

PRACTICAL
MDX QUERIES
for Microsoft® SQL Server®

Analysis Services 2008

About the Author
Art Tennick (Brighton, UK) has worked in relational database design and SQL
queries for over 20 years. He has been involved in multidimensional database design,
cubes, data mining, DMX, and MDX queries for 10 years. Based in the UK, he has
been a software consultant, trainer, and writer for some 25 years. Recently, he has
worked with several major retail and banking corporations to implement BI solutions
using Microsoft SQL Server, SSAS, SSIS, SSRS, and Excel 2007/2010. This is his
17th book and he has also written over 300 articles for computer magazines in the
USA, the UK, and Ireland. His Web site is www.MrCube.net.

About the Technical Editor
Deepak Puri is a Business Intelligence Consultant and has been working with
SQL Server Analysis Services since 2000. Deepak is currently a Microsoft SQL
Server MVP with a focus on OLAP. His interest in OLAP technology arose from
working with large volumes of call center telecom data at a large insurance company.
In addition, Deepak has also worked with performance data and key performance
indicators (KPIs) for new business processes.

Deepak has participated in the technical editing of three books on Analysis
Services and the MDX language. He currently resides in Northeastern Ohio.

www.MrCube.net

PRACTICAL
MDX QUERIES

Art Tennick

New York Chicago San Francisco Lisbon
London Madrid Mexico City Milan
New Delhi San Juan Seoul Singapore
Sydney Toronto

for Microsoft® SQL Server®

Analysis Services 2008

Copyright © 2010 by The McGraw-Hill Companies. All rights reserved. Except as permitted under the United States Copyright Act
of 1976, no part of this publication may be reproduced or distributed in any form or by any means, or stored in a database or retrieval
system, without the prior written permission of the publisher.

ISBN: 978-0-07-171337-5

MHID: 0-07-171337-9

The material in this eBook also appears in the print version of this title: ISBN: 978-0-07-171336-8, MHID: 0-07-171336-0.

All trademarks are trademarks of their respective owners. Rather than put a trademark symbol after every occurrence of a trademarked
name, we use names in an editorial fashion only, and to the benefi t of the trademark owner, with no intention of infringement of the
trademark. Where such designations appear in this book, they have been printed with initial caps.

McGraw-Hill eBooks are available at special quantity discounts to use as premiums and sales promotions, or for use in corporate
training programs. To contact a representative please e-mail us at bulksales@mcgraw-hill.com.

All trademarks or copyrights mentioned herein are the possession of their respective owners and McGraw-Hill makes no claim of
ownership by the mention of products that contain these marks.

Information has been obtained by McGraw-Hill from sources believed to be reliable. However, because of the possibility of human or
mechanical error by our sources, McGraw-Hill, or others, McGraw-Hill does not guarantee the accuracy, adequacy, or completeness of
any information and is not responsible for any errors or omissions or the results obtained from the use of such information.

TERMS OF USE

This is a copyrighted work and The McGraw-Hill Companies, Inc. (“McGrawHill”) and its licensors reserve all rights in and to the
work. Use of this work is subject to these terms. Except as permitted under the Copyright Act of 1976 and the right to store and retrieve
one copy of the work, you may not decompile, disassemble, reverse engineer, reproduce, modify, create derivative works based upon,
transmit, distribute, disseminate, sell, publish or sublicense the work or any part of it without McGraw-Hill’s prior consent. You may
use the work for your own noncommercial and personal use; any other use of the work is strictly prohibited. Your right to use the work
may be terminated if you fail to comply with these terms.

THE WORK IS PROVIDED “AS IS.” McGRAW-HILL AND ITS LICENSORS MAKE NO GUARANTEES OR WARRANTIES AS
TO THE ACCURACY, ADEQUACY OR COMPLETENESS OF OR RESULTS TO BE OBTAINED FROM USING THE WORK,
INCLUDING ANY INFORMATION THAT CAN BE ACCESSED THROUGH THE WORK VIA HYPERLINK OR OTHERWISE,
AND EXPRESSLY DISCLAIM ANY WARRANTY, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO IMPLIED
WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. McGraw-Hill and its licensors do not
warrant or guarantee that the functions contained in the work will meet your requirements or that its operation will be uninterrupted or
error free. Neither McGraw-Hill nor its licensors shall be liable to you or anyone else for any inaccuracy, error or omission, regardless
of cause, in the work or for any damages resulting therefrom. McGraw-Hill has no responsibility for the content of any information
accessed through the work. Under no circumstances shall McGraw-Hill and/or its licensors be liable for any indirect, incidental,
special, punitive, consequential or similar damages that result from the use of or inability to use the work, even if any of them has been
advised of the possibility of such damages. This limitation of liability shall apply to any claim or cause whatsoever whether such claim
or cause arises in contract, tort or otherwise.

For Kang Hong Ying, lovely Liaoning lady.

This page intentionally left blank

vii

Contents at a Glance

Chapter 1 Hello World: Easy Yet Effective Queries . 1

Chapter 2 Astrophysical: Playing with Dimensions . 11

Chapter 3 Families and Friends: Navigating Dimensions 39

Chapter 4 Bringing Order: Sorting Results . 83

Chapter 5 Slice, Dice, and Filter: Using Where and Filter . 99

Chapter 6 Using the Abacus: Introduction to Calculations 129

Chapter 7 Is Time a Dimension? Working with Dates and Times 143

Chapter 8 Clockwork: Calculations Using Dates and Times 159

Chapter 9 Venn Diagrams: Visualizing and Manipulating Sets 189

Chapter 10 Views on Cubes: Working with Subcubes . 221

Chapter 11 Not All There: Dealing with Empty Cells . 231

Chapter 12 Smiley Faces: Working with Key Performance Indicators (KPIs) 239

Chapter 13 Hodgepodge: A Chapter of Miscellaneous Techniques 247

Chapter 14 After You Finish . 255

Index . 259

This page intentionally left blank

ix

Contents
Acknowledgments . xix

Introduction . xxi

Chapter 1 Hello World: Easy Yet Effective Queries . 1
Hello World MDX Query 1/4 . 2
Hello World MDX Query 2/4 . 3
Hello World MDX Query 3/4 . 3
Hello World MDX Query 4/4 . 4
Dimension Data on Columns . . 4
More Than One . . 5
Dimension Data on Rows . . 6
A Total Row . . 7
Hiding Nulls . 7
Displaying a Different Measure . 8
Hiding Nulls Again . . 9

Chapter 2 Astrophysical: Playing with Dimensions . 11
Single-Hierarchy Dimension . 12
Multiple-Hierarchy Dimension 1/2 . 13
Multiple-Hierarchy Dimension 2/2 . 13
Explicitly Requesting the All Level Member . 14
Introducing .members . 15
More on .members . 16
Putting Two Levels Together . . 17
Some MDX Shorthand . . 19
Individual Members . . 19
Multiple Members . . 21
User Hierarchies . 21
User Hierarchy with .members . 22
Two Hierarchies from the Same Dimension . 23
Transposing Columns onto Rows . 24
Adding a Measure Explicitly . 25

x P r a c t i c a l M D X Q u e r i e s f o r M i c r o s o f t S Q L S e r v e r A n a l y s i s S e r v i c e s 2 0 0 8

Two Dimensions on Two Axes . 26
Same Non-measure Dimension on Two Axes . 27
Same Non-measure Dimension on Two Axes with Differing Hierarchies 27
Years and Months on the Same Axis . 28
Years and Months on the Same Axis with a Crossjoin . 29
Introducing a Second Measure into the Crossjoin . . 31
A Second Crossjoin on a Second Axis . 32
Crossjoin on Two Separate Non-measure Dimensions . 32
A More Complex Crossjoin . 33
Alternative Crossjoin Syntax 1/2 . . 35
Alternative Crossjoin Syntax 2/2 . . 36
More on Members . . 37

Chapter 3 Families and Friends: Navigating Dimensions 39
Dimensions Have Members . 40
Hierarchies Have Members . . 41
Levels Have Members . . 41
Do Member Have Members? . . 42
Members Have Children . 43
How to Get to Paris from France . . 44
Traversing Levels with Descendants . 45
More on Descendants . . 46
Proving a Member (Crystal Zheng) Exists 1/3 . 47
Proving a Member (Crystal Zheng) Exists 2/3 . 48
Proving a Member (Crystal Zheng) Exists 3/3 . 49
Children of Crystal Zheng . . 50
Parent of Crystal Zheng . . 51
Grandparent . 52
Great-Grandparent . 52
Back to France . 53
Last of the Parents . . 54
Ancestor Rather Than .parent . 55
Ascendants Function . 55
Ascendants with Hierarchize Function . 56
Combing Navigation Functions, Brothers and Sisters . . 57
Siblings, Brothers and Sisters . 58
First Customer with .firstchild . 59

C o n t e n t s x i

First Customer with .firstsibling . 59
Now for the Last Customer . . 60
The Last Customer Another Way . 60
Applying Vertical Navigation 1/2 . 61
Applying Vertical Navigation 2/2 . 62
Extending the Descendants Functionality . 63
Descendants with self . . 64
Descendants with self_and_after . 64
Descendants with after . . 65
Descendants with before . . 66
Descendants Using a Distance . 67
Cousin . . 68
More on Cousin . 69
A Simple Range . 70
A Simpler Simple Range . 71
Range with Cousin . 71
Positive Lead and Negative Lag . 72
Negative Lead and Positive Lag . 73
Lead (or Lag) with a Range . . 74
Head . . 75
Tail . . 75
prevmember . 76
prevmember.prevmember . . 77
nextmember . 77
nextmember.nextmember . . 78
nextmember with a Range . . 79
Descendants with an Unbalanced Hierarchy 1/2 . 80
Descendants with an Unbalanced Hierarchy 2/2 . 81

Chapter 4 Bringing Order: Sorting Results . 83
By Default, Measures Are Not Sorted . 84
Using Order . . 85
Explicit Ascend . . 86
Descending Sort . 87
The Sort Only Works for a Few Rows . 88
Breaking Hierarchies . 89
Order with desc on User Hierarchy . 90

x i i P r a c t i c a l M D X Q u e r i e s f o r M i c r o s o f t S Q L S e r v e r A n a l y s i s S e r v i c e s 2 0 0 8

Order with bdesc on User Hierarchy . . 91
Sorting a Measure by Another Hidden Measure . . 92
Showing the Hidden Sort Measure . 93
Sorting Columns Rather Than Rows . . 94
Sorting Hierarchies, Not Measures . 95
Hierarchize Function . 95
Hierarchize Function, Upside Down . . 96
Real-World Example of Sorting 1/2 . . 97
Real-World Example of Sorting 2/2 . . 98

Chapter 5 Slice, Dice, and Filter: Using Where and Filter . 99
Where Clause . . 100
Another Measure in a Where Clause . 101
Measure in a Where Clause and on an Axis . 101
Default Measure in a Where Clause . . 102
A Non-measure Member in the Slicer . . 103
A Non-measure Member in the Slicer (Corrected) 1/2 . 104
A Non-measure Member in the Slicer (Corrected) 2/2 . 104
Two Non-measure Members from the Same Dimension Hierarchy 105
Two Non-measure Members from the Same Dimension Hierarchy (Fixed) 106
A Change of Slicer to United Kingdom . 106
Without the United Kingdom . 107
Introducing Filter . 108
A Simple Filter . 109
Another Simple Filter . 110
A More Complex Filter with And . . 110
A More Complex Filter with Or . . 111
An Even More Complex Filter with And and Or 1/2 . 112
An Even More Complex Filter with And and Or 2/2 . 112
Comparing Two Measures in a Filter . 113
Non-measure Dimension in Filter Test . 114
Two Non-measure Dimensions in Filter Test . . 115
Now with Measures Criteria . 115
Not with Is . 116
Introduction to Non Empty . . 117
Non Empty . 118
Tops and Bottoms . 119

C o n t e n t s x i i i

Topcount . 120
Topcount with a Measure . 120
Topcount with a Different Measure . . 121
Topcount with Two Measures . 122
Bottomcount . . 123
Bottomcount Hiding the Nulls . . 124
Toppercent . 124
Bottompercent . . 125
Topsum . 126
Bottomsum . . 127

Chapter 6 Using the Abacus: Introduction to Calculations 129
With Clause . . 130
Aliases Through With . 131
Useful Calculations Through With . . 132
Formatting Through With . 133
With Set 1/2 . 134
With Set 2/2 . 135
The Scope of With . 136
The Scope of Create . 137
Some Classic Calculated Measures . 139
Percentage of Parent 1/2 . . 139
Percentage of Parent 2/2 . . 140
Percentage of All . 141

Chapter 7 Is Time a Dimension? Working with Dates and Times 143
Returning a Specific Fiscal Year . 144
The Year Before FY 2003 . 144
The Year After . 145
A Range of Dates Without a Range Operator . 145
Going Back in Time with ParallelPeriod . 146
Going Forward in Time with ParallelPeriod . 147
Too Far into the Future . 147
How Far into the Future? . 148
How Far Back? . 149
Range with OpeningPeriod and Null . 149
Range with ClosingPeriod and Null . 150

x i v P r a c t i c a l M D X Q u e r i e s f o r M i c r o s o f t S Q L S e r v e r A n a l y s i s S e r v i c e s 2 0 0 8

Range with OpeningPeriod and ClosingPeriod . 150
An Extension to OpeningPeriod . 151
Time Gone By . 152
More on Date Ranges with LastPeriods . . 153
YTD (Year to Date) . . 154
YTD Not Working . 154
QTD (Quarter to Date) . . 156
MTD (Month to Date) . 157
WTD (Week to Date) . 157

Chapter 8 Clockwork: Calculations Using Dates and Times 159
Calculated Measures with the Time Dimension . 160
Year-on-Year Growth in Orders . 161
Orders Compared to Two Years Ago 1/2 . 161
Orders Compared to Two Years Ago 2/2 . 162
Nulls as Zero 1/2 . . 163
Nulls as Zero 2/2 . . 164
Simplifying the Calculation 1/2 . 165
Simplifying the Calculation 2/2 . 167
Into the Future . . 168
A Two-Step Approach . . 169
Introduction to Sum . . 170
Applying Sum 1/2 . 170
Applying Sum 2/2 . 171
Sum Is Not Always Suitable . 172
Aggregate Function . . 173
Sum and Aggregate Together . 174
More on Sum and Aggregate . 175
Avg Function . . 175
Min Function . . 176
Max Function . . 177
Moving Average with Avg . 177
Sum Giving a Running Total . 179
Avg Giving a Running Total . 179
ParallelPeriod Revisited 1/2 . 180
ParallelPeriod Revisited 2/2 . 181
Cousin 1/2 . 183

C o n t e n t s x v

Cousin 2/2 . 183
Workaround 1/2 Using Lag . . 184
Workaround 1/2 Using Lag Breaks . 185
Workaround 2/2 Using Crossjoin . 187

Chapter 9 Venn Diagrams: Visualizing and Manipulating Sets 189
Distinct . 190
Item on a Set . . 191
Item on a Tuple . 191
Generate . 192
Rank . . 193
Union, Intersect, Except Base Query 1/2 . 194
Union, Intersect, Except Base Query 2/2 . 195
Union . 195
Intersect . 197
Except 1/2 . 198
Except 2/2 . 199
Head . . 200
Subset . . 200
Tail . . 201
Subset with Count . . 202
Nonvisual Totals . 202
Visual Totals . 203
Named Sets 1/2 . 204
Named Sets 2/2 . 204
MeasureGroupMeasures . 205
Extract 1/2 . 206
Extract 2/2 . 206
Sorting Non-measure Dimensions 1/4 . 207
Sorting Non-measure Dimensions 2/4 . 208
Sorting Non-measure Dimensions 3/4 . 209
Sorting Non-measure Dimensions 4/4 . 210
Dimension Properties . . 211
Sorting by Dimension Properties . 213
Missing Member Caused by a Typo . 214
Missing Member Caused by a Non-Typo 1/2 . . 214
Missing Member Caused by a Non-Typo 2/2 . . 215

x v i P r a c t i c a l M D X Q u e r i e s f o r M i c r o s o f t S Q L S e r v e r A n a l y s i s S e r v i c e s 2 0 0 8

Hiding Non-Typo Missing Members 1/2 . 216
Hiding Non-Typo Missing Members 2/2 . 216
More on Exists 1/3 . . 217
More on Exists 2/3 . . 218
More on Exists 3/3 . . 218
Counting Members in a Set . 219

Chapter 10 Views on Cubes: Working with Subcubes . 221
Select from a Perspective . . 222
Base Query for Subselects . 223
Subselect 1/2 . . 223
Subselect 2/2 . . 224
Visual Totals . 225
Nonvisual Totals . 226
Default Measure of a Cube . 226
Creating a Subcube . 227
Default Measure of a Subcube . 228
Querying a Subcube . . 228
Dropping a Subcube . . 229
Subcube with Visual Totals . . 229
Subcube with Nonvisual Totals . 230

Chapter 11 Not All There: Dealing with Empty Cells . 231
Empty Cells . . 232
Hiding Empty Cells . 233
Another Way to Hide Cells . 233
More on NonEmpty . 234
Explaining NonEmpty . . 235
NonEmpty with a Different Measure . 235
This Time NonEmpty Produces Different Results . 236

Chapter 12 Smiley Faces: Working with Key Performance Indicators (KPIs) 239
Selecting KPIs . 240
Formatting KPIs . 241
Changing KPIs . 242
Creating KPIs . . 243
Undoing Create . 246

C o n t e n t s x v i i

Chapter 13 Hodgepodge: A Chapter of Miscellaneous Techniques 247
Conditional Formatting Base Query . . 248
Conditional Formatting . . 249
Measure Member Aliases . . 250
Non-measure Dimension Member Aliases . 251
DrillDownMember . . 251
Drillthrough 1/2 . 252
Drillthrough 2/2 . 253

Chapter 14 After You Finish . 255
Where to Use MDX . . 256

SSRS . 256
SSIS . 256
SQL . . 257
DMX . 257
XMLA . 257
Winforms and Webforms . 257
Performance Point Server and ProClarity . 258
Third-Party Software . 258
Copy and Paste . 258

Index . 259

This page intentionally left blank

xix

Acknowledgments

Thank you to my editor, Wendy Rinaldi. In particular, she demonstrated
remarkable vision, enthusiasm, and patience. Also thanks to Joya Anthony for
her efforts in getting my original draft into a publishable book and to Melinda

Lytle who helped with the graphics. Finally, I am indebted to Deepak Puri who displayed
remarkable insight as the technical reviewer of the MDX queries.

This page intentionally left blank

xxi

Introduction

MDX
Business intelligence (BI) is a very rapidly growing area of the software market.

Microsoft’s core product in this field is SQL Server Analysis Services (SSAS). It is

revolutionizing how companies view and work with data. Its purpose is to turn data

into information, giving meaning to the data. There are two main objects in SSAS that

support this goal—cubes and data-mining models. If these can be visualized easily,

the information they contain is transformed into intelligence, thus leading to timely

and effective decision making. Cube information can be extracted and visualized with

Multidimensional Expressions (MDX) queries. Data-mining model information can

be extracted and visualized with Data Mining Extensions (DMX) queries. This book

is devoted to cubes and the MDX language. It takes you from first principles in MDX

query writing and builds into more and more sophisticated queries. This book is a

practical one—with lots of syntax to try on nearly every page (and you can copy and

paste from the download files for this book, if you prefer not to type).

Prerequisites
You will need two databases. First, the SSAS Adventure Works DW 2008 database

(called Adventure Works DW in SSAS 2005), which contains the Adventure Works

cube. The MDX queries are written against this cube. Second, the SQL Server

AdventureWorksDW2008 database (called AdventureWorksDW in SQL Server 2005),

which provides the source data required by the SSAS Adventure Works DW 2008

database.

x x i i P r a c t i c a l M D X Q u e r i e s f o r M i c r o s o f t S Q L S e r v e r A n a l y s i s S e r v i c e s 2 0 0 8

Installing Adventure Works
You can download the required SSAS database (with the Adventure Works cube) and

SQL Server database from www.codeplex.com (both 2008 and 2005 versions). As of

this writing, the URL was http://www.codeplex.com/MSFTDBProdSamples/Release/

ProjectReleases.aspx?ReleaseID=16040. Choose SQL Server 2008 or SQL Server 2005

from the Releases box. URLs can change—if you have difficulty then search

www.codeplex.com on Adventure Works Samples.

SSAS 2008
Before you begin the download, you might want to check the two hyperlinks, Database

Prerequisites and Installing Databases. Download and run SQL2008.AdventureWorks

All Databases.x86.msi (there are also 64-bit versions, x64 and ia64). As the installation

proceeds, you will have to choose an instance name for your SQL Server. When

the installation finishes, you will have some new SQL Server databases, including

AdventureWorksDW2008 (used to build the SSAS Adventure Works cube). You will

not have the cube just yet.

SSAS 2005
The download file is called AdventureWorksBICI.msi (there are also 64-bit versions,

x64 and IA64). With 2005, you can also go through Setup or Control Panel to add the

samples—this is not possible in 2008. Unlike in 2008, the download and subsequent

installation do not result in the new SQL Server source database appearing under

SQL Server in SSMS. You have to manually attach the database. You can do this from

SSMS (right-click the Databases folder and choose Attach) if you have some DBA

knowledge. Or you might ask your SQL Server DBA to do this for you. If you click the

Release Notes hyperlink on the download page, you will find out how to do this from

SQL—but this is an MDX book! You will not have the cube just yet.

www.codeplex.com
http://www.codeplex.com/MSFTDBProdSamples/Release/ProjectReleases.aspx?ReleaseID=16040
http://www.codeplex.com/MSFTDBProdSamples/Release/ProjectReleases.aspx?ReleaseID=16040
www.codeplex.com

I n t r o d u c t i o n x x i i i

Creating the Adventure Works Cube
This cube is used by all the MDX queries in this book. Here’s how to deploy it:

1. Navigate to C:\Program Files\Microsoft SQL Server\100\Tools\Samples\
AdventureWorks 2008 Analysis Services\Project (C:\Program Files\Microsoft SQL
Server\90\Tools\Samples\AdventureWorks Analysis Services\Project for 2005).

2. Depending on your edition of SSAS, open the Enterprise or Standard folder.

3. Double-click the Adventure Works.sln file. This will open BIDS.

4. In Solution Explorer, right-click the Adventure Works project, which is probably
in bold. If you can’t see Solution Explorer, click View | Solution Explorer. The
project will be called Adventure Works DW 2008 (for SSAS 2008 Enterprise
Edition) or Adventure Works DW 2008 SE (for SSAS 2008 Standard Edition)
or Adventure Works DW (for SSAS 2005 Enterprise Edition) or Adventure
Works DW Standard Edition (for SSAS 2005 Standard Edition).

5. Click Deploy (then click Yes if prompted). After a few minutes, you should
see Deploy Succeeded message on the status bar and Deployment Completed
Successfully in the Deployment Progress window.

If the deployment fails, try these steps:

1. Right-click the project and choose Properties. Go to the Deployment page and
check that the Server entry points to your SSAS (not SQL Server) instance—you
might have a named SSAS instance rather than a default instance, or your SSAS
may be on a remote server.

2. Right-click Adventure Works.ds (under the Data Sources folder in Solution
Explorer) and choose Open. Click Edit and check that the Server name entry
points to your SQL Server (not SSAS) instance—you might have a named SQL
Server instance rather than a default instance, or your SQL Server may be on a
remote server.

3. Try and deploy again.

x x i v P r a c t i c a l M D X Q u e r i e s f o r M i c r o s o f t S Q L S e r v e r A n a l y s i s S e r v i c e s 2 0 0 8

Source Code
All the source code for the queries in this book is available for download. You can

simply copy and paste into the query editor to save you typing. You can copy and paste

individual queries or copy and paste blocks of code. If you do the latter, make sure you

highlight only the relevant code before you run the query.

You can download the source code from www.mhprofessional.com/

computingdownload.

Acronyms
BI Business intelligence

BIDS SQL Server Business Intelligence Development Studio

DMX Data Mining Extensions

KPI Key performance indicator

MDX MultiDimensional Expressions

SQL Structured Query Language

SSAS SQL Server Analysis Services

SSIS SQL Server Integration Services

SSMS SQL Server Management Studio

SSRS SQL Server Reporting Services

XMLA XML for Analysis

www.mhprofessional.com/computingdownload
www.mhprofessional.com/computingdownload

I n t r o d u c t i o n x x v

SSAS 2008 or SSAS 2005?
The MDX queries in this book are primarily for SSAS 2008. Fortunately, over 99 percent

also work against SSAS 2005. One minor exception is the Create KPI syntax (one query

in the book), which was introduced in SSAS 2008. Also, the dates in the SSAS 2008

and SSAS 2005 sample cubes are slightly different. In SSAS 2005, you will not see the

calendar year CY 2006 nor will you see the fiscal year FY 2007. As a result, there may be

a few small differences in the results of just some of your queries that return dates.

Enterprise/Developer Edition
or Standard Edition?
It makes little difference which edition you use. All the queries work against the

Enterprise/Developer Edition of SSAS. Over 99 percent will also work against the

Standard Edition. SSAS Standard Edition does not support Select statements against

perspectives (one query in the book).

Writing Queries
To write a query, follow these steps:

1. Open SSMS.

2. If prompted to connect, click Cancel.

3. Click File | New | Analysis Services MDX Query.

4. Click Connect in the dialog box.

x x v i P r a c t i c a l M D X Q u e r i e s f o r M i c r o s o f t S Q L S e r v e r A n a l y s i s S e r v i c e s 2 0 0 8

5. From the drop-down on the toolbar, choose the Adventure Works DW 2008
database.

6. Make sure the Adventure Works cube is selected in the Cube drop-down just to
the left of the query editor window. The cube metadata should be visible in the
Metadata pane.

7. Type, or type and drag, or copy and paste to create the query.

8. Click the Execute button on the toolbar.

There are many other ways of opening the query editor. Here’s a popular alternative:

1. In Object Explorer, right-click the SSAS database Adventure Works DW 2008
(Adventure Works DW in SSAS 2005).

2. Click New Query | MDX.

3. Make sure the Adventure Works cube is selected in the Cube drop-down just to
the left of the query editor window. The cube metadata should be visible in the
Metadata pane.

Chapter Content
The MDX you learn can be used in many places. These include SQL Server Reporting

Services (SSRS), SQL Server Integration Services (SSIS), Performance Point Server, and

your own .NET Windows forms and web pages. In addition, you can extend your SQL

and DMX queries by embedding MDX code. By and large, all the MDX in the book is

divided into chapters based on functionality. The chapters are as follows.

Chapter 1: Hello World: Easy Yet Effective Queries
This is a short chapter to get you started. It has a few queries so you get a flavor of

the power and elegance of the MDX language.

I n t r o d u c t i o n x x v i i

Chapter 2: Astrophysical: Playing with Dimensions
This chapter shows you how to work with dimensions, hierarchies, levels, and

members. It’s quite possibly the most difficult chapter in the whole book—especially

if you are not familiar yet with the concepts of dimensions and hierarchies.

Understanding them is vital if you want to write meaningful and powerful MDX.

Chapter 3: Families and Friends:
Navigating Dimensions
Here we explore moving up, down, and across dimensions and hierarchies. The

general term for doing this is navigation. MDX allows you to navigate both

horizontally and vertically. MDX (unlike SQL) is positionally aware—it knows

where you are in the cube and can help you in your navigation.

Chapter 4: Bringing Order: Sorting Results
This chapter introduces various ways of sorting the results of your queries.

Business intelligence reports often have a requirement to put the information in

some kind of order—whether numeric or alphabetic. This chapter shows you how

to do this.

Chapter 5: Slice, Dice, and Filter:
Using Where and Filter
Often, you will want only a subset of your dimension members and measure

values. This can be achieved by slicing and dicing with a Where clause. An

alternative approach involves using criteria with a Filter function. The MDX Where

clause is not the same as an SQL one—hopefully, by the end of the chapter you will

be proficient at using it in MDX.

x x v i i i P r a c t i c a l M D X Q u e r i e s f o r M i c r o s o f t S Q L S e r v e r A n a l y s i s S e r v i c e s 2 0 0 8

Chapter 6: Using the Abacus:
Introduction to Calculations
In general, the measures in your cube are based directly or indirectly on the

columns in your fact table in your star schema. However, it’s likely your reports

will need further metrics. These are often based on the existing measures in some

way. One way to devise these new measures is to use MDX query calculations.

Here we explore how to do this. In addition, we take a look at creating non-

measure members and creating our own sets of data.

Chapter 7: Is Time a Dimension? Working with
Dates and Times
Nearly every cube in the world has a date or time dimension. MDX provides

many rich features that help you to analyze your data across history. In this

chapter, you are introduced to lots of functions for manipulating dates and times.

These will help you produce brilliant business intelligence reports!

Chapter 8: Clockwork: Calculations Using
Dates and Times
The previous chapter introduces the MDX to extract and manipulate dates. This

chapter combines the MDX you learn there with aggregate and other functions.

Here you get to use these aggregate and other functions to produce totals, subtotals,

and changes across time. This is a big part of business intelligence reporting.

Chapter 9: Venn Diagrams: Visualizing and
Manipulating Sets
Here’s a wide-ranging chapter on working with sets and members of sets. By the

end of the chapter, you’ll be able to create, visualize, and manipulate sets.

I n t r o d u c t i o n x x i x

Chapter 10: Views on Cubes: Working with Subcubes
If you are familiar with SQL, you may use views. One use of a view on a relational

table is to present only a part of the table. Often, you will want to work on only a

part of a cube. The SSAS versions of SQL views are called perspectives, subselects,

and subcubes. Here we get to exploit those perspectives, subselects, and subcubes.

Chapter 11: Not All There: Dealing with Empty Cells
Cubes are often pretty big. They contain lots and lots of data. However, there will

also be many gaps. For example, it’s unlikely that every customer bought every

product on every single day. There will be missing or null data. Sometimes, you

want to see null values—maybe zero sales are of interest. Sometimes, the null

values are a distraction and you will want to hide them. This chapter concentrates

on displaying and hiding empty cells.

Chapter 12: Smiley Faces: Working with Key
Performance Indicators (KPIs)
Key performance indicators (KPIs) are a vital part of business intelligence. At a

glance, you can see how well you are doing without having to dig down and analyze

individual metrics. They are a high-level overview of results—and of results against

targets. Here we explore using, modifying, formatting, and creating KPIs in MDX.

Chapter 13: Hodgepodge: A Chapter
of Miscellaneous Techniques
This is a catchall chapter for topics that do not fit easily into earlier chapters.

Formatting and conditional formatting are investigated. There are also queries to

drill through and drill down on the cube.

x x x P r a c t i c a l M D X Q u e r i e s f o r M i c r o s o f t S Q L S e r v e r A n a l y s i s S e r v i c e s 2 0 0 8

Chapter 14: After You Finish
Throughout this book, you’ll be using SSMS to write your MDX queries and

display the results. It’s unlikely that your users will have SSMS—indeed, it’s

not recommended for end users because SSMS is simply too powerful and

potentially dangerous. This chapter presents some alternative software and

methods for getting MDX query results to the end user.

Hello World: Easy Yet
Effective Queries

Chapter 1

2 P r a c t i c a l M D X Q u e r i e s f o r M i c r o s o f t S Q L S e r v e r A n a l y s i s S e r v i c e s 2 0 0 8

Welcome to MDX. This short chapter is designed to get you started. It has
a few queries so you get a taste of the power and elegance of the MDX
language. It’s not important at this stage that you understand the syntax of

the sample queries—all will become clear as you progress through the examples in the rest
of the book. Also, don’t be misled by any initial and superficial similarity to SQL—MDX
is a completely different language from SQL!

Key concepts Cube, columns, rows, cells, dimensions, measures, default measure

Keywords Select, From, Where, Columns, Rows, Non Empty

Hello World MDX Query 1/4
Type in the following query in the MDX editor in SSMS (SQL Server Management
Studio), and make sure you have a connection to the Adventure Works database (it
should be showing in the drop-down on your toolbar). Or, if you have downloaded the
files that accompany the book, you can copy and paste. You can also combine typing
with dragging and dropping. In the Metadata pane, you can drag in the name of the
cube, [Adventure Works]. If you do so, make sure you remove the highlight—SSAS
(SQL Server Analysis Services) tries to execute the highlight in isolation from the rest
of the code. Alternatively, you can highlight the full query. Click the Execute button on
the toolbar to run the query (or press f or ctrl-e or alt-x, or select Query | Execute
from the menu bar). Lots of ways to run your MDX queries!

Syntax
-- hello world 1/4

-- this is a comment like the line before it

select

from

[Adventure Works]

Result

Analysis
Well done. MDX is not that difficult. The result you should see underneath your query is
$80,450,596.98. Not that it means that much, just yet. It’s the super grand total from the
cube—that is, for all products and all dates and all resellers and all locations and so on.
In fact, it’s the super grand total for Reseller Sales Amount—not that you can tell by

C h a p t e r 1 : H e l l o W o r l d : E a s y Ye t E f f e c t i v e Q u e r i e s 3

looking at either the syntax or the result. Reseller Sales Amount is something called the
default measure of the cube—it’s the measure (or fact, metric, or figure) that appears unless
you specify otherwise. There is much more on this in the next and subsequent chapters.

Hello World MDX Query 2/4
This is our second query. It has an identical result to our first query. Note the addition
of the Where clause.

Syntax
-- hello world 2/4

select

from

[Adventure Works]

where [Measures].[Reseller Sales Amount]

Result

Analysis
Yes, this is the same answer. Here we have explicitly requested the Reseller Sales
Amount measure. One way of doing so is to include it in the Where clause. In MDX,
a Where clause is called a slicer. Because Reseller Sales Amount is the default measure,
the Where clause is not necessary, but it does make the MDX more explicit. Maybe it
would be nice to see this labeled as Reseller Sales Amount in the output (which we’ll
do in the query after the next one).

Hello World MDX Query 3/4
Here the Where clause has changed. This time the slicer is asking for Internet Sales
Amount.

Syntax
-- hello world 3/4

select

from

[Adventure Works]

where [Measures].[Internet Sales Amount]

4 P r a c t i c a l M D X Q u e r i e s f o r M i c r o s o f t S Q L S e r v e r A n a l y s i s S e r v i c e s 2 0 0 8

Result

Analysis
When you reference measures, you must precede the measure name with either
Measures or [Measures]. The use of square brackets is optional but is considered good
practice because it shows your metadata clearly. Note that Internet Sales Amount is
entered as [Internet Sales Amount]. The square brackets here are obligatory because of
the spaces in the name. Your answer is now $29,358,677.22—the super grand total for
Internet (not reseller) sales for all products and all dates and all customers and so on.

Hello World MDX Query 4/4
No Where clause this time. Instead, the Reseller Sales Amount is requested on the
columns.

Syntax
-- hello world 4/4

select

[Measures].[Reseller Sales Amount]

on columns

from

[Adventure Works]

Result

Analysis
This probably looks a little better. Now it’s obvious that the measure in the result is indeed
for reseller sales and not for Internet sales or for any other measure. The important syntax
change is the column specification that dictates what appears across the Columns axis of
the result—an MDX result is often called a cellset.

Dimension Data on Columns
The previous query placed a measure across the columns. By contrast, our query this time
places dimension data from the Date dimension along the columns. Strictly speaking,
I should say non-measure dimension data. As you will see later, [Measures] can be

C h a p t e r 1 : H e l l o W o r l d : E a s y Ye t E f f e c t i v e Q u e r i e s 5

considered a dimension as well. This is a little confusing if you are new to MDX and you
have a relational star schema where the dimension tables (which don’t contain facts) are
distinct from the fact table (which does contain the facts or the measures). A dimension is
anything that can go on an axis. The last query placed Reseller Sales Amount on an axis,
thus [Measures] qualifies as a dimension too.

Syntax
-- adding dimension data to columns

select

[Date].[Calendar].[Calendar Year]

on columns

from

[Adventure Works]

Result

Analysis
[Date].[Calendar].[Calendar Year] is in the format [Dimension].[Hierarchy].[Level].
We are asking for all of the calendar years. Notice that CY 2005 is missing. This means
that CY 2005 simply does not exist within the dimension. The cells have values for the
default measure Reseller Sales Amount.

More Than One
There is now a comma-separated list for the column specification. The braces around
the two entries are obligatory—the query will fail without them. The next chapter (over
the course of a couple queries) shows just what they do.

Syntax
-- and a total column

select

{[Date].[Calendar].[Calendar Year],[Date].[Calendar]}

on columns

from

[Adventure Works]

6 P r a c t i c a l M D X Q u e r i e s f o r M i c r o s o f t S Q L S e r v e r A n a l y s i s S e r v i c e s 2 0 0 8

Result

Analysis
[Date].[Calendar] is in the form [Dimension].[Hierarchy]. It’s the very top of the
hierarchy and is called All Periods. It’s the total (or aggregation) of the individual calendar
years: $80,450,596.98, which we met earlier. The other figures (cells) add up to this total.

Dimension Data on Rows
Let’s exploit the second axis in our two-dimensional display. It’s the Rows axis. Be
aware that a comma (,) separates the column specification from the row specification.

Syntax
-- adding dimension data to rows

select

{[Date].[Calendar].[Calendar Year],[Date].[Calendar]}

on columns,

[Product].[Product Categories].[Category]

on rows

from

[Adventure Works]

Result

Analysis
Two dimensions on two axes. I imagine your cube (like Adventure Works) has rather
more than two dimensions. But we are limited to a two-axis display! Fortunately, two
axes do not confine us to two dimensions (how good is your cosmology?). There is a
very useful Crossjoin function in MDX that allows us to load (by nesting) more than
one dimension on a single axis. Two axes (Columns and Rows) do not limit us to only
two dimensions! There is much more on Crossjoin discussed later in the book.

C h a p t e r 1 : H e l l o W o r l d : E a s y Ye t E f f e c t i v e Q u e r i e s 7

A Total Row
Once again, the braces around the two entries for the rows specification are vital.

Syntax
-- and a total row

select

{[Date].[Calendar].[Calendar Year],[Date].[Calendar]}

on columns,

{[Product].[Product Categories].[Category],[Product].[Product Categories]}

on rows

from

[Adventure Works]

Result

Analysis
This is quite a cool query for so early in your MDX career. Try doing that in SQL
against a relational (normalized or even denormalized) database! You might recognize
the cell, $80,450,596.98, in the bottom-right corner.

Hiding Nulls
You might want to hide CY 2006 because there are no reseller sales for that year. Here
we have Non Empty before the column specification.

Syntax
-- hiding nulls

select

non empty {[Date].[Calendar].[Calendar Year],[Date].[Calendar]}

on columns,

{[Product].[Product Categories].[Category],[Product].[Product Categories]}

on rows

from

[Adventure Works]

8 P r a c t i c a l M D X Q u e r i e s f o r M i c r o s o f t S Q L S e r v e r A n a l y s i s S e r v i c e s 2 0 0 8

Result

Analysis
To show or hide null values is a business decision. The result might look better without
CY 2006. Then again, it might be important to know that 2006 sales are null (or empty
or zero). If you were to browse a cube as a pivot table in Excel 2007, BIDS, or SSMS,
the empty cells are hidden by default—although there are options to display them. This
is the opposite behavior to the MDX query editor, which shows empty cells by default.

Displaying a Different Measure
Here, a Where slicer is used to change to Internet Sales Amount from the default
Reseller Sales Amount that was used implicitly in the last query.

Syntax
-- different measure

select

{[Date].[Calendar].[Calendar Year],[Date].[Calendar]}

on columns,

{[Product].[Product Categories].[Category],[Product].[Product Categories]}

on rows

from

[Adventure Works]

where [Measures].[Internet Sales Amount]

Result

C h a p t e r 1 : H e l l o W o r l d : E a s y Ye t E f f e c t i v e Q u e r i e s 9

Analysis
The column and row headings (captions) remain the same. However, the values in the
cells have changed. The cell at the bottom-right corner is now about 29 million dollars
and not about 80 million dollars.

Hiding Nulls Again
Here we have the last query in this introductory “Hello World” chapter. It tidies up the
previous query by using Non Empty on both axes to hide null values.

Syntax
-- hiding nulls again

select

non empty {[Date].[Calendar].[Calendar Year],[Date].[Calendar]}

on columns,

non empty {[Product].[Product Categories].[Category],

[Product].[Product Categories]}

on rows

from

[Adventure Works]

where [Measures].[Internet Sales Amount]

Result

Analysis
Non Empty is used twice—on the columns and on the rows. CY 2006 has gone as
before. But Components has disappeared from the rows too. CY 2001 and Clothing
both survive the use of Non Empty even though they have null values in some of their
cells. Non Empty operates on the whole column (or row) and not on part of the column
(or row). Thus CY 2001 is still there as there is a non-null value ($3,266,373.66) for the
sales of Bikes in that year.

This page intentionally left blank

Astrophysical: Playing
with Dimensions

Chapter 2

1 2 P r a c t i c a l M D X Q u e r i e s f o r M i c r o s o f t S Q L S e r v e r A n a l y s i s S e r v i c e s 2 0 0 8

This chapter shows you how to work with dimensions, hierarchies, levels,
and members. It’s quite possibly the most difficult chapter in the whole
book—especially if you are not familiar yet with the concepts of dimensions

and hierarchies. Understanding them is vital if you want to write meaningful and
powerful MDX.

Key concepts Multiple-hierarchy dimensions, attribute hierarchies, user
hierarchies, displaying members

Keywords Select, Columns, Rows, .members, Crossjoin

Single-Hierarchy Dimension
The Sales Channel dimension contains just the one attribute, also called Sales Channel.
Even though it is simply an attribute (probably a source column in a star schema
relational database), it is also a hierarchy. By default, all attributes have an All level
back in the dimension design in BIDS. Attribute hierarchies are represented as blue
rectangles composed of six small squares in the Metadata pane of the query editor
window. If a dimension should contain just the one attribute, it will not normally
include any user-defined hierarchies, which usually require at least two attribute
hierarchies to create two or more separate levels (in addition to the All level at the
top). However, it is technically possible to create a user-defined hierarchy from a single
attribute.

Syntax
-- single-hierarchy dimension

select

[Sales Channel] -- dimension

on columns

from

[Adventure Works]

Result

Analysis
Here only the dimension is specified for the Columns axis. By default, it returns the
default member of the attribute hierarchy. Usually, the default member is at the All level

C h a p t e r 2 : A s t r o p h y s i c a l : P l a y i n g w i t h D i m e n s i o n s 1 3

of the dimension’s attribute hierarchy. The default member can be changed in BIDS. If
there is no default member, the member at the All level is typically chosen. The default
member in this hierarchy (at the All level) has had its AttributeAllMemberName set to
All Sales Channels in BIDS. The figure of $80,450,596.98 is for the default measure in
the cube (DefaultMeasure property back in BIDS). Here, it is Reseller Sales Amount.

Multiple-Hierarchy Dimension 1/2
Single-hierarchy dimensions are quite rare. Usually, a dimension will have two, and
often more, attributes (strictly speaking, we should call them attribute hierarchies). In
addition, many dimensions in a cube design have user hierarchies that are composed of
two or more attribute hierarchies. We will look at user hierarchies shortly.

Syntax
-- multiple-hierarchy dimension

select

[Product] -- dimension

on columns

from

[Adventure Works]

Result

Analysis
This error message is deliberate and informative. To avoid any ambiguity, it is essential
that you include the hierarchy name with the dimension name if the dimension has more
than one hierarchy. The Product dimension has many attribute and user hierarchies. The
next query addresses this problem.

Multiple-Hierarchy Dimension 2/2
The dimension name has now been qualified with a valid hierarchy name. This will
eliminate the error message seen in the previous query. In this case, the hierarchy is an
attribute hierarchy called Category.

1 4 P r a c t i c a l M D X Q u e r i e s f o r M i c r o s o f t S Q L S e r v e r A n a l y s i s S e r v i c e s 2 0 0 8

Syntax
-- hierarchy specified in multiple-hierarchy dimension

select

[Product].[Category] -- dimension.attribute hierarchy

on columns

from

[Adventure Works]

Result

Analysis
This time the syntax is unambiguous and the MDX returns a cellset consisting of a
single cell. The result, once again, depicts the single member at the All level. In BIDS,
the AttributeAllMemberName property has been set to All Products. It seems like a
good idea to always include both the dimension and the hierarchy name in your queries.

Explicitly Requesting the All Level Member
It’s also a good idea to explicitly request the member from the All level too. This was
omitted in the previous query. Four queries to try! Hopefully, this one will show you just
how it is done—and how it is not done. Some of these queries will work, and one or
two may fail.

Syntax
select

[Product].[Category].[all] -- dimension.attribute hierarchy

on columns

from

[Adventure Works]

--

select

[Product].[Category].[All] -- dimension.attribute hierarchy

on columns

from

[Adventure Works]

--

C h a p t e r 2 : A s t r o p h y s i c a l : P l a y i n g w i t h D i m e n s i o n s 1 5

select

[Product].[Category].[(all)] -- dimension.attribute hierarchy

on columns

from

[Adventure Works]

--

select

[Product].[Category].[all products]

-- dimension.attribute hierarchy

on columns

from

[Adventure Works]

Result

Analysis
Not all of the four queries will necessarily produce the result shown. Possibly, the best
one to use is [(all)]. One that may cause you the odd headache is [all products]. Firstly,
it is not generic and relies on you reproducing exactly the AttributeAllMemberName
property that someone else may have set back in BIDS. Secondly, if your SSAS is
case-sensitive, it will fail if you get the capitalization wrong. Fortunately, most SSAS
installations are case-insensitive. Case-sensitivity, or the lack of it, is a choice made
during installation. You can check this by looking at the Language/Collation setting of
the SSAS server in SSMS (right-click on your server, choose Properties, and go to the
Language/Collation page).

Introducing .members
Dimensions contain one or more hierarchies (zero or more user hierarchies). Hierarchies
contain one or more levels (in reality I should say hierarchies contain two or more levels,
because there is always, by default, an All level for every hierarchy). Levels contain
members. If you are new to multidimensional cubes, that may well sound suitably
obscure. It is not absolutely necessary to understand concepts and theory and jargon in
order to become productive in MDX. So, maybe, just try the query. Once you do master
the concepts, your MDX will become even easier to write and you will be even more
productive! The conceptual nature of multidimensional data is beyond the scope of this
book. Okay, to really confuse you, because levels have members and hierarchies have
levels, then it follows that hierarchies have members too!

1 6 P r a c t i c a l M D X Q u e r i e s f o r M i c r o s o f t S Q L S e r v e r A n a l y s i s S e r v i c e s 2 0 0 8

One way to reference members is to use the .members syntax. Informally, this is
a function. More formally, it is a property function because it is preceded by the dot
notation.

The sample query is asking for the members of the Category hierarchy (an attribute
hierarchy composed of two levels).

Syntax
-- specifying .members

select

[Product].[Category].members

-- dimension.hierarchy.members

on columns

from

[Adventure Works]

Result

Analysis
[Product].[Category] is the Category attribute of the Product dimension. It is also an
attribute hierarchy. So, its members include the All level member as well as the individual
category names as members (at the Category level). That’s why you get All Products in
the result as well as the individual categories. Notice, the All Products member appears
first. If you had omitted the .members property function, only All Products would have
been returned, as we saw in an earlier query.

More on .members
Here we have one of the most common types of MDX queries. Although it requires
more work, it is beginning to look like business intelligence. It makes sense to a business
user, hopefully.

You need to see the categories. One of the easiest ways of doing this is to use the
.members property function against a level. The following query is asking for the
members of the Category level of the Category hierarchy of the Product dimension.

Syntax
-- specifying .members for a level

select

C h a p t e r 2 : A s t r o p h y s i c a l : P l a y i n g w i t h D i m e n s i o n s 1 7

[Product].[Category].[Category].members

-- dimension.hierarchy.level.members

on columns

from

[Adventure Works]

Result

Analysis
[Product] is a dimension. [Product].[Category] is a hierarchy. [Product].[Category]
.[Category] is a level. [Product].[Category].[Category].members then returns the
members (for example, Accessories and Bikes) of the level.

Note the absence of All Products this time.
If you are completely new to MDX, then references such as [Product].[Product]

.[Product] can appear a little strange at first. But, if you understand the rules, it becomes
somewhat clearer. [Product].[Product].[Product] means (reading from right to left) the
Product level of the Product hierarchy in the Product dimension.

Putting Two Levels Together
The following two queries combine two levels on the Columns axis. Try running them
individually. The first query will produce an error. The second query will return some cells.

Syntax
-- 2 levels together

select

[Product].[Category].[Category].members,[Product].[Category].[All Products]

on columns

from

[Adventure Works]

-- 2 levels together with {}

select

{[Product].[Category].[Category].members,[Product].[Category].

[All Products]}

on columns

from

[Adventure Works]

1 8 P r a c t i c a l M D X Q u e r i e s f o r M i c r o s o f t S Q L S e r v e r A n a l y s i s S e r v i c e s 2 0 0 8

Result

Analysis
The result of the first query is a very common error message in MDX. To fully understand
it, you need to come to grips with some multidimensional concepts. If you prefer not to
do so at this stage, simply try the second query with the addition of the { and } delimiters
around the Columns axis specification. The { and the } delimiters are known variously as
braces, French braces, curly brackets, or often simply and informally as squiggly brackets
or squiggles. I guess it depends to some extent on which part of the English-speaking
world you live in.

The second query is quite a useful one. It shows each category and then the total for
the four categories. You saw similar results in an earlier query, using [Product].[Category]
.members, but this one is more flexible. For example, we can position the All Products
member after the individual categories.

Why the delimiters? If you are not interested in the theory, then by all means move
on. If you do, it is strongly recommended that you return later to this paragraph. A
member (of a level/hierarchy/dimension) defines a space within the overall cube space.
It points to one or more cells containing one or more measures. In other words, it acts as
a coordinate. When a member acts as a coordinate, it is referred to as a tuple (pronounce
that how you will!). It is one-dimensional. In a multidimensional cube, you also need the
coordinates or tuples of all the dimensions to exactly specify a particular cell containing
data. In addition, if each cell contains more than one measure, it is also necessary to
specify which measure so a cell in the query result shows one and only one number.
Consider the Bikes member. It is fairly clear that the cell returned is for Bikes! What
is not obvious is for which measure. In our case, because no measure is specified, it uses
the default member for the cube, Reseller Sales Amount. Reseller Sales Amount is also a
member. It is a member of Measures. Thus, a measure is also a member and a coordinate
and a tuple. But, for which year are the sales? After all, no dates are mentioned in the
query. When a dimension is not explicitly referenced, the default member is used as an
invisible tuple. This applies to all of the dimensions related to a particular measure. Thus,
the figure for Bikes is for all time, for all resellers, for all employees, for all promotions,
and so on, and so forth. The specification on the Columns axis has two tuples—the first
referring to the categories and the second referring to All Products. A specification of an

C h a p t e r 2 : A s t r o p h y s i c a l : P l a y i n g w i t h D i m e n s i o n s 1 9

axis is called a set, the set being projected along the axis. A single tuple is automatically
converted into a set. However, if there is more than one tuple, they must be explicitly
converted into a set. The braces, the { and } delimiters, mean explicitly convert to set.
If you omit them, MDX gives the ambiguity error message.

Some MDX Shorthand
The query here is a variation on the last query. It demonstrates the use of some very
popular shorthand in MDX.

Syntax
-- 2 levels short hand

select

{[Product].[Category].[Category],[Product].[Category]}

on columns

from

[Adventure Works]

Result

Analysis
The results are the same as those from the previous query, but the syntax is shorter.
The .members function of the Category level has been omitted, as has the explicit
reference to All Products on the Category hierarchy. The behavior of MDX is to return
members on a level by default, but to return the default (usually at the All level) member
on a hierarchy.

Individual Members
Often, you will want to reference an individual member. There are a number of ways
of doing this. Here are four alternatives. Try each one in turn and verify that they all
produce the same output.

Syntax
-- individual member by key and hierarchy

select

[Product].[Category].&[1]

2 0 P r a c t i c a l M D X Q u e r i e s f o r M i c r o s o f t S Q L S e r v e r A n a l y s i s S e r v i c e s 2 0 0 8

on columns

from

[Adventure Works]

-- individual member by name and hierarchy

select

[Product].[Category].[Bikes]

on columns

from

[Adventure Works]

-- individual member by key and level

select

[Product].[Category].[Category].&[1]

on columns

from

[Adventure Works]

-- individual member by name and level

select

[Product].[Category].[Category].[Bikes]

on columns

from

[Adventure Works]

Result

Analysis
This is a difficult decision. Which one are you going to use when you write your
own queries? Note the ampersand (&) in front of the key. When you drag and drop
members from the Metadata pane, the key notation is used. Using a key is preferable
if you think some members might have duplicate names. For example, although it’s
unlikely, you might have two categories called Bikes. More likely, you will have two or
more customers with the name Smith. Specifying the key value rather than the name
value removes any ambiguity. The drawback is that the code is not very readable, and
heavy use of keys makes your MDX difficult to understand and debug—especially
when you look at it a few days later. Many MDX developers prefer to use the name if
they are certain duplicate names do not exist.

The first two examples use only the hierarchy. The second two use the hierarchy and
the level. Possibly, using the hierarchy and level together is safer—it is a fully qualified
reference. Again, this may be up to personal preference.

C h a p t e r 2 : A s t r o p h y s i c a l : P l a y i n g w i t h D i m e n s i o n s 2 1

Multiple Members
You have just seen how to specify an individual member. Earlier, we looked at how to
return a set of members. As you’ll recall, there were a total of four product categories.
What happens if you want just two or three? The following query demonstrates how to
return two product categories.

Syntax
-- two members by name

select

{[Product].[Category].[Bikes],[Product].[Category].[Clothing]}

on columns

from

[Adventure Works]

Result

Analysis
Make sure that the two members that are also tuples are converted to a set with the
braces delimiters. Otherwise, you will receive an error message. To include a third
category, simply add it to the comma-separated list within the braces.

User Hierarchies
The previous queries worked with attribute hierarchies. In reality, your dimensions are
likely to contain user hierarchies. User hierarchies are created when dimensions are
designed in BIDS. A user hierarchy (often misleadingly called a multilevel hierarchy) is a
hierarchy that has three or more levels (including the All level at the top), although it is
technically possible to create a two-level user hierarchy from a single attribute hierarchy.
Attribute hierarchies, on the other hand, typically have two levels (including the All level at
the top). It is possible to disable the All level, resulting in a single-level attribute hierarchy,
but that is a BIDS design setting and is beyond the scope of an MDX query book.

User hierarchies come in two flavors: natural user hierarchies and unnatural user
hierarchies (some people call these reporting user hierarchies). Again, this is a BIDS subject
area, so we will not go into detail. Whether your hierarchies are natural or unnatural has
little relevance on the queries you write, but it may affect the performance of your queries.
Natural hierarchies generally return the data for the cells much quicker. For your future

2 2 P r a c t i c a l M D X Q u e r i e s f o r M i c r o s o f t S Q L S e r v e r A n a l y s i s S e r v i c e s 2 0 0 8

reference, natural user hierarchies have attribute relationships set between the attributes
(in BIDS) in the levels, and there is a one-to-many relationship from one level to a lower
level. Unnatural user hierarchies do not have attribute relationships between the attributes,
and often there is a many-to-many relationship between the members of the levels.

Syntax
-- user hierarchy

select

[Product].[Product Categories]

on columns

from

[Adventure Works]

Result

Analysis
User hierarchies are represented in the Metadata pane as blue triangles. Many people
call them pyramids, which suggest a hierarchical structure. The syntax here is the same
as the attribute hierarchy syntax, except it is [Dimension].[User hierarchy] rather than
[Dimension].[Attribute hierarchy].

User Hierarchy with .members
The subtle addition of .members gives us a completely different query from the
previous one.

Syntax
select

[Product].[Product Categories].members

on columns

from

[Adventure Works]

Result

C h a p t e r 2 : A s t r o p h y s i c a l : P l a y i n g w i t h D i m e n s i o n s 2 3

Analysis
Note that I cheated with the screenshot for the result! Your results probably go on and
on and require a little scrolling. I am showing the first four columns only. First, there is
the All level member, then a category-level member, then a subcategory-level member,
then a product-level member. Four levels in four columns. In addition to the All level
member, which appears first, as you scroll across you can see every category, every
subcategory, and every product. [Dimension].[User hierarchy].members may run very
slowly against large dimensions such as customer.

Two Hierarchies from the Same Dimension
Unfortunately, both these queries will fail, and with two different error messages. You
can see that they are different if you look closely. At least, you can see what not to do in
your own queries!

Syntax
-- two hierarchies

select

[Product].[Product Categories],[Product].[Category]

on columns

from

[Adventure Works]

-- two hierarchies with {}

select

{[Product].[Product Categories],[Product].[Category]}

on columns

from

[Adventure Works]

Result

2 4 P r a c t i c a l M D X Q u e r i e s f o r M i c r o s o f t S Q L S e r v e r A n a l y s i s S e r v i c e s 2 0 0 8

Analysis
I guess the lesson here is not to mix and match. MDX does not allow you to have two
different hierarchies from the same dimension on the same axis (unless they are in a
crossjoin, which is covered shortly). You can, however, have two different hierarchies
from the same dimension on two separate axes. This is especially useful with date/time
dimensions and is covered later in the chapter.

Transposing Columns onto Rows
The Product Categories hierarchy had a lot of columns, as you saw earlier. Often, it is
easier to scroll down rather than across, and it is a bit easier to read. These two queries
attempt to project the set of members onto the Rows axis.

Syntax
-- rows instead of columns

select

[Product].[Product Categories].members

on rows

from

[Adventure Works]

-- try again

select

{} on columns,

[Product].[Product Categories].members

on rows

from

[Adventure Works]

Result

Analysis
The error from the first query is stating that you can’t have a Rows axis unless you have
a Columns axis first.

C h a p t e r 2 : A s t r o p h y s i c a l : P l a y i n g w i t h D i m e n s i o n s 2 5

The second query is going to produce a lot of rows! Again, I used a partial screenshot
for the result. It does demonstrate a useful technique for incrementally developing your
queries. The braces ({}) generate an empty set on the Columns axis—very handy when
you want to get the rows right first, before you concentrate on the columns.

Adding a Measure Explicitly
It’s sometimes a good idea to include a measure explicitly on the query axes. If you
don’t, in absence of a measure in the Where clause, the default measure is used. What’s
worse is that an end user may not know about default measures. To make it abundantly
clear what the figures are, consider adding one or more measures to one of the axes.

Syntax
-- once more on rows with measures dimension on columns

select

[Measures].[Reseller Sales Amount] on columns,

[Product].[Product Categories].members

on rows

from

[Adventure Works]

Result

Analysis
Yes, another partial screenshot. The empty set on the Columns axis in the last query has
been replaced by Reseller Sales Amount. Some of our queries are getting to be quite
useful.

A short conceptual point: Reseller Sales Amount is a member. It is also a tuple
because it points somewhere. It is also a set because it has been projected along a query
axis—and that qualifies it as a dimension! Yes, Measures is a dimension too, even if it’s
based on a nondimensional relational table (the fact table). It is a dimension with no
hierarchies and no levels as such. Therefore, the syntax is [Dimension].[Member] or
[Measures].[Reseller Sales Amount] in this example.

2 6 P r a c t i c a l M D X Q u e r i e s f o r M i c r o s o f t S Q L S e r v e r A n a l y s i s S e r v i c e s 2 0 0 8

Two Dimensions on Two Axes
Now let’s get some practice putting two dimensions on two axes. Strictly speaking, we
should say putting two non-measure dimensions on two axes. The Date dimension is
on the Columns axis, and the Product dimension is on the Rows axis.

Syntax
-- 2 different non-measure dimensions on 2 axes

select

[Date].[Calendar].[Calendar Year]

on columns,

[Product].[Product Categories].[Category]

on rows

from

[Adventure Works]

-- and again

select

[Product].[Product Categories].[Category]

on columns,

[Date].[Calendar].[Calendar Year]

on rows

from

[Adventure Works]

Result

Analysis
Here we have two ways of looking at the same cells. The effect is achieved simply
by transposing (or pivoting, hence the name pivot table) the sets on the two axes.

C h a p t e r 2 : A s t r o p h y s i c a l : P l a y i n g w i t h D i m e n s i o n s 2 7

Incidentally, many end users prefer to see dates on columns rather than on rows, so
maybe the first query looks a little better?

Same Non-measure Dimension on Two Axes
Quite a common request is to see monthly figures compared from year to year, with the
Years on the Columns axis and the Months on the Rows axis. You might be tempted to
try a query like the following.

Syntax
-- same non-measure dimension on 2 axes

select

[Date].[Calendar].[Calendar Year]

on columns,

[Date].[Calendar].[Month]

on rows

from

[Adventure Works]

Result

Analysis
Unfortunately, it simply doesn’t work. You can’t have the same hierarchy from the same
dimension on more than one axis. Fortunately, the next query has a solution.

Same Non-measure Dimension on Two Axes
with Differing Hierarchies
Here is the correct way to solve this situation. This time there is no error message, and
we are displaying useful intelligence to the end user.

Syntax
-- comparing months across years

select

[Date].[Calendar].[Calendar Year]

2 8 P r a c t i c a l M D X Q u e r i e s f o r M i c r o s o f t S Q L S e r v e r A n a l y s i s S e r v i c e s 2 0 0 8

on columns,

[Date].[Month of Year].[Month of Year]

on rows

from

[Adventure Works]

Result

Analysis
The resultant screenshot depicts the 12 months of the year, but only shows a sample
of the years. Note, for example, how easy it is to compare December CY 2001 to
December CY 2002.

Years and Months on the Same Axis
Maybe you don’t want years and months on two axes. Maybe you prefer years and months
on the same axis. Here are two attempts.

Syntax
-- months by year again, different hierarchies

select

[Measures].[Internet Sales Amount]

on columns,

{[Date].[Calendar].[Calendar Year],[Date].[Month of Year].[Month of Year]}

on rows

from

[Adventure Works]

-- months by year again, same hierarchy

select

[Measures].[Internet Sales Amount]

C h a p t e r 2 : A s t r o p h y s i c a l : P l a y i n g w i t h D i m e n s i o n s 2 9

on columns,

{[Date].[Calendar].[Calendar Year],[Date].[Calendar].[Month]}

on rows

from

[Adventure Works]

Result

Analysis
The first query returns an error because we are trying to use two different hierarchies from
the same dimension on the same axis. In the second query, the same hierarchy is used
twice, albeit at two different levels. It works, but just barely. However, the separation of the
years from the months makes the result difficult to read. There must be a better way.

Years and Months on the Same Axis
with a Crossjoin
All things are possible in MDX (well, mostly). Enter what is one of the most popular
techniques in MDX—the crossjoin. This is a very powerful feature, so it makes sense to
understand how (and how not) to use it.

3 0 P r a c t i c a l M D X Q u e r i e s f o r M i c r o s o f t S Q L S e r v e r A n a l y s i s S e r v i c e s 2 0 0 8

Syntax
-- crossjoin working

select

[Measures].[Internet Sales Amount]

on columns,

crossjoin([Date].[Calendar].[Calendar Year],

[Date].[Month of Year].[Month of Year])

on rows

from

[Adventure Works]

-- crossjoin not working

select

[Measures].[Internet Sales Amount]

on columns,

crossjoin([Date].[Calendar].[Calendar Year],[Date].[Calendar].[Month])

on rows

from

[Adventure Works]

Result

Analysis
Crossjoin is a function. More specifically, it is a method function. Property functions
such as .members use the dot notation and follow the object (for example, a level).
Method functions precede the object (for example, a set of members).

C h a p t e r 2 : A s t r o p h y s i c a l : P l a y i n g w i t h D i m e n s i o n s 3 1

The first try at Crossjoin proved successful. The second attempt produced an error.
There is a fundamental rule about Crossjoin: If you crossjoin two sets of members from
the same dimension, the two sets must be based on different hierarchies within the
same dimension. You can even crossjoin two different dimensions.

Introducing a Second Measure into the Crossjoin
The Crossjoin query is getting more interesting.

Syntax
-- adding another measure

select

{[Measures].[Internet Sales Amount],[Measures].[Reseller Sales Amount]}

on columns,

crossjoin([Date].[Calendar].[Calendar Year],

[Date].[Month of Year].[Month of Year])

on rows

from

[Adventure Works]

Result

Analysis
This is a fairly simple change. Because we have two measures on the Columns axis, they
must be delimited with braces.

3 2 P r a c t i c a l M D X Q u e r i e s f o r M i c r o s o f t S Q L S e r v e r A n a l y s i s S e r v i c e s 2 0 0 8

A Second Crossjoin on a Second Axis
If you have two axes, you can have a separate crossjoin on each axis.

Syntax
-- crossjoin on 2 axes

select

crossjoin([Product].[Product Categories].[Category],

{[Measures].[Internet Sales Amount],[Measures].[Reseller Sales Amount]})

on columns,

crossjoin([Date].[Calendar].[Calendar Year],

[Date].[Month of Year].[Month of Year])

on rows

from

[Adventure Works]

Result

Analysis
This is building nicely. Once again, the braces delimiters around the two measures are
important.

Crossjoin on Two Separate
Non-measure Dimensions
Not only can you crossjoin the same dimension (provided you use differing hierarchies)
or crossjoin using the measures dimension, you can also crossjoin two different non-
measure dimensions.

C h a p t e r 2 : A s t r o p h y s i c a l : P l a y i n g w i t h D i m e n s i o n s 3 3

Syntax
--

select

crossjoin([Sales Territory].[Sales Territory].[Country],

[Product].[Product Categories].[Category])

on columns,

crossjoin([Date].[Calendar].[Calendar Year],

[Date].[Month of Year].[Month of Year])

on rows

from

[Adventure Works]

Result

Analysis
The result set is getting quite large. The screenshot shows only a small part of it. It
includes, for example, Accessories for Canada and Accessories for the United States.

A More Complex Crossjoin
Yes, you guessed! You can have crossjoins within crossjoins. A crossjoin effectively
allows you to place two dimensions on one axis (if the sets of members are from two
dimensions). You can think of them as nested dimensions. A crossjoin on a crossjoin
allows three dimensions on one axis.

3 4 P r a c t i c a l M D X Q u e r i e s f o r M i c r o s o f t S Q L S e r v e r A n a l y s i s S e r v i c e s 2 0 0 8

Syntax
-- a more complex crossjoin

select

crossjoin([Sales Territory].[Sales Territory]

.[Country],crossjoin([Product].[Product Categories].[Category],

{[Measures].[Internet Order Count],[Measures].[Reseller Order Count]}))

on columns,

crossjoin([Date].[Calendar].[Calendar Year],

[Date].[Month of Year].[Month of Year])

on rows

from

[Adventure Works]

Result

Analysis
Rather a lot of results. You may have to scroll to see the cells shown in the screenshot.
Crossjoins within crossjoins are a way of displaying multiple dimensions in two-
dimensional output, such as the query editor’s Results pane, an Excel worksheet, or an
SSRS report.

A word of caution: Too many crossjoins of sets with large numbers of members will
return thousands, possibly millions, of cells. You will need to do a lot of scrolling to see
all the data. Also, you may find that some queries take a little while to run.

When you are designing complex crossjoins, it is a good idea to get the innermost
crossjoin working first, before you build the outer crossjoin on the inner crossjoin.

C h a p t e r 2 : A s t r o p h y s i c a l : P l a y i n g w i t h D i m e n s i o n s 3 5

Alternative Crossjoin Syntax 1/2
A crossjoin does not always require the Crossjoin function. Here is an alternative syntax
for a crossjoin. This might prove useful if you inherit MDX queries written by others.
Some people use this syntax—take a look at the specification of the Rows axis.

Syntax
-- alternative crossjoin syntax 1/2

select

crossjoin([Sales Territory].[Sales Territory].[Country],

[Product].[Product Categories].[Category],

{[Measures].[Internet Order Count],[Measures].[Reseller Order Count]})

on columns,

([Date].[Calendar].[Calendar Year],[Date].[Month of Year].[Month of Year])

on rows

from

[Adventure Works]

Result

Analysis
The Crossjoin function has been removed from the Rows axis specification. This will
work provided the two sets are separated by a comma and enclosed within parentheses.

3 6 P r a c t i c a l M D X Q u e r i e s f o r M i c r o s o f t S Q L S e r v e r A n a l y s i s S e r v i c e s 2 0 0 8

Alternative Crossjoin Syntax 2/2
You may also meet this form of the syntax. Once again, the Rows axis specification has
been changed.

Syntax
-- alternative crossjoin syntax 2/2

select

crossjoin([Sales Territory].[Sales Territory].[Country],[Product].

[Product Categories].[Category],

{[Measures].[Internet Order Count],[Measures].[Reseller Order Count]})

on columns,

[Date].[Calendar].[Calendar Year]*[Date].[Month of Year].[Month of Year]

on rows

from

[Adventure Works]

Result

Analysis
Because a crossjoin is essentially a multiplication operation, you can also use the
multiplication symbol between the two sets of members.

C h a p t e r 2 : A s t r o p h y s i c a l : P l a y i n g w i t h D i m e n s i o n s 3 7

More on Members
In a sense, crossjoins give you all possible combinations of members. Many, many cells can
be returned. Sometimes, this is what you want. However, often you will want only a few
cells. If you know the members (tuples) that point to those cells, you can explicitly use just
those members in your query. Take a look at the members on the Columns axis.

Syntax
-- members from different levels of same hierarchy

select

{[Date].[Calendar].[Calendar Semester].[H1 CY 2003],

[Date].[Calendar].[Calendar Semester].[H2 CY 2003],

[Date].[Calendar].[Calendar Year].[CY 2003]}

on columns,

{[Sales Territory].[Sales Territory].[Group],

[Sales Territory].[Sales Territory]}

on rows

from

[Adventure Works]

Result

Analysis
This is a little different from a crossjoin. Incidentally, there are entries on the rows for
NA and North America. (NA does not mean North America!)

This page intentionally left blank

Families and Friends:
Navigating Dimensions

Chapter 3

4 0 P r a c t i c a l M D X Q u e r i e s f o r M i c r o s o f t S Q L S e r v e r A n a l y s i s S e r v i c e s 2 0 0 8

In this chapter, we explore moving up and down and across dimensions and
hierarchies. The general term for doing this is navigation. MDX allows you to
navigate both horizontally and vertically. MDX (unlike SQL) is positionally

aware—it knows where you are in the cube and can help you in your navigation.

Key concepts Finding dimension members that have some relationship to a
particular member, using ranges

Keywords .children, Descendants, Exists, .parent, Ancestor, Ascendants,
Hierarchize, .siblings, .firstchild, .firstsibling, .lastchild, .lastsibling, Cousin, .lead,
.lag, Head, Tail, .prevmember, .nextmember

Dimensions Have Members
Dimensions have members. For example, the country France is a member of the
Customer dimension. The property function to enumerate members is .members.

Syntax
-- dimension members

select

[Customer].members

on columns

from

[Adventure Works]

Result

Analysis
If, as is usual, a dimension contains more than one hierarchy (attribute and user
hierarchies), then you can’t use .members to list all the members in the dimension.
Anyway, listing all the members of a large dimension might easily return millions of
members. It makes more sense to divide up the dimension. Using hierarchies enables
you to do this.

C h a p t e r 3 : Fa m i l i e s a n d F r i e n d s : N a v i g a t i n g D i m e n s i o n s 4 1

Hierarchies Have Members
Because the hierarchy (Customer Geography) is explicitly contained in the query, it
doesn’t matter that the dimension (Customer) has more than one hierarchy.

Syntax
-- hierarchy members

select

[Measures].[Internet Sales Amount]

on columns,

[Customer].[Customer Geography].members

on rows

from

[Adventure Works]

Result

Analysis
This is a pretty big hierarchy. It may take a second or two for the results to be returned.
Only a very small section is shown in the screenshot. Perhaps the lesson to learn here
is that dimensions have members, dimensions have hierarchies, and hierarchies have
members. The members of a hierarchy are arranged in levels; therefore, it follows that
levels also have members.

Levels Have Members
Running this query proves that levels have members. We are using the Country level of
the Customer Geography hierarchy of the Customer dimension.

4 2 P r a c t i c a l M D X Q u e r i e s f o r M i c r o s o f t S Q L S e r v e r A n a l y s i s S e r v i c e s 2 0 0 8

Syntax
-- level members

select

[Measures].[Internet Sales Amount]

on columns,

[Customer].[Customer Geography].[Country].members

on rows

from

[Adventure Works]

Result

Analysis
Hopefully we have established that levels have members. Hierarchies have members,
with a level containing a subset of the hierarchy members. Dimensions have members,
with a hierarchy containing a subset of the dimension members. At the risk of sounding
a little repetitive, dimensions and hierarchies and levels all have members. In addition,
dimensions have hierarchies, and hierarchies have levels. This discussion is preliminary
to the queries in this chapter that are concerned with navigating to members using
levels and hierarchies. I wonder if members have members as well?

Do Member Have Members?
Let’s go down another tier. The query has been extended from the last one to include
a member (France).

Syntax
-- member members

select

[Measures].[Internet Sales Amount]

on columns,

[Customer].[Customer Geography].[Country].[France].members

on rows

from

[Adventure Works]

C h a p t e r 3 : Fa m i l i e s a n d F r i e n d s : N a v i g a t i n g D i m e n s i o n s 4 3

Result

Analysis
The gist of the error message is that you can’t use the .members function on a member.
Members don’t have members. Members have something different, and they are called
children.

Members Have Children
The .members function has been replaced with .children.

Syntax
-- children

select

[Measures].[Internet Sales Amount]

on columns,

[Customer].[Customer Geography].[Country].[France].children

on rows

from

[Adventure Works]

Result

4 4 P r a c t i c a l M D X Q u e r i e s f o r M i c r o s o f t S Q L S e r v e r A n a l y s i s S e r v i c e s 2 0 0 8

Analysis
Members have children. Members don’t have members. To say that members have
children is true up to a point. The children of France, for example, include Yveline.
France is at the Country level, and Yveline is at the State-Province level. You can check
this by expanding the Customer Geography hierarchy pyramid in the Metadata pane.
The children of France do not include Paris. This is because Paris is at the City level
of the hierarchy. Paris is a grandchild, rather than a child, of France. Then we could
go down to the next level (Postal Code) and even to the next level (Customer). The
Customer level is the lowest level in the hierarchy—it’s called the leaf level. You can’t
drill any further down. Therefore, members of the Customer level don’t have children—
but they do have a parent!

So how do we get down to Paris from France? How do we jump a level? Jumping up
and down and across hierarchies is called navigation.

How to Get to Paris from France
You just saw .children being used to return the state-provinces of France. Paris at the
City level is one level below that. This query tries .children.children.

Syntax
-- French cities

select

[Measures].[Internet Sales Amount]

on columns,

[Customer].[Customer Geography].[Country].[France].children.children

on rows

from

[Adventure Works]

Result

Analysis
The error message indicates that children don’t have children, only members have
children. So, we can’t use .children.children to jump to Paris from France. And,
unfortunately, there is no .grandchildren function. But, you can use Descendants.

C h a p t e r 3 : Fa m i l i e s a n d F r i e n d s : N a v i g a t i n g D i m e n s i o n s 4 5

Traversing Levels with Descendants
Here we have the syntax to show the grandchildren of a member. The Descendants
function is part of the Rows axis specification in this example.

Syntax
-- grandchildren with descendants

select

[Measures].[Internet Sales Amount]

on columns,

descendants([Customer].[Customer Geography].[Country].[France],[Customer]

.[Customer Geography].[City])

on rows

from

[Adventure Works]

Result

Analysis
Now you have Paris starting from France. You may have to scroll down a little to
see Paris. The Descendants syntax means “find the cities at the City level (second
parameter of the function) of France at the Country level (first parameter).”

4 6 P r a c t i c a l M D X Q u e r i e s f o r M i c r o s o f t S Q L S e r v e r A n a l y s i s S e r v i c e s 2 0 0 8

More on Descendants
The previous query found grandchildren—it skipped the State-Province level. This
time we are going to skip the Postal Code level as well. In effect, you are retrieving the
great-great-grandchildren of France.

Syntax
-- or even great-great grandchildren

select

[Measures].[Internet Sales Amount]

on columns,

descendants([Customer].[Customer Geography].[Country].[France],[Customer]

.[Customer Geography].[Customer])

on rows

from

[Adventure Works]

Result

Analysis
The result is from the Results pane of the query editor window. Sometimes it’s helpful
to know just how many cells you have. If you click the Messages tab, it will tell you that
there are more than 1,800 rows. We have over 1,800 customers in France. One of those
customers is named Crystal Zheng—trust me? I don’t expect you to scroll through
over 1,800 customers to find her! Instead, in the next query, we’ll prove she exists. If
she does, then she will serve us well in subsequent navigation queries. Descendants
is returning members at the Customer level (second parameter to the function) that
belong to France at the Country level (first parameter in the function).

C h a p t e r 3 : Fa m i l i e s a n d F r i e n d s : N a v i g a t i n g D i m e n s i o n s 4 7

Proving a Member (Crystal Zheng) Exists 1/3
Before we use one customer (Crystal Zheng) as a starting point for some navigation
queries, it’s worth checking to see if she exists. This is very important—if you start from
the wrong place, you won’t be able to reach your destination. Here are three queries—they
all do pretty much the same thing. There is a deliberate typo in all three—Crystal Zhen
(who does not exist) rather than Crystal Zheng (who might exist).

Syntax
-- checking Crystal Zheng exists 1/3 as Crystal Zhen!

-- informally

select

[Customer].[Customer Geography].[Customer].[Crystal Zhen]

-- deliberate typo

on columns

from

[Adventure Works]

-- more formally

select

exists([Customer].[Customer Geography].[Customer].[Crystal Zhen],

[Customer].[Customer Geography].members)

-- deliberate typo

on columns

from

[Adventure Works]

-- more formally without Customer level

select

exists([Customer].[Customer Geography].[Crystal Zhen],

[Customer].[Customer Geography].members)

-- deliberate typo

on columns

from

[Adventure Works]

Result

Analysis
No results at all! The preceding “Result” section is intentionally blank. Typically, when
you specify a member that does not exist, your Results pane is empty. The third query

4 8 P r a c t i c a l M D X Q u e r i e s f o r M i c r o s o f t S Q L S e r v e r A n a l y s i s S e r v i c e s 2 0 0 8

might prove particularly useful. You can use this form when you don’t even know the
level (but know the hierarchy) at which the member might exist. The second and third
queries incorporate the Exists function.

Proving a Member (Crystal Zheng) Exists 2/3
This time, we try without the typo, and Crystal Zheng is entered correctly. Again, there
are three queries. All three return the same result.

Syntax
-- checking Crystal Zheng exists 2/3 as Crystal Zheng

-- informally

select

[Customer].[Customer Geography].[Customer].[Crystal Zheng]

on columns

from

[Adventure Works]

-- more formally

select

exists([Customer].[Customer Geography].[Customer].

[Crystal Zheng],[Customer].[Customer Geography].members)

on columns

from

[Adventure Works]

-- more formally without Customer level

select

exists([Customer].[Customer Geography].[Crystal Zheng],

[Customer].[Customer Geography].members)

on columns

from

[Adventure Works]

Result

C h a p t e r 3 : Fa m i l i e s a n d F r i e n d s : N a v i g a t i n g D i m e n s i o n s 4 9

Analysis
This looks more promising. Crystal Zheng appears in the Results pane. Once more, the
third variation on the query is useful if you don’t know at which level of the hierarchy
she lives. (Note that she appears to be a very good customer!)

Proving a Member (Crystal Zheng) Exists 3/3
Here are another three queries (the final ones) in our pursuit of Crystal Zheng. Is she
really one of our top spending customers at over $80 million dollars (that’s a lot of
bikes)?

Syntax
-- checking Crystal Zheng exists -3/3

-- but all good customers!

select

[Measures].[Reseller Sales Amount]

on columns,

[Customer].[Customer Geography].[Customer].members

on rows

from

[Adventure Works]

-- better

select

[Measures].[Internet Sales Amount]

on columns,

[Customer].[Customer Geography].[Customer].members

on rows

from

[Adventure Works]

-- only Crystal Zheng

select

[Measures].[Internet Sales Amount]

on columns,

[Customer].[Customer Geography].[Customer].[Crystal Zheng]

on rows

from

[Adventure Works]

5 0 P r a c t i c a l M D X Q u e r i e s f o r M i c r o s o f t S Q L S e r v e r A n a l y s i s S e r v i c e s 2 0 0 8

Result

Analysis
Hey, all our customers are really good. Everyone spends over $80 million! Or so the
result of the first query seems to suggest. Unfortunately, as you might imagine, the
results are spurious. Repeating figures like this is an indication that, even though the
members exist, the measure shown in the cells is not a valid measure for the members.
The default measure (the one shown in the first result set) is Reseller Sales Amount. In
BIDS, this measure is a part of the Reseller Sales measure group, which is not linked to
the Customer dimension. These links are set through the Dimension Usage tab of your
cube design. (Cube design in BIDS is beyond the scope of this book—you can write
effective MDX without a knowledge of BIDS. However, be aware of the problem of
repeating figures.) But the Customer dimension is related to the Internet Sales measure
group, of which Internet Sales Amount is a measure. The second query is showing valid
results. The third and final query demonstrates that Crystal Zheng not only exists but
the figure for her Internet Sales Amount is real ($60 rather than $80 million).

Children of Crystal Zheng
A little earlier you saw the .children function. Let’s try it out for Crystal Zheng.

C h a p t e r 3 : Fa m i l i e s a n d F r i e n d s : N a v i g a t i n g D i m e n s i o n s 5 1

Syntax
-- children of Crystal Zheng

select

[Measures].[Internet Sales Amount]

on columns,

[Customer].[Customer Geography].[Customer].[Crystal Zheng].children

on rows

from

[Adventure Works]

Result

Analysis
The result is simply a caption, with no cells containing data. The query has returned no
valid members. This indicates that Crystal Zheng does indeed have no children. Do you
recall that earlier we said that members have children? Well, this is only potentially so.
Members of the lowest level of a hierarchy do not have children. Members at the lowest
level are called the leaf-level members.

Parent of Crystal Zheng
The next level up in Customer Geography is Postal Code. MDX has a .parent function
that enables us to work out the postal code for Crystal Zheng.

Syntax
-- parent of Crystal Zheng

select

[Measures].[Internet Sales Amount]

on columns,

[Customer].[Customer Geography].[Customer].[Crystal Zheng].parent

on rows

from

[Adventure Works]

Result

5 2 P r a c t i c a l M D X Q u e r i e s f o r M i c r o s o f t S Q L S e r v e r A n a l y s i s S e r v i c e s 2 0 0 8

Analysis
Her postal code is 78000. Notice the measure is no longer $60—the figure shown is the
total sales for all customers with a postal code of 78000.

Grandparent
The next level up is City. Sadly, there is no .grandparent function. Instead try .parent
.parent.

Syntax
--parent.parent (grandparent)

select

[Measures].[Internet Sales Amount]

on columns,

[Customer].[Customer Geography].[Customer].[Crystal Zheng].parent.parent

on rows

from

[Adventure Works]

Result

Analysis
Crystal Zheng lives in Versailles. But, this time, the measure has not changed in value.
It’s the same as the total at the Postal Code level in the previous query. This would
seem to suggest that either Versailles has only one postal code (78000) or that it has
only one (78000) with any sales. Now that you know how, you could test this by using
.children on Versailles.

Great-Grandparent
And we can keep going. This one takes us to the State-Province level. The query has
three .parent functions.

Syntax
-- (great-grandparent)

select

[Measures].[Internet Sales Amount]

on columns,

C h a p t e r 3 : Fa m i l i e s a n d F r i e n d s : N a v i g a t i n g D i m e n s i o n s 5 3

[Customer].[Customer Geography].[Customer].[Crystal Zheng].parent.parent

.parent

on rows

from

[Adventure Works]

Result

Analysis
As you probably knew already, Versailles is in Yveline. I didn’t know that until I wrote
the query! Crystal Zheng’s province is Yveline. Navigation is extremely valuable when
you don’t know the relationships between members at different levels.

Back to France
This time, there are four .parent functions for you. The typing gets a little tedious.
Shortly, we will see how to eliminate all this typing.

Syntax
-- more .parents!

select

[Measures].[Internet Sales Amount]

on columns,

[Customer].[Customer Geography].[Customer].

[Crystal Zheng].parent.parent.parent.parent

on rows

from

[Adventure Works]

Result

Analysis
Yveline is in France. Earlier, we started from France and moved down the hierarchy
(drilled down) to Crystal Zheng. Now we have started from Crystal Zheng and moved
up the hierarchy (drilled up) to France.

5 4 P r a c t i c a l M D X Q u e r i e s f o r M i c r o s o f t S Q L S e r v e r A n a l y s i s S e r v i c e s 2 0 0 8

Last of the Parents
Here’s the last of our .parent queries. We can go no further with this hierarchy. The first
query here reaches the top. The second query goes over the top.

Syntax
-- right to the top

select

[Measures].[Internet Sales Amount]

on columns,

[Customer].[Customer Geography].[Customer].[Crystal Zheng].parent.parent

.parent.parent.parent

on rows

from

[Adventure Works]

--off the scale up

select

[Measures].[Internet Sales Amount]

on columns,

[Customer].[Customer Geography].[Customer].

[Crystal Zheng].parent.parent.parent.parent.parent.parent

on rows

from

[Adventure Works]

Result

Analysis
Our first result set (cellset) has reached the very top of the hierarchy, the apex of the
pyramid, and returns data for the All level member (All Customers). The second set
of results has no cells. There is no higher member than the All level member in any
hierarchy.

C h a p t e r 3 : Fa m i l i e s a n d F r i e n d s : N a v i g a t i n g D i m e n s i o n s 5 5

Ancestor Rather Than .parent
We need a respite from all those .parents. Fortunately, there is a shorthand—it’s the
Ancestor method function. Two variations of the syntax are illustrated here. Both
produce the same result.

Syntax
-- ancestor

select

[Measures].[Internet Sales Amount]

on columns,

ancestor([Customer].[Customer Geography].[Customer].

[Crystal Zheng],[Customer].[Customer Geography].[City])

on rows

from

[Adventure Works]

-- alternative (2)Syntax

select

[Measures].[Internet Sales Amount]

on columns,

ancestor([Customer].[Customer Geography].[Customer].[Crystal Zheng],2)

on rows

from

[Adventure Works]

Result

Analysis
The first variation on the Ancestor syntax explicitly uses the City level (second
parameter). The second variation asks to go two levels up (again, the second parameter).
Either form of the syntax is easily adapted to navigate up to any level from any member
of a hierarchy (the All level member does not have an ancestor).

Ascendants Function
The Ascendants function does rather more than the Ancestor function. Hopefully, this is
one that is really worth trying. It’s very popular in business intelligence (BI) reporting.

5 6 P r a c t i c a l M D X Q u e r i e s f o r M i c r o s o f t S Q L S e r v e r A n a l y s i s S e r v i c e s 2 0 0 8

Syntax
-- ascendants

select

[Measures].[Internet Sales Amount]

on columns,

ascendants([Customer].[Customer Geography].[Customer].[Crystal Zheng])

on rows

from

[Adventure Works]

Result

Analysis
Some result for such a short query. It demonstrates the power, elegance, and simplicity
of the MDX language. Given that we’ve tried quite a few navigation queries, the result
is probably self-evident. As we saw earlier, the figure for the postal code is the same as
the one for the city.

Ascendants with Hierarchize Function
Perhaps this one is even better. Our query introduces the Hierarchize function. Here it’s
used in conjunction with the Ascendants function.

Syntax
-- hierarchize

select

[Measures].[Internet Sales Amount]

on columns,

hierarchize(ascendants([Customer].[Customer Geography].

[Customer].[Crystal Zheng]))

on rows

from

[Adventure Works]

C h a p t e r 3 : Fa m i l i e s a n d F r i e n d s : N a v i g a t i n g D i m e n s i o n s 5 7

Result

Analysis
Hierarchize orders the members of the hierarchy from top to bottom. This is especially
helpful for the set of members returned by Ascendants, but it can be used on any set of
members of any hierarchy.

Combing Navigation Functions,
Brothers and Sisters
The children of your parent are your brothers and sisters (siblings). Do we have any
other customers with the same postal code (78000) as Crystal Zheng? The query
includes .parent.children syntax.

Syntax
-- brothers and sisters in 78000 including Crystal

-- Zheng herself

select

[Measures].[Internet Sales Amount]

on columns,

[Customer].[Customer Geography].[Customer].[Crystal Zheng].parent.children

on rows

from

[Adventure Works]

Result

5 8 P r a c t i c a l M D X Q u e r i e s f o r M i c r o s o f t S Q L S e r v e r A n a l y s i s S e r v i c e s 2 0 0 8

Analysis
These are a few of the brothers and sisters of Crystal Zheng. The screenshot is a partial
one. Interestingly, it includes Crystal Zheng herself, because she is a child of her parent.
Elsewhere in the book the Except function is mentioned—you can easily adapt the
query to exclude Crystal Zheng.

Siblings, Brothers and Sisters
A convenient shorthand for .parent.children is .siblings. This is another way of viewing
the brothers and sisters of Crystal Zheng—all those customers with a postal code of
78000.

Syntax
-- brothers and sisters in 78000

select

[Measures].[Internet Sales Amount]

on columns,

[Customer].[Customer Geography].[Customer].[Crystal Zheng].siblings

on rows

from

[Adventure Works]

Result

Analysis
Here we have a result identical to the previous query. Less intuitively, this time, Crystal
Zheng is returned as a sibling of herself. Again, the Except function would be handy
here (Except is covered elsewhere in the book). You could achieve the same result by
querying the children of postal code 78000—the difference is your starting point. You
can start from Crystal Zheng or from 78000.

C h a p t e r 3 : Fa m i l i e s a n d F r i e n d s : N a v i g a t i n g D i m e n s i o n s 5 9

First Customer with .firstchild
Suppose you wanted to establish the first customer who has the same postal code as
Crystal Zheng. The query here introduces the .firstchild property function.

Syntax
-- first sibling in 78000

select

[Measures].[Internet Sales Amount]

on columns,

[Customer].[Customer Geography].[Customer].[Crystal Zheng].parent.firstchild

on rows

from

[Adventure Works]

Result

Analysis
The first customer with the same postal code (78000) as Crystal Zheng is Abby Sandberg.
As it stands, the concept of first customer is a little vague. The first customer is determined
by the OrderBy property back in BIDS. Typically, but not always, members are ordered by
either the attribute key or the attribute name. The latter gives an alphabetical sort, as is the
case here.

First Customer with .firstsibling
A popular shorthand for .parent.firstchild is .firstsibling.

Syntax
-- first sibling in 78000

select

[Measures].[Internet Sales Amount]

on columns,

[Customer].[Customer Geography].[Customer].[Crystal Zheng].firstsibling

on rows

from

[Adventure Works]

6 0 P r a c t i c a l M D X Q u e r i e s f o r M i c r o s o f t S Q L S e r v e r A n a l y s i s S e r v i c e s 2 0 0 8

Result

Analysis
As you might have expected, this produces the same result.

Now for the Last Customer
Who’s the last customer with the same postal district as Crystal Zheng? The property
functions .parent.lastchild accomplish this.

Syntax
-- last sibling in 78000

select

[Measures].[Internet Sales Amount]

on columns,

[Customer].[Customer Geography].[Customer].[Crystal Zheng].parent

.lastchild

on rows

from

[Adventure Works]

Result

Analysis
Again, you need to be aware of the OrderBy property in your dimension design in
BIDS. Often, such navigation functions make a lot of sense with dates (for example,
what is the last day of the month of a particular date for which we have a member?).

The Last Customer Another Way
This query demonstrates the .lastsibling function, which is a shorthand for .parent
.lastchild.

C h a p t e r 3 : Fa m i l i e s a n d F r i e n d s : N a v i g a t i n g D i m e n s i o n s 6 1

Syntax
-- last sibling 78000

select

[Measures].[Internet Sales Amount]

on columns,

[Customer].[Customer Geography].[Customer].[Crystal Zheng].lastsibling

on rows

from

[Adventure Works]

Result

Analysis
The result is identical to the last query. As is often the case, there is usually more than
one way to retrieve the same cellset. The Tail function with a parameter of 1 would also
give the same result. The Tail function is covered shortly.

Applying Vertical Navigation 1/2
Let’s extend our application of some of the vertical navigation functions. How would
you list all the customers in Yveline, if you already know the name of the state-
province?

Syntax
-- fellow customers of Crystal Zheng in Yveline (her

-- state-province) 1/2

select

[Measures].[Internet Sales Amount]

on columns,

descendants([Customer].[Customer Geography].[State-Province].

[Yveline],[Customer].[Customer Geography].[Customer])

on rows

from

[Adventure Works]

6 2 P r a c t i c a l M D X Q u e r i e s f o r M i c r o s o f t S Q L S e r v e r A n a l y s i s S e r v i c e s 2 0 0 8

Result

Analysis
This is a partial screenshot. This query is by way of revision; we looked at the
Descendants function earlier. Shortly, we are going to extend our knowledge of
Descendants.

Applying Vertical Navigation 2/2
How would you list all the customers in Yveline, if you don’t know the name of the
state-province and you want to see everyone with the same state-province as Crystal
Zheng?

Syntax
-- fellow customers of Crystal Zheng in Yveline (her

-- state-province) 2/2

select

[Measures].[Internet Sales Amount]

on columns,

descendants(ancestor([Customer].[Customer Geography].

[Customer].[Crystal Zheng],[Customer].[Customer Geography].

[State-Province]),[Customer].[Customer Geography].[Customer])

on rows

from

[Adventure Works]

C h a p t e r 3 : Fa m i l i e s a n d F r i e n d s : N a v i g a t i n g D i m e n s i o n s 6 3

Result

Analysis
Many, many MDX queries utilize the navigation functions. With a little imagination,
you are now in the position to begin applying them to your own cube(s).

Extending the Descendants Functionality
The Descendants function is incredibly versatile. Before we move on, here’s a query we
met earlier.

Syntax
-- all French cities

select

[Measures].[Internet Sales Amount]

on columns,

descendants([Customer].[Customer Geography].[Country].[France],[Customer]

.[Customer Geography].[City])

on rows

from

[Adventure Works]

Result

6 4 P r a c t i c a l M D X Q u e r i e s f o r M i c r o s o f t S Q L S e r v e r A n a l y s i s S e r v i c e s 2 0 0 8

Analysis
Take some time to review the syntax. The Descendants function in this example has
two parameters: first, the member (France) and, second, the level (City) at which you
want to see the descendants of the member.

Descendants with self
A third parameter (self) is introduced into the Descendants function.

Syntax
-- all French cities - self

select

[Measures].[Internet Sales Amount]

on columns,

descendants([Customer].[Customer Geography].[Country]

.[France],[Customer].[Customer Geography].[City],self)

on rows

from

[Adventure Works]

Result

Analysis
Exactly the same result as before. The third parameter (self) is the default if you omit it
altogether. It means “show the members of the specified level (City) stipulated.”

Descendants with self_and_after
The third parameter (self) is now self_and_after.

C h a p t e r 3 : Fa m i l i e s a n d F r i e n d s : N a v i g a t i n g D i m e n s i o n s 6 5

Syntax
-- all cities and postal codes and customers

select

[Measures].[Internet Sales Amount]

on columns,

descendants([Customer].[Customer Geography].[Country].[France],

[Customer].[Customer Geography].[City],self_and_after)

on rows

from

[Adventure Works]

Result

Analysis
Self_and_after means “show the members of the level specified (City) and all the
members of all those levels down to and including the leaf-level.” Saint Ouen is a city
in France. 17490 is a postal code in Saint Ouen. Brad Nath is a customer with a postal
code of 17490. You will need to scroll to see all of the cities, postal codes, and customers.
There are 1,894 rows, excluding the row for the column header Internet Sales Amount.

Descendants with after
Replace the third parameter (self_and_after) with after.

Syntax
-- just postal codes and customers - after

select

[Measures].[Internet Sales Amount]

on columns,

6 6 P r a c t i c a l M D X Q u e r i e s f o r M i c r o s o f t S Q L S e r v e r A n a l y s i s S e r v i c e s 2 0 0 8

descendants([Customer].[Customer Geography].[Country]

.[France],[Customer].[Customer Geography].[City],after)

on rows

from

[Adventure Works]

Result

Analysis
The cities, including Saint Ouen, have disappeared. The third parameter for the
Descendants function is after rather than self_and_after. Self represents the second
parameter (the City level). The parameter after represents everything below the City
level in the hierarchy.

Descendants with before
In this variation of the Descendants query, the third parameter is before.

Syntax
-- just state-provinces and France itself -- before

select

[Measures].[Internet Sales Amount]

on columns,

descendants([Customer].[Customer Geography].[Country]

.[France],[Customer].[Customer Geography].[City],before)

on rows

from

[Adventure Works]

C h a p t e r 3 : Fa m i l i e s a n d F r i e n d s : N a v i g a t i n g D i m e n s i o n s 6 7

Result

Analysis
Here you can see everything that comes higher than the City level in the hierarchy,
up to and including the starting member (France). We have rows showing the country
France and all the state-provinces in France.

Descendants Using a Distance
This is the same as the last query except the City level has been replaced by the number 2.

Syntax
--using a distance - down to city with before

select

[Measures].[Internet Sales Amount]

on columns,

descendants([Customer].[Customer Geography].[Country].[France],2,before)

on rows

from

[Adventure Works]

6 8 P r a c t i c a l M D X Q u e r i e s f o r M i c r o s o f t S Q L S e r v e r A n a l y s i s S e r v i c e s 2 0 0 8

Result

Analysis
Go down two levels (that is, to the City level) and show everything higher in the
hierarchy, up to and including the starting member (France).

Cousin
Most of the navigation queries so far (apart from siblings) involve vertical navigation
up and down hierarchies. Often you want to navigate horizontally. Cousin is just such
a function.

Syntax
-- using cousin - horizontal navigation

select

{[Date].[Calendar].[Calendar Quarter].[Q1 CY 2003],cousin([Date]

.[Calendar].[Calendar Quarter].[Q1 CY 2003],[Date].[Calendar].

[Calendar Year].[CY 2004])}

on columns,

[Measures].[Reseller Sales Amount]

C h a p t e r 3 : Fa m i l i e s a n d F r i e n d s : N a v i g a t i n g D i m e n s i o n s 6 9

on rows

from

[Adventure Works]

Result

Analysis
The first member on the Columns axis is Q1 CY 2003. The second member is Q1
CY 2004, exactly a year after. Cousin expects two parameters. The first parameter (Q1
CY 2003) is the starting member. The second parameter (CY 2004) is a member at a
higher level in the hierarchy. The result is to return the member that is a descendant of
that higher level at the same level and in the same relative position (relative to its own
ancestor at the higher level) as the starting member. Would you like that in English?
CY 2004 (second parameter) is a member of the Calendar Year level. Q1 CY 2003
(first parameter) is part of the calendar year CY 2003. Q1 CY 2003 is a member of the
Calendar Quarter level. Q1 CY 2003 is the first quarter of CY 2003. The first quarter
of CY 2004 is Q1 CY 2004. Therefore, it returns Q1 CY 2004! I guess you have to try
Cousin a few times before it becomes obvious.

More on Cousin
Cousin is one of the least intuitive MDX functions. Of course, it’s also one of the most
useful. Here’s a more difficult example to test your understanding.

Syntax
-- less obvious cousin

select

{[Date].[Calendar].[Calendar Quarter].[Q1 CY 2003],

cousin([Date].[Calendar].[Calendar Quarter].[Q1 CY 2003],

[Date].[Calendar].[Calendar Semester].[H2 CY 2003])}

on columns,

[Measures].[Reseller Sales Amount]

on rows

from

[Adventure Works]

7 0 P r a c t i c a l M D X Q u e r i e s f o r M i c r o s o f t S Q L S e r v e r A n a l y s i s S e r v i c e s 2 0 0 8

Result

Analysis
Here, the higher level is Calendar Semester (half-year). Q1 CY 2003 (first parameter)
is the first quarter of its own semester. The first quarter of the second semester
(HY2 CY 2003) is Q3 CY 2003. Q3 CY 2003 is the member returned. Cousin is
handy when you need to establish a range for MDX calculations. There is more on
this elsewhere in the book.

A Simple Range
Horizontal navigation is often used to establish the end point (or start point) of a range
of members. Ranges play a big part in BI reports.

Syntax
-- a simple range

select

{[Date].[Calendar].[Calendar Quarter].[Q1 CY 2003],

[Date].[Calendar].[Calendar Quarter].[Q2 CY 2003],

[Date].[Calendar].[Calendar Quarter].[Q3 CY 2003]}

on columns,

[Measures].[Reseller Sales Amount]

on rows

from

[Adventure Works]

Result

Analysis
This is a range of members across three quarters. It has a start point (Q1) and an end
point (Q3). There is also an intermediate point (Q2).

C h a p t e r 3 : Fa m i l i e s a n d F r i e n d s : N a v i g a t i n g D i m e n s i o n s 7 1

A Simpler Simple Range
Q2 CY 2003 is no longer explicitly mentioned. It has been replaced with the colon
range operator (:).

Syntax
-- a simple range with colon operator

select

[Date].[Calendar].[Calendar Quarter].[Q1 CY 2003]:

[Date].[Calendar].[Calendar Quarter].[Q3 CY 2003]

on columns,

[Measures].[Reseller Sales Amount]

on rows

from

[Adventure Works]

Result

Analysis
There are a few things to mention. One, you don’t need the braces ({ }) delimiters when
you use the colon (:) range operator. Two, the colon operator (:) means you only have to
type or drag the start point and end point and not the intermediate point. You might
have many intermediate members, so this method saves a lot of work.

Range with Cousin
Only the start point is explicit. Neither the end point nor the intermediate point is
hard-coded. The Cousin function and the colon operator (:) are used instead.

Syntax
-- range with cousin

select

[Date].[Calendar].[Calendar Quarter].[Q1 CY 2003]:cousin([Date]

.[Calendar].[Calendar Quarter].[Q1 CY 2003],[Date].[Calendar].

[Calendar Semester].[H2 CY 2003])

on columns,

7 2 P r a c t i c a l M D X Q u e r i e s f o r M i c r o s o f t S Q L S e r v e r A n a l y s i s S e r v i c e s 2 0 0 8

[Measures].[Reseller Sales Amount]

on rows

from

[Adventure Works]

Result

Analysis
This is a really useful query. You don’t need to know anything about member names (or
keys) apart from the name (or key) of the member at the start point of the range. By
transposing the expressions on either side of the colon (:), you only need to know the
end point of the range.

Positive Lead and Negative Lag
Lead (with a positive number) means “jump ahead horizontally at the same level.” Lag
(with a positive number) means “jump back.”

Syntax
-- lead positive second

select

{[Date].[Calendar].[Calendar Quarter].[Q1 CY 2003],

[Date].[Calendar].[Calendar Quarter].[Q1 CY 2003].lead(2)}

on columns,

[Measures].[Reseller Sales Amount]

on rows

from

[Adventure Works]

-- lag negative second

select

{[Date].[Calendar].[Calendar Quarter].[Q1 CY 2003],

[Date].[Calendar].[Calendar Quarter].[Q1 CY 2003].lag(-2)}

on columns,

[Measures].[Reseller Sales Amount]

on rows

from

[Adventure Works]

C h a p t e r 3 : Fa m i l i e s a n d F r i e n d s : N a v i g a t i n g D i m e n s i o n s 7 3

Result

Analysis
Lead(2) jumps two quarters into the future. Lag(-2) also means jump ahead by two
quarters. Both queries return the same result.

Negative Lead and Positive Lag
Here’s some more on the lead and lag property functions. We have made a few subtle
changes from the previous two queries.

Syntax
-- lead negative first

select

{[Date].[Calendar].[Calendar Quarter].[Q3 CY 2003].

lead(-2),[Date].[Calendar].[Calendar Quarter].[Q3 CY 2003]}

on columns,

[Measures].[Reseller Sales Amount]

on rows

from

[Adventure Works]

-- lag positive first

select

{[Date].[Calendar].[Calendar Quarter].[Q3 CY 2003].

lag(2),[Date].[Calendar].[Calendar Quarter].[Q3 CY 2003]}

on columns,

[Measures].[Reseller Sales Amount]

on rows

from

[Adventure Works]

Result

7 4 P r a c t i c a l M D X Q u e r i e s f o r M i c r o s o f t S Q L S e r v e r A n a l y s i s S e r v i c e s 2 0 0 8

Analysis
Lead(-2), go two quarters back. Lag(2), the same. Again, both queries have the same
result. In fact, the result is the same as the previous two queries as well. Your results
are determined by whether you use lead or lag, whether you use positive or negative
numbers as the function parameter, and where in the set you position the member with
the lead or lag function.

Lead (or Lag) with a Range
Here you witness one of the main reasons for using lead (or lag). It’s handy for setting
up ranges.

Syntax
-- lead (or lag) with a range

select

[Date].[Calendar].[Calendar Quarter].[Q1 CY 2003]

:[Date].[Calendar].[Calendar Quarter].[Q1 CY 2003].lead(2)

on columns,

[Measures].[Reseller Sales Amount]

on rows

from

[Adventure Works]

Result

Analysis
Of course, lag(-2) would have accomplished the same. Lead and lag are much simpler
than Cousin. However, lead and lag require that you know how far to jump. Cousin,
on the other hand, does not—it finds the start or end point for you by relative position.
Lead and lag may let you down when members (especially in a time dimension) are not
both consecutive and contiguous. This is one of the arguments for using a server time
dimension rather than a hand-rolled time dimension in the source star schema. A server
time dimension is a part of your dimension design in BIDS. A server time dimension
ensures that dates are consecutive and contiguous. In practice, however, server time
dimensions are not used very much—they have one or two other disadvantages. Perhaps
the best approach is to create a time dimension without any “gaps,” maybe using an SQL

C h a p t e r 3 : Fa m i l i e s a n d F r i e n d s : N a v i g a t i n g D i m e n s i o n s 7 5

While loop with start and end dates. If you base your time dimension on existing dates
in your transactional relational database system, you may end up with “gaps.”

Head
Head is not a navigation function. Rather it is one of the set functions. You can verify
this by viewing the Functions pane. The Functions tab is next to the Metadata tab.
However, the results are similar to those produced by the navigation functions, so it’s
included here for completeness.

Syntax
--head

select

{[Measures].[Internet Sales Amount],[Measures].[Internet Tax Amount]}

on columns,

head([Customer].[Customer Geography].[Country],2)

on rows

from

[Adventure Works]

Result

Analysis
The first parameter for Head is a set (here, the members of the Country level). The second
parameter is a number (here it is 2). Show me the first two members of the Country level.

Tail
Show me the last three members of the Country level.

Syntax
--tail

select

{[Measures].[Internet Sales Amount],[Measures].[Internet Tax Amount]}

on columns,

7 6 P r a c t i c a l M D X Q u e r i e s f o r M i c r o s o f t S Q L S e r v e r A n a l y s i s S e r v i c e s 2 0 0 8

tail([Customer].[Customer Geography].[Country],3)

on rows

from

[Adventure Works]

Result

Analysis
If you omit the second numeric parameter, it defaults to 1. This will find the last
member of a set. You may want to exploit this to determine the end point for a range.

prevmember
Here’s a query showing Germany and the result of the .prevmember function on
Germany. Functionally, prevmember is the same as lag(1).

Syntax
-- prevmember

select

{[Measures].[Internet Sales Amount],[Measures].[Internet Tax Amount]}

on columns,

{[Customer].[Customer Geography].[Country].[Germany],

[Customer].[Customer Geography].[Country].[Germany].prevmember}

on rows

from

[Adventure Works]

-- lag equivalent

select

{[Measures].[Internet Sales Amount],[Measures].[Internet Tax Amount]}

on columns,

{[Customer].[Customer Geography].[Country].[Germany],

[Customer].[Customer Geography].[Country].[Germany].lag(1)}

on rows

from

[Adventure Works]

C h a p t e r 3 : Fa m i l i e s a n d F r i e n d s : N a v i g a t i n g D i m e n s i o n s 7 7

Result

Analysis
Both queries have identical outcomes. Often, prevmember will prove more useful in
time dimensions. Germany and France positions are probably arbitrary and based solely
on an alphabetic sort.

prevmember.prevmember
This query shows how to jump back two places.

Syntax
-- prevmember.prevmember

select

{[Measures].[Internet Sales Amount],[Measures].[Internet Tax Amount]}

on columns,

{[Customer].[Customer Geography].[Country].[Germany],

[Customer].[Customer Geography].[Country].[Germany].prevmember.prevmember}

on rows

from

[Adventure Works]

Result

Analysis
This query selects Germany, then jumps two back to Canada and skips France. This is
more useful when the alphabetic (or key) position of a member has meaning to you.

nextmember
This query demonstrates how to jump ahead by one.

7 8 P r a c t i c a l M D X Q u e r i e s f o r M i c r o s o f t S Q L S e r v e r A n a l y s i s S e r v i c e s 2 0 0 8

Syntax
-- nextmember

select

{[Measures].[Internet Sales Amount],[Measures].[Internet Tax Amount]}

on columns,

{[Customer].[Customer Geography].[Country].[Germany],

[Customer].[Customer Geography].[Country].[Germany].nextmember}

on rows

from

[Adventure Works]

Result

Analysis
Here, we are reversing the direction of our horizontal navigation.

nextmember.nextmember
This query demonstrates jumping ahead by two.

Syntax
-- nextmember.nextmember

select

{[Measures].[Internet Sales Amount],[Measures].[Internet Tax Amount]}

on columns,

{[Customer].[Customer Geography].[Country].[Germany],

[Customer].[Customer Geography].[Country].[Germany].nextmember.nextmember}

on rows

from

[Adventure Works]

Result

C h a p t e r 3 : Fa m i l i e s a n d F r i e n d s : N a v i g a t i n g D i m e n s i o n s 7 9

Analysis
MDX is straightforward!

nextmember with a Range
This time, yet another navigation query—or rather, two queries. Functionally, they are
equivalent.

Syntax
-- range with nextmember

select

{[Measures].[Internet Sales Amount],[Measures].[Internet Tax Amount]}

on columns,

[Customer].[Customer Geography].[Country].[Germany]

:[Customer].[Customer Geography].[Country].[Germany].nextmember.nextmember

on rows

from

[Adventure Works]

-- lead equivalent

select

{[Measures].[Internet Sales Amount],[Measures].[Internet Tax Amount]}

on columns,

[Customer].[Customer Geography].[Country].[Germany]

:[Customer].[Customer Geography].[Country].[Germany].lead(2)

on rows

from

[Adventure Works]

Result

Analysis
Now you should have a few ideas of how to navigate your cube(s). MDX (unlike SQL)
is positionally aware.

8 0 P r a c t i c a l M D X Q u e r i e s f o r M i c r o s o f t S Q L S e r v e r A n a l y s i s S e r v i c e s 2 0 0 8

Descendants with an Unbalanced Hierarchy 1/2
You may or may not meet unbalanced hierarchies as you work with your own cubes.
The Employee dimension in Adventure Works contains an unbalanced hierarchy called
Employees. This is based on a source star schema dimension table that’s a parent-child
(self-join) table. Unbalanced hierarchies need special attention.

Syntax
-- descendants unbalanced hierarchy 1/2 - 28 rows

select

{}

on columns,

descendants([Employee].[Employees].[Ken J. Sánchez],

[Employee].[Employees].[Employee Level 06])

on rows

from

[Adventure Works]

Result

Analysis
The result set shown is partial. You may need to scroll down to see all the rows. There
are 28 rows—you can verify this easily by clicking the Messages tab. This indicates
that 28 employees at level 06 report directly (or indirectly) to Ken J. Sánchez. It’s
important to note the accented character in Sánchez. You can use Windows Character
Map (charmap.exe) to type or paste this if it’s not directly supported on your keyboard.
Alternatively, you could replace the name [Ken J. Sánchez] with the key &[112].

C h a p t e r 3 : Fa m i l i e s a n d F r i e n d s : N a v i g a t i n g D i m e n s i o n s 8 1

Descendants with an Unbalanced Hierarchy 2/2
This is our final navigation query. It’s an alternative to the last query and gives different
results. You probably need to consider both versions when you work on your own
unbalanced hierarchies.

Syntax
-- descendants unbalanced hierarchy 2/2 - 249 rows

select

{}

on columns,

descendants([Employee].[Employees].[Ken J. Sánchez],,leaves)

on rows

from

[Adventure Works]

Result

Analysis
Again, this is only a partial result set. If you click the Messages tab you should see that
there are 249 rows this time—rather more than in the previous query. Both answers
are correct! The syntax here shows that there is no level as the second parameter to
Descendants and that the third parameter is Leaves. In effect, it returns all employees
(no matter which level) that are at the bottom of the hierarchy. For example, Jae B. Pak
reports indirectly to Ken J. Sánchez but is at level 05, and he has no one at level 06
reporting to him. The employees listed might include some at level 03, level 04, and
level 05 and will include all those at level 06 (the lowest level). Our last query simply
returned all the ones at level 06 and no others.

This page intentionally left blank

Bringing Order:
Sorting Results

Chapter 4

8 4 P r a c t i c a l M D X Q u e r i e s f o r M i c r o s o f t S Q L S e r v e r A n a l y s i s S e r v i c e s 2 0 0 8

This chapter introduces various ways of sorting the results of your queries.
Business intelligence reports often have a requirement to put information in
some kind of order—whether numeric or alphabetic. This chapter shows you

just how to do this.

Key concepts Ordering by attribute, ordering by measure inside and outside
hierarchies

Keywords Order, Asc, BAsc, Desc, BDesc, Hierarchize, Post

By Default, Measures Are Not Sorted
There are two types of sorting. Attributes are often sorted alphabetically (or sometimes
by a key or some other attribute). The second type of sort is sorting on measures. This
is not part of the measure design in BIDS but is exclusively your responsibility as your
company’s MDX guru. By default, measures are not sorted, as this query demonstrates.

Syntax
-- unsorted on Internet Sales Amount

select

[Measures].[Internet Sales Amount]

on columns,

[Product].[Product Categories].[Subcategory]

on rows

from

[Adventure Works]

Result

C h a p t e r 4 : B r i n g i n g O r d e r : S o r t i n g R e s u l t s 8 5

Analysis
There is no apparent sorting of the Internet Sales Amount measure. The first three
rows for sales are in order, but that is purely a consequence of the subcategory attribute
alphabetical sorting in BIDS. As you move down the rows, the figures follow no particular
pattern. Incidentally (but beyond the scope of this book), the subcategories do seem to be
sorted alphabetically. However, this breaks down somewhere around Tires and Tubes and
Mountain Bikes. If you were to peek at the Product dimension design in BIDS, you would
notice that subcategory has an OrderBy property of Name. This gives the alphabetical sort
of the rows. However, our query requests subcategories as part of the Product Categories
hierarchy—the subcategories are sorted on a per-category basis. Thus, Tires and Tubes is
the last subcategory of its category (Accessories, which is not shown), and Mountain Bikes
is the first subcategory in the Bikes category. To pursue the analysis, the subcategories for
Accessories appear before those of Bikes because the category itself also has its OrderBy
property set to Name.

Using Order
To sort your rows (or columns), you employ the Order function.

Syntax
-- order is ascending

select

[Measures].[Internet Sales Amount]

on columns,

order([Product].[Subcategory].[Subcategory],[Measures].

[Internet Sales Amount])

on rows

from

[Adventure Works]

8 6 P r a c t i c a l M D X Q u e r i e s f o r M i c r o s o f t S Q L S e r v e r A n a l y s i s S e r v i c e s 2 0 0 8

Result

Analysis
The first parameter is the set of rows to sort, and the second parameter is the measure
to sort by. The result shows the subcategories sorted by Internet Sales Amount. You
may have to scroll down to get beyond all the empty cells. The sort order is ascending,
which is the default. Note that this query uses an attribute hierarchy ([Subcategory].
[Subcategory]) and not a user hierarchy.

Explicit Ascend
This query returns exactly the same result as the previous query.

Syntax
-- explicit ascend

select

[Measures].[Internet Sales Amount]

on columns,

order([Product].[Subcategory].[Subcategory],

[Measures].[Internet Sales Amount],asc)

on rows

from

[Adventure Works]

C h a p t e r 4 : B r i n g i n g O r d e r : S o r t i n g R e s u l t s 8 7

Result

Analysis
All we did here was to add Asc as an additional parameter to the Order function.
Maybe it’s good practice to explicitly define the sort order.

Descending Sort
Simply by adding Desc, you can have a descending sort on sales.

Syntax
-- descending

select

[Measures].[Internet Sales Amount]

on columns,

order([Product].[Subcategory].[Subcategory],

[Measures].[Internet Sales Amount],desc)

on rows

from

[Adventure Works]

8 8 P r a c t i c a l M D X Q u e r i e s f o r M i c r o s o f t S Q L S e r v e r A n a l y s i s S e r v i c e s 2 0 0 8

Result

Analysis
This is quite handy when you want to see the highest sales at the top.

The Sort Only Works for a Few Rows
Here we ask for an explicit ascending sort on Internet Sales Amount.

Syntax
-- order seems to be ascending

select

[Measures].[Internet Sales Amount]

on columns,

order([Product].[Product Categories].[Subcategory],

[Measures].[Internet Sales Amount],asc)

on rows

from

[Adventure Works]

C h a p t e r 4 : B r i n g i n g O r d e r : S o r t i n g R e s u l t s 8 9

Result

Analysis
As you scroll down the rows, all appears well until you get somewhere around Jerseys.
Jerseys is followed by a few nulls, then Cleaners, which is a lower, not a higher, sales
figure. A couple of queries ago, the ascending sort was working fine. Now it suddenly
stops working. There is a subtle difference in the set specified for the Rows axis. This
time I have used a user hierarchy ([Product Categories].[Subcategory]) rather than an
attribute hierarchy ([Subcategory].[Subcategory]). The sort is respecting the structure
of the user hierarchy. Try the next query and this will make more sense.

Breaking Hierarchies
Here’s a very minor but important change. Asc has been replaced by Basc.

Syntax
-- basc might be better

select

[Measures].[Internet Sales Amount]

on columns,

order([Product].[Product Categories].[Subcategory],

[Measures].[Internet Sales Amount],basc)

on rows

from

[Adventure Works]

9 0 P r a c t i c a l M D X Q u e r i e s f o r M i c r o s o f t S Q L S e r v e r A n a l y s i s S e r v i c e s 2 0 0 8

Result

Analysis
You might have to scroll a little to get beyond the empty cells. This query and the
previous one show two ways of sorting with the Order function. If you have a user
hierarchy rather than an attribute hierarchy, you have a choice of the sort observing
the hierarchy or ignoring (breaking) the hierarchy. The letter B in front of Asc means
“break the hierarchy.” If you want, return to the result of the previous query. There, the
sort has worked—only the sort of the subcategories restarts as the category (not shown)
changes. The category level is the next level up from the subcategory level in the
Product Categories user hierarchy. If you desire, you could also show the category name
as well as the subcategory name. You can accomplish this by writing a crossjoin query
on the [Category] and the [Subcategory] attribute hierarchies—more on that topic
elsewhere. Both breaking and nonbreaking sorts are valid. Your choice is a business
decision. A crossjoin sort example appears at the end of this chapter.

Order with desc on User Hierarchy
Let’s reverse the sort order to see the effect of user hierarchies on a descending sort.

Syntax
-- desc

select

C h a p t e r 4 : B r i n g i n g O r d e r : S o r t i n g R e s u l t s 9 1

[Measures].[Internet Sales Amount]

on columns,

order([Product].[Product Categories].[Subcategory],

[Measures].[Internet Sales Amount],desc)

on rows

from

[Adventure Works]

Result

Analysis
If you move down to somewhere around Bike Racks, you can witness the descending
sort restarting for the Jerseys subcategory as the parent category (hidden) changes.

Order with bdesc on User Hierarchy
Now it’s time to break the hierarchy and compare the output with that of the last query.

Syntax
-- bdesc

select

[Measures].[Internet Sales Amount]

on columns,

order([Product].[Product Categories].[Subcategory],

[Measures].[Internet Sales Amount],bdesc)

on rows

from

[Adventure Works]

9 2 P r a c t i c a l M D X Q u e r i e s f o r M i c r o s o f t S Q L S e r v e r A n a l y s i s S e r v i c e s 2 0 0 8

Result

Analysis
When you break the hierarchy, it looks like an SQL sort with an Order By clause.
Sometimes this is what you want, but often end users want sorting within groups. Then
you won’t want to break the hierarchy.

Sorting a Measure by Another Hidden Measure
An interesting business problem—how to show the Internet Sales Amount for
subcategories, but sorted by the Reseller Sales Amount.

Syntax
-- sorting by another column from the one displayed

select

[Measures].[Internet Sales Amount]

on columns,

order([Product].[Product Categories].[Subcategory],

[Measures].[Reseller Sales Amount],bdesc)

on rows

from

[Adventure Works]

C h a p t e r 4 : B r i n g i n g O r d e r : S o r t i n g R e s u l t s 9 3

Result

Analysis
The second parameter of the Order function has been changed from Internet Sales
Amount to Reseller Sales Amount. The measure in the display (Internet Sales Amount)
is neither sorted by breaking the hierarchy nor by nonbreaking of the hierarchy. The
former can be ruled out by noting that the value for Helmets is larger than that for
Shorts. The latter can be ruled out because Helmets (in the Accessories category) lies
between Shorts and Vests (both in the Clothing category). It’s sometimes really helpful
to have a pivot table on the cube open as you write your MDX—it lets you drill down
and up easily so you can help verify your MDX query results. That’s how I did a quick
check to see whether Helmets was in Clothing. Your query editor Metadata pane does
not support the drill down or drill up of user hierarchies.

Showing the Hidden Sort Measure
To be absolutely certain that the last query did indeed work, add another measure to
the Columns axis.

Syntax
-- proof

select

{[Measures].[Internet Sales Amount],[Measures].[Reseller Sales Amount]}

on columns,

order([Product].[Product Categories].[Subcategory],

[Measures].[Reseller Sales Amount],bdesc)

on rows

from

[Adventure Works]

9 4 P r a c t i c a l M D X Q u e r i e s f o r M i c r o s o f t S Q L S e r v e r A n a l y s i s S e r v i c e s 2 0 0 8

Result

Analysis
Hopefully, this demonstrates why Shorts came before Helmets and why Helmets
appeared between Shorts and Vests.

Sorting Columns Rather Than Rows
There is nothing at all to prevent you from sorting across columns instead of down rows.

Syntax
-- sort across columns as well as down rows

select

order([Product].[Product Categories].[Subcategory],

[Measures].[Reseller Sales Amount],bdesc)

on columns,

{[Measures].[Internet Sales Amount],[Measures].[Reseller Sales Amount]}

on rows

from

[Adventure Works]

Result

Analysis
Except the fact it may be more difficult to read.

C h a p t e r 4 : B r i n g i n g O r d e r : S o r t i n g R e s u l t s 9 5

Sorting Hierarchies, Not Measures
I’ve been a little lazy in my MDX, not really paying attention to the order of the
members in the set on the Rows axis.

Syntax
-- some haphazard rows

select

[Measures].[Internet Sales Amount]

on columns,

{[Product].[Subcategory].[Touring Bikes],[Product].[Subcategory],[Product]

.[Subcategory].[Mountain Bikes]}

on rows

from

[Adventure Works]

Result

Analysis
This is an attribute hierarchy. If you check the Metadata pane, it’s a blue rectangle,
not a pyramid. I also cut corners in my typing: [Product].[Subcategory].[Subcategory]
is better than [Product].[Subcategory] because the double repeated name for the
hierarchy and the level lets you see at a glance that it’s probably an attribute hierarchy
rather than a user hierarchy. But the order of the rows still disturbs me!

Hierarchize Function
This is the same query but with the addition of the Hierarchize function.

Syntax
-- put into order of hierarchy

select

[Measures].[Internet Sales Amount]

on columns,

9 6 P r a c t i c a l M D X Q u e r i e s f o r M i c r o s o f t S Q L S e r v e r A n a l y s i s S e r v i c e s 2 0 0 8

hierarchize({[Product].[Subcategory].[Touring Bikes],

[Product].[Subcategory],[Product].[Subcategory].[Mountain Bikes]})

on rows

from

[Adventure Works]

Result

Analysis
Now I’m happier. Using Hierarchize is a nice way to tidy up. It doesn’t imply a sort
on cell values, even though it might look that way. It sorts from the top level of the
hierarchy down. If there are more than two members on a particular level, it sorts
according to the OrderBy property for the attribute at that level in BIDS.

Hierarchize Function, Upside Down
All that’s happened here is the addition of the Post parameter.

Syntax
-- reverse order of hierarchy

select

[Measures].[Internet Sales Amount]

on columns,

hierarchize({[Product].[Subcategory].[Touring Bikes],

[Product].[Subcategory],[Product].[Subcategory].[Mountain Bikes]},post)

on rows

from

[Adventure Works]

Result

C h a p t e r 4 : B r i n g i n g O r d e r : S o r t i n g R e s u l t s 9 7

Analysis
The addition of Post has caused the hierarchy to appear upside down. The result you can
see should confirm that the sort has nothing to do with the measure in the cell values.

Real-World Example of Sorting 1/2
To learn MDX, it’s probably best to do so one function, technique, or concept at a time.
But we want real-world BI reports as soon as possible! So here’s quite a nice query
using the Order function. If you dipped into the book to read this chapter on sorting
first, don’t worry. Non Empty and Crossjoin are covered in detail elsewhere. By the time
you reach the end of the book (if you persevere), you will be writing queries like this
(and even more complex ones) within a second or two.

Syntax
-- crossjoin sorting example, non-breaking

select

[Measures].[Internet Sales Amount]

on columns,

non empty order(crossjoin([Product].[Category].[Category],

[Product].[Subcategory].[Subcategory]),

[Measures].[Internet Sales Amount],desc)

on rows

from

[Adventure Works]

Result

9 8 P r a c t i c a l M D X Q u e r i e s f o r M i c r o s o f t S Q L S e r v e r A n a l y s i s S e r v i c e s 2 0 0 8

Analysis
I guess, for once, you should just observe and not analyze. Simply enjoy the results of
your skills. Oh, but wait, we really want Road Bikes at the top.

Real-World Example of Sorting 2/2
Road Bikes at the top. All we did was change Desc to Bdesc.

Syntax
-- crossjoin sorting example, breaking

select

[Measures].[Internet Sales Amount]

on columns,

non empty order(crossjoin([Product].[Category].[Category],

[Product].[Subcategory].[Subcategory]),

[Measures].[Internet Sales Amount],bdesc)

on rows

from

[Adventure Works]

Result

Analysis
That’s it. This is the last query in this chapter dedicated to sorting.

Slice, Dice, and Filter:
Using Where and Filter

Chapter 5

1 0 0 P r a c t i c a l M D X Q u e r i e s f o r M i c r o s o f t S Q L S e r v e r A n a l y s i s S e r v i c e s 2 0 0 8

Often, you will want only a subset of your dimension members and measure
values. This can be achieved by slicing and dicing with a Where clause. An
alternative approach involves using criteria with a Filter function. The MDX

Where clause is not the same as an SQL one. Hopefully, by the end of the chapter you
will be proficient at using it in MDX.

Key concepts Slicing on measures and attributes, filtering on measures and
attributes, hiding empty cells, and top and bottom cells

Keywords Where, Except, Filter, Or, And, Is, Not, Non Empty, Topcount,
Bottomcount, Toppercent, Bottompercent, Topsum, Bottomsum

Where Clause
We have returned to a “hello world” query. The second query includes an extra Where
clause.

Syntax
-- hello world again

select

from

[Adventure Works]

-- where slicer, same answer

select

from

[Adventure Works]

where

[Measures].[Reseller Sales Amount]

Result

Analysis
Both queries give the same answer. By default, a query uses the default measure to populate
the cells with values. The Where clause allows you to slice the cube by a particular measure
or dimension attribute or any reasonable combination of measures and/or attributes. It
adds extra coordinates to the query—in addition to any coordinates specified as tuples
on the Columns and the Rows axes. It works to “narrow down” the results that would
otherwise have been returned without it.

C h a p t e r 5 : S l i c e , D i c e , a n d F i l t e r : U s i n g W h e r e a n d F i l t e r 1 0 1

Another Measure in a Where Clause
Here are two queries for you to try. The first has a change to the measure in the Where
clause. The second projects the measure along the Columns axis.

Syntax
-- different answer

select

from

[Adventure Works]

where

[Measures].[Internet Sales Amount]

-- columns rather than where

select

[Measures].[Internet Sales Amount]

on columns

from

[Adventure Works]

Result

Analysis
The cell value from the two queries is the same. However, the second one explicitly
lists the measure member on the Columns axis. A Where clause does not project the
member onto an axis.

Measure in a Where Clause and on an Axis
But let’s try to do both. These two queries are similar, except the second one uses two
different measures.

Syntax
-- slicer error

select

1 0 2 P r a c t i c a l M D X Q u e r i e s f o r M i c r o s o f t S Q L S e r v e r A n a l y s i s S e r v i c e s 2 0 0 8

[Measures].[Internet Sales Amount]

on columns

from

[Adventure Works]

where

[Measures].[Internet Sales Amount]

-- and again even with different measures

select

[Measures].[Internet Sales Amount]

on columns

from

[Adventure Works]

where

[Measures].[Reseller Sales Amount]

Result

Analysis
And both produce the same error message. You can’t have a member (measure
or attribute member) in both the Where clause and on an axis at the same time.
Incidentally, Axis0 means the Columns axis.

Default Measure in a Where Clause
Try this query twice. First, run the whole query. Then, highlight everything except the
Where clause and run the query again.

Syntax
-- default measure as slicer, not needed

select

{[Product].[Product Categories].[Category],[Product].[Product Categories]}

on columns

from

[Adventure Works]

where

[Measures].[Reseller Sales Amount]

C h a p t e r 5 : S l i c e , D i c e , a n d F i l t e r : U s i n g W h e r e a n d F i l t e r 1 0 3

Result

Analysis
It doesn’t matter whether or not you include the Where clause when it contains only
a default member (measure or attribute). The two queries have identical outcomes.
Notice the cell values before you attempt the ensuing query.

A Non-measure Member in the Slicer
Here the slicer has the Canada member of the Customer dimension.

Syntax
-- did Canada (customer) have all reseller sales

select

{[Product].[Product Categories].[Category],[Product].

[Product Categories]}

on columns

from

[Adventure Works]

where

[Customer].[Customer Geography].[Country].[Canada]

Result

Analysis
Identical results to the previous query! But we put Canada into the slicer. Does that
mean that all our sales went there? Canadians must be pretty good customers. But not
that good—the results are wrong. Customers are not related to Reseller Sales Amount
(our default measure here). You will meet this problem if your cube has more than one
measure group with differing dimensionalities. We got the wrong dimension with the
wrong measure. This is quite important—your reports may show incorrect figures.
You need to understand the Dimension Usage tab in your cube designer in BIDS. In
the case of Adventure Works, the Sales Territory dimension relates to Reseller Sales

1 0 4 P r a c t i c a l M D X Q u e r i e s f o r M i c r o s o f t S Q L S e r v e r A n a l y s i s S e r v i c e s 2 0 0 8

Amount—the Customer dimension relates to Internet Sales Amount. Take a look at
the next two queries.

A Non-measure Member in
the Slicer (Corrected) 1/2
Still Canada, but the dimension in the slicer is different. It’s Sales Territory not Customer.

Syntax
-- Canada (sales territory) reseller sales

select

{[Product].[Product Categories].[Category],[Product].

[Product Categories]}

on columns

from

[Adventure Works]

where

[Sales Territory].[Sales Territory].[Country].[Canada]

Result

Analysis
Now we have the correct Reseller Sales Amount for Canada.

A Non-measure Member in
the Slicer (Corrected) 2/2
Well, the last query worked fine. But what happens if we are interested in Canada as
a customer location? The Where clause now includes Canada from the Customer
dimension and Internet Sales Amount.

Syntax
-- Canada (customer) internet sales

select

{[Product].[Product Categories].[Category],[Product].[Product Categories]}

on columns

C h a p t e r 5 : S l i c e , D i c e , a n d F i l t e r : U s i n g W h e r e a n d F i l t e r 1 0 5

from

[Adventure Works]

where

([Customer].[Customer Geography].[Country].[Canada],

[Measures].[Internet Sales Amount])

Result

Analysis
Once again, we have valid results. There are two members in the slicer. The [Measures].
[Internet Sales Amount] member overrides the default measure of the cube. Notice
the use of a comma and the absence of And. Also, note the parentheses around the two
members. Without the parentheses, there will be a syntax error.

Two Non-measure Members from
the Same Dimension Hierarchy
You would like sales to customers in both Canada and Australia, so we add Australia to
the slicer.

Syntax
-- Canada/Australia (customer) internet sales

select

{[Product].[Product Categories].[Category],[Product].[Product Categories]}

on columns

from

[Adventure Works]

where

([Customer].[Customer Geography].[Country].[Canada],

[Customer].[Customer Geography].[Country].[Australia],

[Measures].[Internet Sales Amount])

Result

1 0 6 P r a c t i c a l M D X Q u e r i e s f o r M i c r o s o f t S Q L S e r v e r A n a l y s i s S e r v i c e s 2 0 0 8

Analysis
What we attempted seemed reasonable. Unfortunately, it doesn’t work this way. This
error is fixed in the next query.

Two Non-measure Members from
the Same Dimension Hierarchy (Fixed)
The only change we make is to delimit the two members from the Customer
dimension with braces.

Syntax
-- Canada/Australia (customer) internet sales

select

{[Product].[Product Categories].[Category],[Product].[Product Categories]}

on columns

from

[Adventure Works]

where

({[Customer].[Customer Geography].[Country].[Canada],

[Customer].[Customer Geography].[Country].[Australia]},

[Measures].[Internet Sales Amount])

Result

Analysis
The addition of braces converts Australia and Canada into a set. If you don’t do this,
SSAS thinks you are asking for a crossjoin. Crossjoins don’t work on two members
from the same hierarchy.

A Change of Slicer to United Kingdom
Maybe you want to look at reseller sales in the United Kingdom.

Syntax
-- UK reseller sales amount

select

C h a p t e r 5 : S l i c e , D i c e , a n d F i l t e r : U s i n g W h e r e a n d F i l t e r 1 0 7

{[Product].[Product Categories].[Category],[Product].[Product Categories]}

on columns

from

[Adventure Works]

where

[Sales Territory].[Sales Territory].[Country].[United Kingdom]

Result

Analysis
There’s nothing new here. It’s simply a change of the country in the slicer—being careful
to use the right dimension with the right measure (the default measure in this case).

Without the United Kingdom
Suppose you now wish to see sales for all countries apart from the United Kingdom.
The tedious way is to enumerate every country, without the United Kingdom, in the
slicer. These two queries illustrate a very, very convenient alternative.

Syntax
-- without the UK

select

{[Product].[Product Categories].[Category],[Product].[Product Categories]}

on columns

from

[Adventure Works]

where

[Sales Territory].[Sales Territory].[Country]

-[Sales Territory].[Sales Territory].[Country].[United Kingdom]

-- or

select

{[Product].[Product Categories].[Category],[Product].[Product Categories]}

on columns

from

[Adventure Works]

where

except([Sales Territory].[Sales Territory].[Country],

[Sales Territory].[Sales Territory].[Country].[United Kingdom])

1 0 8 P r a c t i c a l M D X Q u e r i e s f o r M i c r o s o f t S Q L S e r v e r A n a l y s i s S e r v i c e s 2 0 0 8

Result

Analysis
Our two queries are functionally equivalent and therefore return the same cells.
The second query uses the Except set operator whereas the first one uses the minus
sign (-), which means Except. Except is covered elsewhere in the book. In effect, it
has subtracted the United Kingdom from the list of all the countries in the Sales
Territory dimension.

Introducing Filter
The Where clause in MDX bears little resemblance to an SQL Where clause. The
nearest you can get to an SQL Where is an MDX Filter function. Before we try it, let’s
get some dimension attribute members, some measures, and a few cells.

Syntax
-- no filter

select

{[Measures].[Internet Sales Amount],[Measures].[Reseller Sales Amount]}

on columns,

[Product].[Product Categories].[Category]

on rows

from

[Adventure Works]

Result

Analysis
This is going to serve as our starting point for quite a few queries examining the
behavior of the Filter function.

C h a p t e r 5 : S l i c e , D i c e , a n d F i l t e r : U s i n g W h e r e a n d F i l t e r 1 0 9

A Simple Filter
Let’s filter the product categories to hide those with a null (or zero) Internet Sales
Amount.

Syntax
-- > zero or null

select

{[Measures].[Internet Sales Amount],[Measures].[Reseller Sales Amount]}

on columns,

filter([Product].[Product Categories].[Category],

[Measures].[Internet Sales Amount] > 0)

on rows

from

[Adventure Works]

Result

Analysis
The Components category has been removed from the result set. The first parameter for
Filter is the set of members you wish to filter. The second parameter is a Boolean test that
returns true or false for each member of the set. Our query stipulates that the Internet
Sales Amount must be greater than zero—and Components does not qualify. Nulls
in MDX are different from SQL nulls. A null in a numeric cell is also treated as zero.
Therefore, the query works even though (if you check back to the last query) the cell for
Components contained a null value for Internet sales. This query could also be written
with > null rather than > 0 and would give the same result.

As an alternative to the Filter function, you might like to try the Having clause. The
Having clause is part of your axis specification and can sometimes simplify the syntax
of a query. The syntax of the Having clause looks like this:

Select

{[Measures].[Internet Sales Amount],[Measures].[Reseller Sales Amount]}

on columns,

[Product].[Product Categories].[Category]

having [Measures].[Internet Sales Amount] > 0

1 1 0 P r a c t i c a l M D X Q u e r i e s f o r M i c r o s o f t S Q L S e r v e r A n a l y s i s S e r v i c e s 2 0 0 8

on rows

from

[Adventure Works]

Another Simple Filter
You might want to see categories that have sales above a certain positive cutoff figure,
and not simply those with any sales (which is effectively what the previous query did).

Syntax
-- > 500000

select

{[Measures].[Internet Sales Amount],[Measures].[Reseller Sales Amount]}

on columns,

filter([Product].[Product Categories].[Category],

[Measures].[Internet Sales Amount] > 500000)

on rows

from

[Adventure Works]

Result

Analysis
The query asks only for those categories where Internet sales are above $500,000
(or equal to and above if we had used >= instead of >). Not only does it eliminate
Components, but also Clothing with Internet sales of $339,772.61 dollars (you can
look at the Clothing figure in the result from the last query).

A More Complex Filter with And
Let’s make our queries more versatile by having more than one test. Notice the And in
the Boolean condition.

Syntax
-- using and

select

{[Measures].[Internet Sales Amount],[Measures].[Reseller Sales Amount]}

C h a p t e r 5 : S l i c e , D i c e , a n d F i l t e r : U s i n g W h e r e a n d F i l t e r 1 1 1

on columns,

filter([Product].[Product Categories].[Category],

[Measures].[Internet Sales Amount] > 500000

and [Measures].[Internet Sales Amount] < 750000)

on rows

from

[Adventure Works]

Result

Analysis
There is only one category (Accessories) where the Internet Sales Amount lies between
$500,000 and $750,000. You can make your test condition as complex as you wish,
provided you follow the syntax rules.

A More Complex Filter with Or
Sometimes, you may want to exclude a value that lies between other values (note the Or
in the test condition).

Syntax
-- using or

select

{[Measures].[Internet Sales Amount],[Measures].[Reseller Sales Amount]}

on columns,

filter([Product].[Product Categories].[Category],

[Measures].[Internet Sales Amount] > 750000

 or [Measures].[Internet Sales Amount] < 500000)

on rows

from

[Adventure Works]

Result

1 1 2 P r a c t i c a l M D X Q u e r i e s f o r M i c r o s o f t S Q L S e r v e r A n a l y s i s S e r v i c e s 2 0 0 8

Analysis
Our previous query showed only Accessories. This one shows everything but
Accessories because its Internet sales at $700,759.96 failed both conditions.

An Even More Complex Filter with And and Or 1/2
You can filter on more than one measure and have both an And and an Or in your test
condition. This query may not produce the results you expect!

Syntax
-- 2 measures not quite working

select

{[Measures].[Internet Sales Amount],[Measures].[Reseller Sales Amount]}

on columns,

filter([Product].[Product Categories].[Category],

[Measures].[Internet Sales Amount] > 750000

or [Measures].[Internet Sales Amount] < 500000

and [Measures].[Reseller Sales Amount] < 15000000)

on rows

from

[Adventure Works]

Result

Analysis
Look very closely. We have the same result as the previous query. Indeed, the first part
of the test condition is identical. The addition tests to see if Reseller Sales Amount is
less than $15,000,000. But Bikes is returned, with reseller sales well above that limit.
The next query presents a solution.

An Even More Complex Filter with And and Or 2/2
This query is almost identical to the previous one, except it produces a different answer.
Note the introduction of parentheses into the test condition.

C h a p t e r 5 : S l i c e , D i c e , a n d F i l t e r : U s i n g W h e r e a n d F i l t e r 1 1 3

Syntax
-- 2 measures - notice parentheses around the or

select

{[Measures].[Internet Sales Amount],[Measures].[Reseller Sales Amount]}

on columns,

filter([Product].[Product Categories].[Category],

([Measures].[Internet Sales Amount] > 750000

or [Measures].[Internet Sales Amount] < 500000)

and [Measures].[Reseller Sales Amount] < 15000000)

on rows

from

[Adventure Works]

Result

Analysis
The Bikes category has disappeared. Parentheses help SSAS to understand the order
in which to evaluate the result of the test condition. This query is subtly different from
the last query in its logic. When you build complex criteria, it’s a good idea to add one
criterion at a time and double-check the results.

Comparing Two Measures in a Filter
As well as comparing measures against constant values, you can also compare one
measure to another measure. This query gives an example.

Syntax
-- comparing 2 measures

select

{[Measures].[Internet Sales Amount],[Measures].[Reseller Sales Amount]}

on columns,

filter([Product].[Product Categories].[Category],

[Measures].[Internet Sales Amount]

 > [Measures].[Reseller Sales Amount])

on rows

from

[Adventure Works]

1 1 4 P r a c t i c a l M D X Q u e r i e s f o r M i c r o s o f t S Q L S e r v e r A n a l y s i s S e r v i c e s 2 0 0 8

Result

Analysis
Accessories is the only category where Internet sales surpass reseller sales.

Non-measure Dimension in Filter Test
We are only returning Bikes here. At first sight, the query might appear to be overkill—
there are much simpler ways of showing only Bikes. Hopefully, the analysis and the
next couple of queries indicate a few possibilities that arise from this approach.

Syntax
-- on a non-measure dimension

select

{[Measures].[Internet Sales Amount],[Measures].[Reseller Sales Amount]}

on columns,

filter([Product].[Product Categories].[Category],

[Product].[Product Categories].currentmember

is [Product].[Product Categories].[Category].[Bikes])

on rows

from

[Adventure Works]

Result

Analysis
There are lots of ways of displaying only the Bikes category. The simplest answer is to
select only Bikes on the Rows axis. Alternatively, you could include Bikes in a Where
slicer. The Filter approach is ultimately much more sophisticated. Unlike Where, Filter
surfaces Bikes to appear on an axis. Unlike Where and a simple select, Filter also allows
you to use relational operators and establish criteria for measure cutoff points. Note the
Is operator and the Currentmember property function.

C h a p t e r 5 : S l i c e , D i c e , a n d F i l t e r : U s i n g W h e r e a n d F i l t e r 1 1 5

Two Non-measure Dimensions in Filter Test
Let’s continue to build our Filter. Here, we want Bikes and Accessories.

Syntax
-- OR operator with a non-measure dimension

select

{[Measures].[Internet Sales Amount],[Measures].[Reseller Sales Amount]}

on columns,

filter([Product].[Product Categories].[Category],

[Product].[Product Categories].currentmember

is [Product].[Product Categories].[Category].[Bikes]

or [Product].[Product Categories].currentmember

is [Product].[Product Categories].[Category].[Accessories])

on rows

from

[Adventure Works]

Result

Analysis
Again, we could have used a simple selection. The power of the Filter lies in its ability
to also test for numeric criteria for measures. Hopefully, the next query illustrates why
we are persevering with Filter.

Now with Measures Criteria
Suppose we want to see Bikes only if sales are over $1,000,000, and Accessories only if
sales are greater than $750,000?

Syntax
-- then with a measure condition

select

{[Measures].[Internet Sales Amount],[Measures].[Reseller Sales Amount]}

on columns,

filter([Product].[Product Categories].[Category],

1 1 6 P r a c t i c a l M D X Q u e r i e s f o r M i c r o s o f t S Q L S e r v e r A n a l y s i s S e r v i c e s 2 0 0 8

([Product].[Product Categories].currentmember

is [Product].[Product Categories].[Category].[Bikes]

and [Measures].[Reseller Sales Amount] > 1000000)

or ([Product].[Product Categories].currentmember

is [Product].[Product Categories].[Category].[Accessories])

and [Measures].[Reseller Sales Amount] > 750000)

on rows

from

[Adventure Works]

Result

Analysis
Filter test conditions can get quite complex. By breaking the syntax down into parentheses
groups, it helps to decipher the syntax. Bikes is shown but Accessories is not. Accessories
failed to meet its criterion of $750,000 for reseller sales. This query shows how to use
different measure criteria against different dimension members.

Not with Is
How about every category except Clothing? If you recall, you can also do this in
a Where clause using the Except function. But here, you can add criteria for your
measures as well.

Syntax
-- also Not

select

{[Measures].[Internet Sales Amount],[Measures].[Reseller Sales Amount]}

on columns,

filter([Product].[Product Categories].[Category],

not ([Product].[Product Categories].currentmember

is [Product].[Product Categories].[Category].[Clothing]))

on rows

from

[Adventure Works]

C h a p t e r 5 : S l i c e , D i c e , a n d F i l t e r : U s i n g W h e r e a n d F i l t e r 1 1 7

Result

Analysis
You have just seen how to use Not with Is. By combining this with the previous query,
you can add very sophisticated filtering to your MDX queries.

Introduction to Non Empty
Rather than use a Filter to weed out zero (null) values, you can try Non Empty. This
first query returns all subcategories.

Syntax
-- all rows

select

{[Measures].[Internet Sales Amount],[Measures].[Reseller Sales Amount]}

on columns,

[Product].[Product Categories].[Subcategory]

on rows

from

[Adventure Works]

Result

Analysis
The row for Lights has two zero values in its two cells. SSAS considers a null numeric
to be zero (but a value of zero is not considered to be null). You could try a Filter to

1 1 8 P r a c t i c a l M D X Q u e r i e s f o r M i c r o s o f t S Q L S e r v e r A n a l y s i s S e r v i c e s 2 0 0 8

remove Lights (assuming you do want to hide nulls). Or you might like to experiment
with Non Empty (see the next query).

Non Empty
An identical query, almost. All we have done is to introduce Non Empty into the
specification for the Rows axis.

Syntax
-- Lights disappears

select

{[Measures].[Internet Sales Amount],[Measures].[Reseller Sales Amount]}

on columns,

non empty [Product].[Product Categories].[Subcategory]

on rows

from

[Adventure Works]

Result

Analysis
The row for Lights has gone. But, as you can see, Locks survives despite the null entry
in the first column. Non Empty works across the whole row. Locks has reseller sales
of $16,225.22 and therefore is not empty. If the query had displayed only the Internet
Sales Amount column, then Locks would have disappeared, too (you can see this in the
next query). Non Empty is covered in more detail elsewhere in the book. But, because
it’s a kind of filter, it has been included here for completeness.

C h a p t e r 5 : S l i c e , D i c e , a n d F i l t e r : U s i n g W h e r e a n d F i l t e r 1 1 9

Tops and Bottoms
Quite often, you will want the best-selling or worst-selling members. Maybe, you would
like the top five best-selling subcategories, for instance. This query is a starting point
for the next few queries to come.

Syntax
-- no tops no bottoms

select

[Measures].[Internet Sales Amount]

on columns,

non empty([Product].[Product Categories].[Subcategory])

on rows

from

[Adventure Works]

Result

Analysis
All records are shown, except those with empty cell values. This is simply a list of all
subcategories that have positive Internet sales.

1 2 0 P r a c t i c a l M D X Q u e r i e s f o r M i c r o s o f t S Q L S e r v e r A n a l y s i s S e r v i c e s 2 0 0 8

Topcount
First of all, let’s just get the top five in the list of subcategories. Here, we take our initial
look at the Topcount function.

Syntax
-- topcount

select

[Measures].[Internet Sales Amount]

on columns,

non empty(topcount([Product].[Product Categories].[Subcategory],5))

on rows

from

[Adventure Works]

Result

Analysis
The second parameter is the number 5. All this does is to go and get the first five rows,
but it’s quite handy when you only want to see a small sample from your set. In this
example, the first five rows are those from the top of the previous query result. The order
of the rows is not determined by the MDX. Rather, it is determined by the OrderBy
property on the Subcategory attribute in BIDS. That property is set to Name, so we have
an ascending alphabetical sort.

Topcount with a Measure
Perhaps this is an even more useful query. The measure displayed in the column has
been added as a third parameter.

Syntax
-- topcount with a measure

select

C h a p t e r 5 : S l i c e , D i c e , a n d F i l t e r : U s i n g W h e r e a n d F i l t e r 1 2 1

[Measures].[Internet Sales Amount]

on columns,

non empty(topcount([Product].[Product Categories].[Subcategory],5,

[Measures].[Internet Sales Amount]))

on rows

from

[Adventure Works]

Result

Analysis
When you append the measure as a third parameter to Topcount, it not only gives
you five rows, but the contents are for the top five measures in descending sort order.
You are looking at the top five best-selling subcategories (in terms of Internet Sales
Amount). There is no need to also use the Order function.

Topcount with a Different Measure
The final parameter of Topcount has been replaced with another measure (Reseller Sales
Amount), even though we are keeping only Internet Sales Amount on the Columns axis.

Syntax
-- with another measure

select

[Measures].[Internet Sales Amount]

on columns,

topcount([Product].[Product Categories].[Subcategory],5,

[Measures].[Reseller Sales Amount])

on rows

from

[Adventure Works]

1 2 2 P r a c t i c a l M D X Q u e r i e s f o r M i c r o s o f t S Q L S e r v e r A n a l y s i s S e r v i c e s 2 0 0 8

Result

Analysis
This is interesting. Mountain Frames and Road Frames are in our top five, despite zero
Internet sales. The criterion for display is, however, reseller sales and not Internet sales.

Topcount with Two Measures
This is the same as the previous query, with the addition of a second measure as a column.

Syntax
-- with two measures

select

{[Measures].[Internet Sales Amount],[Measures].[Reseller Sales Amount]}

on columns,

topcount([Product].[Product Categories].[Subcategory],5,

[Measures].[Reseller Sales Amount])

on rows

from

[Adventure Works]

Result

Analysis
Hopefully, you can now understand why we had Mountain Frames and Road Frames.
They are the fourth and fifth best-selling subcategories for reseller sales. Topcount is
allowing you to ask to see Internet sales for those subcategories with the best reseller sales.

C h a p t e r 5 : S l i c e , D i c e , a n d F i l t e r : U s i n g W h e r e a n d F i l t e r 1 2 3

Bottomcount
How about your worst sellers? This is where Bottomcount comes in useful.

Syntax
-- bottomcount

select

[Measures].[Internet Sales Amount]

on columns,

bottomcount([Product].[Product Categories].[Subcategory],30,

[Measures].[Internet Sales Amount])

on rows

from

[Adventure Works]

Result

Analysis
There are lots and lots of nulls at the top. You might have to scroll down through the 30
rows to see the first non-null (Socks).

1 2 4 P r a c t i c a l M D X Q u e r i e s f o r M i c r o s o f t S Q L S e r v e r A n a l y s i s S e r v i c e s 2 0 0 8

Bottomcount Hiding the Nulls
Bottomcount returns your worst figures first. Often, this gives lots and lots of
nulls—especially if your sales are bad! This query suppresses the nulls.

Syntax
-- hiding the nulls, 10 results not 30

select

[Measures].[Internet Sales Amount]

on columns,

non empty bottomcount([Product].[Product Categories].

[Subcategory],30,[Measures].[Internet Sales Amount])

on rows

from

[Adventure Works]

Result

Analysis
You asked for the bottom 30, but you got only ten. Although this might look a little
better, in the real world it might be of vital importance to identify your null (zero) sales
and not use Non Empty. The sales are in ascending order. For a descending sort, try an
Order function outside the Bottomcount function.

Toppercent
Instead of Topcount or Bottomcount, we are using Toppercent. This is not always an
intuitive function to use.

C h a p t e r 5 : S l i c e , D i c e , a n d F i l t e r : U s i n g W h e r e a n d F i l t e r 1 2 5

Syntax
-- toppercent, 99 returns about half

select

[Measures].[Internet Sales Amount]

on columns,

toppercent([Product].[Product Categories].[Subcategory],99,

[Measures].[Internet Sales Amount])

on rows

from

[Adventure Works]

Result

Analysis
You are looking at the full cellset. No, it has not returned the top 99 percent of the
subcategories. It has resulted in those subcategories whose total Internet sales include
99 percent of the total Internet sales of all the subcategories. It has returned eight
subcategories. Shorts is the seventh and Bottles and Cages the eighth. Without Bottles
and Cages but with Shorts, the total is less than 99 percent of all sales. Therefore,
Bottles and Cages is appended after Shorts, even though we might have over 99 percent
of total sales. Toppercent does not add any more rows after the 99 percent is reached or
surpassed.

Bottompercent
As you have already guessed, there is also a Bottompercent function.

Syntax
-- bottompercent, 1 returns about half

select

[Measures].[Internet Sales Amount]

1 2 6 P r a c t i c a l M D X Q u e r i e s f o r M i c r o s o f t S Q L S e r v e r A n a l y s i s S e r v i c e s 2 0 0 8

on columns,

non empty bottompercent([Product].[Product Categories]

.[Subcategory],1,[Measures].[Internet Sales Amount])

on rows

from

[Adventure Works]

Result

Analysis
The total sales of these subcategories represent just 1 percent (or possibly just over) of
the total sales for all subcategories. All the null values have been suppressed.

Topsum
Here’s a variation on a powerful theme, Topsum.

Syntax
-- topsum all 3 add up to 26000000

select

[Measures].[Internet Sales Amount]

on columns,

topsum([Product].[Product Categories].[Subcategory],25000000,

[Measures].[Internet Sales Amount])

on rows

from

[Adventure Works]

C h a p t e r 5 : S l i c e , D i c e , a n d F i l t e r : U s i n g W h e r e a n d F i l t e r 1 2 7

Result

Analysis
The second parameter is $25,000,000. The sum of Road Bikes and Mountain Bikes is
less than that. If you add on Touring Bikes, the sum is more than that. Therefore, we
get our three best-selling subcategories for Internet sales, and together they contribute
$25,000,000 (or just over) to our total Internet sales for all subcategories.

Bottomsum
This is the very last query in this chapter. “Last but not least,” as they say, even if the
function name might suggest otherwise. Here’s Bottomsum.

Syntax
-- bottomsum

select

[Measures].[Internet Sales Amount]

on columns,

non empty bottomsum([Product].[Product Categories]

.[Subcategory],100000,[Measures].[Internet Sales Amount])

on rows

from

[Adventure Works]

Result

Analysis
Excluding nulls, these five subcategories are our worst five, with total sales of only
$100,000 (or just over).

This page intentionally left blank

Using the Abacus:
Introduction to
Calculations

Chapter 6

1 3 0 P r a c t i c a l M D X Q u e r i e s f o r M i c r o s o f t S Q L S e r v e r A n a l y s i s S e r v i c e s 2 0 0 8

In general, the measures in your cube are based directly or indirectly on the columns
in your fact table in your star schema. However, it’s likely your reports will need
further metrics. These are often based on the existing measures in some way. One

way to devise these new measures is to use MDX query calculations. In this chapter, we
explore just how to do this. In addition, we take a look at creating non-measure members
and creating our own sets of data.

Key concepts Aliases, calculated measures, named sets, formatting, scopes

Keywords With Member, format_string, With Set, Create Member,
.currentmember, .level, .ordinal

With Clause
So far, to a large extent, we have been using the cube, dimension, hierarchy, and attribute
designs that are defined in BIDS. Maybe you design the cubes, or perhaps you inherit
and work with cubes designed by others. If you are unable or don’t want to alter a design,
MDX allows you to extend the cube functionality temporarily by using a With clause
before the Select statement. The following few queries give you an introduction to the
With clause. A similar clause, Create, will be covered later. The With clause is also useful
when you want an ad-hoc, one-off extension to the cube design and it’s simply too much
to go back and alter the cube in BIDS and then reprocess. Be sure to try this query twice.
First, run the whole query including the With clause and the complete Select statement.
Then highlight all of the Select statement (and not the With clause) before executing
the query again.

Syntax
-- hello world calculated member/calculated measure

with member [Measures].[My Measure] as "Hello world"

select

[Measures].[My Measure]

on columns,

[Date].[Calendar].[Calendar Year]

on rows

from

[Adventure Works]

C h a p t e r 6 : U s i n g t h e A b a c u s : I n t r o d u c t i o n t o C a l c u l a t i o n s 1 3 1

Result

Analysis
The first run gives you a “Hello world” result. The second attempt produces an error,
because the With must be present and run at the same time as the Select statement
in order to be referenced. The With clause precedes the Select statement. Note the
syntax With Member. You are designing (in code) a calculated member. This particular
member has been assigned to the measures dimension ([Measures].[My Measure]) and
is called My Measure. When you add a calculated member to your measures, it is called
a calculated measure (a subset of calculated members). The calculated measure can only
be used in the query of which it’s a part. Many people refer to this as a “query-scoped
calculation.” Should you wish to reuse the calculation in subsequent queries (in the
same query editor window), you can replace With with Create. This will give you a
session-scoped calculation.

Aliases Through With
Our query demonstrates how to alias an existing measure. Internet Sales Amount
has been renamed to Customer Sales. Reseller Sales Amount has been renamed to
Retailer Sales.

Syntax
-- measure alias

with member [Measures].[Customer Sales] as [Measures]

.[Internet Sales Amount]

member [Measures].[Retailer Sales] as [Measures].[Reseller Sales Amount]

select

{[Measures].[Customer Sales],[Measures].[Retailer Sales]}

on columns,

1 3 2 P r a c t i c a l M D X Q u e r i e s f o r M i c r o s o f t S Q L S e r v e r A n a l y s i s S e r v i c e s 2 0 0 8

[Date].[Calendar].[Calendar Year]

on rows

from

[Adventure Works]

Result

Analysis
This aliasing is quite handy when you inherit obscure and unfriendly measure names.
There are two calculated measures in this query. Notice the With appears only once
and the two Member calculations (albeit very simple calculations!) are not separated by
a comma.

Useful Calculations Through With
Okay, perhaps an alias isn’t really a calculation as such. This time we do meet a proper
calculation. The objective is to return total sales (that is, Internet or customer sales and
reseller or retailer sales).

Syntax
-- measure calculation

with member [Measures].[Customer Sales] as [Measures]

.[Internet Sales Amount]

member [Measures].[Retailer Sales] as [Measures].[Reseller Sales Amount]

member [Measures].[Total Sales] as [Measures]

.[Internet Sales Amount]+[Measures].[Reseller Sales Amount]

select

{[Measures].[Customer Sales],[Measures].[Retailer Sales],

[Measures].[Total Sales]}

on columns,

[Date].[Calendar].[Calendar Year]

on rows

from

[Adventure Works]

C h a p t e r 6 : U s i n g t h e A b a c u s : I n t r o d u c t i o n t o C a l c u l a t i o n s 1 3 3

Result

Analysis
The calculated measure here is [Measures].[Total Sales]. It is simply the sum of customer
and retailer sales. Even though it’s a very basic calculation, the outcome might be just
what the end user desires.

Formatting Through With
Quite often, measures are not formatted appropriately in the cube design (FormatString
property in BIDS). Sometimes measures are not formatted at all. In addition, if you create
your own calculated measures in MDX, you will probably want them formatted in some
way. The query here shows you an example, with sales designated in euros.

Syntax
-- measure format

with member [Measures].[Total Sales] as [Measures]

.[Internet Sales Amount]+[Measures].[Reseller Sales Amount],

format_string="#,###.00€"

member [Measures].[Customer Sales] as [Measures]

.[Internet Sales Amount],format_string="#,###.00€"

member [Measures].[Retailer Sales] as [Measures]

.[Reseller Sales Amount],format_string="#,###.00€"

select

{[Measures].[Customer Sales],[Measures].[Retailer Sales],

[Measures].[Total Sales]}

on columns,

{[Date].[Calendar].[Calendar Year],[Date].[Calendar]}

on rows

from

[Adventure Works]

1 3 4 P r a c t i c a l M D X Q u e r i e s f o r M i c r o s o f t S Q L S e r v e r A n a l y s i s S e r v i c e s 2 0 0 8

Result

Analysis
The formatting into euros is defined by format_string="#,###.00€". Notice that it’s
preceded by a comma (,). The format code is similar to those you may have used in Excel
or Visual Basic. There are also named format codes, such as format_string="Percent".
A very extensive guide to all the possibilities can be found in Books Online (BOL) by
looking up format_string.

With Set 1/2
So far in this chapter, you have seen With Member—a calculated member/calculated
measure. MDX also supports With Set. This creates a temporary set that can be used
on the axes in the ensuing Select. These are not called calculated sets, as you might have
expected. They are called named sets. This query demonstrates using a named set.

Syntax
-- with set

with set [Not 2006] as [Date].[Calendar].[Calendar Year]

.[CY 2001]:[Date].[Calendar].[Calendar Year].[CY 2004]

member [Measures].[Total Sales] as [Measures]

.[Internet Sales Amount]+[Measures].[Reseller Sales Amount],

format_string="£#,###.00"

member [Measures].[Customer Sales] as [Measures]

.[Internet Sales Amount],format_string="£#,###.00"

member [Measures].[Retailer Sales] as [Measures]

.[Reseller Sales Amount],format_string="£#,###.00"

select

{[Measures].[Customer Sales],[Measures].[Retailer Sales],

[Measures].[Total Sales]}

on columns,

{[Not 2006],[Date].[Calendar]}

on rows

from

[Adventure Works]

C h a p t e r 6 : U s i n g t h e A b a c u s : I n t r o d u c t i o n t o C a l c u l a t i o n s 1 3 5

Result

Analysis
The named set [Not 2006] is specified for the Rows axis. It shows CY 2001 to CY
2004, inclusive. The range that defines the set is in the With clause. You could have
included this range in the Rows specification and not bothered with a named set at
all. However, named sets have a number of important uses. For example, they simplify
the Select statement and make it easier to read and debug the query. You can create
exceedingly complex sets by using one named set as the basis of another named set,
and so on.

With Set 2/2
To alert you to possible problems with named sets, have a look at this query. It’s identical
to the previous query—except in the named set, CY 2004 has been altered to CY 2005.

Syntax
-- 2005 doesn't exist

with set [Not 2006] as [Date].[Calendar].[Calendar Year]

.[CY 2001]:[Date].[Calendar].[Calendar Year].[CY 2005]

member [Measures].[Total Sales] as [Measures]

.[Internet Sales Amount]+[Measures].[Reseller Sales Amount],

format_string="£#,###.00"

member [Measures].[Customer Sales] as [Measures]

.[Internet Sales Amount],format_string="£#,###.00"

member [Measures].[Retailer Sales] as [Measures]

.[Reseller Sales Amount],format_string="£#,###.00"

select

{[Measures].[Customer Sales],[Measures].[Retailer Sales],

[Measures].[Total Sales]}

on columns,

{[Not 2006],[Date].[Calendar]}

on rows

from

[Adventure Works]

1 3 6 P r a c t i c a l M D X Q u e r i e s f o r M i c r o s o f t S Q L S e r v e r A n a l y s i s S e r v i c e s 2 0 0 8

Result

Analysis
Does this look like a strange result? We asked for CY 2001 through CY 2005. Yet
CY 2006 has crept into the results. CY 2005 does not exist; therefore, the range starts at
CY 2001 but does not have a valid end point. In effect, it keeps going until it falls off the
cube and will return all calendar years from CY 2001 onward. I suppose the lesson is to
make doubly sure that when you construct named sets you include valid members in the set.

The Scope of With
In order to understand the lifetime or scope of the With clause, consider this query.
You might like to try this one a few times, in different ways. First, highlight and run the
With section. Second, highlight and run the Select section. Finally, highlight and run
both the With section and the Select section. And if you have any patience left, try just
the Select by itself.

Syntax
-- run the with alone

with member [Measures].[Customer Sales] as [Measures]

.[Internet Sales Amount]

member [Measures].[Retailer Sales] as [Measures].[Reseller Sales Amount]

member [Measures].[Total Sales] as [Measures]

.[Internet Sales Amount]+[Measures].[Reseller Sales Amount]

-- run the select alone

select

{[Measures].[Customer Sales],[Measures].[Retailer Sales],

[Measures].[Total Sales]}

on columns,

[Date].[Calendar].[Calendar Year]

on rows

from

C h a p t e r 6 : U s i n g t h e A b a c u s : I n t r o d u c t i o n t o C a l c u l a t i o n s 1 3 7

[Adventure Works]

-- run the with and select together

-- run the select alone one more time

Result

Analysis
We can draw a number of conclusions. You can’t run a With without a Select. You can’t
run a Select without the With that contains the calculated measure that the Select
references. Running the With and the Select together works. Subsequent runs of just
the Select fail. The calculated measure is query-scoped; it does not survive the first run
of the Select. The same argument applies to named sets created by With Set.

The Scope of Create
Create Member gives you a session-scoped calculated member/calculated measure. It
can then be reused by multiple Select queries in the same query editor window. Create
Set for a named set operates in a similar manner. Try the Create by itself first. Then try
the Select by itself a couple of times. Finally, run the three Drop Member commands
one at a time.

Syntax
-- run the Create alone

create member [Adventure Works].[Measures].[Customer Sales] as

[Measures].[Internet Sales Amount]

member [Adventure Works].[Measures].[Retailer Sales] as

[Measures].[Reseller Sales Amount]

1 3 8 P r a c t i c a l M D X Q u e r i e s f o r M i c r o s o f t S Q L S e r v e r A n a l y s i s S e r v i c e s 2 0 0 8

member [Adventure Works].[Measures].[Total Sales] as

[Measures].[Internet Sales Amount]+[Measures].[Reseller Sales Amount]

-- run the Select alone, and a second time

select

{[Measures].[Customer Sales],[Measures].[Retailer Sales],

[Measures].[Total Sales]}

on columns,

[Date].[Calendar].[Calendar Year]

on rows

from

[Adventure Works]

-- 3 drops

drop member [Adventure Works].[Measures].[Customer Sales]

--

drop member [Adventure Works].[Measures].[Retailer Sales]

--

drop member [Adventure Works].[Measures].[Total Sales]

Result

Analysis
Create Member works alone. The Select works alone (after the Create), and you can
run it more than once. Note you can’t run the Create and the Select at the same time
(unless you place a Go statement just before the Select). The Drop Member removes
the session-scoped calculated measure. You should run the three Drop Member
commands individually. If you try to run all three together, you will receive an error
message (unless you place a Go statement before the second and third ones). After
you drop the member/measure, the Select will fail. One very important point to make:
When you employ Create Member and Drop Member, you must provide the name of
the cube ([Adventure Works].[Measures].[Retailer Sales]). Without the cube name

C h a p t e r 6 : U s i n g t h e A b a c u s : I n t r o d u c t i o n t o C a l c u l a t i o n s 1 3 9

first, both Create Member and Drop Member will fail. But, don’t use the cube name
in the Select because you will get an error. Instead, simply use [Measures].[Retailer
Sales].

Some Classic Calculated Measures
Some calculated measures are implemented over and over again in many organizations.
I have called these the classic calculated measures, and they include Percentage of
Parent and Percentage of All. The query on this page serves as a starting point for
investigating a couple of the classics.

Syntax
-- starting point for some classic calculated measure

select

[Measures].[Reseller Sales Amount]

on columns,

{[Product].[Product Categories].[Subcategory].[Mountain Bikes],

[Product].[Product Categories].[Category].[Bikes],

[Product].[Product Categories]}

on rows

from

[Adventure Works]

Result

Analysis
The result shows members from three levels of the Product Categories user hierarchy.
Mountain Bikes is a subcategory. It belongs to the Bikes category, which, in turn,
belongs to the All level member (All Products). We have three generations in the result.

Percentage of Parent 1/2
This is a Percentage of Parent query. If you feel inclined to try it out, you will only
be partially successful. With the subsequent query, however, you will be completely
successful.

1 4 0 P r a c t i c a l M D X Q u e r i e s f o r M i c r o s o f t S Q L S e r v e r A n a l y s i s S e r v i c e s 2 0 0 8

Syntax
-- percentage of parent

with member [Measures].[% of parent] as

[Measures].[Reseller Sales Amount]/([Product].[Product Categories]

.currentmember.parent,[Measures]

.[Reseller Sales Amount]),format_string="Percent"

select

{[Measures].[Reseller Sales Amount],[Measures].[% of parent]}

on columns,

{[Product].[Product Categories].[Subcategory].[Mountain Bikes],

[Product].[Product Categories].[Category].[Bikes],

[Product].[Product Categories]}

on rows

from

[Adventure Works]

Result

Analysis
Mountain Bikes accounts for 39.96% of the total sales for Bikes. Bikes represents
82.41% of the total reseller sales for all products. Unfortunately, the corresponding cell
for All Products doesn’t look very nice. In fact, the value in the cell represents infinity.
The current member is All Products. The parent of that member does not exist. You
can’t climb any higher than the All level at the top of a hierarchy. So the sales for the
nonexisting parent of All Products are null. SSAS converts the null to zero. A division
by zero returns infinity. We need to make this look a little better.

Percentage of Parent 2/2
Hopefully, this result is more pleasing. The All Products cell now shows 100%. Note the
use of the .level and .ordinal property functions.

Syntax
-- percentage of parent without error

with member [Measures].[% of parent] as

C h a p t e r 6 : U s i n g t h e A b a c u s : I n t r o d u c t i o n t o C a l c u l a t i o n s 1 4 1

case when

[Product].[Product Categories].currentmember.level.ordinal = 0

then

1

else

[Measures].[Reseller Sales Amount]/([Product].[Product Categories]

.currentmember.parent,[Measures].[Reseller Sales Amount])

end, format_string="Percent"

select

{[Measures].[Reseller Sales Amount],[Measures].[% of parent]}

on columns,

{[Product].[Product Categories].[Subcategory].[Mountain Bikes],

[Product].[Product Categories].[Category].[Bikes],

[Product].[Product Categories]}

on rows

from

[Adventure Works]

Result

Analysis
Now the answer is more reasonable. The Case construct tests to see if we are at the top
of the hierarchy. If so, it returns 1 and the formatting converts this into 100%. The .level
function returns the level of a member. The .ordinal function then returns the level as a
number. The All level has an ordinal number of 0 (it is a zero-based index). The sales of
All Products are 100% of the sales of All Products, which is perfectly sensible.

Percentage of All
Here’s a subtle but important difference from the previous two queries. Here you see
how to work out the percentage of the All level.

Syntax
-- % of all

with member [Measures].[% of All] as

[Measures].[Reseller Sales Amount]/([Product].[Product Categories]

1 4 2 P r a c t i c a l M D X Q u e r i e s f o r M i c r o s o f t S Q L S e r v e r A n a l y s i s S e r v i c e s 2 0 0 8

.[All],[Measures].[Reseller Sales Amount]),

format_string="Percent"

select

{[Measures].[Reseller Sales Amount],[Measures].[% of All]}

on columns,

{[Product].[Product Categories].[Subcategory].[Mountain Bikes],

[Product].[Product Categories].[Category].[Bikes],

[Product].[Product Categories]}

on rows

from

[Adventure Works]

Result

Analysis
The .currentmember.parent of the previous two queries has been replaced with
a hard-coded reference to the All level. Superficially, the results appear similar. But notice
that the percentage for Mountain Bikes has changed. It is now 32.93% (in the last two
queries it was 39.96%). Mountain Bikes is responsible for 32.93% of all reseller sales for
Adventure Works. Mountain Bikes is also responsible for 39.96% of the sales for Bikes.
The other two percentages remain the same at 82.41% and 100.00%.

Is Time a Dimension?
Working with
Dates and Times

Chapter 7

1 4 4 P r a c t i c a l M D X Q u e r i e s f o r M i c r o s o f t S Q L S e r v e r A n a l y s i s S e r v i c e s 2 0 0 8

Nearly every cube in the world has a date or time dimension. MDX provides
many rich features that help you to analyze your data across history. In this
chapter, you are introduced to lots of functions for manipulating dates and

times. These will help you produce brilliant business intelligence reports!

Key concepts Date and time manipulation, establishing existing dates, start
dates, end dates, and date ranges

Keywords .prevmember, .nextmember, ParallelPeriod, ClosingPeriod,
OpeningPeriod, null, PeriodsToDate, LastPeriods, YTD, QTD, MTD, WTD

Returning a Specific Fiscal Year
There’s really nothing special here. A simple query to get us started on using and
navigating time (date) dimensions.

Syntax
-- FY 2003 with default measure

select

[Date].[Fiscal].[Fiscal Year].[FY 2003]

on columns

from

[Adventure Works]

Result

Analysis
The single cell in the cellset is displaying the default measure (Reseller Sales Amount)
for fiscal year (FY) 2003.

The Year Before FY 2003
Here we’re using the .prevmember property function.

C h a p t e r 7 : I s T i m e a D i m e n s i o n ? W o r k i n g w i t h D a t e s a n d T i m e s 1 4 5

Syntax
-- year before

select

[Date].[Fiscal].[Fiscal Year].[FY 2003].prevmember

on columns

from

[Adventure Works]

Result

Analysis
It’s an elementary but potentially useful query returning FY 2002.

The Year After
This time it’s the .nextmember function.

Syntax
-- year after

select

[Date].[Fiscal].[Fiscal Year].[FY 2003].nextmember

on columns

from

[Adventure Works]

Result

Analysis
Here we have FY 2004.

A Range of Dates Without a Range Operator
This is a combination of the previous three queries.

1 4 6 P r a c t i c a l M D X Q u e r i e s f o r M i c r o s o f t S Q L S e r v e r A n a l y s i s S e r v i c e s 2 0 0 8

Syntax
-- previous, FY 2003, and next

select

{[Date].[Fiscal].[Fiscal Year].[FY 2003].prevmember,

[Date].[Fiscal].[Fiscal Year].[FY 2003],

[Date].[Fiscal].[Fiscal Year].[FY 2003].nextmember}

on columns

from

[Adventure Works]

Result

Analysis
Here is the Reseller Sales Amount (default measure) for FY 2002, FY 2003, and FY
2004.

Going Back in Time with ParallelPeriod
Here’s a query introducing the ParallelPeriod method function.

Syntax
-- parallel period previous year

select

parallelperiod([Date].[Fiscal].[Fiscal Year],1,

[Date].[Fiscal].[Fiscal Year].[FY 2003])

on columns

from

[Adventure Works]

Result

Analysis
The three parameters are a level, a number, and a member. Go back by the number
from the specified member at the specified level. In other words, find the previous

C h a p t e r 7 : I s T i m e a D i m e n s i o n ? W o r k i n g w i t h D a t e s a n d T i m e s 1 4 7

year to FY 2003. This is very similar to prevmember and lag, and it has something in
common with Cousin. However, ParallelPeriod simplifies your coding when you’re
creating calculations in queries and in KPIs (more on these, elsewhere in this book)
and when you’re creating calculations in the cube design in BIDS. The latter are called
MDX expressions and are not covered in this book.

Going Forward in Time with ParallelPeriod
The positive number in the last query has been replaced by a negative number.

Syntax
-- next year

select

parallelperiod([Date].[Fiscal].[Fiscal Year],–1,

[Date].[Fiscal].[Fiscal Year].[FY 2003])

on columns

from

[Adventure Works]

Result

Analysis
Although possibly counterintuitive, a negative number as a parameter to ParallelPeriod
takes you forward in time. FY 2004 is returned. You can use ParallelPeriod to help you
build ranges.

Too Far into the Future
The numeric parameter this time is 4.

Syntax
-- 4 years hence - blank

select

parallelperiod([Date].[Fiscal].[Fiscal Year],–4,

[Date].[Fiscal].[Fiscal Year].[FY 2003])

1 4 8 P r a c t i c a l M D X Q u e r i e s f o r M i c r o s o f t S Q L S e r v e r A n a l y s i s S e r v i c e s 2 0 0 8

on columns

from

[Adventure Works]

Result

Analysis
No result at all. Given that the second numeric parameter is 4, you might expect to
see FY 2007. Indeed, FY 2007 does exist. The problem is that FY 2006 is missing;
therefore, you have to use 3 to see FY 2007. It’s vital that your time dimensions
contain consecutive and contiguous members (no gaps allowed). Also, a numeric
parameter of, say, 25 would take you to years far in the future, which may well
exist outside the cube space. You need to be aware of the bounds of your cube space,
especially for time dimensions.

How Far into the Future?
Here is the very handy ClosingPeriod method function.

Syntax
-- closingperiod

select

closingperiod([Date].[Fiscal].[Fiscal Year])

on columns

from

[Adventure Works]

Result

Analysis
FY 2007 is the last fiscal year we have. The (null) in the cell does not indicate that FY
2007 is null or not there. Rather, it shows an empty cell, which means there are no sales
for that year, even though the year does exist.

C h a p t e r 7 : I s T i m e a D i m e n s i o n ? W o r k i n g w i t h D a t e s a n d T i m e s 1 4 9

How Far Back?
The opposite of ClosingPeriod is OpeningPeriod.

Syntax
-- which is first year

select

openingperiod([Date].[Fiscal].[Fiscal Year])

on columns

from

[Adventure Works]

Result

Analysis
FY 2002 is the first fiscal year we have.

Range with OpeningPeriod and Null
Show me the sales for every year up to and including FY 2004.

Syntax
-- range with openingperiod

select

openingperiod([Date].[Fiscal].[Fiscal Year]):

[Date].[Fiscal].[Fiscal Year].[FY 2004]

on columns

from

[Adventure Works]

-- range with null

select

null:[Date].[Fiscal].[Fiscal Year].[FY 2004]

on columns

from

[Adventure Works]

1 5 0 P r a c t i c a l M D X Q u e r i e s f o r M i c r o s o f t S Q L S e r v e r A n a l y s i s S e r v i c e s 2 0 0 8

Result

Analysis
Two queries producing the same cellset. The use of null in the range means “start from
just off the edge of the cube space” (just before the first fiscal year, in this case).

Range with ClosingPeriod and Null
Show me the sales for every year after and including FY 2004.

Syntax
-- range with closingperiod - from now until end

select

[Date].[Fiscal].[Fiscal Year].[FY 2004]:

closingperiod([Date].[Fiscal].[Fiscal Year])

on columns

from

[Adventure Works]

-- range with null

select

[Date].[Fiscal].[Fiscal Year].[FY 2004]:null

on columns

from

[Adventure Works]

Result

Analysis
FY 2006 does not exist within the Fiscal Year level.

Range with OpeningPeriod and ClosingPeriod
Now there’s no danger of falling off the edge of the cube.

C h a p t e r 7 : I s T i m e a D i m e n s i o n ? W o r k i n g w i t h D a t e s a n d T i m e s 1 5 1

Syntax
-- range with openingperiod and closingperiod

select

openingperiod([Date].[Fiscal].[Fiscal Year]):

closingperiod([Date].[Fiscal].[Fiscal Year])

on columns

from

[Adventure Works]

Result

Analysis
The result shows FY 2002 to FY 2007 (except the missing FY 2006). This is the
equivalent of the following:

select

[Date].[Fiscal].[Fiscal Year]

on columns

from

[Adventure Works]

An Extension to OpeningPeriod
OpeningPeriod is great for returning not only the first member of a level but also
the first member within a particular scope. In the two examples that follow, a second
member parameter has been added to the OpeningPeriod function.

Syntax
-- an extension to openingperiod, calendar

select

openingperiod([Date].[Calendar].[Month],

[Date].[Calendar].[Calendar Year].[CY 2004])

on columns

from

[Adventure Works]

-- an extension to openingperiod, fiscal

select

1 5 2 P r a c t i c a l M D X Q u e r i e s f o r M i c r o s o f t S Q L S e r v e r A n a l y s i s S e r v i c e s 2 0 0 8

openingperiod([Date].[Fiscal].[Month],[Date].[Fiscal].[Fiscal Year]

.[FY 2004])

on columns

from

[Adventure Works]

Result

Analysis
The first of the two queries shows the first calendar month in calendar year (CY) 2004.
The second query returns the first fiscal month in the fiscal year (FY) 2004. There
are, as is usual in MDX, other ways of retrieving the same members. You may find the
navigation functions (covered elsewhere in the book) worth investigating.

You must be careful to ensure that the member and level used are from the same
hierarchy. The following syntax (which mixes Calendar with Fiscal) will return a date-
conversion function error:

Select

openingperiod([Date].[Fiscal].[Month],

[Date].[Calendar].[Calendar Year].[CY 2004])

on columns

from

[Adventure Works]

Time Gone By
One way to get a range of dates is to use OpeningPeriod with the colon range operator
(:). You have just seen an example of this. Perhaps a more convenient and elegant
solution involves the PeriodsToDate function.

Syntax
-- which years before FY 2004?

select

periodstodate([Date].[Fiscal].[(All)],[Date].[Fiscal].[Fiscal Year]

.[FY 2004])

C h a p t e r 7 : I s T i m e a D i m e n s i o n ? W o r k i n g w i t h D a t e s a n d T i m e s 1 5 3

on columns

from

[Adventure Works]

-- which months before December 2003 in the same year?

select

periodstodate([Date].[Fiscal].[Fiscal Year],

[Date].[Fiscal].[Month].[December 2003])

on columns

from

[Adventure Works]

Result

Analysis
Our first result depicts every fiscal year up to and including FY 2004. The second result
shows every fiscal month up to and including December 2003 for the fiscal year to
which December 2003 belongs. Note that the fiscal year level is the first parameter and
December 2003 is the second parameter.

More on Date Ranges with LastPeriods
There is yet another way to establish a date range with the LastPeriods function.

Syntax
-- another way, lastperiods, but requires you know 3

select

lastperiods(3,[Date].[Fiscal].[Fiscal Year].[FY 2004])

on columns

from

[Adventure Works]

-- into the future

select

lastperiods(–2,[Date].[Fiscal].[Fiscal Year].[FY 2004])

on columns

from

[Adventure Works]

1 5 4 P r a c t i c a l M D X Q u e r i e s f o r M i c r o s o f t S Q L S e r v e r A n a l y s i s S e r v i c e s 2 0 0 8

Result

Analysis
The first parameter for LastPeriods is a numeric value. In the first example, it is 3.
This does not mean go back three periods but rather two periods, returning the two
periods and the period that is the second parameter, making a total of three. The second
example illustrates going forward with a negative number as the first parameter. Thus, it
shows FY 2004 and FY 2005.

YTD (Year to Date)
There are even more time functions. This is the YTD (year to date) function.

Syntax
-- YTD

select

ytd([Date].[Calendar].[Calendar Quarter].[Q3 CY 2003])

on columns

from

[Adventure Works]

Result

Analysis
YTD is simple yet powerful. It accepts only a single parameter, which is optional (it
defaults to the current member of the dimension with a Type of Time). Our query shows
all the quarters for the current year up to and including the parameter Q3 CY 2003.

YTD Not Working
Sometimes you will encounter errors when working with time functions. This time we
fail in order to show you what can go wrong. To help you, a solution is given as well.

C h a p t e r 7 : I s T i m e a D i m e n s i o n ? W o r k i n g w i t h D a t e s a n d T i m e s 1 5 5

Syntax
-- YTD broken - use periodstodate

select

ytd([Date].[Fiscal].[Fiscal Quarter].[Q3 FY 2003])

on columns

from

[Adventure Works]

-- workaround

select

periodstodate([Date].[Fiscal].[Fiscal Year],

[Date].[Fiscal].[Fiscal Quarter].[Q3 FY 2003])

on columns

from

[Adventure Works]

Result

Analysis
The last query we tried on YTD worked; it used the Calendar hierarchy in the Date
dimension. But it would appear to fail on the Fiscal hierarchy. The Date dimension
(or Time dimension, depending on your naming convention) should not be a regular
dimension. In the dimension design in BIDS, its Type property must be set to Time.
In addition, the attributes of the dimension have a Type property as well. These must
be set appropriately for some (but not all) of the time functions to work. For example,
YTD requires that the attribute for year has a Type of Years. In the Adventure Works
cube, Calendar Year is set to Years and works with YTD. Fiscal Year, on the other hand,
is set to FiscalYears and returns an error in this context. BIDS cube and dimension
design is beyond the scope of this book, but you may want to consider generating a
server time dimension rather than creating your own time dimension in the source star
schema. Server time dimensions help to set the Type properties appropriately, both
at the dimension and attribute levels. PeriodsToDate is a little more forgiving and
returns the results we desire. Be aware that a server time dimension is not always the
answer. Server time dimensions have a number of limitations. For example, you can’t
use the Business Intelligence Wizard in BIDS to add time intelligence to a server time
dimension.

1 5 6 P r a c t i c a l M D X Q u e r i e s f o r M i c r o s o f t S Q L S e r v e r A n a l y s i s S e r v i c e s 2 0 0 8

QTD (Quarter to Date)
A nice variation on YTD is QTD (quarter to date). This time, two queries are used to
show it operating on different levels of the Calendar hierarchy.

Syntax
-- QTD for months

select

qtd([Date].[Calendar].[Month].[May 2003])

on columns

from

[Adventure Works]

-- QTD for days

select

[Measures].[Internet Order Count]

on columns,

qtd([Date].[Calendar].[Date].[May 3, 2003])

on rows

from

[Adventure Works]

Result

Analysis
So that we don’t hit any errors, I have been careful to include the Calendar rather
than the Fiscal hierarchy. The two sets of results demonstrate that the xTD functions
are sensitive to the level of the member specified as the parameter to the function.

C h a p t e r 7 : I s T i m e a D i m e n s i o n ? W o r k i n g w i t h D a t e s a n d T i m e s 1 5 7

In the second of the two result sets, you may have to scroll down to see the row for
May 3, 2003.

MTD (Month to Date)
Another of the xTD functions is MTD (month to date).

Syntax
-- MTD

select

mtd([Date].[Calendar].[Date].[July 3, 2003])

on columns

from

[Adventure Works]

Result

Analysis
After your practice with YTD and QTD, the syntax should be reasonably familiar!

WTD (Week to Date)
Our final time function is WTD (week to date). Unfortunately, the Adventure
Works cube does not have an attribute that is a member of the Calendar hierarchy
with its Type set to Weeks, so we can expect an error. Apologies for finishing with
a failure—however, mistakes often help you learn!

Syntax
-- WTD

select

wtd([Date].[Calendar].[Date].[July 3, 2003])

on columns

from

[Adventure Works]

1 5 8 P r a c t i c a l M D X Q u e r i e s f o r M i c r o s o f t S Q L S e r v e r A n a l y s i s S e r v i c e s 2 0 0 8

Result

Analysis
There is an attribute in Adventure Works called Calendar Week with a Type of Weeks,
but it is not part of any hierarchy (such as Calendar) that also has the date level. Maybe
that’s why Books Online (BOL) has examples of YTD, QTD, and MTD, but not
WTD. You might want to create your own hierarchy in the Date dimension in BIDS to
see this query working.

Clockwork: Calculations
Using Dates and Times

Chapter 8

1 6 0 P r a c t i c a l M D X Q u e r i e s f o r M i c r o s o f t S Q L S e r v e r A n a l y s i s S e r v i c e s 2 0 0 8

The previous chapter introduced the MDX to extract and manipulate dates.
This chapter combines the MDX you learned there with aggregate and other
functions. Here you get to use these aggregate and other functions to produce

totals, subtotals, and changes across time. This is a big part of business intelligence (BI)
reporting.

Key concepts Date and time calculations, increases and decreases, aggregate
functions, moving averages, running totals

Keywords ParallelPeriod, IsEmpty, Case, Iif, Sum, Aggregate, Avg, Min, Max,
Cousin, .lag, Crossjoin

Calculated Measures with the Time Dimension
Calculated measures are very often used in conjunction with the time dimension of
a cube. There are many, many applications. We are going to take a look at a few of the
very popular ones. For example, did we have more orders this year than last? This query
forms the basis for our examples.

Syntax
-- calculated measures with time dimension

select

[Date].[Fiscal].[Fiscal Year]

on columns,

[Measures].[Reseller Order Quantity]

on rows

from

[Adventure Works]

Result

Analysis
Nothing special here. This is simply to get you started. Subsequent queries build on this
one. The result shows Reseller Order Quantity for five fiscal years—FY 2006 does not
exist in the cube. FY 2005 and FY 2007 do exist, but no products were sold in either of
those two years.

C h a p t e r 8 : C l o c k w o r k : C a l c u l a t i o n s U s i n g D a t e s a n d T i m e s 1 6 1

Year-on-Year Growth in Orders
Notice the addition of a new calculated measure on the Rows axis. It shows how order
quantities changed from year to year.

Syntax
-- increase in orders, year on year

with member [Measures].[Increase] as

([Date].[Fiscal].currentmember,[Measures].[Reseller Order Quantity])

- (ParallelPeriod([Date].[Fiscal].[Fiscal Year],1,[Date].[Fiscal]

.currentmember),[Measures].[Reseller Order Quantity]),format_string="#,#"

select

[Date].[Fiscal].[Fiscal Year]

on columns,

{[Measures].[Reseller Order Quantity],[Measures].[Increase]}

on rows

from

[Adventure Works]

Result

Analysis
Our new second row is for a calculated measure called Increase. It compares the
order quantity for the current year on the Columns axis with the previous year’s order
quantity. This is accomplished by using the .currentmember property function and the
ParallelPeriod method function. The numeric second parameter for ParallelPeriod is 1.
This means “go back one year” (even though it’s a positive number, it does not mean “go
forward”).

Orders Compared to Two Years Ago 1/2
Provided you don’t fall off the cube, it’s easy to go as far back in time (or forward) as you
like to see across-time calculation results. Here we go back two years.

1 6 2 P r a c t i c a l M D X Q u e r i e s f o r M i c r o s o f t S Q L S e r v e r A n a l y s i s S e r v i c e s 2 0 0 8

Syntax
-- increase from 2 years ago

with member [Measures].[Increase 2 Years] as

([Date].[Fiscal].currentmember,[Measures].[Reseller Order Quantity])

- (ParallelPeriod([Date].[Fiscal].[Fiscal Year],2,[Date].[Fiscal]

.currentmember),[Measures].[Reseller Order Quantity]),format_string="#,#"

select

[Date].[Fiscal].[Fiscal Year]

on columns,

{[Measures].[Reseller Order Quantity],[Measures].[Increase 2 Years]}

on rows

from

[Adventure Works]

Result

Analysis
Quite a simple little change—the only difference between this query and the previous
one is the numeric second parameter for the ParallelPeriod function. 2 indicates to
go back two years and subtract its order quantity from the current year (given by the
.currentmember function) to display the increase in orders over a two-year period.
Thus, the Increase measure for FY 2004 is 91,639 (113,529 – 21,890). But, maybe, the
Increase for FY 2002 and FY 2003 might not be obvious.

Orders Compared to Two Years Ago 2/2
This looks better. The Increase for FY 2002 and FY 2003 now shows NA, rather than a
distracting number.

Syntax
-- removing first two years

with member [Measures].[Increase 2 Years] as

case

when isempty(ParallelPeriod([Date].[Fiscal].[Fiscal Year],2,[Date]

.[Fiscal].currentmember))

C h a p t e r 8 : C l o c k w o r k : C a l c u l a t i o n s U s i n g D a t e s a n d T i m e s 1 6 3

then "NA"

else

([Date].[Fiscal].currentmember,[Measures].[Reseller Order Quantity]) -

(ParallelPeriod([Date].[Fiscal].[Fiscal Year],2,

[Date].[Fiscal].currentmember),

[Measures].[Reseller Order Quantity])

end,format_string="#,#"

select

[Date].[Fiscal].[Fiscal Year]

on columns,

{[Measures].[Reseller Order Quantity],[Measures].[Increase 2 Years]}

on rows

from

[Adventure Works]

Result

Analysis
The first section of the Case construct tests to see if there is indeed a fiscal year that is
two years before the current fiscal year. The IsEmpty function performs the test. If there
is no fiscal year two years ago, it returns NA. The output is easier to read and is perhaps
what you want. Unless, of course, you are interested in seeing the Increase for FY 2002/
FY 2003 since you began trading (both increases are from a null or zero order quantity).

Nulls as Zero 1/2
Some potential improvements can still be made to the last query. A popular tweak is
to replace (null) cells with zero. Here you have an attempt to do just that. (Expect this
query to fail!)

Syntax
-- nulls as zero 1/2

with member [Measures].[Order Quantity] as

iif(isempty([Measures].[Reseller Order Quantity]),0,

[Measures].[Reseller Order Quantity])

member [Measures].[Increase 2 Years] as

case

1 6 4 P r a c t i c a l M D X Q u e r i e s f o r M i c r o s o f t S Q L S e r v e r A n a l y s i s S e r v i c e s 2 0 0 8

when isempty(ParallelPeriod([Date].[Fiscal].[Fiscal Year],2,[Date]

.[Fiscal].currentmember))

then "NA"

else

([Date].[Fiscal].currentmember,[Measures].[Reseller Order Quantity]) -

(ParallelPeriod([Date].[Fiscal].[Fiscal Year],2,

[Date].[Fiscal].currentmember),[Measures].[Reseller Order Quantity])

end,format_string="#,#"

select

[Date].[Fiscal].[Fiscal Year]

on columns,

{[Measures].[Order Quantity],[Measures].[Increase 2 Years]}

on rows

from

[Adventure Works]

Result

Analysis
We have a new calculated measure, Order Quantity. It’s designed to convert nulls into
zeros. This is attempted by having an Iif test around an IsEmpty one. The new measure
replaces the Reseller Order Quantity on the Rows axis. Unfortunately, it generates an
error. I suppose I chose a bad name for the measure. If you search the metadata for the
Adventure Works cube, you will discover an existing Order Quantity. It is part of the
Sales Summary measure group. This is an important point to make—duplicate measure
names are not allowed, even if the measures are from different measure groups.

Nulls as Zero 2/2
A simple rename fixes the problem. Our original name (Order Quantity) for the measure
is now Quantity Sold. Don’t forget to change the entry on the Rows axis as well.

Syntax
-- nulls as zero 2/2

with member [Measures].[Quantity Sold] as

iif(isempty([Measures].[Reseller Order Quantity]),0,

[Measures].[Reseller Order Quantity]),format_string="#,#"

C h a p t e r 8 : C l o c k w o r k : C a l c u l a t i o n s U s i n g D a t e s a n d T i m e s 1 6 5

member [Measures].[Increase 2 Years] as

case

when isempty(ParallelPeriod([Date].[Fiscal].[Fiscal Year],2,[Date]

.[Fiscal].currentmember))

then "NA"

else

([Date].[Fiscal].currentmember,[Measures].[Reseller Order Quantity]) -

(ParallelPeriod([Date].[Fiscal].[Fiscal Year],2,

[Date].[Fiscal].currentmember),[Measures].[Reseller Order Quantity])

end,format_string="#,#"

select

[Date].[Fiscal].[Fiscal Year]

on columns,

{[Measures].[Quantity Sold],[Measures].[Increase 2 Years]}

on rows

from

[Adventure Works]

Result

Analysis
Got there! This is a clear and easily understood result. Over the last few queries, you
have learned how to write an MDX query that performs calculations on the time
dimension.

Simplifying the Calculation 1/2
There are going to be many occasions when you discover alternative ways of achieving
the same result in MDX. This is normally an advantage—you can devise more and
more elegant solutions. However, it can create problems, especially when you inherit
code written by others. This query and the next one are variations on the last query. The
change is subtle and difficult to spot—it’s a shorthand that you may find in inherited code.

Syntax
-- removing first current member from calculation

with member [Measures].[Quantity Sold] as

iif(isempty([Measures].[Reseller Order Quantity]),0,

1 6 6 P r a c t i c a l M D X Q u e r i e s f o r M i c r o s o f t S Q L S e r v e r A n a l y s i s S e r v i c e s 2 0 0 8

[Measures].[Reseller Order Quantity]),format_string="#,#"

member [Measures].[Increase 2 Years] as

case

when isempty(ParallelPeriod([Date].[Fiscal].[Fiscal Year],2,[Date]

.[Fiscal].currentmember))

then "NA"

else

([Measures].[Reseller Order Quantity]) -

(ParallelPeriod([Date].[Fiscal].[Fiscal Year],2,

[Date].[Fiscal].currentmember),[Measures].[Reseller Order Quantity])

end,format_string="#,#"

select

[Date].[Fiscal].[Fiscal Year]

on columns,

{[Measures].[Quantity Sold],[Measures].[Increase 2 Years]}

on rows

from

[Adventure Works]

Result

Analysis
Let’s extract a portion of the MDX:

([Measures].[Reseller Order Quantity]) -

(ParallelPeriod([Date].[Fiscal].[Fiscal Year],2,

[Date].[Fiscal].currentmember),[Measures].[Reseller Order Quantity])

Compare this to our original syntax in the previous query:

([Date].[Fiscal].currentmember,[Measures].[Reseller Order Quantity]) -

(ParallelPeriod([Date].[Fiscal].[Fiscal Year],2,

[Date].[Fiscal].currentmember),[Measures].[Reseller Order Quantity]

You will notice that the initial reference to [Date].[Fiscal].currentmember has
disappeared. If you don’t specify the currentmember of the Fiscal hierarchy, it is
implicitly assumed.

C h a p t e r 8 : C l o c k w o r k : C a l c u l a t i o n s U s i n g D a t e s a n d T i m e s 1 6 7

Simplifying the Calculation 2/2
Here’s one more variation on our query. Again, the change is subtle.

Syntax
-- removing 2 currentmembers from calculation

with member [Measures].[Quantity Sold] as

iif(isempty([Measures].[Reseller Order Quantity]),0,

[Measures].[Reseller Order Quantity]),format_string="#,#"

member [Measures].[Increase 2 Years] as

case

when isempty(ParallelPeriod([Date].[Fiscal].[Fiscal Year],2,[Date]

.[Fiscal]))

then "NA"

else

([Measures].[Reseller Order Quantity]) -

(ParallelPeriod([Date].[Fiscal].[Fiscal Year],2,

[Date].[Fiscal]),[Measures].[Reseller Order Quantity])

end,format_string="#,#"

select

[Date].[Fiscal].[Fiscal Year]

on columns,

{[Measures].[Quantity Sold],[Measures].[Increase 2 Years]}

on rows

from

[Adventure Works]

Result

Analysis
Let’s extract a portion of the MDX:

([Measures].[Reseller Order Quantity]) -

(ParallelPeriod([Date].[Fiscal].[Fiscal Year],2,

[Date].[Fiscal]),[Measures].[Reseller Order Quantity])

1 6 8 P r a c t i c a l M D X Q u e r i e s f o r M i c r o s o f t S Q L S e r v e r A n a l y s i s S e r v i c e s 2 0 0 8

Compare this to our original syntax in the previous query:

([Date].[Fiscal].currentmember,[Measures].[Reseller Order Quantity]) -

(ParallelPeriod([Date].[Fiscal].[Fiscal Year],2,

[Date].[Fiscal].currentmember),[Measures].[Reseller Order Quantity]

You will notice that the second reference to .currentmember has disappeared. If you
don’t specify the currentmember for a hierarchy, it is implicitly assumed. Indeed, you
can even omit the third parameter for ParallelPeriod altogether. In that case, it defaults
to the currentmember of the hierarchy of the first parameter. Therefore, the following
syntax is also valid:

([Date].[Fiscal].currentmember,[Measures].[Reseller Order Quantity]) -

(ParallelPeriod([Date].[Fiscal].[Fiscal Year],2,

[Date].[Fiscal].currentmember),[Measures].[Reseller Order Quantity]

Into the Future
How does the quantity sold in a fiscal year differ from that in a subsequent year? This is
also a ParallelPeriod query.

Syntax
-- into the future

with member [Measures].[Quantity Sold] as

iif(isempty([Measures].[Reseller Order Quantity]),0,

[Measures].[Reseller Order Quantity]),format_string="#,#"

member [Measures].[Change from Next Year] as

([Measures].[Reseller Order Quantity]) - (ParallelPeriod([Date].[Fiscal]

.[Fiscal Year],–1,[Date].[Fiscal]),[Measures].[Reseller Order Quantity]),

format_string="#,#"

select

[Date].[Fiscal].[Fiscal Year]

on columns,

{[Measures].[Quantity Sold],[Measures].[Change from Next Year]}

on rows

from

[Adventure Works]

Result

C h a p t e r 8 : C l o c k w o r k : C a l c u l a t i o n s U s i n g D a t e s a n d T i m e s 1 6 9

Analysis
To move into the future, all you have to do is use a negative number (here, it’s 1) as the
second numeric parameter for the ParallelPeriod function.

A Two-Step Approach
This shows yet another syntactical variation. Here we convert the nulls into zeros again,
but this time we adopt a two-step approach.

Syntax
-- gets rid of the nulls in cellset

with

member [Measures].[Quantity Sold] as

iif(isempty([Measures].[Reseller Order Quantity]),0,

[Measures].[Reseller Order Quantity]),format_string="#,#"

member [Measures].[Change from Next Year] as

([Measures].[Reseller Order Quantity]) -

(ParallelPeriod([Date].[Fiscal].[Fiscal Year],–1,

[Date].[Fiscal]),[Measures].[Reseller Order Quantity])

member [Measures].[Change] as

iif(isempty([Measures].[Change from Next Year]),0,

[Measures].[Change from Next Year]),format_string="#,#"

select

[Date].[Fiscal].[Fiscal Year]

on columns,

{[Measures].[Quantity Sold],[Measures].[Change]}

on rows

from

[Adventure Works]

Result

Analysis
The second row is the Change measure. This is, of course, a calculated measure. You
have already tried a few of these. Only this one is different. The Change measure
is based on the Change from Next Year measure. That, in turn, is also a calculated

1 7 0 P r a c t i c a l M D X Q u e r i e s f o r M i c r o s o f t S Q L S e r v e r A n a l y s i s S e r v i c e s 2 0 0 8

measure. The Change from Next Year is an intermediate measure. You are free to use
a calculated measure in another calculated measure. This may simplify the logic and
complexity of your code. It’s an incremental approach that many MDX people adopt.

Introduction to Sum
So far, we have been examining differences across the time dimension. It’s often a
requirement to look at totals (for example, a summation) across the time dimension.
This query is a starting point for a few examples of what is called aggregation.

Syntax
-- SUM

select

{[Date].[Calendar].[Calendar Year].[CY 2001],

[Date].[Calendar].[Calendar Year].[CY 2002]}

 on columns

 from

 [Adventure Works]

 where [Measures].[Internet Order Quantity]

Result

Analysis
The result is the Internet Order Quantity measure for two calendar years on the
Columns axis.

Applying Sum 1/2
This is an interesting query in that, though syntactically valid, the result looks
strange—because it is wrong!

Syntax
-- incorrect cells

 with member [Date].[Calendar].[Two Years] as

 sum({[Date].[Calendar].[Calendar Year].[CY 2001],

[Date].[Calendar].[Calendar Year].[CY 2002]},

C h a p t e r 8 : C l o c k w o r k : C a l c u l a t i o n s U s i n g D a t e s a n d T i m e s 1 7 1

[Measures].[Internet Order Quantity])

 select

{[Date].[Calendar].[Calendar Year].[CY 2001],

[Date].[Calendar].[Calendar Year].[CY 2002],[Two Years]}

 on columns

 from

 [Adventure Works]

Result

Analysis
The Sum function has a set as the first parameter and a measure to aggregate as the
second parameter. The Sum function here adds the Internet Order Quantity for CY
2001 and CY 2002. The answer 3,690 is the correct answer. But I forgot to have a
Where slicer. CY 2001 and CY 2002 are therefore using the default measure, Reseller
Sales Amount. In order to achieve sensible results with aggregation functions such
as Sum, it’s vital that the query is consistent in its use of measures. Interestingly, the
calculated member [Date].[Calendar].[Two Years] has a triple-part name and not a
double name, such as [Measures].[Two Years]. It’s a calculated member, sure, but not
the special case of a calculated measure (more on this in the next query).

Applying Sum 2/2
Hopefully, this is better. Note the inclusion of a Where clause that slices the cube on
the Internet Order Quantity measure.

Syntax
--where [Measures].[Internet Order Quantity]

 with member [Date].[Calendar].[Two Years] as

 sum({[Date].[Calendar].[Calendar Year].[CY 2001],

[Date].[Calendar].[Calendar Year].[CY 2002]},

[Measures].[Internet Order Quantity])

 select

{[Date].[Calendar].[Calendar Year].[CY 2001],

[Date].[Calendar].[Calendar Year].[CY 2002],[Two Years]}

 on columns

 from

 [Adventure Works]

 where [Measures].[Internet Order Quantity]

1 7 2 P r a c t i c a l M D X Q u e r i e s f o r M i c r o s o f t S Q L S e r v e r A n a l y s i s S e r v i c e s 2 0 0 8

Result

Analysis
This query returns the correct result. It introduces a couple of new concepts. First, it
performs an aggregation with the Sum function. Second, it shows the aggregation
alongside two members of the Calendar hierarchy on the Columns axis. Members
on the same axis have to have the same dimensionality and hierarchality (unless you
perform a Crossjoin). The member Two Years is therefore defined as [Date].[Calendar]
.[Two Years]. Calculated members that are members of the Measures dimension are
defined as [Measures].[membername] and are a subset of calculated members, called
calculated measures. Calculated members that are not part of the Measures dimension
are simply called calculated members and they must be prefaced by both the dimension
name and the dimension hierarchy name—here, it’s [Date].[Calendar].

Sum Is Not Always Suitable
You have to be careful when using Sum. Sometimes, it can give strange results. The
aggregate here is larger than the aggregate in the cube for All Periods.

Syntax
-- change to distinct count e.g.

-- [Measures].[Customer Count]

 with member [Date].[Calendar].[Distinct Customers 2003/2004] as

 sum({[Date].[Calendar].[Calendar Year].[CY 2003],

[Date].[Calendar].[Calendar Year].[CY 2004]},[Measures].currentmember)

 select

{[Date].[Calendar].[Calendar Year],[Date].[Calendar],

[Distinct Customers 2003/2004]}

 on columns

 from

 [Adventure Works]

 where [Measures].[Customer Count]

Result

C h a p t e r 8 : C l o c k w o r k : C a l c u l a t i o n s U s i n g D a t e s a n d T i m e s 1 7 3

Analysis
The syntax looks reasonable. It employs the .currentmember property of the Measures
dimension in the Sum function, rather than a hard-coded measure name. The property
returns the Customer Count measure, which appears in the Where clause. That’s a
perfectly valid technique. Unfortunately, the calculated member cell is too high at
20,686. It’s only for two years, yet the aggregate for all the years (All Periods) is only
18,484. Something is obviously wrong! It’s working out the total number of customers
for CY 2003 and CY 2004—by adding the two years together. If you have Adventure
Works in BIDS and check the Customer Count measure, you will notice that its
AggregateFunction property is set to DistinctCount and not to Sum. What we really
need is the number of distinct customers in the two years—that’s excluding returning
customers. The next query shows you how.

In the preceding syntax, [Measures].currentmember is explicitly referenced in the
Sum function. You can omit this parameter, if you prefer, because it’s implicitly assumed.

Aggregate Function
A small alteration: The Sum function has been replaced with an Aggregate function.

Syntax
-- aggregate rather than sum

with member [Date].[Calendar].[Distinct Customers 2003/2004] as

 aggregate({[Date].[Calendar].[Calendar Year].[CY 2003],

[Date].[Calendar].[Calendar Year].[CY 2004]},

[Measures].currentmember)

 select

{[Date].[Calendar].[Calendar Year],[Date].[Calendar],

[Distinct Customers 2003/2004]}

 on columns

 from

 [Adventure Works]

 where [Measures].[Customer Count]

Result

1 7 4 P r a c t i c a l M D X Q u e r i e s f o r M i c r o s o f t S Q L S e r v e r A n a l y s i s S e r v i c e s 2 0 0 8

Analysis
The final cell is 18,125. This is the correct answer. The Sum function is a fully additive
function. A distinct count is not fully additive—it’s not simply a summation. The
Aggregate function is safer. It performs the aggregation based on the AggregateFunction
setting back in BIDS. If that property is DistinctCount, it will perform a distinct count.
If that property is Sum, it will perform a sum. If you don’t know the AggregateFunction
property setting for a measure, you may want to adopt Aggregate in your MDX.

Sum and Aggregate Together
By combining more than one aggregate function in your MDX syntax, you can arrive at
interesting results. This query uses both Sum and Aggregate.

Syntax
-- how many customers more than once (repeat customers)

with member [Date].[Calendar].[Repeat Customers 2003/2004] as

 sum({[Date].[Calendar].[Calendar Year].[CY 2003],

[Date].[Calendar].[Calendar Year].[CY 2004]},[Measures].currentmember) -

aggregate({[Date].[Calendar].[Calendar Year].[CY 2003],

[Date].[Calendar].[Calendar Year].[CY 2004]},[Measures].currentmember)

 select

{[Date].[Calendar].[Calendar Year],[Date].[Calendar],

[Repeat Customers 2003/2004]}

 on columns

 from

 [Adventure Works]

 where [Measures].[Customer Count]

Result

Analysis
The distinct customers for CY 2003 and CY 2004 (Aggregate) are subtracted from the
total number of customers (Sum) to give us returning or repeat customers.

C h a p t e r 8 : C l o c k w o r k : C a l c u l a t i o n s U s i n g D a t e s a n d T i m e s 1 7 5

More on Sum and Aggregate
We end up with really quite a useful query that has both the Sum and Aggregate
functions.

Syntax
-- sum and aggregate again

 with member [Date].[Calendar].[Total Customers 2003/2004] as

 sum({[Date].[Calendar].[Calendar Year].[CY 2003],

[Date].[Calendar].[Calendar Year].[CY 2004]},[Measures].currentmember)

 member [Date].[Calendar].[Distinct Customers 2003/2004] as

 aggregate({[Date].[Calendar].[Calendar Year].[CY 2003],

[Date].[Calendar].[Calendar Year].[CY 2004]},[Measures].currentmember)

 member [Date].[Calendar].[Repeat Customers 2003/2004] as

 [Date].[Calendar].[Total Customers 2003/2004]-

[Date].[Calendar].[Distinct Customers 2003/2004]

 select

{[Date].[Calendar].[Calendar Year].[CY 2003],

[Date].[Calendar].[Calendar Year].[CY 2004],[Total Customers 2003/2004],

[Distinct Customers 2003/2004],[Repeat Customers 2003/2004]}

 on columns

 from

 [Adventure Works]

 where [Measures].[Customer Count]

Result

Analysis
The repeat customers this time are calculated using two other calculated measures.

Avg Function
Other aggregate functions are available—not just Sum and Aggregate. Here we have
the Avg function.

1 7 6 P r a c t i c a l M D X Q u e r i e s f o r M i c r o s o f t S Q L S e r v e r A n a l y s i s S e r v i c e s 2 0 0 8

Syntax
-- AVG

with member [Date].[Fiscal].[Average] as

avg([Date].[Fiscal].[Fiscal Year],[Measures].[Reseller Sales Amount])

select

non empty {[Date].[Fiscal].[Fiscal Year],[Date].[Fiscal].[Average]}

on columns

from

[Adventure Works]

Result

Analysis
The Avg function calculates the average (mean) value. The result shows the average sales
across three years. If we had used the Sum function, it would have returned total sales.
If we had used the Aggregate function, it would also have given total sales because the
AggregateFunction property for Reseller Sales Amount in BIDS is Sum. If you are sure
your measure is fully additive, it’s normally fine not to use Aggregate. Aggregate will not
give you an average if the AggregateFunction is Sum. Instead, Avg will give you an average.

In the example, a measure is used as the second parameter for the Avg function. This
can be omitted and Avg will work on the default measure or any measure specified in
a Where clause.

Min Function
Which fiscal year (including years with null or zero sales) had the lowest sales? Here we
use the Min function.

Syntax
-- MIN

with member [Date].[Fiscal].[Minimum] as

min([Date].[Fiscal].[Fiscal Year],[Measures].[Reseller Sales Amount])

select

non empty {[Date].[Fiscal].[Fiscal Year],[Date].[Fiscal].[Minimum]}

on columns

from

[Adventure Works]

C h a p t e r 8 : C l o c k w o r k : C a l c u l a t i o n s U s i n g D a t e s a n d T i m e s 1 7 7

Result

Analysis
Min returns the minimum value. Try removing Non Empty from the columns
specification (which produces the second cellset in the preceding “Result” section).
You will then see how Min deals with null values—it does not treat them as zeros as
SSAS often does in most other contexts.

Max Function
Max is another aggregate function.

Syntax
-- MAX

with member [Date].[Fiscal].[Maximum] as

max([Date].[Fiscal].[Fiscal Year],[Measures].[Reseller Sales Amount])

select

non empty {[Date].[Fiscal].[Fiscal Year],[Date].[Fiscal].[Maximum]}

on columns

from

[Adventure Works]

Result

Analysis
As you might well expect, Max returns the maximum value.

Moving Average with Avg
The Avg aggregate function (Avg) is frequently employed to generate moving averages.

1 7 8 P r a c t i c a l M D X Q u e r i e s f o r M i c r o s o f t S Q L S e r v e r A n a l y s i s S e r v i c e s 2 0 0 8

Syntax
-- moving AVG

-- Q4 CY 2006 is not contiguous

with member [Measures].[Moving Average] as

iif(isempty([Date].[Calendar].currentmember.lag(2)),"NA",

avg({[Date].[Calendar].currentmember:[Date].[Calendar].currentmember

.lag(2)},[Measures].[Reseller Order Quantity])),format_string = "#,#"

select

{[Measures].[Reseller Order Quantity],[Measures].[Moving Average]}

on columns,

[Date].[Calendar].[Calendar Quarter]

on rows

from

[Adventure Works]

Result

Analysis
The Lag function and a date range are used in conjunction with Avg to return a moving
average across two calendar quarters. The result shown is partial. If you scroll down you
will notice Q4 CY 2006. This is not contiguous with the previous quarter and therefore
its moving average is arguably incorrect. There are a number of ways of dealing with
this. You might employ an IsEmpty test (we did this earlier in this chapter). Or you
might want to exclude Q4 CY 2006—you could use the Except operator for this.

The date range has the latest date first—this does not alter the logic in any way. The
order of the date range can be reversed without affecting the result. The range would
then look like the following (maybe this is easier to read):

{[Date].[Calendar].currentmember.lag(2):[Date].[Calendar].currentmember}

C h a p t e r 8 : C l o c k w o r k : C a l c u l a t i o n s U s i n g D a t e s a n d T i m e s 1 7 9

Sum Giving a Running Total
The aggregate functions can be extended to produce nice results. The previous example
showed how to return a moving average. This query demonstrates a running total for
sales across calendar years.

Syntax
-- running Sum

with member [Measures].[Running Total]

as sum(periodstodate([Date].[Calendar].[(All)],

[Date].[Calendar].currentmember),

[Measures].[Reseller Sales Amount])

select

{[Measures].[Reseller Sales Amount],[Measures].[Running Total]}

on columns,

non empty [Date].[Calendar].[Calendar Year]

on rows

from

[Adventure Works]

Result

Analysis
The Sum works across a range of dates returned by the PeriodsToDate function. Notice
that Non Empty does not hide CY 2006 because there is a non-null cell entry for the
Running Total calculated measure for that year.

Avg Giving a Running Total
This query is very similar to the previous one. Two changes in all. First, we are using
Avg rather than Sum. Second, this time YTD is used instead of PeriodsToDate.

1 8 0 P r a c t i c a l M D X Q u e r i e s f o r M i c r o s o f t S Q L S e r v e r A n a l y s i s S e r v i c e s 2 0 0 8

Syntax
-- avg with ytd

with member [Measures].[Average YTD] as

avg(ytd([Date].[Calendar].currentmember),[Measures]

.[Reseller Sales Amount])

select

descendants([Date].[Calendar].[Calendar Year].[CY 2002],

[Date].[Calendar].[Calendar Quarter])

on columns,

{[Measures].[Reseller Sales Amount],[Measures].[Average YTD]}

on rows

from

[Adventure Works]

Result

Analysis
The result is the average sales for the year up to and including each calendar quarter.
This query can be easily adapted to use Sum, Max, or Min.

ParallelPeriod Revisited 1/2
In the last few queries in this chapter, we revisit the ParallelPeriod method function.
Sometimes it can give unexpected results. This is certainly something you should be
aware of. This query is fine—it uses the Fiscal hierarchy of the Date dimension.

Syntax
-- parallelperiod with fiscal

with

member [Measures].[Year Ago] as

case

when isempty(parallelperiod([Date].[Fiscal].[Fiscal Year],1,

[Date].[Fiscal].currentmember)) then "NA"

else

([Measures].[Reseller Sales Amount],

parallelperiod([Date].[Fiscal].[Fiscal Year],1,

C h a p t e r 8 : C l o c k w o r k : C a l c u l a t i o n s U s i n g D a t e s a n d T i m e s 1 8 1

[Date].[Fiscal].currentmember))

end,format_string="Currency"

member [Measures].[Annual Increase] as

iif([Measures].[Year Ago] = "NA","NA",

[Measures].[Reseller Sales Amount] -

[Measures].[Year Ago]),format_string="Currency"

select

{[Measures].[Reseller Sales Amount],

[Measures].[Year Ago],[Measures].[Annual Increase]}

on columns,

nonempty([Date].[Fiscal].[Fiscal Quarter],[Measures]

.[Reseller Sales Amount])

on rows

from

[Adventure Works]

Result

Analysis
This is quite a nice query. The Year Ago calculated measure shows the Reseller Sales
Amount for the fiscal quarter one year before the current quarter. The Annual Increase
calculated measure then works out the difference. The figures look correct to me.
However, they will not always be so—and the next query shows the problem.

ParallelPeriod Revisited 2/2
This is exactly the same query as the last one, except it uses the Calendar hierarchy instead
of the Fiscal hierarchy. Indeed, it’s only a matter of a simple search and replace—all
occurrences of the word Fiscal replaced by Calendar. The result is wrong!

1 8 2 P r a c t i c a l M D X Q u e r i e s f o r M i c r o s o f t S Q L S e r v e r A n a l y s i s S e r v i c e s 2 0 0 8

Syntax
-- parallelperiod with calendar

with

member [Measures].[Year Ago] as

case

when isempty(parallelperiod([Date].[Calendar].[Calendar Year],1,

[Date].[Calendar].currentmember)) then "NA"

else

([Measures].[Reseller Sales Amount],

parallelperiod([Date].[Calendar].[Calendar Year],1,[Date].[Calendar]

.currentmember))

end,format_string="Currency"

member [Measures].[Annual Increase] as

iif([Measures].[Year Ago] = "NA","NA",

[Measures].[Reseller Sales Amount] - [Measures].[Year Ago]),

format_string="Currency"

select

{[Measures].[Reseller Sales Amount],[Measures].[Year Ago],

[Measures].[Annual Increase]}

on columns,

nonempty([Date].[Calendar].[Calendar Quarter],

[Measures].[Reseller Sales Amount])

on rows

from

[Adventure Works]

Result

C h a p t e r 8 : C l o c k w o r k : C a l c u l a t i o n s U s i n g D a t e s a n d T i m e s 1 8 3

Analysis
Perhaps, instead, I should say that the results are correct given the way ParallelPeriod
works. But, to you and me, the Year Ago and Annual Increase calculated measures
for all the quarters of CY 2002 appear incorrect. The next few queries will help you
understand and arrive at a more satisfactory solution.

Cousin 1/2
Now try this fairly easy MDX using the Cousin function.

Syntax
-- cousin 1/2

select

{cousin([Date].[Calendar].[Calendar Quarter].[Q1 CY 2003],

[Date].[Calendar].[Calendar Year].[CY 2002]),

[Date].[Calendar].[Calendar Quarter].[Q1 CY 2003]}

on columns

from

[Adventure Works]

Result

Analysis
This result is entirely reasonable. We are briefly sidestepping to the Cousin function
because it has a similar algorithm to ParallelPeriod but is perhaps easier to decipher.
This query is fine; the next one is not.

Cousin 2/2
This is almost the same as the previous query—another look at Cousin. It’s worthwhile
studying the result, though.

Syntax
-- cousin 2/2

select

{cousin([Date].[Calendar].[Calendar Quarter].[Q1 CY 2002],

1 8 4 P r a c t i c a l M D X Q u e r i e s f o r M i c r o s o f t S Q L S e r v e r A n a l y s i s S e r v i c e s 2 0 0 8

[Date].[Calendar].[Calendar Year].[CY 2001]),

[Date].[Calendar].[Calendar Quarter].[Q1 CY 2002]}

on columns

from

[Adventure Works]

Result

Analysis
Maybe you thought Q1 CY 2001 was a year before Q1 CY 2002, not Q3 CY 2001?
Cousin and ParallelPeriod don’t quite work that way. They are positional. Q1 CY
2002 is the first quarter in CY 2002. The functions then look for the first quarter in
CY 2001. This just happens to be Q3 CY 2001—there is no Q1 CY 2001 (or Q2 CY
2001). The functions are working correctly, but the results are counterintuitive. The
problem arises whenever individual members at a parent level have differing numbers
of children at a lower level. CY 2002 has four quarters whereas CY 2001 has only two
quarters. One solution is to add members Q1 CY 2001 and Q2 CY 2002 with null or
zero sales. Other solutions are discussed in the following queries.

Workaround 1/2 Using Lag
Here we’ve dispensed with ParallelPeriod (and Cousin) and employ the Lag property
function instead to go back four quarters (or one year).

Syntax
-- workaround 1/2 lag

with

member [Measures].[Year Ago] as

case

when isempty([Date].[Calendar].currentmember.lag(4)) then "NA"

else

([Measures].[Reseller Sales Amount],[Date].[Calendar].currentmember.lag(4))

end,format_string="Currency"

member [Measures].[Annual Increase] as

iif([Measures].[Year Ago] = "NA","NA",

[Measures].[Reseller Sales Amount] -

[Measures].[Year Ago]),format_string="Currency"

select

C h a p t e r 8 : C l o c k w o r k : C a l c u l a t i o n s U s i n g D a t e s a n d T i m e s 1 8 5

{[Measures].[Reseller Sales Amount],

[Measures].[Year Ago],[Measures].[Annual Increase]}

on columns,

nonempty([Date].[Calendar].[Calendar Quarter],

[Measures].[Reseller Sales Amount])

on rows

from

[Adventure Works]

Result

Analysis
Because Lag operates differently from ParallelPeriod (and Cousin), the result is fine.
For example, Q1 CY 2002 displays NA in the calculated cells. This is because there is
no member that is four back. But even this can break. Take a look at the next query.

Workaround 1/2 Using Lag Breaks
Let’s try the previous query again, but this time Non Empty has been removed from
the row specification.

Syntax
-- workaround 1/2 lag fails for Q4 CY 2006

with

member [Measures].[Year Ago] as

case

when isempty([Date].[Calendar].currentmember.lag(4)) then "NA"

else

1 8 6 P r a c t i c a l M D X Q u e r i e s f o r M i c r o s o f t S Q L S e r v e r A n a l y s i s S e r v i c e s 2 0 0 8

([Measures].[Reseller Sales Amount],[Date].[Calendar].currentmember

.lag(4))

end,format_string="Currency"

member [Measures].[Annual Increase] as

iif([Measures].[Year Ago] = "NA","NA",

[Measures].[Reseller Sales Amount] -

[Measures].[Year Ago]),format_string="Currency"

select

{[Measures].[Reseller Sales Amount],

[Measures].[Year Ago],[Measures].[Annual Increase]}

on columns,

[Date].[Calendar].[Calendar Quarter]

on rows

from

[Adventure Works]

Result

Analysis
Lag works for all the rows except the last one. The two calculated cells for Q4 CY
2006 are incorrect. In the last query, Non Empty suppressed Q4 CY 2006. This time,
however, it’s displayed. Four back from Q4 CY 2006 is actually Q4 CY 2003 and
not Q4 CY 2005. Hopefully, you’ve learned some very important lessons, especially
for working with time dimensions. One, members of each level should have an equal
number of children at the next level down. Two, members should be contiguous—no
gaps. A server time dimension can help avoid some of these problems. If (as it is in the
real world) your data is not perfect, attempt the next query.

C h a p t e r 8 : C l o c k w o r k : C a l c u l a t i o n s U s i n g D a t e s a n d T i m e s 1 8 7

Workaround 2/2 Using Crossjoin
If your data is not contiguous, you might want to combine a Crossjoin with the
ParallelPeriod function.

Syntax
-- workaround 2/2 crossjoin

with member [Measures].[Year Ago] as

([Measures].[Reseller Sales Amount],

Parallelperiod([Date].[Calendar].[Calendar Year],1,

[Date].[Calendar].currentmember)),format_string = "Currency"

select

{[Measures].[Reseller Sales Amount],[Measures].[Year Ago]} on columns,

crossjoin([Date].[Calendar Year].[Calendar Year],

[Date].[Calendar Quarter of Year].[Calendar Quarter of Year])

on rows

from

[Adventure Works]

Result

Analysis
This should always give you the desired results. The Crossjoin forces ParallelPeriod to
behave as you might expect it.

This page intentionally left blank

Venn Diagrams:
Visualizing and
Manipulating Sets

Chapter 9

1 9 0 P r a c t i c a l M D X Q u e r i e s f o r M i c r o s o f t S Q L S e r v e r A n a l y s i s S e r v i c e s 2 0 0 8

This is a wide-ranging chapter on working with sets and members of sets. By
the end of the chapter, you’ll be able to create, visualize, and manipulate sets.

Key concepts Named sets, joining sets, set operations, extracting members,
missing members, member properties, visual totals

Keywords Distinct, .item, Generate, Rank, Union, Intersect, Except, With Set,
Head, Subset, Tail, VisualTotals, Create Set, Extract, Exists, Count, .count

Distinct
When you have duplicate members returned by a query, you can suppress the duplicates
with Distinct. Here are two queries for you to try.

Syntax
-- distinct 1/2

select {[Geography].[Country].[Australia],[Geography].[Country]

.[Australia]}

on columns

from

[Adventure Works]

-- distinct 2/2

select distinct {[Geography].[Country].[Australia],

[Geography].[Country].[Australia]}

on columns

from

[Adventure Works]

Result

Analysis
Not terribly useful as it stands—you are unlikely to ask for Australia twice. However,
this chapter includes many advanced set operations, and the members returned are not
always explicitly defined. In those cases, Distinct is very handy for removing duplication
in the result.

C h a p t e r 9 : V e n n D i a g r a m s : V i s u a l i z i n g a n d M a n i p u l a t i n g S e t s 1 9 1

Item on a Set
The Item property member performed against a set returns a tuple within the set. What
is the third calendar year in our Date dimension?

Syntax
-- item on a set returns a tuple

select

[Date].[Calendar].[Calendar Year].item(2)

on columns

from

[Adventure Works]

-- alternative (2)Syntax

select

[Date].[Calendar].[Calendar Year].members(2)

on columns

from

[Adventure Works]

Result

Analysis
Both queries give the same result. Here we are returning the third calendar year. Item is
zero based.

Item on a Tuple
Sometimes you may want to select a particular item (based on position) within a tuple.

Syntax
-- item on a tuple returns a member

select

([Date].[Calendar].defaultmember,

[Product].[Product Categories].defaultmember).item(1)

on columns

from

[Adventure Works]

1 9 2 P r a c t i c a l M D X Q u e r i e s f o r M i c r o s o f t S Q L S e r v e r A n a l y s i s S e r v i c e s 2 0 0 8

Result

Analysis
The tuple has two members. Item is zero based and .item(1) returns the second
member, which is All Products.

Generate
If you want to perform the same operation against two or more sets, Generate may be
of help.

Syntax
-- generate

with set [Bikes and Clothing] as

{[Product].[Product Categories].[Category].[Bikes],

[Product].[Product Categories].[Category].[Clothing]}

set [Two Families] as

generate({[Bikes and Clothing]},

[Product].[Product Categories].currentmember.children)

select

[Two Families]

on columns

from

[Adventure Works]

Result

Analysis
Generate is not the easiest of the MDX syntax. Here, Generate creates a set called Two
Families, which is projected along the Columns axis. Generate operates on a set called
Bikes and Clothing and returns the children of that set. This is quite useful because
.children normally only works directly on an individual member, not a set. By using
Generate, we are able to have .children apply against the members in the Bikes and
Clothing set one at a time. The result is all the children of both Bikes and Clothing.

C h a p t e r 9 : V e n n D i a g r a m s : V i s u a l i z i n g a n d M a n i p u l a t i n g S e t s 1 9 3

Rank
Where do we sell the most, and what position is each city in the rankings?

Syntax
-- rank

with set [Countries and Cities] as

{crossjoin([Customer].[Country].[Country],filter([Customer].[City].[City],

[Measures].[Internet Sales Amount] > 0))}

member [Measures].[Ranking] as

rank([Customer].[City].currentmember,

[Customer].[City].currentmember.siblings,[Measures]

.[Internet Sales Amount])

select

{[Measures].[Internet Sales Amount],[Measures].[Ranking]}

on columns,

order([Countries and Cities],[Measures].[Internet Sales Amount],bdesc)

on rows

from

[Adventure Works]

Result

Analysis
An Order function is used to sort the rows with the highest sales at the top. The result
of the Rank function is shown in the second column. Rank compares a city against
all its siblings. For example, Bendigo in Australia comes in at number 5. If the third
parameter for Rank is omitted, the ranking is based on the position of the first parameter
in the second set parameter; in this case, Bendigo comes in at number 31.

1 9 4 P r a c t i c a l M D X Q u e r i e s f o r M i c r o s o f t S Q L S e r v e r A n a l y s i s S e r v i c e s 2 0 0 8

Union, Intersect, Except Base Query 1/2
Some of the fundamental set operators are Union, Intersect, and Except. To investigate
their use, we need two base queries. This is the first of the two.

Syntax
-- best cities in 2003

with set [Best Cities in CY 2003] as

order(topcount([Customer].[Customer Geography].[City],10,

([Measures].[Internet Sales Amount],

[Date].[Calendar].[Calendar Year].[CY 2003])),

[Measures].[Internet Sales Amount],bdesc)

select

[Measures].[Internet Sales Amount]

on columns,

[Best Cities in CY 2003]

on rows

from

[Adventure Works]

where [Date].[Calendar].[Calendar Year].[CY 2003]

Result

Analysis
The result shows the ten best cities, in terms of Internet sales, for CY 2003. In this and
the next few queries, the Order function is redundant. By default, Topcount will sort
in descending order and break any hierarchies. Conversely, Bottomcount will sort in
ascending order. You might want to use Order to force an ascending sort on Topcount
(or a descending sort on Bottomcount).

C h a p t e r 9 : V e n n D i a g r a m s : V i s u a l i z i n g a n d M a n i p u l a t i n g S e t s 1 9 5

Union, Intersect, Except Base Query 2/2
This is the second of our two base queries.

Syntax
-- best cities in 2004

with set [Best Cities in CY 2004] as

order(topcount([Customer].[Customer Geography].[City],10,

([Measures].[Internet Sales Amount],

[Date].[Calendar].[Calendar Year].[CY 2004])),

[Measures].[Internet Sales Amount],bdesc)

select

[Measures].[Internet Sales Amount]

on columns,

[Best Cities in CY 2004]

on rows

from

[Adventure Works]

where [Date].[Calendar].[Calendar Year].[CY 2004]

Result

Analysis
The result shows our ten best cities for CY 2004. Note the list of top cities for CY 2004
is slightly different from the list for CY 2003 (shown in the previous query).

Union
Maybe you want the two lists of cities in one result—the best cities for CY 2003 and
CY 2004. The query has the Union set operator.

1 9 6 P r a c t i c a l M D X Q u e r i e s f o r M i c r o s o f t S Q L S e r v e r A n a l y s i s S e r v i c e s 2 0 0 8

Syntax
-- two years together

with set [Best Cities in CY 2003/2004] as

union(order(topcount([Customer].[Customer Geography].[City],10,

([Measures].[Internet Sales Amount],

[Date].[Calendar].[Calendar Year].[CY 2003])),

[Measures].[Internet Sales Amount],bdesc),

order(topcount([Customer].[Customer Geography].[City],10,

([Measures].[Internet Sales Amount],

[Date].[Calendar].[Calendar Year].[CY 2004])),

[Measures].[Internet Sales Amount],bdesc))

select

[Measures].[Internet Sales Amount]

on columns,

[Best Cities in CY 2003/2004]

on rows

from

[Adventure Works]

where {[Date].[Calendar].[Calendar Year].[CY 2003]

,[Date].[Calendar].[Calendar Year].[CY 2004]}

Result

Analysis
We started with two lists of ten cities each for the two years. Union has put them
together, but there are not 20 cities in the result—there are only 15. If a city appears
in both of the lists, it appears only once after the Union (there is an optional ALL

C h a p t e r 9 : V e n n D i a g r a m s : V i s u a l i z i n g a n d M a n i p u l a t i n g S e t s 1 9 7

third parameter to Union that retains duplicates). For example, London was our best
city in both CY 2003 and CY 2004, yet the union only shows it once. The sales figure
is the total for the two years.

Intersect
Which cities were in our top ten in both years? Here, the set operator is Intersect.

Syntax
-- intersect, cities in both years

with set [Best Cities in CY 2003/2004] as

intersect(order(topcount([Customer].[Customer Geography].[City],10,

([Measures].[Internet Sales Amount],

[Date].[Calendar].[Calendar Year].[CY 2003])),

[Measures].[Internet Sales Amount],bdesc),

order(topcount([Customer].[Customer Geography].[City],10,

([Measures].[Internet Sales Amount],

[Date].[Calendar].[Calendar Year].[CY 2004])),

[Measures].[Internet Sales Amount],bdesc))

select

[Measures].[Internet Sales Amount]

on columns,

[Best Cities in CY 2003/2004]

on rows

from

[Adventure Works]

where {[Date].[Calendar].[Calendar Year].[CY 2003],

[Date].[Calendar].[Calendar Year].[CY 2004]}

Result

Analysis
Five cities (including London) were in our top ten for both years.

1 9 8 P r a c t i c a l M D X Q u e r i e s f o r M i c r o s o f t S Q L S e r v e r A n a l y s i s S e r v i c e s 2 0 0 8

Except 1/2
Which cities dropped out of the top ten from one year to the next? Here we have the
Except operator.

Syntax
-- except these dropped out

with set [Best Cities in CY 2003/2004] as

except(order(topcount([Customer].[Customer Geography].[City],10,

([Measures].[Internet Sales Amount],

[Date].[Calendar].[Calendar Year].[CY 2003])),

[Measures].[Internet Sales Amount],bdesc),

order(topcount([Customer].[Customer Geography].[City],10,

([Measures].[Internet Sales Amount],

[Date].[Calendar].[Calendar Year].[CY 2004])),

[Measures].[Internet Sales Amount],bdesc))

select

[Measures].[Internet Sales Amount]

on columns,

[Best Cities in CY 2003/2004]

on rows

from

[Adventure Works]

where {[Date].[Calendar].[Calendar Year].[CY 2003]}

Result

Analysis
A couple of important points are worth making. CY 2003 appears in the Where slicer.
CY 2003 precedes CY 2004 within the Except. These are the CY 2003 cities that did
not make it as CY 2004 cities.

C h a p t e r 9 : V e n n D i a g r a m s : V i s u a l i z i n g a n d M a n i p u l a t i n g S e t s 1 9 9

Except 2/2
This, in a way, is the reverse of the previous query. Which cities were in our top ten in
CY 2004 that had not been in our top ten in CY 2003?

Syntax
-- except these entered in 2004

with set [Best Cities in CY 2003/2004] as

except(order(topcount([Customer].[Customer Geography].[City],10,

([Measures].[Internet Sales Amount],

[Date].[Calendar].[Calendar Year].[CY 2004])),

[Measures].[Internet Sales Amount],bdesc),

order(topcount([Customer].[Customer Geography].[City],10,

([Measures].[Internet Sales Amount],

[Date].[Calendar].[Calendar Year].[CY 2003])),

[Measures].[Internet Sales Amount],bdesc)

)

select

[Measures].[Internet Sales Amount]

on columns,

[Best Cities in CY 2003/2004]

on rows

from

[Adventure Works]

where {[Date].[Calendar].[Calendar Year].[CY 2004]}

Result

Analysis
This time we have CY 2004 in the Where clause and CY 2004 precedes CY 2003
within the Except. It’s probably a good idea to spend some time comparing this query
with the previous one.

2 0 0 P r a c t i c a l M D X Q u e r i e s f o r M i c r o s o f t S Q L S e r v e r A n a l y s i s S e r v i c e s 2 0 0 8

Head
Here are two queries and two cellsets demonstrating the use of the Head function.

Syntax
-- head first one

select

head([Date].[Fiscal].[Fiscal Quarter],1)

on columns

from

[Adventure Works]

-- head first two

select

head([Date].[Fiscal].[Fiscal Quarter],2)

on columns

from

[Adventure Works]

Result

Analysis
Head with a parameter of 1 is the same as .Item(0). (Technically, there is a difference
in that Head returns a set of one item and .Item simply returns an item.) .Item is zero
based and returns one tuple/member from a set. Head is one based and can return
multiple members. The second result shows the first two quarters in the Fiscal Quarter
hierarchy.

Subset
Show me the second fiscal quarter followed by the next two quarters. This query
introduces Subset.

C h a p t e r 9 : V e n n D i a g r a m s : V i s u a l i z i n g a n d M a n i p u l a t i n g S e t s 2 0 1

Syntax
-- second quarter then the next two

select

subset([Date].[Fiscal].[Fiscal Quarter],1,3)

on columns

from

[Adventure Works]

Result

Analysis
Subset takes two numeric parameters. The first parameter is the start position of a
member. The second parameter is the number of members to return. The parameters
are not intuitive. Subset (like .Item and unlike Head) starts at zero. Thus, our query
starts at the second fiscal quarter. The second parameter is how many members to
return, including the first member.

Tail
You wish to display the last two fiscal quarters. This is the Tail function.

Syntax
-- tail

select

tail([Date].[Fiscal].[Fiscal Quarter],2)

on columns

from

[Adventure Works]

Result

2 0 2 P r a c t i c a l M D X Q u e r i e s f o r M i c r o s o f t S Q L S e r v e r A n a l y s i s S e r v i c e s 2 0 0 8

Analysis
If you omit the second numeric parameter for Tail, it defaults to 1. The same applies
to Head.

Subset with Count
Count gives you the number of members in a set. Here it’s combined with Subset.

Syntax
-- fifth last then two more

select

subset([Date].[Fiscal].[Fiscal Quarter],

[Date].[Fiscal].[Fiscal Quarter].count-5,3)

on columns

from

[Adventure Works]

Result

Analysis
Count-5 returns the fifth last member. Then we show a total of three members
including that one.

Nonvisual Totals
A normal MDX Select shows any totals as nonvisual totals. This query has the
total for All Periods and the values that help make up that total for three individual
calendar years.

Syntax
-- non visual totals

select

{[Date].[Calendar],[Date].[Calendar].[Calendar Year].[CY 2002]:

[Date].[Calendar].[Calendar Year].[CY 2004]}

on columns

from

[Adventure Works]

C h a p t e r 9 : V e n n D i a g r a m s : V i s u a l i z i n g a n d M a n i p u l a t i n g S e t s 2 0 3

Result

Analysis
The query deliberately omitted two calendar years. However, if you add the values
for the three years shown and subtract that from the All Periods total, you can work
out the combined value for the two missing years.

Visual Totals
This may be the preferable behavior. The figure for All Periods is different from the last
query. In SSAS and MDX, this is known as a visual total.

Syntax
-- visual totals

select

visualtotals({[Date].[Calendar],[Date].[Calendar].[Calendar Year]

.[CY 2002]:[Date].[Calendar].[Calendar Year].[CY 2004]})

on columns

from

[Adventure Works]

Result

Analysis
Notice the all-important change to the value for All Periods. This is achieved by the
VisualTotals function. Now it’s impossible to figure out the combined sales for the two
missing calendar years. If this is the behavior you want, you must specify it. Subselects
and subcubes (introduced in the next chapter) are exactly the opposite. By default,
subselects and subcubes use visual totals. Should you want nonvisual totals in subselects
and subcubes, you have to explicitly ask for them.

2 0 4 P r a c t i c a l M D X Q u e r i e s f o r M i c r o s o f t S Q L S e r v e r A n a l y s i s S e r v i c e s 2 0 0 8

Note that the reference to All Periods must come first. The following query does not
produce the same result:

Select

visualtotals({[Date].[Calendar].[Calendar Year].[CY 2002]:

[Date].[Calendar].[Calendar Year].[CY 2004],[Date].[Calendar]})

on columns

from

[Adventure Works]

Named Sets 1/2
Named sets simplify your columns or rows specification in the Select part of the query.
Here the named set is Europe.

Syntax
-- with set - gives a named set

with set [Europe] as

{[Customer].[Customer Geography].[Country].[France],

[Customer].[Customer Geography].[Country].[Germany],

[Customer].[Customer Geography].[Country].[United Kingdom]}

select

[Europe]

on columns

from

[Adventure Works]

where [Measures].[Internet Sales Amount]

Result

Analysis
With Set is query scoped. You can’t reuse [Europe] in another query, unless you repeat
the With Set.

Named Sets 2/2
Here are three queries for you to try. Be sure to run them separately. The result shown is
for the Select query only.

C h a p t e r 9 : V e n n D i a g r a m s : V i s u a l i z i n g a n d M a n i p u l a t i n g S e t s 2 0 5

Syntax
-- create set - gives a set

create set [Adventure Works].[Europe] as

{[Customer].[Customer Geography].[Country].[France],

[Customer].[Customer Geography].[Country].[Germany],

[Customer].[Customer Geography].[Country].[United Kingdom]}

-- select from named set

select

[Europe]

on columns

from

[Adventure Works]

where [Measures].[Internet Sales Amount]

-- drop set

drop set [Adventure Works].[Europe]

Result

Analysis
If you wanted, before you dropped the named set, you could run the Select again or
write another Select query (in the same query editor window) that specified [Europe]
on its columns or rows. Create Set is session scoped.

MeasureGroupMeasures
You can create a set of measures members by listing each measure individually. However,
if all the measures belong to the same measure group, the following is a convenient
shorthand.

Syntax
-- all measures in a measure group as a set

select MeasureGroupMeasures("Internet Sales") on columns

from

[Adventure Works]

2 0 6 P r a c t i c a l M D X Q u e r i e s f o r M i c r o s o f t S Q L S e r v e r A n a l y s i s S e r v i c e s 2 0 0 8

Result

Analysis
Notice that this function requires the name of a measure group and not that of a
measure. In addition, the measure group name has to be in quotes—both single and
double quotes work. Measure groups are part of your cube design back in BIDS.
A measure group usually (but not necessarily always) corresponds to a fact table in the
source relational star schema database. Both star schema and cube design are beyond
the scope of an MDX query book.

Extract 1/2
If you have a series of complex set operations that returns a crossjoin, you may be interested
in removing just one hierarchy from that crossjoin. This is where Extract might be useful.
The following is a base query for the Extract shown in the next query.

Syntax
-- extract reversing a crossjoin 1/2

select

crossjoin([Reseller].[Reseller Type].[Business Type],

{[Product].[Product Categories].[Bikes],

[Product].[Product Categories].[Clothing]})

on columns

from

[Adventure Works]

Result

Analysis
Hopefully you are beginning to feel comfortable with crossjoins.

Extract 2/2
Note that the Extract appears outside the Crossjoin function.

C h a p t e r 9 : V e n n D i a g r a m s : V i s u a l i z i n g a n d M a n i p u l a t i n g S e t s 2 0 7

Syntax
-- extract reversing a crossjoin 2/2

select

extract(crossjoin([Reseller].[Reseller Type].[Business Type],

{[Product].[Product Categories].[Category].[Bikes],

[Product].[Product Categories].[Category].[Clothing]}),

[Product].[Product Categories])

on columns

from

[Adventure Works]

Result

Analysis
The Extract function has returned the members of the Product Categories hierarchy
from the Crossjoin function.

Sorting Non-measure Dimensions 1/4
Elsewhere in the book, you saw how to sort cells using the Order function. We sorted
them on the values of measures (for example, sorting by decreasing sales). This and the
next few queries introduce you to a different kind of sorting—sorting sets of members
alphabetically.

Syntax
-- alphabetical sort on product subcategory breaking

-- hierarchy

select

[Measures].[Reseller Sales Amount]

on columns,

order([Product].[Product Categories].[Subcategory],

[Product].[Product Categories].currentmember.member_name,bdesc)

on rows

from

[Adventure Works]

2 0 8 P r a c t i c a l M D X Q u e r i e s f o r M i c r o s o f t S Q L S e r v e r A n a l y s i s S e r v i c e s 2 0 0 8

Result

Analysis
The subcategories are sorted alphabetically in descending order (using .currentmember
.member_name). Also, the sort ignores the hierarchy—the category to which a subcategory
belongs is ignored (Bdesc).

Sorting Non-measure Dimensions 2/4
This example has no explicit Order function. Yet, there does appear to be some
ordering—at least some of the rows.

Syntax
-- ordering within hierarchies 1/2

select

[Measures].[Reseller Sales Amount]

on columns,

{[Product].[Product Categories].[Category],

[Product].[Product Categories].[Subcategory]}

on rows

from

[Adventure Works]

C h a p t e r 9 : V e n n D i a g r a m s : V i s u a l i z i n g a n d M a n i p u l a t i n g S e t s 2 0 9

Result

Analysis
Here we asked for categories first—Accessories, Bikes, Clothing, and Components.
These are arranged alphabetically, without an explicit Order function that is controlled by
the OrderBy property in BIDS. Here it happens to be set to Name. Then we requested
subcategories. These are sorted alphabetically up to a point. Notice the two rows for Tires
and Tubes and Mountain Bikes cause the sort to stop working. The sort on subcategories
does not break the hierarchy. Tires and Tubes is part of Accessories, and Mountain
Bikes is part of Bikes. Within the hierarchy, the sort is dictated by the OrderBy property
in BIDS—again it’s Name. The next query demonstrates a different approach.

Sorting Non-measure Dimensions 3/4
Possibly, this looks better. Accessories is no longer followed by Bikes, another category.
Rather, Accessories is followed by the subcategories in Accessories—before Bikes and
its own subcategories begin. The categories appear in alphabetical order, as do the
subcategories within their own categories.

Syntax
-- ordering within hierarchies 2/2

select

[Measures].[Reseller Sales Amount]

on columns,

2 1 0 P r a c t i c a l M D X Q u e r i e s f o r M i c r o s o f t S Q L S e r v e r A n a l y s i s S e r v i c e s 2 0 0 8

order({[Product].[Product Categories].[Category],

[Product].[Product Categories].[Subcategory]},

[Product].[Product Categories].currentmember.member_name)

on rows

from

[Adventure Works]

Result

Analysis
The Order function here operates not on one level but on two levels, Category and
Subcategory. This is achieved by converting Category and Subcategory members into
a single set by using braces. The sort is alphabetic using .currentmember.member_name.

Sorting Non-measure Dimensions 4/4
This is a nice variation on the previous query. We are still sorting within hierarchies but
in combination with a traditional Order on a measure.

Syntax
-- ordering within hierarchies and by measure

select

[Measures].[Reseller Sales Amount]

on columns,

order({[Product].[Product Categories].[Category],

[Product].[Product Categories].[Subcategory]},

C h a p t e r 9 : V e n n D i a g r a m s : V i s u a l i z i n g a n d M a n i p u l a t i n g S e t s 2 1 1

[Measures].[Reseller Sales Amount],desc)

on rows

from

[Adventure Works]

Result

Analysis
Here we have sorted by category and by subcategory within each category on the
Reseller Sales Amount. For example, Road Bikes and Mountain Bikes are no longer in
alphabetical sequence. Also note that Accessories is no longer the first category—you
will have to scroll down to see it.

Dimension Properties
For once, we don’t have measures in our first column. An occupation such as Clerical is
not a measure—it’s a dimension attribute member. The Occupation attribute is related to
the Customer attribute hierarchy—it is not part of the same hierarchy. When attributes
are related this way, they are called member properties. Because they also live in the same
dimension, they are also referred to as dimension properties.

Syntax
-- dimension properties

with member [Measures].[Occupation] as

[Customer].[Customer].currentmember.properties("occupation")

select

{[Measures].[Occupation],[Measures].[Internet Order Count]}

on columns,

[Customer].[Customer].[Customer]

on rows

2 1 2 P r a c t i c a l M D X Q u e r i e s f o r M i c r o s o f t S Q L S e r v e r A n a l y s i s S e r v i c e s 2 0 0 8

from

[Adventure Works]

where

[Customer].[Customer Geography].[State-Province].[South Australia]

Result

Analysis
We have an interesting result that is ideal for BI reports. Note the syntax
.currentmember.properties(“occupation”). Member properties are set up in BIDS when
you create an attribute relationship between two attributes and those two attributes do
not participate in a user hierarchy. Attribute relationship design is beyond the scope
of this book, but you don’t need BIDS to see them. They are visible in your MDX
query editor in SSMS. You might want to try this: In the Metadata pane, expand the
Customer dimension, then the Customer attribute hierarchy, then the Customer level
in that hierarchy, and finally the Member Properties folder in that level. You should see
Occupation in the list of member properties. The following query produces the same
result (in certain circumstances, it may even perform better):

with member [Measures].[Occupation] as

[Customer].[Occupation].currentmember.name

select

{[Measures].[Occupation],[Measures].[Internet Order Count]}

on columns,

[Customer].[Customer].[Customer]

on rows

from

[Adventure Works]

where

[Customer].[Customer Geography].[State-Province].[South Australia]

C h a p t e r 9 : V e n n D i a g r a m s : V i s u a l i z i n g a n d M a n i p u l a t i n g S e t s 2 1 3

Sorting by Dimension Properties
Maybe you want to sort your customers by occupation. Yes, it is possible to order on a
member property.

Syntax
-- ordering by dimension property

with member [Measures].[Occupation] as

[Customer].[Customer].currentmember.properties("occupation")

select

{[Measures].[Occupation],[Measures].[Internet Order Count]}

on columns,

order([Customer].[Customer].[Customer],[Measures].[Occupation],asc)

on rows

from

[Adventure Works]

where

[Customer].[Customer Geography].[State-Province].[South Australia]

Result

Analysis
This is quite a useful technique. First, the member property is converted to a measure,
[Measures].[Occupation]. Second, the Order function uses that measure as the basis for
the sort.

2 1 4 P r a c t i c a l M D X Q u e r i e s f o r M i c r o s o f t S Q L S e r v e r A n a l y s i s S e r v i c e s 2 0 0 8

Missing Member Caused by a Typo
Sometimes your sets may include missing members. These may be caused either by
typos or by not understanding a member’s position in a hierarchy. Both are easily done,
so it’s good to be aware of the problem and how to stop it happening. The next few
queries investigate further.

Syntax
-- missing member due to a typo

select

{[Customer].[Customer Geography].[Country].[United Kingdom],

[Customer].[Customer Geography].[Country].[UK]}

on columns

from

[Adventure Works]

where [Measures].[Internet Sales Amount]

Result

Analysis
Oops, a typo. There is a country called United Kingdom in the country level, but not
one called UK. You can spot this by observing that UK simply doesn’t show.

Missing Member Caused by a Non-Typo 1/2
The problem here is harder to identify. Is it a typo I made or a logic error of some kind?
If you expand the Metadata pane, you can see that Quebec is a valid member of the
State-Province level.

Syntax
-- missing member due to a non-typo on one axis

select

crossjoin({[Customer].[Customer Geography].[Country].[United Kingdom]},

{[Customer].[State-Province].[Quebec],

[Customer].[State-Province].[England]})

on columns

C h a p t e r 9 : V e n n D i a g r a m s : V i s u a l i z i n g a n d M a n i p u l a t i n g S e t s 2 1 5

from

[Adventure Works]

where [Measures].[Internet Sales Amount]

Result

Analysis
Quebec has disappeared. This is not a typo. I simply wasn’t aware that Quebec is maybe
not in the United Kingdom! Let’s try it on two axes rather than one.

Missing Member Caused by a Non-Typo 2/2
Instead of a crossjoin on one axis, let’s see what happens to Quebec when we use two
axes. So, there is no crossjoin this time.

Syntax
-- missing member due to a non-typo on two axes

select

{[Customer].[Customer Geography].[Country].[United Kingdom]}

on columns,

{[Customer].[State-Province].[Quebec],[Customer].[State-Province]

.[England]}

on rows

from

[Adventure Works]

where [Measures].[Internet Sales Amount]

Result

Analysis
Quebec is back. This result is quite strange—it would seem to show that Quebec is in
the United Kingdom, only sales were not very good there. Not sure what’s happening
here. To those of you who like looking at maps, after I wrote this query I discovered

2 1 6 P r a c t i c a l M D X Q u e r i e s f o r M i c r o s o f t S Q L S e r v e r A n a l y s i s S e r v i c e s 2 0 0 8

a tiny village called Quebec in the United Kingdom! By Quebec, I mean the Quebec
that is a province of Canada and is at the State-Province level.

Hiding Non-Typo Missing Members 1/2
This is a preferable result. Note the inclusion of the Exists function.

Syntax
-- missing member suppressed by exists

select

{[Customer].[Customer Geography].[Country].[United Kingdom]}

on columns,

exists({[Customer].[State-Province].[Quebec],

[Customer].[State-Province].[England]},

{[Customer].[Customer Geography].[Country].[United Kingdom]}

)

on rows

from

[Adventure Works]

where [Measures].[Internet Sales Amount]

Result

Analysis
The Exists function is checking to see if Quebec and England are children of the
United Kingdom. It only returns the ones (in this case, only England) that evaluate to
true. If we had had Scotland in the dimension, that would have appeared even if it had
null sales.

Hiding Non-Typo Missing Members 2/2
An alternative approach is simply to have a Where clause in the MDX.

Syntax
-- missing member suppressed by where clause

select

C h a p t e r 9 : V e n n D i a g r a m s : V i s u a l i z i n g a n d M a n i p u l a t i n g S e t s 2 1 7

{[Customer].[State-Province].[Quebec],[Customer].[State-Province]

.[England]}

on columns

from

[Adventure Works]

where ([Measures].[Internet Sales Amount],

[Customer].[Customer Geography].[Country].[United Kingdom])

Result

Analysis
This works fine, too. Perhaps the Exists version is a little more elegant, and it allows us
to see United Kingdom in the grid.

More on Exists 1/3
This is a really careless query—easily done when you don’t know the data well. Because
cubes can contain millions of members, it’s not difficult to build meaningless sets as is
done here.

Syntax
-- Mountain-100 Black, 44 is not in Components

select [Product].[Category].[Components] on columns,

{[Product].[Product].[Product].[ML Fork],

[Product].[Product].[Product].[Chain],

[Product].[Product].[Mountain-100 Black, 44]}

on rows

from

[Adventure Works]

Result

2 1 8 P r a c t i c a l M D X Q u e r i e s f o r M i c r o s o f t S Q L S e r v e r A n a l y s i s S e r v i c e s 2 0 0 8

Analysis
Chain is in Components. ML Fork is in Components with null sales. Mountain-100
Black, 44 is in Bikes not Components. Our results are wrong!

More on Exists 2/3
Let’s try and get rid of Mountain-100 Black, 44 with a clever Non Empty.

Syntax
-- but ML Fork is!

select [Product].[Category].[Components] on columns,

non empty {[Product].[Product].[Product].[ML Fork],

[Product].[Product].[Product].[Chain],

[Product].[Product].[Mountain-100 Black, 44]}

on rows

from

[Adventure Works]

Result

Analysis
That’s cool—Mountain-100 Black, 44 has gone. Chain is indeed a child of Components,
but it’s still not right. ML Fork, which is in Components, has gone, too. The next query
fixes this.

More on Exists 3/3
Here’s one final attempt at solving the riddle of missing members. Non Empty has
been replaced by the Exists function.

Syntax
-- ML Fork

select [Product].[Category].[Components] on columns,

exists({[Product].[Product].[Product].[ML Fork],

[Product].[Product].[Product].[Chain],

C h a p t e r 9 : V e n n D i a g r a m s : V i s u a l i z i n g a n d M a n i p u l a t i n g S e t s 2 1 9

[Product].[Product].[Mountain-100 Black, 44]},

[Product].[Category].[Components])

on rows

from

[Adventure Works]

Result

Analysis
We got there at last. ML Fork is a child of Components (even if sales were pretty bad).
The purpose of this query (using Exists) and the previous query (using Non Empty) is
to illustrate the subtle but vital difference between Non Empty and Exists. When you
suspect missing members are not caused by typos, then Exists is a safe bet.

Counting Members in a Set
Here’s quite a common request: How many customers do we have? We need to
establish the number of members in a set. There are two ways of counting. Two queries
to run separately.

Syntax
-- how many customers? 1/2

with member [Measures].[Customers] as

count([Customer].[Customer].[Customer])

select

[Measures].[Customers]

on columns

from

[Adventure Works]

-- how many customers? 2/2

with member [Measures].[Customers] as

[Customer].[Customer].[Customer].count

select

[Measures].[Customers]

on columns

from

[Adventure Works]

2 2 0 P r a c t i c a l M D X Q u e r i e s f o r M i c r o s o f t S Q L S e r v e r A n a l y s i s S e r v i c e s 2 0 0 8

Result

Analysis
Same result from both queries: There are 18,484 customers. First, we used the Count
method function. Second, we used the .count property function.

Views on Cubes:
Working with Subcubes

Chapter 10

2 2 2 P r a c t i c a l M D X Q u e r i e s f o r M i c r o s o f t S Q L S e r v e r A n a l y s i s S e r v i c e s 2 0 0 8

If you are familiar with SQL, you may use views. One use of a view on a relational
table is to present only a part of the table. Often, you will want to work on only
a part of a cube. The SSAS versions of SQL views are called perspectives, subselects,

and subcubes. In this chapter we get to exploit those perspectives, subselects, and
subcubes.

Key concepts Views on cubes, visual totals

Keywords Select, Non Visual, .defaultmember, Create Subcube

Select from a Perspective
These two queries are only relevant if you have the Enterprise edition of SSAS (you
may want to move on to the next query if you don’t have the Enterprise edition). The
Enterprise edition supports an aspect of cube design called a perspective. The Standard
edition does not include support for perspectives. A perspective reveals only a portion
of the cube to your MDX queries. Perspectives are created at design time back in BIDS
and their design is beyond the scope of this book. If you do have perspectives, they
can be seen in the Perspectives tab of your cube design. A perspective is analogous to
a single-table view on a relational database. Perspectives are related to the virtual
cubes feature of Analysis Services 2000. They differ from subselects and subcubes.
Subselects and subcubes (discussed in the next few queries) are created in your MDX;
perspectives are predefined.

Syntax
-- select from a perspective

select

[Measures].[Internet Sales Amount]

on columns

from

[Direct Sales]

select

[Measures].[Reseller Sales Amount]

on columns

from

[Direct Sales]

Result

C h a p t e r 1 0 : V i e w s o n C u b e s : W o r k i n g w i t h S u b c u b e s 2 2 3

Analysis
If you attempted both the queries, you will see that the preceding result only occurs
with the first query. The second query returns absolutely nothing. The reason is that
Internet Sales Amount is a measure included in the perspective (Direct Sales), whereas
Reseller Sales Amount is not, even though the latter is part of the larger Adventure
Works cube. Notice we are not using the cube name in the From clause.

Base Query for Subselects
A subselect is a Select within a Select. Subselects are analogous to subqueries in SQL.
Before we embark on a short tour of subselects, here’s a base query.

Syntax
-- base query for subselect

select

[Sales Reason].[Sales Reasons].[Reason Type]

on columns

from

[Adventure Works]

where [Measures].[Internet Sales Amount]

Result

Analysis
Nothing complicated. But note the value ($18,678,948.02) in the cell for sale reason
Other.

Subselect 1/2
A subselect requires that you replace the cube name in the From clause with another
complete and self-contained Select. The inner Select must be self-standing—that is, it
will function as a query if run by itself.

Syntax
-- subselect 1/2

select

2 2 4 P r a c t i c a l M D X Q u e r i e s f o r M i c r o s o f t S Q L S e r v e r A n a l y s i s S e r v i c e s 2 0 0 8

[Sales Reason].[Sales Reasons].[Reason Type]

on columns

from

(select

[Sales Reason].[Sales Reasons].[Reason Type].[Other]

on columns

from

[Adventure Works]

)

where [Measures].[Internet Sales Amount]

Result

Analysis
The subselect restricts the outer query to only seeing the sales reason type Other. The
other reason types are not available to the outer query. Note that the Where clause is
outside the subselect and slices on Internet Sales Amount.

Subselect 2/2
This version of the previous subselect is subtly different. It’s going to return an
invalid result—the Sales Reason dimension is not related to the Reseller Sales
measure group in the cube design. If you are familiar with BIDS, take a look at the
IgnoreUnrelatedDimensions property for measure groups—you can use that to suppress
the cell value.

Syntax
-- subselect 2/2

select

[Sales Reason].[Sales Reasons].[Reason Type]

on columns

from

(select

[Sales Reason].[Sales Reasons].[Reason Type].[Other]

on columns

from

[Adventure Works]

where [Measures].[Internet Sales Amount])

C h a p t e r 1 0 : V i e w s o n C u b e s : W o r k i n g w i t h S u b c u b e s 2 2 5

Result

Analysis
The single cell displays the Reseller Sales Amount and not the Internet Sales Amount.
In this version, the Where slicer is inside the subselect and not part of the outer query
(contrast this with the last query). The outer query does not specify any measure, so the
default measure (Reseller Sales Amount) is applied. This may be counterintuitive, but
it’s how subselects work and it’s worth knowing.

Visual Totals
Subselects, by default, use an SSAS feature called visual totals. If you are an SSAS
administrator and get involved in cube and dimension security, you might have already
met visual totals. It really is a clever concept.

Syntax
-- visual totals

select

{[Date].[Calendar],[Date].[Calendar].[Calendar Year].members}

on columns

from

(select [Date].[Calendar].[Calendar Year].[CY 2002]:

[Date].[Calendar].[Calendar Year].[CY 2004] on columns

from [Adventure Works])

Result

Analysis
The subselect suppresses two years (CY 2001 and CY 2006). The All Periods total is
the total for only those years allowed in the subselect. There is no way of deducing the
possible sales for the two missing years.

2 2 6 P r a c t i c a l M D X Q u e r i e s f o r M i c r o s o f t S Q L S e r v e r A n a l y s i s S e r v i c e s 2 0 0 8

Nonvisual Totals
Note the use of Non Visual between the From and the subselect.

Syntax
-- non-visual totals

select

{[Date].[Calendar],[Date].[Calendar].[Calendar Year].members}

on columns

from

non visual

(select [Date].[Calendar].[Calendar Year].[CY 2002]:

[Date].[Calendar].[Calendar Year].[CY 2004] on columns

from [Adventure Works])

Result

Analysis
The figure for All Periods is different. This happens to be the “real” total for All
Periods. The previous query gave an “apparent” total. This time it’s possible to work
out the total for the two missing years by adding together CY 2002, CY 2003, and CY
2004 before subtracting that result from the All Periods value. Whether or not you have
visual totals is a business decision.

Default Measure of a Cube
We’ll soon be looking at subcubes. Subcubes are similar to subselects. One of the main
differences you will find is that a subselect is part of one, and only one, query—it’s
query scoped. A subcube is session-scoped and can be used by multiple queries. Before
we move on, it might be helpful to remind ourselves of the default measure of the cube.

Syntax
-- cube default measure

select [Measures].defaultmember

on columns

from

[Adventure Works]

C h a p t e r 1 0 : V i e w s o n C u b e s : W o r k i n g w i t h S u b c u b e s 2 2 7

Result

Analysis
The query contains the .defaultmember property function to verify that Reseller Sales
Amount is the default measure. You might want to try .defaultmember against some of
your non-measure dimension hierarchies.

Creating a Subcube
Subcubes are created differently from subselects. A subcube requires a Create statement.
It does not return a cellset as it’s created.

Syntax
-- a subcube

create subcube [Adventure Works] as

select

[Sales Reason].[Sales Reasons].[Reason Type].[Other]

on columns,

[Measures].[Internet Sales Amount]

on rows

from

[Adventure Works]

Result

Analysis
There are a few things to point out here. The Select does not actually execute because
there is no cellset. The Select appears after the keyword As. The subcube must have
the same name as the cube from which it’s derived. Our subcube is called Adventure
Works. The original Adventure Works cube has disappeared; fortunately, we can get it
back! For the next query to work, don’t close your query editor window.

2 2 8 P r a c t i c a l M D X Q u e r i e s f o r M i c r o s o f t S Q L S e r v e r A n a l y s i s S e r v i c e s 2 0 0 8

Default Measure of a Subcube
[Adventure Works] in the From clause is the subcube, not the cube. It will only work
as a subcube if you try this example in the same query window as the Create Subcube
syntax.

Syntax
-- subcube default measure

select [Measures].defaultmember

on columns

from

[Adventure Works]

Result

Analysis
The subcube contains only one measure, Internet Sales Amount. This is now our
default measure. Be sure to keep your query editor window open for the next query.

Querying a Subcube
Querying a subcube is the same as querying a cube.

Syntax
-- querying a subcube

select

[Sales Reason].[Sales Reasons].[Reason Type]

on columns

from

[Adventure Works]

Result

C h a p t e r 1 0 : V i e w s o n C u b e s : W o r k i n g w i t h S u b c u b e s 2 2 9

Analysis
There is only one sales reason type (Other) because that was the only one specified in
the Select during subcube creation.

Dropping a Subcube
To get back to the original cube, you have to drop the subcube.

Syntax
-- drop subcube

drop subcube [Adventure Works]

Result

Analysis
After this query has been run, your Select statements will work against the whole
cube and no longer against the subcube. A less elegant approach involves closing and
reopening the query editor window.

Subcube with Visual Totals
Now try the following three queries. Run them one at a time—the Create first (including
the Select in parentheses), the standalone Select second, and, finally, the Drop.

Syntax
-- another subcube (visual totals)

create subcube [Adventure Works] as

(select [Date].[Calendar].[Calendar Year].[CY 2002]:

[Date].[Calendar].[Calendar Year].[CY 2004] on columns

from [Adventure Works])

-- query the subcube

select

{[Date].[Calendar],[Date].[Calendar].[Calendar Year].members}

on columns

from

[Adventure Works]

-- drop the subcube

drop subcube [Adventure Works]

2 3 0 P r a c t i c a l M D X Q u e r i e s f o r M i c r o s o f t S Q L S e r v e r A n a l y s i s S e r v i c e s 2 0 0 8

Result

Analysis
The three years add up to equal All Periods. Subcubes, by default (and like subselects), use
visual totals. Only the result of the standalone Select is shown.

Subcube with Nonvisual Totals
Three separate steps again. Note the introduction of Non Visual immediately after
the keyword As.

Syntax
-- another subcube (non visual totals)

create subcube [Adventure Works] as

non visual

(select [Date].[Calendar].[Calendar Year].[CY 2002]:

[Date].[Calendar].[Calendar Year].[CY 2004] on columns

from [Adventure Works])

-- query the subcube

select

{[Date].[Calendar],[Date].[Calendar].[Calendar Year].members}

on columns

from

[Adventure Works]

-- drop the subcube

drop subcube [Adventure Works]

Result

Analysis
If you compare the All Periods cell with that of the last query, you can see the difference
between subcubes with visual totals and those with nonvisual totals. The choice is yours.

Not All There: Dealing
with Empty Cells

Chapter 11

2 3 2 P r a c t i c a l M D X Q u e r i e s f o r M i c r o s o f t S Q L S e r v e r A n a l y s i s S e r v i c e s 2 0 0 8

Cubes are often pretty big. They contain lots and lots of data. However, there will
also be many gaps. For example, it’s unlikely that every customer bought every
product on every single day. There will be missing or null data. Sometimes, you

want to see null values—maybe zero sales are of interest. Sometimes, the null values are
a distraction and you will want to hide them. This chapter concentrates on displaying
and hiding empty cells.

Key concepts Different ways of hiding empty cells

Keywords Non Empty, NonEmpty

Empty Cells
Often your queries will return empty cells. This may or may not be the result you
desire. Sometimes, empty cells are simply a distraction and occupy too much real estate.
Sometimes, empty cells reveal important information (for example, showing times
when there were no sales).

Syntax
-- returns empty cells

select

{[Product].[Product Categories].[Category].[Accessories]}

on columns,

{[Date].[Calendar].[Calendar Year]} on rows

from

[Adventure Works]

where [Measures].[Internet Order Quantity]

Result

Analysis
The default behavior of MDX is to show empty cells. Here, the years CY 2001, CY
2002, and CY 2006 have empty cells for the Internet Order Quantity for Accessories.
You might wish to hide these cells in your results. CY 2005 is missing altogether. This

C h a p t e r 1 1 : N o t A l l T h e r e : D e a l i n g w i t h E m p t y C e l l s 2 3 3

does not simply mean no sales for that year; it means the year itself is absent from the
cube data.

Hiding Empty Cells
This time we have decided to suppress the empty cells using the Non Empty syntax.
Whether you show or hide empty cells is a business decision.

Syntax
-- hides empty cells

select

{[Product].[Product Categories].[Category].[Accessories]}

on columns,

non empty {[Date].[Calendar].[Calendar Year]} on rows

from

[Adventure Works]

where [Measures].[Internet Order Quantity]

Result

Analysis
Note that Non Empty is two words; it’s an MDX operator and does not require the use
of parentheses. The effect is to hide the three years shown in the previous query that
returned empty cells.

Another Way to Hide Cells
This time we have the NonEmpty function rather than the Non Empty operator. Try it,
if you want, and notice the results are different from the previous query.

Syntax
-- hides one empty cell but not others

select

{[Product].[Product Categories].[Category].[Accessories]}

on columns,

2 3 4 P r a c t i c a l M D X Q u e r i e s f o r M i c r o s o f t S Q L S e r v e r A n a l y s i s S e r v i c e s 2 0 0 8

nonempty({[Date].[Calendar].[Calendar Year]}) on rows

from

[Adventure Works]

where [Measures].[Internet Order Quantity]

Result

Analysis
Note that, this time, NonEmpty is one word and uses parentheses. NonEmpty is an
MDX function. It often gives different results from the Non Empty operator. Maybe
you were not expecting these results. CY 2006 is hidden, but CY 2001 and CY 2002
have returned even though there are two empty cells! This behavior is explored in the
next couple queries.

More on NonEmpty
To try and establish whether the last query returned incorrect results, let’s swap the
Columns set with the measure in the Where clause.

Syntax
-- hides just the one empty cell

select

{[Measures].[Internet Order Quantity]}

on columns,

nonempty({[Date].[Calendar].[Calendar Year]}) on rows

from

[Adventure Works]

where [Product].[Product Categories].[Category].[Accessories]

Result

C h a p t e r 1 1 : N o t A l l T h e r e : D e a l i n g w i t h E m p t y C e l l s 2 3 5

Analysis
Not much luck! Why does one year get hidden and two years are shown with empty
cells? When you first meet this behavior, it might seem quite strange. To resolve the
paradox, take a look at the next few queries.

Explaining NonEmpty
This query adds another measure on the Columns axis. The NonEmpty function has
been temporarily removed to help resolve its behavior.

Syntax
-- adding an extra measure

select

{[Measures].[Internet Order Quantity],[Measures].[Reseller Sales Amount]}

on columns,

{[Date].[Calendar].[Calendar Year]} on rows

from

[Adventure Works]

where [Product].[Product Categories].[Category].[Accessories]

Result

Analysis
There are three empty cells for Internet Order Quantity and one empty cell for Reseller
Sales Amount. Both of the measures have empty cells for CY 2006.

NonEmpty with a Different Measure
Here we are using the new measure by itself to see what happens when NonEmpty is
reintroduced. The query is identical (apart from the measure chosen) to the one that
used Internet Order Quantity earlier.

2 3 6 P r a c t i c a l M D X Q u e r i e s f o r M i c r o s o f t S Q L S e r v e r A n a l y s i s S e r v i c e s 2 0 0 8

Syntax
-- the extra measure alone seems to work

select

{[Measures].[Reseller Sales Amount]}

on columns,

nonempty({[Date].[Calendar].[Calendar Year]}) on rows

from

[Adventure Works]

where [Product].[Product Categories].[Category].[Accessories]

Result

Analysis
This time, it works as expected. The single empty cell for CY 2006 for Reseller Sales
Amount is suppressed. Confusing? Why does it appear to work for one measure yet
not for another measure? The next query might help.

This Time NonEmpty Produces Different Results
The NonEmpty function (unlike the Non Empty operator) accepts an extra parameter.
Here the parameter is Internet Order Quantity for the first query, and for the second
query it’s Reseller Sales Amount.

Syntax
-- nonempty with a measure specified for the empty test

select

{[Measures].[Internet Order Quantity] ,[Measures].[Reseller Sales Amount]}

on columns,

nonempty({[Date].[Calendar].[Calendar Year]},[Measures]

.[Internet Order Quantity]) on rows

from

[Adventure Works]

where [Product].[Product Categories].[Category].[Accessories]

-- nonempty with a different measure specified for the empty test

select

{[Measures].[Internet Order Quantity] ,[Measures].[Reseller Sales Amount]}

on columns,

C h a p t e r 1 1 : N o t A l l T h e r e : D e a l i n g w i t h E m p t y C e l l s 2 3 7

nonempty({[Date].[Calendar].[Calendar Year]},

[Measures].[Reseller Sales Amount]) on rows

from

[Adventure Works]

where [Product].[Product Categories].[Category].[Accessories]

Result

Analysis
At last! If you examine the result from the first query, it finally displays the answer we
were expecting earlier. The empty cells for CY 2001, CY 2002, and CY 2006 for Internet
Order Quantity are hidden. If you were to remove the Reseller Sales Amount from
the Columns axis, you would arrive at the same results for Internet Order Quantity.
The second parameter for NonEmpty is the measure to test for emptiness—it’s looking
for empty cells for Internet Order Quantity.

The second query tests Reseller Sales Amount for emptiness. When you look at the
Internet Order Quantity column, you will notice that the output is the same as when
we first used the NonEmpty function a few queries ago. To verify this, try removing
Reseller Sales Amount from the Columns axis.

Finally, here’s an explanation. The Non Empty operator removes empty cells for
whichever measure you incorporate into the query. The NonEmpty function removes
empty cells for whichever measure you include as a second parameter to the function.
If you omit the second parameter, the function will test the default measure (unless
another measure is specified in the Where clause) for the cube for emptiness. The
default measure for this cube happens to be Reseller Sales Amount. You can test this
by writing a [Measures].DefaultMember query, as shown here:

Select

[Measures].defaultmember on columns

from

[Adventure Works]

This page intentionally left blank

Smiley Faces: Working
with Key Performance
Indicators (KPIs)

Chapter 12

2 4 0 P r a c t i c a l M D X Q u e r i e s f o r M i c r o s o f t S Q L S e r v e r A n a l y s i s S e r v i c e s 2 0 0 8

K ey performance indicators (KPIs) are a vital part of business intelligence. At a
glance, you can see how well you are doing without having to dig down and
analyze individual metrics. They provide a high-level overview of results—and of

results against targets. In this chapter we explore using, modifying, formatting, and creating
KPIs in MDX.

Key concepts KPI value, goal, status, and trend

Keywords Select, KPIValue, KPIGoal, KPIStatus, KPITrend, format_string, With
Member, .currentmember, Create KPI, VBA!Format

Selecting KPIs
If you have KPIs (key performance indicators) as part of your cube design back in BIDS,
you can select them in an MDX query. If you don’t have existing KPIs, you can create
them as part of your query. You will see how to do this shortly.

Syntax
-- selecting existing KPIs

select

crossjoin([Date].[Fiscal].[Fiscal Year].[FY 2003],

{KPIValue("Product Gross Profit Margin"),

KPIGoal("Product Gross Profit Margin"),

KPIStatus("Product Gross Profit Margin")})

on columns,

[Product].[Product Categories].[Category]

on rows

from [Adventure Works]

Result

Analysis
The query uses KPIValue, KPIGoal, and KPIStatus. There is also KPITrend, which is not
used in this query. The results show the KPI by Category for FY 2003. The KPIStatus

C h a p t e r 1 2 : S m i l e y Fa c e s : W o r k i n g w i t h K P I s 2 4 1

indicates how close the KPIValue is to the KPIGoal. Note the column header for
KPIValue reflects the original measure used in the KPI design in BIDS and looks slightly
different from the KPIGoal and KPIStatus headers. Also, the KPIValue and the KPIGoal
are not in the same format.

Formatting KPIs
Here the KPIs are redone as measures. This fixes a number of problems in the previous
query. The KPITrend has been added and two years are shown to illustrate how KPITrend
works.

Syntax
-- formatting existing KPIs

with member [Measures].[Actual] as

KPIValue("Product Gross Profit Margin"),format_string = "Percent"

member [Measures].[Target] as

KPIGoal("Product Gross Profit Margin"),format_string="Percent"

member [Measures].[Status] as KPIStatus("Product Gross Profit Margin")

member [Measures].[Trend] as KPITrend("Product Gross Profit Margin")

select

crossjoin({[Date].[Fiscal].[Fiscal Year].[FY 2003],

[Date].[Fiscal].[Fiscal Year].[FY 2004]},{[Measures].[Actual],

[Measures].[Target],[Measures].[Status],[Measures].[Trend]})

on columns,

[Product].[Product Categories].[Category]

on rows

from [Adventure Works]

Result

Analysis
The KPITrend (renamed as Trend) for this particular KPI shows the change in the
KPIValue from year to year. The column headers for the KPI are now more readable and
the KPIGoal (renamed as Target) is formatted the same as KPIValue (renamed as Actual)
to make the KPIStatus (renamed as Status) figure easier to understand.

2 4 2 P r a c t i c a l M D X Q u e r i e s f o r M i c r o s o f t S Q L S e r v e r A n a l y s i s S e r v i c e s 2 0 0 8

Changing KPIs
Sometimes you may want to temporarily override the original KPI definition created
back in BIDS. In this query, both the KPIGoal and the KPIStatus for the Accessories
category have been overridden.

Syntax
-- changing existing KPIGoal (target) and KPIStatus

with member [Measures].[Actual] as

KPIValue("Product Gross Profit Margin"),format_string = "Percent"

member [Measures].[Target] as

iif([Product].[Product Categories].currentmember is

[Product].[Product Categories].[Accessories],.60,

KPIGoal("Product Gross Profit Margin")),format_string="Percent"

member [Measures].[Status] as

iif([Product].[Product Categories].currentmember is

[Product].[Product Categories].[Accessories],

Case

When [Measures].[Actual]/ [Measures].[Target]

>= .95

Then 1

When [Measures].[Actual]/ [Measures].[Target]

< .95

And

[Measures].[Actual]/ [Measures].[Target]

>= .70

Then 0

Else -1

End

,KPIStatus("Product Gross Profit Margin"))

select

crossjoin({[Date].[Fiscal].[Fiscal Year].[FY 2003],

[Date].[Fiscal].[Fiscal Year].[FY 2004]},

{[Measures].[Actual],[Measures].[Target],[Measures].[Status]})

on columns,

[Product].[Product Categories].[Category]

on rows

from [Adventure Works]

C h a p t e r 1 2 : S m i l e y Fa c e s : W o r k i n g w i t h K P I s 2 4 3

Result

Analysis
The KPIGoal (target) has been set to 60% instead of the original 40%—a little more
demanding! The KPIStatus (status) is also a more challenging figure. It has been changed,
for the lifetime of the query only, to qualify as a status of 1 only when the KPIValue is
more than 95% of the KPIGoal—the original threshold was 90%. Thus, the KPIValue
(actual) for Accessories for FY 2004 results in a status of 0, even though profits were
pretty good at 52.19%.

Creating KPIs
SSAS 2008 introduces the new Create KPI syntax. Unfortunately, if you are using
SSAS 2005, this is not available. The workaround in SSAS 2005 is to create your own
measures. If you do have SSAS 2008, run the two Creates together (the Go statement
allows you to do this without a syntax error) before you try the Select.

Syntax
-- creating a new KPI

create member [Adventure Works].[Measures].[Profit Margin Value] as

[Measures].[Gross Profit Margin]

go

create KPI [Adventure Works].[Profit Margin] as

[Measures].[Profit Margin Value],

goal=

case

when [Product].[Category].CurrentMember Is [Product].[Category]

.[Accessories]

then vba!format(.40,"Percent")

when [Product].[Category].CurrentMember Is [Product].[Category].[Bikes]

then vba!format(.12,"Percent")

when [Product].[Category].CurrentMember Is [Product].[Category].[Clothing]

then vba!format(.20,"Percent")

when [Product].[Category].CurrentMember Is [Product].[Category]

2 4 4 P r a c t i c a l M D X Q u e r i e s f o r M i c r o s o f t S Q L S e r v e r A n a l y s i s S e r v i c e s 2 0 0 8

.[Components]

then vba!format(.10,"Percent")

else vba!format(.12,"Percent")

end,

status=

case

when

vba!cDBL(left(KPIValue("Profit Margin"),len(KPIValue("Profit Margin"))-1))

* 100/vba!cDBL(left(KPIGoal("Profit Margin"),

len(KPIGoal("Profit Margin"))-1)) >= .90

then 1

when

vba!cDBL(left(KPIValue("Profit Margin"),

len(KPIValue("Profit Margin"))-1))

* 100/vba!cDBL(left(KPIGoal("Profit Margin"),

len(KPIGoal("Profit Margin"))-1)) < .90

and

vba!cDBL(left(KPIValue("Profit Margin"),

len(KPIValue("Profit Margin"))-1)) * 100/

vba!cDBL(left(KPIGoal("Profit Margin"),

len(KPIGoal("Profit Margin"))-1)) >= .80

then 0

else -1

end

-- selecting the new KPI

select

crossjoin({[Date].[Fiscal].[Fiscal Year].[FY 2003],

[Date].[Fiscal].[Fiscal Year].[FY 2004]},

{KPIValue("Profit Margin"),KPIGoal("Profit Margin"),

KPIStatus("Profit Margin")})

on columns,

[Product].[Product Categories].[Category]

on rows

from [Adventure Works]

Result

C h a p t e r 1 2 : S m i l e y Fa c e s : W o r k i n g w i t h K P I s 2 4 5

Analysis
The Select is reasonably straightforward. The Create Member is there so the KPI
column headers have consistent names. The Create KPI is rather more complex. Note
the Goal= and Status= entries; there is no corresponding Value= as you might expect.
VBA Format is used to show KPIValue and KPIGoal as percentages. In addition, there
is heavy use of other VBA functions to enable comparison of KPIValue and KPIGoal
in the Status= section for defining KPIStatus. It is necessary to remove the % symbol
introduced in the previous formatting. The KPIStatus for Bikes for FY 2004 is 1 because
the KPIValue is more than 90% of the KPIGoal. You can also include a Trend= section,
if you wish, in the Create KPI syntax.

There is often more than one way to accomplish the same result in MDX. The
following syntax shows an alternative you may find easier to read (it eliminates
the VBA functions):

create member [Adventure Works].[Measures].[Profit Margin Value] as

[Measures].[Gross Profit Margin]

go

create member [Adventure Works].[Measures].[Profit Margin Goal] as

case

when [Product].[Category].CurrentMember Is [Product].[Category]

.[Accessories]

then 0.40

when [Product].[Category].CurrentMember Is [Product].[Category].[Bikes]

then 0.12

when [Product].[Category].CurrentMember Is [Product].[Category].[Clothing]

then 0.20

when [Product].[Category].CurrentMember Is [Product].[Category]

.[Components]

then 0.10

else 0.12

end,

FORMAT_STRING = "Percent"

go

create member [Adventure Works].[Measures].[Profit Margin Status] as

case

when

KPIValue("Profit Margin")/KPIGoal("Profit Margin") >= .90

then 1

when

KPIValue("Profit Margin")/KPIGoal("Profit Margin") < .90

and

KPIValue("Profit Margin")/KPIGoal("Profit Margin") >= .80

2 4 6 P r a c t i c a l M D X Q u e r i e s f o r M i c r o s o f t S Q L S e r v e r A n a l y s i s S e r v i c e s 2 0 0 8

then 0

else -1

end

go

create KPI [Adventure Works].[Profit Margin] as

[Measures].[Profit Margin Value],

goal=

[Measures].[Profit Margin Goal],

status=

[Measures].[Profit Margin Status]

Undoing Create
Both Create Member and Create KPI result in session-level objects that can be reused
later in the same query editor window. It’s a good idea to clean up session-level objects
when you are finished with them.

Syntax
-- cleaning up

drop KPI [Adventure Works].[Profit Margin]

go

drop member [Adventure Works].[Measures].[Profit Margin Value]

Result

Analysis
The Go statement allows both Drop commands to be run together without a syntax
error.

Hodgepodge: A Chapter
of Miscellaneous
Techniques

Chapter 13

2 4 8 P r a c t i c a l M D X Q u e r i e s f o r M i c r o s o f t S Q L S e r v e r A n a l y s i s S e r v i c e s 2 0 0 8

This is a catchall chapter for topics that do not fit easily into earlier chapters.
Formatting and conditional formatting are investigated. There are also queries
to drill through and drill down on the cube.

Key concepts Formatting, conditional formatting, dimension member aliases,
measures member aliases, drill through, drill down

Keywords VBA!Format, Case, With Member, Drillthrough, DrillDownMember

Conditional Formatting Base Query
You’ve met the Format_String setting for measures many times now. That’s an MDX
construct. But you can extend MDX by embedding VBA (Visual Basic for Applications)
and Excel syntax. This facility is going to be exploited to give an example of conditional
formatting on a measure in the next query. Here’s a base query to get us started.

Syntax
-- conditional formatting base query

select

[Measures].[Internet Sales Amount]

on columns,

{[Customer].[Customer Geography].[Country].[France],

[Customer].[Customer Geography].[Country].[United Kingdom],

[Customer].[Customer Geography].[Country].[United States]}

on rows

from

[Adventure Works]

Result

Analysis
This result may or may not be what you want. If all of your sales are recorded in
U.S. dollars, it’s fine. But possibly, your sales were recorded in local currencies. That’s
a situation where you might find conditional formatting helpful.

C h a p t e r 1 3 : H o d g e p o d g e : A C h a p t e r o f M i s c e l l a n e o u s Te c h n i q u e s 2 4 9

Conditional Formatting
To use VBA syntax inside MDX, you use VBA! followed by the name of the function.
Here we are looking at VBA Format. For Excel functions you would type Excel! first.

Syntax
-- conditional formatting

with member [Measures].[Sales in Local Currency] as

case

when [Customer].[Customer Geography].currentmember.name = "France"

then vba!format([Measures].[Internet Sales Amount],"#,###.00€")

when [Customer].[Customer Geography].currentmember.name = "United Kingdom"

then vba!format([Measures].[Internet Sales Amount],"£#,###.00")

when [Customer].[Customer Geography].currentmember.name = "United States"

then vba!format([Measures].[Internet Sales Amount],"$#,###.00")

end

select

[Measures].[Sales in Local Currency]

on columns,

{[Customer].[Customer Geography].[Country].[France],

[Customer].[Customer Geography].[Country].[United Kingdom],

[Customer].[Customer Geography].[Country].[United States]}

on rows

from

[Adventure Works]

Result

Analysis
The .name property of the .currentmember property function simply gives us the name
of the country. The Case construct applies the appropriate VBA!Format to the sales
amount.

2 5 0 P r a c t i c a l M D X Q u e r i e s f o r M i c r o s o f t S Q L S e r v e r A n a l y s i s S e r v i c e s 2 0 0 8

With large dimensions, the preceding syntax may not be the most efficient from
a performance point of view. You may like to also try the following alternative syntax
(notice it uses the Is operator and the key value of a member):

with member [Measures].[Sales in Local Currency] as

case

when [Customer].[Customer Geography].currentmember is

[Customer].[Customer Geography].[Country].&[France]

then vba!format([Measures].[Internet Sales Amount],"#,###.00€")

when [Customer].[Customer Geography].currentmember is

[Customer].[Customer Geography].[Country].&[United Kingdom]

then vba!format([Measures].[Internet Sales Amount],"£#,###.00")

when [Customer].[Customer Geography].currentmember is

[Customer].[Customer Geography].[Country].&[United States]

then vba!format([Measures].[Internet Sales Amount],"$#,###.00")

end

select

[Measures].[Sales in Local Currency]

on columns,

{[Customer].[Customer Geography].[Country].[France],

[Customer].[Customer Geography].[Country].[United Kingdom],

[Customer].[Customer Geography].[Country].[United States]}

on rows

from

[Adventure Works]

Measure Member Aliases
This is a simple calculated measure. It’s not really much of a calculation but just shows
how to alias a measure.

Syntax
-- aliases for measures members

with member [Measures].[Customer Sales] as

[Measures].[Internet Sales Amount]

select

[Measures].[Customer Sales]

on columns

from

[Adventure Works]

C h a p t e r 1 3 : H o d g e p o d g e : A C h a p t e r o f M i s c e l l a n e o u s Te c h n i q u e s 2 5 1

Result

Analysis
Hopefully, by this stage of the book, this query is a revision for you!

Non-measure Dimension Member Aliases
You can also alias members of non-measure dimensions if you wish.

Syntax
-- aliases for dimension members

with member [Product].[Product Categories].[Cycles]

as [Product].[Product Categories].[Category].[Bikes]

select

[Product].[Product Categories].[Cycles]

on columns

from

[Adventure Works]

Result

Analysis
We have changed Bikes to Cycles. This is a calculated member; it is not a calculated
measure. The syntax is [Dimension].[Hierarchy].[name].

DrillDownMember
DrillDownMember is an often-overlooked but very handy function.

Syntax
-- drilldownmember

with member [Measures].[Level in Hierarchy]

as [Customer].[Customer Geography].currentmember.level.ordinal

select

2 5 2 P r a c t i c a l M D X Q u e r i e s f o r M i c r o s o f t S Q L S e r v e r A n a l y s i s S e r v i c e s 2 0 0 8

{[Measures].[Customer Count],[Measures].[Level in Hierarchy]}

on columns,

nonempty

(drilldownmember(

{[Customer].[Customer Geography].[Country].[United States]},

{[Customer].[Customer Geography].[Country].[United States],

[Customer].[Customer Geography].[State-Province].[California]},recursive),

[Measures].[Customer Count])

on rows

from

[Adventure Works]

Result

Analysis
Not the easiest syntax in the book! This one requires a little bit of practice. It might be
worth it. It allows us to see the children of California right next to California and not
further down the rows. In order to help you decipher the result, I’ve also shown the level
of each row entry with .currentmember.level.ordinal.

DrillDownMember accepts either two or three parameters. In the example, it compares
the members of the first and second sets (the first and second parameters) and drills
down on members that are common to both sets—here it’s United States. If the third
Recursive parameter (which is optional) is included, it compares the result set from the
first two parameters once more against the second set and drills down on members that
are common to both—here it’s California.

Drillthrough 1/2
When you look at the values of cells in a cellset, they may be aggregated. Drillthrough
(as opposed to drilldown) lets you break the aggregation apart into the individual “records”
that comprise the aggregation. This is a base query for the next query.

C h a p t e r 1 3 : H o d g e p o d g e : A C h a p t e r o f M i s c e l l a n e o u s Te c h n i q u e s 2 5 3

Syntax
-- drillthrough 1/2

-- 4099.09

select

[Measures].[Internet Sales Amount] on columns

from

[Adventure Works]

where ([Product].[Product Categories].[Category].[Bikes],

[Customer].[Customer Geography].[Country].[United States],

[Date].[Calendar].[Date].[July 1, 2001])

Result

Analysis
Internet sales of bikes in the United States on July 1, 2001, were $4,099.09—but for
which bike(s) and for which customer(s)?

Drillthrough 2/2
Let’s try a drillthrough query.

Syntax
-- drillthrough 2/2

-- 3399.99 and 699.0982

drillthrough maxrows 100

select

[Measures].[Internet Sales Amount] on columns

from

[Adventure Works]

where ([Product].[Product Categories].[Category].[Bikes],

[Customer].[Customer Geography].[Country].[United States],

[Date].[Calendar].[Date].[July 1, 2001])

return

[$Product].[Product],Key([$Product].[Product]),

[$Date].[Date],[$Measures].[Internet Sales Amount],[$Customer].[Customer],

[$Customer].[State-Province],[$Customer].[City]

2 5 4 P r a c t i c a l M D X Q u e r i e s f o r M i c r o s o f t S Q L S e r v e r A n a l y s i s S e r v i c e s 2 0 0 8

Result

Analysis
A single aggregation has been decomposed into two “records.” The value of the sales
are 3399.99 and 699.0982, which give us the total in the previous query (aside from
a bit of rounding). So, two customers (from Oregon and California) bought a bike each
on July 1, 2001. The $ prefix is used to refer to a dimension (including the Measures
dimension). The Key function is used to return the key value of a member. Additional
functions include Name and MemberValue, which you may like to try (in our example
they make little difference to the result).

After You Finish

Chapter 14

2 5 6 P r a c t i c a l M D X Q u e r i e s f o r M i c r o s o f t S Q L S e r v e r A n a l y s i s S e r v i c e s 2 0 0 8

Where to Use MDX
Throughout this book, you’ve been using SSMS to write your MDX queries and display
the results. It’s unlikely that your users will have SSMS—indeed, it’s not recommended
for end users because it’s simply too powerful and potentially dangerous. This chapter
presents some alternative software and methods for getting MDX query results to the
end user.

SSRS
SSRS can generate simple MDX for you, but you may want some of the more
sophisticated queries you’ve seen in this book. You will need an SSAS connection to
do this. To use your own MDX, click the Design Mode button on the toolbar while
in Query Designer in SSRS. You are then able to paste in the code you might have
developed in SSMS. Here’s an example:

Select [Date].[Calendar].[Calendar Year] on columns,

[Product].[Product Categories].[Category] on rows

from

[Adventure Works]

where [Measures].[Reseller Sales Amount]

Unfortunately, SSRS will generate an error. It only likes measures on columns. So
you have to put the measure on the columns and crossjoin the other dimensions on the
rows. Here’s the same code adapted to work with SSRS:

Select [Measures].[Reseller Sales Amount] on columns,

crossjoin([Date].[Calendar].[Calendar Year],

[Product].[Product Categories].[Category])

on rows

from

[Adventure Works]

If you then opt for a matrix design, you can easily drag the calendar years back onto
the columns.

SSIS
With SSIS you can get the MDX results into a data pipeline using a Data Flow task.
It’s then quite easy to convert this into a text file, an Excel worksheet, or an SQL Server
table. You will need an OLE DB or ADO.NET source with an SSAS connection.
Next, you need to change the data access mode from Table or View to SQL command
and then paste in your MDX from SSMS.

C h a p t e r 1 4 : A f t e r Yo u F i n i s h 2 5 7

SQL
You can embed MDX inside an SQL query. This allows you to exploit any SQL Server
frontends you may already have. One way to accomplish this is to set up a linked server
to SSAS from SQL Server and paste the MDX into an Openquery construct.

DMX
If you need to train an SSAS data-mining model or run a DMX prediction query
against a cube, you can use MDX inside the DMX.

XMLA
Your MDX queries can also be nested inside XMLA. To do so, use an <Execute>
<Command> <Statement> construct.

Winforms and Webforms
If you are a .NET developer, you can create your own Windows applications (Winforms)
or Web pages (Webforms) to display the results of your MDX queries. The simplest
way to do so is to use a datagrid. Your application will need a reference to Microsoft.
AnalysisServices.AdomdClient. The MDX can return the data as a dataset, a datareader,
a cellset, or as XML. Here’s some sample VB.NET code that creates a dataset (you may
have to adapt the Data Source and Initial Catalog properties as well as the cube name in
the From clause):

Imports Microsoft.AnalysisServices.AdomdClient

Dim con As New AdomdConnection("Data Source=localhost;

Initial Catalog=Adventure Works DW")

con.open()

Dim cmd As New AdomdCommand

("select [Date].[Calendar].[Calendar Year] on columns, [Product]

.[Product Categories].[Category] on rows from [Adventure Works]

where [Measures].[Reseller Sales Amount]", con)

Dim adt As New AdomdDataAdapter(cmd)

Dim dst As New DataSet

adt.Fill(dst)

 'or use a DATAREADER

 'Dim rdr As AdomdDataReader = cmd.ExecuteReader

 'do stuff with reader

 'rdr.Close()

2 5 8 P r a c t i c a l M D X Q u e r i e s f o r M i c r o s o f t S Q L S e r v e r A n a l y s i s S e r v i c e s 2 0 0 8

 'or use a CELLSET

 'Dim cst As CellSet = cmd.ExecuteCellSet

 'do stuff with cellset

 'or use an XMLREADER

 'Dim xml As System.Xml.XmlReader = cmd.ExecuteXmlReader

 'do stuff with XML

DataGridView1.DataSource = dst.Tables(0)

'for a Webform add .DataBind

con.Close()

Performance Point Server and ProClarity
Both Microsoft Office Performance Point Server and ProClarity allow you to directly
paste in MDX.

Third-Party Software
An infinite variety of third-party software applications are available that allow you to
paste in your MDX.

Copy and Paste
You can right-click the Results pane in SSMS, choose Select All, right-click again, and
then choose Copy. You can then paste the MDX results (rather than the MDX itself)
into an application of your choice.

259

Index

& (ampersand), 20
$ (dollar sign), 254
– (minus sign), 108
* (multiplication symbol), 36
: (colon range operator), 71–72, 152
, (comma), 6
{ } (braces), 5, 18, 19, 25, 106
() parentheses, 105, 234

A

after parameter, 65–66
Aggregate function, 173–175, 176
AggregateFunction property, 173, 174, 176
aggregations

Avg function, 175–180
breaking apart, 252–254
examples of, 170–175
Max function, 177
Min function, 176–177
Sum function, 170–175
using Aggregate/Sum together, 174–175

aliases, 131–132, 250–251
All level

considerations, 12–13, 14, 23
disabling, 21
explicitly requesting members from, 14–15
returning data from, 54
specifying percentages, 139–142

All level member, 14–15, 23, 54
All Periods value, 6, 202–204, 225–226
ambiguity, 13, 18–20, 23

ampersand (&), 20
Ancestor function, 55
And operator, filtering with, 110–113
applications, 257–258
Asc parameter, 87, 89–90
Ascendants function, 55–57
ascending sorts, 85–89, 194
attributes

hierarchy, 12–13, 95
relationships between, 22, 212
sorting on, 84–86

averages, 177–178, 180
Avg function, 175–180
axes

dimensions on two axes, 26–27
measures on, 101–102
non-measure dimensions on two axes, 26, 27–28
pivoting, 26
second crossjoin on, 32
in two-dimensional displays, 6
using multiple, 215
years/months on same axis, 28–31
years/months on two axes, 27–28

B

Basc parameter, 84, 89–90
base queries, 194–195, 206, 223, 248
bdesc parameter, 91–92, 98
before parameter, 66–68
BI (business intelligence), 55, 240
BI reports, 70, 84, 97, 160, 212

2 6 0 P r a c t i c a l M D X Q u e r i e s f o r M i c r o s o f t S Q L S e r v e r A n a l y s i s S e r v i c e s 2 0 0 8

BIDS, 21–22, 50, 155, 212
BOL (Books Online), 134, 158
Books Online (BOL), 134, 158
Boolean conditions, 110–111
Bottomcount function, 123–125, 194
Bottompercent function, 125–126
bottoms/tops, 119
Bottomsum function, 127
braces { }, 5, 18, 19, 25, 106
brothers, 57–58
business intelligence. See BI
Business Intelligence Development Studio. See BIDS
Business Intelligence Wizard, 155

C

calculated measures. See also query-scoped calculations
aliases, 131–132
Change measure and, 169–170
With clause, 132–134
creating, 136–139
described, 131, 160
formatting, 133–134
on Rows axis, 161
session-scoped, 137–139
using with time dimension, 160

calculated members
adding to measures. See calculated measures
aliases, 251
considerations, 172
creating, 136–139
With Member clause, 130–134
Sum function and, 170–173

calculations, 129–142
dates/times. See date/time calculations
fiscal year information. See fiscal years
percentages, 139–142
query-scoped, 131, 204, 226
returning total sales, 132–133

session-scoped, 131, 136–137, 205
via With clause, 130–137

Calendar hierarchy, 155–157, 172, 181–183
calendar months, 151–152
calendar years, 69, 136, 179, 191, 203
Case construct, 141, 163, 249
case sensitivity, 15
categories. See also subcategories

displaying, 114
filtering. See filtering
sorting, 207–211
top/bottom, 119–127
viewing, 16–17

Category attribute, 16
cells

aggregated, 252
crossjoins and, 34
empty, 231–237
hiding, 232–237

cellsets
aggregated, 252–254
described, 4
returning, 14
subcubes, 227

Change measure, 169–170
Character Map (charmap.exe), 80
charmap.exe (Character Map), 80
.children function, 43–44, 50–51, 192
.children.children function, 44
closing periods, 148–151
ClosingPeriod function, 148–151
colon range operator (:), 71–72, 152
columns

comma-separated lists, 5
dimension data on, 4–5
hiding, 7–8, 9
placing measures across, 4
sorting, 93–98
transposing onto rows, 24–25

I n d e x 2 6 1

comma (,), 6
comma-separated lists, 5
conditional formatting, 248–250
Count function, 202, 220
.count property function, 220
Cousin function, 68–72, 74, 183–184
Create Member command, 137–139, 245, 246
Create Set function, 205
Create statement

replacing With clause with, 131
subcubes, 227

Crossjoin function, 6, 35, 206, 207
crossjoins

alternative syntax for, 35–36
combining with ParallelPeriod, 187
complex, 33–34
considerations, 34, 106
within crossjoins, 33–34
introducing second measure into, 31
problems with, 31
returning, 206–207
second crossjoin on second axes, 32
on two separate non-measure dimensions,

32–33
years/months on same axis, 29–31

cubes
default measure of, 3, 226–227
default value of, 18
extending functionality of, 130
gaps in, 232
names, 138–139
slicing. See slicer; slicing
subcubes, 203, 221–230

.currentmember function, 161, 168, 173

.currentmember.parent, 142
customers

children of, 50–51
parents of, 51–52
proving existence of, 47–50

D

Data Flow task, 256
datagrids, 257–258
datasets, 257–258
Date dimension, 4–5, 180
date dimensions, 4, 26, 155, 158, 180. See also dates/times
date ranges. See ranges
date-conversion error, 152
dates/times, 143–158

calculated measures. See calculated measures
calculations. See date/time calculations
ClosingPeriod function, 148, 150–151
going back/forward in time, 146–149, 161–163
LastPeriods function, 153–154
MTD function, 157
opening/closing periods, 148–153
OpeningPeriod function, 149–152
ParallelPeriod function, 180–183
PeriodsToDate function, 152–153, 155
QTD function, 156–157
range of dates. See ranges
returning next fiscal year, 145
returning previous fiscal year, 144–145
returning range of dates, 145–146
time gone by, 152–153
WTD function, 157–158
year before, 144–145
year-on-year growth, 161
YTD function, 154–155

date/time calculations
Aggregate function, 173–175
Avg function, 175–180
comparing fiscal years, 168–170
comparing previous orders, 161–163
Lag function, 184–186
Max function, 177
Min function, 176–177
nulls as zeroes, 163–165

2 6 2 P r a c t i c a l M D X Q u e r i e s f o r M i c r o s o f t S Q L S e r v e r A n a l y s i s S e r v i c e s 2 0 0 8

date/time calculations (cont.)
ParallelPeriod function, 146–147, 180–183
running totals, 179–180
simplifying, 165–168
Sum function, 170–175
using Aggregate/Sum together, 174–175
year-on-year growth, 161

.defaultmember function, 227
Desc parameter, 90–91, 98
descendants

children, 43–44, 50–51
.firstchild, 59
.firstsibling, 59–60
grandchildren, 44, 45–46
grandparents, 52
siblings, 57–61
traversing levels with, 45
with unbalanced hierarchy, 80–81
using distance, 67–68

Descendants function
after parameter, 65–66
extending functionality of, 63–68
before parameter, 66–68
self parameter, 64
self_and_after parameter, 64–65
traversing levels with, 45

descending sorts, 87–88, 90–92
dimension data

on columns, 4–5
on rows, 6

dimension tables, 80
dimensions

crossjoins on. See crossjoins
date, 4, 26, 155, 158, 180
described, 5
differing, 103–104
displaying multiple, 34
hierarchies in, 15
members in, 40

multiple-hierarchy, 13–14
names, 13
navigating. See navigation
nested, 33–34
non-measure. See non-measure dimensions
properties, 211–213
single-hierarchy, 12–13
time. See time dimensions
two dimensions on two axes, 26–27
two hierarchies from same dimension, 23–24

distance, 67–68
Distinct function, 190
DistinctCount property, 173, 174
dollar sign ($), 254
DrillDownMember function, 251–252
DrillThrough function, 252–254
Drop Member command, 137–139, 246
dropping items

members, 137–139, 246
subcubes, 229, 230

E

empty cells, 231–237
errors

ambiguity, 13, 18–20, 23
children, 44
crossjoins, 31
date-conversion, 152
date/time functions, 154–155, 157
duplicate hierarchies, 27
measures on rows, 256
members, 102, 105
.members function, 43
missing axis, 24–25
mixed hierarchies, 23–24, 29

Excel, 134, 248, 249–250
Except operator, 108, 178, 198–199
Exists function, 217–219
explicit ascending sorts, 86–89

I n d e x 2 6 3

expressions, 72, 147
Extract function, 206–207

F

Filter function, 108–118
filter test conditions, 112–116
filtering

with And, 110–113
comparing measures, 113–114
with measures criteria, 115–116
non-measure dimensions, 114–115
with Not With Is, 116–117

.firstchild function, 59

.firstsibling function, 59–60
Fiscal hierarchy, 156, 157, 166, 180–181
fiscal months, 152, 153
fiscal years

comparing, 168–170
Min/Max function, 176–177
returning future year, 148
returning next, 145
returning past year, 149
returning previous, 144–145, 162–163
returning ranges, 149–154
returning specific year, 144
year to date, 154–155

Format_String setting, 133–135, 248
formatting

calculated measures, 133–134
conditional, 248–250
KPIs, 241
via With clause, 133–134

functions. See also specific functions
aggregate, 173–178
date/time. See dates/times
method, 30
navigation, 57–58
property, 30
xTD, 156–157

G

gaps, 74–75
Generate function, 192
Go statement, 138, 243, 246
grandchildren, 44, 45–46
.grandparent function, 52
.great-grandparent function, 52–53

H

Having clause, 109–110
Head function, 75, 200
“Hello World” MDX query, 2–4, 100, 130–131
hiding items

cells, 232–237
columns, 7–8, 9
empty cells, 232–237
members, 216–217
null values, 7–8, 9, 124

hierarchies. See also navigation
attribute, 12–13, 95
breaking, 89–92
Calendar, 155–157, 172, 181
considerations, 40
descendants. See descendants
differing, 27–28, 29
duplicate, 27
levels in, 15
members in, 22–23, 41
mixing, 23–24, 27–28, 29
multilevel, 21
multiple, 23–24
names, 13
navigating. See navigation
non-measure members from, 105–106
removing from crossjoins, 206
from same dimension, 23–24
sorting, 89–92, 95–97
unbalanced, 80–81
user. See user hierarchies

2 6 4 P r a c t i c a l M D X Q u e r i e s f o r M i c r o s o f t S Q L S e r v e r A n a l y s i s S e r v i c e s 2 0 0 8

Hierarchize function, 56–57, 95–97
horizontal navigation, 68–72

I

IgnoreUnrelatedDimensions property, 224
Increase measure, 162
Intersect operator, 194, 195, 197
IsEmpty function, 163
IsEmpty test, 164, 178
Item property member, 191–192

K

Key function, 254
key notation, 20
key performance indicators (KPIs), 147, 239–246
KPIs (key performance indicators), 147, 239–246

L

lag, 72–74
lag breaks, 185–186
Lag function

date/time calculations, 184–186
returning moving averages, 178
setting ranges, 72–75

LastPeriods function, 153–154
.lastsibling function, 60–61
lead, 72–75
lead function, 72–75
leaf-level members, 44, 51, 65
Leaves parameter, 81
.level function, 140–141
levels. See also navigation

combining, 17–19
in hierarchies, 15
jumping ahead/behind, 72–75
members in, 15, 41–42
traversing with descendants, 45
using .members against, 16–17

lists
combining, 195–196
comma-separated, 5

M

MDX
copying/pasting, 258
embedding in SQL queries, 257
uses for, 256–258
using Excel in, 134, 248, 249–250
using in DMX, 257–258
using VBA in, 134, 248, 249–250
vs. SQL, 2, 7

MDX expressions, 147
MDX queries

displaying in Webforms, 257–258
displaying in Winforms, 257
getting started with, 2–4
nesting in XMLA, 257–258
returning empty cells, 231–237
running, 2

MDX shorthand, 19
measure groups, 164, 205, 206, 224
MeasureGroupMeasures, 205–206
measures. See also calculated measures

aliasing, 131–132, 250–251
on an axis, 101–102
calculating with time dimension, 160
comparing in filters, 113–114
default, 100, 102–103
displaying alternate, 8–9
filtering. See filtering
hidden, 92–94
including explicitly, 25
names, 132, 164
placing across columns, 4
referencing, 4
sorting, 84–85, 92–94
in Where clause, 8–9, 101–103

I n d e x 2 6 5

Measures dimension, 172, 173
member properties, 211–213
members. See also calculated members

acting as coordinates, 18
aliases, 131–132, 250–251
All Level. See All Level member
children, 43–44, 50–51
counting, 219–220
in dimensions, 40
dropping, 137–139, 246
duplicates, 20, 190
explicitly requesting from All level, 14–15
explicitly using, 37
grandchildren, 44, 45–46
hiding, 216–217
in hierarchies, 22–23, 41
jumping forward/backward, 77–79
leaf-level, 44, 51, 65
in levels, 15, 41–42
within members, 42–43
.members function and, 42–43
missing, 214–219
multiple, 21
non-measure. See non-measure members
number of, 202
parentheses around, 105
parents of, 51–54
proving existence of, 47–50
range of. See ranges
referencing individual members, 19–20
referencing multiple members, 21
referencing with .members syntax, 16
in sets, 202, 205–206, 219–220
sorting, 207–211
top/bottom, 119–127

.members function, 40–43
considerations, 40
levels and, 15, 16–17, 41–42

overview, 15–16
referencing members via, 16
user hierarchies with, 22–23, 41
using against levels, 16–17
using on members, 42–43

method functions, 30
Microsoft Performance Point Server, 258
Min function, 176–177
minus sign (−), 108
month to date (MTD) function, 157
moving averages, 177–178
MTD (month to date) function, 157
Multidimensional Expressions. See MDX
multilevel hierarchies, 21
multiple-hierarchy dimensions, 13–14
multiplication symbol (*), 36

N

.name property, 249
named sets, 134–136, 137, 204–205
natural user hierarchies, 21–22
navigation

Ancestor function, 55
Ascendants function, 55–57
combining functions, 57–58
descendants. See descendants
Head function, 75
hierarchies. See hierarchies
horizontal, 68–72
leads/lags, 72–75
levels. See levels
.nextmember function, 77–79
.prevmember function, 76–78
ranges, 70–72
Tail function, 75–76
vertical, 61–63

negative lag, 72–73
negative lead, 73–74
nested dimensions, 33–34

2 6 6 P r a c t i c a l M D X Q u e r i e s f o r M i c r o s o f t S Q L S e r v e r A n a l y s i s S e r v i c e s 2 0 0 8

.nextmember function
jumping ahead with, 77–78
with ranges, 79
returning next fiscal year, 145

.nextmember.nextmember function, 78–79
Non Empty keyword

basics, 117–118
hiding empty cells, 232–237
hiding nulls, 7–8, 9
vs. Exists function, 219

NonEmpty function, 233–237
non-measure dimensions

aliasing members, 251
along columns, 4–5
crossjoins on, 32–33
in filter tests, 114–115
sorting, 207–211
on two axes, 26, 27–28

non-measure members, 103–106
from same dimension hierarchy, 105–106
in slicer, 103–105

nonvisual totals, 202–203, 226, 230
Not With Is condition, 116–117
null values

Bottomcount and, 124
converting to zeroes, 163–165, 169
hiding, 7–8, 9, 124
MDX vs. SQL, 109
Min function and, 177
Non Empty keyword, 117–118
in numeric cells, 109
in ranges, 149–151

O

OpeningPeriod function, 149–152
Or operator, 111–113
Order function, 85–86, 90, 97, 193, 210
OrderBy property, 59, 60, 85, 96, 120, 209
.ordinal function, 140–141

P

ParallelPeriod function, 146–148
Calendar hierarchy, 181–183
combining Crossjoins with, 187
date/time calculations, 180–183, 187
Fiscal hierarchy, 180–181
fiscal vs. subsequent years, 168–169
going back in time, 162
year-on-year growth, 161

.parent function, 51–54

.parent.children function, 52, 57, 58
parentheses (), 15, 234
.parent.lastchild function, 60–61
parents, 51–54
Percentage of All query, 141–142
Percentage of Parent query, 139–141
Performance Point Server, 258
PeriodsToDate function, 152–153, 155, 179
perspectives, 222–223
pivoting, 26
positive lag, 73–74
positive lead, 72–73
Post parameter, 96–97
.prevmember function, 76–78, 144–145
.prevmember.prevmember function, 77
problems. See errors
ProClarity, 258
properties. See also specific properties

dimensions, 211–213
members, 211–213
Type, 155

property functions, 30

Q

QTD (Quarter to Date) function, 156–157
Quarter to Date (QTD) function, 156–157
queries

base, 194–195, 206, 223, 248
MDX. See MDX queries
SQL, 257

I n d e x 2 6 7

Query Designer, 256
querying subcubes, 228–229
query-scoped calculations, 131, 204, 226. See also calculated

measures

R

ranges
with Cousin function, 71–72
gaps in, 74–75
importance of, 70
with LastPeriods, 153–154
moving averages, 178
nulls in, 149–151
opening/closing periods, 149–151
with OpeningPeriod/ClosingPeriod, 150–152
simple, 70–71
specifying with lead/lag, 74–75
without range operator, 145–146

Rank function, 193
rankings, 193–199
reports, 70, 84, 97, 160, 212
rows

dimension data on, 6
sorting, 85–89, 95, 193–199
total, 7
transposing columns onto, 24–25

running totals, 179–180

S

Select section, 136–137
Select statement, 135, 136–137, 229
self parameter, 64
self_and_after parameter, 64–65
server time dimensions, 74–75, 155, 186
servers

Microsoft Performance Point Server, 258
Performance Point Server, 258
server time dimensions, 74–75, 155, 186
SQL Server. See SQL Server entries

session-scoped calculations, 131, 137, 205
sets. See also cellsets; datasets

creating, 205
members in, 205–206, 219–220
missing members, 214–219
multiple, 192
named, 134–136, 204–205
number of members in, 202
performing operations on, 192
returning, 200
sorting, 207–211
temporary, 134

siblings, 57–61
.siblings function, 57–58
single-hierarchy dimensions, 12–13
sisters, 57–58
slicer. See also Where clause

described, 3
making changes to, 106–108
non-measure members in, 103–105
using, 8–9

slicing, 100
sorting, 83–98

ascending sorts, 85–89, 194
on attributes, 84–86
breaking hierarchies, 89–92
categories, 207–211
columns, 93–98
descending sorts, 87–88, 90–92, 194
by dimension properties, 213
explicit ascending sorts, 86–89
with hidden measures, 92–94
hierarchies, 89–92, 95–97
measures and, 84–85, 92–94
member properties, 213
members, 207–211
non-measure dimensions, 207–211
Order function, 85–86
ranked items, 193–199

2 6 8 P r a c t i c a l M D X Q u e r i e s f o r M i c r o s o f t S Q L S e r v e r A n a l y s i s S e r v i c e s 2 0 0 8

sorting (cont.)
real-world example, 97–98
reversing sort order, 90–91
rows, 85–89, 95, 193–199
sets, 207–211
subcategories, 85–86, 208–211
types of, 84

SQL
navigation and, 40
nulls in, 109
subqueries, 223
views, 222
vs. MDX, 2, 7
Where clause, 100, 108

SQL queries, embedding MDX in, 257
SQL Server Analysis Services (SSAS), 2, 15
SQL Server Integration Services (SSIS), 256
SQL Server Management Studio (SSMS), 2, 15, 256, 258
SQL Server Reporting Services (SSRS), 256
SSAS (SQL Server Analysis Services), 2, 15
SSIS (SQL Server Integration Services), 256
SSMS (SQL Server Management Studio), 2, 15, 256, 258
SSRS (SQL Server Reporting Services), 256
star schema, 5, 74, 80, 130, 206
subcategories. See also categories

sorting, 85–86, 208–211
top/bottom, 119–127

subcubes, 203, 221–230
subqueries, 223
subselects, 203, 222, 223–227
Subset function, 200–201
Subset with Count, 202
Sum function, 170–175

T

Tail function, 61, 75–76, 201–202
time dimensions, 143–158. See also dates/times

calculating measures with, 160
considerations, 148, 155, 186

lead/lag and, 74–75
server time dimensions, 74–75, 155, 186

times/dates. See dates/times
Topcount function, 120–122, 194
Toppercent function, 124–125
tops/bottoms, 119
Topsum function, 126–127
total row, 7
totals

nonvisual, 202–203, 226, 230
returning, 132–133
running, 179–180
visual, 203–204, 225, 229–230

troubleshooting. See errors
tuples

considerations, 18–19, 21, 25, 37
described, 18
returning, 191
selecting items within, 191–192

Type properties, 155

U

Union operator, 194–197
unnatural user hierarchies, 21–22
user hierarchies, 21–23. See also hierarchies

descending sorts on, 89, 90–92
drilling down/up, 93
with .members, 22–23, 41
natural, 21–22
unnatural, 21–22
vs. attribute hierarchies, 95

V

VBA (Visual Basic for Applications), 134, 248, 249–250
VBA!Format, 243–244, 249–250
vertical navigation, 61–63
views, 222
Visual Basic for Applications (VBA), 134, 248, 249–250
visual totals, 203–204, 225, 229–230

I n d e x 2 6 9

W

Web pages, 257–258
Webforms, 257–258
week to date (WTD) function, 157–158
Where clause. See also slicer

considerations, 3, 100
examples of, 100–108
MDX vs. SQL, 108
measures in, 8–9, 100–103
missing members and, 216–219
non-measure members in, 103–106
SQL, 100, 108

Windows applications (Winforms), 257–258
Windows Character Map (charmap.exe), 80
Winforms (Windows applications), 257–258
With clause, 130–137

With Member clause, 134
With Set clause, 134, 135–136, 137, 204
WTD (week to date) function, 157–158

X

XML for Analysis (XMLA), 257
XMLA (XML for Analysis), 257
xTD functions, 156–157

Y

year to date (YTD) function, 154–155
year-on-year growth, 161
YTD (year to date) function, 154–155

Z

zeroes, converting nulls to, 163–165, 169

	Contents
	Acknowledgments
	Introduction
	Chapter 1 Hello World: Easy Yet Effective Queries
	Hello World MDX Query 1/4
	Hello World MDX Query 2/4
	Hello World MDX Query 3/4
	Hello World MDX Query 4/4
	Dimension Data on Columns
	More Than One
	Dimension Data on Rows
	A Total Row
	Hiding Nulls
	Displaying a Different Measure
	Hiding Nulls Again

	Chapter 2 Astrophysical: Playing with Dimensions
	Single-Hierarchy Dimension
	Multiple-Hierarchy Dimension 1/2
	Multiple-Hierarchy Dimension 2/2
	Explicitly Requesting the All Level Member
	Introducing .members
	More on .members
	Putting Two Levels Together
	Some MDX Shorthand
	Individual Members
	Multiple Members
	User Hierarchies
	User Hierarchy with .members
	Two Hierarchies from the Same Dimension
	Transposing Columns onto Rows
	Adding a Measure Explicitly
	Two Dimensions on Two Axes
	Same Non-measure Dimension on Two Axes
	Same Non-measure Dimension on Two Axes with Differing Hierarchies
	Years and Months on the Same Axis
	Years and Months on the Same Axis with a Crossjoin
	Introducing a Second Measure into the Crossjoin
	A Second Crossjoin on a Second Axis
	Crossjoin on Two Separate Non-measure Dimensions
	A More Complex Crossjoin
	Alternative Crossjoin Syntax 1/2
	Alternative Crossjoin Syntax 2/2
	More on Members

	Chapter 3 Families and Friends: Navigating Dimensions
	Dimensions Have Members
	Hierarchies Have Members
	Levels Have Members
	Do Member Have Members?
	Members Have Children
	How to Get to Paris from France
	Traversing Levels with Descendants
	More on Descendants
	Proving a Member (Crystal Zheng) Exists 1/3
	Proving a Member (Crystal Zheng) Exists 2/3
	Proving a Member (Crystal Zheng) Exists 3/3
	Children of Crystal Zheng
	Parent of Crystal Zheng
	Grandparent
	Great-Grandparent
	Back to France
	Last of the Parents
	Ancestor Rather Than .parent
	Ascendants Function
	Ascendants with Hierarchize Function
	Combing Navigation Functions, Brothers and Sisters
	Siblings, Brothers and Sisters
	First Customer with .firstchild
	First Customer with .firstsibling
	Now for the Last Customer
	The Last Customer Another Way
	Applying Vertical Navigation 1/2
	Applying Vertical Navigation 2/2
	Extending the Descendants Functionality
	Descendants with self
	Descendants with self_and_after
	Descendants with after
	Descendants with before
	Descendants Using a Distance
	Cousin
	More on Cousin
	A Simple Range
	A Simpler Simple Range
	Range with Cousin
	Positive Lead and Negative Lag
	Negative Lead and Positive Lag
	Lead (or Lag) with a Range
	Head
	Tail
	prevmember
	prevmember.prevmember
	nextmember
	nextmember.nextmember
	nextmember with a Range
	Descendants with an Unbalanced Hierarchy 1/2
	Descendants with an Unbalanced Hierarchy 2/2

	Chapter 4 Bringing Order: Sorting Results
	By Default, Measures Are Not Sorted
	Using Order
	Explicit Ascend
	Descending Sort
	The Sort Only Works for a Few Rows
	Breaking Hierarchies
	Order with desc on User Hierarchy
	Order with bdesc on User Hierarchy
	Sorting a Measure by Another Hidden Measure
	Showing the Hidden Sort Measure
	Sorting Columns Rather Than Rows
	Sorting Hierarchies, Not Measures
	Hierarchize Function
	Hierarchize Function, Upside Down
	Real-World Example of Sorting 1/2
	Real-World Example of Sorting 2/2

	Chapter 5 Slice, Dice, and Filter: Using Where and Filter
	Where Clause
	Another Measure in a Where Clause
	Measure in a Where Clause and on an Axis
	Default Measure in a Where Clause
	A Non-measure Member in the Slicer
	A Non-measure Member in the Slicer (Corrected) 1/2
	A Non-measure Member in the Slicer (Corrected) 2/2
	Two Non-measure Members from the Same Dimension Hierarchy
	Two Non-measure Members from the Same Dimension Hierarchy (Fixed)
	A Change of Slicer to United Kingdom
	Without the United Kingdom
	Introducing Filter
	A Simple Filter
	Another Simple Filter
	A More Complex Filter with And
	A More Complex Filter with Or
	An Even More Complex Filter with And and Or 1/2
	An Even More Complex Filter with And and Or 2/2
	Comparing Two Measures in a Filter
	Non-measure Dimension in Filter Test
	Two Non-measure Dimensions in Filter Test
	Now with Measures Criteria
	Not with Is
	Introduction to Non Empty
	Non Empty
	Tops and Bottoms
	Topcount
	Topcount with a Measure
	Topcount with a Different Measure
	Topcount with Two Measures
	Bottomcount
	Bottomcount Hiding the Nulls
	Toppercent
	Bottompercent
	Topsum
	Bottomsum

	Chapter 6 Using the Abacus: Introduction to Calculations
	With Clause
	Aliases Through With
	Useful Calculations Through With
	Formatting Through With
	With Set 1/2
	With Set 2/2
	The Scope of With
	The Scope of Create
	Some Classic Calculated Measures
	Percentage of Parent 1/2
	Percentage of Parent 2/2
	Percentage of All

	Chapter 7 Is Time a Dimension? Working with Dates and Times
	Returning a Specific Fiscal Year
	The Year Before FY 2003
	The Year After
	A Range of Dates Without a Range Operator
	Going Back in Time with ParallelPeriod
	Going Forward in Time with ParallelPeriod
	Too Far into the Future
	How Far into the Future?
	How Far Back?
	Range with OpeningPeriod and Null
	Range with ClosingPeriod and Null
	Range with OpeningPeriod and ClosingPeriod
	An Extension to OpeningPeriod
	Time Gone By
	More on Date Ranges with LastPeriods
	YTD (Year to Date)
	YTD Not Working
	QTD (Quarter to Date)
	MTD (Month to Date)
	WTD (Week to Date)

	Chapter 8 Clockwork: Calculations Using Dates and Times
	Calculated Measures with the Time Dimension
	Year-on-Year Growth in Orders
	Orders Compared to Two Years Ago 1/2
	Orders Compared to Two Years Ago 2/2
	Nulls as Zero 1/2
	Nulls as Zero 2/2
	Simplifying the Calculation 1/2
	Simplifying the Calculation 2/2
	Into the Future
	A Two-Step Approach
	Introduction to Sum
	Applying Sum 1/2
	Applying Sum 2/2
	Sum Is Not Always Suitable
	Aggregate Function
	Sum and Aggregate Together
	More on Sum and Aggregate
	Avg Function
	Min Function
	Max Function
	Moving Average with Avg
	Sum Giving a Running Total
	Avg Giving a Running Total
	ParallelPeriod Revisited 1/2
	ParallelPeriod Revisited 2/2
	Cousin 1/2
	Cousin 2/2
	Workaround 1/2 Using Lag
	Workaround 1/2 Using Lag Breaks
	Workaround 2/2 Using Crossjoin

	Chapter 9 Venn Diagrams: Visualizing and Manipulating Sets
	Distinct
	Item on a Set
	Item on a Tuple
	Generate
	Rank
	Union, Intersect, Except Base Query 1/2
	Union, Intersect, Except Base Query 2/2
	Union
	Intersect
	Except 1/2
	Except 2/2
	Head
	Subset
	Tail
	Subset with Count
	Nonvisual Totals
	Visual Totals
	Named Sets 1/2
	Named Sets 2/2
	MeasureGroupMeasures
	Extract 1/2
	Extract 2/2
	Sorting Non-measure Dimensions 1/4
	Sorting Non-measure Dimensions 2/4
	Sorting Non-measure Dimensions 3/4
	Sorting Non-measure Dimensions 4/4
	Dimension Properties
	Sorting by Dimension Properties
	Missing Member Caused by a Typo
	Missing Member Caused by a Non-Typo 1/2
	Missing Member Caused by a Non-Typo 2/2
	Hiding Non-Typo Missing Members 1/2
	Hiding Non-Typo Missing Members 2/2
	More on Exists 1/3
	More on Exists 2/3
	More on Exists 3/3
	Counting Members in a Set

	Chapter 10 Views on Cubes: Working with Subcubes
	Select from a Perspective
	Base Query for Subselects
	Subselect 1/2
	Subselect 2/2
	Visual Totals
	Nonvisual Totals
	Default Measure of a Cube
	Creating a Subcube
	Default Measure of a Subcube
	Querying a Subcube
	Dropping a Subcube
	Subcube with Visual Totals
	Subcube with Nonvisual Totals

	Chapter 11 Not All There: Dealing with Empty Cells
	Empty Cells
	Hiding Empty Cells
	Another Way to Hide Cells
	More on NonEmpty
	Explaining NonEmpty
	NonEmpty with a Different Measure
	This Time NonEmpty Produces Different Results

	Chapter 12 Smiley Faces: Working with Key Performance Indicators (KPIs)
	Selecting KPIs
	Formatting KPIs
	Changing KPIs
	Creating KPIs
	Undoing Create

	Chapter 13 Hodgepodge: A Chapter of Miscellaneous Techniques
	Conditional Formatting Base Query
	Conditional Formatting
	Measure Member Aliases
	Non-measure Dimension Member Aliases
	DrillDownMember
	Drillthrough 1/2
	Drillthrough 2/2

	Chapter 14 After You Finish
	Where to Use MDX
	SSRS
	SSIS
	SQL
	DMX
	XMLA
	Winforms and Webforms
	Performance Point Server and ProClarity
	Third-Party Software
	Copy and Paste

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

