 10-11

Lab: Using Subqueries 10-14

Module Review and Takeaways 10-19

Module 11: Using Set Operators
Module Overview 11-1

Lesson 1: Writing Queries with the UNION Operator 11-2

Lesson 2: Using EXCEPT and INTERSECT 11-6

Lesson 3: Using APPLY 11-10

Lab: Using Set Operators 11-17

Module Review and Takeaways 11-22

Lab Answer Keys
Module 1 Lab: Working with SQL Server 2016 Tools L01-1

Module 2 Lab: Introduction to T-SQL Querying L02-1

Module 3 Lab: Writing Basic SELECT Statements L03-1

Module 4 Lab: Querying Multiple Tables L04-1

Module 5 Lab: Sorting and Filtering Data L05-1

Module 6 Lab: Working with SQL Server 2016 Data Types L06-1

Module 7 Lab: Using DML to Modify Data L07-1

Module 8 Lab: Using Built-in Functions L08-1

Module 9 Lab: Grouping and Aggregating Data L09-1

Module 10 Lab: Using Subqueries L10-1

Module 11 Lab: Using Set Operators L11-1

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
About This Course i

About This Course
This section provides a brief description of the course, audience, suggested prerequisites, and course
objectives.

Course Description

 Note: This first release (‘A’) MOC version of course 20761A has been developed on
prerelease software (CTP3.3). Microsoft Learning will release a ‘B’ version of this course after the
RTM version of the software is available.

The main purpose of this 3 day instructor led course is to give students a good understanding of the
Transact-SQL language which is used by all SQL Server-related disciplines; namely, Database
Administration, Database Development and Business Intelligence. As such, the primary target audience for
this course is: Database Administrators, Database Developers and BI professionals.

The course will very likely be well attended by SQL power users who aren’t necessarily database-focused;
namely, report writers, business analysts and client application developers.

Audience
This course is intended for Database Administrators, Database Developers, and Business Intelligence
professionals. The course will very likely be well attended by SQL power users who aren’t necessarily
database-focused; namely, report writers, business analysts and client application developers.

Student Prerequisites
This course requires that you meet the following prerequisites:

 Working knowledge of relational databases.

 Basic knowledge of the Microsoft Windows operating system and its core functionality.

Course Objectives
After completing this course, students will be able to:

 Describe the basic architecture and concepts of Microsoft SQL Server 2016

 Understand the similarities and differences between Transact-SQL and other computer languages

 Write SELECT queries

 Query multiple tables

 Sort and filter data

 Describe the use of data types in SQL Server

 Modify data using Transact-SQL

 Use built-in functions

 Group and aggregate data

 Use subqueries

 Use table expressions

 Use set operators

 Use window ranking, offset and aggregate functions

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
ii About This Course

 Implement pivoting and grouping sets

 Execute stored procedures

 Program with T-SQL

 Implement error handling

 Implement transactions

Course Outline
The course outline is as follows:

Module 1, “Introduction to Microsoft SQL Server 2016"

Module 2, “Introduction to T-SQL Querying"

Module 3, “Writing SELECT Queries"

Module 4, “Querying Multiple Tables"

Module 5, “Sorting and Filtering Data"

Module 6, “Working with SQL Server 2016 Data Types"

Module 7, “Using DML to Modify Data"

Module 8, “Using Built-In Functions"

Module 9, “Grouping and Aggregating Data"

Module 10, “Using Subqueries"

Module 11, “Using Set Operators"

Course Materials
The following materials are included with your kit:

 Course Handbook: a succinct classroom learning guide that provides the critical technical
information in a crisp, tightly-focused format, which is essential for an effective in-class learning
experience.

o Lessons: guide you through the learning objectives and provide the key points that are critical to
the success of the in-class learning experience.

o Labs: provide a real-world, hands-on platform for you to apply the knowledge and skills learned
in the module.

o Module Reviews and Takeaways: provide on-the-job reference material to boost knowledge
and skills retention.

o Lab Answer Keys: provide step-by-step lab solution guidance.

 Additional Reading: Course Companion Content on the
http://www.microsoft.com/learning/en/us/companion-moc.aspx Site: searchable, easy-to-
browse digital content with integrated premium online resources that supplement the Course
Handbook.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
About This Course iii

 Modules: include companion content, such as questions and answers, detailed demo steps and
additional reading links, for each lesson. Additionally, they include Lab Review questions and answers
and Module Reviews and Takeaways sections, which contain the review questions and answers, best
practices, common issues and troubleshooting tips with answers, and real-world issues and scenarios
with answers.

 Resources: include well-categorized additional resources that give you immediate access to the most
current premium content on TechNet, MSDN®, or Microsoft® Press®.

 Additional Reading: Student Course files on the
http://www.microsoft.com/learning/en/us/companion-moc.aspx Site: includes the
Allfiles.exe, a self-extracting executable file that contains all required files for the labs and
demonstrations.

 Course evaluation: at the end of the course, you will have the opportunity to complete an online
evaluation to provide feedback on the course, training facility, and instructor.

 To provide additional comments or feedback on the course, please go to
www.microsoft.com/learning/help. To inquire about the Microsoft Certification Program, send an
email to mcphelp@microsoft.com.

Virtual Machine Environment
This section provides the information for setting up the classroom environment to support the business
scenario of the course.

Virtual Machine Configuration
In this course, you will use Microsoft® Hyper-V™ to perform the labs.

 Note: At the end of each lab, you must revert the virtual machines to a snapshot. You can
find the instructions for this procedure at the end of each lab

The following table shows the role of each virtual machine that is used in this course:

Virtual machine Role

20761A-MIA-DCA Domain controller for the ADVENTUREWORKS
domain.

20761A-MIA-SQL SQL Server and SharePoint Server

Software Configuration
The following software is installed:

 Microsoft Windows Server 2012 R2

 Microsoft SQL Server 2016 CTP3.3

 Microsoft Office 2016

 Microsoft SharePoint Server 2013

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
iv About This Course

 Microsoft Visual Studio 2015

 Microsoft Visio 2013

Course Files
The files associated with the labs in this course are located in the D:\Labfiles folder on the 20761A-MIA-
SQL virtual machine.

Classroom Setup
Each classroom computer will have the same virtual machine configured in the same way.

Course Hardware Level
To ensure a satisfactory student experience, Microsoft Learning requires a minimum equipment
configuration for trainer and student computers in all Microsoft Certified Partner for Learning Solutions
(CPLS) classrooms in which Official Microsoft Learning Product courseware is taught.

Hardware Level 6+

 Intel Virtualization Technology (Intel VT) or AMD Virtualization (AMD-V) processor

 Dual 120 GB hard disks 7200 RM SATA or better*

 8GB or higher

 DVD drive

 Network adapter with Internet connectivity

 Super VGA (SVGA) 17-inch monitor

 Microsoft Mouse or compatible pointing device

 Sound card with amplified speakers

*Striped

In addition, the instructor computer must be connected to a projection display device that supports SVGA
1024 x 768 pixels, 16 bit colors.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
1-1

Module 1
Introduction to Microsoft SQL Server 2016

Contents:
Module Overview 1-1

Lesson 1: The Basic Architecture of SQL Server 1-2

Lesson 2: SQL Server Editions and Versions 1-6

Lesson 3: Getting Started with SQL Server Management Studio 1-9

Lab: Working with SQL Server 2016 Tools 1-16

Module Review and Takeaways 1-19

Module Overview
This module provides an overview of Microsoft® SQL Server®, the data management software that stores
data securely. Before you start, it is helpful to understand the basic architecture of SQL Server 2016, the
different editions that are available, and a little about SQL Server Management Studio (SSMS). SSMS is one
of the tools you use to connect to instances of SQL Server, write queries, and view data returned by your
queries.

Objectives
After completing this module you will be able to:

 Describe the architecture of SQL Server 2016.

 Describe the different editions of SQL Server 2016.

 Work with SSMS.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
1-2 Introduction to Microsoft SQL Server 2016

Lesson 1
The Basic Architecture of SQL Server

This lesson explains the basic architecture of Microsoft SQL Server, together with some key concepts. You
will learn about SQL Server instances, services, and how databases are structured. This will help you
understand how SQL Server works before you start writing SQL Server queries.

Lesson Objectives
After completing this lesson you will be able to describe:

 Relational databases in general, and specifically the role and structure of SQL Server databases.

 The sample database used in this course.

 What we mean by the client server model.

 The structure of Transact-SQL (T-SQL) queries.

Relational Databases

SQL Server 2016 is a data management system that
uses the relational model to store and manage data.
Relational databases store information in tables—
each table holds information about just one thing,
and one thing only. The information may concern
something tangible, such as customer details, or
intangible things such as orders.

You could hold customer information in the
Customers table, but information about the goods
they order would be in a separate table called
Orders. This way of organizing data is efficient and
removes redundant information. However,
someone might ask to see all the orders placed by a particular customer. SQL Server enables you to get
this information by relating these tables to one another. We can then join the two tables together in a
query to produce a list of all orders placed by a particular customer.

Databases typically have many different tables related to one another, so we often need to join several
tables to obtain the information. For example, you might want to see the orders for customers who buy
from one of your salespeople. You can do this by joining the Customers table, the Salesperson table, and
the Orders table.

In addition to the databases that are created to store information, SQL Server includes five system
databases:

 master: the system configuration database.

 model: the template database. SQL Server will apply any changes made in model to new databases.

 msdb: used by SQL Server Agent to schedule jobs and alerts.

 tempDb: a temporary store for data such as work tables. This database is dropped and recreated
each time SQL Server restarts, which means that any temporary tables will be lost when SQL Server
closes down.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
Querying Data with Transact-SQL 1-3

 resource: a hidden, read-only database that contains all the system objects for other databases.

SQL Server databases contain data and objects, including tables, views, stored procedures, user accounts,
and other management objects. Before you can execute queries, or insert or delete information from a
database, you must connect to the database. You need security credentials to log on to SQL Server, and a
database account with permissions to access data objects.

About the Course Sample Database

To understand how queries work, you will be using
a database called TSQL. This is a small database
suitable for learning how to write Transact-SQL
queries. TSQL contains several types of objects:

 Schemas. These are logical containers for
tables and views.

 Tables. These mostly relate to one another
using Foreign Key constraints.

 Views. These display information from more
than one table.

The TSQL database is a simple sales application for
a small business. Some of the tables you will be working with include:

 Sales.Orders. This table stores invoice header information, such as a unique reference for the order,
the customer who placed the order, and the date of the order.

 Sales.OrderDetails. This table stores transaction details about each order, such as products ordered,
and the price.

 Sales.Customers. This table stores information about customers, such as company name, and contact
details.

 HR.Employees. This table stores employee information.

Client Server Databases

SQL Server is a client server system. This means that
the client software, which includes SQL Server
Management Studio and Visual Studio®, is
separate from the SQL Server database engine.

When the client application sends requests to the
database engine as T-SQL statements, SQL Server
performs the necessary file access, memory
management, and processor utilization on behalf of
the client. The client never has direct access to
database files—unlike, for example, a desktop
database application.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
1-4 Introduction to Microsoft SQL Server 2016

In this course, the client and server software are running on the same virtual machine but, in production
environments, the client software runs on a separate machine to the database engine. Indeed, there could
be multiple clients accessing the same server database engine.

Wherever the client and server software is located, it makes no difference to the way you write T-SQL
code. On the logon screen, you just specify the SQL Server you want to connect to.

You can also refer to other databases in a T-SQL script by using its four-part name. A four-part name has
the format Instance.Database.Schema.Object. For example, the four-part name MIA-
SQL.sales.dbo.orders refers to the orders table, in the dbo schema, in the sales database, on the MIA-
SQL server’s default instance.

Connecting to a remote server requires the remote instance to be set up as a linked server. In T-SQL, you
add a linked server using sp_addlinkedserver. Although sp_addlinkedserver takes a number of optional
arguments, in its simplest form you could connect to the server in the previous example using the
statement exec sp_addlinkedserver in ‘MIA-SQL’.

Queries

T-SQL is a set-based language, which means it does
not extract data row by row, but instead extracts
data from tables that normally contain many rows.
Only after it has retrieved the table does SQL Server
filter data to produce a subset of the table, if that is
what the query has requested. This makes SQL
Server highly efficient in dealing with large volumes
of data, but it means you have to think in sets to
write efficient T-SQL code.

T-SQL scripts are stored in script files with a .sql
extension. Inside each file, you can divide the script
into batches, each batch concluding with the GO
keyword. SQL Server runs each batch in its entirety before it starts the next one. This is important if you
are relying on things happening in a specific order. For example, you must create a table before you can
populate the table with data. To complete these two steps within the same script file, you must specify the
table structure first, and then add data to the table. If you try to create the table and populate it with data
without the GO keyword in between, the statement will fail. It will succeed only when the GO keyword
completes the first CREATE TABLE statement before the INSERT INTO statement populates the table
with data.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
Querying Data with Transact-SQL 1-5

Sequencing Activity
Put the following T-SQL commands in order by numbering each to create a script that will execute
without errors:

 Steps

 CREATE TABLE HR.Employees
(
EmployeeID int PRIMARY KEY,
LastName nvarchar(25),
FirstName nvarchar(25)
);

 GO

 INSERT INTO HR.Employees
(
EmployeeID, LastName, FirstName
)
VALUES
(121, N’O’’Neill, N‘Carlene’);

 GO

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
1-6 Introduction to Microsoft SQL Server 2016

Lesson 2
SQL Server Editions and Versions

In this lesson, you will learn about the editions and versions of Microsoft SQL Server. You will learn about
the different editions of SQL Server 2016 that are available, their distinguishing features, and which
edition might be best when planning a new deployment.

Lesson Objectives
After completing this lesson you will be able to describe:

 The versions of SQL Server.

 The editions of SQL Server 2016.

SQL Server Versions

SQL Server 2016 is the latest version in SQL Server’s
development. Since it was first developed in 1989
for the OS/2 operating system, SQL Server has gone
through a number of major releases. SQL Server 4.2
and later versions were developed to run on
Windows®.

The SQL Server database engine had major
enhancements for version 7.0 and all subsequent
versions have continued to extend and improve
SQL Server functionality, making it suitable for
workgroup and enterprise use.

SQL Server 2016 is a major new release with
enhanced security, support for hybrid cloud installations, and major improvements in the analytics
functionality.

 Note: Although the name may suggest otherwise, SQL Server 2008 R2 is not a service pack
for SQL Server 2008. SLQ Server 2008 R2 is an independent version (number 10.5) with enhanced
multi-server management capabilities, in addition to new business intelligence (BI) features.

Question: Which version of SQL Server are you currently working with? Have you worked
with any earlier versions?

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
Querying Data with Transact-SQL 1-7

SQL Server Editions

SQL Server is available in different editions with
different feature sets that target various business
scenarios. In the SQL Server 2012 release, Microsoft
streamlined the number of editions from previous
versions. Four main editions are available:

 Enterprise. This is SQL Server’s flagship edition
containing all features including Business
Intelligence, support for data warehousing, and
high availability.

 Standard. This includes the database engine, as
well as core reporting and analytics capabilities.
Standard supports 16 processor cores but does
not include all the high availability, security, and data warehousing features found in the Enterprise
edition.

 Business Intelligence. This includes the core database engine, along with the full Business
Intelligence functionality of analytics, reporting, and integration services. However, like the Standard
edition, it supports 16 processor cores and does not offer all the high availability, security, and data
warehousing features of the Enterprise edition.

 Express. This is a free version of SQL Server and is limited to four processor cores, 1 GB of memory
per instance, and 10 GB maximum storage per database.

This course uses features found in all editions.

In addition to the editions described above, SQL Server also runs in the cloud, in one of two ways:

 You can install SQL Server on a cloud-based virtual machine that your organization has provisioned
and integrated with its infrastructure. When properly set up, SQL Server works as if it were on a server
on your network.

 Secondly, it could be an Azure SQL Database. This is Software as a Service (SaaS) and allows you to
use SQL Server without a physical server or a cloud-based virtual machine. You can add or remove
performance as required, making this a highly scalable option.

 Additional Reading: For more information on the use of T-SQL on Microsoft Azure SQL
Server Database, see the MSDN article “Azure SQL Database Transact-SQL Information” at:
https://azure.microsoft.com/en-gb/documentation/articles/sql-database-transact-sql-
information/

Microsoft Azure SQL Server Database

http://aka.ms/ybpqh8

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
1-8 Introduction to Microsoft SQL Server 2016

Check Your Knowledge

Question

You have founded a new company with two friends. Your new application (app) uses
a SQL Server database to store information. You are unsure whether your app will be
successful but if it is, you will need both high performance and space for large
volumes of data. However, you have not yet launched, so are unsure how many
people will use your app. Which edition of SQL Server 2016 should you use for this
system?

Select the correct answer.

 Azure SQL Database

 Enterprise Edition

 Express Edition

 Business Intelligence Edition

 Any edition is appropriate for these requirements

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
Querying Data with Transact-SQL 1-9

Lesson 3
Getting Started with SQL Server Management Studio

In this lesson, you will learn how to use SQL Server Management Studio (SSMS) to connect to an instance
of SQL Server. You will explore the databases contained in the instance and work with script files
containing T-SQL queries.

Lesson Objectives
After completing this lesson you will be able to:

 Start SSMS.

 Use SSMS to connect to on-premises SQL Server instances.

 Explore an SQL Server instance using Object Explorer.

 Create and organize script files.

 Execute T-SQL queries.

 Use SQL Server 2016 Technical Documentation.

Starting SSMS

SSMS is an integrated management, development,
and querying application with many features for
exploring and working with your databases.
Microsoft based SSMS on the Visual Studio shell; if
you know Visual Studio, you will most likely feel
comfortable using SSMS.

You can start SSMS in one of two ways:

 Use the SSMS shortcut on the Windows Start
menu.

 Type ssms.exe in a command prompt window.

By default, SSMS will display a Connect to Server
dialog box where you can specify the server (or instance) name, together with your security credentials. To
specify the database you want to connect to, click the Options button to open the Connection properties
dialog box. Alternatively, you can select the database after you have connected.

You can explore many SSMS features without connecting to an SQL Server instance. You can also cancel
the Connect to Server dialog box if you want to connect to a server later.

With SSMS running, you can explore some of its settings found in Tools, Options. You can change the
default font, enable line numbering for scripts, and control the behavior of its many windows.

For more information on using SSMS, see “Use SQL Server Management Studio" in SQL Server 2016
Technical Documentation.

Use SQL Server Management Studio

http://aka.ms/cbalxi

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
1-10 Introduction to Microsoft SQL Server 2016

Connecting to SQL Server

To connect to an instance of SQL Server, you need
to specify several items, regardless of how you
connect:

 The instance you want to connect to. This must
be in the format: hostname\instancename.

 For example, MIA-SQL\Proseware would
connect to the Proseware instance on the
Windows server named MIA-SQL. If you are
connecting to the default instance, you may
omit the instance name.

 The name of the database. If you do not specify
a database, you will connect to the default database designated by the database administrator. If no
default is assigned, you will connect to the master database.

Question: In your organization, which authentication method do you use to log on to SQL
Server?

Working with Object Explorer

Object Explorer is a graphical tool for managing
SQL Server instances and databases. It is one of
several SSMS windows available from the View
menu. Object Explorer provides direct interaction
with most SQL Server data objects such as tables,
views, and stored procedures. To display context-
sensitive help for an object in the tree view, right-
click on an object such as a table. The available
options include query and script generators for
object definitions.

 Note: Operations performed in SSMS require
appropriate permissions granted by a database administrator. Being able to see an object or
command does not necessarily imply permission to use the object or issue the command.

Use Object Explorer to learn about the structure and definition of data objects you want to use in your
queries. For example, to see the names of the columns in a table:

1. Connect to SQL Server, if necessary.

2. Expand the Databases folder to display the list of databases.

3. Expand the relevant database to display the Tables folder.

4. Expand the Tables folder to display the list of tables in the database.

5. Locate the relevant table and expand it to find the Columns folder.

6. The Columns folder displays the names, data types, constraints, and other information about the
column definition.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
Querying Data with Transact-SQL 1-11

7. To avoid typing, drag an object from the Object Explorer hierarchy into the query window.

 Note: Selecting objects in the Object Explorer pane does not change any connections
made in other windows.

Script Files and Projects

SSMS allows you to create and save T-SQL code in
text files with a .sql file extension. Like other
Windows applications that open, edit, and save files,
SSMS has both a File menu and toolbar buttons.

In addition to working on individual script files,
SSMS lets you organize files into solutions and
projects. This enables you to keep scripts for one
project together, saving time by opening or closing
all the files at the same time. You can open
solutions, projects, or script files from SSMS or
Windows Explorer.

Object Parent Description

Solution - A solution is a conceptual container for projects. Solutions have a
.ssmssln extension, and are always displayed at the top of the
hierarchy.

Project Solution Projects contain queries (T-SQL scripts), database connection
metadata, and other miscellaneous files. You can file any number of
projects within a solution. Projects have a .ssmssqlproj extension.

Script Project T-SQL script files with a .sql extension are the basic files used to work
with SQL Server.

To create a new solution, click the File menu and click New Project. There is no “New Solution”
command; if you want a new solution, select Create New Solution in the New Project dialog box. Type
the name for the project, the parent solution, and whether you want the project to be stored in a
subfolder within the solution. Click OK to create the objects.

You can view solutions and projects by opening the View Menu, and selecting Solution Explorer. Solution
Explorer displays a hierarchical list of all the solutions and projects you have created.

To create a new script that will be stored as part of a project, right-click the Queries folder in the Project
and select New Query.

 Note: When you create a new query using the toolbar button or the New Query command
on the File menu, the script file is stored in the Miscellaneous Files folder by default. Use the Save
As menu option to save the file in your preferred location. You can drag files from the
Miscellaneous Files folder to specific projects, using Solution Explorer to put a copy of the file
into a specific project folder. Alternatively, hold the Alt key as you drag to move the file.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
1-12 Introduction to Microsoft SQL Server 2016

Remember to save the solution when exiting SSMS, or when opening another solution. When you save a
script using the Save toolbar button or the Save <queryname>.sql command on the File menu, you are
only saving changes to the current script file. To save the solution and its contents, use the Save All
command on the File menu or, when prompted, save the .ssmssln and .ssmssqlproj files on exit.

Executing Queries

To execute T-SQL code in SSMS, open the .sql file
that contains the query, or type your query into a
new query window. You can either run all of the
script or part of it:

 Select the portion of code you wish to execute.

 If you do not select anything, the entire script
will run.

When you have decided what you wish to execute,
run the code by either:

 Clicking the Execute button on the SSMS
toolbar.

 Clicking the Query menu, and then clicking Execute.

 Pressing the F5 key, the Alt+X keyboard shortcut, or the Ctrl+E keyboard shortcut.

By default, SSMS will display the results in a new pane of the query window. To change the location and
appearance of the results, click Tools, and then Options. CTRL-R toggles between a full screen T-SQL
editor and the T-SQL editor plus the results pane.

SSMS enables results to be displayed in three different ways:

 Grid. A spreadsheet-like view, with row numbers and columns you can resize. Use Ctrl+D to select
Grid layout before executing the query.

 Text. A Windows Notepad-like display that pads column widths. Use Ctrl+T to select Text layout
before executing the query.

 File. Saves query results to a text file with a .rpt extension. When you execute the query, you will be
prompted for a location to save the file. You can then open the file with any application that reads
text files, such as Windows Notepad and SSMS. To send results to file, use the keyboard shortcut Ctrl-
Shift-F before running the query.

 Note: The shortcut to display results as text has changed in SQL Server 2016. It is now
Ctrl+T. It used to be Ctrl+F.

 Additional Reading: For a list of keyboard shortcuts available in SSMS, see MSDN “SQL
Server Management Studio Keyboard Shortcuts”.

MSDN SQL Server Management Studio Keyboard Shortcuts

http://aka.ms/y83i8i

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
Querying Data with Transact-SQL 1-13

Using SQL Server 2016 Technical Documentation

SQL Server 2016 Technical Documentation
(sometimes abbreviated to BOL) is the product
documentation for SQL Server. BOL includes helpful
information on SQL Server’s architecture and
concepts, in addition to syntax reference for T-SQL.
You can start BOL from the Help menu in SSMS, or
from the query window. For context-sensitive help
for T-SQL keywords, select the keyword and press
F1.

You can also view SQL Server 2016 Technical
Documentation on Microsoft’s website.

SQL Server 2016 Technical Documentation

http://aka.ms/dxlgjb

 Note: Before SQL Server 2014, there was a setup option to install SQL Server books online
locally. In SQL Server 2016, you must download and install SQL Server 2016 Technical
Documentation separately.

The first time you invoke Help, you will be prompted to specify whether you want to view SQL Server
2016 Technical Documentation content locally or online. When you work with online help, you will always
access the latest information.

For detailed instructions on how to download, install, and configure SQL Server 2016 Technical
Documentation for local offline use, see “Get Started with Product Documentation for SQL Server”.

Get Started with Product Documentation for SQL Server

http://aka.ms/tgv2o6

Demonstration: Introducing Microsoft SQL Server 2016

In this demonstration you will see how to:

 Use SSMS to connect to an on-premises instance of SQL Server.

 Explore databases and other objects.

 Work with T-SQL scripts.

Demonstration Steps
Use SSMS to connect to an on-premises instance of SQL Server 2016

1. Ensure that the 20761A-MIA-DC and 20761A-MIA-SQL virtual machines are running.

2. Log on to 20761A-MIA-SQL as ADVENTUREWORKS\Student with the password Pa$$w0rd.

3. In the D:\Demofiles\Mod01\Setup.cmd folder, right-click Setup.cmd, and then click Run as
administrator.

4. Click Yes when you are prompted to confirm that you want to run the command file, press y when
prompted, and then press Enter.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
1-14 Introduction to Microsoft SQL Server 2016

5. Start SQL Server Management Studio and connect to the MIA-SQL database engine instance using
Windows authentication.

Explore database and other objects

1. If the Object Explorer pane is not visible, on the View menu, click Object Explorer.

2. In Object Explorer, expand the Databases folder to see a list of databases.

3. Expand the TSQL database.

4. Expand the Tables folder.

5. Expand the Sales.Customers table.

6. Expand the b folders.

7. View the list of columns, and the data type information for each column.

8. Note the data type for the CompanyName column.

Work with T-SQL scripts

1. If the Solution Explorer pane is not visible, click View and click Solution Explorer. Initially, it will be
empty.

2. On the File menu, point to New, and then click Project.

3. In the New Project dialog box, under Installed Templates, click SQL Server Management Studio
Projects.

4. In the middle pane, click SSMSEmptySqlProject.

5. In the Name box, type Module 1 Demonstration.

6. In the Location box, type or browse to D:\Demofiles\Mod01.

7. Point out the solution name, and then click OK.

8. In the Solution Explorer pane, right-click Queries, then click New Query.

9. Type the following T-SQL code:

USE TSQL;
GO
SELECT CustID, ShipCountry
FROM Sales.Orders;

10. Select the code and click Execute on the toolbar.

11. Point out the results pane.

12. Click File and then click Save All.

13. Click File, and then click Close Solution.

14. On the File menu, point to Recent Projects and Solutions, and then click Module 1
Demonstration.ssmssln.

15. Point out the Solution Explorer pane.

Close SQL Server Management Studio without saving any files.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
Querying Data with Transact-SQL 1-15

Check Your Knowledge

Question

A colleague has asked you to run some test queries against the company’s scheduling
database. Administrators have provided you with the name of the server where the
database is hosted, and the name of the database. Permissions to run the necessary
queries have been granted to your Active Directory account. You are logged on to a
client computer with this Active Directory account and have started SQL Server
Management Studio. What other information do you need to connect to the
database?

Select the correct answer.

 Your Active Directory account username

 Your Active Directory account password

 The name of the login created for you in the SQL Server instance

 The name of the instance that hosts the database

 The name of the user created for you in the SQL Server database

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
1-16 Introduction to Microsoft SQL Server 2016

Lab: Working with SQL Server 2016 Tools
Scenario
The Adventure Works Cycles Bicycle Manufacturing Company has adopted SQL Server 2016 as its
relational database management system. You need to retrieve business data from several SQL Server
databases. In the lab, you will begin to explore the new environment, and become acquainted with the
tools for querying SQL Server.

Objectives
After completing this lab you will be able to:

 Use SQL Server Management Studio.

 Create and organize T-SQL scripts.

 Use SQL Server SQL Server 2016 Technical Documentation.

Estimated Time: 30 minutes

Virtual machine: 20761A-MIA-SQL

User name: ADVENTUREWORKS\Student

Password: Pa$$w0rd

Exercise 1: Working with SQL Server Management Studio

Scenario
You have been tasked with writing queries for SQL Server. Initially, you want to become familiar with the
development environment. You have therefore decided to explore SQL Server Management Studio and
configure the editor for your use.

The main tasks for this exercise are as follows:

1. Open Microsoft SQL Server Management Studio

2. Configure the Editor Settings

 Task 1: Open Microsoft SQL Server Management Studio
1. Start SSMS but do not connect to an instance of SQL Server.

2. Close the Object Explorer and Solution Explorer windows.

3. Using the View menu, show the Object Explorer and Solution Explorer windows in SSMS.

 Task 2: Configure the Editor Settings
1. With SSMS running, open the Tools menu and choose Options. Change the text editor font size to

14 points.

2. Change additional settings in Options:

o Disable IntelliSense.

o Change the tab indent to 6 spaces.

o Include column headers when copying the result set from the grid. Select Query Results, SQL
Server, Results to Grid. Select Include column headers when copying or saving the results.

Results: After this exercise, you should have opened SSMS and configured editor settings.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
Querying Data with Transact-SQL 1-17

Exercise 2: Creating and Organizing T-SQL Scripts

Scenario
You have decided to organize your T-SQL scripts in a project folder. In this lab, you will practice how to
create a project and add query files to it.

The main tasks for this exercise are as follows:

1. Create a Project

2. Add an Additional Query File

3. Reopen the Created Project

 Task 1: Create a Project
1. Create a new project called MyFirstProject and save it in the folder D:\Labfiles\Lab01\Starter.

2. Add a new query called MyFirstQueryFile.sql to MyFirstProject.

3. Save the project and the query file by clicking Save All.

 Task 2: Add an Additional Query File
1. Add an additional query file called MySecondQueryFile.sql to the project you created.

2. Open Windows Explorer, navigate to the MyFirstProject folder to check that your second query file
is in your project folder.

3. In SSMS, use the Solution Explorer pane to remove MySecondQueryFile.sql from your project by
choosing the Remove option. (Not Delete.)

4. Check in Windows Explorer to see whether the second query file is still in the project folder.

5. In SSMS, remove MyFirstQueryFile.sql by choosing Delete.

6. To see the difference, check in Windows Explorer.

 Task 3: Reopen the Created Project
1. Save the project, close SSMS, reopen SSMS, and open the project MyFirstProject.

2. Drag MySecondQueryFile.sql from Windows Explorer to the Queries folder beneath MyFirstProject
in SSMS Solution Explorer. (If the Solution Explorer window is not visible, enable it as you did in
Exercise 1.)

3. Save the project.

Results: After this lab exercise, you will have a basic understanding of how to create a project in SSMS
and add T-SQL query files to it.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
1-18 Introduction to Microsoft SQL Server 2016

Exercise 3: Using SQL Server 2016 Technical Documentation

Scenario
To be effective in your upcoming training and exercises, you will practice using SQL Server 2016 Technical
Documentation to check T-SQL syntax.

The main tasks for this exercise are as follows:

1. Launch SQL Server 2016 Technical Documentation

2. Use SQL Server 2016 Technical Documentation

 Task 1: Launch SQL Server 2016 Technical Documentation
1. Launch Manage Help Settings from the Windows Start screen.

2. Configure SQL Server 2016 Technical Documentation to use the online option, not local help.

 Task 2: Use SQL Server 2016 Technical Documentation
1. Use SQL Server 2016 Technical Documentation to find information about what’s new in the SQL

Server 2016 database engine.

Results: After this exercise, you will understand how to find the information you need in SQL Server 2016
Technical Documentation.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
Querying Data with Transact-SQL 1-19

Module Review and Takeaways
Review Question(s)

Question: Can an SQL Server database be stored across multiple instances?

Question: If no T-SQL code is selected in a query window, which code lines will be run when
you click the Execute button?

Question: What does an SQL Server Management Studio solution contain?

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
2-1

Module 2
Introduction to T-SQL Querying

Contents:
Module Overview 2-1

Lesson 1: Introducing T-SQL 2-2

Lesson 2: Understanding Sets 2-12

Lesson 3: Understanding Predicate Logic 2-15

Lesson 4: Understanding the Logical Order of Operations in SELECT
Statements 2-17

Lab: Introduction to T-SQL Querying 2-22

Module Review and Takeaways 2-25

Module Overview
Transact-SQL, or T-SQL, is the language you will use to interact with Microsoft® SQL Server® 2016. In this
module, you will learn that T-SQL has many elements in common with other computer languages, such as
commands, variables, loops, functions, and operators. You will also learn that designing your queries to
take sets into account means SQL Server will perform at its best. To make the most of your effort in
writing T-SQL, you will also learn the process and order by which SQL Server evaluates your queries.
Understanding the logical order for operations of SELECT statements is vital to learning how to write
effective queries.

Objectives
After completing this module, you will be able to describe:

 The elements of T-SQL and their role in writing queries.

 The use of sets in SQL Server.

 The use of predicate logic in SQL Server.

 The logical order of operations in SELECT statements.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
2-2 Introduction to T-SQL Querying

Lesson 1
Introducing T-SQL

In this lesson, you will learn the role of T-SQL in writing SELECT statements. You will also learn about many
of the T-SQL language elements and which ones are useful for writing queries.

Lesson Objectives
After completing this lesson, you will be able to:

 Describe Microsoft’s implementation of the standard SQL language.

 Categorize SQL statements into their dialects.

 Identify the elements of T-SQL, including predicates, operators, expressions, and comments.

About T-SQL

T-SQL is Microsoft’s implementation of the industry
standard Structured Query Language. The language
was originally developed to support the new
relational data model at International Business
Machines (IBM) in the early 1970s. Since then, SQL
has become widely adopted in the industry. SQL
became a standard of the American National
Standards Institute (ANSI) and the International
Organization for Standardization (ISO) in the 1980s.

The ANSI standard has gone through several
revisions, including SQL-89 and SQL-92, whose
specifications are either fully or partly supported by
T-SQL. SQL Server 2016 also implements features from later standards, such as ANSI SQL-2008 and ANSI
SQL-2011. Microsoft, like many vendors, has also extended the language to include SQL Server-specific
features and functions.

Besides Microsoft’s implementation as T-SQL in SQL Server, Oracle has PL/SQL, IBM has SQL PL, and
Sybase maintains its own T-SQL operation.

An important concept to understand when working with T-SQL is that it is not a procedural language but
a set-based and declarative language. When you write a query to retrieve data from SQL Server, you
describe the data you wish to display; you do not tell SQL Server exactly how to retrieve it. Instead of
supplying a procedural list of steps to take, you provide the attributes of the data you seek.

For example, if you want to retrieve a list of customers who are located in Portland, a procedural
approach might look like this:

Procedural Approach

Loop through each row in the data.
If the city is Portland, return the row; otherwise do nothing.
Move to next row.
End loop.

This procedural code has to contain the logic to retrieve the data—to inspect the data to see if it meets
your needs—and will be doing this for all the data in the table, whether or not it is relevant.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
Querying Data with Transact-SQL 2-3

With a declarative language such as T-SQL, you will provide the attributes and values that describe the set
you wish to retrieve. You do not have to specify how to retrieve the data, but you should identify what the
data is.

For example, see the following pseudo-code:

Declarative Language

Return all the customers whose city is Portland

With T-SQL, the SQL Server 2016 database engine will determine the optimal path to access the data and
return a matching set. Your role is to learn to write efficient and accurate T-SQL code so you can properly
describe the set you wish to retrieve.

If you have a background in other programming environments, adopting a new mindset may present a
challenge. This course has been designed to help you bridge the gap between procedural and set-based,
declarative T-SQL.

 Note: Sets will be discussed later in this module.

Categories of T-SQL Statements

T-SQL statements can be organized into three
categories:

 Data Manipulation Language (DML) is the set
of T-SQL statements that focuses on querying
and modifying data. This includes SELECT, the
primary focus of this course, and modification
statements such as INSERT, UPDATE, and
DELETE. You will learn about SELECT statements
throughout this course.

 Data Definition Language (DDL) is the set of
T-SQL statements that handles the definition
and life cycle of database objects, such as
tables, views, and procedures. This includes statements such as CREATE, ALTER, and DROP.

 Data Control Language (DCL) is the set of T-SQL statements used to manage security permissions
for users and objects. DCL includes statements such as GRANT, REVOKE, and DENY.

 Note: DCL commands are beyond the scope of this course. For more information about
SQL Server 2016 security, including DCL, see Microsoft Official Course 20473-2: Administering a
SQL Database Infrastructure.

For additional information on DML, DDL, and DCL commands, see Books Online at:

Transact-SQL Reference (Database Engine)

http://aka.ms/hjmhuj

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
2-4 Introduction to T-SQL Querying

T-SQL Language Elements

Like many programming languages, T-SQL contains
elements that you will use in queries. You will use
predicates to filter rows; operators to perform
comparisons; functions and expressions to
manipulate data or retrieve system information; and
comments to document your code. If you need to
go beyond writing SELECT statements to create
stored procedures, triggers, and other objects, you
may use elements such as control-of-flow
statements, variables to temporarily store values,
and batch separators. The next several topics in this
lesson will introduce you to many of these
elements.

 Note: The purpose of this lesson is to introduce common elements of the T-SQL language,
which will be presented here at a high conceptual level. Subsequent modules in this course will
show more detailed explanations.

T-SQL Language Elements: Predicates and Operators

The T-SQL language provides elements for
specifying and evaluating logical expressions. In
SELECT statements, you can use logical expressions
to define filters for WHERE and HAVING clauses.
You will write these expressions using predicates
and operators.

Predicates supported by T-SQL include the
following:

 IN: used to determine whether a value matches
any value in a list or subquery.
For example, WHERE day IN (1,5,6,10).

 BETWEEN: used to specify a range of values.
For example, WHERE rate BETWEEN 3 AND 7.

 LIKE: used to match characters against a pattern.
For example, WHERE surname LIKE ‘%mith%’.

Operators include several common categories:

 Comparison. For equality and inequality tests: =, <, >, >=, <=, !=, !>, !< (Note that !>, !< and != are
not ISO standard—it is best practice to use standard options when they exist.)

 Logical. For testing the validity of a condition: AND, OR, NOT.

 Arithmetic. For performing mathematical operations: +, -, *, /, % (modulo).

 Concatenation. For combining character strings: +.

 Assignment. For setting a value: =.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
Querying Data with Transact-SQL 2-5

As with other mathematical environments, operators are subject to rules governing precedence. The
following table describes the order in which T-SQL operators are evaluated:

Order of
Evaluation Operator

1 ~ (Bitwise NOT)

2 /, *, % (Division, Multiply, Modulo)

3 +, -, &, ^, | (Positive/Add/Concatenate, Negative/Subtract,
Bitwise AND, Bitwise Exclusive OR, Bitwise OR)

4 =, >, <, <=, <, !=, !, !<, !> (Comparisons)

5 NOT

6 AND

7 ALL, ANY, BETWEEN, IN, LIKE, OR, SOME

8 = (Assignment)

For more information on operator precedence, see Books Online at:

Operator Precedence

http://aka.ms/y6ylxo

T-SQL Language Elements: Functions

SQL Server 2016 provides a wide variety of
functions for your T-SQL queries. They range from
scalar functions, such as SYSDATETIME, which return
a single-valued result, to others that operate on and
return entire sets, such as the windowing functions
you will learn about later in this course.

As with operators, SQL Server functions can be
organized into categories. Here are some common
categories of scalar (single-value) functions
available to you for writing queries:

 String functions

o SUBSTRING, LEFT, RIGHT, LEN, DATALENGTH

o REPLACE, REPLICATE

o UPPER, LOWER, RTRIM, LTRIM

o STUFF

o SOUNDEX

 Date and time functions

o GETDATE, SYSDATETIME, GETUTCDATE

o DATEADD, DATEDIFF

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
2-6 Introduction to T-SQL Querying

o YEAR, MONTH, DAY

o DATENAME, DATEPART

o ISDATE

 Aggregate functions

o SUM, MIN, MAX, AVG

o COUNT, COUNT_BIG

o STDEV, STDEVP

o VAR

 Mathematical functions

o RAND, ROUND, POWER, ABS

o CEILING, FLOOR

 Note: The purpose of this lesson is to introduce many elements of the T-SQL language,
which is presented here at a high conceptual level. Subsequent modules in this course will show
more detailed explanations.

For more information, including code samples, see Books Online at:

Built-in Functions

http://aka.ms/jw8w5j

T-SQL Language Elements: Variables

Like many programming languages, T-SQL provides
a means of temporarily storing a value of a specific
data type. However, unlike other programming
environments, all user-created variables are local to
the T-SQL batch that created them—and are visible
only to that batch. There are no global or public
variables available to SQL Server users.

To create a local variable in T-SQL, you must give a
name, data type, and initial value. The name must
start with a single @ (at) symbol, and the data type
must be system-supplied or user-defined, and
stored in the database your code will run against.

 Note: You may find references in SQL Server literature, websites, and so on, to so-called
“system variables,” named with a double @@, such as @@ERROR. It is more accurate to refer to
these as system functions, because users may not assign a value to them. This course will
differentiate user variables prefixed with a single @ from system functions prefixed with @@.

If your variable is not initialized in the DECLARE statement, it will be created with a value of NULL and you
can subsequently assign a value with the SET statement. SQL Server 2008 introduced the capability to
name and initialize a variable in the same statement. For example:

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
Querying Data with Transact-SQL 2-7

The following example creates a character variable initialized to the string 'Program%':

Character Variable

DECLARE @search varchar(30) = 'Match%';

The following example creates a date variable and assigns the current date:

Date Variable

DECLARE @CurrentDate date;
SET @CurrentDate = GETDATE();

You will learn more about different data types—including dates—and T-SQL variables later in this course.

If persistent storage or global visibility for a value is needed, consider creating a table in a database for
that purpose. SQL Server provides both temporary and permanent storage in databases.

For more information on different types of tables, see:

Types of Tables in SQL 2016

http://aka.ms/quew7f

T-SQL Language Elements: Expressions

T-SQL provides combinations of identifiers,
symbols, and operators that are evaluated by SQL
Server to return a single result. These combinations
are known as expressions, offering a useful and
powerful tool for your queries. In SELECT
statements, you may use expressions:

 In the SELECT clause to operate on and/or
manipulate columns.

 As CASE expressions to replace values matching
a logical expression with another value.

 In the WHERE clause to construct predicates for
filtering rows.

 As table expressions to create temporary sets used for further processing.

 Note: The purpose of this lesson is to introduce many elements of the T-SQL language,
which will be presented here at a high conceptual level.

Expressions may be based on a scalar (single-value) function, on a constant value, or on variables. Multiple
expressions may be joined using operators if they have the same data type, or if the data type can be
converted from a lower precedence to a higher precedence (for example, int to money).

The following example of an expression operates on a column to add an integer to the results of the YEAR
function on a datetime column:

Expression

SELECT YEAR(orderdate) AS currentyear, YEAR(orderdate) + 1 AS nextyear
FROM Sales.Orders;

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
2-8 Introduction to T-SQL Querying

 Note: The preceding example uses T-SQL techniques, such as column aliases and date
functions, which will be covered later in this course.

T-SQL Language Elements: Control of Flow, Errors, and Transactions

While T-SQL is primarily a data retrieval language
and not a procedural language, it does support a
limited set of statements that provide some control
of flow during execution.

Some of the commonly-used control-of-flow
statements include:

 IF ... ELSE, for providing branching control
based on a logical test.

 WHILE, for repeating a statement or block of
statements while a condition is true.

 BEGIN ... END, for defining the extents of a
block of T-SQL statements.

 TRY ... CATCH, for defining the structure of exception handling (error handling).

 THROW, for raising an exception and transferring execution to a CATCH block.

 BEGIN TRANSACTION, for marking a block of statements as part of an explicit transaction. Ended by
COMMIT TRANSACTION or ROLLBACK TRANSACTION.

 Note: Control-of-flow operators are not used in stand-alone queries. For example, if your
primary role is as a report writer, it is unlikely that you will need to use them. However, if your
responsibilities include creating objects such as stored procedures and triggers, you will use these
elements.

T-SQL Language Elements: Comments

T-SQL has two methods for documenting code or
instructing the database engine to ignore certain
statements. Which method you use will typically
depend on the number of lines of code you want
ignored:

 For single lines, or very few lines of code, use
the -- (double dash) to precede the text to be
marked as a comment. Any text following the
dashes will be ignored by SQL Server.

 For longer blocks of code, enclose the text
between /* and */ characters. Any code
between the characters will be ignored by SQL
Server.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
Querying Data with Transact-SQL 2-9

The following example uses the -- (double dash) method to mark comments:

Example of a single line comment:

Single line comments

-- This whole line is a comment
DECLARE @search varchar(30) = 'Match%'; -- end of a line

The following example uses the /* comment block */ method to mark comments:

Example of a block comment:

Block comment

/*
 All the text in this paragraph will be treated as comments
 by SQL Server.
*/

Many query editing tools, such as SQL Server Management Studio (SSMS), Visual Studio®, or SQLCMD,
will color-code commented text in a different color than the surrounding T-SQL code. In SSMS, use the
Tools, Options dialog box to customize the colors and fonts in the T-SQL script editor.

T-SQL Language Elements: Batch Separators

SQL Server client tools, such as SSMS, send
commands to the database engine in sets called
batches. If you are manually executing code, such
as in a query editor, you can choose whether to
send all the text in a script as one batch. You may
also choose to insert separators between certain
sections of code.

The specification of a batch separator is handled by
your client tool. For example, the keyword GO is the
default batch separator in SSMS. You can change
this for the current query in Query | Query Options
or globally in Tools | Options | Query Execution.

For most simple query purposes, batch separators are not used, as you will be submitting a single query at
a time. However, when you need to create and manipulate objects, you may need to separate statements
into distinct batches. For example, a CREATE VIEW statement may not be included in the same batch as
other statements.

The following is an example of a CREATE TABLE and CREATE VIEW statement in the same batch:

Code That Requires Multiple Batches

CREATE TABLE table1 (col1 int);
CREATE VIEW view1 as SELECT * FROM table1;

The previous example returns the following error:

Msg 111, Level 15, State 1, Line 2
'CREATE VIEW' must be the first statement in a query batch.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
2-10 Introduction to T-SQL Querying

Note that user-declared variables are considered local to the batch in which they are declared. If a
variable is declared in one batch and referenced in another, the second batch would fail. Insert a GO
batch separator between the two CREATE statements to resolve the previous error.

For example, the following statements work properly when sent together as one batch work:

Local Variable

DECLARE @cust int = 5;

SELECT custid, companyname, contactname
FROM Sales.Customers
WHERE custid = @custid;

However, if a batch separator was inserted between the variable declaration and the query in which the
variable is used, an error would occur.

The following example separates the variable declaration from its use in a query:

Variable Separated by Batch

DECLARE @cust int = 5;
GO
SELECT custid, companyname, contactname
FROM Sales.Customers
WHERE custid = @custid;

The previous example returns the following error:

Msg 137, Level 15, State 2, Line 5
Must declare the scalar variable "@custid".

Demonstration: T-SQL Language Elements

In this demonstration, you will see how to:

 Use T-SQL language elements

Note that some elements will be covered in more depth in later modules.

Demonstration Steps
Use T-SQL Language Elements

1. Ensure that the 20761A-MIA-DC and 20761A-MIA-SQL virtual machines are both running, and then
log on to 20761A-MIA-SQL as ADVENTUREWORKS\Student with the password Pa$$w0rd.

2. Open File Explorer, browse to D:\Demofiles\Mod02, right-click Setup.cmd, and then click Run as
administrator.

3. In the User Account Control dialog box, click Yes.

4. When the script has finished, press any key.

5. Start SQL Server Management Studio and connect to the MIA-SQL database engine instance using
Windows® Authentication.

6. On the File menu, point to Open, and then click Project/Solution.

7. In the Open Project dialog box, browse to the D:\Demofiles\Mod02\Demo folder, and then
double-click Demo.ssmssln.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
Querying Data with Transact-SQL 2-11

8. On the View menu, click Solution Explorer.

9. In Solution Explorer, expand Queries, and then double-click the 11 – Demonstration A.sql script file.

10. Select the code under Step 1, and then click Execute.

11. Select the code under Step 2, and then click Execute.

12. Select the code under Step 3, and then click Execute.

13. Select the code under Step 4, and then click Execute.

14. Select the code under Step 5, and then click Execute.

15. Select the code under Step 6, and then click Execute.

16. Select the code under Step 7, and then click Execute.

17. Select the code under Step 8, and then click Execute.

18. Select the code under the comment Cleanup task if needed, and then click Execute.

19. Close SQL Server Management Studio.

Check Your Knowledge

Question

From the following T-SQL elements, select the one that does not contain an
expression:

Select the correct answer.

 SELECT FirstName, LastName, SkillName AS Skill, GetDate() – DOB AS Age

 WHERE HumanResources.Department.ModifiedDate > (SYSDATETIME() – 31)

 JOIN HumanResources.Skills ON Employees.ID = Skills.EmployeeID

 WHERE Skill.Level + Skill.Confidence > 10

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
2-12 Introduction to T-SQL Querying

Lesson 2
Understanding Sets

This lesson introduces the concepts of the set theory, one of the mathematical underpinnings of relational
databases, and helps you apply it to how you think about querying SQL Server.

Lesson Objectives
After completing this lesson, you will be able to:

 Describe the role of sets in a relational database.

 Understand the impact of sets on your T-SQL queries.

 Describe attributes of sets that may require special treatment in your queries.

The Set Theory and SQL Server

The set theory is one of the mathematical
foundations of the relational model and so is
fundamental to working with SQL Server 2016.
While you might be able to make progress writing
queries in T-SQL without an appreciation of sets,
you may eventually have difficulty expressing some
of them in a single, well-performing statement.

This lesson will set the stage for you to begin
"thinking in sets" and understanding their nature. In
turn, this will make it easier for you to:

 Take advantage of set-based statements in T-
SQL.

 Understand why you still need to sort your query output.

 Understand why a set-based, declarative approach, rather than a procedural one, works best with SQL
Server.

For our purposes, without delving into the mathematics supporting set theory, a set is defined as "a
collection of definite, distinct objects considered as a whole." In terms applied to SQL Server databases, we
can think of a set as a single unit (such as a table) containing zero or more members of the same type. For
example, a Customer table represents a set—specifically, the set of all customers. You will see that the
results of a SELECT statement also form a set, which will have important ramifications when learning about
subqueries and table expressions.

As you learn more about certain T-SQL query statements, it is important to think of the entire set, instead
of individual members, at all times. This will better equip you to write set-based code, instead of thinking
one row at a time. Working with sets requires thinking in terms of operations that occur "all at once"
instead of one at a time. Depending on your background, this may require an adjustment.

After "collection," the next critical term in our definition is "distinct," or unique. All members of a set must
be unique. In SQL Server, uniqueness is typically implemented using keys, such as a primary key column.

However, when you start working with subsets of data, it’s important to know how you can uniquely
address each member of a set.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
Querying Data with Transact-SQL 2-13

This brings us back to the consideration of the set as a "whole." Noted SQL language author Joe Celko
suggests mentally adding the phrase "Set of all…" in front of the names of SQL objects that represent sets
("set of all customers," for example). This will help you remember that, when you write T-SQL code, you
are addressing a collection of elements, not just one element at a time.

One important consideration is what is omitted from the set theory—any requirement regarding the
order of elements in a set. In short, there is no predefined order in a set. Elements may be addressed (and
retrieved) in any order. Applied to your queries this means that, if you need to return results in a certain
order, you must use the ORDER BY clause in your SELECT statements. You will learn more about ORDER
BY later in this course.

Set Theory Applied to SQL Server Queries

Given the set-based foundation of databases, there
are a few considerations and recommendations to
be aware of when writing efficient T-SQL queries:

 Act on the whole set at once. This translates to
querying the whole table at once, instead of
cursor-based or iterative processing.

 Use declarative, set-based processing. Tell SQL
Server what you want to retrieve by describing
its attributes, not by navigating to its position.

 When possible, ensure that you are addressing
elements via their unique identifiers, such as
keys. For example, write JOIN clauses referencing unique keys on one side of the relationship.

 Provide your own sorting instructions, because result sets are not guaranteed to be returned in any
order.

 Additional Reading: For more information on set theory and logical query processing, and
its application to SQL queries, see Chapter 1 of Itzik Ben-Gan’s T-SQL Querying (Microsoft Press,
2015).

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
2-14 Introduction to T-SQL Querying

Categorize Activity
Place each employee into the appropriate set. Indicate your answer by writing the set number to the right
of each item.

Items

1 Carolos Lamy
Works in: London
Skills:
JavaScript
XML

2 Naiyana Kunakorn
Works in: Washington DC
Skills:
JavaScript
SQL Server Administration
T-SQL
XML

3 Zachary Parsons
Works in: Seattle
Skills:
Active Directory Administration SharePoint Administration
SQL Server Administration

4 Patrick Lorenzen
Works in: London
Skills:
SharePoint Administration
SQL Server Administration

5 Frederic Towle
Works in: Tokyo
Skills:
Active Directory Administration
T-SQL

6 Nickolas McLaughlin
Works in: Seattle
Skills:
C#
JavaScript
SQL Server Administration

7 Jeanie Sheppard
Works in: Buenos Aires
Skills:
C#
JavaScript
T-SQL

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
Querying Data with Transact-SQL 2-15

Category 1 Category 2 Category 3

Employees in London Employees who know T-SQL Employees in Seattle who
know SQL Server
Administration

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
2-16 Introduction to T-SQL Querying

Lesson 3
Understanding Predicate Logic

Along with set theory, predicate logic is a mathematical foundation for the relational database model, and
with it, SQL Server 2016. You probably have a fair amount of experience with predicate logic—rather than
the set theory—even if you have never used the term to describe it. This lesson will introduce predicate
logic and examine its application to querying SQL Server.

Lesson Objectives
After completing this lesson, you will be able to:

 Describe the role of predicate logic in a relational database.

 Understand the use of predicate logic on your T-SQL queries.

Predicate Logic and SQL Server

In theory, predicate logic is a framework for
expressing logical tests that return true or false. A
predicate is a property or expression that is true or
false. You may have heard this referred to as a
Boolean expression.

Taken by themselves, predicates make comparisons
and express the results as true or false. However, in
T-SQL, predicates don't stand alone. They are
usually embedded in a statement that does
something with the true or false result, such as a
WHERE clause to filter rows; a CASE expression to
match a value; or even a column constraint
governing the range of acceptable values for that column in a table's definition.

There’s one important omission in the formal definition of a predicate—how to handle unknown, or
missing, values. If a database is set up so that missing values are not permitted (through constraints, or
default value assignments), then perhaps this is not an important omission. In most real-world
environments, however, you need to account for missing or unknown values, and extend your
understanding of predicates from two possible outcomes (true or false) to three—true, false, or unknown.

The use of NULLs as a mark for missing data will be discussed further in the next topic, and later in this
course.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
Querying Data with Transact-SQL 2-17

Predicate Logic Applied to SQL Server Queries

As you have been learning, the ability to use
predicates to express comparisons in terms of true,
false, or unknown, is vital to writing effective
queries in SQL Server. Although we have been
discussing them separately, predicates do not stand
alone, syntactically speaking. Typically, you will use
predicates in any of the following roles within your
queries:

 Filtering data (in WHERE and HAVING clauses).

 Providing conditional logic to CASE
expressions.

 Joining tables (in the ON filter).

 Defining subqueries (in EXISTS tests, for example).

Additionally, predicates have uses outside SELECT statements, such as in CHECK constraints to limit values
permitted in a column, and in control-of-flow elements, such as an IF statement.

In mathematics, we only need to consider values that are present, so predicates can result only in true or
false values (known in predicate logic as “the law of the excluded middle”). In databases, however, you will
likely have to account for missing values; the interaction of T-SQL predicates with missing values results in
an unknown. When you are designing query logic, ensure that you have accounted for all three possible
outcomes—true, false, or unknown. You will learn how to use three-valued logic in WHERE clauses later in
this course.

Check Your Knowledge

Question

From the following T-SQL elements, select the one that can include a predicate:

Select the correct answer.

 WHERE clauses

 JOIN conditions

 HAVING clauses

 WHILE statements

 All of the above

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
2-18 Introduction to T-SQL Querying

Lesson 4
Understanding the Logical Order of Operations in SELECT
Statements

T-SQL is unusual as a programming language in one key aspect. The order in which you write a statement
is not necessarily that in which the database engine will evaluate and process it. Database engines may
optimize their execution of a query, providing the accuracy of the result (as determined by the logical
order) is retained. As a result, unless you learn the logical order of operations, you may find both
conceptual and practical obstacles to writing your queries. This lesson will introduce the elements of a
SELECT statement; delineate the order in which the elements are evaluated; and then apply this
understanding for a practical approach to writing queries.

Lesson Objectives
After completing this lesson, you will be able to:

 Describe the elements of a SELECT statement.
 Understand the order in which clauses in a SELECT statement are evaluated.
 Apply your understanding of the logical order of operations to writing SELECT statements.

Elements of a SELECT Statement

To understand the logical order of operations, we
need to look at a SELECT statement as a whole,
including a number of optional elements. However,
this lesson is not designed to provide detailed
information about these elements—each part of a
SELECT statement will be discussed in subsequent
modules. Understanding the details of a WHERE
clause, for example, is not required to recognize its
place in the sequence of events.

A SELECT statement is made up of mandatory and
optional elements. Strictly speaking, SQL Server
only requires a SELECT clause to execute without
error. A SELECT clause without a FROM clause operates as if selecting from an imaginary table containing
one row. You will see this behavior when you test variables later in this course. However, as a SELECT
clause without a FROM clause cannot retrieve data from a table, we will treat stand-alone SELECT clauses
as a special case not directly relevant to this lesson. Let's examine the elements, their high level role in a
SELECT statement, and the order in which they are evaluated by SQL Server.

Not all elements will be present in every SELECT query. However, when an element is present, it will
always be evaluated in the same order, with respect to the others present. For example, a WHERE clause
will always be evaluated after the FROM clause and before a GROUP BY clause, if one exists.

We will discuss the order of these operations in the next topic.

 Note: For the purposes of this lesson, additional optional elements, such as DISTINCT,
OVER, and TOP, are omitted. They will be introduced, and their order discussed, in later modules.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
Querying Data with Transact-SQL 2-19

Logical Query Processing

The order in which a SELECT statement is written is
not that in which it is evaluated and processed by
the SQL Server database engine.

Consider the following query:

Logical Query Processing

USE TSQL;
SELECT EmployeeId, YEAR(OrderDate) AS
OrderYear
FROM Sales.Orders
WHERE CustomerId = 71
GROUP BY EmployeeId, YEAR(OrderDate)
HAVING COUNT(*) > 1
ORDER BY EmployeeId, OrderYear;

Before we examine the run-time order of operations, let's briefly examine what the query does, although
details on many clauses will need to wait until the appropriate module. The first line ensures we're
connected to the correct database for the query. This line is not being examined for its run-time order.

If necessary, we need this to complete before the main SELECT query executes:

Change the database connection

USE TSQL; -- change connection context to a database named TSQL.

The next line is the start of the SELECT statement as we wrote it, but as we'll see, it will not be the first line
evaluated.

The SELECT clause returns the EmployeeId column and extracts just the year from the OrderDate column:

Start of SELECT

SELECT EmployeeId, YEAR(OrderDate) AS OrderYear

The FROM clause identifies which table is the source of the rows for the query—in this case Sales.Orders:

FROM Clause

FROM Sales.Orders

The WHERE clause filters the rows out of the Sales.Orders table, keeping only those that satisfy the
predicate—in this case, a customer with an Id of 71:

WHERE Clause

WHERE CustomerId = 71

The GROUP BY clause groups together the remaining rows by EmployeeId, and then by the year of the
order:

GROUP BY Clause

GROUP BY EmployeeId, YEAR(OrderDate)

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
2-20 Introduction to T-SQL Querying

After the groups are established, the HAVING clause filters them based on its predicate. Only employees
with more than one sale per customer in a given year will pass this filter:

HAVING Clause

HAVING COUNT(*) > 1

For the purposes of previewing this query, the final clause is the ORDER BY, which sorts the output by
EmployeeId, and then by year:

ORDER BY Clause

ORDER BY EmployeeId, OrderYear;

Now that we've established what each clause does, let's look at the order in which SQL Server must
evaluate them:

1. The FROM clause is evaluated first, to provide the source rows for the rest of the statement. Later in
the course, we'll see how to join multiple tables together in a FROM clause. A virtual table is created
and passed to the next step.

2. The WHERE clause is next to be evaluated, filtering those rows from the source table that match a
predicate. The filtered virtual table is passed to the next step.

3. GROUP BY is next, organizing the rows in the virtual table according to unique values found in the
GROUP BY list. A new virtual table is created, containing the list of groups, and is passed to the next
step.

 Note: From this point in the flow of operations, only columns in the GROUP BY list or
aggregate functions may be referenced by other elements. This will have a significant impact on
the SELECT list.

4. The HAVING clause is evaluated next, filtering out entire groups based on its predicate. The virtual
table created in step 3 is filtered and passed to the next step.

5. The SELECT clause finally executes, determining which columns will appear in the query results.

 Note: Because the SELECT clause is evaluated after the other steps, any column aliases (in
our example, OrderYear) created there cannot be used in the GROUP BY or HAVING.

6. In our example, the ORDER BY clause is the last to execute, sorting the rows as determined in its
column list.

To apply this to our example query, here is the logical order at run time, with the USE statement omitted
for clarity:

Logical Order

FROM Sales.Orders
WHERE CustomerId = 71
GROUP BY EmployeeId, YEAR(OrderDate)
HAVING COUNT(*) > 1
SELECT EmployeeId, YEAR(OrderDate) AS OrderYear
ORDER BY EmployeeId, OrderYear;

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
Querying Data with Transact-SQL 2-21

As we have seen, we do not write T-SQL queries in the same order in which they are logically evaluated.
Because the run-time order of evaluation determines what data is available to clauses downstream from
one another, it's important to understand the true logical order when writing queries.

Applying the Logical Order of Operations to Writing SELECT Statements

Now you have learned the logical order of
operations when a SELECT query is evaluated and
processed, remember the following considerations
when writing a query. Note that some of these may
refer to details you will learn in subsequent
modules:

 Decide which tables to query first, in addition
to any table aliases you will apply. This will
determine the FROM clause.

 Decide which set or subset of rows will be
retrieved from the table(s) in the FROM clause,
and how you will express your predicate. This
will determine your WHERE clause.

 If you intend to group rows, decide which columns will be grouped. Remember that only columns in
the GROUP BY clause, in addition to aggregate functions such as COUNT, may ultimately be included
in the SELECT clause.

 If you need to filter out groups, decide on your predicate and build a HAVING clause. The results of
this phase become the input to the SELECT clause.

 If you are not using GROUP BY, determine which columns from the source table(s) you wish to
display, and use any table aliases you created to refer to them. This will become the core of your
SELECT clause. If you have used a GROUP BY clause, select from the columns in the GROUP BY clause,
and add any additional aggregates to the SELECT list.

 Finally, remember that sets do not include any ordering—you will need to add an ORDER BY clause to
guarantee a sort order if required.

Demonstration: Logical Query Processing

In this demonstration, you will see how to:

 View query output that illustrates logical processing order

Demonstration Steps
View Query Output That Illustrates Logical Processing Order

1. Start the 20761A-MIA-DC, 20761A-MIA-SQL, MSL-TMG1 virtual machines, and then log on to
20761A-MIA-SQL as ADVENTUREWORKS\Student with the password Pa$$w0rd.

2. Open SQL Server Management Studio.

3. In the Connect to Server dialog, in the Server name field, enter the server you created during
preparation. For example, 20761Aa-azure.database.windows.net.

4. In the Authentication list, select SQL Server Authentication.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
2-22 Introduction to T-SQL Querying

5. In the Login box, type Student.

6. In the Password box, type Pa$$w0rd, and then click Connect.

7. If the New Firewall Rule dialog box appears, click Sign In, enter your Azure credentials, and then
click Sign in. In the New Firewall Rule dialog box, ensure Add my client IP is selected and then click
OK.

8. If the Microsoft SQL Server Management Studio dialog box appears, click OK.

9. On the File menu, point to Open, and then click Project/Solution.

10. In the Open Project dialog box, browse to the D:\Demofiles\Mod02\Demo folder, and then
double-click Demo.ssmssln.

11. On the View menu, click Solution Explorer.

12. In Solution Explorer, double-click the 21 – Demonstration B.sql script file.

13. In the Available Databases list, click AdventureWorksLT. If AdventureWorksLT is not in the list,
right-click in the query pane, point to Connection, and then click Change Connection. Repeat steps
3 to 6 to connect to the server you created during preparation. Repeat this step to connect to
AdventureWorksLT.

14. Select the code under the comment Step 1, and then click Execute.

15. Select the code under Step 2, and then click Execute.

16. Select the code under Step 3, and then click Execute.

17. Select the code under Step 4, and then click Execute.

18. Select the code under Step 5, and then click Execute.

19. Select the code under Step 6, and then click Execute.

20. Select the code under Step 7, and then click Execute.

21. Select the code under Step 8, and then click Execute.

22. Close SQL Server Management Studio, without saving any changes.

Sequencing Activity
Put the following T-SQL elements in order by numbering each to indicate the order that SQL Server will
process them in when they appear in a single SELECT statement.

 Steps

 FROM

 WHERE

 GROUP BY

 HAVING

 SELECT

 ORDER BY

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
Querying Data with Transact-SQL 2-23

Lab: Introduction to T-SQL Querying
Scenario
You are an Adventure Works business analyst, who will be writing reports against corporate databases
stored in SQL Server 2016. To help you become more comfortable with SQL Server querying, the
Adventure Works IT department has provided some common queries to run against their databases. You
will review and execute these queries.

Objectives
After completing this lab, you will be able to:

 Execute basic SELECT statements.

 Execute queries that filter data.

 Execute queries that sort data.

Estimated Time: 30 minutes

Virtual machine: 20761A-MIA-SQL

User name: ADVENTUREWORKS\Student

Password: Pa$$w0rd

Exercise 1: Executing Basic SELECT Statements

Scenario
The T-SQL script provided by the IT department includes a SELECT statement that retrieves all rows from
the HR.Employees table—this includes the firstname, lastname, city, and country columns. You will
execute the T-SQL script against the TSQL database.

The main tasks for this exercise are as follows:

1. Prepare the Lab Environment

2. Execute the T-SQL Script

3. Execute a Part of the T-SQL Script

 Task 1: Prepare the Lab Environment
1. Ensure that the 20761A-MIA-DC and 20761A-MIA-SQL virtual machines are both running, and then

log on to 20761A-MIA-SQL as ADVENTUREWORKS\Student with the password Pa$$w0rd.

2. Run Setup.cmd in the D:\Labfiles\Lab02\Starter folder as Administrator.

 Task 2: Execute the T-SQL Script
1. Open the project file D:\Labfiles\Lab02\Starter\Project\Project.ssmssln.

2. Connect to the MIA-SQL database using Windows authentication.

3. Open the T-SQL script 51 - Lab Exercise 1.sql.

4. Execute the script by clicking Execute on the toolbar (or press F5 on the keyboard). This will execute
the whole script.

5. Observe the result and the database context.

6. Which database is selected in the Available Databases box?

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
2-24 Introduction to T-SQL Querying

 Task 3: Execute a Part of the T-SQL Script
1. Highlight the SELECT statement in the T-SQL script under the task 2 description and click Execute.

2. Observe the result. You should get the same result as in task 2.

 Note: One way to highlight a portion of code is to hold down the Alt key while drawing a
rectangle around it with your mouse. The code inside the drawn rectangle will be selected. Try it.

3. Close all open windows.

Results: After this exercise, you should know how to open the T-SQL script and execute the whole script
or just a specific statement inside it.

Exercise 2: Executing Queries That Filter Data Using Predicates

Scenario
The next T-SQL script is very similar to the first one. The SELECT statement retrieves the same columns
from the HR.Employees table, but uses a predicate in the WHERE clause to retrieve only rows with the
value “USA” in the country column.

The main tasks for this exercise are as follows:

1. Execute the T-SQL Script

2. Change the Database Context with the GUI

3. Change the Database Context with T-SQL

 Task 1: Execute the T-SQL Script
1. Open the project file D:\Labfiles\Lab02\Starter\Project\Project.ssmssln and the T-SQL script 61 - Lab

Exercise 2.sql. Execute the whole script.

2. There is an error. What is the error message? Why do you think this happened?

 Task 2: Change the Database Context with the GUI
1. Apply the needed changes to the script so that it will run without an error. (Hint: You do not need to

change any T-SQL information to fix the error.) Test the changes by executing the whole script.

2. Observe the result. Notice that the result has fewer rows than the result in exercise 1, task 2.

 Task 3: Change the Database Context with T-SQL
1. Comments in T-SQL scripts can be written inside the line by specifying --. The text after the two

hyphens will be ignored by SQL Server. You can also specify a comment as a block starting with /*
and ending with */. The text in between is treated as a block comment and is ignored by SQL Server.

2. Uncomment the following statements:

USE TSQL;
GO

3. Save and close the T-SQL script. Re-open the T-SQL script 61 - Lab Exercise 2.sql. Execute the whole
script.

4. Why did the script execute with no errors?

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
Querying Data with Transact-SQL 2-25

5. Observe the result and notice the database context in the Available Databases box.

 Note: SSMS supplies keyboard shortcuts and two buttons so you can quickly comment and
uncomment code.

The keyboard shortcuts are CTRL+K then CTRL+C to comment, and CTRL+K then CTRL+U to
uncomment.

Or you can use these buttons on the toolbar.

Results: After this exercise, you should have a basic understanding of database context and how to
change it.

Exercise 3: Executing Queries That Sort Data Using ORDER BY

Scenario
The last T-SQL script provided by the IT department has a comment: “This SELECT statement returns first
name, last name, city, and country/region information for all employees from the USA, ordered by last
name.”

The main tasks for this exercise are as follows:

1. Execute the Initial T-SQL Script

2. Uncomment the Needed T-SQL Statements and Execute Them

 Task 1: Execute the Initial T-SQL Script
1. Open the project file D:\Labfiles\Lab02\Starter\Project\Project.ssmssln and the T-SQL script 71 - Lab

Exercise 3.sql. Execute the whole script.

2. Observe the results. Why is the result window empty?

 Task 2: Uncomment the Needed T-SQL Statements and Execute Them
1. Observe that, before the USE statement, there are the characters -- which means that the USE

statement is treated as a comment. There is also a block comment around the whole T-SQL SELECT
statement. Uncomment both statements.

2. First, execute the USE statement and then execute the SELECT clause.

3. Observe the results. Notice that the results have the same rows as in exercise 1, task 2, but they are
sorted by the lastname column.

 Note: What changes would you make to change the sort order to descending?

Results: After this exercise, you should have an understanding of how comments can be specified inside
T-SQL scripts. You will also have an appreciation of how to order the results of a query.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
2-26 Introduction to T-SQL Querying

Module Review and Takeaways
Review Question(s)

Question: Which category of T-SQL statements concerns querying and modifying data?

Question: What are some examples of aggregate functions supported by T-SQL?

Question: Which SELECT statement element will be processed before a WHERE clause?

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
3-1

Module 3
Writing SELECT Queries

Contents:
Module Overview 3-1

Lesson 1: Writing Simple SELECT Statements 3-2

Lesson 2: Eliminating Duplicates with DISTINCT 3-6

Lesson 3: Using Column and Table Aliases 3-11

Lesson 4: Writing Simple CASE Expressions 3-16

Lab: Writing Basic SELECT Statements 3-19

Module Review and Takeaways 3-25

Module Overview
You can use the SELECT statement to query tables and views. It is likely that you will use the SELECT
statement more than any other single statement in T-SQL. You can manipulate the data with SELECT to
customize how SQL Server returns the results. This module introduces you to the fundamentals of the
SELECT statement, focusing on queries against a single table.

Objectives
After completing this module, you will be able to:

 Write simple SELECT statements.

 Eliminate duplicates using the DISTINCT clause.

 Use table and column aliases.

 Write simple CASE expressions.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
3-2 Writing SELECT Queries

Lesson 1
Writing Simple SELECT Statements

In this lesson, you will learn the structure and format of the SELECT statement, in addition to
enhancements that will add functionality and readability to your queries.

Lesson Objectives
At the end of this lesson, you will be able to:

 Understand the elements of the SELECT statement.

 Write simple SELECT queries against a single table.

 Eliminate duplicate rows using the DISTINCT clause.

 Add calculated columns to a SELECT statement.

Elements of the SELECT Statement

The SELECT and FROM clauses are the primary
focus of this module. You will learn about the other
clauses in later modules of this course. You have
already learned the order of operations in logical
query processing; this will help you to understand
how to form your SELECT statements correctly.

Remember that the FROM, WHERE, GROUP BY and
HAVING clauses are evaluated by the query engine
before the contents of the SELECT clause. Therefore,
elements you write in the SELECT clause, particularly
calculated columns and aliases, will not be visible to
the other clauses.

For more information on the SELECT elements, see:

SELECT (Transact-SQL)

http://aka.ms/vvwmme

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
Querying Data with Transact-SQL 3-3

Retrieving Columns from a Table or View

The SELECT clause specifies the columns from the
source table(s) or view(s) that you want to return as
the result set of the query. In addition to columns
from the source table, you can add others in the
form of calculated expressions.

The FROM clause specifies the name of the table or
view that is the source of the columns in the SELECT
clause. To avoid errors in table or view name
resolution, it is best to include the schema and
object name, in the format SCHEMA.OBJECT—for
example Sales.Customer.

If the table or view name contains irregular
characters, such as spaces or other special characters, you need to delimit, or enclose, the name. T-SQL
supports the use of the ANSI standard double quotes “Sales Order Details”, and the SQL Server specific
square brackets [Sales Order Details].

End all statements with a semicolon (;) character. In SQL Server 2016, semicolons are an optional
terminator for most statements. However, future versions will require its use. For current usages when a
semicolon is required, such as some common table expressions (CTEs) and some Service Broker
statements, the error messages returned for a missing semicolon are often cryptic. Therefore, you should
adopt the practice of terminating all statements with a semicolon.

Displaying Columns

To display columns in a query, you need to create a
comma-delimited column list. The order of the
columns in your list will determine their display in
the output, regardless of the order in which you
have defined them in the source table. This gives
your queries the ability to absorb changes that
others may make to the structure of the table, such
as adding or reordering the columns.

T-SQL supports the use of the asterisk, or “star”
character (*) to substitute for an explicit column list.
This will retrieve all columns from the source table.
While the asterisk is suitable for a quick test, avoid
using it in production work, as changes made to the table will cause the query to retrieve all current
columns in the table’s current defined order. This could cause bugs or other failures in reports or
applications expecting a known number of columns returned in a defined order. Furthermore, returning
data that is not needed can slow down your queries and cause performance issues if the source table
contains a large number of rows.

By using an explicit column list in your SELECT clause, you will always achieve the desired results,
providing the columns exist in the table. If a column is dropped, you will receive an error that will help
identify the problem and fix your query.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
3-4 Writing SELECT Queries

Using Calculations in the SELECT Clause

In addition to retrieving columns stored in the
source table, a SELECT statement can perform
calculations and manipulations. Calculations and
manipulations can change the source column data,
and use built-in T-SQL functions, which you will
learn about later in this course.

As the results will appear in a new column, repeated
once per row of the result set, calculated
expressions in a SELECT clause must be scalar—they
must return only a single value.

Calculated expressions can operate on other
columns in the same row, on built-in functions, or a
combination of the two:

Calculated Expression

SELECT unitprice, qty, (unitprice * qty)
FROM Sales.OrderDetails;

The results appear as follows:

unitprice qty
----------- ---------- -----------------------
14.00 12 168.00
9.80 10 98.00
34.80 5 174.00
18.60 9 167.40

Note that the new calculated column does not have a name returned with the results. To provide a name,
you use a column alias, which you will learn about later in this module.

To use a built-in T-SQL function on a column in the SELECT list, pass the name of the column to the
function as an input:

Create a Calculated Column

SELECT empid, lastname, hiredate, YEAR(hiredate)
FROM HR.Employees;

The results:

empid lastname hiredate
---------- ------------ -------------------------- ---------
1 Davis 2002-05-01 00:00:00.000 2002
2 Funk 2002-08-14 00:00:00.000 2002
3 Lew 2002-04-01 00:00:00.000 2002

You will learn more about date and other functions later in this course. The use of YEAR in this example is
provided only to illustrate calculated columns.

 Note: Not all calculations will be recalculated for each row. SQL Server may calculate a
function’s result just once at the time of query execution, and reuse the value for each row. This
will be discussed later in the course.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
Querying Data with Transact-SQL 3-5

Demonstration: Writing Simple SELECT Statements

In this demonstration, you will see how to:

 Use simple SELECT queries

Demonstration Steps
Use Simple SELECT Queries

1. Ensure that the 20761A-MIA-DC and 20761A-MIA-SQL virtual machines are both running, and then
log on to 20761A-MIA-SQL as ADVENTUREWORKS\Student with the password Pa$$w0rd.

2. Run D:\Demofiles\Mod03\Setup.cmd as an administrator. In the User Account Control dialog box,
click Yes.

3. At the command prompt, type y, and press Enter. When the script has completed, press any key.

4. Start SQL Server Management Studio and connect to the Azure SQL database engine instance using
SQL Server authentication.

5. If the Microsoft SQL Server Management Studio dialog box appears, click OK.

6. Open the Demo.ssmssln solution in the D:\Demofiles\Mod03\Demo folder.

7. If the Solution Explorer pane is not visible, on the View menu, click Solution Explorer.

8. Open the Demonstration A.sql script file. You may need to enter your password to connect to the
Azure SQL database engine.

9. In the Available Databases list, click AdventureWorksLT.

10. Select the code under the comment Step 2, and then click Execute.

11. Select the code under the comment Step 3, and then click Execute.

12. Select the code under the comment Step 4, and then click Execute.

13. Select the code under the comment Step 5, and then click Execute.

14. Select the code under the comment Step 6, and then click Execute.

15. Select the code under the comment Step 7, and then click Execute.

16. Keep SQL Server Management Studio open for the next demonstration.

Question: You have a table named Sales with the following columns: Country,
NumberOfReps, TotalSales.

You want to find out the average amount of sales a sales representative makes in each
country. What SELECT query could you use?

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
3-6 Writing SELECT Queries

Lesson 2
Eliminating Duplicates with DISTINCT

T-SQL queries may display duplicate rows, even if the source table has a key column enforcing
uniqueness. Typically, this is the case when you retrieve only a few of the columns in a table. In this lesson,
you will learn how to eliminate duplicates using the DISTINCT clause.

Lesson Objectives
In this lesson, you will learn to:

 Understand how T-SQL query results are not true sets and may include duplicates.
 Understand how DISTINCT may be used to remove duplicate rows from the SELECT results.
 Write SELECT DISTINCT clauses.

SQL Sets and Duplicate Rows

While the theory of relational databases calls for
unique rows in a table, in practice, T-SQL query
results are not true sets. The rows retrieved by a
query are not guaranteed to be unique, even when
they come from a source table that uses a primary
key to differentiate each row. Nor are the rows
guaranteed to be returned in any particular order.
You will learn how to address this with ORDER BY
later in this course.

Add to this the fact that the default behavior of a
SELECT statement is to include the keyword ALL,
and you can begin to see why duplicate values
might be returned by a query—especially when you include only some of the columns in a table (and
omit the unique columns).

For example, consider a query that returns country names from the Sales.Customers table:

SELECT Query

SELECT country
FROM Sales.Customers;

A partial result shows many duplicate country names, which at best is too long to easily interpret. At
worst, it gives a wrong answer to the question: “How many countries are represented among our
customers?”

country

Germany
Mexico
Mexico
UK
Sweden
Germany
Germany
France
UK
Austria

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
Querying Data with Transact-SQL 3-7

Brazil
Spain
France
Sweden
…
Germany
France
Finland
Poland
 (91 rows(s) affected)

The reason for this output is that, by default, a SELECT clause contains a hidden default ALL statement.

All Statement

SELECT ALL country
FROM Sales.Customers;

Without further instruction, the query will return one result for each row in the Sales.Customers table;
however, as only the country column is specified, you will see just this column for all 91 rows.

Understanding DISTINCT

Replacing the default SELECT ALL clause with
SELECT DISTINCT will filter out duplicates in the
result set. SELECT DISTINCT specifies that the result
set must contain only unique rows. However, it is
important to understand that the DISTINCT option
operates only on the set of columns returned by the
SELECT clause. It does not take into account any
other unique columns in the source table. DISTINCT
also operates on all the columns in the SELECT list,
not just the first one.

The logical order of operations also ensures that the
DISTINCT operator will remove rows that may have
already been processed by WHERE, HAVING, and GROUP BY clauses.

Continuing the previous example of countries from the Sales.Customers table, you can replace the silent
ALL default with DISTINCT, to eliminate the duplicate values:

DISTINCT Statement

SELECT DISTINCT country
FROM Sales.Customers;

This will return the desired results. Note that, while the results appear to be sorted, this is not guaranteed
by SQL Server. The result set now contains only one instance of each unique output row:

country

Argentina
Austria
Belgium
Brazil
Canada
Denmark
Finland

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
3-8 Writing SELECT Queries

France
Germany
Ireland
Italy
Mexico
Norway
Poland
Portugal
Spain
Sweden
Switzerland
UK
USA
Venezuela
 (21 row(s) affected)

 Note: You will learn additional methods for filtering out duplicate values later in this
course. Once you have learned them, you could consider the relative performance costs of
filtering with SELECT DISTINCT, compared to those other means.

SELECT DISTINCT Syntax

Remember that DISTINCT looks at rows in the
output set, created by the SELECT clause. Therefore,
only unique column values will be returned by a
SELECT DISTINCT clause.

For example, if you query a table with the following
data in it, you might observe that there are only
four unique first names and four unique last names:

SELECT Statement

SELECT firstname, lastname
FROM Sales.Customers;

The results:

firstname lastname
------------ -----------------
Sara Davis
Don Funk
Sara Lew
Don Davis
Judy Lew
Judy Funk
Yael Peled

However, a SELECT DISTINCT query against both columns will retrieve all unique combinations of the two
columns which, in this case, is the same seven employees.

For a list of unique first names only, execute a SELECT DISTINCT only against the firstname column:

DISTINCT Syntax

SELECT DISTINCT firstname
FROM Sales.Customers;

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
Querying Data with Transact-SQL 3-9

The results:

firstname

Don
Judy
Sara
Yael
 (4 row(s) affected)

A challenge in designing such queries is that, while you may need to retrieve a distinct list of values from
one column, you might want to see additional attributes (columns) from others. Later in this course, you
will see how to combine DISTINCT with the GROUP BY clause as a way of further processing and
displaying information about distinct lists of values.

Demonstration: Eliminating Duplicates with DISTINCT

In this demonstration, you will see how to:

 Eliminate duplicate rows

Demonstration Steps
Eliminate Duplicate Rows

1. Ensure that you have completed the previous demonstration in this module. Alternatively, start the
20761A-MIA-DC and 20761A-MIA-SQL virtual machines, log on to 20761A-MIA-SQL as
ADVENTUREWORKS\Student with the password Pa$$w0rd, and run
D:\Demofiles\Mod03\Setup.cmd as an administrator.

2. If SQL Server Management Studio is not already open, start it and connect to the Azure SQL
database engine instance using SQL Server authentication, and then open the Demo.ssmssln
solution in the D:\Demofiles\Mod03\Demo folder.

3. In Solution Explorer, open the Demonstration B.sql script file. You may need to enter your password
to connect to the Azure SQL database engine.

4. In the Available Databases list, click AdventureWorksLT.

5. Select the code under the comment Step 2, and then click Execute.

6. Select the code under the comment Step 3, and then click Execute.

7. Select the code under the comment Step 4, and then click Execute.

8. Keep SQL Server Management Studio open for the next demonstration.

Question: You have company departments in five countries. You have the following query
for the Human Resources database:

SELECT DeptName, Country

FROM HumanResources.Departments

This returns:

DeptName Country

--------- --------

Sales UK

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
3-10 Writing SELECT Queries

Sales USA

Sales France

Sales Japan

Marketing USA

Marketing Japan

Research USA

You add a DISTINCT keyword to the SELECT query. How many rows are returned?

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
Querying Data with Transact-SQL 3-11

Lesson 3
Using Column and Table Aliases

When retrieving data from a table or view, a T-SQL query will name each column after its source. You can
relabel columns by using aliases in the SELECT clause. However, columns created with expressions will not
be named automatically. Column aliases can be used to provide custom column headers. At the table
level, you can use aliases in the FROM clause to provide a convenient way of referring to a table elsewhere
in the query, enhancing readability.

Lesson Objectives
In this lesson you will learn how to:

 Use aliases to refer to columns in a SELECT list.

 Use aliases to refer to columns in a FROM clause.

 Understand the impact of the logical order of query processing on aliases.

Use Aliases to Refer to Columns

Column aliases can be used to relabel columns
when returning the results of a query. For example,
cryptic names of columns in a table such as "qty"
can be replaced with "quantity".

Expressions that are not based on a source column
in the table will not have a name provided in the
result set. This includes calculated expressions and
function calls. While T-SQL doesn’t require that a
column in a result set have a name, it’s a good idea
to provide one.

In T-SQL, there are multiple methods of creating a
column alias, with identical output results.

One method is to use the AS keyword to separate the column or expression from the alias:

AS Keyword

SELECT orderid, unitprice, qty AS quantity
FROM Sales.OrderDetails;

Another method is to assign the alias before the column or expression, using the equals sign as the
separator:

Alias with Equals Sign

SELECT orderid, unitprice, quantity = qty
FROM Sales.OrderDetails;

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
3-12 Writing SELECT Queries

Finally, you can simply assign the alias immediately following the column name, although this is not a
recommended method:

Alias Following Column Name

SELECT orderid, unitprice, qty quantity
FROM Sales.OrderDetails;

While there is no difference in performance or execution, a variance in readability may cause you to
choose one or the other as a convention.

Warning: Column aliases can also be accidentally created, by omitting a comma between two column
names in the SELECT list.

For example, the following creates an alias for the unitprice column deceptively labeled quantity:

Accidental Alias

SELECT orderid, unitprice quantity
FROM Sales.OrderDetails;

The results:

orderid quantity
--------- --------------------
10248 14.00
10248 9.80
10248 34.80
10248 18.60

As you can see, this could be difficult to identify and fix in a client application. The only way to avoid this
problem is to list columns carefully, separating them with commas and adopting the AS style of aliases, to
make it easier to spot mistakes.

Question: Which of the following statements use correct column aliases?

SELECT Name AS ProductName FROM Production.Product

SELECT Name = ProductName FROM Production.Product

SELECT ProductName == Name FROM Production.Product

SELECT ProductName = Name FROM Production.Product

SELECT Name AS Product Name FROM Production.Product

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
Querying Data with Transact-SQL 3-13

Use Aliases to Refer to Tables

Aliases can also be used in the FROM clause to refer
to a table; this can improve readability and save
redundancy when referencing the table elsewhere
in the query. While this module has focused on
single-table queries, which don’t necessarily benefit
from table aliases, this technique will prove useful
as you learn more complex queries in subsequent
modules.

To create a table alias in a FROM clause, you will
use syntax similar to several of the column alias
techniques.

You can use the keyword AS to separate the table
name from the alias. This style is preferred:

Table Alias using AS

SELECT orderid, unitprice, qty
FROM Sales.OrderDetails AS OD;

You can omit the keyword AS and simply follow the table name with the alias:

Table Alias without AS

SELECT orderid, unitprice, qty
FROM Sales.OrderDetails OD;

To combine table and column aliases in the same SELECT statement, use the following approach:

Table and Column Aliases Combined

SELECT OD.orderid, OD.unitprice, OD.qty AS Quantity
FROM Sales.OrderDetails AS OD;

 Note: There is no table alias equivalent to the use of the equals sign (=) in a column alias.

As this module focuses on single-table queries, you might not yet see a benefit to using table aliases. In
the next module, you will learn how to retrieve data from multiple tables in a single SELECT statement. In
those queries, the use of table aliases to represent table names will be useful.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
3-14 Writing SELECT Queries

The Impact of Logical Processing Order on Aliases

When using column aliases, an issue can arise.
Aliases created in the SELECT clause may not be
referred to in others in the query—such as a WHERE
or HAVING clause. This is due to the logical order
query processing. The WHERE and HAVING clauses
are processed before the SELECT clause and its
aliases are evaluated (HAVING and WHERE clauses
will be covered in a separate module). An exception
to this is the ORDER BY clause.

An example is provided here for illustration and will
run without error:

ORDER BY with Alias

SELECT orderid, unitprice, qty AS quantity
FROM Sales.OrderDetails
ORDER BY quantity;

However, the following example will return an error, as the WHERE clause has been processed before the
SELECT clause defines the alias:

Incorrect WHERE with Alias

SELECT orderid, unitprice, qty AS quantity
FROM Sales.OrderDetails
WHERE quantity > 10;

The resulting error message:

Msg 207, Level 16, State 1, Line 1
Invalid column name 'quantity'.

As a result, you will often need to repeat an expression more than once in the SELECT clause, where you
may create an alias to name the column, and in the WHERE or HAVING clause:

Correct WHERE with Alias

SELECT orderid, YEAR(orderdate) AS orderyear
FROM Sales.Orders
WHERE YEAR(orderdate) = '2008'

Additionally, within the SELECT clause, you may not refer to a column alias that was defined in the same
SELECT statement, regardless of column order.

The following statement will return an error:

Column Alias used in SELECT Clause

SELECT productid, unitprice AS price, price * qty AS total
FROM Sales.OrderDetails;

The resulting error:

Msg 207, Level 16, State 1, Line 1
Invalid column name 'price'.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
Querying Data with Transact-SQL 3-15

Demonstration: Using Column and Table Aliases

In this demonstration, you will see how to:

 Use column and table aliases

Demonstration Steps
Use Column and Table Aliases

1. Ensure that you have completed the previous demonstration in this module. Alternatively, start the
20761A-MIA-DC and 20761A-MIA-SQL virtual machines, log on to 20761A-MIA-SQL as
ADVENTUREWORKS\Student with the password Pa$$w0rd, and run
D:\Demofiles\Mod03\Setup.cmd as an administrator.

2. If SQL Server Management Studio is not already open, start it and connect to the Azure SQL
database engine instance using SQL Server authentication, and then open the Demo.ssmssln
solution in the D:\Demofiles\Mod03\Demo folder.

3. In Solution Explorer, open the Demonstration C.sql script file. You may need to enter your password
to connect to the Azure SQL database engine.

4. In the Available Databases list, click AdventureWorksLT.

5. Select the code under the comment Step 2, and then click Execute.

6. Select the code under the comment Step 3, and then click Execute.

7. Select the code under the comment Step 4, and then click Execute.

8. Select the code under the comment Step 5, and then click Execute.

9. Keep SQL Server Management Studio open for the next demonstration.

Question: You have the following query:

SELECT FirstName LastName

FROM HumanResources.Employees;

You are surprised to find that the query returns the following:

LastName

Fred

Rosalind

Anil

Linda

What error have you made in the SELECT query?

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
3-16 Writing SELECT Queries

Lesson 4
Writing Simple CASE Expressions

A CASE expression extends the ability of a SELECT clause to manipulate data as it is retrieved. Often when
writing a query, you need to substitute a value of a column with another value. While you will learn how
to perform this kind of lookup from another table later in this course, you can also perform basic
substitutions using simple CASE expressions in the SELECT clause. In real-world environments, CASE is
often used to help make cryptic data held in a column more meaningful.

A CASE expression returns a scalar (single-valued) value based on conditional logic, often with multiple
conditions. As a scalar value, it may be used wherever single values can be used. Besides the SELECT
statement, CASE expressions can be used in WHERE, HAVING, and ORDER BY clauses.

Lesson Objectives
In this lesson you will learn how to:

 Understand the use of CASE expressions in SELECT clauses.
 Understand the simple form of a CASE expression.

Using CASE Expressions in SELECT Clauses

In T-SQL, CASE expressions return a single, or scalar,
value. Unlike some other programming languages,
in T-SQL, CASE expressions are not statements, nor
do they specify the control of programmatic flow.
Instead, they are used in SELECT (and other) clauses
to return the result of an expression. The results
appear as a calculated column and, for clarity,
should be aliased.

In T-SQL queries, CASE expressions are often used
to provide an alternative value for one stored in the
source table. For example, a CASE expression might
be used to provide a friendly text name for
something stored as a compact numeric code.

Forms of CASE Expressions

In T-SQL, CASE expressions may take one of two
forms—simple CASE, or searched (Boolean) CASE.

Simple CASE expressions, the subject of this lesson,
compare an input value to a list of possible
matching values:

If a match is found, the first matching value is
returned as the result of the CASE expression.
Multiple matches are not permitted.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
Querying Data with Transact-SQL 3-17

If no match is found, a CASE expression returns the value found in an ELSE clause, if one exists.

If no match is found and no ELSE clause is present, the CASE expression returns a NULL.

For example, the following CASE expression substitutes a descriptive category name for the categoryid
value stored in the Production.Categories table. Note that this is not a JOIN operation, just a simple
substitution using a single table:

CASE Expression

SELECT productid, productname, categoryid,
 CASE categoryid
 WHEN 1 THEN 'Beverages'
 WHEN 2 THEN 'Condiments'
 WHEN 3 THEN 'Confections'
 ELSE 'Unknown Category'
 END AS categoryname
FROM Production.Categories

The results:

productid productname categoryid categoryname
--------- ------------ ---------- ---------------------
101 Tea 1 Beverages
102 Mustard 2 Condiments
103 Dinner Rolls 9 Unknown Category

 Note: The preceding example is presented for illustration only and will not run against the
sample databases provided with the course.

Searched (Boolean) CASE expressions compare an input value to a set of logical predicates or expressions.
The expression can contain a range of values to match against. Like a simple CASE expression, the return
value is found in the THEN clause of the matching value.

Due to their dependence on predicate expressions, which will not be covered until later in this course,
further discussion of searched CASE expressions is beyond the scope of this lesson.

See CASE (Transact-SQL) in Books Online:

CASE (Transact-SQL)

http://aka.ms/ims4v6

Demonstration: Simple CASE Expressions

In this demonstration, you will see how to:

 Use a simple CASE expression

Demonstration Steps
Use a Simple CASE Expression

1. Ensure that you have completed the previous demonstration in this module. Alternatively, start the
20761A-MIA-DC and 20761A-MIA-SQL virtual machines, log on to 20761A-MIA-SQL as
ADVENTUREWORKS\Student with the password Pa$$w0rd, and run
D:\Demofiles\Mod03\Setup.cmd as an administrator.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
3-18 Writing SELECT Queries

2. If SQL Server Management Studio is not already open, start it and connect to the Azure SQL
database engine instance using SQL Server authentication, and then open the Demo.ssmssln
solution in the D:\Demofiles\Mod03\Demo folder.

3. In Solution Explorer, open the Demonstration D.sql script file. You may need to enter your password
to connect to the Azure SQL database engine.

4. In the Available Databases list, click AdventureWorksLT.

5. Select the code under the comment Step 2, and then click Execute.

6. Select the code under the comment Step 3, and then click Execute.

7. Close SQL Server Management Studio, without saving changes.

Question: You have the following SELECT query:

SELECT FirstName, LastName, Sex

FROM HumanResources.Employees;

This returns:

FirstName LastName Sex

---------- --------- ----

Maya Steele 1

Adam Brookes 0

Naomi Sharp 1

Pedro Fielder 0

Zachary Parsons 0

How could you make these results clearer?

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
Querying Data with Transact-SQL 3-19

Lab: Writing Basic SELECT Statements
Scenario
As a business analyst for Adventure Works, you will be writing reports using corporate databases stored in
SQL Server 2016. You can use your set of business requirements for data to write basic T-SQL queries to
retrieve the specified data from the databases.

Objectives
After completing this lab, you will be able to:

 Write simple SELECT statements.
 Eliminate duplicate rows by using the DISTINCT keyword.
 Use table and column aliases.
 Use a simple CASE expression.

Estimated Time: 40 minutes

Virtual machine: 20761A-MIA-SQL

User name: ADVENTUREWORKS\Student

Password: Pa$$w0rd

Exercise 1: Writing Simple SELECT Statements

Scenario
As a business analyst, you want a better understanding of your corporate data. Usually, the best approach
for an initial project is to get an overview of the main tables and columns, so you can better understand
different business requirements. After an initial overview, you will provide a report for the marketing
department, whose staff want to send invitation letters for a new campaign. You will use the TSQL sample
database.

The main tasks for this exercise are as follows:

1. Prepare the Lab Environment

2. View All the Tables in the ADVENTUREWORKS Database in Object Explorer

3. Write a Simple SELECT Statement That Returns All Rows and Columns from a Table

4. Write a SELECT Statement That Returns Specific Columns

 Task 1: Prepare the Lab Environment
1. Ensure that the 20761A-MIA-DC and 20761A-MIA-SQL virtual machines are both running, and then

log on to 20761A-MIA-SQL as ADVENTUREWORKS\Student with the password Pa$$w0rd.

2. Run Setup.cmd in the D:\Labfiles\Lab03\Starter folder as Administrator.

 Task 2: View All the Tables in the ADVENTUREWORKS Database in Object Explorer
1. Using SSMS, connect to MIA-SQL using Windows® authentication (if you are connecting to an on-

premises instance of SQL Server) or SQL Server authentication.

2. In Object Explorer, expand the TSQL database and expand the Tables folder.

3. Look at the names of the tables in the Sales schema.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
3-20 Writing SELECT Queries

 Task 3: Write a Simple SELECT Statement That Returns All Rows and Columns from a
Table
1. Open the project file D:\Labfiles\Lab03\Starter\Project\Project.ssmssln and the T-SQL script Lab

Exercise 1.sql. Ensure that you are connected to the TSQL database.

2. Write a SELECT statement that will return all rows and all columns from the Sales.Customers table.

 Note: You can use drag-and-drop functionality to move items like table and column names from
Object Explorer to the query window. Write the same SELECT statement using the drag-and-drop
functionality.

3. You can use drag-and-drop functionality to move items like table and column names from Object
Explorer to the query window. Write the same SELECT statement using the drag-and-drop
functionality.

 Task 4: Write a SELECT Statement That Returns Specific Columns
1. Expand the Sales.Customers table in Object Explorer and expand the Columns folder. Observe all

columns in the table.

2. Write a SELECT statement to return the contactname, address, postalcode, city, and country
columns from the Sales.Customers table.

3. Execute the written statement and compare the results that you achieved with the desired results
shown in the file D:\Labfiles\Lab03\Solution\Lab Exercise 1 - Task 3 Result.txt.

4. What is the number of rows affected by the last query? (Tip: Because you are issuing a SELECT
statement against the whole table, the number of rows will be the same as that for the whole
Sales.Customers table.)

Results: After this exercise, you should know how to create simple SELECT statements to analyze existing
tables.

Exercise 2: Eliminating Duplicates Using DISTINCT

Scenario
After supplying the marketing department with a list of all customers for a new campaign, you are asked
to provide a list of all the countries that the customers come from.

The main tasks for this exercise are as follows:

1. Write a SELECT Statement That Includes a Specific Column

2. Write a SELECT Statement That Uses the DISTINCT Clause

 Task 1: Write a SELECT Statement That Includes a Specific Column
1. Open the project file D:\Labfiles\Lab03\Starter\Project\Project.ssmssln and T-SQL script Lab Exercise

2.sql. Ensure that you are connected to the TSQL database.

2. Write a SELECT statement against the Sales.Customers table showing only the country column.

3. Execute the written statement and compare the results that you achieved with the desired results
shown in the file D:\Labfiles\Lab03\Solution\Lab Exercise 2 - Task 1 Result.txt.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
Querying Data with Transact-SQL 3-21

 Task 2: Write a SELECT Statement That Uses the DISTINCT Clause
1. Copy the SELECT statement in Task 1 and modify it to return only distinct values.

2. Execute the written statement and compare the results that you achieved with the desired results
shown in file D:\Labfiles\Lab03\Solution\Lab Exercise 2 - Task 2 Result.txt.

3. How many rows did the query in Task 1 return?

4. How many rows did the query in Task 2 return?

5. Under which circumstances do the following queries against the Sales.Customers table return the
same result?

SELECT city, region FROM Sales.Customers;
SELECT DISTINCT city, region FROM Sales.Customers;

6. Is the DISTINCT clause being applied to all columns specified in the query or just the first column?

Results: After this exercise, you should understand how to return only the different (distinct) rows in the
result set of a query.

Exercise 3: Using Table and Column Aliases

Scenario
After receiving the initial list of customers, the marketing department would like to have column titles that
are more readable and a list of all products in the TSQL database.

The main tasks for this exercise are as follows:

1. Write a SELECT Statement That Uses a Table Alias

2. Write a SELECT Statement That Uses Column Aliases

3. Write a SELECT Statement That Uses Table and Column Aliases

4. Analyze and Correct the Query

 Task 1: Write a SELECT Statement That Uses a Table Alias
1. Open the project file D:\Labfiles\Lab03\Starter\Project\Project.ssmssln and T-SQL script Lab Exercise

3.sql, and ensure that you are connected to the TSQL database.

2. Write a SELECT statement to return the contactname and contacttitle columns from the
Sales.Customers table, assigning “C” as the table alias. Use the table alias C to prefix the names of
the two needed columns in the SELECT list. The benefit of using table aliases will become clearer in
future modules, when topics such as joins and subqueries are introduced.

3. Execute the written statement and compare the results that you achieved with the recommended
results shown in the file D:\Labfiles\Lab03\Solution\Lab Exercise 3 - Task 1 Result.txt.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
3-22 Writing SELECT Queries

 Task 2: Write a SELECT Statement That Uses Column Aliases
1. Write a SELECT statement to return the contactname, contacttitle, and companyname columns.

Assign these with the aliases Name, Title, and Company Name, respectively, to return more human-
friendly column titles for reporting purposes.

2. Execute the written statement and compare the results that you achieved with the desired results
shown in the file D:\Labfiles\Lab03\Solution\Lab Exercise 3 - Task 2 Result.txt. Notice specifically the
titles of the columns in the desired output.

 Task 3: Write a SELECT Statement That Uses Table and Column Aliases
1. Write a query to display the productname column from the Production.Products table using “P” as

the table alias and Product Name as the column alias.

2. Execute the written statement and compare the results that you achieved with the desired results
shown in the file D:\Labfiles\Lab03\Solution\Lab Exercise 3 - Task 3 Result.txt.

 Task 4: Analyze and Correct the Query
1. A developer has written a query to retrieve two columns (city and region) from the Sales.Customers

table. When the query is executed, it returns only one column. Your task is to analyze the query,
correct it to return two columns, and explain why the query returned only one.

SELECT city country
FROM Sales.Customers;

2. Execute the query exactly as written inside a query window and observe the result.

3. Correct the query to return the city and country columns from the Sales.Customers table.

Why did the query return only one column? What was the title of the column in the output? What is the
best practice to avoid such errors when using aliases for columns?

Results: After this exercise, you will know how to use aliases for table and column names.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
Querying Data with Transact-SQL 3-23

Exercise 4: Using a Simple CASE Expression

Scenario
Your company has a long list of products and the members of the marketing department would like to
have product category information in their reports. They have supplied you with a document containing
the following mapping between the product category IDs and their names:

categoryid categoryname

1 Beverages

2 Condiments

3 Confections

4 Dairy Products

5 Grains/Cereals

6 Meat/Poultry

7 Produce

8 Seafood

They have an active marketing campaign, and would like to include product category information in their
reports.

The main tasks for this exercise are as follows:

1. Write a SELECT Statement

2. Write a SELECT Statement That Uses a CASE Expression

3. Write a SELECT Statement That Uses a CASE Expression to Differentiate Campaign-Focused Products

 Task 1: Write a SELECT Statement
1. Open the project file D:\Labfiles\Lab03\Starter\Project\Project.ssmssln and T-SQL script Lab Exercise

4.sql. Ensure that you are connected to the TSQL database.

2. Write a SELECT statement to display the categoryid and productname columns from the
Production.Products table.

3. Execute the written statement and compare the results that you achieved with the desired results
shown in the file D:\Labfiles\Lab03\Solution\Lab Exercise 4 - Task 1 Result.txt

 Task 2: Write a SELECT Statement That Uses a CASE Expression
1. Enhance the SELECT statement in task 1 by adding a CASE expression that generates a result column

named categoryname. The new column should hold the translation of the category ID to its
respective category name, based on the mapping table supplied earlier. Use the value “Other” for any
category IDs not found in the mapping table.

2. Execute the written statement and compare the results that you achieved with the desired output
shown in the file D:\Labfiles\Lab03\Solution\Lab Exercise 4 - Task 2 Result.txt.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
3-24 Writing SELECT Queries

 Task 3: Write a SELECT Statement That Uses a CASE Expression to Differentiate
Campaign-Focused Products
1. Modify the SELECT statement in task 2 by adding a new column named iscampaign. This will show

the description “Campaign Products” for the categories Beverages, Produce, and Seafood, and the
description “Non-Campaign Products” for all other categories.

2. Execute the written statement and compare the results that you achieved with the desired results
shown in the file D:\Labfiles\Lab03\Solution\Lab Exercise 4 - Task 3 Result.txt.

Results: After this exercise, you should know how to use CASE expressions to write simple conditional
logic.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
Querying Data with Transact-SQL 3-25

Module Review and Takeaways

 Best Practice: Terminate all T-SQL statements with a semicolon. This will make your code
more readable, avoid certain parsing errors, and protect your code against changes in future
versions of SQL Server.
Consider standardizing your code on the AS keyword for labeling column and table aliases. This
will make it easier to read and avoids accidental aliases.

Review Question(s)
Question: Why is the use of SELECT * not a recommended practice?

Real-world Issues and Scenarios
You can create a column alias without using the AS keyword, something you are likely to see in code
samples online, or written by developers you work with. While the T-SQL engine will parse this without
issue, there is a problem when a comma is omitted between column names—the first column will take the
name of the second column as its alias. Not only will the column have a misleading name, but you will
also have one column too few in your result set. Always use the AS keyword to avoid this problem.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
4-1

Module 4
Querying Multiple Tables

Contents:
Module Overview 4-1

Lesson 1: Understanding Joins 4-2

Lesson 2: Querying with Inner Joins 4-7

Lesson 3: Querying with Outer Joins 4-11

Lesson 4: Querying with Cross Joins and Self Joins 4-15

Lab: Querying Multiple Tables 4-19

Module Review and Takeaways 4-24

Module Overview
In real-world environments, it is likely that the data you need to query is stored in multiple locations.
Earlier, you learned how to write basic single-table queries. In this module, you will learn how to write
queries that combine data from multiple sources in Microsoft® SQL Server®. You will write queries
containing joins, which allow you to retrieve data from two (or more) tables, based on data relationships
between the tables.

In this module, you will learn how to write queries that combine data from multiple sources in Microsoft
SQL Server 2016.

Objectives
After completing this module, you will be able to:

 Describe how multiple tables may be queried in a SELECT statement using joins.

 Write queries that use inner joins.

 Write queries that use outer joins.

 Write queries that use self joins and cross joins.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
4-2 Querying Multiple Tables

Lesson 1
Understanding Joins

In this lesson, you will learn the fundamentals of joins in SQL Server. You will discover how the FROM
clause in a T-SQL SELECT statement creates intermediate virtual tables that will be consumed by
subsequent phases of the query. You will learn how an unrestricted combination of rows from two tables
yields a Cartesian product. This module also covers the common join types in T-SQL multi-table queries.

The FROM Clause and Virtual Tables

Earlier, you learned about the logical order of
operations performed when SQL Server processes a
query. You will recall that the FROM clause of a
SELECT statement is the first phase to be processed.
This clause determines which table or tables will be
the source of rows for the query. As you will see in
this module, this holds true whether you are
querying a single table or bringing together
multiple tables as the source of your query. To learn
about the additional capabilities of the FROM
clause, it is useful to think of the clause function as
creating and populating a virtual table. This virtual
table will hold the output of the FROM clause and be used subsequently by other phases of the SELECT
statement, such as the WHERE clause. As you add extra functionality, such as join operators, to a FROM
clause, it will be helpful to think of the purpose of the FROM clause elements as either to add rows to, or
remove rows from, the virtual table.

 Reader Aid: The virtual table created by a FROM clause is a logical entity only. In SQL
Server, no physical table is created, whether persistent or temporary, to hold the results of the
FROM clause, as it is passed to the WHERE clause or other subsequent phases.

The syntax for the SELECT statement you have used for earlier queries in this course has appeared as
follows:

SELECT Syntax

SELECT ...
FROM <table> AS <alias>;

You learned earlier that the FROM clause is processed first, and as a result, any table aliases you create
there may be referenced in the SELECT clause. You will see numerous examples of table aliases in this
module. While these aliases are optional, except in the case of self join queries, you will quickly see how
they can be a convenient tool when writing queries. Compare the following two queries, which have the
same output but differ in their use of aliases. (Note that the examples use a JOIN clause, which will be
covered later in this module.)

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
Querying Data with Transact-SQL 4-3

The first query uses no table aliases:

Without Table Aliases

USE TSQL ;
GO
SELECT Sales.Orders.orderid, Sales.Orders.orderdate,
 Sales.OrderDetails.productid,Sales.OrderDetails.unitprice,
 Sales.OrderDetails.qty
FROM Sales.Orders
JOIN Sales.OrderDetails ON Sales.Orders.orderid = Sales.OrderDetails.orderid ;

The second example retrieves the same data but uses table aliases:

With Table Aliases

USE TSQL ;
GO
SELECT o.orderid, o.orderdate,
 od.productid, od.unitprice,
 od.qty
FROM Sales.Orders AS o
JOIN Sales.OrderDetails AS od ON o.orderid = od.orderid ;

As you can see, the use of table aliases improves the readability of the query, without affecting the
performance. It is strongly recommended that you use table aliases in your multi-table queries.

 Reader Aid: Once a table has been designated with an alias in the FROM clause, it is best
practice to use the alias when referring to columns from that table in other clauses.

Join Terminology: Cartesian Product

When learning about writing multi-table queries in
T-SQL, it is important to understand the concept of
Cartesian products. In mathematics, this is the
product of two sets. The product of a set of two
items and a set of six is a set of 12 items—or 6 x 2.
In databases, a Cartesian product is the result of
joining every row of one input table to all rows of
another input table. The product of a table with 10
rows and a table with 100 rows is a result set with
1,000 rows. For most T-SQL queries, a Cartesian
product is not the desired outcome. Typically, a
Cartesian product occurs when two input tables are
joined without considering any logical relationships between them. With no information about
relationships, the SQL Server query processor will output all possible combinations of rows. While this can
have some practical applications, such as creating a table of numbers or generating test data, it is not
typically useful and can have severe performance effects. You will learn a useful application of Cartesian
joins later in this module.

 Reader Aid: In the next topic, you will compare two different methods for specifying the
syntax of a join. You will see that one method may lead you toward writing accidental Cartesian
product queries.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
4-4 Querying Multiple Tables

Overview of Join Types

To populate the virtual table produced by the
FROM clause in a SELECT statement, SQL Server
uses join operators. These add or remove rows from
the virtual table, before it is handed off to
subsequent logical phases of the SELECT statement:

 A cross join operator (CROSS JOIN) adds all
possible combinations of the two input tables'
rows to the virtual table. Any filtering of the
rows will happen in a WHERE clause. For most
querying purposes, this operator is to be
avoided.

 An inner join operator (INNER JOIN, or just
JOIN) first creates a Cartesian product, and then filters the results using the predicate supplied in the
ON clause, removing any rows from the virtual table that do not satisfy the predicate. The inner join is
a very common type of join for retrieving rows with attributes that match across tables, such as
matching Customers to Orders by a common custid.

 An outer join operator (LEFT OUTER JOIN, RIGHT OUTER JOIN, FULL OUTER JOIN) first creates a
Cartesian product, and like an inner join, filters the results to find rows that match in each table.
However, all rows from one table are preserved, and added back to the virtual table after the initial
filter is applied. NULLs are placed on attributes where no matching values are found.

 Reader Aid: Unless otherwise qualified with CROSS or OUTER, the JOIN operator defaults
to an INNER join.

T-SQL Syntax Choices

Throughout the history of SQL Server, the product
has changed to keep pace with variations in the
American National Standards Institute (ANSI)
standards for the SQL language. One of the most
notable places where these changes are visible is in
the syntax for the join operator in a FROM clause. In
ANSI SQL-89, no ON operator was defined. Joins
were represented in a comma-separated list of
tables, and any filtering, such as for an inner join,
was performed in the WHERE clause. This syntax is
still supported by SQL Server, but due to the
complexity of representing the filters for an outer
join in the WHERE clause, as well as any other filtering, it is not recommended here. Additionally, if a
WHERE clause is accidentally omitted, ANSI SQL-89-style joins can easily become Cartesian products and
cause performance problems.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
Querying Data with Transact-SQL 4-5

The following queries illustrate this syntax and the potential problem:

Cartesian Product

USE TSQL;
GO
/* This is ANSI SQL-89 syntax for an inner join, with the filtering performed in the
WHERE clause. */
SELECT c.companyname, o.orderdate
FROM Sales.Customers AS c, Sales.Orders AS o
WHERE c.custid = o.custid;
....
(830 row(s) affected)

/*
This is ANSI SQL-89 syntax for an inner join, omitting the WHERE clause and causing an
inadvertent Cartesian join.
*/

SELECT c.companyname, o.orderdate
FROM Sales.Customers AS c, Sales.Orders AS o;
...
(75530 row(s) affected)

With the advent of the ANSI SQL-92 standard, support for the ON clause was added. T-SQL also supports
this syntax. Joins are represented in the FROM clause by using the appropriate JOIN operator. The logical
relationship between the tables, which becomes a filter predicate, is represented with the ON clause.

The following example restates the previous query with the newer syntax:

JOIN Clause

SELECT c.companyname, o.orderdate
FROM Sales.Customers AS c JOIN Sales.Orders AS o
ON c.custid = o.custid;

 Reader Aid: The ANSI SQL-92 syntax makes it more difficult to create accidental Cartesian
joins. Once the keyword JOIN has been added, a syntax error will be raised if an ON clause is
missing.

Demonstration: Understanding Joins

In this demonstration, you will see how to:

 Use Joins.

Demonstration Steps
Use Joins

1. Ensure that the 20761A-MIA-DC and 20761A-MIA-SQL virtual machines are both running, and then
log on to 20761A-MIA-SQL as ADVENTUREWORKS\Student with the password Pa$$w0rd.

2. Run D:\Demofiles\Mod04\Setup.cmd as an administrator. In the User Account Control dialog box,
click Yes. When prompted, type y, and then press Enter. When the script has completed, press any
key.

3. Start SQL Server Management Studio and connect to the MIA-SQL database engine instance using
Windows authentication.

4. Open the Demo.ssmssln solution in the D:\Demofiles\Mod04\Demo folder.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
4-6 Querying Multiple Tables

5. If Solution Explorer is not visible, on the View menu, click Solution Explorer.

6. In Solution Explorer, expand Queries, and then double-click the 11 – Demonstration A.sql script file.

7. Select the code under the comment Step 1, and then click Execute.

8. Select the code under the comment Step 2, and then click Execute.

9. Select the code under the comment Step 3, and then click Execute.

10. Select the code under the comment Step 4, and then click Execute.

11. Select the code under the comment Step 5, and then click Execute.

Keep SQL Server Management Studio open for the next demonstration.

Check Your Knowledge

Question

You have the following T-SQL query:

SELECT o.ID AS OrderID, o.CustomerName, p.ProductName,
p.ModelNumber,
FROM Sales.Orders AS o
JOIN Sales.Products AS p
ON o.ProductID = p.ID;

Which of the following types of join will the query perform?

Select the correct answer.

 A cross join

 An inner join

 An outer left join

 An outer right join

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
Querying Data with Transact-SQL 4-7

Lesson 2
Querying with Inner Joins

In this lesson, you will learn how to write inner join queries, the most common type of multi-table query in
a business environment. By expressing a logical relationship between the tables, you will retrieve only
those rows with matching attributes present in both.

Lesson Objectives
After completing this lesson, you will be able to:

 Describe inner joins.

 Write queries using inner joins.

 Describe the syntax of an inner join.

Understanding Inner Joins

T-SQL queries that use inner joins are the most
common types to solve many business problems,
especially in highly normalized database
environments. To retrieve data that has been stored
across multiple tables, you will often need to
reassemble it via inner join queries. As you have
learned, an inner join begins its logical processing
phase as a Cartesian product, which is then filtered
to remove any rows that don't match the predicate.

In SQL-89 syntax, that predicate is in the WHERE
clause. In SQL-92 syntax, that predicate is within the
FROM clause in the ON clause:

SQL-89 and SQL-92 Join Syntax Compared

--ANSI SQL-89 syntax
SELECT c.companyname, o.orderdate
FROM Sales.Customers AS c, Sales.Orders AS o
WHERE c.custid = o.custid;

--ANSI SQL-92 syntax
SELECT c.companyname, o.orderdate
FROM Sales.Customers AS c JOIN Sales.Orders AS o
ON c.custid = o.custid;

From a performance standpoint, you will find that the query optimizer in SQL Server does not favor one
syntax over the other. However, as you learn about additional types of joins, especially outer joins, you will
likely decide that you prefer to use the SQL-92 syntax and filter in the ON clause. Keeping the join filter
logic in the ON clause and leaving other data filtering in the WHERE clause will make your queries easier
to read and test.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
4-8 Querying Multiple Tables

Using the ANSI SQL-92 syntax, let’s examine the steps by which SQL Server will logically process this
query. Line numbers are added for clarity and are not submitted to the query engine for execution:

ANSI-92 Join

1) SELECT c.companyname, o.orderdate
2) FROM Sales.Customers AS c
3) JOIN Sales.Orders AS o
4) ON c.custid = o.custid;

As you learned earlier, the FROM clause will be processed before the SELECT clause. Let’s track the
processing, beginning with line 2:

 The FROM clause designates the Sales.Customers table as one of the input tables, giving it the alias of
'c'.

 The JOIN operator in line 3 reflects the use of an INNER join (the default type in T-SQL) and
designates Sales.Orders as the other input table, which has an alias of 'o'.

 SQL Server will perform a logical Cartesian join on these tables and pass the results to the next phase
in the virtual table. (Note that the physical processing of the query may not actually perform the
Cartesian product operation, depending on the optimizer's decisions.)

 Using the ON clause, SQL Server will filter the virtual table, retaining only those rows where a custid
value from the ‘c’ table (Sales.Customers has been replaced by the alias) matches a custid from the ‘o’
table (Sales.Orders has been replaced by an alias).

 The remaining rows are left in the virtual table and handed off to the next phase in the SELECT
statement. In this example, the virtual table is next processed by the SELECT clause, and only two
columns are returned to the client application.

 The result? A list of customers who have placed orders. Any customers who have never placed an
order have been filtered out by the ON clause, as have any orders that happen to have a customer ID
that doesn't correspond to an entry in the customer list.

Inner Join Syntax

When writing queries using inner joins, consider the
following guidelines:

 As you have seen, table aliases are preferred,
not only for the SELECT list, but also for
expressing the ON clause.

 Inner joins may be performed on a single
matching attribute, such as an orderid, or on
multiple matching attributes, such as the
combination of orderid and productid. Joins
that match multiple attributes are called
composite joins.

 The order in which tables are listed and joined in the FROM clause does not matter to the SQL Server
optimizer. (This will not be the case for OUTER JOIN queries in the next topic.) Conceptually, joins will
be evaluated from left to right.

 Use the JOIN keyword once for each two tables in the FROM list. For a two-table query, specify one
join. For a three-table query, you will use JOIN twice—once between the first two tables, and once
again between the output of the first two tables and the third table.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
Querying Data with Transact-SQL 4-9

Inner Join Examples

The following are some examples of inner joins:

This query performs a join on a single matching
attribute, relating the categoryid from the
Production.Categories table to the categoryid from
the Production.Products table:

Inner Join Example

SELECT c.categoryid, c.categoryname,
p.productid, p.productname
FROM Production.Categories AS c
JOIN Production.Products AS p
ON c.categoryid = p.categoryid;

This query performs a composite join on two matching attributes, relating city and country attributes from
Sales.Customers to HR.Employees. Note the use of the DISTINCT operator to filter out duplicate
occurrences of city, country:

Inner Join Example

SELECT DISTINCT e.city, e.country
FROM Sales.Customers AS c
JOIN HR.Employees AS e
ON c.city = e.city AND c.country = e.country;

 Reader Aid: The demonstration code for this lesson also uses the DISTINCT operator to
filter duplicates.

This next example shows how an inner join may be extended to include more than two tables. Note that
the Sales.OrderDetails table is joined not to the Sales.Orders table, but to the output of the JOIN between
Sales.Customers and Sales.Orders. Each instance of JOIN ... ON performs its own population and filtering
of the virtual output table. The SQL Server query optimizer determines the order in which the joins and
filtering will be performed.

This next example shows how an inner join may be extended to include more than two tables.

Inner Join Example

SELECT c.custid, c.companyname, o.orderid, o.orderdate, od.productid, od.qty
FROM Sales.Customers AS c
JOIN Sales.Orders AS o
ON c.custid = o.custid
JOIN Sales.OrderDetails AS od
ON o.orderid = od.orderid;

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
4-10 Querying Multiple Tables

Demonstration: Querying with Inner Joins

In this demonstration, you will see how to:

 Use inner joins.

Demonstration Steps
Use Inner Joins

1. Ensure that you have completed the previous demonstration in this module. Alternatively, start the
20761A-MIA-DC and 20761A-MIA-SQL virtual machines, log on to 20761A-MIA-SQL as
ADVENTUREWORKS\Student with the password Pa$$w0rd, and run
D:\Demofiles\Mod04\Setup.cmd as an administrator.

2. If SQL Server Management Studio is not already open, start it and connect to the MIA-SQL database
engine instance using Windows authentication, and then open the Demo.ssmssln solution in the
D:\Demofiles\Mod04\Demo folder.

3. In Solution Explorer, open the 21 – Demonstration B.sql script file.

4. Select the code under the comment Step 1, and then click Execute.

5. Select the code under the comment Step 2, and then click Execute.

6. Select the code under the comment Step 3, and then click Execute.

7. Select the code under the comment Step 4, and then click Execute.

8. Select the code under the comment Step 5, and then click Execute.

9. Select the code under the comment Step 6, and then click Execute.

10. Keep SQL Server Management Studio open for the next demonstration.

Question: You have the following T-SQL query:

SELECT HumanResources.Employees.ID, HumanResources.Employers.ID AS
CompanyID,

 HumanResources.Employees.Name, HumanResources.Employers.Name AS
CompanyName

FROM HumanResources.Employees

JOIN HumanResources.Employers

ON HumanResources.Employees.EmployerID =
HumanResources.Employers.ID;

How can you improve the readability of this query?

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
Querying Data with Transact-SQL 4-11

Lesson 3
Querying with Outer Joins

In this lesson, you will learn how to write queries that use outer joins. While not as common as inner joins,
the use of outer joins in a multi-table query can provide an alternative view of your business data. As with
inner joins, you will express a logical relationship between the tables. However, you will retrieve not only
rows with matching attributes, but also all rows present in one of the tables, whether or not there is a
match in the other table.

Lesson Objectives
After completing this lesson, you will be able to:

 Understand the purpose and function of outer joins.

 Write queries using outer joins.

 Combine an OUTER JOIN operator in a FROM clause with a nullability test in a WHERE clause to
reveal non-matching rows.

Understanding Outer Joins

In the previous lesson, you learned how to use inner
joins to match rows in separate tables. As you saw,
SQL Server built the results of an inner join query by
filtering out rows that failed to meet the conditions
expressed in the ON clause predicate. The result is
that only rows that matched from both tables were
displayed. With an outer join, you may choose to
display all the rows from one table, along with
those that match from the second table. Let's look
at an example, then explore the process.

First, examine the following query, written as an
inner join:

Inner Join

USE AdventureWorks;
GO
SELECT c.CustomerID, soh.SalesOrderID
FROM Sales.Customer AS c JOIN Sales.SalesOrderHeader AS soh
ON c.CustomerID = soh.CustomerID
--(31465 row(s) affected)

Note that this example uses the AdventureWorks2016 database for these samples. When written as an
inner join, the query returns 31,465 rows. These rows represent a match between customers and orders.
Only those CustomerIDs that are in both tables will appear in the results. Only customers who have placed
orders will be returned.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
4-12 Querying Multiple Tables

Now, let’s examine the following query, written as an outer left join:

Outer Left Join

USE AdventureWorks;
GO

SELECT c.CustomerID, soh.SalesOrderID
FROM Sales.Customer AS c LEFT OUTER JOIN Sales.SalesOrderHeader AS soh
ON c.CustomerID = soh.CustomerID
--(32166 row(s) affected)

This example uses a LEFT OUTER JOIN operator which, as you will learn, directs the query processor to
preserve all rows from the table on the left (Sales.Customer) and displays the SalesOrderID values for
matching rows in Sales.SalesOrderHeader. However, there are more rows returned in this example. All
customers are returned, whether or not they have placed an order. As you will see in this lesson, an outer
join will display all the rows from one side of the join or another, whether or not they match.

What does an outer join query display in columns where there was no match? In this example, there are
no matching orders for 701 customers. In place of the SalesOrderID column, SQL Server will output NULL
where values are otherwise missing.

Outer Join Syntax

When writing queries using outer joins, consider the
following guidelines:

 As you have seen, table aliases are preferred
not only for the SELECT list, but also for
expressing the ON clause.

 Outer joins are expressed using the keywords
LEFT, RIGHT, or FULL preceding OUTER JOIN.
The purpose of the keyword is to indicate
which table (on which side of the keyword
JOIN) should be preserved and have all its rows
displayed, match or no match.

 As with inner joins, outer joins may be performed on a single matching attribute, such as an orderid,
or on multiple matching attributes, such as orderid and productid.

 Unlike inner joins, the order in which tables are listed and joined in the FROM clause does matter, as
it will determine whether you choose LEFT or RIGHT for your join.

 Multi-table joins are more complex when an OUTER JOIN is present. The presence of NULLs in the
results of an outer join may cause issues if the intermediate results are then joined, via an inner join,
to a third table. Rows with NULLs may be filtered out by the second join's predicate.

 To display only rows where no match exists, add a test for NULL in a WHERE clause following an
OUTER JOIN predicate.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
Querying Data with Transact-SQL 4-13

Outer Join Examples

The following are some examples of outer joins:

This query displays all customers and provides
information about each of their orders if any exist:

Outer Join Example

USE TSQL;
GO
SELECT c.custid, c.companyname, o.orderid,
o.orderdate
FROM Sales.Customers AS c
LEFT OUTER JOIN Sales.Orders AS o
ON c.custid =o.custid;

This query displays only customers who have never placed an order:

Outer Join Example

SELECT c.custid, c.companyname, o.orderid, o.orderdate
FROM Sales.Customers AS c
LEFT OUTER JOIN Sales.Orders AS o
ON c.custid =o.custid
WHERE o.orderid IS NULL;

Demonstration: Querying with Outer Joins

In this demonstration, you will see how to:

 Use outer joins.

Demonstration Steps
Use Outer Joins

1. Ensure that you have completed the previous demonstration in this module. Alternatively, start the
20761A-MIA-DC and 20761A-MIA-SQL virtual machines, log on to 20761A-MIA-SQL as
ADVENTUREWORKS\Student with the password Pa$$w0rd, and run
D:\Demofiles\Mod04\Setup.cmd as an administrator.

2. If SQL Server Management Studio is not already open, start it and connect to the MIA-SQL database
engine instance using Windows authentication, and then open the Demo.ssmssln solution in the
D:\Demofiles\Mod04\Demo folder.

3. In Solution Explorer, open the 31 – Demonstration C.sql script file.

4. Select the code under the comment Step 1, and then click Execute.

5. Select the code under the comment Step 2, and then click Execute.

6. Select the code under the comment Step 3, and then click Execute.

7. Select the code under the comment Step 4, and then click Execute.

8. Select the code under the comment Step 5, and then click Execute.

9. Select the code under the comment Step 6, and then click Execute.

10. Select the code under the comment Step 7, and then click Execute.

11. Keep SQL Server Management Studio open for the next demonstration.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
4-14 Querying Multiple Tables

Check Your Knowledge

Question

You have a table named PoolCars and a table named Bookings in your
ResourcesScheduling database. You want to return all the pool cars for which there
are zero bookings. Which of the following queries should you use?

Select the correct answer.

 SELECT pc.ID, pc.Make, pc.Model, pc.LicensePlate
FROM ResourcesScheduling.PoolCars AS pc, ResourcesScheduling.Bookings AS b
WHERE pc.ID = b.CarID;

 SELECT pc.ID, pc.Make, pc.Model, pc.LicensePlate
FROM ResourcesScheduling.PoolCars AS pc
RIGHT OUTER JOIN ResourcesScheduling.Bookings AS b
ON pc.ID = b.CarID;

 SELECT pc.ID, pc.Make, pc.Model, pc.LicensePlate
FROM ResourcesScheduling.PoolCars AS pc
JOIN ResourcesScheduling.Bookings AS b
ON pc.ID = b.CarID;

 SELECT pc.ID, pc.Make, pc.Model, pc.LicensePlate
FROM ResourcesScheduling.PoolCars AS pc
LEFT OUTER JOIN ResourcesScheduling.Bookings AS b
ON pc.ID = b.CarID
WHERE b.BookingID IS NULL;

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
Querying Data with Transact-SQL 4-15

Lesson 4
Querying with Cross Joins and Self Joins

In this lesson, you will learn about additional types of joins, which are useful in some more specialized
scenarios.

Lesson Objectives
After completing this lesson, you will be able to:

 Describe a use for a cross join.

 Write queries that use cross joins.

 Describe a use for a self join.

 Write queries that use self joins.

Understanding Cross Joins

Cross join queries create a Cartesian product that,
as you have learned in this module so far, are to be
avoided. Although you have seen a means to create
one with ANSI SQL-89 syntax, you haven't seen how
or why to do so with ANSI SQL-92. This topic will
revisit cross joins and Cartesian products.

To explicitly create a Cartesian product, you would
use the CROSS JOIN operator.

This will create a result set with all possible
combinations of input rows:

Cross Join

SELECT ...
FROM table1 AS t1 CROSS JOIN table2 AS t2;

While this is not typically a desired output, there are a few practical applications for writing an explicit
cross join:

 Creating a table of numbers, with a row for each possible value in a range.

 Generating large volumes of data for testing. When cross joined to itself, a table with as few as 100
rows can readily generate 10,000 output rows with very little work from you.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
4-16 Querying Multiple Tables

Cross Join Syntax

When writing queries with CROSS JOIN, consider
the following:

 There is no matching of rows performed, and
therefore no ON clause is required.

 To use ANSI SQL-92 syntax, separate the input
table names with the CROSS JOIN operator.

Cross Join Examples

The following is an example of using CROSS JOIN to
create all combinations of two input sets:

Using the TSQL sample, this will take nine employee
first and last names to generate 81 combinations:

Cross Join Example

SELECT e1.firstname, e2.lastname
FROM HR.Employees e1 CROSS JOIN
HR.Employees e2;

Understanding Self Joins

So far, the joins you have learned about have
involved separate multiple tables. There may be
scenarios in which you need to compare and
retrieve data stored in the same table. For example,
in a classic human resources application, an
Employees table might include information about
the supervisor of each employee in the employee's
own row. Each supervisor is also listed as an
employee. To retrieve the employee information
and match it to the related supervisor, you can use
the table twice in your query, joining it to itself for
the purposes of the query.

There are other scenarios in which you will want to compare rows in a table with one another. As you
have seen, it's fairly easy to compare columns in the same row using T-SQL, but how to compare values
from different rows (such as a row which stores a starting time with another row in the same table that
stores a corresponding stop time) is less obvious. Self joins are a useful technique for these types of
queries.

To accomplish tasks like this, you should consider the following guidelines:

 Create two instances of the same table in the FROM clause, and join them as needed, using inner or
outer joins.

 Use table aliases to create two separate aliases for the same table. At least one of these must have an
alias.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
Querying Data with Transact-SQL 4-17

 Use the ON clause to provide a filter using separate columns from the same table.

The following example, which you will examine closely in the next topic, illustrates these guidelines:

This query retrieves employees and their matching manager information from the Employees table joined
to itself:

Self Join Example

SELECT e.empid ,e.lastname AS empname,e.title,e.mgrid, m.lastname AS mgrname
 FROM HR.Employees AS e
 JOIN HR.Employees AS m
 ON e.mgrid=m.empid;

This yields results like the following:

empid empname title mgrid mgrname
----- ------------ --------------------- ----- -------
2 Funk Vice President, Sales 1 Davis
3 Lew Sales Manager 2 Funk
4 Peled Sales Representative 3 Lew
5 Buck Sales Manager 2 Funk
6 Suurs Sales Representative 5 Buck
7 King Sales Representative 5 Buck
8 Cameron Sales Representative 3 Lew
9 Dolgopyatova Sales Representative 5 Buck

Self Join Examples

The following are some examples of self joins:

This query returns all employees, along with the
name of each employee’s manager, when a
manager exists (inner join). Note that an employee
with no manager listed will be missing from the
results:

Self Join Example

SELECT e.empid ,e.lastname AS
empname,e.title,e.mgrid, m.lastname AS
mgrname
 FROM HR.Employees AS e
 JOIN HR.Employees AS m
 ON e.mgrid=m.empid;

This query returns all employees with the name of each manager (outer join). This restores the missing
employee, who turns out to be a CEO with no manager:

Self Join Example

SELECT e.empid ,e.lastname AS empname,e.title,e.mgrid, m.lastname AS mgrname
 FROM HR.Employees AS e
 LEFT OUTER JOIN HR.Employees AS m
 ON e.mgrid=m.empid;

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
4-18 Querying Multiple Tables

Demonstration: Querying with Cross Joins and Self Joins

In this demonstration, you will see how to:

 Use self joins and cross joins.

Demonstration Steps
Use Self Joins and Cross Joins

1. Ensure that you have completed the previous demonstration in this module. Alternatively, start the
20761A-MIA-DC and 20761A-MIA-SQL virtual machines, log on to 20761A-MIA-SQL as
ADVENTUREWORKS\Student with the password Pa$$w0rd, and run
D:\Demofiles\Mod04\Setup.cmd as an administrator.

2. If SQL Server Management Studio is not already open, start it and connect to the MIA-SQL database
engine instance using Windows authentication, and then open the Demo.ssmssln solution in the
D:\Demofiles\Mod04\Demo folder.

3. In Solution Explorer, open the 41 – Demonstration D.sql script file.

4. Select the code under the comment Step 1, and then click Execute.

5. Select the code under the comment Step 2, and then click Execute.

6. Select the code under the comment Step 3, and then click Execute.

7. Select the code under the comment Step 4, and then click Execute.

Close SQL Server Management Studio without saving any files.

Question: You have two tables named FirstNames and LastNames. You want to generate a
set of fictitious full names from this data. There are 150 entries in the FirstNames table and
250 entries in the LastNames table. You use the following query:

SELECT (f.Name + ' ' + l.Name) AS FullName

FROM FirstNames AS f

CROSS JOIN LastNames AS l

How many fictitious full names will be returned by this query?

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
Querying Data with Transact-SQL 4-19

Lab: Querying Multiple Tables
Scenario
You are an Adventure Works business analyst, who will be writing reports using corporate databases
stored in SQL Server 2016. You have been given a set of business requirements for data and you will write
T-SQL queries to retrieve the specified data from the databases. You notice that the data is stored in
separate tables, so you will need to write queries using various join operations.

Objectives
After completing this lab, you will be able to:

 Write queries that use inner joins.

 Write queries that use multiple-table inner joins.

 Write queries that use self joins.

 Write queries that use outer joins

 Write queries that use cross joins.

Estimated Time: 50 minutes

Virtual machine: 20761A-MIA-SQL

User name: ADVENTUREWORKS\Student

Password: Pa$$w0rd

Exercise 1: Writing Queries That Use Inner Joins

Scenario
You no longer need the supplied mapping information between categoryid and categoryname because
you now have the Production.Categories table with the needed mapping rows. Write a SELECT statement
using an inner join to retrieve the productname column from the Production.Products table and the
categoryname column from the Production.Categories table.

The main tasks for this exercise are as follows:

1. Prepare the Lab Environment

2. Write a SELECT Statement That Uses an Inner Join

 Task 1: Prepare the Lab Environment
1. Ensure that the 20761A-MIA-DC and 20761A-MIA-SQL virtual machines are both running, and then

log on to 20761A-MIA-SQL as ADVENTUREWORKS\Student with the password Pa$$w0rd.

2. Run Setup.cmd in the D:\Labfiles\Lab04\Starter folder as Administrator.

 Task 2: Write a SELECT Statement That Uses an Inner Join
1. Open the project file D:\Labfiles\Lab04\Starter\Project\Project.ssmssln and the T-SQL script 51 - Lab

Exercise 1.sql. Ensure that you are connected to the TSQL database.

2. Write a SELECT statement that will return the productname column from the Production.Products
table (use table alias ‘p’) and the categoryname column from the Production.Categories table (use
table alias ‘c’) using an inner join.

3. Execute the written statement and compare the results that you achieved with the desired results
shown in the file D:\Labfiles\Lab04\Solution\52 - Lab Exercise 1 - Task 2 Result.txt.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
4-20 Querying Multiple Tables

4. Which column did you specify as a predicate in the ON clause of the join? Why?

5. Let us say that there is a new row in the Production.Categories table and this new product category
does not have any products associated with it in the Production.Products table. Would this row be
included in the result of the SELECT statement written in task 1? Please explain.

Results: After this exercise, you should know how to use an inner join between two tables.

Exercise 2: Writing Queries That Use Multiple-Table Inner Joins

Scenario
The sales department would like a report of all customers who placed at least one order, with detailed
information about each one. A developer prepared an initial SELECT statement that retrieves the custid
and contactname columns from the Sales.Customers table and the orderid column from the Sales.Orders
table. You should observe the supplied statement and add additional information from the
Sales.OrderDetails table.

The main tasks for this exercise are as follows:

1. Execute the T-SQL Statement

2. Apply the Needed Changes and Execute the T-SQL Statement

3. Change the Table Aliases

4. Add an Additional Table and Columns

 Task 1: Execute the T-SQL Statement
1. Open the project file D:\Labfiles\Lab04\Starter\Project\Project.ssmssln and the T-SQL script 61 - Lab

Exercise 2.sql. Ensure that you are connected to the TSQL database.

2. The developer has written this query:

SELECT
custid, contactname, orderid
FROM Sales.Customers
INNER join Sales.Orders ON Customers.custid = Orders.custid;

Execute the query exactly as written inside a query window and observe the result.

3. An error is shown. What is the error message? Why do you think this happened?

 Task 2: Apply the Needed Changes and Execute the T-SQL Statement
1. Notice that there are full source table names written as table aliases.

2. Apply the needed changes to the SELECT statement so that it will run without an error. Test the
changes by executing the T-SQL statement.

3. Observe and compare the results that you achieved with the recommended results shown in the file
D:\Labfiles\Lab04\Solution\62 - Lab Exercise 2 - Task 2 Result.txt.

 Task 3: Change the Table Aliases
1. Copy the T-SQL statement from task 2 and modify it to use the table aliases ‘c’ for the

Sales.Customers table and ‘o’ for the Sales.Orders table.

2. Execute the written statement and compare the results with those in task 2.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
Querying Data with Transact-SQL 4-21

3. Change the prefix of the columns in the SELECT statement with full source table names and execute
the statement.

4. There is an error. Why?

5. Change the SELECT statement to use the table aliases written at the beginning of the task.

 Task 4: Add an Additional Table and Columns
1. Copy the T-SQL statement from task 3 and modify it to include three additional columns from the

Sales.OrderDetails table: productid, qty, and unitprice.

2. Execute the written statement and compare the results that you achieved with the recommended
results shown in the file D:\Labfiles\Lab04\Solution\63 - Lab Exercise 2 - Task 4 Result.txt.

Results: After this exercise, you should have a better understanding of why aliases are important and how
to do a multiple-table join.

Exercise 3: Writing Queries That Use Self Joins

Scenario
The HR department would like a report showing employees and their managers. They want to see the
lastname, firstname, and title columns from the HR.Employees table for each employee and the same
columns for the employee’s manager.

The main tasks for this exercise are as follows:

1. Write a Basic SELECT Statement

2. Write a Query That Uses a Self Join

 Task 1: Write a Basic SELECT Statement
1. Open the project file D:\Labfiles\Lab04\Starter\Project\Project.ssmssln and the T-SQL script 71 -

Lab Exercise 3.sql. Ensure that you are connected to the TSQL database.

2. To better understand the needed tasks, you will first write a SELECT statement against the
HR.Employees table showing the empid, lastname, firstname, title, and mgrid columns.

3. Execute the written statement and compare the results that you achieved with the recommended
results shown in the file D:\Labfiles\Lab04\Solution\72 - Lab Exercise 3 - Task 1 Result.txt. Notice the
values in the mgrid column. The mgrid column is in a relationship with empid column. This is called a
self-referencing relationship.

 Task 2: Write a Query That Uses a Self Join
1. Copy the SELECT statement from task 1 and modify it to include additional columns for the manager

information (lastname, firstname) using a self join. Assign the aliases mgrlastname and mgrfirstname
respectively, to distinguish the manager names from the employee names.

2. Execute the written statement and compare the results that you achieved with the recommended
results shown in the file D:\Labfiles\Lab04\Solution\73 - Lab Exercise 3 - Task 2 Result.txt. Notice the
number of rows returned.

3. Is it mandatory to use table aliases when writing a statement with a self join? Can you use a full
source table name as an alias? Please explain.

4. Why did you get fewer rows in the T-SQL statement under task 2 compared to task 1?

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
4-22 Querying Multiple Tables

Results: After this exercise, you should have an understanding of how to write T-SQL statements that use
self joins.

Exercise 4: Writing Queries That Use Outer Joins

Scenario
The sales department was satisfied with the report you produced in exercise 2. Now sales staff would like
to change the report to show all customers, even if they did not have any orders, and still include order
information for the customers who did. You need to write a SELECT statement to retrieve all rows from
Sales.Customers (columns custid and contactname) and the orderid column from the table Sales.Orders.

The main tasks for this exercise are as follows:

1. Write a SELECT Statement That Uses an Outer Join

 Task 1: Write a SELECT Statement That Uses an Outer Join
1. Open the project file D:\Labfiles\Lab04\Starter\Project\Project.ssmssln and the T-SQL script 81 -

Lab Exercise 4.sql. Ensure that you are connected to the TSQL database.

2. Write a SELECT statement to retrieve the custid and contactname columns from the Sales.Customers
table and the orderid column from the Sales.Orders table. The statement should retrieve all rows from
the Sales.Customers table.

3. Execute the written statement and compare the results that you achieved with the recommended
results shown in the file D:\Labfiles\Lab04\Solution\82 - Lab Exercise 4 - Task 1 Result.txt.

4. Notice the values in the column orderid. Are there any missing values (marked as NULL)? Why?

Results: After this exercise, you should have a basic understanding of how to write T-SQL statements that
use outer joins.

Exercise 5: Writing Queries That Use Cross Joins

Scenario
The HR department would like to prepare a personalized calendar for each employee. The IT department
supplied you with T-SQL code that will generate a table with all dates for the current year. Your job is to
write a SELECT statement that would return all rows in this new calendar date table for each row in the
HR.Employees table.

The main tasks for this exercise are as follows:

1. Execute the T-SQL Statement

2. Write a SELECT Statement That Uses a Cross Join

3. Drop the HR.Calendar Table

 Task 1: Execute the T-SQL Statement
1. Open the project file D:\Labfiles\Lab04\Starter\Project\Project.ssmssln and the T-SQL script 91 -

Lab Exercise 5.sql. Ensure that you are connected to the TSQL database.

2. Execute the T-SQL code under task 1. Don’t worry if you do not understand the provided T-SQL code,
as it is used here to give a more realistic example for a cross join in the next task.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
Querying Data with Transact-SQL 4-23

 Task 2: Write a SELECT Statement That Uses a Cross Join
1. Write a SELECT statement to retrieve the empid, firstname, and lastname columns from the

HR.Employees table and the calendardate column from the HR.Calendar table.

2. Execute the written statement and compare the results that you achieved with the recommended
results shown in the file D:\Labfiles\Lab04\Solution\92 - Lab Exercise 5 - Task 2 Result.txt.

Note: The dates from the query might not exactly match the solution file.

3. How many rows are returned by the query? There are nine rows in the HR.Employees table. Try to
calculate the total number of rows in the HR.Calendar table.

 Task 3: Drop the HR.Calendar Table
1. Execute the provided T-SQL statement to remove the HR.Calendar table.

Results: After this exercise, you should have an understanding of how to write T-SQL statements that use
cross joins.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
4-24 Querying Multiple Tables

Module Review and Takeaways

 Best Practice: Table aliases should always be defined when joining tables.
Joins should be expressed using SQL-92 syntax, with JOIN and ON keywords.

Review Question(s)
Question: How does an inner join differ from an outer join?

Question: Which join types include a logical Cartesian product?

Question: Can a table be joined to itself?

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
5-1

Module 5
Sorting and Filtering Data

Contents:
Module Overview 5-1

Lesson 1: Sorting Data 5-2

Lesson 2: Filtering Data with Predicates 5-6

Lesson 3: Filtering Data with TOP and OFFSET-FETCH 5-10

Lesson 4: Working with Unknown Values 5-16

Lab: Sorting and Filtering Data 5-20

Module Review and Takeaways 5-25

Module Overview
In this module, you will learn how to enhance a query to limit the number of rows that the query returns,
and control the order in which the rows are displayed.

Earlier in this course, you learned that, according to relational theory, sets of data do not include any
definition of a sort order. Therefore, if you require the output of a query to be displayed in a certain order,
you should add an ORDER BY clause to your SELECT statement. In this module, you will learn how to write
a query using ORDER BY to control the display order.

You have already learned how to build a FROM clause to return rows from one or more tables. It is
unlikely that you will always want to return all rows from the source. For performance reasons, in addition
to the needs of your client application or report, you will want to limit which rows are returned. As you
will learn in this module, you can limit the rows selected with a WHERE clause based on a predicate; you
can also limit the number of rows with a TOP, or OFFSET and FETCH clause, based on the order of the
rows selected.

When you work with real-world data in queries, you may encounter situations where values are missing. It
is important to write queries that can handle missing values correctly. In this module, you will learn about
handling missing and unknown results.

Objectives
Filter data with predicates in the WHERE clause:

 Sort data using ORDER BY.

 Filter data in the SELECT clause with TOP.

 Filter data with OFFSET and FETCH.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
5-2 Sorting and Filtering Data

Lesson 1
Sorting Data

In this lesson, you will learn how to add an ORDER BY clause to a query to control the order of rows
displayed in the output of the query.

Lesson Objectives
After completing this lesson, you will be able to:

 Describe the ORDER BY clause.

 Describe the ORDER BY clause syntax.

 List examples of the ORDER BY clause.

Using the ORDER BY Clause

In the logical order of query processing, ORDER BY
is the last phase of a SELECT statement to be
executed. ORDER BY enables you to control the
sorting of rows as they are output from the query
to the client application. Without an ORDER BY
clause, SQL Server does not guarantee the order of
rows—in keeping with relational theory.

To sort the output of your query, you will add an
ORDER BY clause in this form:

ORDER BY clause

SELECT <select_list>
FROM <table_source>
ORDER BY <order_by_list> [ASC|DESC];

ORDER BY can take several types of element in its list:

Columns by name. Additional columns beyond the first specified in the list will be used as tiebreakers for
non-unique values in the first column.

Column aliases. Remember that ORDER BY is processed after the SELECT clause and therefore has access
to aliases defined in the SELECT list.

Columns by position in the SELECT clause. This is not recommended, because of diminished readability
and the extra care required to keep the ORDER BY list up to date with any changes made to the SELECT
list column order.

 Columns not detailed in the SELECT list, but part of tables listed in the FROM clause. If the
query uses a DISTINCT option, any columns in the ORDER BY list must be included in the SELECT list.

 Note: ORDER BY may also include a COLLATE clause, which provides a way to sort by a
specific character collation, instead of the collation of the column in the table. Collations will be
discussed further later in this course.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
Querying Data with Transact-SQL 5-3

In addition to specifying which columns should be used to determine the sort order, you may also control
the direction of the sort by using ASC for ascending (A-Z, 0-9) or DESC for descending (Z-A, 9-0).
Ascending sorts are the default. Each column may be provided with a separate order, as in the following
example:

Employees will be listed from most recent hire to least recent, with employees hired on the same date
listed alphabetically by last name:

Ascending and Descending Sort

USE TSQL;
GO
SELECT hiredate, firstname, lastname
FROM HR.Employees
ORDER BY hiredate DESC, lastname ASC;

For additional documentation on the ORDER BY clause, see Books Online at:

ORDER BY Clause (Transact-SQL)

http://go.microsoft.com/fwlink/?LinkID=402718

ORDER BY Clause Syntax

The syntax of the ORDER BY clause appears as
follows:

ORDER BY Clause

ORDER BY <order_by_list>
OFFSET <offset_value> ROW|ROWS FETCH
FIRST|NEXT <fetch_value> ROW|ROWS ONLY

 Note: The use of the OFFSET-FETCH option in
the ORDER BY clause will be covered later in this
module.

Most variations of ORDER BY will occur in the ORDER BY list. To specify columns by name, with the default
ascending order, use the following syntax:

ORDER BY List

ORDER BY <column_name_1>, <column_name_2>;

A fragment of code using columns from the Sales.Customers table would look like this:

ORDER BY List Example

ORDER BY country, region, city;

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
5-4 Sorting and Filtering Data

To specify columns by aliases defined in the SELECT clause, use the following syntax:

ORDER BY an Alias

SELECT <column_name_1> AS alias1, <column_name_2> AS alias2
FROM <table source>
ORDER BY alias1;

A query for the Sales.Orders table using column aliases would look like this:

ORDER BY Using Column Alias Example

SELECT orderid, custid, YEAR(orderdate) AS orderyear
FROM Sales.Orders
ORDER BY orderyear;

 Note: See the previous topic for the syntax and usage of ASC or DESC to control sort order.

ORDER BY Clause Examples

The following are examples of common queries
using ORDER BY to sort the output for display. All
queries use the TSQL sample database.

A query against the Sales.Orders table, sorting the
results by the orderdate column:

ORDER BY Example 1

SELECT orderid, custid, orderdate
FROM Sales.Orders
ORDER BY orderdate;

A query against the Sales.Orders table, which sorts
the output in descending order of orderdate (that is, most recent to oldest):

ORDER BY Example 2

SELECT orderid, custid, orderdate
FROM Sales.Orders
ORDER BY orderdate DESC;

A query against the HR.Employees table, which sorts employees in descending order of hire date (that is,
most recent to oldest), using lastname to differentiate employees hired on the same date:

ORER BY Example 3

SELECT hiredate, firstname, lastname
FROM HR.Employees
ORDER BY hiredate DESC, lastname ASC;

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
Querying Data with Transact-SQL 5-5

Demonstration: Sorting Data

In this demonstration, you will see how to:

 Sort data using the ORDER BY clause

Demonstration Steps
Sort Data Using The ORDER BY Clause

1. Ensure that the MSL-TMG1, 20761A-MIA-DC, and 20761A-MIA-SQL virtual machines are running,
and then log on to 20761A-MIA-SQL as ADVENTUREWORKS\Student with the password
Pa$$w0rd.

2. Start SQL Server Management Studio and connect to your Azure instance of the AdventureWorksLT
database engine instance using SQL Server authentication.

3. If the Microsoft SQL Server Management Studio dialog box appears, click OK.

4. Open the Demo.ssmssln solution in the D:\Demofiles\Mod05\Demo folder.

5. If the Solution Explorer pane is not visible, on the View menu, click Solution Explorer.

6. Expand Queries, and double-click the 11 – Demonstration A.sql script file.

7. In the Available Databases list, click ADVENTUREWORKSLT.

8. Select the code under the comment Step 1, and then click Execute.

9. Select the code under Step 2, and then click Execute.

10. Select the code under the comment Step 3, and then click Execute.

11. Select the code under the comment Step 4, and then click Execute.

12. Select the code under the comment Step 5, and then click Execute.

13. Select the code under the comment Step 6, and then click Execute.

14. Keep SQL Server Management Studio open for the next demonstration.

Question: If you declare an alias for a column in the SELECT clause, you cannot use that alias
in the WHERE clause—but you can use it in the ORDER BY clause. Why is this?

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
5-6 Sorting and Filtering Data

Lesson 2
Filtering Data with Predicates

When querying SQL Server, you will mostly want to retrieve only a subset of all rows stored in the table(s)
listed in the FROM clause. This is especially true as data volumes grow. To limit which rows are returned,
you will typically use the WHERE clause in the SELECT statement. In this lesson, you will learn how to
construct WHERE clauses to filter out rows that do not match the predicate.

Lesson Objectives
After completing this lesson, you will be able to:

 Describe the WHERE clause.

 Describe the syntax of the WHERE clause.

Filtering Data in the WHERE Clause with Predicates

To limit the rows that are returned by your query,
you will need to add a WHERE clause to your
SELECT statement, following the FROM clause.
WHERE clauses are constructed from a search
condition which, in turn, is written as a predicate
expression. The predicate provides a logical filter
through which each row must pass. Only rows
returning TRUE in the predicate will be output to
the next logical phase of the query.

When writing a WHERE clause, keep the following
considerations in mind:

 Your predicate must be expressed as a logical
condition, evaluating to TRUE or FALSE. (The evaluation may be NULL when working with missing
values or NULL. See Lesson 4 for more information.)

 Only rows for which the predicate evaluates as TRUE will be passed through the filter.

 Values of FALSE or UNKNOWN will be filtered out.

 Column aliases declared in the SELECT clause of the query cannot be used in the WHERE clause
predicate.

 Remember that, logically, the WHERE clause is the next phase in query execution after FROM, so the
WHERE clause will be processed before other clauses, such as SELECT. One consequence of this is that
the WHERE clause will be unable to refer to column aliases created in the SELECT clause. If you have
created expressions in the SELECT list, you will need to repeat the expressions for use in the WHERE
clause.

For example, the following query, which uses a simple calculated expression in the SELECT list, will execute
successfully:

Filtering Example

SELECT orderid, custid, YEAR(orderdate) AS ordyear
FROM Sales.Orders
WHERE YEAR(orderdate) = 2006;

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
Querying Data with Transact-SQL 5-7

The following query will fail, due to the use of column aliases in the WHERE clause:

Incorrect Column Alias in WHERE Clause

SELECT orderid, custid, YEAR(orderdate) AS ordyear
FROM Sales.Orders
WHERE ordyear = 2006;

The error message points to the use of the column alias in Line 3 of the batch:

Msg 207, Level 16, State 1, Line 3
Invalid column name 'ordyear'.

From the perspective of query performance, the use of effective WHERE clauses can provide a significant
positive impact on SQL Server. Rather than return all rows to the client for post-processing, a WHERE
clause causes SQL Server to filter data on the server side. This can reduce network traffic and memory
usage on the client. SQL Server developers and administrators can also create indexes to support
commonly-used predicates, further improving performance.

WHERE Clause Syntax

In Books Online, the syntax of the WHERE clause
appears as follows:

WHERE Clause Syntax

WHERE <search_condition>

The most common form of a WHERE clause is as
follows:

Typical WHERE Clause

WHERE <column> <operator> <expression>

For example, the following code fragment shows a WHERE clause that will filter only customers from
Spain:

WHERE Clause Example

SELECT contactname, country
FROM Sales.Customers
WHERE country = N'Spain';

Any of the logical operators introduced in the T-SQL language module earlier in this course may be used
in a WHERE clause predicate.

This example filters orders placed after a specified date.

WHERE Clause Example

SELECT orderid, orderdate
FROM Sales.Orders
WHERE orderdate > '20070101';

 Note: The representation of dates as strings delimited by quotation marks will be covered
in the next module.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
5-8 Sorting and Filtering Data

In addition to using logical operators, literals, or constants in a WHERE clause, you may also use several T-
SQL options in your predicate:

Predicates and Operators Description

IN Determines whether a specified value matches
any value in a subquery or a list.

BETWEEN Specifies an inclusive range to test.

LIKE Determines whether a specific character string
matches a specified pattern.

AND Combines two Boolean expressions and returns
TRUE only when both are TRUE.

OR Combines two Boolean expressions and returns
TRUE if either is TRUE.

NOT Reverses the result of a search condition.

 Note: The use of LIKE to match patterns in character-based data will be covered in the next
module.

The following example shows the use of the OR operator to combine conditions in a WHERE clause:

WHERE with OR Example

SELECT custid, companyname, country
FROM Sales.Customers
WHERE country = N'UK' OR country = N'Spain';

The following example modifies the previous query to use the IN operator for the same results:

WHERE with IN Example

SELECT custid, companyname, country
FROM Sales.Customers
WHERE country IN (N'UK',N'Spain');

The following example uses logical operators to search within a range of dates:

Range Example

SELECT orderid, custid, orderdate
FROM Sales.Orders
WHERE orderdate >= '20070101' AND orderdate <= '20080630';

The following example accomplishes the same results using the BETWEEN operator:

BETWEEN Operator

SELECT orderid, custid, orderdate
FROM Sales.Orders
WHERE orderdate BETWEEN '20070101' AND '20080630';

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
Querying Data with Transact-SQL 5-9

 Note: The use of comparison operators with date and time data types requires special
consideration. For more information, see the next module.

Demonstration: Filtering Data with Predicates

In this demonstration, you will see how to:

 Filter data in a WHERE clause

Demonstration Steps
Filter Data in a WHERE Clause

1. Ensure that you have completed the previous demonstration in this module. Alternatively, start the
MSL-TMG1, 20761A-MIA-DC, and 20761A-MIA-SQL virtual machines, log on to 20761A-MIA-SQL as
ADVENTUREWORKS\Student with the password Pa$$w0rd.

2. If SQL Server Management Studio is not already open, start it and connect to your Azure instance of
the AdventureWorksLT database engine instance using SQL Server authentication, and then open
the Demo.ssmssln solution in the D:\Demofiles\Mod05\Demo folder.

3. In Solution Explorer, open the 21 – Demonstration B.sql script file.

4. In the Available Databases list, click ADVENTUREWORKSLT.

5. Select the code under the comment Step 1, and then click Execute.

6. Select the code under the comment Step 2, and then click Execute.

7. Select the code under the comment Step 3, and then click Execute.

8. Select the code under the comment Step 4, and then click Execute.

9. Select the code under the comment Step 5, and then click Execute.

10. Select the code under the comment Step 6, and then click Execute.

11. Select the code under the comment Step 7, and then click Execute.

12. Select the code under the comment Step 8, and then click Execute.

13. Select the code under the comment Step 9, and then click Execute.

14. Select the code under the comment Step 10, and then click Execute.

15. Select the code under the comment Step 11, and then click Execute.

16. Keep SQL Server Management Studio open for the next demonstration.

Question: You have a table named Employees that includes a column named StartDate. You
want to find who started in any year other than 2014. What query would you use?

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
5-10 Sorting and Filtering Data

Lesson 3
Filtering Data with TOP and OFFSET-FETCH

In the previous lesson, you wrote queries that filtered rows, based on data stored within them. You can
also write queries that filter ranges of rows, based either on a specific number to retrieve, or one range of
rows at a time. In this lesson, you will learn how to use a TOP option to limit ranges of rows in the SELECT
clause. You will also learn how to limit ranges of rows using the OFFSET-FETCH option of an ORDER BY
clause.

Lesson Objectives
After completing this lesson, you will be able to:

 Describe the TOP option.

 Describe the OFFSET-FETCH clause.

 Describe the syntax of the OFFSET-FETCH clause.

Filtering in the SELECT Clause Using the TOP Option

When returning rows from a query, you may need
to limit the total number of rows returned, in
addition to filtering with a WHERE clause. The TOP
option, a Microsoft-proprietary extension of the
SELECT clause, will let you specify a number of rows
to return, either as an ordinal number or as a
percentage of all candidate rows.

The simplified syntax of the TOP option is as
follows:

TOP Option

SELECT TOP (N) <column_list>
FROM <table_source>
WHERE <search_condition>
ORDER BY <order list>;

For example, to retrieve only the five most recent orders from the Sales.Orders table, use the following
query:

TOP Example

SELECT TOP (5) orderid, custid, orderdate
FROM Sales.Orders
ORDER BY orderdate DESC;

 Note: The TOP operator depends on an ORDER BY clause to provide meaningful
precedence to the rows selected. In the absence of ORDER BY, there is no guarantee which rows
will be returned. In the previous example, any five orders might be returned if there wasn’t an
ORDER BY clause.
In addition to specifying a fixed number of rows to be returned, the TOP keyword also accepts
the WITH TIES option, which will retrieve any rows with values that might be found in the
selected top N rows.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
Querying Data with Transact-SQL 5-11

For example, the following query will return five rows with the most recent order dates:

Without the WITH TIES Option

SELECT TOP (5) orderid, custid, orderdate
FROM Sales.Orders
ORDER BY orderdate DESC;

The results show five rows with two distinct orderdate values:

orderid custid orderdate
----------- ----------- -----------------------
11077 65 2008-05-06 00:00:00.000
11076 9 2008-05-06 00:00:00.000
11075 68 2008-05-06 00:00:00.000
11074 73 2008-05-06 00:00:00.000
11073 58 2008-05-05 00:00:00.000
(5 row(s) affected)

However, by adding the WITH TIES option to the TOP clause, you will see that more rows qualify for the
second-oldest order date:

With the WITH TIES Option

SELECT TOP (5) WITH TIES orderid, custid, orderdate
FROM Sales.Orders
ORDER BY orderdate DESC;

This modified query returns the following results:

orderid custid orderdate
----------- ----------- -----------------------
11077 65 2008-05-06 00:00:00.000
11076 9 2008-05-06 00:00:00.000
11075 68 2008-05-06 00:00:00.000
11074 73 2008-05-06 00:00:00.000
11073 58 2008-05-05 00:00:00.000
11072 20 2008-05-05 00:00:00.000
11071 46 2008-05-05 00:00:00.000
11070 44 2008-05-05 00:00:00.000
 (8 row(s) affected)

The decision to include WITH TIES will depend on your knowledge of the source data, its potential for
unique values, and the requirements of the query you are writing.

To return a percentage of the row count, use the PERCENT option with TOP instead of a fixed number.

For example, if the Sales.Orders table contains 830 orders, the following query will return 83 rows:

Returning a Percentage of Records

SELECT TOP (10) PERCENT orderid, custid, orderdate
FROM Sales.Orders
ORDER BY orderdate DESC;

TOP (N) PERCENT may also be used with the WITH TIES option.

 Note: For purposes of row count, TOP (N) PERCENT will round up to the nearest integer.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
5-12 Sorting and Filtering Data

For additional information about the TOP clause, see Books Online at:

TOP (Transact-SQL)

http://go.microsoft.com/fwlink/?LinkID=402719

Filtering in the ORDER BY Clause Using OFFSET-FETCH

While the TOP option is used by many SQL Server
professionals as a method for retrieving only a
certain range of rows, it also has disadvantages:

 TOP is proprietary to T-SQL and SQL Server.

 TOP does not support skipping a range of rows.

 Because TOP depends on an ORDER BY clause,
you cannot use one sort order to establish the
rows filtered by TOP and another to determine
the output display.

To address a number of these concerns, Microsoft
added the OFFSET-FETCH extension to the ORDER
BY clause.

Like TOP, OFFSET-FETCH enables you to return only a range of the rows selected by your query. However,
it adds the functionality to supply a starting point (an offset) and a value to specify how many rows you
would like to return (a fetch value). This provides a convenient technique for paging through results.

When paging, you will need to consider that each query with an OFFSET-FETCH clause runs
independently of any previous or subsequent query. There is no server-side state maintained, and you will
need to track your position through a result set via client-side code.

As you will see in the next topic, OFFSET-FETCH has been written to allow a more natural English
language syntax.

OFFSET-FETCH is supported in SQL Server 2012, 2014, and 2016.

For more information about the OFFSET-FETCH clause, see Using OFFSET and FETCH to limit the rows
returned in Books Online at:

ORDER BY Clause (Transact-SQL)

http://go.microsoft.com/fwlink/?LinkID=402718

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
Querying Data with Transact-SQL 5-13

OFFSET-FETCH Syntax

The syntax for the OFFSET-FETCH clause is as
follows:

OFFSET-FETCH Clause

OFFSET { integer_constant |
offset_row_count_expression } { ROW | ROWS
}
 [FETCH { FIRST | NEXT }
{integer_constant |
fetch_row_count_expression } { ROW | ROWS }
ONLY]

To use OFFSET-FETCH, you will supply a starting
OFFSET value (which may be zero) and an optional number of rows to return, as in the following example:

This example will skip the first 10 rows, and then return the next 10 rows, as determined by the order date:

OFFSET FETCH Example 1

SELECT orderid, custid, orderdate
FROM Sales.Orders
ORDER BY orderdate, orderid DESC
OFFSET 10 ROWS FETCH NEXT 10 ROWS ONLY;

As you can see in the syntax definition, the OFFSET clause is required, but the FETCH clause is not. If the
FETCH clause is omitted, all rows following OFFSET will be returned. You will also find that the keywords
ROW and ROWS are interchangeable, as are FIRST and NEXT, which enables a more natural syntax.

To ensure the accuracy of the results, especially as you move from page to page of data, it is important to
construct an ORDER BY clause that will provide unique ordering and yield a deterministic result. Although
unlikely, due to SQL Server’s query optimizer, it is technically possible for a row to appear on more than
one page, unless the range of rows is deterministic.

 Note: To use OFFSET-FETCH for paging, you may supply the OFFSET value, in addition to
row count expressions, in the form of variables or parameters. You will learn more about variables
and stored procedure parameters in later modules of this course.

The following are some examples of using OFFSET-FETCH in T-SQL queries; all of them use the
AdventureWorks sample database:

To retrieve the 50 most recent rows as determined by the order date, this query starts with an offset of
zero. It will return a result similar to a SELECT TOP(50) query:

OFFSET-FETCH Example 2

SELECT orderid, custid, empid, orderdate
FROM Sales.Orders
ORDER BY orderdate DESC
OFFSET 0 ROWS FETCH FIRST 50 ROWS ONLY;

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
5-14 Sorting and Filtering Data

This query will retrieve rows 51-100 of a result set:

OFFSET-FETCH Example 3

SELECT orderid, custid, empid, orderdate
FROM Sales.Orders
ORDER BY orderdate DESC
OFFSET 50 ROWS FETCH NEXT 50 ROWS ONLY;

 Note: Unlike those found in any previous modules, examples of OFFSET-FETCH must be
executed by SQL Server 2012 or later. OFFSET-FETCH is not supported in SQL Server 2008 R2 or
earlier.

Demonstration: Filtering Data with TOP and OFFSET-FETCH

In this demonstration, you will see how to:

 Filter data using TOP and OFFSET-FETCH

Demonstration Steps
Filter Data Using TOP and OFFSET-FETCH

1. Ensure that you have completed the previous demonstration in this module. Alternatively, start the
MSL-TMG1, 20761A-MIA-DC, and 20761A-MIA-SQL virtual machines, log on to 20761A-MIA-SQL as
ADVENTUREWORKS\Student with the password Pa$$w0rd.

2. If SQL Server Management Studio is not already open, start it and connect to your Azure instance of
the AdventureWorksLT database engine instance using SQL Server authentication, and then open
the Demo.ssmssln solution in the D:\Demofiles\Mod05\Demo folder.

3. In Solution Explorer, open the 31 – Demonstration C.sql script file.

4. In the Available Databases list, ensure ADVENTUREWORKSLT is selected.

5. Select the code under the comment Step 1, and then click Execute.

6. Select the code under the comment Step 2, and then click Execute.

7. Select the code under the comment Step 3, and then click Execute.

8. Select the code under the comment Step 4, and then click Execute.

9. Select the code under the comment Step 5, and then click Execute.

10. Select the code under the comment Step 6, and then click Execute.

11. Select the code under the comment Step 7, and then click Execute.

12. Select the code under the comment Step 8, and then click Execute.

13. Keep SQL Server Management Studio open for the next demonstration.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
Querying Data with Transact-SQL 5-15

Check Your Knowledge

Question

You have a table named Products in your Sales database. You are creating a paged
display of products in an application that shows 20 products on each page, ordered
by name. Which of the following queries would return the third page of products?

Select the correct answer.

 SELECT ProductID, ProductName, ProductNumber
FROM Sales.Products
ORDER BY ProductName ASC
OFFSET 60 ROWS FETCH NEXT 20 ROWS ONLY

 SELECT ProductID, ProductName, ProductNumber
FROM Sales.Products
ORDER BY ProductName ASC
OFFSET 40 ROWS FETCH NEXT 20 ROWS ONLY;

 SELECT TOP (20) ProductID, ProductName, ProductNumber
FROM Sales.Products
ORDER BY ProductName ASC

 SELECT TOP (20) WITH TIES ProductID, ProductName, ProductNumber
FROM Sales.Products
ORDER BY ProductName ASC

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
5-16 Sorting and Filtering Data

Lesson 4
Working with Unknown Values

Unlike traditional Boolean logic, predicate logic in SQL Server needs to account for missing values and
deal with cases where the result of a predicate is unknown. In this lesson, you will learn how three-valued
logic accounts for unknown and missing values; how SQL Server uses NULL to mark missing values; and
how to test for NULL in your queries.

Lesson Objectives
After completing this lesson, you will be able to:

 Describe three-valued logic.

 Describe the use of NULL in queries.

Three-Valued Logic

Earlier in this course, you learned that SQL Server
uses predicate logic as a framework for logical tests
that return TRUE or FALSE. This is true for logical
expressions where all values being tested are
present. If you know the values of both X and Y,
you can safely determine whether X>Y is TRUE or
FALSE.

However, in SQL Server, not all data being
compared may be present. You need to plan for
and act on the possibility that some data is missing
or unknown. Values in SQL Server may be missing
but applicable, such as the value of a middle initial
that has not been supplied for an employee. It may also be missing but inapplicable, such as the value of
a middle initial for an employee who has no middle name. In both cases, SQL Server will mark the missing
value as NULL. A NULL is neither TRUE nor FALSE but is a mark for UNKNOWN, which represents the third
value in three-valued logic.

As discussed above, you can determine whether X>Y is TRUE or FALSE when you know the values of both
X and Y. But what does SQL Server return for the expression X>Y when Y is missing? SQL Server will return
an UNKNOWN, marked as NULL. You will need to account for the possible presence of NULL in your
predicate logic, and in the values stored in columns marked with NULL. You will need to write queries that
use three-valued logic to account for three possible outcomes—TRUE, FALSE, and UNKNOWN.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
Querying Data with Transact-SQL 5-17

Handling NULL in Queries

Once you have acquired a conceptual
understanding of three-valued logic and NULL, you
need to understand the different mechanisms SQL
Server uses for handling NULLs. Keep in mind the
following guidelines:

 Query filters, such as ON, WHERE, and the
HAVING clause, treat NULL like a FALSE result.
A WHERE clause that tests for a
<column_value> = N will not return rows when
the comparison is FALSE. Nor will it return rows
when either the column value or the value of N
is NULL.

Note the output of the following queries:

ORDER BY Query that includes NULL in Results

SELECT empid, lastname, region
FROM HR.Employees
ORDER BY region ASC; --Ascending sort order explicitly included for clarity.

This returns the following, with all employees whose region is missing (marked as NULL) sorted first:

empid lastname region
----------- -------------------- ---------------
5 Buck NULL
6 Suurs NULL
7 King NULL
9 Dolgopyatova NULL
8 Cameron WA
1 Davis WA
2 Funk WA
3 Lew WA
4 Peled WA

 Note: A common question about controlling the display of NULL in queries is whether
NULLs can be forced to the end of a result set. As you can see, the ORDER BY clause sorts the
NULLs together and first—a behavior you cannot override.

 ORDER BY treats NULLs as if they were the same value and always sorts NULLs together, putting them
first in a column. Make sure you test the results of any queries in which the column being used for
sort order contains NULLs, and understand the impact of ascending and descending sorts on NULLs.

 In ANSI-compliant queries, a NULL is never equivalent to another value, even another NULL. Queries
written to test NULL with an equality will fail to return correct results.

Note the following example:

Incorrectly Testing for NULL

SELECT empid, lastname, region
FROM HR.Employees
WHERE region = NULL;

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
5-18 Sorting and Filtering Data

This returns unexpected results:

empid lastname region
----------- -------------------- ---------------
 (0 row(s) affected)

 Use the IS NULL (or IS NOT NULL) operator rather than equals (or not equals).

See the following example:

Correctly Testing for NUL

SELECT empid, lastname, region
FROM HR.Employees
WHERE region IS NULL;

This returns correct results:

empid lastname region
----------- -------------------- ---------------
5 Buck NULL
6 Suurs NULL
7 King NULL
9 Dolgopyatova NULL
 (4 row(s) affected)

Demonstration: Working with NULL

In this demonstration, you will see how to:

 Test for NULL

Demonstration Steps
Test for Null

1. Ensure that you have completed the previous demonstration in this module. Alternatively, start the
MSL-TMG1, 20761A-MIA-DC, and 20761A-MIA-SQL virtual machines, log on to 20761A-MIA-SQL as
ADVENTUREWORKS\Student with the password Pa$$w0rd.

2. If SQL Server Management Studio is not already open, start it and connect to your Azure instance of
the AdventureWorksLT database engine instance using SQL Server authentication, and then open
the Demo.ssmssln solution in the D:\Demofiles\Mod05\Demo folder.

3. In Solution Explorer, open the 41 – Demonstration D.sql script file.

4. In the Available Databases list, ensure ADVENTUREWORKSLT is selected.

5. Select the code under the comment Step 2, and then click Execute.

6. Select the code under the comment Step 3, and then click Execute.

7. Select the code under the comment Step 4, and then click Execute.

8. Select the code under the comment Step 5, and then click Execute.

9. Select the code under the comment Step 6, and then click Execute.

10. Select the code under the comment Step 7, and then click Execute.

11. Close SQL Server Management Studio.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
Querying Data with Transact-SQL 5-19

Question: You have the following query:

SELECT e.Name, e.Age

FROM HumanResources.Employees AS e

WHERE YEAR(e.Age) < 1990;

Several employees have asked for their age to be removed from the Human Resources
database, and this requested action has been applied to the database. Will the above query
return these employees?

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
5-20 Sorting and Filtering Data

Lab: Sorting and Filtering Data
Scenario
You are an Adventure Works business analyst who will be writing reports using corporate databases
stored in SQL Server. You have been provided with a set of data business requirements and will write T-
SQL queries to retrieve the specified data from the databases. You will need to retrieve only some of the
available data, and return it to your reports in a specified order.

Objectives
After completing this lab, you will be able to:

 Write queries that filter data using a WHERE clause.

 Write queries that sort data using an ORDER BY clause.

 Write queries that filter data using the TOP option.

 Write queries that filter data using an OFFSET-FETCH clause.

Estimated Time: 60 minutes

Virtual machine: 20761A-MIA-SQL

User name: ADVENTUREWORKS\Student

Password: Pa$$w0rd

Exercise 1: Write Queries that Filter Data Using a WHERE Clause

Scenario
The marketing department is working on several campaigns for existing customers and staff need to
obtain different lists of customers, depending on several business rules. Based on these rules, you will
write the SELECT statements to retrieve the needed rows from the Sales.Customers table.

The main tasks for this exercise are as follows:

1. Prepare the Lab Environment

2. Write a SELECT Statement Using a WHERE Clause

3. Write a SELECT Statement Using an IN Predicate in the WHERE Clause

4. Write a SELECT Statement Using a LIKE Predicate in the WHERE Clause

5. Observe the T-SQL Statement Provided by the IT Department

6. Write a SELECT Statement to Retrieve Customers Without Orders

 Task 1: Prepare the Lab Environment
1. Ensure that the 20761A-MIA-DC and 20761A-MIA-SQL virtual machines are both running, and then

log on to 20761A-MIA-SQL as ADVENTUREWORKS\Student with the password Pa$$w0rd.

2. Run Setup.cmd in the D:\Labfiles\Lab05\Starter folder as Administrator.

 Task 2: Write a SELECT Statement Using a WHERE Clause
1. Open the project file D:\Labfiles\Lab05\Starter\Project\Project.ssmssln and the T-SQL script 51 - Lab

Exercise 1.sql. Ensure that you are connected to the TSQL database.

2. Write a SELECT statement that will return the custid, companyname, contactname, address, city,
country, and phone columns from the Sales.Customers table. Filter the results to include only the
customers from the country Brazil.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
Querying Data with Transact-SQL 5-21

3. Execute the written statement and compare the results that you achieved with the desired results
shown in the file D:\Labfiles\Lab05\Solution\52 - Lab Exercise 1 - Task 1 Result.txt.

 Task 3: Write a SELECT Statement Using an IN Predicate in the WHERE Clause
1. Write a SELECT statement that will return the custid, companyname, contactname, address, city,

country, and phone columns from the Sales.Customers table. Filter the results to include only
customers from the countries Brazil, UK, and USA.

2. Execute the written statement and compare the results that you achieved with the desired results
shown in the file D:\Labfiles\Lab05\Solution\53 - Lab Exercise 1 - Task 2 Result.txt.

 Task 4: Write a SELECT Statement Using a LIKE Predicate in the WHERE Clause
1. Write a SELECT statement that will return the custid, companyname, contactname, address, city,

country, and phone columns from the Sales.Customers table. Filter the results to include only the
customers with a contact name starting with the letter A.

2. Execute the written statement and compare the results that you achieved with the desired results
shown in the file D:\Labfiles\Lab05\Solution\54 - Lab Exercise 1 - Task 3 Result.txt.

 Task 5: Observe the T-SQL Statement Provided by the IT Department
1. The IT department has written a T-SQL statement that retrieves the custid and companyname

columns from the Sales.Customers table and the orderid column from the Sales.Orders table:

SELECT
c.custid, c.companyname, o.orderid
FROM Sales.Customers AS c
LEFT OUTER JOIN Sales.Orders AS o ON c.custid = o.custid AND c.city = N'Paris';

2. Execute the query and notice two things: first, the query retrieves all the rows from the
Sales.Customers table. Second, there is a comparison operator in the ON clause, specifying that the
city column should be equal to the value ‘Paris’.

3. Copy the provided T-SQL statement and modify it to have a comparison operator for the city column
in the WHERE clause. Execute the query.

4. Compare the results that you achieved with the desired results shown in the files
D:\Labfiles\Lab05\Solution\55 - Lab Exercise 1 - Task 4a Result.txt and
D:\Labfiles\Lab05\Solution\56 - Lab Exercise 1 - Task 4b Result.txt.

5. Is the result the same as in the first T-SQL statement? Why? What is the difference between specifying
the predicate in the ON clause and in the WHERE clause?

 Task 6: Write a SELECT Statement to Retrieve Customers Without Orders
1. Write a T-SQL statement to retrieve customers from the Sales.Customers table that do not have

matching orders in the Sales.Orders table. Matching customers with orders is based on a comparison
between the customer’s and the order’s custid values. Retrieve the custid and companyname
columns from the Sales.Customers table. (Hint: Use a T-SQL statement similar to the one in the
previous task.)

2. Execute the written statement and compare the results that you achieved with the desired results
shown in the file D:\Labfiles\Lab05\Solution\57 - Lab Exercise 1 - Task 5 Result.txt.

Results: After this exercise, you should be able to filter rows of data from one or more tables by using
WHERE predicates with logical operators.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
5-22 Sorting and Filtering Data

Exercise 2: Write Queries that Sort Data Using an ORDER BY Clause

Scenario
The sales department would like a report showing all the orders with some customer information. An
additional request is that the result be sorted by the order dates and the customer IDs. From previous
modules, remember that the order of the rows in the output of a query without an ORDER BY clause is
not guaranteed. Because of this, you will have to write a SELECT statement that uses an ORDER BY clause.

The main tasks for this exercise are as follows:

1. Write a SELECT Statement Using an ORDER BY Clause

2. Apply the Needed Changes and Execute the T-SQL Statement

3. Order the Result by the firstname Column

 Task 1: Write a SELECT Statement Using an ORDER BY Clause
1. Open the project file D:\Labfiles\Lab05\Starter\Project\Project.ssmssln and the T-SQL script 61 -

Lab Exercise 2.sql. Ensure that you are connected to the TSQL database.

2. Write a SELECT statement to retrieve the custid and contactname columns from the
Sales.Customers table and the orderid and orderdate columns from the Sales.Orders table. Filter
the results to include only orders placed on or after April 1, 2008 (filter the orderdate column), then
sort the result by orderdate in descending order and custid in ascending order.

3. Execute the written statement and compare the results that you achieved with the desired results
shown in the file D:\Labfiles\Lab05\Solution\62 - Lab Exercise 2 - Task 1 Result.txt.

 Task 2: Apply the Needed Changes and Execute the T-SQL Statement
1. Someone took your T-SQL statement from lab 4 and added the following WHERE clause:

SELECT
e.empid, e.lastname, e.firstname, e.title, e.mgrid,
m.lastname AS mgrlastname, m.firstname AS mgrfirstname
FROM HR.Employees AS e
INNER JOIN HR.Employees AS m ON e.mgrid = m.empid
WHERE mgrlastname = 'Buck';

2. Execute the query exactly as written inside a query window and observe the result.

3. There is an error. What is the error message? Why do you think this happened? (Tip: Remember the
logical processing order of the query.)

4. Apply the needed changes to the SELECT statement so that it will run without an error. Test the
changes by executing the T-SQL statement.

5. Observe and compare the results that you achieved with the recommended results shown in the
D:\Labfiles\Lab05\Solution\63 - Lab Exercise 2 - Task 2 Result.txt.

 Task 3: Order the Result by the firstname Column
1. Copy the existing T-SQL statement from task 2 and modify it so that the result will return all

employees and be ordered by the manager’s first name. First, try to use the source column name, and
then the alias column name.

2. Execute the written statement and compare the results that you achieved with the recommended
results shown in the file D:\Labfiles\Lab05\Solution\64 - Lab Exercise 2 - Task 3a and 3b
Result.txt.

3. Why were you able to use a source column or alias column name?

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
Querying Data with Transact-SQL 5-23

Results: After this exercise, you should know how to use an ORDER BY clause.

Exercise 3: Write Queries that Filter Data Using the TOP Option

Scenario
The sales department wants to have some additional reports that show the last invoiced orders and the
top 10 percent of the most expensive products being sold.

The main tasks for this exercise are as follows:

1. Writing Queries That Filter Data Using the TOP Clause

2. Use the OFFSET-FETCH Clause to Implement the Same Task

3. Write a SELECT Statement to Retrieve the Most Expensive Products

 Task 1: Writing Queries That Filter Data Using the TOP Clause
1. Open the project file D:\Labfiles\Lab05\Starter\Project\Project.ssmssln and the T-SQL script 71 - Lab

Exercise 3.sql. Ensure that you are connected to the TSQL database.

2. Write a SELECT statement against the Sales.Orders table, and retrieve the orderid and orderdate
columns. Retrieve the 20 most recent orders, ordered by orderdate.

3. Execute the written statement and compare the results that you achieved with the recommended
result shown in the file 72 - Lab Exercise 3 - Task 1 Result.txt.

 Task 2: Use the OFFSET-FETCH Clause to Implement the Same Task
1. Write a SELECT statement to retrieve the same result as in task 1, but use the OFFSET-FETCH clause.

2. Execute the written statement and compare the results that you achieved with the results from task 1.

3. Compare the results that you achieved with the recommended result shown in the file 73 - Lab
Exercise 3 - Task 2 Result.txt.

 Task 3: Write a SELECT Statement to Retrieve the Most Expensive Products
1. Write a SELECT statement to retrieve the productname and unitprice columns from the

Production.Products table.

2. Execute the T-SQL statement and notice the number of the rows returned.

3. Modify the SELECT statement to include only the top 10 percent of products based on unitprice
ordering.

4. Execute the written statement and compare the results that you achieved with the recommended
result shown in the file 74 - Lab Exercise 3 - Task 3 Result.txt. Notice the number of rows returned.

5. Is it possible to implement this task with the OFFSET-FETCH clause?

Results: After this exercise, you should have an understanding of how to apply the TOP option in the
SELECT clause of a T-SQL statement.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
5-24 Sorting and Filtering Data

Exercise 4: Write Queries that Filter Data Using the OFFSET-FETCH Clause

Scenario
In this exercise, you will implement a paging solution for displaying rows from the Sales.Orders table
because the total number of rows is high. In each page of a report, the user should only see 20 rows.

The main tasks for this exercise are as follows:

1. OFFSET-FETCH Clause to Fetch the First 20 Rows

2. Use the OFFSET-FETCH Clause to Skip the First 20 Rows

3. Write a Generic Form of the OFFSET-FETCH Clause for Paging

 Task 1: OFFSET-FETCH Clause to Fetch the First 20 Rows
1. Open the project file D:\Labfiles\Lab05\Starter\Project\Project.ssmssln and the T-SQL script 81 -

Lab Exercise 4.sql. Ensure that you are connected to the TSQL database.

2. Write a SELECT statement to retrieve the custid, orderid, and orderdate columns from the
Sales.Orders table. Order the rows by orderdate and ordered, and then retrieve the first 20 rows.

3. Execute the written statement and compare the results that you achieved with the recommended
results shown in the file D:\Labfiles\Lab05\Solution\82 - Lab Exercise 4 - Task 1 Result.txt.

 Task 2: Use the OFFSET-FETCH Clause to Skip the First 20 Rows
1. Copy the SELECT statement in task 1 and modify the OFFSET-FETCH clause to skip the first 20 rows

and fetch the next 20.

2. Execute the written statement and compare the results that you achieved with the recommended
results shown in the file D:\Labfiles\Lab05\Solution\83 - Lab Exercise 4 - Task 2 Result.txt.

 Task 3: Write a Generic Form of the OFFSET-FETCH Clause for Paging
 You are given the parameters @pagenum for the requested page number and @pagesize for the

requested page size. Can you work out how to write a generic form of the OFFSET-FETCH clause
using those parameters? (Don’t worry about not being familiar with those parameters yet.)

Results: After this exercise, you will be able to use OFFSET-FETCH to work page-by-page through a result
set returned by a SELECT statement.

Question: What is the difference between filtering using the TOP option, and filtering using
the WHERE clause?

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
Querying Data with Transact-SQL 5-25

Module Review and Takeaways
Review Question(s)

Question: Does the physical order of rows in an SQL Server table guarantee any sort order in
queries using the table?

Question: You have the following query:

SELECT p.PartNumber, p.ProductName, o.Quantity

FROM Sales.Products AS p

LEFT OUTER JOIN Sales.OrderItems AS o

ON p.ID = o.ProductID

ORDER BY o.Quantity ASC

You have one new product that has yet to receive any orders. Will this product appear at the
top or the bottom of the results?

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
6-1

Module 6
Working with SQL Server 2016 Data Types

Contents:
Module Overview 6-1

Lesson 1: Introducing SQL Server 2016 Data Types 6-2

Lesson 2: Working with Character Data 6-11

Lesson 3: Working with Date and Time Data 6-21

Lab: Working with SQL Server 2016 Data Types 6-27

Module Review and Takeaways 6-33

Module Overview
To write effective queries in T-SQL, you should understand how SQL Server® 2016 stores different types
of data. This is especially important if your queries not only retrieve data from tables, but also perform
comparisons, manipulate data, and implement other operations.

In this module, you will learn about the data types SQL Server uses to store data. In the first lesson, you
will be introduced to many numeric and special-use data types. You will learn about conversions between
data types and the importance of data type precedence. You will learn how to work with character-based
data types, including functions which can be used to manipulate the data. You will also learn how to work
with temporal data, or data and time data, including functions to retrieve and manipulate all or portions
of a stored date.

Objectives
After completing this module, you will be able to:

 Describe SQL Server data types, type precedence, and type conversions.

 Write queries using numeric data types.

 Write queries using character data types.

 Write queries using date and time data types.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
6-2 Working with SQL Server 2016 Data Types

Lesson 1
Introducing SQL Server 2016 Data Types

In this lesson, you will explore many of the data types SQL Server uses to store data, and learn how data is
converted between data types.

 Note: Character, date, and time data types are excluded from this lesson but will be
covered later in the module.

If your focus in taking this course is to write queries for reports, you may wish to note which data types
are used in your environment. You can then plan your reports and client applications with sufficient
capacity to display the range of values held by the SQL Server data types. You may also need to plan for
data type conversions in your queries to display SQL Server data in other environments.

If your focus is to continue into database development and administration, you may wish to note the
similarities and differences within categories of data types, and plan your storage accordingly, as you
create types and design parameters for stored procedures.

Lesson Objectives
After completing this lesson, you will be able to:

 Describe how SQL Server uses data types.
 Describe the attributes of numeric data types, as well as binary strings and other specialized data

types.
 Describe data type precedence and its use in converting data between different data types.
 Describe the difference between implicit and explicit data type conversion.

SQL Server Data Types

SQL Server 2016 defines a set of system data types
for storing data in columns, holding values
temporarily in variables, operating on data in
expressions, and passing parameters to stored
procedures.

Data types specify the type, length, precision, and
scale of data. Understanding the basic types of data
in SQL Server is fundamental to writing queries in T-
SQL, along with designing tables and creating other
objects.

Developers may also extend the supplied set by
creating aliases to built-in types and even by
producing new user-defined types using the Microsoft .NET Framework; however, this lesson will focus on
the built-in system data types.

Other than character, date, and time types, which will be covered later in this module, SQL Server data
types can be grouped into the following categories:

 Exact numeric. These data types store data with precision, either as:

o Integers – whole numbers with varying degrees of capacity.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
Querying Data with Transact-SQL 6-3

o Decimals – decimal numbers with control over both the total number of digits stored and the
number of digits to the right of the decimal place.

 Approximate numeric. These data types allow inexact values to be stored, typically for use in
scientific calculations.

 Binary strings. These data types allow binary data to be stored, such as byte streams or hashes, to
support custom applications.

 Other data types. This catch-all category includes several special types which fall outside the other
categories. Some of these data types can be used as column data types (and are therefore accessible
to queries). This category also includes data types not used for storage, but rather for special
operations, such as cursor manipulation or creating table variables for further processing. If you are a
report writer, you may only encounter the data types used for columns, such as the uniqueidentifier
and xml data types.

As you learn about these types, take note of the relationship between capacity and storage requirements.

Numeric Data Types

 Numeric data types fall into one of two
subcategories—exact numeric and approximate
numeric.

 Exact numeric data types:

o Integer data types. The distinction between
the integer data types (tinyint, smallint,
int, bigint) relates to their capacity and
storage requirements. The tinyint data
type, for example, holds values from 0 to
255 with a storage cost of 1 byte. By
contrast, the bigint data type holds values
from -263 (-9,223,372,036,854,775,808) to
263-1 (9,223,372,036,854,775,807) with a storage cost of 8 bytes.

o Decimal data types. These data types are specified with the total number of digits to be stored
(precision) and the number of digits to the right of the decimal place (scale). The larger the
precision, the greater the storage cost. Note that there is no functional difference between the
decimal data type and numeric data type—decimal is the ISO standards-compliant name for
the data type; numeric is used for backward compatibility with earlier versions of SQL Server.

o Money data types, for storing monetary or currency values with a scale of up to four decimal
places. As with the integer types, the distinction between the money data types money and
smallmoney relates to their capacity and storage requirements. The smallmoney data type
holds values from -214,748.3648 to 214,748.3647 with a storage cost of 4 bytes. The money data
type holds values from -922,337,203,685,477.5808 to 922,337,203,685,477.5807 with a storage
cost of 8 bytes.

o Boolean data type. The bit data type is used to store Boolean values (true/false) which are treated
by SQL Server as numeric values—1 for true and 0 for false.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
6-4 Working with SQL Server 2016 Data Types

For more information, see the following topics in Books Online:

Data Types (Transact-SQL) at:

Data Types (Transact-SQL)

http://aka.ms/we8bzv

Precision, Scale, and Length (Transact-SQL)

Precision, Scale, and Length (Transact-SQL)

http://aka.ms/t0hwx5

decimal and numeric (Transact-SQL)

decimal and numeric (Transact-SQL)

http://aka.ms/sqkh78

 Approximate numeric data types. The approximate numeric data types are less accurate, but have
more capacity than the exact numeric data types. The approximate numeric data types store values in
scientific notation which, because of a lack of precision, loses accuracy.

o The float data type takes an optional parameter of the number of bits used to store the mantissa
of the float number in scientific notation. The size of the mantissa value determines the storage
size of the float. If the mantissa is in the range 1 to 24, the float requires 4 bytes. If the mantissa is
between 25 and 53, it requires 8 bytes.

o The real data type is a synonym for a float data type with a mantissa value of 24 (that is,
float(24))

 Note: Note that, in this context, the term mantissa is used to mean the significant digits of
the floating point number. In mathematics, this portion of the number is more commonly
referred to as the significand; however, in computer science, it is commonly referred to as the
mantissa.

See the topic float and real (Transact-SQL) in Books Online at:

float and real (Transact-SQL)

http://aka.ms/noqiea

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
Querying Data with Transact-SQL 6-5

Binary String Data Types

Binary string data types allow a developer to store
binary information, such as serialized files, images,
byte streams, and other specialized data. If you are
considering using the binary data type, note the
differences in range and storage requirements,
compared with numeric and character string data.
You can choose between fixed-width and variable-
width binary strings; the differences between these
will be explained in the character data type lesson
later in the module.

The following example shows an integer value
being converted to a binary data type:

Converting to Binary Data Type

SELECT CAST(12345 AS binary(4)) AS Result;

Returns the following:

Result

0x00003039

The two leading characters in the output (0x) indicate that the output is a binary string.

For more information, see the binary and varbinary (Transact-SQL) topic in Books Online at:

binary and varbinary (Transact-SQL)

http://aka.ms/o0ap4l

 Note: The image data type is also a binary string type but is marked for removal in a future
version of SQL Server. varbinary(max) should be used instead.

Other Data Types

In addition to numeric and binary types, SQL Server
also supplies some other data types for specialized
use cases, such as storage and processing of XML,
generation and storage of globally unique
identifiers (GUIDs), the representation of
hierarchies, and more:

 The xml data type allows the storage and
manipulation of Extensible Markup Language
data (XML). The advantage of the xml data
type over storing XML in a character data type
is that the xml data type allows XML nodes and
attributes to be queried within a T-SQL query
using XQuery expressions. The xml data type also optionally allows an XML schema to be enforced.
Each instance of an xml data type can store up to 2 GB of data.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
6-6 Working with SQL Server 2016 Data Types

 Additional Reading: See course 20472-2: Developing Microsoft® SQL Server® Databases
for additional information on the XML data type.

 The uniqueidentifier data type allows the generation and storage of globally unique identifiers
(GUIDs), stored as a 16-byte value. Values for the uniqueidentifier data type can be generated within
SQL Server by using the NEWID() system function; they can also be generated by external applications
or converted from string values.

The following example demonstrates various methods to generate a GUID:

Creating GUIDs for the uniqueidentifier Data Type

SELECT NEWID() AS GUID_from_NEWID, CAST('1C0E3B5C-EA7A-41DC-8E1C-D0A302B5E58B' AS
uniqueidentifier) AS GUID_cast_from_string;

Returns:

GUID_from_NEWID GUID_cast_from_string
------------------------------------ ------------------------------------
DB71DBAE-460B-41DD-8CF1-FBEE3000BE0D 1C0E3B5C-EA7A-41DC-8E1C-D0A302B5E58B

 The hierarchyid data type is used to simplify the recording and querying of hierarchical relationships
between rows in the same table—for example, the levels in an organizational chart or a bill of
materials. SQL Server stores hierarchyid as a variable-length binary data type; the hierarchy is
exposed through built-in functions.

 Additional Reading: See course 20472-2: Developing Microsoft® SQL Server® Databases
for additional information on the hierarchyid data type.

 The rowversion data type stores an automatically generated 8-byte binary value in a table which
increments each time a row is inserted or updated. Rowversion values do not store date or time
information, but can be used to detect whether a row has been changed since it was last read by a
client application (for instance, when implementing optimistic locking).

 The spatial data types are special complex data types for dealing with geometric and geographic
data. A detailed discussion of these types is beyond the scope of this course:

o The geometry data type is used to store data in a Euclidean (flat) coordinate system. Arrays of
coordinates defining lines, polygons and other simple geometric shapes can be stored in the
geometry data type. Special built-in methods are available for carrying out operations on
geometry data.

o The geography data type is used to store data in a round-earth coordinate system, such as GPS
latitude and longitude coordinated. As with the geography data type, shape definitions can be
stored in the geography type, then built-in methods used to operate on geography data.

 The sql_variant type is a special type which may be used to store data of any other built-in data
type—for instance, enabling integer, decimal and character data to be stored in the same column.
Use of the sql_variant data type is not a best practice for typical database designs, and its use may
indicate design problems. The sql_variant data type is listed here for completeness.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
Querying Data with Transact-SQL 6-7

The following data types may not be used as data types for columns in tables or views; they are used as
variables or parameters for stored procedures:

 The cursor data type is used to reference a cursor object, which allows row-by-row processing of a
data set. A discussion of cursors is beyond the scope of this module.

 The table data type is used to define a table variable or stored procedure parameter, which has many
of the properties of a standard database table but exists only in the context of the session for which it
was created. Table data types are typically used to temporarily store the results of T-SQL statements
for further processing later. You will learn about uses for the table data type later in this course.

For information on all of SQL Server’s data types, see Books Online, starting from:

Data Types (Transact-SQL)

http://aka.ms/we8bzv

Data Type Precedence

When combining or comparing different data types
in your queries, such as in a WHERE or JOIN clause,
SQL Server will need to convert one value from its
data type to that of the other value. Which data
type is converted depends on the precedence
between the two.

SQL Server defines a ranking of all its data types by
precedence—between any two data types, one will
have a lower precedence and the other a higher
precedence. When converting, SQL Server will
attempt to convert the lower data type to the
higher one. Typically, this will happen implicitly,
without the need for special code. However, it is important for you to have a basic understanding of this
precedence arrangement so you know when you need to manually, or explicitly, convert data types to
combine or convert them.

For example, here is a partial list of data types, ranked according to their precedence:

1. xml

2. datetime2

3. date

4. time

5. decimal

6. int

7. tinyint

8. nvarchar

9. char

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
6-8 Working with SQL Server 2016 Data Types

When combining or comparing two expressions with different data types, the one lower on this list will be
converted to the type that is higher. In this example, the variable of data type tinyint will be implicitly
converted to int before being added to the int variable @myInt:

DECLARE @myTinyInt AS TINYINT = 25;
DECLARE @myInt as INT = 9999;
SELECT @myTinyInt + @myInt;

 Note: Any implicit conversion is transparent to the user; therefore, if it fails (such as when
your operation requires converting between data types for which no implicit conversion exists),
you will need to explicitly convert the data type.
You will learn how to use the CAST and CONVERT functions for this purpose in the next module.
There are some combinations of data types for which no conversion, explicit or implicit, is
possible.

For more information and a complete list of data types and a list of precedence, see Books Online at:

Data Type Precedence (Transact-SQL)

http://aka.ms/a8ihqi

For complete information on pairs of data types requiring implicit or explicit conversion, or for which no
conversion is available, see the chart in the Implicit Conversions section of CAST and CONVERT (Transact-
SQL):

CAST and CONVERT (Transact-SQL) – Implicit Conversions

http://aka.ms/asaqq3

When are Data Types Converted?

When querying SQL Server, there is a number of
scenarios in which data might be converted
between data types:

 When data is moved, compared to, or
combined with other data.

 During variable assignment.

 When using any operator that involves
operands of different types.

 When T-SQL code explicitly converts one data
type to another, using the CAST or CONVERT
function.

In the example in the previous topic, a variable of the tinyint data type was implicitly converted to an int
data type when tinyint and int data types were added together in a query:

Implicit Conversion Example – Integer Data Types

DECLARE @myTinyInt AS tinyint = 25;
DECLARE @myInt as int = 9999;
SELECT @myTinyInt + @myInt;

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
Querying Data with Transact-SQL 6-9

You might also anticipate that an implicit conversion will take place in the following example:

Implicit Conversion Example – Integer and Character Data Types

DECLARE @myChar AS char(5) = '6';
DECLARE @myInt AS int = 1;
SELECT @myChar + @myInt;

Question: In the example, which data type will be converted? To which data type will it be converted?

As you have learned, SQL Server will automatically attempt to perform an implicit conversion from a
lower-precedence data type to a higher-precedence data type.

Implicit data type conversion is transparent to the user, unless the conversion fails. See the following
example:

Failing Implicit Conversion Example

DECLARE @myChar AS char(5) = 'six';
DECLARE @myInt AS int = 1;
SELECT @myChar + @myInt;

Returns:

Msg 245, Level 16, State 1, Line 3
Conversion failed when converting the varchar value 'six' to data type int.

Question: Why does SQL Server attempt to convert the character variable to an integer and not the other
way around?

To force SQL Server to convert the int data type to a character data type for the purposes of this query,
you need to explicitly convert it. You will learn how to do this in the next module.

To learn more about data type conversions, see Books Online at:

Data Type Conversion (Database Engine)

http://aka.ms/t5db1i

Demonstration: SQL Server Data Types

In this demonstration, you will see how to:

 Convert data types

Demonstration Steps
Convert Data Types

1. Ensure that the 20761A-MIA-DC, and 20761A-MIA-SQL virtual machines are running, and then log on
to 20761A-MIA-SQL as ADVENTUREWORKS\Student with the password Pa$$w0rd.

2. Start SQL Server Management Studio and connect to your Azure instance of the AdventureWorksLT
database engine instance using SQL Server authentication.

3. If the New Firewall Rule dialog box appears, click Sign In, enter your Azure credentials, and then
click Sign in. In the New Firewall Rule dialog box, ensure Add my client IP is selected, and then
click OK.

4. If the Microsoft SQL Server Management Studio dialog box appears, click OK.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
6-10 Working with SQL Server 2016 Data Types

5. Open the Demo.ssmssln solution in the D:\Demofiles\Mod06\Demo folder.

6. If the Solution Explorer pane is not visible, on the View menu, click Solution Explorer.

7. Expand Queries, and double-click the 11 – Demonstration A.sql script file.

8. In the Available Databases list, click AdventureWorksLT.

9. Select the code under the comment Step 2, and then click Execute.

10. Select the code under the comment Step 3, and then click Execute.

11. Select the code under the comment Step 4, and then click Execute.

12. Keep SQL Server Management Studio open for the next demonstration.

Categorize Activity
Place each item into the appropriate category. Indicate your answer by writing the category number to
the right of each item.

Items

1 tinyint

2 float

3 binary

4 int

5 real

6 varbinary

7 bigint

8 decimal

9 money

10 bit

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
Querying Data with Transact-SQL 6-11

Category 1 Category 2 Category 3

Exact Numeric Data Types Approximate Numeric Data
Types

 Binary Data Types

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
6-12 Working with SQL Server 2016 Data Types

Lesson 2
Working with Character Data

It is likely that the data you will work with in your T-SQL queries will include character data. As you will
learn in this lesson, character data involves not only choices of capacity and storage, but also text-specific
issues such as language, sort order, and collation. In this lesson, you will learn about the SQL Server
character-based data types, how character comparisons work, and some common functions you may find
useful in your queries.

Lesson Objectives
After completing this lesson, you will be able to:

 Describe the character data types supplied by SQL Server.

 Describe the impact of collation on character data.

 Concatenate strings.

 Extract and manipulate character data using built-in functions.

 Write queries using the LIKE predicate for matching patterns in character data.

Character Data Types

Even though SQL Server has many numeric data
types, working with numeric data is relatively
straightforward because numeric data follows a
clearly defined set of mathematical rules.

By comparison, although there are fewer character
data types available, working with character data in
SQL Server can be more complicated. This is
because you need to consider multiple languages,
character sets, accented characters, sort rules and
case sensitivity, and capacity and storage. Each of
these factors might have an impact on which
character data types you encounter when writing
queries.

Character data types in SQL server are categorized by two characteristics:

 Support for either fixed-width or variable-width data:

o Fixed-width data is always stored at a consistent size, regardless of the number of characters in
the character data. Any unused space is filled with padding.

o Variable-width data is stored at the size of the character data, plus a small overhead.

 Support for either a single-byte character set or a multi-byte character set:

o A single-byte character set supports up to 256 different characters, stored as one byte per
character. By default, SQL Server uses the ASCII character set to interpret this data.

o A multi-byte character set supports more than 65,000 different characters by storing each
character as multiple bytes—typically two bytes per character, but sometimes more. SQL Server
uses the UNICODE UCS-2 character set to interpret this data.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
Querying Data with Transact-SQL 6-13

The four available character data types support all possible combinations of these characteristics:

Data Type Fixed Width? Variable Width? Single-Byte
Characters?

Multi-Byte
Characters?

char Yes Yes

nchar Yes Yes

varchar Yes Yes

nvarchar Yes Yes

Definitions for columns or variables take an optional value which defines the maximum length of the
character data to be stored. You will almost always need to specify a value for the string length; if the
maximum length value is not supplied, the default value is one character.

The varchar and nvarchar data types support the storage of very long strings of character data by using
max for this value. Use of varchar(max) and nvarchar(max) replaces the use of the deprecated text and
ntext types.

Data Type Range Storage

char(n)
nchar(n)

1-8000 characters
1-4000 characters

n bytes, padded
2*n bytes, padded

varchar(n)
nvarchar(n)

1-8000 characters
1-4000 characters

Actual length + 2 bytes

varchar(max)
nvarchar(max)

Up to 2 GB Actual length + 2 bytes

 Note: All character data is delimited with single quotation marks.

 Single-byte character data is indicated with single quotation marks alone—for example 'SQL Server'.

 Multi-byte character data is indicated by single quotation marks with the prefix N (for National)— for
example N'SQL Server’. The N prefix is always required, even when inserting the data into a column or
variable with a multi-byte type.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
6-14 Working with SQL Server 2016 Data Types

Collation

In addition to character byte count and length, SQL
Server character data types are assigned a collation.

A collation is a collection of properties which
determine several aspects of character data,
including:

 Language or locale, from which is derived:

o Character set

o Sort order

 Case sensitivity

 Accent sensitivity

 Note: A default collation is configured during the installation of SQL Server, but can be
overridden on a per-database or per-column basis. As you will see, you might also override the
current collation for some character data by explicitly setting a different collation in your query.

When querying, it is important to be aware of the collation settings for your character data—for example,
whether it is case-sensitive.

The following query will return different results, depending on whether the column being tested in the
WHERE clause is case-sensitive or not:

If the column is case-sensitive, this query will return results. Note that the case of the search term matches
the case of the data as stored in the database.

Case-Sensitivity Example (1)

SELECT empid, lastname
FROM HR.employees
WHERE lastname = N’Funk’;

Amending the search term, so that the case no longer matches the data as stored in the database, would
result in no rows being returned:

Case-Sensitivity Example (2)

SELECT empid, lastname
FROM HR.employees
WHERE lastname = N’funk’;

The COLLATE clause can be used to override the collation of a column and force a different collation to
be applied when the query is run.

This example forces a case-sensitive and accent-sensitive comparison using the Latin1_General sort rules
and character table by adding a COLLATE clause to the WHERE clause:

Using COLLATE in the WHERE Clause

SELECT empid, lastname
FROM HR.employees
WHERE lastname COLLATE Latin1_General_CS_AS = N’Funk’;

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
Querying Data with Transact-SQL 6-15

 Note: Note that database-level collation settings apply to database object names (such as
tables and views) as well as to character data.
For example, in a database with a case-sensitive default collation, the table names
“HR.Employees” and “HR.employees” would refer to two different objects. In a database with a
case-insensitive collation, the table names “HR.Employees” and “HR.employees” would refer to
the same object.

For more information on this topic, see Books Online:

COLLATE (Transact-SQL)

http://aka.ms/ty97q8

Collation and Unicode Support

http://aka.ms/pm56d9

String Concatenation

There are multiple ways to concatenate, or join
together, multiple character data, or string, values
in SQL Server.

The CONCAT function takes at least two (or more)
data values as arguments and returns a string value
with the input values concatenated together.

If any of the input data values is not of a character
data type, it will be implicitly converted to a
character data type.

Any NULL values will be converted to an empty
string.

Syntax for the CONCAT function

CONCAT Function Syntax

CONCAT (string_value1, string_value2 [, string_valueN])

An example of the use of the CONCAT function:

Concatenating Strings Using CONCAT

SELECT custid, city, region, country,
CONCAT(city, ', ' + region, ', ' + country) AS location
FROM Sales.Customers;

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
6-16 Working with SQL Server 2016 Data Types

Part of the result returned by this query is shown below:

custid city region country location
------ ----------- ------ -------- -------------------
1 Berlin NULL Germany Berlin, Germany
2 México D.F. NULL Mexico México D.F., Mexico
3 México D.F. NULL Mexico México D.F., Mexico
4 London NULL UK London, UK
5 Luleå NULL Sweden Luleå, Sweden

See the topic CONCAT (Transact-SQL) in Books Online at:

CONCAT (Transact-SQL)

http://aka.ms/b9c34t

The CONCAT function was introduced in SQL Server 2012.

In earlier versions of SQL Server than 2012, the CONCAT function is not available; string concatenation is
carried out using the + (plus) operator.

If any of the string values concatenated with the + operator is NULL, the output string will be NULL.

No conversion of data types is carried out (see note below).

The following example shows the use of the + operator to concatenate a given name, space, and family
name into a single string:

Concatenating Strings Using +

SELECT
empid, lastname, firstname, firstname + N' ' + lastname AS fullname
FROM HR.Employees;

 Note: Since the plus sign is also used for arithmetic addition, consider whether any of your
data is of a numeric data type when concatenating. Character data types have a lower
precedence than numeric data type, and SQL Server will attempt to convert and add mixed data
types rather than concatenating them.

Character String Functions

In addition to retrieving character data as is from
SQL Server, you may also need to extract portions
of text or determine the location of characters
within a larger string. SQL Server provides a number
of built-in functions to accomplish these tasks.
Some of these functions include:

 FORMAT – allows you to format an input value
to a character string based on a .NET format
string, with an optional culture parameter.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
Querying Data with Transact-SQL 6-17

This example shows the use of the FORMAT function to format a money value as currency in various
locales:

FORMAT Function

DECLARE @m money = 120.595

SELECT @m AS unformatted_value,
FORMAT(@m,'C','zh-cn') AS zh_cn_currency,
FORMAT(@m,'C','en-us') AS en_us_currency,
FORMAT(@m,'C','de-de') AS de_de_currency;

Returns:

unformatted_value zh_cn_currency en_us_currency de_de_currency
----------------- -------------- -------------- --------------
120.595 ¥120.60 $120.60 120,60 €

 SUBSTRING – allows you to return part of a character string given a starting point and a number of
characters to return.

This example shows the use of SUBSTRING to return a portion of a string:

SUBSTRING Example

SELECT SUBSTRING('Microsoft SQL Server ',11,3) AS Result;

Returns:

Result

SQL

 LEFT and RIGHT – allows you to return a number of characters from the left or right of a string.

This example shows the use of LEFT and RIGHT to select portions of a string:

LEFT and RIGHT Example

SELECT LEFT('Microsoft SQL Server',9) AS left_example,
RIGHT('Microsoft SQL Server',6) AS right_example;

Returns:

left_example right_example
------------ -------------
Microsoft Server

 LEN and DATALENGTH – allows you to query metadata about the number of characters or the
number of bytes stored in a string.

This example shows the result returned from LEN and DATALENGTH for the same padded string:

LEN and DATALENGTH Example

SELECT LEN('Microsoft SQL Server ') AS [LEN];
SELECT DATALENGTH('Microsoft SQL Server ') AS [DATALENGTH];

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
6-18 Working with SQL Server 2016 Data Types

Returns:

LEN

20
DATALEN

25

 CHARINDEX – allows you to query the start position of a string within another string. If the target
string is not found, CHARINDEX returns 0.

This example shows output of CHARINDEX when the searched-for string is found:

CHARINDEX Example

SELECT CHARINDEX('SQL','Microsoft SQL Server') AS Result;

Returns:

Result

11

 REPLACE – allows you to substitute one string for another within a target string.

This example shows the output of REPLACE when the searched-for string is found:

REPLACE Example

SELECT REPLACE('Learning about T-SQL string functions','T-SQL','Transact-SQL') AS Result;

Returns:

Result

Learning about Transact-SQL string functions

 UPPER and LOWER – for performing character case conversions.

This example shows the use of UPPER and LOWER to manipulate the case of strings:

UPPER and LOWER Example

SELECT UPPER('Microsoft SQL Server') AS [UP],LOWER('Microsoft SQL Server') AS [LOW];

Returns:

UP LOW
-------------------- --------------------
MICROSOFT SQL SERVER microsoft sql server

For references on these and other string functions, see Books Online at:

String Functions (Transact-SQL)

http://aka.ms/lt6hg9

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
Querying Data with Transact-SQL 6-19

The LIKE Predicate

Character-based data in SQL Server provides for
more than exact matches in your queries. Through
the use of the LIKE predicate, you can also perform
pattern matching in your WHERE clause.

The LIKE predicate allows you to check a character
string against a pattern. Patterns are expressed with
symbols, which can be used alone or in
combinations to search within your strings:

 % (Percent) represents a string of any length.
For example, LIKE N'Sand%' will match 'Sand',
'Sandwich', 'Sandwiches', and so on.

 _ (Underscore) represents a single character. For example, LIKE N'_a%' will match any string whose
second character is an 'a'.

 [<List of characters>] represents a single character within the supplied list. For example, LIKE
N'[DEF]%' will find any string that starts with a 'D', an 'E', or an 'F'.

 [<Character> - <character>] represents a single character within the specified range. For example,
LIKE N'[N-Z]%' will match any string that starts with a letter of the alphabet between N and Z,
inclusive.

 [^<Character list or range>] represents a single character not in the specified list or range. For
example, LIKE N'^[A]% ' will match a string beginning with any other character than an 'A'.

 ESCAPE is used to set an escape character, allowing you to search for a character that is a wildcard
character but to treat it as a literal rather than a wildcard. Each instance of the special character to be
treated as a literal must be preceded by the specified escape character. For example, LIKE N'10!%
off%' ESCAPE '!' will match any string that starts with ‘10% off’, but would not match the string ‘100
special offers’ (which would be matched if the ESCAPE character was not used).

For further information on LIKE, see Books Online at:

LIKE (Transact-SQL)

http://aka.ms/rm8ihw

Demonstration: Working with Character Data

In this demonstration, you will see how to:

 Manipulate character data

Demonstration Steps
Manipulate Character Data

1. Ensure that you have completed the previous demonstration in this module. Alternatively, start the
MSL-TMG1, 20761A-MIA-DC, and 20761A-MIA-SQL virtual machines, log on to 20761A-MIA-SQL as
ADVENTUREWORKS\Student with the password Pa$$w0rd.

2. If SQL Server Management Studio is not already open, start it and connect to your Azure instance of
the AdventureWorksLT database engine instance using SQL Server authentication, and then open
the Demo.ssmssln solution in the D:\Demofiles\Mod06\Demo folder.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
6-20 Working with SQL Server 2016 Data Types

3. In Solution Explorer, open the 21 – Demonstration B.sql script file.

4. In the Available Databases list, click AdventureWorksLT.

5. Select the code under the comment Step 2, and then click Execute.

6. Select the code under the comment Step 3, and then click Execute.

7. Select the code under the comment NOTE: this will return no results, and then click Execute.

8. Select the code under the comment Step 4, and then click Execute.

9. Select the code under the comment Step 5, and then click Execute.

10. Select the code under the comment Step 6, and then click Execute.

11. Select the code under the comment end FORMAT example, and then click Execute.

12. Select the code under the comment Step 7, and then click Execute.

13. Keep SQL Server Management Studio open for the next demonstration.

Question: You have the following query:

SELECT FirstName

FROM HumanResources.Employees

WHERE FirstName LIKE N'[^MA]%'

Will the query return an employee with the first name ‘Matthew’?

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
Querying Data with Transact-SQL 6-21

Lesson 3
Working with Date and Time Data

Date and time data is very common in working with SQL Server data types. In this lesson, you will learn
which data types are used to store date and time data; how to enter dates and times so they will be
properly parsed by SQL Server; and how to manipulate dates and times with built-in functions.

Lesson Objectives
After completing this lesson, you will be able to:

 Describe the data types used to store date and time information.

 Enter dates and times as literal values for SQL Server to convert to date and time types.

 Write queries comparing dates and times.

 Write queries using built-in functions to manipulate dates and extract date parts.

Date and Time Data Types

There has been a progression in SQL Server's
handling of temporal data as newer versions are
released. As you may need to work with data
created for older versions of SQL Server, even
though you're writing queries for SQL Server 2016,
it will be useful to review past support for date and
time data:

 Before SQL Server 2008, there were only two
data types for date and time data: datetime
and smalldatetime. Each of these stored both
the date and the time in a single value. For
example, a datetime could store '20140212
08:30:00' to represent February 12, 2014 at 08:30.

 In SQL Server 2008, Microsoft introduced four new data types: datetime2, date, time, and
datetimeoffset. These addressed issues of precision, capacity, time zone tracking, and separating
dates from times. For new work, Microsoft recommends these types over the older datetime and
smalldatetime.

 In SQL Server 2012, Microsoft introduced new functions for working with partial data from date and
time data types (such as DATEFROMPARTS) and for performing calculations on dates (such as
EOMONTH).

For more information on all the date and time data types, see Books Online at:

Date and Time Types

http://aka.ms/aekgy8

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
6-22 Working with SQL Server 2016 Data Types

Entering Date and Time Data Types Using Strings

To use date and time data in your queries, you will
need to be able to represent date and time data in
T-SQL. SQL Server doesn't offer the means to enter
dates and times as literal values, so you will use
character strings (often referred to as string literals)
which are delimited, like all other strings in SQL
Server, with single quotes. SQL Server will implicitly
convert the string literals to date and time values.
(You may also explicitly convert string literals with
the T-SQL CAST and CONVERT functions, which you
will learn about in the next module.)

SQL Server can interpret a wide variety of string
literal formats as dates but, for consistency and to avoid issues with language or nationality interpretation,
it is recommended that you use a neutral format, such as 'YYYYMMDD'. To represent February 12, 2014,
you would use the literal '20140212'.

This example shows the use of a string literal to extract orders with an order date of August 25, 2007.

String Literals Example

SELECT orderid, custid, empid, orderdate
FROM Sales.Orders
WHERE orderdate = '20070825';

Various other language-neutral formats for date and time literals are available to you:

Data Type Language-Neutral Formats Examples

datetime 'YYYYMMDD hh:mm:ss.nnn'
'YYYY-MM-DDThh:mm:ss.nnn'
'YYYYMMDD'

'20140212 12:30:15.123'
'2014-02-12T12:30:15.123'
'20140212'

smalldatetime 'YYYYMMDD hh:mm'
'YYYY-MM-DDThh:mm'
'YYYYMMDD'

'20140212 12:30'
'2014-02-12T12:30'
'20140212'

datetime2 'YYYY-MM-DD'
'YYYYMMDD hh:mm:ss.nnnnnnn'
'YYYY-MM-DD hh:mm:ss.nnnnnnn'
'YYYY-MM-DDThh:mm:ss.nnnnnnn'
'YYYYMMDD'
'YYYY-MM-DD'

'2014-02-12'
'20140212 12:30:15.1234567'
'2014-02-12 12:30:15.1234567'
'2014-02-12T12:30:15.1234567'
'20140212'
'2014-02-12'

date 'YYYYMMDD'
'YYYY-MM-DD'

'20140212'
'2014-02-12'

time 'hh:mm:ss.nnnnnnn' '12:30:15.1234567'

datetimeoffset 'YYYYMMDD hh:mm:ss.nnnnnnn
[+|-]hh:mm'
'YYYY-MM-DD hh:mm:ss.nnnnnnn

'20140212 12:30:15.1234567 +02:00'
'2014-02-12 12:30:15.1234567
+02:00'

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
Querying Data with Transact-SQL 6-23

Data Type Language-Neutral Formats Examples

[+|-]hh:mm'
'YYYYMMDD'
'YYYY-MM-DD'

'20140212'
'2014-02-12'

Working Separately with Date and Time

As you have learned, some SQL Server temporal
data types store both date and time together in one
value. datetime and datetime2 combine year,
month, day, hour, minute, seconds, and more. The
datetimeoffset data type also adds time zone
information to the date and time. The time and
date components are optional in combination data
types such as datetime2. So, when using these data
types, you should be aware of how they behave
when provided with only partial data:

 If only the date is provided, the time portion of
the data type is filled with zeros and the time is
considered to be set at midnight.

The following example demonstrates the behavior of datetime2 when only a date information is
provided:

datetime2 with No Time

DECLARE @DateOnly AS datetime2 = '20160112';
SELECT @DateOnly AS Result;

Returns:

Result

2016-01-12 00:00:00.0000000

 If a data type which holds both date and time—such as datetime or datetime2—data is populated
only with time data, the date portion of the value will be set to a default value of January 1, 1900. If
you need to store time data alone, use the time data type.

The following example shows the default date being used when time-only data is converted to the
datetime2 data type:

Default Date Example

DECLARE @time AS time = '12:34:56';
SELECT CAST(@time AS datetime2) AS Result;

Returns:

Result

1900-01-01 12:34:56.0000000

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
6-24 Working with SQL Server 2016 Data Types

Querying Date and Time Values

When querying date and time data types, you may
need to consider both the date and time portions
of the data to return the results you expect.

In this example, a user is trying to query all the sales
orders with an order date of August 25, 2007:

Midnight Time Values Example

SELECT orderid, custid, empid, orderdate
FROM Sales.Orders
WHERE orderdate= '20070825';

This query might satisfy the user’s requirement—
note that only sales orders with an order date of midnight on August 25, 2007 are returned:

orderid custid empid orderdate
----------- ----------- ----------- -----------------------
10643 1 6 2007-08-25 00:00:00.000
10644 88 3 2007-08-25 00:00:00.000

This is because SQL Server implicitly converts the string literal '20070825' used in the query to the same
data type as the Sales.Orders.orderdate column—datetime—and in doing so applies the default value of
midnight for the time portion of the value.

This means that the query is interpreted as:

Midnight Time Values Example (2)

SELECT orderid, custid, empid, orderdate
FROM Sales.Orders
WHERE orderdate= '20070825 00:00:00.000';

This means that only values which exactly match midnight are returned. If there are rows in the table with
an order date of August 25, 2007 but with a time after midnight, they would not be returned by this
query.

One way to be certain of returning all the orders for August 25, 2007—regardless of the time portion of
the orderdate column—would be to query the data with a range, rather than a single value:

Querying a Date Range Example

SELECT orderid, custid, empid, orderdate
FROM Sales.Orders
WHERE orderdate >= '20070825'
AND orderdate < '20070826';

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
Querying Data with Transact-SQL 6-25

Date and Time Functions

SQL Server provides a number of functions
designed to manipulate date and time data:

 Functions that return current date and time,
offering you choices between various return
types, as well as whether to include or exclude
time zone information.

 Functions that return parts of date and time
values, enabling you to extract only the portion
of a date or time that your query requires. Note
that DATENAME and DATEPART offer
functionality similar to one another. The
difference between them is the return type.

 Functions that return date and time typed data from components such as separately supplied year,
month, and day. This offers an alternative to providing dates as string literals, as already covered in
this lesson. Note that these functions require all parts of the target date/time data to be provided..

 Functions that modify date and time values, including to increment dates, to calculate the last day of
a month, and to alter time zone offset information.

 Functions that examine date and time values, returning metadata or calculations about intervals
between input dates.

For details of all date and time functions, see Books Online at:

Date and Time Data Types and Functions (Transact-SQL)

http://aka.ms/ifob87

Demonstration: Working with Date and Time Data

In this demonstration, you will see how to:

 Query date and time values

Demonstration Steps
Query Data and Time Values

1. Ensure that you have completed the previous demonstration in this module. Alternatively, start the
MSL-TMG1, 20761A-MIA-DC, and 20761A-MIA-SQL virtual machines, then log on to 20761A-MIA-
SQL as ADVENTUREWORKS\Student with the password Pa$$w0rd.

2. If SQL Server Management Studio is not already open, start it and connect to your Azure instance of
the AdventureWorksLT database engine instance using SQL Server authentication, and then open
the Demo.ssmssln solution in the D:\Demofiles\Mod06\Demo folder.

3. In Solution Explorer, open the 31 – Demonstration C.sql script file.

4. In the Available Databases list, click AdventureWorksLT.

5. Select the code under the comment Step 2, and then click Execute.

6. Select the code under the comment Step 3, and then click Execute.

7. Select the code under the comment Step 4, and then click Execute.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
6-26 Working with SQL Server 2016 Data Types

8. Select the code under the comment Step 5, and then click Execute.

9. Select the code under the comment Step 6, and then click Execute.

10. Select the code under the comment Step 7, and then click Execute.

11. Close SQL Server Management Studio without saving any files.

Categorize Activity
Place each item into the appropriate category. Indicate your answer by writing the category number to
the right of each item.

Items

1 datetime

2 datetime2

3 DATEFROMPARTS

4 smalldatetime

5 date

6 EOMONTH

7 time

8 datetimeoffset

Category 1 Category 2 Category 3

Present in all versions of SQL
Server

 Only present in SQL Server
2008 and later

 Only present in SQL Server
2012 and later

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
Querying Data with Transact-SQL 6-27

Lab: Working with SQL Server 2016 Data Types
Scenario
You are an Adventure Works business analyst who will be writing reports using corporate databases
stored in SQL Server 2016. You have been given a set of business requirements for data and you will write
T-SQL queries to retrieve the specified data from the databases. You will need to retrieve and convert
character, and date and time data into various formats.

Objectives
After completing this lab, you will be able to:

 Write queries that return data and time data.

 Write queries that use data and time functions.

 Write queries that return character data.

 Write queries that use character functions.

Estimated Time: 90 Minutes

Virtual machine: 20761A-MIA-SQL

User name: ADVENTUREWORKS\Student

Password: Pa$$w0rd

Exercise 1: Writing Queries That Return Date and Time Data

Scenario
Before you start using different date and time functions in business scenarios, you should practice on
sample data.

The main tasks for this exercise are as follows:

1. Prepare the Lab Environment

2. Write a SELECT Statement to Retrieve Information About the Current Date

3. Write a SELECT Statement to Return the Date Data Type

4. Write a SELECT Statement That Uses Different Date and Time Functions

5. Write a SELECT Statement to Show Whether a Table of Strings Can Be Used as Dates

 Task 1: Prepare the Lab Environment
1. Ensure that the 20761A-MIA-DC and 20761A-MIA-SQL virtual machines are both running, and then

log on to 20761A-MIA-SQL as ADVENTUREWORKS\Student with the password Pa$$w0rd.

2. Run Setup.cmd in the D:\Labfiles\Lab06\Starter folder as Administrator.

 Task 2: Write a SELECT Statement to Retrieve Information About the Current Date
1. Open the project file D:\Labfiles\Lab06\Starter\Project\Project.ssmssln and the T-SQL script 51 - Lab

Exercise 1.sql. Ensure that you are connected to the TSQL database.

2. Write a SELECT statement to return columns that contain:

o The current date and time. Use the alias currentdatetime.

o Just the current date. Use the alias currentdate.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
6-28 Working with SQL Server 2016 Data Types

o Just the current time. Use the alias currenttime.

o Just the current year. Use the alias currentyear.

o Just the current month number. Use the alias currentmonth.

o Just the current day of month number. Use the alias currentday.

o Just the current week number in the year. Use the alias currentweeknumber.

o The name of the current month based on the currentdatetime column. Use the alias
currentmonthname.

3. Execute the written statement and compare the results achieved with the desired results shown in the
file D:\Labfiles\Lab06\Solution\52 - Lab Exercise 1 - Task 1 Result.txt. Your results will be different
because of the current date and time value.

4. Can you use the alias currentdatetime as the source in the second column calculation (currentdate)?
Please explain.

 Task 3: Write a SELECT Statement to Return the Date Data Type
1. Write December 11, 2015 as a column with a data type of date. Use the different possibilities inside

the T-SQL language (cast, convert, specific function, and so on) and use the alias somedate.

 Task 4: Write a SELECT Statement That Uses Different Date and Time Functions
1. Write a SELECT statement to return columns that contain:

o A date and time value that is three months from the current date and time. Use the alias
threemonths.

o The number of days between the current date and the first column (threemonths). Use the alias
diffdays.

o The number of weeks between April 4, 1992, and September 16, 2011. Use the alias diffweeks.

o The first day in the current month, based on the current date and time. Use the alias firstday.

2. Execute the written statement and compare the results that you achieved with the desired results
shown in the file D:\Labfiles\Lab06\Solution\53 - Lab Exercise 1 - Task 3 Result.txt. Some results will
be different because of the current date and time value.

 Task 5: Write a SELECT Statement to Show Whether a Table of Strings Can Be Used as
Dates
1. The IT department has written a T-SQL statement that creates and populates a table named

Sales.Somedates.

2. Execute the provided T-SQL statement.

3. Write a SELECT statement against the Sales.Somedates table and retrieve the isitdate column. Add a
new column named converteddate with a new date data type value, based on the column isitdate. If
the isitdate column cannot be converted to a date data type for a specific row, return a NULL.

4. Execute the written statement and compare the results achieved with the desired results shown in the
file D:\Labfiles\Lab06\Solution\54 - Lab Exercise 1 - Task 4 Result.txt.

Answer the following questions:

o What is the difference between the SYSDATETIME and CURRENT_TIMESTAMP functions?

o What is a language-neutral format for the DATE type?

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
Querying Data with Transact-SQL 6-29

Results: After this exercise, you should be able to retrieve date and time data using T-SQL.

Exercise 2: Writing Queries That Use Date and Time Functions

Scenario
The sales department wants to have different reports that focus on data during specific time frames. The
sales staff would like to analyze distinct customers, distinct products, and orders placed near the end of
the month. You should write the SELECT statements using the different date and time functions.

The main tasks for this exercise are as follows:

1. Write a SELECT Statement to Retrieve Customers with Orders in a Given Month

2. Write a SELECT Statement to Calculate the First and Last Day of the Month

3. Write a SELECT Statement to Retrieve the Orders Placed in the Last Five Days of the Ordered Month

4. Write a SELECT Statement to Retrieve All Distinct Products Sold in the First 10 Weeks of the Year 2007

 Task 1: Write a SELECT Statement to Retrieve Customers with Orders in a Given
Month
1. In Solution Explorer, open the T-SQL script 61 – Lab Exercise 2.sql.

2. Write a SELECT statement to retrieve distinct values for the custid column from the Sales.Orders table.
Filter the results to include only orders placed in February 2008.

3. Execute the written statement and compare your results with the desired results shown in the file 62 -
Lab Exercise 2 - Task 1 Result.txt.

 Task 2: Write a SELECT Statement to Calculate the First and Last Day of the Month
1. Write a SELECT statement with these columns:

o Current date and time

o First date of the current month

o Last date of the current month

2. Execute the written statement and compare your results with the recommended results shown in the
file D:\Labfiles\Lab06\Solution\63 - Lab Exercise 2 - Task 2 Result.txt. The results will differ because
they rely on the current date.

 Task 3: Write a SELECT Statement to Retrieve the Orders Placed in the Last Five Days
of the Ordered Month
1. Write a SELECT statement against the Sales.Orders table and retrieve the orderid, custid, and

orderdate columns. Filter the results to include only orders placed in the last five days of the order
month.

2. Execute the written statement and compare your results with the recommended results shown in the
file D:\Labfiles\Lab06\Solution\64 - Lab Exercise 2 - Task 3 Result.txt.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
6-30 Working with SQL Server 2016 Data Types

 Task 4: Write a SELECT Statement to Retrieve All Distinct Products Sold in the First 10
Weeks of the Year 2007
1. Write a SELECT statement against the Sales.Orders and Sales.OrderDetails tables and retrieve all the

distinct values for the productid column. Filter the results to include only orders placed in the first 10
weeks of the year 2007.

2. Execute the written statement and compare your results with the recommended results shown in the
file D:\Labfiles\Lab06\Solution\65 - Lab Exercise 2 - Task 4 Result.txt.

Results: After this exercise, you should know how to use the date and time functions.

Exercise 3: Writing Queries That Return Character Data

Scenario
Members of the marketing department would like to have a more condensed version of a report for when
they talk with customers. They want the information that currently exists in two columns displayed in a
single column.

The main tasks for this exercise are as follows:

1. Write a SELECT Statement to Concatenate Two Columns

2. Add an Additional Column to the Concatenated String Which Might Contain NULL

3. Write a SELECT Statement to Retrieve Customer Contacts Based on the First Character in the Contact
Name

 Task 1: Write a SELECT Statement to Concatenate Two Columns
1. Open the project file D:\Labfiles\Lab06\Starter\Project\Project.ssmssln and the T-SQL script 71 - Lab

Exercise 3.sql. Ensure that you are connected to the TSQL database.

2. Write a SELECT statement against the Sales.Customers table and retrieve the contactname and city
columns. Concatenate both columns so that the new column looks like this:

Allen, Michael (city: Berlin)

3. Execute the written statement and compare your results with the recommended results shown in the
file D:\Labfiles\Lab06\Solution\72 - Lab Exercise 3 - Task 1 Result.txt.

 Task 2: Add an Additional Column to the Concatenated String Which Might Contain
NULL
1. Copy the T-SQL statement in task 1 and modify it to extend the calculated column with new

information from the region column. For concatenation purposes, treat a NULL in the region column
as an empty string. When the region is NULL, the modified column should look like this:

Allen, Michael (city: Berlin, region:)

When the region is not NULL, the modified column should look like this:

Richardson, Shawn (city: Sao Paulo, region: SP)

2. Execute the written statement and compare your results with the recommended results shown in the
file D:\Labfiles\Lab06\Solution\73 - Lab Exercise 3 - Task 2 Result.txt.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
Querying Data with Transact-SQL 6-31

 Task 3: Write a SELECT Statement to Retrieve Customer Contacts Based on the First
Character in the Contact Name
1. Write a SELECT statement to retrieve the contactname and contacttitle columns from the

Sales.Customers table. Return only rows where the first character in the contact name is ‘A’ through
‘G’.

2. Execute the written statement and compare your results with the recommended results shown in the
file D:\Labfiles\Lab06\Solution\74 - Lab Exercise 3 - Task 3 Result.txt. Notice the number of rows
returned.

Results: After this exercise, you should have an understanding of how to concatenate character data.

Exercise 4: Writing Queries That Use Character Functions

Scenario
The marketing department want to address customers by their first and last names. In the Sales.Customers
table, there is only one column named contactname—it has both elements separated by a comma. You
will have to prepare a report to show the first and last names separately.

The main tasks for this exercise are as follows:

1. Write a SELECT Statement That Uses the SUBSTRING Function

2. Write a Query to Retrieve the Contact’s First Name Using SUBSTRING

3. Write a SELECT Statement to Format the Customer ID

4. Challenge: Write a SELECT Statement to Return the Number of Character Occurrences

 Task 1: Write a SELECT Statement That Uses the SUBSTRING Function
1. Open the project file D:\Labfiles\Lab06\Starter\Project\Project.ssmssln and the T-SQL script 81 - Lab

Exercise 4.sql. Ensure that you are connected to the TSQL database.

2. Write a SELECT statement to retrieve the contactname column from the Sales.Customers table. Based
on this column, add a calculated column named lastname, which should consist of all the characters
before the comma.

3. Execute the written statement and compare your results with the recommended results shown in the
file D:\Labfiles\Lab06\Solution\82 - Lab Exercise 4 - Task 1 Result.txt.

 Task 2: Write a Query to Retrieve the Contact’s First Name Using SUBSTRING
1. Write a SELECT statement to retrieve the contactname column from the Sales.Customers table and

replace the comma in the contact name with an empty string. Based on this column, add a calculated
column named firstname, which should consist of all the characters after the comma.

2. Execute the written statement and compare your results with the recommended results shown in the
file D:\Labfiles\Lab06\Solution\83 - Lab Exercise 4 - Task 2 Result.txt.

 Task 3: Write a SELECT Statement to Format the Customer ID
1. Write a SELECT statement to retrieve the custid column from the Sales.Customers table. Add a new

calculated column to create a string representation of the custid as a fixed-width (six characters)
customer code, prefixed with the letter C and leading zeros. For example, the custid value 1 should
look like C00001.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
6-32 Working with SQL Server 2016 Data Types

2. Execute the written statement and compare your results with the recommended results shown in the
file D:\Labfiles\Lab06\Solution\84 - Lab Exercise 4 - Task 3 Result.txt.

 Task 4: Challenge: Write a SELECT Statement to Return the Number of Character
Occurrences
1. Write a SELECT statement to retrieve the contactname column from the Sales.Customers table. Add a

calculated column, which should count the number of occurrences of the character ‘a’ inside the
contact name. (Hint: Use the string functions REPLACE and LEN.) Order the result from highest to
lowest occurrence.

2. Execute the written statement and compare your results with the recommended results shown in the
file D:\Labfiles\Lab06\Solution\85 - Lab Exercise 4 - Task 4 Result.txt.

3. Close SQL Server Management Studio without saving any files.

Results: After this exercise, you should have an understanding of how to use the character functions.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
Querying Data with Transact-SQL 6-33

Module Review and Takeaways
Review Question(s)

Question: Will SQL Server be able to successfully and implicitly convert an int data type to a
varchar?

Question: What data type is suitable for storing Boolean flag information, such as TRUE or
FALSE?

Question: What logical operators are useful for retrieving ranges of date and time values?

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
7-1

Module 7
Using DML to Modify Data

Contents:
Module Overview 7-1

Lesson 1: Adding Data to Tables 7-2

Lesson 2: Modifying and Removing Data 7-8

Lesson 3: Generating Automatic Column Values 7-13

Lab: Using DML to Modify Data 7-16

Module Review and Takeaways 7-19

Module Overview
Transact-SQL (T-SQL) data manipulation language (DML) is the subset of the SQL Language that contains
commands to add and modify data column values, within rows, within tables.

In this module, you will learn the basics of using INSERT to add column values to rows within tables,
UPDATE to make changes to column values to rows within tables, and DELETE to remove complete rows
from tables. There is also the command TRUNCATE that you can use to delete all rows within a table
quickly, without incurring an overhead that protects accidental deletion of rows when using the DELETE
statement.

You will also learn how to generate sequences of numbers using the IDENTITY property of a column, in
addition to the sequence object, which is a stand-alone object that can be applied to many columns—in
the same or different tables—to gain consistency between identities within different tables.

You can use a command named MERGE to change existing columns within rows of a destination table,
based on the values stored within a source table, and comparisons between the source and destination
table contents.

Objectives
After completing this module, you will be able to:

 Write T-SQL statements that insert column values into rows within the tables.

 Write T-SQL statements that modify values in columns, within rows, within tables.

 Write T-SQL statements that remove existing rows from tables.

 Appreciate the importance of the WHERE clause when using data modification language (DML).

 Appreciate T-SQL statements that automatically generate values for columns and how this impacts
you when using DML.

 Understand the use of the MERGE statement to compare and contrast two tables and direct different
DML statements, based on their content comparisons.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
7-2 Using DML to Modify Data

Lesson 1
Adding Data to Tables

In this lesson, you will learn how to write queries that add new rows with column values to tables.

Lesson Objectives
After completing this lesson, you will be able to:

 Write queries that use the INSERT statement to add data to tables.

 Use the INSERT statement with SELECT and EXEC clauses.

 Use SELECT INTO to create and populate tables without resort to data definition language (DDL).

 Describe the behavior of default constraints when rows are inserted into a table.

Using INSERT to Add Data

In SQL, the INSERT statement is used to add one or
more rows to a table. There are several forms of the
statement.

Its basic syntax appears below:

INSERT Syntax

INSERT [INTO] <Table or View>
[(column_list)] -- column_list is optional
but the code is safer with it
VALUES ([ColumnName or an expression or
DEFAULT or NULL], .…n)

With this form, called INSERT VALUES, you can
specify the columns that will have values placed in them and the order in which the data will be presented
for each row inserted into the table. In addition, you can provide the values for those columns as a
comma separated list.

When inserting values, the keyword DEFAULT means the predefined value that should be presented
where a column value has not been listed but a value is required.

When inserting values, the keyword NULL means the predefined value that should be presented where a
column value has not been listed and a value is not required.

The following example shows the use of the INSERT VALUES statement:

Notice the correlation between the columns and the value list:

INSERT VALUES Example

USE TSQL
GO

INSERT INTO Sales.OrderDetails (OrderID, ProductID, UnitPrice, Qty, Discount)
VALUES (10248, 39, 18, 2, 0.05)

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
Querying Data with Transact-SQL 7-3

If the column list is omitted, a column value or the keyword (DEFAULT or NULL) must be specified for
each column, in the order in which they are defined in the table. If a value is not specified for a column
that does not have a value automatically assigned, such as through an IDENTITY column, the INSERT
statement will fail.

In addition to inserting a single row at a time, the INSERT VALUES statement can be used to insert
multiple rows by providing multiple comma separated sets of values, themselves separated by commas,
like this: (1,2,3), (3,2,1), (2,2,2)

USE TSQL
GO

INSERT INTO Sales.OrderDetails(orderid, productid, unitprice, qty, discount)
VALUES (10249,39,18,2,0.05), (12002,39,18,5,0.10);
-- Some people prefer this alternative layout for multiple row inserts

INSERT INTO Sales.OrderDetails(orderid, productid, unitprice, qty, discount)
VALUES (10250,39,18,2,0.05)
, (10251,39,18,5,0.10)
, (10252,39,18,2,0.05)
, (10254,39,18,5,0.10);

INSERT (Transact-SQL)

http://aka.ms/ifsc6i

Table Value Constructor (Transact-SQL)

http://aka.ms/rnwb93

Using INSERT with Data Providers

Beyond specifying a literal set of values in an
INSERT statement, T-SQL also supports using the
output of other operations to provide values for
INSERT. You may pass the results of a SELECT clause
or the output of a stored procedure to the INSERT
clause.

To use the SELECT statement with an INSERT
statement, build a SELECT clause to replace the
VALUES clause. With this form, called INSERT
SELECT, you can insert the set of rows returned by a
SELECT query into a destination table. The use of
INSERT SELECT presents the same considerations as
INSERT VALUES:

 You may optionally specify a column list following the table name.
 You must provide column values or DEFAULT, or NULL, for each column.

The following syntax illustrates the use of INSERT using the SELECT clause:

INSERT SELECT

INSERT [INTO] <table or view> [(column_list)]
SELECT <column_list> FROM <table_list>...;

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
7-4 Using DML to Modify Data

Result sets from stored procedures (or even dynamic batches) may also be used as input to an INSERT
statement. This form of INSERT, called INSERT EXEC, is conceptually similar to INSERT SELECT and will
present the same considerations.

The following example shows the use of an EXEC clause to insert rows from a stored procedure:

Inserting rows into a table from a stored procedure

INSERT INTO Production.Products (productID, productname, supplierid, categoryid,
unitprice)
EXEC Production.AddNewProducts;

GO

 Note: The example above references a procedure that is not supplied with the course
database. Code to create it appears in the demonstration for this module.

Using SELECT INTO

In T-SQL, you can use the SELECT INTO statement
to create and populate a new table with the results
of a SELECT query. SELECT INTO cannot be used to
insert rows into an existing table. A new table is
created, with a schema defined by the columns in
the SELECT list. Each column in the new table will
have the same name, data type, and nullability as
the corresponding column (or expression) in the
SELECT list.

To use SELECT INTO, add INTO
<new_target_table_name> in the SELECT clause of

the query, just before the FROM clause.

INTO clause (Transact-SQL)

http://aka.ms/qae4zn

SELECT column1

, column2

 …

INTO NewTable FROM OldTable

SELECT ordered
, custid
, empid
, orderdate
, shipcity
, shipregion
, shipcountry
INTO Sales.OrdersExport FROM Sales.Orders
WHERE empid = 5;

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
Querying Data with Transact-SQL 7-5

 Note: The use of SELECT INTO requires permissions to create table objects in the
destination database. Do not try to put this clause inside a view, as it will only work once. If a
table cannot be created when the view is activated, an error will occur after the first use of the
view.

Check Your Knowledge

Question

You want to populate three columns of an existing table with data from another
table in the same database. Which of the following types of query should you use?

Select the correct answer.

 INSERT INTO <TableName> (<Columns,…>) VALUES (<Column Value> …)

 INSERT INTO <DestinationTableName> SELECT <Columns> FROM
<SourceTableName>

 INSERT INTO <DestinationTableName> EXECUTE usp_SomeStorerdProcedure

 SELECT <Columns,…> INTO DestinationTableName FROM SourceTableName

 SELECT <Columns,…> INTO SourceTableName FROM DestinationTableNAme

Demonstration: Adding Data to Tables

In this demonstration, you will see how to:

 ADD data to tables using fully qualified parameters.

 ADD data to tables with partially qualified parameters.

 Understand how to use the OUTPUT clause to monitor data changes during Data INSERT.

 Understand how to insert data into a table from that is produced by a stored Procedure.

 How to use the SELECT INTO keywords to insert data into a table.

Demonstration Steps
INSERT Data into a Table

1. Start the 20761AD-MIA-DC and 20761A-MIA-SQL virtual machines, log on to 20761A-MIA-SQL as
ADVENTUREWORKS\Student with the password Pa$$w0rd,

2. Run D:\Demofiles\Mod07\Setup.cmd as an administrator. Click Yes when prompted.

3. In the Command Prompt window press y, and then press Enter.

4. When the script has finished, press Enter.

5. Open SQL Server Management Studio, and connect to the MIA-SQL database engine instance
using Windows authentication.

6. Open the Demo.ssmssln solution in the D:\Demofiles\Mod07\Demo folder.

7. In Solution Explorer, expand Queries, and double-click 11 - Demonstration A.sql.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
7-6 Using DML to Modify Data

8. Highlight the code USE TSQL GO, and click Execute.

9. First we will populate a table with some data from a stored procedure. Highlight the code under the
comment that begins -- First try the INSERT by stored procedure

INSERT INTO Production.Products
 (productID
 , productname
 , supplierid
 , categoryid
 , unitprice)
EXEC Production.AddNewProducts;

Click Execute you will receive a message saying the procedure is not there.

10. Highlight the code below the comment --Create a backup of the Products with a chosen ID

DROP TABLE IF EXISTS NewProducts
GO
SELECT * INTO NewProducts
FROM PRODUCTION.PRODUCTS WHERE ProductID >= 70

We are creating a new Table for NewProducts where the Product ID >= 70.

11. We are also going to create a NewOrderDetails table that will contain rows for those products that
have been transferred into NewProducts. To do this highlight the code under the comment -- Create
a backup of the Order Details for the chosen productID, up to the point shown in the code
section for the next step below, and click Excute.

DROP TABLE IF EXISTS NewOrderDetails
GO
SELECT * INTO NewOrderDetails
FROM SALES.OrderDetails WHERE ProductID >= 70
-- Delete the copied data from the original tables
DELETE FROM SALES.OrderDetails
OUTPUT DELETED.*
WHERE ProductID >= 70
DELETE FROM Production.Products
OUTPUT DELETED.*
WHERE ProductID >= 70
-- check that they have been transferred safely
SELECT * FROM NewProducts
SELECT * FROM NewOrderDetails
SELECT * FROM SALES.OrderDetails
WHERE productid >= 70
SELECT * FROM Production.Products
WHERE productid >= 70

12. Highlight the code below the Now we can put back the rows from the NewTables, using the
INSERT statement, and click Execute.

DROP PROCEDURE IF EXISTS Production.AddNewProducts
GO
CREATE PROCEDURE Production.AddNewProducts
AS
BEGIN
SELECT Productid, productname, SupplierID, CategoryID, Unitprice FROM NewProducts
END

When you click Execute. SQL Server creates the stored procedure that we were previously missing
when we tried to run it at the beginning of the demo.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
Querying Data with Transact-SQL 7-7

13. Now we need to populate the original products table with the data within the secondary table as if it
was new rows that we are adding. Highlight the code below the comment – Having created it, we
can run it to feed the missing rows into the Products table

INSERT INTO Production.Products (productid, productname, supplierid, categoryid,
unitprice)
EXEC Production.AddNewProducts;
SELECT * FROM Production.Products
WHERE productid >= 70

And click Execute, to transfer the rows and see that they have been transferred.

14. For the other table we will use the SELECT INSERT statement. Highlight the code below the comment
-- The OrderDetails will be put back using INSERT .. SELECT and click Execute.

INSERT Sales.OrderDetails (orderid, productid, unitprice, qty, discount)
OUTPUT INSERTED.*
SELECT * FROM NewOrderDetails

15. Having seen various ways to add data to a new or existing table, we can clean up the database by
dropping the objects used in this demo. Highlight the rest of the code below -- Clean up the
database and click Execute

DROP TABLE NewProducts
GO
DROP TABLE NewOrderDetails
GO
DROP PROCEDURE Production.AddNewProducts

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
7-8 Using DML to Modify Data

Lesson 2
Modifying and Removing Data

In this lesson, you will learn how to write queries that modify or remove rows from a target table. You will
also learn how to perform a MERGE between source and destination tables, in which new rows are added
and existing rows are modified in the same operation.

Lesson Objectives
After completing this lesson, you will be able to:

 Write queries that modify existing rows using UPDATE.

 Write queries that modify existing rows and insert new rows using MERGE.

 Write queries that remove existing rows using DELETE.

 Remove all rows from a table using TRUNCATE.

Using UPDATE to Modify Data

SQL Server provides the UPDATE statement to
change existing data in a table or a view. UPDATE
operates on a set of rows defined by a condition in
a WHERE clause or defined in a join. It uses a SET
clause that can perform one or more assignments,
separated by commas, to allocate new values to the
target. The WHERE clause in an UPDATE statement
has the same structure as a WHERE clause in a
SELECT statement.

 Note: It’s important to note that an UPDATE
without a corresponding WHERE clause, and/or a
join, will target all rows that are not filtered out of the operation. Use the UPDATE statement with
caution.

The following code shows the basic syntax of the UPDATE statement:

UPDATE Syntax

UPDATE <TableName>
SET
 <ColumnName1> = { expression | DEFAULT | NULL }
 {,…n}

Any column omitted from the SET clause will not be modified by the UPDATE operation.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
Querying Data with Transact-SQL 7-9

The following example uses the UPDATE statement to increase the price of all current products in
category 1 from the Production.Products table:

UPDATE Example

UPDATE Production.Products
 SET unitprice = (unitprice * 1.04)
WHERE categoryID = 1
AND discontinued = 0;

 Note: In an earlier module, you learned that T-SQL supports compound assignment
operators. These can be used when assigning values to columns using the SET statement within
the update clause, as shown below:
UPDATE Production.Products
 SET unitprice *= 1.04
WHERE categoryID = 1
AND discontinued = 0;

UPDATE (Transact-SQL)

http://aka.ms/sbikqm

Using MERGE to Modify Data

In database operations, there is a common need to
perform an SQL MERGE operation, in which some
rows within a destination table are updated or
deleted and new rows are inserted from a source
data table. The oldest versions of SQL Server, before
support for the MERGE statement was added,
required multiple operations to update and insert
data into a destination table. You can use the
MERGE statement to insert, update, and even delete
rows from a destination table, based on a join to a
source data set, all in a single statement.

MERGE modifies data, based on one or more
conditions:

 When the source data matches the data in the target, it updates data.

 When the source data has no match in the target, it inserts data.

 When the target data has no match in the source, it deletes the target data.

 Note: Because the T-SQL implementation of MERGE supports the WHEN NOT MATCHED
BY SOURCE clause, MERGE is more than just an upsert operation—because it also deletes, it is a
delupsert or something similar.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
7-10 Using DML to Modify Data

The following code shows the general syntax of a MERGE statement:

An update is performed on the matching rows when rows are matched between the source and target. An
insert is performed when no rows to match the source are found in the target:

The MERGE example

MERGE INTO schema_name.table_name AS TargetTbl
 USING (SELECT <select_list>) AS SourceTbl
 ON (TargetTbl.col1 = SourceTbl.col1)
 WHEN MATCHED THEN
 UPDATE SET TargetTbl.col2 = SourceTbl.col2
 WHEN NOT MATCHED THEN
 INSERT (<column_list>)
 VALUES (<value_list>);

The following example shows the use of a MERGE statement to update shipping information for existing
orders, or to insert rows for new orders when no match is found. Note that this example is for illustration
only and cannot be run using the sample database for this course.

See the following example:

MERGE Example

MERGE top (10) INTO Store AS Destination -- Known in online help as
Target, which is a reserved word
 USING StoreBackup AS StagingTable -- Known in online help as the source, which
is also a reserved word
 ON (Destination.BusinessEntityID =
StagingTable.BusinessEntityID)
 -- the matching
control columns
WHEN NOT MATCHED THEN
 INSERT (BusinessEntityID
 , Name
 , SalesPersonID
 , Demographics
 , rowguid
 , ModifiedDate
)
 VALUES (StagingTable.BusinessEntityID
 , StagingTable.Name
 , StagingTable.SalesPersonID
 , StagingTable.Demographics
 , StagingTable.rowguid
 , StagingTable.ModifiedDate
);

MERGE (Transact-SQL)

http://aka.ms/nbsfg7

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
Querying Data with Transact-SQL 7-11

Demonstration: Manipulating Data Using the UPDATE and DELETE
Statements and MERGING Data Using Conditional DML

In this demonstration, you will see how to:

 UPDATE row and column intersections within tables.

 DELETE complete rows from within tables.

 Apply multiple data manipulation language (DML) operations by using the MERGE statement.

 Understand how to use the OUTPUT clause to monitor data changes during DML operations.

 Understand how to access prior and current data elements, in addition to showing the DML operation
performed.

Demonstration Steps
Update and Delete Data in a Table

1. Start the 20761AD-MIA-DC and 20761A1D-MIA-SQL virtual machines, log on to 20761A-MIA-SQL
as ADVENTUREWORKS\Student with the password Pa$$w0rd,

2. Run D:\Demofiles\Mod07\Setup.cmd as an administrator.

3. In the Command Prompt window press y, and then press Enter.

4. When the script has finished, press Enter.

5. If SQL Server Management Studio is not already open, start it and connect to the MIA-SQL database
engine instance using Windows authentication,

6. Open the Demo.ssmssln solution in the D:\Demofiles\Mod07\Demo folder.

7. In Solution Explorer, open the 21 – Demonstration B.sql script file.

8. Highlight the code USE AdventureWorks GO, and click Execute.

9. Select the code under USE AdventureWorks GO, and then click Execute.

10. Select the code under the comment Remove the copied rows from the store table, and then click
Execute.

11. Select the code under the comment Show that they have been removed, and then click Execute.

12. Select the code under the comment Use the Merge statement to put them back, and then click
Execute.

13. Select the code under the comment SELECT * FROM Sales.Store where 1 = 0 -- used to extract
column names for all columns, without cost of data access, and then click Execute.

14. Select the code under the comment Use the Merge statement to Change the names back, and
then click Execute.

15. Select the code under the comment Ensure that the environment has been restored to the state
it was in before the changes were made, and then click Execute.

16. Select the code under the comment Clean up the database, and then click Execute.

17. Close SQL Server Management Studio without saving any files.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
7-12 Using DML to Modify Data

Question: A user cannot delete records in the Cars table by using a DELETE statement. His
query was intended to remove all pool cars that have been sold. The query used was:

DELETE

FROM Scheduling.Cars

WHERE Cars.DateSold <> NULL

What mistake did the user make?

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
Querying Data with Transact-SQL 7-13

Lesson 3
Generating Automatic Column Values

In this lesson, you will learn how to automatically generate a sequence of numbers for use as column
values.

Lesson Objectives
After completing this lesson, you will be able to:

 Describe how to use the IDENTITY property of a column to generate a sequence of numbers as rows
are inserted into a table.

 Describe how to use a sequence object in SQL Server 2016 to generate numbers that can be used
within a column, in one or more tables.

Using IDENTITY

You may need to automatically generate sequential
values for a column in a table. SQL Server provides
two mechanisms for generating values: the
IDENTITY property, for all versions of SQL Server,
and the sequence object in SQL Server 2012-2016.
Each mechanism can be used to provide sequential
numbers when rows are inserted into a table. With
the sequence object, the number variable can be
used efficiently in multiple tables.

To use the IDENTITY property, define a column
using a numeric data type with a scale of 0—
meaning whole numbers only—and include the
IDENTITY keyword.

An optional seed (starting value), and an increment (step value) can also be specified. Leaving out the
seed and increment will set them both to 1.

Only one column in a table may have the IDENTITY property set; it is customary for it to be an alternate
primary key.

The following code fragment shows an EmployeeID column defined with the IDENTITY property, a seed of
100, and an increment of 10:

IDENTITY Example

CREATE TABLE Employee
(
 EmployeeID int IDENTITY(100, 10) NOT NULL
, …
)

When an IDENTITY property is defined on a column, INSERT statements against the table do not reference
the IDENTITY column. SQL Server will generate a value using the next available value for the column. If a
value must be explicitly assigned to an IDENTITY column, the SET IDENTITY INSERT statement must be
executed to override the default behavior of the IDENTITY column.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
7-14 Using DML to Modify Data

For more information, see SET IDENTITY_INSERT (Transact-SQL) in Books Online at:

SET IDENTITY_INSERT (Transact-SQL)

http://aka.ms/l4wavg

Once a value is assigned to a column by the IDENTITY property, the value may be retrieved like any other
value in a column. Values generated by the IDENTITY property are unique within a table. However,
without a constraint on the column (such as a PRIMARY KEY or UNIQUE constraint), uniqueness is not
enforced after the value has been generated.

To return the most recently assigned value within the same session and scope, such as a stored procedure,
use the SCOPE_IDENTITY() function. The legacy @@IDENTITY function will return the last value generated
during a session, but it does not distinguish scope. You can use SCOPE_IDENTITY() for most purposes.

To reset the IDENTITY property by assigning a new seed, use the DBCC CHECKIDENT statement. See DBCC
CHECKIDENT (Transact-SQL) in Books Online at:

DBCC CHECKIDENT (Transact-SQL)

http://aka.ms/g3mejh

Check Your Knowledge

Question

You are using an IDENTITY column to store the sequence in which orders were placed
in a given year. It is a new year and you want to start the count again from 1. Which
of the following statements should you use?

Select the correct answer.

 OrderSequence int IDENTITY(1,1) NOT NULL

 SET IDENTITY INSERT

 SCOPE_IDENTITY()

 DBCC CHECKIDENT

 CREATE SEQUENCE

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
Querying Data with Transact-SQL 7-15

Using Sequences

As you have learned, the IDENTITY property may be
used to generate a sequence of values for a column
within a table. However, the IDENTITY property is
not suitable for coordinating values across multiple
tables within a database. Database administrators
and developers have needed to create tables of
numbers manually to provide a pool of sequential
values across tables.

SQL Server 2012 provides the new sequence object,
an independent database object that is more
flexible than the IDENTITY property, and can be
referenced by multiple tables within a database. The
sequence object is created and managed with typical data definition language (DDL) statements such as
CREATE, ALTER, and DROP. SQL Server provides a command for retrieving the next value in a sequence,
such as within an INSERT statement or a default constraint in a column definition.

To define a sequence, use the CREATE SEQUENCE statement, optionally supplying the data type (must be
an integer type or decimal/numeric with a scale of 0), the starting value, an increment value, a maximum
value, and other options related to performance.

See CREATE SEQUENCE (Transact-SQL) in Books Online at:

CREATE SEQUENCE (Transact-SQL)

http://aka.ms/lquwo6

To retrieve the next available value from a sequence, use the NEXT VALUE FOR function. To return a range
of multiple sequence numbers in one step, use the system procedure sp_sequence_get_range.

The following code defines a sequence and returns an available value to an INSERT statement against a
sample table:

SEQUENCE example

CREATE SEQUENCE dbo.demoSequence
 AS INT
 START WITH 1
 INCREMENT BY 1;
GO

CREATE TABLE dbo.tblDemo
 (SeqCol int PRIMARY KEY,
 ItemName nvarchar(25) NOT NULL);
GO

INSERT
 INTO dbo.tblDemo (SeqCol,ItemName)
 VALUES (NEXT VALUE FOR dbo.demoSequence, 'Item');
GO

When you use a select statement against the table, you will see that a sequence value is inserted for the
new row.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
7-16 Using DML to Modify Data

Lab: Using DML to Modify Data
Scenario
You are a database developer for Adventure Works and need to create DML statements to update data in
the database to support the website development team. The team need T-SQL statements that they can
use to carry out updates to data, based on actions performed on the website. You will supply template
DML statements that they can modify to their specific requirements.

Objectives
After completing this lab, you will be able to:

 Insert records.

 Update and delete records.

Estimated Time: 30 Minutes

Virtual Machine: 20761A-MIA-SQL

User Name: ADVENTUREWORKS\STUDENT

Password: Pa$$w0rd

Exercise 1: Inserting Records with DML

Scenario
You need to add a new employee to the TempDB.Hr.Employee table and test the required T-SQL code.
You can then pass the T-SQL code to the human resources system’s web developers, who are creating a
web form to simplify this task. You also want to add all potential customers to the Customers table to
consolidate those records.

The main tasks for this exercise are as follows:

1. Prepare the Lab Environment

2. Insert a Row

3. Insert a Row with a SELECT Statement As the Data Provider

 Task 1: Prepare the Lab Environment

The exercises will be performed within the TempDB database so that none of the real data is affected. Two
scripts are used to set up the environment for the lab—both are included in the project for the lab, along
with a sample solution for each exercise. If you need to start again, open and execute the clean-up script,
followed by the set-up script; you will be back to a clean environment and can try again.

1. Ensure that the 20761A-MIA-DC and 20761A-MIA-SQL virtual machines are both running, and then
log on to 20761A-MIA-SQL as ADVENTUREWORKS\Student with the password Pa$$w0rd.

2. Run Setup.cmd in the D:\Labfiles\Lab07\Starter folder as Administrator.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
Querying Data with Transact-SQL 7-17

 Task 2: Insert a Row
1. Open the project file D:\Labfiles\Lab07\Starter\Project\Project.ssmssln and execute the 01 setup.sql

query.

2. Write an INSERT statement to add a record to the Employees table within the TempDB.HR.Employees
table, with the following values:

o Title: Sales Representative

o Titleofcourtesy: Mr

o FirstName: Laurence

o Lastname: Grider

o Hiredate: 04/04/2013

o Birthdate: 10/25/1975

o Address: 1234 1st Ave. S.E.

o City: Seattle

o Country: USA

o Phone: (206)555-0105

 Task 3: Insert a Row with a SELECT Statement As the Data Provider
 Write an INSERT statement to add all the records from the PotentialCustomers table to the Customers

table.

Results: After successfully completing this exercise, you will have one new employee and three new
customers.

Exercise 2: Update and Delete Records Using DML

Scenario
You want to update the use of contact titles in the database to match the most commonly-used term in
the company—making searches more straightforward. You also want to remove the three potential
customers who have been added to the Customers table.

The main tasks for this exercise are as follows:

1. Update Rows

2. Delete Rows

 Task 1: Update Rows
 Write an UPDATE statement to update all the records in the Customers table which have a city of

‘Berlin’ and a contacttitle of ‘Sales Representative’ to have a contacttitle of ‘Sales Consultant’.

 Task 2: Delete Rows
 Write a DELETE statement to delete all the records in the PotentialCustomers table which have the

contactname of ‘Taylor, Maurice, ‘Mallit, Ken’, or ‘Tiano, Mike’, as these records have now been added
to the Customers table.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
7-18 Using DML to Modify Data

Results: After successfully completing this exercise, you will have updated all the records in the Customers
table which have a city of Berlin and a contacttitle of Sales Representative, to now have a contacttitle of
Sales Consultant. You will also have deleted the three records in the PotentialCustomers table, which have
already been added to the Customers table.

Question: What attributes of the source columns are transferred to a table created with a
SELECT INTO query?

Question: The presence of which constraint prevents TRUNCATE TABLE from executing
successfully?

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
Querying Data with Transact-SQL 7-19

Module Review and Takeaways
Common Issues and Troubleshooting Tips

Common Issue Troubleshooting Tip

You are part way through the exercises
and want to start again from the
beginning. You run the set-up script
within the solution and receive lots of
error messages. This may occur if you have
tried to execute the set-up script without
running the clean-up script to remove any
changes you may have made during the
lab.

Run the clean-up script before running the
set-up script.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
8-1

Module 8
Using Built-In Functions

Contents:
Module Overview 8-1

Lesson 1: Writing Queries with Built-In Functions 8-2

Lesson 2: Using Conversion Functions 8-8

Lesson 3: Using Logical Functions 8-14

Lesson 4: Using Functions to Work with NULL 8-18

Lab: Using Built-in Functions 8-22

Module Review and Takeaways 8-26

Module Overview
In addition to retrieving data as it is stored in columns, you may have to compare or further manipulate
values in your T-SQL queries.

In this module, you will:

 Learn about the many built-in functions in Microsoft® SQL Server® that provide data type
conversion, comparison, and NULL handling.

 Learn about the various types of functions in SQL Server and how they are categorized.

 Work with scalar functions and see where they may be used in your queries.

 Learn conversion functions for changing data between different data types, and how to write logical
tests.

 Learn how to work with NULLs, and use built-in functions to select non-NULL values, in addition to
replacing certain values with NULL when applicable.

Objectives
After completing this module, you will be able to:

 Write queries with built-in scalar functions.

 Use conversion functions.

 Use logical functions.

 Use functions that work with NULL.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
8-2 Using Built-In Functions

Lesson 1
Writing Queries with Built-In Functions

SQL Server provides many built-in functions, ranging from those that perform data type conversion, to
those that aggregate and analyze groups of rows.

In this lesson, you will learn about SQL Server function types, and then work with scalar functions.

Lesson Objectives
After completing this lesson, you will be able to:

 Describe the types of built-in functions provided by SQL Server.

 Write queries using scalar functions.

 Describe aggregate, window and rowset functions.

SQL Server Built-in Function Types

Functions built into SQL Server can be categorized
as follows:

Function Category Description

Scalar Operate on a single row, return a single value

Grouped Aggregate Take one or more input values, return a single summarizing value

Window Operate on a window (set) of rows

Rowset Return a virtual table that can be used in a T-SQL statement

 Note:

 This course will cover aggregates and window functions in later modules.

 Rowset functions are beyond the scope of this course.

 The rest of this module will cover various scalar functions.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
Querying Data with Transact-SQL 8-3

Scalar Functions

Scalar functions return a single value. The number
of inputs they take may range from zero (such as
GETDATE) to one (such as UPPER) to multiple
(such as DATEADD). As scalar functions always
return a single value, they may be used anywhere
a single value (the result) could exist in its own
right—from SELECT clauses to WHERE clause
predicates.

Built-in scalar functions can be organized into
many categories, such as string, conversion,
logical, mathematical, and others. This lesson will
look at a few common scalar functions.

Some considerations when using scalar functions include:

 Determinism: Will the function return the same value for the same input and database state each
time? Many built-in functions are non-deterministic, and as such, their results cannot be indexed. This
will have an impact on the query processor's ability to use an index when executing the query.

 Collation: When using functions that manipulate character data, which collation will be used? Some
functions use the collation of the input value; others use the collation of the database if no input
collation is supplied.

At the time of writing, Books Online listed more than 200 scalar functions. This course is not intended to
provide a complete guide to all functions. The following list provides some representative examples:

 Date and time functions (covered previously in this course).

 Mathematical functions.

 Conversion functions (covered later in this module).

 System metadata functions.

 System functions.

 Text and image functions.

The following example of the YEAR function shows a typical use of a scalar function in a SELECT clause.
The function is calculated once per row, using a column from the row as its input:

Scalar Function in a Select Clause

SELECT orderid, orderdate, YEAR(orderdate) AS orderyear
FROM Sales.Orders;

The results:

orderid orderdate orderyear
----------- ----------------------- -----------
10248 2006-07-04 00:00:00.000 2006
10249 2006-07-05 00:00:00.000 2006
10250 2006-07-08 00:00:00.000 2006

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
8-4 Using Built-In Functions

The following example of the mathematical ABS function shows it being used to return an absolute value
multiple times in the same SELECT clause, with differing inputs:

Returning an Absolute Value

SELECT ABS(-1.0), ABS(0.0), ABS(1.0);

The results:

--- --- ---
1.0 0.0 1.0

The following example uses the system metadata function DB_NAME() to return the name of the database
currently in use by the user's session:

Metadata Function

Select DB_NAME() AS current_database

The results:

Current_database

TSQL

For additional information about scalar functions and categories, see Books Online at:

Built-in Functions (Transact SQL)

http://aka.ms/oor5qi

Aggregate Functions

Grouped aggregate functions operate on sets of
rows defined in a GROUP BY clause and return a
summarized result. Examples include SUM, MIN,
MAX COUNT, and AVG. In the absence of a
GROUP BY clause, all rows are considered one set;
aggregation is performed on all of them.

The following example uses a COUNT function
and a SUM function to return aggregate values
without a GROUP BY clause:

Aggregate Function

SELECT COUNT(*) AS numorders,
SUM(unitprice) AS totalsales
FROM Sales.OrderDetails;

The Results:

numorders totalsales
----------- -----------
2155 56500.91

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
Querying Data with Transact-SQL 8-5

 Note: Grouped aggregate functions and the GROUP BY clause will be covered in a later
module.

Window Functions

Window functions allow you to perform
calculations against a user-defined set, or window,
of rows. They include ranking, offset, aggregate,
and distribution functions. Windows are defined
using the OVER clause, then window functions are
applied to the sets defined.

This example uses the RANK function to calculate
a ranking based on the unitprice, with the highest
price ranked at 1, the next highest ranked 2, and
so on:

Window Function

SELECT TOP(5) productid, productname, unitprice,
 RANK() OVER(ORDER BY unitprice DESC) AS rankbyprice
FROM Production.Products
ORDER BY rankbyprice;

The results:

productid productname unitprice rankbyprice
----------- ------------- ---------- -------------
38 Product QDOMO 263.50 1
29 Product VJXYN 123.79 2
9 Product AOZBW 97.00 3
20 Product QHFFO 81.00 4
18 Product CKEDC 62.50 5

 Note: Window functions will be covered later in this course. This example is provided for
illustration only.

Rowset Functions

Rowset functions return a virtual table that can be
used elsewhere in the query and take parameters
specific to the rowset function itself. They include
OPENDATASOURCE, OPENQUERY, OPENROWSET,
and OPENXML.

For example, the OPENQUERY function enables
you to pass a query to a linked server. It takes the
system name of the linked server and the query
expression as parameters. The results of the query
are returned as a rowset, or virtual table, to the
query containing the OPENQUERY function.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
8-6 Using Built-In Functions

Further discussion of rowset functions is beyond the scope of this course. For more information, see Books
Online at:

Rowset Functions (Transact-SQL)

http://go.microsoft.com/fwlink/?LinkID=402746

Demonstration: Writing Queries Using Built-in Functions

In this demonstration you will see how to:

 Use build-in scalar functions

Demonstration Steps
Use Built-in Scalar Functions

1. Ensure that the 20761A-MIA-DC and 20761A-MIA-SQL virtual machines are both running, and then
log on to 20761A-MIA-SQL as ADVENTUREWORKS\Student with the password Pa$$w0rd.

2. Run D:\Demofiles\Mod08\Setup.cmd as an administrator. Click Yes when prompted.

3. When prompted press y, and then press Enter.

4. When the script has finished press Enter.

5. Start SQL Server Management Studio and connect to the MIA-SQL database engine instance using
Windows authentication.

6. Open the Demo.ssmssln solution in the D:\Demofiles\Mod08\Demo folder.

7. If the Solution Explorer pane is not visible, on the View menu, click Solution Explorer.

8. Expand Queries, and double-click the 11 – Demonstration A.sql script file.

9. Select the code under the comment Step 1, and then click Execute.

10. Select the code under the comment Step 2, and then click Execute.

11. Select the code under the comment Step 3, and then click Execute.

12. Select the code under the comment Step 4, and then click Execute.

13. Keep SQL Server Management Studio open for the next demonstration.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
Querying Data with Transact-SQL 8-7

Categorize Activity
Categorize each item into the appropriate category. Indicate your answer by writing the category number
to the right of each item.

Items

1 GETDATE()

2 SUM()

3 OPENDATASOURCE()

4 DATEADD()

5 MIN()

6 OPENQUERY()

7 UPPER()

8 MAX()

9 OPENROWSET()

10 YEAR()

11 COUNT()

12 OPENXML()

13 ABS()

14 AVG()

15 DB_NAME()

Category 1 Category 2 Category 3

Scalar Functions Aggregate Functions Rowset Functions

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
8-8 Using Built-In Functions

Lesson 2
Using Conversion Functions

When writing T-SQL queries, it's very common to need to convert data between data types. Sometimes
the conversion happens automatically; sometimes you need to control it. In this lesson, you will learn how
to explicitly convert data between types using several SQL Server functions. You will also learn to work
with functions in SQL Server 2016 that provide additional flexibility during conversion.

Lesson Objectives
After completing this lesson, you will be able to:

 Describe the difference between implicit and explicit conversions.

 Describe when you will need to use explicit conversions.

 Explicitly convert between data types using the CAST and CONVERT functions.

 Convert strings to date and numbers with the PARSE, TRY_PARSE, and TRY_CONVERT functions.

Implicit and Explicit Data Type Conversions

Earlier in this course, you learned that there are
scenarios when data types may be converted
during SQL Server operations. You learned that
SQL Server may implicitly convert data types,
following the precedence rules for type
conversion. However, you may need to override
the type precedence, or force a conversion where
an implicit conversion might fail.

To accomplish this, you can use the CAST and
CONVERT functions, in addition to the
TRY_CONVERT function.

Some considerations when converting between
data types include:

 Collation. When CAST or CONVERT returns a character string from a character string input, the
output uses the same collation. When converting from a non-character type to a character, the return
value uses the collation of the database. The COLLATE option may be used with CAST or CONVERT to
override this behavior.

 Truncation. When you convert data between character or binary types and different data types, data
may be truncated, it might appear cut off, or an error could be thrown because the result is too short
to display. The end result depends on the data types involved. For example, conversion from an
integer with a two-digit value to a char(1) will return an “*” which means the character type was too
small to display the results.

For additional reading about truncation behavior, see Books Online at:

CAST and CONVERT (Transact-SQL)

http://go.microsoft.com/fwlink/?LinkID=402747

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
Querying Data with Transact-SQL 8-9

Converting with CAST

To convert a value from one data type to another,
SQL Server provides the CAST function. CAST is an
ANSI-standard function and is therefore
recommended over the SQL Server-specific
CONVERT function, which you will learn about in
the next topic.

As CAST is a scalar function, you may use it in
SELECT and WHERE clauses.

The following example shows how to use the CAST
function:

Converting with CAST

CAST(<value> AS <datatype>)

The following example from the TSQL sample database uses CAST to convert the orderdate from datetime
to date:

CAST example

SELECT orderid, orderdate AS order_datetime, CAST(orderdate AS DATE) AS order_date
FROM Sales.Orders;

The results:

orderid order_datetime order_date
----------- ----------------------- ----------
10248 2006-07-04 00:00:00.000 2006-07-04
10249 2006-07-05 00:00:00.000 2006-07-05
10250 2006-07-08 00:00:00.000 2006-07-08

If the data types are incompatible, such as attempting to convert a date to a numeric value, CAST will
return an error:

CAST With Incompatible Data Types

SELECT CAST(SYSDATETIME() AS int);

The results:

Msg 529, Level 16, State 2, Line 1
Explicit conversion from data type datetime2 to int is not allowed.

For more information about CATS, see Books Online at:

CAST and CONVERT (Transact SQL)

http://go.microsoft.com/fwlink/?LinkID=402747

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
8-10 Using Built-In Functions

Converting with CONVERT

In addition to CAST, SQL Server provides the
CONVERT function. Unlike the ANSI-standard
CAST function, the CONVERT function is
proprietary to SQL Server and is therefore not
recommended. However, because of its additional
capability to format the return value, you may
occasionally still need to use CONVERT.

As with CAST, CONVERT is a scalar function. You
may use CONVERT in SELECT and WHERE clauses.

The following example shows how to use the
CONVERT function:

Converting with CONVERT

CONVERT(<datatype>, <value>, <optional_style_number>);

The style number argument causes CONVERT to format the return data according to a specified set of
options. These cover a wide range of date and time styles, in addition to styles for numeric, XML and
binary data. Some date and time examples include:

Style Without Century Style With Century Standard Label Value

1 101 U.S. mm/dd/yyyy

2 102 ANSI yy.mm.dd – no change
for century

12 112 ISO yymmdd or yyyymmdd

The following example uses CONVERT to convert the current time from datetime to char(8):

CONVERT Example

SELECT CONVERT(CHAR(8), CURRENT_TIMESTAMP, 12) AS ISO_short, CONVERT(CHAR(8),
CURRENT_TIMESTAMP, 112) AS ISO_long;

The results:

ISO_short ISO_long
--------- --------
120212 20120212

For more information about CONVERT and its style options, see Books Online at:

CAST and CONVERT (Transact-SQL)

http://go.microsoft.com/fwlink/?LinkID=402747

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
Querying Data with Transact-SQL 8-11

Converting Strings with PARSE

A very common business problem is building a
date, time, or numeric value from one or more
strings, often concatenated. SQL Server 2016
makes this task easier with the PARSE function.

PARSE requires a string, which must be in a form
recognizable to SQL Server as a date, time, or
numeric value, and returns a value of the specified
data type:

Converting Strings with PARSE

SELECT PARSE('<string_value>',<data_type>
[USING <culture_code>]);

The culture parameter must be in the form of a valid .NET Framework culture code, such as “en-US” for
US English, “es-ES” for Spanish, and so on. If the culture parameter is omitted, the settings for the current
user session will be used.

The following example converts the string “02/12/2012” into a datetime2, using the en-US culture codes:

PARSE Example with Culture Code

SELECT PARSE('02/12/2012' AS datetime2 USING 'en-US') AS us_result;

The results:

us_result

2012-02-12 00:00:00.00

For more information about PARSE, including culture codes, see Books Online at:

PARSE (Transact-SQL)

http://go.microsoft.com/fwlink/?LinkID=402732

Converting with TRY_PARSE and TRY_CONVERT

When using CONVERT or PARSE, an error may
occur if the input value cannot be converted to
the specified output type.

For example, if February 31, 2012 (an invalid date)
is passed to CONVERT, a runtime error is raised:

Convert Error

SELECT CONVERT(datetime2, '20120231');

The result:

--Msg 241, Level 16, State 1, Line 1
--Conversion failed when converting date and/or time from character string.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
8-12 Using Built-In Functions

SQL Server 2016 provides conversion functions to address this. TRY_PARSE and TRY_CONVERT will
attempt a conversion, just like PARSE and CONVERT, respectively. However, instead of raising a runtime
error, failed conversions return NULL.

The following examples compare PARSE and TRY_PARSE behavior. First, PARSE attempts to convert an
invalid date:

PARSE Error

SELECT PARSE('20120231' AS datetime2 USING 'en-US')

Returns:

NULL

Demonstration: Using Conversion Functions

In this demonstration, you will see how to:

 Use functions to convert data

Demonstration Steps
Use Functions to Convert Data

1. If you have not completed the previous demonstration or need to start over, perform these two steps
before proceeding to step 2; otherwise go to step 2:

a. Start the 20761A-MIA-DC and 20761A-MIA-SQL virtual machines, log on to 20761A-MIA-SQL as
ADVENTUREWORKS\Student with the password Pa$$w0rd, and run
D:\Demofiles\Mod08\Setup.cmd as an administrator.

b. If SQL Server Management Studio is not already open, start it and connect to the MIA-SQL
database engine instance using Windows authentication, and then open the Demo.ssmssln
solution in the D:\Demofiles\Mod08\Demo folder.

2. In Solution Explorer, open the 21 – Demonstration B.sql script file.

3. Select the code under the comment Step 1, and then click Execute.

4. Select the code under the comment Step 2, and then click Execute.

5. Select the code under the comment Step 3, and then click Execute.

6. Select the code under the comment Step 4, and then click Execute.

7. Select the code under the comment THIS WILL FAIL at converting datetime2 to int, and then click
Execute.

8. Select the code under the comment Step 5,and then click Execute.

9. Select the code under the comment Step 6, and then click Execute.

10. Select the code under the comment Step 7, and then click Execute.

11. Select the code under the comment Step 8, and then click Execute.

12. Select the code under the comment This will succeed, and then click Execute.

13. Keep SQL Server Management Studio open for the next demonstration.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
Querying Data with Transact-SQL 8-13

Question: You are writing a query against a Human Resources database. You want to ensure
that the Employee.StartDate values are displayed in standard British form. What function
should you use?

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
8-14 Using Built-In Functions

Lesson 3
Using Logical Functions

So far in this module, you have learned how to use built-in scalar functions to perform data conversions.
In this lesson, you will learn how to use logical functions that evaluate an expression and return a scalar
result.

Lesson Objectives
After completing this lesson, you will be able to:

 Use T-SQL functions to perform logical functions.

 Perform conditional tests with the IIF function.

 Select items from a list with CHOOSE.

Writing Logical Test with Functions

A useful function for validating the data type of an
expression is ISNUMERIC. This tests an input
expression and returns a 1 if the expression is
convertible to any numeric type, including
integers, decimals, money, floating point, and real.
If the value is not convertible to a numeric type,
ISNUMERIC returns a 0.

In the following example, which uses the TSQL
sample database, any employee with a numeric
postal code is returned:

Writing Logical Tests with Functions

SELECT empid, lastname, postalcode
FROM HR.Employees
WHERE ISNUMERIC(postalcode)=1;

The results:

empid lastname postalcode
----------- -------------------- ----------
1 Davis 10003
2 Funk 10001
3 Lew 10007
4 Peled 10009
5 Buck 10004
6 Suurs 10005
7 King 10002
8 Cameron 10006
9 Dolgopyatova 10008

Question: How might you use ISNUMERIC when testing data quality?

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
Querying Data with Transact-SQL 8-15

Performing Conditional Tests with IIF

IIF is a logical function in SQL Server. If you have
used Visual Basic for Applications in Microsoft
Excel®, used Microsoft Access®, or created
expressions in SQL Server Reporting Services, you
may have used IIF.

As in VBA, Excel and Access, IIF accepts three
parameters—a logical test to perform, a value to
return if the test evaluates to true, and a value to
return if the test evaluates to false or unknown:

IIF Syntax

SELECT IIF(<Boolean
expression>,<value_if_TRUE>,<value_if_FALSE_or_UNKNOWN);

You can think of IIF as a shorthand approach to writing a CASE statement with two possible return values.
As with CASE, you may nest an IIF function within another IIF, down to a maximum level of 10.

The following example uses IIF to return a "high" or "low" label for products based on their unitprice:

IIF Example

SELECT productid, unitprice,
 IIF(unitprice > 50, 'high','low') AS pricepoint
FROM Production.Products;

Returns:

productid unitprice pricepoint
----------- --------------------- ----------
7 30.00 low
8 40.00 low
9 97.00 high
17 39.00 low
18 62.50 high

To learn more about this logical function, see IIF (Transact-SQL) in Books Online at:

IIF (Transact-SQL)

http://go.microsoft.com/fwlink/?LinkID=402748

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
8-16 Using Built-In Functions

Selecting Items from a List with CHOOSE

CHOOSE returns the value of an item at a specific
index in a list.

CHOOSE returns an item from a list, selecting the
item that matches an index value:

CHOOSE Syntax

SELECT CHOOSE(<index_value>,<item1>,
<item2>[,...]);

The following example uses CHOOSE to return a
category name based on an input value:

CHOOSE Example

SELECT CHOOSE (3, 'Beverages', 'Condiments', 'Confections') AS choose_result;

Returns:

choose_result

Confections

 Note: If the index value supplied to CHOOSE does not correspond to a value in the list,
CHOOSE will return a NULL.

CHOOSE (Transact-SQL)

http://aka.ms/kt4v4m

Demonstration: Using Logical Functions

In this demonstration, you will see how to:

 Use logical functions

Demonstration Steps
Using Logical Functions

1. If you have not completed the previous demonstration or need to start over, perform these two steps
before proceeding to step 2; otherwise go to step 2:

a. Start the 20761A-MIA-DC and 20761A-MIA-SQL virtual machines, log on to 20761A-MIA-SQL as
ADVENTUREWORKS\Student with the password Pa$$w0rd, and run
D:\Demofiles\Mod08\Setup.cmd as an administrator.

b. If SQL Server Management Studio is not already open, start it and connect to the MIA-SQL
database engine instance using Windows authentication, and then open the Demo.ssmssln
solution in the D:\Demofiles\Mod08\Demo folder.

2. In Solution Explorer, open the 31 – Demonstration C.sql script file.

3. Select the code under the comment Step 1. and then click Execute.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
Querying Data with Transact-SQL 8-17

4. Select the code under the comment Step 2, and then click Execute.

5. Select the code under the comment Step 3, and then click Execute.

6. Select the code under the comment Step 4, and then click Execute.

7. Select the code under the comment Step 5, and then click Execute.

8. Keep SQL Server Management Studio open for the next demonstration.

Question:

You have the following query:

SELECT e.FirstName, e.LastName, e.FirstAider

FROM Employees AS e

The FirstAider column contains ones and zeros. How can you change the query to make the
results more readable?

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
8-18 Using Built-In Functions

Lesson 4
Using Functions to Work with NULL

You will often need to take special steps to deal with NULL. Earlier in this module, you learned how to test
for NULL with ISNULL. In this module, you will learn additional functions for working with NULL.

Lesson Objectives
After completing this lesson, you will be able to:

 Use ISNULL to replace NULLs.

 Use the COALESCE function to return non-NULL values.

 Use the NULLIF function to return NULL if values match.

Converting NULL with ISNULL

In addition to data type conversions, SQL Server
provides functions for conversion or replacement
of NULL. Both COALESCE and ISNULL can replace
NULL input with another value.

To use ISNULL, supply an expression to check for
NULL and a replacement value, as in the following
example, using the TSQL sample database:

For customers with a region evaluating to NULL,
the literal "N/A" is returned by the ISNULL
function in this example:

Converting NULL with ISNULL

SELECT custid, city, ISNULL(region, 'N/A') AS region, country
FROM Sales.Customers;

The result:

custid city region country
----------- --------------- --------------- ---------------
40 Versailles N/A France
41 Toulouse N/A France
43 Walla Walla WA USA
45 San Francisco CA USA

 Note: ISNULL is not standard; use COALESCE instead. COALESCE will be covered later in
this module.

ISNULL (Transact-SQL)

http://go.microsoft.com/fwlink/?LinkID=402750

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
Querying Data with Transact-SQL 8-19

Using COALESCE to Return Non-NULL Values

Earlier in this module, you learned how to use the
ISNULL function to test for NULL. Since ISNULL is
not ANSI standard, you may wish to use the
COALESCE function instead. COALESCE takes as its
input one or more expressions, and returns the
first non-NULL argument it finds.

With only two arguments, COALESCE behaves like
ISNULL. However, with more than two arguments,
COALESCE can be used as an alternative to a
multi-part CASE expression using ISNULL.

If all arguments are NULL, COALESCE returns
NULL.

The syntax is as follows:

COALESCE Syntax

SELECT COALESCE(<expression_1>[, ...<expression_n>];

The following example returns customers with regions where available, and adds a new column
combining country, region and city, replacing NULL regions with a space:

COALESCE Example

Code Example Content
SELECT custid, country, region, city,
 country + ',' + COALESCE(region, ' ') + ', ' + city as location
FROM Sales.Customers;

Returns:

custid country region city location
------ ------- ------ ----------- ----------------------
17 Germany NULL Aachen Germany, , Aachen
65 USA NM Albuquerque USA,NM, Albuquerque
55 USA AK Anchorage USA,AK, Anchorage
83 Denmark NULL Århus Denmark, , Århus

For more information on COALESCE and comparisons to ISNULL, see Books Online at:

COALESCE (Transact-SQL)

http://go.microsoft.com/fwlink/?LinkID=402751

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
8-20 Using Built-In Functions

Using NULLIF to Return NULL If Values Match

In this module, the NULLIF function is the first you
will learn that is designed to return NULL, if its
condition is met. NULLIF returns NULL when two
arguments match. This has useful applications in
areas such as data cleansing, when you wish to
replace blank or placeholder characters with NULL.

NULLIF takes two arguments and returns NULL if
they both match. If they are not equal, NULLIF
returns the first argument.

In this example, NULLIF replaces an empty string
(if present) with a NULL, but returns the
employee’s middle initial if it is present:

NULLIF Example

SELECT empid, lastname, firstname, NULLIF(middleinitial,' ') AS middle_initial
FROM HR.Employees;

Returns:

empid lastname firstname middle_initial
----------- -------------------- ---------- --------------
1 Davis Sara NULL
2 Funk Don D
3 Lew Judy NULL
4 Peled Yael Y

 Note: This example is provided for illustration only and will not run against the sample
database supplied with this course.

For more information, see NULLIF (Transact-SQL) in Books Online at:

NULLIF (Transact-SQL)

http://go.microsoft.com/fwlink/?LinkID=402752

Demonstration: Using Functions to Work with NULL

In this demonstration, you will see how to:

 Use functions to work with NULL

Demonstration Steps
Use Functions to Work with NULL

1. If you have not completed the previous demonstration or need to start over, perform these two steps
before proceeding to step 2; otherwise go to step 2:

a. Start the 20761A-MIA-DC and 20761A-MIA-SQL virtual machines, log on to 20761A-MIA-SQL as
ADVENTUREWORKS\Student with the password Pa$$w0rd, and run
D:\Demofiles\Mod08\Setup.cmd as an administrator.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
Querying Data with Transact-SQL 8-21

b. If SQL Server Management Studio is not already open, start it and connect to the MIA-SQL
database engine instance using Windows authentication, and then open the Demo.ssmssln
solution in the D:\Demofiles\Mod08\Demo folder.

2. In Solution Explorer, open the 41 – Demonstration D.sql script file.

3. Select the code under the comment Step 1, and then click Execute.

4. Select the code under the comment Step 2, and then click Execute.

5. Select the code under the comment Step 3, and then click Execute.

6. Select the code under the comment First, set up sample data, and then click Execute.

7. Select the code under the comment Populate the sample data, and then click Execute.

8. Select the code under the comment Show the sample data, and then click Execute.

9. Select the code under the comment Use NULLIF to show which employees have actual values
different from their goals, and then click Execute.

10. Select the code under the comment Step 5, and then click Execute.

Close SQL Server Management Studio without saving any files.

Check Your Knowledge

Question

You are writing a query against the Employees table in the Human Resources
database. The CurrentStatus column can contain the string values “New”, “Retired”,
and “Under Caution”. Many employees have this column set to NULL when those
statuses do not apply to them. For confidentiality, you want to ensure that the
employees currently under caution are displayed like those employees with no
applicable status. What function should you use?

Select the correct answer.

 ISNULL()

 COALESCE()

 NULLIF()

 TRY_PARSE()

 PARSE()

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
8-22 Using Built-In Functions

Lab: Using Built-in Functions
Scenario

You are an Adventure Works business analyst, who will be writing reports using corporate databases
stored in SQL Server. You have been provided with a set of business requirements for data and you will
write T-SQL queries to retrieve the specified data from the databases. You will need to retrieve the data,
convert it, and then check for missing values.

Objectives
After completing this lab, you will be able to:

 Write queries that include conversion functions.

 Write queries that use logical functions.

 Write queries that test for nullability.

Estimated Time: 40 minutes

Virtual machine: 20761A-MIA-SQL

User name: ADVENTUREWORKS\Student

Password: Pa$$w0rd

Exercise 1: Writing Queries That Use Conversion Functions

Scenario
You have been asked to write the following reports for these departments:

1. Sales. The product name and unit price for each product within an easy to read string.

2. Marketing. The order id, order date, shipping date, and shipping region for each order after
4/1/2007.

3. IT. Convert all Sales phone number information into integers.

The main tasks for this exercise are as follows:

1. Prepare the Lab Environment

2. Write a SELECT Statement that Uses the CAST or CONVERT Function

3. Write a SELECT Statement to Filter Rows Based on Specific Date Information

4. Write a SELECT Statement to Convert the Phone Number Information to an Integer Value

 Task 1: Prepare the Lab Environment
1. Ensure that the 20761A-MIA-DC and 20761A-MIA-SQL virtual machines are both running, and then

log on to 20761A-MIA-SQL as ADVENTUREWORKS\Student with the password Pa$$w0rd.

2. Run Setup.cmd in the D:\Labfiles\Lab08\Starter folder as Administrator.

 Task 2: Write a SELECT Statement that Uses the CAST or CONVERT Function
1. Open the project file D:\Labfiles\Lab08\Starter\Project\Project.ssmssln and the T-SQL script 51 - Lab

Exercise 1.sql. Ensure that you are connected to the TSQL database.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
Querying Data with Transact-SQL 8-23

2. Write a SELECT statement against the Production.Products table to retrieve a calculated column
named productdesc. The calculated column should be based on the productname and unitprice
columns and look like this:

Results: The unit price for the Product HHYDP is 18.00 $.

3. Execute the written statement and compare the results that you achieved with the desired results
shown in the file D:\Labfiles\Lab08\Solution\52 - Lab Exercise 1 - Task 1 Result.txt.

4. Did you use the CAST or the CONVERT function? Which one do you think is more appropriate to use?

 Task 3: Write a SELECT Statement to Filter Rows Based on Specific Date Information
1. The US marketing department has supplied you with a start date of “4/1/2007” (using US English

form, read as “April 1, 2007”) and an end date of “11/30/2007” (using US English form, read as
“November 30, 2007”).

2. Write a SELECT statement against the Sales.Orders table to retrieve the orderid, orderdate,
shippeddate, and shipregion columns. Filter the result to include only rows with the order date
between the specified start date and end date, and have more than 30 days between the shipped
date and order date. Also check the shipregion column for missing values. If there is a missing value,
then return the value “No region”.

3. In this SELECT statement, you can use the CONVERT function with a style parameter or the PARSE
function.

4. Execute the written statement and compare the results that you achieved with the desired results
shown in the file D:\Labfiles\Lab08\Solution\53 - Lab Exercise 1 - Task 2 Result.txt.

 Task 4: Write a SELECT Statement to Convert the Phone Number Information to an
Integer Value
1. The IT department would like to convert all the information about phone numbers in the

Sales.Customers table to integer values. The IT staff indicated that all hyphens, parentheses, and
spaces have to be removed before the conversion to an integer data type.

2. Write a SELECT statement to implement the requirement of the IT department. Replace all the
specified characters in the phone column of the Sales.Customers table, and then convert the column
from the nvarchar datatype to the int datatype. The T-SQL statement must not fail if there is a
conversion error—it should return a NULL. (Hint: First try writing a T-SQL statement using the
CONVERT function, and then compare it with the TRY_CONVERT function.) Use the alias phoneasint
for this calculated column.

3. Execute the written statement and compare the results that you achieved with the desired results
shown in the file D:\Labfiles\Lab08\Solution\54 - Lab Exercise 3 - Task 3 Result.txt.

Results: After this exercise, you should be able to use conversion functions.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
8-24 Using Built-In Functions

Exercise 2: Writing Queries That Use Logical Functions

Scenario
The sales department would like to have different reports regarding the segmentation of customers and
specific order lines. You will add a new calculated column to show the target group for the segmentation.

The main tasks for this exercise are as follows:

1. Write a SELECT Statement to Mark Specific Customers Based on Their Country and Contact Title

2. Modify the T-SQL Statement to Mark Different Customers

3. Create Four Groups of Customers

 Task 1: Write a SELECT Statement to Mark Specific Customers Based on Their
Country and Contact Title
1. Open the T-SQL script 61 - Lab Exercise 2.sql. Ensure that you are connected to the TSQL database.

2. Write a SELECT statement against the Sales.Customers table and retrieve the custid and
contactname columns. Add a calculated column named segmentgroup, using a logical function IIF
with the value “Target group” for customers that are from Mexico and have the value “Owner” in
the contact title. Use the value “Other” for the rest of the customers.

3. Execute the written statement and compare the results that you achieved with the desired results
shown in the file D:\Labfiles\Lab08\Solution\62 - Lab Exercise 2 - Task 1 Result.txt.

 Task 2: Modify the T-SQL Statement to Mark Different Customers
1. Modify the T-SQL statement from task 1 to change the calculated column to show the value “Target

group” for all customers without a missing value in the region attribute or with the value “Owner” in
the contact title attribute.

2. Execute the written statement and compare the results that you achieved with the recommended
result shown in the file D:\Labfiles\Lab08\Solution\63 - Lab Exercise 2 - Task 2 Result.txt.

 Task 3: Create Four Groups of Customers
1. Write a SELECT statement against the Sales.Customers table and retrieve the custid and

contactname columns. Add a calculated column named segmentgroup using the logical function
CHOOSE with four possible descriptions (“Group One”, “Group Two”, “Group Three”, “Group
Four”). Use the modulo operator on the column custid. (Use the expression custid % 4 + 1 to
determine the target group.)

2. Execute the written statement and compare the results that you achieved with the recommended
results shown in the file D:\Labfiles\Lab08\Solution\64 - Lab Exercise 2 - Task 3 Result.txt.

Results: After this exercise, you should know how to use the logical functions.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
Querying Data with Transact-SQL 8-25

Exercise 3: Writing Queries That Test for Nullability

Scenario
The sales department would like to have additional segmentation of customers. Some columns that you
should retrieve contain missing values, and you will have to change the NULL to some more meaningful
information for the business users.

The main tasks for this exercise are as follows:

1. Write a SELECT Statement to Retrieve the Customer Fax Information

2. Write a Filter for a Variable That Could Be a Null

3. Write a SELECT Statement to Return All the Customers That Do Not Have a Two-Character Abbreviation
for the Region

 Task 1: Write a SELECT Statement to Retrieve the Customer Fax Information
1. Open the T-SQL script 71 - Lab Exercise 3.sql. Ensure that you are connected to the TSQL database.

2. Write a SELECT statement to retrieve the contactname and fax columns from the Sales.Customers
table. If there is a missing value in the fax column, return the value “No information”.

3. Write two solutions, one using the COALESCE function and the other using the ISNULL function.

4. Execute the written statement and compare the results that you achieved with the recommended
results shown in the file D:\Labfiles\Lab08\Solution\72 - Lab Exercise 3 - Task 1 Result.txt.

5. What is the difference between the ISNULL and COALESCE functions?

 Task 2: Write a Filter for a Variable That Could Be a Null
 Update the provided T-SQL statement with a WHERE clause to filter the region column using the

provided variable @region, which can have a value or a NULL. Test the solution using both provided
variable declaration cases:

DECLARE @region AS NVARCHAR(30) = NULL;
SELECT
custid, region
FROM Sales.Customers;
GO
DECLARE @region AS NVARCHAR(30) = N'WA';
SELECT
custid, region
FROM Sales.Customers;

 Task 3: Write a SELECT Statement to Return All the Customers That Do Not Have a
Two-Character Abbreviation for the Region
1. Write a SELECT statement to retrieve the contactname, city, and region columns from the

Sales.Customers table. Return only rows that do not have two characters in the region column,
including those with an inapplicable region (where the region is NULL).

2. Execute the written statement and compare the results that you achieved with the recommended
results shown in the file D:\Labfiles\Lab08\Solution\73 - Lab Exercise 3 - Task 3 Result.txt. Notice the
number of rows returned.

Results: After this exercise, you should have an understanding of how to test for nullability.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
8-26 Using Built-In Functions

Module Review and Takeaways
 Best Practice:

 When possible, use standards-based functions, such as CAST or COALESCE, rather than SQL
Server-specific functions like NULLIF or CONVERT.

 Consider the impact of functions in a WHERE clause on query performance.

Review Question(s)
Question: Which function should you use to convert from an int to a nchar(8)?

Question: Which function will return a NULL, rather than an error message, if it cannot
convert a string to a date?

Question: What is the name for a function that returns a single value?

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
9-1

Module 9
Grouping and Aggregating Data

Contents:
Module Overview 9-1

Lesson 1: Using Aggregate Functions 9-2

Lesson 2: Using the GROUP BY Clause 9-10

Lesson 3: Filtering Groups with HAVING 9-16

Lab: Grouping and Aggregating Data 9-20

Module Review and Takeaways 9-26

Module Overview
In addition to row-at-a-time queries, you may need to summarize data to analyze it. Microsoft® SQL
Server® provides built-in functions that can aggregate, or summarize, information across multiple rows.
In this module, you will learn how to use aggregate functions. You will also learn how to use the GROUP
BY and HAVING clauses to break up the data into groups for summarizing, and to filter the resulting
groups.

Objectives
After completing this lesson, you will be able to:

 List the built-in aggregate functions provided by SQL Server.

 Write queries that use aggregate functions in a SELECT list to summarize all the rows in an input set.

 Describe the use of the DISTINCT option in aggregate functions.

 Write queries using aggregate functions that handle the presence of NULLs in source data.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
9-2 Grouping and Aggregating Data

Lesson 1
Using Aggregate Functions

In this lesson, you will learn how to use built-in functions to aggregate, or summarize, data in multiple
rows. SQL Server provides functions such as SUM, MAX, and AVG to perform calculations that take
multiple values and return a single result.

Lesson Objectives
After completing this lesson, you will be able to:

 List the built-in aggregate functions provided by SQL Server.

 Write queries that use aggregate functions in a SELECT list to summarize all the rows in an input set.

 Describe the use of the DISTINCT option in aggregate functions.

 Write queries using aggregate functions that handle the presence of NULLs in source data.

Working with Aggregate Functions

So far in this course, you have learned how to
operate on a row at a time, using a WHERE clause
to filter rows, adding computed columns to a
SELECT list, and processing across columns, but
within each row.

You may also need to perform analysis across
rows, such as counting rows that meet your
criteria, or summarizing total sales for all orders.
To accomplish this, you will use aggregate
functions capable of operating on multiple rows
simultaneously.

Many aggregate functions are provided in SQL
Server. In this course, you will learn about common functions such as SUM, MIN, MAX, AVG, and COUNT.

When working with aggregate functions, you need to consider the following:

 Aggregate functions return a single (scalar) value and can be used in SELECT statements where a
single expression is used, such as SELECT, HAVING, and ORDER BY clauses.

 Aggregate functions ignore NULLs, except when using COUNT(*). You will learn more about this later
in the lesson.

 Aggregate functions in a SELECT list do not generate a column alias. You may wish to use the AS
clause to provide one.

 Aggregate functions in a SELECT clause operate on all rows passed to the SELECT phase. If there is no
GROUP BY clause, all rows will be summarized, as in the slide above. You will learn more about
GROUP BY in the next lesson.

To extend beyond the built-in functions, SQL Server provides a mechanism for user-defined aggregate
functions via the .NET Common Language Runtime (CLR).

For more information on other built-in aggregate functions, see Books Online at:

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
Querying Data with Transact-SQL 9-3

Aggregate Functions (Transact-SQL)

http://aka.ms/wq6lku

Built-in Aggregate Functions

SQL Server provides many built-in aggregate
functions. Commonly used functions include:

Function Name Syntax Description

SUM SUM(<expression>) Totals all the non-NULL numeric values in a
column.

AVG AVG(<expression>) Averages all the non-NULL numeric values
in a column (sum/count).

MIN MIN(<expression>) Returns the largest number, earliest
date/time, or first-occurring string
(according to collation sort rules).

MAX MAX(<expression>) Returns the largest number, latest
date/time, or last-occurring string
(according to collation sort rules).

COUNT or
COUNT_BIG

COUNT(*) or
COUNT(<expression>)

With (*), counts all rows, including those
with NULL values. When a column is
specified as <expression>, returns count of
non-NULL rows for that column. COUNT
returns an int; COUNT_BIG returns a big_int.

This lesson only covers common aggregate functions. For information on other built-in aggregate
functions, see Books Online at:

Aggregate Functions (Transact-SQL)

http://aka.ms/wq6lku

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
9-4 Grouping and Aggregating Data

To use a built-in aggregate in a SELECT clause, consider the following example in the TSQL sample
database:

Aggregate Example.

SELECT AVG(unitprice) AS avg_price,
 MIN(qty)AS min_qty,
 MAX(discount) AS max_discount
FROM Sales.OrderDetails;

Note that the above example does not use a GROUP BY clause. Therefore, all rows from the
Sales.OrderDetails table will be summarized by the aggregate formulas in the SELECT clause.

The results:

avg_price min_qty max_discount

--------- ------- ------------

26.2185 1 0.250

When using aggregates in a SELECT clause, all columns referenced in the SELECT list must be used as
inputs for an aggregate function, or be referenced in a GROUP BY clause.

The following example query will return an error:

Partial Aggregate Error.

SELECT orderid, AVG(unitprice) AS avg_price, MIN(qty)AS min_qty, MAX(discount) AS
max_discount
FROM Sales.OrderDetails;

This returns:

Msg 8120, Level 16, State 1, Line 1

Column 'Sales.OrderDetails.orderid' is invalid in the select list because it is not contained in either an
aggregate function or the GROUP BY clause.

Since our example is not using a GROUP BY clause, the query treats all rows as a single group. All
columns, therefore, must be used as inputs to aggregate functions. Removing orderid from the previous
example will prevent the error.

In addition to numeric data, such as the price and quantities in the previous example, aggregate
expressions can also summarize date, time, and character data. The following examples show the use of
aggregates with dates and characters:

This query returns first and last company by name, using MIN and MAX:

Aggregating Character Data

SELECT MIN(companyname) AS first_customer, MAX(companyname) AS last_customer
FROM Sales.Customers;

Returns:

first_customer last_customer

-------------- --------------

Customer AHPOP Customer ZRNDE

Other functions may coexist with aggregate functions.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
Querying Data with Transact-SQL 9-5

For example, the YEAR scalar function is used in the following illustration to return only the year portion
of the order date, before MIN and MAX are evaluated:

Aggregating with Functions

SELECT MIN(YEAR(orderdate))AS earliest, MAX(YEAR(orderdate)) AS latest
FROM Sales.Orders;

Returns:

earliest latest

-------- -------

2006 2008

Using DISTINCT with Aggregate Functions

Earlier in this course, you learned about the use of
DISTINCT in a SELECT clause to remove duplicate
rows. When used with an aggregate function,
DISTINCT removes duplicate values from the input
column before computing the summary value.
This is useful when summarizing unique
occurrences of values, such as customers in the
TSQL orders table.

The following example returns customers who
have placed orders, grouped by employee id and
year:

Summarizing Distinct Values

SELECT empid, YEAR(orderdate) AS orderyear,
 COUNT(custid) AS all_custs,
 COUNT(DISTINCT custid) AS unique_custs
FROM Sales.Orders
GROUP BY empid, YEAR(orderdate);

Note that the above example uses a GROUP BY clause. GROUP BY will be covered in the next lesson. It is
used here as a useful example for comparing DISTINCT and non-DISTINCT aggregate functions.

This returns, in part:

empid orderyear all_custs unique_custs

--------------- --------- ------------

1 2006 26 22

1 2007 55 40

1 2008 42 32

2 2006 16 15

2 2007 41 35

2 2008 39 34

3 2006 18 16

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
9-6 Grouping and Aggregating Data

3 2007 71 46

3 2008 38 30

Note the difference in each row between the COUNT of custid (in column 3) and the DISTINCT COUNT in
column 4. Column 3 simply returns all rows except those containing NULL. Column 4 excludes duplicate
custids (repeat customers) and returns a count of unique customers, answering the question: “How many
customers per employee?”

Question: Could you accomplish the same output with the use of SELECT DISTINCT?

Using Aggregate Functions with NULL

As you have learned in this course, it is important
to be aware of the possible presence of NULLs in
your data, and of how NULL interacts with T-SQL
query components. This is also true with
aggregate expressions. There are a few
considerations to be aware of:

 With the exception of COUNT used with the
(*) option, T-SQL aggregate functions ignore
NULLs. This means, for example, that a SUM
function will add only non-NULL values.
NULLs do not evaluate to zero.

 The presence of NULLs in a column may lead
to inaccurate computations for AVG, which will sum only populated rows and divide that sum by the
number of non-NULL rows. There may be a difference in results between AVG(<column>) and
(SUM(<column>)/COUNT(*)).

For example, given the following table named t1:

C1 C2

1 NULL

2 10

3 20

4 30

5 40

6 50

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
Querying Data with Transact-SQL 9-7

The following query illustrates the difference between how AVG handles NULL and how you might
calculate an average with a SUM/COUNT(*) computed column:

Aggregating NULL Example

SELECT SUM(c2) AS sum_nonnulls,
 COUNT(*)AS count_all_rows,
 COUNT(c2)AS count_nonnulls,
 AVG(c2) AS [avg],
 (SUM(c2)/COUNT(*))AS arith_avg
FROM t1;

The result:

sum_nonnulls count_all_rows count_nonnulls avg arith_avg

------------ -------------- -------------- --- ---------

150 6 5 30 25

If you need to summarize all rows, whether NULL or not, consider replacing the NULLs with another value
that can be used by your aggregate function.

The following example replaces NULLs with 0 before calculating an average. The table named t2 contains
the following rows:

c1 c2

----------- -----------

1 1

2 10

3 1

4 NULL

5 1

6 10

7 1

8 NULL

9 1

10 10

11 1

12 10

Compare the effect on the arithmetic mean with NULLs-ignored verses replaced with 0.

Replace NULLs with Zeros Example.

SELECT AVG(c2) AS AvgWithNULLs, AVG(COALESCE(c2,0)) AS AvgWithNULLReplace
FROM dbo.t2;

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
9-8 Grouping and Aggregating Data

This returns the following results, with a warning message:

AvgWithNULLs AvgWithNULLReplace

------------ ------------------

4 3

Warning: Null value is eliminated by an aggregate or other SET operation.

 Note: This example cannot be executed against the sample database used in this course.
You will find a script to create the table in the upcoming demonstration.

Demonstration: Using Aggregate Functions

In this demonstration, you will see how to:

 Use built-in aggregate functions

Demonstration Steps
Use Built-in Aggregate Functions

1. Ensure that the 20761A-MIA-DC and 20761A-MIA-SQL virtual machines are both running, and then
log on to 20761A-MIA-SQL as ADVENTUREWORKS\Student with the password Pa$$w0rd.

2. Run D:\Demofiles\Mod09\Setup.cmd as an administrator. Click Yes when prompted.

3. Start SQL Server Management Studio and connect to the MIA-SQL database instance using windows
authentication.

4. On the File menu, point to Open, and then click File.

5. Browse to D:\Demofiles\Mod09\Demo folder, click Demo.ssmssln, and then click Open.

6. If the Solution Explorer pane is not visible, on the View menu, click Solution Explorer.

7. Expand the Queries folder, double-click the 11 – Demonstration A.sql script file.

8. Select the code under the comment Step 1: Using built-in Aggregate functions, and then click
Execute.

9. Select the code under the comment Step 2: Using built-in Aggregate functions, and then click
Execute.

10. Select the code under the comment Select and execute the following query to show This will
succeed and return the AVG/MIN/MAX of all rows, and then click Execute.

11. Select the first instance, under the comment Select and execute the following query to show the
use of aggregates with non-numeric data types, and then click Execute.

12. Select the second instance, under the comment Select and execute the following query to show
the use of aggregates with non-numeric data types, and then click Execute.

13. Select the code under the comment Select and execute the following query to show the use of
DISTINCT with aggregate functions, and then click Execute.

14. Select the code under the comment Select and execute the following query to show the impact
of NULL on aggregate functions First, show the existence of NULLs in Sales.Orders, and then
click Execute.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
Querying Data with Transact-SQL 9-9

15. Select the code under the comment Then show that MIN, MAX and COUNT ignore NULL,
COUNT(*) doesn't. Show the messages tab in the SSMS results pane for Warning: Null value is
eliminated by an aggregate or other SET operation, and then click Execute.

16. Select the code under the comment Create an example table, and then click Execute.

17. Select the code under the comment Populate it, and then click Execute.

18. Select the code under the comment View the contents. Note the NULL, and then click Execute.

19. Select the code under the comment Execute this query to compare the behavior of AVG to an
arithmetic average (SUM/COUNT), and then click Execute.

20. Select the code under the comment Clean up the created table, and then click Execute.

21. Select the code under the comment Execute this query to demonstrate replacement of NULL
before aggregating, and then click Execute.

22. Select the code under the comment Populate test table, and then click Execute.

23. Select the code under the comment Show table contents, and then click Execute.

24. Select the code under the comment Show standard AVG versus replacement of NULL with zero,
and then click Execute.

25. Select the code under the comment clean up and then click Execute.

26. Keep SQL Server Management Studio open for the next demonstration

Question: You have the following query:

SELECT COUNT(*) AS RecordCount

FROM Sales.Products;

There are 250 records in the Products table. How many rows will be returned by this query?

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
9-10 Grouping and Aggregating Data

Lesson 2
Using the GROUP BY Clause

While aggregate functions are useful for analysis, you may wish to arrange your data into subsets before
summarizing it. In this lesson, you will learn how to accomplish this using the GROUP BY clause.

Lesson Objectives
After completing this lesson, you will be able to:

 Write queries that separate rows into groups using the GROUP BY clause.

 Describe the role of the GROUP BY clause in the logical order of operations for processing a SELECT
statement.

 Write SELECT clauses that reflect the output of a GROUP BY clause.

 Use GROUP BY with aggregate functions.

Using the GROUP BY Clause

As you have learned, when your SELECT statement
is processed, after the FROM clause and WHERE
clause (if present) have been evaluated, a virtual
table is created. The contents of the virtual table
are now available for further processing. You can
use the GROUP BY clause to subdivide the results
of the preceding query phases into groups of
rows.

To group rows, specify one or more elements in
the GROUP BY clause:

GROUP BY Syntax.

GROUP BY <value1> [, <value2>, …]

GROUP BY creates groups and places rows into each group as determined by unique combinations of the
elements specified in the clause.

For example, the following snippet of a query will result in a set of grouped rows, one per empid, in the
Sales.Orders table:

GROUP BY Snippet

FROM SalesOrders
GROUP BY empid;

Once the GROUP BY clause has been processed and rows have been associated with a group, subsequent
phases of the query must aggregate any elements of the source rows that do not appear in the GROUP BY
list. This will have an impact on how you write your SELECT and HAVING clauses.

To see the results of the GROUP BY clause, you will need to add a SELECT clause.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
Querying Data with Transact-SQL 9-11

This shows the original 830 source rows being grouped into nine groups, based on the unique employee
ID:

GROUP BY Example.

SELECT empid, COUNT(*) AS cnt
FROM Sales.Orders
GROUP BY empid;

The result:

empid cnt

----- -----

1 123

2 96

3 127

4 156

5 42

6 67

7 72

8 104

9 43

(9 row(s) affected)

To learn more about GROUP BY, see GROUP BY (Transact SQL) in Books Online at:

GROUP BY (Transact-SQL)

http://aka.ms/ro266s

GROUP BY and the Logical Order of Operations

A common obstacle to becoming comfortable
with using GROUP BY in SELECT statements is
understanding why the following type of error
message occurs:

Msg 8120, Level 16, State 1, Line 2

Column <column_name> is invalid in the select
list because it is not contained in either an
aggregate function or the GROUP BY clause.

A review of the logical order of operations during
query processing will help clarify this issue.

As mentioned earlier in the course, the SELECT
clause is not processed until after the FROM, WHERE, GROUP BY, and HAVING clauses (if present) are
processed. When discussing the use of GROUP BY, it is important to remember that not only does GROUP
BY precede SELECT, but it also replaces the results of the FROM and WHERE clauses with its own results.
The final outcome of the query will only return one row per qualifying group (if a HAVING clause is

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
9-12 Grouping and Aggregating Data

present). Therefore, any operations performed after GROUP BY, including SELECT, HAVING, and ORDER
BY, are performed on the groups, not the original detail rows. Columns in the SELECT list, for example,
must return a scalar value per group. This may include the column(s) being grouped on, or aggregate
functions being performed on, each group.

The following query is permitted because each column in the SELECT list is either a column in the GROUP
BY clause or an aggregate function operating on each group:

GROUP BY Example.

SELECT empid, COUNT(*) AS cnt
FROM Sales.Orders
GROUP BY empid;

This returns:

empid count

----- -----

1 123

2 96

3 127

4 156

5 42

6 67

7 72

8 104

9 43

The following query will return an error since orderdate is not an input to GROUP BY, and its data has
been "lost" following the FROM clause:

Missing GROUP BY Value.

SELECT empid, orderdate, COUNT(*) AS cnt
FROM Sales.Orders
GROUP BY empid;

This returns:

Msg 8120, Level 16, State 1, Line 1

Column 'Sales.Orders.orderdate' is invalid in the select list because it is not contained in either an
aggregate function or the GROUP BY clause.

If you want to see orders per employee ID and per order date, add it to the GROUP BY clause, as follows:

Correct GROUP BY Example.

SELECT empid, YEAR(orderdate) AS orderyear, COUNT(*) AS cnt
FROM Sales.Orders
GROUP BY empid, YEAR(orderdate)
ORDER BY empid, YEAR(orderdate);

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
Querying Data with Transact-SQL 9-13

This returns (in part):

empid orderyear count

----- --------- -----

1 2006 26

1 2007 55

1 2008 42

2 2006 16

2 2007 41

The net effect of this behavior is that you cannot combine a view of summary data with the detailed
source date, using the T-SQL tools you have learned about so far. You will learn some approaches to
solving the problem later in this course.

For more information about troubleshooting GROUP BY errors, see:

Troubleshooting GROUP BY Errors

http://aka.ms/yi931j

GROUP BY Workflow

Initially, the WHERE clause is processed followed
by the GROUP BY. The slide shows the results of
the WHERE clause, followed by the GROUP BY
being performed on these results.

The source queries required to build the
demonstration on the slide follow and are
included with the demonstration file for this
lesson:

Source Queries

SELECT SalesOrderID, SalesPersonID,
CustomerID
FROM Sales.SalesOrderHeader;

SELECT SalesOrderID, SalesPersonID, CustomerID
FROM Sales.SalesOrderHeader
WHERE CustomerID IN (29777, 30010);

SELECT SalesPersonID, COUNT(*)
FROM Sales.SalesOrderHeader
WHERE CustomerID IN (29777, 30010)
GROUP BY SalesPersonID;

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
9-14 Grouping and Aggregating Data

Using GROUP BY with Aggregate Functions

As you have seen, if you use a GROUP BY clause in
a T-SQL query, all columns listed in the SELECT
clause must either be used in the GROUP BY
clause itself, or be inputs to aggregate functions
operating on each group.

You have seen the use of the COUNT function in
conjunction with GROUP BY queries.

Other aggregate functions may also be used, as in
the following example, which uses MAX to return
the largest quantity ordered per product:

GROUP BY with Aggregate Example

SELECT productid, MAX(qty) AS largest_order
FROM Sales.OrderDetails
GROUP BY productid;

This returns (in part):

productid largest_order

----------- -------------

23 70

46 60

69 65

29 80

75 120

 Note: The qty column, used as an input to the MAX function, is not used in the GROUP BY
clause. This illustrates that, even though the detail rows returned by the FROM ... WHERE phase
are lost to the GROUP BY phase, the source columns are still available for aggregation.

Demonstration: Using GROUP BY

In this demonstration, you will see how to:

 Use the GROUP BY clause

Demonstration Steps
Use the GROUP BY Clause

1. Ensure that you have completed the previous demonstration in this module. Alternatively, start the
20761A-MIA-DC and 20761A-MIA-SQL virtual machines, log on to 20761A-MIA-SQL as
ADVENTUREWORKS\Student with the password Pa$$w0rd, and run
D:\Demofiles\Mod09\Setup.cmd as an administrator.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
Querying Data with Transact-SQL 9-15

2. If SQL Server Management Studio is not already open, start it and connect to the MIA-SQL database
engine instance using Windows authentication, and then open the Demo.ssmssln solution in the
D:\Demofiles\Mod09\Demo folder.

3. In Solution Explorer, open the 21 – Demonstration B.sql script file.

4. Select the code under the comment Step 1: Using GROUP BY, and then click Execute.

5. Select the code under the comment Step 2: Using GROUP BY, and then click Execute.

6. Select the code under the comment Select this query and execute it to show customer orders per
customer and per year, and then click Execute.

7. Select the code under the comment Step 3: Workflow of grouping, and then click Execute.

8. Select the code under the comment Step 4: Using Aggregates with GROUP BY, and then click
Execute.

9. Select the code under the comment Show an aggregate on a column not in GROUP BY list, and
then click Execute.

10. Keep SQL Server Management Studio open for the next demonstration.

Check Your Knowledge

Question

You are writing the following T-SQL query to find out how many employees work
in each department in your organization:

SELECT d.DepartmentID, d.DepartmentName, COUNT(e.EmployeeID) AS
EmployeeCount
FROM HumanResources.Departments AS d
INNER JOIN HumanResources.Employees AS e
ON d.DepartmentID = e.DepartmentID
GROUP BY

Which columns should be included in the GROUP BY clause?

Select the correct answer.

 All Columns

 EmployeeCount

 DepartmentID, DepartmentName

 DepartmentID

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
9-16 Grouping and Aggregating Data

Lesson 3
Filtering Groups with HAVING

When you have created groups with a GROUP BY clause, you can further filter the results. The HAVING
clause acts as a filter on groups, much like the WHERE clause acts as a filter on rows returned by the
FROM clause. In this lesson, you will learn how to write a HAVING clause and understand the differences
between HAVING and WHERE.

Lesson Objectives
After completing this lesson, you will be able to:

 Write queries that use the HAVING clause to filter groups.

 Compare HAVING to WHERE.

 Choose the appropriate filter for a scenario: WHERE or HAVING.

Filtering Grouped Data Using the HAVING Clause

If a WHERE clause and a GROUP BY clause are
present in a T-SQL SELECT statement, the HAVING
clause is the fourth phase of logical query
processing:

Logical Order Phase Comments

5 SELECT

1 FROM

2 WHERE Operates on rows

3 GROUP BY Creates groups

4 HAVING Operates on groups

6 ORDER BY

A HAVING clause enables you to create a search condition, conceptually similar to the predicate of a
WHERE clause, which then tests each group returned by the GROUP BY clause.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
Querying Data with Transact-SQL 9-17

The following example from the TSQL database groups all orders by customer, then returns only those
who have placed orders. No HAVING clause has been added, so no filter is applied to the groups:

GROUP BY without HAVING clause

SELECT custid, COUNT(*) AS count_orders
FROM Sales.Orders
GROUP BY custid;

Returns the groups, with the following message:

 (89 row(s) affected)

The following example adds a HAVING clause to the previous query. It groups all orders by customer,
then returns only those who have placed 10 or more orders. Groups containing customers who placed
fewer than 10 rows are discarded:

GROUP BY with HAVING clause

SELECT custid, COUNT(*) AS count_orders
FROM Sales.Orders
GROUP BY custid
HAVING COUNT(*) >= 10;

Returns the groups with the following message:

 (28 row(s) affected)

 Note: Remember that HAVING is processed before the SELECT clause, so any column
aliases created in a SELECT clause are not available to the HAVING clause.

HAVING (Transact-SQL)

http://aka.ms/wsrrp0

Compare HAVING to WHERE

While both HAVING and WHERE clauses filter
data, it is important to remember that WHERE
operates on rows returned by the FROM clause. If
a GROUP BY ... HAVING section exists in your
query following a WHERE clause, the WHERE
clause will filter rows before GROUP BY is
processed—potentially limiting the groups that
can be created.

A HAVING clause is processed after GROUP BY
and only operates on groups, not detail rows. To
summarize:

 A WHERE clause controls which rows are
available to the next phase of the query.

 A HAVING clause controls which groups are available to the next phase of the query.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
9-18 Grouping and Aggregating Data

 Note: WHERE and HAVING clauses are not mutually exclusive.

You will see a comparison between WHERE and HAVING in the next demonstration.

Demonstration: Filtering Groups with HAVING

In this demonstration, you will see how to:

 Filter grouped data using the HAVING clause

Demonstration Steps
Filter Grouped Data Using the HAVING Clause

1. Ensure that you have completed the previous demonstration in this module. Alternatively, start the
20761A-MIA-DC and 20761A-MIA-SQL virtual machines, log on to 20761A-MIA-SQL as
ADVENTUREWORKS\Student with the password Pa$$w0rd, and run
D:\Demofiles\Mod09\Setup.cmd as an administrator.

2. If SQL Server Management Studio is not already open, start it and connect to the MIA-SQL database
engine instance using Windows authentication, and then open the Demo.ssmssln solution in the
D:\Demofiles\Mod09\Demo folder.

3. In Solution Explorer, open the 31 – Demonstration C.sql script file.

4. Select the code under the comment Step 1: Filtering Groups with HAVING Change to
Adventureworks database, and then click Execute.

5. Select the code under the comment Step 2: Using the HAVING clause, and then click Execute.

6. Select the code under the comment This query uses a HAVING clause to filter out customers
with fewer than 10 orders, and then click Execute.

7. Select the code under the comment Review the logical order of operations, and then click
Execute.

8. Select the code under the comment Select and execute the following queries to show difference
between WHERE filter and HAVING filter, and then click Execute.

9. Select the code under the comment This query uses a HAVING clause to filter groups with an
average quantity > 20, and then click Execute.

10. Select the code under the comment Select and execute the following query to show All
customers and how many orders they have placed 89 rows, and then click Execute.

11. Select the code under the comment Use HAVING to filter only customers who have placed more
than 20 orders, and then click Execute.

12. Select the code under the comment Select and execute the following query to show All products
and in how many orders they appear, and then click Execute.

13. Select the code under the comment Use HAVING to filter only products which have been
ordered less than 20 times, and then click Execute.

14. Close SQL Server Management Studio without saving any files.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
Querying Data with Transact-SQL 9-19

Question: You are writing a query to count the number of orders placed for each product.
You have the following query:

SELECT p.ProductName, COUNT(*) AS OrderCount

FROM Sales.Products AS p

JOIN Sales.OrderItems AS o

ON p.ProductID = o.ProductID

GROUP BY p.ProductName;

You want to change the query to return only products that cost more than $10. Should you
add a HAVING clause or a WHERE clause?

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
9-20 Grouping and Aggregating Data

Lab: Grouping and Aggregating Data
Scenario
You are an Adventure Works business analyst, who will be writing reports using corporate databases
stored in SQL Server. You have been given a set of business requirements for data and you will write T-
SQL queries to retrieve it from the databases. You will need to perform calculations upon groups of data
and filter according to the results.

Objectives
After completing this lab, you will be able to:

 Write queries that use the GROUP BY clause.

 Write queries that use aggregate functions.

 Write queries that use distinct aggregate functions.

 Write queries that filter groups with the HAVING clause.

Estimated Time: 60 Minutes

Virtual machine: 20761A-MIA-SQL

User name: ADVENTUREWORKS\Student

Password: Pa$$w0rd

Exercise 1: Writing Queries That Use the GROUP BY Clause

Scenario
The sales department want to create additional upsell opportunities from existing customers. The staff
need to analyze different groups of customers and product categories, depending on several business
rules. Based on these rules, you will write SELECT statements to retrieve the needed rows from the
Sales.Customers table.

The main tasks for this exercise are as follows:

1. Prepare the Lab Environment

2. Write a SELECT Statement to Retrieve Different Groups of Customers

3. Add an Additional Column From the Sales.Customers Table

4. Write a SELECT Statement to Retrieve the Customers with Orders for Each Year

5. Write a SELECT Statement to Retrieve Groups of Product Categories Sold in a Specific Year

 Task 1: Prepare the Lab Environment
1. Ensure that the 20761A-MIA-DC and 20761A-MIA-SQL virtual machines are both running, and then

log on to 20761A-MIA-SQL as ADVENTUREWORKS\Student with the password Pa$$w0rd.

2. Run Setup.cmd in the D:\Labfiles\Lab09\Starter folder as Administrator.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
Querying Data with Transact-SQL 9-21

 Task 2: Write a SELECT Statement to Retrieve Different Groups of Customers
1. Open the project file D:\Labfiles\Lab09\Starter\Project\Project.ssmssln and the T-SQL script 51 - Lab

Exercise 1.sql. Ensure that you are connected to the TSQL database.

2. Write a SELECT statement that will return groups of customers who made a purchase. The SELECT
clause should include the custid column from the Sales.Orders table, and the contactname column
from the Sales.Customers table. Group both columns and filter only the orders from the sales
employee whose empid equals five.

3. Execute the written statement and compare the results that you achieved with the desired results
shown in the file D:\Labfiles\Lab09\Solution\52 - Lab Exercise 1 - Task 2 Result.txt.

 Task 3: Add an Additional Column From the Sales.Customers Table
1. Copy the T-SQL statement in task 1 and modify it to include the city column from the

Sales.Customers table in the SELECT clause.

2. Execute the query.

3. You will get an error. What is the error message? Why?

4. Correct the query so that it will execute properly.

5. Execute the query and compare the results that you achieved with the desired results shown in the
file D:\Labfiles\Lab09\Solution\53 - Lab Exercise 1 - Task 3 Result.txt.

 Task 4: Write a SELECT Statement to Retrieve the Customers with Orders for Each
Year
1. Write a SELECT statement that will return groups of rows based on the custid column and a

calculated column orderyear representing the order year based on the orderdate column from the
Sales.Orders table. Filter the results to include only the orders from the sales employee whose empid
equals five.

2. Execute the written statement and compare the results that you achieved with the desired results
shown in the file D:\Labfiles\Lab09\Solution\54 - Lab Exercise 1 - Task 4 Result.txt.

 Task 5: Write a SELECT Statement to Retrieve Groups of Product Categories Sold in a
Specific Year
1. Write a SELECT statement to retrieve groups of rows based on the categoryname column in the

Production.Categories table. Filter the results to include only the product categories that were
ordered in the year 2008.

2. Execute the written statement and compare the results that you achieved with the desired results
shown in the file D:\Labfiles\Lab09\Solution\55 - Lab Exercise 1 - Task 5 Result.txt.

Results: After this exercise, you should be able to use the GROUP BY clause in the T-SQL statement.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
9-22 Grouping and Aggregating Data

Exercise 2: Writing Queries That Use Aggregate Functions

Scenario
The marketing department wants to launch a new campaign, so the staff need to gain a better insight into
the existing customers’ buying behavior. You should create different sales reports, based on the total and
average sales amount per year and per customer.

The main tasks for this exercise are as follows:

1. Write a SELECT statement to Retrieve the Total Sales Amount Per Order

2. Add Additional Columns

3. Write a SELECT Statement to Retrieve the Sales Amount Value Per Month

4. Write a SELECT Statement to List All Customers with the Total Sales Amount and Number of Order Lines
Added

 Task 1: Write a SELECT statement to Retrieve the Total Sales Amount Per Order
1. Open the T-SQL script 61 - Lab Exercise 2.sql. Ensure that you are connected to the TSQL database.

2. Write a SELECT statement to retrieve the orderid column from the Sales.Orders table and the total
sales amount per orderid. (Hint: Multiply the qty and unitprice columns from the Sales.OrderDetails
table.) Use the alias salesamount for the calculated column. Sort the result by the total sales amount
in descending order.

3. Execute the written statement and compare the results that you achieved with the desired results
shown in the file D:\Labfiles\Lab09\Solution\62 - Lab Exercise 2 - Task 1 Result.txt.

 Task 2: Add Additional Columns
1. Copy the T-SQL statement in task 1 and modify it to include the total number of order lines for each

order and the average order line sales amount value within the order. Use the aliases nooforderlines
and avgsalesamountperorderline, respectively.

2. Execute the written statement and compare the results that you achieved with the recommended
results shown in the file D:\Labfiles\Lab09\Solution\63 - Lab Exercise 2 - Task 2 Result.txt.

 Task 3: Write a SELECT Statement to Retrieve the Sales Amount Value Per Month
1. Write a select statement to retrieve the total sales amount for each month. The SELECT clause should

include a calculated column named yearmonthno (YYYYMM notation), based on the orderdate
column in the Sales.Orders table and a total sales amount (multiply the qty and unitprice columns
from the Sales.OrderDetails table). Order the result by the yearmonthno calculated column.

2. Execute the written statement and compare the results that you achieved with the recommended
result shown in the file D:\Labfiles\Lab09\Solution\64 - Lab Exercise 2 - Task 3 Result.txt.

 Task 4: Write a SELECT Statement to List All Customers with the Total Sales Amount
and Number of Order Lines Added
1. Write a select statement to retrieve all the customers (including those who did not place any orders)

and their total sales amount, maximum sales amount per order line, and number of order lines.

2. The SELECT clause should include the custid and contactname columns from the Sales.Customers
table and four calculated columns based on appropriate aggregate functions:

a. totalsalesamount, representing the total sales amount per order

b. maxsalesamountperorderline, representing the maximum sales amount per order line

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
Querying Data with Transact-SQL 9-23

c. numberofrows, representing the number of rows (use * in the COUNT function)

d. numberoforderlines, representing the number of order lines (use the orderid column in the
COUNT function)

3. Order the result by the totalsalesamount column.

4. Execute the written statement and compare the results that you achieved with the recommended
results shown in the file D:\Labfiles\Lab09\Solution\65 - Lab Exercise 2 - Task 4 Result.txt.

5. Notice that the custid 22 and 57 rows have a NULL in the columns with the SUM and MAX aggregate
functions. What are their values in the COUNT columns? Why are they different?

Exercise 3: Writing Queries That Use Distinct Aggregate Functions

Scenario
The marketing department want to have some additional reports that display the number of customers
who made any order in a specific time period and the number of customers based on the first letter in the
contact name.

The main tasks for this exercise are as follows:

1. Modify a SELECT Statement to Retrieve the Number of Customers

2. Write a SELECT Statement to Analyze Segments of Customers

3. Write a SELECT Statement to Retrieve Additional Sales Statistics

 Task 1: Modify a SELECT Statement to Retrieve the Number of Customers
1. Open the T-SQL script 71 - Lab Exercise 3.sql. Ensure that you are connected to the TSQL database.

2. A junior analyst prepared a T-SQL statement to retrieve the number of orders and the number of
customers for each order year. Observe the provided T-SQL statement and execute it:

SELECT
YEAR(orderdate) AS orderyear,
COUNT(orderid) AS nooforders,
COUNT(custid) AS noofcustomers
FROM Sales.Orders
GROUP BY YEAR(orderdate);

3. Observe the results. Notice that the number of orders is the same as the number of customers. Why?

4. Amend the T-SQL statement to show the correct number of customers who placed an order for each
year.

5. Execute the written statement and compare the results that you achieved with the recommended
results shown in the file D:\Labfiles\Lab09\Solution\72 - Lab Exercise 3 - Task 1 Result.txt.

 Task 2: Write a SELECT Statement to Analyze Segments of Customers
1. Write a SELECT statement to retrieve the number of customers based on the first letter of the values

in the contactname column from the Sales.Customers table. Add an additional column to show the
total number of orders placed by each group of customers. Use the aliases firstletter,
noofcustomers and nooforders. Order the result by the firstletter column.

2. Execute the written statement and compare the results that you achieved with the recommended
results shown in the file D:\Labfiles\Lab09\Solution\73 - Lab Exercise 3 - Task 2 Result.txt.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
9-24 Grouping and Aggregating Data

 Task 3: Write a SELECT Statement to Retrieve Additional Sales Statistics
1. Copy the T-SQL statement in exercise 1, task 5, and modify to include the following information

about each product category – total sales amount, number of orders, and average sales amount per
order. Use the aliases totalsalesamount, nooforders, and avgsalesamountperorder, respectively.

2. Execute the written statement and compare the results that you achieved with the recommended
results shown in the file D:\Labfiles\Lab09\Solution\74 - Lab Exercise 3 - Task 3 Result.txt.

Results: After this exercise, you should have an understanding of how to apply a DISTINCT aggregate
function.

Exercise 4: Writing Queries That Filter Groups with the HAVING Clause

Scenario
The sales and marketing departments were satisfied with the reports you provided to analyze customers’
behavior. Now they would like to have the results filtered, based on the total sales amount and number of
orders. So, in the final exercise, you will learn how to filter the result, based on aggregated functions, and
learn when to use the WHERE and HAVING clauses.

The main tasks for this exercise are as follows:

1. Write a SELECT Statement to Retrieve the Top 10 Customers

2. Write a SELECT Statement to Retrieve Specific Orders

3. Apply Additional Filtering

4. Retrieve the Customers with More Than 25 Orders

 Task 1: Write a SELECT Statement to Retrieve the Top 10 Customers
1. Open the T-SQL script 81 - Lab Exercise 4.sql. Ensure that you are connected to the TSQL database.

2. Write a SELECT statement to retrieve the top 10 customers (by total sales amount) who spent more
than $10,000. Display the custid column from the Orders table and a calculated column that
contains the total sales amount, based on the qty and unitprice columns from the
Sales.OrderDetails table. Use the alias totalsalesamount for the calculated column.

3. Execute the written statement and compare the results that you achieved with the recommended
results shown in the file D:\Labfiles\Lab09\Solution\82 - Lab Exercise 4 - Task 1 Result.txt.

 Task 2: Write a SELECT Statement to Retrieve Specific Orders
1. Write a SELECT statement against the Sales.Orders and Sales.OrderDetails tables, and display the

empid column and a calculated column representing the total sales amount. Filter the results to
group only the rows with an order year 2008.

2. Execute the written statement and compare the results that you achieved with the recommended
results shown in the file D:\Labfiles\Lab09\Solution\83 - Lab Exercise 4 - Task 2 Result.txt.

 Task 3: Apply Additional Filtering
1. Copy the T-SQL statement in task 2 and modify it to apply an additional filter to retrieve only the

rows that have a sales amount higher than $10,000.

2. Execute the written statement and compare the results that you achieved with the recommended
results shown in the file D:\Labfiles\Lab09\Solution\84 - Lab Exercise 4 - Task 3_1 Result.txt.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
Querying Data with Transact-SQL 9-25

3. Apply an additional filter to show only employees with empid equal to 3.

4. Execute the written statement and compare the results that you achieved with the recommended
results shown in the file D:\Labfiles\Lab09\Solution\85 - Lab Exercise 4 - Task 3_2 Result.txt.

5. Did you apply the predicate logic in the WHERE clause or the HAVING clause? Which do you think is
better? Why?

 Task 4: Retrieve the Customers with More Than 25 Orders
1. Write a SELECT statement to retrieve all customers who placed more than 25 orders and add

information about the date of the last order and the total sales amount. Display the custid column
from the Sales.Orders table and two calculated columns— lastorderdate based on the orderdate
column, and totalsalesamount based on the qty and unitprice columns in the Sales.OrderDetails
table.

2. Execute the written statement and compare the results that you achieved with the recommended
result shown in the file D:\Labfiles\Lab09\Solution\86 - Lab Exercise 4 - Task 4 Result.txt.

Results: After this exercise, you should have an understanding of how to use the HAVING clause.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
9-26 Grouping and Aggregating Data

Module Review and Takeaways
Review Question(s)

Question: What is the difference between the COUNT function and the COUNT_BIG
function?

Question: Can a GROUP BY clause include more than one column?

Question: In a query, can a WHERE clause and a HAVING clause filter on the same column?

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
10-1

Module 10
Using Subqueries

Contents:
Module Overview 10-1

Lesson 1: Writing Self-Contained Subqueries 10-2

Lesson 2: Writing Correlated Subqueries 10-7

Lesson 3: Using the EXISTS Predicate with Subqueries 10-11

Lab: Using Subqueries 10-14

Module Review and Takeaways 10-19

Module Overview
At this point in the course, you have learned many aspects of the T-SQL SELECT statement, but each query
you have written has been a single, self-contained statement. Microsoft® SQL Server® 2016 also provides
the ability to nest one query within another—in other words, to form subqueries. In a subquery, the
results of the inner query (subquery) are returned to the outer query. This can provide a great deal of
flexibility for your query logic. In this module, you will learn to write several types of subqueries.

Objectives
After completing this module, you will be able to:

 Describe the uses for queries that are nested within other queries.

 Write self-contained subqueries that return scalar or multi-valued results.

 Write correlated subqueries that return scalar or multi-valued results.

 Use the EXISTS predicate to efficiently check for the existence of rows in a subquery.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
10-2 Using Subqueries

Lesson 1
Writing Self-Contained Subqueries

A subquery is a SELECT statement nested within another query. Being able to nest one query within
another will enhance your ability to create effective queries in T-SQL. In this lesson, you will learn how to
write self-contained queries, which are evaluated once, and provide their results to the outer query. You
will learn how to write scalar subqueries, which return a single value, and multi-valued subqueries, which,
as their name suggests, can return a list of values to the outer query.

Lesson Objectives
After completing this lesson, you will be able to:

 Describe where subqueries may be used in a SELECT statement.

 Write queries that use scalar subqueries in the WHERE clause of a SELECT statement.

 Write queries that use multi-valued subqueries in the WHERE clause of a SELECT statement.

Working with Subqueries

A subquery is a SELECT statement nested, or
embedded, within another query. The nested query,
which is the subquery, is the inner query. The query
containing the nested query is the outer query.

The purpose of a subquery is to return results to the
outer query. The form of the results will determine
whether the subquery is a scalar or multi-valued
subquery:

 Scalar subqueries, like scalar functions, return a
single value. Outer queries need to be written
to process a single result.

 Multi-valued subqueries return a result much like a single-column table. Outer queries need to be
written to handle multiple possible results.

In addition to the choice between scalar and multi-valued subqueries, you may choose to write self-
contained subqueries or others that are correlated with the outer query:

 Self-contained subqueries can be written as stand-alone queries, with no dependencies on the outer
query. A self-contained subquery is processed once, when the outer query runs and passes its results
to that outer query.

 Correlated subqueries reference one or more columns from the outer query and therefore depend on
it. Correlated subqueries cannot be run separately from the outer query.

 Note: You will learn about correlated subqueries later in this module.

For additional reading about subqueries, see Books Online at:

Subquery Fundamentals

http://aka.ms/f6uu08

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
Querying Data with Transact-SQL 10-3

Writing Scalar Subqueries

A scalar subquery is an inner SELECT statement
within an outer query, written to return a single
value. Scalar subqueries may be used anywhere in
an outer T-SQL statement where a single-valued
expression is permitted—such as in a SELECT clause,
a WHERE clause, a HAVING clause, or even a FROM
clause.

To write a scalar subquery, consider the following
guidelines:

 To denote a query as a subquery, enclose it in
parentheses.

 Multiple levels of subqueries are supported in SQL Server. In this lesson, we will only consider two-
level queries (one inner query within one outer query), but up to 32 levels are supported.

 If the subquery returns an empty set, the result of the subquery is converted and returned as a NULL.
Ensure your outer query can gracefully handle a NULL, in addition to other expected results.

To build the example query shown on the slide above, you may wish to start by writing and testing the
inner query alone:

Inner Query

USE TSQL;
GO
SELECT MAX(orderid) AS lastorder
FROM Sales.Orders;

This returns:

lastorder

11077

You will then write the outer query, using the value returned by the inner query.

In this example, you will return details about the most recent order:

Outer and Inner Query

SELECT orderid, productid, unitprice, qty
FROM Sales.OrderDetails
WHERE orderid =
 (SELECT MAX(orderid) AS lastorder
 FROM Sales.Orders);

This returns (partial result):

orderid productid unitprice qty
----------- ----------- --------------------- ------
11077 2 19.00 24
11077 3 10.00 4
11077 4 22.00 1
11077 6 25.00 1

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
10-4 Using Subqueries

Test the logic of your subquery to ensure it will only return a single value. In the query above, because the
outer query used an = operator in the predicate of the WHERE clause, and the subquery returned a single
value, the query ran correctly. If an outer query is written to expect a single value, such as by using simple
equality operators (=, <, >, and <>, for example), and the inner query returns more than one result, an
error will be returned:

Msg 512, Level 16, State 1, Line 1
Subquery returned more than 1 value. This is not permitted when the subquery follows
=, !=, <, <= , >, >= or when the subquery is used as an expression.

In the case of the Sales.Orders table, orderid is known to be a unique column, enforced in the structure of
the table by a PRIMARY KEY constraint.

See PRIMARY KEY Constraints in Books Online at:

PRIMARY KEY Constraints

http://aka.ms/acq0rx

Writing Multi-Valued Subqueries

As its name suggests, a multi-valued subquery may
return more than one result, in the form of a

single-column set.

A multi-valued subquery is well suited to return
results to the IN predicate, as in the following
example:

Multi-Valued Subquery

SELECT custid, orderid
FROM Sales.orders
WHERE custid IN (
 SELECT custid
 FROM Sales.Customers
 WHERE country =N'Mexico');

In this example, if you were to execute only the inner query, you would return the following list of custids
for customers in the country of Mexico:

custid

2
3
13
58
80

SQL Server will pass those results to the outer query, logically rewritten as follows:

Logical Structure of Outer Query

SELECT custid, orderid
FROM Sales.orders
WHERE custid IN (2,3,13,58,80);

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
Querying Data with Transact-SQL 10-5

The outer query will continue to process the SELECT statement, with the following partial results:

custid orderid
------ -----------
2 10308
2 10625
3 10365
3 10507
3 10856
13 10259
58 10322
58 10354

As you continue to learn about writing T-SQL queries, you may find scenarios in which multi-valued
subqueries are written as SELECT statements using JOINs.

For example, the previous subquery might be rewritten as follows, with the same results and comparable
performance:

Subquery Rewritten as a Join

SELECT c.custid, o.orderid
FROM Sales.Customers AS c JOIN Sales.Orders AS o
 ON c.custid = o.custid
WHERE c.country = N'Mexico‘;

 Note: In some cases, the database engine will interpret a subquery as a JOIN and execute it
accordingly. As you learn more about SQL Server internals, such as execution plans, you may be
able to see your queries interpreted this way. For more information about execution plans and
query performance, see Microsoft Course 20472-3: Performance Tuning and Optimizing Microsoft
SQL Server Databases.

Demonstration: Writing Self-Contained Subqueries

In this demonstration, you will see how to:

 Write a nested subquery

Demonstration Steps
Write a Nested Subquery

1. Ensure that the 20761A-MIA-DC and 20761A-MIA-SQL virtual machines are both running, and then
log on to 20761A-MIA-SQL as ADVENTUREWORKS\Student with the password Pa$$w0rd.

2. In the D:\Demofiles\Mod10 folder, right-click Setup.cmd and click Run as administrator.

3. Click Yes when prompted to confirm you want to run the command file, and wait for the script to
finish.

4. When prompted press any key.

5. Start SQL Server Management Studio and connect to the MIA-SQL database engine instance using
Windows® authentication.

6. On the File menu, point to Open, click File, browse to the D:\Demofiles\Mod10\Demo folder, and
then double-click Demo.ssmssln.

7. If the Solution Explorer pane is not visible, on the View menu, click Solution Explorer.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
10-6 Using Subqueries

8. Expand the Queries folder, and double-click the 11 – Demonstration A.sql script file.

9. Select the code under the comment Step 1: Open a new query window to the TSQL database, and
then click Execute.

10. Select the code under the comment Step 2: Scalar subqueries, and then click Execute.

11. Select the code under the comment Select this query and execute it to find details in
Sales.OrderDetails for most recent order, and then click Execute.

12. Select the code under the comment THIS WILL FAIL, since subquery returns more than 1 value,
and then click Execute.

13. Select the code under the comment Step 3: Multi-valued subqueries, and then click Execute.

14. Select the code under the comment Same result expressed as a join, and then click Execute.

15. Keep SQL Server Management Studio open for the next demonstration.

Question: You are troubleshooting a query. The outer query contains an inner query in its
WHERE clause. The first inner query also contains a second inner query in its WHERE clause.
Both inner queries are self-contained. The complete query returns an error. How should you
approach this task?

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
Querying Data with Transact-SQL 10-7

Lesson 2
Writing Correlated Subqueries

Earlier in this module, you learned how to write self-contained subqueries, in which the inner query is
independent of the outer query, executes once, and returns its results to the outer query. Microsoft SQL
Server also supports correlated subqueries, in which the inner query receives input from the outer query
and conceptually executes once per row in it. In this lesson, you will learn how to write correlated
subqueries, as well as rewrite some types of correlated subqueries as JOINs for performance or logical
efficiency.

Lesson Objectives
After completing this lesson, you will be able to:

 Describe how correlated subqueries are processed.

 Write queries that use correlated subqueries in a SELECT statement.

 Rewrite some correlated subqueries as JOINs.

Working with Correlated Subqueries

Like self-contained subqueries, correlated
subqueries are SELECT statements nested within an
outer query. They may also be written as scalar or
multi-valued subqueries. They are typically used to
pass a value from the outer query to the inner
query, to be used as a parameter there.

However, unlike self-contained subqueries,
correlated subqueries depend on the outer query to
pass values into the subquery as a parameter. This
leads to some special considerations when planning
their use:

 Correlated subqueries cannot be executed
separately from the outer query. This complicates testing and debugging.

 Unlike self-contained subqueries which are processed once, correlated subqueries will run multiple
times. Logically, the outer query runs first, and for each row returned, the inner query is processed.

The following example uses a correlated subquery to return the orders with the latest order date for each
employee. The subquery accepts an input value from the outer query, uses the input in its WHERE clause,
and returns a scalar result to the outer query. Line numbers have been added for use in the subsequent
explanation. They do not indicate the order in which the steps are logically processed.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
10-8 Using Subqueries

The following example uses a correlated subquery to return the orders with the latest order date for each
employee:

Correlated Subquery Example

1. SELECT orderid, empid, orderdate
2. FROM Sales.Orders AS O1
3. WHERE orderdate =
4. (SELECT MAX(orderdate)
5. FROM Sales.Orders AS O2
6. WHERE O2.empid = O1.empid)
7. ORDER BY empid, orderdate;

Line No. Statement Description

1 SELECT orderid, empid, orderdate Columns returned by the outer query.

2 FROM Sales.Orders AS O1 Source table for the outer query. Note the alias.

3 WHERE orderdate = Predicate used to evaluate the outer rows against
the result of the inner query.

4 (SELECT MAX(orderdate) Column returned by the inner query. Aggregate
function returns a scalar value.

5 FROM Sales.Orders AS O2 Source table for the inner query. Note the alias.

6 WHERE O2.empid = O1.empid) Correlation of empid from the outer query to
empid from the inner query. This value will be
supplied for each row in the outer query.

7 ORDER BY empid, orderdate; Sorts the results of the outer query.

The query returns the following results. Note that some employees appear more than once, as they are
associated with multiple orders on the latest orderdate:

orderid empid orderdate
----- ----- -----------------------
11077 1 2008-05-06 00:00:00.000
11073 2 2008-05-05 00:00:00.000
11070 2 2008-05-05 00:00:00.000
11063 3 2008-04-30 00:00:00.000
11076 4 2008-05-06 00:00:00.000
11043 5 2008-04-22 00:00:00.000
11045 6 2008-04-23 00:00:00.000
11074 7 2008-05-06 00:00:00.000
11075 8 2008-05-06 00:00:00.000
11058 9 2008-04-29 00:00:00.000

Question: Why can't a correlated subquery be executed separately from the outer query?

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
Querying Data with Transact-SQL 10-9

Writing Correlated Subqueries

To write correlated subqueries, consider the
following guidelines:

 Write the outer query to accept the
appropriate return result from the inner query.
If the inner query will be scalar, you can use
equality and comparison operators, such as =,
<, >, and <>, in the WHERE clause. If the inner
query may return multiple values, use an IN
predicate. Plan to handle NULL results.

 Identify the column from the outer query that
will be passed to the correlated subquery.
Declare an alias for the table that is the source
of the column in the outer query.

 Identify the column from the inner table that will be compared to the column from the outer table.
Create an alias for the source table, as you did for the outer query.

 Write the inner query to retrieve values from its source, based on the input value from the outer
query. For example, use the outer column in the WHERE clause of the inner query.

The correlation between the inner and outer queries occurs when the outer value is passed to the inner
query for comparison. It’s this correlation that gives the subquery its name.

For additional reading about correlated subqueries, see Books Online at:

Correlated Subqueries

http://aka.ms/hoxorm

Demonstration: Writing Correlated Subqueries

In this demonstration, you will see how to:

 Write a correlated subquery

Demonstration Steps
Write a Correlated Subquery

1. Ensure that you have completed the previous demonstration in this module. Alternatively, start the
20761A-MIA-DC and 20761A-MIA-SQL virtual machines, log on to 20761A-MIA-SQL as
ADVENTUREWORKS\Student with the password Pa$$w0rd, and run
D:\Demofiles\Mod10\Setup.cmd as an administrator.

2. If SQL Server Management Studio is not already open, start it and connect to the MIA-SQL database
engine instance using Windows authentication, and then open the Demo.ssmssln solution in the
D:\Demofiles\Mod10\Demo folder.

3. In Solution Explorer, open the 21 – Demonstration B.sql script file.

4. Select the code under the comment Step 1: Open a new query window to the TSQL database, and
then click Execute.

5. Select the code under the comment Step 2: Correlated subqueries, and then click Execute.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
10-10 Using Subqueries

6. Select the code under the comment Select and execute the following query to show the use of a
correlated subquery that uses the empid from Sales.Orders to retrieve orders placed by an
employee on the latest order date for each employee, and then click Execute.

7. Select the code under the comment Select and execute the following query to show the use of a
correlated subquery that uses the custid from Sales.Custorders to retrieve orders placed by a
customer with the highest quantity for each customer, and then click Execute.

8. Keep SQL Server Management Studio open for the next demonstration.

Check Your Knowledge

Question

Which of the following statements about correlated subqueries is correct?

Select the correct answer.

 To troubleshoot a correlated subquery, execute the inner query first on its own,
before placing it into the outer query.

 In a correlated subquery, the inner query is run only once, regardless of the
number of rows the outer query returns.

 In a correlated subquery, the inner query uses data returned by the outer query.

 In a correlated subquery, the inner query is executed first, the outer query
second.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
Querying Data with Transact-SQL 10-11

Lesson 3
Using the EXISTS Predicate with Subqueries

In addition to retrieving values from a subquery, SQL Server provides a mechanism for checking whether
any results would be returned from a query. The EXISTS predicate evaluates whether rows exist, but rather
than return them, it returns TRUE or FALSE. This is a useful technique for validating data without incurring
the overhead of retrieving and counting the results.

Lesson Objectives
After completing this lesson, you will be able to:

 Describe how the EXISTS predicate combines with a subquery to perform an existence test.

 Write queries that use EXISTS predicates in a WHERE clause to test for the existence of qualifying
rows.

Working with EXISTS

When a subquery is invoked by an outer query
using the EXISTS predicate, SQL Server handles the
results of the subquery differently to how it does
elsewhere in this module. Rather than retrieve a
scalar value or a multi-valued list from the
subquery, EXISTS simply checks to see if there are
any rows in the results.

Conceptually, an EXISTS predicate is equivalent to
retrieving the results, counting the rows returned,
and comparing the count to zero. Compare the
following queries, which will return details about
employees who are associated with orders:

The first query uses COUNT in a subquery:

Using COUNT in a Subquery

SELECT empid, lastname
FROM HR.Employees AS e
WHERE (SELECT COUNT(*)
 FROM Sales.Orders AS O
 WHERE O.empid = e.empid)>0;

The second query, which returns the same results, uses EXISTS:

Using EXISTS in a Subquery

SELECT empid, lastname
FROM HR.Employees AS e
WHERE EXISTS(SELECT *
 FROM Sales.Orders AS O
 WHERE O.empid = e.empid);

In the first example, the subquery must count every occurrence of each empid found in the Sales.Orders
table, and compare the count results to zero, simply to indicate that the employee has associated orders.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
10-12 Using Subqueries

In the second query, EXISTS returns TRUE for an empid as soon as one has been found in the Sales.Orders
table—a complete accounting of each occurrence is unnecessary.

 Note: From the perspective of logical processing, the two query forms are equivalent. From
a performance perspective, the database engine may treat the queries differently as it optimizes
them for execution. Consider testing each one for your own usage.

Another useful application of EXISTS is negating it with NOT, as in the following example, which will
return any customer who has never placed an order:

NOT EXISTS Example

SELECT custid, companyname
FROM Sales.Customers AS c
WHERE NOT EXISTS (
 SELECT *
 FROM Sales.Orders AS o
 WHERE c.custid=o.custid);

Once again, SQL Server will not have to return data about the related orders for customers who have
placed orders. If a customer ID is found in the Sales.Orders table, NOT EXISTS evaluates to FALSE and the
evaluation quickly completes.

Writing Queries Using EXISTS with Subqueries

To write queries that use EXISTS with subqueries,
consider the following guidelines:

 The keyword EXISTS directly follows WHERE.
No column name (or other expression) needs
to precede it, unless NOT is also used.

 Within the subquery following EXISTS, the
SELECT list only needs to contain (*). No rows
are returned by the subquery, so no columns
need to be specified.

See Subqueries with EXISTS in Books Online at:

Subqueries with EXISTS

http://aka.ms/q812le

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
Querying Data with Transact-SQL 10-13

Demonstration: Writing Subqueries Using EXISTS

In this demonstration, you will see how to:

 Write queries using EXISTS and NOT EXISTS

Demonstration Steps
Write Queries Using EXISTS and NOT EXISTS

1. Ensure that you have completed the previous demonstration in this module. Alternatively, start the
20761A-MIA-DC and 20761A-MIA-SQL virtual machines, log on to 20761A-MIA-SQL as
ADVENTUREWORKS\Student with the password Pa$$w0rd, and run
D:\Demofiles\Mod10\Setup.cmd as an administrator.

2. If SQL Server Management Studio is not already open, start it and connect to the MIA-SQL database
engine instance using Windows authentication, then open the Demo.ssmssln solution in the
D:\Demofiles\Mod10\Demo folder.

3. In Solution Explorer, open the 31 – Demonstration C.sql script file.

4. Select the code under the comment Step 1: Open a new query window to the TSQL database, and
then click Execute.

5. Select the code under the comment Step 2: Using EXISTS, and then click Execute.

6. Select the code under the comment Step 3: Using NOT EXISTS, and then click Execute.

7. Select the code under the comment Step 4: Compare COUNT(*)>0 to EXISTS, and then click
Execute.

8. Select the code under the comment Use EXISTS, and then click Execute.

9. Close SQL Server Management Studio without saving any files.

Question: The Human Resources database has recently been extended to record the skills
possessed by employees. Employees have added their skills to the database by using a web-
based user interface. You want to find employees who have not yet added their skills. You
have the following query:

SELECT e.EmployeeID, e.FirstName

FROM HumanResources.Employees AS e

WHERE NOT EXISTS (

 SELECT s.EmployeeID, s.SkillName, s.SkillCategory

 FROM HumanResources.Skills AS s

 WHERE e.EmployeeID = s.EmployeeID);

How can you improve the query?

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
10-14 Using Subqueries

Lab: Using Subqueries
Scenario
As a business analyst for Adventure Works, you are writing reports using corporate databases stored in
SQL Server. You have been handed a set of business requirements for data and will write T-SQL queries to
retrieve the specified data from the databases. Due to the complexity of some of the requests, you will
need to embed subqueries into your queries to return results in a single query.

Objectives
After completing this lab, you will be able to:

 Write queries that use subqueries.

 Write queries that use scalar and multi-result set subqueries.

 Write queries that use correlated subqueries and the EXISTS predicate.

Estimated Time: 60 minutes

Virtual machine: 20761A-MIA-SQL

User name: AdventureWorks\Student

Password: Pa$$w0rd

Exercise 1: Writing Queries That Use Self-Contained Subqueries

Scenario
The sales department needs some advanced reports to analyze sales orders. You will write different
SELECT statements that use self-contained subqueries.

The main tasks for this exercise are as follows:

1. Prepare the Lab Environment

2. Write a SELECT Statement to Retrieve the Last Order Date

3. Write a SELECT Statement to Retrieve All Orders Placed on the Last Order Date

4. Observe the T-SQL Statement Provided by the IT Department

5. Write A SELECT Statement to Analyze Each Order’s Sales as a Percentage of the Total Sales Amount

 Task 1: Prepare the Lab Environment
1. Ensure that the 20761A-MIA-DC and 20761A-MIA-SQL virtual machines are both running, and then

log on to 20761A-MIA-SQL as ADVENTUREWORKS\Student with the password Pa$$w0rd.

2. Run Setup.cmd in the D:\Labfiles\Lab10\Starter folder as Administrator.

 Task 2: Write a SELECT Statement to Retrieve the Last Order Date
1. Open the project file D:\Labfiles\Lab10\Starter\Project\Project.ssmssln and the T-SQL script 51 - Lab

Exercise 1.sql. Ensure that you are connected to the TSQL database.

2. Write a SELECT statement to return the maximum order date from the table Sales.Orders.

3. Execute the written statement and compare the results that you achieved with the desired results
shown in the file D:\Labfiles\Lab10\Solution\52 - Lab Exercise 1 - Task 1 Result.txt.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
Querying Data with Transact-SQL 10-15

 Task 3: Write a SELECT Statement to Retrieve All Orders Placed on the Last Order
Date
1. Write a SELECT statement to return the orderid, orderdate, empid, and custid columns from the

Sales.Orders table. Filter the results to include only orders where the date order equals the last order
date. (Hint: Use the query in task 1 as a self-contained subquery.)

2. Execute the written statement and compare the results that you achieved with the desired results
shown in the file D:\Labfiles\Lab10\Solution\53 - Lab Exercise 1 - Task 2 Result.txt.

 Task 4: Observe the T-SQL Statement Provided by the IT Department
1. The IT department has written a T-SQL statement that retrieves the orders for all customers whose

contact name starts with a letter I:

SELECT
orderid, orderdate, empid, custid
FROM Sales.Orders
WHERE
custid =
(
SELECT custid
FROM Sales.Customers
WHERE contactname LIKE N'I%'
);

2. Execute the query and observe the result.

3. Modify the query to filter customers whose contact name starts with a letter B.

4. Execute the query. What happened? What is the error message? Why did the query fail?

5. Apply the needed changes to the T-SQL statement so that it will run without an error.

6. Execute the written statement and compare the results that you achieved with the desired results
shown in the file D:\Labfiles\Lab10\Solution\54 - Lab Exercise 1 - Task 3 Result.txt.

 Task 5: Write A SELECT Statement to Analyze Each Order’s Sales as a Percentage of
the Total Sales Amount
1. Write a SELECT statement to retrieve the orderid column from the Sales.Orders table and the

following calculated columns:

o totalsalesamount (based on the qty and unitprice columns in the Sales.OrderDetails table).

o salespctoftotal (percentage of the total sales amount for each order divided by the total sales
amount for all orders in a specific period).

2. Filter the results to include only orders placed in May 2008.

3. Execute the written statement and compare the results that you achieved with the desired results
shown in the file D:\Labfiles\Lab10\Solution\55 - Lab Exercise 1 - Task 4 Result.txt.

Results: After this exercise, you should be able to use self-contained subqueries in T-SQL statements.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
10-16 Using Subqueries

Exercise 2: Writing Queries That Use Scalar and Multi-Result Subqueries

Scenario
The marketing department would like to prepare materials for different groups of products and
customers, based on historic sales information. You have to prepare different SELECT statements that use
a subquery in the WHERE clause.

The main tasks for this exercise are as follows:

1. Write a SELECT Statement to Retrieve Specific Products

2. Write a SELECT Statement to Retrieve Those Customers Without Orders

3. Add a Row and Rerun the Query That Retrieves Those Customers Without Orders

 Task 1: Write a SELECT Statement to Retrieve Specific Products
1. Open the T-SQL script 61 - Lab Exercise 2.sql. Ensure that you are connected to the TSQL database.

2. Write a SELECT statement to retrieve the productid and productname columns from the
Production.Products table. Filter the results to include only products that were sold in high
quantities (more than 100) for a specific order line.

3. Execute the written statement and compare the results that you achieved with the desired results
shown in the file D:\Labfiles\Lab10\Solution\62 - Lab Exercise 2 -Task 1 Result.txt.

 Task 2: Write a SELECT Statement to Retrieve Those Customers Without Orders
1. Write a SELECT statement to retrieve the custid and contactname columns from the

Sales.Customers table. Filter the results to include only those customers who do not have any placed
orders.

2. Execute the written statement and compare the results that you achieved with the recommended
results shown in the file D:\Labfiles\Lab10\Solution\63 - Lab Exercise 2 - Task 2 Result.txt. Remember
the number of rows in the results.

 Task 3: Add a Row and Rerun the Query That Retrieves Those Customers Without
Orders
1. The IT department has written a T-SQL statement that inserts an additional row in the Sales.Orders

table. This row has a NULL in the custid column:

INSERT INTO Sales.Orders (
custid, empid, orderdate, requireddate, shippeddate, shipperid, freight,
shipname, shipaddress, shipcity, shipregion, shippostalcode, shipcountry)
VALUES
(NULL, 1, '20111231', '20111231', '20111231', 1, 0,
'ShipOne', 'ShipAddress', 'ShipCity', 'RA', '1000', 'USA')

2. Execute this query exactly as written inside a query window.

3. Copy the T-SQL statement you wrote in task 2 and execute it.

4. Observe the result. How many rows are in the result? Why?

5. Modify the T-SQL statement to retrieve the same number of rows as in task 2. (Hint: You have to
remove the rows with an unknown value in the custid column.)

6. Execute the modified statement and compare the results that you achieved with the recommended
results shown in the file D:\Labfiles\Lab10\Solution\64 - Lab Exercise 2 - Task 3 Result.txt.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
Querying Data with Transact-SQL 10-17

Results: After this exercise, you should know how to use multi-result subqueries in T-SQL statements.

Exercise 3: Writing Queries That Use Correlated Subqueries and an EXISTS
Predicate

Scenario
The sales department would like to have some additional reports to display different analyses of existing
customers. Because the requests are complex, you will need to use correlated subqueries.

The main tasks for this exercise are as follows:

1. Write a SELECT Statement to Retrieve the Last Order Date for Each Customer

2. Write a SELECT Statement That Uses the EXISTS Predicate to Retrieve Those Customers Without Orders

3. Write a SELECT Statement to Retrieve Customers Who Bought Expensive Products

4. Write a SELECT Statement to Display the Total Sales Amount and the Running Total Sales Amount for
Each Order Year

5. Clean the Sales.Customers Table

 Task 1: Write a SELECT Statement to Retrieve the Last Order Date for Each Customer
1. Open the T-SQL script 71 - Lab Exercise 3.sql. Make sure you are connected to the TSQL database.

2. Write a SELECT statement to retrieve the custid and contactname columns from the
Sales.Customers table. Add a calculated column named lastorderdate that contains the last order
date from the Sales.Orders table for each customer. (Hint: You have to use a correlated subquery.)

3. Execute the written statement and compare the results that you achieved with the recommended
results shown in the file D:\Labfiles\Lab10\Solution\72 - Lab Exercise 3 - Task 1 Result.txt.

 Task 2: Write a SELECT Statement That Uses the EXISTS Predicate to Retrieve Those
Customers Without Orders
1. Write a SELECT statement to retrieve all customers that do not have any orders in the Sales.Orders

table, similar to the request in exercise 2, task 3. However, this time use the EXISTS predicate to filter
the results to include only those customers without an order. Also, you do not need to explicitly check
that the custid column in the Sales.Orders table is not NULL.

2. Execute the written statement and compare the results that you achieved with the recommended
results shown in the file D:\Labfiles\Lab10\Solution\73 - Lab Exercise 3 - Task 2 Result.txt.

3. Why didn’t you need to check for a NULL?

 Task 3: Write a SELECT Statement to Retrieve Customers Who Bought Expensive
Products
1. Write a SELECT statement to retrieve the custid and contactname columns from the

Sales.Customers table. Filter the results to include only customers who placed an order on or after
April 1, 2008, and ordered a product with a price higher than $100.

2. Execute the written statement and compare the results that you achieved with the recommended
results shown in the file D:\Labfiles\Lab10\Solution\74 - Lab Exercise 3 - Task 3 Result.txt.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
10-18 Using Subqueries

 Task 4: Write a SELECT Statement to Display the Total Sales Amount and the Running
Total Sales Amount for Each Order Year
1. Running aggregates accumulate values over time. Write a SELECT statement to retrieve the following

information for each year:

o The order year.

o The total sales amount.

o The running total sales amount over the years. That is, for each year, return the sum of sales
amount up to that year. So, for example, for the earliest year (2006), return the total sales
amount; for the next year (2007), return the sum of the total sales amount for the previous year
and 2007.

2. The SELECT statement should have three calculated columns:

o orderyear, representing the order year. This column should be based on the orderyear column
from the Sales.Orders table.

o totalsales, representing the total sales amount for each year. This column should be based on
the qty and unitprice columns from the Sales.OrderDetails table.

o runsales, representing the running sales amount. This column should use a correlated subquery.

3. Execute the T-SQL code and compare the results that you achieved with the recommended results
shown in the file D:\Labfiles\Lab10\Solution\75 - Lab Exercise 3 - Task 4 Result.txt.

 Task 5: Clean the Sales.Customers Table
1. Delete the row added in exercise 2 using the provided SQL statement:

DELETE Sales.Orders
WHERE custid IS NULL;

2. Execute this query exactly as written inside a query window.

Results: After this exercise, you should have an understanding of how to use a correlated subquery in T-
SQL statements.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
Querying Data with Transact-SQL 10-19

Module Review and Takeaways
Review Question(s)

Question: Can a correlated subquery return a multi-valued set?

Question: What type of subquery may be rewritten as a JOIN?

Question: Which columns should appear in the SELECT list of a subquery following the
EXISTS predicate?

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
11-1

Module 11
Using Set Operators

Contents:
Module Overview 11-1

Lesson 1: Writing Queries with the UNION Operator 11-2

Lesson 2: Using EXCEPT and INTERSECT 11-6

Lesson 3: Using APPLY 11-10

Lab: Using Set Operators 11-17

Module Review and Takeaways 11-22

Module Overview
Microsoft® SQL Server® provides methods for performing operations using the sets that result from two
or more different queries. In this module, you will learn how to use the set operators UNION, INTERSECT,
and EXCEPT to compare rows between two input sets.

You will also learn how to use forms of the APPLY operator to use the result of one query to collect the
output of a second query, returning the output as a single result set.

Objectives
After completing this module, you will be able to:

 Write queries that combine data using the UNION operator.

 Write queries that compare sets using the INTERSECT and EXCEPT operators.

 Write queries that manipulate rows in a table by using APPLY, combining them with the results of a
derived table or function.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
11-2 Using Set Operators

Lesson 1
Writing Queries with the UNION Operator

In this lesson, you will learn how to use the UNION operator to combine multiple input sets into a single
result. UNION and UNION ALL provide a mechanism to add one set to another; you can then stack result
sets from two or more queries into a single output result set. UNION stacks rows, compared to JOIN,
which combines columns from different sources.

Lesson Objectives
After completing this lesson, you will be able to:

 Describe the conditions necessary to interact between input sets.

 Write queries that use UNION to combine input sets.

 Write queries that use UNION ALL to combine input sets.

Interactions Between Sets

SQL Server provides several operators that act on
sets, each of which has a different effect on the
input sets. The set operators have a number of
common features that you need to understand
before starting to use them:

 Each input set is the result of a query, which
may include any SELECT statement components
you have already learned about, except an
ORDER BY clause.

 The input sets must have the same number of
columns and the columns must have
compatible data types. The column data types,
if not initially compatible, must be made compatible through conversion—this may be implicit if the
data types support it (using the rules for data type precedence discussed in module six of this course,
Working with SQL Server 2016 Data Types); otherwise an explicit conversion might be required (using
CAST or CONVERT).

 A NULL in one set is treated as equal to a NULL in another, despite what you have learned about
comparing NULLs earlier in this course.

 Each operator can be thought of as having two forms: DISTINCT and ALL. For example, UNION
DISTINCT eliminates duplicate rows while combining two sets; UNION ALL combines all rows,
including duplicates. Not all set operators support both forms in SQL Server 2016.

 Note: When working with set operators it is useful to remember that, in set theory, a set
does not provide a sort order and includes only distinct rows. If you need the results sorted, you
should add an ORDER BY to the final results, as you may not use it inside the input queries.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
Querying Data with Transact-SQL 11-3

Using the UNION Operator

By using the UNION operator, you can combine
rows from one input set with rows from another
into a resulting set. If a row appears in either of the
input sets, it will be returned in the output.
Duplicate rows are eliminated by the UNION
operator.

For example, in the TSQL sample database, there
are 29 rows in the Production.Suppliers table and
91 rows in the Sales.Customers table.

Combining all rows from each set would yield 29
plus 91—or 120 rows. However, as duplicates that
appear in both tables are only returned once,
UNION returns 93 rows in this example:

UNION Example

SELECT country, city
FROM Production.Suppliers
UNION
SELECT country, city
FROM Sales.Customers;

A partial result:

country city
--------- ---------------
Argentina Buenos Aires
Australia Melbourne
...
USA Walla Walla
Venezuela Barquisimeto
Venezuela Caracas
Venezuela I. de Margarita
Venezuela San Cristóbal
 (93 row(s) affected)

 Note: As with all T-SQL statements, remember that no sort order is guaranteed by set
operators unless one is explicitly specified. Although the results might appear to be sorted, this is
a by-product of the filtering performed and is not assured. If you require sorted output, add an
ORDER BY clause at the end of the second query.

As previously mentioned, set operators can conceptually be thought of in two forms: DISTINCT and ALL.
SQL Server does not implement an explicit UNION DISTINCT, though it does implement UNION ALL. ANSI
SQL standards do specify both as explicit forms (UNION DISTINCT and UNION ALL). In T-SQL, the use of
DISTINCT is not supported but is the implicit default. UNION combines all rows from each input set, and
then filters out duplicates.

From a performance standpoint, the use of UNION will include a filter operation, whether or not there are
duplicate rows. If you need to combine sets and know that there are no duplicates, consider using UNION
ALL to save the overhead of the distinct filter.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
11-4 Using Set Operators

 Note: You will learn about UNION ALL in the next lesson.

See UNION (Transact-SQL) in Books Online at:

UNION (Transact-SQL)

http://aka.ms/omv6m7

Using the UNION ALL Operator

The UNION ALL operator works in a very similar
way to the UNION operator—it combines the two
input result sets into one output result set. Unlike
UNION, UNION ALL does not filter out duplicate
rows.

The following example amends the one from the
previous topic, using the UNION ALL operator to
combine all supplied locations with all customer
locations in the output result set:

UNION ALL example

SELECT country, city
FROM Production.Suppliers
UNION ALL
SELECT Country, City
FROM Sales.Customers;

Using UNION ALL, 120 rows are returned (29 rows from the Production.Suppliers table and 91 rows from
the Sales.Customers table):

country city
------- ---------------
UK London
USA New Orleans
...
Finland Helsinki
Poland Warszawa
 (120 rows affected)

As UNION ALL does not perform any filtering of duplicates, UNION ALL should be used in place of
UNION in cases where you know there will be no duplicate input rows (or where duplicates exist and are
required).

UNION ALL will often run significantly faster than UNION on the same data set; this performance
difference becomes more obvious as the number of rows in the input result sets increases.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
Querying Data with Transact-SQL 11-5

Demonstration: Using UNION and UNION ALL

In this demonstration, you will see how to:

 Use UNION and UNION ALL

Demonstration Steps
1. Ensure that the MSL-TMG1, 20761A-MIA-DC, and 20761A-MIA-SQL virtual machines are running,

and then log on to 20761A-MIA-SQL as ADVENTUREWORKS\Student with the password
Pa$$w0rd.

2. Start SQL Server Management Studio and connect to your Azure instance of the AdventureWorksLT
database engine instance using SQL Server authentication.

3. If the Microsoft SQL Server Management Studio dialog box appears, click OK.

4. Open the Demo.ssmssln solution in the D:\Demofiles\Mod11\Demo folder.

5. If the Solution Explorer pane is not visible, on the View menu, click Solution Explorer.

6. Expand Queries, and double-click the 11 – Demonstration A.sql script file.

7. In the Available Databases list, click AdventureWorksLT.

8. Select the code under the comment Step 2, and then click Execute.

9. Select the code under the comment Step 3, and then click Execute.

10. Keep SQL Server Management Studio open for the next demonstration.

Verify the correctness of the statement by placing a mark in the column to the right.

Statement Answer

The results from a UNION query can contain duplicate rows.

Verify the correctness of the statement by placing a mark in the column to the right.

Statement Answer

When combining the output of two sets, UNION and UNION ALL queries
cannot include rows with NULL values, because NULL values cannot be
compared.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
11-6 Using Set Operators

Lesson 2
Using EXCEPT and INTERSECT

While UNION and UNION ALL combine all rows from input sets, you might need to return either only
those rows in one set but not in the other—or only rows that are present in both sets. For these purposes,
the EXCEPT and INTERSECT operators may be useful to your queries. You will learn how to use EXCEPT
and INTERSECT in this lesson.

Lesson Objectives
After completing this lesson, you will be able to:

 Write queries that use the EXCEPT operator to return only rows in one set but not another.

 Write queries that use the INTERSECT operator to return only rows that are present in both sets.

Using the INTERSECT Operator

The T-SQL INTERSECT operator, added in SQL
Server 2005, returns only distinct rows that appear
in both input sets.

 Note: While UNION supports both the
conceptual forms DISTINCT and ALL, INTERSECT
currently only provides an implicit DISTINCT option.
No duplicate rows will be returned by the
operation.

The following example uses INTERSECT to return
geographical information in common between
customers and suppliers. Remember that there are 91 rows in the Customers table and 29 in the Suppliers
table:

INTERSECT Example

SELECT country, city
FROM Production.Suppliers
INTERSECT
SELECT country, city
FROM Sales.Customers;

Returns:

country city
-------- ---------
Germany Berlin
UK London
Canada Montréal
France Paris
Brazil Sao Paulo
 (5 row(s) affected)

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
Querying Data with Transact-SQL 11-7

For more information, see EXCEPT and INTERSECT (Transact-SQL) in Books Online at:

EXCEPT and INTERSECT (Transact-SQL)

http://aka.ms/uo4qu9

Using the EXCEPT Operator

The T-SQL EXCEPT operator, added in SQL Server
2005, returns only distinct rows that appear in one
set and not the other. Specifically, EXCEPT returns
rows from the input set listed first in the query. As
with queries that use a LEFT OUTER JOIN or RIGHT
OUTER JOIN, the order in which the inputs are
listed is important.

 Note: While UNION supports both
conceptual forms DISTINCT and ALL, EXCEPT
currently only provides an implicit DISTINCT option.
No duplicate rows will be returned by the
operation.

The following example amends the one used previously in this lesson to use EXCEPT to return
geographical information that is not common between the Customers table and the Suppliers table.
Remember that there are 91 rows in the Customers table and 29 rows in the Suppliers table. Initially, the
query is executed with the Suppliers table listed first:

EXCEPT Example

SELECT country, city
FROM Production.Suppliers
EXCEPT
SELECT country, city
FROM Sales.Customers;

There are 24 rows returned. Part of the result set is displayed here:

country city
---------- -------------
Australia Melbourne
Australia Sydney
Canada Ste-Hyacinthe
Denmark Lyngby
Finland Lappeenranta
France Annecy
France Montceau
 (24 row(s) affected)

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
11-8 Using Set Operators

The results are different when the order of the input result sets is reversed:

EXCEPT Example – Input Set Order Reversed

SELECT country, city
FROM Sales.Customers
EXCEPT
SELECT country, city
FROM Production.Suppliers;

This returns 64 rows. When using EXCEPT, plan the order of the input result sets carefully.

Demonstration: Using EXCEPT and INTERSECT

In this demonstration, you will see how to:

 Use INTERSECT and EXCEPT

Demonstration Steps
1. Ensure that you have completed the previous demonstration in this module. Alternatively, start the

MSL-TMG1, 20761A-MIA-DC, and 20761A-MIA-SQL virtual machines, log on to 20761A-MIA-SQL as
ADVENTUREWORKS\Student with the password Pa$$w0rd.

2. If SQL Server Management Studio is not already open, start it and connect to your Azure instance of
the AdventureWorksLT database engine instance using SQL Server authentication, and then open
the Demo.ssmssln solution in the D:\Demofiles\Mod11\Demo folder.

3. In Solution Explorer, open the 21 – Demonstration B.sql script file.

4. In the Available Databases list, click AdventureWorksLT.

5. Select the code under the comment Step 2, and then click Execute.

6. Select the code under the comment Step 3, and then click Execute.

7. Select the code under the comment Step 4, and then click Execute.

8. Select the code under the comment Step 5, and then click Execute.

9. Select the code under the comment Step 6, and then click Execute.

10. Keep SQL Server Management Studio open for the next demonstration.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
Querying Data with Transact-SQL 11-9

Check Your Knowledge

Question

You have a table of employees and a table of customers, both of which contain a
column holding the name of the country where the customer or employee is located.
You want to know which countries have at least one customer and at least one
employee. Which set operator should you use?

Select the correct answer.

 UNION ALL

 UNION

 EXCEPT

 INTERSECT

 None of the above

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
11-10 Using Set Operators

Lesson 3
Using APPLY

As an alternative to combining or comparing rows from two sets, SQL Server provides a mechanism to
apply a table expression from one set on each row in the other set. In this lesson, you will learn how to use
the APPLY operator to process rows in one set using rows in another.

Lesson Objectives
After completing this lesson, you will be able to:

 Describe the use of the APPLY operator to manipulate sets.

 Write queries using the CROSS APPLY operator.

 Write queries using the OUTER APPLY operator.

Using the APPLY Operator

SQL Server provides the APPLY operator to enable
queries that evaluate rows in one input set against
the expression that defines the second input set.
Strictly speaking, APPLY is a table operator, not a
set operator. You will use APPLY in a FROM clause,
like a JOIN, rather than as a set operator that
operates on two compatible result sets of queries.

Conceptually, the APPLY operator is similar to a
correlated subquery in that it applies a correlated
table expression to each row from a table. However,
APPLY differs from correlated subqueries by
returning a table-valued result rather than a scalar
or multi-valued result. For example, the table expression could be a table-valued function (TVF); you can
pass elements from the left row as input parameters to the TVF.

 Note: When describing input tables used with APPLY, the terms “left” and “right” are used
in the same way as they are with the JOIN operator, based on the order they appear, relative to
one another in the FROM clause.

To use APPLY, you will supply two input sets within a single FROM clause. With APPLY, unlike the set
operators you have learned about, the second, or right, table source is logically processed once per row
found in the first, or left, table source.

APPLY supports two different forms: CROSS APPLY and OUTER APPLY, which you will learn about in this
lesson.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
Querying Data with Transact-SQL 11-11

The general syntax for APPLY. Each result from the left table source will be passed as an input to the right
table source:

APPLY Syntax

SELECT <column_list>
FROM <left_table_source> AS <alias>
[CROSS]|[OUTER] APPLY
 <right_table_source> AS <alias>;

See Using APPLY in the “Remarks” section of FROM (Transact-SQL) in Books Online at:

FROM (Transact-SQL)

http://aka.ms/r0uc2i

The CROSS APPLY Operator

As you learned in the previous topic, APPLY
executes the right table source for each of the rows
in the left table source—and returns the results as a
single result set.

The CROSS APPLY form of the operator will include
in the output result set only those values from the
left table source where a value is found in the right
table source.

 Note: Note that the term CROSS, when used
in CROSS APPLY, does not have the same meaning
as CROSS when used in CROSS JOIN. Whereas a CROSS JOIN returns all the possible
combinations of the left and right table sources, CROSS APPLY returns only the values from the
left table source where a value is found in the right table source.

This makes a CROSS APPLY statement very similar to an INNER JOIN—this similarity is such that almost all
T-SQL statements that include an INNER JOIN between two tables can be rewritten as a statement using
CROSS APPLY.

Consider the following simple SELECT statement, using an INNER JOIN between the sales orders and sales
order details tables:

CROSS APPLY; INNER JOIN Example

SELECT o.orderid, o.orderdate,
od.productid, od.unitprice, od.qty
FROM Sales.Orders AS o
INNER JOIN Sales.OrderDetails AS od
ON o.orderid = od.orderid ;

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
11-12 Using Set Operators

A partial result from the TSQL sample database:

orderid orderdate productid unitprice qty
----------- ----------------------- ----------- --------------------- ------
10248 2006-07-04 00:00:00.000 11 14.00 12
10248 2006-07-04 00:00:00.000 42 9.80 10
10248 2006-07-04 00:00:00.000 72 34.80 5
10249 2006-07-05 00:00:00.000 14 18.60 9
10249 2006-07-05 00:00:00.000 51 42.40 40
10250 2006-07-08 00:00:00.000 41 7.70 10
10250 2006-07-08 00:00:00.000 51 42.40 35
10250 2006-07-08 00:00:00.000 65 16.80 15
...
(2155 row(s) affected)

Here is the same statement rewritten to use CROSS APPLY:

CROSS APPLY; INNER JOIN Rewritten Example

SELECT o.orderid, o.orderdate,
od.productid, od.unitprice, od.qty
FROM Sales.Orders AS o
CROSS APPLY (SELECT productid, unitprice, qty
 FROM Sales.OrderDetails AS so
 WHERE so.orderid = o.orderid
) AS od;

 Note: Notice that the JOIN predicate
Sales.OrderDetails.orderid = Sales.Orders.orderid
moves from the INNER JOIN clause to the WHERE clause of the right table source when the
query is rewritten to use CROSS APPLY.

When executed, this query returns the same result as the version written using INNER JOIN:

orderid orderdate productid unitprice qty
----------- ----------------------- ----------- --------------------- ------
10248 2006-07-04 00:00:00.000 11 14.00 12
10248 2006-07-04 00:00:00.000 42 9.80 10
10248 2006-07-04 00:00:00.000 72 34.80 5
10249 2006-07-05 00:00:00.000 14 18.60 9
10249 2006-07-05 00:00:00.000 51 42.40 40
10250 2006-07-08 00:00:00.000 41 7.70 10
10250 2006-07-08 00:00:00.000 51 42.40 35
10250 2006-07-08 00:00:00.000 65 16.80 15
...
(2155 row(s) affected)

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
Querying Data with Transact-SQL 11-13

The OUTER APPLY Operator

As you learned in an earlier topic, APPLY executes
the right table source for each of the rows in the
left table source, and returns the results as a single
result set.

The OUTER APPLY form of the operator will include
all the values from the left table source in the
output result set and values from the right table
source where they exist. Where the right table
source does not contain a value for a left table
source value, columns derived from the right table
source will have a NULL value.

This makes an OUTER APPLY statement very similar
to a LEFT OUTER JOIN—this similarity is such that almost all T-SQL statements that include a LEFT OUTER
JOIN between two tables can be rewritten as a statement using OUTER APPLY.

As with LEFT OUTER JOIN, the order in which the table sources appear might influence the result.

The following SELECT statement uses a LEFT OUTER JOIN between the suppliers table and the customers
table to show all countries where suppliers are located—and which of those countries also contain
customers:

OUTER APPLY; LEFT OUTER JOIN example

SELECT DISTINCT s.country AS supplier_country, c.country as customer_country
FROM Production.Suppliers AS s
LEFT OUTER JOIN Sales.Customers AS c
ON c.country = s.country
ORDER BY supplier_country;

 Note: Notice that the JOIN predicate
Sales.Customers.Country = Production.Suppliers.Country
moves from the LEFT OUTER JOIN clause to the WHERE clause of the right table source when the
query is rewritten to use OUTER APPLY.

This query returns the same result as the LEFT OUTER JOIN version of the query:

supplier_country customer_country
---------------- ----------------
Australia NULL
Brazil Brazil
Canada Canada
Denmark Denmark
Finland Finland
France France
Germany Germany
Italy Italy
Japan NULL
Netherlands NULL
Norway Norway
Singapore NULL
Spain Spain
Sweden Sweden
UK UK
USA USA

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
11-14 Using Set Operators

 (16 row(s) affected)

This query can be rewritten using OUTER APPLY:

OUTER APPLY; LEFT OUTER JOIN Rewritten Example

SELECT DISTINCT s.country AS supplier_country, c.country as customer_country
FROM Production.Suppliers AS s
OUTER APPLY (SELECT country
 FROM Sales.Customers AS cu
 WHERE cu.country = s.country
) AS c
ORDER BY supplier_country;

Returns:

supplier_country customer_country
---------------- ----------------
Australia NULL
Brazil Brazil
Canada Canada
Denmark Denmark
Finland Finland
France France
Germany Germany
Italy Italy
Japan NULL
Netherlands NULL
Norway Norway
Singapore NULL
Spain Spain
Sweden Sweden
UK UK
USA USA
 (16 row(s) affected)

CROSS APPLY and OUTER APPLY Features

As you learned in the previous topics, there are
many similarities between CROSS APPLY and INNER
JOIN, and OUTER APPLY and LEFT OUTER JOIN.

However, the APPLY operators enable some types
of query to be executed which could not be written
using JOINs. These are queries which rely on the left
table source being processed before being applied
to the right table source. Two examples shown in
this topic are using a query returning top results for
each input value and a TVF as the right table
source.

A sales manager has requested a report showing
the three most recent orders for each customer, including customers with no orders. The following query
is one way to meet this requirement:

OUTER APPLY: Three Most Recent Orders Per Customer Example.

SELECT C.custid, TopOrders.orderid, TopOrders.orderdate

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
Querying Data with Transact-SQL 11-15

FROM Sales.Customers AS C
OUTER APPLY
 (SELECT TOP (3) orderid, CAST(orderdate AS date) AS orderdate
 FROM Sales.Orders AS O
 WHERE O.custid = C.custid
 ORDER BY orderdate DESC, orderid DESC) AS TopOrders;

 Note: Note that because OUTER APPLY is used here, customers with no orders are included
in the result (with NULL in the orderid and orderdate columns). If CROSS APPLY were used
instead of OUTER APPLY, customers with no orders would not appear in the results.

Partial results, including rows with NULLs, appear as follows:

custid orderid orderdate
----------- ----------- ----------
1 11011 2008-04-09
1 10952 2008-03-16
1 10835 2008-01-15
2 10926 2008-03-04
2 10759 2007-11-28
2 10625 2007-08-08
22 NULL NULL
57 NULL NULL
58 11073 2008-05-05
58 10995 2008-04-02
58 10502 2007-04-10
(265 row(s) affected)

A TVF might be used as the right table source for an instance of the APPLY operator.

The following example uses the supplierid column from the left input table as an input parameter to a
TVF named dbo.fn_TopProductsByShipper. If there are rows in the Suppliers table with no corresponding
products, the rows will not be displayed:

CROSS APPLY: Calling a Table-Valued Function Example

SELECT S.supplierid, s.companyname, P.productid, P.productname, P.unitprice
FROM Production.Suppliers AS S
CROSS APPLY dbo.fn_TopProductsByShipper(S.supplierid) AS P;

 Note: Note that because CROSS APPLY is used here, suppliers with no products are
excluded from the result.

Partial results appear as follows:

supplierid companyname productid productname unitprice
----------- -------------- ----------- ------------- ---------
1 Supplier SWRXU 2 Product RECZE 19.00
1 Supplier SWRXU 1 Product HHYDP 18.00
1 Supplier SWRXU 3 Product IMEHJ 10.00
2 Supplier VHQZD 4 Product KSBRM 22.00
2 Supplier VHQZD 5 Product EPEIM 21.35
2 Supplier VHQZD 65 Product XYWBZ 21.05
3 Supplier STUAZ 8 Product WVJFP 40.00
3 Supplier STUAZ 7 Product HMLNI 30.00
3 Supplier STUAZ 6 Product VAIIV 25.00

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
11-16 Using Set Operators

Demonstration: Using CROSS APPLY and OUTER APPLY

In this demonstration, you will see how to:

 Use forms of the APPLY Operator

Demonstration Steps
1. Ensure that you have completed the previous demonstration in this module. Alternatively, start the

MSL-TMG1, 20761A-MIA-DC, and 20761A-MIA-SQL virtual machines, log on to 20761A-MIA-SQL as
ADVENTUREWORKS\Student with the password Pa$$w0rd.

2. If SQL Server Management Studio is not already open, start it and connect to your Azure instance of
the AdventureWorksLT database engine instance using SQL Server authentication, and then open
the Demo.ssmssln solution in the D:\Demofiles\Mod11\Demo folder.

3. In Solution Explorer, open the 31 – Demonstration C.sql script file.

4. In the Available Databases list, click AdventureWorksLT.

5. Select the code under the comment Step 2, and then click Execute.

6. Select the code under the comment Step 3, and then click Execute.

7. Select the code under the comment Step 4, and then click Execute.

8. Select the code under the comment Step 5, and then click Execute.

9. Select the code under the comment Test with CROSS APPLY, and then click Execute.

10. Select the code under the comment Step 6, and then click Execute.

11. Select the code under the comment Step 7, and then click Execute.

12. Select the code under the comment Use OUTER APPLY to include customers with no orders, and
then click Execute.

13. Close SQL Server Management Studio, without saving any changes.

Question: What is the difference between CROSS APPLY and CROSS JOIN?

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
Querying Data with Transact-SQL 11-17

Lab: Using Set Operators
Scenario
As a business analyst for Adventure Works, you will be writing reports using corporate databases stored in
SQL Server 2016. You have been provided with a set of business requirements for data and you will write
T-SQL queries to retrieve the specified data from the databases. Because of the complex business
requirements, you will need to prepare combined results from multiple queries using set operators.

Objectives
After completing this lab, you will be able to:

 Write queries that use the UNION and UNION ALL operators.

 Write queries that use the CROSS APPLY and OUTER APPLY operators.

 Write queries that use the EXCEPT and INTERSECT operators.

Estimated Time: 60 minutes

Virtual machine: 20761A-MIA-SQL

User name: ADVENTUREWORKS\Student

Password: Pa$$w0rd

Exercise 1: Writing Queries That Use UNION Set Operators and UNION ALL
Multi-Set Operators

Scenario
The marketing department needs some additional information regarding segmentation of products and
customers. It would like to have a report, based on multiple queries, which is presented as one result. You
will use the UNION operator to write different SELECT statements, and then merge them together into
one result.

The main tasks for this exercise are as follows:

1. Prepare the Lab Environment

2. Write a SELECT Statement to Retrieve Specific Products

3. Write a SELECT Statement to Retrieve All Products with a Total Sales Amount of More Than $50,000

4. Merge the Results from Task 1 and Task 2

5. Write a SELECT Statement to Retrieve the Top 10 Customers by Sales Amount for January 2008 and
February 2008

 Task 1: Prepare the Lab Environment
1. Ensure that the 20761A-MIA-DC and 20761A-MIA-SQL virtual machines are both running, and then

log on to 20761A-MIA-SQL as ADVENTUREWORKS\Student with the password Pa$$w0rd.

2. Run Setup.cmd in the D:\Labfiles\Lab11\Starter folder as Administrator.

 Task 2: Write a SELECT Statement to Retrieve Specific Products
1. In SQL Server Management Studio, open the project file

D:\Labfiles\Lab11\Starter\Project\Project.ssmssln and the T-SQL script 51 - Lab Exercise 1.sql. Ensure
that you are connected to the TSQL database.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
11-18 Using Set Operators

2. Write a SELECT statement to return the productid and productname columns from the
Production.Products table. Filter the results to include only products that have a categoryid value 4.

3. Execute the written statement and compare the results that you achieved with the desired results
shown in the file D:\Labfiles\Lab11\ Solution\52 - Lab Exercise 1 - Task 1 Result.txt. Remember the
number of rows in the results.

 Task 3: Write a SELECT Statement to Retrieve All Products with a Total Sales Amount
of More Than $50,000
1. Write a SELECT statement to return the productid and productname columns from the

Production.Products table. Filter the results to include only products that have a total sales amount
of more than $50,000. For the total sales amount, you will need to query the Sales.OrderDetails
table and aggregate all order line values (qty * unitprice) for each product.

2. Execute the written statement and compare the results that you achieved with the desired results
shown in the file D:\Labfiles\Lab11\ Solution\53 - Lab Exercise 1 - Task 2 Result.txt. Remember the
number of rows in the results.

 Task 4: Merge the Results from Task 1 and Task 2
1. Write a SELECT statement that uses the UNION operator to retrieve the productid and productname

columns from the T-SQL statements in task 1 and task 2.

2. Execute the written statement and compare the results that you achieved with the desired results
shown in the file D:\Labfiles\Lab11\ Solution\54 - Lab Exercise 1 - Task 3_1 Result.txt.

3. What is the total number of rows in the results? If you compare this number with an aggregate value
of the number of rows from tasks 1 and 2, is there any difference?

4. Copy the T-SQL statement and modify it to use the UNION ALL operator.

5. Execute the written statement and compare the results that you achieved with the desired results
shown in the file D:\Labfiles\Lab11\ Solution\55 - Lab Exercise 1 - Task 3_2 Result.txt.

6. What is the total number of rows in the result? What is the difference between the UNION and
UNION ALL operators?

 Task 5: Write a SELECT Statement to Retrieve the Top 10 Customers by Sales Amount
for January 2008 and February 2008
1. Write a SELECT statement to retrieve the custid and contactname columns from the

Sales.Customers table. Display the top 10 customers by sales amount for January 2008 and display
the top 10 customers by sales amount for February 2008. (Hint: Write two SELECT statements, each
joining Sales.Customers and Sales.OrderValues and use the appropriate set operator.)

2. Execute the T-SQL code and compare the results that you achieved with the desired results shown in
the file D:\Labfiles\Lab11\ Solution\56 - Lab Exercise 1 - Task 4 Result.txt.

Results: After this exercise, you should know how to use the UNION and UNION ALL set operators in T-
SQL statements.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
Querying Data with Transact-SQL 11-19

Exercise 2: Writing Queries That Use the CROSS APPLY and OUTER APPLY
Operators

Scenario
The sales department needs a more advanced analysis of buying behavior. Staff want to find out the top
three products, based on sales revenue, for each customer. Use the APPLY operator to achieve this result.

The main tasks for this exercise are as follows:

1. Write a SELECT Statement That Uses the CROSS APPLY Operator to Retrieve the Last Two Orders for
Each Product

2. Write a SELECT Statement That Uses the CROSS APPLY Operator to Retrieve the Top Three Products,
Based on Sales Revenue, for Each Customer

3. Use the OUTER APPLY Operator

4. Analyze the OUTER APPLY Operator

5. Remove the TVF Created for This Lab

 Task 1: Write a SELECT Statement That Uses the CROSS APPLY Operator to Retrieve
the Last Two Orders for Each Product
1. Open the T-SQL script 61 - Lab Exercise 2.sql. Ensure that you are connected to the TSQL database.

2. Write a SELECT statement to retrieve the productid and productname columns from the
Production.Products table. In addition, for each product, retrieve the last two rows from the
Sales.OrderDetails table based on orderid number.

3. Use the CROSS APPLY operator and a correlated subquery. Order the result by the column productid.

4. Execute the written statement and compare the results that you achieved with the desired results
shown in the file D:\Labfiles\Lab11\ Solution\62 - Lab Exercise 2 - Task 1 Result.txt.

 Task 2: Write a SELECT Statement That Uses the CROSS APPLY Operator to Retrieve
the Top Three Products, Based on Sales Revenue, for Each Customer
1. Execute the provided T-SQL code to create the inline TVF fnGetTop3ProductsForCustomer:

DROP FUNCTION IF EXISTS dbo.fnGetTop3ProductsForCustomer;
GO
CREATE FUNCTION dbo.fnGetTop3ProductsForCustomer
(@custid AS INT) RETURNS TABLE
AS
RETURN
SELECT TOP(3)
d.productid,
p.productname,
SUM(d.qty * d.unitprice) AS totalsalesamount
FROM Sales.Orders AS o
INNER JOIN Sales.OrderDetails AS d ON d.orderid = o.orderid
INNER JOIN Production.Products AS p ON p.productid = d.productid
WHERE custid = @custid
GROUP BY d.productid, p.productname
ORDER BY totalsalesamount DESC;

2. Write a SELECT statement to retrieve the custid and contactname columns from the
Sales.Customers table. Use the CROSS APPLY operator with the dbo.fnGetTop3ProductsForCustomer
function to retrieve productid, productname, and totalsalesamount columns for each customer.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
11-20 Using Set Operators

3. Execute the written statement and compare the results that you achieved with the recommended
result shown in the file D:\Labfiles\Lab11\ Solution\63 - Lab Exercise 2 - Task 2 Result.txt. Remember
the number of rows in the results.

 Task 3: Use the OUTER APPLY Operator
1. Copy the T-SQL statement from the previous task and modify it by replacing the CROSS APPLY

operator with the OUTER APPLY operator.

2. Execute the written statement and compare the results that you achieved with the recommended
results shown in the file D:\Labfiles\Lab11\ Solution\64 - Lab Exercise 2 - Task 3 Result.txt. Notice that
more rows are returned than in the previous task.

 Task 4: Analyze the OUTER APPLY Operator
1. Copy the T-SQL statement from the previous task and modify it by filtering the results to show only

customers without products. (Hint: In a WHERE clause, look for any column returned by the inline TVF
that is NULL.)

2. Execute the written statement and compare the results that you achieved with the recommended
results shown in the file D:\Labfiles\Lab11\ Solution\65 – Lab Exercise 2 – Task 4 Result.txt.

3. What is the difference between the CROSS APPLY and OUTER APPLY operators?

 Task 5: Remove the TVF Created for This Lab
1. Remove the created inline TVF by executing the provided T-SQL code:

DROP FUNCTION IF EXISTS dbo.fnGetTop3ProductsForCustomer;

2. Execute this code exactly as written inside a query window.

Results: After this exercise, you should be able to use the CROSS APPLY and OUTER APPLY operators in
your T-SQL statements.

Exercise 3: Writing Queries That Use the EXCEPT and INTERSECT Operators

Scenario
The marketing department was satisfied with the results from exercise 1, but the staff now need to see
specific rows from one result set that are not present in the other result set. You will have to write
different queries using the EXCEPT and INTERSECT operators.

The main tasks for this exercise are as follows:

1. Write a SELECT Statement to Return All Customers Who Bought More Than 20 Distinct Products

2. Write a SELECT Statement to Retrieve All Customers from the USA, Except Those Who Bought More
Than 20 Distinct Products

3. Write a SELECT Statement to Retrieve Customers Who Spent More Than $10,000

4. Write a SELECT Statement That Uses the EXCEPT and INTERSECT Operators

5. Change the Operator Precedence

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
Querying Data with Transact-SQL 11-21

 Task 1: Write a SELECT Statement to Return All Customers Who Bought More Than
20 Distinct Products
1. Open the T-SQL script 71 - Lab Exercise 3.sql. Ensure that you are connected to the TSQL database.

2. Write a SELECT statement to retrieve the custid column from the Sales.Orders table. Filter the results
to include only customers who bought more than 20 different products (based on the productid
column from the Sales.OrderDetails table).

3. Execute the written statement and compare the results that you achieved with the recommended
results shown in the file D:\Labfiles\Lab11\ Solution\72 - Lab Exercise 3 - Task 1 Result.txt.

 Task 2: Write a SELECT Statement to Retrieve All Customers from the USA, Except
Those Who Bought More Than 20 Distinct Products
1. Write a SELECT statement to retrieve the custid column from the Sales.Orders table. Filter the results

to include only customers from the country USA and exclude all customers from the previous (task 1)
result. (Hint: Use the EXCEPT operator and the previous query.)

2. Execute the written statement and compare the results that you achieved with the recommended
results shown in the file D:\Labfiles\Lab11\ Solution\73 - Lab Exercise 3 - Task 2 Result.txt.

 Task 3: Write a SELECT Statement to Retrieve Customers Who Spent More Than
$10,000
1. Write a SELECT statement to retrieve the custid column from the Sales.Orders table. Filter only

customers who have a total sales value greater than $10,000. Calculate the sales value using the qty
and unitprice columns from the Sales.OrderDetails table.

2. Execute the written statement and compare the results that you achieved with the recommended
results shown in the file D:\Labfiles\Lab11\ Solution\74 - Lab Exercise 3 - Task 3 Result.txt.

 Task 4: Write a SELECT Statement That Uses the EXCEPT and INTERSECT Operators
1. Copy the T-SQL statement from task 2. Add the INTERSECT operator at the end of the statement.

After the INTERSECT operator, add the T-SQL statement from task 3.

2. Execute the T-SQL statement and compare the results that you achieved with the recommended
results shown in the file D:\Labfiles\Lab11\ Solution\75 - Lab Exercise 3 - Task 4 Result.txt. Notice the
total number of rows in the results.

3. In business terms, can you explain which customers are part of the result?

 Task 5: Change the Operator Precedence
1. Copy the T-SQL statement from the previous task and add parentheses around the first two SELECT

statements (from the beginning until the INTERSECT operator).

2. Execute the T-SQL statement and compare the results that you achieved with the recommended
result shown in the file D:\Labfiles\Lab11\ Solution\76 - Lab Exercise 3 - Task 5 Result.txt. Notice the
total number of rows in the results.

3. Are the results different to the results from task 4? Please explain why.

4. What is the precedence among the set operators?

5. Close SQL Server Management Studio.

Results: After this exercise, you should have an understanding of how to use the EXCEPT and INTERSECT
operators in T-SQL statements.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
11-22 Using Set Operators

Module Review and Takeaways
In this module, you have learned about set operators and the APPLY operator.

Review Question(s)
Question: Which set operator would you use to combine sets if you knew there were no
duplicates and wanted the best possible performance?

Question: Which form of the APPLY operator will not return rows from the left table if the
result of the right table expression was empty?

Question: Which form of the APPLY operator can be used to rewrite LEFT OUTER JOIN
queries?

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
Querying Data with Transact-SQL 11-23

Course Evaluation

Your evaluation of this course will help Microsoft understand the quality of your learning experience.

Please work with your training provider to access the course evaluation form.

Microsoft will keep your answers to this survey private and confidential and will use your responses to
improve your future learning experience. Your open and honest feedback is valuable and appreciated.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
L1-1

Module 1: Introduction to Microsoft SQL Server 2016

Lab: Working with SQL Server 2016 Tools
Exercise 1: Working with SQL Server Management Studio

 Task 1: Open Microsoft SQL Server Management Studio
1. Ensure that the 20761A-MIA-DC and 20761A-MIA-SQL virtual machines are running.

2. Log on to 20761A-MIA-SQL as ADVENTUREWORKS\Student with the password Pa$$w0rd.

3. Start SQL Server Management Studio.

4. In the Connect to Server window, click Cancel.

5. Close the Object Explorer window by clicking the Close icon.

6. Close the Solution Explorer window by clicking the Close icon.

7. Open the Object Explorer window by selecting Object Explorer on the View menu (or press F8).

8. Open the Solution Explorer window by selecting Solution Explorer on the View menu (or press
Ctrl+Alt+L).

 Task 2: Configure the Editor Settings
1. With SQL Server Management Studio open, on the Tools menu, click Options.

2. Expand the Environment option and click Fonts and Colors. In the Show settings for dialog box,
select Text Editor. Set the font size to 14 in the Size box.

3. In the left pane, expand the Text Editor option, then expand the Transact-SQL option, and select
IntelliSense to display the Transact-SQL IntelliSense Settings. Clear the Enable IntelliSense check
box.

4. In the left pane, select Tabs (If you have closed the tree, navigate to Text Editor, then Transact-SQL).
Change the Tab size to 6.

5. In the left pane, expand Query Results, then expand SQL Server, and select Results to Grid. Enable
the option Include column headers when copying or saving the results.

6. Apply the changes by clicking the OK button.

Results: After this exercise, you should have opened SSMS and configured editor settings.

Exercise 2: Creating and Organizing T-SQL Scripts

 Task 1: Create a Project
1. Select the File menu, point to New, and then click Project.

2. In the New Project window, select SSMSEmptySqlProject.

3. Type MyFirstProject in the Name text box and D:\Labfiles\Lab01\Starter in the Location text box.
Click the OK button to create the new project.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
L1-2 Querying Data with Transact-SQL

4. In the Solution Explorer window, right-click the Queries folder under MyFirstProject and click New
Query.

5. In the Connect to Database Engine dialog box, click Cancel.

6. Right-click the query file SQLQuery1.sql under the Queries folder, click Rename and type
MyFirstQueryFile.sql as the new name for the file.

7. On the File menu, click Save All.

 Task 2: Add an Additional Query File
1. In the Solution Explorer window, right-click the Queries folder under MyFirstProject. click New

Query.

2. In the Connect to Database Engine dialog box, click Cancel.

3. In the Queries folder, right-click the query file SQLQuery1.sql, click Rename and type
MySecondQueryFile.sql as the new name for the file.

4. Click File Explorer on the taskbar.

5. In Windows File Explorer, navigate to the folder
D:\Labfiles\Lab01\Starter\MyFirstProject\MyFirstProject to see where the files have been
created.

6. In SQL Server Management Studio, in the Solution Explorer window, right-click on the query file
MySecondQueryFile.sql, and select Remove. When the confirmation dialog appears, click Remove.

7. In Windows Explorer, press F5 to refresh the Windows Explorer window to see that the file
MySecondQueryFile.sql is still there.

8. In SQL Server Management Studio Solution, right-click the query file MyFirstQueryFile.sql and select
Remove. When the confirmation dialog appears, click Delete.

9. In Windows Explorer, press F5 to refresh the Windows Explorer window. Notice that the file
MyFirstQueryFile.sql has been deleted.

 Task 3: Reopen the Created Project
1. On the File menu, click Save All.

2. On the File menu, click Exit to close the project and SQL Server Management Studio.

3. Open SQL Server Management Studio again, and in the Connect to Server window, click Cancel.

4. On the File menu, point to Open and click Project/Solution. In the Open Project window,
select the project D:\Labfiles\Lab01\Starter\MyFirstProject\MyFirstProject.ssmssln and click
Open.

5. In Windows Explorer, navigate to the folder
D:\Labfiles\Lab01\Starter\MyFirstProject\MyFirstProject.

6. Drag the file MySecondQueryFile.sql to the Queries folder in Solution Explorer.

7. On the File menu, select Save All.

Results: After this lab exercise, you will have a basic understanding of how to create a project in SSMS
and add T-SQL query files to it.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
L1-3

Exercise 3: Using SQL Server 2016 Technical Documentation

 Task 1: Launch SQL Server 2016 Technical Documentation
1. On the virtual machine, press the Windows key, type manage help settings, and then click Manage

Help Settings.

2. In the Help Library Manager window, select Choose online or local help.

3. Under Set your preferred help experience, click I want to use online help, and then click the OK
button to confirm. If I want to use online help, is already selected then press Cancel.

4. Click the Exit button to close the Help Library Manager window.

 Task 2: Use SQL Server 2016 Technical Documentation
1. On the virtual machine, press the Windows key, type sql server documentation, and then click SQL

Server Documentation.

2. If the Online Help Consent dialog box appears, click Yes to continue.

3. In the left pane, or the top menu of the SQL Server 2016 Technical Documentation website,
expand SQL Server 2016 Technical Documentation, and then expand Database Engine.

4. Click What’s New in Database Engine.

5. Browse the help article.

6. Close Internet Explorer.

Results: After this exercise, you will understand how to find the information you need in SQL Server 2016
Technical Documentation.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
L2-1

Module 2: Introduction to T-SQL Querying

Lab: Introduction to T-SQL Querying
Exercise 1: Executing Basic SELECT Statements

 Task 1: Prepare the Lab Environment
1. Ensure that the 20761A-MIA-DC and 20761A-MIA-SQL virtual machines are both running, and then

log on to 20761A-MIA-SQL as ADVENTUREWORKS\Student with the password Pa$$w0rd.

2. In the D:\Labfiles\Lab02\Starter folder right-click Setup.cmd, and then click Run as administrator.

3. In the User Account Control dialog box, click Yes, and then wait for the script to finish.

1. Press any key to close the command window.

 Task 2: Execute the T-SQL Script
1. On the Taskbar, click Microsoft SQL Server Management Studio.

2. In the Connect to Server window, in the Server name box, type MIA-SQL, ensure Windows
Authentication is selected, and then click Connect.

3. On the File menu, point to Open, and then click Project/Solution.

4. In the Open Project window, browse to the D:\Labfiles\Lab02\Starter\Project folder, and then
double-click Project.ssmssln.

5. In Solution Explorer, expand Queries, and then double-click 51 - Lab Exercise 1.sql. (If Solution
Explorer is not visible, on the View menu, click Solution Explorer.

6. When the query window opens, click Execute. You will notice that the TSQL database is selected in
the Available Databases box. The Available Databases box displays the current database context
under which the T-SQL script will run. This information is also visible on the status bar.

 Task 3: Execute a Part of the T-SQL Script
1. Highlight the following text under the task 2 description:

SELECT firstname
 ,lastname
 ,city
 ,country
FROM HR.Employees;

 Note: To highlight it, move the pointer over the statement while pressing the left mouse
button or use the arrow keys to move the pointer while pressing the Shift key.

2. Click Execute (or press F5). It is very important to understand that you can highlight a specific part of
the code inside the T-SQL script, and execute only that part. If you click Execute without selecting
any part of the code, the whole T-SQL script will be executed. If you highlight a specific part of the
code by mistake, the SQL Server will attempt to run only that part.

3. Close Microsoft SQL Server Management Studio. If prompted to save the files, click No.

Results: After this exercise, you should know how to open the T-SQL script and execute the whole script
or just a specific statement inside it.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
L2-2 Querying Data with Transact-SQL

Exercise 2: Executing Queries That Filter Data Using Predicates

 Task 1: Execute the T-SQL Script
1. On the Taskbar, click Microsoft SQL Server Management Studio.

2. In the Connect to Server window, in the Server name box, type MIA-SQL, and then click Options.

3. On the Connection Properties tab, in the Connect to database list, ensure <default> is selected,
and then click Connect.

4. On the File menu, point to Open, and then click Project/Solution.

5. In the Open Project window, browse to the D:\Labfiles\Lab02\Starter\Project folder, and then
double-click Project.ssmssln.

6. In Solution Explorer, expand Queries, and then double-click 61 - Lab Exercise 2.sql.

7. When the query window opens, click Execute.

8. Notice that you get the error message:

Msg 208, Level 16, State 1, Line 18
Invalid object name 'HR.Employees'.

Why do you think this happened? This error is very common when you are beginning to learn T-SQL.

9. The message tells you that SQL Server could not find the object HR.Employees. This is because the
current database context is set to the master database (look at the Available Databases box where the
current database is displayed), but the IT department supplied T-SQL scripts to be run against the
TSQL database. So you need to change the database context from master to TSQL. You will learn how
to change the database context in the next task.

 Task 2: Change the Database Context with the GUI
1. In the Available Databases list, click TSQL to change the database context.

2. Click Execute.

3. Notice that the result from the SELECT statement returns fewer rows than the one in exercise 1. That
is because it has a predicate in the WHERE clause to filter out all rows that do not have the value
USA in the column country. Only rows for which the logical expression evaluates to TRUE are
returned by the WHERE phase to the subsequent logical query processing phase.

 Task 3: Change the Database Context with T-SQL
1. In the script 61 - Lab Exercise 2.sql, find the lines:

--USE TSQL;
--Go

2. Delete the first two characters, so that the line looks like this:

USE TSQL;
GO

3. By deleting these two characters, you have removed the comment mark. Now the line will not be
ignored by SQL Server.

4. On the File menu, click Save 61 - Lab Exercise 2.sql.

5. On the File menu, click Close. This will close the T-SQL script.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
L2-3

6. In Solution Explorer, double-click 61 - Lab Exercise 2.sql.

7. Click Execute.

8. Observe the results. Why did the script execute with no errors? The script now includes the
uncommented USE TSQL; statement. When you execute the whole T-SQL script, the USE statement
sets the database context to the TSQL database. The next statement in the T-SQL script, the SELECT,
then executes against the TSQL database.

Results: After this exercise, you should have a basic understanding of database context and how to
change it.

Exercise 3: Executing Queries That Sort Data Using ORDER BY

 Task 1: Execute the Initial T-SQL Script
1. In Solution Explorer, double-click 71 - Lab Exercise 3.sql.

2. Click Execute.

3. Notice that the result window is empty. All the statements inside the T-SQL script are commented
out, so SQL Server ignores them.

 Task 2: Uncomment the Needed T-SQL Statements and Execute Them
1. Locate the line:

--USE TSQL;

2. Delete the two characters before the USE statement. The line should now look like this:

USE TSQL;

3. Locate the block comment start element /* after the task 1 description and delete it.

4. Locate the block comment end element */ and delete it.
Any text residing within a block starting with /* and ending with */ is treated as a block comment and
is ignored by SQL Server.

5. Highlight the statement:

USE TSQL;

6. Click Execute. The database context is now set to the TSQL database.

7. Highlight the statement:

SELECT
firstname, lastname, city, country
FROM HR.Employees
WHERE country = 'USA'
ORDER BY lastname;

8. Click Execute.

9. Observe the result and notice that the rows are sorted by the lastname column in ascending order.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
L2-4 Querying Data with Transact-SQL

Results: After this exercise, you should have an understanding of how comments can be specified inside
T-SQL scripts. You will also have an appreciation of how to order the results of a query.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
L3-1

Module 3: Writing SELECT Queries

Lab: Writing Basic SELECT Statements
Exercise 1: Writing Simple SELECT Statements

 Task 1: Prepare the Lab Environment
1. Ensure that the 20761A-MIA-DC and 20761A-MIA-SQL virtual machines are both running, and then

log on to 20761A-MIA-SQL as ADVENTUREWORKS\Student with the password Pa$$w0rd.

2. In the D:\Labfiles\Lab03\Starter folder, right-click Setup.cmd, and then click Run as administrator.

3. In the User Account Control dialog box, click Yes.

4. When the script has finished press Enter.

 Task 2: View All the Tables in the ADVENTUREWORKS Database in Object Explorer
1. On the Taskbar, click Microsoft SQL Server Management Studio.

2. In the Connect to Server window, in the Server name text box, type MIA-SQL, and then click
Options.

3. Under Connection Properties, in the Connect to database list, click <Browse server>.

4. In the Browse for Databases dialog box, choose Yes.

5. Under User Databases, select the TSQL database, and then click OK.

6. On the Login tab, in the Authentication list, click Windows Authentication, and click Connect.

7. In Object Explorer, expand the server MIA-SQL, expand Databases, expand the database TSQL, and
expand Tables.

8. Under Tables, notice that there are four table objects in the Sales schema:

o Sales.Customers

o Sales.OrderDetails

o Sales.Orders

o Sales.Shippers

 Task 3: Write a Simple SELECT Statement That Returns All Rows and Columns from a
Table
1. On the File menu, point to Open and click Project/Solution.

2. In the Open Project window, open the project D:\Labfiles\Lab03\Starter\Project\Project.ssmssln.

3. In Solution Explorer, expand Queries, and double-click Lab Exercise 1.sql. (If Solution Explorer is not
visible, on the View menu, click Solution Explorer.

4. When the query window opens, highlight the statement USE TSQL;, and click Execute.

5. In the query pane, after the task 2 description, type the following query:

SELECT *
FROM Sales.Customers;

6. Highlight the query you typed in step 5 and click Execute.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
L3-2 Querying Data with Transact-SQL

7. In the query pane, type the following code after the first query:

SELECT *
FROM

8. In Object Explorer, select the Sales.Customers table under MIA-SQL, TSQL, Tables. Using the
mouse, drag the selected table into the query pane, after the FROM clause. Add a semicolon to the
end of the SELECT statement.

9. Your finished query should look like this:

SELECT *
FROM [Sales].[Customers];

10. Highlight the written query and click Execute.

 Task 4: Write a SELECT Statement That Returns Specific Columns
1. In Object Explorer, expand the Sales.Customers table.

2. Expand Columns and observe all the columns in the Sales.Customers table.

3. In the query pane, after the task 3 description, type the following query:

SELECT contactname, address, postalcode, city, country
FROM Sales.Customers;

4. Highlight the written query and click Execute.

5. Observe the result. How many rows are affected by the last query? There are multiple ways to answer
this question using SQL Server Management Studio. One way is to select the previous query and click
Execute. The total number of rows affected by the executed query is written in the Results pane
under the Messages tab:

(91 row(s) affected)

Another way is to look at the status bar displayed below the Results pane. On the left side of the
status bar, there is a message stating: “Query executed successfully.” On the right side, the total
number of rows affected by the current query is displayed (91 rows).

Results: After this exercise, you should know how to create simple SELECT statements to analyze existing
tables.

Exercise 2: Eliminating Duplicates Using DISTINCT

 Task 1: Write a SELECT Statement That Includes a Specific Column
1. In Solution Explorer, double-click Lab Exercise 2.sql.

2. When the query window opens, highlight the statement USE TSQL;, and click Execute.

3. In the query pane, after the task 1 description, type the following query:

SELECT country
FROM Sales.Customers;

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
L3-3

4. Highlight the written query and click Execute.

5. Observe that you have multiple rows with the same values. This occurs because the Sales.Customers
table has multiple rows with the same value for the country column.

 Task 2: Write a SELECT Statement That Uses the DISTINCT Clause
1. Highlight the previous query. On the Edit menu, click Copy.

2. In the query window, click the line after the task 2 description. On the Edit menu, click Paste. You
have now copied the previous query to the same query window after the task 2 description.

3. Modify the query by typing DISTINCT after the SELECT clause. Your query should look like this:

SELECT DISTINCT country
FROM Sales.Customers;

4. Highlight the written query and click Execute.

5. Observe the result and answer these questions:

How many rows did the query in task 1 return?

To answer this question, you can highlight the query written under the task 1 description, click Execute, and
read the Results pane. (If you forgot how to access this pane, look at task 4 in exercise 1.) The number of
rows affected by the query is 91.

How many rows did the query in Task 2 return?

To answer this question, you can highlight the query written under the task 2 description, click Execute, and
read the Results pane. The number of rows affected by the query is 21. This means that there are 21 distinct
values for the country column in the Sales.Customers table.

Under which circumstances do the following queries against the Sales.Customers table return the same
result?

SELECT city, region FROM Sales.Customers;
SELECT DISTINCT city, region FROM Sales.Customers;

If all combinations of values in the city and region columns in the Sales.Customers table are unique, both
queries would return the same number of rows. If they are not unique, the first query would return more
rows than the second one with the DISTINCT clause.

Is the DISTINCT clause applied to all columns specified in the query—or just the first column?

The DISTINCT clause is always applied to all columns specified in the SELECT list. It is very important to
remember that the DISTINCT clause does not just apply to the first column in the list.

Results: After this exercise, you should understand how to return only the different (distinct) rows in the
result set of a query.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
L3-4 Querying Data with Transact-SQL

Exercise 3: Using Table and Column Aliases

 Task 1: Write a SELECT Statement That Uses a Table Alias
1. In Solution Explorer, double-click Lab Exercise 3.sql.

2. When the query window opens, highlight the statement USE TSQL;, and click Execute.

3. In the query pane, after the task 1 description, type the following query:

SELECT c.contactname, c.contacttitle
FROM Sales.Customers AS c;

Tip: To use the IntelliSense feature when entering column names in a SELECT statement, you can use
keyboard shortcuts. To enable IntelliSense, press Ctrl+Q+I. To list all the alias members, position your
pointer after the alias and dot (for example, after “c.”) and press Ctrl+J.

4. Highlight the written query and click Execute.

 Task 2: Write a SELECT Statement That Uses Column Aliases
1. In the query pane, after the task 2 description, type the following query:

SELECT c.contactname AS Name, c.contacttitle AS Title, c.companyname AS [Company
Name]
FROM Sales.Customers AS c;

Observe that the column alias [Company Name] is enclosed in square brackets. Column names and
aliases with embedded spaces or reserved keywords must be delimited. This example uses square
brackets as the delimiter, but you can also use the ANSI SQL standard delimiter of double quotes, as
in “Company Name”.

2. Highlight the written query and click Execute.

 Task 3: Write a SELECT Statement That Uses Table and Column Aliases
1. In the query pane, after the task 3 description, type the following query:

SELECT p.productname AS [Product Name]
FROM Production.Products AS p;

2. Highlight the written query and click Execute.

 Task 4: Analyze and Correct the Query
1. Highlight the written query under the task 4 description and click Execute.

2. Observe the result. Note that only one column is retrieved. The problem is that the developer forgot
to add a comma after the first column name, so SQL Server treated the second word after the first
column name as an alias. For this reason, it is best practice to always use AS when specifying aliases—
then it is easier to spot such errors.

3. Correct the query by adding a comma after the first column name. The corrected query should look
like this:

SELECT city, country
FROM Sales.Customers;

Results: After this exercise, you will know how to use aliases for table and column names.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
L3-5

Exercise 4: Using a Simple CASE Expression

 Task 1: Write a SELECT Statement
1. In Solution Explorer, double-click Lab Exercise 4.sql.

2. When the query window opens, highlight the statement USE TSQL;, and click Execute.

3. In the query pane, after the task 1 description, type the following query:

SELECT p.categoryid, p.productname
FROM Production.Products AS p;

4. Highlight the written query and click Execute.

 Task 2: Write a SELECT Statement That Uses a CASE Expression
1. In the query pane, after the task 2 description, type the following:

SELECT p.categoryid, p.productname,
CASE
WHEN p.categoryid = 1 THEN 'Beverages'
WHEN p.categoryid = 2 THEN 'Condiments'
WHEN p.categoryid = 3 THEN 'Confections'
WHEN p.categoryid = 4 THEN 'Dairy Products'
WHEN p.categoryid = 5 THEN 'Grains/Cereals'
WHEN p.categoryid = 6 THEN 'Meat/Poultry'
WHEN p.categoryid = 7 THEN 'Produce'
WHEN p.categoryid = 8 THEN 'Seafood'
ELSE 'Other'
END AS categoryname
FROM Production.Products AS p;

This query uses a CASE expression to add a new column. Note that, when you have a dynamic list of
possible values, you usually store them in a separate table. However, for this example, a static list of
values is being supplied.

2. Highlight the written query and click Execute.

 Task 3: Write a SELECT Statement That Uses a CASE Expression to Differentiate
Campaign-Focused Products
1. Highlight the previous query. On the Edit menu, click Copy.

2. In the query window, click the line after the task 3 description. On the Edit menu, click Paste. You
have now copied the previous query to the same query window after the task 3 description.

3. Add a new column using an additional CASE expression. Your query should look like this:

SELECT p.categoryid, p.productname,
 CASE
 WHEN p.categoryid = 1 THEN 'Beverages'
 WHEN p.categoryid = 2 THEN 'Condiments'
WHEN p.categoryid = 3 THEN 'Confections'
 WHEN p.categoryid = 4 THEN 'Dairy Products'
 WHEN p.categoryid = 5 THEN 'Grains/Cereals'
 WHEN p.categoryid = 6 THEN 'Meat/Poultry'
 WHEN p.categoryid = 7 THEN 'Produce'
 WHEN p.categoryid = 8 THEN 'Seafood'
 ELSE 'Other'
 END AS categoryname,
 CASE
 WHEN p.categoryid IN (1, 7, 8) THEN 'Campaign Products'
 ELSE 'Non-Campaign Products'

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
L3-6 Querying Data with Transact-SQL

 END AS iscampaign
FROM Production.Products AS p;

4. Highlight the written query and click Execute.

5. In the result, observe that the first CASE expression uses the simple form, whereas the second uses the
searched form.

Results: After this exercise, you should know how to use CASE expressions to write simple conditional
logic.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
L4-1

Module 4: Querying Multiple Tables

Lab: Querying Multiple Tables
Exercise 1: Writing Queries That Use Inner Joins

 Task 1: Prepare the Lab Environment
1. Ensure that the 20761A-MIA-DC and 20761A-MIA-SQL virtual machines are both running, and then

log on to 20761A-MIA-SQL as ADVENTUREWORKS\Student with the password Pa$$w0rd.

2. In the D:\Labfiles\Lab04\Starter folder, right-click Setup.cmd, and then click Run as
administrator.

3. In the User Account Control dialog box, click Yes, when prompted, type y, wait for the script to
finish, and then press any key.

 Task 2: Write a SELECT Statement That Uses an Inner Join
1. On the Taskbar, click Microsoft SQL Server Management Studio.

2. In the Connect to Server window, in the Server name box, type MIA-SQL, and click Connect.

3. On the File menu, point to Open, and then click Project/Solution.

4. In the Open Project dialog box, browse to the D:\Labfiles\Lab04\Starter\Project folder, and then
double-click Project.ssmssln.

5. If Solution Explorer is not visible, on the View menu, click Solution Explorer.

6. In Solution Explorer, expand Queries, and then double-click the 51 - Lab Exercise 1.sql query.

7. In the query window, highlight the statement USE TSQL; and click Execute.

8. In the query pane, after the Task 1 description, type the following query:

SELECT
p.productname, c.categoryname
FROM Production.Products AS p
INNER JOIN Production.Categories AS c ON p.categoryid = c.categoryid;

9. Highlight the written query and click Execute.

10. Observe the result and answer these questions:

 Which column did you specify as a predicate in the ON clause of the join? Why?

In this query, the categoryid column is the predicate. By intuition, most people would say that
this is the predicate because the column exists in both input tables. By the way, using the same
name for columns that contain the same data but in different tables is a good practice in data
modeling. Another possibility is to check for referential integrity through primary and foreign key
information using SQL Server Management Studio. If there are no primary or foreign key
constraints, you will have to acquire information about the data model from the developer.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
L4-2 Querying Data with Transact-SQL

 Let us say that there is a new row in the Production.Categories table and this new product category
does not have any products associated with it in the Production.Products table. Would this row be
included in the result of the SELECT statement written under the task 1 description?

No, because an inner join retrieves only the matching rows based on the predicate from both
input tables. Since the new value for the categoryid is not present in the categoryid column in the
Production.Products table, there would be no matching rows in the result of the SELECT
statement.

Results: After this exercise, you should know how to use an inner join between two tables.

Exercise 2: Writing Queries That Use Multiple-Table Inner Joins

 Task 1: Execute the T-SQL Statement
1. In Solution Explorer, double-click the 61 - Lab Exercise 2.sql query.

2. In the query window, highlight the statement USE TSQL;, and then click Execute.

3. Under the Task 1 description, highlight the written query, and click Execute.

4. Observe the error message:

Ambiguous column name 'custid'.

5. This error occurred because the custid column appears in both tables; you have to specify from which
table you would like to retrieve the column values.

 Task 2: Apply the Needed Changes and Execute the T-SQL Statement
1. Highlight the previous query. On the Edit menu, click Copy.

2. In the query window, click the line after the Task 2 description. On the Edit menu, click Paste.

3. Add the column prefix “Customers” to the existing query so that it looks like this:

SELECT
Customers.custid, contactname, orderid
FROM Sales.Customers
INNER JOIN Sales.Orders ON Customers.custid = Orders.custid;

4. Highlight the modified query and click Execute.

 Task 3: Change the Table Aliases
1. Highlight the previous query. On the Edit menu, click Copy.

2. In the query window, click the line after the Task 3 description. On the Edit menu, click Paste.

3. Modify the T-SQL statement to use table aliases. Your query should look like this:

SELECT
c.custid, c.contactname, o.orderid
FROM Sales.Customers AS c
INNER JOIN Sales.Orders AS o ON c.custid = o.custid;

4. Highlight the written query and click Execute.

5. Compare the results with the Task 2 results.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
L4-3

6. Modify the T-SQL statement to include a full source table name as the column prefix. Your query
should now look like this:

SELECT
Customers.custid, Customers.contactname, Orders.orderid
FROM Sales.Customers AS c
INNER JOIN Sales.Orders AS o ON c.custid = o.custid;

7. Highlight the written query and click Execute.

8. Observe the error messages:

Msg 4104, Level 16, State 1, Line 57

The multi-part identifier "Customers.custid" could not be bound.

Msg 4104, Level 16, State 1, Line 57

The multi-part identifier "Customer.contactname" could not be bound.

Msg 4104, Level 16, State 1, Line 57

The multi-part identifier "Orders.orderid" could not be bound.

You received these error messages as, because you are using a different table alias, the full source
table name you are referencing as a column prefix no longer exists. Remember that the SELECT clause
is evaluated after the FROM clause, so you must use the table aliases when specifying columns in the
SELECT clause.

9. Modify the SELECT statement so that it uses the correct table aliases. Your query should look like this:

SELECT
c.custid, c.contactname, o.orderid
FROM Sales.Customers AS c
INNER JOIN Sales.Orders AS o ON c.custid = o.custid;

10. Highlight the written query and click Execute.

 Task 4: Add an Additional Table and Columns
1. In the query pane, after the Task 4 description, type the following query:

SELECT
c.custid, c.contactname, o.orderid, d.productid, d.qty, d.unitprice
FROM Sales.Customers AS c
INNER JOIN Sales.Orders AS o ON c.custid = o.custid
INNER JOIN Sales.OrderDetails AS d ON d.orderid = o.orderid;

2. Highlight the written query and click Execute.

3. Observe the result. Remember that, when you have a multiple-table inner join, the logical query
processing is different from the physical implementation. In this case, it means that you cannot
guarantee the order in which the SQL Server optimizer will process the tables. For example, you
cannot guarantee that the Sales.Customers table will be joined first with the Sales.Orders table, and
then with the Sales.OrderDetails table.

Results: After this exercise, you should have a better understanding of why aliases are important and how
to do a multiple-table join.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
L4-4 Querying Data with Transact-SQL

Exercise 3: Writing Queries That Use Self Joins

 Task 1: Write a Basic SELECT Statement
1. In Solution Explorer, double-click the 71 - Lab Exercise 3.sql query.

2. When the query window opens, highlight the statement USE TSQL;, and then click Execute.

3. In the query pane, after the Task 1 description, type the following query:

SELECT
e.empid, e.lastname, e.firstname, e.title, e.mgrid
FROM HR.Employees AS e;

4. Highlight the written query and click Execute.

5. Observe that the query retrieved nine rows.

 Task 2: Write a Query That Uses a Self Join
1. Highlight the previous query. On the Edit menu, click Copy.

2. In the query window, after the Task 2 description, click the line. On the Edit menu, click Paste.

3. Modify the query by adding a self join to get information about the managers. The query should look
like this:

SELECT
e.empid, e.lastname, e.firstname, e.title, e.mgrid,
m.lastname AS mgrlastname, m.firstname AS mgrfirstname
FROM HR.Employees AS e
INNER JOIN HR.Employees AS m ON e.mgrid = m.empid;

4. Highlight the written query and click Execute.

5. Observe that the query retrieved eight rows and answer these questions:

o Is it mandatory to use table aliases when writing a statement with a self join? Can you use a full
source table name as an alias?

You must use table aliases. You cannot use the full source table name as an alias when
referencing both input tables. Eventually, you could use a full source table name as an alias for
one input table and another alias for the second input table.

o Why did you get fewer rows in the result from the T-SQL statement under the task 2 description,
compared to the result from the T-SQL statement under the task 1 description?

6. In task 2’s T-SQL statement, the inner join used an ON clause based on manager information (column
mgrid). The employee who is the CEO has a missing value in the mgrid column, so this row is not
included in the result.

Results: After this exercise, you should have an understanding of how to write T-SQL statements that use
self joins.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
L4-5

Exercise 4: Writing Queries That Use Outer Joins

 Task 1: Write a SELECT Statement That Uses an Outer Join
1. In Solution Explorer, double-click the 81 - Lab Exercise 4.sql query.

2. In the query window, highlight the statement USE TSQL;, and then click Execute.

3. In the query pane, after the Task 1 description, type the following query:

SELECT
c.custid, c.contactname, o.orderid
FROM Sales.Customers AS c
LEFT OUTER JOIN Sales.Orders AS o ON c.custid = o.custid;

4. Highlight the written query and click Execute.

5. Inspect the result. Notice that the custid 22 and custid 57 rows have a missing value in the orderid
column. This is because there are no rows in the Sales.Orders table for these two values of the custid
column. In business terms, this means that there are currently no orders for these two customers.

Results: After this exercise, you should have a basic understanding of how to write T-SQL statements that
use outer joins.

Exercise 5: Writing Queries That Use Cross Joins

 Task 1: Execute the T-SQL Statement
1. In Solution Explorer, double-click the 91 - Lab Exercise 5.sql query.

2. In the query window, highlight the statement USE TSQL;, and then click Execute.

3. Under the Task 1 description, highlight the T-SQL code and click Execute. Don’t worry if you do not
understand the provided T-SQL code, as it is used here to provide a more realistic example for a cross
join in the next task.

 Task 2: Write a SELECT Statement That Uses a Cross Join
1. In the query pane, after the Task 2 description, type the following query:

SELECT
e.empid, e.firstname, e.lastname, c.calendardate
FROM HR.Employees AS e
CROSS JOIN HR.Calendar AS c;

2. Highlight the written query and click Execute.

3. Observe that the query retrieved 3,294 rows and that there are nine rows in the HR.Employees table.
Because a cross join produces a Cartesian product of both inputs, it means that there are 366
(3,294/9) rows in the HR.Calendar table.

 Task 3: Drop the HR.Calendar Table
1. Under the Task 3 description, highlight the written query and click Execute.

Results: After this exercise, you should have an understanding of how to write T-SQL statements that use
cross joins.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
L5-1

Module 5: Sorting and Filtering Data

Lab: Sorting and Filtering Data
Exercise 1: Write Queries that Filter Data Using a WHERE Clause

 Task 1: Prepare the Lab Environment
1. Ensure that the 20761A-MIA-DC and 20761A-MIA-SQL virtual machines are both running, and then

log on to 20761A-MIA-SQL as ADVENTUREWORKS\Student with the password Pa$$w0rd.

2. In the D:\Labfiles\Lab05\Starter folder, right-click Setup.cmd and then click Run as administrator.

3. In the User Account Control dialog box, click Yes, and then wait for the script to finish.

4. In the Command Prompt window, when prompted, Press any key.

 Task 2: Write a SELECT Statement Using a WHERE Clause
1. Start SQL Server Management Studio and connect to the MIA-SQL database engine instance using

Windows authentication.

2. On the File menu, point to Open and click Project/Solution.

3. In the Open Project window, open the project: D:\Labfiles\Lab05\Starter\Project\Project.ssmssln.

4. If Solution Explorer is not visible, on the View menu, select Solution Explorer or press Ctrl+Alt+L on
the keyboard.

5. In Solution Explorer, expand Queries, and double-click 51 - Lab Exercise 1.sql.

6. When the query window opens, highlight the statement USE TSQL; and click Execute on the toolbar
(or press F5 on the keyboard).

7. In the query pane, type the following query after the task 1 description:

SELECT
custid, companyname, contactname, address, city, country, phone
FROM Sales.Customers
WHERE
country = N'Brazil';

8. Highlight the query and click Execute.

Note the use of the “N” prefix for the character literal ‘Brazil’. This prefix is used because the country
column is a Unicode data type. When expressing a Unicode character literal, you need to specify the
character “N” (for National) as a prefix. If the “N” is omitted, then the query may still run successfully.
However, the safest way is to include the “N” every time, to ensure the results are predictable. You will
learn more about data types in the next module.

 Task 3: Write a SELECT Statement Using an IN Predicate in the WHERE Clause
1. In the query pane, type the following query after the task 2 description:

SELECT
custid, companyname, contactname, address, city, country, phone
FROM Sales.Customers
WHERE
country IN (N'Brazil', N'UK', N'USA');

2. Highlight the query and click Execute.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
L5-2 Querying Data with Transact-SQL

 Task 4: Write a SELECT Statement Using a LIKE Predicate in the WHERE Clause
1. In the query pane, type the following query after the task 3 description:

SELECT
custid, companyname, contactname, address, city, country, phone
FROM Sales.Customers
WHERE
contactname LIKE N'A%';

2. Remember that the percent sign (%) wildcard represents a string of any size (including an empty
string), whereas the underscore (_) wildcard represents a single character.

3. Highlight the written query and click Execute.

 Task 5: Observe the T-SQL Statement Provided by the IT Department
1. Highlight the T-SQL statement provided under the task 4a description and click Execute.

2. Highlight the provided T-SQL statement. On the toolbar, click Edit and then Copy.

3. In the query window, click the line after the task 4b description. On the toolbar, click Edit and then
Paste. You have now copied the previous query to the same query window after the task 4b
description.

4. Modify the query so that it looks like this:

SELECT
c.custid, c.companyname, o.orderid
FROM Sales.Customers AS c
LEFT OUTER JOIN Sales.Orders AS o ON c.custid = o.custid
WHERE
c.city = N'Paris';

5. Highlight the modified query and click Execute.

6. Observe the result. Is it the same as that of the first SQL statement?

The result is not the same. When you specify the predicate in the ON clause, the left outer join
preserves all the rows from the left table (Sales.Customers) and adds only the matching rows from
the right table (Sales.Orders), based on the predicate in the ON clause. This means that all the
customers will show up in the output, but only the ones from Paris will have matching orders. When
you specify the predicate in the WHERE clause, the query will filter only the Paris customers. So be
aware that, when you use an outer join, the result of a query where the predicate is specified in the
ON clause can differ from the result of a query in which the predicate is specified in the WHERE
clause. (When using an INNER JOIN, the results are always the same.) This is because the ON
predicate is matching—it defines which rows from the non-preserved side to match to those from the
preserved side. The WHERE predicate is a filtering predicate—if a row from either side doesn’t satisfy
the WHERE predicate, the row is filtered out.

 Task 6: Write a SELECT Statement to Retrieve Customers Without Orders
1. In the query pane, type the following query after the task 5 description:

SELECT
c.custid, c.companyname
FROM Sales.Customers AS c
LEFT OUTER JOIN Sales.Orders AS o ON c.custid = o.custid
WHERE o.custid IS NULL;

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
L5-3

2. Highlight the written query and click Execute.

It is important to note that, when you are looking for a NULL, you should use the IS NULL operator,
not the equality operator. The equality operator will always return UNKNOWN when you compare
something to a NULL. It will even return UNKNOWN when you compare two NULLs.
The choice of which attribute to filter from the non-preserved side of the join is also important. You
should choose an attribute that can have a NULL only when the row is an outer row (for example, a
NULL originating from the base table). For this purpose, three cases are safe to consider:

 A primary key column. A primary key column cannot be NULL. Therefore, a NULL in such a
column can only mean that the row is an outer row.

 A join column. If a row has a NULL in the join column, it is filtered out by the second phase of the
join. So a NULL in such a column can only mean that it is an outer row.

 A column defined as NOT NULL. A NULL in a column that is defined as NOT NULL can only mean
that the row is an outer row.

Results: After this exercise, you should be able to filter rows of data from one or more tables by using
WHERE predicates with logical operators.

Exercise 2: Write Queries that Sort Data Using an ORDER BY Clause

 Task 1: Write a SELECT Statement Using an ORDER BY Clause
1. In Solution Explorer, double-click the query 61 - Lab Exercise 2.sql. (If the solution is not already

open, on the File menu, click Open and click Project/Solution. Then in the Open Project window,
open the project D:\Labfiles\Lab05\Starter\Project\Project.ssmssln.)

2. When the query window opens, highlight the statement USE TSQL; and click Execute.

3. In the query pane, type the following query after the task 1 description:

SELECT
c.custid, c.contactname, o.orderid, o.orderdate
FROM Sales.Customers AS c
INNER JOIN Sales.Orders AS o ON c.custid = o.custid
WHERE
o.orderdate >= '20080401'
ORDER BY
o.orderdate DESC, c.custid ASC;

4. Highlight the written query and click Execute.

Notice the date filter. It uses a literal (constant) of a date. SQL Server recognizes “20080401” as a
character string literal, and not as a date and time literal. However, because the expression involves
two operands of different types, one needs to be implicitly converted to the other’s type. In this
example, the character string literal is converted to the column’s data type (DATETIME) because
character strings are considered lower in terms of data type precedence—with respect to date and
time data types. Data type precedence and working with date values are covered in detail in the next
module.
Also notice that the character string literal follows the format “yyyymmdd”. Using this format is a best
practice because SQL Server knows how to convert it to the correct date, regardless of the language
settings.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
L5-4 Querying Data with Transact-SQL

 Task 2: Apply the Needed Changes and Execute the T-SQL Statement
1. Highlight the written query under the task 2 description and click Execute.

2. Observe the error message:

Invalid column name 'mgrlastname'.

3. This error occurred because the WHERE clause is evaluated before the SELECT clause and, at that
time, the column did not have an alias. To fix this problem, you must use the source column name
with the appropriate table alias. Modify the T-SQL statement to look like this:

SELECT
e.empid, e.lastname, e.firstname, e.title, e.mgrid,
m.lastname AS mgrlastname, m.firstname AS mgrfirstname
FROM HR.Employees AS e
INNER JOIN HR.Employees AS m ON e.mgrid = m.empid
WHERE
m.lastname = N'Buck';

4. Highlight the written query and click Execute.

 Task 3: Order the Result by the firstname Column
1. Highlight the previous query. On the toolbar, click Edit and then Copy.

2. In the query window, click the line after the task 3a description. On the toolbar, click Edit and then
Paste. You have now copied the previous query to the same query window after the task 3a
description.

3. Modify the T-SQL statement to remove the WHERE clause, and add an ORDER BY clause that uses the
source column name of m.firstname. Your query should look like this:

SELECT
e.empid, e.lastname, e.firstname, e.title, e.mgrid,
m.lastname AS mgrlastname, m.firstname AS mgrfirstname
FROM HR.Employees AS e
INNER JOIN HR.Employees AS m ON e.mgrid = m.empid
ORDER BY
m.firstname;

4. Highlight the written query and click Execute.

5. Highlight the previous query. On the toolbar, click Edit and then Copy.

6. In the query window, click the line after the task 3b description. On the toolbar, click Edit and then
Paste. You have now copied the previous query to the same query window after the task 3b
description.

7. Modify the ORDER BY clause so that it uses the alias for the same column (mgrfirstname). Your query
should look like this:

SELECT
e.empid, e.lastname, e.firstname, e.title, e.mgrid,
m.lastname AS mgrlastname, m.firstname AS mgrfirstname
FROM HR.Employees AS e
INNER JOIN HR.Employees AS m ON e.mgrid = m.empid
ORDER BY
mgrfirstname;

8. Highlight the written query and click Execute.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
L5-5

9. Compare the results for Task 3a and 3b.

10. Why were you equally able to use a source column name or an alias column name?

Results: After this exercise, you should know how to use an ORDER BY clause.

Exercise 3: Write Queries that Filter Data Using the TOP Option

 Task 1: Writing Queries That Filter Data Using the TOP Clause
1. In Solution Explorer, double-click the query 71 - Lab Exercise 3.sql. (If the solution is not already

open, on the File menu, click Open and click Project/Solution. Then in the Open Project window,
open the project D:\Labfiles\Lab05\Starter\Project\Project.ssmssln.)

2. When the query window opens, highlight the statement USE TSQL; and click Execute.

3. In the query pane, type the following query after the task 1 description:

SELECT TOP (20)
orderid, orderdate
FROM Sales.Orders
ORDER BY orderdate DESC;

4. Highlight the query and click Execute.

 Task 2: Use the OFFSET-FETCH Clause to Implement the Same Task
1. In the query pane, type the following query after the task 2 description:

SELECT
orderid, orderdate
FROM Sales.Orders
ORDER BY orderdate DESC
OFFSET 0 ROWS FETCH FIRST 20 ROWS ONLY;

2. Highlight the query and click Execute.

Remember that the OFFSET-FETCH clause was a new functionality in SQL Server 2012 and will not
work in earlier versions. Unlike the TOP clause, the OFFSET-FETCH clause must be used with the
ORDER BY clause.

 Task 3: Write a SELECT Statement to Retrieve the Most Expensive Products
1. In the query pane, type the following query after the task 3 description:

SELECT TOP (10) PERCENT
productname, unitprice
FROM Production.Products
ORDER BY unitprice DESC;

2. Highlight the query and click Execute.

Implementing this task with the OFFSET-FETCH clause is possible but not easy because, unlike TOP,
OFFSET-FETCH does not support a PERCENT option.

Results: After this exercise, you should have an understanding of how to apply the TOP option in the
SELECT clause of a T-SQL statement.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
L5-6 Querying Data with Transact-SQL

Exercise 4: Write Queries that Filter Data Using the OFFSET-FETCH Clause

 Task 1: OFFSET-FETCH Clause to Fetch the First 20 Rows
1. In Solution Explorer, double-click the query 81 - Lab Exercise 4.sql. (If the solution is not already

open, on the File menu, click Open and click Project/Solution. Then in the Open Project window,
open the project D:\Labfiles\Lab05\Starter\Project\Project.ssmssln.)

2. When the query window opens, highlight the statement USE TSQL; and click Execute.

3. In the query pane, type the following query after the task 1 description:

SELECT
custid, orderid, orderdate
FROM Sales.Orders
ORDER BY orderdate, orderid
OFFSET 0 ROWS FETCH FIRST 20 ROWS ONLY;

4. Highlight the query and click Execute.

 Task 2: Use the OFFSET-FETCH Clause to Skip the First 20 Rows
1. In the query pane, type the following query after the task 2 description:

SELECT
custid, orderid, orderdate
FROM Sales.Orders
ORDER BY orderdate, orderid
OFFSET 20 ROWS FETCH NEXT 20 ROWS ONLY;

2. Highlight the query and click Execute.

 Task 3: Write a Generic Form of the OFFSET-FETCH Clause for Paging
1. The correct code is:

OFFSET (@pagenum - 1) * @pagesize ROWS FETCH NEXT @pagesize ROWS ONLY

2. To test the above expression, type the following query after the task 3 description:

DECLARE @pagenum int,
 @pagesize int;
SET @pagenum = 3;
SET @pagesize = 10;
SELECT
custid, orderid, orderdate
FROM Sales.Orders
ORDER BY orderdate, orderid
OFFSET (@pagenum - 1) * @pagesize ROWS FETCH NEXT @pagesize ROWS ONLY;

3. Highlight the query and click Execute.

4. Compare your results with the recommended results in file D:\Labfiles\Lab05\Solution\84 - Lab
Exercise 4- Task 3 Result. Try changing the values for @pagenum and/or @pagesize, highlight the
whole query (including the DECLARE and SET statements) and then click Execeute.

Results: After this exercise, you will be able to use OFFSET-FETCH to work page-by-page through a result
set returned by a SELECT statement.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
L6-1

Module 6: Working with SQL Server 2016 Data Types

Lab: Working with SQL Server 2016 Data
Types
Exercise 1: Writing Queries That Return Date and Time Data

 Task 1: Prepare the Lab Environment
1. Ensure that the 20761A-MIA-DC and 20761A-MIA-SQL virtual machines are both running, and then

log on to 20761A-MIA-SQL as ADVENTUREWORKS\Student with the password Pa$$w0rd.

2. In the D:\Labfiles\Lab06\Starter folder, right-click Setup.cmd, and then click Run as
administrator.

3. In the User Account Control dialog box, click Yes, and then wait for the script to finish, when
prompted press any key.

 Task 2: Write a SELECT Statement to Retrieve Information About the Current Date
1. Start SQL Server Management Studio and connect to the MIA-SQL database engine using Windows

authentication.

2. On the File menu, point to Open and click Project/Solution.

3. In the Open Project window, open the project D:\Labfiles\Lab06\Starter\Project\Project.ssmssln.

4. In Solution Explorer, expand Queries, and double-click 51 - Lab Exercise 1.sql. (If Solution Explorer is
not visible, on the View menu, click Solution Explorer.

5. When the query window opens, highlight the statement USE TSQL; and click Execute.

6. In the query pane, after the Task 1 description, type the following query:

SELECT
CURRENT_TIMESTAMP AS currentdatetime,
CAST(CURRENT_TIMESTAMP AS DATE) AS currentdate,
CAST(CURRENT_TIMESTAMP AS TIME) AS currenttime,
YEAR(CURRENT_TIMESTAMP) AS currentyear,
MONTH(CURRENT_TIMESTAMP) AS currentmonth,
DAY(CURRENT_TIMESTAMP) AS currentday,
DATEPART(week, CURRENT_TIMESTAMP) AS currentweeknumber,
DATENAME(month, CURRENT_TIMESTAMP) AS currentmonthname;

This query uses the CURRENT_TIMESTAMP function to return the current date and time. You can also
use the SYSDATETIME function to get a more precise time element compared to the
CURRENT_TIMESTAMP function.
Note that you cannot use the alias currentdatetime as the source in the second column calculation
because SQL Server supports a concept called all-at-once operations. This means that all expressions
appearing in the same logical query processing phase are evaluated as if they occurred at the same
point in time. This concept explains why, for example, you cannot refer to column aliases assigned in
the SELECT clause within the same SELECT clause, even if it seems intuitive that you should be able to.

7. Highlight the written query and click Execute.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
L6-2 Querying Data with Transact-SQL

 Task 3: Write a SELECT Statement to Return the Date Data Type
1. In the query pane, after the Task 2 description, type the following queries:

SELECT DATEFROMPARTS(2015, 12, 11) AS somedate;
SELECT CAST('20151211' AS DATE) AS somedate;
SELECT CONVERT(DATE, '12/11/2015', 101) AS somedate;

2. Highlight the written queries and click Execute.

 Task 4: Write a SELECT Statement That Uses Different Date and Time Functions
1. In the query pane, after the Task 3 description, type the following query:

SELECT
DATEADD(month, 3, CURRENT_TIMESTAMP) AS threemonths,
DATEDIFF(day, CURRENT_TIMESTAMP, DATEADD(month, 3, CURRENT_TIMESTAMP)) AS diffdays,
DATEDIFF(week, '19920404', '20110916') AS diffweeks,
DATEADD(day, 1, EOMONTH(CURRENT_TIMESTAMP,-1)) AS firstday;

2. Highlight the written query and click Execute.

 Task 5: Write a SELECT Statement to Show Whether a Table of Strings Can Be Used as
Dates
1. Under the Task 4 description, highlight the written query, and click Execute.

2. In the query pane, type the following queries after the Task 4 description:

SELECT
isitdate,
CASE WHEN ISDATE(isitdate) = 1 THEN CONVERT(DATE, isitdate) ELSE NULL END AS
converteddate
FROM Sales.Somedates;
--Uses the TRY_CONVERT function:
SELECT
isitdate,
TRY_CONVERT(DATE, isitdate) AS converteddate
FROM Sales.Somedates;

The second query uses the TRY_CONVERT function. This function returns a value cast to the specified
data type if the casting succeeds; otherwise, it returns NULL. Do not worry if you do not recognize the
type conversion functions, as they will be covered in the next module.

3. Highlight the written queries and click Execute.

4. Observe the result and answer these questions:

 What is the difference between the SYSDATETIME and CURRENT_TIMESTAMP functions?

There are two main differences. First, the SYSDATETIME function provides a more precise time
element compared to the CURRENT_TIMESTAMP function. Second, the SYSDATETIME function
returns the data type datetime2(7), whereas the CURRENT_TIMESTAMP returns the data type
datetime.

 What is a language-neutral format for the data type date?

You can use the formats 'YYYYMMDD' or 'YYYY-MM-DD'.

Results: After this exercise, you should be able to retrieve date and time data using T-SQL.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
L6-3

Exercise 2: Writing Queries That Use Date and Time Functions

 Task 1: Write a SELECT Statement to Retrieve Customers with Orders in a Given
Month
1. In Solution Explorer, double-click the query 61 - Lab Exercise 2.sql.

2. When the query window opens, highlight the statement USE TSQL; and click Execute.

3. In the query pane, after the task 1 description, type the following query:

SELECT DISTINCT
custid
FROM Sales.Orders
WHERE
YEAR(orderdate) = 2008
AND MONTH(orderdate) = 2;

4. Highlight the written query and click Execute.

Note that, as a performance enhancement, you could also write a query that uses a range format
which would utilize an index on Sales.Orders.orderdate. The query would then look like this:

SELECT DISTINCT
custid
FROM Sales.Orders
WHERE
orderdate >= '20080201'
AND orderdate < '20080301';

 Task 2: Write a SELECT Statement to Calculate the First and Last Day of the Month
1. In the query pane, after the task 2 description, type the following query:

SELECT
CURRENT_TIMESTAMP AS currentdate,
DATEADD (day, 1, EOMONTH(CURRENT_TIMESTAMP, -1)) AS firstofmonth,
EOMONTH(CURRENT_TIMESTAMP) AS endofmonth;

2. Highlight the written query and click Execute.

This query uses the EOMONTH function, which was added in SQL Server 2012.

 Task 3: Write a SELECT Statement to Retrieve the Orders Placed in the Last Five Days
of the Ordered Month
1. In the query pane, after the task 3 description, type the following query:

SELECT
orderid, custid, orderdate
FROM Sales.Orders
WHERE
DATEDIFF(
day,
orderdate,
EOMONTH(orderdate)
) < 5;

2. Highlight the written query and click Execute.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
L6-4 Querying Data with Transact-SQL

 Task 4: Write a SELECT Statement to Retrieve All Distinct Products Sold in the First 10
Weeks of the Year 2007
1. In the query pane, after the task 4 description, type the following query:

SELECT DISTINCT
d.productid
FROM Sales.Orders AS o
INNER JOIN Sales.OrderDetails AS d ON d.orderid = o.orderid
WHERE
DATEPART(week, orderdate) <= 10
AND YEAR(orderdate) = 2007;

2. Highlight the written query and click Execute.

Results: After this exercise, you should know how to use the date and time functions.

Exercise 3: Writing Queries That Return Character Data

 Task 1: Write a SELECT Statement to Concatenate Two Columns
1. In Solution Explorer, double-click the query 71 - Lab Exercise 3.sql.

2. When the query window opens, highlight the statement USE TSQL; and click Execute.

3. In the query pane, after the task 1 description, type the following query:

SELECT
CONCAT(contactname, N' (city: ', city, N')') AS contactwithcity
FROM Sales.Customers;

4. Highlight the written query and click Execute.

An alternate way to write this query would be to use the + (plus) operator:

SELECT
contactname + N' (city: ' + city + N')' AS contactwithcity

5. FROM Sales.Customers;

 Task 2: Add an Additional Column to the Concatenated String Which Might Contain
NULL
1. In the query pane, after the task 2 description, type the following query:

SELECT
CONCAT(contactname, N' (city: ', city, N', region: ', region, N')') AS fullcontact
FROM Sales.Customers;

2. Highlight the written query and click Execute.

An alternative way to write this query would be to use the + (plus) operator, which requires the
COALESCE function to replace a NULL with an empty string. Later modules will include more
examples of how to handle NULL.

SELECT
contactname + N' (city: ' + city + N', region: ' + COALESCE(region, '') + N')' AS
fullcontact
FROM Sales.Customers;

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
L6-5

 Task 3: Write a SELECT Statement to Retrieve Customer Contacts Based on the First
Character in the Contact Name
1. In the query pane, after the task 3 description, type the following query:

SELECT contactname, contacttitle
FROM Sales.Customers
WHERE contactname LIKE N'[A-G]%'
ORDER BY contactname;

2. Highlight the written query and click Execute.

Results: After this exercise, you should have an understanding of how to concatenate character data.

Exercise 4: Writing Queries That Use Character Functions

 Task 1: Write a SELECT Statement That Uses the SUBSTRING Function
1. In Solution Explorer, double-click the query 81 - Lab Exercise 4.sql.

2. When the query window opens, highlight the statement USE TSQL; and click Execute.

3. In the query pane, after the task 1 description, type the following query:

SELECT
contactname,
SUBSTRING(contactname, 0, CHARINDEX(N',', contactname)) AS lastname
FROM Sales.Customers;

4. Highlight the written query and click Execute.

 Task 2: Write a Query to Retrieve the Contact’s First Name Using SUBSTRING
1. In the query pane, after the task 2 description, type the following query:

SELECT
REPLACE(contactname, ',', '') AS newcontactname,
SUBSTRING(contactname, CHARINDEX(N',', contactname)+1, LEN(contactname)-
CHARINDEX(N',', contactname)+1) AS firstname
FROM Sales.Customers;

2. Highlight the written query and click Execute.

 Task 3: Write a SELECT Statement to Format the Customer ID
1. In the query pane, after the task 3 description, type the following query:

SELECT
custid,
N'C' + RIGHT(REPLICATE('0', 5) + CAST(custid AS VARCHAR(5)), 5) AS custnewid
FROM Sales.Customers;

2. Highlight the written query and click Execute.

An alternative way to write this query would be to use the FORMAT function. The query would then
look like this:

SELECT custid,
FORMAT(custid, N'\C00000') AS custnewid
FROM Sales.Customers;

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
L6-6 Querying Data with Transact-SQL

 Task 4: Challenge: Write a SELECT Statement to Return the Number of Character
Occurrences
1. In the query pane, after the task 4 description, type the following query:

SELECT
contactname,
LEN(contactname) - LEN(REPLACE(contactname, 'a', '')) AS numberofa
FROM Sales.Customers
ORDER BY numberofa DESC;

This elegant solution first returns the number of characters in the contact name, and then subtracts
the number of characters in the contact name without the character ‘a’. The result is stored in a new
column named numberofa.

2. Highlight the written query and click Execute.

3. Close SQL Server Management Studio without saving any files.

Results: After this exercise, you should have an understanding of how to use the character functions.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
L7-1

Module 7: Using DML to Modify Data

Lab: Using DML to Modify Data
Exercise 1: Inserting Records with DML

 Task 1: Prepare the Lab Environment
The exercises will be performed within the TempDB database so that none of the real data is affected. Two
scripts are used to set up the environment for the lab—both are included in the project for the lab, along
with a sample solution for each exercise.

If you need to start again, open and execute the clean-up script, followed by the set-up script; you will be
back to a clean environment and can try again.
1. Ensure that the 20761A-MIA-DC and 20761A-MIA-SQL virtual machines are both running, and then

log on to 20761A-MIA-SQL as ADVENTUREWORKS\Student with the password Pa$$w0rd.

2. In the D:\Labfiles\Lab07\Starter folder, right-click Setup.cmd and then click Run as administrator.

3. In the User Account Control dialog box, click Yes, and then wait for the script to finish.

4. At the command prompt, press y, and then press Enter.

5. When the script has finished, press Enter.

 Task 2: Insert a Row
1. Start SQL Server Management Studio and connect to the MIA-SQL database engine using

Windows authentication.

2. In the File menu, point to Open, and click Project/Solution.

3. In the Open Project window, open the project D:\Labfiles\Lab07\Starter\Project\Project.ssmssln.

4. In Solution Explorer, expand Queries, and double-click 01 Setup.sql. (If Solution Explorer is not
visible, select Solution Explorer on the View menu or press Ctrl+Alt+L on the keyboard.)

5. Click Execute from the toolbar. When the script has executed you should get the messages indicating
(9 row(s) affected), (88 row(s) affected) and (3 row(s) affected).

6. Close the 01 Setup.sql pane and open a new query window by clicking on the New Query icon.

7. When the query window opens, Type USE TempDB, followed by GO on the next line, and then click
Execute on the toolbar.

8. Below the GO statement in the open window, type the following query:

INSERT INTO HR.Employees
(
 Title
, titleofcourtesy
, FirstName
, Lastname
, hiredate
, birthdate
, address
, city
, country
, phone
)

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
L7-2 Querying Data with Transact-SQL

VALUES
(
 'Sales Representative'
, 'Mr'
, 'Laurence'
, 'Grider'
, '04/04/2013'
, '10/25/1975'
, '1234 1st Ave. S.E. '
, 'Seattle'
, 'USA'
, '(206)555-0105'
);

9. Click Execute.

10. Make sure the row has been inserted, and then close the window. You will be asked if you want to
save the query—you can choose where to save it and what to call it.

 Task 3: Insert a Row with a SELECT Statement As the Data Provider
1. Click New Query.

2. In the query pane, type the following query:

USE TempDB
GO
INSERT INTO Sales.Customers
(
 Companyname
, contactname
, contacttitle
, address
, city
, region
, postalcode
, country
, phone
, fax
)
SELECT
 Companyname
, contactname
, contacttitle
, address
, city
, region
, postalcode
, country
, phone
, fax
FROM dbo.PotentialCustomers;

3. Click Execute.

4. Make sure the rows have been inserted, and then close the window. You will be asked if you want to
save the query—you can choose where to save it and what to call it.

How could you have checked the data as it was transferred by the query? Remember the OUTPUT
command? If not, you can look at the exercise solution labeled 42 - Lab Exercise 1b Solution.sql.

Results: After successfully completing this exercise, you will have one new employee and three new
customers.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
L7-3

Exercise 2: Update and Delete Records Using DML

 Task 1: Update Rows
1. Click New Query.

2. In the query pane, type the following query:

Use TempDB
GO
UPDATE Sales.Customers
SET contacttitle='Sales Consultant'
WHERE city='Berlin'AND contacttitle='Sales Representative';

3. Click Execute.

4. Make sure the rows have been modified, and then close the window. You will be asked if you want to
save the query—you can choose where to save it and what to call it.

How could you have checked the data as it was transferred by the query? Remember the OUTPUT
command? If not, you can look at the exercise solution labeled 43 - Lab Exercise 2 Solution.sql.

 Task 2: Delete Rows
1. Click New Query.

2. In the query pane, type the following query:

USE TempDB
GO
DELETE FROM dbo.PotentialCustomers
WHERE contactname
IN('Taylor, Maurice','Mallit, Ken', 'Tiano, Mike');

3. Click Execute.

4. Make sure the rows have been deleted, and then close the window. You will be asked if you want to
save the query—you can choose where to save it and what to call it.

How could you have checked the data as it was transferred by the query? Remember the OUTPUT
command? If not, you can look at the exercise solution labeled 44 - Lab Exercise 2b Solution.sql.

Results: After successfully completing this exercise, you will have updated all the records in the Customers
table which have a city of Berlin and a contacttitle of Sales Representative, to now have a contacttitle of
Sales Consultant. You will also have deleted the three records in the PotentialCustomers table, which have
already been added to the Customers table.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
L8-1

Module 8: Using Built-In Functions

Lab: Using Built-in Functions
Exercise 1: Writing Queries That Use Conversion Functions

 Task 1: Prepare the Lab Environment
1. Ensure that the 20761A-MIA-DC and 20761A-MIA-SQL virtual machines are both running, and then

log on to 20761A-MIA-SQL as ADVENTUREWORKS\Student with the password Pa$$w0rd.

2. In the D:\Labfiles\Lab08\Starter folder, right-click Setup.cmd and then click Run as administrator.

3. In the User Account Control dialog box, click Yes.

4. When prompted press y, and then Enter.

5. Wait for the script to finish, and press Enter.

 Task 2: Write a SELECT Statement that Uses the CAST or CONVERT Function
1. Start SQL Server Management Studio and connect to the MIA-SQL database engine using Windows

authentication.

2. On the File menu, point to Open and click Project/Solution.

3. In the Open Project window, open the project D:\Labfiles\Lab08\Starter\Project\Project.ssmssln.

4. In Solution Explorer, expand the Queries folder, and then double-click 51 - Lab Exercise 1.sql. (If
Solution Explorer is not visible, select Solution Explorer on the View menu or press Ctrl+Alt+L on
the keyboard.)

5. When the query window opens, highlight the statement USE TSQL; and click Execute on the toolbar
(or press F5 on the keyboard).

6. In the query pane, type the following query after the task 1 description:

SELECT N'The unit price for the ' + productname + N' is ' + CAST(unitprice AS
NVARCHAR(10)) + N' $.' AS productdesc
FROM Production.Products;

7. This query uses the CAST function rather than the CONVERT function. It is better to use the CAST
function because it is an ANSI SQL standard. You should use the CONVERT function only when you
need to apply a specific style during a conversion.

8. Highlight the written query and click Execute.

 Task 3: Write a SELECT Statement to Filter Rows Based on Specific Date Information
1. In the query pane, type the following query after the task 2 description:

SELECT orderid, orderdate, shippeddate, COALESCE(shipregion, 'No region') AS
shipregion
FROM Sales.Orders
WHERE
orderdate >= CONVERT(DATETIME, '4/1/2007', 101)
AND orderdate <= CONVERT(DATETIME, '11/30/2007', 101)
AND shippeddate > DATEADD(DAY, 30, orderdate);

2. Highlight the written query and click Execute.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
L8-2 Querying Data with Transact-SQL

3. Note that you could also write a solution using the PARSE function. The query would look like this:

SELECT orderid, orderdate, shippeddate, COALESCE(shipregion, 'No region') AS
shipregion
FROM Sales.Orders
WHERE
orderdate >= PARSE('4/1/2007' AS DATETIME USING 'en-US')
AND orderdate <= PARSE('11/30/2007' AS DATETIME USING 'en-US')
AND shippeddate > DATEADD(DAY, 30, orderdate);

 Task 4: Write a SELECT Statement to Convert the Phone Number Information to an
Integer Value
1. In the query pane, type the following query after the task 3 description:

SELECT
CONVERT(INT, REPLACE(REPLACE(REPLACE(REPLACE(phone, N'-', N''), N'(', ''), N')', ''),
' ', '')) AS phonenoasint
FROM Sales.Customers;

This query is trying to use the CONVERT function to convert phone numbers that include characters,
such as hyphens and parentheses, into an integer value.

2. Highlight the written query and click Execute.

3. Observe the error message:

Conversion failed when converting the nvarchar value '67.89.01.23' to data type int.

Because you want to retrieve rows without conversion errors and have a NULL for those that produce
a conversion error, you can use the TRY_CONVERT function.

4. Modify the query to use the TRY_CONVERT function. The query should look like this:

SELECT
TRY_CONVERT(INT, REPLACE(REPLACE(REPLACE(REPLACE(phone, N'-', N''), N'(', ''), N')',
''), ' ', '')) AS phonenoasint
FROM Sales.Customers;

5. Highlight the written query and click Execute. Observe the result. The rows that could not be
converted have a NULL.

Results: After this exercise, you should be able to use conversion functions.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
L8-3

Exercise 2: Writing Queries That Use Logical Functions

 Task 1: Write a SELECT Statement to Mark Specific Customers Based on Their
Country and Contact Title
1. In Solution Explorer, double-click the query 61 - Lab Exercise 2.sql.

2. When the query window opens, highlight the statement USE TSQL; and click Execute.

3. In the query pane, type the following query after the task 1 description:

SELECT
IIF(country = N'Mexico' AND contacttitle = N'Owner', N'Target group', N'Other') AS
segmentgroup, custid, contactname
FROM Sales.Customers;

4. The IIF function was new in SQL Server 2012. It was added mainly to support migrations from
Microsoft Access to SQL Server. You can use the CASE expression to achieve the same result.

5. Highlight the written query and click Execute.

 Task 2: Modify the T-SQL Statement to Mark Different Customers
1. In the query pane, type the following query after the task 2 description:

SELECT
IIF(contacttitle = N'Owner' OR region IS NOT NULL, N'Target group', N'Other') AS
segmentgroup, custid, contactname
FROM Sales.Customers;

2. Highlight the written query and click Execute.

 Task 3: Create Four Groups of Customers
1. In the query pane, type the following query after the task 3 description:

SELECT CHOOSE(custid % 4 + 1, N'Group One', N'Group Two', N'Group Three', N'Group
Four') AS segmentgroup, custid, contactname
FROM Sales.Customers;

2. Highlight the written query and click Execute.

Results: After this exercise, you should know how to use the logical functions.

Exercise 3: Writing Queries That Test for Nullability

 Task 1: Write a SELECT Statement to Retrieve the Customer Fax Information
1. In Solution Explorer, double-click the query 71 - Lab Exercise 3.sql.

2. When the query window opens, highlight the statement USE TSQL; and click Execute.

3. In the query pane, type the following query after the task 1 description:

SELECT contactname, COALESCE(fax, N'No information') AS faxinformation
FROM Sales.Customers;

This query uses the COALESCE function to retrieve customers’ fax information.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
L8-4 Querying Data with Transact-SQL

4. Highlight the written query and click Execute.

5. In the query pane, type the following query after the previous query:

SELECT contactname, ISNULL(fax, N'No information') AS faxinformation
FROM Sales.Customers;

This query uses the ISNULL function. What is the difference between the ISNULL and COALESCE
functions? COALESCE is a standard ANSI SQL function and ISNULL is not. So you should use the
COALESCE function.

6. Highlight the written query and click Execute.

 Task 2: Write a Filter for a Variable That Could Be a Null
1. Highlight the query provided under the task 2 description and click Execute.

2. Highlight the previous query. On the toolbar, click Edit, and then Copy.

3. In the query window, click the line after the task 2 description. On the toolbar, click Edit and then
Paste. You have now copied the previous query to the same query window after the task 2
description.

4. Modify the query so that it looks like this:

DECLARE @region AS NVARCHAR(30) = NULL;
SELECT
custid, region
FROM Sales.Customers
WHERE region = @region OR (region IS NULL AND @region IS NULL);

5. Highlight the modified query and click Execute.

 Task 3: Write a SELECT Statement to Return All the Customers That Do Not Have a
Two-Character Abbreviation for the Region
1. In the query pane, type the following query after the task 3 description:

SELECT custid, contactname, city, region
FROM Sales.Customers
WHERE
region IS NULL
OR LEN(region) <> 2;

2. Highlight the written query and click Execute.

Results: After this exercise, you should have an understanding of how to test for nullability.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
L9-1

Module 9: Grouping and Aggregating Data

Lab: Grouping and Aggregating Data
Exercise 1: Writing Queries That Use the GROUP BY Clause

 Task 1: Prepare the Lab Environment
1. Ensure that the 20761A-MIA-DC and 20761A-MIA-SQL virtual machines are both running, and then

log on to 20761A-MIA-SQL as ADVENTUREWORKS\Student with the password Pa$$w0rd.

2. In the D:\Labfiles\Lab09\Starter folder, right-click Setup.cmd, and then click Run as administrator.

3. In the User Account Control dialog box, click Yes, and then wait for the script to finish.

 Task 2: Write a SELECT Statement to Retrieve Different Groups of Customers
1. Start SQL Server Management Studio and connect to the MIA-SQL database engine instance using

Windows authentication.

2. On the File menu, point to Open and click Project/Solution.

3. In the Open Project window, open the project D:\Labfiles\Lab09\Starter\Project\Project.ssmssln.

4. In Solution Explorer, expand Queries, and double-click the query 51 - Lab Exercise 1.sql. (If Solution
Explorer is not visible, select Solution Explorer on the View menu or press Ctrl+Alt+L on the
keyboard).

5. When the query window opens, highlight the statement USE TSQL; and click Execute on the toolbar
(or press F5 on the keyboard).

6. In the query pane, type the following query after the task 2 description:

SELECT
o.custid, c.contactname
FROM Sales.Orders AS o
INNER JOIN Sales.Customers AS c ON c.custid = o.custid
WHERE o.empid = 5
GROUP BY o.custid, c.contactname;

7. Highlight the written query and click Execute (or press F5 on the keyboard).

 Task 3: Add an Additional Column From the Sales.Customers Table
1. Highlight the previous query. On the toolbar, click Edit and then Copy.

2. In the query window, click the line after the task 3 description. On the toolbar, click Edit, and then
Paste.

3. Modify the T-SQL statement so that it adds an additional column. Your query should look like this:

SELECT
o.custid, c.contactname, c.city
FROM Sales.Orders AS o
INNER JOIN Sales.Customers AS c ON c.custid = o.custid
WHERE o.empid = 5
GROUP BY o.custid, c.contactname;

4. Highlight the written query and click Execute.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
L9-2 Querying Data with Transact-SQL

5. Observe the error message:

Column 'Sales.Customers.city' is invalid in the select list because it is not contained in either an
aggregate function or the GROUP BY clause.

Why did the query fail?

In a grouped query, there will be an error if you refer to an attribute that is not in the GROUP BY list
(such as the city column) or not an input to an aggregate function in any clause that is processed
after the GROUP BY clause.

6. Modify the SQL statement to include the city column in the GROUP BY clause. Your query should look
like this:

SELECT
o.custid, c.contactname, c.city
FROM Sales.Orders AS o
INNER JOIN Sales.Customers AS c ON c.custid = o.custid
WHERE o.empid = 5
GROUP BY o.custid, c.contactname, c.city;

7. Highlight the written query and click Execute.

 Task 4: Write a SELECT Statement to Retrieve the Customers with Orders for Each
Year
1. In the query pane, type the following query after the task 4 description:

SELECT
custid, YEAR(orderdate) AS orderyear
FROM Sales.Orders
WHERE empid = 5
GROUP BY custid, YEAR(orderdate)
ORDER BY custid, orderyear;

2. Highlight the written query and click Execute.

 Task 5: Write a SELECT Statement to Retrieve Groups of Product Categories Sold in a
Specific Year
1. In the query pane, type the following query after the task 5 description:

SELECT
c.categoryid, c.categoryname
FROM Sales.Orders AS o
INNER JOIN Sales.OrderDetails AS d ON d.orderid = o.orderid
INNER JOIN Production.Products AS p ON p.productid = d.productid
INNER JOIN Production.Categories AS c ON c.categoryid = p.categoryid
WHERE orderdate >= '20080101' AND orderdate < '20090101'
GROUP BY c.categoryid, c.categoryname;

2. Highlight the written query and click Execute.

Important note regarding the use of the DISTINCT clause:

In all the tasks in Exercise 1, you could use the DISTINCT clause in the SELECT clause as an alternative to
using a grouped query. This is possible because aggregate functions are not being requested.

Results: After this exercise, you should be able to use the GROUP BY clause in the T-SQL statement.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
L9-3

Exercise 2: Writing Queries That Use Aggregate Functions

 Task 1: Write a SELECT statement to Retrieve the Total Sales Amount Per Order
1. In Solution Explorer, double-click the query 61 - Lab Exercise 2.sql.

2. When the query window opens, highlight the statement USE TSQL; and click Execute.

3. In the query pane, type the following query after the task 1 description:

SELECT
o.orderid, o.orderdate, SUM(d.qty * d.unitprice) AS salesamount
FROM Sales.Orders AS o
INNER JOIN Sales.OrderDetails AS d ON d.orderid = o.orderid
GROUP BY o.orderid, o.orderdate
ORDER BY salesamount DESC;

4. Highlight the written query and click Execute.

 Task 2: Add Additional Columns
1. Highlight the previous query. On the toolbar, click Edit, and then Copy.

2. In the query window, click the line after the task 2 description. On the toolbar, click Edit, and then
Paste.

3. Modify the T-SQL statement so that it adds extra columns. Your query should look like this:

SELECT
o.orderid, o.orderdate,
SUM(d.qty * d.unitprice) AS salesamount,
COUNT(*) AS noofoderlines,
AVG(d.qty * d.unitprice) AS avgsalesamountperorderline
FROM Sales.Orders AS o
INNER JOIN Sales.OrderDetails AS d ON d.orderid = o.orderid
GROUP BY o.orderid, o.orderdate
ORDER BY salesamount DESC;

4. Highlight the written query and click Execute.

 Task 3: Write a SELECT Statement to Retrieve the Sales Amount Value Per Month
1. In the query pane, type the following query after the task 3 description:

SELECT
YEAR(orderdate) * 100 + MONTH(orderdate) AS yearmonthno,
SUM(d.qty * d.unitprice) AS saleamountpermonth
FROM Sales.Orders AS o
INNER JOIN Sales.OrderDetails AS d ON d.orderid = o.orderid
GROUP BY YEAR(orderdate), MONTH(orderdate)
ORDER BY yearmonthno;

2. Highlight the written query and click Execute.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
L9-4 Querying Data with Transact-SQL

 Task 4: Write a SELECT Statement to List All Customers with the Total Sales Amount
and Number of Order Lines Added
1. In the query pane, type the following query after the task 4 description:

SELECT
c.custid, c.contactname,
SUM(d.qty * d.unitprice) AS totalsalesamount,
MAX(d.qty * d.unitprice) AS maxsalesamountperorderline,
COUNT(*) AS numberofrows,
COUNT(o.orderid) AS numberoforderlines
FROM Sales.Customers AS c
LEFT OUTER JOIN Sales.Orders AS o ON o.custid = c.custid
LEFT OUTER JOIN Sales.OrderDetails AS d ON d.orderid = o.orderid
GROUP BY c.custid, c.contactname
ORDER BY totalsalesamount;

2. Highlight the written query and click Execute.

3. Observe the result. Notice that the values in the numberofrows and numberoforderlines columns
are different. Why? All aggregate functions ignore NULLs except COUNT(*), which is why you
received the value 1 for the numberofrows column. When you used the orderid column in the
COUNT function, you received the value 0 because the orderid is NULL for customers without an
order.

Exercise 3: Writing Queries That Use Distinct Aggregate Functions

 Task 1: Modify a SELECT Statement to Retrieve the Number of Customers
1. In Solution Explorer, double-click the query 71 - Lab Exercise 3.sql.

2. When the query window opens, highlight the statement USE TSQL; and click Execute.

3. Highlight the provided T-SQL statement after the Task 1 description and click Execute.

4. Observe the result. Notice that the number of orders is the same as the number of customers. Why?
You are using the aggregate COUNT function on the orderid and custid columns and, because every
order has a customer, the COUNT function returns the same value. It does not matter if there are
multiple orders for the same customer, because you are not using a DISTINCT clause inside the
aggregate function. To get the correct number of distinct customers, you can modify the provided T-
SQL statement to include a DISTINCT clause.

5. Modify the provided T-SQL statement to include a DISTINCT clause. The query should look like this:

SELECT
YEAR(orderdate) AS orderyear,
COUNT(orderid) AS nooforders,
COUNT(DISTINCT custid) AS noofcustomers
FROM Sales.Orders
GROUP BY YEAR(orderdate);

6. Highlight the written query and click Execute.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
L9-5

 Task 2: Write a SELECT Statement to Analyze Segments of Customers
1. In the query pane, type the following query after the task 2 description:

SELECT
SUBSTRING(c.contactname,1,1) AS firstletter,
COUNT(DISTINCT c.custid) AS noofcustomers,
COUNT(o.orderid) AS nooforders
FROM Sales.Customers AS c
LEFT OUTER JOIN Sales.Orders AS o ON o.custid = c.custid
GROUP BY SUBSTRING(c.contactname,1,1)
ORDER BY firstletter;

2. Highlight the written query and click Execute.

 Task 3: Write a SELECT Statement to Retrieve Additional Sales Statistics
1. In the query pane, type the following query after the task 3 description:

SELECT
c.categoryid, c.categoryname,
SUM(d.qty * d.unitprice) AS totalsalesamount, COUNT(DISTINCT o.orderid) AS
nooforders,
SUM(d.qty * d.unitprice) / COUNT(DISTINCT o.orderid) AS avgsalesamountperorder
FROM Sales.Orders AS o
INNER JOIN Sales.OrderDetails AS d ON d.orderid = o.orderid
INNER JOIN Production.Products AS p ON p.productid = d.productid
INNER JOIN Production.Categories AS c ON c.categoryid = p.categoryid
WHERE orderdate >= '20080101' AND orderdate < '20090101'
GROUP BY c.categoryid, c.categoryname;

2. Highlight the written query and click Execute.

Results: After this exercise, you should have an understanding of how to apply a DISTINCT aggregate
function.

Exercise 4: Writing Queries That Filter Groups with the HAVING Clause

 Task 1: Write a SELECT Statement to Retrieve the Top 10 Customers
1. In Solution Explorer, double-click the query 81 - Lab Exercise 4.sql.

2. When the query window opens, highlight the statement USE TSQL; and click Execute.

3. In the query pane, type the following query after the task 1 description:

SELECT TOP (10)
o.custid,
SUM(d.qty * d.unitprice) AS totalsalesamount
FROM Sales.Orders AS o
INNER JOIN Sales.OrderDetails AS d ON d.orderid = o.orderid
GROUP BY o.custid
HAVING SUM(d.qty * d.unitprice) > 10000
ORDER BY totalsalesamount DESC;

4. Highlight the written query and click Execute.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
L9-6 Querying Data with Transact-SQL

 Task 2: Write a SELECT Statement to Retrieve Specific Orders
1. In the query pane, type the following query after the task 2 description:

SELECT
o.orderid,
o.empid,
SUM(d.qty * d.unitprice) as totalsalesamount
FROM Sales.Orders AS o
INNER JOIN Sales.OrderDetails AS d ON d.orderid = o.orderid
WHERE o.orderdate >= '20080101' AND o.orderdate < '20090101'
GROUP BY o.orderid, o.empid;

2. Highlight the written query and click Execute.

 Task 3: Apply Additional Filtering
1. Highlight the previous query. On the toolbar, click Edit, and then Copy.

2. In the query window, click the line after the task 3 description. On the toolbar, click Edit, and then
Paste.

3. Modify the T-SQL statement to apply additional filtering. Your query should look like this:

SELECT
o.orderid,
o.empid,
SUM(d.qty * d.unitprice) as totalsalesamount
FROM Sales.Orders AS o
INNER JOIN Sales.OrderDetails AS d ON d.orderid = o.orderid
WHERE o.orderdate >= '20080101' AND o.orderdate < '20090101'
GROUP BY o.orderid, o.empid
HAVING SUM(d.qty * d.unitprice) >= 10000;

4. Highlight the written query and click Execute.

5. Modify the T-SQL statement to include an additional filter to retrieve only orders handled by the
employee whose ID is 3. Your query should look like this:

SELECT
o.orderid,
o.empid,
SUM(d.qty * d.unitprice) as totalsalesamount
FROM Sales.Orders AS o
INNER JOIN Sales.OrderDetails AS d ON d.orderid = o.orderid
WHERE
o.orderdate >= '20080101' AND o.orderdate <= '20090101'
AND o.empid = 3
GROUP BY o.orderid, o.empid
HAVING SUM(d.qty * d.unitprice) >= 10000;

In this query, the predicate logic is applied in the WHERE clause. You could also write the predicate
logic inside the HAVING clause. Which do you think is better?

Unlike with orderdate filtering, with empid filtering, the result is going to be correct either way
because you are filtering by an element that appears in the GROUP BY list. Conceptually, it seems
more intuitive to filter as early as possible. This query then applies the filtering in the WHERE clause
because it will be logically applied before the GROUP BY clause. Do not forget, though, that the
actual processing in the SQL Server engine could be different.

6. Highlight the written query and click Execute.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
L9-7

 Task 4: Retrieve the Customers with More Than 25 Orders
1. In the query pane, type the following query after the task 4 description:

SELECT
o.custid,
MAX(orderdate) AS lastorderdate,
SUM(d.qty * d.unitprice) AS totalsalesamount
FROM Sales.Orders AS o
INNER JOIN Sales.OrderDetails AS d ON d.orderid = o.orderid
GROUP BY o.custid
HAVING COUNT(DISTINCT o.orderid) > 25;

2. Highlight the written query and click Execute.

Results: After this exercise, you should have an understanding of how to use the HAVING clause.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
L10-1

Module 10: Using Subqueries

Lab: Using Subqueries
Exercise 1: Writing Queries That Use Self-Contained Subqueries

 Task 1: Prepare the Lab Environment
1. Ensure that the 20761A-MIA-DC and 20761A-MIA-SQL virtual machines are both running, and then

log on to 20761A-MIA-SQL as ADVENTUREWORKS\Student with the password Pa$$w0rd.

2. In the D:\Labfiles\Lab10\Starter folder, right-click Setup.cmd and then click Run as administrator.

3. In the User Account Control dialog box, click Yes, and then wait for the script to finish.

4. When prompted, press any key.

 Task 2: Write a SELECT Statement to Retrieve the Last Order Date
1. Start SQL Server Management Studio and connect to the MIA-SQL database engine using Windows

authentication.

2. On the File menu, point to Open and click Project/Solution.

3. In the Open Project window, open the project D:\Labfiles\Lab10\Starter\Project\Project.ssmssln.

4. In Solution Explorer, expand Queries, and double-click 51 - Lab Exercise 1.sql. (If Solution Explorer is
not visible, select Solution Explorer on the View menu or press Ctrl+Alt+L on the keyboard.)

5. When the query window opens, highlight the statement USE TSQL; and click Execute on the toolbar
(or press F5 on the keyboard).

6. In the query pane, type the following query after the task 1 description:

SELECT MAX(orderdate) AS lastorderdate
FROM Sales.Orders;

7. Highlight the written query and click Execute.

 Task 3: Write a SELECT Statement to Retrieve All Orders Placed on the Last Order
Date
1. In the query pane, type the following query after the task 2 description:

SELECT
orderid, orderdate, empid, custid
FROM Sales.Orders
WHERE
orderdate = (SELECT MAX(orderdate) FROM Sales.Orders);

2. Highlight the written query and click Execute.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
L10-2 Querying Data with Transact-SQL

 Task 4: Observe the T-SQL Statement Provided by the IT Department
1. Highlight the provided T-SQL statement under the task 3 description and click Execute.

2. Modify the query to filter customers whose contact name starts with the letter B. Your query should
look like this:

SELECT
orderid, orderdate, empid, custid
FROM Sales.Orders
WHERE
custid =
(
SELECT custid
FROM Sales.Customers
WHERE contactname LIKE N'B%'
);

3. Highlight the written query and click Execute.

4. Observe the error message:

Subquery returned more than 1 value. This is not permitted when the subquery follows
=, !=, <, <= , >, >= or when the subquery is used as an expression.

Why did the query fail? It failed because the subquery returned more than one row. To fix this
problem, you should replace the = operator with an IN operator.

5. Modify the query so that it uses the IN operator. Your query should look like this:

SELECT
orderid, orderdate, empid, custid
FROM Sales.Orders
WHERE
custid IN
(
SELECT custid
FROM Sales.Customers
WHERE contactname LIKE N'B%'
);

6. Highlight the written query and click Execute.

 Task 5: Write A SELECT Statement to Analyze Each Order’s Sales as a Percentage of
the Total Sales Amount
1. In the query pane, type the following query after the task 4 description:

SELECT
o.orderid,
SUM(d.qty * d.unitprice) AS totalsalesamount,
SUM(d.qty * d.unitprice) /
(
SELECT SUM(d.qty * d.unitprice)
FROM Sales.Orders AS o
INNER JOIN Sales.OrderDetails AS d ON d.orderid = o.orderid
WHERE o.orderdate >= '20080501' AND orderdate < '20080601'
) * 100. AS salespctoftotal
FROM Sales.Orders AS o
INNER JOIN Sales.OrderDetails AS d ON d.orderid = o.orderid
WHERE o.orderdate >= '20080501' AND orderdate < '20080601'
GROUP BY o.orderid;

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
L10-3

2. Highlight the written query and click Execute.

Results: After this exercise, you should be able to use self-contained subqueries in T-SQL statements.

Exercise 2: Writing Queries That Use Scalar and Multi-Result Subqueries

 Task 1: Write a SELECT Statement to Retrieve Specific Products
1. In Solution Explorer, double-click the query 61 - Lab Exercise 2.sql.

2. When the query window opens, highlight the statement USE TSQL; and click Execute.

3. In the query pane, type the following query after the task 1 description:

SELECT
productid, productname
FROM Production.Products
WHERE
productid IN
(
SELECT productid
FROM Sales.OrderDetails
WHERE qty > 100
);

4. Highlight the written query and click Execute.

 Task 2: Write a SELECT Statement to Retrieve Those Customers Without Orders
1. In the query pane, type the following query after the task 2 description:

SELECT
custid, contactname
FROM Sales.Customers
WHERE custid NOT IN
(
SELECT custid
FROM Sales.Orders
);

2. Highlight the written query and click Execute.

3. Observe the result. Notice there are two customers without an order.

 Task 3: Add a Row and Rerun the Query That Retrieves Those Customers Without
Orders
1. Highlight the provided T-SQL statement under the task 3 description and click Execute. This code

inserts an additional row that has a NULL in the custid column of the Sales.Orders table.

2. Highlight the query in task 2. On the toolbar, click Edit and then Copy.

3. In the query window, click the line after the provided T-SQL statement. On the toolbar, click Edit and
then Paste.

4. Highlight the written query and click Execute.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
L10-4 Querying Data with Transact-SQL

5. Notice that you have an empty result despite having two rows when you first ran the query in task 2.
Why did you have an empty result this time? There is an issue with the NULL in the new row you
added because the custid column is the only one that is part of the subquery. The IN operator
supports three-valued logic (TRUE, FALSE, UNKNOWN). Before you apply the NOT operator, the
logical meaning of UNKNOWN is that you can’t tell for sure whether the customer ID appears in the
set, because the NULL could represent that customer ID as well as anything else. As a more tangible
example, consider the expression 22 NOT IN (1, 2, NULL). If you evaluate each individual expression in
the parentheses to its truth value, you will get NOT (FALSE OR FALSE OR UNKNOWN), which
translates to NOT UNKNOWN, which evaluates to UNKNOWN. The tricky part is that negating
UNKNOWN with the NOT operator still yields UNKNOWN; and UNKNOWN is filtered out in a query
filter. In short, when you use the NOT IN predicate against a subquery that returns at least one NULL,
the outer query always returns an empty set.

6. To solve this problem, modify the T-SQL statement so that the subquery does not return NULLs. Your
query should look like this:

SELECT
custid, contactname
FROM Sales.Customers
WHERE custid NOT IN
(
SELECT custid
FROM Sales.Orders
WHERE custid IS NOT NULL
);

7. Highlight the modified query and click Execute.

Results: After this exercise, you should know how to use multi-result subqueries in T-SQL statements.

Exercise 3: Writing Queries That Use Correlated Subqueries and an EXISTS
Predicate

 Task 1: Write a SELECT Statement to Retrieve the Last Order Date for Each Customer
1. In Solution Explorer, double-click the query 71 - Lab Exercise 3.sql.

2. When the query window opens, highlight the statement USE TSQL; and click Execute.

3. In the query pane, type the following query after the task 1 description:

SELECT
c.custid, c.contactname,
(
SELECT MAX(o.orderdate)
FROM Sales.Orders AS o
WHERE o.custid = c.custid
) AS lastorderdate
FROM Sales.Customers AS c;

4. Highlight the written query and click Execute.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
L10-5

 Task 2: Write a SELECT Statement That Uses the EXISTS Predicate to Retrieve Those
Customers Without Orders
1. In the query pane, type the following query after the task 2 description:

SELECT c.custid, c.contactname
FROM Sales.Customers AS c
WHERE
NOT EXISTS (SELECT * FROM Sales.Orders AS o WHERE o.custid = c.custid);

2. Highlight the written query and click Execute.

3. Notice that you achieved the same result as the modified query in exercise 2, task 3, but without a
filter to exclude NULLs. Why didn’t you need to explicitly filter out NULLs? The EXISTS predicate uses
two-valued logic (TRUE, FALSE) and checks only if the rows specified in the correlated subquery exist.
Another benefit of using the EXISTS predicate is better performance. The SQL Server engine knows it
is enough to determine whether the subquery returns at least one row or none, so it doesn’t need to
process all qualifying rows.

 Task 3: Write a SELECT Statement to Retrieve Customers Who Bought Expensive
Products
1. In the query pane, type the following query after the task 3 description:

SELECT c.custid, c.contactname
FROM Sales.Customers AS c
WHERE
EXISTS (
SELECT *
FROM Sales.Orders AS o
INNER JOIN Sales.OrderDetails AS d ON d.orderid = o.orderid
WHERE o.custid = c.custid
AND d.unitprice > 100.
AND o.orderdate >= '20080401'
);

2. Highlight the written query and click Execute.

 Task 4: Write a SELECT Statement to Display the Total Sales Amount and the Running
Total Sales Amount for Each Order Year
1. In the query pane, type the following query after the task 4 description:

SELECT
YEAR(o.orderdate) as orderyear,
SUM(d.qty * d.unitprice) AS totalsales,
(
SELECT SUM(d2.qty * d2.unitprice)
FROM Sales.Orders AS o2
INNER JOIN Sales.OrderDetails AS d2 ON d2.orderid = o2.orderid
WHERE YEAR(o2.orderdate) <= YEAR(o.orderdate)
) AS runsales
FROM Sales.Orders AS o
INNER JOIN Sales.OrderDetails AS d ON d.orderid = o.orderid
GROUP BY YEAR(o.orderdate)
ORDER BY orderyear;

2. Highlight the written query and click Execute.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
L10-6 Querying Data with Transact-SQL

 Task 5: Clean the Sales.Customers Table
1. Under the task 5 description, highlight the provided T-SQL statement and click Execute.

Results: After this exercise, you should have an understanding of how to use a correlated subquery in T-
SQL statements.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
L11-1

Module 11: Using Set Operators

Lab: Using Set Operators
Exercise 1: Writing Queries That Use UNION Set Operators and UNION ALL
Multi-Set Operators

 Task 1: Prepare the Lab Environment
1. Ensure that the 20761A-MIA-DC and 20761A-MIA-SQL virtual machines are both running, and then

log on to 20761A-MIA-SQL as ADVENTUREWORKS\Student with the password Pa$$w0rd.

2. In the D:\Labfiles\Lab11\Starter folder, right-click Setup.cmd and then click Run as administrator.

3. In the User Account Control dialog box, click Yes, wait for the script to finish, and then press any
key.

 Task 2: Write a SELECT Statement to Retrieve Specific Products
1. Start SQL Server Management Studio and connect to the MIA-SQL database engine using

Windows® authentication.

2. On the File menu, point to Open and click Project/Solution.

3. In the Open Project window, open the project D:\Labfiles\Lab11\Starter\Project\Project.ssmssln.

4. In Solution Explorer, expand the Queries folder, and then double-click the query 51 - Lab Exercise
1.sql. (If Solution Explorer is not visible, on the View menu, click Solution Explorer.

5. In the query pane, highlight the statement USE TSQL; and click Execute.

6. In the query pane, after the task 1 description, type the following query:

SELECT
productid, productname
FROM Production.Products
WHERE categoryid = 4;

7. Highlight the written query, and click Execute. Observe that the query retrieved 10 rows.

 Task 3: Write a SELECT Statement to Retrieve All Products with a Total Sales Amount
of More Than $50,000
1. In the query pane, after the task 2 description, type the following query:

SELECT
d.productid, p.productname
FROM Sales.OrderDetails d
INNER JOIN Production.Products p ON p.productid = d.productid
GROUP BY d.productid, p.productname
HAVING SUM(d.qty * d.unitprice) > 50000;

2. Highlight the written query, and click Execute. Observe that the query retrieved four rows.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
L11-2 Querying Data with Transact-SQL

 Task 4: Merge the Results from Task 1 and Task 2
1. In the query pane, after the task 3 description, type the following query:

SELECT
productid, productname
FROM Production.Products
WHERE categoryid = 4
UNION
SELECT
d.productid, p.productname
FROM Sales.OrderDetails d
INNER JOIN Production.Products p ON p.productid = d.productid
GROUP BY d.productid, p.productname
HAVING SUM(d.qty * d.unitprice) > 50000;

2. Highlight the written query, and click Execute.

3. Observe the result. What is the total number of rows in the result? If you compare this number with
an aggregate value of the number of rows from tasks 1 and 2, is there any difference? The total
number of rows retrieved by the query is 12. This is two rows less than the aggregate value of rows
from the query in task 1 (10 rows) and task 2 (four rows).

4. Highlight the previous query. On the Edit menu, click Copy.

5. In the query window, click the line after the written T-SQL statement. On the Edit menu, click Paste.

6. Modify the T-SQL statement by replacing the UNION operator with the UNION ALL operator. The
query should look like this:

SELECT
productid, productname
FROM Production.Products
WHERE categoryid = 4
UNION ALL
SELECT
d.productid, p.productname
FROM Sales.OrderDetails d
INNER JOIN Production.Products p ON p.productid = d.productid
GROUP BY d.productid, p.productname
HAVING SUM(d.qty * d.unitprice) > 50000;

7. Highlight the modified query, and click Execute.

8. Observe the result. What is the total number of rows in the result? What is the difference between the
UNION and UNION ALL operators? The total number of rows retrieved by the query is 14. It is the
same as the aggregate value of rows from the queries in tasks 1 and 2. This is because UNION ALL is a
multi-set operator that returns all rows that appear in any of the inputs, without really comparing
rows and without eliminating duplicates. The UNION set operator removes the duplicate rows and
the result consists of only distinct rows.

9. So, when should you use either UNION ALL or UNION when unifying two inputs? If a potential exists
for duplicates and you need to return them, use UNION ALL. If a potential exists for duplicates but
you need to return distinct rows, use UNION. If no potential exists for duplicates when unifying the
two inputs, UNION and UNION ALL are logically equivalent. However, in such a case, using UNION
ALL is recommended because it removes the overhead of SQL Server checking for duplicates.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
L11-3

 Task 5: Write a SELECT Statement to Retrieve the Top 10 Customers by Sales Amount
for January 2008 and February 2008
1. In the query pane, after the task 4 description, type the following query:

SELECT
c1.custid, c1.contactname
FROM
(
SELECT TOP (10)
o.custid, c.contactname
FROM Sales.OrderValues AS o
INNER JOIN Sales.Customers AS c ON c.custid = o.custid
WHERE o.orderdate >= '20080101' AND o.orderdate < '20080201'
GROUP BY o.custid, c.contactname
ORDER BY SUM(o.val) DESC
) AS c1
UNION
SELECT c2.custid, c2.contactname
FROM
(
SELECT TOP (10)
o.custid, c.contactname
FROM Sales.OrderValues AS o
INNER JOIN Sales.Customers AS c ON c.custid = o.custid
WHERE o.orderdate >= '20080201' AND o.orderdate < '20080301'
GROUP BY o.custid, c.contactname
ORDER BY SUM(o.val) DESC
) AS c2;

2. Highlight the written query, and click Execute.

Results: After this exercise, you should know how to use the UNION and UNION ALL set operators in T-
SQL statements.

Exercise 2: Writing Queries That Use the CROSS APPLY and OUTER APPLY
Operators

 Task 1: Write a SELECT Statement That Uses the CROSS APPLY Operator to Retrieve
the Last Two Orders for Each Product
1. In Solution Explorer, double-click the query 61 - Lab Exercise 2.sql.

2. When the query window opens, highlight the statement USE TSQL; and click Execute.

3. In the query pane, after the task 1 description, type the following query:

SELECT
p.productid, p.productname, o.orderid
FROM Production.Products AS p
CROSS APPLY
(
SELECT TOP(2)
d.orderid
FROM Sales.OrderDetails AS d
WHERE d.productid = p.productid
ORDER BY d.orderid DESC
) o
ORDER BY p.productid;

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
L11-4 Querying Data with Transact-SQL

4. Highlight the written query, and click Execute.

 Task 2: Write a SELECT Statement That Uses the CROSS APPLY Operator to Retrieve
the Top Three Products, Based on Sales Revenue, for Each Customer
1. Highlight the provided T-SQL code after the task 2 description, and click Execute.

2. In the query pane, type the following query after the provided T-SQL code:

SELECT
c.custid, c.contactname, p.productid, p.productname, p.totalsalesamount
FROM Sales.Customers AS c
CROSS APPLY dbo.fnGetTop3ProductsForCustomer (c.custid) AS p
ORDER BY c.custid;

Tip: You can make the inline TVF (dbo.fnGetTop3ProductsForCustomer) more flexible by making the
number of top rows to return an argument instead of fixing the number to three in the function’s
code.

3. Highlight the written query, and click Execute. Note that the query retrieves 265 rows.

 Task 3: Use the OUTER APPLY Operator
1. Highlight the previous query in task 2. On the menu Edit, click Copy.

2. In the query window, click the line after the task 3 description. On the Edit menu, click Paste.

3. Modify the T-SQL statement by replacing the CROSS APPLY operator with the OUTER APPLY
operator. The query should look like this:

SELECT
c.custid, c.contactname, p.productid, p.productname, p.totalsalesamount
FROM Sales.Customers AS c
OUTER APPLY dbo.fnGetTop3ProductsForCustomer (c.custid) AS p
ORDER BY c.custid;

4. Highlight the modified query, and click Execute.

5. Notice that the query retrieved 267 rows, which is two more rows than the previous query. Observe
the result to see two rows with NULL in the columns from the inline TVF.

 Task 4: Analyze the OUTER APPLY Operator
1. Highlight the previous query in task 3. On the Edit menu, click Copy.

2. In the query window, click the line after the task 4 description. On the Edit menu, click Paste.

3. Modify the T-SQL statement to search for a null productid. The query should look like this:

SELECT
c.custid, c.contactname, p.productid, p.productname, p.totalsalesamount
FROM Sales.Customers AS c
OUTER APPLY dbo.fnGetTop3ProductsForCustomer (c.custid) AS p
WHERE p.productid IS NULL;

4. Highlight the modified query, and click Execute.

5. Notice that the query now retrieves the two rows that do not occur in the CROSS APPLY query in Task
2.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
L11-5

 Task 5: Remove the TVF Created for This Lab
1. Highlight the provided T-SQL statement after the task 5 description, and click Execute.

Results: After this exercise, you should be able to use the CROSS APPLY and OUTER APPLY operators in
your T-SQL statements.

Exercise 3: Writing Queries That Use the EXCEPT and INTERSECT Operators

 Task 1: Write a SELECT Statement to Return All Customers Who Bought More Than
20 Distinct Products
1. In Solution Explorer, double-click the query 71 - Lab Exercise 3.sql.

2. When the query window opens, highlight the statement USE TSQL;, and click Execute.

3. In the query pane, after the task 1 description, type the following query:

SELECT
o.custid
FROM Sales.Orders AS o
INNER JOIN Sales.OrderDetails AS d ON d.orderid = o.orderid
GROUP BY o.custid
HAVING COUNT(DISTINCT d.productid) > 20;

4. Highlight the written query, and click Execute.

 Task 2: Write a SELECT Statement to Retrieve All Customers from the USA, Except
Those Who Bought More Than 20 Distinct Products
1. In the query pane, after the task 2 description, type the following query:

SELECT
custid
FROM Sales.Customers
WHERE country = 'USA'
EXCEPT
SELECT
o.custid
FROM Sales.Orders AS o
INNER JOIN Sales.OrderDetails AS d ON d.orderid = o.orderid
GROUP BY o.custid
HAVING COUNT(DISTINCT d.productid) > 20;

2. Highlight the written query, and click Execute.

 Task 3: Write a SELECT Statement to Retrieve Customers Who Spent More Than
$10,000
1. In the query pane, after the task 3 description, type the following query:

SELECT
o.custid
FROM Sales.Orders AS o
INNER JOIN Sales.OrderDetails AS d ON d.orderid = o.orderid
GROUP BY o.custid
HAVING SUM(d.qty * d.unitprice) > 10000;

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
L11-6 Querying Data with Transact-SQL

2. Highlight the written query, and click Execute.

 Task 4: Write a SELECT Statement That Uses the EXCEPT and INTERSECT Operators
1. Highlight the query from task 2. On Edit menu, click Copy.

2. In the query window, click the line after the task 4 description. On the Edit menu, click Paste.

3. Modify the first SELECT statement so that it selects all customers—not just those from the USA—and
include the INTERSECT operator, adding the query from task 3. The query should look like this:

SELECT
c.custid
FROM Sales.Customers AS c
EXCEPT
SELECT
o.custid
FROM Sales.Orders AS o
INNER JOIN Sales.OrderDetails AS d ON d.orderid = o.orderid
GROUP BY o.custid
HAVING COUNT(DISTINCT d.productid) > 20
INTERSECT
SELECT
o.custid
FROM Sales.Orders AS o
INNER JOIN Sales.OrderDetails AS d ON d.orderid = o.orderid
GROUP BY o.custid
HAVING SUM(d.qty * d.unitprice) > 10000;

4. Highlight the modified query, and click Execute.

5. Observe that the total number of rows is 59. In business terms, can you explain which customers are
part of the result? Because the INTERSECT operator is evaluated before the EXCEPT operator, the
result consists of all customers, except those who bought more than 20 different products and spent
more than $10,000.

 Task 5: Change the Operator Precedence
1. Highlight the previous query in task 4. On the Edit menu, click Copy.

2. In the query window, click the line after the task 5 description. On the Edit menu, click Paste.

3. Modify the T-SQL statement by adding a set of parentheses around the first two SELECT statements.
The query should look like this:

(
SELECT
c.custid
FROM Sales.Customers AS c
EXCEPT
SELECT
o.custid
FROM Sales.Orders AS o
INNER JOIN Sales.OrderDetails AS d ON d.orderid = o.orderid
GROUP BY o.custid
HAVING COUNT(DISTINCT d.productid) > 20
)
INTERSECT
SELECT
o.custid
FROM Sales.Orders AS o
INNER JOIN Sales.OrderDetails AS d ON d.orderid = o.orderid
GROUP BY o.custid
HAVING SUM(d.qty * d.unitprice) > 10000;

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED
L11-7

4. Highlight the provided T-SQL statement and click Execute.

5. Observe that the total number of rows is nine. Is that different to the result of the query in task 4?
Yes, because when you added the parentheses, the SQL Server engine first evaluated the EXCEPT
operation, and then the INTERSECT operation. In business terms, this query retrieved all customers
who did not buy more than 20 distinct products, and who spent more than $10,000.

6. What is the precedence among the set operators? SQL defines the following precedence among the
set operations: INTERSECT precedes UNION and EXCEPT, while UNION and EXCEPT are considered
equal. In a query that contains multiple set operations, INTERSECT operations are evaluated first, and
then operations with the same precedence are evaluated, based on appearance order. Remember
that set operations in parentheses are always processed first.

7. Close SQL Server Management Studio.

Results: After this exercise, you should have an understanding of how to use the EXCEPT and INTERSECT
operators in T-SQL statements.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED

	20761A
	20761A00
	20761A01
	Blank Page

	20761A02
	20761A03
	Blank Page

	20761A04
	20761A05
	Blank Page

	20761A06
	Blank Page

	20761A07
	Blank Page

	20761A08
	20761A09
	20761A10
	Blank Page

	20761A11
	Blank Page

	20761A12
	Blank Page

	20761A13
	20761A14
	20761A15
	Blank Page

	20761A16
	20761A17
	20761A18
	Blank Page

	20761A19
	20761A20
	Blank Page

	20761A21
	20761A22
	Blank Page

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (Adobe RGB \0501998\051)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 244
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 244
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFX1a:2001
]
 /PDFX1aCheck true
 /PDFX3Check false
 /PDFXCompliantPDFOnly true
 /PDFXNoTrimBoxError false
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (U.S. Web Coated \050SWOP\051 v2)
 /PDFXOutputConditionIdentifier (CGATS TR 001)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ENU (Creates PDF/X-1a:2001 compliant files using Quebecor World's suggested Acrobat Distiller Settings modified for MS Learning. Created PDF documents can be opened with Acrobat 4.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks true
 /AddColorBars false
 /AddCropMarks true
 /AddPageInfo true
 /AddRegMarks true
 /BleedOffset [
 0
 0
 0
 0
]
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName (U.S. Web Coated \(SWOP\) v2)
 /DestinationProfileSelector /UseName
 /Downsample16BitImages true
 /FlattenerPreset <<
 /ClipComplexRegions false
 /ConvertStrokesToOutlines false
 /ConvertTextToOutlines false
 /GradientResolution 300
 /LineArtTextResolution 2400
 /PresetName (Print Quality - QW)
 /PresetSelector /UseName
 /RasterVectorBalance 1
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MarksOffset 12.240000
 /MarksWeight 0.125000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /UseName
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed true
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (Adobe RGB \0501998\051)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 244
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 244
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFX1a:2001
]
 /PDFX1aCheck true
 /PDFX3Check false
 /PDFXCompliantPDFOnly true
 /PDFXNoTrimBoxError false
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (U.S. Web Coated \050SWOP\051 v2)
 /PDFXOutputConditionIdentifier (CGATS TR 001)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ENU (Creates PDF/X-1a:2001 compliant files using Quebecor World's suggested Acrobat Distiller Settings modified for MS Learning. Created PDF documents can be opened with Acrobat 4.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks true
 /AddColorBars false
 /AddCropMarks true
 /AddPageInfo true
 /AddRegMarks true
 /BleedOffset [
 0
 0
 0
 0
]
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName (U.S. Web Coated \(SWOP\) v2)
 /DestinationProfileSelector /UseName
 /Downsample16BitImages true
 /FlattenerPreset <<
 /ClipComplexRegions false
 /ConvertStrokesToOutlines false
 /ConvertTextToOutlines false
 /GradientResolution 300
 /LineArtTextResolution 2400
 /PresetName (Print Quality - QW)
 /PresetSelector /UseName
 /RasterVectorBalance 1
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MarksOffset 12.240000
 /MarksWeight 0.125000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /UseName
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed true
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (Adobe RGB \0501998\051)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 244
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 244
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFX1a:2001
]
 /PDFX1aCheck true
 /PDFX3Check false
 /PDFXCompliantPDFOnly true
 /PDFXNoTrimBoxError false
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (U.S. Web Coated \050SWOP\051 v2)
 /PDFXOutputConditionIdentifier (CGATS TR 001)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ENU (Creates PDF/X-1a:2001 compliant files using Quebecor World's suggested Acrobat Distiller Settings modified for MS Learning. Created PDF documents can be opened with Acrobat 4.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks true
 /AddColorBars false
 /AddCropMarks true
 /AddPageInfo true
 /AddRegMarks true
 /BleedOffset [
 0
 0
 0
 0
]
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName (U.S. Web Coated \(SWOP\) v2)
 /DestinationProfileSelector /UseName
 /Downsample16BitImages true
 /FlattenerPreset <<
 /ClipComplexRegions false
 /ConvertStrokesToOutlines false
 /ConvertTextToOutlines false
 /GradientResolution 300
 /LineArtTextResolution 2400
 /PresetName (Print Quality - QW)
 /PresetSelector /UseName
 /RasterVectorBalance 1
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MarksOffset 12.240000
 /MarksWeight 0.125000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /UseName
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed true
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (Adobe RGB \0501998\051)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 244
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 244
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFX1a:2001
]
 /PDFX1aCheck true
 /PDFX3Check false
 /PDFXCompliantPDFOnly true
 /PDFXNoTrimBoxError false
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (U.S. Web Coated \050SWOP\051 v2)
 /PDFXOutputConditionIdentifier (CGATS TR 001)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ENU (Creates PDF/X-1a:2001 compliant files using Quebecor World's suggested Acrobat Distiller Settings modified for MS Learning. Created PDF documents can be opened with Acrobat 4.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks true
 /AddColorBars false
 /AddCropMarks true
 /AddPageInfo true
 /AddRegMarks true
 /BleedOffset [
 0
 0
 0
 0
]
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName (U.S. Web Coated \(SWOP\) v2)
 /DestinationProfileSelector /UseName
 /Downsample16BitImages true
 /FlattenerPreset <<
 /ClipComplexRegions false
 /ConvertStrokesToOutlines false
 /ConvertTextToOutlines false
 /GradientResolution 300
 /LineArtTextResolution 2400
 /PresetName (Print Quality - QW)
 /PresetSelector /UseName
 /RasterVectorBalance 1
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MarksOffset 12.240000
 /MarksWeight 0.125000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /UseName
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed true
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (Adobe RGB \0501998\051)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 244
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 244
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFX1a:2001
]
 /PDFX1aCheck true
 /PDFX3Check false
 /PDFXCompliantPDFOnly true
 /PDFXNoTrimBoxError false
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (U.S. Web Coated \050SWOP\051 v2)
 /PDFXOutputConditionIdentifier (CGATS TR 001)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ENU (Creates PDF/X-1a:2001 compliant files using Quebecor World's suggested Acrobat Distiller Settings modified for MS Learning. Created PDF documents can be opened with Acrobat 4.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks true
 /AddColorBars false
 /AddCropMarks true
 /AddPageInfo true
 /AddRegMarks true
 /BleedOffset [
 0
 0
 0
 0
]
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName (U.S. Web Coated \(SWOP\) v2)
 /DestinationProfileSelector /UseName
 /Downsample16BitImages true
 /FlattenerPreset <<
 /ClipComplexRegions false
 /ConvertStrokesToOutlines false
 /ConvertTextToOutlines false
 /GradientResolution 300
 /LineArtTextResolution 2400
 /PresetName (Print Quality - QW)
 /PresetSelector /UseName
 /RasterVectorBalance 1
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MarksOffset 12.240000
 /MarksWeight 0.125000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /UseName
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed true
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (Adobe RGB \0501998\051)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 244
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 244
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFX1a:2001
]
 /PDFX1aCheck true
 /PDFX3Check false
 /PDFXCompliantPDFOnly true
 /PDFXNoTrimBoxError false
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (U.S. Web Coated \050SWOP\051 v2)
 /PDFXOutputConditionIdentifier (CGATS TR 001)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ENU (Creates PDF/X-1a:2001 compliant files using Quebecor World's suggested Acrobat Distiller Settings modified for MS Learning. Created PDF documents can be opened with Acrobat 4.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks true
 /AddColorBars false
 /AddCropMarks true
 /AddPageInfo true
 /AddRegMarks true
 /BleedOffset [
 0
 0
 0
 0
]
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName (U.S. Web Coated \(SWOP\) v2)
 /DestinationProfileSelector /UseName
 /Downsample16BitImages true
 /FlattenerPreset <<
 /ClipComplexRegions false
 /ConvertStrokesToOutlines false
 /ConvertTextToOutlines false
 /GradientResolution 300
 /LineArtTextResolution 2400
 /PresetName (Print Quality - QW)
 /PresetSelector /UseName
 /RasterVectorBalance 1
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MarksOffset 12.240000
 /MarksWeight 0.125000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /UseName
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed true
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (Adobe RGB \0501998\051)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 244
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 244
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFX1a:2001
]
 /PDFX1aCheck true
 /PDFX3Check false
 /PDFXCompliantPDFOnly true
 /PDFXNoTrimBoxError false
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (U.S. Web Coated \050SWOP\051 v2)
 /PDFXOutputConditionIdentifier (CGATS TR 001)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ENU (Creates PDF/X-1a:2001 compliant files using Quebecor World's suggested Acrobat Distiller Settings modified for MS Learning. Created PDF documents can be opened with Acrobat 4.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks true
 /AddColorBars false
 /AddCropMarks true
 /AddPageInfo true
 /AddRegMarks true
 /BleedOffset [
 0
 0
 0
 0
]
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName (U.S. Web Coated \(SWOP\) v2)
 /DestinationProfileSelector /UseName
 /Downsample16BitImages true
 /FlattenerPreset <<
 /ClipComplexRegions false
 /ConvertStrokesToOutlines false
 /ConvertTextToOutlines false
 /GradientResolution 300
 /LineArtTextResolution 2400
 /PresetName (Print Quality - QW)
 /PresetSelector /UseName
 /RasterVectorBalance 1
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MarksOffset 12.240000
 /MarksWeight 0.125000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /UseName
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed true
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (Adobe RGB \0501998\051)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 244
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 244
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFX1a:2001
]
 /PDFX1aCheck true
 /PDFX3Check false
 /PDFXCompliantPDFOnly true
 /PDFXNoTrimBoxError false
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (U.S. Web Coated \050SWOP\051 v2)
 /PDFXOutputConditionIdentifier (CGATS TR 001)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ENU (Creates PDF/X-1a:2001 compliant files using Quebecor World's suggested Acrobat Distiller Settings modified for MS Learning. Created PDF documents can be opened with Acrobat 4.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks true
 /AddColorBars false
 /AddCropMarks true
 /AddPageInfo true
 /AddRegMarks true
 /BleedOffset [
 0
 0
 0
 0
]
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName (U.S. Web Coated \(SWOP\) v2)
 /DestinationProfileSelector /UseName
 /Downsample16BitImages true
 /FlattenerPreset <<
 /ClipComplexRegions false
 /ConvertStrokesToOutlines false
 /ConvertTextToOutlines false
 /GradientResolution 300
 /LineArtTextResolution 2400
 /PresetName (Print Quality - QW)
 /PresetSelector /UseName
 /RasterVectorBalance 1
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MarksOffset 12.240000
 /MarksWeight 0.125000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /UseName
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed true
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (Adobe RGB \0501998\051)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 244
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 244
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFX1a:2001
]
 /PDFX1aCheck true
 /PDFX3Check false
 /PDFXCompliantPDFOnly true
 /PDFXNoTrimBoxError false
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (U.S. Web Coated \050SWOP\051 v2)
 /PDFXOutputConditionIdentifier (CGATS TR 001)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ENU (Creates PDF/X-1a:2001 compliant files using Quebecor World's suggested Acrobat Distiller Settings modified for MS Learning. Created PDF documents can be opened with Acrobat 4.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks true
 /AddColorBars false
 /AddCropMarks true
 /AddPageInfo true
 /AddRegMarks true
 /BleedOffset [
 0
 0
 0
 0
]
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName (U.S. Web Coated \(SWOP\) v2)
 /DestinationProfileSelector /UseName
 /Downsample16BitImages true
 /FlattenerPreset <<
 /ClipComplexRegions false
 /ConvertStrokesToOutlines false
 /ConvertTextToOutlines false
 /GradientResolution 300
 /LineArtTextResolution 2400
 /PresetName (Print Quality - QW)
 /PresetSelector /UseName
 /RasterVectorBalance 1
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MarksOffset 12.240000
 /MarksWeight 0.125000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /UseName
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed true
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (Adobe RGB \0501998\051)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 244
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 244
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFX1a:2001
]
 /PDFX1aCheck true
 /PDFX3Check false
 /PDFXCompliantPDFOnly true
 /PDFXNoTrimBoxError false
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (U.S. Web Coated \050SWOP\051 v2)
 /PDFXOutputConditionIdentifier (CGATS TR 001)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ENU (Creates PDF/X-1a:2001 compliant files using Quebecor World's suggested Acrobat Distiller Settings modified for MS Learning. Created PDF documents can be opened with Acrobat 4.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks true
 /AddColorBars false
 /AddCropMarks true
 /AddPageInfo true
 /AddRegMarks true
 /BleedOffset [
 0
 0
 0
 0
]
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName (U.S. Web Coated \(SWOP\) v2)
 /DestinationProfileSelector /UseName
 /Downsample16BitImages true
 /FlattenerPreset <<
 /ClipComplexRegions false
 /ConvertStrokesToOutlines false
 /ConvertTextToOutlines false
 /GradientResolution 300
 /LineArtTextResolution 2400
 /PresetName (Print Quality - QW)
 /PresetSelector /UseName
 /RasterVectorBalance 1
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MarksOffset 12.240000
 /MarksWeight 0.125000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /UseName
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed true
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (Adobe RGB \0501998\051)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 244
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 244
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFX1a:2001
]
 /PDFX1aCheck true
 /PDFX3Check false
 /PDFXCompliantPDFOnly true
 /PDFXNoTrimBoxError false
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (U.S. Web Coated \050SWOP\051 v2)
 /PDFXOutputConditionIdentifier (CGATS TR 001)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ENU (Creates PDF/X-1a:2001 compliant files using Quebecor World's suggested Acrobat Distiller Settings modified for MS Learning. Created PDF documents can be opened with Acrobat 4.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks true
 /AddColorBars false
 /AddCropMarks true
 /AddPageInfo true
 /AddRegMarks true
 /BleedOffset [
 0
 0
 0
 0
]
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName (U.S. Web Coated \(SWOP\) v2)
 /DestinationProfileSelector /UseName
 /Downsample16BitImages true
 /FlattenerPreset <<
 /ClipComplexRegions false
 /ConvertStrokesToOutlines false
 /ConvertTextToOutlines false
 /GradientResolution 300
 /LineArtTextResolution 2400
 /PresetName (Print Quality - QW)
 /PresetSelector /UseName
 /RasterVectorBalance 1
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MarksOffset 12.240000
 /MarksWeight 0.125000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /UseName
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed true
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (Adobe RGB \0501998\051)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 244
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 244
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFX1a:2001
]
 /PDFX1aCheck true
 /PDFX3Check false
 /PDFXCompliantPDFOnly true
 /PDFXNoTrimBoxError false
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (U.S. Web Coated \050SWOP\051 v2)
 /PDFXOutputConditionIdentifier (CGATS TR 001)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ENU (Creates PDF/X-1a:2001 compliant files using Quebecor World's suggested Acrobat Distiller Settings modified for MS Learning. Created PDF documents can be opened with Acrobat 4.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks true
 /AddColorBars false
 /AddCropMarks true
 /AddPageInfo true
 /AddRegMarks true
 /BleedOffset [
 0
 0
 0
 0
]
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName (U.S. Web Coated \(SWOP\) v2)
 /DestinationProfileSelector /UseName
 /Downsample16BitImages true
 /FlattenerPreset <<
 /ClipComplexRegions false
 /ConvertStrokesToOutlines false
 /ConvertTextToOutlines false
 /GradientResolution 300
 /LineArtTextResolution 2400
 /PresetName (Print Quality - QW)
 /PresetSelector /UseName
 /RasterVectorBalance 1
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MarksOffset 12.240000
 /MarksWeight 0.125000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /UseName
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed true
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (Adobe RGB \0501998\051)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 244
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 244
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFX1a:2001
]
 /PDFX1aCheck true
 /PDFX3Check false
 /PDFXCompliantPDFOnly true
 /PDFXNoTrimBoxError false
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (U.S. Web Coated \050SWOP\051 v2)
 /PDFXOutputConditionIdentifier (CGATS TR 001)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ENU (Creates PDF/X-1a:2001 compliant files using Quebecor World's suggested Acrobat Distiller Settings modified for MS Learning. Created PDF documents can be opened with Acrobat 4.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks true
 /AddColorBars false
 /AddCropMarks true
 /AddPageInfo true
 /AddRegMarks true
 /BleedOffset [
 0
 0
 0
 0
]
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName (U.S. Web Coated \(SWOP\) v2)
 /DestinationProfileSelector /UseName
 /Downsample16BitImages true
 /FlattenerPreset <<
 /ClipComplexRegions false
 /ConvertStrokesToOutlines false
 /ConvertTextToOutlines false
 /GradientResolution 300
 /LineArtTextResolution 2400
 /PresetName (Print Quality - QW)
 /PresetSelector /UseName
 /RasterVectorBalance 1
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MarksOffset 12.240000
 /MarksWeight 0.125000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /UseName
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed true
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (Adobe RGB \0501998\051)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 244
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 244
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFX1a:2001
]
 /PDFX1aCheck true
 /PDFX3Check false
 /PDFXCompliantPDFOnly true
 /PDFXNoTrimBoxError false
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (U.S. Web Coated \050SWOP\051 v2)
 /PDFXOutputConditionIdentifier (CGATS TR 001)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ENU (Creates PDF/X-1a:2001 compliant files using Quebecor World's suggested Acrobat Distiller Settings modified for MS Learning. Created PDF documents can be opened with Acrobat 4.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks true
 /AddColorBars false
 /AddCropMarks true
 /AddPageInfo true
 /AddRegMarks true
 /BleedOffset [
 0
 0
 0
 0
]
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName (U.S. Web Coated \(SWOP\) v2)
 /DestinationProfileSelector /UseName
 /Downsample16BitImages true
 /FlattenerPreset <<
 /ClipComplexRegions false
 /ConvertStrokesToOutlines false
 /ConvertTextToOutlines false
 /GradientResolution 300
 /LineArtTextResolution 2400
 /PresetName (Print Quality - QW)
 /PresetSelector /UseName
 /RasterVectorBalance 1
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MarksOffset 12.240000
 /MarksWeight 0.125000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /UseName
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed true
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (Adobe RGB \0501998\051)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 244
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 244
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFX1a:2001
]
 /PDFX1aCheck true
 /PDFX3Check false
 /PDFXCompliantPDFOnly true
 /PDFXNoTrimBoxError false
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (U.S. Web Coated \050SWOP\051 v2)
 /PDFXOutputConditionIdentifier (CGATS TR 001)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ENU (Creates PDF/X-1a:2001 compliant files using Quebecor World's suggested Acrobat Distiller Settings modified for MS Learning. Created PDF documents can be opened with Acrobat 4.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks true
 /AddColorBars false
 /AddCropMarks true
 /AddPageInfo true
 /AddRegMarks true
 /BleedOffset [
 0
 0
 0
 0
]
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName (U.S. Web Coated \(SWOP\) v2)
 /DestinationProfileSelector /UseName
 /Downsample16BitImages true
 /FlattenerPreset <<
 /ClipComplexRegions false
 /ConvertStrokesToOutlines false
 /ConvertTextToOutlines false
 /GradientResolution 300
 /LineArtTextResolution 2400
 /PresetName (Print Quality - QW)
 /PresetSelector /UseName
 /RasterVectorBalance 1
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MarksOffset 12.240000
 /MarksWeight 0.125000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /UseName
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed true
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (Adobe RGB \0501998\051)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 244
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 244
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFX1a:2001
]
 /PDFX1aCheck true
 /PDFX3Check false
 /PDFXCompliantPDFOnly true
 /PDFXNoTrimBoxError false
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (U.S. Web Coated \050SWOP\051 v2)
 /PDFXOutputConditionIdentifier (CGATS TR 001)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ENU (Creates PDF/X-1a:2001 compliant files using Quebecor World's suggested Acrobat Distiller Settings modified for MS Learning. Created PDF documents can be opened with Acrobat 4.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks true
 /AddColorBars false
 /AddCropMarks true
 /AddPageInfo true
 /AddRegMarks true
 /BleedOffset [
 0
 0
 0
 0
]
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName (U.S. Web Coated \(SWOP\) v2)
 /DestinationProfileSelector /UseName
 /Downsample16BitImages true
 /FlattenerPreset <<
 /ClipComplexRegions false
 /ConvertStrokesToOutlines false
 /ConvertTextToOutlines false
 /GradientResolution 300
 /LineArtTextResolution 2400
 /PresetName (Print Quality - QW)
 /PresetSelector /UseName
 /RasterVectorBalance 1
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MarksOffset 12.240000
 /MarksWeight 0.125000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /UseName
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed true
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (Adobe RGB \0501998\051)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 244
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 244
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFX1a:2001
]
 /PDFX1aCheck true
 /PDFX3Check false
 /PDFXCompliantPDFOnly true
 /PDFXNoTrimBoxError false
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (U.S. Web Coated \050SWOP\051 v2)
 /PDFXOutputConditionIdentifier (CGATS TR 001)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ENU (Creates PDF/X-1a:2001 compliant files using Quebecor World's suggested Acrobat Distiller Settings modified for MS Learning. Created PDF documents can be opened with Acrobat 4.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks true
 /AddColorBars false
 /AddCropMarks true
 /AddPageInfo true
 /AddRegMarks true
 /BleedOffset [
 0
 0
 0
 0
]
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName (U.S. Web Coated \(SWOP\) v2)
 /DestinationProfileSelector /UseName
 /Downsample16BitImages true
 /FlattenerPreset <<
 /ClipComplexRegions false
 /ConvertStrokesToOutlines false
 /ConvertTextToOutlines false
 /GradientResolution 300
 /LineArtTextResolution 2400
 /PresetName (Print Quality - QW)
 /PresetSelector /UseName
 /RasterVectorBalance 1
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MarksOffset 12.240000
 /MarksWeight 0.125000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /UseName
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed true
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (Adobe RGB \0501998\051)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 244
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 244
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFX1a:2001
]
 /PDFX1aCheck true
 /PDFX3Check false
 /PDFXCompliantPDFOnly true
 /PDFXNoTrimBoxError false
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (U.S. Web Coated \050SWOP\051 v2)
 /PDFXOutputConditionIdentifier (CGATS TR 001)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ENU (Creates PDF/X-1a:2001 compliant files using Quebecor World's suggested Acrobat Distiller Settings modified for MS Learning. Created PDF documents can be opened with Acrobat 4.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks true
 /AddColorBars false
 /AddCropMarks true
 /AddPageInfo true
 /AddRegMarks true
 /BleedOffset [
 0
 0
 0
 0
]
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName (U.S. Web Coated \(SWOP\) v2)
 /DestinationProfileSelector /UseName
 /Downsample16BitImages true
 /FlattenerPreset <<
 /ClipComplexRegions false
 /ConvertStrokesToOutlines false
 /ConvertTextToOutlines false
 /GradientResolution 300
 /LineArtTextResolution 2400
 /PresetName (Print Quality - QW)
 /PresetSelector /UseName
 /RasterVectorBalance 1
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MarksOffset 12.240000
 /MarksWeight 0.125000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /UseName
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed true
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (Adobe RGB \0501998\051)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 244
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 244
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFX1a:2001
]
 /PDFX1aCheck true
 /PDFX3Check false
 /PDFXCompliantPDFOnly true
 /PDFXNoTrimBoxError false
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (U.S. Web Coated \050SWOP\051 v2)
 /PDFXOutputConditionIdentifier (CGATS TR 001)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ENU (Creates PDF/X-1a:2001 compliant files using Quebecor World's suggested Acrobat Distiller Settings modified for MS Learning. Created PDF documents can be opened with Acrobat 4.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks true
 /AddColorBars false
 /AddCropMarks true
 /AddPageInfo true
 /AddRegMarks true
 /BleedOffset [
 0
 0
 0
 0
]
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName (U.S. Web Coated \(SWOP\) v2)
 /DestinationProfileSelector /UseName
 /Downsample16BitImages true
 /FlattenerPreset <<
 /ClipComplexRegions false
 /ConvertStrokesToOutlines false
 /ConvertTextToOutlines false
 /GradientResolution 300
 /LineArtTextResolution 2400
 /PresetName (Print Quality - QW)
 /PresetSelector /UseName
 /RasterVectorBalance 1
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MarksOffset 12.240000
 /MarksWeight 0.125000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /UseName
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed true
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (Adobe RGB \0501998\051)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 244
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 244
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFX1a:2001
]
 /PDFX1aCheck true
 /PDFX3Check false
 /PDFXCompliantPDFOnly true
 /PDFXNoTrimBoxError false
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (U.S. Web Coated \050SWOP\051 v2)
 /PDFXOutputConditionIdentifier (CGATS TR 001)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ENU (Creates PDF/X-1a:2001 compliant files using Quebecor World's suggested Acrobat Distiller Settings modified for MS Learning. Created PDF documents can be opened with Acrobat 4.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks true
 /AddColorBars false
 /AddCropMarks true
 /AddPageInfo true
 /AddRegMarks true
 /BleedOffset [
 0
 0
 0
 0
]
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName (U.S. Web Coated \(SWOP\) v2)
 /DestinationProfileSelector /UseName
 /Downsample16BitImages true
 /FlattenerPreset <<
 /ClipComplexRegions false
 /ConvertStrokesToOutlines false
 /ConvertTextToOutlines false
 /GradientResolution 300
 /LineArtTextResolution 2400
 /PresetName (Print Quality - QW)
 /PresetSelector /UseName
 /RasterVectorBalance 1
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MarksOffset 12.240000
 /MarksWeight 0.125000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /UseName
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed true
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (Adobe RGB \0501998\051)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 244
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 244
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFX1a:2001
]
 /PDFX1aCheck true
 /PDFX3Check false
 /PDFXCompliantPDFOnly true
 /PDFXNoTrimBoxError false
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (U.S. Web Coated \050SWOP\051 v2)
 /PDFXOutputConditionIdentifier (CGATS TR 001)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ENU (Creates PDF/X-1a:2001 compliant files using Quebecor World's suggested Acrobat Distiller Settings modified for MS Learning. Created PDF documents can be opened with Acrobat 4.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks true
 /AddColorBars false
 /AddCropMarks true
 /AddPageInfo true
 /AddRegMarks true
 /BleedOffset [
 0
 0
 0
 0
]
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName (U.S. Web Coated \(SWOP\) v2)
 /DestinationProfileSelector /UseName
 /Downsample16BitImages true
 /FlattenerPreset <<
 /ClipComplexRegions false
 /ConvertStrokesToOutlines false
 /ConvertTextToOutlines false
 /GradientResolution 300
 /LineArtTextResolution 2400
 /PresetName (Print Quality - QW)
 /PresetSelector /UseName
 /RasterVectorBalance 1
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MarksOffset 12.240000
 /MarksWeight 0.125000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /UseName
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed true
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (Adobe RGB \0501998\051)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 244
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 244
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFX1a:2001
]
 /PDFX1aCheck true
 /PDFX3Check false
 /PDFXCompliantPDFOnly true
 /PDFXNoTrimBoxError false
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (U.S. Web Coated \050SWOP\051 v2)
 /PDFXOutputConditionIdentifier (CGATS TR 001)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ENU (Creates PDF/X-1a:2001 compliant files using Quebecor World's suggested Acrobat Distiller Settings modified for MS Learning. Created PDF documents can be opened with Acrobat 4.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks true
 /AddColorBars false
 /AddCropMarks true
 /AddPageInfo true
 /AddRegMarks true
 /BleedOffset [
 0
 0
 0
 0
]
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName (U.S. Web Coated \(SWOP\) v2)
 /DestinationProfileSelector /UseName
 /Downsample16BitImages true
 /FlattenerPreset <<
 /ClipComplexRegions false
 /ConvertStrokesToOutlines false
 /ConvertTextToOutlines false
 /GradientResolution 300
 /LineArtTextResolution 2400
 /PresetName (Print Quality - QW)
 /PresetSelector /UseName
 /RasterVectorBalance 1
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MarksOffset 12.240000
 /MarksWeight 0.125000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /UseName
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed true
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (Adobe RGB \0501998\051)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 244
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 244
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFX1a:2001
]
 /PDFX1aCheck true
 /PDFX3Check false
 /PDFXCompliantPDFOnly true
 /PDFXNoTrimBoxError false
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (U.S. Web Coated \050SWOP\051 v2)
 /PDFXOutputConditionIdentifier (CGATS TR 001)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ENU (Creates PDF/X-1a:2001 compliant files using Quebecor World's suggested Acrobat Distiller Settings modified for MS Learning. Created PDF documents can be opened with Acrobat 4.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks true
 /AddColorBars false
 /AddCropMarks true
 /AddPageInfo true
 /AddRegMarks true
 /BleedOffset [
 0
 0
 0
 0
]
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName (U.S. Web Coated \(SWOP\) v2)
 /DestinationProfileSelector /UseName
 /Downsample16BitImages true
 /FlattenerPreset <<
 /ClipComplexRegions false
 /ConvertStrokesToOutlines false
 /ConvertTextToOutlines false
 /GradientResolution 300
 /LineArtTextResolution 2400
 /PresetName (Print Quality - QW)
 /PresetSelector /UseName
 /RasterVectorBalance 1
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MarksOffset 12.240000
 /MarksWeight 0.125000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /UseName
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed true
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (Adobe RGB \0501998\051)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 244
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 244
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFX1a:2001
]
 /PDFX1aCheck true
 /PDFX3Check false
 /PDFXCompliantPDFOnly true
 /PDFXNoTrimBoxError false
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (U.S. Web Coated \050SWOP\051 v2)
 /PDFXOutputConditionIdentifier (CGATS TR 001)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ENU (Creates PDF/X-1a:2001 compliant files using Quebecor World's suggested Acrobat Distiller Settings modified for MS Learning. Created PDF documents can be opened with Acrobat 4.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks true
 /AddColorBars false
 /AddCropMarks true
 /AddPageInfo true
 /AddRegMarks true
 /BleedOffset [
 0
 0
 0
 0
]
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName (U.S. Web Coated \(SWOP\) v2)
 /DestinationProfileSelector /UseName
 /Downsample16BitImages true
 /FlattenerPreset <<
 /ClipComplexRegions false
 /ConvertStrokesToOutlines false
 /ConvertTextToOutlines false
 /GradientResolution 300
 /LineArtTextResolution 2400
 /PresetName (Print Quality - QW)
 /PresetSelector /UseName
 /RasterVectorBalance 1
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MarksOffset 12.240000
 /MarksWeight 0.125000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /UseName
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed true
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

