

Microsoft Power BI Cookbook

Creating Business Intelligence Solutions of Analytical Data Models,
Reports, and Dashboards

Brett Powell

BIRMINGHAM - MUMBAI

Microsoft Power BI Cookbook

Copyright © 2017 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of
the information presented. However, the information contained in this book is sold
without warranty, either express or implied. Neither the author, nor Packt Publishing,
and its dealers and distributors will be held liable for any damages caused or alleged
to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: September 2017

Production reference: 1220917

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham
B3 2PB, UK.

ISBN 978-1-78829-014-2

www.packtpub.com

http://www.packtpub.com

Credits

Author

Brett Powell

Copy Editor

Vikrant Phadkay

Reviewers

Gilbert Quevauvilliers

Ruben Oliva Ramos

Juan Tomas Oliva Ramos

Project Coordinator

Nidhi Joshi

Commissioning Editor

Amey Varangaonkar

Proofreader

Safis Editing

Acquisition Editor

Varsha Shetty

Indexer

Tejal Daruwale Soni

Content Development Editor

Mayur Pawanikar

Graphics

Tania Dutta

Technical Editor

Vivek Arora

Production Coordinator

Arvindkumar Gupta

Foreword
Microsoft Power BI Cookbook is a great example of how to leverage the multitude of
features that are available in Power BI. You will find some great examples in this
book that will first explain the issues and then give a solution on how to achieve the
desired result. I, personally, learned something when going through this cookbook
and all the recipes provided in it. This is a book that can be picked up and referenced
when looking for solutions for particular challenges or issues. Likewise, it is a great
read from cover to cover to expand your skills, which in turn will help build great
Power BI Models for your clients/customers.

Gilbert Quevauvilliers,
Microsoft MVP - Power BI & Microsoft Power BI Consultant at Fourmoo

About the Author
Brett Powell is the owner of and business intelligence consultant at Frontline
Analytics LLC, a data and analytics research and consulting firm and Microsoft
Power BI partner. He has worked with Power BI technologies since they were first
introduced as the SQL Server 2008R2 PowerPivot add-in for Excel 2010. He has
contributed to the design and development of Microsoft and Power BI solutions of
diverse scale and complexity across the retail, manufacturing, financial, and services
industries. Brett regularly blogs and shares technical papers regarding the latest
MSBI and Power BI features and development techniques and patterns at Insight
Quest. He is also an organizer of the Boston BI User Group.

Erin Stellato, featured in Developing Solutions for System Monitoring and
Administration, is a principal consultant at SQLskills and Microsoft Data Platform
MVP.

I'd first like to thank Varsha Shetty, acquisition editor at Packt, for giving me the
opportunity to author this book and her guidance throughout the planning process.
I'd also like to thank the Packt board and team for approving the book outline and
for their flexibility with page counts and topics. Like most Power BI projects, we
followed an agile delivery model in creating this book and this allowed us to
include essential details supporting the recipes and the latest Power BI features.
Additionally, I'd like to thank Mayur Pawanikar, content editor at Packt, for his
thorough reviews and guidance throughout the development process. His
contributions were invaluable to the structure and overall quality of the book.
I'd also like to thank Gilbert Quevauvilliers and Juan Tomas Oliva Ramos for their
technical reviews and suggestions.
Finally, I'd like to thank the Power BI team for creating such an amazing platform
and for everyone around the Power BI community that contributes documentation,
white papers, presentations, videos, blogs, and more.

About the Reviewers
Gilbert Quevauvilliers has been working in the BI space for the past 9 years. He
started out learning the basics of business intelligence on the Microsoft stack, and as
time went on, he became more experienced. Gilbert has since moved into the Power
BI space, after starting out with Power Pivot in Excel 2010. He has used Power BI
since its inception and works exclusively in it. He has been recognized with the
Microsoft MVP award for his contributions to the community and helping other users.

Gilbert is currently consulting in his own company, called FourMoo (which
represents the four family members). Fourmoo provides Microsoft Power BI
solutions for business challenges by using customers' data and working with their
business users. Gilbert also has an active blog at http://www.fourmoo.com/blog/. This is the
first book that he has been asked to review.

I would like to say a big thanks to my wife, Sian, for her endless support and for
helping me find the time to review this book.

Ruben Oliva Ramos is a computer systems engineer from Tecnologico de Leon
Institute, with a master's degree in computer and electronic systems engineering,
teleinformatics, and networking specialization from the University of Salle Bajio in
Leon, Guanajuato, Mexico. He has more than 5 years of experience in developing
web applications to control and monitor devices connected with Arduino and
Raspberry Pi using web frameworks and cloud services to build the Internet of
Things applications.

He is a mechatronics teacher at the University of Salle Bajio and teaches students of
the master's degree in design and engineering of mechatronics systems. Ruben also
works at Centro de Bachillerato Tecnologico Industrial 225 in Leon, Guanajuato,
Mexico, teaching subjects such as electronics, robotics and control, automation, and
microcontrollers at Mechatronics Technician Career; he is a consultant and
developer for projects in areas such as monitoring systems and datalogger data using
technologies (such as Android, iOS, Windows Phone, HTML5, PHP, CSS, Ajax,
JavaScript, Angular, and ASP.NET), databases (such as SQlite, MongoDB, and
MySQL), web servers (such as Node.js and IIS), hardware programming (such as
Arduino, Raspberry pi, Ethernet Shield, GPS, and GSM/GPRS, ESP8266), and
control and monitor systems for data acquisition and programming.

He wrote Internet of Things Programming with JavaScript by Packt Publishing. He
is also involved in the monitoring, controlling, and acquisition of data with Arduino
and Visual Basic .NET for Alfaomega.

http://www.fourmoo.com/blog/

I would like to thank my savior and lord, Jesus Christ, for giving me the strength
and courage to pursue this project; my dearest wife, Mayte; our two lovely sons,
Ruben and Dario; my dear father, Ruben; my dearest mom, Rosalia; my brother,
Juan Tomas; and my sister, Rosalia, whom I love, for all their support while
reviewing this book, for allowing me to pursue my dream, and tolerating not being
with them after my busy day job.

Juan Tomás Oliva Ramos is an environmental engineer from the university of
Guanajuato, with a master's degree in administrative engineering and quality. He has
more than 5 years of experience in management and development of patents,
technological innovation projects, and development of technological solutions
through the statistical control of processes.

He is a teacher of statistics, entrepreneurship and technological development of
projects since 2011. He became an entrepreneur mentor, and started a new
department of technology management and entrepreneurship at Instituto Tecnologico
Superior de Purisima del Rincon.

He is a Packt Publishing reviewer and he has worked on the book: Wearable designs
for Smart watches, Smart TV's and Android mobile devices.

He has developed prototypes through programming and automation technologies for
the improvement of operations, which have been registered to apply for his patent.

I want to thank God for giving me wisdom and humility to review this book.

I want to thank Packt for giving me the opportunity to review this amazing book
and to collaborate with a group of committed people.

I want to thank my beautiful wife, Brenda, our two magic princesses, Regina and
Renata, and our next member, Angel Tadeo, all of you, give me the strength,
happiness and joy to start a new day. Thanks for being my family.

www.PacktPub.com
For support files and downloads related to your book, please visit www.PacktPub.com.
Did you know that Packt offers eBook versions of every book published, with PDF
and ePub files available? You can upgrade to the eBook version at www.PacktPub.com,
and as a print book customer, you are entitled to a discount on the eBook copy.

Get in touch with us at service@packtpub.com for more details. At www.PacktPub.com, you
can also read a collection of free technical articles, sign up for a range of free
newsletters and receive exclusive discounts and offers on Packt books and eBooks.

https://www.packtpub.com/mapt

Get the most in-demand software skills with Mapt. Mapt gives you full access to all
Packt books and video courses, as well as industry-leading tools to help you plan
your personal development and advance your career.

http://www.PacktPub.com
http://www.PacktPub.com
http://www.PacktPub.com
https://www.packtpub.com/mapt

Why subscribe?
Fully searchable across every book published by Packt
Copy and paste, print, and bookmark content
On demand and accessible via a web browser

Customer Feedback
Thanks for purchasing this Packt book. At Packt, quality is at the heart of our
editorial process. To help us improve, please leave us an honest review on this
book's Amazon page at https://www.amazon.com/dp/1788290143.

If you'd like to join our team of regular reviewers, you can email us at
customerreviews@packtpub.com. We award our regular reviewers with free eBooks and
videos in exchange for their valuable feedback. Help us be relentless in improving
our products!

https://www.amazon.com/dp/1788290143

Table of Contents
Preface

What this book covers
What you need for this book
Who this book is for
Conventions
Reader feedback
Customer support

Downloading the example code
Downloading the color images of this book
Errata
Piracy
Questions

1. Configuring Power BI Development Tools
Introduction
Configuring Power BI Desktop options and settings

Getting ready
How to do it...

Installing and running Power BI Desktop
Configuring Power BI Desktop options

How it works...
There's more...
See also

Power BI's advantages over Excel
Power BI Security and Data Source Privacy

Installing the On-Premises Data Gateway
Getting ready

Hardware and network configuration
How to do it...

Installation of on-premises gateway
How it works...

Gateway recovery key
There's more...
See also...

Installing Power BI Publisher for Excel
How to do it...

Installation of Power BI Publisher for Excel
There's more...

Installing and Configuring DAX Studio
How to do it...

Installation of DAX Studio
Configuration of DAX Studio

How it works...

There's more...
Guy in a Cube video channel

2. Accessing and Retrieving Data
Introduction
Viewing and analyzing M functions

Getting ready
How to do it...

Formula Bar
Advanced Editor window

How it works...
Query folding
M query structure
Lazy evaluation

There's more...
Partial query folding
Limitations of query folding

See also...
M language references

Establishing and managing connections to data sources
Getting ready
How to do it...

Isolate data sources from individual queries
Query groups

Manage source credentials and privacy levels
How it works...

Data Source settings
Data source privacy settings

There's more...
See also

Building source queries for DirectQuery models
Getting ready
How to do it...

Applying M transformations with DirectQuery models
How it works...
There's more...

DirectQuery project candidates
DirectQuery performance

See also
Importing data to Power BI Desktop models

How to do it...
Denormalize a dimension
Provide automatic sorting

How it works...
There's more...

One GB dataset limit and Power BI Premium

See also
Applying multiple filtering conditions

Getting ready
How to do it...

Query filter example steps
How it works...
There's more...

Filtering via the Query Editor interface
See also

Choosing columns and column names
How to do it...

Identify expensive columns
Select columns
Rename columns

How it works...
Column memory usage

There's more...
Fact table column eliminations
Column orders

See also
Transforming and cleansing source data

Getting ready
How to do it...

Remove duplicates
Update a column through a join

There's more...
See also

Creating custom and conditional columns
How to do it...

Create a dynamic banding attribute
Create a formatted name column
Comparing the current and previous rows

How it works...
Conditional expression syntax
Case sensitivity
Conditional expression evaluation
Query folding of custom columns

There's more...
Add column from example
Conditional columns interface
DAX calculated columns
Error handling and comments

Integrating multiple queries
Getting ready
How to do it...

Consolidate files
Self-joining querying

How it works...
Nested join versus flat join
Append multiple files

There's more...
Combine binaries
Staging queries versus inline queries

See also
Choosing column data types

How to do it...
Remove automatic type detection steps
Align relationship column data types
Add numeric columns from text columns
Use fixed decimal number for precision

How it works...
Automatic data type detection
Numeric data types
Power BI Desktop automatic time intelligence

There's more...
Data type impacts
Date with locale
Percentage data type

See also
Visualizing the M library

How to do it...
How it works...
There's more...

3. Building a Power BI Data Model
Introduction
Designing a multi fact data model

Getting ready
Setting business expectations

How to do it...
Four-step dimensional design process

Data warehouse and implementation bus matrix
Choose the dataset storage mode - Import or DirectQuery

In-Memory mode
DirectQuery mode

How it works...
DAX formula and storage engine

There's more...
Project ingestion questions
Power BI delivery approaches

See also

Implementing a multi fact data model
How to do it...

SQL view layer
M queries in Power BI Desktop
Create model relationships
Author DAX measures
Configure model metadata

There's more...
Shared views

Handling one-to-many and many-to-many relationships
Getting ready
How to do it...

Single, bidirectional, and CROSSFILTER()
Single direction relationships
Bidirectional relationship
CROSSFILTER() Measure

Many-to-many relationships
Bidirectional cross-filtering for many-to-many

How it works...
Ambiguous relationships
CROSSFILTER()

There's more...
DirectQuery supported

See also
Assigning data formatting and categories

How to do it...
Data formats
Data category

How it works...
There's more...

Model level settings
See also

Configuring Default Summarization and sorting
How to do it...

Sort By Column
DAX Year-Month sorting
DAX Ranking Sort

Default Summarization
How it works...

Default Summarization
There's more...

Quick measures
See also

Setting the visibility of columns and tables
How to do it...

Isolate measures from tables

How it works...
Measure home tables

There's more...
Hiding hierarchy columns
Group visibility
Row level security visibility
Visibility features from SSAS

Embedding business definitions into DAX measures
Getting ready
How to do it...

Sales and cost metrics
Margin and count metrics
Secondary relationships

How it works...
Date relationships

There's more...
Measure definitions
Measure names and additional measures

See also
Enriching a model with analysis expressions

How to do it...
Pricing analysis
Geometric mean at all grains

How it works...
Pricing analysis

Building analytics into data models with DAX
How to do it...

Cross-selling opportunities
Accessories but not bike customers
Bike only customers

Active verus inactive customers
Actual versus budget model and measures

How it works...
Filter Context Functions

There's more...
SUMMARIZECOLUMNS()

Integrating math and statistical analysis via DAX
How to do it...

Correlation coefficient
Goodness-of-Fit test statistic

How it works...
Correlation coefficient syntax
Goodness-of-Fit logic and syntax

Supporting virtual table relationships
How to do it...

Segmentation example

Summary to detail example
Actual versus plan

How it works...
Year and month selected
Virtual relationship functions

There's more...
Multiple dimensions
Alternatives to virtual relationships

See also
Creating browsable model hierarchies and groups

How to do it...
Create hierarchy columns with DAX
Implement a hierarchy
Create and manage a group

How it works...
DAX parent and child functions
Include other grouping option
Model scoped features

There's more...
DAX calculated columns as rare exceptions
Natural hierarchies versus unnatural hierarchies
Grouping dates and numbers
DirectQuery models supported

See also
4. Authoring Power BI Reports

Introduction
Building rich and intuitive Power BI reports

Getting ready
Stakeholder Matrix

How to do it...
Report planning and design process
Report Design Example

European Sales and Margin Report Page
European country sales and margin report page

How it works...
European sales report design

There's more...
Power BI report design checklist
Custom visuals
Published Power BI datasets as data sources

See also
Creating table and matrix visuals

How to do it...
Table visual exceptions

Identifying blanks in tables

Matrix visual hierarchies
How it works...

Matrix visual navigation
There's more...

URL and mail to email support
Percent of total formatting
Measures on matrix rows
Data bar conditional formatting

Utilizing graphical visualization types
Getting ready

Choosing visual types
How to do it...

Waterfall chart for variance analysis
Line chart with conditional formatting
Shape map visualization

How it works...
Shape map

Enhancing exploration of reports
Getting ready

Drillthrough report page requirements
Enable Cortana integration and Q&A

How to do it...
Create featured Q&A questions
Parameterized Q&A report
Cortana integration
Drillthrough Report Pages
Report themes

How it works...
Report theme JSON files

There's more...
Conversational BI - mobile support for Q&A

See also
Integrating card visualizations

Getting ready
How to do it...

KPI visual
Multi-row card

There's more...
Gauge visualizations

Controlling interactive filtering between visuals
How to do it...

Visual interaction control
How it works...

Current year Measures
Associating slicers with report pages

How to do it...

Configure dimension slicers
Horizontal slicers

Customize a date slicer
Relative date filters

How it works...
Date slicer

There's more...
Text search
Numeric range slicers

Applying filters at different scopes
How to do it...

Report and page level filters
Visual level filter - top N

How it works...
DAX queries from report, page, and visual Filters

There's more...
Advanced report and page level filters

Formatting reports for publication
How to do it...

Visual alignment and distribution
Shapes as backgrounds and groups

There's more...
Snap objects to grid and keyboard shortcuts
Textbox with email link
Format painter

See also
Designing mobile report layouts

Getting ready
Plan for mobile consumption

How to do it...
Phone layout - Europe report page
Phone layout - United Kingdom report page

How it works...
There's more...

Slicers and drill-down on mobile devices
Mobile-optimized dashboards

See also
5. Creating Power BI Dashboards

Introduction
Building a Power BI dashboard

How to do it...
Dashboard design process
Dashboard development process

Constructing an enterprise dashboard
How to do it...

Dashboard design process

How it works...
Dual KPI custom visual
Supporting tiles

Developing dynamic dashboard metrics
How to do it...

Dynamic date columns
KPI target measures

How it works...
Target measure - trailing 6 months

Preparing datasets and reports for Q & A natural language queries
Getting ready

Determine use cases and feasibility
How to do it...

Prepare a model for Q & A
Model metadata
Model design

Apply synonyms
Analyze Q & a use cases
Apply synonyms
Publish the dataset

Embedding analytical context into visualizations
How to do it...

Design the visual
Create the visual

How it works...
Color saturation rule
Tooltip measures

There's more...
Exposing what matters - top N and percentage of total visualizations

How to do it...
Top 25 resellers with below -3% margin
Last year's top 50 products with below -10% growth

How it works...
Prior year rank measure

Visualizing performance relative to targets with KPIs and gauges
How to do it...

Create the visuals
Grouping KPIs
Publish KPIs to dashboard

How it works...
Current month filter
Time intelligence measures

Leveraging Power BI reports in Power BI dashboards
How to do it...

Define live page requirements
Create and publish to the dashboard

Refine dashboard layout
How it works...

Live page slicers
Deploying content from Excel and SSRS to Power BI

Getting ready
How to do it...

Publish and pin excel objects
Pin SSRS report items

Adding data alerts and email notifications to dashboards
How to do it...

Configure data alert
Automate email notification

How it works...
6. Getting Serious with Date Intelligence

Introduction
Building a complete date dimension table

Getting ready
How to do it...

Date dimension design
Required date dimension columns
Date dimension planning and design

Add date intelligence columns via SQL
How it works...

Date intelligence columns
Loading the date dimension

There's more...
Role playing date dimensions
Surrogate key date conversion

Prepping the date dimension via the Query Editor
How to do it...

Date dimension M Query
Add the date intelligence column via join

How it works...
Date dimension M query
DirectQuery support

Authoring date intelligence metrics across granularities
Getting ready
How to do it...

Current time period measures
Prior time period measures
Dynamic prior period measure

How it works...
Current and prior time period measures

Developing advanced date intelligence metrics
How to do it...

Count of days without sales

Dynamic Prior Year-to-Date
How it works...

Dynamic prior period intelligence
Simplifying date intelligence with DAX queries and calculated tables

How to do it...
Role playing date dimensions via calculated tables
Date table logic query

How it works...
Date table logic query

Adding a metric placeholder dimension
How to do it...

Metric placeholder dimension query
Measure group table

7. Parameterizing Power BI Solutions
Introduction
Creating dynamic and portable Power BI reports

Getting ready
How to do it...

Single and multiple URL parameters
Dynamic embedded URLs

There's more...
Dashboards with custom URLs

See also
Filtering queries with parameters

Getting ready
How to do it...

Trailing days query parameter filter
Multi-parameter query filters

How it works...
Query folding of parameter value filters

There's more...
Power BI Service support

Preserving report metadata with Power BI templates
Getting ready
How to do it...

Template parameters
Export template

Converting static queries into dynamic functions
How to do it...
There's more...

Local resource usage
Parameterizing your data sources

Getting ready
How to do it...

SQL Server database
Excel filename and path

Stored procedure input parameters
Generating a list of parameter values via queries

How to do it...
Dynamic date parameter query
Product subcategories parameter query

There's more...
DirectQuery support

Capturing user selections with parameter tables
How to do it...

Sales plan growth scenarios
There's more...

Scenario specific measures
Building a forecasting process with What if analysis capabilities

Getting ready
How to do it...

Forecast variables from Excel
Power BI Desktop forecast model

Source connection and unpivoted forecast tables
Apply the forecast to historical values
Allocate the forecast according to the dimension variable inputs
Create relationships, measures, and forecast visuals
Test and deploy forecasting tool

How it works...
8. Implementing Dynamic User-Based Visibility in Power BI

Introduction
Capturing the current user context of Power BI content

Getting ready
How to do it...
How it works...

Power BI authentication
There's more...

USERNAME() versus USERPRINCIPALNAME()
See also

Defining RLS roles and filtering expressions
Getting ready
How to do it...

United States online Bike Sales Role
Europe reseller sales - mountain and touring
Deploy security roles to Power BI

How it works...
Filter transfer via relationships

There's more...
Managing security
Dynamic columns and central permissions table

Designing dynamic security models in Power BI

Getting ready
How to do it...
There's more...

Performance impact
Building dynamic security in DirectQuery data models

Getting ready
How to do it...
How it works...

Dynamic security via relationship filter propagation
There's more...

Bidirectional security relationships
Displaying the current filter context in Power BI reports

How to do it...
Dimension values selected
Dimension values remaining

How it works...
FILTERS() and CONCATENATEX()

Avoiding manual user clicks with user-based filtering logic
Getting ready
How to do it...
How it works...
There's more...

Personal filters feature coming to Power BI apps
9. Applying Advanced Analytics and Custom Visuals

Introduction
Incorporating advanced analytics into Power BI reports

How to do it...
Clustered column chart
Line chart

How it works...
Analytics pane measures

There's more...
Analytics pane limitations

See also
Enriching Power BI content with custom visuals and quick insights

Getting ready
How to do it...

Bullet chart custom visual
Scoped quick insights

How it works...
There's more...

Quick insights in Power BI Desktop
Quick insights on published datasets

Creating geospatial mapping visualizations with ArcGIS maps for Power BI
Getting ready
How to do it...

Single field address
Customer clustering Map

There's more...
ArcGIS map field wells
Conditional formatting logic

See also
Configuring custom KPI and slicer visuals

Getting ready
How to do it...

Dual KPI - headcount and labor expense
Chiclet Slicer - Sales Territory Country

There's more...
Chiclet slicer custom visual

Building animation and story telling capabilities
Getting ready
How to do it...

Scatter chart with play axis
ArcGIS map timeline
Pulse chart custom visual

There's more...
Bookmarks
Play axis custom visual
Storytelling custom visuals

Embedding statistical analyses into your model
Getting ready
How to do it...

Regression table and measures
Residuals table and measures
Regression report

How it works...
Statistical formulas
DAX calculated tables

See also
Creating and managing Power BI groupings and bins

How to do it...
First purchase date grouping
Days since last purchase grouping

Detecting and analyzing clusters
Getting ready
How to do it...

Create clusters
Analyze the clusters

How it works...
RFM - recency, frequency, monetary
Clustering algorithm and limits

There's more...
R clustering custom visuals
Scatter chart-based clustering

Forecasting and visualizing future results
Getting ready
How to do it...

Monthly forecast via date hierarchy
Weekly sales forecast analysis

How it works...
Exponential smoothing
Dynamic week status column

There's more...
Forecast requirements

Using R functions and scripts to create visuals within Power BI
Getting ready
How to do it...

Base graphics histogram
ggplot2 histogram

How it works...
Automatic duplicate removal
Filter context

There's more...
See also

10. Developing Solutions for System Monitoring and Administration
Introduction
Creating a centralized IT monitoring solution with Power BI

Getting ready
How to do it...
How it works...

Wait Stats and instance configuration data source setup
There's more...

Query Store integration
DirectQuery real-time monitoring datasets

See also
Constructing a monitoring visualization and analysis layer

Getting ready
How to do it...
How it works...

Relative date filtering
There's more...

Top 10 slowest queries via Query Store
See also

Importing and visualizing dynamic management view (DMV) data of SSAS and Power BI data mode
ls

How to do it...

How it works...
Memory structures

See also
Increasing SQL Server DBA productivity with Power BI

Getting ready
How to do it...
How it works...

Query Store
See also

Providing documentation of Power BI and SSAS data models to BI and business teams
Getting ready
How to do it...
How it works...
There's more...

Power BI documentation reports via Excel
SQL Server Analysis Services (SSAS) Metadata

Analyzing performance monitor counters of the Microsoft on-premises data gateway and SSAS tabul
ar databases

Getting ready
How to do it...

SSAS tabular memory reporting
On-premises data gateway counters

How it works...
SSAS tabular memory limits
On-premises data gateway workloads

There's more...
High availability and load balancing for the on-premises data gateway
Reduce network latency via Azure ExpressRoute and Azure Analysis Services

See also
Analyzing Extended Events trace data with Power BI

Getting ready
How to do it...
How it works...

Self-service Extended Events analysis
There's more...

SQL Server Profiler versus Extended Events
Additional event session integration

See also
Visualizing log file data from SQL Server Agent jobs and from Office 365 audit searches

Getting ready
How to do it...

Power BI Audit Log Integration
SQL Server Agent log integration

How it works...
PowerShell search for Power BI audit log

SQL Server agent tables
There's more...

Power BI usage reporting
See also

11. Enhancing and Optimizing Existing Power BI Solutions
Introduction
Enhancing the scalability and usability of a data model

Getting ready
How to do it...

Identify expensive columns and quick wins
Normalize large dimensions
Sort imported fact tables

How it works...
Columnar database
Run-length encoding (RLE) compression via Order By
Segment elimination

There's more...
Minimize loaded and refreshed queries

Revising DAX measures to improve performance
Getting ready
How to do it...

Improper use of FILTER()
Optimizing OR condition measures

How it works...
DAX query engine - formula and storage

There's more...
DAX variables for performance
DAX as a query language

Pushing query processing back to source systems
Getting ready
How to do it...

Query folding analysis process
Query folding redesign

How it works...
Query folding factors
Native SQL queries

There's more...
Parallel loading of tables
Improving folded queries

Strengthening data import and integration processes
How to do it...

Data source consolidation
Error handling, comments, and variable names
Handling missing fields

How it works...

MissingField.UseNull
See also

Isolating and documenting DAX expressions
Getting ready
How to do it...

Reseller Margin % with variables
Variable table filters

How it works...
Reseller Margin % with variables

There's more...
DAX Formatter in DAX Studio

12. Deploying and Distributing Power BI Content
Introduction
Preparing a content creation and collaboration environment in Power BI

How to do it...
Evaluate and plan for Power BI deployment
Set up a Power BI service deployment

How it works...
Premium capacity nodes - frontend cores and backend cores

There's more...
Scaling up and scaling out with Power BI Premium

See also
Managing migration of Power BI content between development, testing, and production environments

Getting ready
How to do it...

Staged deployment overview
Development environment
Production environment

How it works...
Automated report lifecycle - clone and rebind report APIs
OneDrive for business synchronization
Version restore in OneDrive for business

See also
Sharing Power BI dashboards with colleagues

Getting ready
How to do it...
How it works...

Managing shared dashboards
There's more...

Analyze shared content from Excel
Sharing dashboards from Power BI mobile apps

Configuring Power BI app workspaces
Getting ready
How to do it...
How it works...

App workspaces and apps
App workspaces replace group workspaces

There's more...
Power BI premium capacity admins

See also
Configuring refresh schedules and DirectQuery connections with the on-premises data gateway

Getting ready
How to do it...

Scheduled refresh for import mode dataset
Configure data sources for the on-premises data gateway
Schedule a refresh

DirectQuery dataset
Configure data sources for the on-premises data gateway
Configure the DirectQuery dataset

How it works...
Dataset refreshes
Dashboard and report cache refreshes

There's more...
Refresh limits: Power BI premium versus shared capacity
Trigger refreshes via data refresh APIs in the Power BI Service

See also
Creating and managing Power BI apps

Getting ready
How to do it...

Publishing an app
Distributing and installing the app

How it works...
App workspaces to apps

There's more...
Apps replacing content packs

Building email subscriptions into Power BI deployments
Getting ready

Determine feasibility - recipient, distribution method, and content
How to do it...

Create dashboard and report subscriptions
Manage subscriptions

There's more...
See also

Publishing Power BI reports to the public internet
Getting ready
How to do it...
How it works...

Publish to web report cache
There's more...

Embed in SharePoint online

See also
Enabling the mobile BI experience

How to do it...
Enhance basic mobile exploration and collaboration
Enable advanced mobile BI experiences

How it works...
Responsive visualizations

There's more...
Apple watch synchronization
SSRS 2016 on-premises via Power BI mobile apps
Filters on phone reports

See also
13. Integrating Power BI with Other Applications

Introduction
Integrating Excel and SSRS objects into Power BI Solutions

Getting ready
How to do it...

SSRS
Excel

There's more...
SSRS and Excel use cases

SSRS
Microsoft Excel

Migrating a Power Pivot for Excel Data Model to Power BI
Getting ready
How to do it...
How it works...

Excel items imported
There's more...

Export or upload to Power BI from Excel 2016
Upload Excel Workbook to Power BI
Export Excel Workbook to Power BI

Accessing and analyzing Power BI datasets from Excel
Getting ready
How to do it...

Cube formulas
DAX query to Power BI

How it works...
Cube Formulas
DAX query data connection

There's more...
Sharing and distribution limitations
New Excel visual types table requirement

Building Power BI reports into PowerPoint presentations
Getting ready
How to do it...

Prepare a report for PowerPoint
Export report to PowerPoint

How it works...
High resolution images and textboxes

There's more...
Embed Power BI tiles in MS Office

See also
Migrating a Power BI Data Model to SSAS Tabular

Getting ready
How to do it...
How it works...

Azure analysis services pricing and performance
There's more...

Direct import to SQL server data tools
See also

Accessing MS Azure hosted services such as Azure Analysis Services from Power BI
Getting ready
How to do it...
How it works...

Report level measures for live connections to SSAS
Client libraries for Azure Analysis Services

There's more...
Power BI premium DirectQuery and SSAS live connection query limits

See also
Using Power BI with Microsoft Flow and PowerApps

Getting ready
How to do it...

Streaming Power BI dataset via MS Flow
How it works...

Microsoft Flow
There's more...

Write capabilities and MS Flow premium
PowerApps Studio and mobile applications

See also

Preface
Microsoft Power BI is a business intelligence and analytics platform consisting of
applications and services designed to provide coherent visual, and interactive
insights into data.

This book will provide thorough, technical examples of using all primary Power BI
tools and features as well as demonstrate high-impact end-to-end solutions that
leverage and integrate these technologies and services. You'll get familiar with
Power BI development tools and services; go deep into the data connectivity and
transformation, modeling, visualization and analytical capabilities of Power BI; and
see Power BI's functional programming languages of DAX and M come alive to
deliver powerful solutions to address common, challenging scenarios in business
intelligence.
This book will excite and empower you to get more out of Power BI via detailed
recipes, advanced design and development tips, and guidance on enhancing existing
Power BI projects.

What this book covers
Chapter 1, Configuring Power BI Development Tools, covers the installation and
configuration of the primary tools and services that BI professionals utilize to design
and develop Power BI content, including Power BI Desktop, the On-Premises Data
Gateway, DAX Studio, and the Power BI Publisher for Excel.

Chapter 2, Accessing and Retrieving Data, dives into Power BI Desktop's Get Data
experience and walks through the process of establishing and managing data source
connections and queries.

Chapter 3, Building a Power BI Data Model, explores the primary processes of
designing and developing robust data models.

Chapter 4, Authoring Power BI Reports, develops and describes the most fundamental
report visualizations and design concepts. Additionally, guidance is provided to
enhance and control the user experience when consuming and interacting with Power
BI reports in the Power BI service and on mobile devices.

Chapter 5, Creating Power BI Dashboards, covers Power BI dashboards constructed
to provide simple at-a-glance monitoring of critical measures and high-impact
business activities.

Chapter 6, Getting Serious with Date Intelligence, contains three recipes for preparing
a data model to support robust date intelligence and two recipes for authoring custom
date intelligence measures.

Chapter 7, Parameterizing Power BI Solutions, covers both standard parameterization
features and techniques in Power BI as well as more advanced custom
implementations.

Chapter 8, Implementing Dynamic User-Based Visibility in Power BI, contains
detailed examples of building and deploying dynamic, user-based security for both
import and DirectQuery datasets, as well as developing dynamic filter context
functionality to enhance the user experience.

Chapter 9, Applying Advanced Analytics and Custom Visuals, contains a broad mix of
recipes highlighting many of the latest and most popular custom visualization and
advanced analytics features of Power BI.

Chapter 10, Developing Solutions for System Monitoring and Administration,

highlights the most common and impactful administration data sources, including
Windows Performance Monitor, SQL Server Query Store, the Microsoft On-Premises
Data Gateway, the MSDB system database, and Extended Events.

Chapter 11, Enhancing and Optimizing Existing Power BI Solutions, contains top data
modeling, DAX measure, and M query patterns to enhance the performance,
scalability, and reliability of Power BI datasets.

Chapter 12, Deploying and Distributing Power BI Content, contains detailed examples
and considerations in deploying and distributing Power BI content via the Power BI
service and Power BI mobile applications.

Chapter 13, Integrating Power BI with Other Applications, highlights new and
powerful integration points between Power BI and SSAS, SSRS, Excel, PowerPoint,
PowerApps, and Microsoft Flow.

What you need for this book
You will be guided through the chapters about the prerequisites. However, in order to
work through the chapters, along with other components, you will primarily require
the following:

Power BI Desktop (Free download): Recommended four-core CPU and
minimum 1 GB of RAM
Windows 7-10+ or Windows Server 2008R2–2012R2

Who this book is for
This book is for BI professionals who wish to enhance their knowledge of Power BI
design and development topics and to enhance the value of the Power BI solutions
they deliver. Those interested in quick resolutions to common challenges and a
reference guide to Power BI features and design patterns will also find this book to
be a very useful resource. Some experience with Power BI will be helpful.

Conventions
In this book, you will find a number of text styles that distinguish between different
kinds of information. Here are some examples of these styles and an explanation of
their meaning. Code words in text, database table names, folder names, filenames,
file extensions, pathnames, dummy URLs, user input, and Twitter handles are shown
as follows: "Indicator columns, such as Weekday Indicator, Holiday Indicator, and Working
Day Indicator."

A block of code is set as follows:

FALSE()
[Reseller Product Line] IN {"Mountain","Touring"}
[Sales Territory Group] = "Europe"

When we wish to draw your attention to a particular part of a code block, the
relevant lines or items are set in bold:

Internet Net Sales (CY YTD) = CALCULATE([Internet Net Sales],
 FILTER(ALL('Date'),'Date'[Calendar Year Status] = "Current Calendar Year" && 'Date'[Date] <= MAX('Date'[Date])))

New terms and important words are shown in bold. Words that you see on the
screen, for example, in menus or dialog boxes, appear in the text like this: "Click on
Save and then choose the new role from View as Roles on the Modeling tab"

Warnings or important notes appear like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book-what you liked or disliked. Reader feedback is important for us as it helps
us develop titles that you will really get the most out of. To send us general feedback,
simply email feedback@packtpub.com, and mention the book's title in the subject of your
message. If there is a topic that you have expertise in and you are interested in either
writing or contributing to a book, see our author guide at www.packtpub.com/authors.

http://www.packtpub.com/authors

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Downloading the example code
You can download the example code files for this book from your account at http://www.
packtpub.com. If you purchased this book elsewhere, you can visit http://www.packtpub.com/su
pport and register to have the files emailed directly to you. You can download the code
files by following these steps:

1. Log in or register to our website using your email address and password.
2. Hover the mouse pointer on the SUPPORT tab at the top.
3. Click on Code Downloads & Errata.
4. Enter the name of the book in the Search box.
5. Select the book for which you're looking to download the code files.
6. Choose from the drop-down menu where you purchased this book from.
7. Click on Code Download.

Once the file is downloaded, please make sure that you unzip or extract the folder
using the latest version of:

WinRAR / 7-Zip for Windows
Zipeg / iZip / UnRarX for Mac
7-Zip / PeaZip for Linux

The code bundle for the book is also hosted on GitHub at https://github.com/PacktPublishing/M
icrosoft-Power-BI-Cookbook. We also have other code bundles from our rich catalog of
books and videos available at https://github.com/PacktPublishing/. Check them out!

http://www.packtpub.com
http://www.packtpub.com/support
https://github.com/PacktPublishing/Microsoft-Power-BI-Cookbook
https://github.com/PacktPublishing/

Downloading the color images of this
book
We also provide you with a PDF file that has color images of the
screenshots/diagrams used in this book. The color images will help you better
understand the changes in the output. You can download this file from https://www.packtpu
b.com/sites/default/files/downloads/MicrosoftPowerBICookbook_ColorImages.pdf.

https://www.packtpub.com/sites/default/files/downloads/MicrosoftPowerBICookbook_ColorImages.pdf

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes do
happen. If you find a mistake in one of our books-maybe a mistake in the text or the
code-we would be grateful if you could report this to us. By doing so, you can save
other readers from frustration and help us improve subsequent versions of this book.
If you find any errata, please report them by visiting http://www.packtpub.com/submit-errata,
selecting your book, clicking on the Errata Submission Form link, and entering the
details of your errata. Once your errata are verified, your submission will be
accepted and the errata will be uploaded to our website or added to any list of
existing errata under the Errata section of that title. To view the previously submitted
errata, go to https://www.packtpub.com/books/content/support and enter the name of the book in
the search field. The required information will appear under the Errata section.

http://www.packtpub.com/submit-errata
https://www.packtpub.com/books/content/support

Piracy
Piracy of copyrighted material on the internet is an ongoing problem across all
media. At Packt, we take the protection of our copyright and licenses very seriously.
If you come across any illegal copies of our works in any form on the internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy. Please contact us at copyright@packtpub.com with a link to the suspected
pirated material. We appreciate your help in protecting our authors and our ability to
bring you valuable content.

Questions
If you have a problem with any aspect of this book, you can contact us at
questions@packtpub.com, and we will do our best to address the problem.

Configuring Power BI Development
Tools
In this chapter, we will cover the following recipes:

Configuring Power BI Desktop options and settings
Installing the On-Premises Data Gateway
Installing Power BI Publisher for Excel
Installing and configuring DAX Studio

Introduction
Power BI is a suite of business analytics tools and services that work together to
access data sources, shape, analyze and visualize data, and share insights. Although
not all tools are required for all projects or deployments of Power BI, synergies are
available by utilizing the unique features of multiple tools as part of integrated
solutions encompassing diverse data sources and visualization types.

In this chapter, we walk through the installation and configuration of the primary tools
and services BI professionals utilize to design and develop Power BI content
including Power BI Desktop, the On-Premises Data Gateway, DAX Studio, and the
Power BI Publisher for Excel. Additionally, as Power BI tools and services are
regularly updated with new features and enhancements, resources are identified to
stay up-to-date and to best take advantage of these tools for your projects.

It's assumed that the reader has access to a Power BI Pro license, rights to download
and install (or allow installation) the development tools on their machine, and has the
necessary access and rights to deploy and manage content in the Power BI Service
and utilize the Power BI mobile applications. Power BI licensing options and
assigning and managing these rights is outside the scope of this book.

Configuring Power BI Desktop options
and settings
Power BI Desktop is the primary tool used to develop the visual and analytical
content which can then be deployed and collaborated on in the Power BI Service and
optionally embedded in other applications and portals or even shared on the public
internet. Although Power BI Desktop runs as a single application, it includes three
tightly integrated components with their own options and settings:

The Get Data and Query Editor experience, with its underlying M language and
data mashup engine
The SQL Server Analysis Services (SSAS) tabular data modeling engine and
its DAX analytical language
The interactive reporting and visualization engine formerly known as Power
View

Configuring and leveraging these capabilities, in addition to advanced analytics and
customization features such as R, mobile layout, and natural language queries, makes
it possible to build robust and elegant BI and analytics solutions.

Getting ready
Most organizations set policies restricting downloads of software from the internet
and many choose to centrally distribute a specific version of Power BI Desktop. For
example, the March 2017 version of Power BI Desktop would be available on a
corporate IT portal and it would be the approved version for 1-2 months while the
April 2017 version is internally evaluated. Additionally, BI organizations may define
policies restricting the use of native queries, custom visualizations, and establishing
source privacy level settings.

How to do it...
Power BI Desktop is a relatively large download at 110 MB but can be installed
simply and provides an intuitive Options and Settings interface for configuration.

Installing and running Power BI
Desktop

1. Download the Power BI Desktop installer package. The Windows installer
package (.msi) can be downloaded from the Power BI Service or from the
Power BI downloads page (https://powerbi.microsoft.com/en-us/downloads/).

Figure 1: Download from the Power BI Service

The Download dropdown, along with Settings and Notifications, is available
in the upper-right corner of the Power BI Service window. The On-Premises
Data Gateway and Power BI Publisher for Excel described later this chapter
are also available for download.

Figure 2: Downloaded Installer Package for 64-bit Power BI Desktop

The web service will determine whether the 64-bit (x64) or 32-bit version of
Power BI Desktop is appropriate for your machine's operating system. If
Power BI Desktop has already been installed on your machine and
notifications of new versions are enabled, you will have the option to initiate
the download of the latest Power BI Desktop version when it's available.
Notifications of new versions are enabled by default and available under
Global Options | Updates.

2. Install Power BI Desktop. Launch the installation wizard from the .msi package
and complete the installation after accepting the license agreement and choosing
the file directory.

https://powerbi.microsoft.com/en-us/downloads/

Figure 3: Successful Installation of Power BI Desktop

Configuring Power BI Desktop options
Developers of Power BI content should become familiar with the settings available
in Power BI options and data source settings as these configurations determine
available functionality, user interface options, default behaviors, performance, and
the security of the data being accessed.

Figure 4: Power BI Desktop Options (July 2017)

GLOBAL options are applied to all Power BI Desktop files created or accessed by
the user, while CURRENT FILE options must be defined for each Power BI Desktop
file. The following steps are recommended for GLOBAL options.

1. On the Data Load tab, confirm that the currently used data cache is below the
Maximum allowed (MB) setting. If it is near the limit and local disk space is
available, increase the value of the Maximum allowed (MB). Do not clear the
cache unless local disk space is unavailable as this will require additional,

often unnecessary, queries to be executed at design time.

Figure 5: Global Data Load options

2. On the Query Editor tab, display both the query settings pane and the formula
bar. This will allow for greater visibility to the structure and specific M
functions utilized by individual queries.

Figure 6: Global Query Editor options

3. On the DirectQuery tab, enable the Allow unrestricted measures in DirectQuery
mode setting.

Figure 7: Global DirectQuery options

This enables additional DAX functions to be used in metrics against
DirectQuery data models that are necessary to meet many common
requirements. Although all DAX functions are supported for
DirectQuery models, certain functions are not optimized for
DirectQuery; they may not generate an efficient SQL query and may
require local, single-threaded resources to execute. For this reason,
among others discussed in Chapter 3, Building a Power BI Data Model,
the default Import mode is often a better option than DirectQuery for

more complex data models.

4. On the Security tab, select the option to require user approval for new native
database queries. Native queries are the user-specified SQL statements passed
to data sources as opposed to the queries Power BI generates internally.

Figure 8: Security Option for Native Database Queries

Optionally, set Show security warning when adding a custom visual to a report
as well.

From a security standpoint, custom visuals can be divided between
those developed by Microsoft, those developed by third parties but
available in the Office Store, and finally those developed by third
parties but available exclusively from sources outside the Office
Store. Custom visuals developed by Microsoft have been thoroughly
tested for safety. Third-party custom visuals available in the Office
Store have been through a validation process though there is no
guarantee that all code paths have been tested. Third-party visuals
not available in the Office Store should therefore be used with
caution and it's recommended to establish a policy regarding the use
of custom visuals.

5. On the privacy tab, configure the privacy levels for all data sources and enable
the option to Always combine data according to your Privacy Level settings for
each source. See How it Works... for details on these settings.

Figure 9: Global Privacy Level Options

6. From the Data Source settings, select an individual source and choose Edit

Permissions to configure the privacy level:

Figure 10: Edit Permissions of a Data Source

The Edit Permissions dialog is also required to update credentials as
data source system credentials expire or password resets are
required.

7. Enable Preview features for evaluation purposes:

Figure 11: Preview Features available with the March 2017 Release of Power BI Desktop

8. On the Data Load tab for the CURRENT FILE, disable the automatic detection
of column types and relationships. These model design decisions should be
implemented explicitly by the Power BI developer with knowledge of the
source data.

Figure 12: Disabled Relationships Options for the Current File

As the current file options, it's necessary to apply these settings with each
Power BI Desktop file to avoid default behaviors.

For example, the default detection of column types from unstructured
sources such as text or Excel files will create a hardcoded
dependency on the column names in the source file. Additionally, this
default transformation will be applied prior to any filter expression
and thus can require more time and resources to perform the refresh.

How it works...
Defining data source privacy levels such as Organizational or Private prevents the
data from these sources being exposed to external or inappropriate data sources
during data retrieval processes. For example, if a query calls for merging a Private
data source with a Public data source, the join operation will be executed locally--
the private data will not be sent to the public source. In the absence of Privacy Level
settings set for data sources, the M query engine will look to optimize for
performance by utilizing source system resources.

The options under Preview features change with new versions as some previous
options become generally available and new preview features are introduced. The
monthly Power BI Desktop update video and blog post provides details and
examples of these new features. Usually a restart of the Power BI Desktop
application is required once a new preview option has been activated, and tooltips
and dialogs in Power BI Desktop will advise you if a preview feature is being used.

The enable tracing option in the Diagnostic Options section writes out detailed trace
event data to the local hard drive and thus should only be activated for complex
troubleshooting scenarios.

Figure 13: Global Diagnostics Options

There's more...
As a modern cloud and service-oriented analytics platform, Power BI delivers new
and improved features across its toolset on a monthly cadence. These scheduled
releases and updates for Power BI Desktop, the Power BI Service, the On-Premises
Data Gateway, Power BI mobile applications, and more reflect customer feedback,
industry trends, and the Power BI team's internal ideas and product roadmap.

BI professionals responsible for developing and managing Power BI content can both
stay informed of these updates as well as review detailed documentation and
guidance on implementing the features via the Microsoft Power BI Blog (http://bit.ly/20bc
Qb4), Power BI Documentation (http://bit.ly/2o22qi4), and the Power BI Community (http://bit.
ly/2mqiuxP).

Figure 14: Blog post and supporting video for the March 2017 update to Power BI Desktop

The Power BI Community portal provides a robust, searchable hub of information
across common topics as well as an active, moderated forum of user experiences and
troubleshooting. The community also maintains its own blog featuring examples and
use cases from top community contributors, and links to local Power BI User
Groups (PUGs) and relevant events such as Microsoft Data Insights Summit.

http://bit.ly/20bcQb4
http://bit.ly/2o22qi4
http://bit.ly/2mqiuxP

See also

Power BI's advantages over Excel
Although Power BI Desktop and Excel 2016 both contain the same data
transformation and modeling BI engines (M and DAX, respectively), features
exclusive to Power BI Desktop and the features in the Power BI Service exclusive to
datasets created from Power BI Desktop create an incentive to migrate existing Excel
data models and queries to Power BI Desktop. At the time of writing, those top
incremental features and benefits are the following:

Row-level security roles Custom third-party Visuals

DirectQuery Data models Data-Driven Alerts

Max Size of 1 GB per dataset* Quick Insights

Interactive reports* Interactive Mobile Reports

Bidirectional relationships Mobile report layouts

Natural language queries Advanced analytics with R

Power BI report templates Custom Report Themes

The maximum size of an Excel dataset that can be published to Power
BI is 250 MB, compared to 1 GB for Power BI Desktop. With Power
BI Premium, even larger Power BI datasets will be supported (ie
10GB, 100GB). Additionally, Excel reports created via connections to
external data sources such as Analysis Services databases or
published Power BI datasets are not interactive when published to
Power BI (that is, slicers or drill down) and their data does not
update with refreshes to the source dataset. Therefore, only Excel

reports based on the more limited Excel data model can be published
to include interactivity and the scheduled refresh. Additionally, new
features added or improved in Power BI Desktop's monthly update
cycle such as new M or DAX functions become available to Excel in
Office 365 subscription updates. Thus, even with the latest Office 365
update, new features may not be available in Excel for months.

Power BI Security and Data Source
Privacy
The documentation and the official Power BI Security white paper are available
here: http://bit.ly/22NHzRS and detailed documentation on data source privacy levels is
available here: http://bit.ly/2nC0Lmx

http://bit.ly/22NHzRS
http://bit.ly/2nC0Lmx

Installing the On-Premises Data
Gateway
The On-Premises Data Gateway, originally referred to as the Power BI Enterprise
Gateway, is a Windows service that runs in on-premises environments. The sole
purpose of the gateway is to support secure (encrypted) and efficient data transfer
between On-Premises data sources and MS Azure services such as Power BI,
PowerApps, MS Flow, and Azure Logic Apps via an outbound connection to the
Azure Service Bus. Once installed, a gateway can be used to schedule data refreshes
of imported Power BI datasets and to support Power BI reports and dashboards built
with DirectQuery Power BI datasets and those which use Live Connections to SSAS
(SQL Server Analysis Services) databases.

A single On-Premises Data Gateway can support the refresh and query activity for
multiple data sources, and permission to use the gateway can be shared with multiple
users. Currently the gateway supports all common data sources via scheduled imports
(including ODBC connections) and many of the most common sources via Live
Connection and DirectQuery.

Figure 15: User interface of the On-Premises Data Gateway (March 2017)

Getting ready

Hardware and network configuration
The hardware resources required by the gateway vary based on the type of
connection (import versus live connection), the usage of the reports and dashboards
in the Power BI service, and the proportion of data volume handled by the gateway
versus the on-premises source systems. It's recommended to start with eight-core
CPUs with an 8 GB of RAM server. This machine cannot be a domain controller, and
to maintain availability of Power BI content, the gateway server should be always on
and connected to the internet.

Based on an analysis of current and projected workloads, the gateway resources can
be scaled up or down and optionally additional gateways can be installed on
separate servers to distribute the overall Power BI refresh and query deployment
workload. For example, one gateway server can be dedicated to scheduled
refresh/import workloads, thus isolating this activity from a separate gateway server
responsible for DirectQuery and Live Connection queries.

The gateway does not require inbound ports to be opened and defaults to the
outbound port of TCP 443, 5671, 5672 and 9350 through 9354. The gateway can be forced
to use HTTPS communication exclusively and avoid the use of IP addresses via both
the UI and the configuration files directly but this may impair performance. For the
default communication mode, it's recommended to whitelist the IP addresses in your
data region in your firewall. This list is updated weekly and is available via the
Microsoft Azure Datacenter IP list (http://bit.ly/2oeAQyd).

http://bit.ly/2oeAQyd

How to do it...

Installation of on-premises gateway
1. Download the latest Microsoft On-Premises Data Gateway (http://bit.ly/2nNNveZ).
2. Save and run the install application on the machine to use as the gateway server.

Figure 16: The Gateway Installation Application

3. Choose the On-premises data gateway (recommended).

Figure 17: Selection of On-Premises Data Gateway

4. Choose the file directory for the installation and accept the terms of use and
privacy agreement.

5. Sign in to the Power BI Service to register the gateway:

http://bit.ly/2nNNveZ

Figure 18: Registering the Gateway

6. Enter a user-friendly name for the gateway and a recovery key. Click on
Configure.

Figure 19: Creating the Gateway Recovery Key

With the Gateway installed and registered, data sources, gateway
admins, and authorized data source users can be added in the Power
BI Service. A Manage Gateways option will be available under the
Gear Icon in the Power BI Service. See the Configuring Refresh
Schedules and DirectQuery Connections with the On-Premises Data
Gateway recipe of Chapter 12, Deploying and Distributing Power BI
Content, for details on this process.

How it works...
As new versions of the gateway are available, a notification is made available
in the Status tab of the On-Premises Data Gateway UI as per Figure 1. The
Power BI Gateway team recommends that updates should be installed as they
become available.
The On-Premises Data Gateway, rather than the personal gateway, is required
for the DirectQuery datasets created in this book and the use of other Azure
services in the Microsoft Business Application Platform.
The Power BI service uses read-only connections to on-premises sources but
the other services (for example, PowerApps) can use the gateway to write,
update, and delete these sources.

Gateway recovery key
The recovery key is used to generate a symmetric and asymmetric key which encrypts
data source credentials and stores them in the cloud. The credentials area is only
decrypted by the gateway machine in response to a refresh or query request. The
recovery key will be needed in the following three scenarios:

Migrating a gateway and its configured data sources to a different machine
Restoring a gateway to run the service under a different domain account or
restoring a gateway from a machine that has crashed
Taking over ownership of an existing gateway from an existing gateway
administrator

It's important that the recovery key is stored in a secure location accessible to the
BI/IT organization. Additionally, more than one user should be assigned as a gateway
administrator in the Power BI service.

There's more...
The Power BI Ideas Forum (http://bit.ly/2n5bFPd) is a valuable source for identifying
requested features and enhancements and their status relative to future releases. For
example, filtering on the Idea status of 'Started' implies that the feature has already
been reviewed and planned and, with development activity taking place, will likely
be released, at least in an initial or preview form, relatively soon. Filtering on
Planned ideas, particularly those with higher community vote counts, provides a
sense of impactful updates to be released over a longer time horizon.

Figure 20: Power BI Ideas Forum filtered on the status of started

http://bit.ly/2n5bFPd

See also...
Details of configuring and managing data sources through the On-Premises
Gateway are covered in Chapter 12, Deploying and Distributing Power BI
Content.
Guidance on analyzing performance monitor counters associated with gateway
activity is included in Chapter 10, Developing Solutions for System Monitoring
and Administration.

Installing Power BI Publisher for Excel
Excel-based data analysis and reporting artifacts such as pivot tables, charts, and cell
range formula expressions with custom formatting remain pervasive in organizations.
Although a significant portion of this content and its supporting processes can be
migrated to Power BI, and despite the many additional features and benefits this
migration could provide, Power BI is not intended as a replacement for all Excel
reporting or SQL Server Reporting Services (SSRS) reporting. Organizations and
particularly departments which use Excel extensively, such as Finance and
Accounting, may prefer to leverage these existing assets and quickly derive value
from Power BI by both deploying Excel content to Power BI and analyzing Power
BI-hosted data from within Excel.

The Microsoft Power BI Publisher for Excel supplements Excel's native Power BI
publishing features of uploading Excel workbooks to the Power BI Service or
exporting Excel workbook data to Power BI datasets, as individual Excel objects can
be "pinned" to Power BI dashboards and managed from the local Excel file.

Figure 21: The Power BI Publisher Tab in Excel 2016

Additionally, the Power BI Publisher's data source providers support Excel-to-
Power BI connection strings reflecting the local user's rights to the given Power BI
hosted source.

Figure 22: Connecting to Power BI sources via Power BI Publisher

How to do it...

Installation of Power BI Publisher for
Excel

1. Download the Power BI Publisher (http://bit.ly/2nCsWC0).
2. Choose the version appropriate for the version of Microsoft Office installed:

32-bit or 64-bit.

Figure 23: Power BI Publisher for Excel Install Package

3. Install the publisher.
4. Accept the license agreement and choose the file directory.

Figure 24: Successful installation of Power BI Publisher for Excel

The drivers required to connect to Power BI hosted sources from Excel, such
as the Excel OLE DB driver for Analysis Services, are automatically updated
with each release. Additionally, once Power BI Publisher is installed, it's not
necessary to use the Analyze in Excel option from the Power BI Service,
which downloads an ODC file referencing the given model. The necessary
connection to Power BI is created when the data source is selected via the
Publisher dialog.

5. Access the Power BI Publisher from Excel. Upon opening Excel following
successful installation, you should get a message box advising of Power BI
Publisher for Excel. It can be deactivated and the Power BI tab in the Excel
ribbon should be visible. If it is not visible, you can check out the COM Add-ins
dialog in Excel.

Click on File and then Options in Excel to bring up the Excel Options menu
Select Add-Ins and use the drop-down menu at the bottom to choose COM
Add-ins
Click on Go… to launch the following COM Add-ins window

http://bit.ly/2nCsWC0

Figure 25: Excel COM-Add-ins

6. Use the Profile icon to sign into the Power BI Service. Sign in will be automatic
with future instances of Excel.

Figure 26: The Profile command from Power BI Publisher for Excel

There's more...
The following is a list of 11 blogs that contain many articles and examples on Power
BI's tools and features:

Blogger(s) Blog URL

Michael Carlo Power BI Tips and Tricks http://powerbi.tips

Chris Webb Crossjoin https://blog.crossjoin.co.uk

Rob Collie
Avi Singh PowerPivotPro https://powerpivotpro.com

Alberto Ferrari
Marco Russo SQL BI http://www.sqlbi.com

Kasper De Jonge Kasper On BI https://www.kasperonbi.com

Matt Allington ExceleratorBI http://exceleratorbi.com.au/exceleratorblog

Ruth Martinez Curbal https://curbal.com/blog

Dustin Ryan SQL Dusty https://sqldusty.com

Reza Rad RADACAD http://radacad.com/blog

Imke Feldman The BIccountant http://www.thebiccountant.com

Brett Powell Insight Quest https://insightsquest.com

http://powerbi.tips
https://blog.crossjoin.co.uk/
https://powerpivotpro.com/
http://www.sqlbi.com/
https://www.kasperonbi.com/
http://exceleratorbi.com.au/exceleratorblog/
https://curbal.com/blog
https://sqldusty.com/
http://radacad.com/blog
http://www.thebiccountant.com/
https://insightsquest.com/

Gilbert Quevauvilliers Fourmoo https://www.fourmoo.com/blog

With the exception of Kasper On BI, all of these blogs are from non-Microsoft
employees and thus do not necessarily reflect the views of MS or recommended
practices with its products. Additionally, several of these blogs are not exclusive to
Power BI; they may also include coverage of other MSBI, Azure, SQL Server, and
Office 365 tools and services.

https://www.fourmoo.com/blog

Installing and Configuring DAX Studio
DAX (Data Analysis Expressions) is the "language of Power BI" as it's used to
create the measures and queries visualized in Power BI reports and dashboards.
Power BI generates and submits DAX queries to the source data model based on the
structure of the visualization, user selections, and filters, just as other tools such as
Excel generate MDX queries based on the selections and structure of pivot tables and
slicers from workbooks. DAX expressions are also used to define security roles and
can optionally be used to create columns and tables in data models based on other
tables and columns in the model, which can be refreshed at processing time and used
by measures and queries. Given that DAX serves the same function in SQL Server
Analysis Services (SSAS) Tabular models and Power Pivot for Excel models, it's
essential that BI professionals have a robust tool for developing and analyzing DAX
code and the data models containing these expressions.

DAX Studio is a third-party tool used to query data models, edit and format code,
browse the structure and metadata of data models, and analyze the performance and
execution characteristics of DAX queries. For larger and more complex data models
and expressions, as well as projects involving multiple models, DAX Studio
becomes an essential supplement to the development and performance tuning
processes.

How to do it...

Installation of DAX Studio
1. Download the latest version from CodePlex (https://daxstudio.codeplex.com/).

CodePlex is in the process of shutting down and thus DAX Studio may
be available on GitHub or another open source project repository in
the future. The CodePlex archive may provide guidance to the new
home for DAX Studio and the SQLBI.com blog's link to DAX Studio
will likely be updated to the latest version as well.

2. Save the .exe application file to your local PC.

3. A notification is displayed as new versions are available.

Figure 27: Downloaded Setup Application from CodePlex

4. Initiate the installation and setup Process.
5. Accept the license agreement and choose a folder path to install the tool.
6. Choose whether the DAX Studio add-in for Excel will also be installed.

The Add-In for Excel is required to connect to Power Pivot for Excel data
models
Additionally, when DAX Studio is opened from Excel, query results can be
exported directly to Excel tables

https://daxstudio.codeplex.com/

Figure 28: DAX Studio Setup

Upon full installation including the Add-in for Excel, a DAX Studio icon will
appear on the Add-Ins Tab in the Excel Ribbon; the DAX Studio Add-in can be
deactivated via the manage COM Add-ins dialog available from Excel--Options
| Add-Ins tab.

Figure 29: DAX Studio
Windows Application

Figure 30: The DAX Studio Add-in for Excel

The full installation with the Excel add-in is recommended as this enables direct
output of DAX query results to Excel workbook tables and is required for connecting
to Power Pivot data models.

Configuration of DAX Studio
1. Open an Excel workbook.
2. Open a Power BI Desktop file.
3. From the Add-Ins tab of the toolbar, activate DAX Studio.

Figure 31: The DAX Studio Add-in for the Excel Connect Dialog

4. Close the Excel workbook.
5. Launch the DAX Studio standalone Windows application.
6. Connect to a Power BI Desktop file or SSAS Tabular instance.

The Advanced Options settings of the Connect dialog establishes a
connection in the context of the Sales Territory-North America security role
defined in the model.

Figure 32: Advanced connect options

7. Enable the DirectQuery Trace setting from the Options menu (File | Options).
8. This provides visibility to the SQL queries passed from DirectQuery models.

Figure 33: DirectQuery trace enabled

How it works...
The standalone application provides the same functionality as the Excel add-in,
excluding connectivity to Power Pivot for Excel data models and Excel output
options
Powerful configuration options include the ability to specify a security role,
effective user name identity, and Locale when defining connections to data
models and when analyzing trace events associated with DirectQuery data
models (that is, the SQL statements generated and passed to sources)
With DirectQuery Trace enabled, a connection to a DirectQuery model will
expose the SQL statements passed to the source system in the Server Timings
window

Figure 34: DAX Studio Trace of a DirectQuery Model

There's more...

Guy in a Cube video channel
An additional resource for learning and deploying Power BI is Adam Saxton's Guy
in a Cube video channel (http://bit.ly/2o2lRqU). These videos, currently released every
Tuesday and Thursday, feature concise, hands-on reviews and resolutions to common
issues and scenarios. They also have high-level summaries of recent Power BI
updates and releases. As a member of the MSBI content team, Adam can incorporate
specific guidance from Microsoft product and technical teams, and regularly
identifies recent blog posts from the wider Power BI community.

http://bit.ly/2o2lRqU

Accessing and Retrieving Data
In this chapter, we will cover the following recipes:

Viewing and analyzing M functions in the Query Editor
Establishing and managing connections to data sources
Building source queries for DirectQuery models
Importing data to Power BI Desktop models
Applying multiple filtering conditions
Choosing columns and column names
Transforming and cleansing source data
Creating custom and conditional columns
Integrating multiple queries
Choosing column data types
Visualizing the M library

Introduction
Power BI Desktop contains a very rich set of data source connectors and
transformation capabilities that support the integration and enhancement of source
data. These features are all driven by a powerful functional language and query
engine, M, which leverages source system resources when possible and can greatly
extend the scope and robustness of the data retrieval process beyond what's possible
via the standard query editor interface alone. As with almost all BI projects, the
design and development of the data access and retrieval process has great
implications for the analytical value, scalability, and sustainability of the overall
Power BI solution.

In this chapter, we dive into Power BI Desktop's Get Data experience and walk
through the process of establishing and managing data source connections and
queries. Examples are provided of using the Query Editor interface and the M
language directly to construct and refine queries to meet common data transformation
and cleansing needs. In practice and as per the examples, a combination of both tools
is recommended to aid the query development process.

A full explanation of the M language and its implementation in Power BI is outside
the scope of this book, but additional resources and documentation are included in
the There's more... and See also sections of each recipe.

Viewing and analyzing M functions
Every time you click on a button to connect to any of Power BI Desktop's supported
data sources or apply any transformation to a data source object, such as changing a
column's data type, one or multiple M expressions are created reflecting your
choices. These M expressions are automatically written to dedicated M documents
and, if saved, are stored within the Power BI Desktop file as Queries. M is a
functional programming language like F#, and it's important that Power BI
developers become familiar with analyzing and later writing and enhancing the M
code that supports their queries.

Getting ready
1. Build a query through the user interface that connects to the

AdventureWorksDW2016CTP3 SQL Server database on the ATLAS server and retrieves
the DimGeography table, filtered by United States for English.

2. Click on Get Data from the Home tab of the ribbon, select SQL Server from the
list of database sources, and provide the server and database names.

For the Data Connectivity mode, select Import.

Figure 1: The SQL Server Get Data dialog

A navigation window will appear, with the different objects and schemas
of the database. Select the DimGeography table from the Navigation window
and click on Edit.

3. In the Query Editor window, select the EnglishCountryRegionName column and
then filter on United States from its dropdown.

Figure 2: Filtering for United States only in the Query Editor

At this point, a preview of the filtered table is exposed in the Query
Editor and the Query Settings pane displays the previous steps.

Figure 3: The Query Settings pane in the Query Editor

How to do it...

Formula Bar
1. With the Formula Bar visible in the Query Editor, click on the Source step under

Applied Steps in the Query Settings pane.
You should see the following formula expression:

Figure 4: The SQL.Database() function created for the Source step

2. Click on the Navigation step to expose the following expression:

Figure 5: The metadata record created for the Navigation step

The navigation expression (2) references the source expression (1)
The Formula Bar in the Query Editor displays individual query steps, which are
technically individual M expressions
It's convenient and very often essential to view and edit all the expressions in a
centralized window, and for this, there's the Advanced Editor

M is a functional language, and it can be useful to think of query
evaluation in M as similar to Excel spreadsheet formulas in which
multiple formulas can reference each other. The M engine can
determine which expressions are required by the final expression to
return and evaluate only those expressions.

Per the guidance in Chapter 1, Configuring Power BI Development Tools, the
display setting for both the Query Settings pane and the Formula bar should be
enabled as GLOBAL | Query Editor options.

Figure 6: Global layout options for the Query Editor

Alternatively, on a per file basis, you can control these settings and others from
the View tab of the Query Editor toolbar.

Figure 7: Property settings of the View tab in the Query Editor

Advanced Editor window
Given its importance to the query development process, the Advanced Editor dialog
is exposed on both the Home and View tabs of the Query Editor.

It's recommended to use the Query Editor when getting started with a
new query and when learning the M language. After several steps
have been applied, use the Advanced Editor to review and optionally
enhance or customize the M query. As a rich, functional programming
language, there are many M functions and optional parameters not
exposed via the Query Editor; going beyond the limits of the Query
Editor enables more robust data retrieval and integration processes.

Figure 8: The Home tab of the Query Editor

1. Click on Advanced Editor from either the View or Home tabs (Figure 8 and
Figure 9, respectively).

All M function expressions and any comments are exposed

Figure 9: The Advanced Editor view of the DimGeography query

When developing retrieval processes for Power BI models, consider these common
ETL questions:

How are our queries impacting the source systems?
Can we make our retrieval queries more resilient to changes in source data such
that they avoid failure?
Is our retrieval process efficient and simple to follow and support or are there
unnecessary steps and queries?
Are our retrieval queries delivering sufficient performance to the BI
application?
Is our process flexible such that we can quickly apply changes to data sources
and logic?

M queries are not intended as a substitute for the workloads typically
handled by enterprise ETL tools such as SSIS or Informatica.
However, just as BI professionals would carefully review the logic
and test the performance of SQL stored procedures and ETL packages
supporting their various cubes and reports environment, they should
also review the M queries created to support Power BI models and
reports.

How it works...
Two of the top performance and scalability features of M's engine are Query Folding
and Lazy Evaluation. If possible, the M queries developed in Power BI Desktop are
converted (folded) into SQL statements and passed to source systems for processing.
M can also reduce the required resources for a given query by ignoring any
unnecessary or redundant steps (variables).

M is a case-sensitive language. This includes referencing variables
in M expressions (RenameColumns versus Renamecolumns) as well as the
values in M queries. For example, the values "Apple" and "apple"
are considered unique values in an M query; the Table.Distinct()
function will not remove rows for one of the values.

Variable names in M expressions cannot have spaces without a hash
sign and double quotes. Per Figure 10, when the Query Editor
graphical interface is used to create M queries this syntax is applied
automatically, along with a name describing the M transformation
applied. Applying short, descriptive variable names (with no spaces)
improves the readability of M queries. See the Strengthening Data
Import and Integration Processes recipe in Chapter 11, Enhancing and
Optimizing Existing Power BI Solutions for additional details.

Query folding
The query from this recipe was "folded" into the following SQL statement and sent to
the ATLAS server for processing.

Figure 10: The SQL statement generated from the DimGeography M query

Right-click on the Filtered Rows step and select View Native Query to access the
Native Query window from Figure 11:

Figure 11: View Native Query in Query Settings

Finding and revising queries that are not being folded to source
systems is a top technique for enhancing large Power BI datasets.
See the Pushing Query Processing Back to Source Systems recipe of C
hapter 11, Enhancing and Optimizing Existing Power BI Solutions for
an example of this process.

M query structure
The great majority of queries created for Power BI will follow the let...in
structure as per this recipe, as they contain multiple steps with dependencies
among them.
Individual expressions are separated by commas.
The expression referred to following the in keyword is the expression returned
by the query.
The individual step expressions are technically "variables", and if the
identifiers for these variables (the names of the query steps) contain spaces then
the step is placed in quotes, and prefixed with a # sign as per the Filtered Rows
step in Figure 10.

Lazy evaluation
The M engine also has powerful "lazy evaluation" logic for ignoring any
redundant or unnecessary variables, as well as short-circuiting evaluation
(computation) once a result is determinate, such as when one side (operand) of
an OR logical operator is computed as True. The order of evaluation of the
expressions is determined at runtime; it doesn't have to be sequential from top to
bottom.
In the following example, a step for retrieving Canada was added and the step for
the United States was ignored. Since the CanadaOnly variable satisfies the overall let
expression of the query, only the Canada query is issued to the server as if the
United States row were commented out or didn't exist.

Figure 12: Revised query that ignores Filtered Rows step to evaluate Canada only

View Native Query (Figure 12) is not available given this revision, but a SQL
Profiler trace against the source database server (and a refresh of the M query)
confirms that CanadaOnly was the only SQL query passed to the source database.

Figure 13: Capturing the SQL statement passed to the server via SQL Server Profiler trace

There's more...

Partial query folding
A query can be "partially folded", in which a SQL statement is created resolving
only part of an overall query
The results of this SQL statement would be returned to Power BI Desktop (or
the on-premises data gateway) and the remaining logic would be computed
using M's in-memory engine with local resources
M queries can be designed to maximize the use of the source system resources,
by using standard expressions supported by query folding early in the query
process
Minimizing the use of local or on-premises data gateway resources is a top
consideration

Limitations of query folding
No folding will take place once a native SQL query has been passed to the
source system. For example, passing a SQL query directly through the Get Data
dialog. The following query, specified in the Get Data dialog, is included in the
Source step:

Figure 14: Providing a user defined native SQL query

Any transformations applied after this native query will use local system
resources. Therefore, the general implication for query development with native
or user-defined SQL queries is that if they're used, try to include all required
transformations (that is, joins and derived columns), or use them to utilize an
important feature of the source database not being utilized by the folded query,
such as an index.
Not all data sources support query folding, such as text and Excel files.
Not all transformations available in the Query Editor or via M functions directly
are supported by some data sources.
The privacy levels defined for the data sources will also impact whether folding
is used or not.
SQL statements are not parsed before they're sent to the source system.
The Table.Buffer() function can be used to avoid query folding. The table output
of this function is loaded into local memory and transformations against it will
remain local.

See also...

M language references
The two official resources for documentation on the M language are the Power
Query M language specification (http://bit.ly/2oaJWwv) and the Power Query M
Reference (http://bit.ly/2noOzTX).
The following table introduces the main concepts of the M language utilized in
this book.

Concept Definition

Expression
Formulas evaluated to yield a single value.

Expressions can reference other values such as functions and may include
operators.

Value
The result of evaluation of an expression. Values can be categorized into
kinds which are either primitive, such as text ("abc"), or structured kinds
such as tables and lists.

Function
A value that produces a new value based on the mapping of input values
to the parameters of the function. Functions can be invoked by passing
parameter values.

Type
A value that classifies other values. The structure and behavior of values is
restricted based on the classification of its type such as Record, List, or
Table.

let
An expression that allows a set of unique expressions to be assigned names
(variables) and evaluated (if necessary) when evaluating the expression
following the in expression in a let....in construct.

Variable A unique, named expression within an environment to be conditionally
evaluated. Variables are represented as Applied Steps in the Query Editor.

A set of variables to be evaluated.

http://bit.ly/2oaJWwv
http://bit.ly/2noOzTX

Environment The global environment containing the M library is exposed to root
expressions.

Evaluation The computation of expressions. Lazy evaluation is applied to expressions
defined within let expressions; evaluation occurs only if needed.

Operators
A set of symbols used in expressions to define the computation.

The evaluation of operators depends on the values to be operated on.

Establishing and managing connections
to data sources
There are two primary components of queries in Power BI: the data source and the
query logic executed against this source. The data source includes the connection
method (DirectQuery or Import), its privacy setting, and the authentication
credentials. The query logic consists of the M expressions represented as queries in
the Query Editor and stored internally as M documents.

In a typical corporate BI tool, such as SQL Server Reporting Services (SSRS), the
properties of a data source such as the server and database name are defined
separately from the queries that reference them. In Power BI Desktop, however, by
default each individual query created explicitly references a given data source (for
example, server A and database B). This creates an onerous, manual process of
revising each query if necessary to change the source environment or database.

This issue is addressed in the following steps by using dedicated M queries to
centralize and isolate the data source information from the individual queries.
Additionally, detail and reference information is provided on managing source
credentials and data source privacy levels.

Getting ready
1. Create a query from a database, which would serve as the source for other

queries via the standard Get Data and Query Editor experience described
earlier in this chapter.

Select Get Data from the ribbon, choose SQL Server, select a table or
view, and click on Edit.
A preview of the data will appear in the Query Editor and the Advanced
Editor window will expose the server and database name.

Figure 15: Source Properties within Query

How to do it...

Isolate data sources from individual
queries
In this example, a separate data source connection query is created and utilized by
individual queries. By associating many individual queries to a single (or few) data
source queries, it's easy to change the source system or environment such as when
switching from a Development to a User Acceptance Testing (UAT) environment.

1. Create a new, blank query by selecting the Blank Query data source type from
the Get Data icon. The New Source icon in the Query Editor can also be used.

Figure 16: Creating a blank query

2. Enter the source information into the blank query. This should follow the syntax
from the Source step of the first query.

3. Give the source query an intuitive name, such as AdWorksProd.

Figure 17: Data source expression used in a blank query

4. Replace the Source step expression of the DimEmployee query with the name of the
new query.

Figure 18: Revised expression to reference a new query

5. Click on Close and Save and refresh the query to confirm that the change was

successful.
6. To further validate the retrieval, revise the source query to point to a separate

database containing the same table. Make note of one or two differences
between the tables in the two source systems, and observe the query preview
change based on the parameters used in the source query.

Now make a copy of the source query and revise the source information to point to
the different environment, such that you always reference either source query without
manual changes.

Query groups
You should also use query Groups to help isolate data source and staging queries
from queries loaded to the dataset.

Figure 19: Data Source Queries

1. Duplicate a query or copy and paste via the right-click context menu for a query.
2. Create a new group by right-clicking in a blank area in the Queries window or

an existing group.
With the DimEmployee table referencing the source query, you can simply
duplicate this query and then revise the Navigation step (via Navigator or
Formula Bar) to retrieve a different table from this source into the model,
such as the Account dimension table.

Figure 20: Account table retrieved and still referencing AdWorksDW for Source

3. Ensure that the Data Source queries are not loaded to the data model.
Right-click on the tables and disable the Enable Load option such that they
only exist to support retrieval queries and are invisible to the model and
report layers.

The Query Dependencies view in the Query Editor (View | Query Dependencies)
provides a visual representation of the relationships similar to the Diagram view

available for Power BI Desktop's data modelling component.

Figure 21: The Query Dependencies View in Query Editor

Manage source credentials and privacy
levels
The purpose of this example is to demonstrate the process of managing data source
settings, including authentication credentials and privacy levels:

1. Open the Data Source settings. Click on the Global Permissions radio button
such that your settings are persisted in other Power BI Desktop reports.

2. Select a data source.
3. Click on Edit Permissions.

Figure 22: Edit Permissions for a Data Source

Definitions of the available Privacy Level settings are provided in the How it
works... section.

How it works...

Data Source settings
Power BI Desktop saves a data source credential for each data source defined
and a privacy level for that source. It's necessary to modify these credentials as
passwords change and to set privacy levels on data sources, to prevent
confidential information from being exposed to external sources during the
query folding process.
Data source credentials and settings are not stored in the PBIX file but rather on
the computer of the installed application. Privacy levels are described in the
following table and a reference to additional documentation is provided in the
See also section.

Data source privacy settings

Privacy
Setting Description

Private
A Private data source is completely isolated from other data sources
during query retrieval. For example, marking a text file as private would
prevent that data from being processed on an external server.

Organizational An Organizational data source is isolated from all public data sources but
is visible to other organizational data sources during retrieval.

Public A Public data source is visible to other sources. Only files, Internet
sources, and workbook data can be marked as public.

Just as relational databases such as SQL Server consider many potential query
plans, the M engine also searches for the most efficient methods of executing
queries given the data sources and query logic defined.
In the absence of data source privacy settings, the M engine is allowed to
consider plans that merge disparate data sources. For example, a local text file
of customer names can be merged with an external or third-party server given
the better performance of the server.
Defining privacy settings isolates data sources from these operations. Given the
increased likelihood of local resource usage, query performance may be
reduced.

There's more...
In this example, a single query with only one expression was used by multiple
queries, but more complex interdependencies can be designed to manage the
behavior and functionality of the retrieval and analytical queries.
This recipe illustrates the broader concept used in later recipes--
"composability" of functions calling other functions--and this is one of the
primary strengths of functional programming languages such as M, DAX, R, and
F#.

See also
Data source privacy levels documentation: http://bit.ly/29blFBR

http://bit.ly/29blFBR

Building source queries for
DirectQuery models
One of the most valuable features of Power BI is its deep support for real-time and
streaming datasets--the ability to provide immediate visibility to business processes
and events as this data is created or updated. As Power BI Desktop's data modeling
engine reflects the latest SQL Server Analysis Services (SSAS) features, including
the enhanced DirectQuery mode for SSAS 2016, it becomes feasible to design
DirectQuery models in Power BI Desktop and thus avoid the scalability limitations
and scheduled refresh requirements of import-based models.

This recipe walks through the primary steps in designing the data access layer that
supports a DirectQuery model in Power BI Desktop. As these models are not cached
into memory and dynamically convert the DAX queries from report visualizations to
SQL statements, guidance is provided to maintain performance. Additional details,
resources, and documentation on DirectQuery's current limitations and comparisons
with the default import mode are also included to aid your design decision.

Getting ready
1. Choose a database to serve as the source for the DirectQuery data model.
2. Create a logical and physical design of the fact and dimension tables of the

model including the relationship keys and granularity of the facts.
3. Determine or confirm that each fact-to-dimension relationship has referential

integrity.
Providing this information to the DirectQuery model allows for more
performant inner join queries.

4. Create view objects in the source database to provide efficient access to the
dimensions and facts defined in the physical design.

Be aware that DirectQuery models are limited to a single source
database and not all databases are supported for DirectQuery. If
multiple data sources are needed, such as SQL Server and and Oracle
or Teradata and Excel, then the default Import mode model, with
scheduled refresh to the Power BI Service, will be the only option.

How to do it...
1. Create a new Power BI Desktop file (.pbix).
2. Create a Query using DirectQuery Data Connectivity mode.

Click on Get Data and choose SQL Server database.

3. Select a view to be used by the model via the navigator.

Figure 23: Creating a DirectQuery Data Source

4. Duplicate the initial query and revise the Item value of the Navigation step to
reference an additional view supporting the model:

Figure 24: Referencing views from the Formula Bar

5. Repeat step 3 until all the dimensions and facts are being accessed by their
associated SQL view.

6. Create a data source query to store the server and database connection
information. This is similar to the previous recipe (duplicate a query and use the
Source step) but to maintain the DirectQuery connection, do not remove or alter
the navigation step; simply point the in to the Source step.

Figure 25: A DirectQuery Data Source Query

Note from this example that M queries do not have to follow a top-
down order and do not have to return the final step or variable. In
this case, the second variable expression is ignored and only the
source database is referenced. The fact and dimension table queries
used in the DirectQuery model can reference this query.

7. Disable the Enable Load setting of the source query and update the individual
queries to reference this query.

Figure 26: DirectQuery Model Queries

When complete, the data source query will be grayed out (Figure 30) and all
queries will reference this source.
The Report Canvas view will confirm that the model is in DirectQuery mode
via the status bar at the bottom right (Figure 27) and the Data view, which is
visible for import models, will not be visible.

Figure 27: DirectQuery Status in Power BI Desktop

Applying M transformations with
DirectQuery models

The M transformation functions supported in DirectQuery are limited by
compatibility with the source system. The Query Editor will advise when a
transformation is not supported in DirectQuery mode per Figure 32.

Figure 28: A warning in Query Editor that the IsEven M function is not supported in DirectQuery Mode

Given this limitation and the additional complexity the M-based transforms
would add to the solution, it's recommended to embed all the necessary logic
and transforms in the source relational layer.
Ideally, the base tables in the source database themselves would reflect these
needs. As a secondary option, the layer of views used to support the
DirectQuery Model can be modified as well to incorporate new or additional
logic.
If the database objects themselves cannot be revised, the Value.Native() M
function can be used to directly pass the SQL statement from Power BI Desktop
to the source database as per Figure 29.

Figure 29: The Value.Native() function used to pass a SQL statement to a source system

How it works...
As report visualizations are refreshed or interacted with in Power BI, the DAX
queries from each visual or tile are translated into SQL statements and utilize
the source SQL statements to return the results.
Be aware that Power BI does cache query results with DirectQuery models.
Therefore, when accessing a recently utilized visual, a local cache may be used
rather than a new query sent to the source.
DAX Studio can provide visibility to the specific queries sent to the source.

Figure 30: DAX Studio Trace of a DirectQuery Power BI Desktop Model

The SQL statements passed from Power BI to the DirectQuery data source
include all columns from the tables referenced by the visual.
For example, a Power BI visual with total sales grouped by product category
would result in a SQL statement that selects the columns from both tables (for
example, Product Color or Order Quantity) and implements the join defined in the
model.
However, as the SQL statement passed embeds these source views as derived
tables, the relational engine is able to generate a query plan that only scans the
required columns to support the join and aggregation.

Figure 31: Execution Plan of a DirectQuery SQL Statement

There's more...

DirectQuery project candidates
Three common candidates for DirectQuery model projects are the following:

The data model is larger than the current 1 GB file size limit or there's
insufficient RAM for an in-memory SSAS model.

Power BI Premium is expected to raise this file size limit soon as well as
support incremental data refresh

Access to near real-time data is of actionable or required value to users or other
applications such as with notifications.

For example, an updateable Nonclustered Columnstore index could be
created on OLTP disk-based tables or memory optimized tables in SQL
Server 2016 to provide near real-time access to database transactions

A high performance and/or read-optimized system is available to service report
queries such as a SQL Server or Azure SQL Database with the Clustered
Columnstore index applied to fact tables.

Azure SQL Data Warehouse is not recommended for Power BI in
DirectQuery mode

In summary, the performance and scalability of DirectQuery models is primarily
driven by the relational data source. A de-normalized star schema with referential
integrity and a system that's isolated from OLTP workloads is recommended if near
real-time visibility is not required. Additionally, in-memory and columnar features
available to supported DirectQuery sources are recommended for reporting and
analytical queries.

DirectQuery performance
DirectQuery models generate outer join SQL queries by default to ensure that
measures return the correct value even if there's not a related dimension.
However, you can configure DirectQuery models to send inner join queries via
the modeling window's Assume referential integrity setting (see Figure 32).
Along with source system resources, this is one of the top factors contributing to
the DirectQuery model's performance.

Figure 32: Activating the referential Integrity Assumption in Relationships

Of course, you should ensure that there is referential integrity in the source
before enabling this setting as incorrect results could be returned.
The design of the source relational schema and the hardware resources of this
system can, of course, greatly impact the performance of DirectQuery models.
A classic star-schema design with denormalized tables is recommended to
reduce the required join operations at query time.
Optimizing relational fact tables with column store technologies such as the
Clustered Columnstore Index for SQL Server 2016 and table partitions will also
significantly benefit DirectQuery models.
Not all DAX functions are optimized for DirectQuery. It's important to utilize
the optimized functions when possible when defining DAX measures.

See also
Power BI Desktop DirectQuery documentation: http://bit.ly/2nUoLOG
Nine of the most common data sources are currently supported for DirectQuery
datasets

SQL Server Azure SQL Database Azure SQL Data Warehouse

SAP HANA Oracle Database (v12+) Teradata Database

Amazon Redshift Impala Snowflake

Table 1: Supported DirectQuery Data Sources

The on-premises data gateway documentation provides a detailed list of data
sources broken down by the connectivity options supported: Scheduled Refresh
or Live/DirectQuery (http://bit.ly/2oKc7SP)

The Power BI team have expressed their intent to expand the list of
DirectQuery-supported sources to include other sources such as IBM
DB2, SAP Business Warehouse, MySQL, Google BigQuery, and
others. As of this writing, Spark (version .9 and above), SAP Business
Warehouse, and IBM Netezza are available as Beta or Preview
DirectQuery sources.

http://bit.ly/2nUoLOG
http://bit.ly/2oKc7SP

Importing data to Power BI Desktop
models
Import is the default data connectivity mode for Power BI Desktop, and the import
models created in Power BI Desktop use the same in-memory, columnar compressed
storage engine (Vertipaq) featured in SSAS Tabular 2016+ import models. Import
mode models support the integration of disparate data sources (for example, SQL
Server and DB2) and allow more flexibility in developing metrics and row-level
security roles given via full support for all DAX functions.

This recipe describes a process of using M and the Query Editor to develop the
queries supporting a standard star-schema analytical model. A staging query
approach is introduced as a means of efficiently enhancing the dimensions of a
model, and tips are included to use less resources during refresh and to avoid refresh
failures from revised source data. More details of these methods are included in
other recipes in this chapter.

How to do it...

Denormalize a dimension
In this example, the DimProduct, DimProductSubcategory, and DimProductCategory tables are
integrated into one query. This query will include all product rows, only the English
language columns, and user-friendly names.

Figure 33: Source Tables for Product Dimension

Many-to-one relationships have been defined in the source database.

1. Create three queries for each source table and disable their loads.
2. Use query group folders in the Query Editor to isolate these queries.

Figure 34: Staging Queries

The gray font indicates that the queries will not be loaded into the model.

Figure 35: Subcategory Table referenced via DimProduct Variable

Each staging query references the dedicated data source query (AWorksProd) that
specifies the server and database.
In this example, the AWorksProd query has the following syntax:
Sql.Database("ATLAS","AdventureWorksDW2016CTP3")

Figure 36: Query Preview of DimProductCategory

3. Create a new (blank) query and name it Product.

4. In the Product query, use the Table.NestedJoin() function to join the DimProduct and
DimProductSubcategory queries created in step 1.

A left outer join is required to preserve all DimProduct rows since the foreign key
column to DimProductCategory allows null values.

5. Add a Table.ExpandColumns() expression to retrieve the necessary columns from the
DimProductSubcategory table.

Figure 37: Product Subcategory Join

The join function inserts the results of the join into a column (SubCatColumn) as
table values.
The second expression converts these table values into the necessary columns
from the Subcategory query and provides the simple Product Subcategory column
name.

Figure 38: Product Subcategory Columns Added

The query preview in the Query Editor will expose the new columns.

6. Add another expression with a Table.NestedJoin() function that joins the previous
expression (the Product to Subcategory join) with the DimProductCategory query.

7. Just like step 4, use a Table.ExpandTableColumn() function in a new expression to
expose the required Product Category columns.

Figure 39: Joining to Dim Product Category

The first expression adds the results of the join to DimProductCategory (the right
table) to the new column (ProdCatColumn).
The second expression adds the Product Category columns required and revises the
EnglishProductCategoryName column to Product Category.
A left outer join was necessary with this join operation as well since the
product category foreign key column on DimProductSubcategory allows null values.

8. Write an expression that selects the columns needed for the load to the data
model with a Table.SelectColumns() function.

9. Add a final expression to rename these columns via Table.RenameColumns() to
eliminate references to the English language and provide spaces between
words.

Figure 40: Selected Columns and Renamed

The preview in the Query Editor will present the results of steps 1 through 8:

Figure 41: Product Query Results

It's not necessary to rename ProductKey since this column will be hidden from the
reporting layer.
In practice, the product dimension would include many more columns.
The denormalized Product query can now support a three-level hierarchy in the
Power BI Desktop model to significantly benefit reporting and analysis.

Figure 42: Product Hierarchy

Provide automatic sorting
The goal of this example is to provide automatic sorting of an attribute in report
visuals. Specifically, the United States regional organizations should appear next to
one another by default in visuals. By default, the Central Division (a part of the
USA), appears between Canada and France given the alphabetical sorting of text
columns:

1. Add a Table.Sort() expression to the import query for the Organization dimension.
The columns for the sort should be at the parent or higher level of the
hierarchy.

2. Add an expression with the Table.AddIndexColumn() function that will add a
sequential integer based on the table sort applied in step 1.

Figure 43: Sort Order and Index Column Expressions

With this expression, the Source dimension is first sorted by the Parent Organization
column and then by Organization Currency. The new index column starts at the first
row of this sorted table with an incremental growth of 1 per row.

Figure 44: Modified Organization Dimension Query

3. In the Data View, select the Organization column.

4. From the Modeling tab, set the Sort by Column dropdown to the index column
created in step 2.

Figure 45: Sort By in Data View

5. Finally, right-click on the OrgSortIndex option and select Hide in Report View.

Visuals using the Organization column will now sort the values by their parent
organization such that the USA organizations appear together (not
alphabetically).

Figure 46: Organization Automatically Sorted

How it works...
The default join kind for Table.NestedJoin() is left outer join. However, as other
join kinds are supported (for example, inner, anti, and full outer), explicitly
specifying this parameter in expressions is recommended.
Left outer joins were required in the product table example as the foreign key
columns on DimProduct and DimProductSubcategory both allowed null values.
Inner joins implemented either via Table.NestedJoin() or Table.Join() functions
would be recommended for performance purposes otherwise.
Additional details on the joining functions as well as tips on designing inline
queries as an alternative to staging queries are covered in the Integrating and
working with multiple queries recipe.

There's more...

One GB dataset limit and Power BI
Premium

Power BI Desktop files (.pbix) larger than 1 GB in size cannot be published to
shared capacity in the Power BI service. However, with a Power BI Premium
capacity provisioned (dedicated, isolated hardware), datasets up to 10GB in
size are expected to be supported by October of 2017. Moreover, an
incremental data refresh feature identified on the Power BI Premium whitepaper
will likely make it possible to support much larger datasets in the future.

See Chapter 12 (Deploying and Distributing Power BI Content) for
additional details on Power BI Premium.

Scalability is one of the main drivers of migrating a Power BI model to a SQL
Server Analysis Services (SSAS) instance. The model can be migrated to an
on-premises SSAS tabular server or to Azure Analysis Services.
In the absence of SSAS migration and any new partitioning or incremental data
refresh feature available to Power BI models, it's important to design data
models that compress well and only include essential columns and grains.

See also
Power BI Desktop Dataset Limits: http://bit.ly/2od5gDX
Azure Analysis Services: http://bit.ly/2g7C4KB

http://bit.ly/2od5gDX
http://bit.ly/2g7C4KB

Applying multiple filtering conditions
The application of precise and often complex filter conditions has always been at the
heart of business intelligence, and Power BI Desktop supports rich filtering
capabilities across its query, data model, and visualization components. In many
scenarios, filtering at the query level via the Query Editor and M functions is the
optimal choice, as this reduces the workload of both import and DirectQuery data
models and eliminates the need for re-applying the same filter logic across multiple
reports.

Although the Query Editor graphical interface can be used to configure filtering
conditions, this recipe demonstrates M's core filtering functions and the use of M in
common multi-condition filter scenarios.

Getting ready
1. Retrieve a dimension table and your date dimension into a new PBIX file. The

pattern of splitting data sources from queries described earlier applies here as
well.

Figure 47: Data Source and Base Query Groups

Figure 48: CustomersDim M Query Expression

2. As per Figure 47 (gray font), disable the Enable Load settings of these queries.

How to do it...
The M expression queries constructed in this recipe are intended to highlight some of
the most common filtering use cases.

The following eight filtering queries will be developed in this recipe:

United States customers only
Customers with 3+ children
Customers with null values for either the middle name or title columns
The customers with first purchase dates between 2012 and 2013
Customers in management with female gender or bachelors education
Top 100 customers based on income
List of distinct sales territory countries

Dates less than or equal to the current date and more than 3 years prior

Figure 49: Queries developed in this recipe

Query filter example steps
1. Create a new blank query and open the Advanced Editor window.
2. Use the Table.SelectRows() function to apply the US query predicate.
3. From a new blank query, filter on the Children column with a >= operator.

Figure 50: M expression for the United States Customers query

Figure 51: M expression for the Customers w3+ Children query

Table.SelectRows() is the primary table-filtering function in the M language.
It's functionally aligned with the FROM and WHERE clauses of SQL.
Observe that variable names are used as inputs to M functions.

4. From a new blank query, use the conditional logic operator or to define the filter
condition for the Middle Name and Title columns.

Figure 52: M expression for the Missing Titles or Middle Names query

Use the lowercase literal null to represent the absence of values.

5. From a new blank query, use the #date literal to apply the 2012-2013 filter.

Figure 53: M expression for the 2012-2013 First Purchase Customers query

Literals are also available for DateTime, Duration, Time, and DateTimeZone.

6. From a new blank query, use parentheses to define the filter conditions:
management occupation and either female gender or bachelors education.

Figure 54: M expression for the Mgmt and Female or Bachelors query

The parentheses ensure that the or condition filters are isolated from the filter on
Occupation.

7. From a new blank query, reference the United States Customers query and use the
Table.Sort() function to order this table by the Annual Income column. Finally, use
the Table.FirstN() function to retrieve the top 100 rows.

Figure 55: M expression for the Top 100 US Customers-Income query

Table.Sort() supports multiple columns as per the Importing data to Power BI
Desktop models recipe.
100 Rows are returned by the query starting from the very top of the sorted
table. In this example, the set returned is not deterministic due to ties in income.

8. From a new query, use the List.Distinct() and List.Sort() functions to retrieve a
distinct list of values from the Customer Sales Territory Country column.

Figure 56: M expression for the Customer Sales Territory List query

Figure 57: List Preview from the Customer Sales Territory List query

A list of distinct values can be used in multiple ways, such as a dynamic source
of available input values to parameters.

9. From a new query, use the DateTime.LocalNow(), DateTime.Date(), and Date.Year()
functions to retrieve the trailing 3 years from the current date.

Figure 58: M expression for the Trailing Three Years query

The current date and year are retrieved from the DateTime.LocalNow() function and
then compared to columns from the date dimension with these values.

How it works...
Readers should not be concerned with the each syntax of Table.SelectRows().

In many languages, this would suggest row-by-row iteration, but when possible, the
M engine folds the function into the WHERE clause of the SQL query submitted to the
source system.

There's more...

Filtering via the Query Editor interface
With simple filtering conditions and in proof-of-concept projects, using the UI to
develop filter conditions may be helpful to expedite query development.

However, the developer should review the M expressions generated by these
interfaces as they're only based on the previews of data available at design time, and
logical filter assumptions can be made under certain conditions.

Figure 59: Advanced Filter Rows Dialog in the Query Editor

See also
The following blog post from Gil Raviv at Data Chant provides an example of
the Query Editor's construction of M filter logic and the potential for unintended
query results: http://bit.ly/2nLX6QW.

http://bit.ly/2nLX6QW

Choosing columns and column names
The columns selected in data retrieval queries impact the performance and
scalability of both import and DirectQuery data models. For import models, the
resources required by the refresh process and the size of the compressed data model
are directly impacted by column selection. Specifically, the cardinality of columns
drives their individual memory footprint and memory (per column) correlates closely
to query duration when these columns are referenced in measures and report visuals.
For DirectQuery models, the performance of report queries is directly affected.

Regardless of the model type, how this selection is implemented also impacts the
robustness of the retrieval process. Additionally, the names assigned to columns (or
accepted from the source) directly impact the Q & A or natural language query
experience. This recipe provides examples of choosing columns for a data model and
applying user-friendly names.

How to do it...
The following three examples walk through a process of identifying columns to
include or exclude in a data retrieval process and then accessing and renaming those
columns.

Identify expensive columns
1. Analyze the largest fact table(s) of your model to identify columns that could be

excluded to improve performance.
2. For import models, search for high-cardinality columns that aren't required by

the model for relationships or measures.

In this example, the following three fact table columns are identified as
candidates for exclusion from the data model

Figure 60: High-cardinality columns

All three columns have over 1.5M distinct values and thus don't compress well,
resulting in greater data storage

Figure 61: Row and Distinct Count Profile

3. Use the Table.RemoveColumns() function against these columns

Figure 62: Removing three high-cardinality columns

The size of the Power BI Desktop file is reduced from 394 MB to 227 MB
The file is also faster to open refresh, and could support more data, while
remaining below the 1 GB limit for published Power BI datasets

Figure 63: File Size Difference

The two fact tables have 27 and 24 columns, respectively, indicating that the
three columns removed were among the most resource-intensive columns
See the There's More... section for an additional method of eliminating columns

Select columns
1. Use the Table.SelectColumns() function to accomplish the following:

Explicitly define the only columns retrieved
Set the presentation order of the columns in the Query Editor
Avoid query failure if one of the source columns changes or is missing

In this example, 29 columns are available from the AdventureWorks Customer Dimension
table, but only 11 are selected

Figure 64: The Expression for Selecting Columns

The MissingField.UseNull parameter is optional but recommended
If a column selected isn't available or is renamed in the source database, the
query will still succeed (see Figure 65):

Figure 65: Columns from the expression in Figure 64 viewed in the Query Editor interface

The columns are presented in the Query Editor in the order specified
This can be helpful for the query design process, and avoids the need for an
additional expression with a Table.ReorderColumns() function

Figure 66: Missing Field Null Values

In this example, the source system column was renamed to AnnualIncome. Rather
than the query failing, null values were passed into this column.

2. Create a name column from the first and last names via Table.AddColumn().

Add a final Table.SelectColumns() expression that excludes the FirstName and LastName
columns.

Figure 67: Customer Name Expression

The MissingField.UseNull parameter isn't needed for this expression since it was
already used in the Table.SelectColumns() function against the source.

Figure 68: Revised Customer Name Column

Columns representing an attribute in other languages such as SpanishEducation and
FrenchOccupation are excluded.
The type of the Customer Name column should be set to text (type text) in the
Table.AddColumn() function.

Rename columns
1. Use the Table.RenameColumns() to apply intuitive names for users and to benefit the

Q & A engine for natural language queries.

Figure 69: Column Aliases Applied

2. Use renaming to remove any source system indicators, add a space between
words for non-key columns, and apply dimension-specific names such as
Customer Gender rather than Gender.

3. Key columns will be hidden from the Report View.
4. Table.RenameColumns() also offers the MissingField.UseNull option.

How it works...

Column memory usage
Import models are internally stored in a columnar compressed format. The
compressed data for each column contributes to the total disk size of the file.

The primary factor of data size is a columns' cardinality. Columns with many unique
values do not compress well and thus consume more space.

The example in this recipe reduced the size of the overall file, but it's the size of the
individual columns being accessed by queries that, among other factors, drives query
performance for import models.

There's more...

Fact table column eliminations
For import data models, you can remove a column that represents a simple
expression of other columns from the same table. For example, if the Extended Amount
column is equal to the multiplication of the Unit Price and Order Quantity columns, you
can choose to only import these two columns.

Figure 70: DAX Measure Replacement for Column

The DAX SUMX() function computes the same result as a sum of the column and can be
parallelized by the storage engine. This approach is not recommended for
DirectQuery models.

Column orders
The initial column order of a query loaded to the data model is respected in the Data
view, but later changes to the column ordering are only local to the query.

The field list exposed to both the Report and Data views of Power BI Desktop is
automatically alphabetized.

See also
Power BI Documentation on preparing data for Q & A: (http://bit.ly/2nBLAGc)

http://bit.ly/2nBLAGc

Transforming and cleansing source
data
The transformations applied within Power BI's M queries serve to protect the
integrity of the data model and to support enhanced analysis and visualization. The
specific transformations to implement varies based on data quality, integration needs,
and the goals of the overall solution. However, at a minimum, developers should
look to protect the integrity of the model's relationships and to simplify the user
experience via denormalization and standardization.

This recipe includes examples of protecting a data model from duplicate values and
enhancing the quality of a dimension column via a relationship to a separate data
source.

Getting ready
To best follow the duplicate removal example, you may identify any data models that
source directly from an unstructured source such as an Excel or text file.

How to do it...

Remove duplicates
The objective of this example is to prevent refresh failures due to duplicate source
values in the relationship column of a dimension table. Additionally, the duplicates
are to be isolated for further inspection and troubleshooting:

1. Access a dimension table query from an unstructured data source such as an
Excel Workbook.

Figure 71: Product Query Preview

The source is an Excel table maintained by business users.

Figure 72: Excel Data Source

The Product Name column is used for the relationship to the Sales fact table;
therefore it must uniquely identify each row.

Figure 73: Product to Sales Relationship

Given the one-to-many relationship, any duplicate values in the Product Name
column of the Products table will result in refresh failures.

Figure 74: Duplicate Refresh Failure

2. Add the following four M expressions to the Products query per Figure 75:
Remove any leading and trailing empty spaces in the Product Name column
with a Text.Trim() function
Create a duplicate column of the Product Name key column with the
Table.DuplicateColumn() function
Add an expression to the Products query with the Table.Distinct() function to
remove duplicate rows
Add another Table.Distinct() expression to specifically remove duplicate
values from the Product Name column

As an unstructured source, the column types were defined explicitly in the query
via Table.TransformColumnTypes().

Figure 75: Duplicated key and distinct expressions

The query is still vulnerable to mixed cases such as Fender Set and Fender set.

Figure 76: Distinct cases in key values

The M engine considers the values unique but the data model engine doesn't.

3. Add an expression to force uppercase on the Product Name column via the
Table.TransformColumns() function. This new expression must be applied before the
duplicate removal expressions are applied.

Figure 77: Uppercase expression inserted into the query

The query is now resilient to duplicate values and rows, mixed cases, and
spaces. However, the Product Name column is now in the uppercase format.

Figure 78: All caps after duplicate removal

4. Add two final expressions to replace the Product Name column with the duplicate
column created in step 2.

Figure 79: Product Name Column Replacement

The capitalized Product Name column is dropped via Table.RemoveColumns(), and
Table.RenameColumns() is used convert the duplicate column into the column loaded
to the data model for the Product-to-Sales relationship.

5. To support troubleshooting, create a query that accesses the same source table
and retrieves the values from the Product Name column with more than one row.

Figure 80: 'Duplicate Products' query expression retrieves the Product Names with more than one row

The Product Name column is selected, grouped, and then filtered to always retrieve
any duplicate key values. It also accounts for mixed casing of values.

Figure 81: The Duplicates Query

6. Disable the load of the query retrieving duplicate product names--Duplicate
Products in this example.

Update a column through a join
The objective of this example is to update the values of a column (DealerPrice) based
on the values of a separate column stored in a separate data source.

The Products dimension table is retrieved from a SQL Server database, but over 200
rows do not have dealer price values.

Figure 82: Null Values for Dealer Prices

The dealer prices for new, unsold products that are not yet available to the SQL
Server database are stored in an Microsoft Access database.

Figure 83: MS Access Price List

1. Create dedicated data source queries to the SQL Server and Microsoft Access
sources.

2. Disable the load for both.

Figure 84: Data Source Queries

The Sql.Database() function is used for the SQL Server database
The Access.Database() function is used for the MS Access database:
Access.Database(File.Contents("C:\Finance\Data\DealerPrices.accdb"),

[CreateNavigationProperties=true])

The retrieval queries will reference these sources such that changes in the data
sources (for example, different server or file location) can be implemented
quickly

3. Create a query that retrieves the product price list from the Microsoft Access
table.

4. Give it a distinctive name and disable the load.

Figure 85: Dealer Price List Query

Like other examples in this chapter, the Source variable calls the dedicated
data source query.

5. Create the Products query from the SQL Server database (products).
This query represents the primary source for the Products dimension in the
data model.

Figure 86: Product Queries

Only the Products query is enabled for load to the data model.
In scenarios with more source inputs and transformations to perform, it may be
beneficial to further isolate the inputs into staging queries.

Figure 87: Product SQL Query

Table.SelectColumns() retrieves the required columns from the DimProduct table and
Table.RenameColumns() adds spaces between column headers.

6. Add an expression that performs a left outer join from the SQL Server-based
Products query to the DealerPriceList query on the ProductKey column.

7. Expose the Dealer Price column from the Dealer Price List query to the Products
query with a distinct column name.

Figure 88: Dealer List Price Added to Query

Table.NestedJoin() is used to perform the Left Outer Join from the Products query to
the DealerPriceList query
Table.ExpandTableColumn() is used to add the Dealer List Price column from the result
of the join

Figure 89: Left Outer Join and Column Expansion

8. Add a conditional column to the query that uses the Dealer List Price column
added in step 7 if the Dealer Price column is null.

Figure 90: Conditional Dealer Price Column Added

Table.AddColumns() is used with a simple if...then
Currency.Type is specified to avoid an Any type from being loaded to the model as a
text value

Figure 91: Conditional Dealer Price Column Added to the Query

9. Add two final expressions to exclusively select the conditional price column
added in step 6 and rename this column to Dealer List Price.

Figure 92: Products Query with an updated Dealer Price Column

Table.SelectColumns() and Table.RenameColumns() are used in step 7.

Figure 93: Column Selection and Renaming Expressions

There's more...
The most common text functions include Text.Length(), Text.Start(), Text.End(), and
Text.Range(). These provide equivalent functionality to the LEN, LEFT, RIGHT, and MID
functions in SQL, respectively.
Text functions start at a 0 base; the second character of the string is 1.
The Table.Unpivot() and Table.UnpivotOtherColumns() functions are commonly used to
transpose data structures in a report layout with financial periods across the
columns.

See also
M Functions Reference for Text: http://bit.ly/2nUYjnw

http://bit.ly/2nUYjnw

Creating custom and conditional
columns
Business users often extend the outputs of existing reports and data models with
additional columns to help them analyze and present data. The logic of these columns
is generally implemented through Excel formulas or as calculated DAX columns. A
superior solution, particularly if the logic cannot quickly be migrated to a data
warehouse or IT resource, is to create the columns via the Query Editor and M
language.

Developing custom columns can also significantly enhance the ease-of-use and
analytical power of data models and the visualizations they support. In the examples
of this recipe, columns are created to simplify the analysis of a customer dimension
via existing columns and to apply a custom naming format.

How to do it...

Create a dynamic banding attribute
The goal of this example is to create an attribute on the Customer dimension table that
groups the customer into age ranges to support demographic analysis:

1. Retrieve the current dimension table with the date column to be used for
segmentation. The Date of Birth column is the source for this example.

Figure 94: Customer Dimension

2. Add variables to the let expression to support the comparison between the
current system date and the dimension date (Date of Birth).

Figure 95: Current Date Variables

DateTime.LocalNow() is used as the source for current date.
The result of this variable is used for year, month, and day.

3. Use the Table.AddColumn() function to create Year, Month, and Day columns for the
customer dimension (see Figure 95 and Figure 96).

Figure 96: Customer Columns Added

Currently, the equivalent of a DATEDIFF() function with date intervals (Year, Month,
Week, and so on), like the ones in T-SQL and DAX languages, is not available in
M.

A Duration.Days() function can be used for day intervals and additional duration
functions are available for hour, minute, and second intervals.

Figure 97: Customer Columns Added Syntax

The Int64.Type value is passed to the optional type parameter of Table.AddColumn()
to set the new columns as whole numbers.

4. Add an Age column via an if...then expression.

Figure 98: Customer Age Expression

Figure 99: Customer Age Column

The Customer Age expression compares the Current Year, Month, and Day
variables against the values of the customer columns created in step 3.
The Age column can then be used to derive the age segmentation column.

5. Add a Segment column via the column computed in step 4.

Figure 100: Customer Age Segment Column

The Customer Age Segment expression simply references the Customer Age column
created in step 4.

Figure 101: Customer Segment Expression

The new custom columns can be used to support various visualizations.

Figure 102: Customer Age Segment Visualized

The Age Segment and Age columns can be used in a model hierarchy.

Create a formatted name column
The goal of this example is to implement a formatted name using the existing
name (first, middle, and last) and Title columns of a customer dimension
The target format is Mr. John A. Doe
The query must account for nulls in the Middle Name and Title columns as well as
different values in the Middle Name column:

1. Use Table.SelectColumns() to retrieve the required source columns.

Figure 103: Name Columns

2. Write a Table.AddColumns() function with an if...then expression that accounts for
the different scenarios:

Figure 104: Formatted Name Column Expression

Text.Range() is used to extract the first character of the middle name.

Figure 105: Formatted Name Column

The three if...then conditions account for all scenarios to return the formatted
name as per the requirements defined in step 1.

Comparing the current and previous
rows
The goal of this example is to compare the values of one row with the next or
previous row to compute a value for a variance or status column. In this example, the
output of a factory for a given date needs to be compared to its previous days' output:

1. Retrieve the essential columns into a query.
In this case, there are four factories, with each row representing the
quantity output of a factory by date.

Figure 106: Source Data - Factory Qty by Day

2. Use the Table.Sort() function to sort the table by Factory ID and then by Date.

Figure 107: Sorting Expression Applied Source

The order of columns specified from left to right drives the sorting precedence.

Figure 108: Sorted Table

Observe the 1 and 2 indicators added to the sort by columns in the Query Editor.

3. Use the Table.AddIndexColumn() function to add two different index columns to the

table.
Row Index and PrevRow Index have seed values of 1 and 0, respectively.

Figure 109: Two Index Columns Added

The index function is wrapped inside Table.TransformColumnTypes() to convert the
column to a whole number data type.

Figure 110: Index Columns in Query Editor

The new index columns provide an ability to self-join the table.

4. Use a Table.NestedJoin() function to join the table to itself based on the index
columns created in step 3.

5. Use a Table.ExpandTableColumn() function to add Prev Factory ID and Prev Qty columns
to the table.

Figure 111: Join and Expand Expressions

See "Integrating and Working with Multiple Queries" for details on joining
queries.

Figure 112: Previous Row Columns Added

6. Add a column with an if...then expression that compares Qty and Prev Qty.

Figure 113: Variance Column Expression

The expression checks whether the Factory ID matches with the Prev Factory ID and
sets the new column as a whole number.

7. Finally, use Table.SelectColumns() to retrieve only the columns needed.

Figure 114: Final Table with Daily Qty Var

The source data starts at 3/12/2017; this causes the nulls in Figure 114.

How it works...

Conditional expression syntax
if...then expressions follow the following structure:

if <condition1> then <result1> else <result2>

All three inputs (condition1, result1, and result2) accept M expressions.

if expressions can be nested together with the following structure:

if <condition1> then <result1> else if <condition2> then <result2> else <result3>

The equivalent of a SQL CASE expression is not available in M.

Case sensitivity
M is a case-sensitive language, as seen in the "remove duplicates" example
So, writing IF instead of if or Table.Addcolumn instead of Table.AddColumn will return
an error

Conditional expression evaluation
The order of conditions specified in 'if...then' expressions drives the evaluation
process. Multiple conditions could be true but the second and later conditions
will be discarded and not evaluated.
If the value produced by the 'if' condition is not a logical value, an error is
raised.

Query folding of custom columns
Although there were several M expressions involved in creating the additional
columns in the customer age segmentation example, the source system (SQL
Server 2016 in this case) executed the entire query.
Clicking on View Native Query from the Query Editor reveals that both if...then
M expressions were folded into T-SQL CASE Expressions.
Additionally, the T-SQL DATEPART() function was used to implement the customer
year, month, and day columns.

There's more...

Add column from example
The Column From Examples feature allows users to simply type an example of a
desired column rather than apply the necessary transformations
The engine determines which M functions and series of steps to add to the query
that return results consistent with the examples provided

Figure 115: Column from Examples UI

In the following example, the sample value of Jon is provided and only the
Customer Name column is evaluated for possible transformations

Figure 116: Sample Value Entry for Add Column From Example

The engine determined, based on the example, that the Text.BeforeDelimiter()
function was appropriate

Conditional columns interface
The Query Editor provides a basic and advanced conditional column interface as an
alternative to writing out the if...then expressions.

Figure 117: Conditional Column in Query Editor

Figure 118: Conditional Column Dialog

Any column from the table can be referenced and multiple steps created can be
moved up or down the order of evaluation.

DAX calculated columns
For both import and DirectQuery data models, it's possible to create additional
model columns via DAX functions.
In almost every scenario, a superior alternative to DAX calculated columns is
available such as via M expressions or the SQL database views that the model
accesses. DAX calculated columns are not compressed like normal columns of
import mode datasets and can lead to inefficient queries for DirectQuery
models. Additionally, the presence of DAX calculated columns (and DAX
calculated tables for import models) adds complexity to Power BI datasets.
Greater analysis of DAX calculated columns is included in Chapter 11, Enhancing
and Optimizing Existing Power BI Solutions.

Error handling and comments
The M query examples in this chapter do not address error handling or comments.
These items and related elements for strengthening queries are also covered in Chapter
11, Enhancing and Optimizing Existing Power BI Solutions.

Integrating multiple queries
The full power of Power BI's querying capabilities is in the integration of multiple
queries via it's merge and append operations. Retrieval processes which consolidate
files from multiple network locations or which integrate data from multiple data
sources can be developed efficiently and securely. Additionally, the same join types
and data transformation patterns SQL and ETL developers are familiar with can be
achieved with the M language.

This recipe provides examples of combining sources into a single query and
leveraging the table join functions of M to support common transformation scenarios.

Getting ready
To follow along with this recipe, you can use the Merge Queries and Append
Queries icons on the Home tab of the Query Editor to generate the join
expressions used in this recipe
As joining queries is fundamental to the retrieval process, it's recommended to
learn the Table.Join(), Table.NestedJoin(), and Table.Combine() functions

How to do it...

Consolidate files
The goal of this example is to produce an integrated table based on three text files
stored in separate network paths:

1. Create a query to one of multiple text files that need to be integrated.
2. Click on Get Data and choose Text/CSV from the list of file sources.
3. Navigate to the folder and select the file to query.

Figure 119: Tab-delimited text file

In this example, the three text files are tab delimited but the same process
applies to other delimiters and file sources.

Figure 120: Source Folders

If the files are stored in a single folder, a combine binaries transformation could
be used. See the There's more... section for additional details.

Figure 121: Text File Connection

4. Apply Transformations to Prepare for the Consolidation.
Promote the header row and set the data types.

Figure 122: Source File Imported

Use Table.PromoteHeaders() and Table.TransformColumnTypes() to prepare the table for
integration with the other two files.

Figure 123: M Expressions to Promote Headers and Revise Data Types

When connecting to an individual file such as this scenario, using the built-in
data connectivity options via the interface is more convenient.

Figure 124: Transformed Header and Types

5. Give the query a name such as Sales-2015 and duplicate the query.
6. In each duplicated query, modify the file source connection to reference the

given file directory path.
7. Disable the load for these queries and add them to a query group.

Figure 125: Three Text File Queries

10. Create a new, blank query for integrating the text file queries.
11. Use the Table.Combine() function to return a single table based on the rows of the

three other queries.

Figure 126: Consolidated Text File Query

No other expressions are necessary in this example given the transformations
applied against the source queries in step 2.
Depending on the scenario, the developer could apply Table.Distinct() functions
to avoid any duplicate rows from reaching the data model.
Selecting the Sales table in Query Dependencies View highlights all input
queries and their source files.
Hovering over the data sources provides additional details (network path,
server, and database).

Self-joining querying
The goal of this example is to add Manager Name and Manager Title columns to an existing
Employee dimension table:

The EmployeeKey and ParentEmployeeKey columns of the table are used in expressions
to self-join the table.

1. Create a query that retrieves the key columns of the hierarchy and the attribute
columns to be added.

The existing table has the key columns, Employee Name, and Title.

Figure 127: Existing Employee Dimension

The new staging query references the existing dimension table and selects the
required columns.

Figure 128: Manager Staging Expression

The ParentEmployeeKey from Figure 128 can be joined to the EmployeeKey of Figure
129 to provide access to the Manager columns.
The Manager Name and Manager Title columns could optionally be applied in the
staging query via Table.RenameColumns(), but in this example the alias is applied
within the merge operation.

Figure 129: Manager Staging Query

The query is named Managers and load is disabled.

2. Join the Manager staging query created in step 1 with the existing Employee table and
add the Manager Name and Manager Title columns.

Figure 130: Self Join Syntax

The Employees query is referenced as the Left table in a Table.NestedJoin() function
and joined to the Managers query via a left outer join.
The left join is required to retain all employee rows in this scenario, as the
Employee table includes one employee that doesn't have a parent employee key:
Chief Executive Officer.
Given the join on Parent Employee Key to Employee Key, the Manager columns are
renamed in the Table.ExpandTableColumn() expression.

Figure 140: Employee Table with Manager Columns

The two rows for Rob Walters are due to a Slowly Changing Dimension (SCD)
Type 2 process applied in the source database.

With the revised table loaded, it's simple to create a manager-employee
hierarchy or use the columns separately in visuals with drill up/down
capabilities.

Figure 141: Employee Dimension in Matrix Visual

How it works...

Nested join versus flat join
In implementing the table joins, you can choose to use the Table.Join() and
Table.NestedJoin() functions
All six join types are supported by both functions: inner, left outer, right outer,
full outer, left anti, right anti
Table.NestedJoin() enters the results of the join (the right or second table) into a
new column of table values and will use local resources to execute the join
operation, unless the Table.ExpandTableColumn() function is used to replace this new
column with columns from the right table
A left outer join type is the default if the JoinKind parameter is not specified.
Table.Join() automatically expands the left table with the columns from the right
table input (a flat join) and defaults to an inner join if the JoinKind parameter is
not specified
This function will get folded to the source without any additional functions but
requires that there are no matching column names between the joined tables for
JoinKinds other than inner join
For inner joins, the matching column names from both tables must be specified
in the join key parameters
An additional Table.SelectColumns() functions is required to exclude any columns
from the right table added with the join
For performance reasons, Table.NestedJoin() should not be used without a
Table.ExpandTableColumn() function removing the column of tables
Whether implemented via Table.NestedJoin() or Table.Join(), developers should
look to use inner joins if the source tables have referential integrity such as with
foreign key constraints and this meets requirements
For joins against larger tables, developers should confirm that query folding is
occurring and can evaluate different query plans generated and performance by
alternative retrieval designs

Append multiple files
The Table.Combine() function performs an append operation and does not remove
duplicate rows
Any columns which are unique to one of the input tables in a Table.Combine()
function will be added to the result set with null values for the rows from the
other tables
The Table.Distinct() function can be applied at the table level to remove duplicate
rows
It can also be applied against a single column or a group of columns

There's more...

Combine binaries
If data source files with the same structure are stored in a network directory
folder, Power BI offers the Combine Binaries transformation that can be used
with text, CSV, Excel, JSON and other file formats
This feature automatically creates an example query and a function linked to this
query, such that any required modification to the source files can be applied to
all files, and the source location of the files can be easily revised

Staging queries versus inline queries
Rather than creating separate lookup/join staging queries, it's possible to
consolidate these expressions into a single let...in M expression
For example, the following Employee expression returns the same table as the
staging approach described in this recipe

Figure 142: In-Line Query of Employees and Managers

The expression in Figure 142 defines a variable expression of ManagerInLine as
equivalent to the Employees expression and then joins to this expression
Inline query approaches are helpful in limiting the volume of queries but you
lose the management benefits provided by group folders and the query
dependencies view
The graphical support makes it easier to explain and quickly troubleshoot a data
retrieval process than a single but complex M expression
Staging queries are recommended for projects and retrieval processes of
medium or greater complexity
These queries should never be loaded to the data model as they could both
confuse the user and would require additional resources to process and store by
the data model

See also
Combine Binaries in Power BI Desktop (http://bit.ly/2oL2nM4)
The following table breaks outs the six different join types that can be specified
in both the Table.NestedJoin() and Table.Join() functions

Join type Parameter Parameter value

Inner JoinKind.Inner 0

Left Outer JoinKind.LeftOuter 1

Right Outer JoinKind.RightOuter 2

Full Outer JoinKind.FullOuter 3

Left Anti JoinKind.LeftAnti 4

Right Anti JoinKind.RightAnti 5

Both the Parameter and Parameter Value can be used, though the recipes in this
book use Parameter as this makes the expressions easier to follow
See the M Table Function Reference (http://bit.ly/2oj0k0I)

http://bit.ly/2oL2nM4
http://bit.ly/2oj0k0I

Choosing column data types
Setting the data types of columns in Power BI Desktop is usually the final step of
queries and has great implications for all layers of the solution including data refresh,
modeling, and visualization. Choosing appropriate data types reduces the risk of
refresh failures, ensures consistent report results, and provides analytical flexibility
to the data model and visualization layers.

This recipe includes four common examples of choosing and defining data types to
load to Power BI Desktop. Additional details on data types and the implications of
data types for Power BI development are contained in the sections following these
examples.

How to do it...

Remove automatic type detection steps
1. Remove any Changed Type steps that were applied automatically to your

queries.
2. This step will be applied to unstructured sources such as data tables from Excel

workbooks and can be found immediately following selection of the source
item.

Figure 143: Automatic Data Type Selection Step

3. View the expression of the step to observe that every column was referenced by
its specific column name.

Figure 144: M Expression generated by automatic data type detection

If even one of the source columns is removed or revised in the future, the query
will fail due to the dependency on all original source columns.

Align relationship column data types
1. Identify the data types of the columns used to define relationships.
2. If there are any mismatches, such as a text joined with whole number, implement

revisions to the data types.
3. In this example, Account is a dimension table with a one-to-many relationship to

the Finance fact table on the AccountKey column per Figure 145.

Figure 145: Relationships Window

Both columns store whole number values but in this case the AccountKey column
from Account is defined as a text data type.
AccountKey is stored in the model as a text data type reflecting the type of the
query.

Figure 146: Data View

4. Use the Table.TransformColumnTypes() function to revise the type.

Figure 147: M expression to revise AccountKey to Whole Number data type

5. Close and apply the revised query and the data type in the model will also be
revised to whole number.

With the possible exception of the Date dimension, the relationship columns will

generally be whole numbers, as this type supports both precision and slowly
changing dimensions for historical tracking.
If it is necessary to use text data types for relationship columns, either ensure the
data will conform to a defined format for both fact and dimension columns, or
pro-actively apply transformations to these columns to enforce a single
standard.

Add numeric columns from text
columns

1. Add a numeric column from a source column stored as text.
2. Use the Number.FromText() function within Table.AddColumn().

Figure 148: New Whole Number Column from Text Column

The type parameter to Table.AddColumn() is optional.
Leaving it blank results in a Any data type which would be loaded to the data
model as a text data type.
By specifying Int64.Type (Figure 148), as the optional type parameter to
Table.AddColumn(), the new column is a whole number:

Currency.Type sets the column as a Fixed Decimal Number
type number sets the new column as a Decimal Number
type text sets the column to a Text data type
type date sets the column to a Date data type
type time sets the column to a Time data type

Like all M expressions, data type declarations are case sensitive.

Use fixed decimal number for precision
1. Convert Decimal Number to Fixed Decimal Number data types if consistent

rounding results are required and the Fixed Decimal type provides sufficient
size.

A Decimal data type is an approximate and can produce inconsistent
reporting results due to rounding. Converting to a Fixed Decimal type
provides 4 decimal places and ensures consistent results.

2. Confirm that the scale of the Fixed Decimal type (19,4) will be sufficient before
implementing this change.

In this example, the Measurement column is stored as a decimal number, but precise
rounding (consistent results) is required:

Figure 149: Decimal Number data type

The query editor provides multiple indications of a decimal data type including
the header icon and the Data Type dropdown in the toolbar.

Figure 150: Fixed decimal number type

The Fixed decimal number data type is equivalent to Currency in the M language
as per Figure 151.

Figure 151: Conversion to Fixed decimal number data type

How it works...

Automatic data type detection
The automatic data type detection step uses a sampling or preview of each
source column to determine the appropriate type. If this sample doesn't reflect
the full or future set of values for the column the data type selected may be
incorrect.
Automatic type detection is not used with structured relational database systems
such as SQL Server.
If enabled, this step only applies to unstructured data sources such as flat files
and Excel workbooks.
As per the Choosing columns and column names recipe, it's important to avoid
dependencies on columns not required by the query.
As per configuration guidance in Chapter 1 (Configuring Power BI
Development Tools) you can avoid automatic type detection via the Data Load
options. As this is a Current File option only and since the setting is enabled by
default you currently need to disable this automatic type detection for each new
file.

Numeric data types
Decimal number data types are floating-point (approximate) data types with 15
digits of precision
Fixed decimal number data types store 19 digits of precision and four
significant digits to the right of the decimal (19,4)
Whole number data types store up to 19 digits of precision

Power BI Desktop automatic time
intelligence

Power BI Desktop automatically creates internal date tables for columns stored
as dates and relates these tables to the data model
Connecting a Power BI Desktop model from DAX Studio exposes these
additional tables as LocalDateTables with GUIDs
This Time Intelligence feature is enabled by default in the Data Load options for
the CURRENT FILE

There's more...

Data type impacts
Converting from decimal number to fixed decimal number can also marginally
improve data compression and query performance.
Power BI Desktop provides rich analysis capabilities for columns of the date
data type including drill down hierarchies, visual calendar pickers for chart
axis, custom date filtering logic in slicers, and calculations such as first and last
date.

Figure 152: Date data type column used as a slicer

Given these capabilities, as well as DAX functionality with Date data types,
converting text and numeric types to date data types can provide significantly
more options to develop Power BI content.
Revising text data types to numeric data types per the example also impacts the
DAX metrics that can be written. For example, if the Calendar Year column is
stored as a text data type, the following DAX metric will fail due to type
incompatibility:

Figure 153: DAX Measure Expression

Revising calendar year to a whole number type avoids the need to use VALUE or
FORMAT functions in each DAX measure.

Date with locale
If there's any potential for date data types to be sourced from a region with a
different date standard than your local system, you should apply the Locale
option to the Type Transform expression
In the following example, the Original Date column stores date values in the
format dd/mm/yyyy whereas the local system uses mm/dd/yyyy
Trying to convert from Original Date to Date directly causes the error in Date
Transform Only as the first two digits are greater than 12
Specifying the source locale in the transform expression allows for successful
conversion to the Date with Locale column in Figure 154:

Figure 154: Converting a Date from a Different Standard

The Query Editor provides a simple interface for the source locale:
Right-click on the column and select Using Locale from the Change Type
dropdown

Figure 155: Change Type with Locale Interface

Alternatively, you can add the locale to the expression itself directly

Figure 156: M syntax for Date Source Locale

Percentage data type
Percentage was added as fourth numeric data type to the Query Editor/M in
November of 2016. Unlike whole number, fixed decimal number, and decimal
number, this type does not have a corresponding type in the data model.

When loaded to the data model, the percentage data type is represented as a decimal
number type.

See also
The following blog post from Gil Raviv at DataChant describes the issues
caused by automatic detection of column data types (http://bit.ly/2otDbcU)
The following blog post from Marco Russo at SQLBI details the numeric data
types of DAX including the rounding of decimal data types and performance
considerations (http://bit.ly/2nOWYAm)

http://bit.ly/2otDbcU
http://bit.ly/2nOWYAm

Visualizing the M library
To implement complex and less common data transformation requirements, it's often
necessary to browse the M library to find a specific function or review the
parameters of a specific function. This short recipe provides a pre-built M query
expression you can use to retrieve the M library into a table for analysis in Power BI
Desktop. Additionally, an example is provided of visualizing and cross-filtering this
table of functions on the Power BI report canvas.

How to do it...
1. Open a new Power BI Desktop file (PBIX) and create a blank Query.
2. Enter the following M code in the Advanced Editor:

Figure 157: M Expression to Retrieve a Table of the M Library

The Query Editor should look like the following screenshot:

Figure 158: Query Editor View of Library Table Function

3. Click on Close and Apply from the Query Editor.
4. The 785+ rows from the M library are now loaded to the data model.
5. Create a Report Page Visual that uses the Function Group column for filtering.

Figure 159: Report Page of M Standard Library

How it works...
The M expression leverages the #shared variable, which returns a record of the names
and values currently in scope. The record is converted to a table value and then the
Function column, originally Name in the context of the library, is split based on the
period delimiter to allow for the Function Group column.

There's more...
M library details for every function are made available by entering the function
without any parameters.

Figure 160: Library Function Details

Building a Power BI Data Model
In this chapter, we will cover the following recipes:

Designing a multi fact data model
Implementing a multi fact data model
Handling one-to-many and many-to-many relationships
Assigning data formatting and categories
Configuring Default Summarization and sorting
Setting the visibility of columns and tables
Embedding business definitions into DAX measures
Enriching a model with analysis expressions
Building analytics into data models with DAX
Integrating math and statistical analysis via DAX
Supporting virtual table relationships
Creating browsable model hierarchies and groups

Introduction
The data models developed in Power BI Desktop are at the center of Power BI
projects, as they expose the interface in support of data exploration and drive the
analytical queries visualized in reports and dashboards. Well-designed data models
leverage the data connectivity and transformation capabilities described in Chapter 2,
Accessing and Retrieving Data to provide an integrated view of distinct business
processes and entities. Additionally, data models contain predefined calculations,
hierarchies and groupings, and metadata to greatly enhance both the analytical power
of the dataset and its ease of use. The combination of Chapter 2, Accessing and
Retrieving Data and Chapter 3, Building a Power BI Data Model, querying and
modeling, serves as the foundation for the BI and analytical capabilities of Power BI.

""The data model is what feeds and what powers Power BI.""
"- Kasper de Jonge, Senior Program Manager, Microsoft
"

In this chapter, we explore the primary processes of designing and developing robust
data models. Common challenges in dimensional modeling are mapped to
corresponding features and approaches in Power BI Desktop, including multiple
grains and many-to-many relationships. Examples are also provided to embed
business logic and definitions, develop analytical calculations with the DAX
language, and configure metadata settings to increase the value and sustainability of
models.

Additional modeling topics, including row-level security, performance tuning, and
migration of Power BI models to SSAS are covered in Chapter 8, Implementing
Dynamic User-Based Visibility in Power BI, Chapter 11, Enhancing and Optimizing
Existing Power BI Solutions, and Chapter 13, Integrating Power BI with other
Applications, respectively.

Designing a multi fact data model
Power BI Desktop lends itself to rapid, agile development in which significant value
can be obtained quickly despite both imperfect data sources and an incomplete
understanding of business requirements and use cases. However, rushing through the
design phase can undermine the sustainability of the solution as future needs cannot
be met without structural revisions to the model or complex workarounds. A
balanced design phase in which fundamental decisions such as DirectQuery versus
in-memory are analyzed while a limited prototype model is used to generate
visualizations and business feedback can address both short- and long-term needs.

This recipe describes a process for designing a multiple fact table data model and
identifies some of the primary questions and factors to consider.

Getting ready

Setting business expectations
Everyone has seen impressive Power BI demonstrations and many business analysts
have effectively used Power BI Desktop independently. These experiences may
create an impression that integration, rich analytics, and collaboration can be
delivered across many distinct systems and stakeholders very quickly or easily.

It's important to reign in any unrealistic expectations and confirm feasibility. For
example, Power BI Desktop is not an enterprise BI tool like SSIS or SSAS in terms
of scalability, version control, features, and configurations. Power BI datasets cannot
be incrementally refreshed like partitions in SSAS, and the current 1 GB file limit
(after compression) places a hard limit on the amount of data a single model can
store. Additionally, if multiple data sources are needed within the model, then
DirectQuery models are not an option. Finally, it's critical to distinguish the data
model as a platform supporting robust analysis of business processes, not an
individual report or dashboard itself.

Identify the top pain points and unanswered business questions in the
current state. Contrast this input with an assessment of feasibility
and complexity (for example, data quality and analytical needs) and
target realistic and sustainable deliverables.

How to do it...
Dimensional modeling best practices and star schema designs are directly applicable
to Power BI data models. Short, collaborative modeling sessions can be scheduled
with subject matter experts and main stakeholders. With the design of the model in
place, an informed decision of the model's data mode (Import or DirectQuery) can be
made prior to development.

Four-step dimensional design process
1. Choose the business process

The number and nature of processes to include depends on the scale of the
sources and scope of the project
In this example, the chosen processes are Internet Sales, Reseller Sales,
and General Ledger

2. Declare the granularity
For each business process (or fact) to be modeled from step 1, define the
meaning of each row:

These should be clear, concise business definitions--each fact table
should only contain one grain
Consider scalability limitations with Power BI Desktop and balance
the needs between detail and history (for example, greater history but
lower granularity)
Example: One Row per Sales Order Line, One Row per GL Account
Balance per fiscal period

Separate business processes, such as plan and sales should never be
integrated into the same table. Likewise, a single fact table should
not contain distinct processes such as shipping and receiving. Fact
tables can be related to common dimensions but should never be
related to each other in the data model (for example, PO Header and
Line level).

3. Identify the dimensions
These entities should have a natural relationship with the business process
or event at the given granularity
Compare the dimension with any existing dimensions and hierarchies in the
organization (for example, Store)

If so, determine if there's a conflict or if additional columns are
required

Be aware of the query performance implications with large, high-
cardinality dimensions such as customer tables with over 2 million
rows. It may be necessary to optimize this relationship in the model
or the measures and queries that use this relationship. See Chapter 11,
Enhancing and Optimizing Existing Power BI Solutions, for more
details.

4. Identify the facts

These should align with the business processes being modeled:
For example, the sum of a quantity or a unique count of a dimension

Document the business and technical definition of the primary facts and
compare this with any existing reports or metadata repository (for example,
Net Sales = Extended Amount - Discounts).
Given steps 1-3, you should be able to walk through top business questions
and check whether the planned data model will support it. Example: "What
was the variance between Sales and Plan for last month in Bikes?"

Any clear gaps require modifying the earlier steps, removing the
question from the scope of the data model, or a plan to address the
issue with additional logic in the model (M or DAX).

Focus only on the primary facts at this stage such as the individual
source columns that comprise the cost facts. If the business definition
or logic for core fact has multiple steps and conditions, check if the
data model will naturally simplify it or if the logic can be developed
in the data retrieval to avoid complex measures.

Data warehouse and implementation
bus matrix
The Power BI model should preferably align with a corporate data architecture
framework of standard facts and dimensions that can be shared across models.
Though consumed into Power BI Desktop, existing data definitions and governance
should be observed. Any new facts, dimensions, and measures developed with
Power BI should supplement this architecture.

1. Create a data warehouse bus matrix:
A matrix of business processes (facts) and standard dimensions is a
primary tool for designing and managing data models and communicating
the overall BI architecture.

Data Warehouse Bus Matrix

In this example, the business processes selected for the model are Internet
Sales, Reseller Sales, and General Ledger.

2. Create an implementation bus matrix:
An outcome of the model design process should include a more detailed
implementation bus matrix.

Implementation Bus Matrix: Internet Sales, Reseller Sales, and General Ledger

Clarity and approval of the grain of the fact tables, the definitions of the primary
measures, and all dimensions gives confidence when entering the development
phase.

Power BI queries (M) and analysis logic (DAX) should not be
considered a long-term substitute for issues with data quality, master
data management, and the data warehouse. If it is necessary to move
forward, document the "technical debts" incurred and consider long-
term solutions such as Master Data Services (MDS).

Choose the dataset storage mode -
Import or DirectQuery
With the logical design of a model in place, one of the top design questions is
whether to implement this model with DirectQuery mode or with the default imported
In-Memory mode.

In-Memory mode
The default in-memory mode is highly optimized for query performance and supports
additional modeling and development flexibility with DAX functions. With
compression, columnar storage, parallel query plans, and other techniques an import
mode model is able to support a large amount of data (for example, 50M rows) and
still perform well with complex analysis expressions. Multiple data sources can be
accessed and integrated in a single data model and all DAX functions are supported
for measures, columns, and role security.

However, the import or refresh process must be scheduled and this is currently
limited to eight refreshes per day for datasets in shared capacity (48X per day in
premium capacity). As an alternative to scheduled refreshes in the Power BI service,
REST APIs can be used to trigger a data refresh of a published dataset. For example,
an HTTP request to a Power BI REST API calling for the refresh of a dataset can be
added to the end of a nightly update or ETL process script such that published Power
BI content remains aligned with the source systems. More importantly, it's not
currently possible to perform an incremental refresh such as the Current Year rows of
a table (for example, a table partition) or only the source rows that have changed. In-
Memory mode models must maintain a file size smaller than the current limits (1 GB
compressed currently, 10GB expected for Premium capacities by October 2017) and
must also manage refresh schedules in the Power BI Service. Both incremental data
refresh and larger dataset sizes are identified as planned capabilities of the Microsoft
Power BI Premium Whitepaper (May 2017).

DirectQuery mode
A DirectQuery mode model provides the same semantic layer interface for users and
contains the same metadata that drives model behaviors as In-Memory models. The
performance of DirectQuery models, however, is dependent on the source system and
how this data is presented to the model. By eliminating the import or refresh process,
DirectQuery provides a means to expose reports and dashboards to source data as it
changes. This also avoids the file size limit of import mode models. However, there
are several limitations and restrictions to be aware of with DirectQuery:

Only a single database from a single, supported data source can be used in a
DirectQuery model.
When deployed for widespread use, a high level of network traffic can be
generated thus impacting performance.

Power BI visualizations will need to query the source system, potentially
via an on-premises data gateway.

Some DAX functions cannot be used in calculated columns or with role security.
Additionally, several common DAX functions are not optimized for
DirectQuery performance.

Many M query transformation functions cannot be used with DirectQuery.
MDX client applications such as Excel are supported but less metadata (for
example, hierarchies) is exposed.

Given these limitations and the importance of a "speed of thought" user experience
with Power BI, DirectQuery should generally only be used on centralized and
smaller projects in which visibility to updates of the source data is essential. If a
supported DirectQuery system (for example, Teradata or Oracle) is available, the
performance of core measures and queries should be tested.

Confirm referential integrity in the source database and use the
Assume Referential Integrity relationship setting in DirectQuery
mode models. This will generate more efficient inner join SQL
queries against the source database.

How it works...

DAX formula and storage engine
Power BI Datasets and SQL Server Analysis Services (SSAS) share the same
database engine and architecture. Both tools support both Import and DirectQuery
data models and both DAX and MDX client applications such as Power BI (DAX)
and Excel (MDX). The DAX Query Engine is comprised of a formula and a storage
engine for both Import and DirectQuery models. The formula engine produces query
plans, requests data from the storage engine, and performs any remaining complex
logic not supported by the storage engine against this data such as IF and SWITCH
functions

In DirectQuery models, the data source database is the storage engine--it receives
SQL queries from the formula engine and returns the results to the formula engine.
For In-Memory models, the imported and compressed columnar memory cache is the
storage engine. See Chapter 11, Enhancing and Optimizing Existing Power BI
Solutions, for more details.

There's more...

Project ingestion questions
Several topics and specific questions are so common that a standard "project
ingestion" form or document can be created to support design and planning meetings.
These topics and questions include the following:

Data Sources: Is all the data required in system X? What other
sources are required or currently used?

Security: Will the data model contain PCII or sensitive data? Does
any data need to be secured from certain users?

Version Control: Are there existing reports or models with the same
measures?

Complexity: Can the source data be used directly or are
transformations required?

Analytics: Are any custom or advanced analytics required (for
example, exception measures, statistical analyses)?

Data Refresh: Is there a need for real-time access? If not, how
frequently does the data need to be refreshed?

Model Scale: How much historical data is required? How many rows
per week/month/year are in the largest fact table?

Distribution: Approximately how many users will need to access the
reports and dashboards this model will support?

Power BI delivery approaches
Power BI can be fully delivered and managed by corporate BI professionals from
data retrieval through visualization and content distribution. Some BI and analytics
organizations also adopt hybrid approaches in which different components of Power
BI are developed and owned by different teams such as the BI/IT teams providing an
optimized data source, its supporting ETL process, and the analytical data model,
including its measure definitions, relationships, and data refresh process. Business
teams can then leverage these assets in developing Power BI reports and dashboards
and optionally Excel reports as well.

As Power BI projects can have widely varying and often overlapping needs (for
example, security, data refresh, and scalability) it's important to adopt a process for
allocating the appropriate resources and planning for the longer term deployment
such as migrating important, relatively mature Power BI datasets to SSAS Tabular.

The Planning a Power BI Enterprise Deployment Whitepaper
identifies the fundamental decisions and factors that guide Power BI
deployments including licensing, scalability and performance, data
sources (cloud and on-premises), report visualization options,
administration and more.

See also
Planning a Power BI Enterprise Deployment: https://powerbi.microsoft.com/en-us/document
ation/powerbi-whitepapers
Microsoft Power BI Premium: https://powerbi.microsoft.com/en-us/documentation/powerbi-white
papers
The Ten Essential Rules of Dimensional Modeling: http://bit.ly/1QijUwM
Using DirectQuery in Power BI Desktop: http://bit.ly/2nUoLOG
DirectQuery in SSAS Tabular 2016 Whitepaper: http://bit.ly/2oe4Xcn
DAX Formula Compatibility in DirectQuery: http://bit.ly/2oK8QXB
Announcing Data Refresh APIs: http://bit.ly/2rOUd3a

https://powerbi.microsoft.com/en-us/documentation/powerbi-whitepapers
https://powerbi.microsoft.com/en-us/documentation/powerbi-whitepapers
http://bit.ly/1QijUwM
http://bit.ly/2nUoLOG
http://bit.ly/2oe4Xcn
http://bit.ly/2oK8QXB
http://bit.ly/2rOUd3a

Implementing a multi fact data model
The implementation of a data model proceeds from the design phase described in the
previous recipe. The design process and its supporting documentation clarify which
entities to model, their granularity, the fact-to-dimension relationships, and the fact
measures that must be developed. Additionally, the model mode (Import or
DirectQuery) has already been determined and any additional business logic to be
implemented via M or DAX functions is also known. The different components of the
model can now be developed including data source connectivity, queries,
relationships, measures, and metadata.

In this recipe we walk through all primary steps in the physical implementation of a
model design. Three fact tables and their related dimensions are retrieved,
relationships are created, and the core measures and metadata are added. When
complete, the multi-fact data model can be exposed to business users for initial
testing and feedback.

How to do it...
The following steps align with the logical flow of model development and can be
implemented in discrete phases across teams or by an individual Power BI
developer. Given different lead times associated with components of the model, it
can be advantageous to move forward with a more mature or simple component such
that business teams can engage and provide feedback as enhancements and other
components are deployed.

SQL view layer
1. Create a SQL View for each fact and dimension table to be represented in the

data model
The views should only select the columns required of the model and apply
the model's column names

The layer of views protects the model from changes in the source
system and provides visibility to administrators of the model's
dependency. Additionally, the views can denormalize source tables
via joins to conform to the structure of the model tables and
potentially include derived columns not available in the source.

In the following SQL example, the product dimension view joins three tables
and applies model column names:

, C.EnglishProductCategoryName AS 'Product Category'
, P.ProductAlternateKey AS 'Product Alternate Key'
FROM
DBO.DimProduct AS P
 LEFT JOIN DBO.DimProductSubcategory AS S ON P.ProductSubcategoryKey = S.ProductSubcategoryKey
 LEFT JOIN DBO.DimProductCategory AS C ON S.ProductCategoryKey = C.ProductCategoryKey

Defining the SQL views is especially important if supporting a
DirectQuery model. For DirectQuery model views, evaluate the
efficiency of the query plans and the referential integrity between the
views to support inner join DirectQuery queries.

M queries in Power BI Desktop
1. Create M queries containing the data source connection information (for

example, server name, or database name).
For example, an M query with the Sql.Database() function could serve as a
data source for other tables

2. Build an M query for each dimension and fact table that accesses the SQL views
defined in step 1.

In this example, the AWProd query contains the data source information and a
fact table view is accessed:

let
 Source = AWProd,
 InternetSales = Source{[Schema = "BI_Sales", Item = "vFact_InternetSales"]}[Data]
in
 InternetSales

Each new query references the data source query and is given the name to be
surfaced in the model

3. Duplicate a query and replace the Item parameter with the source view. Disable
the load of the data source query.

Query groups in Query Editor

4. Confirm that the column data types align with the design (for example, a fixed
decimal number to avoid rounding issues).

5. Close the Query Editor and load the tables into the Power BI model.

Create model relationships
1. From the Modeling tab of the Report or Data view, select Manage Relationships

and click on New.
2. Create many-to-one, single direction relationships from each fact table to its

corresponding dimension table.
Date data type columns should be used for the Date table relationships.

Relationships view of a multi fact data model

Bidirectional relationships should only be implemented with clear guidance and
evaluation.

Author DAX measures
1. Write the core measures for each fact table identified in the planning phase and

validate for accuracy.
2. If complex DAX expressions are needed for the core measures the source and

retrieval should be reviewed.
3. Give each measure an intuitive name and a standard format (for example, two

decimal places, thousands separator).

The most relevant examples for this step of the implementation are
covered in the Embedding business definitions into DAX measures
recipe later in this chapter. Other more advanced examples of DAX
expressions are included in recipes of Chapter 8, Implementing
Dynamic User-Based Visibility in Power BI, Chapter 9, Applying
Advanced Analytics and Custom Visuals, Chapter 10,
Developing Solutions for System Monitoring and Administration, and
in later chapters.

Configure model metadata
1. Add hierarchies such as Product Category, Product Subcategory, and Product Name and a

Date hierarchy.
2. Set the Default Summarization and Sorting of Columns such as Month Name

sorted by Month Number.
3. Assign Data Categories to columns such as Address or Postal Code to support

geographical visualization.
4. Hide columns from the fact tables such that only measure groups are visible

If it's necessary to expose a column from the fact table, consider a
dedicated measure table and associate the Home table of related measures to
this table.

Details on all primary metadata settings are included in this chapter
in recipes, Assigning data formatting and categories, Configuring
default summarization and sorting, Setting the visibility of columns
and tables, and Creating browseable model hierarchies and groups.
All of these settings impact the usability and functionality of the data
model and should not be neglected.

The Field List in Power BI Desktop and the data exploration and visualization
process should all reflect and benefit from the detailed implementation of steps
1-5.

Power BI Field List

Validation and user testing of the new model should follow implementation.
Model documentation can be developed via Dynamic Management Views
(DMVs) to provide users of definitions and relationships. See the Importing
and visualizing dynamic management view data of SSAS and Power BI data
models recipe of Chapter 10, Developing Solutions for System Monitoring and
Administration for a detailed example of this pattern.

There's more...

Shared views
If a model's source view is shared with other applications and may change or include
columns not needed by the model, the Table.SelectColumns() M function can be used:

let
 Source = AWProd,
 InternetSales = Source{[Schema = "BI_Sales", Item = "vFact_InternetSales"]}[Data],
 InternetSalesColumns = Table.SelectColumns(InternetSales,{"ProductKey","OrderDateKey"},MissingField.UseNull)
in
 InternetSalesColumns

Each column required by the table in the model is explicitly selected
The MissingField.UseNull parameter allows the query to refresh successfully
despite a specified column being missing such as when a column's name has
changed

Handling one-to-many and many-to-
many relationships
One of the most important data modeling features of Power BI, which is shared with
SQL Server Analysis Services Tabular 2016 and later versions, is the control the
modeler has over defining the filtering behavior through relationships. In addition to
one-to-many single direction relationships, Power BI models can contain
bidirectional relationships as well as DAX measures that contain their own
relationship filtering logic via the new CROSSFILTER() function. These relationship tools,
along with modifying the filter context of measures through DAX, can be used to
support many-to-many modeling scenarios and provide alternative model behaviors
for multiple business requirements.

In this recipe, we look at the primary use cases for bidirectional relationships and
DAX-based cross filtering. The first example uses a bidirectional relationship and
the CROSSFILTER() function to support analytical needs at different scopes--the data
model and specific measures. The second example model uses a bidirectional
relationship with a bridge table to enable a filter through a many-to-many
relationship. Examples of related DAX filter context approaches are also included
for reference.

Getting ready
To follow along and test the examples with your own data, you may consider the
following:

Create simple COUNTROWS() measures for each table in your model and add them to
a blank report canvas
The numbers will adjust (or not) as different techniques and filter selections are
applied

How to do it...

Single, bidirectional, and
CROSSFILTER()

Single direction relationships
1. Access a simple star schema data model with row count measures for each

table.

One-to-many single direction relationship model

The relationships are all single-direction from the dimension to the fact table.

2. Add the row count measures to the report canvas and create slicer visuals from
the dimension tables.

Relationship and cross filter testing visualization

With single-direction relationships, a selection on any of the slicers will only
impact its own table and the sales table.

Bidirectional relationship
1. Open the Manage Relationships window from the Modeling tab and select the

Sales to Product relationship.
2. Modify the relationship between Product and Sales to Both for the Cross filter

direction.

Bi-Directional Relationship Configuration (Both) from Edit Relationships Dialog

Filter selections on one of the other dimension tables (Customer or Date) now also
filter the Product table:

Filtering on the male gender reduces the Product table to only the rows
associated with a sale to the male gender.

Bi-Directional Cross Filter Impact on Product Table via Customer Table Filter

Only the Date table is not impacted by the slicer selection given its single-
direction relationship to the Sales fact table.
The customer table filters the Product table via the Sales table and its bidirectional
relationship with product.

Bidirectional Cross Filter Impact in Report Visual

With a single-direction cross filter, the Product table measure would show 606
for male and female (all products).

Unsold products (products without rows in the Sales table) account for the
difference in all product rows.

Bidirectional relationships between fact and dimension tables should
generally be avoided when the given dimension table is also related
to other fact tables. This can cause over filtering or unintended filter
contexts. For similar reasons, the bidirectional cross-filtering white
paper recommends single-direction relationships between date and
fact tables. However, bidirectional relationships are an integral part
of efficient solutions to common (and otherwise complex) modeling
scenarios such as Actual versus Budget and classical Many-to-Many
scenarios.

CROSSFILTER() Measure
1. Create a DAX measure that applies an alternative cross filter behavior to the

relationship in the model:

Product Table Rows (CF) = CALCULATE([Product Table Rows],
CROSSFILTER('Internet Sales'[ProductKey],'Product'[ProductKey],OneWay))

The measure (Product Table Rows (CF)) overrides the bi-directional
relationship to apply single-direction cross filtering.

Single direction CROSSFILTER() measure relative to standard measure with bi-directional model relationship

Though limited to specific measures, CROSSFILTER() can provide a simple and
powerful supplement to the relationship cross filtering defined in the model.

The cross filter direction should be set to Single for the large
majority of relationships and particularly dimension-to-fact-table
relationships. Bidirectional relationships are very useful with bridge
tables and many-to-many relationships. See the Building Analytics
into data models with DAX recipe later in this chapter for an example
of using bridge tables and bidirectional relationships to support
Budget versus Actual reporting. Additionally, bidirectional
relationships can be used for dynamic (user specific) Row-level
security models - see Chapter 8, Implementing Dynamic User-Based
Visibility in Power BI for examples of these implementations.

2. Write a DAX measure to propagate filter context.
The following measure respects the filters applied to the Internet Sales
table, such as Customer Gender = "M":

Product Rows (Sales) = CALCULATE(COUNTROWS('Product'),'Internet Sales')

The Product Rows (Sales) measure returns the same 158 row count as the
bidirectional relationship example.

Many-to-many relationships
In the following many-to-many model, multiple customers are associated with a given
account and some customers have multiple accounts:

Many-to-many model with single direction cross-filtering relationships

Given the highlighted single direction relationship from Accounts to the CustomerAccount
bridge table, a filter selection on the Customer dimension does not filter the Transactions
table.

Bidirectional cross-filtering for many-
to-many

1. Modify the cross filter direction of the relationship between Accounts and
CustomerAccount to Both.

2. Create a simple testing visual by customer to validate the impact of the bi-
directional cross-filtering behavior.

Report Results with Bidirectional Cross-Filtering

A report visual by customer will now correctly display both the total amount
from the fact table ($1,400) and the amounts associated with each customer.
A DAX alternative to the bidirectional relationship is the following:

M2M Tran Amount = CALCULATE([Tran Amount],SUMMARIZE(CustomerAccount,Accounts[Account ID]))

SUMMARIZE() leverages the one-to-many relationships of Customers and Accounts to the
bridge table and, via CALCULATE(), passes the filter context of Customers to the
Accounts table, which filters transactions.

For similar many-to-many scenarios, bidirectional relationship is
recommended over the DAX approach for manageability and
performance reasons.

How it works...

Ambiguous relationships
Power BI data models will reject ambiguous relationships, in which there are
multiple possible cross filtering paths
For example, a bridge table cannot have two many-to-one bidirectional
relationships to tables (A and B), both of which have one-to-many, single-
direction cross filtering relationships to table C

The model would not know (or try to guess) whether table A or B should
be filtered prior to filtering table C

Inactive relationships, cross filter direction, and the CROSSFILTER() function
provide additional modeling flexibility

CROSSFILTER()
The CROSSFILTER() function requires an existing relationship (active or inactive)
column with fully qualified syntax

The third parameter accepts the following values: OneWay, Both, and None
CROSSFILTER() always overrides the relationship settings of the model

There's more...

DirectQuery supported
Both bi-directional relationships and the CROSSFILTER() function can be used with
DirectQuery models

The Global DirectQuery setting Allow unrestricted measures needs to be
enabled to use CROSSFILTER()

The additional SQL queries generated may negatively impact the performance
depending on the model and source system

See also
The Bidirectional Cross-Filtering Whitepaper: http://bit.ly/2oWdwbG

http://bit.ly/2oWdwbG

Assigning data formatting and
categories
Two important metadata properties to configure for any column that will be visible
on the Power BI report canvas are the data format and data category. The data
formats should be consistent across data types and efficiently convey the appropriate
level of detail. Data categories serve to enhance the data exploration experience by
providing Power BI with information to guide its visualizations.

In this recipe, we set the data formats for dimension columns and measures.
Additionally, geographical data category values are assigned to location columns to
aid the visualization of this data.

How to do it...

Data formats
1. Select the Data view--the icon between the Report and Relationships views

If the model is in the DirectQuery mode, these settings are available on the
Modeling tab of the Report view

2. Use the Fields list on the right to navigate the tables and select the column to
format

3. When selected, the Modeling tab will expose a Format dropdown that is
contextually based on the data type:

Column Formatting

4. Repeat this process by selecting the measures in the Fields list and setting the
appropriate format:

Measure Formatting

These settings can also be accessed from the Modeling tab of the Report view

Formatting decisions should consider the impact of precision on
visualizations. Fewer decimal places and more abbreviated date
formats consume less space in reports and are easier to visually
comprehend in dashboards.

Data category
1. From the Data view, select a dimension table containing geographical attributes

such as City or Zip Code.

2. With a column selected, use the Data Category dropdown on the Modeling tab to
choose the most accurate category.

Data Category Selection

3. A globe icon will appear next to the geographical data category columns in the
field list.

How it works...
With the zip code column assigned a Postal Code category, Power BI chooses a
bubble map visual by default

Default Visual of Geographical Data Category

The Web URL Data category is important for mailto email address links and any
URL links exposed in reports

When the column is used in Table visuals, email and link icons are
displayed, respecively

There's more...

Model level settings
These metadata settings cannot be modified in the Power BI Service once the
model is published

Reports can be created and edited in the service but data types, names, and
other metadata are not available

See also
Power BI Documentation on Data Categorization: http://bit.ly/2peNqPm

http://bit.ly/2peNqPm

Configuring Default Summarization
and sorting
Two important metadata properties that directly impact the user experience and
report visualization of Power BI models include Default Summarization and Sort By
Column. Both column-scoped properties, Default Summarization determines the
aggregation, if any, to apply to the column when added to the report canvas. Sort By
Column provides the ability to display the values of a column based on the order of a
separate column.

Although relatively simple to configure, careful attention to both properties helps to
deliver higher quality Power BI visualizations and a more user friendly platform for
self-service. This recipe includes two examples of configuring the Sort By Column
property as well as guidance on Default Summarization.

How to do it...

Sort By Column
1. Identify columns requiring custom sort:

Calendar text columns such as Month and Weekday are the most common
candidates
Other columns may represent an organizational structure or entity hierarchy
such as general ledger accounts

2. Create the Sort By Column sort:
The Sort By Column sort must contain only one distinct value for each
value in the column to be sorted

It's recommended to embed the sorting logic as deep into the BI
architecture as possible. For example, the sorting column could be
added to a dimension table in a data warehouse or the SQL view used
to load the data model. If these options aren't available, M query
transformations are recommended over DAX calculated columns.

3. Set the Sort By Column sort:
Select the column to be sorted from either the Data View or the Report
View

Implementing Sort By Column on Calendar Month

Use the dropdown of the Sort by Column button to select the column to use
for sorting

With Sort By Column configured, the values of the column will display based on
the proper sort (January, February, or March)

DAX Year-Month sorting
In this example, a DAX calculated column is created to support sorting of the Calendar
Yr-Mo column.

1. Access the Date table in Data view and click on New Column from the Modeling
tab.

2. Enter the following DAX expression to create sorting column at the grain of
calendar months across years:

DAX Sorting Calculated Column

The YEAR() function is applied against the Date column and multiplied by 100 to
add two digits:

MONTH() returns a value of 1 to 12 and this is added to the six digit number

Although this approach is simple to implement and inexpensive in
resource usage, the values of the new column are not sequential thus
limiting the use of the column in Time Intelligence measures (for
example, trailing 3 months). Sequential surrogate key columns for
each grain of the date dimension, including fiscal calendars, is an
essential component to robust Date Intelligence logic. See Chapter 6,
Getting Serious with Date Intelligence for examples of implementing
these columns via both SQL and M expressions.

DAX Ranking Sort
1. Create a Sort By Column sort based on a measure.

In some scenarios, values from the RANKX() DAX function can provide a
custom sorting column

Per the sorting requirements, a unique rank value is required for each
value sorted

Create the DAX calculated column with the RANK(X) function:

RankX () Calculated Column

Sort the Department Group column by the new ranking column and hide the ranking
column

The calculated column is re-evaluated during each refresh and thus
sort order could change to reflect the source data.

Sort By Rank Effect

The Department Group column now defaults to the order of the rank column with
Sales and Marketing first

In the report visual, revising the order displays the values in descending
order with quality assurance first

Default Summarization
1. Set Dimensions to Don't summarize.

By default, whole number, decimal number, and fixed decimal number are
set to Sum

Default Summarization Modeling Option

3. Select each dimension table column and revise Default Summarization to Don't
Summarize:

The Fields list applies a summation symbol and sums the column's values
when selected for a report visual

Default Summarization in Fields List

The same symbol is applied regardless of the Default Summarization
configured (for example, Average and Count)

In this example, Days to Manufacture and Dealer Price would be summed as
though they're measures. In most scenarios, the user intent is to
group the data by these columns rather than sum.

Default Summarization can be accessed from either the Data View or the Report
View

Default Summarization

Simple DAX measures can deliver all Default Summarization options
(Sum, Min, Max, Average, Count, and Count Distinct). Additionally,
measure names such as Count of Products eliminate confusion of the
Default Summarization icon.

3. Replace fact columns with measures:
Develop DAX measures with aggregation functions and formatting such
that fact columns can be hidden
When all fact columns are hidden, associated measures will display at the
top of the Field list
Measures with names such as Count of Products avoid the confusion of which
summarization is applied
Additionally, measures allow for business logic to be applied, such as
including or excluding certain values

The quick measures feature can be used as an alternative to Default
Summarization as well.

The end result should be the elimination of Default Summarization settings
from all columns exposed in the Field List

How it works...

Default Summarization
Text and date data type columns are set to Don't summarize by default when first
loaded to Power BI models
These data types also have calculations that can be defined as a secondary
option on the report canvas

Text: First, Last, Count (Distinct), or Count
Date: Earliest, Latest, Count (Distinct), or Count

Summarization options of Date data type column set to Don't Summarize

There's more...

Quick measures
Quick measures provide a graphical interface for developing DAX measures
against Power BI models
The logic defined in the interface is transformed into DAX expressions and
persisted in the Power BI data model
Per the Fields list, Quick measures can be based on both columns and existing
measures (like DAX measures)

Quick Measure Dialog

It's expected that Quick Measures will be expanded to support increasingly
complex DAX expressions and patterns

See also
Quick Measures Preview Feature Introduction: http://bit.ly/2r4HVmt
Sort By Documentation: http://bit.ly/2pFXhgh

http://bit.ly/2r4HVmt
http://bit.ly/2pFXhgh

Setting the visibility of columns and
tables
Data models must balance the competing demands of functionality, scope, and
usability. As additional tables, columns, measures, and other structures are added to
meet various analytical needs, a model can quickly become confusing to end users.
Given that Power BI Desktop does not currently support perspectives or display
folders, both SSAS Tabular 2016 usability features, it's important to minimize the
visibility of columns and tables to provide an intuitive interface.

In this recipe an example data model is presented with guidance on configuring its
display in the Power BI Field list. Additionally, a list of data model objects
identifies candidates for hiding from the Report View.

How to do it...

Isolate measures from tables
The objective of this example is to provide an intuitive Fields list to support self-
service analysis and report development. The following Power BI data model
contains three fact tables and 12 dimension tables:

Field List with Hidden Columns

The Finance, Internet Sales, and Reseller Sales fact tables have all of their
columns hidden. This results in only the measures associated with
each table being displayed at the top of the Fields list.

1. Hide columns:
Select a column from the Fields list in Report view and right-click. Select
Hide in Report View
Repeat this process for all columns that should be hidden in the model

Hiding a Column

For import models, the same visibility setting is available from the Data View

2. Refresh the Fields list:
With all necessary columns hidden, click the Field List's 'Show/hide pane'
arrow twice to refresh the Field List

Field List

Following the refresh, tables with only visible measures (all columns hidden)
will appear at the top of the Fields list

In general, hide any column which isn't directly required in Power BI
reports. Relationship key columns, fact table columns represented via
measures, custom Sort by columns, and any degenerate dimensions
can be hidden. As this is only a visibility metadata setting, the
columns can still be used in measures and accessed from other tools
via DAX queries.

3. Hide measures:
Hide any measure which exclusively supports other measures and isn't
used directly in reports
The same process of hiding columns via right-click from the Report view
applies to measures

How it works...

Measure home tables
Dedicated measure group tables can be created to organize and group similar
measures:

These are empty tables created with queries that don't return rows or other
sources that don't require refresh
Their names indicate the measure group, such as Marketing Analytics

Measures can be associated with any table of the model via the Home Table
property

Measure Home Table

One option to simplify the Fields List is to consolidate measures into fewer
home tables and hide unused tables

There's more...

Hiding hierarchy columns
Columns which are visible within hierarchies can sometimes be hidden as
individual columns

Column Visible with Hierarchy

Exposing both an individual column and a hierarchy which includes it can
confuse users and lengthen the Fields list
However, not hiding the hierarchy column provides more flexibility such as
viewing the columns on separate axes

Group visibility
The grouping of column values described in the Hierarchies and Grouping
recipe is still possible with hidden columns

For example, the Product Name column could be hidden but a group based on
the Product Name column could be visible and usable from the Fields list.

Groups and Hierarchies can both be hidden from the Fields List as well
 Generally, however, these structures wouldn't have been created if their
visibility wasn't needed

Row level security visibility
Users mapped to security roles which forbid them from accessing all the rows
of a table are still able to see related metadata such as the table name, its
column names, and any metric names not hidden
New object-level security features of SSAS 2017 can eliminate this visibility

Visibility features from SSAS
Perspectives are essentially view definitions of models such that only a defined
set of tables, columns, and metrics of a model are exposed to a given view
Display folders are used to consolidate similar measures and columns and
simplify the interface

For example, a Sales measure folder may have multiple subfolders, each
with a group of similar measures

It's currently unclear if either of these SSAS features will be made available to
Power BI Desktop models

Embedding business definitions into
DAX measures
In order to drive user adoption and to provide a foundation to support more advanced
analytics it's essential that DAX measures reflect business definitions. These
fundamental measures deliver version control across the many reports built off of the
model and avoid the need for additional logic to be applied at the report layer. Clear
business definitions should be documented and the corresponding measures should be
validated for accuracy before report visualizations and analytical measures are
developed.

In this recipe measures are created representing business definitions such as sales
only for transactions that have shipped. Additionally, role playing measures are
created to allow visibility to secondary relationships to a date dimension table.

Getting ready
1. Identify the set of base measures to create, the data source to validate against,

and the subject matter experts
Reconcile differences in definitions between source systems and any
custom logic applied in reports

2. Request a project sponsor from a business organization to review and approve
the definitions and validation

3. Identify any conflicts with existing business definitions and advise of
complexity in implementing the measures

How to do it...

Sales and cost metrics
The measure definitions to implement in this example are the following:

Gross Sales is equal to Unit Price multiplied by Order Quantity with no
discounts applied
Net Sales are Gross Sales reduced by Discounts and must have been shipped
Product Cost is equal to Product Standard Cost * Order Quantity

1. Create Sales and Cost DAX Measures

Reseller Gross Sales = SUMX('Reseller Sales',
'Reseller Sales'[Unit Price] *'Reseller Sales'[Order Quantity])
Reseller Discount Amount = SUM('Reseller Sales'[Discount Amount])
Reseller Net Sales = CALCULATE([Reseller Gross Sales] - [Reseller Discount Amount],
'Reseller Sales'[Ship Date] <> DATEVALUE("12/31/2099"))
Reseller Product Cost = SUMX('Reseller Sales',
'Reseller Sales'[Order Quantity]*'Reseller Sales'[Product Standard Cost])

Two columns exist in the source database reflecting Reseller Gross Sales
and Reseller Product Cost. Performance and memory usage can be
improved by only importing the price and quantity columns and
multiplying within the measure.

The net sales measure deducts discounts from gross sales and only includes
shipped products

The existing ETL process assigns a date value of 12/31/2099 for any sales
orders that haven't shipped

Margin and count metrics
Margin percentage measures reflecting both gross and net sales (with discounts) are
required. Additionally, the distinct count of sales orders and products sold are also
core measures used in many reports and referenced by other measures.

1. Create margin and distinct count measures

Reseller Gross Margin % = DIVIDE([Reseller Gross Sales] - [Reseller Product Cost],[Reseller Gross Sales])
Reseller Margin % = DIVIDE([Reseller Net Sales] - [Reseller Product Cost],[Reseller Net Sales])
Reseller Count of Sales Orders = DISTINCTCOUNT('Reseller Sales'[Sales Order Number])
Reseller Count of Products Sold = CALCULATE(DISTINCTCOUNT('Product'[Product Alternate Key]),
'Reseller Sales')

Margin Amount measures might also be created and could replace the numerator
of the Margin % measures
DISTINCTCOUNT() can be used directly against foreign key relationship columns and
any degenerate dimension columns on the fact table such as Sales Order Number

See the How it works... section for details on the Reseller Count of Products
Sold measure

Optionally, Margin Amount measures could be created and replace
the numerator of the Margin % measures. The Count of Products Sold
measure uses the natural key of the product in the filter context of the
fact table to count unique products. Using the product key on the fact
table would count multiple versions of a product given slowly
changing dimensions.

Secondary relationships
1. Create role playing relationships:

Create additional relationships to the date dimension with other date data
type columns on the fact table

Active and Inactive Relationships Defined

Only one relationship between two tables can be active at once. In this example,
Order Date is the active relationship.

2. Create role playing measures:
Measures which invoke the Due Date and Ship Date relationships would be
created for core business measures

Reseller Net Sales by Ship Date = CALCULATE([Reseller Net Sales],
USERELATIONSHIP('Reseller Sales'[Ship Date],'Date'[Date]))
Reseller Sales Order Count by Due Date = CALCULATE([Reseller Sales Order Count],
USERELATIONSHIP('Reseller Sales'[Due Date],'Date'[Date]))

Do not confuse the USERELATIONSHIP() function with the CROSSFILTER()
function. CROSSFILTER() is used for controlling relationship filter
propagation (Single, Bidirectional, or None) and is not a replacement
for USERELATIONSHIP().

Secondary Relationships Invoked via DAX Measures

Given the multiplication effect of role playing measures it may be
appropriate to group the secondary relationship measures into
dedicated measure group tables. See the Setting visibility of columns
and tables recipe in this chapter for additional detail.

How it works...

Date relationships
The Time Intelligence functions of DAX, such as DATESYTD(), DATEADD(), and
SAMEPERIODLASTYEAR(), all require either a relationship based on a date data type or
a Mark as Date Table setting

Mark as Date Table in Power Pivot for Excel 2016

The Mark as Date Table setting is currently exclusive to Power Pivot for Excel
and SSAS Tabular models
Therefore, date relationships in Power BI should use date data type columns
rather than surrogate keys (20170101)

There's more...

Measure definitions
Measure definitions can be straight forward when the data is internally managed
with processes and tools such as a data governance council, Master Data
Services (MDS), Data Quality Services, and Azure Data Catalog

Per the Power BI Governance and Deployment Whitepaper, Power BI
projects and all BI projects greatly benefit from these data cleansing and
information management tools

The data warehouse bus matrix and stakeholder matrix referenced in this chapter
and Chapter 4, Authoring Power BI Reports, respectively, can help to focus the
measure definition process on version control and transparency

Measure names and additional
measures

The names used for measures should be intuitive and specific to the business
process
Preferably a naming standard is followed to balance the detail of the name with
the impact of text on visualizations
In a real project scenario several additional measures would likely be created
following validation

These could include Net Sales as a % of Gross Sales, Sales and Quantity per Order,
and Sales Not Shipped
These measures and more advanced measures would all leverage the
validated measures

See also
Power BI Governance and Deployment Approaches: http://bit.ly/1VLWdVg

http://bit.ly/1VLWdVg

Enriching a model with analysis
expressions
Performance, usability, and version control are all fundamental characteristics of
effective data models but often it's the additional analytical context that set models
apart. Once fundamental measures have been implemented, additional DAX measures
can be developed to support common and high priority business analysis. These
measures can often replace ad hoc and manual data analysis for business users as
well as dedicated custom reports maintained by the BI organization. As measures are
stored within the data model, the logic can be re-used in various combinations and in
future projects.

In this recipe DAX measures are created to support deeper pricing analysis.
Additionally, an example of computing the geometric mean at day, month, and year
grains is provided.

How to do it...

Pricing analysis
The objective of this example is to support deeper analysis of pricing trends. New
measures should accomplish the following:

Describe the central tendency and distribution of prices
Account for the impact of product sales mix to support analysis of effective
pricing versus product pricing

1. Create a Pricing Measures table:
The pricing table will be dedicated to measures and not store any data. Use
a blank query that returns no data
Hide columns from the new table and associate pricing measures to it via
the Home Table measure setting

Pricing Measures Group Table

2. Create Pricing Measures.

Effective Unit Price = DIVIDE([Reseller Sales Extended Amount],[Reseller Sales Order Quantity])
25th Percentile Unit Price = PERCENTILE.INC('Reseller Sales'[Unit Price],.25)
75th Percentile Unit Price = PERCENTILE.INC('Reseller Sales'[Unit Price],.75)
Maximum Unit Price = MAX('Reseller Sales'[Unit Price])
Median Unit Price = MEDIAN('Reseller Sales'[Unit Price])
Minimum Unit Price = MIN('Reseller Sales'[Unit Price])
Range of Unit Prices = [Maximum Unit Price] - [Minimum Unit Price]

The Effective Unit Price metric accounts for the impact of quantity sold and uses
the existing sales and quantity metrics
The percentile and median metrics help better describe the distribution of prices
The minimum, maximum, and range of unit prices provide additional context to
the variability of the prices

3. Embed the pricing measures into Power BI visuals.
The new measures could be added to existing visuals directly or as
supporting tooltip values

Example Power BI Pricing Reports

The visuals compare the average unit price metric to the new effective unit price
metric
Pricing metrics are added to visual tooltips such that hovering over values in the
charts provides additional context

Embedding hierarchies in visuals with supporting measures can
allow users to investigate interesting values via drill up and down.
Additionally, exception reports and notifications can be developed
using the new measures as thresholds.

Geometric mean at all grains
The goal of this example is to compute the geometric mean of a security at the day,
month, and year grains.

A table of security prices for the security by day exists in the model with a
relationship to the date table

Daily Prices Fact Table

1. Create Last Price measures
The last price active in the filter context is used by each of the previous
price measures (Day, Month, and Year)

Last Price = CALCULATE(VALUES(Daily Prices[Adj Close]),LASTNONBLANK('Date'[Date],[Max Daily Price]))
Previous Daily Price = CALCULATE([Last Price],
FILTER(ALL(Daily Prices),Daily Prices[IndexKey] = MAX(Daily Prices[Index Key]) - 1))
Previous Monthly Price = CALCULATE([Last Price],
FILTER(ALL('Date'),'Date'[Cal Year Month Index] = MAX('Date'[Cal Year Month Index]) -1))
Previous Year Price = CALCULATE([Last Price],
FILTER(ALL('Date'),'Date'[Calendar Year] = MAX('Date'[Calendar Year]) -1))

LASTNONBLANK() is needed for days in which the security wasn't traded.
Max Daily Price is a simple MAX() measure of the Adj Close column and is
used to simplify the syntax. See Chapter 6, Getting Serious with Date
Intelligence for details on controlling date filter contexts.

2. Create Percentage Change measures
These are the source values for the geometric mean calculations and thus
are expressed as positive numbers

Daily Return% = DIVIDE([Last Price],[Previous Daily Price])
Monthly Return% = DIVIDE([Last Price],[Previous Monthly Price])
Yearly Return% = DIVIDE([Last Price],[Previous Year Price])

As only inputs to the geometric mean calculation, these measures should be
hidden from the Report view

3. Create daily, monthly, and yearly geometric mean % measures:

Daily Geometric Return = GEOMEANX(Daily Prices,[Daily Return%])-1
Monthly Geometric Return = GEOMEANX(VALUES('Date'[Calendar Yr-Mo]),[Monthly Return%])-1
Yearly Geometric Return = GEOMEANX(VALUES('Date'[Calendar Year]),[Yearly Return%])-1

The GEOMEANX() function iterates over tables at the different grains and computes
the Return% measure for each row
The geometric mean (the product of values taken to the Nth root) is computed
last against this list of values.
Visualize geometric mean

Geometric Mean Power BI Tiles

Given the date table relationships the metrics would reflect date dimension
filter selections

How it works...

Pricing analysis
The MEDIAN() function returns the 50th percentile of values in a column

It's equivalent the PERCENTILE.INC() functions used for the 25th and 75th
percentile.

Performance is not negatively impacted when adding measures to visuals from
the same table due to measure fusion

The Tooltip measures in the recipe were from the same table and did not
create additional DAX queries

Building analytics into data models
with DAX
Several table-valued functions were added to the DAX language in 2015 that
simplify the development of relational and set logic based measures and queries.
With functions such as NATURALINNERJOIN(), EXCEPT(), and UNION(), developers can create
DAX measures to identify outliers and precise segments of dimensions to better
support analysis such as cross-selling and customer retention. Additionally, as many
business processes have a corresponding budget or plan, it's important to use Power
BI modeling features to build support for actual versus budget reporting.

In this recipe new DAX functions are used to drive two analyses--inactive customers
and cross-selling products. Additionally, a data model is modified to support the
distinct grains of budget and sales fact tables.

How to do it...

Cross-selling opportunities
The objective of this example is to identify customer segments based on their
purchase history across product categories. For example, the business wants to
identify customers who've purchased a bike but not any bike accessories.

1. Assess the current state
18,484 distinct customers have made purchases across three product
categories

Unique Customers by Product Category

As expected, there's significant overlap among the categories with customers
purchasing from multiple categories.

Accessories but not bike customers
1. Create a DAX measure which returns the count of customers who've purchased

an accessory but not a bike:

Count of Accessory But Not Bike Customers =
 VAR BikeCustomers =
 SUMMARIZE(CALCULATETABLE('Internet Sales','Product'[Product Category] = "Bikes"),
 Customer[Customer Alternate Key])
 VAR AccessoryCustomers =
 SUMMARIZE(CALCULATETABLE('Internet Sales','Product'[Product Category] = "Accessories"),
 Customer[Customer Alternate Key])
RETURN
CALCULATE(DISTINCTCOUNT(Customer[Customer Alternate Key]),EXCEPT(AccessoryCustomers,BikeCustomers))

Variables are used to store the distinct customer keys associated with the two
product categories.
SUMMARIZE() groups the customer key values and EXCEPT() performs the set-based
operation.

2. Create card and table visuals in a Power BI Report to visualize the new
measure:

Visualization of EXCEPT() DAX Measure: Accessory Customers excluding Bike Customers

The measure can be visualized across dimensions such as filtering for one or
two calendar years

Bike only customers
1. Create a measure to compute the customers who've only make a bike purchase

(not clothing or accessories)

Count of Bike Only Customers =
 VAR BikeCustomers =
 SUMMARIZE(CALCULATETABLE('Internet Sales','Product'[Product Category] = "Bikes"),
 Customer[Customer Alternate Key])
 VAR ClothesAndAccessoryCustomers =
 SUMMARIZE(CALCULATETABLE('Internet Sales',
 'Product'[Product Category] IN {"Accessories","Clothing"}), Customer[Customer Alternate Key])
RETURN
CALCULATE(DISTINCTCOUNT(Customer[Customer Alternate Key]),
 EXCEPT(BikeCustomers,ClothesAndAccessoryCustomers))

The syntax aligns with the structure of the first measure except for the use of the
IN DAX operator to include accessories and clothing in the same group of
customer keys.

Given the power of these measures they could be candidates for sales
and marketing dashboards and exception reports. For example sales
teams could focus on cross-selling bike only customers and selling
bikes to non-bike customers.

Active verus inactive customers
The following example identifies the customers who purchased last year but haven't
yet purchased this year.

1. Create a measure for missing or inactive customers
Use DAX variables and time intelligence functions to produce two filtered
sets of customer keys.

Count of Last Year Customers ex Current Year =
 VAR Today = TODAY() VAR CurrentYear = YEAR(Today) VAR LastYear = YEAR(Today) - 1
 VAR LYCustomers =
 SUMMARIZE(CALCULATETABLE('Internet Sales',
 FILTER(ALL('Date'),'Date'[Calendar Year] = LastYear)),Customer[Customer Alternate Key])
 VAR CYCustomers =
 SUMMARIZE(CALCULATETABLE('Internet Sales',
 FILTER(ALL('Date'),'Date'[Calendar Year] = CurrentYear)),Customer[Customer Alternate Key])
RETURN
CALCULATE(DISTINCTCOUNT(Customer[Customer Alternate Key]),EXCEPT(LYCustomers,CYCustomers))

Pass the time variables to the CALCULATETABLE() function and then group the keys by
SUMMARIZE()

2. Visualize the measure in Power BI Desktop

Visualization of Last Year Customer Count excluding Current Year Customers

A visual level filter applied to the new measure exposes the specific 287
customers without a 2017 purchase yet

Actual versus budget model and
measures
This example provides support for actual versus budget analysis in a model
containing different grains.

1. Create the bridge tables
Budget Product Categories and Budget Dates bridge tables are added to the model
at the grain of the budget
Each table contains the unique values of the dimension at the grain of the
Budget table

These bridge tables can potentially leverage the existing M queries
in the model used to load the dimension tables. For example, the
following M expression references the Date table query as it's source
and selects only the distinct values of the Calendar Yr-Mo column. If
this is the grain of the budget table, this single column table could be
used as the bridge table.

let Source = Date,
 YearMonthColumn = Table.SelectColumns(Source,{"Calendar Yr-
Mo"}),
 RemoveDuplicates = Table.Distinct(YearMonthColumn)
in RemoveDuplicates

Alternatively, a simple SQL view could be created ('Select Distinct
[Calendar Yr-Mo] From dbo.DimDate') that selects the distinct
values of the column and this view could be accessed from a new
bridge table M query.

2. Create the relationships
Create one-to-many relationships with single direction cross filtering from
the bridge tables (Budget Dates, Budget Product Categories) to the Internet
Sales Budget table
Create many-to-one relationships with bidirectional cross filtering
between the dimension tables (Date, Product) to their respective bridge
tables (Budget Dates, Budget Product Categories)

Internet Sales versus Budget Data Model

The two bidirectional relationships highlighted in the image allow filters on the
Date and Product tables to propagate to the Internet Sales Budget table in addition
to the Internet Sales fact table
The only remaining steps requiring some level of code is to avoid invalid filter
contexts. For example, the Internet Sales fact table can of course be filtered by
individual products and dates but this granularity isn't available for the Budget
and thus a blank value should be returned.

3. Create a measure to test for filter context
The following measure checks whether filters have been applied at higher
grains than the budget table

Budget Filter Test =
 VAR CustomerFilter = ISCROSSFILTERED(Customer)
 VAR ProductGrain =
 ISFILTERED('Product'[Product Class]) || ISFILTERED('Product'[Product Color]) ||
 ISFILTERED('Product'[Product Subcategory]) || ISFILTERED('Product'[Product Name])
 VAR DateGrain =
 ISFILTERED('Date'[Calendar Yr-Wk]) || ISFILTERED('Date'[Date]) || ISFILTERED('Date'[Wk End Date])
RETURN
IF(CustomerFilter = TRUE() || ProductGrain = TRUE() || DateGrain =TRUE(),
 "Higher Grain", "Common Grain")

The filter test is used to protect against invalid sales to budget reports with
different filters applied to each fact table

4. Create the budget measures
Create a budget measure and an actual to budget variance measure

Internet Sales Budget =
 VAR BudgetSales = sum('Internet Sales Budget'[Online Sales Budget])
RETURN
IF([Budget Filter Test] = "Common Grain", BudgetSales, BLANK())

Internet Sales Actual to Budget Variance =
IF(ISBLANK([Internet Sales Budget]),BLANK(), [Internet Sales] - [Internet Sales Budget])

In this scenario, the requirement is to only test for a common grain and return a
blank otherwise.

It's possible to build allocation logic into the DAX budget measure to
account for higher grains. In general, these allocation rules are
better implemented in the budget process itself or via ETL tools and
query languages such as SQL and M.

5. Hide the bridge tables, budget columns, and the filter test metric from the Report
View

6. Validate and visualize actual versus budget
Create sample visualizations which filter budget and sales by Product and
Date dimensions

Internet Sales Actual versus Budget by Product Category and Year-Month

Matrix visuals provide functionality similar to Excel pivot tables and
are therefore a good choice for Budget versus Actuals.

How it works...

Filter Context Functions
ISFILTERED() and ISCROSSFILTERED() return Boolean values based on the filter context
of the table or columns
ISFILTERED() is limited to a single column in the model and is specific to the given
column
ISCROSSFILTERED() can check a single column or an entire table. Filters from other
tables are included in evaluation.

There's more...

SUMMARIZECOLUMNS()
SUMMARIZECOLUMNS() is more efficient than SUMMARIZE() but does not currently support a
modified filter context.

Therefore, SUMMARIZE() is used in certain examples of measures in this recipe
and others in this book.

Integrating math and statistical
analysis via DAX
Power BI Desktop and the Power BI Service provide advanced analytics features
such as Forecasting, Clustering, and Quick Insights that go far beyond traditional BI
reporting of historical data. However, many valuable mathematical and statistical
analyses such as Correlation Coefficients and Chi-Square Tests and are only possible
by embedding the logic of these methodologies into DAX measures. Aligning these
analyses to support specific business questions can generate new insights and
provide a higher level of validation and confidence in business decisions.

In this recipe DAX measures are built into a Power BI model to calculate the
correlation coefficient of two variables. Additionally, an example of computing the
Goodness-of-Fit test statistic in validating a model is provided.

How to do it...

Correlation coefficient
The objective of this example is to create a DAX measure which executes the the
Pearson correlation coefficient formula.

Correlation Coefficient for Sample Formula

A fact table is available at the grain of product category by month with both
marketing expense and sales amount

Aggregate Fact Table: Marketing Expense and Sales Amount by Product Category

The values in the active filter context for the Marketing Amt and Sales columns will
provide the X and Y arrays

1. Create the correlation numerator measure

Correl Numerator Marketing-Sales =
 SUMX('Marketing Expense',
('Marketing Expense'[Marketing Amt]-AVERAGE('Marketing Expense'[Marketing Amt]))*
('Marketing Expense'[Sales]-AVERAGE('Marketing Expense'[Sales])))

The numerator measure iterates over the active (unfiltered) rows of
the aggregate fact table and multiplies the differences from the
sample mean for each variable. The result of this product is then
summed via SUMX().

2. Create the correlation denominator measure.

Correl Denominator Marketing-Sales =
 VAR Marketing = SUMX('Marketing Expense',
 ('Marketing Expense'[Marketing Amt]-AVERAGE('Marketing Expense'[Marketing Amt]))^2)
 VAR Sales = SUMX('Marketing Expense',
 ('Marketing Expense'[Sales]-AVERAGE('Marketing Expense'[Sales]))^2)
RETURN SQRT(Marketing*Sales)

The sum of the squared differences from the mean for each variable's active row
are multiplied prior to the square root.

3. Create the correlation coefficient measure
The correlation measure is a trivial DIVIDE() of the numerator and

denominator measures
The measure name Correlation Marketing-Sales is used to avoid confusion with
other correlation measures

4. Visualize the Correlation Measure

Correlation Coefficient Visualization

The measure indicates a much stronger marketing-to-sales relationship for bikes
than other other categories.

Additionally, the bikes correlation is weakening, potentially due to brand
awareness and repeat customers.
Accessories and Clothing categories were not available for sale in 2015-2016

Goodness-of-Fit test statistic
The objective of this example is to create a Goodness-of Fit statistic measure to
evaluate a customer distribution model.

Goodness-of-Fit Statistic

The existing model is based on the historical distribution of customers by
country for the past three years
The measure will use actual customer data from Q1 of 2017 to compare against
the predicted value from the model
Customers are historically split across the following six countries:

Historical Customer Distribution %

The Goodness-of-Fit measure will help answer the question: "Are these
percentages still valid in 2017?"

1. Create the base Measures
Measures compute all time customers, the 2017-Q1 customers, and the
historical percentages by country

All Time Customers =
CALCULATE(CALCULATE(DISTINCTCOUNT('Customer'[Customer Alternate Key]),'Internet Sales'),ALL('Date'))
Sample Customer Count =
CALCULATE(CALCULATE(DISTINCTCOUNT(Customer[Customer Alternate Key]),'Internet Sales'),
FILTER(ALL('Date'),'Date'[Calendar Yr-Qtr] = "2017-Q1"))
USA All Time Customer % =
DIVIDE(CALCULATE([All Time Customers],'Sales Territory'[Sales Territory Country] = "United States"),
[All Time Customers])

The other five country metrics not displayed are defined exactly like the USA
All Time Customer % metric

The Customer Alternate Key column is used to avoid double-counting due to
slowly changing dimensions

2. Create the Goodness-of-Fit test statistic Measure

Goodness-of-Fit Stat (USA Only) =
VAR SampleCount = CALCULATE(CALCULATE(DISTINCTCOUNT(Customer[CustomerAlternateKey]),'Internet Sales'),
 FILTER(ALL('Date'),'Date'[Calendar Yr-Qtr] = "2017-Q1"))
VAR USAExpect = SampleCount * [USA All Time Customer %]
RETURN
SUMX(CALCULATETABLE(VALUES('Sales Territory'[Sales Territory Country]),'Sales Territory'[Sales Territory Country] <> "NA"),
 SWITCH(TRUE(),
 'Sales Territory'[Sales Territory Country] = "United States",
 DIVIDE((([Sample Customer Count] - USAExpect)^2),USAExpect),0))

The actual Goodness-of-Fit Stat measure would include the same
components for the five other countries - sample variables declaring
the expected values and Goodness-of-Fit expressions within the
SWITCH() for the given country. See the 'How it Works...' section for
details on the structure of the measure.

3. Interpret the Goodness-of-Fit measure

A next step in the analysis would be to utilize the new Goodness-of-Fit measure
in a Chi-Square Goodness-of-Fit test

Return Value of Goodness-of-Fit Statistic Measure

The measure result (68 in this example), would be compared to a Chi-Square
distribution given the number of categories (countries in this example) to
determine if the historical distribution model can be rejected or not.

Implementing additional logic to perform the Chi-Square test in the
Power BI model is possible as the Chi-Square distribution data set is
small. In most scenarios, however, this final evaluation is handled
outside the data model.

How it works...

Correlation coefficient syntax
It's necessary to use AVERAGE() expressions within the row iterating parameter to
SUM(X) rather than measures.
Measures are transformed into a filter context when inside a row operation
resulting in a row being compared to itself
Parentheses are used to control the order of operations to align with the Pearson
formula definition

Goodness-of-Fit logic and syntax
The logic implemented by the Goodness-of-Fit statistic measure can be
described by the following table:

Goodness-of-Fit Statistic Sample Data Logic

The expected variables all reference and re-use the SampleCount variable, which is
filtered for 2017-Q1.
A SUMX() function is used to used to iterate over each of the six countries
represented by a single row via VALUES()

This distinct list of countries is filtered to avoid any NA values
The Sample Customer Count measure created in step 1 executes in a filter context to
provide the observed customer count for the given country
The observed and expected values are passed into the Goodness-of-Fit equation
with the sum of each calculation (one for each country) being returned by the
measure

Observe that the SampleCount variable is re-used by the expected
variables but that the Sample Customer Count measure created in step 1 is
used within the SWITCH(). This is because the measure executes in a
filter context (the given country) whereas the SampleCount variable does
not transition to a filter context when invoked in the expression.

Supporting virtual table relationships
Virtual table relationships are DAX expressions implemented to filter a table from
another table when a relationship doesn't exist between these tables. Report
visualizations can then be constructed using both tables (and their related tables) and
the DAX measures will update as though a normal relationship is defined. Virtual
relationships are often used to address disparate grains of tables and to leverage
performance segmentation tables.

Although physical relationships are the preferred long term solution for both
performance and manageability, virtual relationships provide an attractive alternative
when physical relationships are not feasible. In this recipe we provide virtual
relationship examples of using a custom performance segmentation table and an
aggregated table.

How to do it...

Segmentation example
The goal of this example is to apply the following segmentation table to the measures
of the data model:

Sales Growth Segmentation Table

A sample Power BI report based on the virtual relationship expressions could appear
as follows:

Power BI Report Utilizing Segmentation Table and Virtual Relationships

Three separate DAX measures are utilized for this example report:
A distinct count of customer countries and one for products, both filtered
by the segmentation table
A sales growth tier metric that returns the text value of the Growth Tier
column (for example, Underperform)

1. Create the Sales Growth Tier measure

Sales Growth Tier =
VAR Growth = [Sales Growth]

VAR Level1 = CALCULATE(MIN('Sales Growth Tiers'[Max]),'Sales Growth Tiers'[GrowthTierKey] = 1)
VAR Level2 = CALCULATE(MIN('Sales Growth Tiers'[Max]),'Sales Growth Tiers'[GrowthTierKey] = 2)
VAR Level3 = CALCULATE(MIN('Sales Growth Tiers'[Max]),'Sales Growth Tiers'[GrowthTierKey] = 3)
VAR Level4 = CALCULATE(MIN('Sales Growth Tiers'[Max]),'Sales Growth Tiers'[GrowthTierKey] = 4)
RETURN
SWITCH(TRUE(),ISBLANK(Growth), BLANK(),
 Growth <= Level1,
 CALCULATE(VALUES('Sales Growth Tiers'[Growth Tier]),'Sales Growth Tiers'[GrowthTierKey] = 1),
 Growth <= Level2,
 CALCULATE(VALUES('Sales Growth Tiers'[Growth Tier]), 'Sales Growth Tiers'[GrowthTierKey] = 2),
 Growth <= Level3,
 CALCULATE(VALUES('Sales Growth Tiers'[Growth Tier]),'Sales Growth Tiers'[GrowthTierKey] = 3),
 Growth <= Level4,
 CALCULATE(VALUES('Sales Growth Tiers'[Growth Tier]),'Sales Growth Tiers'[GrowthTierKey] = 4),"Unknown")

The existing Sales Growth Tier measure and the four segment threshold values are
stored in DAX variables
The SWITCH() function compares sales growth with the segment thresholds to
assign the Growth Tier value

Providing TRUE() as the first parameter to the SWITCH() function allows
for independent logical conditions to be evaluated in order (from top
to bottom). This is similar to the Searched form of the CASE
expression in SQL.

2. Create the virtual relationship measures

Customer Countries =
CALCULATE(DISTINCTCOUNT(Customer[Country]),FILTER(ALL(Customer[Country]),
[Sales Growth] > MIN('Sales Growth Tiers'[Min]) && [Sales Growth] < MAX('Sales Growth Tiers'[Max])))

The measures apply filters based on the segmentation table thresholds and the
Sales Growth measure
The virtual relationship measures can be used with the segmentation table in
visuals per the example.

Summary to detail example
In this example, a summary table (Subcategory Plan) needs to be integrated into a Power
BI data model. The business wants to filter plan data via the same Product and Date
tables they use regularly and to create actual versus plan reports.

The grain of the Plan table is Plan Subcategory by Calendar Year and Calendar Month

Plan Summary Table for Virtual Relationships

Relationships from Plan to the Date and Product tables can't be created directly
given the many-to-many relationship

Each physical relationship in Power BI is based on a single column
from each table with one of the relationship columns uniquely
identifying all the rows of its host table. This is consistent with SSAS
Tabular and Power Pivot for Excel models.

1. Create the subcategory plan measure

The following DAX measure filters the subcategory plan measure by the
Product table and the Date table:

Subcat Plan Amt =
 VAR ProductSubCats = VALUES('Product'[Product Subcategory])
 VAR DateTbl = SUMMARIZE('Date','Date'[Calendar Year],'Date'[Calendar Month])
RETURN
CALCULATE([Subcategory PlanAmt], TREATAS(ProductSubCats,'Subcategory Plan'[Plan Subcategory]),
TREATAS(DateTbl,'Subcategory Plan'[Calendar Year],'Subcategory Plan'[Calendar Month]))

Variables are used to store tables representing the filtered values of the Product
and Date dimension tables
The TREATAS() function transfers the variables to the corresponding plan
column(s), thus filtering Subcategory Plan

Actual versus plan
Actual-to-Plan visuals can now be developed using columns from the Date and
Product dimension tables

Subcategory Plan versus Actual Matrix Visual

Any column with the same or lower grain than the product subcategory and
calendar Year-Month can be used

Columns from other other tables or columns without a virtual relationship
will not filter the Plan table

Bridge tables to support physical relationships to the Product and Date
tables could be created in this scenario. The two bridge tables would
contain the unique product subcategory and month values and one-
to-many relationships would link the bridge tables to the Plan, Product,
and Date tables. The Plan and bridge tables could be hidden from the
Report view and bidirectional relationships would be configured
between the bridge tables and the Product and Date tables. For better
performance and manageability physical relationships are
recommended over virtual relationships.

How it works...

Year and month selected
The Year Selected and Month Selected visuals are both supported by simple DAX
measures returning text values

Year Selected = if(HASONEVALUE('Date'[Calendar Year]),
FORMAT(VALUES('Date'[Calendar Year]),"####"),"Multiple")

Virtual relationship functions
The TREATAS() DAX function was added in early 2017 and provides both simpler
syntax and better performance than alternative virtual relationship methods involving
INTERSECT() or FILTER() with a CONTAINS() function parameter.

There's more...

Multiple dimensions
The Sales Growth Tier measure can be used for analyzing other dimensions of the model
and at different grains

Drill Down into Problem Customer Country

In the example visual, a user could drill down with the matrix visual and see the
growth tiers by state

Alternatives to virtual relationships
There are options to modify data models to support physical relationships and thus
avoid the limitations with virtual relationships.

A concatenated column such as Year-Month could be created for each table via
SQL, M, or a DAX calculated column.
Bridge tables with bidirectional cross filtering relationships provide simple
solutions to many-to-many scenarios
For small fact tables (for example, Plan), LOOKUPVALUE() could be used in a
calculated column supporting the relationship

See also
Physical and Virtual Relationships in DAX: http://bit.ly/2oFpe8T

http://bit.ly/2oFpe8T

Creating browsable model hierarchies
and groups
Hierarchies and groups are data model structures that can be implemented to simplify
the user and report authoring experience. Hierarchies provide single-click access to
multiple columns of a table enabling users to navigate through pre-defined levels
such as the weeks within a given month. Groups are comprised of individual values
of a column that enable analysis and visualization of the combined total as though it's
a single value. Hierarchies and groups have useful applications in almost all data
models and it's important to understand the relationship of these structures to the data
model and visualizations.

This recipe provides an example of utilizing DAX parent and child hierarchy
functions to create columns of a hierarchy. The hierarchy is then implemented into the
data model and a group is created to further benefit analysis.

How to do it...

Create hierarchy columns with DAX
The purpose of this example is to create columns in the Account dimension which
will support a six-level hierarchy.

The table is self-joined based on the AccountKey and ParentAccountKey parent account
code

Account Dimension Parent-Child Hierarchy

1. From the Data View, select the Account table and click on New Column from the
Modeling tab.

2. Create a DAX calculated column to return the account name of the top most
parent for the given account row

Calculated Column for Account Hierarchy

3. Create five additional calculated columns to support the additional levels of the
hierarchy.

In each calculation, revise the second parameter of the PATHITEM() function
for the level of the hierarchy .
For example, the Account Level 3 column's PATHITEM() function should use
(AccountPath,3,1).

Data View of Calculated Columns

Some rows will have blank values for a given column because it's higher in the

structure. For example, the balance sheet account doesn't have values for the level
2 through 6 columns. The calculated columns will appear in the Fields list with
formula icons.

Implement a hierarchy
With the necessary hierarchy columns created, a hierarchy structure can be
implemented in the data model.

1. In the Fields list of the Report view select the Account Level 2 field and drag it on
top of the Account Level 1 field

A hierarchy will be created. Right-click the hierarchy and give it a name
such as Account Level Hierarchy

2. Drag the Account Level 3 field on top of the name of the hierarchy. Repeat this for
all other account level columns.

Hierarchy in Field List

The hierarchy can now be added to visuals with a single click. Drill down is
available to navigate all six columns.

Matrix Visual of Account Hierarchy
With the hierarchy in the Fields list, usability may be improved by
hiding the individual columns. However, individual columns are
needed to view a different order of the columns or to view the
columns of the hierarchy on opposing axes.

Create and manage a group
The objective of this example is to create a group consisting of four product
subcategory values.

1. Identify similar or related values of a column to be grouped
These are generally less common dimension values which can clutter data
visualizations
In this example, vests, gloves, caps, and socks are small and similar
subcategories that can be grouped

2. From the Data View or the Report View, select the Product Subcategory column
On the Modeling tab, click on New Group to open the Groups dialog
You can also just right-click the column in the Fields list and select New
Group

3. Select one of the four subcategories and click on Group. Also, give the group a
short, descriptive name (for example, Accessories)

Add values to the group by selecting both the group name and the
ungrouped value and clicking on Group

Groups Dialog

The name for the new groups (that is, Product Subcategories) will be exposed in the
Fields list with a shape icon.
In this example, Product Subcategory Groups is the name assigned to this group

Product Subcategories Group

The grouping can be make Power BI reports and dashboards more intuitive and
help simplify analyses

If a particular grouping created in Power BI Desktop becomes
pervasive throughout reports and dashboards it may be appropriate
to build the equivalent into the data warehouse or the retrieval
queries of the data model.

How it works...

DAX parent and child functions
The PATH() function compares a child key column with the parent key column and
returns a delimited text string containing all the parent members for the given
row

PATH() Function example

The PATHITEM() function returns the key value from a path from highest to lowest
based on the position parameter.

The third and final parameter to this function (1) indicates to return this
value as an integer.

The LOOKUPVALUE() function compares the account key with the key returned by the
PATHITEM() function

Include other grouping option
By default, the Include Other group option in the Groups dialog box is not
enabled.

If enabled, all other distinct values or members of the column will be
grouped into an Other group

Other Group Enabled

Model scoped features
Creating and editing groups and hierarchies is only available in Power BI
Desktop with the data model loaded
Users accessing the data model in Power BI are only able to use the existing
groups and hierarchies

There's more...

DAX calculated columns as rare
exceptions

In almost all scenarios, the SQL source views or M queries are preferable
alternatives to DAX calculated columns.
The DAX parent-child functions used were developed for this scenario and the
Account table only has 100 rows.

Calculated columns and tables in DAX use the resources of the model
during processing/refresh operations and are not compressed, thus
increasing the memory footprint of the model. Avoid calculated
columns on large fact tables.

Natural hierarchies versus unnatural
hierarchies

A natural hierarchy contains unique child values for each parent value and is the
recommended structure of hierarchies.

For example, each unique value in the Fiscal Year column would have 12
unique child values, such as "2017-Mar". An unnatural hierarchy would
have the same child value repeated across multiple parent values.

Grouping dates and numbers
Grouping is also available for date and numerical data type columns.
For example, a List Price column can be divided into equally sized bins for
analysis across the ranges of prices.

Grouping Bins for Numeric Data Type Column

A specific size of bin or a set number of bins can be selected. A similar dialog
is available for date data types.

DirectQuery models supported
Groups and hierarchies can also be created in DirectQuery data models
Calculated columns can be created in DirectQuery models too, though
performance can be negatively impacted
In this example, the PATH() function is not supported in DirectQuery models

See also
Grouping and Binning Documentation: http://bit.ly/2pALaBc
DAX Formula Compatibility in DirectQuery Mode: http://bit.ly/2oK8QXB

http://bit.ly/2pALaBc
http://bit.ly/2oK8QXB

Authoring Power BI Reports
In this chapter, we will cover the following recipes:

Building rich and intuitive Power BI reports
Creating table and matrix visuals
Utilizing graphical visualization types
Enhancing exploration of reports
Integrating card visualizations
Controlling interactive filtering between visuals
Associating slicers with report pages
Applying filters at different scopes
Formatting reports for publication
Designing mobile report layouts

Introduction
Power BI reports serve as the basic building blocks for dashboards, data
exploration, and content collaboration and distribution in Power BI. Power BI
Desktop provides abundant data visualization features and options, enabling the
construction of highly targeted and user-friendly reports across devices. As each
Power BI Desktop report can contain multiple pages within each page, including
multiple visuals, a single Power BI report can support multiple use cases, audiences,
and business needs. For example, a KPI visual can be pinned to a dashboard, while a
report page can support detailed and domain-specific analysis. These capabilities
compete directly with visualization offerings from competitor analytics platforms and
can be further extended with custom visuals and report themes.

The selection and configuration of Power BI visualization features in report design is
essential to derive value from the data retrieval and modeling processes covered in C
hapter 2, Accessing and Retrieving Data and Chapter 3, Building a Power BI Data
Model, respectively. In this chapter, we develop and describe the most fundamental
report visualizations and design concepts. Additionally, guidance is provided to
enhance and control the user experience when interacting with Power BI reports and
consuming them on Windows and mobile devices.

Building rich and intuitive Power BI
reports
Power BI Desktop provides the means to design reports that are both highly
customized to specific use cases and requirements as well as aligned with a
corporate BI standard. The report design and development process should naturally
flow from the data modeling process as the measures, relationships, and dimensions
from the model are now utilized to visualize and analyze business questions. As the
purpose and scope of Power BI reports can range widely from dashboard
visualizations to interactive analytical experiences to role-specific detail reporting,
it's essential that report authoring features are aligned closely to these distinct use
cases.

In this recipe, a report design planning process is shared to bring clarity to the
primary design elements of Power BI reports, such as visualization types. Two
finished report pages are described with supporting details included in the How it
Works section, and additional report design features and practices are discussed in
There's more.

Getting ready

Stakeholder Matrix
1. Create a Stakeholder Matrix to help structure the report design planning process

around the needs of the different parties accessing the model (Power BI
Dataset).

The Stakeholders or business units such as Merchanding appear on the
columns axis and replace the conformed dimensions (that is, Product or
Vendor) that were used in the data warehouse bus matrix described in Chapter
3, Building a Power BI Data Model

Stakeholder Matrix

The stakeholders replace the dimension columns from the bus matrix. In this
example, the data model contains the four highlighted fact tables: Internet Sales,
Internet Sales Plan, Reseller Sales, and General Ledger.

When there can be multiple stakeholders within a given business
function with their own unique needs and use cases, these can be
added as columns to the stakeholder matrix. In Power BI, there are
many options for meeting the unique needs of different stakeholders
with the same data model and underlying retrieval and data
architecture.

How to do it...

Report planning and design process
1. Identify the user and use case:

Like a PowerPoint presentation, report pages should support a single theme
and target a specific audience
Per the stakeholder matrix, there are often many disparate users and use
cases for a given data model

A single report should not attempt to address unrelated business
questions, or to meet the needs of highly diverse users such as a
corporate financial analyst or a store manager. Multi-Scope reports
can lead to convoluted user experiences and report-level
customization that can be difficult to maintain and scale.

The report planning and design process should answer the following four questions:

1. Who will be accessing this report?
If identified users have highly disparate needs, choose one user role and
plan to address the others separately
Page level filtering and optionally row-level security can provide a robust
solution for a single team
Reports for different teams can be developed quickly if the model includes
the necessary data and grain
If users are deeply familiar with the data, then report titles and descriptive
text and labels are less necessary

It's recommended to involve the business users or a representative
early in the report design process and potentially before all elements
of the data model are complete. Any initial iterations of the report
and feedback can contribute to the design of the final report to be
published.

2. What are the top priorities of this report in terms of business questions?
Establish the starting point for the analysis process including measures and
grain such as weekly sales
It's common for the stakeholder to have many related questions and a need
to navigate the model quickly

Additional drilling and filtering features can be added to a report's
starting point

The prioritized business questions directly drive visualization

choices such as line/bar charts and tables. If the trend or fluctuations
of measures is the top priority then line charts, with custom scales
and supporting trend and reference lines, may be chosen. If precise
individual data points are required, either as standalone numbers or
related to one or two dimensions, then Cards, KPIs, and tables or
matrices should be used. The choice of visuals and their size, color,
and positioning on the canvas relative to other visuals should not be
an arbitrary decision or guess.
Standard line, bar/column, and scatter charts have natural
advantages in terms of visual perception and user comprehension.
Other visuals should be utilized for their specific use cases and
strengths, such as a Funnel for stages of a process and a Waterfall
for the contributions of dimension values to an overall total.

3. How will the report be accessed and utilized?
Will users only view the updated report or will this often serve as the
starting point for further analysis?

If there is no to limited interaction, plan to embed conditional logic
and exceptions in the report
If there is high interaction, plan to use hierarchies, Tooltips, and
slicers to enable data exploration

How does the report relate to existing dashboards?
Identify the components of the report that will contribute to an existing
dashboard
If creating a new dashboard based on the report, identify the tiles and
interaction of this dashboard

Will the report only be accessed via the web browser or will mobile
devices be used regularly?

If mobile consumption is expected, reports can be designed to
optimize this experience
Power BI dashboards can also be optimized for phone layout in the
Power BI Service

4. Does the Data Model (Power BI Dataset) need to be revised?
If a report requirement is systemic to all reports for a given stakeholder
group, consider revising the model
If complex report-level customization is required or if the performance is
poor, consider revising the model

These revisions often include new logical attributes or new DAX
measures

Power BI is not a full replacement for the reports from other BI tools

such as SQL Server Reporting Services (SSRS) or Microsoft Excel.
Existing Excel and SSRS reports can generally be migrated to Power
BI but this might not always be beneficial given the different
advantages of the tools. See Chapter 13, Integrating Power BI with
Other Applications for additional details on these considerations and
guidance on integrating Excel and SSRS with Power BI.

Report Design Example
In this example, the stakeholder is the European Sales Territory Group comprised of
France, Germany, and the United Kingdom. The planning process revealed top
priorities to be Internet Sales versus Plan, Reseller Sales, and sales margins at the
monthly grain as well as product category breakdowns.

The report should allow each country manager to analyze their own data and for the
group manager to analyze Europe.

European Sales and Margin Report
Page

1. Develop a Power BI Report with four report pages: one page per country and
one for the Europe Sales Group Manager

All the report pages include the same four priority measures in the top left and
an Internet Sales to Plan chart

A KPI visual with a monthly trend and a Goal measure is used to provide
greater context

The Europe report is designed for a higher level view of the senior manager and
for easy filter selections

Europe Monthly Sales and Margin Report Page

The slicer visuals as well as the Play axis on the scatter chart are organized on
the left to support user filter selections.

The manager can further analyze a country-specific question on these report
pages.

DAX queries are generated for report visuals, and the queries
associated with dense visuals such as tables or matrices with many
rows and columns are much slower than Cards and KPI visuals.

Additionally, report pages with many visuals can appear crowded and
complex to use. With the possible exception of Cards, Gauges, and
KPIs, look to limit the number of visuals per page to 4-5 and to avoid
dense "data extract or dump" visuals. Additionally, look to apply
simple filters (Current Year or Prior Year) at the report and page levels to
further aid performance.

European country sales and margin
report page
The country level managers are also accountable for the sales plan, but are interested
in greater self-service flexibility, and require some detailed reporting in tabular
formats to expose specific values for several measures.

1. Develop country-specific report pages, including a map by state/region or city
and a table visual with measures by product category.

United Kingdom Report Page

Each country report page also offers at a glance values with the KPIs visuals
updating automatically
By hovering over the bubbles in the map or the bars in the chart, additional
measures are exposed as tooltips
More details on the individual report components used in this example are
contained in other recipes in this chapter.

A reliable predictor of a report's effectiveness is the ratio of business
insights (measures, context, or analysis) to the user effort required to
consume the information. Ideally a report should offer out-of-the-box
analytics requiring nothing from the user beyond access and basic

knowledge of the terminology and domain. The more a user is
required to scroll, click, and avoid unnecessary colors or data
elements, the less effective the report will be.

How it works...

European sales report design
The report is filtered on Europe at the report level and on the individual
countries at the page level for these pages.
For the measures that don't have a target or goal (plan), a trailing 6-month
average measure is used.
A rectangle and two Line shape objects are used to group the KPI visuals.
A textbox is used for the page titles and the last refreshed date footer is a card
visual.

An M query with the DateTime.LocalNow() function is retrieved and passed to a
DAX measure returning text.

The chart titles are customized and the y axis is removed when possible.
Standard visual types with advantages in visual perception and with additional
analysis context were chosen.

For example, KPIs are used instead of card visuals. Gauges, treemaps, and
pie charts are avoided.
A clustered column chart was chosen over a line chart for Internet Sales
to Plan given the importance of the individual values for each month.

There's more...

Power BI report design checklist
Similar to the simple yet important details with data modeling shared in Chapter 3,
Building a Power BI Data Model, a number of design practices significantly
improve the value and user adoption of Power BI reports.

Minimalism: Any report element which isn't strictly required for comprehension
should be removed.

Examples include images, redundant chart axis, verbose text and
unnecessary data legends.

Efficient visuals: Leverage visuals and features that provide additional insights
with the same amount of space.

Examples include KPI and combination chart visuals, tooltips, trend lines,
and color saturation.

Meaningful colors: Colors should be used to convey meaning such as high or
low variances to a target or measure.

Use colors selectively and avoid overwhelming or distracting users with
color variety or density.

Organized: Report visuals should be aligned, distributed evenly, and situated
near related visuals.

The most important visuals should be near the top-left corner of the canvas,
and white space should separate visuals.

Consistent: Layout and formatting choices such as visual placement, fonts, and
text alignment should be consistent.

For example, slicer visuals should always be placed on the left or top of
the visual.

Custom visuals
Custom visuals available for download from the MS Office store extend the
functionality and visualization options of Power BI reports beyond what's
available in Power BI Desktop:

A sample of custom visuals from Office Store Custom Visuals Gallery

Each custom visual is a .pbiviz file that can be added to the Visualizations pane
and used like any other visual

See Chapter 9, Applying Advanced Analytics and Custom Visuals, for
additional details

Published Power BI datasets as data
sources

Reports can be developed against a Power BI data model (dataset) that has been
published to the Power BI service
The report developer would need to be a member of the App Workspace
containing the dataset with Edit rights

The Power BI Service is available under the Online Services group in the
Get Data dialog

Published Datasets as sources for Live Connection Reports

Only report authoring functionality will be available to Power BI Desktop, not
data modeling or M queries

Report authoring of Live Connection reports (reports connected to Power
BI datasets and SSAS data models) includes the ability to author DAX
measures specific to the given Power BI report

'New Measure' option available to a Live Connected Report

Note that SSAS Multidimensional data models do not currently support report-
scoped measures. This functionality is specific to Power BI Datasets and SSAS
Tabular Datasets.

It can be beneficial to allow business analysts to create reports or
evaluate the functionality and logic of published Power BI datasets

while additional modeling, data retrieval queries, and other BI/IT
activities take place. In this example, Power BI Desktop is used for
report development but Power BI Publisher for Excel can also be
used to quickly sample or validate datasets with Excel's familiar
pivot tables and formatting properties.
Power BI reports can also be created and edited in the Power BI
Service with published datasets as a source. However, reports created
in the Power BI Service must always be edited in the Power BI
Service, and currently no form of source control is available to store
different versions of these reports. For this reason, Power BI Desktop
is recommended for report development.

See also
Power BI Report Design Practices: http://bit.ly/2poUeMv

http://bit.ly/2poUeMv

Creating table and matrix visuals
Table and matrix visuals are appropriate when visibility to precise, individual
measures is needed or when data is viewed at a detailed level, such as individual
transactions. Table visuals in Power BI conform to the classic "list" report format of
columns and rows but support powerful cross-highlighting and formatting options,
including conditional formatting. Matrix visuals include table visual features and
correspond to the layout and general functionality of pivot tables in Excel: two-
dimensional representations of measures with the ability to drill up and down the
row and column axes.

In this recipe, a table visual is used to identify exceptions based on conditional
formatting rules. Additionally, an example matrix visual is created to support
interactive drill down and cross-highlighting. Brief examples of table visuals support
for URLs and email as well as clustering are included in the There's more... section.

How to do it...

Table visual exceptions
In this example, a report is designed to identify and analyze transactions that
negatively impact the margin.

1. Identify the dimension columns and add them to the canvas as a table visual.
2. Add the measures to the table including Sales Amount and Margin %.
3. Apply a visual level filter to the Sales Amount such that each row represents a

significant transaction or grouping.

Visual Level Filter Applied to Measure

4. Turn the Totals off from the formatting pane given the filter condition applied to
the visual.

5. Apply a Table style such as Alternating Rows or use the Values and Column
headers options to apply a standard format.

6. From the field well of the Visualizations pane, click on the Margin % dropdown
and choose Conditional formatting.

Applying Conditional Formatting to a Measure in a Table Visual

7. From the Conditional formatting dialog, choose Diverging colors based on min
and max values.

Diverging Conditional Formatting based on numbers

8. With these settings, margin % cells will be shaded red with increased intensity
based on the value for the row .

Conditionally Formatting table Visual

9. The table is sorted by Reseller Net Sales per the arrow and the third row is
shaded dark red for the -3.4% value.

10. Clicking on any cell of this row will filter the other visuals by the Employee Name,
Reseller, and Promotion associated with this specific row. Multiple rows can also
be selected for cross-filtering via Ctrl + click.

Identifying blanks in tables
A similar conditional formatting technique can be used to identify blank values. In the
following example, blank values are formatted as either red for one measure
(Germany) or blue for a different measure (France) if these values are blank.

The goal is to visually identify dates in which no German customers purchased
anything from the Accessories category.

1. Create a DAX measure with a filter on Germany, used in comparison with
overall (all countries) measures.

Conditional Formatting of Blank Values

2. Create a table visual with both the overall measures and the Germany and
France-specific measures.

Table Visual with Blank Conditional Formatting

Scrolling up or down the table visual will call out these days and the row

Alternatively you can select Show Items with No Data from the Date or
Dimension column in the values field well. Dates without customer
count measure values would appear the measure would be formatted
as red.

Using Show Items with No Data avoids the need for other measures
in the table such as overall sales and quantity. However, in most

scenarios the other measures and the exceptions the blanks represent
are useful. For example, a holiday in which there were no sales
wouldn't appear, and in the first approach but would appear in Show
Items with No Data.

Matrix visual hierarchies
1. Add the Internet Sales measure to the canvas and choose matrix as the visual

from the Visualizations pane.
2. Add the Sales Territory Hierarchy to the Rows axis and Product Category Hierarchy to

the Columns axis.

Matrix Visual with Two Hierarchies

Both hierarchies contain three levels and the matrix automatically adjusts in size
based on navigation

How it works...

Matrix visual navigation
The rows hierarchy can be navigated via the three icons on the top left of the
visual.
The columns hierarchy can be navigated via the Drill Mode icon on the top right
and the right click context menu available from the column headers.
If Drill Mode (top right icon) is turned off, selecting a value in the matrix will
cross-filter other visuals based on the dimensions the matrix value reflects. This
cross-filtering also applies to table visuals as per the table example.

There's more...

URL and mail to email support
Links can be added to Table visuals to launch email applications and websites

Clicking on the icon in the Email Link column launches an email to the address
specified following mailto://
Clicking on the icon in the Service URL column launches the website for the given
row

If you have an email address column, a mailto URL can be added in
the Query Editor or M language. Set the Data Category in the
Modeling tab to Web URL for both Mailto and URL columns. To get the
email and URL icons to appear in the table, set the URL icon option
in the Formatting pane of the visual under Values to On.

Percent of total formatting
A Show Values As option is available for measures added to table and matrix
visuals to display the measure value as a percentage of the row, column, or
grand total. However, measures in table and matrix visuals cannot currently be
formatted to display units and decimal places such as thousands or millions.

Show Value as Option for Table and Matrix Visuals

For table visuals, only Percent of grand total is available given the single
dimension of the visual.

Measures on matrix rows
Multiple measures can be displayed on the rows of matrix visuals, a very
common use case in financial reporting

Matrix Visual with Three Measures in the Values Field Well Displayed on Rows

Enable the Show on rows option under the values formatting card for the matrix
visual
An attribute for the rows field well, such as Product Category, in this example is
optional

Data bar conditional formatting
In addition to color scale formatting, data bars can be used to apply conditional
formatting to table and matrix visuals:

Data Bars Conditional Formatting

Data bars can be displayed with the measure values per this example or as
stand-alone bars. Specific minimum and maximum threshold values can also be
entered to drive the conditional formatting of the bars.

Font color scales can also be conditionally formatted in addition to
background color scales and data bar formatting. If the same
formatting logic and colors are used for both font color scales and
background color scales, only the color of the value will be
displayed, such as in a heat map.

Utilizing graphical visualization types
Data visualization and exploration is central to Power BI, and the visualization types
chosen in reports contribute greatly to user comprehension and adoption. Power BI
Desktop includes an array of modern visuals such as the Treemap and the Funnel, but
also includes rich formatting options for traditional line, bar/column, combination
and scatter charts. Additionally, four map visuals are available to analyze
geographical data, and many custom visuals are available for download and
integration into Power BI Desktop reports.

This recipe provides three examples of utilizing graphical visualization types
including the waterfall chart, the line chart, and a shape map. Additional report
design guidance as well as a tip on conditional formatting in column/bar charts is
included in the There's more... section.

Getting ready

Choosing visual types
Choose column charts when individual values and their comparison is more
important than the trend.

Select bar charts when the axis category labels are long.
Use line charts when the trend or shape of data is more important than
individual values and their comparison.
Select scatter charts to demonstrate a correlation of a dimension to two
measures.
Choose special purpose visuals such as Treemaps and Waterfall Charts as
supplements to standard visuals.

It's generally recommended to avoid pie charts, donut charts, gauges,
and treemap visuals, given the advantages in visual perception and
comprehension of other visuals. For example, the curved shapes of
pie charts and gauges are more difficult to interpret than straight
lines and the distance between points in column/bar and scatter
charts, respectively. Note that the "Breakdown" feature of the
waterfall chart may increase its use cases.

How to do it...

Waterfall chart for variance analysis
The waterfall chart visual is best used to show the contributions of individual values
to an overall total. In this example, the variance between Internet Sales (Actuals)
and the Internet Sales Plan by Sales Territory Country is visualized.

1. Select the measure and dimension:
Measures that can be positive or negative and dimensions with few distinct
values are the best candidates.

2. Create the waterfall chart:
Add the measure and dimension to the canvas and switch the visualization
type to waterfall chart.

The measure will be in the y axis, the dimension in the category of the
field well.

Waterfall Chart of Sales Variance to Plan

3. Sort the visualization by the measure to support an intuitive "walk" from the
components to the Total column:

The default color formatting of red for negative and green for positive is
usually appropriate

4. Add a drill-down dimension and tooltip measures:
Add another dimension column below the category dimension to support
drill-down

With drill mode on, clicking on Australia breaks the ($211K) by
calendar quarters

Add a measure or multiple measures to the tooltips field well such as Sales
Amount and Sales Plan

Hovering over the waterfall bars exposes these values for additional
context

5. Format the chart:
Remove the legend if the chart is self-explanatory and set the data labels to
a position of Inside End.

The waterfall chart visual has been enhanced to include a Breakdown
field well that calculates the variance and variance % of an
individual dimension value between two category values. For
example, a date attribute such as Fiscal Year-Quarter could be used
as the Category field well and filtered to display only the current and
prior Fiscal Year-Quarter. Adding a product category column to the
Breakdown field well would display the product categories with the
most significant variances between the two fiscal quarters, with
details available in tooltips.

This increases the use cases for waterfall charts, particularly if
dynamic date columns (that is, Current Week or Prior Week) are built into
the dataset, such that the two date category values used for the
comparison update automatically.

Line chart with conditional formatting
In this example, a DAX measure is used to highlight segments of a line chart that meet
a certain condition.

1. Define the measure and conditional logic
The measure is Internet Sales and the logic is Anything below an 8.5% miss
to Plan.

2. Create the conditional DAX measure:

Sales Below Plan 8.5% = IF([Internet Sales Var to Plan %] < -.085, [Internet Net Sales],BLANK())

The conditional measure will be included in the line chart but will have a value
(not blank) only when the condition is met.

3. Create the line chart
Add the Internet Sales measure and the Date hierarchy to the canvas and
select the Line chart Visualization.
Add the conditional DAX measure to the line chart and set its color Data
Color to Red.

Line Chart with Conditional Formatting

Only a single line appears on the chart and is highlighted in red for the four
months which were below (-8.5%)

This approach follows general report design goals in providing more

analytical value in the same space without impacting usability. Drill-
down via the data hierarchy in the axis and additional measures in
the Tooltips provide further support in the same space on the report
canvas.

4. Add the Sales Amount, Variance to Plan, and Plan Amount measures to the tooltips field
well.

5. Click on the Analytics pane to the right of the Formatting pane and add a max
and average Line.

6. In the Formatting pane increase the Stroke width of the line to 3 points.
7. Turn data labels and the legend off and provide a custom title.
8. With data labels off, expose the value and name of the Reference Lines in the

Analytics pane.

Shape map visualization
For the Germany Monthly Sales and Margin report a shape map is used to expose the
different German states:

1. Add the State Province column from the Customer table and the Internet Sales
measure to the canvas.

2. Choose Shape map from the Visualizations pane.
3. In formatting options, select Shape and choose the map to display. See 'How it

works...' for details on map key values.
4. Choose the projection of the map, provide a title, and align the visual on the

report page with other visuals.
Add related measures to the tooltips field well to provide additional
context.

Shape Map

States with higher sales have greater color saturation by default, and the tooltips
display when hovering over states.

How it works...

Shape map
The available shape maps include a Key dialog that is used to plot your location
column

Map Keys for Germany States Shape Map

With a shape map visual selected, click on View map keys from the Shape
option in the Formatting pane

Ensure that your location data matches the keys before using the given
shape map.

The bubble map and filled map visuals can be used when a custom shape map
either isn't available for the location data or isn't appropriate for the given use
case.

Both visuals use Bing to plot location points. The filled map color-codes
the individual countries

Enhancing exploration of reports
Power BI reports can be accessed and dynamically filtered via natural language
queries in both Power BI Q&A as well as Windows Cortana. This can greatly extend
the self-service experience as the user isn't required to navigate through reports or
make slicer selections within a report page. To best take advantage of these features,
report designers can create featured Q&A questions, expose report pages to common
natural language terms, and create report pages specific to Cortana or Q&A queries.
Report authors can also design drillthrough report pages to enable users to quickly
and easily explore the details associated with a specific item of interest. Finally,
report themes can be imported or created from scratch to apply custom formatting to
new and existing reports, such as with a corporate report layout standard.

In this recipe, we walk through the essential setup and components of Power BI Q&A
and Cortana natural language queries. Examples of Q&A suggestion questions as
well as creating and accessing report pages from Q&A and Cortana are provided.
Additionally, the process of configuring a drillthrough report page and applying a
report theme template is described. Further details on mobile support, model
synonyms for Q&A, and custom report themes are included in the There's more...
section.

Getting ready

Drillthrough report page requirements
1. Obtain guidance from business users or teams on the most important dimensions

to target with drillthrough pages such as products, customers, or stores. Note
that these report pages will be filtered to a single item such as Store #123.

2. Also obtain guidance on the business questions the drillthrough page should
answer for this specific item.

Drillthrough is a very powerful and popular feature in that it
effectively serves as a custom generated report tailored to a user's
question as the user views the report. Therefore, multiple drillthrough
report pages across common dimensions may be included with
popular reports which are actively interacted with. Consider utilizing
the Power BI templates (.pbit files) described in the Preserving
Report Metadata with Power BI Templates recipe of Chapter 7,
Parameterizing Power BI Solutions to leverage existing drillthrough
report pages in new reports.

Enable Cortana integration and Q&A
1. Enable Cortana in the Power BI Admin Portal:

Click on the Gear icon in the top-right corner of the Power BI service and
select Admin Portal.

Power BI Admin Portal: Cortana Option within Integration Settings

The Power BI Admin Portal is restricted to global admin accounts
within Office 365 or Azure Active Directory and to accounts assigned
to the Power BI service administrator role.

2. Enable the dataset for Q&A and Cortana:
Click on the Gear Icon in the top-right corner of the Power BI service and
select Settings.
Click on the Datasets tab at the top and with the dataset highlighted enable
Q&A and Cortana.

Enable Cortana and Q & A on a Dataset

3. Associate the Power BI credential with Windows:
In Windows, select Settings and click on Accounts. Click on Connect from
the Access work or school tab

Connecting a Power BI Account through Windows

If a Windows 10 version earlier than 1607 is running, both the work or school
and Microsoft account are needed

4. Create a dashboard:
With a dataset published to Power BI, select one of its reports and click on
a visual from one of its pages
Click on the pin icon in the top-right corner of the visual and select New
dashboard

Pinning a Report Visual to a New Dashboard

Q&A natural language queries are submitted from dashboards against the
underlying datasets.

In order for Q&A queries to access a dataset and its dependent
reports, at least one tile of the given Q&A dashboard must be
dependent on this dataset.

How to do it...

Create featured Q&A questions
1. Open the Datasets Settings Window.
2. Click on the Gear icon in the top-right corner of the Power BI service and select

Settings.
3. Select the Datasets tab and the specific dataset to be queried via Q& A and

Cortana.
4. Scroll to the bottom to edit the Featured Q&A questions dialog.

Featured Q & A questions option in Datasets Settings

5. Enter Q&A terms and phrases to feature:
Click on Add a Question and enter terms associated with specific report
pages or queries of interest to users.
Click on Apply and access the dashboard connected to the dataset.

6. Test the featured questions:
From the dashboard, click on the underlined Ask a question about your data
dialog.

Featured Questions of the Dataset Displayed in Dashboard Q&A

7. Click on one of the featured Q&A questions at the top to confirm that the
appropriate query or report page is rendered:

A page from the Internet Sales Freight Report is rendered via the Q&A alias of Freight Trend

The featured term Freight Trend is associated with a page of the Internet Sales
Freight report:

The other featured questions in this example are not associated with
specific report pages. Instead, the Q&A service creates visuals for
their terms on the fly, and the user can optionally modify the terms or
pin the result visual to a dashboard.

Parameterized Q&A report
1. Create a report from the dataset enabled for Q&A.
2. Design visuals for only one report page. This page should usually focus on a

specific dimension.
3. In the Page Information options, enable Q&A and provide a simple Q&A alias

or multiple terms.
4. Set a page level filter on a common dimension such as Country and click on

Require single selection.
5. Save the report and return to the dashboard to test the Q&A experience for the

parameter.

Customer Activity Report filtered by Australia Rendered from Q & A

In this example, the alias Customer Country Report was associated with the
Customer Activity Report.

The for keyword is used to pass in the parameter value to the page level
filter column

Auto complete is available in Q&A to assist in changing the country name and
running the report again.

Cortana integration
1. Create a Cortana answer card:

Add a report page to an existing report or create a new report based on the
Cortana-enabled dataset.
From the Page Formatting pane, enable Q&A and set the Page Size Type to
Cortana.

Page Formatting Options for a Cortana Answer Card

2. Provide aliases in the Q&A form that Cortana can associate with this answer
card.

Answer cards are sized specifically for Cortana and are the only way
Cortana can find answers in Power BI Data. Similar to Phone
Layout, Card, Gauge and KPI visuals are more easily viewed in
Cortana Answer Cards than chart visuals.

3. Set a page level filter and configure Require Single Selection like the Q&A
example earlier in this recipe.

4. Test Cortana Search for the answer card:
From the search bar in Windows, enter the Q&A alias for the Cortana
answer card.

Search terms 'Monthly Metrics for Germany' is matched with the Cortana Answer Card in Power BI

The name of the dataset enabled for Cortana is identified below the answer
card. Click on the highlighted best match

Cortana Answer Card Displayed in Windows

The answer card will be displayed and filtered to the specific page filter you
entered (Germany in this example)

If applicable, the visuals in the card can be interacted with like a Power BI
report

An option at the bottom to Open in Power BI propagates the search criteria to
Power BI Q&A

Drillthrough Report Pages
In this example, the Sales team wants to drill into the details of individual products to
understand the sales trend by channel.

1. Open a report in Power BI Desktop and add a report page with the name Product
Details.

2. Drag the Product Name column from the Product dimension table to the Drillthrough
filters field well.

Drillthrough Filter Field Well with Product Name Column

3. Select an item from the list of values of the Drillthrough column such as Mountain-
200 Silver, 42 in this example.

Choose an item that has transaction or fact table data associated with it and
which you consider a representative sample of the items that will be
drilled into.

4. Create report visualizations on this page that describe or analyze the given
drillthrough item and which answer the top business questions of this item per
the Getting ready section

5. Give the report page a clear title with a supporting visual that displays the name
of the item drilled into

A simple card or multi-row card visual with the Product Name column may be
sufficient
Optionally, DAX measures can be used to create a text message advising of
the product or item drilled into

Selected Product Name = SELECTEDVALUE('Product'[Product Name],"Multiple Selected")
Product Name Message = "Product Name:" & " " & [Selected Product Name]

6. Test the drillthrough report page by drilling to it from a visual on a separate
report page.

In this example, right-click a matrix row containing the product name
column and select Drillthrough.

Drillthrough from a Matrix Visual to the Product Details Report Page

Drillthrough pages are especially valuable for high cardinality
dimension columns since the individual values of these columns will
likely not have their own dedicated reports or report pages. For
example, the Product Category and Product Subcategory columns may
already have their own reports and dashboards but an individual
Product (third level of this hierarchy) may be a good candidate for
one or multiple drillthrough report pages.

Clicking the Product Details menu item (the name given to the report page from
step 1) will access this page for the given product name represented on the
selected row of the matrix visual.

Sample of a Drillthrough Report Page Including the Default Drillthrough Back Button

All visuals on the drillthrough report page should update to reflect the filter
context of the given item (the product in this example).

Note that the drillthrough report page would contain several additional
visuals relevant to analyzing a specific product beyond this limited
example.

The back button is created automatically when a column is added to
the Drillthrough filters field well per step 2. This button can be
formatted or removed entirely but is often helpful, particularly with
reports containing several pages. Alternatively, any Shape or Image
that can be added via the Insert section of the Home ribbon in Power
BI Desktop can also be used as a back button for a drillthrough page.
A back button formatting toggle (On/Off) is available when selecting
the given Shape or image.
Note that the same report, page, and visual level filters applicable to
Power BI report pages can also be applied to drillthrough report
pages. In the Product Details example of this recipe, a Calendar Year
Status date dimension table column is used as a page filter to only
show the current calendar year. See the Applying Filters at Different
Scopes recipe later in this chapter for additional details on report
filter scopes. Additionally, note that other visuals such as bar and
column charts can also be used to access the drillthrough
functionality via right-click.

Report themes
In this example, a report theme is applied to a report such that users with color vision
deficiency can comprehend clearly.

1. Open the report in Power BI Desktop.
Report themes cannot be applied to reports in the Power BI Service .

2. Download the Color Blind Friendly Report Theme from the report theme gallery
(https://aka.ms/pbithemes).

The Color Blind Friendly file is ColorblindSafe-Longer.json. Click on the
download link and save the file.

3. From the Report View, click on the Switch Theme dropdown and select Import
Theme:

Report Color Theme Options

4. Navigate to the downloaded JSON file, select it, and click on Open. A message
will appear: Theme imported successfully.

The standard Power BI Desktop visuals in the report pages will be updated
to the colors of the theme.
The colors available for formatting visuals including table and matrix
styles now reflect the theme colors.

Report Theme Colors Applied to Formatting Pane of Power BI Report

https://aka.ms/pbithemes

5. Save and publish the report back to the Power BI Service for user access; the
report theme colors will be retained.

Currently most custom visuals do not apply report themes.
Additionally, report themes do not impact the colors of images and do
not override any custom color applied to a specific data point in a
visual.

How it works...

Report theme JSON files
Each report theme JSON file has the following structure of elements to color
code mapping:

Color Blind Report Theme JSON File Structure

Only the name field is required in the JSON file. Any number of distinct codes
can be entered in the datacolors field.

A popular tool for creating custom report themes (JSON files) such as
a corporate colors theme, is available at http://thememaster500.azurewebsites
.net.

http://thememaster500.azurewebsites.net

There's more...

Conversational BI - mobile support for
Q&A

Q&A is also available for the Power BI mobile application that is referred to as
Conversational BI

Open the dashboard and select the Q&A icon at the bottom of the screen.
Enter text such as internet net sales by country as bar to display a bar graph of
this measure and dimension.

A microphone on a mobile device can also be used to enter questions.

See also
Words and Terminology that Q&A Recognized: http://bit.ly/2pRIZdQ
Using Report Themes in Power BI Desktop: https://aka.ms/pbithemes

http://bit.ly/2pRIZdQ
https://aka.ms/pbithemes

Integrating card visualizations
Card and Multi-row card visualizations are often positioned at the top and left
sections of report pages given the importance of individual measures and small sets
of measures. Although less graphically powerful and interactive than other visuals,
cards are also the most common tiles pinned to Power BI dashboards and are also
used frequently in phone layouts for mobile consumption. A common practice in
report design is to start with a few high-level measures represented as card or KPI
visuals and build additional chart and table visuals around these.

This recipe includes an example of a KPI visual as a more valuable alternative to a
card visual and a multi-row card example. Additionally, a brief example of a gauge
visualization is included in the There's more... section.

Getting ready
To most effectively integrate card visualizations, identify the following two items:

Which measures does the user need to have maximum visibility to (such as all
devices, reports and dashboards)?
Which measures are available or can be created to serve as a target or goal to
compare these measures to?

Numbers without well-defined targets and without any trending
indicators such as standard card visualizations are simply less
valuable than KPIs that provide this additional context. Goal and
Target measures are one of the main benefits of integrating Plan and
Budget fact tables into data models. If this integration isn't an option,
a historical average of the indicator measure such as the trailing 3
or 6 months can be used as the KPI's target goal.

How to do it...

KPI visual
1. Identify the Indicator and Target measures

In this example the Internet Sales measure is the Indicator and the Internet
Sales Plan measure is the Target

2. Identify the trend axis.
The Calendar Year-Month column (for example, 2017-Mar) is used for the trend.
This is the grain of the Sales Plan.

3. Create KPI measures (if necessary).
The measure used as the Indicator will be filtered by the column used as the
trend axis in the KPI visual.
It may be necessary to create measures for the Target Goals such as 20%
above prior year.

4. Create the KPI visual.
Add the two measures and the dimension column to the canvas and select
KPI from the Visualizations pane.

KPI Visual: Sales to Plan with Monthly Trend

Four months are selected in the report page and reflected by the trend chart in
the background of the KPI visual.
Despite the increase from the previous month to $114K in sales, this was still a
miss to the planned $120K.

If a card visual was used instead, the user would only see the 114K
and have to search other areas of the report page for the variance to
plan and trend information. The KPI can be easily viewed on a
mobile device and pinned to a dashboard as well.

Multi-row card
1. Identify the measures:

In this example, the group manager wants visibility to margin % for each
country and each product category.

2. Create the card measures (if necessary):

United Kingdom Margin % = CALCULATE([Internet Sales Margin %],FILTER(ALL('Sales Territory'),'Sales Territory'[Sales Territory Country] = "United Kingdom"))

Bikes Margin % = CALCULATE([Internet Sales Margin %],FILTER(ALL('Product'),'Product'[Product Category] = "Bikes"))

The country and product category measures ignore any filter
selection from the Sales Territory and Product Category dimension tables,
respectively, to always display the measure in the multi-row card
visual. This is common in dashboard reports to allow the user to see
multiple dimensions at once and can avoid or limit the need to edit
visual interactions.

3. Create the multi-row card visual:
Create one multi-row card visual for the countries and another for the
Product Categories:

Two Multi-row Card Visualizations Grouped

4. Format the multi-row cards:
Use the category labels from the measure names rather than a title and
apply a black font.
Use the general formatting to ensure both visuals have the same height and
Y position.
See the Formatting reports for publication recipe for details on using a
shape as a background and border.

Multi-row cards are best organized around a common dimension and
measure, as in this example, and are often placed to the right of KPI
or Gauge visuals as supplemental details.

There's more...

Gauge visualizations
Power BI Desktop includes a gauge visualization that is a popular alternative to
card and KPI visuals for dashboards.
In this example a Sales measure is used as the value ($5.8M) and a Sales Plan
measure as the target value ($6.1M).

Gauge Visualization Comparing Two Measures (Value to Target Value)

An additional measure that represents 20% above the plan amount is used as the
maximum value ($7.3M).
Gauge visualizations are considered less effective than KPIs given their curved
shape and less efficient use of space.

Controlling interactive filtering
between visuals
Power BI report pages are interactive by default with all visuals, excluding slicers,
cross-filtered via the selections applied to one visual. While this dynamic filter
context is often helpful in exploring and analyzing across dimensions, there's often
also a need to exclude certain visuals from this behavior. For example, a high
priority measure reflected in a card or KPI visual may be configured to ignore any
filter selections from slicers and other visuals on the page. Additionally, rather than
the default highlighting of cross-filtered visuals, it can be beneficial to exclusively
display the related values in other visuals.

In this recipe, an example report page is provided, containing the three visual
interaction behaviors: filter, highlight, and none.

How to do it...

Visual interaction control
In this example, the report is required to always display three current year measures
while allowing for the filtering of other visuals with date dimension columns.
Additionally, the sales for the subcategories of accessories and clothing should be
easily accessible.

1. Create a report with three groups of visuals: cards, charts, and slicers.
The three cards must only show the current year and thus ignore or
override the two slicers

Edit Interactions Report Page

2. Select a visual on the canvas and click on Edit interactions from the Format tab.

3. Select the Calendar Yr-Mo slicer visual, and for each card visual click on the
None circle icon

Removing Filter Interaction from Calendar Yr- Mo to the Card Visuals

4. With None selected for the card visuals, any selection from the Calendar Yr-Mo
slicer will only effect the charts

It's not necessary to edit the interaction from from the calendar year slicer
as the selection is overridden by the DAX CALCULATE() function used for each
measure. See the How it works... for additional details.

5. Set the interactions to filter the product subcategory Chart.
Click on the Internet Sales Margin % by Category visual and switch the
interaction from Highlight to Filter

By default, the Product Subcategory chart is set to a 'Highlight' (pie
chart) interaction behavior. Since the Accessories and Clothing
subcategories represent a small portion of Net Sales, clicking on
these categories from the Margin % chart doesn't expose these
columns.

Interactions Switched from Highlight to Filter

With Filter set as the interaction, clicking on Accessories displays the related
subcategories on the Net Sales chart
The default filter settings from the chart visuals to the current year measure
cards at the top of the page is allowed

In this example, the three current year measures would update to reflect the

accessories product category

This example illustrates the two most common use cases for editing
interactions, but there are many scenarios in which a partially
filtered view of data is necessary or beneficial. It's important to
document and review any visual interaction changes with the users as
nothing in Power BI advises of these settings. For example, a user
could assume that the Current Year measures in the Card visuals
reflect the selections of the Calendar Yr-Mo column.

How it works...

Current year Measures
The current year measures apply filters from DAX variables based on the TODAY()
and YEAR() functions:

Current Year Internet Net Sales =
VAR CurrentYear = YEAR(TODAY())
RETURN
CALCULATE([Internet Net Sales],'Date'[Calendar Year] = CurrentYear)

Because calendar year is filtered in the measure, it's not necessary to edit the
interaction from the calendar year slicer.

Associating slicers with report pages
Slicer visuals are the primary means for users to apply filter selections to other
visuals of a report page, and thus their implementation greatly affects usability and
analytical flexibility. Although user interaction with other visuals also applies cross-
filtering, slicers provide the fastest and most intuitive method to define specific
filtering criteria such as three specific months and two product categories. Slicer
visuals also have unique formatting options for defining the selection behavior
including a Select All option.

In this recipe, we look at the primary use cases for slicers and the report design
considerations, including selection properties and formatting options. The slicer
filter configurations available for Date data types is also reviewed, and additional
details on text search and alternative slicer visuals are included in the There's more...
section.

How to do it...

Configure dimension slicers
1. Identify the slicer column(s).

Typically this is a parent-level dimension such as year or region with few
individual values.
Choosing a column with few values allows these items to be exposed on
the canvas without a dropdown.

Using too many slicers or slicers with too many distinct values
detracts from the usability of report pages. Without significant DAX
customization to interpret filter selections, users can be uncertain
what filters have been applied.

2. Align slicer visuals.
It's recommended to position slicers to the left of all other visuals on the
page.

Left Aligned Slicer Visuals

3. Format the slicer visuals with borders and background colors.
Alternatively, a rectangle shape can group all slicer visuals.
Enlarged text is used for the titles instead of the default header and a black
font color is applied to the items.

Horizontal slicers
An alternative design is to set the orientation to horizontal under the General
formatting options:

Slicer Visual with Horizontal Orientation

Horizontal orientation slicers are often place along the top of report pages and
can benefit mobile consumption.

4. Edit the interactions.
If necessary, use Edit Interactions from the Format tab and exempt certain
visuals from the slicer selections

5. Configure the selection controls.
Single Select and Select All are turned on and off, respectively, under the
Selection Control options.

With Single Select, holding down the Ctrl key is required to add items
to the selection.

Select All Slicer Selection Control Turned On

The Select All option can be helpful if the slicer contains more than 7-10
values.

With Select All, the user can easily construct a filter to exclude only a few
items from a long list of items.

Customize a date slicer
Slicer visuals contain powerful filtering options when used with Date data types,
including graphical date selection, before/after criteria, and Relative dates such as
the last 4 weeks.

1. Add a date column to the canvas.
A hierarchy is created in the field well by default.
Click on the drop-down arrow for the date column in the field well and
switch from Date Hierarchy to Date.

2. Switch to the slicer visualization.
By default, a timeline element is exposed below the start and end Date
parameter inputs.

Slicer Visual Options for Date Data Types

Between is the default filter setting, per the preceding screenshot (6/4/2015
through 1/26/2017--with both dates included).

The start and end points of the timeline can be selected and dragged to
revise the filter condition
Alternatively, selecting the date input cells exposes a graphical calendar
picker element for choosing a date

The Before and After filter options gray out the start and end date input cells of
the Between dialog, respectively

Relative date filters
1. Select the relative date filter option and use the three input boxes to configure a

last 1 month (calendar) filter:

Standard Slicer based on a Date Column Configured for a Relative Date Filter

2. In the Formatting pane, specify whether the current day is included in the
relative date filter:

Date Range Formatting Option with Relative Date Filters

Relative date filtering options of slicer visuals is also available as
report, page, and visual level filters as well.

How it works...

Date slicer
The calendar versions of the different date intervals reflect only whole or
completed date periods
The Months option (not calendar) includes the partially completed years,
months, and weeks.
The Next and This Relative Date options are also available in the first
parameter of the relative date dialog

A This configuration can transparently filter a page to the current week, day,
month, or calendar year

There's more...

Text search
Slicers can be searched for specific text column values such as product or
customer names

Slicer Text Value Search

For long lists of text values, click on the ellipsis to expose the search bar and
enter the text string

Numeric range slicers
Slicers support similar custom filtering options for numeric data types as they
do for Date datatypes:

Numeric Data Type Slicer

A slicer based on the List Price column offers the same range or timeline
element and three custom filter settings

Applying filters at different scopes
Filters can be configured against Power BI reports at each level of the architecture:
report, report page, and visual. As report filters are configured at design time and not
exposed on the canvas like slicers, filters provide a powerful, efficient method of
customizing elements of reports to specific needs. Report and page level filters that
align with the user or team accessing the report, or with specific entities to be
analyzed, deliver immediate focus and a level of organization. For example, a report
page built for one product category can be duplicated for other product category
pages, with each page containing a different page level filter. Visual level filters
deliver maximum flexibility, as complex filtering conditions including measures can
be defined in addition to any report and page level filters.

In this recipe examples are provided of implementing filters at the three different
scopes. The Top N visual level filter condition is demonstrated and an example of the
DAX queries generated by the filter types is shared in How it works....

How to do it...

Report and page level filters
In this example, report and page level filters are applied to the European Sales and
Margin Monthly report. For this report, it's determined that the European team doesn't
need to view other sales groups or countries.

Report and page level filters are most commonly implemented at
different levels of a dimension hierarchy that is relatively static and
with few unique values, such as the example in this recipe. Date
range filters should generally be applied either in the data retrieval
queries or the report canvas with visuals such as the date slicer. As
these filters are applied to all visuals in the report or page,
respectively, try to avoid filters against high-cardinality columns
such as Product ID or Sales Order.

1. Create the report page structure.
Click on the New Page icon on the Home tab to create blank pages or
duplicate report pages.
In this example, a standard country report layout can be created and
duplicated for the three countries.

The Cortana Monthly Metrics page is a supplementary page necessary for
Windows Cortana natural language queries

2. Apply the report level filter.
From the Fields pane, select the Sales Territory Group column such that it's
highlighted.
Drag the highlighted column to the Report level filters field well of the
Visualizations pane.

Report level filter for European Sales and Margin Monthly Report

3. Select the Europe value from the Basic filtering type.
All visuals in all pages of the report will respect this filter if a relationship
to the dimension exists in the model and if DAX does not override the filter

4. Apply the Page level filters.
Select the Germany report page and highlight the Sales Territory Country
column from the Fields list
Drag the highlighted column into the Page level filters field well
Repeat this process for the France and United Kingdom report pages

France Report Page with Report and Page level filters applied

DAX measures cannot be used to define Report and Page level filters.
Additionally, Report and Page level filters can be overridden with
DAX measures via the CALCULATE() and CALCULATETABLE() functions.

Visual level filter - top N
In this example, a visual level filter is applied based on the Internet Net Sales measure.

1. Select a blank space in the report canvas for the new visual and expose the
Fields list.

2. Click on the measure and the dimension column name from the Fields list such
that they're added to the same visual.

3. In the Visual level filters, click on the dropdown for the measure and select the
expression is greater than.

Visual level filter based on measure

4. Click on Apply filter and the visual will be updated to the reflect the report,
page, and visual level filters and slicers.

Visual level filters can be based on both measures and columns from
the data model that aren't present in the visual.

How it works...

DAX queries from report, page, and
visual Filters

The DAX queries created by Power BI reveal how the different layers of filters
are implemented.

DAX variables are used to store the report and page level filters (as well
as slicer selections):

 VAR __DS0FilterTable = FILTER(KEEPFILTERS(VALUES('Sales Territory'[Sales Territory Country])),
 'Sales Territory'[Sales Territory Country] = "United Kingdom")

Visual level filters are also variables but use the report and page level variables
as inputs.
The DAX queries created by Power BI take advantage of the latest functions and
features such as variables (VAR).

There's more...

Advanced report and page level filters
The Advanced filtering filter type for report and page level filters can be used
to create filter expressions.
For example, an is not blank condition can be applied to text columns and
greater than conditions can be applied to numeric columns.
Both text and numeric columns support And and OR conditions to create more
complex filter conditions.

If complex filtering conditions are required, or if filters are needed
against columns with many distinct values (for example, Product ID),
it may be beneficial to account for this logic in the data retrieval or
model, thus simplifying the DAX queries generated.

Formatting reports for publication
Power BI Desktop includes features to control and enhance the formatting and layout
of reports at a detailed level. Prior to publishing reports to the Power BI Service,
visuals can be aligned, sized, and evenly spaced to deliver an organized, symmetrical
layout. Additionally, supplemental report elements such as shapes, textboxes, and
images can be added to further organize and enrich report pages with textual and
visual aids.

This recipe demonstrates how to control the positioning, alignment, and distribution
of report visuals. An additional example is provided of using a Shape as a
background color and border for a group of visuals. Further formatting techniques
and examples, including embedding URLs in textboxes, are provided in the There's
more... section.

How to do it...

Visual alignment and distribution
1. Identify the visuals to align.

In this example, three visuals on the right side of a page need to be aligned
and distributed.

Align and distribute dropdowns in Report View

Additionally, the top visuals on each side of the page need to be aligned to a
common Y position (vertical).

2. Align left and right sides of page.
Select the top right visual, hold down the Ctrl key, and select the top visual
from the left side of the page.
From the Format tab in the Report View, click on Align top from the Align
drop-down icon.
The Y Position value of both visuals should now be equal in the General
format options.

General Format Options Available for All Visuals

The four input boxes under the General card in the Format options
can be used to compare and directly control the position and size of
all visuals. Additionally, report page height and width is available in
the Page Size card of Format options.

3. Align and distribute visuals.
Press and hold the Ctrl key and select the three visuals on the right side of
the page.
From the Format tab in the Report View, click on Align left from the Align

drop-down icon.
All three visuals should now have the same X value in the General
format options.

With the three visuals still selected, click on Distribute vertically from the
Distribute drop-down icon.

The middle visual should adjust in height (Y position) to evenly space
the three visuals.

Aligned and Distributed Report

With visuals aligned and distributed, it's easier for users to distinguish different
sections and navigate pages.

Shapes as backgrounds and groups
1. Identify a set of visuals to be grouped.

Align and distribute the visuals:

Card Visuals with No Background or Border

2. Create a background shape.
From the Home tab of Report View, use the Shapes dropdown to select the
rectangle shape.
From the Format shape formatting options, choose a fill color for the
background.
Also from the Format shape formatting options, choose a line color and the
weight for this line.
Increase the height and weight of the rectangle to fit over the visuals.

In this example, each card has a width of 209, so a width of 627
(209*3) is needed.

3. Place the background shape.
Move the background shape over the visuals such that it covers them.
With the shape selected, select the Send to Back option of the Send
backward dropdown on the Format tab.

Rectangle Shape as Background and Border for Card Visuals

Shapes can better organize visuals and can improve report aesthetics
relative to the borders and backgrounds of each visual. Shapes are
commonly used for report title backgrounds and they can also
customize the plot area of charts, such as splitting a scatter chart
into four squares, each square having a distinct background color.

There's more...

Snap objects to grid and keyboard
shortcuts

From the View tab of the Report View, you can enable Show Gridlines and Snap
Objects to Grid.
With Snap Objects to Grid enabled, a visual aligns to X and Y coordinates as
it's moved along the canvas.
Visuals can also be moved by holding down the the Ctrl key and using the arrow
keys in any.

Whether moving visuals via snap to grid or the keyboard shortcuts,
each movement represents 16 points on the X and Y coordinates. For
example, a Ctrl + right-click could move a visual from X position 32
to X position 48.

Textbox with email link
An email link (or other URL) can be embedded in a text box and exposed to
report consumers in the Power BI Service

Support Email Link Provided via URL link in textbox

Highlight the word and click on the URL icon to insert the link. In Power BI, the
link will open a new email to the address

Format painter
The Format Painter option on the Home tab of the Report View can be used to
copy one visual's format to another:

Format Painter Selected to Apply the Format from one Card Visual to Another

In this example, select the France Margin % card, click on Format Painter, and
then click on the Germany Margin % card.

See also
Power BI Best Design Practices for Reports and Visuals: http://bit.ly/2poUeMv

http://bit.ly/2poUeMv

Designing mobile report layouts
Power BI reports can be optimized for consumption on mobile devices via phone
layout view in Power BI Desktop. This layout allows users accessing reports through
the Power BI mobile applications to more easily view and interact with the most
important content of these reports on iOS, Android, or Windows mobile devices.
Given the importance of the mobile experience and the unique design considerations
for reports with multiple pages, optimizing Power BI reports for mobile access is
essential.

In this recipe, the Europe and United Kingdom report pages of the example report
provided in the first recipe of this chapter are configured with the Phone Layout.
Additional details for optimizing Power BI Dashboards are included in the There's
more... section.

Getting ready

Plan for mobile consumption
The utilization of Power BI reports often varies significantly across devices. For
example, a report page with multiple slicers and table or matrix visuals may be
appropriate for a detailed, interactive experience on a laptop but may not lend itself
well to mobile consumption. In many scenarios, the user prefers simple, easy access
to only a few high-level visuals such as cards or KPIs on their mobile device, rather
than a sub-optimal representation of all the visuals included on the page.

If mobile consumption is expected, the report's authors should collaborate with users
on this layout and overall experience.

Given that phone layout is at the report page scope and visuals
cannot be combined from multiple pages, a dedicated report page
containing the most important measures or KPIs can be helpful.
These report pages often contain only numbers via card, Gauge, or
KPI visuals to provide a single "at a glance" mobile view of the most
important data points.

How to do it...

Phone layout - Europe report page
1. Open Phone Layout in Power BI Desktop:

Select the Europe report page and click on Phone Layout from the View tab
in the Report View

Phone Layout in Power BI Desktop Report View

The phone layout presents a rectangular mobile device grid and a Visualizations
pane containing the different elements of the given report page, including
textboxes and shapes

Though it's possible to design mobile optimized layouts for each
report page, for most reports it may only be necessary to design one
or two mobile layouts that highlight the most important measures or
trends of the report.

The Visualizations pane of phone layout makes it easy to identify the elements to
include or exclude.

2. Populate the phone layout view:
Click and drag the visualizations to the desired position in the device grid.
In this example, the KPIs, column and line chart are added.

Populated Phone Layout View

The visualizations snap to the grid at a default size and scale up or down on
different sizes of mobile devices.

3. Organize, resize, and remove mobile tiles:
Click on the visuals added to the device grid and use any of the eight
resizing icons to adjust the height and width.

Adjusting phone layout visuals is very similar to resizing tiles pinned
to Power BI dashboards.

The scroll bar on the right of device grid can be used to add visuals below
the main display.
Visuals can be removed from phone layout via the X icon in the top-right
corner of each phone layout visual.

Phone layout - United Kingdom report
page
For the United Kingdom mobile report page, the user or team would like to focus
only on Internet Sales and retain filtering capability on the mobile device for product
category and calendar month.

1. Add slicer visuals to the mobile layout for product category and calendar
month:

United Kingdom Sales and Margin Phone Layout

2. Set borders around the slicers and test the self-service user experience by
applying multiple filter selections

Horizontal layout of slicers or a dedicated mobile report page could be
additional design options

See the Enabling the mobile BI experience recipe of Chapter 13, Integrating
Power BI with Other Applications, for more details on mobile design and
features

How it works...
Once saved and published back to the Power BI Service, users accessing the
report from mobile devices will see the defined phone layout.
In the absence of a phone layout, mobile users will be advised that this has not
been configured and can adjust the orientation of their devices (horizontally) to
view the report page in landscape view.

Switching to landscape orientation will open the report in the
standard desktop view whether phone layout has been configured or
not.

The pages of a Power BI report can be accessed via swiping gestures from the
side of the screen or the pages icon.

There's more...

Slicers and drill-down on mobile
devices
Many of the same interactive features of Power BI reports such as drill mode and
slicers are also available through Power BI mobile applications. However, given the
form factor limitations, it's important to evaluate the usability of these elements and
consider whether mobile-friendly visuals such as Cards or KPIs can provide the
necessary visibility.

Mobile-optimized dashboards
As dashboards are created and modified in the Power BI Service, the Power BI
service allows a similar mobile optimization authoring experience for dashboards.
From a dashboard in Power BI, click on the Web dropdown in the top right.

The phone layout view and functionality is very similar to phone layout in
Power BI Desktop

A pinned live page to a dashboard becomes one dashboard tile and
thus only one mobile visual. Therefore, pinning individual report
visuals to tiles in dashboards is necessary to effectively configure
mobile optimized dashboards.

See also
Power BI apps for mobile devices: http://bit.ly/2q6SG8f

http://bit.ly/2q6SG8f

Creating Power BI Dashboards
In this chapter, we will cover the following recipes:

Building a Power BI dashboard
Constructing an enterprise dashboard
Developing dynamic dashboard metrics
Preparing datasets and reports for Q&A natural language queries
Embedding analytical context into visualizations
Exposing what matters - top N and percentage of total visualizations
Leveraging Power BI reports in Power BI dashboards
Deploying content from Excel and SSRS to Power BI
Adding data alerts and email notifications to dashboards

Introduction
Power BI dashboards are collections of tiles created in the Power BI service,
representing the visuals from one or many Power BI reports and optionally other
sources, such as Excel and SQL Server Reporting Services (SSRS). Dashboards
are best used to centralize essential measures and trends into a visually and mobile
optimized layout, and to provide an entryway to other dashboards or reports with
additional details. Additionally, dashboards can be enhanced with URL links,
streaming data, images, web content, and interactivity.

"A dashboard is really a content aggregator. It lets you bring together lots of
different data sources in one place so you can have a 360 degree view of your
business on one dashboard."

 - Adam Wilson, group program manager for Power
BI service

In this chapter, Power BI dashboards are constructed to provide simple at a glance
monitoring of critical measures and high impact business activities. The unique
features of dashboards, such as Q & A natural language queries, data alerts, and
integration of other report types, such as Excel and SSRS, are also included.

Building a Power BI dashboard
With a robust data model and multiple reports created in Power BI Desktop,
dashboards can be created in the Power BI service to consolidate the essential
visuals from these reports onto one canvas. Additionally, the dashboard will provide
an access point to the detailed reports supporting the tiles and will be optimized for
mobile access through the Power BI mobile application.

This recipe walks through all the essential components of building a Power BI
dashboard, from creating an app workspace to hold the dashboard to enhancing the
layout and settings of the dashboard.

How to do it...

Dashboard design process
1. Define dashboard consumers and requirements.

The report design planning process described in Chapter 4, Authoring Power
BI Reports is directly applicable to dashboards as well
Confirm that the existing data model (or models) supports the required
business questions

2. Map dashboard tiles to reports and datasets.
In this example, a sales dashboard is created for the North American sales
management team:

North America sales dashboard structure: 4 reports and 1 dataset

Four reports are created from the same dataset (model) and one or more visuals
from each report are pinned as tiles to the sales dashboard

Dashboard development process
1. Create an app workspace.

In the PBI service, click on Create app workspace from workspaces in the
Navigation pane
Name the workspace and add team members with edit access who will be
creating dashboard content

2. Import the dataset.
From the new app workspace, click on Get Data and then Get from the File
menu to add the PBIX dataset

3. Create the dashboard.
From the app workspace in Power BI, click on dashboards and then click
on Create in the top-right corner
Name the new dashboard and delete the dashboard that was created when
the dataset was imported

Alternatively, a new dashboard can be created when a visual is
pinned from a report

4. Create dashboard reports.
From a blank PBIX file, connect to the published dataset hosted in the app
workspace
The Power BI service data source is available under online services

5. Copy the connected PBIX file for each report needed for the dashboard and
develop the report visuals.

For better manageability and version control, the PBIX files can be
stored and imported from OneDrive for business.

Design the report pages in context of the dashboard and app
workspace. The report visuals should directly support the tiles of the
dashboard, such that a user can instantly derive more useful details
by clicking a dashboard tile.

6. Publish the reports.
From the Home tab in Power BI Desktop, click on Publish from each of the
reports
The dashboard, reports, and dataset are now within the sales management
app workspace in Power BI

7. Pin visuals to the dashboard.
In the app workspace, open a report and select a visual to be pinned to the
dashboard

Click the pin icon and choose the existing dashboard; repeat this process
for each report in the workspace

8. Refine dashboard layout.
Move and resize the dashboard tiles such that most important visuals are in
the top and left corners

North America sales dashboard

The dashboard provides the at a glance visibility to the measures most important
to the North America sales team
The user can access any of the four detail reports (country, customer, margin,
and region) by clicking a dashboard tile

Constructing an enterprise dashboard
Power BI dashboards are valuable assets for specific stakeholders and focused use
cases, but their greatest strength is in consolidating important information from across
an enterprise. These dashboards generally source from multiple datasets, such as
SSAS tabular models, and often integrate on-premise with cloud-borne data.
Enterprise dashboards typically utilize card and KPI visuals to focus on strategic
objectives and maximize canvas space. Given the scale and breadth of data sources
for a modern enterprise, a significant level of coordination is required to ensure that
all datasets supporting the dashboard represent an appropriate level of data quality
and governance.

In this recipe, an enterprise dashboard is constructed based off of four datasets
(models) to include key measures across sales, inventory, general ledger, and
customer service business processes.

How to do it...

Dashboard design process
1. Define dashboard requirements.

Map the required dashboard tiles to existing datasets (that is, data models)
and source systems
For any new dataset to be created, evaluate readiness, scale, and data
retrieval and modeling needed
The data warehouse bus matrix and model planning described in Chapter 3,
Building a Power BI Data Model, can help guide this process to promote
re-usability and version control

2. Map dashboard tiles to reports and datasets.

Enterprise dashboard supported by four datasets

The design process results in a logical architecture of the components needed in
Power BI to support the dashboard

As each report is tied to a single dataset, consolidating required
schemas into fewer data models (datasets) can simplify
manageability, and support richer analytics and visualizations.
An alternative dashboard architecture is for an executive dashboard
to link to multiple dashboards (such as corporate divisions or
product groups), which then link to individual reports. The option to
link a dashboard tile to a separate dashboard is available in Tile
details when set custom link is enabled.

3. Create an app workspace.
The same steps as in creating a workspace and adding team members from
the previous recipe apply here
In the workspace, a blank dashboard can be created, and existing datasets
and reports can be added

4. Create or augment datasets.
This could be a new Power BI Desktop file or additional queries and
measures to an existing model
Publish or import the completed dataset to the new app workspace in
Power BI

5. Create dashboard reports.
Connect PBIX report files to the data models, such as the published dataset
or an SSAS tabular model
The visuals for the enterprise dashboard, such as Cards and KPIs, should
follow a standard formatting scheme

The individual PBIX report files can be stored in OneDrive for
business (if available) or at a secure network location. A single
report page may be sufficient for certain tiles, while others (such as,
sales) require robust report details.

6. Publish reports.
Publish each report to the workspace and then pin the required visuals to
the existing dashboard

7. Refine dashboard layout.
Organize and resize the tiles to prioritize KPIs and make the best use of the
canvas
Apply a mobile layout to the dashboard by switching from Web view to
Phone view in the top right corner

The dual KPI chart types and color options (for both bottom and top charts) are used
to help distinguish the different dashboard metrics. For example, sales metrics are
displayed with green area charts, while the liabilities metrics are red, and the margin
metrics are presented as line charts.

Enterprise dashboard: dual KPIs, corporate logo and links

8. Customize tile settings.
Click the ellipsis of the dashboard tiles and then the pencil icon to open the
tile details form
Optionally, enter a title and subtitle for the tile, as well as a custom URL
link, such as a SharePoint site

9. Add supporting tiles.
Optionally, click on Add tile to add text boxes, images, and other content to
support the dashboard

How it works...

Dual KPI custom visual
The dual KPI custom visual, developed by Microsoft, was used in this recipe to
efficiently utilize dashboard canvas
See Chapter 9, Applying Advanced Analytics and Custom Visuals, for additional
details on this visual

Supporting tiles
The corporate logo was pinned to the dashboard from an image that was
inserted into a report
The URL links were created within the Add tile feature in the Power BI Service
for a textbox

Developing dynamic dashboard metrics
Dashboard tiles represent snapshots of report visuals. The values of the measures
and columns used in the pinned report visual are refreshed, but modifications to the
report, such as filters or formatting, are not reflected in the dashboard. Therefore, it's
necessary to develop dynamic logic in the data model and measures that keep
dashboard tiles current across time. Additionally, dynamic logic simplifies the user
experience of interacting with reports and the dashboard report development process.

In this recipe, two columns are added to the date dimension table and used to drive
dashboard report visuals. Additionally, a measure is created to provide a target value
to support comparison with a KPI.

How to do it...

Dynamic date columns
1. Identify the grain(s).

Dashboards are usually focused on the current year, month, or week, and
trends within the current year or recent history
Whether calendar or fiscal periods, columns associating dates to these
values enhances and simplifies analysis

Time Intelligence measures, reviewed in Chapter 6, Getting Serious
with Date Intelligence, enable the comparison of distinct time frames

2. Modify the date view.
Add columns to the SQL view supporting the date dimension table for the
required grains with dynamic expressions

 CASE
 WHEN YEAR(D.Date) = YEAR(CURRENT_TIMESTAMP) THEN 'Current Calendar Year'
 WHEN YEAR(D.Date) = YEAR(CURRENT_TIMESTAMP)-1 THEN 'Prior Calendar Year'
 WHEN YEAR(D.Date) = YEAR(CURRENT_TIMESTAMP)-2 THEN '2 Yrs Prior Calendar Year'
 WHEN YEAR(D.Date) = YEAR(CURRENT_TIMESTAMP)-3 THEN '3 Yrs Prior Calendar Year'
 ELSE 'Other Calendar Year'
 END AS [Calendar Year Status]

CASE
 WHEN YEAR(D.Date) = YEAR(CURRENT_TIMESTAMP) AND MONTH(D.Date) = MONTH(CURRENT_TIMESTAMP)
 THEN 'Current Calendar Month'
 WHEN YEAR(D.Date) = YEAR(DATEADD(MONTH,-1,CAST(CURRENT_TIMESTAMP AS date))) AND
 MONTH(D.Date) = MONTH(DATEADD(MONTH,-1,CAST(CURRENT_TIMESTAMP AS date)))
 THEN 'Prior Calendar Month'
 WHEN YEAR(D.Date) = YEAR(DATEADD(MONTH,-2,CAST(CURRENT_TIMESTAMP AS date))) AND
 MONTH(D.Date) = MONTH(DATEADD(MONTH,-2,CAST(CURRENT_TIMESTAMP AS date)))
 THEN '2 Mo Prior Calendar Month'
 WHEN YEAR(D.Date) = YEAR(DATEADD(MONTH,-3,CAST(CURRENT_TIMESTAMP AS date))) AND
 MONTH(D.Date) = MONTH(DATEADD(MONTH,-3,CAST(CURRENT_TIMESTAMP AS date)))
 THEN '3 Mo Prior Calendar Month'
ELSE 'Other Calendar Month'
END AS [Calendar Month Status]

Standard SQL syntax with CASE and CURRENT_TIMESTAMP() create two columns, each
with five distinct values (Current Calendar Month, Prior Calendar Month, 2 Mo
Prior Calendar Month, 3 Mo Prior Calendar Month, and Other Calendar Month)
Since the date table query is executed on a schedule to support dataset refresh
(or at run time if DirectQuery mode), these columns will be updated and
available to the report author, thus avoiding stale or hard coded reports:

As an example, a report level filter could be set to only include the Current
Year and Prior Year values of the Calendar Year Status column, and a page of the
report could be set to only include the Current Calendar Month and Prior Calendar
Month values of the Calendar Month Status column
The tables and charts of the report would update to respect the dates these
values refer to as the dataset or report is refreshed

Alternatively, if the date dimension table is updated daily via an ETL

process, then the new dynamic columns could be included in this
process and persisted in the table. Additionally, if both the source
table and the SQL view cannot be modified, M queries with
conditional expressions can be used to create the derived columns.

3. Implement in reports.
The new dynamic date columns can be used as filters in dashboard reports
in the following methods:

As report level, page level, and visual level filters within the reports
used to support dashboards
As slicer visuals in report pages to allow for further analysis of the
dashboard tile

Optionally, as filter arguments in time intelligence measures; see Chapt
er 6, Getting Serious with Date Intelligence for greater detail

Internet Net Sales (CY YTD) = CALCULATE([Internet Net Sales],
 FILTER(ALL('Date'),'Date'[Calendar Year Status] = "Current Calendar Year" &&
'Date'[Date] <= MAX('Date'[Date])))

When used as a measure filter, the Calendar Year Status column can
avoid the need to apply other filters (that is, slicers and page level
filters) to produce the current or prior year value. This can be helpful
for the fixed requirements of dashboard visuals but limits the use of
these measures in self-service analysis with other date dimension
columns. However, the standard and recommended date intelligence
practice is to set the year column equal to the max value of this
column in the current filter context, such as Date[Calendar Year] =
MAX(Date[Calendar Year]). See Chapter 6, Getting Serious with Date
Intelligence for examples of standard and more advanced custom
date intelligence expressions.

For many dashboards, it's necessary to exclude the current month,
given a large transaction or GL entry to be applied at the end of the
month. A visual level filter, based on the dynamic month column, can
support this scenario. Using the Calendar Month Status column from this
recipe as example, four of the five computed values would be
included, but the Current Calendar Month value would be filtered out of
the visual.

KPI target measures
1. Identify the KPI.

These are dashboard measures which lack a relevant target to drive
formatting (that is, red, yellow, green)

2. Define the target logic.
In the absence of a budget or plan, work with stakeholders to define upper
and lower boundaries of the KPI
Without specific guidance or requirements, a trailing average measure of
the KPI can be used

3. Develop the target measure.
In this example, the KPI trend axis is at the month grain and thus the target
is needed at the month grain

Internet Sales Customer Count Average of Trailing 6 =
VAR LastNonBlankMonth = LASTNONBLANK('Date'[CalYearMonthIndex],[Internet Sales Customer Count])
VAR SixMonthsPrior = LastNonBlankMonth - 6
RETURN
CALCULATE(AVERAGEX(VALUES('Date'[CalYearMonthIndex]),[Internet Sales Customer Count]),
FILTER(ALL('Date'),'Date'[CalYearMonthIndex] <= LastNonBlankMonth -1 && 'Date'[CalYearMonthIndex] >=SixMonthsPrior))

The target measure identifies the last month with customers and then only uses
completed months for evaluation

How it works...

Target measure - trailing 6 months
With CALCULATE(), the target measure can include prior months that are filtered out
in the report via filters or slicers
LASTNONBLANK() identifies the last month that has customer count in the current filter
context
Per earlier recipes, a sequentially increasing column can be used to drive Time
Intelligence measures.

Preparing datasets and reports for Q &
A natural language queries
Q & A can be a powerful method of enabling users to explore datasets, by directly
submitting their own questions in both the Power BI service and through the Power
BI mobile application. The tables and measures of each dataset, represented by a tile
on the dashboard, are available to answer Q & A questions and per Chapter 4,
Authoring Power BI Reports, Enhancing exploration of reports recipe, reports and
featured questions can be configured to aid the Q & A experience.

This recipe provides data model design and metadata tips to prepare a dataset for Q
& A. Additionally, synonyms are added to Power BI Desktop data model to improve
the accuracy of natural language queries.

Getting ready

Determine use cases and feasibility
Q & A may not be appropriate for certain dashboards and datasets.
For example, the Q & A search bar "ask a question about your data"
may be a distraction to users of the enterprise dashboard, who only
want to view the KPIs. Additionally, if the dataset requires a gateway,
such as an on-premises SSAS server or a DirectQuery Power BI
Desktop model to an on-premises source, Q & A may be avoided
given the additional (and potentially inefficient) queries and
performance considerations.

1. Enable or disable Q & A.
In the Power BI service, access the app workspace containing the
dashboard
Click the Gear icon and select Settings. From the Dashboards tab, click
Show the Q & A search box.

Currently, Q & A is not supported for Power BI Desktop Models in
DirectQuery mode. Q & A is available for imported Power BI
Desktop datasets and SSAS datasets. If supported in the future, this
can be toggled on or off in the datasets' settings dialog. Additionally,
all data models (Import or DirectQuery) with row level security roles
applied cannot be used with Q & A.

How to do it...

Prepare a model for Q & A

Model metadata
1. Revise any columns with incorrect data types, such as dates or numbers that are

stored as text data types.
2. Set the default summarization for dimension columns to do not summarize.
3. Associate geographical columns, such as states and zip codes, with a related

data category.

Model design
1. Split columns containing multiple values into distinct columns.
2. Normalize tables such that entities within the tables are moved to their own

distinct table.
For example, columns of a vendor in a products table can be moved to a
vendor table

3. Q & A queries only work with active relationships of a model.
Consider dedicated role playing dimensions with active relationships
Alternatively, consider de-normalizing an inactive relationship dimension
into a fact table

Apply synonyms

Analyze Q & a use cases
1. Define the top or most common natural language questions and test for accuracy

in Power BI.
2. Identify the gaps between the names of data model entities and the names used in

natural language queries.
Focus on entities with longer and less intuitive names, that aren't used
casually by the users

Apply synonyms
1. Open the Power BI Desktop data model (or models) supporting the dashboard

locally.
2. Select the relationships window and click the synonyms icon from the modeling

tab.
3. The synonyms window will open on the right. Select a table in the diagram view

to access its synonyms:

Synonym added to the reseller table

Table names are at the top, measures are associated with their home tables.
Names of the entities are synonyms by default.

4. Click in the input box of the table name, column name, or measure name and add
synonyms separated by commas.

Avoid reusing the same synonym across multiple entities, as this can
lead to incorrect query results. Ensure that the primary synonym for
each entity of the model is unique.

Publish the dataset
1. Save and publish the dataset to the app workspace in Power BI:

Wholesaler term entered in Q & A associated with the reseller table via the synonym

2. Test the query behavior with the synonyms and optionally create featured Q & A
questions per Chapter 4, Authoring Power BI Reports.

Embedding analytical context into
visualizations
Users of Power BI dashboards appreciate the linking of tiles to detailed reports to
support further analysis. However, many users are not comfortable navigating through
reports and would prefer that the dashboard itself provides all the essential
information. Embedding Tooltips and conditional formatting logic into dashboard
visuals are two powerful techniques to raise the insight to effort ratio mentioned in Ch
apter 4, Authoring Power BI Reports, while not compromising the performance or
manageability of the solution.

In this recipe, a simple column chart of sales by month is enhanced with tooltip
measures and conditional formatting logic. When pinned to a dashboard, the users
instantly visualize a negative outcome and can hover over the bars for additional
context.

How to do it...

Design the visual
1. Identify the essential components of a dashboard measure, such as group

contributions to a total value.
2. Determine what rule or measure should drive any color changes, such as a

negative variance to plan.

Create the visual
1. Open a Power BI Desktop report and create a clustered column chart visual

with a measure and a dimension:
The measure will be added to the value field well and the dimension to the
axis

2. Add a measure to the color saturation field well that will drive the color
formatting of the value field.

3. From the formatting pane, open the data colors card and enter minimum and
maximum values.

4. In the data colors formatting options, associate colors with these values, such as
red with the minimum.

The color saturation field could be the same measure as the value
field or a different measure that provides even further context. In this
example, internet net sales is used as the value and internet sales var
to plan is used for color saturation. Color saturation can only be
applied against a single value field—this option is not available
when multiple values are used.

5. Add measures to the tooltips field well, that give context to either the value or
the color saturation field:

In this example, measures specific to the three sales regions are added to the
tooltips field well:

Dashboard tile with tooltips and conditional formatting

Hovering over 2017-Feb exposes the tooltip measures. The tooltips (by region)
help explain the $11K miss to plan.

How it works...

Color saturation rule
The rule applied in this example is to color the bars red if sales misses the plan.
Otherwise, use the default green theme.

Data colors formatting

The internet sales var to plan measure used for color saturation is only negative for
the 2017-Feb month.

Tooltip measures
Simple CALCULATE() functions can be used to create the tooltip measures if they don't
exist in the dataset.

Internet Sales Var to Plan (Europe) =
CALCULATE([Internet Sales Var to Plan],'Sales Territory'[Sales Territory Group] = "Europe")

If tooltip measures begin to clutter the fields list, they can be hidden or organized in
dedicated measure group tables.

There's more...
See the recipes in Chapter 4, Authoring Power BI Reports, for further examples of
conditional formatting, including line charts, tables, and matrix visuals.

Exposing what matters - top N and
percentage of total visualizations
A common use case for dashboards is to highlight and monitor the drivers of
significant events or business trends. For example, an enterprise dashboard may
feature a reseller margin % KPI visualization, but a separate dashboard may identify
the top and bottom 10 individual resellers and products by margin %.

In this recipe, dashboard visuals are created leveraging the top N filter type
available to visual level filters and DAX measures to present focused, actionable
information in Power BI dashboards.

How to do it...

Top 25 resellers with below -3%
margin

1. Create a table visual with the dimension name (reseller) and two measures
(reseller margin % and reseller net sales).

2. Add the dimension key column (reseller key) to the visual level filters pane.
3. In visual level filters, click the drop-down for reseller key and select top N as

the filter type.
4. Enter 25 for Show Items and drag the reseller net sales measure to the By Value

input box. Click Apply Filter.
5. In visual level filters, open the drop-down for the reseller margin % measure.
6. In the Show items when the value: input box, use the is less than option and

enter (-.03). Click Apply Filter.

Top N and measure filters applied at visual level

7. Sort the table by margin % ascending and apply a format to the table visual that
will align with the dashboard.

Formatted table visual reflecting low margin, high impact resellers

In this example, only three of the larger (top 25) resellers are included in the
visual

Only a single top N filter condition can be applied to a visual. As an
alternative or supplement to top N, ranking measures can be created
and used as visual level filters.

Last year's top 50 products with below
-10% growth

1. Create a table visual with the product name column and a year-to-date growth
measure.

2. Add a prior year, year-to-date ranking measure to the visual level filters field
well:

Enter 101 in the is less than condition and click on Apply Filter

3. In the visual level filters pane, click the dropdown for the year-to-date growth
measure:

Enter -1 for an is greater than condition and -.1 for an is less than condition.
Click on Apply filter.

Visual level filters applied to ranking measure and YOY YTD % growth measure

The greater than -100% condition accounts for products which aren't being sold
this year.

4. Sort by growth measure ascending and optionally add additional supporting
measures and apply a format.

The finished table visual displays only the top (50) products from last year which are
still being sold in the current year but with declining sales revenue of 10% or more.

Formatted table visual reflecting high value products from last year with declining sales

Look to leverage drill through report pages for deep analysis of
individual dimension values such as products or vendors. In this

example, after the user has accessed the underlying report from the
dashboard, the user could right-click one of the three rows displaying
the Product Name column and drill through to a report page that
provides great detail about the specific product. See the Enhancing
the exploration of reports recipe in Chapter 4, Authoring Power BI
Reports for additional details.

5. Publish the report to the app workspace in the Power BI service and pin the
exception visual to a dashboard tile.

How it works...

Prior year rank measure
The ranking measure removes filters on the product name and the alternate key
via ALL(), prior to the RANKX() evaluation.

Product Total Sales Rank (PY YTD) =
IF(HASONEVALUE('Product'[Product Alternate Key]),
RANKX(ALL('Product'[Product Name],'Product'[Product Alternate Key]),
[Total Net Sales (PY YTD)],,DESC,Skip),BLANK())

The HASONEVALUE() function is used to check if a single product is in the filter
context. If not, a blank is returned.

Visualizing performance relative to
targets with KPIs and gauges
KPI and gauge visuals are frequently used to present the most critical performance
measures in dashboards. Given their compact size and supporting context, such as
trend graphs and target values, users can quickly obtain useful insights from these
visuals alone, on any device. However, to derive the most value out of these visuals,
it’s often necessary to apply Visual level filters, create supporting target measures,
and group related visuals.

In this recipe, a KPI and gauge visual are developed to present growth relative to
planned growth. Groups of KPI visuals are then created to provide visibility to
current period, prior period, and year-to-date.

How to do it...
1. Identify the measure:

This measure will serve as the Indicator input for the KPI visual and the
value input for the gauge visual

2. Define the grain:
For the KPI visual, the date dimension column used in the trend axis input
will determine
For example, a period trend axis will result in the value of the indicator for
the latest period

Per Chapter 3, Building a Power BI Data Model, it's essential that Sort
By columns are applied to date dimension columns, such as month
and year-month. Without this configuration, the default sort order
will cause the KPI visual to select the value for the last alphabetical
month rather than the last chronological month via the trend axis
input.

3. Identify the target:
This measure will serve as the target goal for the KPI visual at the grain of
the trend axis input
For the gauge visual, this measure will be the target value input, and
optionally, the maximum value as well

Create the visuals
1. Create a new Power BI report, connect to the dataset, and create two blank

visuals: a KPI and a gauge.
2. Add the measures identified in steps 1 through 3 to their designated field wells.

3. Provide a custom title and apply any other helpful formatting, such as enlarging
the target on the gauge visual.

Standard KPI and gauge visuals: current month growth versus planned growth

In this example, the trend axis on the KPI is monthly, and since the
month isn't complete, the current growth of 250 percent is well below
the 463 percent growth planned for the given month. As the month
progresses (and data refreshes), the 250 percent will increase.

Grouping KPIs
Create a prior month and a year-to-date KPI visual to supplement the current month
KPI visual:

Year-to-date and and prior month KPI visuals created to support the dashboard

The same monthly trend axis column (for example, 2017-May) is used
for the two new KPI visuals. The year-to-date KPI simply substitutes
year-to-date measures for the indicator and target goals. The prior
month sales growth KPI uses the same inputs but the Calendar Month
Status column is used as a visual level filter for both this visual and
the year-to-date KPI.

Publish KPIs to dashboard
1. When complete, publish the report with the KPI visuals to the App Workspace

containing the dashboard.
2. Pin the visual(s) to the dashboard and re-organize the layout.

Per the Data alerts recipe in this chapter alerts can be configured for
standard card, KPI, and gauge visuals published to dashboards. See
this recipe for an example of setting a notification, and optionally an
email message, based on these visuals.

How it works...

Current month filter
For the gauge visual, the Calendar Month Status dynamic date dimension column,
described earlier in this chapter, is used a Visual level filter. This filter is set to
Current Calendar Month.
For both the year-to-date and the prior month sales growth KPI visuals, the
Calendar Month Status column is used as a visual level filter. This filter is set to
Current Calendar Month.

The prior month sales growth KPI therefore defaults to the next latest
month-the prior month
The YTD KPI provides an apples-to-apples comparison by only
comparing completed months against plan

Time intelligence measures
Year over year, percentage measures are used for both the indicator and target
input fields of the visuals
These measures, in turn, reference current year, prior year, current year to date,
and prior year to date measures

For example, the year-to-date target measure compares the sales plan
(YTD) versus sales (prior YTD)

See Chapter 6, Getting Serious with Date Intelligence, for additional detail on
developing time intelligence measures

Leveraging Power BI reports in Power
BI dashboards
By default, the tiles of a dashboard are independent of each other and cannot be
filtered or interacted with. Additionally, modifications to reports after visuals have
been pinned to dashboards, such as filter and layout changes, are not automatically
reflected in the dashboards. In many scenarios, the users consuming a dashboard
want to retain the interactive filtering experience of Power BI reports from within
their dashboard and it can be helpful to automatically synchronize reports with
dashboards.

In this recipe, a fully interactive live page of visuals is pinned to a dashboard, along
with additional supporting visuals.

How to do it...

Define live page requirements
1. Determine the top business questions and thus measures and visuals to include

in the page:
As report pages (and reports) are limited to a single dataset, confirm
feasibility with existing models

2. For a single report page, identify the essential dimensions that will be used as
slicer visuals:

Additionally, identify report and page level filters to align the page with
other dashboard visuals

In this example, the USA sales management team wants to easily view
and filter high level sales measures and KPIs by sales region and
time period, without having to navigate from the dashboard to detail
level reports.

Create and publish to the dashboard
1. Create a Power BI report and connect to the published dataset in the app

workspace of the dashboard.
2. Construct the report page according to the requirements, and to maximize the

user experience with the dashboard.
3. Publish the report with the live page to the App Workspace in Power BI.
4. In the workspace in Power BI, open the published report in the given workspace

and select the page to pin.

The Sales Live Page Analysis Report in the Adventure Works Enterprise Workspace

5. Click the Pin Live Page option in the preceding image and choose either a new
or existing dashboard.

6. Pin any additional visuals from other pages of this report or other reports to the
dashboard.

Refine dashboard layout
1. Position the live page at the top left of the dashboard, with separate visual tiles

to the right:

Dashboard with pinned live page and additional visuals

If a title and refresh message is included in the page, per this example, then
those values can be excluded in tile details.

2. Switch from web view to phone view at the top right of the dashboard:
Given the size of the live page, it may be necessary to hide this tile from
Phone view or move it to the bottom

The user of the dashboard can interact with the region and date slicers and other
visuals on the live page

The ellipsis in the top right of the live page tile includes a go to
report link to access all pages of the live page report. Modifications
to the underlying report will be reflected in the pinned live page. The
other visuals link to their report pages.

How it works...

Live page slicers
The sales region slicer at the top has the orientation option in the formatting
pane set to horizontal
The date slicer is based on the calendar date from the date dimension and uses
the relative slicer visual option

Deploying content from Excel and
SSRS to Power BI
Dashboards in Power BI can consolidate much more than Power BI report visuals.
Microsoft Excel objects, such as pivot tables, charts, and workbook ranges, and
SSRS report items can also be pinned as dashboard tiles. This integration with
Power BI allows teams to utilize existing reports and skills, and to leverage the
unique capabilities of these tools as part of overall BI solutions.

In this recipe, a pivot table and pivot chart from an Excel workbook are integrated
into an existing Power BI dashboard for the Australian sales team. Additionally, an
SSRS report item is also pinned to this dashboard. For more advanced integration
examples, see Chapter 13, Integrating Power BI with Other Applications.

Getting ready
1. Install Power BI Publisher for Excel:

See Chapter 1, Configuring Power BI Development Tools, for details on this
process
If the Power BI tab is not visible in Excel, check that the COM Add-in in
Excel options is visible and enabled

2. Configure Report Server for Power BI:
Open reporting services configuration manager
Click on the Power BI Integration tab and select Register with Power BI

How to do it...

Publish and pin excel objects
1. Open a new Excel workbook and select Connect to Data from the Power BI tab

(Power BI Publisher for Excel).
2. Choose the Power BI workspace and dataset to be used as the source for the

Excel report.
3. Click Connect and a blank pivot table will be created with the field list exposed

on the right.
4. Create and format a pivot table. Apply a slicer based on a dynamic date column,

such as current year.
5. Create additional slicers, such as Sales Territory Country = Australia:

To create a slicer, right-click a column in the field list and select Add as
Slicer

Using slicers rather than the filters field well for pivot tables allows
for a better presentation on the dashboard tile.

6. Select any cell outside of the pivot table, and from the Insert tab, click
PivotChart:

Select Use an External Data Source from the Create PivotChart dialog.
Click the Power BI connection.

Existing Connections Window in Excel: Connection to the Power BI dataset

7. Select the Power BI connection from the existing connections window and click
on Open.

8. Build and format the pivot chart. With the pivot chart selected, click on Filter
Connections from the Analyze tab:

Ensure that the same slicers filtering the pivot table are also filtering the
pivot chart

Click on Options under the Analyze tab for each new report object
and enable evaluate calculated members from OLAP server in filters
on the Totals and Filters tab. Additionally, from the Display tab of

Options, enable show calculated members from OLAP server for both
objects. It is necessary to apply the same slicer to both the chart and
the table.

9. Save the Excel report file to either a OneDrive for business folder or at a secure
network location.

10. Select the chart and and click Pin from the Power BI tab. Choose the workspace
and the dashboard, and then click OK.

Pinning a chart from an Excel workbook to a Power BI dashboard in an App Workspace of the Power BI Service

11. Now select the full range of cells of the pivot table and pin this to the dashboard
as well.

12. In the Power BI service, navigate to the workspace and dashboard to adjust the
size and layout of the tiles.

13. Optionally, adjust the tile details for the pinned Excel tiles, such as title and
subtitle.

Excel online does not currently support the refresh of external data
connections. Therefore, though it's possible to publish the workbook
from Excel to Power BI and then pin items from the workbook report
in the Power BI service, once published, the workbook would not be
refreshed. By pinning items directly from the Excel workbook to the
dashboard, the connection to the dataset hosted in the Power BI
service must be periodically refreshed and the Pin Manager dialog in
the Power BI Publisher for Excel can be used to update pinned tiles.

To avoid this manual and local refresh process, Excel report visuals
can be built on top of an Excel data model, and this Excel workbook

can be published to the Power BI Service. Published workbooks,
containing data models, can be configured for scheduled refresh in
the Power BI Service, and their dependent reports will be updated to
reflect these refreshes.

Pin SSRS report items
1. Create or identify the SSRS report to support the dashboard.
2. Publish this report to the SSRS report server or open this report on the report

server.
3. From the report server browser window, click the Power BI icon and sign in

with the appropriate Power BI account.

4. Click on the SSRS report item to pin:

Pin to Power BI from SSRS 2016

5. From the Pin dialog, choose the workspace and dashboard to pin the item to.
The update frequency creates an SSRS subscription to keep the tile updated
in Power BI

In this example, the reseller freight expense tile (lower left) is from an SSRS report.
The Australia headcount chart and Australia sales to plan pivot table tiles are both
from an Excel workbook.

Excel objects and SSRS report items pinned to a Power BI dashboard

You can pin charts, gauge panels, maps, and images from SSRS

reports to Power BI dashboards provided these items are within the
report body (not page header or footer). You cannot currently pin
tables, matrix, or list report items from SSRS reports.

Adding data alerts and email
notifications to dashboards
Alerts can be configured on the tiles of dashboards to provide notification that a
specific condition has been met. Alert rules and options can be managed in the Power
BI service, and notifications can be limited to the notification center in Power BI or
shared via email. Data-driven alerts enhance the value of Power BI dashboards, as
they immediately bring attention to significant events or outcomes as the dataset
supporting the dashboard tile is refreshed.

In this recipe, an alert is configured on a KPI visual represented in a dashboard tile.
Additionally, an example is provided of automating email delivery of notifications
via Microsoft Flow based on a Power BI data alert.

How to do it...

Configure data alert
1. Open the App Workspace in Power BI and select the dashboard containing the

tile to be used for the alert.
2. Click on the ellipsis in the top right of the tile and select the bell icon to open

the Manage Alerts window.

Alerts can only be configured on dashboard tiles of standard gauge,
KPI, and card visuals, and they only work with numeric data types.
Custom visuals, streaming data tiles, and date datatypes are not
currently supported.

Only the user who configures the alert can see the alerts in the Power
BI Service.

3. Click on the Add alert rule button and enter a title for the alert that describes the
measure and the condition.

4. Set the Condition and Threshold parameters for the alert:

Manage alerts

5. Repeat this process for other tiles in the dashboard or other dashboards.

Multiple alerts can be configured for the same dashboard tile with
each alert having a separate condition and/or threshold, such as a
maximum and a minimum accepted value. Click the Gear icon in
Power BI and select Settings to access all the alerts configured
across the workspaces.

Data alerts can also be set and viewed in the Power BI mobile apps.

Automate email notification
1. Open Microsoft Flow in Office 365.
2. Enter Power BI in the search bar and select Trigger a flow with a Power BI data-

driven alert:
Click on Continue to use this template. Ensure your Power BI account is
associated with the Power BI trigger.

3. In the Flow name input box at the top, provide a a descriptive title (for example,
email sales team based on margin % alert).

4. From the Alert ID dropdown, choose the specific Power BI data alert to trigger
the Flow and click on New Step.

Associating the Power BI alert with the flow

5. Click on Add an Action and then select Office 365 Outlook. Click n the Send an
email action available for this service:

Customize the send an email action to specify users or groups and what
alert content and text to include:

Outlook send an email action step in MS Flow

6. Click on Create flow from the top menu. The flow will be saved and will begin
working immediately. Click on Done.

From My flows, this new alert flow can be saved as to create additional
flows which leverage the same triggers, logic, and actions

Save as option in my flows

Save as will create a copy of the flow and add it the my flows page

Given the value of alerts to stakeholders and the low effort required
in creating and managing alerts and notifications in Power BI and
Flow, dedicated alert dashboards can be developed to reduce the
amount of analysis and monitoring required.

How it works...
Power BI evaluates the alert rule when the dataset supporting the dashboard is
refreshed.

If the alert is triggered, an icon and message will appear in the notification center in
the Power BI service containing a link to the dashboard tile configured for the alert.

Alert notification from notification center in Power BI

Notifications are also visible in Power BI mobile. For example, a notification
message is visible on the Apple watch.

Getting Serious with Date Intelligence
In this chapter, we will cover the following recipes:

Building a complete date dimension table
Prepping the date dimension via the Query Editor
Authoring date intelligence metrics across granularities
Developing advanced date intelligence metrics
Simplifying date intelligence with DAX queries and calculated tables
Adding a metric placeholder dimension

Introduction
Date intelligence refers to a broad set of data modeling patterns and functions that
enable analysis across time periods. Fundamental measures, such as Reseller Net
Sales as created in Chapter 3, Building a Power BI Data Model, are supplemented
with date intelligence measures to calculate Year-to-Date, Prior Period, and many
other custom time period calculations. These measures are then used in combination
to support growth and variance measures and are often utilized as Key Performance
Indicators (KPIs) in Power BI dashboards given their ability to convey additional
context and insight. When implemented properly, date intelligence dramatically
expands the analytical power of a data model and simplifies report and dashboard
development.

This chapter contains three recipes for preparing a data model to support robust date
intelligence and two recipes for authoring custom date intelligence measures.

Building a complete date dimension
table
As a date dimension and the date intelligence it supports is needed by almost all data
models building a robust date table in the source system provides significant long
term value across BI projects and tools. A complete date table accounts for all the
required grains or hierarchy levels of both the standard (Gregorian) calendar and any
fiscal calendar specific to the organization. Additionally, surrogate key columns
aligned to each grain are included to drive the sort order of report attributes and to
enable date intelligence expressions.

This recipe includes a design phase to identify required date dimension columns and
a process for adding a date intelligence surrogate key column to a dimension.
Reference date dimension templates and examples of related T-SQL date functions
are included in the Getting ready and There's more... sections, respectively.

Getting ready
If you don't have a date table in your source database, there are tools and
templates to help you get started:

The Kimball Group provides a downloadable Excel file with date
formulas: http://bit.ly/2rOchxt
A T-SQL approach to building a date table is available on PowerPivotPro:
http://bit.ly/2s6tuPT

The date table should contain a single row for every calendar date (no gaps)
Given the small size (20 years, approximately 7,300 rows), include all
necessary history and three or more future years

http://bit.ly/2rOchxt
http://bit.ly/2s6tuPT

How to do it...

Date dimension design
1. Identify and document the required columns of the date dimension and identify

any gaps with the existing table:
The following two sections advise of the types of columns to include.

Like other dimension tables, teams can often incrementally improve
their date dimension table over time with additional logic. For
example, if the great majority of analysis revolves around a fiscal
calendar and at a certain granularity then these columns can be
targeted first. Mature date tables inclusive of standard and financial
calendars, sequential surrogate columns, and logical or dynamic
columns such as Fiscal Period Status are often quite wide with over 40
columns.

Required date dimension columns
The Prior Year Date and Prior Period Date columns for both standard and financial
calendars
Natural hierarchy attributes for all levels, such as 2013, 2013-Q3, 2013-Sep, 2013-Wk39,
and 9/25/2013

The natural hierarchy (one parent for each child value) allows users
to easily navigate Power BI report visuals via drill down and next
level commands. Without natural hierarchies, the context of the
parent value is lost when drilling into the given parent. For example,
drilling into the year 2017 would display each month name but the
year associated with this month would only be visible in the tooltips
by hovering over the chart. With natural hierarchies, this context is
not lost as the Calendar Yr-Mo column contains values such as 2017-
Aug.

Power BI provides a method of working around unnatural hierarchies
in report visuals via the Expand All down one level drilling feature.
However, this can lead to dense axis labels when multiple levels of a
hierarchy are used and given time intelligence requirements and the
needs of other visualizations it's recommended to support natural
hierarchies.

An integer column that corresponds to the chronological order of each string
column, such as Weekday:

For example, a Weekday Number column, with values of 1 through 7, will set
the Sort By property of Weekday

Multiple "X in Y" columns, such as Day in Year, Day in Month, Week in Month, and Week
in Year, stored as integers
Indicator columns, such as Weekday Indicator, Holiday Indicator, and Working Day
Indicator:

The values for these columns should be report-friendly, such as Holiday and
Non-Holiday

Starting and ending date columns for the different grains supported, such as Week
Ending Date and Period Ending Date

Date dimension planning and design
1. Look to integrate other calendars, such as a periods or fiscal calendar, into the

same date table in the source database:
Distinct views can be created to support role playing dimensions. See the
There's more... section

2. Identify common date manipulations taking place in the existing reports or by
business users in Excel or Power BI, and consider adding a date dimension
column to eliminate or simplify this work.

3. Ensure that date columns (for example, Prior Year Date) and number columns (for
example, Calendar Year) are stored as date and integer data types, respectively, as
this allows arithmetic and DAX functions, such as MAX() and MIN(), to operate
without any type conversion.

If the date dimension table is updated daily as part of a data
warehouse Extract-Transform-Load (ETL) process, columns
identifying the current and prior periods such as the Calendar Year
Status and Calendar Month Status columns from the Developing Dynamic
Dashboard Metrics recipe in Chapter 5, Creating Power BI Dashboards
can further simplify date intelligence. Columns such as
IsCurrentFiscalPeriod and IsPrior60Days are also common.

Add date intelligence columns via SQL
1. Add two columns to the date table stored in the relational database:

A natural hierarchy string (2009-Jan) and an integer column, such as Calendar
Year Month Number

2. Execute an UPDATE statement that populates the string column via the concatenation
of the Year and Month columns.

3. Create a table with three columns, Year, Month Number, and an Identity column, with
an increment value of 1:

Create Table dbo.TempTblYearMo
([Calendar Year] int not null
, [Calendar Month Number] tinyint not null
, [Calendar Yr Mo Index] smallint identity(1,1) not null)

4. Execute an Insert Into SQL statement to load this table:
Select, group, and order the Calendar Year and Calendar Month Number columns
from the existing date table
The Order By clause of the Select statement should order by Year and then by
Month Number
The temporary table's index column (Calendar Yr Mo Index) is now populated
in sequential order by Month across years per the following image:

TempTblYearMo Table Loaded from Insert Into Statement

5. Execute an UPDATE statement that populates the Calendar Year Month Number column
with the Identity value:

UPDATE DBO.DimFinDateTestTbl
SET [Calendar Year Month Number] = T.[Calendar Yr Mo Index]
FROM
DBO.DimFinDateTestTbl as D INNER JOIN dbo.TempTblYearMo as T
ON D.[Calendar Year] = T.[Calendar Year] AND D.[Calendar Month Number] = T.[Calendar Month Number]

The following query displays the sequentially increasing Calendar Year Month
Number column on the Date table:

Date table with Calendar Year Month Number column Updated

6. Repeat this process for other natural hierarchy columns, such as Year-Qtr and
Year-Wk, and drop the temporary tables.

7. When loaded to the model, the surrogate columns should be hidden from Report
View and used as the Sort By column.

8. Implement hierarchies in the Fields list as per the Creating browsable model
hierarchies and groups recipe, shared in Chapter 3, Building a Power BI Data
Model.

Window functions can be helpful in creating certain X in Y date
dimension columns. For example, the following DENSE_RANK() function
returns the calendar week number of the given calendar month.

DENSE_RANK() OVER(PARTITION BY D.[CALENDAR YEAR MONTH NUMBER] ORDER BY D.
[Calendar Week Number in Year])

For DirectQuery data models in which the SQL queries defining the
tables of the model are executed at runtime, it's best to move as much
data transformation logic back to the source system. Complex SQL
queries, DAX calculated columns, and M query expression logic can
all lead to inefficient query plans, and negatively impact the
performance of DirectQuery solutions.

How it works...

Date intelligence columns
Date intelligence measures reference the surrogate key columns to easily define
specific time period filter conditions

Internet Net Sales (Trailing 3 Periods) = CALCULATE([Internet Net Sales],FILTER(ALL('Date'),
 'Date'[Calendar Year Month Number] >= MAX('Date'[Calendar Year Month Number])-2 && 'Date'[Calendar Year Month Number] <= MAX('Date'[Calendar Year Month Number])))

Trailing 3 Period Measure includes Calendar Year Month Numbers 99 through 101 for 2017-May

If the Calendar Year Month Number column wasn't sequential, it wouldn't be possible
to refer to months across years, such as the trailing 3-month average of 2017-Jan
Note that in this example, May of 2017 is the current month and was included,
but often only the completed (or previous) months are included in these
calculations

Loading the date dimension
The SQL view used by the data model should dynamically filter the required
dates, such as the trailing three years

FROM DBO.DimFinDate as D
WHERE
D.[Date] BETWEEN DATEADD(YEAR,-3,CAST(CURRENT_TIMESTAMP AS date)) AND CAST(CURRENT_TIMESTAMP as date)

In this example, only the current system date and three prior calendar years are
loaded to the data model

There's more...

Role playing date dimensions
An alternative to "secondary relationships" (inactive relationships) via the
USERELATIONSHIP() function described in Chapter 3, Building a Power BI Data
Model, is to have multiple date dimension tables in the data model, each with a
single, active relationship based on a different date column of the fact table.
For example, a model would have Order Date, Ship Date, and Delivery Date
dimension tables. This approach reduces the volume of custom measures that
must be developed and maintained in the model.
If chosen, create separate views against the source date dimension table,
corresponding to each role playing table. Apply column aliases in each view
associating the attribute to the date (for example, Ship Date Year or Ship Date Month).

Surrogate key date conversion
Per Chapter 3, Building a Power BI Data Model, the relationship between fact
tables and the date table should use a Date data type column
If the source fact table only contains a surrogate key, commonly in the YYYYMMDD
format, the source views utilized by the data model can include the conversion
logic:

CONVERT(date,(CAST(F.OrderDateKey AS nvarchar(8)))) as [Order Date-Convert]

The DATEFROMPARTS() function in SQL Server can be used for many other date
conversion or logical needs

Prepping the date dimension via the
Query Editor
In some BI environments, it’s not feasible to alter the source date table per the
previous recipe or even modify the SQL view used to load the date dimension table;
at least, not in the short term. In these situations, Power BI Desktop's Query Editor
and M expressions can serve as an effective alternative to deliver the same columns
necessary to drive robust date intelligence analysis.

In this recipe, an example date dimension M query is shared, which builds common
date attributes as well as dynamic logical columns. Additionally, a process for
adding sequential date intelligence columns via M expressions is also included.

How to do it...

Date dimension M Query
1. Create an M query that accesses an existing SQL date table view, retrieves the

last three years of dates, and computes 11 additional columns via M functions:
A filter is applied via Table.SelectRows() to only retrieve the last three years
of dates, and conditional logic is used to populate dynamic Year Status and
Month Status columns (for example, Current Year):

 let Source = AdWorksProd, Dates = Source{[Schema = "BI", Item = "vDim_FinDate"]}[Data],
 CurrentDate = DateTime.Date(DateTime.LocalNow()),
 CurrentYear = Date.Year(DateTime.Date(DateTime.LocalNow())),
 CurrentMonth = Date.Month(DateTime.Date(DateTime.LocalNow())),
 FilteredDates = Table.SelectRows(Dates, each [Date] >= Date.AddYears(CurrentDate,-3) and [Date] <= CurrentDate),
 DateCol = Table.SelectColumns(FilteredDates,"Date"),
 YearCol = Table.AddColumn(DateCol, "Year", each Date.Year([Date]), Int64.Type),
 MonthNameCol = Table.AddColumn(YearCol, "Month Name", each Date.MonthName([Date]), type text),
 YearMonthCol = Table.AddColumn(MonthNameCol, "Year-Mo", each Text.From([Year]) & "-" & [Month Name], type text),
 MonthNumberCol = Table.AddColumn(YearMonthCol, "Month Number", each Date.Month([Date]), Int64.Type),
 WeekdayNameCol = Table.AddColumn(MonthNumberCol, "Weekday", each Date.DayOfWeekName([Date]), type text),
 DayNumberOfWeekCol = Table.AddColumn(WeekdayNameCol, "Weekday Number", each Date.DayOfWeek([Date]), Int64.Type),
 YearStatusCol = Table.AddColumn(DayNumberOfWeekCol, "Year Status", each
 if Date.IsInCurrentYear([Date]) = true then "Current Year"
 else if [Year] = CurrentYear - 1 then "Prior Year" else "Other Year", type text),
 MonthStatusCol = Table.AddColumn(YearStatusCol, "Month Status", each
 if [Year Status] = "Current Year" and [Month Number] = CurrentMonth then "Current Month"
 else if [Year] = Date.Year(Date.AddMonths(DateTime.Date(DateTime.LocalNow()),-1)) and
 [Month Number] = Date.Month(Date.AddMonths(DateTime.Date(DateTime.LocalNow()),-1)) then "Prior Month"
 else "Other Month", type text),
 DayInMonthCol = Table.AddColumn(MonthStatusCol, "Day in Month", each Date.Day([Date]), Int64.Type),
 WeekOfYearCol = Table.AddColumn(DayInMonthCol, "Week of Year", each Date.WeekOfYear([Date]), Int64.Type),
 WeekOfMonthCol = Table.AddColumn(WeekOfYearCol, "Week of Month", each Date.WeekOfMonth([Date]), Int64.Type) in WeekOfMonthCol

Despite a minimal date table available in the source system (for example, SQL
Server), the M query generates a useful date dimension table for a model with many
of the most common and important columns:

8 of the 11 Date Dimension Columns Produced via the M Query. Day In Month, Week of Year, and Week of
Month Not Displayed

Per Chapter 2, Accessing and Retrieving Data, the CurrentDate, CurrentMonth, and
CurrentYear expressions can be stored as separate queries

Add the date intelligence column via
join

1. Develop an M query which creates a surrogate sequential column to be used in
Date Intelligence measures:

Two columns (Calendar Year and Calendar Month Number) are accessed from an
existing SQL view and the Table.AddIndexColumn() function is applied to this sorted
table to create the sequential column

let Source = AdWorksProd, DateDim = Source{[Schema = "BI",Item = "vDim_FinDate"]}[Data],
YearMonthCols = Table.Distinct(Table.SelectColumns(DateDim, {"Calendar Year","Calendar Month Number"})),
YearMonthColSort = Table.Sort(YearMonthCols,{{"Calendar Year", Order.Ascending}, {"Calendar Month Number", Order.Ascending}}),
YearMonthColIndex = Table.AddIndexColumn(YearMonthColSort, "YearMonthIndex",1,1),
JoinedDateTable =
 Table.NestedJoin(#"M Date Query", {"Year", "Month Number"},YearMonthColIndex, {"Calendar Year","Calendar Month Number"}, "Year-Mo Index", JoinKind.Inner),
IndexColumnAdded =
Table.ExpandTableColumn(JoinedDateTable,"Year-Mo Index",{"YearMonthIndex"},{"Year Month Number"})
in IndexColumnAdded

The date dimension query from the previous example (# "M Date Query") is
joined to the three column tables:

See Chapter 2, Accessing and Retrieving Data, for examples and details on
the Table.NestedJoin() and Table.Join() functions

Only this query with the new date intelligence column (Year Month Number) needs to
be loaded to the data model
Disable the load for the other query in the join, but it must continue to refresh to
support the retrieval
The Year-Mo column (that is, 2016-Dec) can now be sorted by the Year Month Number
column in the data model and DAX measures can reference the Year Month Number
column (that is, 96) to apply date intelligence filter conditions such as the
trailing 6 months. See the Configuring default summarization and sorting
recipe in Chapter 3, Building a Power BI Data Model for additional details on
default sorting.

How it works...

Date dimension M query
The AdWorksProd source variable is a Sql.Database() function containing the server
and database names
The DateTime.LocalNow() function is used in dynamic M date logic, similar to the
CURRENT_TIMESTAMP function used in SQL statements

DirectQuery support
The Table.AddIndexColumn() function used in this recipe is not currently supported in
DirectQuery mode for SQL Server

The full M query from the date dimension M query section of this recipe cannot be
used in DirectQuery data models

Since the data access queries defining the dimension and fact tables
in DirectQuery models are executed at run time, these queries should
be as simple as possible. For example, these queries should avoid
joins, derived tables, subqueries, data type conversions, case
statements, and so on. Simple, performant or optimized queries are
especially important for the queries used to access the largest tables
of the model. To ensure sufficient performance in Power BI with
DirectQuery models, large source tables of DirectQuery models
should be optimized for read performance with features such as the
Columnstore Index of SQL Server and table partitions.

Authoring date intelligence metrics
across granularities
With a complete date dimension table in place, date intelligence measures can be
developed to support common requirements, such as Year-to-Date, Year-over-Year, and
rolling history, as well as more complex, context-specific behaviors. The date
intelligence patterns described in this recipe are applicable to both standard and non-
standard financial calendars as they leverage fundamental DAX functions and the
sequential date intelligence columns created earlier in this chapter.

This recipe includes examples of core Year-to-Date and Prior Year measures, as well as
a more advanced dynamic prior period measure that adjusts to all grains of the date
dimension.

Getting ready
1. Plan for a standard measure naming convention to identify the date intelligence

logic, such as Sales (PYTD):
Symbol characters, such as currency ($) or percentage (%), can also help
users browse the measures

2. Document the types of date intelligence measures to be implemented and for
which measures of the model.

3. Create a date intelligence measure matrix for documentation and to support
communication with stakeholders:

Date Intelligence Measure Matrix

Conduct reviews and/or QA testing with business users to validate
the logic, and walk through use cases in report design. Given the
volume of new measures to be developed, it's best to receive business
approval for one or two measures prior to applying the date
intelligence logic to other measures.

How to do it...

Current time period measures
1. Open the Power BI Desktop model locally and create Year-to-Date, Period-to-Date,

and Week-to-Date measures:

Internet Sales (YTD) = CALCULATE([Internet Sales], FILTER(ALL('Date'),
'Date'[Calendar Year] = MAX('Date'[Calendar Year]) && 'Date'[Date] <= MAX('Date'[Date])))

Internet Sales (MTD) = CALCULATE([Internet Sales], FILTER(ALL('Date'),'Date'[Calendar Year Month Number] = MAX('Date'[Calendar Year Month Number]) && 'Date'[Date] <= MAX('Date'[Date])))

Internet Sales (WTD) = CALCULATE([Internet Sales], FILTER(ALL('Date'),'Date'[Calendar Year Week Number] = MAX('Date'[Calendar Year Week Number]) && 'Date'[Date] <= MAX('Date'[Date])))

Each measure expression sets an "equal to" condition on the column
representing the intended granularity and this column respects the
filter context of the report query via MAX(). If the source query to the
date table is filtered to only retrieve dates equal to or less than the
current date, these measures will default to the current year, month
(or period), and week when added to reports.

Note that the Calendar Year Month Number and Calendar Year Week Number
columns should be sequentially increasing integers per the Building
a complete date dimension table recipe earlier in this chapter. For
example, the Calendar Year Month Number column may have the values 96
and 97 for the months of December in 2016 and January in 2017,
respectively.

DAX includes a full set of Time Intelligence functions, such as DATESYTD() and
SAMEPERIODLASTYEAR(), which, given a standard (Gregorian) calendar, can compute the
same values as the expressions in this recipe. Although these functions generally
improve readability relative to the examples in this recipe, the use (and knowledge)
of core DAX functions, such as FILTER() and ALL(), is necessary when working with
non-standard calendars, such as fiscal calendars and more complex scenarios.

Prior time period measures
1. Create Prior Year (PY), Prior Year to Date (PYTD), and Prior Month to Date (PMTD)

measures:

Internet Sales (PY) = CALCULATE([Internet Sales],FILTER(ALL('Date'), 'Date'[Date] >= MIN('Date'[Prior Calendar Year Date]) && 'Date'[Date] <= MAX('Date'[Prior Calendar Year Date])))

Internet Sales (PYTD) = CALCULATE([Internet Sales], FILTER(ALL('Date'),'Date'[Calendar Year] = MAX('Date'[Calendar Year])-1 && 'Date'[Date] <= MAX('Date'[Prior Calendar Year Date])))

Internet Sales (PMTD) = CALCULATE([Internet Sales],FILTER(ALL('Date'),'Date'[Calendar Year Month Number] = MAX('Date'[Calendar Year Month Number])-1 && 'Date'[Date] <= MAX('Date'[Prior Calendar Month Date])))

Applying both the MIN() and MAX() filter conditions against the prior date columns
selects the corresponding date ranges.
Subtracting a value (1 in this example) from MAX() of the column shifts the
selected time period backwards.
Growth or variance measures which calculate the difference between the current
time period value of a measure to a prior time period such as Year-over-Year
(YOY) Growth can be created with new measures which subtract the previous
time period measure from the current period measure. Additional growth or
variance measures expressed in percentages can use the DIVIDE() function for
computing this difference as a percentage of the previous time period value.

Internet Net Sales (YOY YTD) = [Internet Net Sales (CY YTD)] - [Internet Net Sales (PY YTD)]

Internet Net Sales (YOY YTD %) = DIVIDE([Internet Net Sales (YOY YTD)],[Internet Net Sales (PY YTD)])

Prior period date columns allow the prior time period measures to
apply simple filter expressions relative to the active date filter
context down to the individual date granularity. In the absence of
these columns and for period or month level date tables, measure
filter conditions can be written as follows:

Prior Year (PY) = 'Date'[Calendar Year Month Number] = MAX('Date'[Calendar Year
Month Number]) - 12)
Prior Month (PM) = 'Date'[Calendar Year Month Number] = MAX('Date'[Calendar Year
Month Number]) - 1)

Dynamic prior period measure
1. Build logic into date intelligence measures to account for alternative subtotal

filter contexts, such as when a prior period measure is calculated in a yearly,
quarterly, or weekly subtotal context:

Internet Sales (Prior Period) = VAR Periods = DISTINCTCOUNT('Date'[Calendar Year Month Number])
RETURN SWITCH(TRUE(),
HASONEVALUE('Date'[Date]),CALCULATE([Internet Sales],FILTER(ALL('Date'),'Date'[Date] = MAX('Date'[Date])-1)),
HASONEVALUE('Date'[Calendar Year Week Number]),CALCULATE([Internet Sales],FILTER(ALL('Date'),'Date'[Calendar Year Week Number] = MAX('Date'[Calendar Year Week Number])-1)),
 CALCULATE([Internet Sales],FILTER(ALL('Date'),
 'Date'[Calendar Year Month Number] >= MIN('Date'[Calendar Year Month Number]) - Periods &&
 'Date'[Calendar Year Month Number] <= MAX('Date'[Calendar Year Month Number]) - Periods)))

The DAX variable (Periods) computes the number of periods in the
current filter context, such as 12 if a year is the subtotal, 3 if it is a
quarter, or 1 for an individual period. Test conditions with
HASONEVALUE() check if a single date or week is selected and return the
corresponding previous day or week, respectively. The remaining date
grains (Year, Quarter, Period) are accounted for by the Periods
variable; this value is subtracted from both the MIN() and the MAX() of
the period number of the given context. This example underscores the
importance of sequential date intelligence columns, for accessing
specific time frames across grains to apply custom filter conditions.

How it works...

Current and prior time period
measures

The FILTER() function iterates each row (a date) to determine which rows are
passed to the CALCULATE() function
The ALL() function removes all existing date table filters, thereby allowing filter
conditions in the measure to access all rows of the date table

Developing advanced date intelligence
metrics
Date intelligence measures are often at the center of the most visible Power BI
reports and dashboards as well as more complex business analyses. Therefore, given
the unique requirements of each organization and BI project, it's important to
understand how to go beyond the standard patterns described in the previous recipe
to efficiently embed custom logic. Additionally, the ability to answer the business
question "When did X occur (or not occur)?" is a powerful supplement to data
models that can be supported via DAX measure logic.

In this recipe, an example is provided of a measure that identifies the dates in which
sales were not recorded for a specific region and product category. In the second
example, a custom Prior Year-to-Date measure is described with default (no filter)
behavior and the exclusion of incomplete periods from the current year.

How to do it...

Count of days without sales
In this example, a new measure must count the days in which the Northwest Sales
region didn't have any online sales for the Bikes product category.

1. Create a measure that counts the rows (days) that don't have corresponding fact
table rows given the conditions

Days Without Northwest Bike Sales =
COUNTROWS(FILTER('Date', ISEMPTY(CALCULATETABLE('Internet Sales',
FILTER(CROSSJOIN(ALL('Sales Territory'),ALL('Product')),'Sales Territory'[Sales Territory Region] = "Northwest" && 'Product'[Product Category] = "Bikes")))))

Any existing filters on the Product and Sales Territory tables are
removed via CROSSJOIN() of the ALL() functions. The Internet Sales fact
table is then filtered for the Northwest region and the Bikes category,
and ISEMPTY() is applied for each date in the filter context. Only the
dates with no rows are returned by FILTER() to be counted.
The use of CROSSJOIN() is necessary to remove filters on columns from
separate tables of the model. A single ALL() function can be used to
remove one or more columns from the filter context of a single table
such as ALL('Product'[Product Color],'Product'[Product Class]).

2. Create Power BI report visuals to analyze the measure:

With a Page level filter for the current year, the measure identifies the 13 days in 2017 in which the Northwest
region didn't generate any Bike sales

The date attribute column can be drilled into from higher level trend visuals or
detail reports at the date level can be designed with visual level filters applied
to the new measure, such as [Measure] is greater than or equal to 1

Dynamic Prior Year-to-Date
In this Prior Year-to-Date example, which is at the monthly grain, the business
requirements are as follows:

Filter the prior year by only the completed periods of the current year (only
compare completed against completed)
Calculate the Prior Year-to-Date value (completed periods only) automatically
without any date columns in the report
Return a blank if the current period, which is incomplete, is selected in report
visuals

1. Create a measure with multiple pairs of conditions and results to account for the
filter contexts and requirements:

Sales (PYTD-Custom) =
SWITCH(TRUE(),NOT(ISCROSSFILTERED('Date')),
 CALCULATE([Internet Sales],FILTER(ALL('Date'),'Date'[Calendar Year] = MAX('Date'[Calendar Year])-1 && 'Date'[Calendar Month Number] <= [Last Complete Month])),
 HASONEVALUE('Date'[Calendar Year Month Number]) && MAX('Date'[Calendar Year Month Number]) > [Last Complete Period],BLANK(),
 HASONEVALUE('Date'[Calendar Year Month Number]) && MAX('Date'[Calendar Year Month Number]) <= [Last Complete Period],
 CALCULATE([Internet Sales],FILTER(ALL('Date'),'Date'[Calendar Year] = MAX('Date'[Calendar Year])-1 && 'Date'[Calendar Year Month Number] <= MAX('Date'[Calendar Year Month Number])-12)),
 MAX('Date'[Calendar Year]) = [Current Year],
 CALCULATE([Internet Sales],FILTER(ALL('Date'),'Date'[Calendar Year] = [Current Year]-1 && 'Date'[Calendar Month Number] <= [Last Complete Month])),
 CALCULATE([Internet Sales],FILTER(ALL('Date'),'Date'[Calendar Year] = MAX('Date'[Calendar Year])-1 && 'Date'[Calendar Year Month Number] <= MAX('Date'[Calendar Year Month Number])-12)))

DAX Formatter in DAX Studio can be used to improve the readability
of long, complex measures, such as this example. Clicking on Format
Query from the Home tab of DAX Studio isolates functions to
individual lines and applies indentations to inner functions. An
example of using this tool, also available at http://www.daxformatter.com/, is
described in the There's more... section of the Isolating and
documenting DAX expressions recipe in Chapter 11, Enhancing and
Optimizing Existing Power BI Solutions.
The first condition NOT(ISCROSSFILTERED()) handles whether any date
filter has been applied from any date column. The second condition
tests for individual periods that are not yet complete and returns a
BLANK(). The third condition accounts for individual periods prior to or
equal to the last complete period. The fourth condition is specific to
the subtotal of the current year (= [Current Year]); this rule excludes
the incomplete period. All other filter contexts are accounted for in
the final expression--a standard Prior Year-to-Date calculation at the
period grain. See How it works for details on the measures
referenced, such as [Last Complete Month] and [Last Complete Period].

http://www.daxformatter.com/

Custom PYTD measure computes the correct value without any filter (Card visual) and across date hierarchy
levels

Note that a blank is returned for the current period (2017-Jun) per requirements

Remember that the data models created in Power BI can be consumed
in self-service scenarios, such as with Excel pivot tables, and
business users will want or expect the new measures to 'just work'
across filter conditions. However, in a rapid, agile delivery of Power
BI, only the most important or core filter contexts can be
implemented in the first iterations.

How it works...

Dynamic prior period intelligence
By passing TRUE() as the expression parameter to SWITCH(), the first <value>
condition (such as no filters applied) that evaluates to true will result in the
corresponding result expression.
The three measures referenced in the PYTD-Custom measure are simple
LOOKUPVALUE() scalar functions that can be hidden from Report View. Unlike DAX
variables, measures can be re-used by many other measures in the model.

Last Complete Period = LOOKUPVALUE('Date'[Calendar Year Month Number],
'Date'[Calendar Month Status],"Prior Calendar Month")
Last Complete Month = LOOKUPVALUE('Date'[Calendar Month Number],
'Date'[Calendar Month Status],"Prior Calendar Month")
Current Year = LOOKUPVALUE('Date'[Calendar Year],'Date'[Calendar Year Status], "Current Calendar Year")

Simplifying date intelligence with DAX
queries and calculated tables
In addition to the M query transformations described earlier in this chapter, DAX
table functions can also be used in Power BI import mode models to enhance and
simplify date intelligence. DAX queries can access existing tables in the data model,
and the tables evaluated during refresh can be used in relationships and measure
calculations like all other tables. Similar to calculated columns, calculated tables
should be rarely used given the transformation capabilities of M, SQL, and ETL
tools, but can be valuable supplements to models for small tables, such as role
playing date dimensions and bridge tables.

This recipe provides an example of using DAX Calculated Tables to support role
playing date dimensions. Additionally, a single row table is created via DAX to
simplify common date intelligence measures.

How to do it...

Role playing date dimensions via
calculated tables

1. Open a Power BI Desktop import mode model locally.
2. From Report View, click on New Table from the Modeling tab.
3. In the formula bar, assign a name to the date dimension table, such as Shipment

Dates:
Use the SELECTCOLUMNS() function to retrieve date columns from the existing
date dimension table:

Shipment Dates = SELECTCOLUMNS('Date',
"Shipment Date", 'Date'[Date], "Shipment Year", 'Date'[Calendar Year],
"Shipment Month", 'Date'[Calendar Month], "Last Refreshed", NOW())

4. Per the example, apply column aliases (Shipment ...) to avoid confusion with
other date tables in the model.

5. Optionally, use additional DAX functions, such as NOW(), to enrich the new table
with additional or modified columns.

6. From the Data View, apply any necessary metadata changes, such as Sort by
Column and Default Summarization:

Data View of Calculated Table

7. From the Modeling tab, click on Manage Relationships and select New.
8. Create a relationship between the new date table and the fact table based on the

date column (date data type).

The model now has two date dimension tables with active
relationships to the fact table; order date and shipment date in this
example. Generally, when role playing date dimensions are used,
aliases are applied to all tables and columns, thus requiring the date
table and its columns to be renamed as Order Dates. However, if the new
role playing date tables will be rarely used, then aliases may only be
necessary for these tables.

Date table logic query
One option to further simplify date intelligence measures is to embed a calculated
table in a model that generates values frequently used as filter conditions.

1. Identify the target columns (filter conditions) of the table and test DAX
expression logic to compute these scalar values.

Using DAX Studio connected to the Power BI Desktop model may be
helpful for more complex table queries and measures. Similar to the
Date table in this example, the ROW() function with a calculated table
is also useful for storing model metadata, such as table row counts
and the number of blank or null values in columns.

2. From the Modeling tab in Power BI Desktop, click on New Table and enter the
DAX query:

Date Parameters =
VAR Today = TODAY()
VAR CurrentFiscalYear = LOOKUPVALUE('Date'[Fiscal Year], 'Date'[Date],Today)
VAR FiscalYearPeriodSort = LOOKUPVALUE('Date'[Fiscal Yr-Period Sort], 'Date'[Date],Today)
VAR FiscalYearQtrSort = LOOKUPVALUE('Date'[Fiscal Yr-Qtr Sort], 'Date'[Date],Today)
RETURN
ROW
("Last Refreshed", NOW(),"Today", Today,"30 Days Prior", Today - 30,"90 Days Prior",Today - 90,
"Current Fiscal Year", CurrentFiscalYear, "Prior Fiscal Year", CurrentFiscalYear-1,
"Current Fiscal Year-Period",
LOOKUPVALUE('Date'[Fiscal Yr-Period],'Date'[Fiscal Yr-Period Sort],FiscalYearPeriodSort),
"Prior Fiscal Year-Period",
LOOKUPVALUE('Date'[Fiscal Yr-Period],'Date'[Fiscal Yr-Period Sort],FiscalYearPeriodSort-1),
"Current Fiscal Yr-Qtr",
LOOKUPVALUE('Date'[Fiscal Yr-Qtr],'Date'[Fiscal Yr-Qtr Sort],FiscalYearQtrSort),
"Prior Fiscal Yr-Qtr",
LOOKUPVALUE('Date'[Fiscal Yr-Qtr],'Date'[Fiscal Yr-Qtr Sort],FiscalYearQtrSort-1))

3. Hide the parameters table from the Report view.

Sample of the Single Row Table ('Date Parameters') Created via the DAX Calculated Table Query

4. Create date intelligence measures which leverage the values stored in the
calculated table:

Current Period Internet Sales = CALCULATE([Internet Sales],
'Date'[Fiscal Yr-Period] = VALUES('Date Parameters'[Current Fiscal Year-Period]))
Last 90 Days Sales = CALCULATE([Internet Sales],'Date'[Date] >= VALUES('Date Parameters'[90 Days Prior]))

How it works...

Date table logic query
The Sort' columns referenced by the LOOKUPVALUE() functions are sequential
surrogate key columns
Variables are computed based on the TODAY() function and used to simplify the
column expressions
VALUES() retrieves the single value from the table for comparison to the
corresponding date dimension column in the filter condition of CALCULATE()

Adding a metric placeholder dimension
As date intelligence and other measures are added to a data model, it becomes
necessary to organize measures into dedicated measure group tables in the Fields list.
These tables, displayed with calculator symbols at the top of the Fields list, make it
easier for users and report developers to find measures for building and modifying
Power BI reports. The Setting the visibility of columns and tables section of Chapter
3, Building a Power BI Data Model briefly introduced the concept of measure group
tables in the How it works... section, but didn't specify the process to implement these
objects.

This recipe provides step-by-step guidance for a method of implementing measure
group tables that works with both DirectQuery and Import data models.

How to do it...

Metric placeholder dimension query
1. Open the Power BI Desktop model file locally (Import or DirectQuery modes).
2. From Report View, click on the Edit Queries icon on the Home tab to open the

Query Editor.
3. Select an existing query in the Queries pane on the left, right-click the query, and

select Duplicate.
4. With the duplicated query selected, enter a name, such as Date Intelligence, in the

Query Settings pane on the right.
5. Click on the Advanced Editor icon on the Home tab and revise the M expression

as follows:

let
 Source = AdWorksProd,
 DateIntelligence = Value.NativeQuery(Source,"Select 1 as Dummy")
in
 DateIntelligence

The Value.NativeQuery() function passes a T-SQL statement against the database
specified by the AdWorksProd query

The AdWorksProd query used as the source of the Value.NativeQuery()
function contains the server and database names in a Sql.Database()
function. See Chapter 2, Accessing and Retrieving Data for detailed
examples of isolating source system information from individual
queries.

If Require user approval for new native database queries is set in the Global
Security options, a warning will appear, advising that permission is required to
run the new query

6. Click on the Edit Permission button and then click on Run to authorize the new
native database query.

7. Right-click the query and disable Include in Report Refresh.
8. Enable load is needed but as a measure placeholder there's no reason to run the

query during refresh.
9. Click on Close and Apply from the Home tab of the Query Editor.

Measure group table
1. From the Report View, right-click the column from the new table created earlier

(Dummy) and select Hide.
2. With the only column of the table hidden, the table will not be visible in the

Fields list.
3. Select a date intelligence measure in the Fields list.
4. With the measure selected, click on the Modeling tab and change the Home

Table of the measure to date intelligence:

Measure Home Table Setting

5. Click on the Show/Hide pane arrow above the search box to refresh the Fields
list:

Show/Hide arrow refreshes Fields List

With only measures of a table visible, the table will be moved to the top of the
Fields list with a calculation icon:

Date Intelligence measure group table moved to the top of the Fields list and updated with a calculator icon

6. Optionally, add more measure tables and re-assign the Home Table of measures
to better organize the Fields list.

Per Chapter 3, Building a Power BI Data Model, the Display Folders feature of
SQL Server Analysis Services (SSAS) isn't currently available for Power BI

Parameterizing Power BI Solutions
In this chapter, we will cover the following recipes:

Creating dynamic and portable Power BI reports
Filtering queries with parameters
Preserving report metadata with Power BI templates
Converting static queries into dynamic functions
Parameterizing your data sources
Generating a list of parameter values via queries
Capturing user selections with parameter tables
Building a forecasting process with What if analysis capabilities

Introduction
With the foundation of a Power BI deployment in place, components of the data
retrieval and report design processes, as well as the user experience, can be
parameterized to deliver greater flexibility for both IT and users. For example, query
parameters can isolate and restrict data sources to support changing source systems,
templates can enable parameterized report development against pre-defined
metadata, and M and DAX functions can deliver custom integration and analytical
capabilities.

The recipes in this chapter cover both standard parameterization features and
techniques in Power BI as well as more advanced custom implementations.
Examples of parameterizing data sources, queries, user-defined functions, and
reports further express the power of the M language and its integration with other
Power BI Desktop features. Additional examples, such as URL-based parameter
filters, a dedicated forecasting or What if? tool, and user selection parameter tables,
utilize both the transformation and analytical features of Power BI, to empower users
with greater control over the analysis and visualization of Power BI data models.

Creating dynamic and portable Power
BI reports
In addition to the report filter options in Power BI Desktop, covered in Chapter 4,
Authoring Power BI Reports, filters can also be applied to published Power BI
reports via the URL string. Rather than multiple, dedicated reports and report pages
with distinct filter conditions, URL links with unique query strings can leverage a
single published report in the Power BI Service. Additionally, URL links can be
embedded within a dataset such that a published report can expose links to other
reports with a pre-defined filter condition.

In this recipe, two URL strings are created to demonstrate single and multiple filter
parameter syntax. The second example creates a URL string for each row of the
Product dimension table via an M query and exposes this dynamic link in a report
visual.

Getting ready
1. Identify the tables and columns that will be used for the URL filtering and, if

necessary, create hidden tables and/or columns with no spaces.

Table and field names in URL query parameters cannot have any
spaces. Therefore, since it's a best practice to include spaces in
column names for usability, creating new columns and/or tables is
often necessary to enable URL filtering.

In this example, the Product Category and Calendar Year Status columns from the
Product and Date dimension tables are to be used for the URL filters

How to do it...

Single and multiple URL parameters
1. Add columns to the Product and Date dimension queries that don't contain spaces:

let Source = AdWorksProd,
FinDate = Source{[Schema = "BI", Item = "vDim_FinDate"]}[Data],
CalYearStatusColumn = Table.AddColumn(FinDate, "CalendarYearStatus", each [Calendar Year Status], type text)
in CalYearStatusColumn

An additional M expression with the Table.AddColumn() function creates a column
in each dimension table query that doesn't contain spaces (for example,
CalendarYearStatus)

This additional column can also be created in the SQL view accessed
by the M query. If rights to the source SQL view are available, this is
where the new column should be added.

2. From the Data View in Power BI Desktop, right-click the new columns and
select Hide in Report View.

URL filters can be applied to any column in the data model that is of
a text data type. The column doesn't have to be visible in the Fields
list or used in one of the Filtering field wells in Report view to be
used in a URL filter.

3. Create a report connected to a published Power BI dataset that is impacted by
filters applied on the new columns.

The Product Subcategory visual (left) will update to reflect the URL filter selections
for the new product category column (with no spaces). Likewise, the Calendar Yr-
Qtr visual (right), will be impacted by the URL filter selection of the new calendar
year status column created in step 1 (for example, Current Year):

Total Net Sales by Product Subcategories and Quarters Without Any URL Filter Applied

Published datasets are available as sources for new Power BI reports
from the Power BI service connection within the Online Services
category of the Get Data interface. The new report will not contain
filter conditions; filters will be applied via URL.

4. Publish the report to the Power BI Service.
5. Open the report in the Power BI Service and copy the full URL to a text editing

application.
6. Append filter condition syntax at the end of the URL, as follows:

...ReportSection2?filter=Product/ProductCategory eq 'Bikes'

The syntax is <Report URL>?filter=Table/Field eq 'value'. The table and
field names (without spaces) are case sensitive and the 'value' must be
enclosed in single quotes.

7. Open a new browser tab or page and paste the updated URL to observe the
report filtered by the single URL condition.

8. To apply multiple URL filter parameters, separate the column filters with an and
operator, as in the following example:

...ReportSection2?filter=Product/ProductCategory eq 'Bikes' and Date/CalendarYearStatus eq 'Current Calendar Year'

The report will respect the URL filters to only show the Bikes product subcategories
and the Current Calendar Year quarters:

Filtered Power BI report via URL Parameters: Product Category = 'Bikes' and Calendar Year Status = 'Current
Calendar Year'

Multiple URL strings can be created and then distributed to business
users or teams such that filters relevant to the given user or team are
applied via the URL and not in the report itself.

Dynamic embedded URLs
1. Create a column in the product table M query that contains the URL to a report

and a filter for the given product name:

Table.AddColumn(ProdNameColumn, "Product URL", each
"https://app.powerbi.com/groups/...../ReportSection" & "?filter=Product/ProductName eq " & "'" & [Product Name] & "'", type text)

First, a new hidden column with no spaces (ProductName) is created to
be used by the URL filter, like the first example in this recipe.
Multiple ampersand symbols are then used within a Table.AddColumn()
function to concatenate the string values to meet the required URL
filter syntax.

The end of the Product URL column for the 'BB Ball Bearing' product appears
as follows:

Query Preview of the new 'Product URL' column created in the M Query

2. Hide the single space column and click on Close and Apply to load the Product
URL column to the data model.

3. Select the new column in the Data View and set the data category to Web URL.
4. In the Report view, create a table visual with the product name, measures, and

the Product URL column.
5. With the table visual selected, go to the Format pane and enable the URL icon

setting under Values:

Product URL Column Exposed in Table Visual

With the product-specific URL filter column added to the report, the
user can select the icon to navigate to a detailed product report that
would be filtered for the given product.

There's more...

Dashboards with custom URLs
A report visual from a custom URL with a query string can be pinned to a
dashboard and the dashboard tile will reflect the filter condition in refreshes.
However, by default, selecting the pinned dashboard tile will navigate to the
unfiltered source report.
The custom URL can be associated with a dashboard tile to control the
dashboard navigation:

Custom URL Link for a Power BI Dashboard Tile

In the future, the Power BI team may remove the requirement for
table and column names without spaces. In the interim, given the
additional resources required of the new column(s), try to limit the
columns to those with few distinct values. Additionally, a single
hidden column with no spaces can be created based on the
concatenation of multiple columns to simplify the URL strings.

See also
Power BI Documentation on Report URL Query String Filters at http://bit.ly/2s5hXSW

http://bit.ly/2s5hXSW

Filtering queries with parameters
Parameters are a primary component in building flexible, manageable query retrieval
processes, as well as enabling simple filter selections. Hard coded values in queries
can be replaced with parameters and a single parameter can be leveraged by multiple
queries, thus reducing development time and maintenance. Additionally, parameters
can be assigned data types to match data sources and can be easily adjusted via lists
of predefined values, both in the Query Editor and in the Report View.

In this recipe, a parameter is used to filter a fact table query for a specified number
of days relative to the current date. An additional, more advanced example is shared
to apply parameters to a fact table query on both a dimension column as well as a
date range.

Getting ready
1. Identify candidates for query parameters, such as hard coded date filters and

dimension attributes with few distinct values (for example, department groups).
2. Identify scenarios in which certain business users or teams require edit rights to

a dataset (that is, source queries, model relationships, and measures), but only
need a small, highly filtered model for self-service development.

Per Chapter 4, Authoring Power BI Reports, Power BI reports can be
developed against published datasets hosted in the Power BI service.
In the event that new metrics are required for a report, these DAX
measures can be added to the source dataset and used in these
reports once the dataset is re-published to the Power BI service.
Alternatively, and particularly for rare or very narrow use cases,
DAX measures can be created specific to a given Power BI report and
not added to the source dataset.

Providing a separate, business team-controlled dataset for report
development can increase version control risks and manageability
costs. Minimizing the number of datasets, avoiding overlapping
datasets, and maintaining central control of M and DAX logic is
recommended to promote consistent, efficient Power BI projects.

How to do it...

Trailing days query parameter filter
1. Open a Power BI Desktop file locally and access the Query Editor by clicking

on Edit Queries from the Home tab.
2. Create a blank query to retrieve the current date via the following M expression:

The Current Date is returned as a Date type

Name the new query CurrentDate and disable its load to the data model

3. From the Home tab of the Query Editor, click on the Manage Parameters
dropdown and select New Parameter:

New Parameter Created for Filtering Fact Table Queries

4. Give the query a name, a data type, and, for this example, enter a list of
suggested values:

Values outside this suggested list can also be applied to the parameter

when necessary
5. Based on the List of values, enter a Default Value and Current Value.

6. Create a new blank query that computes a date value based off the CurrentDate
query and the new parameter:

let MyDate = Date.AddDays(CurrentDate,- #"Days Prior to Current Date")
in MyDate

In this example, a date 30 days prior to the current date is returned based on the
default parameter value:

Name this query StartDate

7. Add a filtering step (expression) to the fact table query that references the
CurrentDate and StartDate queries:

let Source = AdWorksProd,
ISales = Source{[Schema = "BI", Item = "vFact_InternetSales"]}[Data],
RowFilter = Table.SelectRows(ISales, each [Order Date] >= StartDate and [Order Date] <= CurrentDate)
in RowFilter

Table.SelectRows() filters the sales table order date for greater than or equal to the
StartDate (a date value)

8. Click on Close & Apply from the Home tab of the Query Editor.
9. Optionally, build a report or query against the refreshed fact table to validate the

filter.
10. From the Home tab of the report view, click on the Edit Queries dropdown and

select Edit Parameters:

Edit Parameters from Report View

11. Either select a suggested value from the dropdown menu or enter a number in
the input box and click on OK.

12. Click on Apply Changes from the warning dialog. The StartDate and the fact table
queries impacted by the parameter change will both be refreshed.

Multi-parameter query filters
In this example, the goal is to filter the fact table by both a time frame (start and end
dates) as well as a dimension:

1. From a Power BI Desktop file, open the Query Editor and click on New
Parameter from the Manage Parameters dropdown.

2. Create a parameter for the Sales Territory Group with a text data type:

3. Name the parameter Territory Group and enter the names (North America, Europe, or
Pacific) as Suggested Values.

4. Create a new query (from a blank query) that selects the unique key values
associated with this dimension:

let ParamFilter = Table.SelectRows(#"Sales Territory", each [Sales Territory Group] = #"Territory Group"),
KeyColumn = Table.Distinct(Table.SelectColumns(ParamFilter,{"SalesTerritoryKey"}))
in KeyColumn

The existing Sales Territory dimension table is filtered by the Territory Group
parameter value.
Only the key column used in the relationship with the fact table is selected and
Table.Distinct() removes any duplicate values. Name this query ParamTerritoryKey.

5. Within the sales fact table query, create an inner join expression step against the
new ParamTerritoryKey query:

SalesTerritoryJoin = Table.Join(ISales,"SalesTerritoryKey",ParamTerritoryKey,"SalesTerritoryKey",JoinKind.Inner),

6. Create two new parameters with a Date data type: Starting Week End Date and Ending
Week End Date:

For now, Any value can be used for the Suggested Values property
7. Finally, add a filtering expression to the sales fact table query that reflects both

date parameter values:

RowFilter = Table.SelectRows(SalesTerritoryJoin,
each [Order Date] >= #"Starting Week End Date" and [Order Date] <= #"Ending Week End Date")

Note that the RowFilter variable references the SalesTerritoryJoin variable from step 5.
At this point, the internet sales fact table query must respect both the sales territory
parameter (via inner join) and the two date parameters. Both operations, the join and
the filter, are merged into a single SQL statement and executed by the source database
per the How it works... section.

The parameter values, optionally submitted from a template, are passed into the
M query retrieval process:

Timeframe and Territory Group Parameters from Report View

8. Per the prior example, modify the values and click on Apply Changes to refresh
the queries and validate the parameters.

How it works...

Query folding of parameter value
filters

Both the join and the filter conditions applied via parameter values in these
examples are converted into SQL statements for processing by the source
database.
Click on View Native Query on the final step or expression of the sales fact
table query to view the SQL statement:

SQL Query generated by by the Multi-Parameter Query Filters example

There's more...

Power BI Service support
Currently, parameters cannot be created or edited in the Power BI service
The parameter values configured when published will be used for each refresh

Preserving report metadata with Power
BI templates
Power BI templates can be created from Power BI Desktop files as a means of
providing users and other report authors with access to pre-defined metadata such as
M queries, DAX measures, model relationships, and report visualizations. As the
template files do not contain actual data, they're very lightweight and, for import
mode models, data is only retrieved when the template is opened. Additionally, if
query parameters have been configured, a user interface is provided for entering
parameter values and these parameters can be integrated with the source queries and
other components of the dataset.

In this recipe, a parameter and supporting query is added to a Power BI Desktop file
to support the distribution of a Power BI template.

Getting ready
Per the previous recipe's Getting ready section, distributing templates can introduce
version control and manageability issues. Therefore, prior to designing parameters
and creating templates, confirm that the report authoring capabilities of Power BI
Desktop against a published dataset in Power BI is insufficient. If insufficient,
identify the modifications that users need to implement, such as additional data
sources or query transformations, and consider if these changes can be implemented
in the existing dataset.

1. Identify the scope and goals of the templates, such as the years of data and
specific dimensions needed:

Parameters will be designed based on these requirements to retrieve the
minimum amount of data needed

How to do it...
In this example, the goal is to provide Power BI templates that retrieve a maximum of
two years of sales data relative to the current date, and that only retrieve data for a
single customer country.

Template parameters
1. Open the Power BI Desktop file and click on New Parameter from the Manage

Parameters dropdown in the Query Editor.
2. Create a date type parameter with the name Start Date and a text parameter

named Customer Country.
3. Both parameters should be Required, and the Suggested Values property can be

left at Any value:
Enter a valid current value for each parameter

4. Create a query for the customer key values that references the Customer Country
parameter:

Name this query CustomerCountryKeys and disable the load:

let CountryParamFilter = Table.SelectRows(Customer, each [Country] = #"Customer Country"),
CustomerKeys = Table.SelectColumns(CountryParamFilter, {"CustomerKey"})
in CustomerKeys

Since the CustomerKey column is the surrogate key used in the customer
to sales relationship, it's not necessary to apply any transformations
to remove duplicates, as each value is already unique.

5. Create a query that returns a list of the unique customer countries:

let CountriesList = Customer[Country],
DistinctCountriesList = List.RemoveNulls(List.Distinct(CountriesList))
in DistinctCountriesList

Disable the load for this query

6. Click on Manage Parameters and associate this query with the Suggested Values
for the Customer Country parameter.

7. Create a query to return the date from two years prior to the current date. Name
this query TwoYearsPriorToToday:

Date.AddYears(CurrentDateQry,-2)

The CurrentDateQry referenced is defined as follows:

DateTime.Date(DateTime.LocalNow())

Disable the load for this query

8. Create a list query that returns the week ending dates later than or equal to the
query TwoYearsPriorToToday:

let DateFilter = Table.SelectRows(Date, each [Calendar Week Ending Date] >= TwoYearsPriorToToday),

DistinctList = List.Distinct(DateFilter[Calendar Week Ending Date])
in DistinctList

9. Associate this query with the Suggested Values of the Start Date parameter and
disable its load.

10. Modify the internet sales fact table query to respect the parameter selections:

let Source = AdWorksProd,
ISales = Source{[Schema = "BI", Item = "vFact_InternetSales"]}[Data],
 CustomerKeyJoin = Table.Join(ISales, "CustomerKey",CustomerCountryKeys,"CustomerKey",JoinKind.Inner),
 OrderDateFilter = Table.SelectRows
(CustomerKeyJoin, each [Order Date] >= #"Start Date" and [Order Date] <= CurrentDateQry)
in OrderDateFilter

An inner join of the view used to load the Internet Sales fact table with the
CustomerCountryKeys query in effect filters the internet sales rows by the country
parameter. For example, a parameter selection of United States will filter the
CustomerCountryKeys query to only include these customer rows and the inner join to
this filtered query will remove internet sales rows associated with other
customer countries.
The Start Date parameter is passed to the Table.SelectRows() function to apply the
additional parameter filter.

11. Right-click the final variable step (OrderDateFilter) of the internet sales query and
select View Native Query:

Native Query of Parameterized Internet Sales Query

The inner join and the Where clause of the SQL statement both implement
the parameter steps added to the M query. The United States value reflects
the current value of the Customer Country parameter.

12. Click on Close and Apply and return to the Report View.
13. Use the Edit Parameters option of the Edit Queries dropdown to validate the

lists of parameter values and the filters.
14. Save the Power BI Desktop file (.pbix).

Export template
1. From the File menu of Report View, select Export to Power BI template.
2. Optionally, give the template a description describing the parameter logic.
3. Choose a folder path for the template (.pbit).
4. Open the template file to observe performance, file size, and confirm that all

required tables of the model are retrieved:

Parameter Dialog when opening the Power BI template (.PBIT)

5. Click on Load and save the file as a new Power BI Desktop (.pbix) file.

Converting static queries into dynamic
functions
In addition to the standard library of functions available to M queries, user defined
functions can be created to encapsulate the logic of queries for dynamic application
against parameter inputs. Similar to SQL stored procedures, M functions can be
created with or without input parameters and these parameters can be required or
optional. Additionally, as functions are values in the M language, just like table and
list values, they can be invoked on demand and in multiple areas within a given
Power BI data model.

In this recipe, a function is created to support the integration of a list of employee IDs
maintained outside the data warehouse environment. The function accepts the
employee ID values as parameter inputs and retrieves related column values.

How to do it...
In this example, a business team maintains a list of employee IDs in an Excel
workbook and wants the ability to access several columns from the employee
dimension table in the data model related to these IDs.

1. Create an M query that retrieves the employee IDs from the Excel workbook:

let Source = Excel.Workbook(File.Contents("J:\Finance\TeamFiles\EmployeeIDs.xlsx"), null, true),
ExcelTable = Source{[Item="EmployeeTbl",Kind="Table"]}[Data],
TypeConversion = Table.TransformColumnTypes(ExcelTable,{{"Employee Alternate Key", type text}}),
RemoveNullsAndDuplicates = Table.Distinct(Table.SelectRows(TypeConversion, each [Employee Alternate Key] <> null))
in RemoveNullsAndDuplicates

The employee IDs are stored in an Excel table object (Kind="Table") for easier
access from external applications
Three M transformation functions are applied to protect the integration process:
a data type conversion to text, the removal of any null values, and the removal of
any duplicates

2. Name this query EmployeeKeysAdHoc and disable its load to the model.

Data cleansing operations are always recommended when importing
from files and unstructured data sources. Additionally, per the
Parameterizing your data sources recipe in this chapter, parameters
can be created and substituted for the folder path and the name of the
Excel workbook file.

3. Create a function that retrieves the required Employee column values for a given
Employee ID input parameter:

(EmployeeCode as text) =>
let EmployeeDimFilter = Table.SelectRows(Employee,
each [Employee Alternate Key] = EmployeeCode and [Employee Row End Date] = null),
EmployeeColumnSelection = Table.SelectColumns
(EmployeeDimFilter, {"Employee Name", "Employee Department", "Employee Email Address"})
in EmployeeColumnSelection

The EmployeeCode parameter is first defined as a required text type input parameter.
The parameter is then used in the EmployeeDimFilter expression as part of a
Table.SelectRows() filtering function.

Given that the Employee table has a Type 2 slowly changing
dimension logic applied with multiple rows possible per employee,
it's necessary to filter for the current employee row per the
EmployeeDimFilter variable expression ([Employee Row End Date = null]).

Setting this filter condition ensures that only the current or 'active'
row (no end date) for the employee is returned.

Slowly changing dimension logic that inserts and/or updates rows for
core dimensions such as products and employees as these entities
change is an essential feature of data warehouses. Power BI dataset
designers must be aware of this logic as represented in dimension
columns such as surrogate keys and alternate or business keys and
develop M and DAX expressions accordingly.

With the filters applied, a simple Table.SelectColumns() is used to retrieve the three
required columns

4. Name this function EmployeeDetailFunction. A formula icon in the Query Editor will
identify the value as a function.

5. Create a new blank query that references the query EmployeeKeysAdHoc created in the
first step of this recipe:

Name this new query EmployeeIDLookup

6. Add an expression that invokes the EmployeeDetailFunction in a Table.AddColumn()
function:

The Employee Alternate Key column from the Excel workbook is used as the parameter input to the
EmployeeDetailFunction

A Table value will be returned for each row per the preceding screenshot. Each
table contains columns for the given employee ID from the Excel workbook.

7. Use the Table.ExpandTableColumn() function to expose the three columns from the
EmployeeDetailFunction:

let PassKeysToFunction = Table.AddColumn(EmployeeKeysAdHoc, "FunctionTbl", each EmployeeDetailFunction([Employee Alternate Key])),
ExpandColumns = Table.ExpandTableColumn(PassKeysToFunction, "FunctionTbl",
{"Employee Name", "Employee Department", "Employee Email Address"},
{"Employee Name", "Employee Department", "Employee Email Address"})
in ExpandColumns

Per the M expression code, the EmployeeDetailFunction accepts the values from the
Employee Alternate Key column as its parameter inputs

8. Click on Close and Apply, and build a simple table visual in Power BI to

display the integrated results:

The EmployeeID Lookup Query Loaded to the Model and Visualized via the standard table visual

Changes to the list of employee keys in the Excel workbook will be reflected in
the Power BI report with each refresh

Additional columns and logic can be added to the function and, as the
function is only metadata, it can be used in other data transformation
scenarios, in this model or in other models with access to the Employee
table.

There's more...

Local resource usage
The function in this recipe (Excel-based list) as well as functions applied against
relational database sources that support query folding still requires local resources
of the M engine:

No Query Folding for Invoked M Function

Given local resource usage and the iterative nature of functions, try
to limit or avoid the use of functions against many rows, as well as
functions with complex, multi-step logic. In this recipe, for example,
the list of employees was very small and the function only selected a
few columns from a small dimension table. Since join functions
(Table.Join(), Table.NestedJoin()) and filter expressions are folded back
to relational database sources, design query processes that achieve
the same results as functions, but without row-by-row iterations and
local or gateway resource usage.

Parameterizing your data sources
Parameters can be used to store data source information, such as server and database
names, file paths, filenames, and even input parameters to SQL stored procedures.
With multiple queries leveraging the same M query parameter values, implementing
changes, such as migrations from development or QA environments to production
environments, becomes very straightforward.

Two examples of parameterized data sources are described in this recipe, including
the server and database of an SQL Server database and the directory path and file
name for an Excel workbook. Additionally, M query parameters are assigned to the
input parameters of a SQL stored procedure.

Getting ready
1. Identify the components of data sources that are subject to change and, if

available, the list of possible values for these parameters, such as servers,
databases, Windows directories, and filenames.

2. Create a group folder in Power BI Desktop to store parameter values and
related queries:

Query Group of Parameter Values in Query Editor

Queries will reference these query names and the values of each parameter can
be changed by selecting each icon

How to do it...

SQL Server database
1. Create two parameters of text data types, BI Server and BI Database, from the Query

Editor in Power BI Desktop:
Click on New Parameter from the Manage Parameters dropdown on the
Home tab

2. If known, enter the list of alternative values for these parameters:

SQL Database Name Parameter with two Suggested Values

3. Create a new query that accepts the server and database parameters as inputs to
the Sql.Database() function for connecting to SQL Server:

let Source = Sql.Database(#"BI Server", #"BI Database") in Source

4. Name this query AdWorksParam and reference this source query in other queries in
the model, such as Employee:

let Source = AdWorksParam,
Employee = Source{[Schema = "dbo", Item = "DimEmployee"]}[Data] in Employee

5. Alter the value of one of the parameters (Server or Database) to confirm that the
query results change:

Switching Current Value of Database Name Parameter in Query Editor

Per prior recipes in this chapter, a parameter value (of Text type) can also be
entered into the input box

Excel filename and path
1. Create two parameters of text data types, ExcelPlanFolder and ExcelPlanFileName:

The current value of the Excel file parameter should include the extension
(.xlsx), and the current value of the folder should include the complete path
to the Excel file (all subfolders)

2. Create a new query, which merges these two parameters into a single text value.
Name this query ExcelPlanQry:

let ExcelBudget = ExcelPlanFolder & "\" & ExcelPlanFileName
in ExcelBudget

3. Reference the ExcelPlanQry in the query (or queries) used to access the Excel
workbook:

let Source = Excel.Workbook(File.Contents(ExcelPlanQry), null, true),
ExcelBudgetTbl = Source{[Item="BudgetTbl",Kind="Table"]}[Data]
in ExcelBudgetTbl

Any changes to the name of the Excel file or its folder location can now be
applied to the parameters:

Excel Workbook File Parameter Value

Stored procedure input parameters
In this example, a simple stored procedure with two input parameters is used by the
sales fact table query:

CREATE PROC [BI].[spFactInternetSales]
 @orderdatefrom AS DATE,
 @orderdateto AS DATE
AS
SELECT * FROM BI.vFact_InternetSales AS F
WHERE F.[Order Date] BETWEEN @orderdatefrom AND @orderdateto

1. Create two parameters of text data types, OrderDateFrom and OrderDateTo.
2. Enter a current value in the non-ambiguous form YYYY-MM-DD or YYYYMMDD for the DATE

type in SQL Server.
3. Modify the M query used to execute the stored procedure to pass these

parameters from Power BI:

let Source = AdWorksProd,
SalesFactProc = Value.NativeQuery(Source,
"EXECUTE BI.spFactInternetSales @orderdatefrom = "& OrderDateFrom & "," &" @orderdateto = "& OrderDateTo)
in SalesFactProc

Ampersands and double quotes are used to construct a single query string,
inclusive of the parameter values

4. Change the Current Value of one or both of the input parameters and grant
approval to the new native database query:

Click on Edit Permission and then 'Run' to approve of the revised stored procedure parameters

Per the Filtering queries with parameters recipe, shared earlier in
this chapter, filter (the WHERE clause) parameters defined in M
queries are converted into SQL statements via Query Folding.
Additionally, per Chapter 2, Accessing and Retrieving Data), any
transformations applied after the Value.NativeQuery() function will not
be folded back to the source system.

Generating a list of parameter values
via queries
The parameter values available for selection, such as dates and product
subcategories, can also be parameterized via M queries. This data-driven approach
to parameters exposes the current or relevant values from data sources and avoids
error-prone manual entry, and stale or outdated values.

This recipe includes two examples of query-driven parameter values. One example
retrieves the week end dates from the prior two years and another selects the product
subcategories of a product category.

How to do it...

Dynamic date parameter query
1. In the Query Editor, create a new blank query and name it WeekEndDatesParamList.

2. Reference the existing date dimension query and use standard M functions to
select the week ending date column and the dynamic Calendar Month Status column
described in Chapter 5, Creating Power BI Dashboards and Chapter 6, Getting
Serious with Date Intelligence:

let DateColSelect = Table.SelectColumns(Date,{"Calendar Month Status","Calendar Week Ending Date"}),
DateFilter = Table.SelectRows(DateColSelect,
each [Calendar Month Status] = "Current Calendar Month" or [Calendar Month Status] = "Prior Calendar Month"),
ListOfDates = List.Distinct(DateFilter[Calendar Week Ending Date])
in ListOfDates

The List.Distinct() function is necessary, as only List values (not tables) can be
used by M parameters

The 'WeekEndDatesParamList' query returning a list of week end date values for use by date parameters

3. Right-click on the WeekEndDatesParamList query and disable the load, but include the
query in report refresh.

4. Either create a new date type parameter or click on Manage Parameter of an
existing date type parameter:

See the Filtering Queries with Parameters recipe for details on
associating parameters with queries

5. From the Suggested Values dropdown, select Query and then choose the new
List query created earlier:

WeekEndDatesParamList used as the Query source to a Date Parameter

6. From Report View, click on Edit Parameters from the Edit Queries dropdown
on the Home tab.

Week End Parameter Values Exposed in the Report View

Business users often prefer to remain in the Report View rather than
access the Data or Relationships Views and particularly the more
complex Query Editor interface. The Edit Parameters option from the
Report View and other modeling options available in Report view,
such as hierarchies and groups, are helpful in self-service
deployments of Power BI.

As the report (and the list query) is refreshed, the parameter selections are
updated

Product subcategories parameter query
1. Create a new blank query titled BikeSubcategoriesParamList.
2. Reference the existing Products dimension query and apply filters to return a

List of distinct bike subcategories:

let Source = Product,
SelectCols = Table.SelectColumns(Source,{"Product Category","Product Subcategory"}),
SelectRows = Table.SelectRows(SelectCols, each [Product Category] = "Bikes" and [Product Subcategory] <> null),
DistinctSubcats = List.RemoveNulls(List.Distinct(SelectRows[Product Subcategory]))
in DistinctSubcats

Similar to the week ending date example, standard M table functions are used to
prepare a filtered table of the required columns, and List.Distinct() returns a list
value for the parameter to access

List.RemoveNulls() further protects the query from exposing any null values to
the user interface

The Three Subcategories of the Bikes Category Returned by the List Query

3. Associate the list query with the Suggested Values of a Product Subcategory
parameter.

Bike Subcategories Parameter List Query

4. If necessary, associate the Product Subcategory parameter with queries used to
load the data model, per the Filtering queries with parameters recipe earlier in
this chapter.

5. Disable the load of the list query and validate that query results are impacted by
parameter value changes.

There's more...

DirectQuery support
List queries can also be used to support the parameter values of DirectQuery data
models:

List Query Used for Suggested Parameter Values in DirectQuery Model with Enable load disabled

The list query, like all list queries in DirectQuery data models, must not be loaded to
the data model

Capturing user selections with
parameter tables
An alternative method of providing parameter functionality to users of Power BI
reports is via dedicated parameter tables. In this approach, the parameter values of a
table are either computed during the dataset refresh process, or are loaded as a one-
time manual operation, such as in the Virtual Table Relationship recipe in Chapter 3,
Building a Power BI Data Model. DAX measures reference this parameter table and
other tables and expressions of the model to enrich the self-service analysis
experience and support Power BI report development.

The example in this recipe involves providing simple visibility to four alternative
scenarios to the baseline annual sales plan--10 and 20 percent above and below the
baseline plan. An inline set of scenario values are embedded in the data model and
DAX measures are used to capture filter context, such as business user selections,
and compute the corresponding scenario logic.

How to do it...

Sales plan growth scenarios
1. Open a Power BI Desktop model locally, and from the Modeling tab of the

Report View, click on New Table.
2. Use the DATATABLE() DAX function to create a calculated table with the scenario

name, scenario value, and a sort key:

Plan Scenarios = DATATABLE
("Plan Scenario",STRING, "Var to Plan",DOUBLE, "Scenario Sort",INTEGER,
 {{"Plan",1,3},{"10% Above Plan",1.1,2},{"20% Above Plan",1.2,1}, {"10% Below Plan",.9,4},
{"20% Below Plan",.8,5}})

Ideally, the new scenario table can be persisted within a data
warehouse and the Power BI solution can be resilient to changes in
scenario names and values. Per other recipes, using DAX to create
tables or columns should generally be thought of as a secondary and
temporary option, such as in proof-of-concept scenarios or in narrow,
static use cases, such as a Power BI model owned and maintained by
a business team.

The column names and types are declared and each row is enclosed in curly
braces, like List values in M queries

3. Select the new table (Plan Scenarios) in Data View and set the Plan Scenario column
to sort by the Scenario Sort column:

Plan Scenarios Table in Data View

4. Right-click on the Scenario Sort and Var to Plan columns and select Hide in Report
View.

5. Return to Report View and create a measure that retrieves the filter context of
the Plan Scenario column:

Sales Plan Scenario Filter Branch =
SWITCH(TRUE(),
NOT(ISFILTERED('Plan Scenarios'[Plan Scenario])),"No Selection",
NOT(HASONEFILTER('Plan Scenarios'[Plan Scenario])),"Multiple Selections","Single Selection")

The intermediate measure simplifies the parameter selection measure by

computing one of the three possible filter contexts: No Selection, Single
Selection, or Multiple Selections. Hide this measure from the Fields list.

6. Now create a measure that dynamically calculates a budget/plan amount based
on the filter context (slicers, visuals):

Internet Sales Plan Scenario =
VAR FilterContext = [Sales Plan Scenario Filter Branch] RETURN
SWITCH(TRUE(),
FilterContext = "Single Selection",MIN('Plan Scenarios'[Var to Plan]) * [Internet Sales Plan Amount],
FilterContext = "No Selection",[Internet Sales Plan Amount],
FilterContext = "Multiple Selections", BLANK())

The scenario measure passes the intermediate measure into a
variable and leverages the existing Internet Sales Plan Amount measure.
If a single scenario selection has been made, such as on a slicer
visual, then only a single value will be active in the Plan Scenarios
table and this will be retrieved via the MIN() function. Generally,
defaulting to a standard or base value if no selections have been
made and returning a blank if multiple selections are made, is
appropriate to minimize complexity and user confusion. Per the
There's more... section, however, additional measures and logic can
be added to support the comparison of multiple scenarios when
multiple scenarios are selected.

7. Apply a currency format and create report visualizations that use the new
measure and Plan Scenarios table:

A Slicer visual of the Plan Scenario column and Matrix visual of the Internet Sales Plan Scenario Measure

A standard slicer is the most straightforward method of exposing the
parameter values in reports and the descending order of scenario
values (based on the Sort By column) makes the slicer intuitive for
users. Per the matrix visual, the Plan Scenario column can also be used
within report visuals. Additionally, any dimension table with a
relationship to the plan/budget fact table, such as the Product table in
this example, can be used in report visualizations with the new
scenario measure as well.

Visual level filters can be applied to only display one or a few of the five
scenario values:

Line Chart Visual with the two 10% Variance Scenario's Excluded via Visual level filters

Disconnected parameter tables is one of the more powerful and easy
to implement patterns in Power BI with many published examples
available such as enabling the user to filter reports for their own
TOP criteria (ie Top 5, 10, 15, 20) through slicers. A more dynamic
and analytical approach involves computing parameter values via M
queries with each refresh, such as the standard deviation, median,
and average of prices, and then using these query results in DAX
measures.

There's more...

Scenario specific measures
It may be necessary to create scenario-specific measures such that multiple scenarios
can be visualized concurrently

Internet Sales Plan 20% Above Plan =
VAR FilterContext = [Sales Plan Scenario Filter Branch]
VAR ScenarioValue = [Internet Sales Plan Amount]*CALCULATE(MIN('Plan Scenarios'[Var to Plan]),FILTER(ALL('Plan Scenarios'),'Plan Scenarios'[Plan Scenario] = "20% Above Plan"))
VAR PlanScenario = "20% Above Plan"
RETURN SWITCH(TRUE(), FilterContext = "No Selection",ScenarioValue,
CONTAINS(VALUES('Plan Scenarios'[Plan Scenario]),'Plan Scenarios'[Plan Scenario], PlanScenario), ScenarioValue,BLANK())

This measure defaults to its scenario (20% Above Plan) if no
scenario filter has been applied and, more importantly, will also
return its 20% above plan value when the 20% Above Plan scenario
is one of multiple scenario filter selections. A blank will be returned
if a scenario filter has been applied and 20% Above Plan is not
included in the filter context.

Building a forecasting process with
What if analysis capabilities
Power BI can be used to directly support the creation of forecasts, budgets, and other
planned values of future business measures and events. The relationships and logic of
these datasets, which are commonly implemented in Excel formulas and maintained
by business teams, can be efficiently replicated within a dedicated Power BI Desktop
file. Isolating the What if input variables from the forecast creation, storage, and
visualization in Power BI enables users to more easily create, analyze, and
collaborate on business forecasts.

In this recipe, a Power Desktop model is used to ingest forecast variable inputs from
Excel and process these variables with a dynamic transformation process to generate
a forecast table available for visualization. This design enables business teams to
rapidly iterate on forecasts, and ultimately supports an official or approved forecast
or Plan that could be integrated in other data models.

Getting ready
1. Identify the measures and grain of the target dataset produced by the forecast

process, such as Sales and Sales Orders per Calendar Month, Sales Region, and Product
Subcategory.

2. Determine the logic of the current forecast or budget process, including data
sources, variable inputs, and calculations.

Typically, a forecast process will have a direct relationship to actual
or historical data sources, such as a series of monthly reports or a
SQL query with results exported to Excel. It's important to
thoroughly study and document this process, including Excel
formulas and any manual processes, to provide a seamless transition
to a new forecasting tool.

How to do it...

Forecast variables from Excel
1. Create an Excel workbook that contains tables of the input variables and

scenario metadata such as Forecast Name:

Sample Forecast Variable Input Tables from an Excel Workbook

In this example, the forecasting tool computes the internet sales for
the next year at the grain of sales region by month. An overall growth
rate variable over the previous year period serves as the starting
point and this amount is then allocated to the Sales Groups (Europe,
North America, and Pacific) and then to to the countries within these
Sales Groups, and finally to individual sales regions within countries
based on allocation variables. The Excel tables provide a simple,
familiar interface for adjusting the growth rates and allocation
percentages among these dimensions.

As an example, suppose that October of the prior year had an overall
company sales total of $100. Given the 10% growth variable per the
image, $110 would be the planned value for October in the given
scenario. North America would be allocated 40% of the $110 ($44)
and this $44 would be further distributed between the United States
and Canada based on the country allocation variables. Finally, this
country level forecast amount is further distributed to sales
territories regions of the country based on regional variable inputs.
To close this example, the United States is modeled to receive 50% of
North American sales ($22) for October and the Southwest region is
modeled to receive 60% of the United States sales for October
($13.2).

2. For each table, create named ranges by highlighting the table and clicking on
Define Name from the Formulas tab:

The Name Manager available on the Formula tab exposes all the defined
names and the cell references:

Named Ranges Applied to Forecast Variable Tables

Data validation and integrity can be built into the Excel input
workbook such as using Protect Sheet from the Review tab to only
allow the user to select unlocked cells (the variables). Addtionally,
the variables can be limited to a range or list of possible values (that
is, 0 to 100%) via the Data Validation options under the Data tab.
Moreover, a simple conditional formatting rule can highlight the
total row for each table if the sum of the components (for example,
regions) doesn't equal 100 percent.

In the following example, the conditional formatting identifies needed revisions to the
sales region allocation variables for April and June:

Excel conditional formatting identifies two incorrect variable inputs

Optionally, per the example in this recipe, a second group of variable
input tables can be included in the workbook to allow the users to
create a second or alternative forecast scenario. This enables the
team to visualize and more easily compare multiple forecast
scenarios based on the different input variables provided such as
comparing a Base Plan to a High Growth Plan.

Power BI Desktop forecast model

Source connection and unpivoted
forecast tables

1. Create a new Power BI Desktop model file and establish a data source query to
the data warehouse or source system.

2. Create essential dimension and fact table M queries, such as Date, Sales Territory,
and Internet Sales.

3. Create a connection to the Excel forecast file and build queries that unpivot the
columns of each forecast table.

See the Parameterizing your data sources recipe in this chapter for
examples of storing data source information such as folder paths and
filenames as parameter values. This approach is recommended for all
data sources and is especially valuable with file data sources
maintained by business teams on network directories. The owner of
the Power BI forecasting file (PBIX) can easily revise the data source
parameter to update all dependent M queries.

An M query that unpivots the columns of an Excel forecast table and applies data types

An example forecast table connection query (Primary-TotalGrowth) with columns
unpivoted:

let Source = ExcelForecastItems,
 PrimaryGrowth = Source{[Name="PrimaryTotalGrowth",Kind="DefinedName"]}[Data],
 PromoteHeaders = Table.PromoteHeaders(PrimaryGrowth),
 UnpivotColumns = Table.UnpivotOtherColumns(PromoteHeaders, {"YOY Growth %"}, "Month", "Sales Growth"),
 ColumnTypes = Table.TransformColumnTypes(UnpivotColumns,{{"YOY Growth %", type text},{"Month", type text},{"Sales Growth", type number}}) in ColumnTypes

The ExcelForecastItems is a dedicated source query that exposes the
tables of the source, similar to the AdWorksProd SQL Server query in
other recipes. Observe that the Name and DefinedName fields are used to
identify the record of this table, similar to the Schema and Item fields
used with the SQL Server database source query. UnpivotOtherColumns()
converts each month column into a row and applies column names for
Month and Sales Growth.

Apply the forecast to historical values
1. Develop a dynamic Sales by Month query to be used by the forecast variables. The

query must use the current year history if it's available or, if the month isn't
completed in the current year, use the prior year value.

2. To simplify this query, create a PriorYearMonthlySales query and a
CurrentYearMonthlySalesQuery:

Current and Prior Year Queries used by the PrimarySalesForecastBase query

The following expression of the PriorYearMonthlySales query only retrieves the prior
year months that haven't been completed in the current year:

let CurrentYear = Date.Year(DateTime.Date(DateTime.LocalNow())),
CurrentMonth = Date.Month((DateTime.LocalNow())),
PYJoin = Table.Join(#"Internet Sales","Order Date",Date, "Date",JoinKind.Inner),
PYFilter = Table.SelectRows(PYJoin, each [Calendar Year] = CurrentYear-1 and
[Calendar Month Number] >= CurrentMonth),
PYGroup = Table.Group(PYFilter,{"Calendar Year", "Calendar Month"},
{"Sales", each List.Sum([Sales Amount]), Currency.Type}) in PYGroup

The Table.SelectRows() filter function is used in the PriorYear and CurrentYear queries
to ensure that the total (merge) of the two queries always equals the full 12
months. For example, in June of 2017, only January through May would be
retrieved by the Current Year query, with the remaining months retrieved by the
Prior Year query.
The PrimarySalesForecastBase query combines the current and prior year queries via
Table.Combine() resulting in 12 rows.

History Variable of the PrimarySalesForecastBase query

The combined table includes current year sales for months that have completed in the
current year and prior year sales for any future or incomplete months of the current
year.

This table is then joined to the Primary-TotalGrowth query to allow for the
multiplication of the growth rate by the historical sales value for the given
month:

let History = Table.Combine({CurrentYearMonthlySales,PriorYearMonthlySales}),
JoinForecast = Table.NestedJoin(History, "Calendar Month", #"Primary-TotalGrowth","Month", "Fcst Column", JoinKind.Inner),
 ForecastColumns = Table.ExpandTableColumn(JoinForecast, "Fcst Column", {"Sales Growth"}, {"Sales Growth"}),
 MonthlyForecast = Table.AddColumn(ForecastColumns, "Forecast Sales", each ([Sales Growth]+1) * [Sales], Currency.Type) in MonthlyForecast

The final step (MonthlyForecast) results in a Forecast Sales column populated at the
monthly gain. This value can then be allocated to sales groups, countries, and regions
based on scenario variables to produce the forecast table.

The PrimarySalesForecastBase Query Integrates the dynamic Current and Prior Year grouped queries with the
Forecast Query

The PrimarySalesForecastBase query contains 12 rows and the Forecast Sales column,
which can be allocated to the Sales Groups, Countries, and Regions.

Allocate the forecast according to the
dimension variable inputs

The final forecast query that's loaded to the data model for analysis
and visualization will contain 120 rows in this example. This
represents 12 months for the 6 regions in North America, 3 regions in
Europe, and 1 Pacific region. If an additional variable were to be
added to the forecast logic, such as product category allocation, the
row count of the forecast query would be multiplied by the count of
distinct values of this dimension.

1. Create integration queries for each member of the highest level of the hierarchy
(Europe, Pacific, and North America).

2. Apply the forecast allocation variables at each level in the M queries to
construct a common report data structure (which can later be appended
together), such as the following PrimaryEuropeRegions query:

let GroupColumn = Table.AddColumn(#"Primary-EuropeCountries", "Group", each "Europe", type text),
RegionColumn = Table.AddColumn(GroupColumn, "Region", each [Country], type text),
RegionJoin = Table.NestedJoin(RegionColumn,{"Group", "Month"},#"Primary-SalesGroups",{"Group", "Month"},"Sales Group Column", JoinKind.Inner),
GroupAllocation = Table.ExpandTableColumn(RegionJoin,"Sales Group Column", {"Sales Allocation"}, {"Sales Group Allocation"}),
ForecastJoin = Table.NestedJoin(GroupAllocation, "Month", PrimarySalesForecastBase,"Calendar Month", "Forecast Column", JoinKind.Inner),
ForecastColumn = Table.ExpandTableColumn(ForecastJoin, "Forecast Column", {"Forecast Sales"}, {"Total Forecast Sales"}),
EuropeRegionForecast = Table.AddColumn(ForecastColumn, "Forecast Sales", each
[Sales Allocation]*[Sales Group Allocation]*[Total Forecast Sales], Currency.Type),
 EuropeColumns = Table.SelectColumns(EuropeRegionForecast, {"Group", "Country", "Region", "Month", "Forecast Sales"}) in EuropeColumns

The EuropeRegions query starts with the allocation at the country level
(France, UK, Germany) and adds the group level allocation. With
these two allocation percentage columns available, the forecast is
also added via join and a Forecast Sales column is computed for each
country by month (Total Forecast Sales * Group Allocation * Country
Allocation).

The European Forecast Query with Sales Allocated to Country by Month (36 Rows)

3. Create a Forecast query (Sales Forecast) that merges the individual hierarchy
queries (Europe, North America, Pacific) and applies the forecast metadata
(name, year) for the load to the data model:

let ForecastYear = #"Forecast Metadata-Primary"[Forecast Year]{0},
ForecastName = #"Forecast Metadata-Primary"[Forecast Name]{0},
PrimaryForecastTable = Table.Combine({PrimaryEuropeRegions,PrimaryPacificRegions,PrimaryNorthAmericaRegions}),
ForecastYearColumn = Table.AddColumn(PrimaryForecastTable, "ForecastYear", each ForecastYear, Int64.Type),
ForecastNameColumn = Table.AddColumn(ForecastYearColumn, "Forecast Name", each ForecastName, type text),
MonthColumn = Table.AddColumn(ForecastNameColumn, "Calendar Year-Mo", each Number.ToText([ForecastYear]) & "-" & [Month], type text) in MonthColumn

The name assigned to the given Forecast in Excel is added as a
column as well as the forecast year. Table.Combine() builds the 120 row
query based on the three Sales Group queries, and a Calendar Year-Mo
column is created to allow the forecast to be related, via a bridge
table, to the Date dimension table in the model.

The Sales Forecast Query Loaded to the Data Model for Analysis and Visualization

Only this query should be loaded to the data model; all other queries should
only be included in report refresh

If a secondary or additional forecast scenario is to be supported by the tool,
duplicate the queries created to support the primary forecast and revise the input
variables to reference the secondary/alternative inputs. This implies a second group
of Excel tables and named ranges in the forecast input workbook.

Secondary Sales Forecast Queries

In the absence of a secondary forecast scenario, each refresh will always reflect the
latest variables and thus overwrite any prior assumptions. Given the additional M
queries and Excel objects, confirm that the secondary forecast or scenario is indeed
necessary.

Create relationships, measures, and
forecast visuals

1. Create relationships in the model to enable filtering the forecast table(s) by
dimension tables:

Sales Forecast and a Secondary Sales Forecast table related to the Sales Territory table and the Date table via the
hidden BudgetDateBridge table

See the Building analytics into data models with DAX recipe in Chapter 3,
Building a Power BI Data Model, for details on Budget versus Actual
data models. The Actual versus budget model and measures section of
this recipe includes design guidance on bridge tables and relationship
types (single or bidirectional cross filtering).

2. Create DAX measures for analyzing the two forecast scenarios supported.

In addition to sums of sales for both scenarios, FIRSTNONBLANK() is used to
retrieve the name given to each scenario (that is, High Growth or Base Plan):

Forecast Sales Amount = sum('Sales Forecast'[Forecast Sales])
Secondary Sales Forecast Amount = sum('Secondary Sales Forecast'[Forecast Sales])
Forecast = FIRSTNONBLANK('Sales Forecast'[Forecast Name],0)
Secondary Forecast Name = FIRSTNONBLANK('Secondary Sales Forecast'[Forecast Name], 0)

3. Create Power BI Report visuals that analyze the forecast or the two forecast

scenarios generated:

The Base Forecast compared to the 'High Growth' forecast as computed based on the forecast variables from the
Excel workbook

Test and deploy forecasting tool
1. Test the forecasting tool by modifying input values in the Excel workbook, such

as the allocation percentage for a country or growth for a month, saving the
updated file, and then refreshing the Power BI Desktop model to observe the
changes reflected in report visuals.

2. As an additional test, choose one of the most granular forecast amounts (forecast
for a given region and month) and use the associated input variables (that is,
growth rate, allocation percentages) to calculate the same amount manually and
confirm that that Power BI process generates the same value.

3. Once tested, the Power BI model could then be deployed to an App Workspace
in the Power BI Service and a gateway could be used to support the local
workbook data source in scheduled dataset refreshes.

4. Additional Power BI and Excel reports could be created based on a connection
to the published model.

Pivot table reports within the Excel variable input workbook via the Power BI
Publisher for Excel may be helpful to the user(s) and teams creating forecast
scenarios. This allows the user or modeler to iterate quickly on new scenarios by
observing the impacts of variable inputs.

How it works...
The date dimension table query in this recipe is filtered to include dates in the
future year (the forecast year)
The date bridge table (BudgetDateBridge) was also revised to include future
months:

Typically, per previous recipes, the date dimension is filtered to exclude
future dates

For the North America forecast, conditional logic was applied to handle Canada
differently than United States regions:

RegionalForecast = Table.AddColumn(TotalForecastColumn, "Forecast Sales", each
 if [Country] = "United States" then [Sales Allocation] * [Group Sales Allocation] * [Country Sales Allocation] * [Total Forecast Sales]
 else if [Country] = "Canada" then [Group Sales Allocation] * [Country Sales Allocation] * [Total Forecast Sales] else null, Currency.Type)

Just like the European countries, Canada isn't split into regions, and thus only
the Group and Country allocation variables are used to compute its forecast.
Only the United States has all three allocation variables applied.

Implementing Dynamic User-Based
Visibility in Power BI
In this chapter, we will cover the following recipes:

Capturing the current user context of your Power BI content
Defining RLS roles and filtering expressions
Designing dynamic security models in Power BI
Building dynamic security in DirectQuery data models
Displaying the current filter context in Power BI reports
Avoiding manual user clicks with user-based filtering logic

Introduction
Data security in which certain users or groups of users are prevented from viewing a
portion of a dataset is often a top requirement in Power BI deployments. Security
implementations can range in complexity from mapping user or security group
accounts to simple security roles based on a single dimension value, to dynamic,
user-based security with dedicated user permissions tables and dynamic DAX
functions embedded in the dataset. Given the variety of use cases and the importance
of this feature to securely share a dataset across stakeholders, it’s important to
understand the process and techniques available for developing, testing, and
operationalizing data security roles.

In addition to row level security (RLS) roles, dynamic user-based filter context
techniques can also be used to simplify and personalize the user experience. For
example, the filter conditions built into reports, as well as the interactive filter
selections from end users, can be dynamically updated and displayed in intuitive
visuals to aid comprehension. In more advanced scenarios, DAX measures
themselves can be filtered based on information about the user interacting with the
content to deliver a personalized experience. This chapter contains detailed
examples of building and deploying dynamic, user-based security for both import and
DirectQuery datasets, as well as developing dynamic filter context functionality to
enhance the user experience.

Capturing the current user context of
Power BI content
The foundation of dynamic user security and visibility in Power BI is the ability to
extract the user principal name (UPN) or login credential of the business user
connected to content in the Power BI service. The USERPRINCIPALNAME() DAX function
retrieves this text value and thus enables filter expressions to be applied to the tables
of a model in security roles. In addition to RLS roles which override and impact all
DAX measures of a dataset, the UPN or "current user" text value can be used by other
DAX measures, such as retrieving the UPN prefix and suffix and even filtering other
measures per the final recipe in this chapter, Avoiding manual user clicks with user-
based filtering logic.

In this recipe, DAX measures are added to a data model to dynamically retrieve the
UPN, as well as its prefix and suffix. Additional detail on authentication in Power BI
and the USERNAME() function, an alternative dynamic DAX function which also retrieves
the UPN in the Power BI service, is available in the How it works... and There's
more... sections, respectively.

Getting ready
1. Create a new measure group table via a blank query to organize dynamic user

context measures.

2. Use the Value.NativeQuery() function to select one blank column, give the table a
name such as Dynamic User Measures, and disable the include in report refresh
property.

let DynamicMeasureTbl = Value.NativeQuery(AdWorksProd, "Select 0 as dummy") in DynamicMeasureTbl

3. In the report view, hide the blank column (dummy) and set the home table of a
measure to this new table.

Dedicated measure group table for new dynamic measures

The new measure group table can be hidden from report view when
development and testing is complete

How to do it...
1. Create three new DAX measures to extract the connected user's user principal

name:

User Principal Name = USERPRINCIPALNAME()

UPN Prefix =
VAR UPNAT = SEARCH("@",[User Principal Name]) RETURN LEFT([User Principal Name],UPNAT-1)

UPN Suffix =
VAR UPNLENGTH = LEN([User Principal Name]) VAR UPNAT = SEARCH("@",[User Principal Name])
RETURN MID([User Principal Name],UPNAT+1,UPNLENGTH-UPNAT)

It's not technically necessary to create these measures in a data
model to implement dynamic security or visibility, but per other
recipes, this approach simplifies development, as measure
expressions can be reused and hidden from users.

2. Publish the updated dataset to an app workspace in the Power BI service.
3. In the Power BI service, create a new report based on the updated dataset and

apply the new measures to simple visuals that can represent text, such as a card
or table.

UPN measures in Power BI service

The USERPRINCIPALNAME() DAX function returns the email address used to
login to Power BI. For organizations that use work email addresses
for Power BI login, this effective user name maps to a UPN in the
local active directory. In this scenario, a separate, non-work email
address (@...onmicrosoft.com) was used for the Power BI account.

4. Add a separate user to the App Workspace containing the dataset.
5. Request this user to login to the workspace to view the new report or login to

Power BI with this user's credentials:

The function returns the UPN of the different logged in user

If security roles have not been configured on the dataset, the member
of the workspace (JenLawrence) will see her UPN via either read or
edit rights in the workspace. If security roles have been configured

for the dataset, the member will either require edit rights in the
workspace or can be added to one of the security roles defined for the
dataset and granted read access to the workspace. Security roles are
applied to read-only members of app workspaces. Alternatively, the
app workspace admin or workspace members with edit rights can test
the security of users who are mapped to a security role but are not
members of the workspace.

How it works...

Power BI authentication
Power BI uses Azure Active Directory (AAD) to authenticate users who login
to the Power BI service, and the Power BI login credentials (such as
BrettP@FrontlineAnalytics.onmicrosoft.com) are used as the effective user name
whenever a user attempts to access resources that require authentication
In Power BI service to on-premises scenarios, such as with SSAS cubes on-
premises, the effective username (login credentials) from the Power BI service
is mapped to a UPN in the local active directory and resolved to the associated
Windows domain account

There's more...

USERNAME() versus
USERPRINCIPALNAME()

The USERNAME() DAX function returns the user's domain login in the format
domain\user) locally, but returns the user principal name (the user's login
credential) in the Power BI service. Therefore, security role filter expressions,
user permissions tables, and any other dynamic user functionality added to
Power BI datasets should align with the UPN email address format provided by
USERPRINCIPALNAME().
In locally shared data models, DAX text functions can be used to extract the
domain and username from USERNAME(), like with USERPRINCIPALNAME() in this recipe's
example:

The USERNAME() function used locally and outside of the Power BI service

User Name = USERNAME()
User Name Domain =
VAR Slash = SEARCH("\",[User Name]) RETURN LEFT([User Name],Slash-1)
User Name Login =
VAR Slash = SEARCH("\",[User Name]) VAR Length = LEN([User Name]) RETURN RIGHT([User Name],Length-Slash)

The USERNAME() is commonly used in dynamic security implementations
with SSAS tabular models. The USERPRINCIPALNAME() was introduced to
simplify user identity, as it returns the UPN (email address format)
locally and in the Power BI service. A rare exception to this is when a
PC is not joined to a domain. In this unlikely scenario, the
USERPRINCIPALNAME() returns the domain and username in (domain\user)
format, just like USERNAME().

See also
Power BI security documentation and whitepaper at http://bit.ly/22NHzRS

http://bit.ly/22NHzRS

Defining RLS roles and filtering
expressions
The data security of Power BI models is comprised of security roles defined within
the model, with each role containing a unique set of one or more filter expressions.
Roles and their associated filter expressions are created in Power BI Desktop, and
users or groups are mapped to security roles in the Power BI service. A single DAX
filter expression can be applied to each table of a model within a given security role,
and users can optionally be mapped to multiple security roles. The filter expressions
applied to tables within a security role also filter other tables in the model via
relationships defined in the model, like the filters applied to Power BI reports, and
are applied to all queries submitted by the security role member.

This recipe contains an end-to-end example of configuring, deploying, and validating
RLS roles, applicable to both Import and DirectQuery data models. Additional
guidance on a consolidated security role table to improve the manageability of
changing security requirements is included in the There's more...section. Examples of
dynamic security, in which a single security role applies filter expressions based on
the logged in user, are included in the following two recipes of this chapter.

Getting ready
1. Define and document the security role requirements to be implemented, and the

members or groups of these roles.
2. Use the bus matrix diagrams described in Chapter 3, Building a Power BI Data

Model to help communicate what data is currently stored in the model.
3. Validate that role security is indeed required (not report or model filters), given

the risk or sensitivity of the data.

Do not confuse security role filters with the various other forms of
filters in Power BI, such as report, page, and visual level filters, as
well as filter logic in DAX measures. RLS role filters are applied to
all queries of security role members, effectively producing a virtual
subset of the data model for the given role at query time. Given the
performance implications of compounding security role filters with
report query filters, all user experience and analytical filters should
be implemented outside of the security role filters. Security filters
should be exclusively used for securing sensitive data.

How to do it...
In this example, the following two security roles must be created, deployed to the
Power BI service, and tested:

United States online bike sales
Europe reseller sales-mountain and touring

The data model contains both internet sales and reseller sales, but
each role should be restricted to their specific business process (fact
table). Additionally, the United States online bike sales role should
be able to view North America customer details (Canada and United
States), but only sales for United States customers purchasing bike
category products.

1. Open the data model and create a simple table visual containing row count
measures of the different tables:

Row count measures in a table visual of the Power BI data model

Each measure uses the COUNTROWS() DAX function, and generic tables
that don't require security, such as date and currency, can be
excluded. See the Handling one-to-many and many-to-many recipe in
Chapter 3, Building a Power BI Data Model, for an additional use case
for including row count measures in a data model. Like other testing
and intermediary DAX measures, a dedicated measure group table
may be needed, and this table or the individual measures can be
hidden from the fields list.

United States online Bike Sales Role
1. From the Modeling tab of report view, click Manage Roles to open the security

roles interface.
2. Click Create and give the new role the name United States Online Bike Sales.
3. Apply the following four DAX expressions to the Sales Territory, Customer, Product,

and Reseller tables, respectively:

[Sales Territory Country] = "United States"
[Customer Sales Territory Group] = "North America"
[Product Category] = "Bikes"
FALSE()

The Sales Territory filter ensures that members will only see sales data
associated with United States customers. The Customer table filter
allows the security members the option to view Canada customer
dimension table details only. The FALSE() function is used to filter
every row of the Reseller table, which also filters the related Reseller
Sales table.

The manage roles dialog displays filter icons to indicate which tables contain
security filter conditions.

Role security definitions for United States Online Bike Sales

4. The ellipses next to the table names provide access to the columns for filtering,
and the check mark can be used to validate the filtering expression. Click Save.

5. From the Modeling tab of report view, click View as Roles and select the new
United States Online Bike Sales role:

Viewing the table visual of row count measures in Power BI Desktop as a member of the United States Online
Bike Sales role

The two reseller table measures return a blank value, given the FALSE()
security filter. The Internet Sales table is filtered by both the Product
filter (Bikes) and the Sales Territory filter (United States). 9,390
customer rows split between United States and Canada sales
territory countries are available given the customer table filter. The
Promotion table is not impacted by any of the security filters given its
single direction, one-to-many relationship to the Internet Sales fact
table.

Even for experienced Power BI developers and for relatively simple
requirements, it can be helpful to apply a single security filter at a
time and to observe the impact on row counts. A standard testing
report page with row counts, and possibly fact table measures, can
help expedite the process.

Europe reseller sales - mountain and
touring

1. Create a new role with the name Europe Reseller Sales-Mountain and Touring.
2. Apply the following DAX security filter expressions to the Customer, Sales

Territory, and Reseller tables, respectively:

FALSE()
[Reseller Product Line] IN {"Mountain","Touring"}
[Sales Territory Group] = "Europe"

The Customer table is only related to the Internet Sales table, and since
every internet sales transaction has a Customer row, all rows from the
Internet Sales table are filtered. The IN DAX operator is a more
intuitive and sustainable expression than the || symbol used as a
logical OR operator in older versions of the language.

3. Click on Save and then choose the new role from View as Roles on the
Modeling tab:

Viewing the table visual of row count measures in Power BI Desktop as a member of the Europe Reseller Sales -
Mountain and Touring role

The Internet Sales and Customer tables are blank due to the FALSE() expression for the
customer dimension table. Customer has a one-to-many single direction
relationship with Internet Sales. Therefore, filters on the Customer table impact
Internet Sales but not other tables.

The Sales Territory table has three rows remaining (France, Germany, and United
Kingdom) due to the Europe filter. The Reseller Sales fact table is impacted by the
both the Sales Territory filter and the Reseller Product Line filter (Mountain or
Just like the United States Online Bike Sales role, the Promotion table is not
impacted given its single direction, one-to-many relationship with Reseller Sales.
The filters from the Reseller and Sales Territory tables flow to the Reseller Sales
but stop there and don't impact other tables.

Deploy security roles to Power BI
1. Identify or create an App Workspace in Power BI with Edit or Admin rights.
2. Save the model, click Publish, and choose the App Workspace in Power BI to

host the data model.

3. Log in to the Power BI service and navigate to the workspace of the published
dataset:

Opening security for published Power BI dataset in an App Workspace

4. Click the ellipsis next to the dataset and select Security to bring up the RLS
dialog:

5. Select each role and add members or security groups via the Members input
box.

Per the dynamic security recipes in this chapter, you can also test
security roles in the Power BI Service. This includes viewing a
dataset and its dependent reports from the perspective of an
individual user. It's also possible to view a model from the
perspective of multiple security roles simultaneously; the combined
visibility provided to each role is available to any user or group
mapped to these roles.

How it works...

Filter transfer via relationships
Filters applied in security roles traverse relationships just like filters in Power
BI reports and filters applied in DAX measures. For example, a security filter
on a product dimension table will flow from the product table (one side of a
relationship) to the many side (Sales) but will stop there and not also flow to
other tables related to Sales unless bidirectional relationships have been
enabled between Sales and these other dimension tables.

In gathering security requirements, and again in a testing or QA
phase, communicate which tables are not impacted by the security
filters. Users may falsely believe that a Product table security filter
will also filter a Store dimension table since only certain products
are sold in certain stores. However, if the Store table is queried
directly and there is not a bidirectional relationship between Store
and Sales, all the stores would be accessible. Only when a sales
measure is used in a visual would stores with blank values (given the
product filter) be discarded by default and even then a user could
access these stores via the Show items with no data setting. To secure
these tables and avoid bidirectional cross filtering for these
relationships additional table-specific security filters may be needed.

There's more...

Managing security
Per the introduction, security role definitions are specific to a given Power BI model
(dataset). If multiple models are deployed, consistent security roles (and measure
definitions) need to be applied to these models as well. The management overhead
and risk of maintaining common security roles and business definitions across
multiple Power BI models can motivate IT/BI teams to consolidate data models when
feasible and to consider a SQL Server Analysis Services (SSAS) or AAS model as
a more efficient and secure long term solution.

Dynamic columns and central
permissions table

Any dynamically computed columns, such as the Calendar Year Status and Calendar
Month Status columns described in Chapter 6, Getting Serious with Date
Intelligence, can make security roles more robust and resilient to changes.
As more roles and role filter requirements are required of a data model, a
central security role table can be built into a data warehouse with the names of
distinct roles associated with the values of the columns to be secured. Queries
against this table can be used by Import or DirectQuery data models to
implement these roles via relationships. See the Building dynamic security into
DirectQuery data models recipe later in this chapter for additional details.

Designing dynamic security models in
Power BI
Dynamic security models in Power BI filter tables based on the relationship of the
logged in user to a column or columns stored in the data model. The USERPRINCIPALNAME()
DAX function returns the user's UPN per the first recipe of this chapter, and a filter
expression of a security role accepts this value as a parameter. Like all filters in
Power BI data models, the filters applied in security roles also filter other tables via
one-to-many and bidirectional relationships. Security roles can also blend dynamic,
user-based filters with standard security filters to further restrict the visibility of
members mapped to these roles.

This recipe implements dynamic security on an Employee dimension table such that
users (employees) logged into Power BI can only view their own data and the data of
those who report to them directly or indirectly via other managers.

Getting ready
The DAX functions used in this recipe are specific to a parent-child hierarchy that
exists in the Employee source table. The Employees table contains an email address
column, which corresponds to the User Principal Name credential used to log into the
Power BI Service. Additionally, this recipe is exclusive to import mode datasets as
parent-child DAX functions are not currently supported in DirectQuery mode models
for either calculated columns or security filter expressions.

Establish the technical feasibility of dynamic security early in a Power BI
deployment, such as the existence and quality of employee-manager hierarchy
sources and the role security implications/options of Import versus DirectQuery
models. Per the Building dynamic security in DirectQuery models recipe in this
chapter, simple tables and relationships can be used as an alternative to relatively
complex DAX expressions such as PATHCONTAINS(). Additionally, for DirectQuery
models, consider the option to leverage the existing security model of the source
database rather than defining new RLS roles.

How to do it...
1. Open the import mode Power BI Desktop file and confirm that the two key

columns (EmployeeKey and ParentEmployeeKey) exist in the Employee dimension table.
If they don't, they can be added and hidden from Report view.

2. In the data view, select the Employee table and add two calculated columns to
expose the hierarchy path and length:

ManagementPath = PATH(Employee[EmployeeKey],Employee[ParentEmployeeKey])
ManagementPathLength = PATHLENGTH([ManagementPath])

The Employees table has 299 rows, but a logged in user should only see
her data and the data of those that report to her directly or indirectly.
For example, a vice president should still have visibility to a
manager even if the manager reports to a senior manager who
reports to the vice president. The senior manager, however, should
not be able to view the vice president's data or the data of a different
senior manager. Visibility is limited to the current user's level and the
current user's management hierarchy.

3. In Power BI Desktop, create a simple table visual containing the new columns
and related Employee columns:

Filtered table visual of Employee table columns

In this example, Brett reports to Robert, Jennifer reports to Brett, and John
reports to Jennifer. Therefore, Brett should only be able to view the data related
to three employees (himself, Jennifer, and John).
The EmployeeKey value is the last item in the ManagementPath column via the PATH()
function

4. Create the following DAX Measures:

User Principal Name = USERPRINCIPALNAME()

Current User EmployeeKey = LOOKUPVALUE(Employee[EmployeeKey],
Employee[Employee Email Address],[User Principal Name])

Current User Name =
LOOKUPVALUE(Employee[Employee Name],Employee[Employee Email Address],[User Principal Name])

Current User Manager = LOOKUPVALUE(Employee[Manager Name],
Employee[EmployeeKey],[Current User EmployeeKey])

Current User Org Level = CALCULATE(MAX(Employee[ManagementPathLength]),
FILTER(ALL(Employee),Employee[EmployeeKey] = [Current User EmployeeKey]))

Employee Row Count = COUNTROWS('Employee')

Not all of these measures are required to implement the desired RLS
filter but they can be useful in testing/validation and potentially for
other projects. Simple row count measures for all tables of a data
model make it easy to validate the impact of security filters, similar
to the bidirectional relationship example in Chapter 3, Building a
Power BI Data Model.

5. Select Manage Roles from the Modeling tab of either the report view, the data
view, or the relationships view.

6. Create a new security role, give it a name, and select the Employee table.
7. Add the following DAX expression in the table filter DAX expression window:

Dynamic filter expression applied to Employee table for security role dynamics

The [Current User EmployeeKey] measure, which uses the user principal
name measure to retrieve the Employee Key value, is passed as the item
parameter to the PATHCONTAINS() function. The calculated column
created in the first step, ManagementPath, provides the string of values for
each Employee row to be evaluated against.

8. Create a simple report page of visuals that exposes the dynamic security
measures.

9. Deploy the updated data model to an App Workspace in the Power BI service.
10. Per the previous recipe, click the ellipsis next to the Dataset and select Security

to add individual user accounts or security groups to security roles.

Recall from the first recipe of this chapter that security can be tested
for security role member accounts, despite the associated users not
being members of the app workspace hosting the secured dataset.

Workspace administrators and members of app workspaces that allow
members to edit content can add and remove members from security
roles and test security roles, including individual Power BI accounts
per the following example.

11. Click on the ellipsis next to the Dynamics security role and select Test as role:

Given the security role (Dynamics) filter, all four measures are updated reflecting Brett Powell's position in the
hierarchy

12. Add a different user to the security role and select the Now viewing as
dropdown to test their visibility:

Viewing the same report as JenLawrence, all measures are updated to reflect her position in the hierarchy

The Employee table has 299 rows, but when Jennifer Lawrence logs into
Power BI, she only sees her data and the one employee below her in
her hierarchy (John Jacobs); hence, the Employee Row Count of 2.
Likewise, Brett can see his data, Jennifer's data, and John Jacob's
data, but is prevented from accessing any other employee data.
Tables related to the Employee table with relationships that support
cross filtering, such as one-to-many (employee to sales) or
bidirectional cross filtering relationships, will also be filtered by the
security filter and all DAX measures in report and dashboard visuals
will reflect this filter context. For example, Jennifer would only see
sales associated with her and John Jacobs.

13. Test the performance impact of the security role by comparing a baseline
response time for reports that use (or are impacted by) the Employees table against
the security role. For example, the administrator in the workspace or a member
with edit rights can view the reports without the security role filter in effect to
establish a baseline.

There's more...

Performance impact
RLS expressions can significantly degrade query performance, as these filters
will be applied in addition to other filters and expressions from Power BI
reports when members of security roles access this content
As a general rule, try to use relationships between tables with low cardinality to
implement dynamic security per the following recipe in this chapter
Utility or information functions, such as LOOKUPVALUE(), CONTAINS(), and PATHCONTAINS(),
can meet complex security rules in import mode models but can be very
expensive from a performance standpoint when applied against larger
dimension tables, such as 1M+ row customer and product tables

Building dynamic security in
DirectQuery data models
Dynamic row level security roles can be implemented in DirectQuery models via
relationships and with specifically bidirectional cross-filtering between user security
tables and the dimension tables to be secured. DAX information functions, commonly
used in the role security expressions of import mode models, such as CONTAINS() and
LOOKUPVALUE(), are not supported in DirectQuery mode models, thus requiring a
relationship-based security design. However, though limited to this single approach,
dynamic security can be developed for DirectQuery models quickly and maintained
easily, given the avoidance of complex DAX security expressions.

This recipe walks through the essential steps and settings necessary to support
dynamic security in a DirectQuery model. Additional details describing the filter
context applied by the security role created in this example are included in the How it
works... and There's more... sections.

Getting ready
1. Create a users table in the source database of the DirectQuery model:

Each row of this table must contain a unique UPN
2. Create one (or more) security tables that map UPNs to a single dimension table

column to be secured.
3. For this table, a single UPN can be associated with one or more dimension table

values.

Users table created in SQL Server database for dynamic security

In this example of the users Table, the User Employee Key column is used
as the primary key and the User Email Address column stores the UPN
value used by the user in Power BI. If a single user to be secured will
be using multiple UPNs, the primary key can be extended to include
both the User Employee Key and the User Email Address columns, and the
SQL statement used by the DirectQuery model can select only the
distinct User Email Address values.

User security table created in SQL Server for dynamic security

4. Create SQL views for both the new tables in the same schema as the views used
by other data model tables.

In this example, the Sales Territory Country column will be secured in the data
model for the given user. If an additional column needs to be secured, a separate
two-column table should be created with this column and the UPN.

As of writing this, enable cross filtering in both directions for
DirectQuery is a preview feature that must be enabled in the global
options of Power BI Desktop. This feature and a technique for
implementing row level security in DirectQuery models (SSAS or
Power BI) is further described in the official whitepaper,

Bidirectional Cross-Filtering in SQL Server Analysis Services 2016
and Power BI Desktop.
Plan ahead for the data sources, owners, and maintenance of user
and security tables used by Power BI models. In some scenarios, only
a static user table or manual update process is initially available,
while in other situations, a complex SQL query is needed to meet the
required structure and quality. A robust and recurring ETL process to
update these tables with changes in users and user responsibilities is
necessary to deliver dynamic security and visibility over the long
term.

How to do it...
1. Open a local DirectQuery Power BI data model and select Edit Queries from

report view to open the Query Editor.
2. Create queries against the users and security views developed in Getting ready.

let Source = AdWorksProd,
UserSalesCountry = Source{[Schema = "BI", Item = "vDim_UserSalesCountrySecurity"]}[Data]
in UserSalesCountry

3. Duplicate an existing query via the right-click context menu and revise the Item
value to the name of the SQL view.

4. Create one additional query, which retrieves the unique values of the column to
be secured (Countries):

let Source = AdWorksProd,
Territory = Source{[Schema = "BI", Item = "vDim_SalesTerritory"]}[Data],
Countries = Table.SelectColumns(Territory,{"Sales Territory Country"}),
DistinctCountries = Table.Distinct(Countries)
in DistinctCountries

Two additional table functions in M are used to produce a single column of the
unique sales territory countries

Per the view native query dialog in Query Settings, the following
SQL statement is generated based on the preceding M query:
"select distinct [Sales Territory Country] from [BI].[vDim_SalesTerritory] as
[$Table]"

5. Provide intuitive names for the new queries and ensure Enable load and Include
in report refresh is selected:

The names Users, Countries, and User Sales Country Security are given in this
example

6. Click Close and Apply and hide the three new tables, either via right-click in
report view or the relationships view.

7. Open the relationships view and position the Users, User Security, Countries, and
Sales Territory tables near each other.

8. Create a one-to-many single direction relationship from the Users table to the User
Security table.

9. Create a many-to-one bidirectional relationship from the User Sales Country
Security table to the Countries table.

Bidirectional relationship from user sales country security to

Ensure that Apply security filter in both directions is selected for this
bidirectional (both) cross filter relationship. Bidirectional cross
filtering for DirectQuery models is currently a preview feature that
must be enabled in the global options of Power BI Desktop. Per other
recipes, the Assume referential integrity setting causes the
DirectQuery data model to send inner join SQL queries to the source
database and this, of course, significantly improves performance with
larger models.

10. Create a one-to-many single direction relationship between the Countries and
Sales Territory tables:

Dynamic user security relationships

See the How it works... section for an explanation of how the relationships drive
the filter context of the security role
In short, the Users table is filtered by the current user measure (step 11) and this
filter flows to the Security table, the Countries table, and finally the Sales Territory
and Internet Sales table

11. Add a DAX measure named UPN that simply calls the USERPRINCIPALNAME()

function.
12. In the Modeling tab of either report or relationships view, select Manage Roles.
13. In the Manage Roles interface, click Create and give the new role a name, such

as Dynamic User.

14. Apply a filter on the Users table that matches the UPN measure with the User Email
Address column:

Dynamic user security role created with filter expression applied to UPN (email address) column of Users table

15. Save the dataset and publish the DirectQuery model to an app workspace in the
Power BI service.

16. Test the security role(s) in the Power BI service and optionally map user
accounts or security groups to the new role.

Per the following image, the user (JenLawrence) only sees Internet Net Sales for
Australia and the United Kingdom via RLS:

The member of the Security Role (JenLawrence) only sees sales for Australia and the United Kingdom per the
security table

17. With functional requirements tested, also test for the performance impact of the
security role relative to baseline performance. Reports must respect both their
own filter contexts, such as slicers and DAX measures, as well as RLS role
filters. Therefore, particularly for larger datasets, complex RLS conditions can
cause performance degradation.

How it works...

Dynamic security via relationship filter
propagation
When a user mapped to the dynamic security role connects to the DirectQuery
dataset, their UPN is computed via the USERPRINCIPALNAME() function. This value filters
the Users table to a single row which then filters the User Sales Country Security table
via the one-to-many relationship. The filter is then transferred to the Countries table
via the bidirectional many-to-one relationship between the User Sales Country Security
and Countries tables. The filtered countries, such as Australia and the United Kingdom
per the example with JenLawrence, then filter the Sales Territory dimension table. As a
fourth and final step, the Internet Sales fact table is filtered by Sales Territory and thus
all Internet Sales measures reflect the given Sales Territory Countries.

Note that the Countries table, which contains only the distinct country values, is
necessary since the Sales Territory table contains many regions for the same country
and all relationships must have a side that identifies each row of a table.

There's more...

Bidirectional security relationships
The approach from this recipe can be implemented in the same way for an import
mode model and can also be used with a consolidated security role table. For
example, instead of a users table containing UPNs (email addresses), a permissions
table could be loaded to the model containing the names of each RLS role and the
columns to secure. For each role, a simple security filter could be applied
referencing the name of the role. Like this recipe, bridge tables containing the unique
values of the secured columns could be created and security filters would flow
across relationships from the permissions table to the dimension and fact tables via
the bridge table(s).

RLS permissions table

Given the performance advantage of relationship filtering (including bidirectional
relationship filtering), as well as the avoidance of relatively complex DAX, there
could be value for organizations to follow this approach to dynamic security for both
Import and DirectQuery models.

Displaying the current filter context in
Power BI reports
DAX measures can be created to dynamically display the current filter context to
report users. These measures can detect, retrieve values, and apply conditional logic
to the filters applied to both slicer visuals and report and page level filters. With the
filter context as a visual aid, users consuming or interacting with Power BI reports
can focus on the data visualizations to obtain insights more quickly and with greater
confidence.

In this recipe, DAX measures are created to detect and display the filter selections
applied to a specific column, either on the report canvas itself or as a report or page
level filter. An additional example displays the values of a column that are
'remaining' given the filters applied to the column directly and indirectly via other
filters.

How to do it...

Dimension values selected
1. Create a DAX measure that returns a formatted text string of the filters applied

on the Sales Territory Region column.

Regions Selected =
VAR SelectedRegions = FILTERS('Sales Territory'[Sales Territory Region])
VAR RegionString = "Regions Selected: " & CONCATENATEX(SelectedRegions,[Sales Territory Region],", ",[Sales Territory Region])
VAR StringLength = LEN(RegionString)
VAR NumOfRegions = COUNTROWS(SelectedRegions)
RETURN
SWITCH(TRUE(),
 NOT(ISFILTERED('Sales Territory'[Sales Territory Region])),"No Regions Selected",
 StringLength < 45, RegionString,
 NumOfRegions & " Regions Selected")

Four DAX variables and a SWITCH() function are used to support three
separate conditions. When no filters are applied, the message No
Regions Selected is returned. When many regions are selected, resulting
in a long text string (over 45 characters in this example), a short
message is returned advising of the number of regions selected.
Otherwise, an ordered and comma separated list of the selected
region values is returned.

2. Create a card or multi-row card visual and add the new DAX measure. Add a
slicer visual for the same column:

Two multi-row card visuals displaying the filter context from two slicer visuals

In this example, a separate measure was created for the Product
Category column on the Product table, and both columns are being
filtered by slicer visuals. The two measures displayed in the Multi-
row card visuals will also reflect filters applied via report and page
level filters. For example, if there were no selections on the Product
Category slicer, or if this slicer was removed completely, the categories

selected measure would still detect and display product category
filters from page and report level filters. See Chapter 4, Authoring
Power BI Reports, for details on filter scopes and slicers in Power BI
reports.

3. Confirm that all three conditions (no filters, too long of a text string, and text
string) return the expected results by altering the filters applied to the slicer(s).

4. Revise the StringLength rule of 45 characters and the supporting text to suit the use
case. For example, the name of the measure itself can be used in report visuals
instead of the extra text string Regions Selected:.

5. Apply formatting to the text visuals, such as this example with a shape used for
background color and a border.

Dimension values remaining
1. Create a DAX measure that identifies the sales territory regions remaining given

all other filters applied.

Regions Remaining =
VAR RemainingRegions = VALUES('Sales Territory'[Sales Territory Region])
VAR RegionString = "Regions Remaining: " & CONCATENATEX(RemainingRegions,[Sales Territory Region],", ",[Sales Territory Region])
VAR StringLength = LEN(RegionString)
VAR NumOfRegions = COUNTROWS(RemainingRegions)
RETURN
SWITCH(TRUE(),
 NOT(ISCROSSFILTERED('Sales Territory')),"No Sales Territory Filters",
 StringLength < 55, RegionString,
 NumOfRegions & " Regions Remaining")

The VALUES() function replaces the FILTERS() function used in the earlier
example to return the unique values still active despite filters on
other columns. The ISCROSSFILTERED() function replaces the ISFILTERED()
function used in the example earlier to test if any column from the
Sales Territory dimension table is being used as a filter. Per several
other recipes, a hierarchy exists within the Sales Territory table with
one Sales Territory Group having one or more Sales Territory Countries,
and one Sales Territory Country having one or more Sales Territory Regions.

2. Test the new measure by applying filters on columns that would reduce the
available or remaining values:

Three sales territory regions displayed based on the Europe selection and 15 product subcategories identified given
the bikes and accessories selections

The Sales Territory Region and Product Subcategory columns are impacted by filters
applied to the the Sales Territory Group and Product Category columns, respectively
Given the number of characters in the text string of 15 product subcategories,
only the number remaining is displayed

Note that these remaining expressions will return the same string
values as the first example, when filters are applied directly on the
given column. For example, if the Northwest and Northeast regions

were selected on a sales territory region slicer, these would be the
only two regions remaining.
The techniques applied in these two examples can be blended or
enriched further, such as by associating a measure with each
dimension value returned by the delimited string. The following
example integrates an internet sales amount measure:

RemainingRegions,
[Sales Territory Region] & " " & FORMAT([Internet Net Sales],"$#,###"),", ",
[Sales Territory Region])

Without the use of FORMAT(), the raw unformatted value of the measure
is included in the text.

How it works...

FILTERS() and CONCATENATEX()
The FILTERS() function returns a table of the values that are directly applied as
filters to a column
The third parameter to CONCATENATEX() is optional but it drives the sort order of the
text values returned, and thus is recommended to aid the user when accessing the
report. Per the preceding image, the values are sorted alphabetically.

Avoiding manual user clicks with user-
based filtering logic
A very common scenario in BI projects is the need to customize a core set of reports
and dashboards to better align with the responsibilities and analytical needs of
specific roles or users within a larger team or organizational function. A given
business user should, ideally, have immediate and default visibility to relevant data
without the need to interact with or modify content, such as applying filter selections.
Power BI’s extensive self-service capabilities are sometimes a solution or part of a
solution to this need, and additional role-specific, IT supported reports and
dashboards are another realistic option.

A third option and the subject of this recipe is to embed user-based dynamic filtering
logic into DAX measures. With this approach, a single or small group of reports and
dashboards can be leveraged across multiple levels of an organization, thus avoiding
the need for new report development.

Getting ready
1. Create a table, preferably in a source data warehouse system, that stores the

UPN, the user's role, and a dimension key value.

A table (BI.AdWorksSalesUserRoles) created in SQL Server to support dynamic filter context

Each row should be unique based on the UPN (email address) column only
The User Role column should contain the values of a hierarchy; such as Group,
Country, and Region in this example
The dimension column should map the user to a specific member of the
hierarchy, such as a store within a region

Per the guidance regarding User and Security tables in the Building
dynamic security into DirectQuery data models recipe earlier in this
chapter, it's essential to define the ownership and management of this
table. For example, a new SQL stored procedure or SSIS package
could be developed and scheduled to update this new table nightly,
along with other BI assets. Like all table sources to data models, a
SQL view should be created and the view should be used by the data
model.

How to do it...
1. Load or connect to the user role table described in the Getting ready section,

from a Power BI data model:
The user table should be hidden from the Fields List and should not have
relationships to any other table

2. Create DAX measures to return the user's role and sales territory values for
group, country, and region:

User Principal Name = USERPRINCIPALNAME()

User Sales Territory Key = LOOKUPVALUE('Sales User Roles'[SalesTerritoryKey],
'Sales User Roles'[User Email Address],[User Principal Name])

User Sales Role =
VAR RoleLookup = LOOKUPVALUE('Sales User Roles'[User Role],
'Sales User Roles'[User Email Address],[User Principal Name])
RETURN IF(ISBLANK(RoleLookup),"Role Not Found",RoleLookup)

User Sales Group =
IF([User Sales Role] = "Role Not Found", "Role Not Found", LOOKUPVALUE('Sales Territory'[Sales Territory Group],'Sales Territory'[SalesTerritoryKey],[User Sales Territory Key]))

User Sales Country =
IF([User Sales Role] = "Role Not Found", "Role Not Found", LOOKUPVALUE('Sales Territory'[Sales Territory Country],'Sales Territory'[SalesTerritoryKey],[User Sales Territory Key]))

User Sales Region =
IF([User Sales Role] = "Role Not Found", "Role Not Found", LOOKUPVALUE('Sales Territory'[Sales Territory Region],'Sales Territory'[SalesTerritoryKey],[User Sales Territory Key]))

The purpose of these measures is to provide a specific default filter
context to apply to a measure (sales). A country role member, for
example, should see data filtered by her country by default when
opening the report. However, conditional logic can also allow for
user filter selections to be applied, allowing for additional visibility
as well, as an option.

3. Create two DAX measures to detect the filter context of the Sales Territory table
and to filter the sales measure.

Sales Territory Detection =
IF(ISCROSSFILTERED('Sales Territory'),"Filters Applied","No Filters")

Internet Sales Amount =
SWITCH(TRUE(), [Sales Territory Detection] = "Filters Applied" || [User Sales Role] = "Role Not Found",[Internet Net Sales],
[User Sales Role] = "Group",CALCULATE([Internet Net Sales],
Filter(ALL('Sales Territory'),'Sales Territory'[Sales Territory Group] = [User Sales Group])),
[User Sales Role] = "Country",CALCULATE([Internet Net Sales],
Filter(ALL('Sales Territory'),'Sales Territory'[Sales Territory Country] = [User Sales Country])),
[User Sales Role] = "Region",CALCULATE([Internet Net Sales],
Filter(ALL('Sales Territory'),'Sales Territory'[Sales Territory Region] = [User Sales Region])))

The Sales Territory Detection measure is fundamental to this approach. If no columns
on the Sales Territory table have been filtered on, such as via slicers, then the sales
measure should default to a specific filter context based on the user. If filter

selections have been made on Sales Territory columns, then these selections
should be used by the measure.

The Internet Sales Amount measure also passes the standard [Internet Net Sales]
measure if the current user is not found in the Users table. If a role is identified for
the user and no filters have been applied on the Sales Territory table, a filter at the
user's role level (Group, Country, Region) and the specific dimension member is applied.

4. Hide the new measures except for internet sales amount.
5. Optionally, create additional status DAX measures to inform the user of the

filter logic applied.
6. Create a standard report with the new measure and the sales territory table to

test or demonstrate the logic.

Default filter context for user Brett: a country role member for the United States

When the user Brett accesses the report, the card visual updates to
$5.9M (United States) and the map visual zooms in on the United
States, since both visuals use the internet sales amount measure and
no filter from the Sales Territory table is applied. The country and
region chart uses columns from the Sales Territory table and thus this
visual breaks out internet sales across the hierarchy. The five text
strings in the top left multi-row card visual are simple measures used
to aid the user. See How it works... for the specific expressions used.

7. Test all three user roles and confirm that filter selections applied to the Sales
Territory columns, such as the two slicers at the top of the report page, are
reflected accurately.

Default filter context for user Jennifer: a Region role member for the Southwest Region of the United States

When Jennifer, a region role member from the user table described in
the Getting ready section, accesses the report, filters are applied for
her Southwest region to compute $3.6M. Jennifer can still navigate
away from this default by either clicking one of the bars on the lower
left chart or using one of the two Sales Territory slicers at the top.
The card and map would update to reflect these selections and the
Sales Territory Filter Status message in the top left table would change
to User Defined per the How it works... section.

How it works...
The five DAX measures exposed in the top left card visual of the sample reports are
defined as follows:

User Role Status = "My Sales Role: " & [User Sales Role]
Sales Group Status = "My Group: " & [User Sales Group]
Sales Country Status = "My Country: " & [User Sales Country]
Sales Region Status = "My Region: " & [User Sales Region]
Filter Status =
VAR Prefix = "Sales Territory Filter Status: "
RETURN
IF([Sales Territory Detection] = "No Filters",Prefix & "Role Based",Prefix & "User Defined")

There's more...
12 of the 13 measures created in this recipe only need to be
developed once. The conditional logic applied to the internet sales
amount measure can be applied to other measures to support much
richer, personalized reports and dashboards with multiple dynamic
measures. Given lazy evaluation behavior of DAX, small tables being
queried to look up the user's values, and the use of DAX variables,
performance should not be significantly impacted by this logic in
most scenarios, but this should be tested.

Personal filters feature coming to
Power BI apps
The Power BI team has announced that a personal filters feature is on the product
roadmap related to the deployment of apps. As this feature becomes available, it may
eliminate the need for user-specific DAX measures, such as the examples in this
recipe.

Applying Advanced Analytics and
Custom Visuals
In this chapter, we will cover the following recipes:

Incorporating advanced analytics into Power BI reports
Enriching Power BI content with custom visuals and quick insights
Creating geospatial mapping visualizations with ArcGIS maps for Power BI
Configuring custom KPI and slicer visuals
Building animation and story telling capabilities
Embedding statistical analyses into your model
Creating and managing Power BI groupings and bins
Detecting and analyzing clusters
Forecasting and visualizing future results
Using R functions and scripts to create visuals within Power BI

Introduction
Power BI Desktop's standard report authoring tools provide a robust foundation for
the development of rich BI and analytical content. Custom visualization types
developed by Microsoft and third parties further supplement these capabilities with
their own unique features and can be integrated with standard visuals in Power BI
reports and dashboards. Additionally, geospatial analysis features such as the
ArcGIS Map visual for Power BI, custom dimension groupings, and animation and
annotation options, further aid in the extraction of meaning from data and also support
sharing these insights with others.

Power BI desktop also includes advanced analytics features reflecting modern data
science tools and algorithms including clustering, forecasting, and support for custom
R scripts and visuals. For example, an analytics pane is available to enrich visuals
with additional metrics such as a trend line and the Quick Insights feature empowers
report authors to rapidly analyze specific questions and generate new visualizations.

This chapter contains a broad mix of recipes highlighting many of the latest and most
popular custom visualization and advanced analytics features of Power BI. This
includes top custom visuals, such as the Dual KPI, Chiclet Slicers, Bullet charts, the
ArcGIS map visual for Power BI, and data storytelling via animation and annotation.
Additionally, examples are provided of leveraging Power BI datasets and the DAX
and R languages to embed custom statistical analyses and visualizations,
respectively.

Incorporating advanced analytics into
Power BI reports
The standard line, scatter, column, and bar chart visualization types available in
Power BI Desktop, which generally represent the majority of Power BI report
content, given their advantages in visual comprehension, can be further enhanced via
a dedicated analytics pane. Similar to visual level filters, the Power BI analytics
pane creates measures scoped to the specific visual such as a trend lines, constant
lines, percentile lines, min, max, and average. This additional logic provides greater
context to the visual and avoids the need to author complex or visual-specific DAX
measures.

"This pane is our home for all of our analytics features and you'll be able to use
this to augment your charts with any kind of additional analytics that you need."
- Amanda Cofsky, Power BI Program Manager

This recipe includes two examples of leveraging the analytics pane in Power BI
Desktop to raise the analytical value of chart visuals: one for a clustered column
chart and another for a line chart. The predictive forecasting feature built into the
analytics pane is described in the Forecasting and visualizing future results recipe
later in this chapter.

How to do it...

Clustered column chart
1. In Power BI Desktop, select the clustered column chart visualization type from

the visualizations pane.
2. Select a measure, such as Average Unit Price, from the Fields list and drop the

measure into the Value field well.
3. Select a date column from the Date or Calendar dimension table and drop this

column into the Axis field well.
4. In the Axis field well, select the dropdown under the Date column and switch

from the hierarchy to the Date column:

The Automatic Date Hierarchy when a Date Column is added to a Visual

5. Click the Analytics Pane icon to the right of the Format pane (chart symbol).
6. Open the Trend Line card, click Add, and apply a black color with a dotted

style and 0% transparency.
7. Add Min, Max, and Median lines to the visual from their respective cards in the

Analytics pane.
8. Set the data label property for these three lines to On and use the Name and

Value text option.

9. Finally, apply a black color with a solid Style and 0% transparency for these
three lines:

Clustered column chart with 4 dynamic lines from the analytics pane: Trend, Min, Max and Median

10. Format the colors of the columns to contrast with the analytics lines, format the x
and y axes, and enter a title.

In this example, since a Date column was used as the axis, the trend
line calls out the decline in daily prices in the first quarter of 2017,
when lower priced accessory products were first sold. Given the
volume of individual dates, the Min, Max, and Median lines give the
user quick takeaways, such as the median daily unit price for an
entire quarter and the option to further analyze sales activity on
February 11th, when daily unit prices reached a low (Min) of $93 per
unit.

Line chart
1. Create a line chart visual in Power BI Desktop.
2. Drag a margin percentage measure to the Values field well and a weekly column

from the date table to the axis.
3. In the Analytics Pane, add a constant line and enter a percentage represented as

a number in the Value input box.
4. Add a Percentile Line in the Analytics Pane and enter the percentage value of 75

in the Percentile input box.
5. Add Min and Max lines and turn set the Data label property to On for all four

lines.
6. Set the text property of each data label to Name and Value, and the position

property to In Front.
7. Apply a solid style to all lines except for the Percentile Line—use a dashed

style for this line.
8. Use colors and the stroke width of the margin percentage line to contrast the

analytics lines.

A line chart with 4 lines from the analytics pane: Percentile, Min, Max, and Constant

In this example, negative (-2 percent) is considered a key profitability
threshold and thus a constant line helps to call out values below this
level. Additionally, the percentile line set at 75 percent helps to
identify the top quartile of values (above 1.7 percent). The four lines
from the Analytics pane (and their formatting) provide more
analytical value to users without requiring additional DAX measures
for the model or cluttering the visual.

How it works...

Analytics pane measures
The selections applied in the Analytics pane result in new expressions added to
the DAX query of the visual:

A SQL Server profile trace of a Power BI Desktop file using the Analytics pane for Min, Max, and Average

The analytics calculations are translated into the equivalent DAX expressions
(ie MINX(), AVERAGEX()) and passed into the GROUPBY() table function.

Running a SQL Server Profiler trace against a Power BI Desktop file
and viewing the full DAX query associated with a given visual
(including all filters applied) is a great way to understand advanced
DAX functions and filter context. In Windows Task Manager, you can
identify the Process ID (PID) associated with Power BI Desktop's
msmdsrv.exe process. You then run netstat - anop tcp from a command
prompt, find the local port (in the local address column) associated
with this process and pass this value to SQL Server Profiler. See the
blog post referenced in the See also section for full details.

There's more...

Analytics pane limitations
The analytics pane features are not available for custom, third-party supported
visuals or combination visuals
The predictive forecast is only available to the line chart and requires a
date/time data type as the x axis
The trend line is available to the clustered column and line chart if a date/time
data type is used as the x axis
Combination chart visuals are currently not supported and only a constant line is
available for stacked chart visuals
There's no option to apply a name or title to the analytics lines

See also
Power BI analytics pane documentation: http://bit.ly/2s2fA0P
How to trace a Power BI Desktop file: http://bit.ly/2tYRLZg

http://bit.ly/2s2fA0P
http://bit.ly/2tYRLZg

Enriching Power BI content with
custom visuals and quick insights
Custom visuals for Power BI can be reviewed and downloaded from the Office Store
gallery to provide additional features and options beyond those supported by the
standard visuals of Power BI Desktop. Over 90 custom visuals are currently
available in the Office Store and many of these have been developed by Microsoft to
address common needs, such as the bullet, histogram, and gantt charts. Other custom
visuals available in the Office Store have been developed by third parties but
validated for security by Microsoft, and they deliver unique and powerful
capabilities, such as the Flow map network visualization and the interactive visuals
developed by ZoomCharts. In addition to custom visuals, Quick Insights can be used
in the Power BI service and in Power BI Desktop to apply advanced analytics
algorithms against datasets to extract insights such as trends or relationships, and
rapidly generate new visualizations for use in reports and dashboards.

This recipe includes an example of accessing and utilizing the Bullet chart custom
visual in Power BI Desktop and an example of the quick insights feature in the Power
BI service. Additional details on Quick Insights within Power BI Desktop are
included in the There's more... section.

Getting ready
1. Download the sample Power BI report associated with the Bullet custom chart

visual from the Office Store (http://bit.ly/2pS7LcH).
2. In the Office Store, selecting the bullet chart and clicking on Add exposes a

download the sample report hyperlink.
3. Open the Power BI Desktop sample report and review the field wells,

formatting options, and any notes available.

Technically, it's only necessary to import the custom visual (.pbiviz
file) to Power BI Desktop, but reviewing the associated sample
report, which often includes multiple examples and a hints page,
helps to expedite the report design process and derive the most value
from the custom visual.

http://bit.ly/2pS7LcH

How to do it...

Bullet chart custom visual
1. Open Power BI Desktop and click the from store icon on the Home tab of the

ribbon.

Adding a custom visual from Power BI Desktop

2. Search or navigate to the Bullet Chart and click Add. The bullet chart icon will
appear in the visualizations pane.

If the from store icon isn't available in Power BI Desktop, you can
access the Office Store gallery via an internet browser per the
Getting ready section. The custom visual (.pbiviz file) can be
downloaded from the Store to a local directory and then, in Power BI
Desktop, you can click the ellipsis in the visualizations pane to
import the visual from this file.

3. Select the bullet chart icon in the visualizations pane to add it to the report
canvas.

4. Add the measures Internet Net Sales (CY YTD) and Internet Net Sales Plan (CY
YTD) to the Value and Target Value field wells, respectively.

5. Apply additional measures to the Needs Improvement, Satisfactory, Good, and Very Good
field wells that represent threshold values relative to the Target value.

6. Add the Sales Territory Country column to the Category field well to expose an
individual bullet for each country.

7. Optionally, apply measures to the Minimum and Maximum field wells to focus the
visualization on the most meaningful ranges of values.

Bullet chart custom visual with data driven ranges and threshold values

Other additional formatting options for this visual include customizing the
colors and the orientation

In this example, six DAX measures, reflecting different values relative
to the target measure (internet net sales plan (CY YTD)), were used to
drive the color thresholds and the min and max values of the bullets.
A 10 percent below plan (YTD) measure was used for the Satisfactory
field well, and this represents the minimum value for the default
yellow color, while a 10 percent above plan (YTD) measure was used
for the Good field well (Green). 20 percent below and above plan
measures were used for the needs improvement (dark red) and very
good (dark green) field wells, respectively. A 50 percent below plan
(YTD) measure was used for the Minimum field well value and a 25
percent above plan (YTD) measure was used for the Maximum field, to
focus the range of the bullets.
The bullet chart also supports manually entered target values and
percentage of target values in the formatting pane. However, the data
driven approach with DAX measures is recommended, as this allows
for the reuse of the calculations across other visuals and makes it
easy to adjust multiple reports when the target and threshold value
logic changes.

Scoped quick insights
1. Open a dashboard in the Power BI service.
2. Click the focus mode icon in the top right corner of a dashboard tile.
3. Select Get Insights in the top right corner of the Power BI service:

Power BI service with a dashboard tile opened in focus mode

4. The insights engine will produce a summary and insights visuals related to the
data in the dashboard tile:

Quick insights generated based on a single dashboard tile

Additionally, quick insights can be executed against a visual that was previously
generated by quick insights

Quick insights visuals can be pinned to new and existing dashboards
like other Power BI report and dashboard tiles. Additionally, quick
insights can be executed against a visual that was previously
generated by quick insights. This example focuses on (scopes) the
search process of the quick insights engine against the data in a

single dashboard tile. However, Quick Insights can also be executed
in Power BI Desktop and against an entire published dataset in the
Power BI service. See the 'There's more...' section for more details on
these two use cases.

The results from quick insights can be improved by hiding or
unhiding columns. Quick insights does not search hidden columns, so
hiding (or removing) unnecessary columns can focus the insights
algorithms on only important columns. Likewise, any duplicate
columns can be removed or hidden such that the time available for
quick insights to run is used efficiently.

How it works...
Quick Insights applies sophisticated algorithms against datasets, including
category outliers, correlation, change points in a time series, low variance,
majority, seasonality in time series, and overall trends in time series
The insights engine is limited to a set duration of time to render its results

There's more...

Quick insights in Power BI Desktop
The quick insights feature and analytics engine is now available in Power BI
Desktop:

Quick insights in Power BI Desktop: right-click context menu of a data point in a line chart

An Analyze option appears when right-clicking a specific data point, enabling
additional visualizations to be generated specific to the selected item, such as a
date on a line chart or a dimension value on a bar chart
The generated visuals can then be added to the Power BI Desktop file and
edited just like all other visuals

A what's different? option is available in the analyze right-click
context menu, when two items are selected from the same visual. For
example, select two product categories represented by their own bars
in a sales by product category bar chart and use the what's different?
Quick insights feature to generate visualizations that further
compare and explain the difference in sales.

Quick insights on published datasets
Quick insights can also be executed against an entire dataset in the Power BI
service:

Quick Insights generated in the Power BI service for the AdWorks Enterprise Dataset

To run quick insights against a dataset, click the ellipsis under the
Actions category for the given dataset and select Get quick insights.
The insights generated can be accessed from the same context menu
via a View Insights option. Each insight contains a Power BI visual,
the title of the insight (algorithm) applied, such as outliers and
correlation, and a short description. Visuals from View Insights can
also be pinned to new and existing dashboards.

Creating geospatial mapping
visualizations with ArcGIS maps for
Power BI
ArcGIS mapping and spatial analytics software from ESRI, the market leader in
geographic information systems (GIS), is built into Power BI Desktop to generate
greater insights from the spatial component of data. Familiar report visualization
field wells and the cross filtering capabilities of Power BI can be combined with
ArcGIS geospatial features and datasets, such as classification types, pins, and
reference layers, to build custom, intelligent geographical visualizations into Power
BI solutions.

In this recipe, a custom geographical column is created to include multiple
geographical attributes (ie Street Address, City, State) to support accurate geocoding
by the ArcGIS service. The ArcGIS visualization in Power BI Desktop is then used
to plot customer addresses into a Cluster theme map visualization with supporting
Pins and Infographics. See the There's more... section for greater detail on using the
ArcGIS Map visualization, including options for applying custom conditional
formatting logic.

Getting ready
1. In the Power BI service, click on Settings (gear icon) in the top right and enable

ArcGIS maps on the General tab:

General settings dialog in Power BI service

In Power BI Desktop, the ArcGIS map visualization should be available (globe
icon) in the visualizations pane if you have the June 2017 version or later of
Power BI Desktop installed. For earlier versions of Power BI Desktop, open
preview features in options to enable the ArcGIS visual.

How to do it...

Single field address
1. Identify the following source columns for a new column Full Address to be used

by the ArcGIS visual: street address (line 1), city, state or province, and postal
or zip code. (Providing only a street address will result in inaccurate results.)

2. Include these columns in the SQL view used by the dimension table in the data
model.

3. Create the Full Address column in the data model, either within the SQL view or
by adding an M expression per the following example:

let
 Source = AdWorksProd,
 Customer = Source{[Schema = "BI", Item = "vDim_Customer"]}[Data],
 FullAddress= Table.AddColumn
(Customer, "Customer Full Address",
each Text.Combine({[Address Line 1], [Customer City], [Customer State Province Code]}, ", ") & " " & [Customer Postal Code], type text)
in FullAddress

The Text.Combine() is used for three columns separated by comma and space.
This value is then concatenated with an additional space and the Customer
Postal Code column via ampersand operators.

Per other recipes, it's always recommended to move data
transformation processes, particularly resource-intensive operations,
back to the source system. In this example, the operation was applied
to a small table (18,484 rows), but per the Query Settings window, the
final step was not folded back to the SQL Server source system-local
resources were used against the results of the vDim_Customer.

Customer Full Address column created in M query for Customer Dimension table

4. Load the updated customer query to the model and select the new column
(Customer Full Address) in the Fields list.

5. Set the Data Category for the new column to Address via the Modeling tab of report
view or data view.

Per the Assigning data formatting and category properties recipe in C
hapter 3, Building a Power BI Data Model, data categories assigned to
columns are used by Power BI Desktop and Q & A in the Power BI
service, in determining default visualizations and to better plot this
data in map visuals. ArcGIS also benefits from geographical data

categories.

Customer clustering Map
1. Apply page level filters to reduce the volume of data points to below the 1,500

limit when a location field is used (rather than latitude and longitude). In this
example, the current year and Southwest region values from the Date and Sales
Territory tables, respectively, are used as page level filters.

2. In report view, add an ArcGIS visual to the canvas and drop the Full Address
column into the Location field well.

3. If the location data points are in one country, click the ellipsis in the top right of
the visual and select Edit.

4. From the Edit menu, click Location Type and then set the Locations are in
options to the given country.

Location Type options in ArcGIS maps visual: setting the locations to United States

Setting the Locations are in geographic hint option significantly
improves the accuracy of the plotted points returned by the ESRI
service. Note that locations can also be represented as boundaries,
such as states or postal codes. Almost all the advanced report
development features provided by ArcGIS are exposed via this Edit
window.

If latitude and longitude columns are already available for the
dimension to be mapped, then these columns should be used in the
ArcGIS visual instead of the Location field well. Providing latitude and
longitude source data significantly improves performance as this
eliminates the need for ESRI to compute these values. Additionally, a
limit of 1,500 plotted data points is applied when the Location field
well is used. Many more data points can be plotted via latitude and
longitude inputs.

5. Enter a title, such as Current Year Customer Distribution: Los Angeles, CA, in the
formatting pane of the visual.

6. Select the Map theme menu and change the theme to Clustering.
7. Use the Symbol style menu to configure the radius, and background and text

colors of the clusters.
8. Click on the Pins menu and search for one or more points of interest, such as a

headquarters city, and format the pin.
9. Click on the Drive time menu and individually select the pins by holding down

the Ctrl key.
10. With the pinned locations selected, revise the search area to radius and choose a

distance of five miles.
11. Optionally, apply formatting to the radius, such as a bright, bold fill color, and

reduce the transparency.

The default formatting settings are based on ESRI's deep experience
and should be sufficient for most scenarios. If the map's formatting
has an analytical component, such as the classification type and
color ramp, applied to measures used in the Color field well per the
There's more... section, this logic should receive greater attention.

12. Finally, open the Infographics menu and add total population and household
income. Click Back to Report.

Formatted cluster theme map with pins, a drive time radius, and two infographics

The relationship between relatively few clusters of customers and the pins
makes the map easy to view and analyze

13. When complete, publish the Power BI Desktop report to an App Workspace in
the Power BI Service.

The visual is fully interactive; the clusters and the infographic
numbers all update dynamically as the zoom of the visual is changed
and as different geographic areas are navigated to, such as San
Francisco, CA. A common alternative to the clustering theme is the
heat map and the dark gray canvas basemap is an alternative
basemap that can help visualize bright colors.

There's more...

ArcGIS map field wells
Only the location was used in this example, but size, color, time, and tooltips
can also be used by ArcGIS Map visuals
Numerical measures can be for size, but both numerical measures and text
values can be used for color
Tooltips cannot be used with clustering themes but are very helpful with
individual data points
See the recipe Building animation and story telling capabilities in this chapter
for details on the Time field well

Conditional formatting logic
A powerful analytical capability of ArcGIS for Power BI is its ability to set the
classification algorithm:

Classification

Use a measure such as sales in the Color field well of the ArcGIS
visual and open the Symbol Style menu to customize how the data
points are colored. For example, a Manual Breaks classification
could be set to define specific threshold values that separate the
different classes, such as locations above $2,000 as dark green. There
are multiple classification types supported, including standard
deviation, and up to 10 distinct classes (similar to bins) can be set in
addition to a rich variety of color ramps to associate with these
classifications.

See also
ArcGIS for Power BI documentation: https://doc.arcgis.com/en/maps-for-powerbi/

https://doc.arcgis.com/en/maps-for-powerbi/

Configuring custom KPI and slicer
visuals
Per previous chapters, the KPI visualization type is commonly used to provide at-a-
glance insights in Power BI dashboards and from the Power BI mobile application
via mobile-optimized reports and dashboards. Additionally, the slicer visualization
type delivers a robust self-service filtering capability to consumers of Power BI
content across all data types. Given the importance of these two use cases Microsoft
has developed the dual KPI and chiclet slicer custom visualizations to provide even
more analytical features and design options such as the percentage change of a KPI
value relative to a specific date and the use of images as slicer items.

In this recipe, the steps required to create the headcount and labor expenses dual KPI
from enterprise dashboard example in Chapter 5, Creating Power BI Dashboards, are
fully described. Additionally, a chiclet slicer custom visual is configured to expose
images of flags associated with specific countries as filtering items via URL links.
Further details on the cross highlighting and color formatting features of the Chiclet
Slicer are included in the There's more... section.

Getting ready
1. Import the dual KPI and chiclet slicer custom visuals (.pbiviz files) to Power BI

Desktop.
2. Identify the online source and specific URLs to use for the Chiclet Slicer

images.
3. Update the table in the source database of the data model with a string column

containing the image URL:

Image URL column (SalesTerritoryCountryURL) added to the SQL Server Sales Territory table

4. Revise the SQL view used by the Power BI data model to retrieve the new
image URL column.

5. Create a date column to support the percentage change since start date
component of the dual KPI visual.

For this recipe, a column is added to the Date table's SQL view, reflecting the date one
year prior to the current date:

DATEADD(YEAR,-1,CAST(CURRENT_TIMESTAMP as date)) as 'One Year Prior Date'

In the absence of a date column for the percentage change start date
field wells of the dual KPI Slicer, the first date available in the filter
context will be used by the % change since data label and tooltip.
Additionally, date values can be manually entered in the two start
date input boxes available in the dual KPI Properties formatting
card. These two options may be sufficient for certain scenarios, but
since the dual KPI is likely to be used on highly visible dashboards,
it's generally recommended to avoid hard coded values and provide a
dynamic column to expose the most relevant trend.

How to do it...

Dual KPI - headcount and labor
expense

1. In Power BI Desktop, select the dual KPI custom visual to add it to the report
canvas.

2. Apply a column of the date datatype to the Axis field well. A text column in the
format 2017-Jan can also be used.

3. Drop the headcount and labor expenses measures into the top and bottom values
field wells, respectively.

4. Apply a date column to the top and bottom percentage change start date field
wells. A measure cannot be used.

In this example, the One Year Prior Date column created in the Getting
ready section is used for both the top and bottom percentage change
start date field wells. As this column only contains one value, it can
be hidden from the Fields list after being added to the dual KPI.
Although it's possible to create distinct percentage change
calculations for the top and bottom KPIs, such as Year-over Year for
the top KPI and year-to-date for the bottom KPI, this customization
requires a second additional date column and could easily confuse
users as the KPIs would share the same axis but the data labels
would reflect different calculations.

5. Open the formatting pane of the visual and expose the dual KPI properties card
settings.

6. Disable the title formatting property.
7. In the dual KPI properties card, delete the default text Title in the Title text

property and set the Abbreviate values properties to On:

Dual KPI properties

8. In the dual KPI colors card, set the data color to the tan theme color, the text
color to black, and chart opacity to 70.

9. Optionally, revise the dual KPI axis settings and the dual KPI chart type
properties. For example, one or both KPIs could be displayed as a Line chart

instead of an area chart and a custom axis could be used to focus the visual to a
specific range of KPI values.

Related KPI measures of headcount and labor expense on the dual KPI visual
with the hover tooltip highlighted:

Dual KPI slicer configured with One Prior Year Date column as % start date

Although the labor expense of 1.31M is 30.6 percent higher since the prior year
(6/1/2016), it's 3.3 percent lower than January of 2017

In this example, the Power BI report is filtered to the current and
prior calendar year dates, so all periods from January 2016 through
the current month of June of 2017 are included in the Dual KPI
charts. However, the (+46.8%) and (+30.6%) data labels are based
on the percentage change start date parameters which use the One
Prior Year Date column created in the Getting ready section. Since the
KPI values of 276 and 1.31 M reflect the latest date in the filter
context, the % change since values represent year-over-year calculations
(June of 2017 versus June of 2016 in this example). By hovering over
January of 2017 in one of the charts, the bottom tooltips display the
values for this time period and compares it to the current KPI value.

Per Chapter 5, Creating Power BI Dashboards, data alerts on Power BI
Dashboard tiles can only be configured on standard KPI, gauge, and
card visuals. Until data alerts are supported for custom visuals, such
as the Dual KPI, a work-around option is a dedicated alerts
dashboard comprised of standard KPI visuals. Business users can
continue to view the Dual KPIs in their dashboard but alerts could be
triggered from the separate dashboard.

Chiclet Slicer - Sales Territory Country
1. In Power BI Desktop, select the Sales Territory URL column in the Fields list and

set the Data Category to Image URL.
2. Select the Chiclet Slicer custom visual to add it to the report canvas.
3. Drag the Sales Territory Country text column to both the Category field well and the

Values field well.

The images will not appear in the Chiclet Slicer unless the Values field
well is populated. Likewise, per the 'There's more...' section, cross
highlighting will not be enabled unless the Values field well is
populated. Other columns beyond the Category column can also be
used in the Values field well, and in some cases, the columns contain
business meaning such as a score value of 10 being associated with a
smiling image.

4. Drag the Sales Territory URL column to the Image field well and open the formatting
options of the Chiclet Slicer.

5. Set the orientation to horizontal and enter the values of 6 and 1 for the Columns and
Rows properties, respectively.

6. Increase the size of the header text and apply a black font color. The title can be
left off per its default setting.

7. Open the Chiclets card and set the outline color to match the background color
of the report page.

8. Open the images formatting card, set the Image Split to 80, and turn on the Stretch
image property.

9. Optionally, adjust the other colors in the Chiclets card, such as the disabled
color, and revise the Chiclet text size.

The chiclet slicer with images such as flags and corporate logos provides an eye-
catching and intuitive user experience.

Chiclet Slicer custom visual with image URLs

The 80 percent image split leaves just enough space for the country name.
Additionally, the white outline color of the chiclets makes these cells invisible
to the interface, such that only the flag and country name is exposed.

There's more...

Chiclet slicer custom visual
1. Customized row, column, and color formatting options are also useful features

of the Chiclet Slicer.

Two Chiclet Slicers with horizonal orientation and 3 columns

2. A rectangle shape provides the gray background color and a line shape is used
to divide the Chiclet slicers.

For basic filtering features via chiclet slicers, only the Category field
well is required. However, to enable cross highlighting, a column is
also required in the Values field well. In the preceding example, the
light blue shading of the January and February slicer items indicate
that these values have been selected. No selections have been made
via the product subcategory chiclet slicer, but given a customer
selection made on a separate visual, subcategories without related
data are automatically grayed out through cross highlighting. In this
example, only the bottles and cages and tires and tubes product
subcategories are associated with both the calendar selections and
the customer selection. The default gray disabled color property can
be modified along with the selected and unselected chiclet colors.

Note that cross highlighting relies on the filter context to impact the column used by
the Chiclet slicer. In this example, a bidirectional relationship between internet sales
and the Product table enables a filter selection made on the Customer table to impact the
Product table. The Calendar table has a single direction relationship with internet
sales and therefore it's not impacted by the other dimension filters and not cross-
highlighted in the Chiclet Slicer.

Though powerful from an analytical and visualization standpoint,
updating the individual Chiclet items through cross highlighting
requires additional queries, just like chart and table visuals on the
same report page. Therefore, this feature should be used prudently,
particularly with larger and more complex data models or those with

many distinct chiclet items.

Building animation and story telling
capabilities
Business teams and analysts are commonly responsible for sharing or "walking
through" business results, trends, and the findings from their analyses with other
stakeholders such as senior management. To most effectively support the message
delivery process in these scenarios, Power BI provides built-in animation
capabilities for the standard scatter chart and ArcGIS map visualization types.
Additionally, custom visuals such as the pulse chart further aid the storytelling
process by embedding user-defined annotations into the visual and providing full
playback control over the animation.

"We're bringing storytelling into Power BI. We're making Power BI into the
PowerPoint for data"
- Amir Netz, Microsoft Technical Fellow

This recipe includes examples of preparing the standard Scatter chart visualization
for animation, leveraging the date animation feature of the ArcGIS map visual, and
utilizing the Pulse Chart custom visual with annotations. Details on the new
Bookmarks Pane in Power BI Desktop, as well as additional story telling custom
visuals, are included in the 'There's more...' section.

Getting ready
1. Find and add the pulse chart custom visual (.pbiviz) to Power BI Desktop from

the Office Store.
Click From Store on the Home tab of report view:

Pulse chart custom visual via the Office Store integrated with Power BI Desktop

2. Identify specific events and details to be included in the pulse chart annotations,
such as marketing campaigns.

How to do it...

Scatter chart with play axis
1. In Power BI Desktop, apply a report or page level filter for the Sales Territory

Group column to the value Europe.
2. Select the scatter chart visualization type and re-position the blank visual on the

canvas.
3. Drag the internet sales customer count and internet net sales measures into the X

and Y field wells, respectively.
4. Drag the Sales Territory Country column to the Details field well and open the

Formatting pane.
5. Open the Bubbles card and set the Size to 100 percent.

An alternative method of displaying bubbles is by using a measure for
the Size field well. Applying this third measure converts the scatter
chart to a bubble chart with the size of the bubbles being used to
visually emphasize a certain measure. Similar to pie and donut
charts, it's difficult to visually determine differences in bubble sizes.
Additionally, even a small number of dimension items, such as
product categories, can lead to a cluttered visualization when
presented as a bubble chart.

6. In the formatting pane, set the fill point and color by category properties to on.
7. Set the Category labels setting to On, increase the text size to 11 points, and

specify a black font color.
8. Give the visual a title and format the X and Y axes with a larger text size and a

black font color.
9. Optionally, identify supplemental measures, such as margin percent, and drop

these measures into the Tooltips field well.
10. Finally, drag the Year-Mo column from the Date dimension table to the Play Axis field

well.

11. Note that any manually applied colors in the Data colors formatting card will be
overridden when the Play Axis is used.

12. Test the animation behavior and tracing capability by clicking play, pausing on a
play axis value, and selecting one or more of the categories in the scatter chart.

In the preceding example, the animation (filter) is paused at 2017-
April, and both United Kingdom and France have been selected.
Multiple items can be selected or unselected by holding down the
Ctrl key and clicking a bubble from a separate series. When selected,
the Scatter chart highlights the path of the given item (or items) up to
the currently selected or filtered point on the play axis. Playing and
pausing the Play axis and selecting the dimension(s) in the Scatter
chart makes it easy for presenters to address a significant outlier or
a point in time at which a relevant trend began.

Microsoft has also created the enhanced scatter custom visual which
supports a background image URL, such as a business location or
diagram and images for the individual plotted categories similar to
the Chiclet Slicer example in the previous recipe. However, this
visual does not include a Play Axis or any visual animation like the
standard scatter chart used in this recipe.

ArcGIS map timeline
1. Open a Power BI Desktop report with an ArcGIS map visual, such as the

example from earlier in this chapter.
2. Select this visual and add a date column to the Time field well.

ArcGIS Map for Power BI visual using the heat map theme and the timeline

The column used for the Time field well must be of the date or the
date/time data type, such as an individual calendar date or a week
ending date. Text and numeric data type columns, such as calendar
year, are not currently supported.

The timeline at the bottom of the visual can be used to play through
each individual date value or, per the preceding example, a custom
time interval can be set by modifying the start and end points of the
timeline. For instance, a date interval representing four weeks could
be set at the beginning of the timeline, and clicking the play icon
would sequentially display each interval. The forward and backward

icons can be used to quickly navigate to different time periods or
intervals.

Pulse chart custom visual
The Pulse Chart custom visual, developed by Microsoft, also supports animated
playback, but adds rich support for storytelling via customized popup text boxes and
controls for automatically pausing an animation at particular data points.

1. Create a table in the source database with the following columns: Event Date,
Event Title, and Event Description:

Event table with annotations to support data storytelling

2. Insert event detail rows into this table and create a view for access by the
Power BI data model.

3. Expose this new view as an M query in Power BI Desktop (EventAnnotations).

4. Use an outer join M function from the date query to the EventAnnotations query and
add the two event columns.

In this example, the visualization to create is at the weekly grain, so
the join from the Date query to the EventAnnotations query uses the
calendar week ending date column. If event annotation requirements
are known and stable, the integration of the annotation columns can
be implemented in the SQL views or an ETL process. See Chapter 2,
Accessing and Retrieving Data, and other recipes for examples on
merging queries via M functions.

5. Add the Pulse Chart visual to the report canvas and drop a measure into the Value
field well.

6. Now drop the Calendar Week Ending Date column (a Date datatype) into the Time Stamp
field well.

7. Add the Event Title and Event Description columns, now merged into the date
dimension table, to the Event Title and Event Description field wells.

8. Open the formatting pane and set the series color to black and the fill of the dots
to red.

9. Set the position of the X axis to bottom, unless you have negative values in the
data set.

10. In the popup card, adjust the width, height, fill, and text size to align with the

annotations being displayed.
11. Finally, apply black color to the playback controls, a border, a background

color, and enter an intuitive title.

12. Optionally, revise the speed, pause, and delay playback settings to suit the
specific use case.

Pulse Chart paused on an event with data-driven annotation displayed

The Pulse Chart only supports a single data series and far fewer axis
controls than the standard Line chart visual, but offers fine grained
control over Playback, including an auto play option that initiates
the animation when the report is opened. In this example, the running
animation is automatically paused for the default 10 seconds when
the third event (Marketing campaign on 5/20/17) is reached and the
annotation (Event Title, Event Description) is displayed during the pause.
The playback controls in the top left of the visual can be used to
quickly navigate to individual events (three in this example) or the
beginning and end of the time series.

There's more...

Bookmarks
Bookmarks enable the saving of specific report states including filter context
and the visibility of specific items on the report canvas
The Bookmarks pane can be accessed from the View tab in the report view of
Power BI Desktop:

Bookmarks pane in Power BI Desktop

A new bookmark can be created via the left icon and animation through
bookmarks is available via Play All

A Canvas Items pane, also available in the View tab, can be used with
bookmarks to set the visibility of visuals to align with the sequence of
the presentation. Playing through bookmarks in Power BI reports
resembles Microsoft PowerPoint presentations (in presentation
mode) which leverage animation. Additionally, bookmarks can be
linked with other objects in the report such as images making it
possible to create an intuitive navigation experience across report
pages.

Play axis custom visual
The Play Axis custom visual filters multiple visuals on the report page like a
slicer but also supports animation.

Play Axis custom visual filtering two charts and paused on 2017-Feb

The play axis is best used in combination with column and bar charts that allow
the highlight visual interaction

Storytelling custom visuals
Two additional custom visuals focused on integrating explanatory text or
annotations with data from the data model include Narratives for Business
Intelligence and enlighten data story
Enlighten data story provides a text input box and allows for measures and
columns to be built into a single text value
Narratives for business intelligence applies advanced analytics to a user-
defined set of dimensions and measures to discover insights and presents these
findings in a well formatted annotation form:

Narrative for business intelligence custom visual with options dialog open

The resulting text updates dynamically as the data changes and a verbosity
property controls the level of detail

Embedding statistical analyses into
your model
Statistical analysis, beyond basic measures, is typically implemented outside of
business intelligence data models via data analytics professionals and dedicated
statistics and data science applications. When possible, however, it's much more
efficient to leverage existing data models, Power BI skills, and the features used for
other Power BI reports and dashboards, such as the analytics pane described earlier
in this chapter.

In this recipe, the data points supporting a linear regression model are created from
an existing Power BI data model. This model is then analyzed and described via
DAX measures with values such as slope, Y intercept, and the Z-score for residuals.
Finally, a rich report page is constructed to visualize the strength and accuracy of the
regression model and to detect outliers. See the How it works... section for additional
details on the equations used in this recipe.

Getting ready
1. Identify the X or predictive, independent variable(s) and the Y or dependent

variable to be predicted.
2. Determine if the required data of the model is available in the Power BI data

model.

In this example, monthly marketing spend from a General Ledger fact
table is used to predict monthly internet sales from an internet sales
transaction fact table. Simple (single variable) regression models are
often insufficient to estimate Y values accurately, but many of the
concepts and techniques used in this recipe are applicable to more
complex, multiple linear regression models.

How to do it...

Regression table and measures
1. From the Modeling tab in Power BI Desktop, click New Table.
2. Create a table named MktSalesRegression which retrieves the X and Y variables at

the monthly grain.

MktSalesRegression =
FILTER(
SUMMARIZECOLUMNS(
'Date'[Calendar Yr-Mo],
'Date'[Calendar Year Month Number],
CALCULATETABLE('Date','Date'[Calendar Month Status] <> "Current Calendar Month"),
"Marketing Amount", [Marketing Fin Amount],
"Internet Sales", [Internet Net Sales]
),
NOT(ISBLANK([Internet Sales]) || ISBLANK([Marketing Amount])))

SUMMARIZECOLUMNS() groups the table at the monthly grain and FILTER()
removes any rows (months) which don't have both internet sales and
marketing values. CALCULATETABLE() passes a filtered date table to
SUMMARIZECOLUMNS() to exclude the current calendar month. The dynamic
Calendar Month Status column in the Date table is described in Chapter 6,
Getting Serious with Date Intelligence and Marketing Fin Amount is a
simple measure defined in the model as follows:
CALCULATE([Finance Amount],Account[Parent Account] = "Marketing")

The MktSalesRegression table created to support linear regression

A new SQL view could be developed in the source system to meet the
regression table requirements and, as another alternative, M queries
within the dataset could leverage the existing general ledger, internet
sales, and date queries. Small DAX tables such as this example (31
rows) are a good option for supporting custom or advanced analysis
and functionality.

3. Create measures for the correlation coefficient, slope, Y intercept, and
coefficient of determination (R squared).

MktSalesCorrelNum = SUMX(MktSalesRegression,MktSalesCorrelNum = SUMX(MktSalesRegression, ((MktSalesRegression[Marketing Amount]-AVERAGE(MktSalesRegression[Marketing Amount]))*(MktSalesRegression[Internet Sales]-AVERAGE(MktSalesRegression[Internet Sales]))))

MktSalesCorrelDenomX = SUMX(MktSalesRegression,(MktSalesRegression[Marketing Amount] - AVERAGE(MktSalesRegression[Marketing Amount]))^2)

MktSalesCorrelDenomY = SUMX(MktSalesRegression,(MktSalesRegression[Internet Sales] - AVERAGE(MktSalesRegression[Internet Sales]))^2)

Mkt-Sales Correl = DIVIDE([MktSalesCorrelNum],SQRT([MktSalesCorrelDenomX]*[MktSalesCorrelDenomY]))

Mkt-Sales R Squared = [Mkt-Sales Correl]^2

MktSalesSlope = DIVIDE([MktSalesCorrelNum],[MktSalesCorrelDenomX])

MktSales Intercept = AVERAGE(MktSalesRegression[Internet Sales])-([MktSalesSlope]*AVERAGE(MktSalesRegression[Marketing Amount]))

The correlation coefficient is split into three separate intermediate
measures (Num, DenomX, and DenomY) and these measures are referenced in
the Mkt-Sales Correl measure. With the correlation and its components
defined in the model, the slope (MktSalesSlope) measure can leverage
the same numerator measure and the DenomX measure as well. See the
How it works... section for details on the mathematical functions
these measures reflect.

Residuals table and measures
1. From the modeling tab, click New Table and create a Residuals table:

Residuals =
VAR Intercept = [MktSales Intercept]
VAR Slope = [MktSalesSlope]
Return
ADDCOLUMNS(MktSalesRegression,"Y Intercept",Intercept,"Slope",Slope,
 "Predicted Internet Sales", ([Marketing Amount]*Slope) + Intercept,
 "Residual",[Internet Sales] - (([Marketing Amount]*Slope) + Intercept))

The regression table and measures created earlier are referenced to support
analysis of the model

The Residuals table created via

DAX variables are used to store the computed values of the Slope and
intercept measures, such that the same values (47 and 34,447,
respectively) are applied to each of the 31 rows. The Predicted
Internet Sales column implements the equation of a line (Y = MX +
B) by referencing the marketing amount (X), the slope (M), and the Y
intercept (B). Finally, the Residual column is computed to subtract the
predicted sales value from the observed (actual) value in the internet
sales column.

2. Create measures to evaluate the residuals and support the visualization.

Residuals Amount = SUM(Residuals[Residual])
Residuals Average = CALCULATE(AVERAGE(Residuals[Residual]),ALL(Residuals))
Residuals Sample Std Dev = CALCULATE(STDEV.S(Residuals[Residual]),ALL(Residuals))
Residuals Z Score = DIVIDE([Residuals Amount] - [Residuals Average],[Residuals Sample Std Dev])
Regression Line Message = "Regression Line: Y= " & FORMAT([MktSalesSlope],"#,###") & "X" & "+" & FORMAT([MktSales Intercept],"#,###")
Last Month Predicted Internet Sales = CALCULATE([Predicted Internet Sales Amount],FILTER(ALL(Residuals),Residuals[Calendar Year Month Number] = MAX(Residuals[Calendar Year Month Number])))
Last Month Internet Sales = CALCULATE([Internet Net Sales],'Date'[Calendar Month Status] = "Prior Calendar Month")
Actual Internet Net Sales = sum(Residuals[Internet Sales])

A Z-score is computed for each residual data point (a month) to
determine if the variation (or 'miss') between predicted and observed
values is large relative to other data points. To support the
visualization, a measure returns a text string containing the equation
of the regression model's line. Additionally, two measures are created
to display actual and predicted internet sales for the prior or 'last
month'. Given that the regression table is filtered to exclude the
current month, the maximum value from the Calendar Year Month Number

column can be used as a filter condition.

Regression report
1. From the report view of Power BI Desktop, create card visuals to display the

actual and predicted internet sales measures for the last month, as well as the
correlation coefficient and R squared measures.

2. Create a scatter chart that plots actual marketing spend as the X axis and actual
internet sales as the Y axis.

3. Add the Calendar Yr-Mo column to the Details field well and add the trend line from
the analytics pane.

The two measures and one column used for this scatter chart are
pulled from the existing data model to help visualize the relationship.
All other visualizations in the report use the new measures and
columns created in this recipe.

4. Create an additional scatter chart that plots predicted internet sales as the X axis
and the residual Z-score as the Y axis.

5. Add the residual amount and actual internet net sales measures to the Tooltips
field well.

6. In the analytics pane for this visual, enable the trend line.
7. Finally, add a card visual to hold the regress line message measure and format

the report page with a title, a Last Refreshed message, and use rectangle and line
shapes to provide background colors and borders.

Regression report page

8. Optionally, hide the two calculated tables and the regression measures created
from the Fields List.

With this report design, the user can instantly perceive the strength of
the relationship via the marketing Spend to Internet Sales Scatter
chart and the high values for the correlation and R Squared cards.
The Residuals Scatter chart helps to identify the months with
relatively large variations. In this example, the predicted value of
$1.74 M for June of 2017 resulted in a (-100K) residual value
(observed minus predicted), and this data point is plotted at the
bottom right of the Residuals Scatter chart, given its low residuals Z-
score.

Building measure values into text strings, such as the regression line
and the Last Refreshed message, is useful in many scenarios to raise
usability. The Last Refreshed message is described in the first recipe
of Chapter 4, Authoring Power BI Reports. The Displaying the current
filter context in Power BI reports recipe in Chapter 8, Implementing
Dynamic User-Based Visibility in Power BI contains more advanced
examples.

How it works...

Statistical formulas
The created DAX measures correspond to the CORREL(), INTERCEPT(), AND SLOPE()
functions in Microsoft Excel:

Correlation Coefficient for a Sample (Pearson's Correlation Coefficient)

Slope of the Regression Line

Intercept of the Regression Line

The same results from the DAX measures can also be retrieved via Excel
formulas

Applying CORREL(), SLOPE(), and INTERCEPT() lines in Excel 2016

Simply add the regression table columns to a table visual in Power BI Desktop
and click Export data
Per the residuals Z-score measure, a Z-score is computed by subtracting the
sample average from the value for a given data point and dividing this number
by the sample standard deviation

DAX calculated tables
The two calculated tables in this recipe do not have any relationships to other
tables in the model
Refreshing the source tables (queries) of the two DAX tables also refreshes the
calculated tables

See also
Slope and intercept equation descriptions: http://bit.ly/2tdzrgA

http://bit.ly/2tdzrgA

Creating and managing Power BI
groupings and bins
Power BI grouping was introduced in the Creating browsable hierarchies and
groups recipe in Chapter 3, Building a Power BI Data Model as a means to
consolidate the values or members of columns in your data model into dedicated
group columns. These group columns can then be utilized like other columns in the
model to simplify report visualizations and self-service analysis, given their reduced
granularity. Additionally, groups can be managed and edited in Power BI Desktop,
providing a flexible option for dataset owners to respond quickly to changing
requirements or preferences.

In this recipe, a customer attrition analysis is supported by a quarterly group based
on a First Purchase Date column of a Customer dimension table. In the second example,
a Number of Days Since Last Purchase column is created via M queries and then grouped to
support further customer behavior analysis. These two examples represent the
grouping of Date and Number datatype columns; example in Chapter 3, Building a Power
BI Data Model was based on a text data type column.

How to do it...

First purchase date grouping
In this example, the Customer dimension table has a First Purchase Date column with over
1,000 distinct date values. The business wants the ability to segment customers based
on this date in report visualizations.

1. In report view of Power BI Desktop, select the First Purchase Date column in the
Fields list.

2. With the column selected, click New Group from the Modeling tab in the
toolbar.

Alternatively, you can right-click the column and select New Group
The groups dialog appears as follows, given the Date datatype:

Default groups dialog for first purchase date column: 21 day Bin size

By default, the groups feature calculates a bin size that evenly splits
the rows of the table. In this example, 55 bins would be created
containing close to 21 days. Each bin would be identified by a
specific date representing the first date of the given bin. Since 55
distinct bins is too many to support intuitive visualizations, and given
that 21 days is not a normal business grouping, the recommendation
is to adjust the bin size values.

3. Enter the value 3 in the Bin size input box and revise the drop-down from Day to
Month.

4. Enter the name Customer First Purchase Calendar Quarter in the Name input box. Click
OK.

A column will be added to the Customer table with the date format of July 2013

by default, given the monthly bin size

5. Create a matrix visual that analyzes the sales of these quarterly customer bins
across the past three years.

First Purchase Date Quarterly Grouping used in Matrix Visual

By grouping the customers into quarterly bins, the new grouping
column (Customer First Purchase Calendar Quarter) has only 14 unique
values and can be used in report visualizations. In this analysis, it's
clear that sales in 2017 are being driven by customers that first
purchased in the first and second quarters of 2013 (January 2013,
April 2013). Interestingly, customers that first purchased in 2011
were large buyers in 2015, but then generally disappeared in 2016,
and are now coming back in 2017.

Days since last purchase grouping
In this example, the goal is to group (bin) customers based on the number of days
since they last purchased.

1. Create a new M query in Power BI Desktop that groups the customer keys by
their last order date and computes the date difference between this order date
and the current date:

let
 Source = AdWorksProd,
 ISales = Source{[Schema = "BI", Item = "vFact_InternetSales"]}[Data],
 CurrentDate = DateTime.Date(DateTime.LocalNow()),
 CustomerGrouping = Table.Group(ISales, {"CustomerKey"}, {{"Last Order Date", each
List.Max([Order Date]), type date}}),
 DaysSinceLastPurchase = Table.AddColumn(CustomerGrouping, "Days Since Last Purchase", each Duration.Days(CurrentDate - [Last Order Date]), Int64.Type)
in
 DaysSinceLastPurchase

The view used to load the Internet Sales fact table is grouped by the
customer key and List.Max() is used to compute the last order date
for the given customer key. This simple grouping is folded back to the
source SQL Server database and a Days Since Last Purchase column is
added, based on the difference between the CurrentDate variable and
the Last Order Date column from the grouping. Note that subtracting two
date columns results in a duration value, hence Duration.Days() is used
to convert the duration to the number of days.

New M query DaysSinceLastPurchase created to support a customer grouping

2. Give the query a name and disable the load of the query to the data model, but
include the query in report refresh.

3. Join the customer dimension table query to the new query and load the two new
columns to the data model.

let
 Source = AdWorksProd,
 Customer = Source{[Schema = "BI", Item = "vDim_Customer"]}[Data],
 LastPurchaseJoin =
 Table.NestedJoin(Customer, {"Customer Key"},DaysSinceLastPurchase,{"CustomerKey"},"DaysSincePurchase",JoinKind.LeftOuter),
 LastPurchaseColumns = Table.ExpandTableColumn(LastPurchaseJoin,"DaysSincePurchase",{"Last Order Date","Days Since Last Purchase"},{"Last Order Date","Days Since Last Purchase"})
in
 LastPurchaseColumns

A left outer join is used to retain all the Customer table rows and
Table.ExpandTableColumn() is used to expose the two new columns to the customer
table

4. Finally, create a numerical grouping based on the Days Since Last Purchase Column to
help analyze this data:

Grouping created based on days since last purchase column

The configured bin size of 90 results in 12 distinct bins—a small enough number
to be used to analyze customer sales

Clustered Bar Chart of Internet Sales by the 90 Days Since Last Purchase Grouping

The new grouping column (90 Days Since Last Purchase Groups) helps
determine that $10.8 M of total historical internet sales is comprised
of customers that have purchased within the past 180 days ($6.1 M
for the 0 to 90 group and $4.7 M for the 90 to 180 group). Note that
the Last Order Date column added in this example could also be used to

create a grouping or even used as a child column in a hierarchy with
the 90 Days Since Last Purchase Groups column as the parent.
As groupings are effectively calculated columns within the data
model and not visible to source systems, their logic should eventually
be migrated to new columns in a source data warehouse. Groups can
be very helpful for proof-of-concept scenarios and short term
solutions, but per other recipes, data transformation processes
should be limited in Power BI Desktop to keep the dataset as
manageable and scalable as possible. If a data warehouse option is
not available, M query transformations can be used rather than DAX
calculated columns.

Detecting and analyzing clusters
Clustering is a data mining and machine learning technique used to group (cluster) the
items of one dimension based on the values of one or more measures. Given the
number of distinct dimension items, such as products or customers, and the number of
measures describing those items, clustering is a powerful method of exploring data to
discover relationships not easily detected with standard reporting and analysis
techniques. Power BI Desktop provides built-in support for the creation of clusters
and allows these clusters to be managed, revised, and used in Power BI reports like
other columns in the data model.

In this recipe, a customer cluster is created based on sales amount, the count of
orders, and the count of days since last purchase. DAX measures are created to
support this analysis and a Scatter Chart visual is created to further analyze the
clusters.

Getting ready
1. Identify measures that add the most value to the algorithm by representing the

dimension in different ways.
2. Create the DAX measures, and if necessary, enhance the data retrieval process

to provide these measures to the model.

Feature engineering is a common practice in data science in which
new columns are added to a dataset to produce more accurate
models. The new columns often contain built-in logic and features
(columns) are added, removed, and modified iteratively based on the
models produced.

How to do it...

Create clusters
1. Add the customer dimension key column to a table visual in Power BI Desktop.

This should be the natural or business key if slowly changing dimension ETL
processes are in effect and multiple rows refer to a given customer.

2. Add (or create) the following measures: Internet Net Sales, Internet Sales Orders,
and Days Since Last Purchase:

Internet Net Sales = [Internet Gross Sales] - [Internet Sales Discounts]
Internet Sales Orders = DISTINCTCOUNT('Internet Sales'[Sales order number])
Last Purchase Date = LASTNONBLANK('Date'[Date],[Internet Net Sales])
Days Since Last Purchase = DATEDIFF([Last Purchase Date],TODAY(),DAY)

Last Purchase Date is an intermediary measure created to support the
Days Since Last Purchase measure. Days Since Last Purchase uses this measure
and a TODAY() function as parameter inputs to DATEDIFF().

3. Add the three measures to the table visual. Only the four columns should be in
the table.

4. Apply any filtering logic to reduce the list of customers, such as a page level
filter. In this example, the customer cluster is specific to the Europe Sales Group, so
the Sales Territory Group column is added to a page level filter.

5. Click the ellipsis in the top right of the visual and select Automatically find
clusters.

6. In the clusters dialog, provide a name for the clusters that will serve as the
column name in the model.

7. In the description input box, enter the measure names (from the table) that were
used to create the clusters.

8. Click OK to let the clustering algorithm create as many clusters as it determines
necessary.

Cluster created: Europe customers (RFM)

Four clusters were created in this example. Additionally, a column
was added to the customer table of the data model with the name
provided in the clusters dialog. The cluster column is identified in the
Fields list with two overlapping square shapes, and an Edit clusters
option is available by either right-clicking the column or selecting

the ellipsis next to the column.

Analyze the clusters
1. Create three additional measures to help describe the clusters created and use a

simple table to visualize them.

Average Customer Sales = AVERAGEX(VALUES(Customer[Customer Alternate Key]),[Internet Net Sales])
Average Customer Orders = AVERAGEX(VALUES(Customer[Customer Alternate Key]),[Internet Sales Orders])
Average Days Since Last Purchase =
AVERAGEX(VALUES(Customer[Customer Alternate Key]),[Days Since Last Purchase])

AVERAGEX() is used to iterate over the unique customer keys provided by VALUES() to
compute the customer-specific value (sales, orders, and days since purchase)
and then return the average of the customers from each cluster:

Average Customer Measures used with the Europe Customers (RFM) Cluster

Per the table, Cluster2 contains high value customers ($4,650
average) that have purchased recently (88 day average). Cluster1
contains low value customers that have purchased recently. Cluster4
contains high value customers that have not purchased recently and
Cluster 3 contains average customer value and average time since
the last purchase.

2. Create a scatter chart to better illustrate the four clusters:

Clusters Visualized in Scatter Chart by Internet Sales and Days Since Last Purchase

The average days and average sales measures are used as the X and Y axis
variables, respectively
The other average measure, total sales, and customer count measures are added
to the tooltips

A potential use case or action based on these clusters is to focus
marketing efforts on converting the Cluster1 customers, who've
purchased recently, to higher value Cluster2 customers. Additionally,
efforts could be made to reach the Cluster3 customers and maintain
this relationship, given the 1 year (364) average duration since their
last purchase. Finally, the 297 customers in Cluster4 may have already
committed to a new bike supplier or, more optimistically, may have
purchased a bike 2-3 years ago and may not be aware of what bike
related accessories and clothing are available.

How it works...

RFM - recency, frequency, monetary
The three measures used to support the clustering in this example follow the
RFM technique, identifying the recency, frequency, and value of the customer's
purchase history
Adding measures (feature engineering) that covers each component of RFM is
useful for various marketing and customer attrition analyses

Clustering algorithm and limits
The Power BI clustering feature uses a K-Means algorithm to determine the
optimal number of clusters to create
Currently a cluster is limited to 15 measures and 1 dimension; an error message
is returned if these limits are exceeded

There's more...

R clustering custom visuals
In addition to the standard Power BI clustering from this recipe, a Clustering and a
Clustering with Outliers custom visual are also available to support similar analysis.
Both these custom visuals are built with the R statistical programming language.

Scatter chart-based clustering
Like the table visual from the example, clusters can also be automatically
created from a Scatter chart visual
These clusters are limited to two input measures (X and Y) but the clusters are
automatically added to the Details field:

Clusters automatically added to the Legend of a Scatter chart based on the Dimension (Product Name) and X and
Y variables

This can be a quick method of discovering simple relationships (2 measures)
and visualizing the dimension

Forecasting and visualizing future
results
Standard Power BI report and dashboard visualizations are great tools to support
descriptive and diagnostic analytics of historical or real-time data but ultimately,
organizations need predictive and prescriptive analytics to help guide decisions
involving future outcomes. Power BI Desktop provides a time series forecasting tool
with built-in predictive modeling capabilities that enables report authors to quickly
create custom forecasts, evaluate the accuracy of these forecasts, and build intuitive
visualizations that blend actual or historical data with the forecast.

This recipe contains two complete forecasting examples. The first example builds a
monthly forecast for the next three months utilizing an automatic date hierarchy. The
second example builds a weekly forecast of the next eight weeks and evaluates the
forecast's accuracy when applied to recent data.

Getting ready
1. Ensure that the Auto Date/Time setting in the Current File Data Load options is

enabled in Power BI Desktop.
2. Create column(s) in the date dimension, such as IsCurrentWeek, that identifies the

status of the level or grain required of the forecast. See the Developing
Dynamic Dashboard Metrics recipe in Chapter 5, Creating Power BI
Dashboards, for examples of creating these date dimension table columns
within SQL views. Additionally, see the first recipe of Chapter 6, Getting Serious
with Date Intelligence, for Date table design considerations.

A 'Calendar Week Status' column from the Date table is used to filter the weekly
sales forecast in the second example of this recipe.

Page level filter of a report set to exclude the Current Calendar Week value

The Forecast tool in Power BI includes an Ignore last feature which
allows for the exclusion of incomplete periods (months, weeks, and
days) from the forecast and this feature is utilized in the first example
of this recipe. However, for common additive measures, such as Sales
Amount, not filtering out the current period often significantly
detracts from the usability of the visual given the steep decline
represented by the current (incomplete) period. Dynamically updated
date columns resolve this issue and persisted static date range filters
generally.

How to do it...

Monthly forecast via date hierarchy
1. In Power BI Desktop, select the Line chart visualization type and position it on

the report canvas.
2. With the empty Line chart selected, click on a measure from the Field List, such

as Internet Net Sales.

3. Now add the date column (Date or Date/Time data type) from your Date table to
the axis field well of this visual.

By default, a calendar hierarchy should be added to the axis with columns
for Year, Quarter, Month, and Day

4. In the top left of the visual, click on the Expand All Down One Level button
twice to navigate to the monthly grain:

Expand All Down Used to Display the Line Chart Visual by Month

5. With the chart still selected, open the Analytics pane to the right of the Format
pane.

6. Expose the forecast options are at the bottom of the analytics pane and click on
Add.

By default, a forecast of the measure for 10 points (months) in the future is
created with a 95 percent Confidence interval

In this example, no filters have been applied to the report, report page, or
visual, therefore the forecast is using the current month its algorithm

By default, a forecast of the measure for 10 points (months) in the
future is created with a 95 percent Confidence interval. The forecast
automatically determined the step (monthly grain) and also
determined a seasonality factor to apply to the forecast. In this
example, no filters have been been applied to the Report and thus the
current month, which is incomplete, is being used by the forecast and
should be excluded per step 7.

7. Enter the value 1 in the Ignore last input box and reduce the Forecast length to 3
Points (or Months).

8. Enter the value 12 in the Seasonality input box and click on Apply.

The forecast will now shorten and include a forecasted value for the
current (incomplete) month. For example, if June is the current
month, the revised forecast will include values for June, July, and
August, based on the historical data from May and earlier data
points. Applying the seasonality variable for its known grain (12 per
year) overrides the default seasonality factor. When the seasonality
(points per cycle) is known, it's recommended to apply this value
manually to improve accuracy.

9. Finally, use the Color, Style, Transparency, and Confidence band style
formatting options to highlight the forecast.

Monthly Forecast with Three Forecast Points Excluding the Current Month

Hovering over the June 2017 data points exposes both the Forecast
and the upper and lower boundary values, given the 95 percent
confidence interval. In this example, there are still 4 days remaining
in June 2017, so it appears that actual sales will be higher than the
forecasted value, but below the Upper Bound. In terms of formatting,
a dark color with low transparency and the Fill Confidence band
style is used to easily distinguish the forecast from the lighter color
of the Internet Sales measure.

Weekly sales forecast analysis
The goal in this example is to produce a three week forecast based on weekly sales
data and to evaluate whether the forecast would have predicted the recent increase in
sales.

1. Follow the same steps from the first example to build a line chart with a
forecast but now use a date column that represents the week ending date.

2. Apply a filter that excludes the current (incomplete) week, such as the example
described in the Getting ready section.

3. In the Forecast options of the Analytics pane, enter a value of 8 for Forecast
length and the value 5 for Ignore last.

4. Enter the value '52' for Seasonality and click on Apply.

Weekly Sales Trend and Three Week Forecast which excludes the prior 5 Completed Weeks

In this example the last completed week ending date is 6/24/17.
Therefore, given '5' points to ignore from Step 3, this point and four
previous weeks are excluded from the forecasting algorithm such that
the forecast can only use the weeks ending on 5/20/17 and earlier to
generate its projections. Three additional forecast points (8 (Forecast
Length) — 5 (Ignore Last)) are computed for the weeks ending on 7/1,
7/8, and 7/15. At the default 95 percent confidence interval, the
Tooltips (and exported detail data) reveal that actual sales for the
recent week are at the very top and, for certain weeks, in excess of
the upper boundary. Only raising the confidence interval to 99
percent would maintain the recent weeks within the boundaries of the
forecast.
This second example highlights the limitations of forecasts based

exclusively on historical data. If and when business circumstances
significantly change, such as in May of 2017 in this example, the
historical data loses its predictive value. Nonetheless, building
predictive forecasts into Power BI reports and dashboards raises the
analytical value of these assets by drawing attention to trends and
projected outcomes.

How it works...

Exponential smoothing
The Power BI Forecast tool uses the exponential smoothing time series predictive
algorithm. This method is widely used in multiple domains and helps to suppress
outlier values while efficiently capturing trends.

Dynamic week status column
The Calendar Week Status column used as a filter in the second example was created via
T-SQL

 CASE
 WHEN YEAR(D.Date) = YEAR(CURRENT_TIMESTAMP) AND DATEPART(WEEK,D.Date) = DATEPART(WEEK,CURRENT_TIMESTAMP) THEN 'Current Calendar Week' WHEN YEAR(D.Date) = YEAR(DATEADD(WEEK,-1,CAST(CURRENT_TIMESTAMP AS date))) AND DATEPART(WEEK,D.Date) = DATEPART(WEEK,DATEADD(WEEK,-1,CAST(CURRENT_TIMESTAMP AS date))) THEN 'Prior Calendar Week'
ELSE 'Other Calendar Week'
End As [Calendar Week Status]

Two additional values (2 Wk Prior Calendar Week and 3 Wk Prior Calendar
Week) are not included in this excerpt from the T-SQL view used to
load the date dimension table in the Power BI data model. Unlike the
dynamic year and month columns described in Chapter 6, Getting
Serious with Date Intelligence, which used the YEAR() and MONTH() T-
SQL functions, respectively, this column uses the DATEPART() T-SQL
function to extract the calendar week value, since a calendar week
function isn't currently supported by SQL Server.

There's more...

Forecast requirements
The forecast tool is currently only available to the Line chart visual and only
one measure (line) on this visual
The x-axis value needs to have a date/time data type or be a uniformly
increasing whole number
A minimum of six (6) date points are required

Using R functions and scripts to create
visuals within Power BI
The R programming language, including its powerful and extensible features in data
processing, advanced analytics, and visualization, is deeply integrated with Power
BI. An R script can be used as a data source for a Power BI dataset, as a data
transformation and shaping process within an M query, and as its own visualization
type within Power BI reports and dashboards. Like standard Power BI visuals, R
script visuals directly leverage the relationships defined in the data model and can be
dynamically filtered via other visuals, such as slicers.

In this recipe, two histogram visualizations are created in Power BI Desktop with R
scripts, one with R's standard distribution base graphics and another with the popular
ggplot2 visualization package. The R Script Showcase, referenced in the See also
section, contains many additional examples of R script visuals for Power BI, such as
Correlation Plots, Clustering, and Forecasting.

Getting ready
1. Download and install the R engine on the local machine (https://cran.r-project.org/bin/wi

ndows/base/).
2. Install the ggplot2 package for R via the following command:

install.packages("ggplot2").
3. Optionally, install an IDE for editing R scripts, such as R Studio (https://www.rstudio

.com/) or R Tools for Visual Studio.

R Scripting Options in Power BI Desktop

Confirm that the local R installation directory path is reflected in the
R Scripting options in Power BI Desktop. The Detected R IDEs
dropdown can be used to choose between multiple installed IDEs. If
an R script visual has not been used in Power BI Desktop, an Enable
script visuals prompt will appear. Click on Enable.

https://cran.r-project.org/bin/windows/base/
https://www.rstudio.com/

How to do it...
The requirement for both visualizations in this recipe is to display a distribution of
the product list prices that have been sold online in the current calendar year. The
first example uses the standard hist() function with R's base graphics and the second
example uses the ggplot() function provided by the ggplot2 package for R.

Base graphics histogram
1. In Power BI Desktop, unhide the Product Key column of the Product table--the

column used in relationships to fact tables.
2. Add the Calendar Year Status column from the Date dimension table to a Page

or Report level filter and set the filter condition to the current calendar year.

Page Level Filter

See Chapter 6, Getting Serious with Date Intelligence for details on dynamic date
columns.

3. Click on the R script visual from the Visualizations pane to add it to the canvas.
4. Add the Product Key and List Price columns from the Product table to the

Values field well of the R script visual.
5. Now add the Internet Net Sales measure to the Values field well. This ensures

that the products have been sold.
The R script editor will automatically create a data frame of the three
fields and remove duplicates

If a supported external R IDE is installed and selected in the
Detected R IDEs R scripting options per the the Getting ready
section, you can now click on Edit script in External R IDE (up arrow
icon). This will launch the IDE application (such as R Studio) and
export the data frame from Power BI Desktop. Common features of R
scripting IDEs, such as Intellisense and Variable History, are helpful
(if not essential) for developing complex R script visuals. Currently,
the external R script must be pasted back into Power BI Desktop's R
script editor.

6. Enter (or paste) the following R script into the R script editor and click the 'Run
script' icon:

par(bg = "#E6E6E6")
hist(dataset$'List Price', breaks = seq(from=0, to = 2500, by = 500), col = "#2C95FF",
main = "Current Year Online Sales List Price Distribution", cex.main = 1.75, cex.axis = 1.2, cex.lab = 1.4, ylab = "Count of Products", xlab = "Product List Price Bins", las = 1, labels = TRUE, border = "black", ylim=c(0,50))

R script visual rendered in Power BI via Base Graphics

The light gray background color is set via the par() function, and
arguments to the hist() function define the X and Y axes, the text
strings for the titles, data labels, font sizes, and the light blue color
of the bars. The seq() function is used to configure the X axis intervals
(bins) with a width or bin size of $500 and a max price of $2,500.

ggplot2 histogram
1. With the ggPlot2 package for R installed per the Getting ready section, create a

new R script visual in Power BI Desktop.
2. Add the same columns and measures to the visual as the previous example (List

Price and Product Key from the Product table, Internet Net Sales Measure from
Internet Sales).

3. If the new R script visual is on a separate page as the previous example (Base
Graphics Histogram) and if a report level filter for current year has not been set,
apply a page level filter for current calendar year just like in step 2 of the
previous example.

4. Enter or paste the following script into the R script editor window and click on
the Run script icon:

prices <- as.numeric(as.character(dataset$'List Price'))
breakpoints <- seq(from=0, to = 2500, by = 500)
library("ggplot2")
ggplot(dataset, aes(x = prices)) + geom_histogram(breaks = breakpoints, fill = "#2C95FF", color = "black") + xlab("Product List Price Bins") + ylab("Count of Products") + ggtitle("Current Year Online Sales List Price Distribution") + stat_bin(breaks = breakpoints, geom="text", aes(label=..count..), vjust = -1) + coord_cartesian(ylim=c(0,50)) + theme(text = element_text(size = 16)) + theme(plot.title = element_text(hjust = .5))

R script visual rendered in Power BI via ggplot2 package

The ggplot2's geom_histogram() requires a continuous variable and thus
the List Price column is converted to a numeric data type in the prices
variable. The same vector expression (seq()) used for the x axis (bins
by 500 to 2,500) in the prior example is used as the parameter to the

breaks argument of geom_histogram() and stat_bin(). Likewise, the same
expression for the Y axis in the prior example is re-used, but passed
as a parameter to the coord_cartesian() function.
The qplot() function, short for quick plot, is also available in the
ggplot2 package and can provide faster development of relatively
complex visualizations with less code-often just one line.

How it works...

Automatic duplicate removal
The R script editor in Power BI Desktop automatically creates a data frame and
removes duplicate rows based on the columns loaded to the Values field well.

Power BI Desktop R script editor: Data Frame and Duplicate Removal

In this example, in which the intent is to count individual products
(including those with the same list price), it's necessary to add a
separate column in the data frame (the product key column) that
makes each row of the data frame unique. In other scenarios, the
Table.AddIndexColumn() M function could be used to create uniqueness.

Filter context
Including the Internet Net Sales measure in the R script visuals data frame
allows the visual to be filtered by the Date dimension column (Calendar Year
Status = Current Calendar Year) and other dimension tables on the report page.
By default, the products without any sales, given this filter context, will not be
included in the data frame per the requirements of this recipe. The show items
with no data option for the Product Key column in the Values field well can be
used if the products without sales are to be included in this visualization.

There's more...
The R script data source connector is available in the Other category of the Get
Data dialog
A Run R Script command icon is available in the Transform window of the
Query Editor
Many custom visuals built with R are already available in the Office Store, and
as of July 2017, R custom visuals can include interactive features, such as
selection and zoom

See also
R Script Visual Showcase for Power BI: https://community.powerbi.com/t5/R-Script-Showcas
e/bd-p/RVisuals

https://community.powerbi.com/t5/R-Script-Showcase/bd-p/RVisuals

Developing Solutions for System
Monitoring and Administration
In this chapter, we will cover the following recipes:

Creating a centralized IT monitoring solution with Power BI
Constructing a monitoring, visualization, and analysis layer
Importing and visualizing dynamic management view (DMV) data of SSAS and
Power BI data models
Increasing the SQL Server DBA's productivity with Power BI
Providing documentation of Power BI and SSAS data models to BI and business
teams
Analyzing performance monitor counters of the Microsoft on-premises data
gateway and SSAS tabular databases
Analyzing Extended Events trace data with Power BI
Visualizing log file data from SQL Server agent jobs and Office 365 audit
searches

Introduction
In addition to solutions targeting business processes and entities such as sales and
customers, Power BI can also serve as a platform for system monitoring and
administration. Diverse data sources, including performance monitor counters, log
files, and events can be integrated into Power BI datasets to deliver robust visibility
to system health, performance, and activity. Although there are several dedicated
monitoring tools available, such as Operations Manager in Microsoft System Center,
building a custom solution with Power BI provides full flexibility and control over
all layers of the solution while leveraging relevant Power BI features such as data-
driven alerts, email notifications and subscriptions, and Power BI mobile.
Additionally, as more organizations adopt and deploy Power BI, existing licenses
and experience can significantly reduce the costs of developing and maintaining these
solutions.

This chapter's recipes highlight the most common and impactful administration data
sources, including Windows Performance Monitor, SQL Server Query Store, the
Microsoft On-Premises Data Gateway, the MSDB system database, and Extended
Events. Power BI solutions built on top of these sources proactively assess usage
trends and resource bottlenecks and deliver the detailed analysis necessary to
identify root causes. Additionally, the metadata of existing Power BI and SSAS data
models exposed via dynamic management views (DMVs) such as measure and
relationship definitions and resource consumption can be integrated to provide a
simplified reference or documentation asset for both BI and business teams. Erin
Stellato, principal consultant from SQL skills and Microsoft Data Platform MVP, has
contributed to several of these recipes, including references to the setup and
utilization of relational database monitoring and administrative data sources.

Creating a centralized IT monitoring
solution with Power BI
Power BI's rich data connectivity and transformation capabilities are very well
suited for the integration needs of system and database administrators. A collection of
log files containing performance monitor counter statistics can be retrieved from a
file directory (or multiple directories), consolidated, and further enhanced to support
reporting. Additional sources, such as snapshots of performance and configuration
data stored in a dedicated administrator database, can also be included in a
scheduled data refresh process, and the inclusion of existing BI dimension tables
such as date and time further simplifies the overall monitoring solution.

In this recipe, a set of Windows Performance Monitor counter files containing
statistics on CPU, Memory, and more are integrated with administrative data stored
in a SQL Server database including query wait statistics and instance configuration
values. This recipe documents the data retrieval and integration of the monitoring
data, and the following recipe, Constructing a monitoring visualization and
analysis layer, utilizes this dataset in building Power BI report and dashboard
content. Details and references on implementing the three data sources featured in
this recipe are included in the How it works..., There's more..., and See also
sections.

Getting ready
1. Identify the administrative stakeholders familiar with the current state of

monitoring and the top priorities of the solution such as "How is performance
today?" and/or "Has a configuration changed?"

2. Sharpen the meaning of these questions to identify the required data sources
including performance counters and system views.

3. Create a dedicated database named Admin in SQL Server that will exclusively
store system and administrative data.

4. Create two tables in the admin database, WaitStats and ConfigData, with columns
that correspond to the sys.dm_os_wait_stats and sys.configurations system views,
respectively.

5. Use Windows Performance Monitor to design and schedule a new data collector
set containing the following performance monitor counters.

Custom Data Collector set with CSV Log Format

Performance Monitor defaults to .blg log files but Power BI can only consolidate
files in text, CSV, and Excel format.

Windows Performance Monitor is well documented and understood
by most administrators; best practices and automation via
PowerShell are outside the scope of this recipe. Details of the
scheduled processes and design considerations supporting the

WaitStats and ConfigData tables are included in the How it works...
section. Essentially, these tables contain snapshots of performance or
configuration data, just as performance counters represent point-in-
time values at the intervals chosen. Maintaining these data collection
processes enables tools such as Power BI to generate insights and
drive appropriate responses.
An iterative development approach in which more readily available
data such as performance counters is targeted first may benefit the
monitoring solution. In some scenarios, performance counters alone
may be of significant value and additional monitoring data sources
such as WaitStats and Configuration values can be added later once the
necessary supporting processes/jobs are in place.

How to do it...
1. Open a new Power BI Desktop file (.pbix) and create parameters for the source

servers and databases.
2. Create queries against the admin and BI/DW databases with the Sql.Database()

function and these parameters.

Server and database parameters and Queries with Load Disabled

As per some of the previous recipes, Power BI does not isolate data
sources from individual queries by default, and thus dedicated
database queries are used to expose table and view objects.
Individual queries reference these database queries such that many
queries can be adjusted by modifying the server and database
parameter values referenced by the database query.

3. Add a Date and a Time query from the existing dimension views available in the
BI/DW database.

4. Create a parameter named CounterHistoryDays and assign a current value such as 7
or 30 to limit the history retrieved.

5. Retrieve the performance counter log files by creating a new query and using the
folder data source.

Performance Counter collector set files exposed in both root and subdirectories

The scheduled data collector set will automatically generate a
subdirectory for each new file output. The Power BI M query
references the root directory (or parent) and all supported file
formats in subdirectories of this query are available for retrieval.
Depending on the volume of counters, their time interval (that is, 15
seconds), and the schedule and duration of the collector set, a

significant volume of files can accumulate.

6. Add a filter expression to the performance counter query that requires CSV files
and "date modified" dates later than or equal to the EarliestDate variable.

 CurrentDate = DateTime.Date(DateTime.LocalNow()),
 EarliestDate = Date.AddDays(CurrentDate,-CounterHistoryDays),
 SourceFolder = Folder.Files("C:\PerfLogs\AdminMonitoringCounters"),
 ReportFiles = Table.SelectRows(SourceFolder, each [Extension] = ".csv" and
 DateTime.Date([Date modified]) >= EarliestDate)

The EarliestDate variable is evaluated based on the CounterHistoryDays parameter
and the current system date

7. Click on the double arrows pointed down on the Content column to combine the
files remaining into one query:

Power BI will automatically create a sample query, file, parameter and a new
function to combine the files. The official documentation on combining binaries
in Power BI Desktop is referenced in the See also section.

8. Open the sample query created and add a Date and a Time column based on the
data collector Set Date column.

ParsedDate = Table.AddColumn(Columns, "Date", each Date.From(DateTimeZone.From([#"(PDH-CSV 4.0) (Eastern Daylight Time)(240)"])), type date),
ParsedTime = Table.AddColumn(ParsedDate, "Time", each Time.From(DateTimeZone.From([#"(PDH-CSV 4.0) (Eastern Daylight Time)(240)"])), type time)

9. Add a Table.RenameColumns() expression to the sample query that applies report
friendly names.

These revisions to the sample query will be reflected in the performance
counters query that will be loaded
If automatic type detection for unstructured data sources is turned off as
recommended, it will be necessary to add a data type conversion step to avoid
the counter columns from being loaded as a text data type

TypeChanges =
Table.TransformColumnTypes(ExpandedTable,{{"Date", type date}, {"Time", type time}, {"Page life expectancy", Int64.Type}, {"Avg. Disk sec/Write", type number},
{"Avg. Disk sec/Read", type number}, {"Batch Requests/sec", type number}, {"% Processor", Int64.Type}, {"Available MBytes", Int64.Type}})

If the source DateTime column is already rounded to whole seconds,
such as SQL Server datetime2(0), then a Time column created via the
DateTime.Time() M function can be used for the relationship to the Time
dimension table. Casting SQL Server datetime data type columns to
datetime2(0) in the SQL view used to import to Power BI is
recommended, to avoid additional rounding logic implemented in the
Power BI query. In the case of Performance Monitor Counter log

files, the DateTime column is not rounded to the second, and therefore,
rounding logic is applied within the M query to create a six-
character text column.

10. Create a six-character column rounded to the individual second based on the
Time column:

Note that the Time column is of the Time data type

HourText = Table.AddColumn(TimeCol, "TextHour", each
 if Time.Hour([Time]) < 10 then "0" & Text.From(Time.Hour([Time])) else
 Text.From(Time.Hour([Time])), type text),
MinText = Table.AddColumn(HourText, "TextMin", each
 if Time.Minute([Time]) < 10 then "0" & Text.From(Time.Minute([Time])) else
 Text.From(Time.Minute([Time])), type text),
SecText = Table.AddColumn(MinText, "TextSec", each
 if Number.RoundDown(Time.Second([Time]),0) < 10 or Number.RoundUp(Time.Second([Time]),0) < 10 then "0" & Text.From(Number.RoundDown(Time.Second([Time]),0))
else Text.From(Number.RoundDown(Time.Second([Time]),0)), type text),
SecondCol = Table.AddColumn(SecText,"SecondOfDay", each [TextHour] & [TextMin] & [TextSec], type text)

The concatenated SecondOfDay column will be used for the relationship with
the Time dimension.

In this example, the DimTime dimension table in the data warehouse has
86,400 rows--1 row for each second. The detail of this granularity
can be helpful in troubleshooting and deeper analysis, but a time
dimension at the minute grain with only 1,440 may be sufficient.
Whether in seconds or minutes, a Time dimension table is especially
recommended for filtering multiple fact tables (for example, Wait Stats
and Counter Data) in the same report and for providing useful groupings
such as the 7 AM to 9 AM timeframe.

11. SQL views should be created in the admin database for both Wait Stats and the
Config Data tables:

Each view should apply report-friendly column aliases and WHERE clauses to
only import the timeframes required

12. In the BI.vFact_Waits SQL view, cast the capture date column to datetime2(0) to
round this column to seconds.

13. In the Wait Stats M query, add a column named Time of the time data type via the
DateTime.Time() function based on the capture date column (datetime2(0)).

Similar to other SQL views described in previous recipes the SQL
view predicate, or WHERE clause, reduces the workload of the Power BI
retrieval process and avoids unnecessary M query transformations
such as column aliases and any data type conversions.

14. Duplicate either the Date or Time table and revise the source, schema, and item

variables to expose the Wait Stats and Configuration Values views in their own M
queries:

Source = AdminProd,
Config = Source{[Schema = "BI", Item = "vFact_Waits"]}[Data]

15. Ensure that only the five tables (Date, Time, Wait Stats, Configuration Values, and
Performance Counters) are enabled for load (all other queries and parameters
should have a gray font, indicating that they exist only in the Query Editor).

16. Click on Close & Apply to exit the Query Editor.
17. Create five single-direction relationships between the monitoring tables and the

Date and Time tables.

Relationships View - Single-direction relationships from Date and Time dimension tables to Monitoring fact tables

The three date table relationships should be based on date data types to enable
time intelligence DAX functions
The SecondOfDay six-character text column is used for the Performance-Monitor-to-Time
table relationship
The Time column of the time data type is used for the Wait-Stats-to-Time table
relationship

In this example, the Configuration Values job runs only on a daily basis
and is cast as a date data type in its SQL view. In most scenarios, this
should be sufficient as configuration values change infrequently--a
time column and relationship would not be useful. As the monitoring
solution expands, say with Query Store statistics and system logic
files, additional dimension tables describing and grouping the
monitoring data may be helpful.

18. Hide all columns that won't be exposed in reports, including the numerical
columns, as measures will be created.

19. Create hierarchies in the Date and Time dimension tables to support drill-up and
drill-down navigation.

20. Set the Default Summarization column property to None and set the Sort By
Column property where appropriate, such as Month and Weekday text columns.

21. Optionally, create dedicated measure tables to store all monitoring measures or
measures specific to a fact table.

How it works...

Wait Stats and instance configuration
data source setup

The setup of the wait statistics data store and the capture of wait statistics are
described by Erin Stellato in the following blog post: https://sqlperformance.com/2015/1
0/sql-performance/proactive-sql-server-health-checks-5
The setup of the instance configuration data store and the capture of these values
are also described by Erin Stellato in this blog post: https://sqlperformance.com/2015/02/
system-configuration/proactive-sql-server-health-checks-3

The value and value_in_use columns in the sys.configurations view and
table to be created in the admin database are stored in a sql_variant
data type. The view used to import this data to Power BI casts these
columns as an Integer data type and casts the datetime CaptureDate
column as a date data type.

https://sqlperformance.com/2015/10/sql-performance/proactive-sql-server-health-checks-5
https://sqlperformance.com/2015/02/system-configuration/proactive-sql-server-health-checks-3

There's more...

Query Store integration
The dataset created in this recipe is extended to include Query Store
performance statistics in the Increasing SQL Server DBA Productivity with
Power BI recipe later in this chapter
Additional inputs such as SQL Server Agent and backup log files can also be
integrated to aid administrators in assessing the causes and impacts of changes
in available resources, workloads, and system configurations.

DirectQuery real-time monitoring
datasets

DirectQuery datasets require a single database on a single supported
data source, such as SQL Server, Oracle, and Teradata. Therefore, to
support a DirectQuery dataset in which SQL queries would be passed
from Power BI to the data source as users accessed and interacted
with the reports in Power BI, a process or job needs to be scheduled
to load a single database with the three data inputs (performance
counter files, configuration values, and wait statistics).

See also
Combine binaries in Power BI Desktop: http://bit.ly/2oL2nM4

http://bit.ly/2oL2nM4

Constructing a monitoring visualization
and analysis layer
Monitoring and administration tools such as Performance Monitor, SQL Server
Activity Monitor, Query Store, and Extended Events include their own graphical
interfaces for viewing and analyzing their own specific datasets. However, these
features are limited relative to the data exploration and visualization capabilities
provided by dedicated BI tools such as Power BI. Additionally, as per the first
recipe of this chapter, system and database administrators require an integrated view
over distinct data sources with a common and flexible visual surface. The ability to
define logic on top of monitoring source data, along with the "anywhere" availability
of Power BI content and its data alert and advanced analytics features, further
enhances the value of integrated monitoring datasets.

In this recipe, the monitoring dataset created in the first recipe of this chapter is
leveraged to develop reporting content that addresses top stakeholder priorities, such
as "How is the performance today?" and "Has any configuration value changed?" A
report visualization specific to SQL Server Query Store is included in the There's
More... section and additional monitoring visualizations are included in later recipes
in this chapter.

Getting ready
1. Obtain guidance from stakeholders and subject matter experts (SMEs) on

performance baselines and threshold values.
2. For example, should the metric available memory be compared to the last 7, 30,

or more days? Are there good (green), satisfactory (yellow), and problem (red)
values associated with Wait Statistics measures or CPU time?

How to do it...
1. Create simple DAX measures (Average, Min, and Max) and then Date Intelligence

measures to support a comparison of performance monitoring counters against
prior time periods or baselines:

Available Memory MB (Today) = CALCULATE([Available Memory (MB)],
FILTER(ALL('Date'),'Date'[Date] = [Current Date]))
Batch Requests per Sec (Yesterday) = CALCULATE([Batch Requests Per Sec],
FILTER(ALL('Date'),'Date'[Date] = [Yesterday]))
Min Available Memory MB (Today) = CALCULATE([Min Available Memory (MB)],
FILTER(ALL('Date'),'Date'[Date] = [Current Date]),ALL('Time'))

2. Create a report page based on the performance monitor counters that addresses
top visibility needs such as "How is performance today?" and "How close are
we to resource thresholds?"

Performance Monitoring Report Page Leveraging Windows Performance Monitor Counters

Two gauge visuals and two KPI visuals are used to display the
highest priority counters relative to predefined thresholds or
baselines. For example, Disk Seconds per Read is highlighted in
green given the lower value than the goal of .003, and disk seconds
per write is highlighted in red due to the higher value than the goal
of .004. All four visuals respect the hour filter control (a custom
Chiclet Slicer) from the lower left, and a Minute of Day Time data type
column from the Time dimension table is used for the KPI Trend. A

Today's High and Low Values group of Card visuals ignores the Time
filter selection (for example, 9:00 PM from the slicer) but applies the
current date filter. CPU (% processor), batch requests per second,
and available memory are plotted against the prior day values in the
line charts in this example. Seven-day and 30-day average measures
are commonly used for the performance baseline.

3. Create DAX measures to identify database instance configuration changes:

Config Value = If(AND(HASONEVALUE('Configuration Values'[ConfigurationID]),HASONEVALUE('Date'[Date])),
MAX('Configuration Values'[Configuration Value]),BLANK())
Config Value (Today) = CALCULATE([Config Value],FILTER(ALL('Date'),'Date'[Date] = [Current Date]))
Config Value (Yesterday) = CALCULATE([Config Value],FILTER(ALL('Date'),'Date'[Date] = [Yesterday]))
Config Change (Today) = IF([Config Value (Today)] <> [Config Value (Yesterday)],
"Config Change", "No Change")
Config Changes = IF([Config Value] = [Prior Day Config],0,1)

Instance Configuration Report Page: Current Day and Trailing 30-Day History of Changes

The Current Day Configuration Changes table visual uses a visual-level
filter on the Config Change (Today) measure created earlier such that only
changed configurations (for the current day) are displayed. The Prior
30 Days Configuration Change table visual uses two Visual level filters. One
filter is applied to the date column from the Date dimension table and
uses the relative date filtering feature to retrieve the past 30 days but
exclude the current day. The other filter condition is applied against
the Config Changes measure created earlier; this filter is set to is 1.

4. Create similar DAX measures for the Wait Statistics table, such as current day
average wait seconds.

5. On a new page, compare the average of the current day's wait statistics capture
data against a prior date.

"Wait statistics are probably the single best way to start troubleshooting a SQL
Server performance issue. SQL Server knows why execution is being stalled
(i.e. why threads are having to wait) so using this information to identify
bottlenecks and avenues for further investigation can dramatically reduce the
time it takes to diagnose the cause of workload degradation."

- Paul Randal, CEO of SQLskills, Microsoft Data Platform MVP

Wait Statistics Report Sample: KPIs, Waterfall, and Scatter Chart visuals

In this limited sample of a wait statistics report, relative date
filtering is applied at the page level, to only include the past 30 days,
and thus the 30 day trend is displayed in the background of the two
KPI visuals. Relative date filters are also applied at the visual level
to the waterfall and scatter charts to include only the last two days
and only the current day, respectively. The breakdown field well of
the waterfall chart is used to automatically identify the largest
drivers of the change in wait seconds (wait types) from the prior day
to the current day.
A high-level wait statistics report can be used as a quick starting
point of analysis to identify bottlenecks in a system. Additionally,
with mature and predictable baseline data in place, the report can be
used to troubleshoot performance degradation issues. For example, a
sudden spike in PAGEIOLATCH_EX waits may indicate a missing index issue
or related database schema or code change.

How it works...

Relative date filtering
The July 2017 release of Power BI Desktop made relative date filtering
available to all report scopes: visual, page, and report.

Relative Date Filtering

Relative date filtering was previously only available in the slicer visual for date
data types. In many scenarios, this functionality can eliminate the need to write
additional custom DAX measures for specific visuals or report pages.

There's more...

Top 10 slowest queries via Query Store
Individual SQL query statements can also be retrieved from Query Store and
Extended Events

A Table Visual filtered for the top 10 SQL Query values based on the Duration measure

The top N visual level filter is applied to a table visual based on the Avg Duration
measure

This recipe focused primarily on dashboard content that addresses
top, high-level monitoring questions. However, a layer of detailed
reports, including visuals such as this top X queries by duration (or
I/O, CPU, and so on), would likely be valuable complements in the
summary-level reports and dashboards. Note that table visuals
support cross-highlighting such that clicking on an individual SQL
query would cross-highlight other visuals on the report page. See the
Query Store and Extended Events recipes later in this chapter for
additional details and examples of exposing the SQL statement on the
report canvas.

See also
SQL Server Wait Types Library: https://www.sqlskills.com/help/waits/

https://www.sqlskills.com/help/waits/

Importing and visualizing dynamic
management view (DMV) data of SSAS
and Power BI data models
SSAS and Power BI instances include many dynamic management views (DMVs),
which can be used to retrieve both schema metadata and resource usage associated
with the various database objects. As query performance for imported data models is
directly impacted by the amount of memory consumed, visibility to memory and
related information, such as compression and cardinality, is essential in performance
tuning efforts. Power BI integration and visualization tools can enhance the value of
the system information provided by DMVs to provide owners of Power BI and SSAS
datasets with an intuitive, sustainable reporting layer in support of these assets.

In this recipe, M queries are created to retrieve and transform DMV information from
a Power BI dataset. Essential relationships, measures, and report visuals are then
built to support memory usage analysis.

How to do it...
1. Open the Power BI Desktop file containing the dataset to be analyzed. This file

must remain open during data retrieval.
2. Open DAX Studio and connect to the open Power BI Desktop file (.pbix).
3. Retrieve the server and database name associated with the running Power BI

Desktop file.

The server name will be in the bottom right of the DAX Studio Status
Bar, such as localhost:56514. The following SQL statement will retrieve
the system name of the database to be queried:

Select [CATALOG_NAME] From $System.DBSCHEMA_CATALOGS

In this example, 56514 represents the local port being used by the
Power BI Desktop file and the following 36 character string is the
catalog name: 7f1e8568-4281-4c17-a990-dbe7b6199163.

4. Open a new Power BI Desktop file and click on Edit Queries to open the Query
Editor window.

5. Create two parameters, Server and Database, and apply the values retrieved from
DAX Studio as the current values.

Query Parameters with values for the local Power BI Model

6. Create two new M queries, segments and columns, which use the Server and
Database parameters to access SQL Server analysis services dynamic
management views (DMVs).

Following is the segments query:

let Source = AnalysisServices.Database
(Server, Database,[Query="Select * From $SYSTEM.DISCOVER_STORAGE_TABLE_COLUMN_SEGMENTS"]),
 Segments = Table.AddColumn(Source, "Structure Type", each
 if Text.Range([TABLE_ID],1,1) <> "$" then "Data"
 else if Text.Start([TABLE_ID],2) = "H$" then "Column Hierarchy"
 else if Text.Start([TABLE_ID],2) = "U$" then "User Hierarchy"
 else if Text.Start([TABLE_ID],2) = "R$" then "Relationship"
 else "unknown", type text),
 RenameTable = Table.RenameColumns(Segments,{{"DIMENSION_NAME", "Table"}}),
 KeyColumn = Table.AddColumn(RenameTable, "ColumnKey", each [Table] & "-" & [COLUMN_ID], type text)
in KeyColumn

The Server and Database parameters, along with a SQL statement
against the Discover_Storage_Table_Column_Segments DMV, are used to
extract access memory usage data from the running Power BI
Desktop file (which contains an analysis services instance). The
conditional column (Structure Type) is added to identify the memory
structure represented by each row, and a concatenated column
(ColumnKey) is created to support a relationship to the Columns table.

Following is the columns query:

let Source = AnalysisServices.Database
(Server, Database,[Query="Select * From $SYSTEM.DISCOVER_STORAGE_TABLE_COLUMNS"]),
 BasicData = Table.SelectRows(Source, each ([COLUMN_TYPE] = "BASIC_DATA")),
 RenameTable = Table.RenameColumns(BasicData,{{"DIMENSION_NAME", "Table"},{"ATTRIBUTE_NAME","Column"}}),
 KeyColumn = Table.AddColumn(RenameTable, "ColumnKey", each [Table] & "-" & [COLUMN_ID], type text),
 DateRetrieved = Table.AddColumn(KeyColumn, "Date Retrieved", each DateTime.Date(DateTime.LocalNow()), type date)
in DateRetrieved

The Discover Storage Table Columns DMV is filtered based on the Column_Type
column and a concatenated column (ColumnKey) is created for the
relationship to the Segments table. Additionally, a dynamic Date Retrieved
column is added to support the reporting layer.

7. Load the two queries and create a bidirectional many-to-one relationship
between segments and columns based on the ColumnKey column that was created
for both queries.

8. Create DAX measures that calculate the memory usage of the objects in the
model in terms of megabytes (MB):

Segment Size (MB) = DIVIDE(SUM(Segments[USED_SIZE]),1048576)
Dictionary Size (MB) = DIVIDE(SUM('Columns'[DICTIONARY_SIZE]),1048576)
Data Size (MB) = CALCULATE([Segment Size (MB)],Segments[Structure Type] = "Data")

Column Hierarchies Size (MB) =
CALCULATE([Segment Size (MB)],Segments[Structure Type] = "Column Hierarchy")
User Hierarchy Size (MB) = CALCULATE([Segment Size (MB)],Segments[Structure Type] = "User Hierarchy")

User Hierarchy Size (MB) = CALCULATE([Segment Size (MB)],Segments[Structure Type] = "User Hierarchy")
Relationship Size (MB) = CALCULATE([Segment Size (MB)],Segments[Structure Type] = "Relationship")
Total Column Size (MB) = [Data Size (MB)] + [Dictionary Size (MB)]

Total Size (MB) = [Column Hierarchies Size (MB)] + [Relationship Size (MB)] + [User Hierarchy Size (MB)] + [Dictionary Size (MB)] + [Data Size (MB)]

Last Refresh Message = VAR RefreshDate = MAX('Columns'[Date Retrieved]) RETURN
"Last Refreshed: " & RefreshDate

The memory columns for both source DMVs are in terms of bytes.
Megabytes (MB) are more intuitive and presentable given that they
have fewer digits; thus, DIVIDE() by 1,048,576 is applied. The Structure
Type column created in the segments query is used to support different
components of overall memory usage and two total measures are
created for summary-level reports.

9. Create a Power BI report page based on the retrieved and modeled DMV data.

Summary Memory report of the Power BI dataset

Card visuals are used to display overall memory usage, and two table
visuals with top N visual level filters provide additional details. In
this example, the Reseller Sales XL table is by far the largest table in
the model, and specifically the CarrierTrackingNumber, SalesOrderNumber, and
CustomerPONumber columns of this table are consuming the most memory.
Clicking on a table name in the Top 5 Tables visual will cross-filter
the Top 5 Columns visual.
More DMVs and logic can be added to build a more robust template
report for use across Power BI projects. Note that the port number
and catalog name (database) parameters will also need to be updated
when a PBIX file being analyzed has been closed and reopened. See C
hapter 7, Parameterizing Power BI Solutions for more examples of
working with query parameters.

How it works...

Memory structures
In addition to the compressed data memory structure for each column, dictionary
and column hierarchy structures (H$) are also created internally for imported
data models to support queries. The dictionary structure, retrieved via the
columns DMV, stores the unique values of a column, and so it is larger for high-
cardinality columns.
Two additional memory structures include user-defined hierarchies (U$) and
table relationships (R$).

In this recipe, the memory allocated to column hierarchy structures
(H$) is excluded from the Total Column Size measure but included in
Total Size measure. This is intended to focus analysis on the larger
components of memory that can be directly impacted by revisions to
the data model. Likewise, the memory used for relationships and
user-defined hierarchies is small relative to the data and dictionary
size of the model's columns. Basic performance tuning of imported
data models largely focuses on minimizing high cardinality columns
and relationships to reduce the memory scanned. More advanced
tuning, generally reserved for SSAS models, involves the partitioning
of tables, segment sizes, and the optimal sorting order used by the
engine during compression; only the sort order is available to Power
BI datasets.

See also
Kasper de Jonge has published a blog on building an SSAS memory report with
Power BI: http://bit.ly/2tDumgk
A Power Pivot for Excel-based memory analysis report is provided by SQL BI:
http://bit.ly/2sTTuSO

http://bit.ly/2tDumgk
http://bit.ly/2sTTuSO

Increasing SQL Server DBA
productivity with Power BI
SQL Server Query Store is a monitoring feature available to all editions of SQL
Server 2016 and later; it significantly simplifies and expedites query tuning and
troubleshooting. The Query Store database provides aggregated metrics regarding
query executions, query plans, and wait statistics to enable visibility to performance
trends and usage patterns.

"Query Store is a fantastic flight data recorder for your execution plans. It will
help you troubleshoot parameter sniffing issues, connection settings issues, plan
regressions, bad stats, and much more."

- Brent Ozar, Author and Microsoft Certified Master in SQL Server

Query Store includes a graphical interface of charts and user controls and its schema
lends itself to custom T-SQL queries such as "10 longest running queries in the past
hour". While these are great features and sufficient for certain scenarios,
administrators often have to make trade-offs between the flexibility of T-SQL and the
graphical controls provided by Query Store. In this recipe, simple T-SQL statements
are passed from Power BI to SQL Server Query Store, to identify and analyze recent
performance issues as well as the performance of a specific stored procedure.

Getting ready
1. Enable Query Store in the latest version of SQL Server Management Studio

(SSMS), either via the Database Properties dialog in the Object Explorer
interface (right-click on on the database) or via the following T-SQL statement:

ALTER DATABASE WideWorldImporters SET QUERY_STORE = ON;

2. Configure Query Store settings such as Statistics Collection Intervals, Retention,
and Max Size (MB) according to your requirements.

In this example, the performance of individual queries will be
aggregated or summarized into 5-minute time frames. Smaller
collection time intervals provide greater details but also require more
storage and collection resources. For maximum detail with no
grouping of queries, an Extended Events session can be scheduled.
See the Consolidating SQL Server Extended Events Trace Event Data
into Power BI recipe later in this chapter for more details.

How to do it...
1. Build and test the T-SQL statements to retrieve the required Query Store

statistics:

SELECT
[rs].[avg_duration], [rs].avg_logical_io_reads, [qst].[query_text_id], [qsq].[query_id],
[qst].[query_sql_text], CASE WHEN [qsq].[object_id] = 0 THEN N'Ad-hoc' ELSE OBJECT_NAME([qsq].[object_id]) END AS [ObjectName], [qsp].[plan_id], GETUTCDATE() AS CurrentUTCTime, [rs].[last_execution_time], CAST((DATEADD(MINUTE, -(DATEDIFF(MINUTE, GETDATE(), GETUTCDATE())), CAST((DATEADD(MINUTE, -(DATEDIFF(MINUTE, GETDATE(), GETUTCDATE())), [rs].[last_execution_time])) AS datetime2(0)) AS [LocalLastExecutionTime]
FROM
[sys].[query_store_query] [qsq] JOIN [sys].[query_store_query_text] [qst] ON [qsq].[query_text_id] = [qst].[query_text_id]JOIN [sys].[query_store_plan] [qsp] ON [qsq].[query_id] = [qsp].[query_id]JOIN [sys].[query_store_runtime_stats] [rs] ON [qsp].[plan_id] = [rs].[plan_id] WHERE [rs].[last_execution_time] > DATEADD(hour, -8, GETUTCDATE())

This query retrieves the average duration and logical IO reads of the
Query Store intervals collected over the previous 8 hours, as well as
the SQL statement itself and the Query ID. A parameter can be set for
the hours value in Power BI, and thus the SQL view created for
retrieving this data does not require a WHERE clause. Power BI will
dynamically build a T-SQL statement with a WHERE clause filter
containing the parameter via Query Folding. Note that the
LocalLastExecutionTime column is cast to a datetime2(0) data type to
provide a date value rounded off to the nearest second.

2. Create an additional T-SQL statement containing similar performance-related
columns, filtered to a specific stored procedure that also retrieves the collection
interval times:

SELECT.....FROM
[sys].[query_store_query] [qsq] JOIN [sys].[query_store_query_text] [qst] ON [qsq].[query_text_id] = [qst].[query_text_id]JOIN [sys].[query_store_plan] [qsp] ON [qsq].[query_id] = [qsp].[query_id]JOIN [sys].[query_store_runtime_stats] [rs] ON [qsp].[plan_id] = [rs].[plan_id]JOIN [sys].[query_store_runtime_stats_interval] [rsi] ON [rs].[runtime_stats_interval_id] = [rsi].[runtime_stats_interval_id]
WHERE [qsq].[object_id] = OBJECT_ID(N'Sales.usp_GetFullProductInfo')

The Query Store user interface does not support analyzing any
activity specific to a stored procedure. Additionally, administrators
often require visibility to both the specific timeframes and the overall
performance to pinpoint when a performance issue occurred and its
significance relative to a baseline.

3. Create a view and a parameterized stored procedure in SQL Server for the two
Query Store queries:

To reiterate, the view will not include the WHERE clause filter as this condition
will be driven by a Power BI parameter

4. Design the SQL Server stored procedure to include a WHERE clause with a
parameter that will be passed from Power BI, such as the following:

CREATE PROCEDURE [Website].[QueryStoreProc]
@QSProcedure nvarchar(55)
AS

WHERE [qsq].[object_id] = OBJECT_ID(@QSProcedure)

5. Open a Power BI Desktop file locally and add server and database parameters
for the Query Store database.

6. Create a new query with the Sql.Database() function that references these two
parameters.

7. Create a parameter (HoursInPast) of a decimal number data type and a
QueryStoreProcedure text parameter.

Server, Database, Database Query (WWI_Clone), and Two Parameters

The HoursInPast parameter will be embedded in the Query Store
duration the I/O query, and likewise the QueryStoreProcedure parameter
will be referenced in the Query Store Procedure query. This design
allows for simple modification of the data retrieval process to control
the timeframe of data retrieved and the specific stored procedure. As
per Chapter 7, Parameterizing Your Power BI Solutions, Power BI
Template files can also be used with parameters to quickly create new
reports based on a common metadata design (M queries, DAX
measures, relationships, and so on) but with different data imported.

8. Create a new M query that retrieves the I/O and duration statistics for all
queries:

Source = WWI_Clone, SQLView = Source{[Schema = "Website", Item = "QueryStoreDurationIO"]}[Data],
ParamFilter = Table.SelectRows(SQLView, each
[LocalLastExecutionTime] >= (DateTime.LocalNow() - #duration(0,HoursInPast,0,0))),
ExecutionDate = Table.AddColumn(ParamFilter, "Last Execution Date", each DateTime.Date([LocalLastExecutionTime]), type date),
ExecutionTime = Table.AddColumn(ExecutionDate,
"Time", each DateTime.Time([LocalLastExecutionTime]), type time)

The LocalLastExecutionTime column is filtered by the DateTime value that is based on
the current local DateTime and the value in the HoursInPast parameter. You may click
on View Native Query to confirm that the query was folded to the server.
A Date and Time column are added via the DateTime.Date() and DateTime.Time() M
functions. These added columns will be used in relationships to the Date and
Time dimension tables, respectively.

9. Name this query Query Store DurationIO.
10. Create a new M query that retrieves the Query Store statistics associated with a

specific stored procedure:

let Source = WWI_Clone,
Procedure = Value.NativeQuery(Source,
"EXECUTE Website.QueryStoreProc @QSProcedure = " & "'" & QueryStoreProcedure & "'"),
InsertedDate = Table.AddColumn(Procedure, "Date", each DateTime.Date([end_time]), type date),
InsertedTime = Table.AddColumn(InsertedDate, "Time", each DateTime.Time([end_time]), type time)

The SQL Server stored procedure Website.QueryStoreProc is executed via
the Value.NativeQuery() function and the Power BI parameter
QueryStoreProcedure is passed into the concatenated text string. Date and
Time columns are also added to support relationships to the Date and
Time dimension tables. Like the DurationIO Query Store query, the
end_time in the stored procedure is of the datetime2(0) data type, such
that Time columns created via DateTime.Time() will be rounded off to
seconds.

11. Name this query 'Query Store Procedure' and click on Close & Apply to exit the
Query Editor.

12. Create many-to-one, single-direction relationships from the Query Store
DurationIO table and the Query Store Procedure table to the Date and Time tables.

13. Add core DAX measures to the Query Store statistics (fact) columns such as Min,
Max, and Average Duration:

Average CPU Time (QS Proc) = AVERAGE('Query Store Procedure'[avg_cpu_time])
Average Duration (QS Proc) = AVERAGE('Query Store Procedure'[avg_duration])
Average Logical IO Reads (QS Proc) = AVERAGE('Query Store Procedure'[avg_logical_io_reads])

14. Create dedicated report pages for the two Query Store tables leveraging the
measures and relationships.

Query Store Sample report page - Stored Procedure

The Query Store Stored Procedure report page breaks out measures of
performance by context settings ID and individual query IDs. A
combination chart displays the trend of CPU and duration
performance across the intervals and the SQL statement associated
with the procedure is displayed via a table visual. Additionally, a
custom Chiclet slicer is used to give the user simple filtering control
for the hourly time frames.

How it works...

Query Store
SQL Server Query Store collects compile and runtime information related to the
queries and query plans of a database like a flight data recorder. This persisted
data is made available for analysis via three separate data stores:

A plan store containing query execution plan information
A runtime stats store of execution statistics
A wait stats store of query wait statistics

The wait stats store is currently exclusive to Azure SQL
These three data stores can be queried in SQL Server 2016 or later via the
following system views: sys.query_store_plan, sys.query_store_runtime_stats, and
sys.query_store_wait_stats

See also
MS Docs: Monitoring Performance by using the Query Store (http://bit.ly/2s9Cx5r)

http://bit.ly/2s9Cx5r

Providing documentation of Power BI
and SSAS data models to BI and
business teams
As data models grow and change to support new business processes and logic,
access to current documentation becomes imperative. Visibility to basic metadata
such as the relationships of the model, columns of the tables, and the filtering logic
built into measures can significantly aid business teams in utilizing Power BI
datasets. Additionally, business intelligence and IT professionals who may be new to
a specific model or unfamiliar with a component of the model can benefit greatly
from direct access to technical metadata such as data source parameters, SQL and M
queries, and the configured security roles.

In this recipe, several dynamic management views (DMVs) related to the schema of
a Power BI dataset are accessed and integrated into a Power BI report. A template is
then created with parameters, enabling standard documentation reports across
multiple Power BI datasets.

Getting ready
1. Identify the top use cases and consumers of the documentation and align this

with the data contained in the DMVs.
2. If the use cases and consumers are significantly varied, such as business users

and BI or IT professionals, separate dedicated reports may be necessary to
retrieve the relevant metadata and avoid a cluttered or excessively large report.

How to do it...
1. Open the Power BI Desktop file containing the dataset to be documented. This

file must remain open during data retrieval.
2. Open DAX Studio and connect to the open Power BI Desktop file.
3. Retrieve the server and database name associated with the running Power BI

Desktop (PBIX) dataset.

The server name will be in the bottom right of the DAX Studio status
bar such as localhost:57825. The following SQL statement will retrieve
the system name of the database to be queried:

Select [CATALOG_NAME] From $System.DBSCHEMA_CATALOGS

In this example, 57825 represents the local port being used by the
Power BI Desktop file and the following 36-character string is the
catalog name: 59eb0067-25f9-4f07-a4e2-54d2188ebc43.

4. Open a new Power BI Desktop file and click on Edit Queries to open the Query
Editor window.

5. Create two parameters, Server and Database, and apply the values retrieved from
DAX Studio as the current values.

6. Create a new blank M query that retrieves the TMSCHEMA_TABLES DMV via the server
and database parameters.

Table metadata of the running Power BI Desktop file

7. Name the query TablesDMV and disable the load of the query, as it will be
referenced by other queries.

As of July 2017, official documentation is not available for the new
TMSCHEMA DMVs associated with SSAS Tabular databases (and
thus Power BI datasets). Analysis Services Schema Rowset
documentation can be found at https://docs.microsoft.com/en-us/sql/analysis-serv
ices/schema-rowsets/analysis-services-schema-rowsets.

8. Duplicate the TablesDMV query to retrieve the following five schema DMVs as

https://docs.microsoft.com/en-us/sql/analysis-services/schema-rowsets/analysis-services-schema-rowsets

well: COLUMNS, MEASURES, ROLES, TABLE_PERMISSIONS, and RELATIONSHIPS:

Each DMV follows the same naming convention (SYSTEM.TMSCHEMA_)

9. In the query editor, grant permission to run each native query by clicking on Edit
Permission and then on Run.

10. Name the queries according to their source and organize the queries and
parameters into their own folders:

Parameters and DMV Queries Used to Support Model Documentation

11. Create a third query group named Documentation and a new blank query named
Columns:

let Tables = TablesDMV, Columns = ColumnsDMV,
 Join = Table.NestedJoin(Columns,{"TableID"},Tables,{"ID"},"TableColumns",JoinKind.LeftOuter),
 TableExpand = Table.ExpandTableColumn(Join,"TableColumns",{"Name"},{"Table"}),
 DataType = Table.AddColumn(TableExpand, "Data Type", each
 if [ExplicitDataType] = 2 then "Text" else
 if [ExplicitDataType] = 6 then "Whole Number" else
 if [ExplicitDataType] = 8 then "Decimal Number" else
 if [ExplicitDataType] = 9 then "Date" else
 if [ExplicitDataType] = 10 then "Fixed Decimal Number" else "Other", type text),
 ColumnType = Table.AddColumn(DataType, "Column Type", each
 if [Type] = 1 then "Standard" else
 if [Type] = 2 then "Calculated" else "Other", type text),
 Filter = Table.SelectRows(ColumnType, each
 not Text.StartsWith([ExplicitName], "RowNumber")
 and not Text.StartsWith([Table],"LocalDate")
 and not Text.StartsWith([Table], "DateTableTemplate")),
 Rename = Table.RenameColumns(Filter,{{"ExplicitName","Column"}, {"DataCategory", "Data Category"},
 {"IsHidden", "Is Hidden"}, {"FormatString", "Column Format"}})
in Rename

The columns query joins the Columns and Tables DMV queries and
creates two new columns to identify data types and any calculated
columns. Additionally, filters are applied to remove metadata
associated with the internal date tables that Power BI creates for
date columns, and a few columns are renamed to support the

documentation reports.
Columns and measures can be renamed within report visuals as of the
July 2017 release of Power BI Desktop. Double-clicking on the field
name in the Values field well creates a textbox for us to enter the alias.
Since the alias is specific to the given visual, applying user-friendly,
succinct names in datasets is still important.

12. Create a new blank query named Relationships and identify the tables and columns
for each relationship:

let Relationships = RelationshipsDMV, Tables = TablesDMV, Columns = ColumnsDMV,
 FromTableJoin = Table.NestedJoin(Relationships,{"FromTableID"},Tables, {"ID"},"FromTableCols",JoinKind.Inner),
 FromTable = Table.ExpandTableColumn(FromTableJoin,"FromTableCols",{"Name"},{"From Table"}),
 ToTableJoin = Table.NestedJoin(FromTable,{"ToTableID"},Tables,{"ID"},"ToTableCols",JoinKind.Inner),
 ToTable = Table.ExpandTableColumn(ToTableJoin,"ToTableCols",{"Name"},{"To Table"}),
 FilterDateTbls = Table.SelectRows(ToTable, each not Text.StartsWith([To Table],"LocalDateTable")),
 FromColumnJoin = Table.NestedJoin(FilterDateTbls,{"FromColumnID"},Columns,{"ID"},"FromColumnCols",JoinKind.Inner),
 FromColumn = Table.ExpandTableColumn(FromColumnJoin,"FromColumnCols",{"ExplicitName"},{"From Column"}),
 ToColumnJoin = Table.NestedJoin(FromColumn,{"ToColumnID"},Columns,{"ID"},"ToColumnCols",JoinKind.Inner),
 ToColumn = Table.ExpandTableColumn(ToColumnJoin,"ToColumnCols",{"ExplicitName"},{"To Column"}),
 CrossFiltering = Table.AddColumn(ToColumn, "Cross Filtering", each if [CrossFilteringBehavior] = 1 then "Single Direction" else "Bidirectional", type text),
 Rename = Table.RenameColumns(CrossFiltering,{{"ID","Relationship ID"}})
in Rename

The Relationships DMV contains the Table and Column ID keys for each
side of every relationship defined in the model. Therefore, four
separate join expressions are used to retrieve the from table and
column as well as the to table and column. Additionally, a column is
added to identify any bidirectional cross-filtering relationships and
filters are applied to remove internal date tables.

13. Create a simple query based on MeasuresDMV that adds the table name via a join to
the TablesDMV. Name this query Metrics as Measures is a reserved word.

14. Add a query that joins the RolesDMV with the TablePermissionsDMV and the TablesDMV
such that the name of the security role, the filter condition, and the table of the
filter condition are included in the query.

15. Name this last query Security Roles and click on Close & Apply to return to the
Report view.

16. Create four report pages: Columns, Relationships, Measures, and Security.
17. Use table visuals to expose the most important columns from each integrated M

query in each page.

Relationships Metadata Report Page

The Alternating rows Matrix style is useful for simple table lists such as
metadata documentation. For larger, more complex models, slicer
visuals give users the ability to quickly answer their own questions
about the model such as "Which tables are related to Internet Sales?"
or "Which measures are hidden from the Fields list?"

Measures Metadata Report Page

Table and Matrix visuals support word wrap for both headers and
individual values. For table visuals exposing the DAX Expression
column and other long columns such as SQL Statements, enable word
wrap in the Values card of the formatting pane.

18. With the report pages completed, save the Power BI Desktop file and publish
the report to the Power BI service.

19. Click on File and then on Export to save a Power BI Template file (.pbit).

20. Test the template by retrieving the port and catalog name for a separate dataset
and opening the template.

Opening the Template (.pbit) File to generate documentation on a separate Power BI dataset

With the target dataset open, the queries will prompt for authorization but will
then load the report pages.

How it works...

Windows Task Manager: SQL Server Analysis Services processes associated with open PBIX datasets

When used as a dataset rather than a report with a live connection,
an open Power BI Desktop file includes an instance of SQL Server
Analysis Services (SSAS). Therefore, all data model objects
(including DMVs) contained within a Power BI Desktop file can be
accessed as an SSAS Data Source. For example, SQL Server Profiler,
SQL Server Management Studio, and Microsoft Excel can all
reference the same port and catalog name to establish a connection
to the data source. Additionally, the same approach in this recipe is
applicable to Power BI Desktop models in DirectQuery mode.

There's more...

Power BI documentation reports via
Excel

As a published Power BI dataset, documentation can be displayed in standard
Excel table and PivotTable formats.

Power BI documentation dataset accessed from Excel

See the Accessing and Analyzing Power BI Datasets from Excel recipe in Chapte
r 13, Integrating Power BI with Other Applications for details on the analyze in
Excel feature.

SQL Server Analysis Services (SSAS)
Metadata

For SSAS Tabular documentation, additional DMVs such as
TMSCHEMA_KPIS and TMSCHEMA_PERSPECTIVES may be utilized along with more
details on the display folders of columns and measures, the
descriptions entered by model authors for various objects, and
partitions. It's possible that metadata currently specific to SSAS such
as perspectives and KPIs will also be utilized by Power BI datasets
in the future.

Analyzing performance monitor
counters of the Microsoft on-premises
data gateway and SSAS tabular
databases
The Microsoft on-premises data gateway enables specific cloud services including
Power BI, Azure Analysis Services, PowerApps and Microsoft Flow to securely
connect to on-premises data sources. In the context of Power BI, these connections
support both the scheduled refresh of imported datasets stored in Power BI, as well
as DirectQuery and Live Connection datasets in which only report queries and their
results are exchanged between Power BI and the on-premises source. As the
availability and performance of the gateway is critical for any Power BI and other
supported cloud service deployment requiring on-premises data, regular monitoring
of both the gateway service and its host server(s) is recommended. Additionally,
given that Power BI datasets are often migrated to SQL Server Analysis Services
(SSAS) to take advantage of enterprise BI features such as source control and a
programmatic interface, visibility to SSAS server resources is important to isolate
performance bottlenecks.

In this recipe, performance monitor counters specific to the on-premises data
gateway and SQL Server Analysis Services are integrated into a single Power BI
dataset. This source data is dynamically retrieved and enhanced via M queries and
sample report visualizations are created to support monitoring and analysis.

Getting ready
1. For the initial deployment or planning phases, review the available

documentation, tips, and best practices on both SSAS Tabular and the on-
premise data gateway, including the recommended hardware and network
configuration.

SSAS Tabular servers should have 2.5X the RAM of their compressed
in-memory databases, and outbound ports 9350-9353 should be
opened to run the On-Premises Data Gateway in the default TCP
mode (443 if HTTPS mode). Despite sufficient hardware, the design
and complexity of data models, M queries, and DAX measures can
significantly impact resource usage and performance. See Chapter 11,
Enhancing and Optimizing Existing Power BI Solutions, for more
details.

2. Identify a secure network location directory to store the performance counter
file. This path could use a common network drive and the parent folder of other
monitoring log files.

How to do it...

SSAS tabular memory reporting
1. Create a new data collector set in Windows Performance Monitor to capture

SSAS tabular memory counters:

SSAS Memory Counters in a Performance Monitor Data Colletor Set

2. Set the Log format of the collector set to Comma Separated.
3. Open a new Power BI Desktop file to be used for both the SSAS Tabular and

on-premise data gateway counters.
4. Create data source parameters for the server, database, and number of days of

history to retrieve.

5. Define a query that exposes the database objects (AdWorksProd) and Date and Time
queries that retrieve these views.

Parameters and Queries Used to Retrieve Date and Time Dimension Tables from SQL Server

6. Disable the refresh of the Time table as this always has 86,400 rows (per

second).
7. Create a new query that selects the parent folder location of the SSAS tabular

performance counters.
8. Follow the same steps of importing performance monitor counter files described

in the Creating a centralized IT monitoring solutions with Power BI recipe
earlier in this chapter.

The result of the import process should be a dynamic filter based on
the CounterHistoryDays parameter, revised data types, report-friendly
column names, and Date and Time columns to support the
relationships to Date and Time dimension tables.

9. Name the query SSAS Memory and click on Close & Apply.
10. Create single direction relationships between SSAS Memory and the Date and

Time dimension tables.
11. Create DAX measures to support reporting and analysis such as the following:

Avg Memory Limit Hard (GB) = DIVIDE(AVERAGE('SSAS Memory'[Memory Limit Hard KB]),[KB to GB Conversion])
Avg Memory Usage GB (Today) = CALCULATE([Avg Memory Usage (GB)],
FILTER(ALL('Date'),'Date'[Date] = [Current Date]))
Max Memory Usage GB (Today) = CALCULATE([Max Memory Usage (GB)],FILTER(ALL('Date'),'Date'[Date] = [Current Date]))
Max Memory GB (Today, All Time) = CALCULATE([Max Memory Usage GB (Today)],ALL('Time'))

The DAX measures convert the memory counter values from KB to GB
and make it easy to compare the current day versus the prior day in
different filter contexts. For example, the Avg Memory Usage GB (Today)
measure is filtered to the current date but will respect user or report
filter selections on the Time dimension table. The Max Memory GB (Today,
All Time) measure, however, will ignore both Date and Time filter
selections to always show the highest memory usage value for the
current day.

12. Create an SSAS tabular memory report leveraging the consolidated counter
files, model relationships, and measures.

In this example, two slicers are used for the Hour of Day and Minute
columns of the Time dimension table to provide the user with the
option to focus the line chart on intervals within an hour (for
example, 6:30 to 7:00 AM). A multi-row card is used to display the
different memory thresholds as indicated by the corresponding
performance monitor counters. Four gauge visuals are used to
display measures that ignore the filters from the Time dimension in
order to show the average and max values for the current and
previous date.

SQL Server Analysis Services Server Properties - memory properties

Significant spikes in memory usage may indicate sub-optimal DAX
measures or inefficient report queries which require large, temporary
memory structures. BI teams would want to ensure that memory usage
does exceed the memory limits identified by the counters, to avoid
performance degradation. Increases in the SSAS memory limit
property settings or simply more overall RAM for the SSAS server are
two options to avoid memory shortages.

On-premises data gateway counters
1. Create and schedule a new performance monitor data collector set containing

the on-premises data gateway counters.

On-premises data gateway performance counters

2. In the same Power BI Desktop file containing the SSAS counters, create an
additional query to the parent folder of the gateway counter files.

3. Apply the same M query transformations to filter the files imported (via
parameter), adjust data types, rename columns, and add Date and Time columns to
support relationships to the Date and Time dimension tables.

4. Build basic (Average or Max) aggregation measures against the different gateway
counter columns.

5. Build additional DAX measures that apply or remove filter contexts from the
Date and Time tables following the same expression patterns as the SSAS Tabular
Memory DAX measures.

6. Design a dedicated gateway report page that addresses the top monitoring
priorities such as query volumes and failures.

In this example, the organization is using an SSAS 2014 Tabular
Server as a primary data source for Power BI report and dashboard
content. Therefore, measures based on the ADOMD gateway counters
are used to expose the volume of this workload (bottom chart). The #
of all queries executed / sec performance counter is used by the top
chart as well as the average and max card visuals above the line
chart. Though less common, the organization also uses this gateway
to support certain import refreshes of Power BI datasets (Mashup
counters) and DirectQuery datasets (ADO.NET counters).
As per the Adding data alerts and email notifications to dashboards
recipe of Chapter 5, Creating Power BI Dashboards, card, gauge, and
standard KPI visuals pinned as tiles to dashboards can drive data
alerts and e-mail notifications. In the context of this recipe, memory
usage in excess of the Vertipaq and other memory limits could
warrant a data alert. Likewise, a high number of query failures or an
unexpected query type activity reported by the gateway counters
could also drive a data alert. For example, if a particular gateway is
intended to be dedicated to Import (Mashup) workloads, the counters
shouldn't report query activity for ADO.NET (DirectQuery) or
OLEDB connections.

How it works...

SSAS tabular memory limits
SSAS Tabular requires memory during processing operations to load new data in
addition to the memory used for existing data. Additionally, temporary memory
structures are sometimes created to resolve certain queries. These three components
comprise the 2.5X RAM recommendation (2X for current and new data and .5X for
temporary structures).

As the memory required by the SSAS instance exceeds certain memory limits or
thresholds, given the amount of RAM available to the server and the memory
properties defined in analysis server properties, SSAS takes various actions ranging
from clearing out low-priority memory caches (LowMemoryLimit) up to aggressively
terminating user sessions (HardMemoryLimit). A reference to SSAS memory property
documentation is included in See also.

On-premises data gateway workloads
Scheduled refreshes of imported datasets to Power BI can require significant
resources at the time of refresh based on the size of the dataset and whether its M
queries can be folded to the data source as SQL statements. For example, if an M
function that doesn't have an equivalent expression in the source Oracle database is
used, the M engine in the gateway will be used to execute the logic such as filter,
sort, and aggregate.

DirectQuery and SSAS live connections are less resource heavy as only queries and
query result data are transferred across the gateway. However, these connections
generate a high frequency of queries based on the number of concurrent users, their
usage or interaction with the published reports, the type and volume of visualizations,
and whether row-level security (RLS) roles have been configured.

Power BI Premium will support larger Power BI datasets than the
current 1 GB limit (for example, 10 GB, then 100 GB+) as well as
incremental refresh per the May 2017 Microsoft Power BI Premium
Whitepaper. As fully refreshing/importing large Power BI datasets
could present a bottleneck for the Gateway server, it will be critical
to apply an incremental refresh policy to large datasets once this
feature is available. Scalability will also be enhanced via high
availability and load balancing features on the On-Premise Data
Gateway Roadmap.

There's more...

High availability and load balancing for
the on-premises data gateway
Gateway availability and load balancing has been a manual process in which a
gateway can be restored to a different machine (perhaps with more resources) and
datasets can be split across different gateways. For example, one gateway could be
used exclusively by an on-premises SSAS data source while a different gateway
server could be used for self-service scheduled refreshes of Power BI datasets.
Additionally, the same data source can be defined for multiple gateways and different
datasets built with this source can be assigned to different gateways in the Power BI
service. Gateways will soon be able to join a "cluster" of gateways such that the
cluster will act as a single logical unit of gateway resources. This cluster will
initially provide high availability and will later support automatic load balancing.

Reduce network latency via Azure
ExpressRoute and Azure Analysis
Services
If query performance in Power BI is unsatisfactory despite proper configuration and
resources for the on-premises data Gateway and the on-premises SSAS Tabular
model (including measures and security), Azure ExpressRoute and Azure Analysis
Services are two options to reduce network latency. Azure ExpressRoute creates a
private connection between on-premises sources and the Azure data center of the
Power BI tenant. Azure Analysis Services avoids the need for an on-premises data
gateway and generally eliminates network latency as a performance issue while
providing cloud platform-as-a-service benefits, such as the flexibility to scale up or
down quickly.

See also
Guidance for Deploying a Data Gateway for Power BI: http://bit.ly/2t8hk9i
SQL Server Analysis Services Memory Properties: http://bit.ly/2vuY1I2
Azure ExpressRoute: https://azure.microsoft.com/en-us/services/expressroute
Azure Analysis Services: https://azure.microsoft.com/en-us/services/analysis-services

http://bit.ly/2t8hk9i
http://bit.ly/2vuY1I2
https://azure.microsoft.com/en-us/services/expressroute
https://azure.microsoft.com/en-us/services/analysis-services

Analyzing Extended Events trace data
with Power BI
Extended Events is a highly configurable and lightweight performance monitoring
system available to both the SQL Server relational database engine and Analysis
Services. A vast library of events are available to specific sessions which can be
saved, scheduled and then analyzed to support performance tuning, troubleshooting
and general monitoring. However, similar to other monitoring tools such as Windows
Performance Monitor and SQL Server Query Store, the Extended Events graphical
interface lacks the rich analytical capabilities and flexibility of tools such as Power
BI; these are often necessary, or at a minimum helpful, to generate insights from this
data.

In this recipe, the output of an Extended Event session containing query execution
statistics is retrieved into a dedicated Power BI event analysis report file. The 1.4
million rows of event data from this file are enhanced during the import and report
visualizations are developed to call out the most meaningful trends and measures as
well as support further self-service analysis.

Getting ready
1. Identify the events associated with the top monitoring and troubleshooting use

cases.
2. Create separate extended event sessions tailored to these use cases with filters

to exclude irrelevant or redundant data.

An Extended Events Session with two events and a filter for SQL Statements completed in Over 1 million
microseconds

3. Determine the data storage target for the session(s) such as an event_file and the
location for this file.

4. Optionally, configure settings such as Event retention mode and Max memory
size. Additionally, configure a SQL Agent Job to start and stop the Event
Session.

As the primary long-term monitoring tool for SQL Server (see SQL
Server Profiler versus Extended Events in There's more...) the
Extended Events architecture of packages, sessions, and targets can
be fully managed via scripts. Jonathan Kehayias, Microsoft Data
Platform MVP, has written a series of blog posts on utilizing
Extended Events at http://bit.ly/1r5EHXG.

http://bit.ly/1r5EHXG

How to do it...
1. Obtain access to the Extended Events target XEL target file and open it from

SQL Server Management Studio (SSMS) or open it directly from Windows
Explorer in a distinct instance of SSMS.

2. With the XEL file open in SSMS, click on the Extended Events tab on the
toolbar and select Export to at the bottom.

3. Choose the Export to CSV File option, enter a file name describing the session,
and select a network path common to Extended Events and potentially other
performance and administrative log files.

An Extended Events Session Target XEL file and its export as a CSV file

By design, Extended Events sessions cannot be written to tables
within SQL Server. Additional options for capturing and analyzing
event session data are available such as the histogram and
pair_matching targets. Data can also be viewed live via "Watch Live
Data" and the CSV and table export options expose this data to tools
like Power BI.
Note that if the events file were exported to a table in SQL Server and
no other databases or sources were required for analysis, the Power
BI dataset could be configured for DirectQuery mode. Avoiding the
import to Power BI via DirectQuery could be a useful or even
necessary design choice if large and/or multiple event session files
are needed in the same Power BI dataset. The dedicated Admin
database described in the first recipe of this chapter could store the
Extended Event data and essential Date and Time tables could be
imported to this same server and database thus permitting
DirectQuery mode.

4. Open a Power BI Desktop file that already contains Date and Time tables and their
database connection parameters.

5. Create a parameter for the directory folder path of the event session files and a
parameter for the session filename.

6. Open a blank query that concatenates the two parameters into a full file path.
Name this query XEventsSession.

Query Editor View with Data Source Parameters and XEventsSession Query

7. Create a query that uses the text/CSV data connector and replace the file path
with the XEventsSession query.

8. Promote the top row as the headers and convert the data types via
Table.TransformColumnTypes().

9. Add a Date column based on the Timestamp column of the source file:

Source = Csv.Document(File.Contents(XEventsSession),[Delimiter=",", Columns=31, Encoding=65001, QuoteStyle=QuoteStyle.None]),
PromotedHeaders = Table.PromoteHeaders(Source, [PromoteAllScalars=true]),
ChangeTypes = Table.TransformColumnTypes(PromotedHeaders,
{{"timestamp", type datetime}, {"duration", Int64.Type}}),
DateColumn = Table.AddColumn(RenameColumns, "Timestamp Date", each DateTime.Date([timestamp]), type date)

10. Add a time column and then a SecondOfDay column to support a relationship to the
Time dimension table.

See the Creating a centralized IT monitoring solution with Power BI
recipe earlier in this chapter for the SecondOfDay column logic and
syntax. Like the Performance Monitor Counter data in that example,
the timestamp from the Extended Events session is not at the seconds
grain and thus adding a time column via the DateTime.Time() M
function, as you could to a datetime2(0) column from SQL Server, is not
sufficient to support a model relationship to the Time dimension table.

11. Name this query Execution Stats, disable the load of the XEventsSession query,
and click on Close & Apply.

12. Create many-to-one, single-direction relationships from Execution Stats to the Date
and Time tables.

13. Optionally, create a blank measure group table to organize measures in the
Fields list (see Chapter 3, Building a Power BI Data Model for details).

14. Develop and format simple DAX measures to support common aggregations of
Extended Events fact columns such as the average, min, and max of query
duration, CPU time, logical reads and writes:

Average CPU Time = AVERAGE('Execution Stats'[cpu_time])
Max Duration = MAX('Execution Stats'[duration])

Minimum Logical Reads = MIN('Execution Stats'[logical_reads])

If any numeric conversion is applied to the event data within the M
query or the DAX measures, such as from milliseconds to seconds,
then the measure name should reflect this change (for example, Max
Duration (sec)). If no conversion has been applied and users are
comfortable and familiar with the Extended Events values, then, as
this is a dedicated ad hoc analysis tool, this detail can be excluded
from the measure names.

15. Finally, create Power BI report visualizations that target the top and most
common questions of the event data.

16. Associate hourly slicer filters to support self-service analysis analysis.

Extended Events Execution Stats Report Page

In this example, three line charts highlight spikes in logical reads,
CPU time, and query duration that occurred during the 30 minute
Extended Events session. The scatter chart plots individual query_hash
values by duration and CPU time and uses the Tooltip to expose the
individual SQL statement represented. A table visual with word
wrapping is used to display the SQL statement associated with the
user's selection as well. See How it works... for more details on the
sample report visual.

How it works...

Self-service Extended Events analysis
The Selected SQL Statement table displays a single DAX measure that
retrieves the text value from the SQL statement column if a single
scatter chart item (Query Hash) has been selected. The Displaying
the current filter context in Power BI reports recipe in Chapter 8,
Implementing Dynamic User-Based Visibility in Power BI provides
detailed examples of these expressions. The Edit Interactions feature
is configured such that selecting items (Query Hash values) on the
scatter chart filters the three line charts to these specific items. See
the Controlling interactive filtering between visuals recipe in Chapter
4, Authoring Power BI Reports for additional details on this feature.
The Chiclet Slicer custom visual described in the Configuring custom
KPI and Slicer Visuals in Chapter 9, Applying Advanced Analytics and
Custom Visuals is used with an Hour of Day column of the Time data
type. This visual would be useful for future event sessions containing
data across multiple hours of a day.

The owner or team responsible for the Power BI dataset could simply copy the
PBIX file and revise the parameters to a separate Extended Events file or export
a Power BI Template file (.pbit) and use this to re-load the report.
Leveraging common dimension tables, parameters, and visuals throughout the
solution minimizes complexity.

There's more...

SQL Server Profiler versus Extended
Events
SQL Server Profiler is supported in SQL Server 2016 but is now a deprecated
feature for the relational database engine, and Extended Events is its long term
replacement. Profiler is not a deprecated feature for Analysis Services, although a
graphical interface to Extended Events is a new feature in SSAS 2016 and several
new SSAS trace events are exclusively available via Extended Events. Regardless of
the database engine (relational or analytical) Extended Events is more efficient and
flexible than SQL Server Profiler, thus allowing for more nuanced event data
collection with less impact on production workloads. Events associated with new
SQL Server features are exclusive to Extended Events.

Additional event session integration
Additional standard event sessions such as blocking and deadlocking sessions could
be integrated into the Power BI dataset similar to the consolidated dataset and
visualization layer described earlier in this chapter. As the solution matures, custom
groupings of events and/or bins of numerical columns could be embedded in the
dataset to further simplify analysis.

See also
Extended Events MS Docs: https://docs.microsoft.com/en-us/sql/relational-databases/extended-eve
nts/extended-events

https://docs.microsoft.com/en-us/sql/relational-databases/extended-events/extended-events

Visualizing log file data from SQL
Server Agent jobs and from Office 365
audit searches
Log files containing SQL Server Agent job history and the Power BI usage activities
stored in the Office 365 audit log can also be integrated into the Power BI monitoring
solution described earlier in this chapter. For example, SQL Agent job data can
reveal important trends such as the performance of a nightly job used to load a data
warehouse and the duration and reliability of individual steps within these jobs.
Likewise, detailed reporting and, optionally, alerts based on user activities in the
Power BI service, such as deleting a dashboard, enable BI and IT administrators to
better manage and govern Power BI deployments.

In this recipe, transformations are applied to the structure of the Power BI audit log
to convert the audit data stored in JSON and adjust for local time reporting.
Additionally, an advanced T-SQL query is used to access the job history data in SQL
Server Agent system tables and to prepare this data for visualization in Power BI.

Getting ready
1. In the Power BI admin portal, select Tenant Settings and enable audit logging.

Power BI Audit Logging Enabled

The audit log search can be accessed via the Go to O365 Admin Center link in
the Power BI admin portal (Audit logs tab) or the Office 365 security and
compliance portal

An Office 365 license is not required to view the Power BI logs.
Global administrators of the Power BI tenant have permission to the
Office 365 security and compliance office portal by default.
Permissions can be assigned to non-administrators via roles such as
the compliance and admin role.

2. As stated in the Microsoft documentation referenced in How it works..., create a
short PowerShell script that exports Power BI audit log search results to a CSV
file on secure network directory.

3. Optionally (though recommended), configure the PowerShell script with
dynamic start and end date variables and schedule the script to support recurring
Power BI audit reporting.

How to do it...

Power BI Audit Log Integration
1. In Power BI Desktop, create parameters for the file path and name as well as the

local time zone offset to UTC.

File path and time zone parameters in the Query Editor

2. Create a blank query that returns the full file path based on the parameters per
the image of PBIAuditLog.

3. Create a new query to the CSV file on the network and replace the file path with
the query, based on the parameters:

let Source = Csv.Document(File.Contents(PBIAuditLog),[Delimiter=",", Columns=5, Encoding=65001, QuoteStyle=QuoteStyle.Csv]),
 RemoveTopRows = Table.Skip(Source,2),
 PromoteHeaders = Table.PromoteHeaders(RemoveTopRows, [PromoteAllScalars=true]),
 ApplyDateType = Table.TransformColumnTypes(PromoteHeaders,{{"CreationDate", type datetime}}),
 AddCreationDateColumn = Table.AddColumn(ApplyDateType, "CreationDateOnly", each DateTime.Date([CreationDate]), type date) in AddCreationDateColumn

4. Remove the top two rows resulting from the PowerShell output and promote the
third row as column headers.

5. As an unstructured data source, explicitly apply data types via
Table.TransformColumnTypes() and add a Date column based on the CreationDate log
column. Name this query O365PBIAuditLog.

The Audit log data is stored in UTC and thus needs to be converted to
local time for reporting. A column should be available in the date
dimension table that distinguishes Daylight Savings Time (DST)
dates from Standard time zone dates.

6. Expose the Date table view from the SQL Server database as its own query Date.
7. In a new query, join the O365PBIAuditLog data with the Date query based on the

CreationDateOnly column.
8. Expand the DST column from the Date query and add a conditional DateTime column

reflecting local time.
9. Parse the JSON in the AuditData column using the Table.TransformColumns() function

to expose all the fields associated with the event as a Record value:

let AuditDateJoin = Table.NestedJoin(O365PBIAuditLog, "CreationDateOnly",Date,"Date", "DateTableColumn",JoinKind.LeftOuter),
 DSTFlag = Table.ExpandTableColumn(AuditDateJoin, "DateTableColumn",{"DST Flag"},{"DST Flag"}),
 LocalCreationDate = Table.AddColumn(DSTFlag, "LocalCreationDate", each
 if [DST Flag] = "DST" then [CreationDate] + #duration(0,USEasternDSTOffset,0,0)
 else if [DST Flag] = "ST" then [CreationDate] + #duration(0,USEasternSTOffset,0,0) else null,
type datetime),
ParseJSON = Table.TransformColumns(LocalCreationDate,{{"AuditData", Json.Document}}) in ParseJSON

The CreationDateOnly column created in the first query (O365PBIAuditLog) is
used in the nested outer join to the Date table, thus exposing all Date
table columns in a nested table value column. With the DST column
added to the query from the Date table, the two time zone parameters
are passed to #duration values within the if...else if conditional logic.
Many of the most valuable audit fields are contained in the AuditData
column as JSON.

Power BI Audit Log Query with an adjusted LocalCreationDate column and AuditData parsed into Record values

10. Finally, expand the the parsed AuditData column of record values. Name this
query Power BI Audit.

11. Optionally, add Date and Time columns based on the LocalCreationDate column (a
datetime data type) to support model relationships.

12. Disable the load for all queries except Power BI Audit. Click on Close & Apply.

SQL Server Agent log integration
1. Create a view in the admin SQL Server database (described in the Creating a

centralized IT monitoring solution with Power BI recipe earlier in this
chapter) that queries the dbo.sysjobhistory and dbo.sysjobs tables in the msdb
database:

CREATE VIEW BI.vFact_AgentJobHistory AS SELECT
 [h].[server] as [Server], [j].[name] AS [Job Name],
CASE [j].[enabled] WHEN 0 THEN 'Disabled' WHEN 1 THEN 'Enabled' END AS [Job Status]
, [j].[date_created] as [Date Created], [j].[date_modified] as [Date Modified]
, [j].[description] as [Job Description], [h].[step_id] AS [Step ID], [h].[step_name] AS [Step Name]
, CAST(STR([h].[run_date],8, 0) AS date) AS [Run Date]
, CAST(STUFF(STUFF(RIGHT('000000' + CAST ([h].[run_time] AS VARCHAR(6)) ,6),5,0,':'),3,0,':') as time(0)) AS [Run Time]
, (([run_duration]/10000*3600 + ([run_duration]/100)%100*60 + [run_duration]%100 + 31) / 60)
 AS [Run Duration Minutes]
, CASE [h].[run_status] WHEN 0 THEN 'Failed' WHEN 1 THEN 'Succeeded' WHEN 2 THEN 'Retry'
WHEN 3 THEN 'Cancelled' WHEN 4 THEN 'In Progress' END AS [Execution Status],
[h].[message] AS [Message Generated]
FROM [msdb].[dbo].[sysjobhistory] [h] INNER JOIN [msdb].[dbo].[sysjobs] [j] ON [h].[job_id] = [j].[job_id]

The run_date and run_time columns are stored as integers by SQL Server
and are thus converted to date and time data types, respectively. The
run_duration column is stored as an integer in the HHMMSS format and is
converted to minutes. The run_status column is replaced with an
Execution Status column to display a user-friendly value, such as
succeeded, and likewise a Job Status column is created from the
enabled source column to display disabled versus enabled values.

2. Create or reuse server and database parameters to support the retrieval of the
agent data.

SQL Server Agent History View exposed in Query 'AdminProd'; AdminProd passes server and database
parameters to Sql.Database()

3. Retrieve the SQL Agent job view into Power BI Desktop:

Source = AdminProd,
Agent = Source{[Schema = "BI", Item = "vFact_AgentJobHistory"]}[Data],

SQL Server Agent System Table Data Retrived into Power BI

4. Optionally create a parameter for the number of Agent history days to retrieve,
and use this parameter in a Table.SelectRows() filter expression like the
performance monitor query in the first recipe of this chapter.

5. Create queries to existing Date and Time dimension tables in a BI or data
warehouse database.

6. Disable the load for all queries except the agent job history query and click on
Close & Apply.

7. Create many-to-one single direction relationships to the Date and Time tables
based on the Run Date and Run Time columns, respectively.

8. Create DAX measures and report visuals to break out agent jobs by their steps
and duration over time.

SQL Server Agent History Visuals - average duration by Run Date and Job Step

A stacked bar chart is used to display the individual steps comprising
each job; hovering over the bars displays details specific to the job
step. User selections on the bar chart filter the line chart enabling
easy access to recent performance of any job step. Analyzing SQL
Agent job history in Power BI is vastly easier and more flexible than
the Job Activity Monitor and Log File Viewer interfaces in SQL
Server Management Studio.

How it works...

PowerShell search for Power BI audit
log
The Search-UnifiedAuditLog cmdlet for PowerShell is used to access Power BI data from
the Office 365 Audit Log:

Search-UnifiedAuditLog -StartDate $startDt -EndDate $endDt -RecordType PowerBI | Export-Csv $csvFile

Variables for the full CSV file path and start and end date can be defined, evaluated,
and passed as parameters to the Search-UnifiedAuditLog cmdlet. See the official
documentation at http://bit.ly/2t4LEC0.

http://bit.ly/2t4LEC0

SQL Server agent tables
Over 20 SQL Server Agent system tables are available in the dbo schema of the msdb
database.

There's more...

Power BI usage reporting
The Power BI service provides free usage reporting for dashboards and published
reports. These usage reports can be easily extended to analyze activity for all reports
and dashboards contained in an app workspace per the following steps:

1. Open the App Workspace and select the 'Usage Metrics Report' icon for a report
or dashboard:

Usage Metrics Report

Usage metrics can also be accessed with the report or dashboard open via the
toolbar icon.

2. With the usage metrics report open, click on File | Save as:

Save as to create a dataset of usage metrics for the workspace

A new report and a new dataset will be added to the app workspace

3. Open the new report in Edit mode and simply remove the report level filter such
that all reports and dashboards are included:

Edit mode of a usage metrics report

Note that individual users are included in the dataset and default report making
it easy to identify who is or isn't accessing content

New custom usage reports can be created from scratch by connecting to the
usage dataset created in step 2

Power BI Administrators can access the Usage metrics for Content Creators
setting in the Tenant settings of the Power BI Admin portal to define who has
access to usage metrics

See also
SQL Server Agent Table documentation: http://bit.ly/2v7kWdc
Usage Metrics for Dashboards and Reports: http://bit.ly/2rUwly4

http://bit.ly/2v7kWdc
http://bit.ly/2rUwly4

Enhancing and Optimizing Existing
Power BI Solutions
In this chapter, we will cover the following recipes:

Enhancing the scalability and usability of a data model
Revising DAX measures to improve performance
Pushing query processing back to source systems
Strengthening data import and integration processes
Isolating and documenting DAX expressions

Introduction
Power BI projects often begin by focusing on specific functional requirements, such
as a set of dashboards and reports for a given business area and team. With relatively
narrow requirements and small datasets, design and code enhancements to the data
retrieval, model, and reporting layers are often unnecessary to deliver sufficient
performance and reliability. Additionally, Power BI Premium capacity and tools to
migrate a Power BI dataset to SQL Server Analysis Services (SSAS) provide
viable alternatives to enhance the scalability of a dataset.

For larger Power BI projects, and particularly when the options of Power BI
Premium and SSAS aren’t available, it becomes important to identify opportunities to
improve report query performance and to more efficiently use system resources to
store and refresh the dataset.

Moreover, the data import process supporting all dependent reports and dashboards
can often be strengthened, and standard coding syntax, variables, and comments in
both M and DAX expressions further improve the sustainability of Power BI
datasets.

This chapter’s recipes contain top data modeling, DAX measure, and M query
patterns to enhance the performance, scalability, and reliability of Power BI datasets.
This includes performance tuning examples of both data models and measures, error
handling and query folding examples of M queries, and supporting details on the
DAX and M query engines.

Enhancing the scalability and usability
of a data model
The performance of all Power BI reports is impacted by the design of the data model.
The DAX queries executed upon accessing a report and when dynamically updating
report visuals in interactive, self-service user sessions all rely on the relationships
defined in the model and optimizations applied to its tables. For in-memory models,
the cardinality of the columns imported and the compression of these columns
contribute to the size of the dataset and query duration. For DirectQuery data models,
the referential integrity of the source tables and optimization of the relational source
largely drive query performance.

This recipe includes three optimization processes, all focused on a Reseller Sales
fact table with 11.7 million rows. The first example leverages the DMVs and Power
BI memory report created in Chapter 10, Developing Solutions for System Monitoring
and Administration to identify and address the most expensive columns. The second
example splits a dimension table into two smaller tables, and the final example
applies a custom sort order to the imported fact table to optimize the compression of
a column commonly used by reports.

Getting ready
1. Obtain a sharp definition of the goal of the optimization or the problem being

resolved. For example, is the intent to reduce the size of the overall dataset such
that more data can be loaded while remaining under 1 GB? Alternatively, is the
goal to make the dataset easier to manage and less error prone during refresh, or
is it to improve the query performance experienced with Power BI reports?

2. Document the current state or baseline, such as query duration, to evaluate the
effectiveness of the modifications.

Performance optimization is a broad area in Power BI, as many
components are involved, including the data sources, data access
queries, data models, and DAX measure calculations. Performance is
also significantly impacted by the design of reports and dashboards
with more dense, unfiltered, and complex report pages and visuals
consuming more resources. Additionally, despite efficiency in all of
these areas, sufficient hardware must be provisioned to support the
given processing and analytical query workloads, such as the
server(s) for the on-premises data gateway and Power BI Premium
capacity.

The good news is that it's usually not difficult to align a particular
issue, such as an excessively large dataset or a slow query, with at
least one of its main contributing factors, and there are often simple
modifications that can deliver noticeable improvements. Additionally,
there are many tools available to analyze and monitor the different
components of Power BI as described in Chapter 10, and there are
free features in the Power BI service, such as Usage Metrics Reports
and View related that can be of further assistance in isolating issues.

3. See the Migrating a Power BI data model to SSAS tabular recipe in Chapter 13,
Integrating Power BI with Other Applications for details on this option for
enhanced scalability.

How to do it...

Identify expensive columns and quick
wins

1. Retrieve and analyze the memory consumed by the columns of the largest fact
table or tables:

The DISCOVER_STORAGE_TABLE_COLUMN_SEGMENTS DMV used in the previous chapter's
Importing and visualizing dynamic management view (DMV) data of
SSAS and Power BI data models recipe will provide this detail.

2. As per the Choosing columns and column names recipe of Chapter 2, Accessing
and Retrieving Data, identify expensive columns that may not be needed in the
dataset or which can be rounded to lower precision, split as separate columns,
or expressed via simple measures.

For import mode models, an expensive column is one with many
unique values (high cardinality), such as the Order Number columns
used as examples in Chapter 2, Accessing and Retrieving Data.
Likewise, a DateTime column with multiple time values per date will
consume more memory than two separate Date and Time columns.
Preferably, only the Date or only the Date and Time columns should
be imported rather than the DateTime column.

Also, per the Choosing columns and column names recipe (see
There's more... - Fact table column eliminations), DAX measures
which execute simple arithmetic against low cardinality columns,
such as Unit Price and Quantity can eliminate the need to import
more expensive derived columns such as Sales Amount and Sales
Amount with Taxes. Furthermore, though counter-intuitive, the SUMX()
measure with arithmetic across multiple columns often outperforms
the simple SUM() measure.

3. Identify columns that are stored as decimal number data types with a high scale
(number of digits to the right of the decimal point):

If this level of precision isn't required, consider rounding off these columns
in the SQL view or via the M import query to reduce the cardinality
(unique values) and thus improve compression.
If a (19,4) column will provide sufficient size and precision, apply the
fixed decimal number type in the model.

4. Replace any DAX calculated columns on large fact tables:
Calculated columns on fact tables can often be addressed with DAX

measures without sacrificing performance.
If DAX measures are not an option, move the column's logic to the SQL
view or M query of the fact table, or within the data source itself. If the M
query is revised, ensure that the logic is folded to the source system.
Imported columns achieve much better compression than calculated
columns.

5. Secondarily, look to remove or replace DAX calculated columns on any large
dimension tables:

Like fact table columns, move this logic to the data retrieval process and
leverage the source system.

Look for calculated columns with a RELATED() function, which, like an
Excel VLOOKUP() function, simply retrieves column values from a table
on the one side of a many-to-one relationship with a fact table.
Business users often utilize the RELATED() function to flatten or de-
normalize a fact table as they would in standard Excel worksheets,
but this duplication is rarely necessary in Power BI, and calculated
columns are not compressed like standard imported columns.
Additionally, look to migrate the logic of calculated column
expressions, such as calculated dates, differences in dates, and
derived numerical columns, into DAX measures.

In this example, the current state of the dataset is 334 MB of compressed disk
space (the size of the PBIX file converted from KB) and 674 MB of total
memory per the memory report introduced in Chapter 10, Developing Solutions
for System Monitoring and Administration.

Several quick wins are identified on the Reseller Sales fact table
(11.7M rows), including the following: only the last four characters
of the CarrierTrackingNumber are needed for analysis; the order date, ship
date, and due date columns in YYYYMMDD format can be removed, as they
are redundant with the date data types for these columns, and only
the date data types are used for relationships. Three calculated
columns can be removed (Days between Due Date and Order Days, Reseller,
and Product Name) as a DATEDIFF() DAX measure and existing dimension
columns can be used instead. Finally, Sales Amount, Extended Amount, and
Total Product Cost can be removed, as simple DAX measures can
compute their values.

Power BI Memory Report refreshed with a revised SQL View for Reseller Sales

The revised dataset is 429 MB in memory and the Power BI Desktop file
(PBIX) is 221 MB on disk, representing 33%+ savings in memory and disk
space.

Normalize large dimensions
Large-dimension tables (approximately one million+ rows), with their high-
cardinality relationships to fact tables, are a major performance bottleneck with
Power BI and SSAS Tabular import models.

Consider the following dimension table with attributes describing both resellers
and promotions:

Reseller promotion dimension table

The consolidated table contains 10,520 rows and the relationship column on the
Reseller Sales table is 19.4 MB in size.

Reseller Promo Key, approximately 20 MB in size

1. Split (normalize) this table into smaller Reseller (701 rows) and Promotion (16
rows) dimension tables.

Reseller and Promotion Tables Replace Consolidated Reseller Promo

2. Drop the consolidated Reseller Promotion dimension table and the ResellerPromoKey
column on the fact table.

Although there are more tables and relationships in the model,
smaller relationships will improve the performance of queries
accessing the Promotion and Reseller columns. Additionally, the size of
the dataset will be reduced by removing the ResellerPromoKey
relationship column. In this particular example, the row counts are

small enough that little impact is observed, but consider splitting
large dimension tables over 200K rows into smaller tables (lower
granularity) as query workloads increase. For example, a 1M row
customer table could possibly be split into two tables for the data
model based only on common query patterns such as customer
regions or geographies.

Sort imported fact tables
Power BI applies sophisticated algorithms during the import process to determine the
sort order that maximizes compression. However, the chosen sort order might not
align with the top performance priorities of the model. For example, it may be more
important to improve query performance for reports accessing a certain column, such
as Store ID or Date (via relationships to dimension tables), rather than minimizing the
size of the overall dataset. Ordering the imported data by these priority columns
maximizes their compression while potentially reducing the compression applied to
other columns.

1. Identify the column (or columns) to order by and note the current memory. In this
example, the Order Date column is 16.7 MB.

Order Date Column of 16.5 MB in Data Size (Without Sort)

2. Add an expression to the fact table M query that uses the Table.Sort() function to
order by the OrderDate column:

let Source = AdWorksProd,
 ResellerSales = AdWorksProd{[Schema = "BI", Item = "vFact_ResellerSalesXL_CCI_AllColumns"]}[Data],
 OrderDateSort = Table.Sort(ResellerSales,{{"OrderDate", Order.Descending}})
in OrderDateSort

3. Right-click on the step in the Query Editor and click on View Native Query to
ensure the sorting was folded to the source.

4. If View Native Query is grayed out, consider moving the sort step to the first
transformation step per the preceding code.

Passing the Order By operation back to the source (via Query Folding)
is generally good for the refresh process and certainly good for the
on-premise data gateway but with large fact tables (10 million+
rows) can require large amounts of source system resources. The
Power BI Premium Whitepaper from May 2017 identifies incremental
refresh as an upcoming feature and this will likely resolve the issue
for datasets in dedicated (Premium) capacities.

Improved Compression for the OrderDate Column due to the Sort Order of the Import Query

Upon refreshing the Reseller Sales fact table, the data size of OrderDate is reduced
by 36% to 10.6 MB.

5. Determine whether any other columns, particularly relationship columns such as
ProductKey increased in size.

6. Optionally (though it is recommended), evaluate top or common DAX queries
for performance changes.

In many scenarios, optimizing the compression on the active
relationship date column via sorting offers the best overall
performance advantage. However, depending on the structure and
distribution of reports and users ordering by a different fact table
column such as ProductKey or StoreID could be the best choice. DAX
Studio makes it relatively easy to test the performance of queries
against many different model designs. Greater detail on the benefits
of sorting is included in the How it works... section.

How it works...

Columnar database
Remember that DAX queries executed against import mode models access and scan
the memory associated with individual columns. Therefore, several very expensive
columns with millions of unique values could be present on a fact table but may not
negatively impact the performance of a query that doesn't reference these columns.
Removing these expensive columns or replacing them with less expensive columns
will reduce the overall size of the dataset, but it should not be expected to improve
query performance.

Run-length encoding (RLE)
compression via Order By
When data is loaded into a Power BI Desktop model (Import mode), the VertiPaq
storage engine applies compression algorithms to each column to reduce the memory
and thus improve performance. Vertipaq first stores all unique values of a column
(either via Value encoding or Hash encoding), and then, more importantly, applies
run-length encoding (RLE) to store a repeated value only once for a set of
contiguous rows in which it appears. Therefore, columns with few unique values,
such as month names, are highly compressed, while primary key and GUID columns
are not compressed at all.

Specifying an Order By clause in the import to Power BI exposes the given column to
maximum RLE compression given the cardinality of the column.

Segment elimination
The data models in Power BI Desktop (and Power Pivot for Excel) are stored in
column segments of one million rows. For example, a 20 million row sales fact table
will contain approximately 20 distinct segments. If the data required of report queries
is spread across all 20 segments, then more resources (and a longer duration) will be
required to access each segment and consolidate these results to resolve the query.
However, if the segments are ordered by date or perhaps by a given dimension (for
example, store ID) and a report query contains a filter that uses this order, such as
fiscal year or store region, then only a subset of the segments will be queried.

As a simple example, assume a 20 million row fact table is ordered by date when
importing to Power BI and each calendar year represents one million rows. A report
query that is filtered on only 2 years will therefore need to access only two of the 20
column segments--the other 18 segments will contain dates outside the scope of the
query.

There's more...

Minimize loaded and refreshed queries
Avoid loading tables that are only used for data retrieval/transformation logic such as
staging queries to a data model. Though hidden from the Fields list, these tables
consume processing and storage resources like all other tables of the model and add
unnecessary complexity. Right-click on these queries in the Query Editor and disable
Enable load to remove the table from the data model.

Identify tables that rarely change and consider disabling the default Include in report
refresh property (by right-clicking in the Query Editor). The table can still be loaded
to the data model and thus available for relationships and DAX measures but its
source query will no longer be executed with each refresh. Typical candidates for
this include an annual budget or plan table that's only updated once a year, a Currency
table, and possibly a geographic or demographic table.

Data models with many M queries, whether loaded or not, can overwhelm the
available threads/resources of the source system during a refresh as all queries will
be submitted simultaneously.

Revising DAX measures to improve
performance
Just as specific columns and relationships of a data model can be prioritized for
performance per the prior recipe, frequently used DAX measures can also be
evaluated for potential improvements. Existing DAX measures may contain
inefficient data access methods that generate additional, unnecessary queries or
which largely execute in a single CPU thread. Revising measures to better leverage
the multi-threaded storage engine and to avoid or reduce unnecessary queries and
iterations can deliver significant performance improvements without invasive,
structural modifications to the model.

In this recipe, the DAX queries executed by Power BI visuals are captured in SQL
Server Profiler and then analyzed in DAX Studio. The first example highlights a
common misuse of the FILTER() function for basic measures. In the second example,
two alternative approaches to implementing an OR filter condition across separate
tables are described relative to a common but less efficient approach. Additional
details of the DAX Query Engine, using DAX Variables to improve performance, and
DAX as as query language, are included in the How it works... and There's more...
sections.

Getting ready
1. Open DAX Studio and the Power BI Desktop file containing the data model and

measures to be analyzed.
2. If necessary, build a sample report page that aligns with a poorly performing

report or a common report layout.
3. Open SQL Server Profiler and connect to the SSAS instance within the Power

BI Desktop file.

Creating an SSAS Trace against a Power BI Desktop Dataset via SQL Server Profiler (v17.2)

The server name for the local Power BI Desktop file is the local port
used by the SSAS instance of the open PBIX file. As per Chapter 10's
recipes, this value is visible in the lower-right corner of DAX Studio's
status bar once you've connected to the running Power BI Desktop
file from DAX Studio. SQL Server Profiler is part of the SQL Server
Management Studio (SSMS) download (http://bit.ly/2kDEQrk). The latest
version (17.2+) is recommended for connecting to PBIX and SSAS
2017 models.

4. The only event needed from Profiler in this exercise is the Query End event. DAX
Studio will provide other event data.

The DAX queries created by Power BI Desktop will be displayed in the
lower pane and the TextData column

http://bit.ly/2kDEQrk

SQL Server Profiler trace running against a Power BI Desktop file ('ResellerImport') and retrieving Query End
Events

With these three applications open, you're able to quickly capture, analyze,
revise, and test alternative DAX expressions

How to do it...

Improper use of FILTER()
1. Make a selection on one of the Power BI Desktop report visuals and observe the

DAX queries in SQL Profiler.

2. Choose a DAX query statement as the sample or baseline and paste the query
into DAX Studio:

 DEFINE
 VAR __DS0FilterTable = FILTER(KEEPFILTERS(VALUES('Date'[Calendar Year])),
 OR('Date'[Calendar Year] = 2016, 'Date'[Calendar Year] = 2017))
 VAR __DS0FilterTable2 = FILTER(KEEPFILTERS(VALUES('Product'[Product Category])),
 'Product'[Product Category] = "Bikes")
 VAR __DS0FilterTable3 = FILTER(KEEPFILTERS(VALUES('Promotion'[Promotion Type])),
 OR(OR(OR('Promotion'[Promotion Type] = "Excess Inventory",
 'Promotion'[Promotion Type] = "New Product"),'Promotion'[Promotion Type] = "No Discount"
 'Promotion'[Promotion Type] = "Volume Discount"))
 EVALUATE
 TOPN(1001,SUMMARIZECOLUMNS('Reseller'[Reseller],__DS0FilterTable,__DS0FilterTable2,__DS0FilterTable3,
 "Gross_Sales_Warehouse", 'Reseller Sales'[Gross Sales Warehouse]),
 [Gross_Sales_Warehouse],0,'Reseller'[Reseller],1)

In this example, the Gross_Sales_Warehouse measure is currently defined
as follows:

= CALCULATE([Reseller Gross Sales],FILTER('Reseller','Reseller'[Business Type] =
"Warehouse"))

In this case, the FILTER() function does not operate on the results of an
ALL() function like with Date Intelligence patterns. The TOPN() function
accepts the table from SUMMARIZECOLUMNS(), which groups by individual
Reseller companies and their associated gross sales warehouse
values.

3. In DAX Studio, enable Server Timings and Query Plan on the top toolbar.
4. With the DAX Studio trace running, click on Run or the F5 key and note the

performance in the Server Timings window.
5. Click on Clear Cache and execute the query again to obtain a baseline average

for duration, SE queries, and SE %.

6. In Power BI Desktop, create a new measure which avoids the FILTER() function:

Gross Sales Warehouse Rev = CALCULATE([Reseller Gross Sales],'Reseller'[Business Type] = "Warehouse")

Within the DAX query engine, the Gross Sales Warehouse Rev measure is
expressed as the following:

CALCULATE([Reseller Gross Sales],FILTER(ALL('Reseller'[Business
Type]),'Reseller'[Business Type] = "Warehouse"))

Some BI organizations may adopt standards that require the longer,
more explicit version and avoid "syntax sugar".

7. Return to DAX Studio and replace the existing references to the current measure
with the name of the measure:

 EVALUATE
 TOPN(1001,SUMMARIZECOLUMNS('Reseller'[Reseller],__DS0FilterTable,__DS0FilterTable2,__DS0FilterTable3,
 "Gross Sales Warehouse Rev", [Gross Sales Warehouse Rev]),[Gross Sales Warehouse Rev]
'Reseller'[Reseller],1)

8. With the cache cleared, execute the query with the revised measure. Create a
revised average based on 4-5 separate query executions.

Server Timings of the baseline query with the original measure versus the revised measure in DAX Studio

The baseline query executed 35% faster (69 ms to 45 ms) with the revised
measure and only needed 1 SE query.

The reason the first measure is slower is because with the FILTER() on
Reseller, the filter selections on slicer visuals of the report (Date,
Product, and Promotion) have to be respected before the filter on
warehouse is executed. For example, the Reseller dimension table will
be filtered to only include resellers with bike category sales in 2016-
2017 and of certain promotions before the Warehouse filter is
applied. This requires additional scans of the fact table and is thus
less efficient.

Optimizing OR condition measures
In this example a measure must be filtered by an OR condition on two columns from
separate tables.

A FILTER() function cannot be avoided in this scenario like in the prior
example, since multiple columns must be referenced in the same
expression (the OR condition). For example, the following expression
is not allowed:

CALCULATE([Reseller Gross Sales],
'Product'[Product Subcategory] = "Mountain Bikes" || 'Reseller'[Reseller
Country] IN {"United States", "Australia"})

The current measure is defined as follows:

Reseller Gross Sales (Filter OR) =
CALCULATE([Reseller Gross Sales], FILTER('Reseller Sales',
RELATED('Product'[Product Subcategory]) = "Mountain Bikes" || RELATED('Reseller'[Reseller Country]) IN {"United States", "Australia"}))

A FILTER() is applied on the fact table and separate RELATED() functions are used to
implement the required OR logic.

1. Just like in the previous example, capture a sample DAX query generated in
Power BI Desktop from a Profiler trace.

2. Test and analyze the query in DAX Studio to establish a baseline for the current
measure.

3. Now create two separate alternative measures--one with SUMMARIZE() and another
with CROSSJOIN():

Reseller Gross Sales (Summarize OR) =
CALCULATE([Reseller Gross Sales], FILTER(
SUMMARIZE('Reseller Sales','Product'[Product Subcategory],'Reseller'[Reseller Country]), 'Product'[Product Subcategory] = "Mountain Bikes" || 'Reseller'[Reseller Country] IN {"United States", "Australia"}))

Reseller Gross Sales (Crossjoin OR) =
CALCULATE([Reseller Gross Sales], FILTER(
CROSSJOIN(ALL('Product'[Product Subcategory]),ALL(Reseller[Reseller Country])), 'Product'[Product Subcategory] = "Mountain Bikes" || 'Reseller'[Reseller Country] IN {"United States", "Australia"}))

4. In Power BI Desktop, confirm that the new measures produce the same results
as the current measure.

5. In DAX Studio, replace the references to the (filter OR) measure with
references to the new measures.

6. Repeat the process of executing multiple queries with the cache cleared and
documenting the performance to establish baselines for all three versions of the
measure.

Server Timings of the baseline query with the original measure (Filter OR) versus the two new measures in DAX
Studio

Both new measures were 16.7X faster than the current state (2,844 to 170 ms)
and were over 90% executed in the SE.

In this scenario, the CROSSJOIN() approach was slightly faster than
SUMMARIZE() but this comparison would vary based on the cardinality of
the columns involved. The larger point from this example is the
danger with implementing logic not supported by the storage engine
within the expression parameter of iterating functions like FILTER()
and SUMX(). This is especially true when the table parameter to these
functions has many rows such as the 11.7M row Reseller Sales fact
table used in this recipe.

Note that the ALL() function can be used to produce the table
parameter if both columns are from the same table such as
ALL('Product'[Product Category],'Product'[Product Color]). ALL() cannot
directly access columns from separate tables.
At a high level, always think about the size of the table being filtered
and look for simple filter conditions and single columns that can be
used to reduce the size of this table. For example, replace the table
parameter of functions like SUMX() and FILTER() with a CALCULATETABLE()
function that implements simple, efficient filter conditions. More
complex expressions that can't be handled by the storage engine can
then operate against this smaller table. Similarly, consider (and test)
nesting filter conditions such that the most selective, efficient filter
condition is applied first (the inner FILTER(), the outer CALCULATE()).

How it works...

DAX query engine - formula and
storage
DAX queries from Power BI report visuals are resolved by the DAX formula engine
and the DAX storage engine. The storage engine is the in-memory columnar
compressed database for import mode models (also known as VertiPaq) and is the
relational database for DirectQuery models. In either mode, the formula engine is
responsible for generating query plans and can execute all DAX functions, including
complex expression logic, though it is limited to a single thread and no cache.

The formula engine sends requests to the storage engine and the storage engine, if it
does not have the requested data in an existing data cache, utilizes multiple threads to
access segments of data (1 thread per segment, 1M rows per segment) from the data
model. The storage engine executes simple join, grouping, filter, and aggregations,
including distinct count to make requested data caches available to the formula
engine. Given this architecture a fundamental DAX and Power BI model design
practice is to maximize the allocation of queries to the storage engine and minimize
the size of data caches operated on by the formula engine.

There's more...

DAX variables for performance
The primary benefit of DAX variables is improved readability. However,
variables can also reduce the number of queries associated with a measure (and
hence its execution duration) since variables are evaluated only once and can be
reused multiple times in an expression.

Look for DAX measures with multiple branches of IF or SWITCH
conditions that reference the same measure multiple times. For these
measures, consider declaring a variable that simply references the
existing measure (VAR MyVariable = [Sales Amount] RETURN) and then
reference this variable in each logical condition, rather than the
measure.

DAX as a query language
The DAX queries generated by Power BI cannot be edited but DAX queries can
be completely authored from scratch for other tools such as the datasets in SQL
Server Reporting Services (SSRS) reports
Many of the newer DAX functions are particularly helpful with queries and
generally the same performance considerations apply to both measures and
queries
Studying Power BI-generated DAX queries is a great way to learn how to write
efficient DAX queries and DAX in general

Pushing query processing back to
source systems
During the scheduled refresh of datasets retrieving from on-premises sources, any
query transformations not executed by the source system will require local resources
of the M (Mashup) engine of the on-premises data gateway server. With larger
datasets, and potentially with other scheduled refreshes occurring on the same
gateway server at the same time, it becomes important to design M queries that take
full advantage of source system resources via query folding. Although
transformations against some sources such as files will always require local
resources, in many scenarios M queries can be modified to help the engine generate
an equivalent SQL statement and thus minimize local resource consumption.

In this recipe, a process and list of items is provided to identify queries not currently
folding and the potential causes. Additionally, a query based on an existing SQL
statement is redesigned with M expressions to allow query folding.

Getting ready
1. Identify the dataset to evaluate for query folding.

This will generally have large PBIX files (100 MB+) published to the
Power BI service with a scheduled refresh configured to use an on-
premises data gateway and which queries a relational database as
the primary source. If the large PBIX file is retrieving from a file or a
collection of files within a folder, revisions are certainly possible,
such as filtering out files based on their modified date relative to the
current date as per Chapter 10, Developing Solutions for System
Monitoring and Administration. However, query folding is not an
option for file sources, while maximum query folding is available for
common relational database sources such as SQL Server and Oracle.

2. Use performance counter data to establish a baseline of the resources currently
used to perform refreshes.

Counters for the gateway server memory and M (Mashup) queries should
be impacted by the changes

How to do it...

Query folding analysis process
1. Open the Power BI Desktop file used as the published dataset with scheduled

refreshes of on-premises data.
2. Click on Edit Queries from the Home tab to open Query Editor.
3. Starting with the largest queries (the fact tables), right-click on the final step

exposed in the Query Settings window.

View Native Query Disabled for Final Query Step

If the View Native Query option is disabled, then the local M engine is
performing at least this final step.

4. Check the previous steps to determine which steps, if any, were folded, and thus
the step which caused the query to use local resources. Once a step (M variable
expression) in a query uses local resources all subsequent steps in the query
will also use local resources.

If there are required transformations or logic that aren't supported by
the source system for query folding the recommendation is to move
these steps to the very end of the query. For example, allow SQL
Server to execute the filter, the derived columns, and other simple
steps via Query Folding and only then apply the complex steps
locally on top of the SQL query result set.

If View Native Query is not disabled, you can optionally view the SQL
statement per prior recipes.

5. Identify the cause of the local operation, such as a specific M function not
supported by the source system.

6. Consider revising the source database object, the M expressions, and data
source privacy levels to enable query folding.

Several common M functions are not supported by most relational
database sources, such as Table.Distinct(), which removes duplicate
rows from tables, and Table.RemoveRowsWithErrors(), which removes rows
with errors from tables. If data sources are merged in the query,
check their privacy level settings (Data source settings | Edit
Permissions...) to ensure that privacy is configured to allow folding,
such as from an Organizational source to a different Organizational
source.

As per the query folding redesign example in this recipe, if the first
step or Source step of the query is a native SQL statement, consider
revising the M query steps to help the M engine form a SQL query
(fold the M query).

Query folding redesign
In this example, a business analyst has used a SQL statement and the Query Editor to
construct a customer query.

Customer Query based on Native SQL Statement and M Transformations

In this scenario, the SQL statement is against the base customer table
in the data warehouse (not the view) and the transformations applied
against the query results all use local gateway server resources
during each refresh process given the native SQL query. The existing
SQL view (vDim_Customer) contains the Customer Name column, eliminating
the need for the merge operation, though the Marital Status column is
not transformed into the longer Married or Single string per the
analyst's transformations.

1. Create a new M query that uses parameters for the server and database and
which uses the customer SQL view:

let Source = AdWorksProd,
Customer = AdWorksProd{[Schema = "BI", Item = "vDim_Customer"]}[Data],
SelectColumns = Table.SelectColumns(Customer,{"Customer Key", "Customer Name", "Date of Birth",
"Marital Status", "Annual Income"}),
MarriageStatus = Table.AddColumn(SelectColumns, "M Status", each if [Marital Status] = "M" then "Married" else "Single", type text),
RemovedColumns = Table.RemoveColumns(MarriageStatus,{"Marital Status"}),
RenamedColumns = Table.RenameColumns(RemovedColumns,{{"M Status", "Marital Status"},
{"Annual Income", "Yearly Income"}})
in RenamedColumns

The AdWorksProd source query used in other recipes references the
server (Atlas) and database (AdventureWorksDW2016CTP3) parameters. The
existing SQL view, vDim_Customer, is leveraged and the Marital Status
conditional logic is built within a Table.AddColumn() expression. The few
remaining steps simply select, remove, and rename columns--
transformations that can be folded back to SQL Server.

2. Right-click on the final step of the new, revised query and ensure that View
Native Query is enabled.

Native Query (Folded) Based on Revised M Query for Customers

The new query returns the same results but is now folded back to SQL Server
rather than using local resources
The if...then...else M expression was folded into a CASE expression for SQL
Server to execute

How it works...

Query folding factors
Query folding is impacted by the transformations supported by the source system,
internal proprietary M engine logic, privacy levels assigned to data sources, the use
of native database queries (SQL statements), and the use of custom M functions and
logic

For example, even if query folding is appropriate from a performance standpoint
such as using a server in a join operation with a local file, folding will not occur if
the local file is configured as a private data source

Native SQL queries
Any M transformation applied on top of a native SQL database query (via
Value.NativeQuery()) will not be folded to the source system

If native SQL queries are used, such as the stored procedure
examples in previous recipes, the recommendation is to embed all
query steps and transformations in the native SQL query itself. If this
is not possible, embed the most resource intensive operations in the
stored procedure and pass filtering parameters from Power BI to the
stored procedure to reduce the workload on the local M engine.

There's more...

Parallel loading of tables
For large models with many queries and large tables, consider disabling the default
parallel loading of tables

Parallel loading of tables - current file setting

Many queries executed at once may overwhelm source system resources and cause
the refresh process to fail

Improving folded queries
Just because a query is folded into a SQL statement, it doesn't mean there are no
possible performance issues. For example, the query might be selecting more
columns than needed by the data model or might be executing outer join queries when
the database schema supports inner joins. Visibility of these queries can inform
changes to the BI architecture and M queries.

Owners of the relational database system or data warehouse can take
note of Power BI's folded SQL queries via tools like Extended Events
(see Chapter 10, Developing Solutions for System Monitoring and
Administration). For example, database administrators or BI team
members could revise existing SQL views, table indexes, and more.
Likewise, the Power BI query author could be informed of better or
preferred methods of accessing the same data such as joining on
different columns.

Strengthening data import and
integration processes
Many Power BI datasets must be created without the benefit of a data warehouse or
even a relational database source system. These datasets, which often transform and
merge less structured and governed data sources such as text and Excel files
generally require more complex M queries to prepare the data for analysis. The
combination of greater M query complexity and periodic structural changes and data
quality issues in these sources can lead to refresh failures and challenges in
supporting the dataset. Additionally, as M queries are sometimes initially created
exclusively via the Query Editor interface, the actual M code generated may contain
unexpected logic that can lead to incorrect results and unnecessary dependencies on
source data.

This recipe includes three practical examples of increasing the reliability of data
import processes and making these processes easier to manage. This includes data
source consolidation, error handling and comments, and accounting for missing or
changed source columns.

How to do it...

Data source consolidation
1. Open the Power BI Desktop file and identify the data sources being accessed by

all queries.
2. The Data source settings dialog from the Edit Queries dropdown in Report view

will expose current file sources.

3. For greater detail, open the Query Editor and click on Query Dependencies from
the View tab of the toolbar.

Query Dependencies View of 10 Queries

In this example, 10 queries use three separate sources (SQL Server, an Excel
file, and an MS Access database file)

4. Create the following folder groups in the queries window: Parameters, Data Source
Queries, Dimensions, and Facts.

5. Create six text parameters to abstract the file name, file path, server, and
database names from the three sources.

6. Develop three data source queries from individual blank queries which
reference these parameters:

= Sql.Database(#"SQL Server AdWorks Server", #"SQL Server AdWorks DB")
= #"MS Access AdWorks Path" & "\" & #"MS Access AdWorks DB" & ".accdb"
= #"MS Excel Ad Works Path" & "\" & #"MS Excel Ad Works File" & ".xlsx"

7. Assign names to these queries such as MS Access Ad Works Connection and disable
their load to the data model.

8. Finally, modify each of the 10 queries to reference one of the three data source
queries such as the following:

let Source = Access.Database(File.Contents(#"MS Access Ad Works Connection"), [CreateNavigationProperties=true]),
Customer = Source{[Schema="",Item="DimCustomer"]}[Data]
in Customer

The pound sign and double quotes are required when referencing queries,
parameters and variables that contain spaces

Consolidated and parameterized data sources organized in the Query Editor

The folder groups, parameters, and data source queries make it easier to
understand and manage the retrieval process

Error handling, comments, and
variable names
In this example, the Product query is joined to the Product Subcategory query to add a
column from Product Subcategory. The query includes error handling by wrapping both
expressions with a try expression and an otherwise clause. If an error occurs, such as if
the Product Subcategory query changes, the Product query is used for loading to the data
model.

/* This query joins the Product query to the Product Subcategory query.
 The product subcategory column 'EnglishProductSubcategoryName' is renamed 'Product Subcategory' */
let ProductToProductSubCatJoin =
try
// Nested outer join based on Subcategory Surrogate Key
Table.NestedJoin(Product,{"ProductSubcategoryKey"},#"Product Subcategory",{"ProductSubcategoryKey"},"ProductSubCatColumns",JoinKind.LeftOuter) otherwise Product,
AddProductSubCatColumn =
try
// Will return nulls if EnglishProductSubcategoryName is renamed or missing in Product Subcategory query
Table.ExpandTableColumn(ProductToProductSubCatJoin, "ProductSubCatColumns",{"EnglishProductSubcategoryName"}, {"Product Subcategory"}) otherwise Product
in AddProductSubCatColumn

Comments are used in both multi-line and single-line formats to help
explain the logic. Multi-line comments begin with /* and end with */
while single-line comments are preceded by the // characters.

Variable names (that is, AddProductSubCatColumn) are in proper casing
with no spaces so as to avoid unnecessary double quotes and to
further describe the process.

Handling missing fields
The objective of this example is to retrieve four columns from a text file containing
30 columns describing customers.

1. Connect to the file with the text/CSV connector and replace the hardcoded path
with a query created from parameters:

let Source = Csv.Document(File.Contents(CustomerTextFile),[Delimiter=" ", Columns=30, Encoding=1252, QuoteStyle=QuoteStyle.None]),
PromotedHeaders = Table.PromoteHeaders(Source, [PromoteAllScalars=true])
in PromotedHeaders

2. Delete the default Columns parameter of the Csv.Document() function (Columns=30).
3. Use a Table.SelectColumns() function to select the four columns needed and specify

the optional MissingField.UseNull parameter.

4. Finally, set the data types for each of the four columns:

let Source = Csv.Document(File.Contents(CustomerTextFile),
 [Delimiter=" ", Encoding=1252, QuoteStyle=QuoteStyle.None]),
PromoteHeaders = Table.PromoteHeaders(Source, [PromoteAllScalars=true]),
SelectColumns = Table.SelectColumns(PromoteHeaders,
 {"CustomerKey", "CustomerAlternateKey", "EmailAddress", "BirthDate"}, MissingField.UseNull),
TypeChanges = Table.TransformColumnTypes(SelectColumns,
 {{"CustomerKey", Int64.Type}, {"CustomerAlternateKey", type text}, {"BirthDate", type date}})
in TypeChanges

With these changes, the query has access to all columns of the source
file (not just 30) but only creates dependencies on the the four
columns needed. Most importantly, the MissingField.UseNull option
protects the query from failing if one of the four columns is renamed
or removed from the source file. The data type change expression is
necessary since the automatic type selection behavior was disabled
as recommended.
Be sure to avoid the automatic data type changes applied by default
to unstructured sources. If enabled, this will effectively create a hard
coded dependency to each of the 30 columns in the source. Likewise,
for all other transformations try to limit or avoid explicitly
referencing column names and always favor selecting required
columns rather than removing unnecessary columns. The columns
explicitly selected are less likely to be changed or removed in the
future and removing columns creates a risk that new columns added
to the source will be loaded to the data model.

How it works...

MissingField.UseNull
If one of the four columns selected is removed or renamed, a null value is substituted
thus avoiding query failure:

Four columns selected from the text file despite the BirthDate column removed from the source

A MissingField.Ignore option is also available to retrieve only the columns found in
Table.SelectColumns().

See also
10 Common Mistakes in Power Query and How to Avoid Pitfalls by Gil Raviv:
http://bit.ly/2uW6c33

http://bit.ly/2uW6c33

Isolating and documenting DAX
expressions
Isolating expressions into independent and interchangeable DAX measures or as
variables within measures is recommended to simplify development and to maintain
version control. Independent measures can be hidden from the Fields list yet contain
core business definitions and efficient filtering logic to drive the results and
performance of many other measures in the model. Although scoped to each measure,
DAX variables provide a self-documenting coding style and, unlike scalar-valued
measures, also support table values thus allowing for even greater modularity.

In this recipe, DAX variables, measures, and comments are used in two separate
examples. The first example provides a variable-driven approach to the Reseller
Margin % measure described in Chapter 3, Building a Power BI Data Model. The
second example leverages three table-valued variables in defining a filter context for
a measure.

Getting ready
Briefly review the sales and margin measures in the Embedding Business
Definitions into DAX Measures recipe of Chapter 3, Building a Power BI Data
Model.

How to do it...

Reseller Margin % with variables
The purpose of this example is to develop a new Reseller Margin % measure that uses
variables and comments to explicitly identify the logic and source columns of the net
sales and product cost calculations:

Reseller Margin % =
/*
Net Sales = Gross sales net of discounts that have shipped
Product Cost = Product standard cost of all ordered products (including not shipped)
Date of 12/31/2099 used for unshipped sales order lines since 1/1/2015
*/
VAR ShippedSales = CALCULATETABLE('Reseller Sales','Reseller Sales'[ShipDate] <> DATEVALUE("12/31/2099"))
VAR NetSalesShipped = CALCULATE([Reseller Gross Sales] - [Reseller Discount Amount],ShippedSales)
VAR ProductCost = SUMX('Reseller Sales',
'Reseller Sales'[OrderQuantity]*'Reseller Sales'[ProductStandardCost])
RETURN
DIVIDE(NetSalesShipped - ProductCost,NetSalesShipped)

The new measure includes three lines of comments to describe the
business definitions of the measure's components. Comments can also
be added per line via the -- and // characters and Power BI applies
green color coding to this text. Embedding comments is recommended
for both complex measures with multiple components and simple
measures, which form the foundation for many other measures.

Variable table filters
The purpose of this measure is to isolate the filter requirements of a measure into its
three separate dimension tables:

Reseller Gross Sales (Custom) =
VAR ResellerTypes = CALCULATETABLE('Reseller',Reseller[Business Type] = "Warehouse")
VAR PromotionTypes = CALCULATETABLE('Promotion',
'Promotion'[Promotion Type] IN {"New Product","Excess Inventory"})
VAR DateHistory = --Trailing 10 Days
FILTER(ALL('Date'),'Date'[Date] <= MAX('Date'[Date]) && 'Date'[Date] >= MAX('Date'[Date]) - 10)
RETURN
CALCULATE([Reseller Gross Sales],ResellerTypes,PromotionTypes,DateHistory)

Variables are declared for each of the three tables to be filtered and a
comment (Trailing 10 Days) is inserted to help explain the DateHistory
variable. The variables are invoked as filter parameters to CALCULATE(),
and so the Reseller Gross Sales measure reflects this modified filter
context. The same functional result can be achieved by defining all
the filtering logic within CALCULATE() but this would make the
expression less readable and more difficult to support.

How it works...

Reseller Margin % with variables
The ShippedSales variable filters the sales fact table to exclude the unshipped sales
order lines and this table is used as a filter parameter to the NetSalesShipped variable.
The existing Reseller Gross Sales and Reseller Discount Amount measures are referenced,
but the ProductCost variable, which was a distinct measure in Chapter 3, Building a
Power BI Data Model, is explicitly defined against the Reseller Sales fact table
(shipped or not).

Though significantly longer than the Reseller Margin % measure in Chapter 3, Building a
Power BI Data Model, the use of variables and comments eliminates (or reduces) the
need to review other measures to understand the logic and source columns.

There's more...

DAX Formatter in DAX Studio
DAX Formatter can be used within DAX Studio to align parentheses with their
associated functions.

DAX Formatter in DAX Studio used to format a Year-to-Date Measure

Long, complex DAX measures can be copied from Power BI Desktop into DAX
Studio to be formatted.

Click on Format Query in DAX Studio and replace the expression in Power BI
Desktop with the formatted expression.

DAX authoring in Power BI Desktop also supports parentheses
highlighting, but DAX Formatter isolates functions to individual
lines and indents inner function calls such as the ALL() function used
as a parameter within the FILTER() function per the image. Without the
function isolation and indentation provided by DAX Formatter,
complex expressions are often wide and difficult to interpret or
troubleshoot.

Deploying and Distributing Power BI
Content
In this chapter, we will cover the following recipes:

Preparing a content creation and collaboration environment in Power BI
Managing migration of Power BI content between development, testing, and
production environments
Sharing Power BI dashboards with colleagues
Configuring Power BI app workspaces
Configuring refresh schedules and DirectQuery connections with the on-
premises data gateway
Creating and managing Power BI apps
Building email subscriptions into Power BI deployments
Publishing Power BI reports to the public internet
Enabling the mobile BI experience

Introduction
On May 3rd of 2017, Power BI premium and Power BI apps were introduced as
services to support the deployment and distribution of Power BI content to large
groups of users. Power BI premium is, at its core, a dedicated hardware resource for
organizations to provision and utilize according to their distinct deployment needs.
With Power BI premium, new deployment options are supported, including on-
premises solutions with the Power BI report server, embedding Power BI in business
applications, and publishing Power BI apps to large groups of users for access via
the Power BI service and mobile applications. Additionally, premium dedicated
capacities can be used in hybrid deployment scenarios such as limiting certain
reports and dashboards to the on-premises Power BI Report Server or using one
dedicated capacity for embedding Power BI analytics into an application and another
capacity for Power BI apps in the Power BI service.

Most importantly, for larger scale deployments Power BI premium avoids the need to
purchase licenses for all users--read only users can access Power BI premium
content without a pro license. Additionally, as a managed cloud service, resources
can be aligned with the changing needs of an organization via simple scale up and
scale out options.

"In many cases Power BI Premium was built to address the challenges of
deploying Power BI at scale where you have larger data models that have
grown over time and when you have more users that are accessing the content."
- Adam Wilson, Power BI group program manager

This chapter contains detailed examples and considerations for deploying and
distributing Power BI content via the Power BI service and Power BI mobile
applications. This includes the creation and configuration of app workspaces and
apps, procuring and assigning Power BI premium capacities, configuring data
sources and refresh schedules, and deriving greater value from the Power BI mobile
applications. Additionally, processes and sample architectures are shared, describing
staged deployments across development and production environments and multi-node
premium capacity deployments.

Preparing a content creation and
collaboration environment in Power BI
Power BI collaboration environments can take many forms ranging from a small
group of Power BI Pro users creating and sharing content with each other in a single
app workspace to large scale corporate BI scenarios characterized by many read-
only users accessing Power BI premium capacity resources via Power BI apps.
Given the cost advantages of the capacity-based pricing model Power BI Premium
provides, as well as the enhanced performance and scalability features it delivers,
it's important to properly provision and manage these resources.

This recipe provides two processes fundamental to the overall purpose of this
chapter: deploying and distributing Power BI content. The first process highlights
several critical questions and issues in planning and managing a Power BI
deployment. The second process details the provisioning of Power BI premium
dedicated capacity resources and the allocation of those resources to specific
deployment workloads via app workspaces. See the How it works... and There's
more... sections following this recipe for details on the Power BI premium capacity
nodes and scenarios for scaling up and out with Power BI premium capacity.

How to do it...

Evaluate and plan for Power BI
deployment

1. Determine how Power BI content (datasets, reports and dashboards) will be
deployed and consumed by users.

Will content by deployed to the Power BI Service and accessed via apps
and Power BI mobile apps?
Will content be deployed to the Power BI Service but embedded into
business applications?
Will content be deployed to the Power BI report server on-premises and
accessed via the reporting services web portal as well as the Power BI
mobile app?

It's essential to carefully review the licensing and features associated
with each deployment option. For example, many of the features in
the Power BI Service such as dashboards and Q & A (natural
language queries) are not available in the on-premises Power BI
Report Server. Likewise, certain Power BI Premium SKUs are
exclusive to embedding Power BI into applications and do make
features such as analyze in Excel.

For hybrid deployments, such as using both the Power BI service and
embedding or the Power BI service and the Power BI report server,
estimate the resources required for each of these workloads and
evaluate either a consolidated licensing model or separate, dedicated
licenses. For example, if 16 virtual cores are provisioned with a
Power BI premium P2 SKU, 16 separate cores are also available for
licensing the Power BI report server on-premises.

2. Identify or estimate the Power BI Pro and Power BI Free users based on their
roles and needs in the organization.

Will the user create and publish content (Power BI Pro)?
Will the user only consume content and optionally create content for their
personal use (Power BI Free)?

Connecting to published datasets via analyze in Excel and Power BI
Service Live Connections are Power BI Pro features and are not
available to Power BI Free users even if the dataset is assigned to a
Power BI Premium capacity. However, a Power BI Free user, can still

get subscriptions to reports and dashboards to the apps they access
from Premium capacity, and can export content to CSVs and
PowerPoint. This is all in addition to the rich consumption
capabilities of the Power BI Service and Power BI mobile apps.

3. For larger deployments with many read-only users, estimate the Power BI
Premium resources required.

Use the Power BI Premium Pricing Calculator as a starting point
referenced in the See also section.
Plan for how deployment workloads will be allocated across premium
capacity nodes.
Will a given workload (or perhaps a business function) have its own
capacity, or will a single, larger capacity support multiple or all
workloads or teams?

If Power BI datasets in import mode will serve as the primary data
storage option supporting reports and dashboards, consider their
memory usage relative to the memory available per Power BI
Premium SKU. For example, 25 GB of RAM is currently available in
a P1 capacity node, and this would thus be insufficient for larger
dataset (model) sizes stored in the service with scheduled refresh.
Like SSAS tabular models, 2.5X of memory should be provisioned to
support both processing and refresh, queries, and temporary the
memory structures created during queries.

4. Evaluate and plan for data storage options (datasets).
Will Power BI Desktop be exclusively used for datasets, or will SQL
Server Analysis Services (SSAS) be used?
Will either or both of these tools be in import mode or use DirectQuery?
Are changes to a relational data source, or infrastructure necessary to
support performance?

In some scenarios, the relational data source must be revised or
enhanced to support sufficient DirectQuery performance. These
enhancements vary based on the source but may include indexes
(such as Columnstore indexes in SQL Server), greater compute and
memory resources, denormalization, and referential integrity. If SSAS
is being used on-premises as the source for Power BI (via the on-
premises data gateway), it may be beneficial to utilize Azure
ExpressRoute to create a private connection to the Azure data center
of the Power BI tenant.

5. Plan for scaling and migrating Power BI projects as adoption and needs change.
Identify key points of the project life cycle and the capabilities needed to
migrate and scale as needs change.

Examples of this include adding separate Power BI Premium
capacity nodes (scale out), larger capacity nodes (scale up),
migrating a Power BI Desktop Dataset to SSAS or Azure Analysis
Services, staging deployments across Dev, Test, and Production
Power BI workspaces and apps, moving workspaces into and out of
premium capacities, and transferring ownership of content across
team such as from a business teams, to a corporate BI team.

6. Assign roles and responsibilities to Power BI team members.
Dataset authors including source connectivity, retrieval queries, data
modeling, and measure development
Report authors including dashboards, mobile optimized reports and
dashboards, and apps
Administrators including the on-premise data gateway, premium capacities,
and tenant settings

7. Target skills and knowledge specific to these team roles.
Dataset authors, should learn the fundamentals of DAX, M, and Data
Modeling for Power BI and SSAS
Report authors, should know or learn visualization standards, interactivity
and filtering, and custom visuals
Administrators, should study monitoring tools and data available for the
on-premises gateway monitoring, app workspaces, premium capacities,
and the Office 365 Audit Log

Dataset authors may learn the process of migrating a Power BI
Dataset to SSAS Tabular and working with Analysis Services projects
in Visual Studio. See Chapter 13, Integrating Power BI with Other
Applications, recipe Migrating a Power BI data model to SSAS
tabular for additional details on this process. Report authors, who
are often business analysts outside of the IT or BI organizations,
should regularly review new and recent report features released in
the Power BI monthly updates.

8. Build collaboration processes across teams.
Dataset authors should collaborate with the owners and subject matter
experts of data sources.

For example, any changes to data source schemas or resources should
be communicated.

Report authors should have access to dataset documentation and
collaborate with dataset authors.

For example, metrics or dimensions not available for new reports
should be communicated.
Any standards such as a corporate Power BI report theme or fonts
should be documented.
See Chapter 4, Authoring Power BI Reports, recipe Enhancing
exploration of reports for details on report themes.

Administrators should collaborate with the Office 365 global admin, data
governance, and security teams.

For example, administrators should confirm that Power BI tenant
settings align with organizational policies. Additionally,
administrators can request or procure security groups to manage
Power BI.

Plan for common support scenarios, new project requests, and requests for
enhancements.

For example, create a process for automatically assigning Power BI
licenses and security group memberships. Additionally, plan for
questions or issues from consumers of Power BI content.

Successful Power BI deployments of any significant scale require
planning, team and cross-team collaboration, business processes,
active management, and targeted skills and resources. The steps in
this recipe only identify several of the fundamental topics--the actual
process is always specific to an organization and its deployment
goals, policies, and available skills and resources.

Set up a Power BI service deployment
In this example, app workspaces specific to functional areas in an organization are
associated with two separate Power BI Premium capacity nodes. An additional
workspace and the my workspace associated with all accounts (Power BI Free and
Pro) are included in a shared capacity--the multi-tenancy environment of the Power
BI Service.

1. An Office 365 global admin or billing admin purchases Pro and Free licenses
required in the Office 365 Admin center

2. These licenses are assigned to users according to the roles determined in the
planning stage earlier

Office 365 Admin center: subscriptions

The Add subscriptions button and the Purchase services menu item both expose
Power BI Premium subscriptions
Office 365 Powershell can be used to assign purchased licenses to users as
well. Click on Add subscriptions

3. Purchase a P2 Power BI Premium capacity node.

The Purchase services menu: Power BI Premium P2 capacity instance (node)

4. Purchase a P3 Power BI Premium capacity node.

As of this writing, the P2 and P3 SKUs both require an annual
commitment while the P1 SKU is available on a month-to-month
basis. Of the Power BI Premium SKUs specific to embedding, only
the EM3 SKU is listed and available on a month-to-month basis.
Payments can be made annually or monthly.

Currently, each instance or capacity purchased is associated with
one node and these capacities operate independently. Per the
roadmap for Power BI Premium, multi-node capacities will be
available, such as having three P3 nodes in a single capacity. Multi-
node capacities will likely also support other roadmap features, such
as read-only replicas and dedicated data refresh nodes.

5. Confirm that the new Power BI Premium subscriptions appear in the
subscriptions window along with the existing Power BI Pro and Power BI Free
licenses from step 1.

6. The Office 365 Global Admin or Power BI Service Administrator opens the
Power BI Admin Portal.

In the Power BI Service, click on the Gear icon in the top right and select
Admin Portal

7. Select the Premium settings from the admin portal and then click on Set up new
capacity.

Setting up a new capacity in the Power BI Admin Portal

Existing capacities will be marked as active and identify the associated capacity
administrators.

8. Give the capacity a descriptive name and assign the capacity admin role to a
user or users.

Global Admins and Power BI Service Admins are capacity admins by
default, but the capacity admin role can be assigned to users that are
not Power BI Service Admins. Capacity admin role privileges are
specific to the given capacity.

9. Grant workspace assignment permissions to specific Power BI Pro users or
groups for this capacity.

User permissions in premium settings

9. Setup the other capacity purchased, assign its capacity admins, and grant its
workspace assignment permissions.

10. Power BI Pro users with workspace assignment permissions can create app
workspaces in the Power BI Service.

Power BI Pro users with edit rights are added as members and the
workspace is assigned to premium capacity.
See the recipes later in this chapter for details on App Workspaces and
apps.

Alternatively, in the Power BI admin portal, capacity admins can

assign or remove workspaces from premium capacity, as well as
whitelist users such that all of a given user's app workspaces are
assigned to premium capacity.

Power BI Premium capacity assigned to workspaces

In this example, three App Workspaces (sales, marketing, and
finance) are assigned to a Power BI Premium Capacity named
Enterprise BI (P3). Additionally, this capacity also supports the
embedded reporting needs of a custom application. The larger P3 (32
cores, 100 GB RAM) capacity was chosen given the higher volume of
query traffic for these workspaces, as well as the need for larger
dataset sizes.

Supply chain and operations workspaces were assigned to a P2
capacity. In this case, though less of a workload than the P3 capacity,
these groups still need to share content with many Free Users.
Finally, an App Workspace for a small group of IT users (IT Admin)
with Power BI Pro licenses is maintained in Shared Capacity. This
workspace didn't require Power BI Premium, given minimal needs for
distribution to Free Users and given smaller datasets with relatively
infrequent refresh schedules.

How it works...

Premium capacity nodes - frontend
cores and backend cores

The virtual cores of the capacity nodes purchased are split evenly between
frontend and backend processes.

Power BI capacity nodes as of GA

Only the backend cores are fully dedicated to the organization and the back.

The backend cores which handle query processing, data refresh, and
the rendering of reports and images. If import mode datasets will be
stored in Power BI Premum capacity, it's important to avoid or
minimize the duplication of datasets and to review datasets for
opportunities to reduce memory usage.

There's more...

Scaling up and scaling out with Power
BI Premium

Scaling out Power BI Premium involves distributing provisioned capacity (v-
cores) across multiple capacities.

For example, the 32 v-cores purchased as part of a P3 capacity node could
optionally be split into three separate capacities: two P1 capacities of 8 v-
cores each and one P2 capacity of 16 v-cores (8 + 8 + 16 = 32). This ability
to distribute v-cores across distinct premium capacities is referred to as v-
core pooling.

Scaling up power premium or in-place scale up involves purchasing an
additional capacity node in the Office 365 Admin center per the recipe then
adjusting the capacity size of a given premium capacity to reflect the additional
cores:

Available v-cores for a capacity in the Power BI Admin Portal

For example, if a P1 capacity is determined to be insufficient for desired
performance or scalability, an additional P1 capacity can be purchased. At this point,
with two P1 capacities purchased at 8 v-cores each, a P2 capacity size (16 v-cores)
can be set for the original capacity in the Power BI Admin portal. This makes it quick
and easy to incrementally scale up as requirements change.

See also
Power BI Premium cost calculator: https://powerbi.microsoft.com/en-us/calculator/
Planning a Power BI enterprise deployment whitepaper: http://bit.ly/2wBGPRJ

https://powerbi.microsoft.com/en-us/calculator/
http://bit.ly/2wBGPRJ

Managing migration of Power BI
content between development, testing,
and production environments
Corporate BI and IT teams familiar with project lifecycles, source control systems,
and managing development, testing, and production environments should look to
apply these processes to Power BI deployments as well. Power BI Desktop does not
interface with standard source control systems such as Team Foundation Server
(TFS), but PBIX files can be stored in OneDrive for business to provide visibility of
version history, restore capabilities, and group access. In the Power BI Service,
separate development, test, and production App Workspaces and their corresponding
apps can be created to support a staged deployment. Utilizing these tools and features
enables Power BI teams to efficiently manage their workflows and to deliver
consistent, quality content to users.

This recipe contains both a high level overview of a staged deployment of Power BI
as well as the detailed steps required to execute this process. Additional details
regarding OneDrive for Business and the Power BI Rest APIs are included in the
How it works... section.

Getting ready
Users must be assigned Power BI Pro licenses to create App Workspaces in the
Power BI Service.
Add any new data sources to on-premise data gateway in Power BI Service.
Also ensure that users publishing the dataset are authorized to use the gateway
for these sources.
Obtain access to OneDrive for business for storing and managing Power BI
Desktop files.

If OneDrive for business is not available, consider storing the PBIX
files and optionally, PBIT template files in an alternative version
control system. For example, if TFS is being used, Power BI Desktop
files can be added to a folder in a Visual Studio solution and checked
in and out as changes are implemented. The file size limit in
OneDrive for business is currently 10 GB, which should be sufficient
for almost all datasets, and PBIT template files can be used if file
size is a constraint. See the Preserving report metadata with Power
BI templates recipe in Chapter 7, Parameterizing Power BI Solutions
for more details.

How to do it...

Staged deployment overview
The process in this recipe reflects the following five step staged deployment model:

Staged deployment via App Workspaces

1. Power BI Desktop is used to create datasets and reports.
2. Power BI Desktop files (PBIX) are stored in OneDrive for business to maintain

version history.
3. A development App Workspace is used to publish a development app to a small

group of test or QA users.
4. The Power BI REST APIs or an interface in the Power BI Service is used to

clone and rebind reports to the Production App Workspace. Additionally,
development or QA Power BI reports can be revised to retrieve from a
production dataset and publish to a production App Workspace.

Once approved or validated, a Power BI Desktop report based on a
Power BI Service Live Connection to a development App Workspace
can be revised to reference a separate dataset from a production App
Workspace. Provided the production dataset follows the same
schema, the revised report can then be published to production.
Switching Power BI Service datasets is accomplished by selecting
Data source settings from the Edit Queries menu on the Home tab of
Power BI Desktop.

5. The production App Workspace is used to publish an app to a large group of
users.

Development environment
1. Create an App Workspace for development in the Power BI Service and add

members who will create and edit content.

As the workspace (Sales-DEV) will only be used for development, it
may not be necessary to assign the workspace to a Premium capacity,
or perhaps the workspace could be assigned to a smaller premium
capacity (that is, P1). The production workspace (sales) will of
course be accessed by many more users and may also contain a
larger dataset and more frequent data refresh requirements, which
can only be supported by Power BI Premium.

2. Import a Power BI Desktop file (PBIX) containing a development dataset to
OneDrive for business.

Power BI Desktop file uploaded to OneDrive for business

Clicking on the ellipsis of the file in OneDrive for Business exposes a
menu of file management options including version history,
download, share, and more. Version history identifies the user, time,
and any comments associated with the modification of a given
version. The file or folder of files can be shared with other users or
Office 365 groups.

3. Connect to the PBIX file on OneDrive for business from the development App
Workspace.

Open the App Workspace in the Power BI Service and click on the Get Data
menu item below Datasets.

Click on Get from the Files option under Import or Connect to Data and select
the OneDrive for business icon.

Creating a connction from the Dev App Workspace to the PBIX file on OneDrive for business

Navigate to the PBIX file, select it, and click on the Connect button in the top
right.

The dataset will be imported to the App Workspace, and by default an
hourly synchronization will be scheduled such that changes in the
PBIX file will be reflected in the Power BI Service. See How it
works... for more details on this process.

4. In Power BI Desktop, create reports based on live connections to the dataset in
the development App Workspace.

Power BI Service live connection to the development App Workspace dataset

Publish the reports, save the PBIX files, and then upload the report files to
OneDrive for business (or an alternative).

5. In the Power BI Service, configure a scheduled refresh if the dataset is not in
DirectQuery mode.

6. Create and format dashboards based on the published reports.
7. Publish an App from the development App Workspace to a small security group

of QA or test users.

Production environment
1. Create an App Workspace for Production in the Power BI Service and add

members who will create and edit content.
For large deployments, assign the production workspace to a Power BI
Premium capacity.

2. Import a Power BI Desktop file (PBIX) containing a production dataset to
OneDrive for business.

The production dataset should follow the same schema of the
development dataset but may contain sensitive data and
corresponding row-level security roles. Additionally, development
and production datasets often have their own development and
production data sources, such as a Dev and Prod SQL Server. Any
variance between these source systems should be known and tested to
isolate this issue from any version control issues with Power BI
content.

3. Connect to the Production PBIX file on OneDrive for business from the
development App Workspace.

4. Configure a scheduled refresh for the dataset if in import mode.
If DirectQuery or a live connection is used, configure the dashboard tile
cache refresh frequency based on requirements.

5. Add users or security groups to RLS roles configured in Power BI Desktop for
the dataset.

6. Clone existing reports from the development workspace to the production
workspace.

7. Rebind the cloned reports to the production dataset.
Alternatively, open the development reports in Power BI Desktop, switch
their data source to the production App Workspace dataset (see Data
Source Settings under Edit Queries), and publish these reports to the
production App Workspace.

At the time of this writing, only the Power BI REST APIs are
available to execute the clone and rebind report operations. A user
interface in the Power BI Service (for App Workspaces) for cloning
and rebinding reports is expected soon, and other lifecycle features
such as cloning dashboards will likely follow this release. See the
How it works... section for details on the two Power BI REST APIs.

8. Publish an app from the production App Workspace to a security group.

How it works...

Automated report lifecycle - clone and
rebind report APIs

The clone report and rebind report Power BI REST APIs can be used to deploy
reports from a development App Workspace to a Production App Workspace
Clone report allows you to clone a report to a new App Workspace

https://api.powerbi.com/v1.0/myorg/reports/{report_id}/Clone

Rebind report allows you to clone a report and map it to a different dataset
https://api.powerbi.com/v1.0/myorg/reports/{report_id}/Rebind

OneDrive for business synchronization
Power BI Desktop (PBIX) and Excel (XLSX) files stored in OneDrive or
SharePoint Online are synchronized with their corresponding datasets and
reports in the Power BI Service approximately every one hour.

The synchronization process (technically a file level package refresh)
is managed by the Power BI Service and copies the dataset out of the
PBIX file and into Power BI. The process also reflects any changes
made to report pages. This process does not, however, run a data
refresh from the underlying source data. See the Configuring live
connections and refresh schedules with the on-premises data gateway
recipe later in this chapter for details on this process.

Version restore in OneDrive for
business

Prior versions of Power BI Desktop files can be restored via OneDrive for
business version history

Version history in OneDrive for business

Select the ellipsis of a specific version and click on Restore to replace the
current version with this version

See also
Power BI REST API reference for Report operations: http://bit.ly/2v8ifKg

http://bit.ly/2v8ifKg

Sharing Power BI dashboards with
colleagues
Power BI apps are the recommended content distribution method for large corporate
BI deployments, but for small teams and informal collaboration scenarios, sharing
dashboards provides a simple alternative. By sharing a dashboard, the recipient
obtains read access to the dashboard, the reports supporting its tiles, and immediate
visibility to any changes in the dashboard. Additionally, dashboards can be shared
with Power BI Pro users external to an organization via security groups and
distribution lists, and Power BI Pro users can leverage analyze in Excel as well as
the Power BI mobile apps to access the shared data. Moreover, Power BI Free users
can consume dashboards shared with them from Power BI Premium capacity.

In this recipe, a Power BI dashboard is shared with a colleague as well as a contact
in an external organization. Guidance on configuring and managing shared
dashboards and additional considerations are included throughout the recipe and the
How it works... and There's more... sections.

Getting ready
Confirm that both the owner of the dashboard and the recipient(s) or consumers
have Power BI Pro licenses.
If the recipient(s) does not have a Power BI Pro license, check if the dashboard
is contained in an App Workspace that has been assigned to premium capacity.

Either Pro licenses or Premium capacity are required to share the
dashboard. A Power BI Pro user cannot share a dashboard hosted in Power
BI shared capacity with a Power BI Free user.

Enable the external sharing feature in the Power BI Admin Portal, either for the
organization or specific security groups.

The owner of a shared dashboard can allow recipients to reshare a
dashboard but any dashboards shared with external users cannot be
shared. Additionally, user access to the dashboard, and the ability to
reshare can be removed by the dashboard owner. Unlike the publish
to web feature described later in this chapter, external sharing can be
limited to specific security groups or excluded from specific security
groups.

How to do it...
In this example, Jennifer from the BI team is responsible for sharing a dashboard
with Brett from the Canada sales team and another X from outside the organization.
Brett will need the ability to share the dashboard with a few members of his team.

1. Create a dedicated App Workspace in the Power BI Service.

Content should always be distributed from App Workspaces and not
My Workspace. Even in relatively informal scenarios such as sharing
a dashboard with one user, sharing a dashboard from My Workspace
creates a dependency on the single user (Jennifer in this case) to
maintain the content. Sharing the content from an App Workspace
with multiple members of the BI team addresses the risk of Jennifer
not being available to maintain the content and benefits from
Microsoft's ongoing investments in administration and governance
features for App Workspaces.

2. Set the privacy level of the workspace to allow members to edit content and add
team members to the workspace.

3. Create a security role in Power BI Desktop for the Canada sales team.

4. Publish the Power BI Desktop file to the workspace and add members or
security groups to the Canada security role.

Adding dashboard recipients to members of a row-level security role

By using security roles, an existing Power BI Sales dataset
containing sales for other countries can be used for the dashboard.
Brett will be allowed to share the dashboard, but RLS will prevent
him and those mapped to the security role via security groups from
viewing sales data for other countries. See Chapter 8, Implementing

Dynamic User-Based Visibility in Power BI for details on configuring
RLS.

5. Create new Power BI Desktop report files with live connections to the
published dataset in the app workspace.

6. Build essential visualizations in each file and publish these reports.

Per other recipes, reports should be developed locally in Power BI
Desktop rather than the Power BI Service and OneDrive for Business
is recommended to maintain version control.

7. In the Power BI Service, create a new dashboard, pin visuals from reports, and
adjust the layout.

8. Click on Share from the Canada Sales Dashboard in the App Workspace of the
Power BI Service.

Sharing the Canada Sales dashboard from the frontline BI self-service App Workspace

9. Add Brett, the external user, and optionally a message in the share dashboard
form.

Share dashboard in the Power BI Service

Power BI will detect and attempt to auto-complete as email addresses
are entered in the Grant access to input box. Additionally, though
sharing dashboards is sometimes referred to as peer-to-peer sharing,
a list of email addresses can be pasted in, and all common group
entities are supported, including distribution lists, security groups,
and Office 365 groups. Per the image, a warning will appear if a user
external to the organization is entered.

10. In this example, leave the Allow recipients to share your dashboard option
enabled below the message. Click on Share.

If left enabled on the share form, recipients will receive an email notification
as well as a notification in Power BI.

Notification center in the Power BI Service of the dashboard recipient

A URL to the dashboard is also provided at the bottom of the share dashboard
form for facilitating access.

The Canada Sales dashboard in the Shared with Me tab of the Power BI Service

For the recipient, the dashboard appears in the Shared with me tab. If
enabled by the dashboard owner (and if the user is internal to the
organization), the option to reshare the dashboard with others will be
visible. The user will be able to favorite the dashboard, access it from
the Power BI mobile apps, and interact with the content such as filter
selections but cannot edit the report or dashboard. The user can,
however, create Excel reports against the underlying dataset per the
There's more... section.

How it works...

Managing shared dashboards
Members of the App Workspace with edit rights can disable reshares of the
dashboard and stop sharing altogether.

Share dashboard form: access tab

Open the dashboard, click on Share, and then select the Access tab to identify
and optionally revise the current access.

There's more...

Analyze shared content from Excel
The recipient of the shared dashboard can use the Power BI Publisher for Excel
to build ad hoc pivot table reports.
Click on Connect to Data from Power BI Publisher and identify the shared
dataset icon (visible under My Workspace).
This is a powerful feature, as the entire dataset is available (that is, all
measures and columns) unlike in the Power BI Service.

In the Power BI Service, only the shared dashboard and reports are
available--not the dataset. Additionally, the queries sent from the
local Excel workbook to the dataset in the Power BI Service will
respect the RLS definitions.

Sharing dashboards from Power BI
mobile apps

Dashboards can also be shared from the Power BI mobile applications for all
platforms (iOS, Android, and Windows).
Additionally, the same unsharing and edit rights available in the Power BI
Service are available in the mobile apps.

Configuring Power BI app workspaces
App workspaces are shared workspaces in the Power BI Service for Power BI Pro
users to develop content. The datasets, reports, and dashboards contained within App
Workspaces can be published as a Power BI app for distribution to groups of users.
Additionally, App Workspaces can be assigned to Power BI Premium capacities of
dedicated hardware to enable all users, regardless of license, to consume the
published app and to provide consistent performance and greater scalability.
Furthermore, App Workspaces retain a one-to-one mapping to published apps,
enabling members and administrators of App Workspaces to stage and test iterations
prior to publishing updates to apps.

In this recipe, an App Workspace is created and configured for Power BI Premium
capacity. Within the recipe and in the supporting sections, all primary considerations
are identified, including the scope or contents of App Workspaces and the assignment
of App Workspaces to premium capacity.

Getting ready
1. Confirm that Power BI Pro licenses are available to administrators and

members of the app workspace.
2. Ensure that the workspace aligns with the policy or standard of the organization

for Power BI content distribution.

Per the Preparing a content creation and collaboration environment
in Power BI recipe earlier in this chapter, workspaces have a one-to-
one mapping to apps and can have a wide scope (for example, sales),
a narrow scope such as a specific dashboard, or a balance between
these two extremes, such as European sales. If broad workspaces are
used, then it may not be necessary to create a new workspace for a
particular project or dashboard--this new content should be added to
an existing workspace. However, as an increasing volume of reports
and dashboards is added to workspaces it may be beneficial to
consider new, more focused workspaces and revisions to the policy.

3. If premium capacity has been provisioned but not bulk assigned to all
workspaces of an organization, determine if the new app workspace will be
hosted in a premium capacity.

Premium capacity is required to share the content with users who do not
have Power BI Pro licenses.
See the first recipe of this chapter for details on other features, benefits,
and use cases of Power BI Premium.

4. If Premium capacity has been provisioned and authorized for the new
workspace.

Evaluate the current utilization of premium capacity and determine if the
expected workload of datasets and user queries from the new app
deployment will require a larger or separate capacity.
Confirm that the app workspace administrator has workspace assignment
permission, or assign this permission in the Power BI Admin Portal per the
first step in How to do it...

How to do it...
1. Open the Power BI Admin Portal and select the provisioned capacity under

Premium Settings.

Premium capacities in Power BI Admin Portal

2. View the recent performance of the capacity via the usage measurements for
CPU, memory, and DirectQuery.

3. Ensure that the Power BI Pro user who will be the workspace administrator has
assignment permissions to the capacity.

Settings for the Power BI Premium Capacity: capacity P1 #1 8 GB model

In this example, the premium capacity hasn't experienced
performance degradations in the past 7 days--otherwise the usage
tiles would be yellow or red. Additionally, the capacity has been bulk
assigned to all workspaces for the organization per the highlighted
user permissions setting. If the capacity was not bulk assigned, the
workspace administrator would need to be included as either an
individual user or via a security group in the Apply to specific users
or groups setting.

Note that the workspaces assigned to the capacity are listed at the
bottom and can be individually removed (and thus migrated to shared
(non-dedicated) capacity). For example, it may be determined that a
workspace does not require dedicated resources or that a new app
workspace is a higher priority for the performance and scalability
benefits of Power BI Premium. Analyzing the Office 365 Audit Log
data per Chapter 10, Developing Solutions for System Monitoring and
Administration and Power BI's usage metrics can help determine
which workspaces are consuming the most resources.

4. The Power BI Pro user with workspace assignment permissions logs into the
Power BI Service.

5. Click on the arrow next to Workspaces and then click on Create app Workspace.

App Workspaces in the Power BI Service

App Workspaces assigned to premium capacity are identified with a diamond
icon in the Power BI Service.

6. Name the workspace, define the workspace as private, and allow workspace
members to edit content.

Technically it's possible to add members to a view only group and
assign developers to the role of workspace admin such that they can
edit content. This method of collaboration is not recommended, as the
view only members will have immediate visibility to all changes, as
with sharing dashboards. Published apps from App Workspaces
provide for staging deployments and are the recommended solution
for distributing content to read only members.

Creating a private App Workspace assigned to premium capacity

7. Add workspace members and associate the workspace with a Power BI
Premium capacity via the advanced slider.

Workspace members can now publish datasets and reports and create
dashboards to distribute via an app.

Currently, only individual users can be added as members and
admins of App Workspaces. In a near future iteration, AD security
groups and Office 365 modern groups will be supported as well.

In small Power BI deployments such as a team of approximately 10
users within a department, it may be unnecessary to publish an app
from an App Workspace. In this scenario, in which flexibility and self-
service BI is a top priority, all team members could be added to an
App Workspace with edit rights. Members would need Power BI Pro
licenses but could view and interact with the content via the App
Workspace itself, Excel, or the mobile apps, and could simply share
dashboards and reports with other Power BI Pro users.

How it works...

App workspaces and apps
Apps are simply the published versions of App Workspaces.

App Workspaces: one to one relationship with published apps

Users consume and interact with apps. Content is created and managed in App
Workspaces.
Consumers of Apps only have visibility to published versions of Apps, not the
Workspace content.
Per the creating and managing Power BI Apps recipe in this chapter, not all
content from an App Workspace has to be included in the published App.

App workspaces replace group
workspaces

Existing Power BI group workspaces were renamed App Workspaces, and all
new workspaces are App Workspaces.
All App Workspaces, including those converted from group workspaces, can be
used to publish apps.
All content within App Workspaces is included when the workspace is
published as an app for distribution.

As App Workspaces are intended for creation, Microsoft intends to
provide new features and configurations around the administration
and governance of their content. The added complexity of these
features within App Workspaces will not be visible to consumers of
published apps. The other workspace, My Workspace, is available to
all users (including Power BI Free users) as a personal scratchpad
and will not receive these enhancements.

There's more...

Power BI premium capacity admins
Office 365 Global Admins and Power BI Admins are Capacity Admins of
Power BI Premium capacities by default.
These admins can assign users as Capacity Admins per capacity during initial
setup of the capacity and later via User Permissions within the Premium settings
of a capacity in the Power BI Admin Portal.
Capacity Admins have administrative control over the given capacity but must
also be granted assignment permissions in the Users with assignment
permissions setting to assign workspaces to premium capacities if the capacity
admin will be responsible for associating an app workspace to premium
capacity.
Power BI Admins are expected to have the ability to assign individual
workspaces to premium capacity from the admin portal by Q4 of 2017.

See also
Manage Power BI Premium: http://bit.ly/2vq8WHe

http://bit.ly/2vq8WHe

Configuring refresh schedules and
DirectQuery connections with the on-
premises data gateway
The promise of leveraging the Power BI Service and mobile applications to provide
access to a rich set of integrated dashboards and reports across all devices requires
thoughtful configuration of both the data sources and the datasets which use those
sources. For most organizations, the primary business intelligence data sources are
hosted on-premises, and thus, unless Power BI reports are exclusively deployed to
the on-premises Power BI Report Server, the on-premises data gateway is needed to
securely facilitate the transfer of queries and data between the Power BI Service and
on-premises systems. Additionally, the datasets which typically support many reports
and dashboards must be configured to utilize an on-premises data gateway for either
a scheduled refresh to import data into Power BI or to support DirectQuery and
SSAS Live Connection queries generated from Power BI.

This recipe contains two examples of configuring data sources and scheduled
refreshes for published datasets. The first example configures two on-premises data
sources (SQL Server and Excel) for an import mode Power BI dataset and schedules
a daily refresh. The second example configures a separate on-premise SQL Server
database for a DirectQuery Power BI dataset and sets a 15 minute dashboard tile
refresh schedule.

Getting ready
1. Download and install the on-premises data gateway per Chapter 1, Configuring

Power BI Development Tools, if necessary.
2. Become an administrator of the on-premises data gateway.

Administrators of a on-premises data gateway

It's strongly recommended to have at least two administrators for each gateway
installed.

How to do it...

Scheduled refresh for import mode
dataset
In this example, an import mode dataset has been created with Power BI Desktop to
retrieve from two on-premises data sources--a SQL Server database and an Excel
file.

Configure data sources for the on-
premises data gateway

1. Identify the server name and database name used in the Power BI Desktop file.
2. Identify the full path of the Excel file.
3. In the Power BI Service, click on the Gear icon in the top right corner and select

Manage Gateways.

4. From the Manage Gateways interface, click on Add Data Source and choose
SQL Server.

5. Provide an intuitive source name that won't conflict with other sources and enter
the server and database names.

Adding a SQL Server database as a source for an on-premises data gateway

The server and database names for the gateway must exactly match the names
used in the Power BI dataset.

If configuring an SSAS data source (data source type = analysis
services) for a gateway, ensure that the credentials used are also an
SSAS server administrator for the given SSAS instance. The server

administrator credential is used in establishing the connection but
each time a user interacts with the SSAS data source from Power BI
their UPN (user principal name) is passed to the server via the
EffectiveUserName connection property. This allows for RLS roles defined
in the SSAS database to be applied to Power BI users.

6. Under Advanced Settings, check that the source uses the appropriate privacy
level such as organizational or private.

7. Click on Add and then, via the Users tab, add users authorized to use this
gateway for this data source.

Successful setup of a data source for the on-premises data gateway

8. Add an additional data source for the Excel file using the file data source type.

Excel file data source configured for the on-premises data gateway

9. Like the SQL Server data source in step 7, authorize users for this gateway and
this data source via the users page.

The gateway will appear as an option for data refresh if the following three criteria
are met:

The user is listed on the Users page of the data source(s) within the gateway
The server and database names configured in the Power BI Service for the
gateway match the names used in the Power BI Desktop file
Each data source used by the dataset is configured as a data source for the
gateway

Note that only a single gateway can be used to support the refresh or queries of a
given dataset.

As of this writing, only certain online sources are supported by the
on-premises data gateway. Therefore, given the single gateway per
dataset requirement, if an online data source used by the dataset isn't
yet available to the on-premises gateway, a current workaround is to
temporarily install and configure the personal gateway.

Schedule a refresh
The following process could be carried out by a Power BI Pro user authorized to use
the gateway for the two data sources:

1. Publish the import mode Power BI Desktop file (dataset) to an App Workspace
in the Power BI Service.

2. Access this App Workspace from the datasets list and click on the Schedule
refresh icon.

Actions available to a published dataset in the Power BI Service

Alternatively, click on the ellipsis and then select Settings. Both options open
the settings for the dataset.

3. From settings for the dataset (AdWorksEnterprise), associate the dataset with the
gateway.

Associating the AdWorksEnterprise dataset with the Power BI cookbook gateway

4. Click on Apply on the Gateway connection menu; a successful connection
message will appear.

The gateway appeared because both the Excel file and the database were
added as sources for this gateway.

5. In the Scheduled refresh menu below gateway connection, configure a daily
refresh with email notification of failures.

Scheduled refresh of dataset

There is no guarantee that scheduled refreshes will occur at the exact
time they are scheduled, such as 5:00 AM in this example. The actual
refresh may take place as long as 20-30 minutes after the time
scheduled in the Power BI Service.

DirectQuery dataset
In this example, a Power BI Desktop file (dataset) in DirectQuery mode based on a
separate on-premise SQL Server database must be deployed to the Power BI
Service. The intent is for the dashboards based on this dataset to be as current as
possible.

Configure data sources for the on-
premises data gateway

1. Like the import mode dataset, add the SQL Server database as a data source to
the gateway.

2. Assign user(s) to this data source and gateway.

Configure the DirectQuery dataset
The following process could be carried out by a Power BI Pro user authorized to use
the gateway for the SQL Server database:

1. Publish the DirectQuery Power BI Desktop file (dataset) to an App Workspace
in the Power BI Service.

Publishing a DirectQuery dataset from Power BI Desktop

Power BI automatically configures the dataset to use a gateway by matching the
data sources configured in the PBIX file and the sources configured in the
Power BI Service for the gateway. The user must also be listed for the gateway.

2. Access this App Workspace in the Power BI Service and from the datasets list
click on Settings via the ellipsis (...).

3. Modify the scheduled cache refresh frequency from 1 hour to 15 minutes.

DirectQuery dataset settings

By default, the dashboard tiles are refreshed each hour for

DirectQuery and Live Connection datasets. In this process, queries
are sent by the Power BI Service through the gateway to the dataset
sources. In this scenario, the organization is comfortable with the
more frequent queries but in other scenarios simply a daily or even a
weekly dashboard refresh would be sufficient to avoid adding
workload to the data source.

How it works...

Dataset refreshes
Import mode datasets can be refreshed via the schedule manually in the Power
BI Service or via REST API
Only the metadata is refreshed for DirectQuery and SSAS datasets

Dashboard and report cache refreshes
Data caches used by dashboard tiles are updated after refresh operations for
import mode datasets (or manually).
For DirectQuery and SSAS live connection datasets, dashboard tiles are
updated hourly (default) or as configured in the settings for the dataset.
The Power BI Service also caches data for report visuals and updates these
caches as datasets are refreshed.

Dashboard tiles can also be refreshed manually in the Power BI
Service via the Refresh Dashboard Tiles menu item (top right, via
ellipsis). Likewise, reports can be manually refreshed from the Power
BI Service, but this is only relevant for DirectQuery and SSAS live
connections--this does not initiate a refresh for an import mode
dataset.

There's more...

Refresh limits: Power BI premium
versus shared capacity

If an import mode dataset is hosted in an App Workspace assigned to
Power BI Premium capacity, up to 48 refreshes can be scheduled per
day. Additionally, an incremental refresh will be available to datasets
in Power BI Premium workspaces, such that only changed or new
data will be loaded to the Power BI Service. If the dataset is in a
shared capacity workspace, a max of eight refreshes per day can be
scheduled and the entire dataset must be refreshed (incremental
refresh will not be available).

Currently scheduled refreshes must be separated by a minimum of 30
minutes.

Trigger refreshes via data refresh APIs
in the Power BI Service

Power BI data refresh APIs allow BI teams to trigger refresh operations in the
Power BI Service programmatically.

For example, a step can be added to an existing nightly (or more
frequently) data warehouse or ETL process that initiates the refresh
of a Power BI dataset which uses this data source. This allows
dashboards and Reports in the Power BI Service to reflect the latest
successful refresh of the data source(s) as soon as possible. In other
words, the gap or lag between the source system refresh and the
Power BI dataset scheduled refresh can be reduced to the amount of
time needed to refresh the dataset in the Power BI service. Note that
the dataset refresh process itself will soon be more efficient via
incremental refreshes for workspaces assigned to Power BI Premium
capacities.

To trigger refresh for a dataset in the Power BI Service, simply make the following
HTTP request:

POST https://api.powerbi.com/v1.0/myorg/groups/{group_id}/datasets/{dataset_id}/refreshes

See documentation on Power BI REST API authentication and the Power BI
REST API reference in See also

See also
Power BI REST API reference: https://msdn.microsoft.com/en-us/library/mt203551.aspx
Power BI REST API authentication: http://bit.ly/2hsJMBr

https://msdn.microsoft.com/en-us/library/mt203551.aspx
http://bit.ly/2hsJMBr

Creating and managing Power BI apps
The datasets, reports, and dashboards contained in the App Workspaces described
earlier in this chapter can be published as apps to make this content accessible to
users. Apps can be configured for an entire organization or specific users or groups
and published and optionally updated from their corresponding App Workspaces.
Users can easily access and install published apps and they obtain read access to
view and interact with apps in both the Power BI Service and Power BI mobile
applications. Additionally, if the App Workspace for the app has been assigned to a
Power BI Premium capacity, the app will be available to all users, including those
without Power BI Pro licenses and users will also benefit from the improved
performance, scale, and other features of Power BI Premium.

"Apps are our solution to enterprise-scale distribution of content in Power BI."
- Ajay Anandan, senior program manager, Microsoft

In this recipe, an App Workspace (Canada Sales) is published as an App and
installed by a user. Additional details on the comparison of Apps with content packs,
which Apps will soon replace, is included in the There's more... section.

Getting ready
1. Determine if consumers of the app will have access via individual Power BI

Pro licenses or if the App Workspace will be assigned to a Power BI Premium
capacity.

2. Either assign Power BI Pro licenses to consumers or assign the App Workspace
to a Power BI Premium capacity per the Configuring Power BI app workspaces
recipe earlier in this chapter.

With smaller and relatively simple deployments in terms of data size,
refresh requirements, and the volume of users, it may be more cost
effective to simply publish the app to the shared capacity and assign
Power BI Pro licenses to users. Apps and Power BI Premium
capacities are particularly well suited for wider distribution, with
many read only users and more demanding requirements that
leverage Premium features such as incremental refreshes and larger
datasets.

3. Identify any content in the App Workspace which should be excluded from the
published app, such as test or sample reports used by the App Workspace team
but not of any value to the consumers of the App.

4. Optionally, determine whether the App should use a landing page such as a
dashboard or just the list of content.

How to do it...
In this example, the BI team has created an App Workspace (Canada Sales)
containing three dashboards and five reports for distribution to the Canada Sales
organization. All of this content is based on one dataset, a published Power BI
Desktop file (PBIX) and with Row-level security has been applied.

Publishing an app
1. Open the Canada Sales App Workspace in the Power BI Service.
2. Set the INCLUDED IN APP property for each item in the workspace (that is

reports and dashboards) to Included or Not included.

Selective publish in App Workspaces

When Apps were first released, all content from the source App
Workspace was included in the App. The selective publish feature
reflected in the preceding screenshot allows the owners or
administrators of the App Workspace to optionally utilize additional
dashboards, reports, and datasets within the workspace without
exposing this content to consumers of the App.

3. Click on the Publish app button in the top right menu.
If the app has already been published, an update app icon will appear but
link to the same menus.

4. Enter a brief description on the Details menu. This is required to publish the
app.

App creation menus for an App Workspace in the Power BI Service

5. On the Content menu, choose whether users will be defaulted to a specific
dashboard, report, or a basic list of the content (report, dashboards and

datasets) in the app.

Default landing page setting for app users

6. On the Access menu, choose the specific individuals or security groups to
distribute the app to.

Granting access to the app to members of a security group

7. Click on Finish at the top right, then select Publish.

Successful publishing message with URL to the app

8. Power BI Service will check that the access email addresses are valid and
provide a URL to the app.

The app icon can be set to an image if an exchange online license is

available to an App Workspace member. A members option will
appear when clicking on the ellipsis next to the App Workspace, and
this links to the Office 365 Outlook account associated with the
workspace. Hover over the workspace icon in Outlook Online, select
the pencil icon, and navigate to the image you'd like to use for the
workspace.

Distributing and installing the app
The URL to the app, as well as URLs to dashboards within the app, will be
available on the Access menu in the App Workspace via the Update app button.
URLs to the app can be added to portals or sent via email or instant message
(IM).
Alternatively, users can select the Apps menu in the Power BI Service and find
the app in the AppSource gallery.

Apps menu in the Power BI Service

All content consumption options, including apps are listed above
Workspaces. Users can add apps, to their list of Favorites like
dashboards and Apps accessed also appear in the Recent menu. In the
near future, it will be possible to push apps directly to users without
the need to share the link or to find and install the app in AppSource.

Click Get Apps or Get More Apps and find the published app for installation.

Published App available for install via AppSource

Users can click on View content list at the the top right to see all dashboards,
reports, and datasets in the app

The content list menu provides links to directly open each dashboard
or report. Additionally, the View Related items feature exposes
dependencies between the content and, for Power BI Pro users, an
analyze in Excel option allows the user to download the ODC file for
connecting from a local Excel workbook.
Folders have been a highly requested feature and are expected to be
available to apps relatively soon. As an additional organizational or
grouping layer, apps could more easily support broadly scoped App
Workspaces (for example, Finance) that contain many dashboards
and reports.

How it works...

App workspaces to apps
Apps are exclusively the published version of all content contained within App
Workspaces

Per step 2 of the Publishing an app section, not all content in the App
Workspace has to be included in the published app

Both App Workspace admins and members of App Workspaces with edit rights
can publish and update apps
The dashboards and reports of apps retain their identity as part of the app and
thus simplify user navigation
Other distribution methods (that is, sharing and content packs) can lead to a
cluttered, more complex user experience

There's more...

Apps replacing content packs
Organizational content packs in which specific dashboards and reports of a
workspace can be defined and which allow recipients to personalize a copy of
the content received will soon be replaced by Apps
Content packs are currently supported from App Workspaces but should only be
used if both user customization is required and if the new customization feature
of Apps is not yet available

Building email subscriptions into Power
BI deployments
Power BI reports and dashboards can be scheduled for delivery to user email
accounts via subscriptions. Once a subscription is configured in the Power BI
Service, Power BI will send an updated snapshot of the dashboard or report page to
the user email account, along with a link to access this content in Power BI.
Subscription emails are generated based on changes to the source dataset, such as
daily scheduled refreshes and depending on the type of connection method used by
the source dataset, the frequency of email deliveries can be defined for the
subscription.

This recipe walks through the process of configuring and managing report and
dashboard subscriptions. Additional details on current limitations such as custom
visuals, published Power BI Apps, and alternative email addresses are included
within the recipe and the There's more... section.

Getting ready

Determine feasibility - recipient,
distribution method, and content

As of July 31, 2017, subscriptions are created and managed by
individual Power BI users on their own behalf. The user must either
have a Power BI Pro license or the reports and dashboards to be
subscribed to must be published from an App Workspace in Power
Premium capacity. Additionally, subscription emails are exclusive to
the User Principal Name (UPN) and only custom visuals that have
been certified by Microsoft for security are supported.

The abilities to configure email subscriptions for other users or
security groups and to receive emails at non-UPN email accounts are
both planned enhancements to subscriptions.

1. Identify the users requiring email subscriptions and either assign Power BI Pro
licenses or ensure that the Apps these users will access are published from an
App Workspace assigned to a Power BI Premium capacity.

2. In a Power BI Pro license only scenario, add the user to an app workspace
containing these reports and dashboards.

3. An app workspace administrator can set member privacy to view only and add
the users as members.

Content creators or BI/IT professionals could be defined as workspace
admins to retain edit rights.

How to do it...
In this scenario an App has been published from an App Workspace in Power BI
Premium Capacity to a security group of USA Sales users. The USA Sales user, who
doesn't have a Power BI Pro license, can create and manage subscriptions as
follows.

Create dashboard and report
subscriptions

1. Log into the Power BI Service and install the published app (USA Sales
Analysis).

Published USA Sales Analysis App available in AppSource

In this example, the user opened the Apps menu item (under Recent) and clicked
Get it now for USA Sales Analysis
Apps that the user has access to will be visible, and alternatively, a URL to the
App can be shared with users

2. Open the dashboard and select Subscribe in the top menu (envelope icon).

Subscribe option (top right) for a dashboard from the app

3. A slider bar for the dashboard will be enabled--click on Save and Close.

Dashboard email subscription

4. Open a report in the app, navigate to the specific report page, and click on
Subscribe in the top menu (envelope icon).

Subscribe to a report page

5. Choose the report page to subscribe to via the report page dropdown. Click on
Save and Close.

6. Repeat this process for other pages in the same report or for other report pages.

Given that links to the dashboards and reports will be included in the
emails, and given the data alerts and email notifications capability
described in Chapter 5, Creating Power BI Dashboards, it may not be
necessary to configure more than a few subscriptions. To minimize
emails received and subscriptions to manage, try to consolidate
critical measures in dashboards and onto summary level report pages
per report. The user will be able to quickly access the reports
supporting the dashboard, as well as the other report pages of a
report subscription.

Manage subscriptions
To manage subscriptions, such as disabling, deleting, or changing the frequency of
emails, a user has two options:

1. Access the app and open any dashboard or report.
2. Click on Subscribe and then Manage all Subscriptions at the bottom of the

subscriptions menu.
Alternatively, with the app open, the user can click on Settings from the
Gear icon and navigate to Subscriptions.

Subscriptions in App Workspace settings

Each dashboard and report with a subscription is identified along with the
number of subscriptions per report.

With Power BI's increased focus on supporting large scale
deployments (that is, Power BI Premium, apps) in which many users
only need minimal read access (such as a daily email), more robust
subscription features and controls are expected. For example, if an
app workspace is assigned to a Premium capacity, then workspace
administrators may be able to configure subscriptions for recipients
who have not been assigned Power BI Pro licenses.

There's more...
Users cannot create subscriptions to dashboards that have been shared with
them if the dashboard was shared from a separate Power BI tenant
For dashboard subscriptions, streaming, video, and custom web content tiles are
not yet supported

See also
Certified custom visuals: https://powerbi.microsoft.com/en-us/documentation/powerbi-custom-visu
als-certified/
Power BI email subscriptions: https://powerbi.microsoft.com/en-us/documentation/powerbi-servi
ce-subscribe-to-report/

https://powerbi.microsoft.com/en-us/documentation/powerbi-custom-visuals-certified/
https://powerbi.microsoft.com/en-us/documentation/powerbi-service-subscribe-to-report/

Publishing Power BI reports to the
public internet
The publish to web feature in the Power BI Service allows for Power BI reports to
be shared with the general public by embedding the report within websites, blog
posts, and sharing URL links. If the publish to web tenant setting is enabled and if a
user has edit rights to a report an embed code can be generated containing both the
HTML code for embedding the report and a URL to the report. All pages of the report
including any custom visuals and standard interactive functionalities such as filtering
and cross highlighting, are available to consumers of the report. Additionally, the
report is automatically updated to reflect refreshes of its source dataset and embed
codes can be managed and optionally deleted if necessary to eliminate access to the
report via the embed code and URL.

This recipe walks through the fundamental steps and considerations in utilizing the
publish to web feature.

Getting ready
The publish to web feature is enabled for organizations by default.
However, given the clear security risk of confidential information
being exposed to the public, administrators may choose to disable
this feature until a business case or project requiring the
functionality has been formally approved. Additionally, some
organizations may choose to disable this feature until it can be
enabled for only specific security groups, like with other Power BI
features.

1. In the Power BI Service, click on the gear icon and select admin portal to open
the Power BI admin portal.

2. Find Publish to web in the list of tenant settings and enable the feature if
disabled.

Publish to web setting within tenant settings of the Power BI Admin Portal

The publish to web feature can be either enabled or disabled for all
users in the organization. Some tenant settings, such as export data
and print dashboards and reports offer more granular administrative
controls. For example, the Print dashboards and reports feature can
be enabled for only a specific security group or groups within an
organization or it can be enabled for the entire organization, except
for a specific security group or groups.

How to do it...
1. Create a private app workspace in the Power BI Service to host publish to web

reports and datasets.
2. Assign a descriptive name to the workspace that associates it to publish to web

content or publicly available data.
3. Allow members to edit content and only add the individual users that require

edit rights to the content.
4. Optionally, assign the app workspace to a Power BI Premium capacity.

A separate workspace isn't technically necessary for publish to web,
but this isolation is recommended for manageability and limiting the
risk of publishing confidential or proprietary information. Likewise,
Premium capacity isn't required in all Publish to web scenarios but
could be appropriate for larger datasets or when more frequent data
refreshes and consistent performance are important.

5. Create a new Power BI Desktop file that will serve as the dataset for the
publish to web report.

6. Develop essential data connections, queries, model relationships, and measures
to support the report.

7. Save the file and publish it to the app workspace created earlier.

The sources, query transformations, and modeling of the dataset
should be minimal to the needs of the publish to web report. Per Chapt
er 3, Building a Power BI Data Model, usually import mode models
(rather than DirectQuery) are appropriate and, also like other
models, a centralized and managed data source is preferred over M
query transformations embedded in the dataset.

SSAS tabular databases hosted on premises cannot be used as
datasets for publish to web reports and RLS cannot be applied to the
dataset.

8. Open a new Power BI Desktop file that will serve as the publish to web report.
9. Click on Get Data and connect to the published dataset via the Power BI

Service data connector available in the online services category of data sources.

10. Develop the report including all visuals, layout, and formatting options,
including page size (16:9 or 4:3).

11. Name the file, save, and click on Publish. The report will be published to the

workspace of the source dataset.

OneDrive for business can be used to maintain version control of the
Power BI Desktop files published as datasets and reports. Click on
the ellipsis next to the file in OneDrive for business and select
Version History to access prior versions. Other forms of source
control common to BI projects, such as Team Foundation Server, are
not available to Power BI Desktop files.

12. Access the app workspace in the Power BI Service.
13. Add any new on-premises data sources to the on-premises data gateway in the

manage gateways portal.
14. Open the settings for the dataset, assign a gateway (if applicable), and configure

a scheduled refresh.
15. Open the report, click on File and select Publish to web.

Publish to web Option for a Report in the Power BI Service

16. Click on Create embed code and then select Publish in the following message
box that warns about public access.

A Success message box will appear with the URL to the report and the
HTML code for embedding the iFrame.

17. Click on the Gear icon again and select Manage embed codes.

Manage embed codes interface for the AdventureWorks Publish to Web App Workspace

All embed codes for the given workspace will be exposed as either Active,
Blocked, or Not Supported.

A Not Supported status indicates that one of the few unsupported
features has been used by the report, such as RLS, SSAS tabular on
premises, or R visuals. As of July 30, 2017, ArcGIS Maps for Power
BI are also not supported in Publish to web reports.

18. Click on the ellipsis per the image and select Get code.

Embed Code for Publish to web Report

The html code provided can be edited manually to improve the fit of
the report on the destination for embedding. Adding 56 pixels to the
height dimension can adjust for the size of the bottom bar. Setting the
page size in Power BI Desktop, the view mode in the Power BI
Service (View button next to File), and manually adjusting the iFrame
height and width values may be necessary for a perfect fit.

How it works...

Publish to web report cache
Power BI caches the report definition and the results of the queries required to
view the report as users view the report
Given the cache, it can take approximately one hour before changes to the report
definition or the impact of dataset refreshes are reflected in the version of the
report viewed by users

There's more...

Embed in SharePoint online
Per the image of the report File menu, Power BI reports can also be embedded
in SharePoint online
Clicking on Embed in SharePoint Online provides a URL that can be used with a
Power BI web part in SharePoint online
Users accessing the SharePoint online page must also have access to the report
in the Power BI Service

See also
Publish to web from Power BI: https://powerbi.microsoft.com/en-us/documentation/powerbi-serv
ice-publish-to-web

https://powerbi.microsoft.com/en-us/documentation/powerbi-service-publish-to-web

Enabling the mobile BI experience
The Power BI mobile apps have been designed to align closely with the user
experience and feature set available in the Power BI Service. This provides a
simple, familiar navigation experience for users and allows BI and IT teams to
leverage existing Power BI assets and knowledge to enhance the mobile experience
in their organization. In relatively new or less mature Power BI deployments, core
functionalities such as mobile optimized reports and dashboards, data driven alerts,
and annotate and share can deliver significant value. For more advanced and specific
use cases, conversational BI with Q & A, interactive meetings with the Power BI
Windows 10 universal app, geo-filtering, and more, provide mobile solutions to
mobile business scenarios.

This recipe contains two processes to take advantage of Power BI's mobile
capabilities. The first process helps identify 'quick win' opportunities that require
limited BI/IT investment to better utilize basic Power BI mobile features. The second
process identifies somewhat less common yet powerful and emerging uses cases for
Power BI mobile applications.

How to do it...

Enhance basic mobile exploration and
collaboration

1. Identify the most highly used dashboards and reports.
Open the Power BI admin portal (Gear icon: admin portal) and select the
usage metrics menu

Usage Metrics in the Power BI Admin Portal

The most consumed dashboards and packages visuals provide a summary of
consumption or usage by count of users

For much more granular analysis of usage, the Office 365 Audit Log
for Power BI events can be imported and analyzed per Chapter 10,
Developing Solutions for System Monitoring and Administration,
recipe Visualizing log file data from SQL server agent jobs and from
Office 365 audit searches. Additionally, usage metrics reports
specific to individual dashboards and reports are now available in
the Power Bi Service in the Actions menu. Though scoped to a
specific item, these reports also indicate the split between web and

mobile usage.

2. Decide which dashboards and reports from step 1 to target for mobile
enhancements.

3. Optimize Power BI dashboards for mobile consumption.

Open the dashboard and switch to Phone View.

Switching from Web view to Phone View for a Dashboard in the Power BI Service

Unpin image, text, and less mobile-friendly or relevant tiles from the phone
view.

Resize and organize KPIs and essential visuals at the top of the Phone View.

Customizing Phone View of a Dashboard in the Power BI Service

Only the owner of the dashboard will have the option to customize
the Phone view in the Power BI Service. As per Chapter 4, Authoring
Power BI Reports, the Phone layout for report pages is implemented
within Power BI Desktop files. Therefore, any Power BI Pro User
with access to the App Workspace of the report in the Power BI
Service and the source PBIX file(s) could optimize these reports for

mobile consumption.

4. Open the reports (PBIX files) from step 2 locally and enable the responsive
formatting property for visuals.

Responsive Visuals (Preview) in Power BI Desktop

By enabling the Responsive Visuals property for Cartesian visuals
such as the column, bar, and line charts, these visuals will be
optimized to display their most important elements as their size is
reduced. This effectively makes it realistic to use these more dense
visuals in the phone layout for reports and phone view for
dashboards. However, it still may make sense to prioritize KPI, card,
and gauge visuals in mobile layouts, given the limited space.

5. On the View tab of the most important report pages, click on Phone Layout and
design a custom mobile view of the page.

See Chapter 4, Authoring Power BI Reports, recipe Designing mobile
report layouts for details on this process.

6. Publish the updated Power BI reports to their App Workspaces in the Power BI
Service and repin any dashboard tiles.

7. Test the mobile optimized dashboards and reports from mobile devices.
8. Publish updates from Power BI App Workspaces to Power BI apps containing

these mobile enhancements.
9. Check that Favorites are being used for dashboards and for apps by mobile

users.
10. Demonstrate the process of configuring a data alert with notification on a

dashboard tile in the Power BI mobile app.

Notifications of Data Alerts Appear Outside the Mobile App

Data alerts configured by users are only visible to those users, and
there are not limits on the volume of alerts that can be configured.

For example, a user may want to set two alerts for the same
dashboard tile to advise of both a high and a low value. Currently,
data alert and favorite activity is not stored in the Office 365 audit
logs, so it's necessary to engage mobile users on these features to
understand adoption levels.

11. Demonstrate the annotate and share feature and related scenarios to mobile
users.

Annotation Added to a Power BI Report in Power BI Mobile and Shared via email

In this example, a report accessed in Power BI mobile is lightly
annotated, and a short message is shared with a colleague,
requesting further analysis. A link to the report annotated is built
into the shared email enabling the recipient to immediately act on the
message and optionally share an annotated response that addresses
the request.

Enable advanced mobile BI
experiences

1. Use the Power BI Windows 10 universal App in meetings and presentations.

Power BI Windows 10 Universal App

The Windows 10 universal app supports touch-enabled devices, annotations,
and easy navigation controls.

2. Optimize datasets conversational BI with Q & A.

See the recipe Preparing your datasets and reports for Q & A Natural
Language Queries in Chapter 5, Creating Power BI Dashboards, for more
details.

Test common questions and provide users with examples and keywords to
better use the feature.

3. Leverage operational features such as scanning barcodes and geo-filtering.

Integrate a product column containing barcodes into a dataset and set the data
category to Barcode.

Collaborate with frequently traveling stakeholders on the reports they need to
reflect their current location.

How it works...

Responsive visualizations
In this example, the responsive visuals formatting property has been enabled for
a clustered column chart.

Responsive Formatting Enabled: Clustered Column Chart Dynamically Resizes

Despite its very small size (148 x 120), the essential data from the visual is still
displayed and tooltips provide details.

There's more...

Apple watch synchronization
Power BI dashboards can be synchronized with the Apple Watch via the Power
BI for iOS application.
The Power BI Apple Watch app comes with the Power BI app for iOS--no extra
downloads are required.

Index Screen (left) and the In-Focus Tile (right) of the Power BI Mobile App on the Apple Watch

Simply open a dashboard in Power BI for iOS, click on the ellipsis (...) and then
click on Sync with watch.
Only card and KPI tiles are supported, but Apple Watch faces can be configured
to display one of the Power BI tiles.

SSRS 2016 on-premises via Power BI
mobile apps

SSRS Reports can be accessed and viewed from the Power BI mobile apps.

Navigation Menu in Power BI Mobile with Connection to an SSRS Server

Tap the global navigation button (three lines next to Favorites) and then select
the gear icon highlighted in the image.
The Settings menu will then expose a Connect to Server option for a report
server.

Up to five SSRS report server connections can be configured for all
devices.

As of this writing, Power BI Report Server supports on-premises
Power BI reports in addition to all other report types included in
SSRS 2016 and is available as a preview for iOS and Android devices.

Filters on phone reports
Filters applied to the report, page, and visual level will soon be available in
Power BI mobile applications
This will include the same filtering options available in Power BI, including top
N and advanced filtering conditions

Report Filters in Power BI Mobile

Reports with filters that are applied at any scope (report, page, or visual) and
which use phone layout will be able to interact with filters as they can in Power
BI Desktop and the Power BI Service

See also
SSRS 2016 in the Power BI mobile apps: http://bit.ly/2noIloX

http://bit.ly/2noIloX

Integrating Power BI with Other
Applications
In this chapter, we will cover the following recipes:

Integrating Excel and SSRS objects into Power BI solutions
Migrating a Power Pivot for Excel Data Model to Power BI
Accessing and analyzing Power BI datasets from Excel
Building Power BI reports into PowerPoint presentations
Migrating a Power BI Data Model to SSAS tabular
Accessing MS Azure hosted services such as Azure Analysis Services from
Power BI
Using Power BI with Microsoft Flow and PowerApps

Introduction
Power BI tools and services--including Power BI Desktop, the Power BI Service,
and Power BI Mobile applications--form a modern, robust business intelligence and
analytics platform by themselves. Power BI Premium further extends the scalability
and deployment options of Power BI, enabling organizations to deliver Power BI
content to large groups of users via apps in the Power BI Service, the on-premises
Power BI Report Server, embeds within custom applications, or some combination
of these distribution methods.

However, many organizations either already have extensive self-service and
corporate BI assets and skills in other applications such as Excel, SQL Server
Analysis Services (SSAS), and SQL Server Reporting Services (SSRS), or are
interested in utilizing the unique features of these tools as part of their Power BI
solutions. As one example, an organization may choose to migrate all or part of a
Power BI dataset built with Power BI Desktop to an IT-managed SSAS model in
Visual Studio, develop both SSRS reports and Power BI reports against this model,
and consume these different report types from the same Power BI dashboard.
Additionally, organizations must evaluate current and future use cases for Excel, such
as whether Excel-based queries and data models should be migrated to Power BI
datasets and how the Analyze in Excel feature can be best utilized to further augment
Power BI and other reporting tools.

The recipes in this chapter highlight new and powerful integration points between
Power BI and SSAS, SSRS, Excel, PowerPoint, PowerApps, and Microsoft Flow.
This includes migrating a Power BI Desktop file to SQL Server Analysis Services,
leveraging DAX as a query language to support custom reports in both SSRS and
Excel, and utilizing cube formulas to build template or scorecard report layouts.
Additionally, an example is provided of designing an automated workflow with
Microsoft Flow to push data from a relational database to a streaming dataset in the
Power BI Service, thus delivering real-time visibility to source data changes via
common Power BI visualization and data alert capabilities.

Integrating Excel and SSRS objects
into Power BI Solutions
Power BI Desktop is the primary report authoring tool for content published to the
Power BI Service as well as for Power BI report visuals embedded in custom
applications. However, for many organizations a significant portion of existing BI
workloads with SSRS and data analysis in Excel must be maintained. In many cases,
existing SSRS reports and Excel-based data analysis processes can be migrated to
Power BI but Power BI is not intended as a full replacement for all the features and
use cases these tools support. The Power BI Service accounts for the need of
integrated visibility across Power BI, Excel, and SSRS-based content via scheduled
refresh of Excel workbooks and SSRS subscriptions of pinned report items.
Additionally, given the common database engine and DAX language of Power BI,
Power Pivot for Excel, and SSAS Tabular, BI teams can take full control of reports
rendered in SSRS and Excel by authoring custom DAX queries.

This recipe contains two examples of authoring and publishing content from SSRS
and Excel to Power BI. In the SSRS report, an existing SSAS Tabular database is
used as the data source and a custom DAX query is utilized as the dataset. In the
Excel report, an additional custom DAX query is used against the workbook's
internal Data Model (formerly Power Pivot). Using DAX as a query language is of
course not required to integrate Excel and SSRS objects into Power BI but this
approach does have advantages in supporting dashboard tiles and in utilizing a
common query language across all three Microsoft BI tools.

Getting ready
1. Confirm that the Excel reporting content uses the Excel Data Model as its data

source:
Only workbooks with data models can be configured for scheduled refresh
in the Power BI Service

2. Identify the data source used by the Excel Data Model and add this source to the
on-premise Data Gateway if necessary.

3. Develop and test DAX queries in DAX Studio to be used as the datasets and
tables in SSRS and Excel, respectively.

4. Ensure that SSRS is configured for Power BI integration:

SSRS 2016 Configuration Manager—Power BI Integration

5. The Power BI Integration menu item is at the bottom of the list and includes the
Power BI tenant name (ID).

How to do it...
1. Create or identify the App Workspace in the Power BI Service to host the Excel

and SSRS report content.
2. Create or identify the dashboards in this App Workspace that will display the

Excel and SSRS report content.

SSRS
In this example, a DAX query is used to retrieve 100 customers based on current year
sales and to group their purchase activity by calendar month:

1. Create a new Report Server project in Visual Studio or open an existing one.
2. Configure a SSAS Tabular Database as a Shared Data Source for the project:

Report Server Project —shared data source Configuration for an SSAS database

3. Right-click on the reports folder, choose to add a new item, select report, and
click on Add.

4. Rename the new SSRS report and configure its data sources to use the shared
SSAS source from step 2.

5. Right-click on the datasets folder for the report and select Add Dataset.

6. Choose to embed the data source from step 4 and give the dataset a name:

Dataset Configuration for SSRS Reports

7. Click on the Query Designer button below the Query window.
8. In Query Designer, click on the Command Type DMX icon (data mining symbol)

and then select the Design Mode icon:

Dataset Query Designer - Switching to DMX Query Designer in Design Mode

A graphical interface with the Fields List, measures, and KPIs is
exposed when first opening Query Designer and this can be useful for
basic DAX queries. The DMX Design Mode, however, offers the full
flexibility of DAX queries including report scoped variables and
measures.

9. Paste in the DAX query that was developed and tested in DAX Studio in step 3
of the Getting ready section.

SSRS Dataset DAX Query

In this query, a CurrentYearSales measure is defined and then referenced
in the TopCustomers variable. This variable returns the top 100
customers (based on current year sales) via the TOPN() function as a
table. The Internet Sales fact table is filtered by both the TopCustomers
table and the Current Calendar Year rows of the date dimension table in
CALCULATETABLE(). SUMMARIZECOLUMNS() selects and groups columns based on
this filtered table and applies a single aggregation column (online
sales) using the Internet Sales Amount measure.

10. Use the dataset to create the SSRS report visuals for pinning. Charts, gauge
panels, maps, and images can be pinned from SSRS to Power BI Dashboards.

11. Deploy the SSRS report to a report folder in the SSRS portal and confirm that it
renders properly:

Stacked Column Visual in SSRS 2016 Report based on DAX Query

12. Click on the Power BI Icon and then on the Report chart.

13. Choose the app workspace, the dashboards, and the frequency of updates. Click
on Pin.

Pin to Power BI from SSRS 2016 Dialog

A Pin Successful message will appear, with a link to the dashboard in the Power BI Service.

14. In the SSRS portal, click on the Gear icon and select my subscriptions to
confirm the Power BI Dashboard subscription:

15. In the Power BI service, adjust the size, position, and optionally the title and
subtitle of the dashboard tile.

16. Click on the dashboard tile to test that the URL opens the report in the SSRS
portal. Set the link to open in a separate tab.

Excel
In this example, two tables containing the top 15 products based on year-to-date and
prior year-to-date sales are retrieved into Excel via DAX queries:

1. Open the Excel workbook containing the Data Model.
2. From the Data tab, click on Existing Connections and select one of the queries

used to load the data model. Choose one of the smaller dimension table queries,
such as Currency.

Existing Connections - M Queries used to load the Data Model

3. Click on Open in the Existing Connections menu and then select Table from the
Import Data dialog.

Import Data: The Table option

4. An Excel table reflecting the chosen query will be loaded to a worksheet.
5. Right-click on any cell inside the imported table, and from the Table options,

select Edit DAX:

Excel table options - Edit DAX

6. From the Edit DAX window, change the Command Type drop-down from Table
to DAX and paste in the DAX query:

DAX Query to Retrieve the Top 15 Products Based on Current Year to Date Sales

A measure is defined to retrieve the day number of the current year
and this is used as a filtering parameter in the definition of the 'Prior
Year to Date Sales' local measure. The Internet Sales fact table
within the SUMMARIZECOLUMNS() function is filtered to only include the
Current Calendar Year and Prior Calendar Year rows. A TOPN()
function retrieves 15 product values from this product grouping based
on the CY YTD Sales column, which reflects the locally defined
Current Year Sales measure. Finally, two additional columns are
added via ADDCOLUMNS() to display the variance and variance
percentages between the current year-to-date sales and the prior
year-to-date sales columns.

7. Copy the Excel table and edit the copied table's query to retrieve the top 15
products based on Prior Year to Date Sales. Revise the second parameter of the
TOPN() function to use the PY YTD Sales column.

8. Make any formatting adjustments to the tables such as a custom number format to
display sales in thousands.

9. Save the workbook. If available, save a copy to OneDrive for Business or an
alternative version history system.

10. In Excel 2016, click on File, and from the Publish menu, choose the App
Workspace in Power BI.

Uploading the Excel Data Model to the Power BI App Workspace

11. Click on Upload. An information bar will appear, indicating a successful
upload, with a link to the Power BI Service.

12. Open the Power BI Service; navigate to the app workspace containing the
published Excel workbook.

13. From the Workbooks menu of the app workspace, select the Schedule Refresh
icon under Actions. This will open the settings interface for Workbooks.

14. Associate the workbook with a data gateway, click on Apply, and then schedule
a data refresh:

Workbook settings - Gateway connection

15. Select the Workbook to open the report. Select the entire table and then click on

Pin.

Excel Table in the Published Workbook Selected - Pin to Dashboard is in the top right

16. On the Pin to Dashboard interface, choose the dashboard and click on Pin. Pin
both Excel tables to the dashboard.

The preview of the tile should include the Excel table name. This is
the same table name that's visible within the Table Tools Design tab
in Excel when the table is selected. Using defined Excel tables is
always recommended over ranges of cells.

17. Optionally adjust the title, subtitle, size, and positioning of the Excel tiles
relative to the SSRS tile(s):

Power BI Dashboard with SSRS and Excel-based tiles

Very rarely would a plain table of data be used in a dashboard. In
most cases, formatted Excel charts and pivot charts would be pinned
to the dashboard. The purpose of these examples is not the
visualization choices but rather the data retrieval methods with DAX
queries. Note that custom DAX queries can be reused across Power
BI datasets, Excel Data Models, and SSAS Tabular databases
provided these three tools align to a common schema.

There's more...
Power BI, Excel, and SQL Server Reporting Services (SSRS) all offer extensive
report authoring capabilities and organizations often already have significant
investments with Excel and SSRS. Therefore, common questions are "Should we stop
using Excel and SSRS?" and/or "Should we migrate existing Excel and SSRS reports
to Power BI?"

Microsoft has been clear that each of these three tools is designed for unique BI
workloads and scenarios such that organizations can choose the tool that's best suited
for their given projects as well as use multiple report authoring tools within the same
solution and overall BI deployment. Power BI is designed for a modern, interactive
and rich data exploration experience. Microsoft Excel provides great ad hoc
analytical flexibility for small scale, business maintained applications. SQL Server
Reporting Services (SSRS), now included with the Power BI Report Server,
continues to deliver robust enterprise reporting capabilities with updated paginated
report objects suited for operational reporting and distribution features such as
subscriptions.

SSRS and Excel use cases
In certain reporting scenarios, a paginated or 'classic' report with a fully configured
page and report layout defined in a Visual Studio SSRS project is appropriate.
Additionally, for organizations which can only deploy BI on-premises or if certain BI
content such as highly sensitive reports must remain on-premises, Power BI Report
Server provides a single on-premises solution and portal to include both traditional
SSRS reports and optionally Power BI reports as well.

Similarly, although Power BI Desktop supports many of the most commonly used
Excel features in addition to many other advantages, the free-form flexibility of
spreadsheet formulas for complex 'what-if' scenario modeling across many variables
and granular (cell specific) formatting controls makes Excel the proper tool in certain
small scale self-service BI scenarios.

SSRS
Operational reporting workloads in which relatively simple, tabular report
documents need to be distributed or made available across groups or teams in a
specific file format such as PDF or Excel align well with SSRS.
Paginated SSRS reports can provide a basic level of user interaction and data
visualization via report parameters and charts, but this is not its strength or core
use case. Note that SSRS also has a mobile report type and mobile report
authoring tool in the Microsoft SQL Server Mobile Report Publisher.
Power BI supports individual user email subscriptions to reports, but SSRS
supports data-driven report subscriptions that apply parameters to a report
based on subscriber information, such as Eastern Region or Sales Managers.

Future improvements to Power BI's report and dashboard
subscription capabilities along with greater control over tabular and
matrix visuals and Power BI Premium dedicated hardware may
position Power BI to assume a greater share of reporting workloads
traditionally handled by SSRS.

Microsoft Excel
Small scale analytical modeling or what if reporting involving variable inputs
and changing business logic is generally best performed by Microsoft Excel and
the business analysts closest to these needs:

Examples of this include budgeting or planning scenario tools and break
even or price sensitivity analyses
Legacy data processes driven by Excel VBA macros.

Power BI Desktop supports parameters inputs and combined with DAX and M
functions it can be customized to deliver these report types. However,
parameters are not supported in the Power BI Service and Power BI Desktop
lacks the inherent flexibility of spreadsheet formulas and custom cell-level
formatting and conditional logic.

Power BI's table and matrix visuals now support the most commonly
used Excel pivot table features such as showing values (ie metrics) on
rows, three separate conditional formatting options (Data Bars, Font
Colors, Background Colors), as well as a What if parameter
interface. These improvements, combined with training or experience
with Power BI Desktop and the many other advantages of Power BI
over Excel per Chapter 1, Configuring Power BI Development Tools,
will likely reduce existing dependencies and user preferences for
Excel.

Migrating a Power Pivot for Excel Data
Model to Power BI
As Power BI has become more mature as a product and as business users become
more comfortable with the platform it's often beneficial to migrate data models
(formerly Power Pivot) and M queries from Excel to Power BI. A table of 14 distinct
advantages of Power BI over Excel is provided in the See also section of the
Configuring Power BI Desktop options and settings recipe in the first chapter, and
includes things like greater capacity (1 GB versus 250 MB) and support for Row-
level Security (RLS). Additionally, from a data management and governance
standpoint, it's preferable to consolidate data models to either Power BI and/or
SSAS datasets and to limit Excel's role to ad hoc analysis such as pivot tables
connected to datasets in the Power BI Service via Analyze in Excel.

In this brief recipe a data model and its source M queries contained in an Excel
workbook is migrated to a Power BI dataset via the Import Excel Workbook to
Power BI Desktop migration feature. Additional details on the workbook content
imported and other options and considerations for Excel to Power BI migrations are
included in the How it works... and There's more... sections.

Getting ready
Analyze the Excel workbook to identify the components that can be imported to
Power BI Desktop. For example, a table or range of data in an Excel worksheet will
not be imported but tables in the Excel data model will be imported. Similarly,
Power View report sheets in Excel and their visuals will be migrated but standard
Excel charts, pivot tables, and worksheet formulas and formatting will not be
migrated.

In some scenarios it may be necessary to revise the Excel workbook to establish a
data source connection and query that will be migrated. Additionally, it may be
necessary to re-create Excel-specific report visualizations such as pivot tables and
charts with Power BI Desktop report authoring visuals. Excel workbooks which
contain a high level of customization such as VBA macros and complex Excel
formula logic may require significant modifications to the Excel workbook or to the
Power BI Desktop model or some combination of both to support a migration.

How to do it...
1. Save or download the latest Excel Workbook to a secure, accessible network

directory.
2. Open a new Power BI Desktop (PBIX) file.
3. From Report View, click File and navigate to the Import Excel workbook

contents menu item.

Import Excel Workbook Option in Power BI Desktop

4. Select the Excel file and click Open to initiate the Import process. A warning
message will appear advising that not all contents of the workbook are included
in the import.

5. A migration completion message will appear that breaks out the different items
completed. Click Close.

Import Excel Model to Power BI Desktop Migration Poroc

The migration may take a few minutes depending on the size of the data model
imported. In this example, a complex data model with 20 queries and over
100 measures was imported from Excel.

6. Save the Power BI Desktop file and use the Relationships window to confirm
all relationships were imported successfully.

7. Click Refresh from the Home tab to test that all M queries were imported
successfully.

8. With essential testing complete, click Publish from the Home tab and choose an
App Workspace for the new dataset.

Publishing the Power BI Dataset to an App Workspace from Power BI Desktop

9. Save the PBIX file to OneDrive for Business or an alternative version history
system.

10. In the Power BI Service, configure a scheduled refresh on the Power BI dataset.
11. If necessary, create new Power BI reports via Power BI Service Live

Connections to the published dataset.

For example, if the Power Pivot for Excel workbook contained
several worksheets of pivot tables, pivot charts, and standard Excel
charts new Power BI reports containing the same metrics and
attributes can be developed as alternatives. With both the data model
and the reports completely migrated to Power BI, the Excel workbook
can be removed from the Power BI Service or any other refresh and
distribution process.

Power BI has now built into its table and matrix visuals the most
important features of Excel pivot tables such as rich conditional
formatting options, displaying multiple measures on rows, drill
up/down hierarchies on rows and columns, controls for subtotals
visibility, a stepped or staggered layout, percentage of
row/column/totals, and more. These enhancements, along with the
powerful cross highlighting capabilities exclusive to Power BI
reports, make it feasible and advantageous to migrate most Excel
pivot table-based reports to Power BI.

How it works...

Excel items imported
Power BI Desktop imports M queries, data model tables, DAX measures and KPIs,
and any power view for Excel sheets.

Workbooks with significant dependencies on items not imported such
as Excel formulas, standard Excel tables (not model tables),
worksheet range data, standard Excel charts and conditional
formatting may need to remain supported in some capacity. For
example, a minimum amount of data could be imported to Excel's
data model to continue to drive Excel-based reports and this
workbook could be uploaded to the Power BI Service and refreshed.

There's more...

Export or upload to Power BI from
Excel 2016

Upload Excel Workbook to Power BI
If certain Excel-specific content is needed despite the migration, the Power Pivot for
Excel data model can be uploaded to the same App Workspace and a refresh
schedule can be configured on this workbook in the Power BI Service.

Publish Excel 2016 Workbook with Data Model to Power BI - Upload Option to Maintain Excel Contents

Earlier versions of Excel can be accessed within the Power BI Service via the get
data from File menu.

An Excel Data Model and its imported Power BI Dataset in the same App Workspace in the Power BI Service

Export Excel Workbook to Power BI
The Export option in Excel 2016 is equivalent to the import migration process to
Power BI Desktop from this recipe except that the new dataset is already published
to an App Workspace in the Power BI Service.

This approach to migration isn't recommended, however, as you lose the ability to
download the PBIX file of the created dataset from the Power BI Service. Importing
to Power BI Desktop first, per this recipe, maintains this option.

Accessing and analyzing Power BI
datasets from Excel
With a centralized Power BI dataset in the Power BI Service, Power BI Pro users
can take full advantage of Excel's familiar user interface as well as advanced data
connection methods such as cube formulas and DAX queries to support custom
paginated report layouts. Although these Excel reports, like SSRS paginated reports,
are only a supplement to the Power BI reports and dashboards in the Power BI
Service, they are often useful for scorecard layouts with custom formatting and many
measures and columns. In this scenario, an experienced Excel user with deep
business knowledge can leverage the performance, scale, and automatic refresh of the
published Power BI dataset to create custom, fully formatted Excel reports.
Additionally, the Excel report author has the flexibility to apply report-scoped logic
on top of the dataset using familiar techniques and these customizations can inform BI
teams or dataset owners of existing gaps or needed enhancements.

This recipe contains two examples of accessing and analyzing Power BI datasets in
Excel. The first example uses cube formulas and Excel slicers to produce an
interactive template report. The second example passes a custom DAX query to the
Power BI dataset to support an Excel map. Additional details on cube functions in
Excel and new Excel 2016 visuals are included in the supporting sections.

Getting ready
1. Ensure that Power BI Publisher for Excel is installed and that the user has a

Power BI Pro license.
2. Confirm that the Power BI Pro user has access to the App Workspace containing

the dataset.

How to do it...

Cube formulas
The purpose of this report is to follow a standard, paginated template layout
reflecting top metrics by quarter and half year:

1. Open Excel and from the Power BI Publisher for Excel tab click on Connect to
Data.

2. Select the dataset and click on Connect:

Power BI Publisher for the Excel Connect to Power BI dialog

3. Create a pivot table containing the essential measures, attributes, and filters
needed for the report.

Excel Pivot Table with two Slicers based on the Power BI dataset

4. Select the OLAP Tools drop-down from the Analyze tab and click on Convert to
Formulas.

Convert to Cube Formulas Option in the Analyze Tab of Excel 2016

The pivot table will need to be active or selected for the Analyze tab to be
visible on the toolbar. The pivot table will be converted to Excel formulas
such as the following:

=CUBEVALUE("Power BI-AdWorksEnterprise",$C11,H$10,Slicer_Product_Category,Slicer_Sales_Territory_Country)

In this example, the workbook cell H11 ($9,231,893) references the Total Net Sales
measure in cell C11 and the 2016-Q4 dimension value in cell H10 per the preceding
code snippet. Note that the two Excel slicer visuals remain connected to each
CUBEVALUE() formula cell and thus can be used for filtering the report. The calendar
quarters (e.g. '2016-Q4') are converted to CUBEMEMBER() functions with a hard coded
reference to a specific value. These formulas must be maintained and/or updated by
the Excel report author.

=CUBEMEMBER("Power BI - AdWorksEnterprise","[Date].[Calendar Yr-Qtr].&[2016-Q4]")

5. Apply a custom report layout with borders, background colors, titles, spacing,
and more as needed for the report. The cube formula cells can be formatted and
referenced in standard Excel formulas if necessary.

Template Excel Report via Cube Formulas in the Power BI Service Dataset

Standard Excel slicers can be used for filtering, moved to a separate
worksheet, or deleted.

In this example, the layout groups four different sets of metrics
(Sales, Margin, Margin %, and Internet Sales Plan) and groups
quarters into their own half-years. The half-year date attribute is not
currently in the dataset and so Excel formulas are used, but even if it
were, a cube formula or an Excel formula summing the two quarters
would be needed to support the flat table layout. In many scenarios,
business users may also need to add columns to the report for certain
variance calculations (such as quarter over quarter) not currently
available in the dataset.

The Excel report author(s) can quickly learn to further customize the
cube formulas such as applying different filters and to support
changes to the report including new metrics (rows) and attribute
values (columns). Similar to the customization applied to Power BI
reports exported as PowerPoint presentations, any significant level
of repetitive manual effort or 'alternative definition' implemented
locally in Excel should be communicated back to the BI team and
dataset owner.

DAX query to Power BI
In this example, a DAX query is passed from an Excel data connection to a dataset in
the Power BI Service to support an Excel map visual of Year-to-Date sales by US
State:

1. Open Excel and from the Power BI Publisher for Excel tab; click on Connect to
Data.

2. Select the dataset and click on Connect as per the previous example for cube
formulas. A blank pivot table will be created by default with the dataset fields
list on the right.

3. Create a simple pivot table report with one measure and one attribute such as
Sales by Product Category.

Excel Pivot Table Based on Power BI Service Dataset

4. Double-click on one the measure cells such as $105,583 to execute a 'drill
through' query.

All columns of the underlying Internet Sales fact table will be retrieved
filtered by the Clothing category.

The number of rows to retrieve can be adjusted in the OLAP Drill Through
property in Connection Properties.

Excel Table Result from Drill Through

Most importantly, Excel creates a separate data connection to the dataset
specifically for this table.

5. Select a cell in the Excel table and right-click to expose the Table options. Click
on Edit Query....

Excel Table Options

6. In the Command Text window, enter (or paste) the custom DAX query and click
on OK.

DAX Query pasted from DAX Studio into the Command Text window of the Edit Query dialog

7. If the query is valid, the Excel table will update to return the columns specified
in the query.

8. Create an Excel map visual using this table (DAX query) as its data source.

Excel table results from the DAX query (left) and Excel maps visual (right)

A custom data label format is applied to the visual to express the values in
thousands with one decimal place.

Note that the default pivot table could not be used as the source for this visual
or several other new Excel visuals.

How it works...

Cube Formulas
The CUBEVALUE() and CUBEMEMBER() are the most common cube functions but several
others can be used as well.

Cube formulas category in formulas tab of Excel 2016

The Formulas interface in Excel provides information on the arguments for each
function.
In more advanced scenarios, Named Ranges can be assigned to Cube Formulas
and optionally other formulas in the report, and then passed into cube formulas
as parameters:

=CUBEMEMBER(strConn,"[PeriodStart].[Period Start].["&SPUser&"]")

In this example, strConn is a Named Range in Excel containing the
name of the data connection to the Power BI dataset. PeriodStart is a
column in a disconnected and hidden PeriodStart table in the data
model and SPUser is a named range reflecting a business user's
selection on a classic combo box form control in Excel. A separate
CUBEVALUE() function can reference this CUBEMEMBER() function such that
user selections in simple Excel controls can be passed via cube
functions to the source dataset and reflected in the report.

DAX query data connection
The initial connection to the Power BI Service dataset creates a cube command
type connection

Separate data connection created for query

The drill-through action creates a separate data connection with a default
command type
By default, the command text property for this connection uses an MDX DRILLTHROUGH
statement, but per the recipe this command text can be easily revised to a DAX
query
As separate data connections they can be refreshed independently or
simultaneously via the Refresh All command

Although Power BI and SSAS Tabular data models support MDX
client queries such as Excel pivot tables, DAX queries and
particularly the DAX queries generated by Power BI have a
performance advantage. For example, DAX queries can take
advantage of variables and "measure fusion" can be used internally
by the engine to consolidate the number of queries required when
multiple measures are used from the same source table.

There's more...

Sharing and distribution limitations
Given the external data connection, the uploaded workbook cannot be refreshed
in the Power BI Service. Workbooks with data models (Power Pivot) are
currently required to schedule refresh in Power BI
Additionally, several new Excel visuals are not supported in the Power BI
Service

USA Sales Year-to-Date map visual not rendered in the Power BI Service

New Excel visual types table
requirement

Excel 2016 supports several modern visuals such as Treemap, Sunburst,
Waterfall and the Map visual used in this recipe

Non-Standard Visual Type not supported via Pivot Table

However, as per the message in the preceding image for the Filled Map visual,
pivot tables cannot be used as sources for these new visualizations.
This implies that DAX queries, either against a published dataset in the Power
BI Service or against a local Excel data model, or an alternative data table
source such as M queries will be needed to support these visuals.

Building Power BI reports into
PowerPoint presentations
Microsoft PowerPoint remains a standard slide presentation application and the
integration of data analyses and visualizations from external tools is very commonly
an essential component to effective presentation decks. In response to the volume of
customer requests, the ability to export Power BI reports as PowerPoint files is
currently available as a preview feature. Each page of the Power BI report is
converted into an independent PowerPoint slide and the Power BI Service creates a
title page based on the report and relevant metadata, such as the last refreshed date.
Like most preview features, there are certain current limitations, such as the static
nature of the exported file and the visuals supported, but the feature is available to all
Power BI users to streamline the creation of presentation slides.

This recipe contains a preparation process to better leverage the Export to
PowerPoint feature and to avoid current limitations. Additionally, a sample process
is described of a user exporting a Power BI report from a published app and
accessing the content in PowerPoint.

Getting ready
Enable the Export to PowerPoint feature in the Power BI admin portal:

Tenant settings in the Power BI admin portal

As per the preceding screenshot, the Power BI admin or Office 365 global
admin can also limit the feature to specific security groups.

How to do it...

Prepare a report for PowerPoint
1. Identify the Power BI report that will serve as the source of the PowerPoint to

be created and its dataset.

Similar to other planning and precautions with highly visible content
such as executive dashboards, it's important to obtain knowledge and
confidence in the data sources, refresh process, data quality, and
ownership. For example, if the source dataset retrieves from multiple
sources including ad hoc Excel files and has a history of refresh
failures then the report might not be a good candidate for the
PowerPoint presentation. A report based on an IT-managed SSAS
model that's already been validated and has a clear owner would be
a much better choice.

2. If the report contains many pages, count the number of report pages. Currently
reports with over 15 pages cannot be exported.

3. Determine whether any report visuals are not supported, including R visuals and
custom visuals that have not been certified.

4. Check whether any background images are used in the report visuals or if any
custom page sizes have been set.

Power BI page size card in the format menu (left) and slide size options in the PowerPoint design menu (right)

Background images will be cropped with a chart's bounding area and
thus it's recommended to remove or avoid background images.
Additionally, the exported report pages always result in standard
16:9 PowerPoint slide sizes; they don't reflect custom or non-
standard page sizes in the report. Shapes such as rectangles and lines
to provide custom groupings, borders, and background colors for
visuals may also need to be removed for proper PowerPoint
rendering.

5. Based on steps 1 through 4 and initial tests of the export, either apply revisions
to the existing report or create a separate report (using the current report as a
starting point) that will be dedicated to PowerPoint.

If an alternative source dataset is needed (from step 1) it may be
possible to clone and rebind the report to a separate app workspace
either via REST APIs or a new user interface in the Power BI Service.
Additionally, and particularly for the purpose of the PowerPoint
presentation or meeting, standard and certified custom visuals are
usually available as supported alternatives to non-certified custom
visuals and R visuals.

Export report to PowerPoint
In this example, the Power BI report is included in a published app that a business
user has added as a favorite:

1. The business user accesses the Canada sales app from the list of favorites.
Alternatively, the user can also open the app via Recent or the Apps menu item
itself.

An app containing a report to export in favorites

2. The user opens the report monthly sales to plan, and from the File menu, he
selects Export to PowerPoint.

Export to PowerPoint (preview) from the file menu of the monthly sales to plan report

A message will indicate that the export is in progress and may take a few
minutes.

Depending on the browser and its download settings, either the file is
downloaded to a specific path or the browser displays a message for saving
or opening the PowerPoint file.

3. Save the file to a secure network directory path.
4. Open the PowerPoint file and make additional adjustments as needed in

PowerPoint.

An exported Power BI report in slide sorter view of Microsoft PowerPoint

A title page is generated automatically by the export process,
containing the name of the report and a link to the report in the
Power BI Service. The title page also includes a last data refresh and
a downloaded at date and time value. Each report page is converted
into a slide and the visuals reflect their state when last saved. For
example, the user accessing the report via the app will be able to
interact with the report in the Power BI Service and apply filter
selections but these selections will not be reflected in the exported
file.

How it works...

High resolution images and textboxes
Visuals are converted into high-resolution images but textboxes from the report
are retained for editing in PowerPoint.

PowerPoint slide objects—visuals converted to images and textboxes from Power BI report

The ability to interact with exported report visuals such as filtering and cross-
highlighting may be added in the future.

There's more...

Embed Power BI tiles in MS Office
A third-party add-in is available for integrating Power BI tiles from the Power
BI Service into Microsoft Office documents.

Power BI tiles add-in from Devscope

The offering from Devscope includes an automated Office to Power BI refresh
process and supports Word, Outlook, and PowerPoint. Currently the online
version is free and a trial version is available for desktop.

See also
Power BI tiles: http://www.powerbitiles.com/

http://www.powerbitiles.com/

Migrating a Power BI Data Model to
SSAS Tabular
Despite the efficient design of a Power BI dataset as well as new and future features
of Power BI Premium that support larger datasets and greater performance, many
organizations may choose SSAS for its rich and mature corporate BI features, such as
source control integration, programmability, and partitions. With the Azure Analysis
Services Web Designer, a Power BI dataset (PBIX file) can be migrated to a new
SSAS Tabular project and deployed to either an on-premises SSAS server or to an
Azure Analysis Services server. Additionally, via tools such as the BISM
Normalizer, specific components of a Power BI Desktop model can be added to an
existing SSAS Tabular project to promote reusability and consistency.

"I think it's fair to say that we're the only vendor that can claim a strong presence
in self-service business intelligence with Power BI and corporate business
intelligence, which is typically owned and managed by IT, with Analysis Services."
- Christian Wade, Senior Program Manager

In this recipe, an Azure Analysis Services server is created and a Power BI Desktop
file is imported to this server. The migrated model is then opened in SQL Server
Data Tools for Visual Studio as an analysis services project.

Getting ready
1. Install SQL Server Data Tools (SSDT) for Visual Studio to create analysis

services Project types (http://bit.ly/2tfN4c5).
2. Obtain an MS Azure subscription.
3. Confirm that the data source and storage mode of the Power BI Desktop model

is supported by the Azure Analysis Services Web Designer.

Currently only import mode models (not DirectQuery) can be migrated
to Azure Analysis Services. Additionally, only the following four data
sources are currently supported: Azure SQL Database, Azure SQL
Data Warehouse, Oracle, and Teradata. Similar to Power BI monthly
updates, new connectivity options and supported data sources for
import from Power BI Desktop will be added to Azure Analysis
Services every month.

4. Identify the location of your Power BI Service tenant.

Power BI service tenant location

In the Power BI Service, click on the question mark in the top-right menu and
select About Power BI.

http://bit.ly/2tfN4c5

How to do it...
1. Log in to the the Microsoft Azure Portal and click on New.
2. From the list of marketplace categories, choose Data + Analytics and then select

Analysis Services.

3. Create an Azure Analysis Services server by filling in the following required
fields of the analysis services blade:

Create Azure Analysis Services Server

For minimal latency, the location selected should match the location of your
Power BI tenant from Getting ready.

A standard or developer tier Azure Analysis Services instance is required for
the import from Power BI Desktop.

4. Click on Create and wait for the server to be visible in the Azure portal (usually
less than one minute). If pin to dashboard is selected, a Deploying Analysis
Services tile will appear.

MS Azure Dashboard with Azure Analysis Services Server

The new server can also be accessed via the analysis services, all
resources, and resource groups menu items in the Azure portal. The
Azure portal dashboard provides direct access to the server via the
server-specific tile and Azure portal dashboards can be customized
for different tile sizes and positioning.

5. Open the server created (adventureworks) and then click on Open on the Azure
Analysis Services Web Designer.

Azure Analysis Services in Azure Portal - Web Designer

Note the server name for accessing this Azure Analysis Services server from
other tools, such as Power BI Desktop, Excel, and SQL Server Management
Studio (SSMS).

6. With the server selected, click on Add under Models.

Importing Power BI Desktop Model to Azure Analysis Services Server

7. In the new model menu, select the Power BI Desktop icon and enter a model
name (AdventureWorksSales).

8. In the Import menu, browse to the source PBIX file and click on Import to create
an Azure Analysis Services model.

9. Under Models, click on the ellipsis (...) to expose options to open the model
with Visual Studio, Power BI Desktop, or Excel.

The Analysis Services Web Designer Context Menu

10. Click on Open in Visual Studio Project to download a ZIP file named after the
model name in Azure Analysis Services. The ZIP file contains a Visual Studio
tabular project file (.smproj) and the Model.bim SSAS Tabular Model file.

11. Open a Visual Studio solution file (.sln), and from the File menu, click to Add
an Existing Project. Alternatively, a new solution file can be created by opening
the project file (.smproj).

12. Navigate to the downloaded tabular project file (.smproj) and click on Open.

13. Choose the workspace server (either integrated in SSDT or an SSAS instance)
and click on OK.

Visual Studio—SSAS tabular project File with Model.bim file open in diagram view

With the project open in Visual Studio, the deployment server project
property can be revised just like other SSAS projects. Therefore, the
migrated PBIX model can be deployed to an on-premises SSAS server
rather than the Azure Analysis Services server and the Azure Analysis
Services server could then be paused or deleted. Likewise, existing
on-premises SSAS databases could be migrated to the Azure Analysis
Services server provided sufficient Azure Analysis Services resources
have been provisioned.

How it works...

Azure analysis services pricing and
performance

Azure analysis services instances are priced per hour according to QPUs
(Query Processing Units) and memory. One virtual core is approximately
equal to 20 QPUs.
For example, an S4 instance with 400 QPUs has roughly 20 virtual cores and
100 GB of RAM.

Azure analysis services instance pricing (as of 8/12/2017)

Currently only SSAS tabular models are supported, not SSAS multidimensional
models.
The largest instance currently available (S9) has 640 QPUs (32 cores) and 400
GB of RAM (after compressed).

Azure Analysis Services servers can be paused and no charges are
incurred while servers are paused. Additionally, the pricing tier of a
server can be moved up or down a service tier such as from S1 to S3
or vice versa. A server can also be upgraded from lower service tiers
such as from development to standard, but servers cannot be
downgraded from higher service tiers. Additionally, the ability to
scale out Azure Analysis Services servers to support large volumes of
concurrent users/queries is planned.

There's more...

Direct import to SQL server data tools
In addition to the Azure Analysis Services Web Designer approach described in
this recipe, it may soon be possible to import a PBIX model directly to SSDT,
similar to the Import from PowerPivot feature.

New SSAS project based on PowerPivot for the Excel data model

SSDT and SSMS are still the primary tools for developing and
managing SSAS projects, respectively. The Azure Analysis Services
Web Designer is intended to enable SSAS developers and managers to
quickly and easily get started with Azure AS models, review models,
and implementing simple modifications.

See also
Azure Analysis Services: https://azure.microsoft.com/en-us/services/analysis-services/

https://azure.microsoft.com/en-us/services/analysis-services/

Accessing MS Azure hosted services
such as Azure Analysis Services from
Power BI
Given that Power BI and Analysis Services tabular share the same database engine
and because Azure Analysis Services eliminates the query latency and infrastructure
costs of communication between the Power BI Service and on-premises servers via
the on-premises data gateway, organizations may consider migrating their Power BI
and SSAS models to Azure Analysis Services per the previous recipe. As one
example, the data source for a model such as teradata can remain on-premises but the
scheduled or triggered model refresh process of model tables and table partitions
would update the Azure-hosted model through the on-premises data gateway. In
addition to the other cost and flexibility advantages of the Azure Analysis Services
Platform-as-a-Service (PaaS) offering, Power BI premium capacities can enable
all business users to access the Power BI reports and dashboards built on top of
Azure Analysis Services models.

In this brief recipe, an Azure Analysis Services model is accessed as the source for a
Power BI report. Additional connectivity details of the Azure Activity Directory and
Excel are included in the There's more... section.

Getting ready
1. Obtain the Azure Analysis Services server name from the Azure portal.

Azure Analysis Services resource in the Azure portal

2. If multiple models are on the server, confirm the model name and optionally the
perspective to connect to. All models on the Azure Analysis Services Server
are also listed in the Azure Portal.

3. Ensure that client libraries (MSOLAP and ADOMD) are updated to the latest
version. Azure Analysis Services requires the latest version. See How it
works... for more details.

How to do it...
1. Open a new Power BI Desktop file and click on Get Data.
2. From the Database category, select the SQL Server Analysis Services database.

Click on Connect.

The SSAS data source used both Azure Analysis Services and on-premises analysis services

3. Enter or paste the server name and the database (name of the model).

Azure SSAS data source configuration in Power BI Desktop

Connect live is the default option and this should represent the vast
majority if not all connections as data has already been imported to
(or connected from, in the case of SSAS DirectQuery models) the
Azure Analysis Services database. Importing data to Power BI
Desktop would require its own refresh process, but in certain rare
scenarios, a DAX query can retrieve from the Azure AS database and
then optionally merge or integrate this data with other data sources
in Power BI Desktop.

4. Click on OK from the SSAS data source configuration menu.

Navigator for SSAS database—perspectives

In this example, the WWI_AzureAS model contains five perspectives.
Perspectives are effectively views of the data model that make larger
models with many fact tables and dimensions more user friendly. For
example, a business user could access the purchases perspective and
not have to navigate through other measures and tables associated
with sales, transactions, and other entities. Power BI Desktop does
not currently support Perspectives.

5. In this example, the model is accessed exposing all measures and dimensions
that the user has security access to.

Azure SSAS model field list exposed in Power BI Desktop

Display folders for a dedicated metrics measure group table are used
to further simplify and streamline the report authoring experience for
business users. Like Perspectives, display folders are currently not
supported in Power BI Desktop.

6. Create a Power BI report and publish it to an app workspace in the Power BI
Service.

Ensure the app workspace is assigned to a Power BI Premium capacity to
allow Power BI free users access the content.

How it works...

Report level measures for live
connections to SSAS

Just like Power BI Desktop reports with live connections to datasets in the
Power BI Service, the report author can also create DAX measures specific to
the given report with live connections to analysis services.

Report level measure icon enabled

This feature enables report authors familiar with DAX to address the
unique metric requirements of a report. If the same report level
measures are being remade across multiple reports, the BI/IT team
responsible for the SSAS model can consider implementing this logic
into the model.

Client libraries for Azure Analysis
Services

Client applications use MSOLAP, AMO, or ADOMD client libraries
to connect to SSAS servers and Azure Analysis Services requires the
latest versions of these libraries. Power BI Desktop and Excel install
all three client libraries, but depending on the version or frequency
of updates, these libraries may not be the latest versions required by
Azure Analysis Services. The latest client libraries are also included
with SSDT and SSMS installations and can be downloaded from MS
Azure documentation per the See also... link.

There's more...

Power BI premium DirectQuery and
SSAS live connection query limits

Power BI premium capacities are limited by query per second values for both
DirectQuery and SSAS live connections. This applies to both on-premises and
cloud connections.
The current limits are 30, 60, and 120 queries per second for P1, P2, and P3
Power BI premium capacities, respectively.

For Azure Analysis Services connections, the CPU and memory
resources would be provisioned through the Azure AS instance (that
is, QPUs) but a larger Power BI Premium capacity may still be
required in large deployments to avoid the query per second throttle
or limit. The Power BI Admin portal's DirectQuery usage metric for
Power BI premium capacities will advise how frequently utilization
approached its limit for this value in the past week.

See also
Client libraries for connection to Azure Analysis Services: http://bit.ly/2vzLAvO

http://bit.ly/2vzLAvO

Using Power BI with Microsoft Flow
and PowerApps
Power BI's tools and services are built to derive meaning and insights from data as
well as to make those insights accessible to others. While these are both essential
functions, Power BI itself doesn't execute business decisions or business user actions
based on the data it represents. Additionally, information workers regularly interface
with many applications or services and thus to remain productive there's a need to
automate workflows and embed logic between Power BI and these applications to
streamline business processes. PowerApps and Microsoft Flow, both Office 365
applications and part of the Business Application Platform along with Power BI,
serve to address these needs by enabling business users to create custom business
applications and workflow processes via graphical user interface tools.

In this recipe an MS Flow is created to support a streaming dataset in the Power BI
Service. Specifically, the MS Flow is configured to read from an on-premises SQL
Server table every two minutes and push this data into Power BI to provide near
real-time visibility and support for data driven alerts and notifications.

Getting ready
Open PowerApps in Office 365 and configure connections to the Power BI
service, data sources, and other services.

Office 365 PowerApps Menu - Connections

On the Gateways tab confirm that an on-premises data gateway is available.

In this recipe, an on-premises data gateway is used to support a
Power BI streaming dataset from an on-premises SQL Server
database table via Microsoft Flow. Per previous chapters the same
gateway that supports Power BI refresh processes and live
connections or DirectQuery models can also be used for PowerApps
and MS Flow. Depending on the workloads generated by these
different activities and applications, and based on gateway resource
monitoring, it may be necessary to isolate PowerApps and MS Flow
to a dedicated on-premises gateway or, in the future, add a server to
a high availability gateway cluster.

How to do it...

Streaming Power BI dataset via MS
Flow

1. Open an app workspace in the Power BI Service and click on the Create button
in the top menu bar.

Create Options in the Power BI Service

2. Select Streaming dataset and choose the API source icon. Click on Next.

3. Configure the streaming dataset to align with the columns and data types of the
source table.

Streaming dataset configuration—customer service calls

4. Give the dataset a name and enable the Historic data analysis setting. Click on
Create. A Push URL will be provided, as well as a message advising that the
dataset schema has been created.

When historical data analysis is enabled, the dataset created is both
a streaming dataset and a push dataset. As a push dataset, a database
and table for the dataset is created in the Power BI Service allowing
Power BI report visuals and functionality to be created from this
table. Without historical data analysis enabled (the default), the
dataset is only a streaming dataset. Power BI temporarily caches the
data but there is no underlying database, and thus the only method
for visualizing this data is via the real-time streaming dashboard tile.

5. Click on Done in the Power BI Service and then open Microsoft Flow in Office
365.

All MS Flows are configured either in the Office 365 web application or the
MS Flow mobile application.

See the There's more... section for details on PowerApps Studio and the
mobile applications for PowerApps and MS Flow.

6. Click on Create from Blank in MS Flow and choose the schedule connector as
the trigger for the flow. Set a frequency and interval for this connector, such as
every 2 minutes, and click on New Step.

Schedule—recurrence trigger configured to initiate the Ffow

7. Click on Add an Action in the New Step and search for SQL server. Choose the
SQL Server - Get rows action.

Add a Connection to a SQL Server Database in MS Flow

An existing database connection can be selected if there are multiple or a new
connection can be configured

8. Choose the SQL Server table, and then click on New Step and add an action.
9. Search for Power BI and select the Add rows to a dataset action.

Specify the Power BI App Workspace and Dataset; a RealTimeData table name
will be applied automatically.

Associate the SQL Server table columns with the columns of the Power BI
streaming dataset table.

Power BI add rows to a dataset action in MS Flow

10. Click on Save Flow and then update the flow with a descriptive name.

Configured and Active MS Flow

The run history of the flow, including successful and unsuccessful
executions, is available by clicking on the Flow name from My
Flows. Additionally, the My Flows page specific to the given flow
allows for adding owners, viewing connections, opening the Flow in
Edit mode, and turning the Flow off.

11. Open a new Power BI Desktop file and click to Get Data from the Power BI
service. Navigate to the app workspace of the streaming dataset, select the
dataset, and click on Load.

Streaming Dataset Accessed via Live Connection from Power BI Desktop

12. From the Modeling tab, click on New Measure to add report-level measures to
support report visualizations.

Fields List in Power BI Desktop of the Streaming Dataset in the Power BI Service

Distinct customers, total calls, and the calls in last 5 minutes measure are
added to the report:

Calls in Last 5 Minutes =
VAR Prior5Mins = NOW() - .003472 Return
CALCULATE(COUNTROWS('RealTimeData'),FILTER(ALL('RealTimeData'),RealTimeData[CallDate] >= Prior5Mins))

For a streaming dataset, it's likely necessary to configure data alerts
and notifications in the Power BI Service. Therefore, use card, gauge,
or the standard KPI visual in building the report and pin these items
to a dashboard to configure the alerts. In this example, rows with

date/time values greater than 5 minutes prior to the current date/time
are used for a gauge visual (1,440 minutes per day, 5 /1440 =
.003472).

13. Publish the report to the Power BI Service and optionally pin the visual(s) to a
dashboard and configure alerts.

How it works...

Microsoft Flow
MS Flows are conceptually similar to the control flow interface for SSIS
packages

MS Flow in Design Mode - Successful Execution

MS Flow automatically added an apply to each container for the Power BI
action and advises of success per step.

MS Flow in design mode—The more' context menu selected

Complex logic can be added to MS flows via branching conditions,
scopes, and looping constructs. MS Flow is intended for self-service
scenarios and business power users. Logic apps is also a cloud-based
integration service that can be supported by the on-premises data
gateway, but it's more oriented toward developers and enterprise
integration scenarios.

There's more...

Write capabilities and MS Flow
premium

Unlike Power BI, which only reads source data, PowerApps and MS Flow can
both write or edit source data

MS Flow actions for Oracle, including insert, delete, and update

Certain connectors such as Oracle and IBM DB2 are only available in MS Flow
premium pricing plans and are not included in MS Flow for Office 365 licenses
Currently two premium flow plans are available at $5 and $15 per user per
month.
See the linked plan feature table in See also for more details

PowerApps Studio and mobile
applications

PowerApps Studio is a dedicated authoring application for Windows devices
(version 8.1 or higher)

PowerApps Studio in the Windows Store

PowerApps can also be developed in the Office 365 web application like
Microsoft Flow
PowerApps Mobile and the MS Flow mobile app are both available for iOS
and Android devices

The MS Flow mobile app supports the same create and edit
functionality and activity history details available in the Office 365
web application. PowerApps can be designed for tablet and mobile
form factors but will render on desktop as well. The PowerApps
mobile application can access and utilize PowerApps but does not
create or edit PowerApps.

See also
MS Flow plan feature matrix: http://bit.ly/2w5oeS7

http://bit.ly/2w5oeS7

	Preface
	What this book covers
	What you need for this book
	Who this book is for
	Conventions
	Reader feedback
	Customer support
	Downloading the example code
	Downloading the color images of this book
	Errata
	Piracy
	Questions

	Configuring Power BI Development Tools
	Introduction
	Configuring Power BI Desktop options and settings
	Getting ready
	How to do it...
	Installing and running Power BI Desktop
	Configuring Power BI Desktop options

	How it works...
	There's more...
	See also
	Power BI's advantages over Excel
	Power BI Security and Data Source Privacy

	Installing the On-Premises Data Gateway
	Getting ready
	Hardware and network configuration

	How to do it...
	Installation of on-premises gateway

	How it works...
	Gateway recovery key

	There's more...
	See also...

	Installing Power BI Publisher for Excel
	How to do it...
	Installation of Power BI Publisher for Excel

	There's more...

	Installing and Configuring DAX Studio
	How to do it...
	Installation of DAX Studio
	Configuration of DAX Studio

	How it works...
	There's more...
	Guy in a Cube video channel

	Accessing and Retrieving Data
	Introduction
	Viewing and analyzing M functions
	Getting ready
	How to do it...
	Formula Bar
	Advanced Editor window

	How it works...
	Query folding
	M query structure
	Lazy evaluation

	There's more...
	Partial query folding
	Limitations of query folding

	See also...
	M language references

	Establishing and managing connections to data sources
	Getting ready
	How to do it...
	Isolate data sources from individual queries
	Query groups

	Manage source credentials and privacy levels

	How it works...
	Data Source settings
	Data source privacy settings

	There's more...
	See also

	Building source queries for DirectQuery models
	Getting ready
	How to do it...
	Applying M transformations with DirectQuery models

	How it works...
	There's more...
	DirectQuery project candidates
	DirectQuery performance

	See also

	Importing data to Power BI Desktop models
	How to do it...
	Denormalize a dimension
	Provide automatic sorting

	How it works...
	There's more...
	One GB dataset limit and Power BI Premium

	See also

	Applying multiple filtering conditions
	Getting ready
	How to do it...
	Query filter example steps

	How it works...
	There's more...
	Filtering via the Query Editor interface

	See also

	Choosing columns and column names
	How to do it...
	Identify expensive columns
	Select columns
	Rename columns

	How it works...
	Column memory usage

	There's more...
	Fact table column eliminations
	Column orders

	See also

	Transforming and cleansing source data
	Getting ready
	How to do it...
	Remove duplicates
	Update a column through a join

	There's more...
	See also

	Creating custom and conditional columns
	How to do it...
	Create a dynamic banding attribute
	Create a formatted name column
	Comparing the current and previous rows

	How it works...
	Conditional expression syntax
	Case sensitivity
	Conditional expression evaluation
	Query folding of custom columns

	There's more...
	Add column from example
	Conditional columns interface
	DAX calculated columns
	Error handling and comments

	Integrating multiple queries
	Getting ready
	How to do it...
	Consolidate files
	Self-joining querying

	How it works...
	Nested join versus flat join
	Append multiple files

	There's more...
	Combine binaries
	Staging queries versus inline queries

	See also

	Choosing column data types
	How to do it...
	Remove automatic type detection steps
	Align relationship column data types
	Add numeric columns from text columns
	Use fixed decimal number for precision

	How it works...
	Automatic data type detection
	Numeric data types
	Power BI Desktop automatic time intelligence

	There's more...
	Data type impacts
	Date with locale
	Percentage data type

	See also

	Visualizing the M library
	How to do it...
	How it works...
	There's more...

	Building a Power BI Data Model
	Introduction
	Designing a multi fact data model
	Getting ready
	Setting business expectations

	How to do it...
	Four-step dimensional design process
	Data warehouse and implementation bus matrix

	Choose the dataset storage mode - Import or DirectQuery
	In-Memory mode
	DirectQuery mode

	How it works...
	DAX formula and storage engine

	There's more...
	Project ingestion questions
	Power BI delivery approaches

	See also

	Implementing a multi fact data model
	How to do it...
	SQL view layer
	M queries in Power BI Desktop
	Create model relationships
	Author DAX measures
	Configure model metadata

	There's more...
	Shared views

	Handling one-to-many and many-to-many relationships
	Getting ready
	How to do it...
	Single, bidirectional, and CROSSFILTER()
	Single direction relationships
	Bidirectional relationship
	CROSSFILTER() Measure

	Many-to-many relationships
	Bidirectional cross-filtering for many-to-many

	How it works...
	Ambiguous relationships
	CROSSFILTER()

	There's more...
	DirectQuery supported

	See also

	Assigning data formatting and categories
	How to do it...
	Data formats
	Data category

	How it works...
	There's more...
	Model level settings

	See also

	Configuring Default Summarization and sorting
	How to do it...
	Sort By Column
	DAX Year-Month sorting
	DAX Ranking Sort

	Default Summarization

	How it works...
	Default Summarization

	There's more...
	Quick measures

	See also

	Setting the visibility of columns and tables
	How to do it...
	Isolate measures from tables

	How it works...
	Measure home tables

	There's more...
	Hiding hierarchy columns
	Group visibility
	Row level security visibility
	Visibility features from SSAS

	Embedding business definitions into DAX measures
	Getting ready
	How to do it...
	Sales and cost metrics
	Margin and count metrics
	Secondary relationships

	How it works...
	Date relationships

	There's more...
	Measure definitions
	Measure names and additional measures

	See also

	Enriching a model with analysis expressions
	How to do it...
	Pricing analysis
	Geometric mean at all grains

	How it works...
	Pricing analysis

	Building analytics into data models with DAX
	How to do it...
	Cross-selling opportunities
	Accessories but not bike customers
	Bike only customers

	Active verus inactive customers
	Actual versus budget model and measures

	How it works...
	Filter Context Functions

	There's more...
	SUMMARIZECOLUMNS()

	Integrating math and statistical analysis via DAX
	How to do it...
	Correlation coefficient
	Goodness-of-Fit test statistic

	How it works...
	Correlation coefficient syntax
	Goodness-of-Fit logic and syntax

	Supporting virtual table relationships
	How to do it...
	Segmentation example
	Summary to detail example
	Actual versus plan

	How it works...
	Year and month selected
	Virtual relationship functions

	There's more...
	Multiple dimensions
	Alternatives to virtual relationships

	See also

	Creating browsable model hierarchies and groups
	How to do it...
	Create hierarchy columns with DAX
	Implement a hierarchy
	Create and manage a group

	How it works...
	DAX parent and child functions
	Include other grouping option
	Model scoped features

	There's more...
	DAX calculated columns as rare exceptions
	Natural hierarchies versus unnatural hierarchies
	Grouping dates and numbers
	DirectQuery models supported

	See also

	Authoring Power BI Reports
	Introduction
	Building rich and intuitive Power BI reports
	Getting ready
	Stakeholder Matrix

	How to do it...
	Report planning and design process
	Report Design Example
	European Sales and Margin Report Page
	European country sales and margin report page

	How it works...
	European sales report design

	There's more...
	Power BI report design checklist
	Custom visuals
	Published Power BI datasets as data sources

	See also

	Creating table and matrix visuals
	How to do it...
	Table visual exceptions
	Identifying blanks in tables

	Matrix visual hierarchies

	How it works...
	Matrix visual navigation

	There's more...
	URL and mail to email support
	Percent of total formatting
	Measures on matrix rows
	Data bar conditional formatting

	Utilizing graphical visualization types
	Getting ready
	Choosing visual types

	How to do it...
	Waterfall chart for variance analysis
	Line chart with conditional formatting
	Shape map visualization

	How it works...
	Shape map

	Enhancing exploration of reports
	Getting ready
	Drillthrough report page requirements
	Enable Cortana integration and Q&A

	How to do it...
	Create featured Q&A questions
	Parameterized Q&A report
	Cortana integration
	Drillthrough Report Pages
	Report themes

	How it works...
	Report theme JSON files

	There's more...
	Conversational BI - mobile support for Q&A

	See also

	Integrating card visualizations
	Getting ready
	How to do it...
	KPI visual
	Multi-row card

	There's more...
	Gauge visualizations

	Controlling interactive filtering between visuals
	How to do it...
	Visual interaction control

	How it works...
	Current year Measures

	Associating slicers with report pages
	How to do it...
	Configure dimension slicers
	Horizontal slicers

	Customize a date slicer
	Relative date filters

	How it works...
	Date slicer

	There's more...
	Text search
	Numeric range slicers

	Applying filters at different scopes
	How to do it...
	Report and page level filters
	Visual level filter - top N

	How it works...
	DAX queries from report, page, and visual Filters

	There's more...
	Advanced report and page level filters

	Formatting reports for publication
	How to do it...
	Visual alignment and distribution
	Shapes as backgrounds and groups

	There's more...
	Snap objects to grid and keyboard shortcuts
	Textbox with email link
	Format painter

	See also

	Designing mobile report layouts
	Getting ready
	Plan for mobile consumption

	How to do it...
	Phone layout - Europe report page
	Phone layout - United Kingdom report page

	How it works...
	There's more...
	Slicers and drill-down on mobile devices
	Mobile-optimized dashboards

	See also

	Creating Power BI Dashboards
	Introduction
	Building a Power BI dashboard
	How to do it...
	Dashboard design process
	Dashboard development process

	Constructing an enterprise dashboard
	How to do it...
	Dashboard design process

	How it works...
	Dual KPI custom visual
	Supporting tiles

	Developing dynamic dashboard metrics
	How to do it...
	Dynamic date columns
	KPI target measures

	How it works...
	Target measure - trailing 6 months

	Preparing datasets and reports for Q & A natural language queries
	Getting ready
	Determine use cases and feasibility

	How to do it...
	Prepare a model for Q & A
	Model metadata
	Model design

	Apply synonyms
	Analyze Q & a use cases
	Apply synonyms
	Publish the dataset

	Embedding analytical context into visualizations
	How to do it...
	Design the visual
	Create the visual

	How it works...
	Color saturation rule
	Tooltip measures

	There's more...

	Exposing what matters - top N and percentage of total visualizations
	How to do it...
	Top 25 resellers with below -3% margin
	Last year's top 50 products with below -10% growth

	How it works...
	Prior year rank measure

	Visualizing performance relative to targets with KPIs and gauges
	How to do it...
	Create the visuals
	Grouping KPIs
	Publish KPIs to dashboard

	How it works...
	Current month filter
	Time intelligence measures

	Leveraging Power BI reports in Power BI dashboards
	How to do it...
	Define live page requirements
	Create and publish to the dashboard
	Refine dashboard layout

	How it works...
	Live page slicers

	Deploying content from Excel and SSRS to Power BI
	Getting ready
	How to do it...
	Publish and pin excel objects
	Pin SSRS report items

	Adding data alerts and email notifications to dashboards
	How to do it...
	Configure data alert
	Automate email notification

	How it works...

	Getting Serious with Date Intelligence
	Introduction
	Building a complete date dimension table
	Getting ready
	How to do it...
	Date dimension design
	Required date dimension columns
	Date dimension planning and design

	Add date intelligence columns via SQL

	How it works...
	Date intelligence columns
	Loading the date dimension

	There's more...
	Role playing date dimensions
	Surrogate key date conversion

	Prepping the date dimension via the Query Editor
	How to do it...
	Date dimension M Query
	Add the date intelligence column via join

	How it works...
	Date dimension M query
	DirectQuery support

	Authoring date intelligence metrics across granularities
	Getting ready
	How to do it...
	Current time period measures
	Prior time period measures
	Dynamic prior period measure

	How it works...
	Current and prior time period measures

	Developing advanced date intelligence metrics
	How to do it...
	Count of days without sales
	Dynamic Prior Year-to-Date

	How it works...
	Dynamic prior period intelligence

	Simplifying date intelligence with DAX queries and calculated tables
	How to do it...
	Role playing date dimensions via calculated tables
	Date table logic query

	How it works...
	Date table logic query

	Adding a metric placeholder dimension
	How to do it...
	Metric placeholder dimension query
	Measure group table

	Parameterizing Power BI Solutions
	Introduction
	Creating dynamic and portable Power BI reports
	Getting ready
	How to do it...
	Single and multiple URL parameters
	Dynamic embedded URLs

	There's more...
	Dashboards with custom URLs

	See also

	Filtering queries with parameters
	Getting ready
	How to do it...
	Trailing days query parameter filter
	Multi-parameter query filters

	How it works...
	Query folding of parameter value filters

	There's more...
	Power BI Service support

	Preserving report metadata with Power BI templates
	Getting ready
	How to do it...
	Template parameters
	Export template

	Converting static queries into dynamic functions
	How to do it...
	There's more...
	Local resource usage

	Parameterizing your data sources
	Getting ready
	How to do it...
	SQL Server database
	Excel filename and path
	Stored procedure input parameters

	Generating a list of parameter values via queries
	How to do it...
	Dynamic date parameter query
	Product subcategories parameter query

	There's more...
	DirectQuery support

	Capturing user selections with parameter tables
	How to do it...
	Sales plan growth scenarios

	There's more...
	Scenario specific measures

	Building a forecasting process with What if analysis capabilities
	Getting ready
	How to do it...
	Forecast variables from Excel
	Power BI Desktop forecast model
	Source connection and unpivoted forecast tables
	Apply the forecast to historical values
	Allocate the forecast according to the dimension variable inputs
	Create relationships, measures, and forecast visuals
	Test and deploy forecasting tool

	How it works...

	Implementing Dynamic User-Based Visibility in Power BI
	Introduction
	Capturing the current user context of Power BI content
	Getting ready
	How to do it...
	How it works...
	Power BI authentication

	There's more...
	USERNAME() versus USERPRINCIPALNAME()

	See also

	Defining RLS roles and filtering expressions
	Getting ready
	How to do it...
	United States online Bike Sales Role
	Europe reseller sales - mountain and touring
	Deploy security roles to Power BI

	How it works...
	Filter transfer via relationships

	There's more...
	Managing security
	Dynamic columns and central permissions table

	Designing dynamic security models in Power BI
	Getting ready
	How to do it...
	There's more...
	Performance impact

	Building dynamic security in DirectQuery data models
	Getting ready
	How to do it...
	How it works...
	Dynamic security via relationship filter propagation

	There's more...
	Bidirectional security relationships

	Displaying the current filter context in Power BI reports
	How to do it...
	Dimension values selected
	Dimension values remaining

	How it works...
	FILTERS() and CONCATENATEX()

	Avoiding manual user clicks with user-based filtering logic
	Getting ready
	How to do it...
	How it works...
	There's more...
	Personal filters feature coming to Power BI apps

	Applying Advanced Analytics and Custom Visuals
	Introduction
	Incorporating advanced analytics into Power BI reports
	How to do it...
	Clustered column chart
	Line chart

	How it works...
	Analytics pane measures

	There's more...
	Analytics pane limitations

	See also

	Enriching Power BI content with custom visuals and quick insights
	Getting ready
	How to do it...
	Bullet chart custom visual
	Scoped quick insights

	How it works...
	There's more...
	Quick insights in Power BI Desktop
	Quick insights on published datasets

	Creating geospatial mapping visualizations with ArcGIS maps for Power BI
	Getting ready
	How to do it...
	Single field address
	Customer clustering Map

	There's more...
	ArcGIS map field wells
	Conditional formatting logic

	See also

	Configuring custom KPI and slicer visuals
	Getting ready
	How to do it...
	Dual KPI - headcount and labor expense
	Chiclet Slicer - Sales Territory Country

	There's more...
	Chiclet slicer custom visual

	Building animation and story telling capabilities
	Getting ready
	How to do it...
	Scatter chart with play axis
	ArcGIS map timeline
	Pulse chart custom visual

	There's more...
	Bookmarks
	Play axis custom visual
	Storytelling custom visuals

	Embedding statistical analyses into your model
	Getting ready
	How to do it...
	Regression table and measures
	Residuals table and measures
	Regression report

	How it works...
	Statistical formulas
	DAX calculated tables

	See also

	Creating and managing Power BI groupings and bins
	How to do it...
	First purchase date grouping
	Days since last purchase grouping

	Detecting and analyzing clusters
	Getting ready
	How to do it...
	Create clusters
	Analyze the clusters

	How it works...
	RFM - recency, frequency, monetary
	Clustering algorithm and limits

	There's more...
	R clustering custom visuals
	Scatter chart-based clustering

	Forecasting and visualizing future results
	Getting ready
	How to do it...
	Monthly forecast via date hierarchy
	Weekly sales forecast analysis

	How it works...
	Exponential smoothing
	Dynamic week status column

	There's more...
	Forecast requirements

	Using R functions and scripts to create visuals within Power BI
	Getting ready
	How to do it...
	Base graphics histogram
	ggplot2 histogram

	How it works...
	Automatic duplicate removal
	Filter context

	There's more...
	See also

	Developing Solutions for System Monitoring and Administration
	Introduction
	Creating a centralized IT monitoring solution with Power BI
	Getting ready
	How to do it...
	How it works...
	Wait Stats and instance configuration data source setup

	There's more...
	Query Store integration
	DirectQuery real-time monitoring datasets

	See also

	Constructing a monitoring visualization and analysis layer
	Getting ready
	How to do it...
	How it works...
	Relative date filtering

	There's more...
	Top 10 slowest queries via Query Store

	See also

	Importing and visualizing dynamic management view (DMV) data of SSAS and Power BI data models
	How to do it...
	How it works...
	Memory structures

	See also

	Increasing SQL Server DBA productivity with Power BI
	Getting ready
	How to do it...
	How it works...
	Query Store

	See also

	Providing documentation of Power BI and SSAS data models to BI and business teams
	Getting ready
	How to do it...
	How it works...
	There's more...
	Power BI documentation reports via Excel
	SQL Server Analysis Services (SSAS) Metadata

	Analyzing performance monitor counters of the Microsoft on-premises data gateway and SSAS tabular databases
	Getting ready
	How to do it...
	SSAS tabular memory reporting
	On-premises data gateway counters

	How it works...
	SSAS tabular memory limits
	On-premises data gateway workloads

	There's more...
	High availability and load balancing for the on-premises data gateway
	Reduce network latency via Azure ExpressRoute and Azure Analysis Services

	See also

	Analyzing Extended Events trace data with Power BI
	Getting ready
	How to do it...
	How it works...
	Self-service Extended Events analysis

	There's more...
	SQL Server Profiler versus Extended Events
	Additional event session integration

	See also

	Visualizing log file data from SQL Server Agent jobs and from Office 365 audit searches
	Getting ready
	How to do it...
	Power BI Audit Log Integration
	SQL Server Agent log integration

	How it works...
	PowerShell search for Power BI audit log
	SQL Server agent tables

	There's more...
	Power BI usage reporting

	See also

	Enhancing and Optimizing Existing Power BI Solutions
	Introduction
	Enhancing the scalability and usability of a data model
	Getting ready
	How to do it...
	Identify expensive columns and quick wins
	Normalize large dimensions
	Sort imported fact tables

	How it works...
	Columnar database
	Run-length encoding (RLE) compression via Order By
	Segment elimination

	There's more...
	Minimize loaded and refreshed queries

	Revising DAX measures to improve performance
	Getting ready
	How to do it...
	Improper use of FILTER()
	Optimizing OR condition measures

	How it works...
	DAX query engine - formula and storage

	There's more...
	DAX variables for performance
	DAX as a query language

	Pushing query processing back to source systems
	Getting ready
	How to do it...
	Query folding analysis process
	Query folding redesign

	How it works...
	Query folding factors
	Native SQL queries

	There's more...
	Parallel loading of tables
	Improving folded queries

	Strengthening data import and integration processes
	How to do it...
	Data source consolidation
	Error handling, comments, and variable names
	Handling missing fields

	How it works...
	MissingField.UseNull

	See also

	Isolating and documenting DAX expressions
	Getting ready
	How to do it...
	Reseller Margin % with variables
	Variable table filters

	How it works...
	Reseller Margin % with variables

	There's more...
	DAX Formatter in DAX Studio

	Deploying and Distributing Power BI Content
	Introduction
	Preparing a content creation and collaboration environment in Power BI
	How to do it...
	Evaluate and plan for Power BI deployment
	Set up a Power BI service deployment

	How it works...
	Premium capacity nodes - frontend cores and backend cores

	There's more...
	Scaling up and scaling out with Power BI Premium

	See also

	Managing migration of Power BI content between development, testing, and production environments
	Getting ready
	How to do it...
	Staged deployment overview
	Development environment
	Production environment

	How it works...
	Automated report lifecycle - clone and rebind report APIs
	OneDrive for business synchronization
	Version restore in OneDrive for business

	See also

	Sharing Power BI dashboards with colleagues
	Getting ready
	How to do it...
	How it works...
	Managing shared dashboards

	There's more...
	Analyze shared content from Excel
	Sharing dashboards from Power BI mobile apps

	Configuring Power BI app workspaces
	Getting ready
	How to do it...
	How it works...
	App workspaces and apps
	App workspaces replace group workspaces

	There's more...
	Power BI premium capacity admins

	See also

	Configuring refresh schedules and DirectQuery connections with the on-premises data gateway
	Getting ready
	How to do it...
	Scheduled refresh for import mode dataset
	Configure data sources for the on-premises data gateway
	Schedule a refresh

	DirectQuery dataset
	Configure data sources for the on-premises data gateway
	Configure the DirectQuery dataset

	How it works...
	Dataset refreshes
	Dashboard and report cache refreshes

	There's more...
	Refresh limits: Power BI premium versus shared capacity
	Trigger refreshes via data refresh APIs in the Power BI Service

	See also

	Creating and managing Power BI apps
	Getting ready
	How to do it...
	Publishing an app
	Distributing and installing the app

	How it works...
	App workspaces to apps

	There's more...
	Apps replacing content packs

	Building email subscriptions into Power BI deployments
	Getting ready
	Determine feasibility - recipient, distribution method, and content

	How to do it...
	Create dashboard and report subscriptions
	Manage subscriptions

	There's more...
	See also

	Publishing Power BI reports to the public internet
	Getting ready
	How to do it...
	How it works...
	Publish to web report cache

	There's more...
	Embed in SharePoint online

	See also

	Enabling the mobile BI experience
	How to do it...
	Enhance basic mobile exploration and collaboration
	Enable advanced mobile BI experiences

	How it works...
	Responsive visualizations

	There's more...
	Apple watch synchronization
	SSRS 2016 on-premises via Power BI mobile apps
	Filters on phone reports

	See also

	Integrating Power BI with Other Applications
	Introduction
	Integrating Excel and SSRS objects into Power BI Solutions
	Getting ready
	How to do it...
	SSRS
	Excel

	There's more...
	SSRS and Excel use cases
	SSRS
	Microsoft Excel

	Migrating a Power Pivot for Excel Data Model to Power BI
	Getting ready
	How to do it...
	How it works...
	Excel items imported

	There's more...
	Export or upload to Power BI from Excel 2016
	Upload Excel Workbook to Power BI
	Export Excel Workbook to Power BI

	Accessing and analyzing Power BI datasets from Excel
	Getting ready
	How to do it...
	Cube formulas
	DAX query to Power BI

	How it works...
	Cube Formulas
	DAX query data connection

	There's more...
	Sharing and distribution limitations
	New Excel visual types table requirement

	Building Power BI reports into PowerPoint presentations
	Getting ready
	How to do it...
	Prepare a report for PowerPoint
	Export report to PowerPoint

	How it works...
	High resolution images and textboxes

	There's more...
	Embed Power BI tiles in MS Office

	See also

	Migrating a Power BI Data Model to SSAS Tabular
	Getting ready
	How to do it...
	How it works...
	Azure analysis services pricing and performance

	There's more...
	Direct import to SQL server data tools

	See also

	Accessing MS Azure hosted services such as Azure Analysis Services from Power BI
	Getting ready
	How to do it...
	How it works...
	Report level measures for live connections to SSAS
	Client libraries for Azure Analysis Services

	There's more...
	Power BI premium DirectQuery and SSAS live connection query limits

	See also

	Using Power BI with Microsoft Flow and PowerApps
	Getting ready
	How to do it...
	Streaming Power BI dataset via MS Flow

	How it works...
	Microsoft Flow

	There's more...
	Write capabilities and MS Flow premium
	PowerApps Studio and mobile applications

	See also

