

RStudio for R
Statistical Computing
Cookbook

Over 50 practical and useful recipes to help you
perform data analysis with R by unleashing every
native RStudio feature

Andrea Cirillo

BIRMINGHAM - MUMBAI

RStudio for R Statistical Computing Cookbook

Copyright © 2016 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system,
or transmitted in any form or by any means, without the prior written permission of the
publisher, except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the
information presented. However, the information contained in this book is sold without
warranty, either express or implied. Neither the author, nor Packt Publishing, and its dealers
and distributors will be held liable for any damages caused or alleged to be caused directly
or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: April 2016

Production reference: 1250416

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78439-103-4

www.packtpub.com

www.packtpub.com

Credits

Author
Andrea Cirillo

Reviewer
Mark van der Loo

Commissioning Editor
Kartikey Pandey

Acquisition Editor
Vinay Argekar

Content Development Editor
Deepti Thore

Technical Editor
Madhunikita Sunil Chindarkar

Copy Editor
Karuna Narayan

Project Coordinator
Shweta H Birwatkar

Proofreader
Safis Editing

Indexer
Rekha Nair

Graphics
Disha Haria

Production Coordinator
Aparna Bhagat

Cover Work
Aparna Bhagat

About the Author

Andrea Cirillo is currently working as an internal auditor at Intesa Sanpaolo banking group.
He gained a lot of financial and external audit experience at Deloitte Touche Tohmatsu and
internal audit experience at FNM, a listed Italian company.

His current main responsibilities involve evaluation of credit risk management models and
their enhancement mainly within the field of the Basel III capital agreement.

He is married to Francesca and is the father of Tommaso, Gianna, and Zaccaria.

Andrea has written and contributed to a few useful R packages and regularly shares insightful
advice and tutorials about R programming.

His research and work mainly focuses on the use of R in the fields of risk management
and fraud detection, mainly through modeling custom algorithms and developing
interactive applications.

This book is the result of a lot of patience by my wife and sons, which left
me with the time to write this book, the time that I should have spend
with them.

By Deepti Thore, my content developer editor at Packt Publishing, who
was so clement with me when, and it happened a lot of time, I missed
my writing deadlines.

By my colleagues who endured my talks about the book every three hours
and when I asked for their opinions about almost every recipe.

To all of you, I would like to say a sincere thank you.

About the Reviewer

Mark van der Loo is a statistical researcher who specializes in data cleaning methodology
and likes to program in R and C. He is the author and coauthor of several R packages published
on CRAN, including stringdist, validate, deductive, lintools, and several others. In 2012, he
authored Learning RStudio for R Statistical Computing, Packt Publishing, with Edwin de Jonge.

www.PacktPub.com

eBooks, discount offers, and more
Did you know that Packt offers eBook versions of every book published, with PDF and ePub
files available? You can upgrade to the eBook version at www.PacktPub.com and as a print
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at
customercare@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up
for a range of free newsletters and receive exclusive discounts and offers on Packt books
and eBooks.

TM

https://www2.packtpub.com/books/subscription/packtlib

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital book
library. Here, you can search, access, and read Packt's entire library of books.

Why Subscribe?
ff Fully searchable across every book published by Packt

ff Copy and paste, print, and bookmark content

ff On demand and accessible via a web browser

www.PacktPub.com
www.PacktPub.com
https://www2.packtpub.com/books/subscription/packtlib

i

Table of Contents
Preface	 v
Chapter 1: Acquiring Data for Your Project	 1

Introduction	 1
Acquiring data from the Web – web scraping tasks	 2
Accessing an API with R	 12
Getting data from Twitter with the twitteR package	 16
Getting data from Facebook with the Rfacebook package	 21
Getting data from Google Analytics	 24
Loading your data into R with rio packages	 27
Converting file formats using the rio package	 31

Chapter 2: Preparing for Analysis – Data Cleansing and Manipulation	 33
Introduction	 33
Getting a sense of your data structure with R	 34
Preparing your data for analysis with the tidyr package	 36
Detecting and removing missing values	 40
Substituting missing values using the mice package	 43
Detecting and removing outliers	 47
Performing data filtering activities	 48

Chapter 3: Basic Visualization Techniques	 59
Introduction	 59
Looking at your data using the plot() function	 60
Using pairs.panel() to look at (visualize) correlations between variables 	 67
Adding text to a ggplot2 plot at a custom location	 69
Changing axes appearance to ggplot2 plot (continous axes)	 74
Producing a matrix of graphs with ggplot2	 79
Drawing a route on a map with ggmap	 85
Making use of the igraph package to draw a network	 88
Showing communities in a network with the linkcomm package	 93

ii

Table of Contents

Chapter 4: Advanced and Interactive Visualization	 99
Introduction	 99
Producing a Sankey diagram with the networkD3 package	 100
Creating a dynamic force network with the visNetwork package	 104
Building a rotating 3D graph and exporting it as a GIF	 110
Using the DiagrammeR package to produce a process flow diagram
in RStudio	 112

Chapter 5: Power Programming with R	 117
Introduction	 117
Writing modular code in RStudio	 118
Implementing parallel computation in R	 120
Creating custom objects and methods in R using the S3 system	 123
Evaluating your code performance using the profvis package	 126
Comparing an alternative function's performance using the
microbenchmarking package	 129
Using GitHub with RStudio	 131

Chapter 6: Domain-specific Applications	 141
Introduction	 142
Dealing with regular expressions	 142
Analyzing PDF reports in a folder with the tm package	 143
Creating word clouds with the wordcloud package	 148
Performing a Twitter sentiment analysis	 151
Detecting fraud in e-commerce orders with Benford's law	 156
Measuring customer retention using cohort analysis in R	 161
Making a recommendation engine	 163
Performing time series decomposition using the stl() function	 165
Exploring time series forecasting with forecast()	 167
Tracking stock movements using the quantmod package	 168
Optimizing portfolio composition and maximising returns with
the Portfolio Analytics package	 170
Forecasting the stock market	 173

Chapter 7: Developing Static Reports	 175
Introduction	 175
Using one markup language for all types of documents – rmarkdown	 177
Writing and styling PDF documents with RStudio	 184
Writing wonderful tufte handouts with the tufte package and rmarkdown	 186
Sharing your code and plots with slides	 188
Curating a blog through RStudio	 190

iii

Table of Contents

Chapter 8: Dynamic Reporting and Web Application Development	 197
Introduction	 197
Generating dynamic parametrized reports with R Markdown	 198
Developing a single-file Shiny app	 204
Changing a Shiny app UI based on user input	 209
Creating an interactive report with Shiny	 213
Constructing RStudio add-ins	 216
Sharing your work on RPubs	 220
Deploying your app on Amazon AWS with ramazon	 222

Index	 225

v

Preface
Why should you read RStudio for R Statistical Computing Cookbook?

Well, even if there are plenty of books and blog posts about R and RStudio out there, this
cookbook can be an unbeatable friend through your journey from being an average R and
RStudio user to becoming an advanced and effective R programmer.

I have collected more than 50 recipes here, covering the full spectrum of data analysis
activities, from data acquisition and treatment to results reporting.

All of them come from my direct experience as an auditor and data analyst and from
knowledge sharing with the really dynamic and always growing R community.

I took great care selecting and highlighting those packages and practices that have proven
to be the best for a given particular task, sometimes choosing between different packages
designed for the same purpose.

You can therefore be sure that what you will learn here is the cutting edge of the R language
and will place you on the right track of your learning path to R's mastery.

What this book covers
Chapter 1, Acquiring Data for Your Project, shows you how to import data into the R
environment, taking you through web scraping and the process of connecting to an API.

Chapter 2, Preparing for Analysis – Data Cleansing and Manipulation, teaches you how to
get your data ready for analysis, leveraging the latest data-handling packages and advanced
statistical techniques for missing values and outlier treatments.

Chapter 3, Basic Visualization Techniques, lets you get the first sense of your data, highlighting
its structure and discovering patterns within it.

Chapter 4, Advanced and Interactive Visualization, shows you how to produce advanced
visualizations ranging from 3D graphs to animated plots.

Preface

vi

Chapter 5, Power Programming with R, discusses how to write efficient R code, making use of
the R objective-oriented systems and advanced tools for code performance evaluation.

Chapter 6, Domain-specific Applications, shows you how to apply the R language to a wide
range of problems related to different domains, from financial portfolio optimization to
e-commerce fraud detection.

Chapter 7, Developing Static Reports, helps you discover the reporting tools available within
the RStudio IDE and how to make the most of them to produce static reports for sharing
results of your work.

Chapter 8, Dynamic Reporting and Web Application Development, displays the collected
recipes designed to make use of the latest features introduced in RStudio from shiny web
applications with dynamic UIs to RStudio add-ons.

What you need for this book
The basic requirements for this book are the latest versions of R and RStudio, which you can
download from the following URLs:

ff For Windows: https://cran.r-project.org/bin/windows/base/

ff For Mac OS X: https://cran.r-project.org/bin/macosx/
ff https://www.rstudio.com/products/rstudio/download/

More software will be needed for a few specific recipes, which will be highlighted in the
Getting Ready section of the respective recipe.

Just a closing note: all the software employed in this book is available for free for personal
use, and the greatest advantage of them is that they are open source and powered by the
R community.

Who this book is for
This book was developed and written keeping in mind an average R and RStudio user who
would like to make the move from good to great in the field of their programming skills on
the language.

If you think you are quite good at R and RStudio but you are still missing something in order
to be great, this book is exactly what you need to read.

https://cran.r-project.org/bin/windows/base/
https://cran.r-project.org/bin/macosx/ https://www.rstudio.com/products/rstudio/download/
https://cran.r-project.org/bin/macosx/ https://www.rstudio.com/products/rstudio/download/

Preface

vii

Sections
In this book, you will find several headings that appear frequently (Getting ready, How to do it,
How it works, There's more, and See also).

To give clear instructions on how to complete a recipe, we use these sections as follows:

Getting ready
This section tells you what to expect in the recipe, and describes how to set up any software or
any preliminary settings required for the recipe.

How to do it…
This section contains the steps required to follow the recipe.

How it works…
This section usually consists of a detailed explanation of what happened in the previous
section.

There's more…
This section consists of additional information about the recipe in order to make the reader
more knowledgeable about the recipe.

See also
This section provides helpful links to other useful information for the recipe.

Conventions
In this book, you will find a number of text styles that distinguish between different kinds of
information. Here are some examples of these styles and an explanation of their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows: "The plot()
function is one of most powerful functions in base R."

Preface

viii

A block of code is set as follows:

> str(lesmiserables)
'data.frame': 254 obs. of 2 variables:
 $ V1: Factor w/ 73 levels "Anzelma","Babet",..: 61 49 55 55 21 33 12
23 20 62 ...
 $ V2: Factor w/ 49 levels "Babet","Bahorel",..: 42 42 42 36 42 42 42
42 42 42 ...

Any command-line input or output is written as follows:

install.packages("linkcomm")

library(linkcomm)

New terms and important words are shown in bold. Words that you see on the screen, for
example, in menus or dialog boxes, appear in the text like this: "In order to embed your Sankey
diagram, you can leverage the RStudio Save as Web Page control from the Export menu."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about this
book—what you liked or disliked. Reader feedback is important for us as it helps us develop
titles that you will really get the most out of.

To send us general feedback, simply e-mail feedback@packtpub.com, and mention the
book's title in the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing or
contributing to a book, see our author guide at www.packtpub.com/authors.

www.packtpub.com/authors

Preface

ix

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to help you to
get the most from your purchase.

Downloading the example code
You can download the example code files for this book from your account at http://
www.packtpub.com. If you purchased this book elsewhere, you can visit http://www.
packtpub.com/support and register to have the files e-mailed directly to you.

You can download the code files by following these steps:

1.	 Log in or register to our website using your e-mail address and password.

2.	 Hover the mouse pointer on the SUPPORT tab at the top.

3.	 Click on Code Downloads & Errata.

4.	 Enter the name of the book in the Search box.

5.	 Select the book for which you're looking to download the code files.

6.	 Choose from the drop-down menu where you purchased this book from.

7.	 Click on Code Download.

You can also download the code files by clicking on the Code Files button on the book's
webpage at the Packt Publishing website. This page can be accessed by entering the book's
name in the Search box. Please note that you need to be logged in to your Packt account.

Once the file is downloaded, please make sure that you unzip or extract the folder using the
latest version of:

ff WinRAR / 7-Zip for Windows

ff Zipeg / iZip / UnRarX for Mac

ff 7-Zip / PeaZip for Linux

Downloading the color images of this book
We also provide you with a PDF file that has color images of the screenshots/diagrams used
in this book. The color images will help you better understand the changes in the output. You
can download this file from https://www.packtpub.com/sites/default/files/
downloads/RStudioforRStatisticalComputingCookbook_ColorImages.pdf.

http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com/support
http://www.packtpub.com/support
https://www.packtpub.com/sites/default/files/downloads/RStudioforRStatisticalComputingCookbook_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/RStudioforRStatisticalComputingCookbook_ColorImages.pdf

Preface

x

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes do
happen. If you find a mistake in one of our books—maybe a mistake in the text or the
code—we would be grateful if you could report this to us. By doing so, you can save other
readers from frustration and help us improve subsequent versions of this book. If you find
any errata, please report them by visiting http://www.packtpub.com/submit-errata,
selecting your book, clicking on the Errata Submission Form link, and entering the details of
your errata. Once your errata are verified, your submission will be accepted and the errata will
be uploaded to our website or added to any list of existing errata under the Errata section of
that title.

To view the previously submitted errata, go to https://www.packtpub.com/books/
content/support and enter the name of the book in the search field. The required
information will appear under the Errata section.

Piracy
Piracy of copyrighted material on the Internet is an ongoing problem across all media.
At Packt, we take the protection of our copyright and licenses very seriously. If you come
across any illegal copies of our works in any form on the Internet, please provide us with
the location address or website name immediately so that we can pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected pirated material.

We appreciate your help in protecting our authors and our ability to bring you valuable content.

Questions
If you have a problem with any aspect of this book, you can contact us at
questions@packtpub.com, and we will do our best to address the problem.

http://www.packtpub.com/submit-errata
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support

1

1
Acquiring Data for

Your Project

In this chapter, we will cover the following recipes:

ff Acquiring data from the Web—web scraping tasks

ff Accessing an API with R

ff Getting data from Twitter with the twitteR package

ff Getting data from Facebook with the Rfacebook package

ff Getting data from Google Analytics

ff Loading your data into R with rio packages

ff Converting file formats using the rio package

Introduction
The American statistician Edward Deming once said:

"Without data you are just another man with an opinion."

I think this great quote is enough to highlight the importance of the data acquisition phase
of every data analysis project. This phase is exactly where we are going to start from. This
chapter will give you tools for scraping the Web, accessing data via web APIs, and importing
nearly every kind of file you will probably have to work with quickly, thanks to the magic
package rio.

All the recipes in this book are based on the great and popular packages developed and
maintained by the members of the R community.

Acquiring Data for Your Project

2

After reading this section, you will be able to get all your data into R to start your data analysis
project, no matter where it comes from.

Before starting the data acquisition process, you should gain a clear understanding of your
data needs. In other words, what data do you need in order to get solutions to your problems?

A rule of thumb to solve this problem is to look at the process that you are investigating—from
input to output—and outline all the data that will go in and out during its development.

In this data, you will surely have that chunk of data that is needed to solve your problem.

In particular, for each type of data you are going to acquire, you should define the following:

ff The source: This is where data is stored

ff The required authorizations: This refers to any form of authorization/authentication
that is needed in order to get the data you need

ff The data format: This is the format in which data is made available

ff The data license: This is to check whether there is any license covering data
utilization/distribution or whether there is any need for ethics/privacy considerations

After covering these points for each set of data, you will have a clear vision of future data
acquisition activities. This will let you plan ahead the activities needed to clearly define
resources, steps, and expected results.

Acquiring data from the Web – web scraping
tasks

Given the advances in the Internet of Things (IoT) and the progress of cloud computing, we
can quietly affirm that in future, a huge part of our data will be available through the Internet,
which on the other hand doesn't mean it will be public.

It is, therefore, crucial to know how to take that data from the Web and load it into your
analytical environment.

You can find data on the Web either in the form of data statically stored on websites (that is,
tables on Wikipedia or similar websites) or in the form of data stored on the cloud, which is
accessible via APIs.

For API recipes, we will go through all the steps you need to get data statically exposed on
websites in the form of tabular and nontabular data.

This specific example will show you how to get data from a specific Wikipedia page, the
one about the R programming language: https://en.wikipedia.org/wiki/R_
(programming_language).

https://en.wikipedia.org/wiki/R_(programming_language)
https://en.wikipedia.org/wiki/R_(programming_language)

Chapter 1

3

Getting ready
Data statically exposed on web pages is actually pieces of web page code. Getting them from
the Web to our R environment requires us to read that code and find where exactly the data is.

Dealing with complex web pages can become a really challenging task, but luckily,
SelectorGadget was developed to help you with this job. SelectorGadget is a bookmarklet,
developed by Andrew Cantino and Kyle Maxwell, that lets you easily figure out the CSS selector
of your data on the web page you are looking at. Basically, the CSS selector can be seen as
the address of your data on the web page, and you will need it within the R code that you are
going to write to scrape your data from the Web (refer to the next paragraph).

The CSS selector is the token that is used within the CSS code to identify
elements of the HTML code based on their name.
CSS selectors are used within the CSS code to identify which elements are to
be styled using a given piece of CSS code. For instance, the following script
will align all elements (CSS selector *) with 0 margin and 0 padding:

* {
margin: 0;
padding: 0;
}

SelectorGadget is currently employable only via the Chrome browser, so you will need to install
the browser before carrying on with this recipe. You can download and install the last version
of Chrome from https://www.google.com/chrome/.

SelectorGadget is available as a Chrome extension; navigate to the following URL while
already on the page showing the data you need:

:javascript:(function(){
 var%20s=document.createElement('div');
 s.innerHTML='Loading…'
 ;s.style.color='black';
 s.style.padding='20px';
 s.style.position='fixed';
 s.style.zIndex='9999';
 s.style.fontSize='3.0em';
 s.style.border='2px%20solid%20black';
 s.style.right='40px';
 s.style.top='40px';
 s.setAttribute('class','selector_gadget_loading');
 s.style.background='white';
 document.body.appendChild(s);

https://www.google.com/chrome/

Acquiring Data for Your Project

4

 s=document.createElement('script');
 s.setAttribute('type','text/javascript');
 s.setAttribute('src','https://dv0akt2986vzh.cloudfront.net/
unstable/lib/selectorgadget.js');document.body.appendChild(s);
})();

This long URL shows that the CSS selector is provided as JavaScript; you can make this out
from the :javascript: token at the very beginning.

We can further analyze the URL by decomposing it into three main parts, which are as follows:

ff Creation on the page of a new element of the div class with the document.
createElement('div') statement

ff Aesthetic attributes setting, composed by all the s.style… tokens

ff The .js file content retrieving at https://dv0akt2986vzh.cloudfront.net/
unstable/lib/selectorgadget.js

The .js file is where the CSS selector's core functionalities are actually defined and the place
where they are taken to make them available to users.

That being said, I'm not suggesting that you try to use this link to employ SelectorGadget
for your web scraping purposes, but I would rather suggest that you look for the Chrome
extension or at the official SelectorGadget page, http://selectorgadget.com. Once
you find the link on the official page, save it as a bookmark so that it is easily available
when you need it.

The other tool we are going to use in this recipe is the rvest package, which offers great web
scraping functionalities within the R environment.

To make it available, you first have to install and load it in the global environment that runs
the following:

install.packages("rvest")
library(rvest)

http://selectorgadget.com

Chapter 1

5

How to do it...
1.	 Run SelectorGadget. To do so, after navigating to the web page you are interested

in, activate SelectorGadget by running the Chrome extension or clicking on the
bookmark that we previously saved.

In both cases, after activating the gadget, a Loading… message will appear, and
then, you will find a bar on the bottom-right corner of your web browser, as shown in
the following screenshot:

You are now ready to select the data you are interested in.

Acquiring Data for Your Project

6

2.	 Select the data you are interested in. After clicking on the data you are going to
scrape, you will note that beside the data you've selected, there are some other
parts on the page that will turn yellow:

This is because SelectorGadget is trying to guess what you are looking at by
highlighting all the elements included in the CSS selector that it considers to
be most useful for you.

If it is guessing wrong, you just have to click on the wrongly highlighted parts and
those will turn red:

Chapter 1

7

When you are done with this fine-tuning process, SelectorGadget will have correctly
identified a proper selector, and you can move on to the next step.

3.	 Find your data location on the page. To do this, all you have to do is copy the CSS
selector that you will find in the bar at the bottom-right corner:

This piece of text will be all you need in order to scrape the web page from R.

4.	 The next step is to read data from the Web with the rvest package. The rvest
package by Hadley Wickham is one of the most comprehensive packages for
web scraping activities in R. Take a look at the There's more... section for further
information on package objectives and functionalities.

For now, it is enough to know that the rvest package lets you download HTML code
and read the data stored within the code easily.

Now, we need to import the HTML code from the web page. First of all, we need to
define an object storing all the html code of the web page you are looking at:
page_source <- read_html('https://en.wikipedia.org/wiki/R_
(programming_language)

This code leverages read_html function(), which retrieves the source code that
resides at the written URL directly from the Web.

Acquiring Data for Your Project

8

5.	 Next, we will select the defined blocks. Once you have got your HTML code, it is time
to extract the part of the code you are interested in. This is done using the
html_nodes() function, which is passed as an argument in the CSS selector and
retrieved using SelectorGadget. This will result in a line of code similar to the following:
version_block <- html_nodes(page_source,".wikitable th ,
.wikitable td")

As you can imagine, this code extracts all the content of the selected nodes, including
HTML tags.

The HTML language
HyperText Markup Language (HTML) is a markup language that is used to
define the format of web pages.
The basic idea behind HTML is to structure the web page into a format with a
head and body, each of which contains a variable number of tags, which can
be considered as subcomponents of the structure.
The head is used to store information and components that will not be
seen by the user but will affect the web page's behavior, for instance, in a
Google Analytics script used for tracking page visits, the body contains all the
contents which will be showed to the reader.
Since the HTML code is composed of a nested structure, it is common to
compare this structure to a tree, and here, different components are also
referred to as nodes.

Printing out the version_block object, you will obtain a result similar to
the following:
print(version_block)

{xml_nodeset (45)}
 [1] <th>Release</th>
 [2] <th>Date</th>
 [3] <th>Description</th>
 [4] <th>0.16</th>
 [5] <td/>
 [6] <td>This is the last <a href="/wiki/Alpha_test" title="Alpha
test" class="mw-redirect">alp ...
 [7] <th>0.49</th>
 [8] <td style="white-space:nowrap;">1997-04-23</td>
 [9] <td>This is the oldest available <a href="/wiki/Source_code"
title="Source code">source</a ...
[10] <th>0.60</th>
[11] <td>1997-12-05</td>
[12] <td>R becomes an official part of the <a href="/wiki/GNU_
Project" title="GNU Project">GNU ...

Chapter 1

9

[13] <th>1.0</th>
[14] <td>2000-02-29</td>
[15] <td>Considered by its developers stable enough for production
use.<sup id="cite_ref-35" cl ...
[16] <th>1.4</th>
[17] <td>2001-12-19</td>
[18] <td>S4 methods are introduced and the first version for <a
href="/wiki/Mac_OS_X" title="Ma ...
[19] <th>2.0</th>
[20] <td>2004-10-04</td>

This result is not exactly what you are looking for if you are going to work with this
data. However, you don't have to worry about that since we are going to give your text
a better shape in the very next step.

6.	 In order to obtain a readable and actionable format, we need one more step:
extracting text from HTML tags.

This can be done using the html_text() function, which will result in a list
containing all the text present within the HTML tags:
content <- html_text(version_block)

The final result will be a perfectly workable chunk of text containing the data needed
for our analysis:
[1] "Release"

 [2] "Date"

 [3] "Description"

 [4] "0.16"

 [5] ""

 [6] "This is the last alpha version developed primarily by
Ihaka and Gentleman. Much of the basic functionality from the
\"White Book\" (see S history) was implemented. The mailing lists
commenced on April 1, 1997."
 [7] "0.49"

 [8] "1997-04-23"

 [9] "This is the oldest available source release, and compiles
on a limited number of Unix-like platforms. CRAN is started on
this date, with 3 mirrors that initially hosted 12 packages. Alpha
versions of R for Microsoft Windows and Mac OS are made available
shortly after this version."

Acquiring Data for Your Project

10

[10] "0.60"

[11] "1997-12-05"

[12] "R becomes an official part of the GNU
Project. The code is hosted and maintained on CVS."

[13] "1.0"

[14] "2000-02-29"

[15] "Considered by its developers
stable enough for production use.[35]"

[16] "1.4"

[17] "2001-12-19"

[18] "S4 methods are introduced and the first
version for Mac OS X is made available soon after."

[19] "2.0"

[20] "2004-10-04"

[21] "Introduced lazy loading, which enables fast
loading of data with minimal expense of system memory."

[22] "2.1"

[23] "2005-04-18"

[24] "Support for UTF-8 encoding, and the beginnings of
internationalization and localization for different languages."

[25] "2.11"

[26] "2010-04-22"

[27] "Support for Windows 64 bit systems."

[28] "2.13"

[29] "2011-04-14"

[30] "Adding a new compiler function that allows
speeding up functions by converting them to byte-code."

Chapter 1

11

[31] "2.14"

[32] "2011-10-31"

[33] "Added mandatory namespaces for
packages. Added a new parallel package."

[34] "2.15"

[35] "2012-03-30"

[36] "New load balancing functions. Improved
serialization speed for long vectors."

[37] "3.0"

[38] "2013-04-03"

[39] "Support for numeric index values
231 and larger on 64 bit systems."

[40] "3.1"

[41] "2014-04-10"

[42] ""

[43] "3.2"

[44] "2015-04-16"

[45] ""

There's more...
The following are a few useful resources that will help you get the most out of this recipe:

ff A useful list of HTML tags, to show you how HTML files are structured and how to
identify code that you need to get from these files, is provided at http://www.
w3schools.com/tags/tag_code.asp

ff The blog post from the RStudio guys introducing the rvest package and highlighting
some package functionalities can be found at http://blog.rstudio.
org/2014/11/24/rvest-easy-web-scraping-with-r/

http://www.w3schools.com/tags/tag_code.asp
http://www.w3schools.com/tags/tag_code.asp
http://blog.rstudio.org/2014/11/24/rvest-easy-web-scraping-with-r/
http://blog.rstudio.org/2014/11/24/rvest-easy-web-scraping-with-r/

Acquiring Data for Your Project

12

Accessing an API with R
As we mentioned before, an always increasing proportion of our data resides on the Web and
is made available through web APIs.

APIs in computer programming are intended to be APIs, groups of procedures,
protocols, and software used for software application building. APIs expose
software in terms of input, output, and processes.
Web APIs are developed as an interface between web applications and third
parties.
The typical structure of a web API is composed of a set of HTTP request
messages that have answers with a predefined structure, usually in the XML
or JSON format.

A typical use case for API data contains data regarding web and mobile applications, for
instance, Google Analytics data or data regarding social networking activities.

The successful web application If This ThenThat (IFTTT), for instance, lets you link together
different applications, making them share data with each other and building powerful and
customizable workflows:

This useful job is done by leveraging the application's API (if you don't know IFTTT, just
navigate to https://ifttt.com, and I will see you there).

https://ifttt.com

Chapter 1

13

Using R, it is possible to authenticate and get data from every API that adheres to the OAuth
1 and OAuth 2 standards, which are nowadays the most popular standards (even though
opinions about these protocols are changing; refer to this popular post by the OAuth creator
Blain Cook at http://hueniverse.com/2012/07/26/oauth-2-0-and-the-road-to-
hell/). Moreover, specific packages have been developed for a lot of APIs.

This recipe shows how to access custom APIs and leverage packages developed for
specific APIs.

In the There's more... section, suggestions are given on how to develop custom functions
for frequently used APIs.

Getting ready
The rvest package, once again a product of our benefactor Hadley Whickham, provides
a complete set of functionalities for sending and receiving data through the HTTP protocol
on the Web. Take a look at the quick-start guide hosted on GitHub to get a feeling of rvest
functionalities (https://github.com/hadley/rvest).

Among those functionalities, functions for dealing with APIs are provided as well.

Both OAuth 1.0 and OAuth 2.0 interfaces are implemented, making this package really useful
when working with APIs.

Let's look at how to get data from the GitHub API. By changing small sections, I will point out
how you can apply it to whatever API you are interested in.

Let's now actually install the rvest package:

install.packages("rvest")
library(rvest)

How to do it…
1.	 The first step to connect with the API is to define the API endpoint. Specifications for

the endpoint are usually given within the API documentation. For instance, GitHub
gives this kind of information at http://developer.github.com/v3/oauth/.

In order to set the endpoint information, we are going to use the oauth_endpoint()
function, which requires us to set the following arguments:

�� request: This is the URL that is required for the initial unauthenticated
token. This is deprecated for OAuth 2.0, so you can leave it NULL in this
case, since the GitHub API is based on this protocol.

�� authorize: This is the URL where it is possible to gain authorization for the
given client.

http://hueniverse.com/2012/07/26/oauth-2-0-and-the-road-to-hell/
http://hueniverse.com/2012/07/26/oauth-2-0-and-the-road-to-hell/
https://github.com/hadley/rvest
http://developer.github.com/v3/oauth/

Acquiring Data for Your Project

14

�� access: This is the URL where the exchange for an authenticated token
is made.

�� base_url: This is the API URL on which other URLs (that is, the URLs
containing requests for data) will be built upon.

In the GitHub example, this will translate to the following line of code:
github_api <- oauth_endpoint(request = NULL,
 authorize =
"https://github.com/login/oauth/authorize",
 access = "https://github.com/login/oauth/access_token",
 base_url =
"https://github.com/login/oauth")

2.	 Create an application to get a key and secret token. Moving on with our GitHub
example, in order to create an application, you will have to navigate to https://
github.com/settings/applications/new (assuming that you are already
authenticated on GitHub).

Be aware that no particular URL is needed as the homepage URL, but a specific URL
is required as the authorization callback URL.

This is the URL that the API will redirect to after the method invocation is done.

As you would expect, since we want to establish a connection from GitHub to our
local PC, you will have to redirect the API to your machine, setting the Authorization
callback URL to http://localhost:1410.

After creating your application, you can get back to your R session to establish a
connection with it and get your data.

3.	 After getting back to your R session, you now have to set your OAuth credentials
through the oaut_app() and oauth2.0_token() functions and establish a
connection with the API, as shown in the following code snippet:
app <- oauth_app("your_app_name",
 key = "your_app_key",
 secret = "your_app_secret")
 API_token <- oauth2.0_token(github_api,app)

4.	 This is where you actually use the API to get data from your web-based software.
Continuing on with our GitHub-based example, let's request some information about
API rate limits:
request <- GET("https://api.github.com/rate_limit", config(token =
API_token))

https://github.com/settings/applications/new
https://github.com/settings/applications/new

Chapter 1

15

How it works...
Be aware that this step will be required both for OAuth 1.0 and OAuth 2.0 APIs, as the
difference between them is only the absence of a request URL, as we noted earlier.

Endpoints for popular APIs
The httr package comes with a set of endpoints that are already
implemented for popular APIs, and specifically for the following websites:

ff LinkedIn
ff Twitter
ff Vimeo
ff Google
ff Facebook
ff GitHub

For these APIs, you can substitute the call to oauth_endpoint() with a
call to the oauth_endpoints() function, for instance:

oauth_endpoints("github")

The core feature of the OAuth protocol is to secure authentication. This is
then provided on the client side through a key and secret token, which are
to be kept private.
The typical way to get a key and a secret token to access an API involves
creating an app within the service providing the API.

The callback URL
Within the web API domain, a callback URL is the URL that is called by the API
after the answer is given to the request. A typical example of a callback URL is
the URL of the page navigated to after completing an online purchase.
In this example, when we finish at the checkout on the online store, an API
call is made to the payment circuit provider.
After completing the payment operation, the API will navigate again to the
online store at the callback URL, usually to a thank you page.

There's more...
You can also write custom functions to handle APIs. When frequently dealing with a particular
API, it can be useful to define a set of custom functions in order to make it easier to interact
with.

Acquiring Data for Your Project

16

Basically, the interaction with an API can be summarized with the following three categories:

ff Authentication
ff Getting content from the API
ff Posting content to the API

Authentication can be handled by leveraging the HTTR package's authenticate() function
and writing a function as follows:

api_auth function (path = "api_path", password){
authenticate(user = path, password)
}

You can get the content from the API through the get function of the httr package:

api_get <- function(path = "api_path",password){
auth <- api_auth(path, password)
request <- GET("https://api.com", path = path, auth)

}

Posting content will be done in a similar way through the POST function:

api_post <- function(Path, post_body, path = "api_path",password){
auth <- api_auth(pat) stopifnot(is.list(body))
body_json <- jsonlite::toJSON(body)
request <- POST("https://api.application.com", path = path, body =
body_json, auth, post, ...)
}

Getting data from Twitter with the
twitteR package

Twitter is an unbeatable source of data for nearly every kind of data-driven problem.

If my words are not enough to convince you, and I think they shouldn't be, you can always
perform a quick search on Google, for instance, text analytics with Twitter, and read the over
30 million results to be sure.

This should not surprise you, given Google's huge and word-spreaded base of users together
with the relative structure and richness of metadata of content on the platform, which makes
this social network a place to go when talking about data analysis projects, especially those
involving sentiment analysis and customer segmentations.

R comes with a really well-developed package named twitteR, developed by Jeff Gentry,
which offers a function for nearly every functionality made available by Twitter through the API.
The following recipe covers the typical use of the package: getting tweets related to a topic.

Chapter 1

17

Getting ready
First of all, we have to install our great twitteR package by running the following code:

install.packages("twitteR")
library(twitter)

How to do it…
1.	 As seen with the general procedure, in order to access the Twitter API, you will need

to create a new application. This link (assuming you are already logged in to Twitter)
will do the job: https://apps.twitter.com/app/new.

Feel free to give whatever name, description, and website to your app that you want.
The callback URL can be also left blank.

After creating the app, you will have access to an API key and an API secret, namely
Consumer Key and Consumer Secret, in the Keys and Access Tokens tab in your
app settings.

Below the section containing these tokens, you will find a section called Your Access
Token. These tokens are required in order to let the app perform actions on your
account's behalf. For instance, you may be willing to send direct messages to all new
followers and could therefore write an app to do that automatically.

Keep a note of these tokens as well, since you will need them to set up your
connection within R.

2.	 Then, we will get access to the API from R. In order to authenticate your app and use
it to retrieve data from Twitter, you will just need to run a line of code, specifically, the
setup_twitter_oauth() function, by passing the following arguments:

�� consumer_key

�� consumer_token

�� access_token

�� access_secret

You can get these tokens from your app settings:
setup_twitter_oauth(consumer_key = "consumer_key",
 consumer_secret = "consumer_secret",
 access_token = "access_token",
 access_secret = "access_secret")

https://apps.twitter.com/app/new

Acquiring Data for Your Project

18

3.	 Now, we will query Twitter and store the resulting data. We are finally ready for the
core part: getting data from Twitter. Since we are looking for tweets pertaining to a
specific topic, we are going to use the searchTwitter() function. This function
allows you to specify a good number of parameters besides the search string. You
can define the following:

�� n : This is the number of tweets to be downloaded.

�� lang: This is the language specified with the ISO 639-1 code. You can find a
partial list of this code at https://en.wikipedia.org/wiki/List_of_
ISO_639-1_codes.

�� since – until: These are time parameters that define a range of time,
where dates are expressed as YYYY-MM-DD, for instance, 2012-05-12.

�� locale: This specifies the geocode, expressed as latitude, longitude
and radius, either in miles or kilometers, for example, 38.481157,
-130.500342,1 mi.

�� sinceID – maxID: This is the account ID range.

�� resultType: This is used to filter results based on popularity. Possible
values are 'mixed', 'recent', and 'popular'.

�� retryOnRateLimit: This is the number that defines how many times the
query will be retried if the API rate limit is reached.

Supposing that we are interested in tweets regarding data science with R; we run the
following function:
tweet_list <- searchTwitter('data science with R', n = 450)

Performing a character-wise search with twitteR
Searching Twitter for a specific sequence of characters is possible by
submitting a query surrounded by double quotes, for instance, "data
science with R". Consequently, if you are looking to retrieve tweets
in R corresponding to a specific sequence of characters, you will have to
submit and run a line of code similar to the following:

 tweet_list <- searchTwitter('data science with R',
n = 450)

tweet_list will be a list of the first 450 tweets resulting from the given query.

Be aware that since n is the maximum number of tweets retrievable, you may retrieve
a smaller number of tweets, if for the given query the number or result is smaller
than n.

https://en.wikipedia.org/wiki/List_of_ISO_639-1_codes
https://en.wikipedia.org/wiki/List_of_ISO_639-1_codes

Chapter 1

19

Each element of the list will show the following attributes:
�� text

�� favorited

�� favoriteCount

�� replyToSN

�� created

�� truncated

�� replyToSID

�� id

�� replyToUID

�� statusSource

�� screenName

�� retweetCount

�� isRetweet

�� retweeted

�� longitude

�� latitude

In order to let you work on this data more easily, a specific function is provided to
transform this list in a more convenient data.frame, namely, the twiLstToDF()
function.

After this, we can run the following line of code:
tweet_df <- twListToDF(tweet_list)

This will result in a tweet_df object that has the following structure:
> str(tweet_df)
'data.frame': 20 obs. of 16 variables:
 $ text : chr "95% off Applied Data Science with R -
 $ favorited : logi FALSE FALSE FALSE FALSE FALSE FALSE ...
 $ favoriteCount: num 0 2 0 2 0 0 0 0 0 1 ...
 $ replyToSN : logi NA NA NA NA NA NA ...
 $ created : POSIXct, format: "2015-10-16 09:03:32" "2015-10-
15 17:40:33" "2015-10-15 11:33:37" "2015-10-15 05:17:59" ...
 $ truncated : logi FALSE FALSE FALSE FALSE FALSE FALSE ...
 $ replyToSID : logi NA NA NA NA NA NA ...
 $ id : chr "654945762384740352" "654713487097135104"
"654621142179819520" "654526612688375808" ...
 $ replyToUID : logi NA NA NA NA NA NA ...

Acquiring Data for Your Project

20

 $ statusSource : chr "<a href=\"http://learnviral.com/\"
rel=\"nofollow\">Learn Viral" "<a href=\"https://about.
twitter.com/products/tweetdeck\" rel=\"nofollow\">TweetDeck</
a>" "final one kk</
a>" "Twitter Web
Client" ...
 $ screenName : chr "Learn_Viral" "WinVectorLLC" "retweetjava"
"verystrongjoe" ...
 $ retweetCount : num 0 0 1 1 0 0 0 2 2 2 ...
 $ isRetweet : logi FALSE FALSE TRUE FALSE FALSE FALSE ...
 $ retweeted : logi FALSE FALSE FALSE FALSE FALSE FALSE ...
 $ longitude : logi NA NA NA NA NA NA ...
 $ latitude : logi NA NA NA NA NA NA ...

After sending you to the data visualization section for advanced techniques, we will
now quickly visualize the retweet distribution of our tweets, leveraging the base R
hist() function:
hist(tweet_df$retweetCount)

This code will result in a histogram that has the x axis as the number of retweets and
the y axis as the frequency of those numbers:

There's more...
As stated in the official Twitter documentation, particularly at https://dev.twitter.com/
rest/public/rate-limits, there is a limit to the number of tweets you can retrieve within
a certain period of time, and this limit is set to 450 every 15 minutes.

https://dev.twitter.com/rest/public/rate-limits
https://dev.twitter.com/rest/public/rate-limits

Chapter 1

21

However, what if you are engaged in a really sensible job and you want to base your work on a
significant number of tweets? Should you set the n argument of searchTwitter() to 450
and wait for 15—everlasting—minutes? Not quite, the twitteR package provides a convenient
way to overcome this limit through the register_db_backend(), register_sqlite_
backend(), and register_mysql_bakend() functions. These functions allow you to
create a connection with the named type of databases, passing the database name, path,
username, and password as arguments, as you can see in the following example:

 register_mysql_backend("db_name", "host","user","password")

You can now leverage the search_twitter_and_store function, which stores the
search results in the connected database. The main feature of this function is the
retryOnRateLimit argument, which lets you specify the number of tries to be performed by
the code once the API limit is reached. Setting this limit to a convenient level will likely let you
pass the 15-minutes interval:

tweets_db = search_twitter_and_store("data science R",
retryOnRateLimit = 20)

Retrieving stored data will now just require you to run the following code:

 from_db = load_tweets_db()

Getting data from Facebook with the
Rfacebook package

The Rfacebook package, developed and maintained by Pablo Barberá, lets you easily
establish and take advantage of Facebook's API thanks to a series of functions.

As we did for the twitteR package, we are going to establish a connection with the API and
retrieve posts pertaining to a given keyword.

Getting ready
This recipe will mainly be based on functions from the Rfacebok package. Therefore, we need
to install and load this package in our environment:

install.packages("Rfacebook")
library(Rfacebook)

Acquiring Data for Your Project

22

How to do it...
1.	 In order to leverage an API's functionalities, we first have to create an application

in our Facebook profile. Navigating to the following URL will let you create an app
(assuming you are already logged in to Facebook): https://developers.
facebook.com.

After skipping the quick start (the button on the upper-right corner), you can see the
settings of your app and take note of app_id and app_secret, which you will
need in order to establish a connection with the app.

2.	 After installing and loading the Rfacebook package, you will easily be able to
establish a connection by running the fbOAuth() function as follows:
fb_connection <- fbOauth(app_id = "your_app_id",
 app_secret = "your_app_secret")
fb_connection

Running the last line of code will result in a console prompt, as shown in the following
lines of code:
copy and paste into site URL on Facebook App Settings: http://
localhost:1410/ When done press any key to continue

Following this prompt, you will have to copy the URL and go to your Facebook
app settings.

Once there, you will have to select the Settings tab and create a new platform
through the + Add Platform control. In the form, which will prompt you after clicking
this control, you should find a field named Site Url. In this field, you will have to paste
the copied URL.

Close the process by clicking on the Save Changes button.

At this point, a browser window will open up and ask you to allow access permission
from the app to your profile. After allowing this permission, the R console will print out
the following code snippet:
Authentication complete

Authentication successful.

3.	 To test our API connection, we are going to search Facebook for posts related to data
science with R and save the results within data.frame for further analysis.

Among other useful functions, Rfacebook provides the searchPages() function,
which as you would expect, allows you to search the social network for pages
mentioning a given string.

https://developers.facebook.com
https://developers.facebook.com

Chapter 1

23

Different from the searchTwitter function, this function will not let you specify a
lot of arguments:

�� string: This is the query string

�� token: This is the valid OAuth token created with the fbOAuth() function

�� n: This is the maximum number of posts to be retrieved

The Unix timestamp
The Unix timestamp is a time-tracking system originally developed for
the Unix OS. Technically, the Unix timestamp x expresses the number
of seconds elapsed since the Unix Epoch (January 1, 1970 UTC) and
the timestamp.

To search for data science with R, you will have to run the following line of code:
pages ← searchPages('data science with R',fb_connection)

This will result in data.frame storing all the pages retrieved along with the data
concerning them.

As seen for the twitteR package, we can take a quick look at the like distribution,
leveraging the base R hist() function:
hist(pages$likes)

This will result in a plot similar to the following:

Refer to the data visualization section for further recipes on data visualization.

Acquiring Data for Your Project

24

Getting data from Google Analytics
Google Analytics is a powerful analytics solution that gives you really detailed insights into how
your online content is performing. However, besides a tabular format and a data visualization
tool, no other instruments are available to model your data and gain more powerful insights.

This is where R comes to help, and this is why the RGoogleAnalytics package was
developed: to provide a convenient way to extract data from Google Analytics into
an R environment.

As an example, we will import data from Google Analytics into R regarding the daily bounce
rate for a website in a given time range.

Getting ready
As a preliminary step, we are going to install and load the RGoogleAnalytics package:

install.packages("RGoogeAnalytics")
library(RGoogleAnalytics)

How to do it...
1.	 The first step that is required to get data from Google Analytics is to create a Google

Analytics application.

This can be easily obtained from (assuming that you are already logged in to Google
Analytics) https://console.developers.google.com/apis.

After creating a new project, you will see a dashboard with a left menu containing
among others the APIs & auth section, with the APIs subsection.

After selecting this section, you will see a list of available APIs, and among these,
at the bottom-left corner of the page, there will be the Advertising APIs with the
Analytics API within it:

https://console.developers.google.com/apis

Chapter 1

25

After enabling the API, you will have to go back to the APIs & auth section and select
the Credentials subsection.

In this section, you will have to add an OAuth client ID, select Other, and assign a
name to your app:

After doing that and selecting the Create button, you will be prompted with a window
showing your app ID and secret. Take note of them, as you will need them to access
the analytics API from R.

Acquiring Data for Your Project

26

2.	 In order to authenticate on the API, we will leverage the Auth() function, providing
the annotated ID and secret:
ga_token ← Auth(client.id = "the_ID", client.secret = "the_
secret")

At this point, a browser window will open up and ask you to allow access permission
from the app to your Google Analytics account.

After you allow access, the R console will print out the following:
Authentication complete

3.	 This last step basically requires you to shape a proper query and submit it through
the connection established in the previous paragraphs. A Google Analytics query can
be easily built, leveraging the powerful Google Query explorer which can be found at
https://ga-dev-tools.appspot.com/query-explorer/.

This web tool lets you experiment with query parameters and define your query before
submitting the request from your code.

The basic fields that are mandatory in order to execute a query are as follows:

�� The view ID: This is a unique identifier associated with your Google Analytics
property. This ID will automatically show up within Google Query Explorer.

�� Start-date and end-date: This is the start and end date in the form
YYYY-MM-DD, for example, 2012-05-12.

�� Metrics: This refers to the ratios and numbers computed from the data
related to visits within the date range. You can find the metrics code in
Google Query Explorer.

If you are going to further elaborate your data within your data project, you will
probably find it useful to add a date dimension ("ga:date") in order to split your
data by date.

Having defined your arguments, you will just have to pack them in a list using the
init() function, build a query using the QueryBuilder() function, and submit it
with the GetReportData() function:
query_parameters <- Init(start.date = "2015-01-01",
 end.date = "2015-06-30",
 metrics = "ga:sessions,
 ga:bounceRate",
 dimensions = "ga:date",
 table.id = "ga:33093633")
ga_query <- QueryBuilder(query_parameters)
ga_df <- GetReportData(ga_query, ga_token)

The first representation of this data could be a simple plot of data that will result in a
representation of the bounce rate for each day from the start date to the end date:
plot(ga_df)

https://ga-dev-tools.appspot.com/query-explorer/

Chapter 1

27

There's more...
Google Analytics is a complete and always-growing set of tools for performing web analytics
tasks. If you are facing a project involving the use of this platform, I would definitely
suggest that you take the time to go through the official tutorial from Google at https://
analyticsacademy.withgoogle.com.

This complete set of tutorials will introduce you to the fundamental logic and assumptions of
the platform, giving you a solid foundation for any of the following analysis.

Loading your data into R with rio packages
The rio package is a relatively recent R package, developed by Thomas J. Leeper, which
makes data import and export in R painless and quick.

This objective is mainly reached when rio makes assumptions about the file format. This
means that the rio package guesses the format of the file you are trying to import and
consequently applies import functions appropriate to that format.

All of this is done behind the scenes, and the user is just required to run the import()
function.

As Leeper often states when talking about the package: "it just works."

One of the great results you can obtain by employing this package is streamlining workflows
involving different development and productivity tools.

For instance, it is possible to produce tables directly into sas and make them available to the
R environment without any particular export procedure in sas, we can directly acquire data in
R as it is produced, or input into an Excel spreadsheet.

Getting ready
As you would expect, we first need to install and load the rio package:

install.packages("rio")
library(rio)

In the following example, we are going to import our well-known world_gdp_data dataset
from a local .csv file.

https://analyticsacademy.withgoogle.com
https://analyticsacademy.withgoogle.com

Acquiring Data for Your Project

28

How to do it...
1.	 The first step is to import the dataset using the import() function:

messy_gdp ← import("world_gdp_data.csv")

2.	 Then, we visualize the result with the RStudio viewer:
View(messy_gdp)

How it works...
We first import the dataset using the import() function. To understand the structure of
the import() function, we can leverage a useful behavior of the R console: putting a
function name without parentheses and running the command will result in the printing of
all the function definitions.

Running the import on the R console will produce the following output:

function (file, format, setclass, ...)
{
 if (missing(format))
 fmt <- get_ext(file)
 else fmt <- tolower(format)
 if (grepl("^http.*://", file)) {
 temp_file <- tempfile(fileext = fmt)
 on.exit(unlink(temp_file))
 curl_download(file, temp_file, mode = "wb")
 file <- temp_file
 }
 x <- switch(fmt, r = dget(file = file), tsv = import.delim(file =
file,
 sep = "\t", ...), txt = import.delim(file = file, sep = "\t",
 ...), fwf = import.fwf(file = file, ...), rds = readRDS(file =
file,
 ...), csv = import.delim(file = file, sep = ",", ...),
 csv2 = import.delim(file = file, sep = ";", dec = ",",
 ...), psv = import.delim(file = file, sep = "|",
 ...), rdata = import.rdata(file = file, ...), dta =
import.dta(file = file,
 ...), dbf = read.dbf(file = file, ...), dif = read.
DIF(file = file,
 ...), sav = import.sav(file = file, ...), por = read_
por(path = file),
 sas7bdat = read_sas(b7dat = file, ...), xpt = read.xport(file
= file),

Chapter 1

29

 mtp = read.mtp(file = file, ...), syd = read.systat(file =
file,
 to.data.frame = TRUE), json = fromJSON(txt = file,
 ...), rec = read.epiinfo(file = file, ...), arff = read.
arff(file = file),
 xls = read_excel(path = file, ...), xlsx = import.xlsx(file =
file,
 ...), fortran = import.fortran(file = file, ...),
 zip = import.zip(file = file, ...), tar = import.tar(file =
file,
 ...), ods = import.ods(file = file, ...), xml = import.
xml(file = file,
 ...), clipboard = import.clipboard(...), gnumeric =
stop(stop_for_import(fmt)),
 jpg = stop(stop_for_import(fmt)), png = stop(stop_for_
import(fmt)),
 bmp = stop(stop_for_import(fmt)), tiff = stop(stop_for_
import(fmt)),
 sss = stop(stop_for_import(fmt)), sdmx = stop(stop_for_
import(fmt)),
 matlab = stop(stop_for_import(fmt)), gexf = stop(stop_for_
import(fmt)),
 npy = stop(stop_for_import(fmt)), stop("Unrecognized file
format"))
 if (missing(setclass)) {
 return(set_class(x))
 }
 else {
 a <- list(...)
 if ("data.table" %in% names(a) && isTRUE(a[["data.table"]]))
 setclass <- "data.table"
 return(set_class(x, class = setclass))
 }
}

As you can see, the first task performed by the import() function calls the get_ext()
function, which basically retrieves the extension from the filename.

Once the file format is clear, the import() function looks for the right subimport function
to be used and returns the result of this function.

Next, we visualize the result with the RStudio viewer. One of the most powerful RStudio tools
is the data viewer, which lets you get a spreadsheet-like view of your data.frame objects.
With RStudio 0.99, this tool got even more powerful, removing the previous 1000-row limit
and adding the ability to filter and format your data in the correct order.

When using this viewer, you should be aware that all filtering and ordering activities will not
affect the original data.frame object you are visualizing.

Acquiring Data for Your Project

30

There's more...
As fully illustrated within the Rio vignette (which can be found at https://cran.r-
project.org/web/packages/rio/vignettes/rio.html), the following formats
are supported for import and export:

Format Import Export

Tab-separated data (.tsv) Yes Yes

Comma-separated data (.csv) Yes Yes

CSVY (CSV + YAML metadata header) (.csvy) Yes Yes

Pipe-separated data (.psv) Yes Yes

Fixed-width format data (.fwf) Yes Yes

Serialized R objects (.rds) Yes Yes

Saved R objects (.RData) Yes Yes
JSON (.json) Yes Yes

YAML (.yml) Yes Yes

Stata (.dta) Yes Yes

SPSS and SPSS portable Yes (.sav and .por) Yes (.sav only)

XBASE database files (.dbf) Yes Yes

Excel (.xls) Yes
Excel (.xlsx) Yes Yes
Weka Attribute-Relation File Format (.arff) Yes Yes
R syntax (.R) Yes Yes
Shallow XML documents (.xml) Yes Yes
SAS (.sas7bdat) Yes
SAS XPORT (.xpt) Yes
Minitab (.mtp) Yes
Epiinfo (.rec) Yes
Systat (.syd) Yes
Data Interchange Format (.dif) Yes
OpenDocument Spreadsheet (.ods) Yes
Fortran data (no recognized extension) Yes
Google Sheets Yes
Clipboard (default is .tsv)

https://cran.r-project.org/web/packages/rio/vignettes/rio.html
https://cran.r-project.org/web/packages/rio/vignettes/rio.html

Chapter 1

31

Since Rio is still a growing package, I strongly suggest that you follow its development on its
GitHub repository, where you will easily find out when new formats are added, at https://
github.com/leeper/rio.

Converting file formats using the rio
package

As we saw in the previous recipe, Rio is an R package developed by Thomas J. Leeper which
makes the import and export of data really easy. You can refer to the previous recipe for more
on its core functionalities and logic.

Besides the import() and export() functions, Rio also offers a really well-conceived and
straightforward file conversion facility through the convert() function, which we are
going to leverage in this recipe.

Getting ready
First of all, we need to install and make the rio package available by running the
following code:

install.packages("rio")
library(rio)

In the following example, we are going to import the world_gdp_data dataset from a local
.csv file. This dataset is provided within the RStudio project related to this book, in the
data folder.

You can download it by authenticating your account at http://packtpub.com.

How to do it...
1.	 The first step is to convert the file from the .csv format to the .json format:

convert("world_gdp_data.csv", "world_gdp_data.json")

This will create a new file without removing the original one.

2.	 The next step is to remove the original file:
file.remove("world_gdp_data.csv")

https://github.com/leeper/rio
https://github.com/leeper/rio
http://packtpub.com

Acquiring Data for Your Project

32

There's more...
As fully illustrated within the Rio vignette (which you can find at https://cran.r-
project.org/web/packages/rio/vignettes/rio.html), the following formats
are supported for import and export:

Format Import Export
Tab-separated data (.tsv) Yes Yes
Comma-separated data (.csv) Yes Yes
CSVY (CSV + YAML metadata header) (.csvy) Yes Yes
Pipe-separated data (.psv) Yes Yes
Fixed-width format data (.fwf) Yes Yes
Serialized R objects (.rds) Yes Yes
Saved R objects (.RData) Yes Yes
JSON (.json) Yes Yes
YAML (.yml) Yes Yes
Stata (.dta) Yes Yes
SPSS and SPSS portable Yes (.sav and .por) Yes (.sav only)
XBASE database files (.dbf) Yes Yes
Excel (.xls) Yes
Excel (.xlsx) Yes Yes
Weka Attribute-Relation File Format (.arff) Yes Yes
R syntax (.r) Yes Yes
Shallow XML documents (.xml) Yes Yes
SAS (.sas7bdat) Yes
SAS XPORT (.xpt) Yes
Minitab (.mtp) Yes
Epiinfo (.rec) Yes
Systat (.syd) Yes
Data Interchange Format (.dif) Yes
OpenDocument Spreadsheet (.ods) Yes
Fortran data (no recognized extension) Yes
Google Sheets Yes
Clipboard (default is .tsv)

Since rio is still a growing package, I strongly suggest that you follow its development
on its GitHub repository, where you will easily find out when new formats are added,
at https://github.com/leeper/rio.

https://cran.r-project.org/web/packages/rio/vignettes/rio.html
https://cran.r-project.org/web/packages/rio/vignettes/rio.html
https://github.com/leeper/rio

33

2
Preparing for Analysis
– Data Cleansing and

Manipulation

In this chapter, we will cover the following topics:

ff Getting a sense of your data structure with R

ff Preparing your data for analysis with the tidyr package

ff Detecting missing values

ff Substituting missing values by interpolation

ff Detecting and removing outliers

ff Performing data filtering activities

Introduction
Some studies estimate that data preparation activities account for 80 percent of the time
invested in data science projects.

I know you will not be surprised reading this number. Data preparation is the phase in data
science projects where you take your data from the chaotic world around you and fit it into
some precise structures and standards.

This is absolutely not a simple task and involves a great number of techniques that basically
let you change the structure of your data and ensure you can work with it.

Preparing for Analysis – Data Cleansing and Manipulation

34

This chapter will show you recipes that should give you the ability to prepare the data you got
from the previous chapter, no matter how it was structured when you acquired it in R.

We will look at the two main activities performed during the data preparation phase:

ff Data cleansing: This involves identification and treatment of outliers and
missing values

ff Data manipulation: Here, the main aim is to make the data structure fit some
specific rule, which will let the user employ it for analysis

Getting a sense of your data structure
with R

By following the recipes given in the previous chapter, you got your data. Everything went
smoothly, and you may also already have the data as a data frame object.

However, do you know what your data looks like?

Getting to know your data structure is a crucial step within a data analysis project. It will
suggest the appropriate treatment and analysis, and will help you avoid error and redundancy
in the coding activity that follows.

In this recipe, we will look at a dataset structure by leveraging the describe() function from
the Hmisc package. For further preliminary analysis on your data structure, you can also refer
to the data visualization recipes in Chapter 3, Basic Visualization Techniques.

Getting ready
This example will be built around a dataset provided in the RStudio project related to
this book.

You can download it by authenticating your account at http://packtpub.com.

This dataset is named world_gdp_data.csv and stores GDP values for 248 countries
around the globe, from 1960 to 2015.

Before you begin with this recipe, you will need to load this data into R by leveraging the
import function from the rio package:

install.packages("rio")
library(rio)
messy_gdp <- import("world_gdp_data.csv")

You can refer to the Loading your data into R with rio packages recipe in Chapter 1, Acquiring
Data for Your Project, for details on this powerful tool's functionalities.

http://packtpub.com

Chapter 2

35

As mentioned earlier, we will employ functions from the Hmisc and e1071 packages.

Use the following code to install and load packages:

install.packages(c("Hmisc","e1071")
library(Hmisc)
library(e1071)

How to do it...
1.	 Create a data dictionary:

data_dictionary <- describe(messy_gdp)

2.	 Save your data dictionary as a separate file to document it:
sink("data_dictionary.txt", append=TRUE)
data_dictionary
sink()

3.	 Look at your data dictionary:
file.show(file = "data_dictionary.txt",pager = "internal")

How it works...
Preforming step 1 will produce a data_dictionary object, which is a list of as many
lists as there are columns in your data frame plus one, the contents of which we are going
to discover lately.

For each column, the following details are exposed:

ff Variability domain, showing the lowest and highest values

ff Number of non-missing values

ff Number of missing values

ff Number of unique values

ff For categorical variables (for instance, country names), a frequency table is
produced, showing the number of occurrences for each possible value of the variable

The last list is populated only if the columns of all missing values are read and contain the
name of those columns.

Step 2 lets you create a document to which you will be able to refer, even outside R, mainly
for documentation purposes. This step will produce a .txt file named data_dictionary
placed within the current directory of your R session.

Preparing for Analysis – Data Cleansing and Manipulation

36

Since the data_dictionary object is a list object, we can't simply save it as a .txt file
(we could easily do this with the write() function when dealing with a data frame). So, we
used a workaround involving the sink() function.

This function sends the output of R to an external connection.

The logical phases of this process are as follows:

1.	 Establish a connection by running sink() for the first time

2.	 Run the R code you are interested in

3.	 Close the connection by running sink()again

Step 3 is the final step and involves calling the file.show function to show you your
previously created data dictionary. Be aware that changing the pager argument to console
would make the .txt file content show up in the R console.

Preparing your data for analysis with the
tidyr package

The tidyr package is another gift from Hadley Wickham. This package provides functions to
make your data tidy.

This means that after applying the tidyr package's function, your data you will be arranged
as per the following rules:

ff Each column will contain an attribute

ff Each row will contain an observation

ff Each cell will contain a value

These rules will produce a dataset similar to the following one:

Chapter 2

37

This structure, besides giving you a clearer understanding of your data, will let you work with it
more easily.

Furthermore, this structure will let you take full advantage of the inner R-vectorized structure.
This recipe will show you how to apply the gather function to a dataset in order to transform
a dataset and make it comply with the cited rules.

The employed data frame is in the so-called wide format, where each period of observation is
stored in columns, with each column representing a year, as follows:

Getting ready
In order to let you apply the tidyr function, you will have to install and load the tidyr
package within your R environment by running the following code:

install.packages("tidyr")
library(tidyr)

Moreover, we will need to install and load the rio package, which is covered in greater detail
in the Loading your data into R with rio packages recipe in Chapter 1, Acquiring Data for
Your Project:

install.packages("rio")
library(rio)

The dataset tidied in this recipe is the world_gdp_data.csv dataset.

This dataset is provided in the RStudio project for this book.

You can download it by authenticating your account at http://packtpub.com.

The world_gdp_data dataset stores GDP values for 248 countries around the globe, from
1960 to 2015.

In the There's more… section, you will find other examples of messy data for which tidyr
comes handy.

http://packtpub.com

Preparing for Analysis – Data Cleansing and Manipulation

38

How to do it...
1.	 Create a data frame with your data:

messy_gdp <- import("world_gdp_data.csv")

2.	 Apply the gather() function to your data frame:
tidy_gdp <- gather(messy_gdp,"year","gdp",5:61)

3.	 Visualize the result with the RStudio viewer:
View(tidy_gdp)

How it works...
In step 1, we create a data frame with our data. This step leverages the rio package, which is
treated in the Loading your data into R with rio packages recipe in Chapter 1, Acquiring Data
for Your Project. Refer to it for further explanations.

In step 2, we apply the gather() function to our data frame. The gather() functions is one
of the four functions available within the tidyr package:

ff gather()

ff spread()

ff unite()

ff separate()

This function basically retrieves values spread within the messy dataset and creates a new
data frame where those values are exposed, following a key attribute.

More formally, here we take a dataset exposed in a wide form and transform it into a long
form dataset.

In our example, values are annual GDP and keys are years.

The gather() function requires you to specify the following arguments:

ff Data

ff Name to assign to the key column

ff Name to assign to the value column

ff Columns in which to find values

ff All other columns will be left unchanged and their values will be repeated as needed

Chapter 2

39

In step 3, we visualize the result with the RStudio viewer. One of the most powerful RStudio
tools is the data viewer, which lets you get a spreadsheet-like view of your data frames. With
RStudio 0.99 Version, this tool got even more powerful, removing the previous 1000-row limit
and adding the ability to filter and order your data.

When using this viewer, you should be aware that all filtering and ordering activities will not
affect the original data frame object you are visualizing.

There's more...
As seen earlier, in addition to gather(), paragraph, the tidyr package supplies the
following three functions for data preparation:

The spread() function is used when variables are stored in a column, as is the case in the
following dataset, named:

ff second_messy_world_gdp:
country, data ,value
italy, year, 2012
italy,gdp, 20000
russia,year,2012
russia,gdp,1100000

ff Running spread(messy_world_gdp, data,value) will result in the following
tidy dataset:

�� tidy_world_gdp:
country, year, gdp
italy,2012,20000
russia,2012,1100000

The separate() function is used when two or more variables are stored in a single column
joined side by side:

ff third_messy_world_gdp:
country, year_gdp
italy,2012_20000
russia,2012_1100000

In this case, running separate(messy_world_gdp,year_gdp,c("year","gdp"),sep
="_") will result in the following tidy data frame:

ff country, year, gdp
italy,2012,20000
russia,2012,1100000

Preparing for Analysis – Data Cleansing and Manipulation

40

The unite() function can be considered the opposite of separate() and can be used
when a single variable is spread among different columns. Here is an example:

ff fourth_messy_world_gdp:
year, month,day, value
2012,12,31,120003
2012,05,12,4533203

In this case, we can join the first free columns, creating a date variable simply by running
unite(fourth_messy_world_gdp,col = "record_date",c(year,month,day,),
sep = "_"), which will result in the following tidy data frame:

record_date, value
2012_12_31,120003
2012_05_12,4533203

Please note that both the separate() and unite() functions require us to specify a sep
parameter, indicating in the first case the character to look for in order to perform the column
separation, and in the second case the argument that will be used as a joining character
between the column values.

More about tidy data and its use can be found in the paper Tidy data, written by Hadley
Wickham, the main author of the package. The paper is freely available at http://www.
jstatsoft.org/article/view/v059i10.

Detecting and removing missing values
Missing values are values that should have been recorded but, for some reason, weren't
actually recorded. Those values are different, from values without meaning, represented in R
with NaN (not a number).

Most of us understood missing values due to circumstances such as the following one:

> x <- c(1,2,3,NA,4)

> mean(x)

[1] NA

"Oh come on, I know you can do it. Just ignore that useless NA" was probably your reaction,
or at least it was mine.

Fortunately, R comes packed with good functions for missing value detection and handling.

http://www.jstatsoft.org/article/view/v059i10
http://www.jstatsoft.org/article/view/v059i10

Chapter 2

41

In this recipe and the following one, we will see two opposite approaches to missing value
handling:

ff Removing missing values

ff Simulating missing values by interpolation

I have to warn you that removing missing values can be considered right in a really small
number of cases, since it compromises the integrity of your data sources and can greatly
reduce the reliability of your results.

Nevertheless, if you are strongly willing to do this, I will show you how to do it in a really
effective way, using the md.pattern() and complete.cases() functions from the
mice package by Stef van Buuren.

Getting ready
Before applying this recipe, you will need to install and load the mice package:

install.packages("mice")
library(mice)

How to do it...
1.	 Find where the missing values are located:

md.pattern(tidy_gdp)

This will result in an output similar to the following screenshot:

It shows us that in 10379 cases, Country Name, Country Code, Indicator
Name, and Indicator Code are missing, and in 3757 cases, only the year is
present and the rest is missing.

2.	 Remove rows where data for a given column are missing:
tidy_gdp_naomit <- subset(tidy_gdp,

tidy_gdp$gdp!=complete.cases(tidy_gdp$gdp))

The tidy_gdp_naomit command will now contain only observations where GDP
was actually recorded.

Preparing for Analysis – Data Cleansing and Manipulation

42

3.	 Check the result:
md.pattern(tidy_gdp_naomit)

It should now result in a matrix where no missing value cases are shown for the
gdp column:

How it works...
In step 1, we find where missing values are located. The md.pattern() function from the
mice package is a really useful function. It gives you a clear view of where missing values are
located, helping you in decisions regarding exclusions or substitution. You can refer to the next
recipe for missing value substitution.

In step 2, we remove rows where data for a given column is missing. The Complete.cases()
function lists all the data in a vector not equal to NA. By posing tidy_gdp$gdp!=complete.
cases(tidy_gdp$gdp), we are just filtering for all the data available.

In step 3, we check the result using the md.pattern() function once again so that we can
easily check for the persistence of NA values after our detection and removal procedures.

There's more...
Another way to deal with missing values is simply ignoring them in our computations. This is a
built-in option for a really large number of R functions. It is usually expressed with the na.rm
argument. A useful piece of advice to keep in mind is that ignoring NA values is not always
a solution without consequences.

Take, for instance, the average computation on the following records vector:

records <- c(NA,4,3,6,NA)

Let's ignore NA values by posing the na.rm argument as true:

mean_na_ignoring <- mean(records, na.rm = TRUE)

We will obtain:

[1] 4.333333

Chapter 2

43

This is a really different number from the one we will obtain when considering missing values
as records with 0 value:

records ← x[is.na(x)] <- 0

> mean(records)

[1] 2.6

This simple example shows you why missing values need to be handled carefully.

Substituting missing values using the mice
package

Finding and removing missing values in your dataset is not always a viable alternative, for
either operative or methodological reasons. It is often preferable to simulate possible values
for missing data and integrate those values within the observed data.

This recipe is based on the mice package by Stef van Buuren. It provides an efficient
algorithm for missing value substitution based on the multiple imputation technique.

Multiple imputation technique
The multiple imputation technique is a statistical solution to the problem of
missing values.
The main idea behind this technique is to draw possible alternative values
for each missing value and then, after a proper analysis of simulated values,
populating the original dataset with synthetic data.

Getting ready
This recipe requires that you install and load the mice package:

install.packages("mice")
library(mice)

For illustrative purposes, we will use the tidy_gdp data frame created in the Preparing your
data for analysis with the tidyr package recipe. This dataset is provided with the RStudio
project for this book. You can download it by authenticating your account at http://
packtpub.com.

In order to make missing values appear, we will have to transform the value column type from
characters to numbers:

tidy_gdp$gdp <- as.numeric(tidy_gdp$gdp)

http://packtpub.com
http://packtpub.com

Preparing for Analysis – Data Cleansing and Manipulation

44

As shown in the previous recipe, you can now look for missing value patterns by leveraging the
md.pattern() function:

md.pattern(tidy_gdp$gdp)

 year gdp Country Name Country Code Indicator Name Indicator Code

10379 1 1 0 0 0 0
4

 3757 1 0 0 0 0 0
5

 0 3757 14136 14136 14136 14136
60301

How to do it...
1.	 Generate the data to substitute missing values using the mice() function:

simulation <- mice(tidy_gdp, method = "pmm")

The console will then print the following output:
iter imp variable

 1 1 gdp

 1 2 gdp

 1 3 gdp

 1 4 gdp

 1 5 gdp

 2 1 gdp

 2 2 gdp

 2 3 gdp

 2 4 gdp

 2 5 gdp

 3 1 gdp

 3 2 gdp

 3 3 gdp

 3 4 gdp

 3 5 gdp

 4 1 gdp

 4 2 gdp

 4 3 gdp

 4 4 gdp

Chapter 2

45

 4 5 gdp

 5 1 gdp

 5 2 gdp

 5 3 gdp

 5 4 gdp

 5 5 gdp

2.	 Populate the original data with generated data:
tidy_gdp_complete ← complete(simulation, action =1)

3.	 Check the reasonableness of the generated values:
 densityplot(simulation)

This function will show a plot representing simulated data in red and recorded data
in blue. If the two density() functions differ too much, this would mean that the
resulting dataset should be considered unreliable:

4.	 Iterate the procedure until you get satisfactory results.

If the check results in simulated data that is not reasonable, you should consider changing
the statistical method used to generate data. You may also abandon the idea of using
synthetic data, particularly if the missing value/recorded value ratio is really high.

Preparing for Analysis – Data Cleansing and Manipulation

46

How it works...
In step 1, we generate data to substitute missing values using the mice() function. This step
leverages the mice() function to produce multiple possible values to be used as substitutes
for missing values within the tidy_gdp data frame.

The number of possible values to be produced for each missing value is determined by the
m parameter, set by default to 5. This is usually a sufficient number of iterations. However,
especially with unsuccessful results, you could consider incrementing the number of
simulations.

In step 2, we populate the original data with generated data. This step is easily performed
using the complete() function, which lets you choose between the number of m values
generated for any missing value. Then, substitute it for the missing one. This choice is made
by specifying the action parameter.

In step 3, we check for the reasonableness of the generated values. Using the
densityplot() function from the lattice package (it should be preinstalled with every
distribution of R), we can easily assess whether simulated values are reasonable compared
to observed values.

In step 4, we iterate until we get satisfactory results. In the case of negative feedback from
the density plot, you should consider changing the statistical method used to generate the
missing values, as showed in the There's more... section.

There's more...
Different simulation methods are available within the mice() function. These methods can
be selected using the method argument:

ff pmm (predictive mean matching)

ff logreg (logistic regression imputation)

ff polyreg (polytomous regression imputation)

ff polr (proportional odds model)

If no value is provided, the mice() function will automatically select a method, depending on
the data type, by following those rules:

ff Numeric data → predictive mean matching

ff Binary data/factor with two levels → logistic regression imputation

ff Unordered categorical data with two or more levels → polytomous regression
imputation

ff Ordered categorical data with two or more levels → proportional odds model

Chapter 2

47

You can find more methods in the mice() function documentation by running the following
command:

?mice()

If you are dealing with missing values, you will find another great ally in the VIM package. This
package also provides tools for the visualization of missing and/or imputed values.

You can find out more on this package in the official reference manual at
https://cran.r-project.org/web/packages/VIM/VIM.pdf.

Detecting and removing outliers
Outliers are usually dangerous values for data science activities, since they produce heavy
distortions within models and algorithms.

Their detection and exclusion is, therefore, a really crucial task.

This recipe will show you how to easily perform this task.

We will compute the I and IV quartiles of a given population and detect values that far from
these fixed limits.

You should note that this recipe is feasible only for univariate quantitative population,
while different kind of data will require you to use other outlier-detection methods.

How to do it...
1.	 Compute the quantiles using the quantile() function:

quantiles <- quantile(tidy_gdp_complete$gdp, probs = c(.25, .75))

2.	 Compute the range value using the IQR() function:
range <- 1.5 * IQR(tidy_gdp_complete$gdp)

3.	 Subset the original data by excluding the outliers:
normal_gdp <- subset(tidy_gdp_complete,

tidy_gdp_complete$gdp > (quantiles[1] - range) & tidy_gdp_
complete$gdp < (quantiles[2] + range))

https://cran.r-project.org/web/packages/VIM/VIM.pdf

Preparing for Analysis – Data Cleansing and Manipulation

48

How it works...
In step 1, we compute quantiles using the quantile() function. This implementation of
outlier detection and removal is based on the most classical outlier detection technique. It
requires you to exclude all values below the second quartile and above the third quartile, both
incremented of a measure equal to 1.5 times the interquartile range. First, you need to define
the second and third quartiles using the quantile() function, passing at least the following
arguments:

ff The data for which you want to compute quartiles. Be aware that you need to pass
the column and not the entire dataset.

ff The quartile you want to compute as a vector. Since the function is built in order to
let you retrieve any of the 100 quantiles computable for a population, you have to
express the desired quartile as a number between 0 and 1.

In step 2, we compute the range value using the IQR() function. Using the IQR() function,
you can easily obtain the interquartile range for a given numeric vector. No additional
parameter is needed.

In step 3, we subset the original data, excluding outliers. The final step requires you to apply
the subset() function and exclude all values lying outside the range delimited from the
second quartile—1.5*interquartile range and the third quartile + 1.5*interquartile range.

Performing data filtering activities
This is a bit of a recap recipe. In the workflow proposed here, we will sum up the tricks and
knowledge gained throughout the book in order to perform a data-filtering activity.

Data filtering includes all the activities performed on a dataset to make it ready for
further analysis.

Isn't it the same as data cleansing?

Well, in a sense… yes. However, not exactly the same, since data filtering usually refers to
some specific techniques and not to others, while data cleansing can be considered a more
comprehensive concept.

That said, here we will make tests for our data frame, performing subsequent filtering
activities and reporting about these activities. The following diagram shows the flow:

Chapter 2

49

As you can see in the diagram, we will:

ff Look for duplicated values and remove them

ff Substitute by simulation missing values, as explained in the preceding recipe

ff Interpolate incoherent values, which are multiple values for a given attribute

ff Remove outliers, as seen in the preceding recipe

At the end of all these filtering activities, we will make our code produce a detailed report on
the activities performed and results obtained.

The main value added here is to show how these activities can be performed as a unique
workflow. This is actually quite common in real-life data analysis projects, where some tasks
are preliminarily performed before we go on to the main activities.

To stress the point of the flow, I also suggest that you refer to the There's more... section to
learn how to transform this flow within a custom function in order to let you apply it quickly
every time you need it.

Getting ready
Before actually working on our data frame, we will create it here.

As mentioned earlier, we want to find outliers, incoherences, missing values, and duplicates.
So, let's create a really bad data frame containing all these problems.

First, we will create a good dataset with data related to payments received from a customer:

dataset <- data.frame(
 key = seq (1:251),
 date = seq(as.Date("2012/5/12"), as.Date("2013/1/17"), by
 = "day"),

Preparing for Analysis – Data Cleansing and Manipulation

50

 attributes = c(rep("cash",times = 110),rep("transfer", times =
 141)),
 value = rnorm(251, mean = 100)
)

Our data frame will now have:

ff A key column from 1 to 251.

ff A date column with dates from May 12, 2012 to January 17, 2013.

ff An attribute showing the kind of payment received, either cash or bank transfer.

ff A value column, with values taken from a normal distribution with mean 100 (I
used normal distribution just because it is cool, but data distribution is absolutely
irrelevant here). Now that we have got a healthy data frame, it is time to make it sick.

Let's start mixing payment types, just to be more realistic:

for (i in 1:120) {
 dataset[round(runif(1, 1,251)),3] <- dataset[round(runif(1,
 1,251)),3]
}

Here, we will take a value from a randomly selected cell of the attributes column and put it
into another randomly selected cell within the attributes column. We will do this 120 times
with a for loop.

We will use runif() to select a first random number to use as the row index (we ask for
a number between 1 and 251, the number of total rows). The value corresponding to the
randomly selected row within the attributes column is then assigned to another randomly
selected row within the attributes column.

Keep this process in mind, since we will use it again within a few lines.

Now, it is time to duplicate some values:

for (i in 1:20) {
 dataset[round(runif(1, 1,251)),] <- dataset[round(runif(1,
 1,251)),]
}

We randomly copied (select) a row and pasted it into another row, overwriting the old one.

Time to make some outliers:

for (i in 1:3) {
 index <- round(runif(1, 1,251))
 dataset[index,4] <- dataset[index,4]*1.3
}

Chapter 2

51

What are outliers? Values outside the crowd. So, we took a member of the crowd and
multiplied it 1.3 times. Is that arbitrary? Yes it is, but from the Detecting and removing
outliers recipe, you should know that even outlier detection is in some way arbitrary.

To create incoherences, which we will remove later, we just have to copy a date attribute and
paste it randomly. This will produce more than one value for the same date:

for (i in 1:15) {
 dataset[round(runif(1, 1,251)),2] <- dataset[round(runif(1,
 1,251)),2]
}

Creating missing values is the simplest task. You just need to take some random rows and set
the value attribute for that row to NA:

for (i in 1:10) {
 dataset[round(runif(1, 1,251)),4] <- NA
}

It is now time to install and load the required packages:

install.packages("mice","dplyr")
library(mice)
library(dplyr)

How to do it…
1.	 Store the number of rows within the original dataset:

n_of_initial_records <- nrow(dataset)

2.	 Compute the number of duplicates and store it:
n_duplicates <- sum(duplicated(dataset))

3.	 Detect duplicated rows and delete them:
dataset <- distinct(dataset)

4.	 Store the number of NAs:
n_na <- nrow(subset(dataset,is.na(dataset$value)))

5.	 Simulate possible values for missing values and substitute them:
simulation_data <- mice(dataset[,-2], method = "pmm")
simulated_data <- complete(simulation_data)
dataset$simulated <- simulated_data$value

6.	 Sort the dataset by date (or alternative key to spot incoherences):
dataset <- dataset[order(dataset$date),]

Preparing for Analysis – Data Cleansing and Manipulation

52

7.	 Count the number of values for each date and store repeated dates with their
frequency in the data frame:
dates_frequency <- table(dataset$date)
dates_count <- data.frame(dates_frequency)
colnames(dates_count) <- c("date","frequency")
dates_repeated_count <-
subset(dates_count,dates_count$frequency > 1)

8.	 Create a vector with repeated dates:
dates_repeated_list <-
as.Date(as.character(dates_repeated_count$date))

9.	 Define the number of interpolated data (where the number of repeated dates is equal
to the number of interpolated values):
n_of_interpolated <- nrow(dates_repeated_count)

10.	 Define the number of records removed because of incoherences:
n_of_removed_for_interpolation <-
sum(dates_repeated_count$frequency)

11.	 Interpolate values by computing the average of the previous and subsequent values:
for (i in 1:length(dates_repeated_list)) {
 i = 1
 date_match_index <-
 match(dates_repeated_list[i],dataset$date)
 number_of_repeat <- dates_repeated_count[i,2]
 # find value for 1 day before and one day after, handling
 hypotesis of the first or the last value
 # in dataset being incoherent
 if(date_match_index == 1 | date_match_index ==
 nrow(dataset)) {
 value_before = mean(dataset$simulated)
 value_after = mean(dataset$simulated)

 }
 else {
 value_before <- dataset$value[date_match_index-1]
 value_after <-
 dataset$value[date_match_index+number_of_repeat+1]
 }
 }
 # compute average
 interpolated_value <- mean(c(value_after,value_before))
 # create a a new row with same date and average value

Chapter 2

53

 interpolated_record <-
 data.frame(dataset[date_match_index,1:4],"simulated"
 =interpolated_value)
 # add interpolated record to general dataset
 dataset <- rbind(dataset,interpolated_record)
 # remove incoherencies
 dataset <- dataset[-
 (date_match_index:date_match_index+number_of_repeat),]
}

12.	 Spot and remove outliers by storing the number of removed rows:
dataset_quantiles <- quantile(dataset$simulated, probs =
c(0.25,0.75))
range <- 1.5 * IQR(dataset$simulated)
n_outliers <- nrow(subset(dataset, dataset$simulated <
(dataset_quantiles[1] - range) | dataset$simulated >
(dataset_quantiles[2] + range)))
dataset <- subset(dataset, dataset$simulated >=
(dataset_quantiles[1] - range) & dataset$simulated <=
(dataset_quantiles[2] + range))

13.	 Build a filtering activity report:
filtering_report <- paste0("FILTERING ACTIVITIES REPORT:
\n\n - ", n_outliers, " records were removed as outliers;\n
- ", n_na," records were substituted since missing;\n - ",
n_of_removed_for_interpolation," inchoerent values were
substitued with;\n - ", n_of_interpolated, " interpolated
values.\n\n"," ", n_of_initial_records, " original
records\n", " (-) ",
n_outliers+n_of_removed_for_interpolation," removed\n", "
(+) ", n_of_interpolated, " added\n", " = ", nrow(dataset),
" total records for filtered dataset")

14.	 Visualize your report:
message (filtering_report)

How it works...
In step 1, we store the number of rows within the original dataset. This step is required to
provide a detailed report about the activities performed at the end of the process. We count
the number of rows in the original dataset by running nrow() on the dataset.

In step 2, we compute the number of duplicates and store it. How would you compute the
number of duplicated rows?

Preparing for Analysis – Data Cleansing and Manipulation

54

We use the duplicated() function from base R. Running this function on the dataset results
in a vector with the value True for every duplicated record and False for unique values.

We then sum up this vector, obtaining the number of duplicated rows.

We store the result of this basic computation in a variable to be employed later, in the
reporting phase.

In step 3, we detect duplicated rows and delete them. In this step, we apply the distinct()
function from the dplyr package. This function removes duplicated values within a data
frame, leaving only unique records.

You may find it interesting to know that this function offers the ability to look not only for
entirely duplicated rows, but also for duplicated values. This can be done by specifying the
attribute against which you want to look for duplicates.

Let's have a look at this basic example to understand how:

data <- data.frame("alfa"= c("a","b","b", "b"), "beta" =
c(1,2,4,4))

As you can see, this data frame contains three duplicated values on column alfa and two
completely duplicated values, the last two.

Let' try to remove the last two rows by running distinct() on the whole dataset:

This will result in the following dataset:

But what if we run distinct, specifying we want to look for duplicates only within the
alfa column?

distinct(data,alfa)

Chapter 2

55

This will result in the following print:

Here we are. We filtered the dataset only for rows where the alfa attribute is duplicated.

In step 4, we store the number of NAs. We skip to missing value handling. First, we store the
number of missing values, counting the number of rows in a dataset resulted from a subset of
the original one.

We filtered the dataset object in order to keep only missing values, using the is.na()
function of base R. The number of rows in this dataset will be exactly the number of missing
values within the original dataset.

In step 5, we simulate possible values for missing values and substitute them. This step
leverages missing value handling techniques learned in the Substituting missing values using
the mice package recipe introduced previously. You can find more details on its rationales and
results in that recipe.

All we have to specify here is that after running this piece of code, we will have a new column
within our dataset, a new column with no missing values. This column will be used as the
value column.

In step 6, we sort the dataset by date (or alternative key to spot incoherences). This step
starts the treatment of incoherences. It is actually a soft start, since we just order by date.
Nevertheless, let me explain this briefly.

What we want to find out now is the presence of more records for a given attribute. In our
example, we are assuming that the attribute is the day. We are therefore stating that if more
than one payment was recorded for a unique day, an error must have occurred within the
recording process, and we are going to treat these records as incoherent.

You can see that the date is only an example, since the key could be any kind of attribute, or
even more than one attribute.

For instance, we could impose a constraint of this type:

ff If more than one payment was recorded for a customer (first key) within a single day
(second key), something must have occurred.

What is the bottom line here? Sort by your relevant attribute, not necessarily by the date.

Preparing for Analysis – Data Cleansing and Manipulation

56

In step 7, we count the number of values for each date and store in a data frame repeated
dates, with their frequencies.

It is now time to find incoherent records. First, we will find them by counting how many times
each date is recorded within the dataset.

This can be done by leveraging the table() function from base R. This function computes a
frequency table for a given attribute within a dataset.

The resulting dates_frequency object will have the following shape:

Var1 Freq

2012-05-12 1

2012-05-13 1

2012-05-12 2

Given the explanation in the previous step, which of these lines underline incoherences?
Those where Freq is greater than 1, since these cases show that more than one value
was recorded for the same date.

That is why we create dates_repeated_count, a data frame containing only dates with a
frequency greater than 1.

In step 8, we create a vector with repeated dates. This is quite a tricky step. To understand it,
we need to think about the class of the date column in the date repeated_count.

Here is how we can do it.

We can run the str() function on it to understand which class is assigned to the date column:

> str(dates_repeated_count)

'data.frame': 13 obs. of 2 variables:

$ date : Factor w/ 219 levels "2012-05-12","2012-05-13",..: 10 22 29
107 119 126 128 145 148 153 ...

 $ frequency: int 2 2 2 2 2 2 2 2 2 2 …

As you see, date is a Factor with 219 values, one for each unique date. Generally speaking,
the Factor class is a really convenient class to handle categorical variables. In our case, we
will need to transform it into a Date class.

Why? Because the column we will compare it with was defined as a Date column!

Casting is done using these two steps:

ff First, we change the format from factor to character using the as.character()
function

ff Then, we transform the character function in the data using the as.date() function

Chapter 2

57

At the end of the process, we will have a new vector of class Date that stores only dates for
which some incoherence was underlined.

In step 9, we define the number of interpolated data (where the number of repeated dates
= the number of interpolated values). This step is within the family of accounting steps
already performed. We just compute and store the number of interpolated values. How do we
compute them? We just have to compute the number of repeated dates, since we will define
an interpolated value for each incoherence.

This is exactly what we do when we count the number of rows within the dates_repeated_
count.

In step 10, we define the number of records removed because of incoherences. Here, we
want to understand and memorize how many records will be removed because they come, we
assume, from errors within the recording process.

This number will equal the sum of the Freq column within the dataset that stores all repeated
dates. Why?

Because the number of times a duplicated date is recorded within the original dataset is
equal to the number of incoherent records for that date. Therefore, the sum of the number of
times all duplicated dates are recorded within the original dataset will equal the total number
of incoherences and therefore equal the number of records removed because they were
incoherent.

It's a bit of a devious trip I know, but I am sure you have followed me.

In step 11, we interpolate values by computing the average of the previous and subsequent
values. This is the actual core part of our treatment of incoherences.

In this step, we looped through all the dates where incoherences were found, which are stored
within the previously defined dates_repeated_list. We defined an interpolated value for
each of these dates.

Our interpolation approach is as follows:

ff We look for the record before the duplicated date and store it within the
value_before object

ff We look for the record after the duplicated date and store it within the
value_after object

ff We compute the mean of these two values

Preparing for Analysis – Data Cleansing and Manipulation

58

Here is a graphical explanation of this approach:

As you can see, we do not consider incoherent values and actually remove them from the
dataset. Be aware that two special cases are handled in a quite different way. If incoherences
are within the first or the last date, we simply interpolate using the mean of the overall
value vector.

In step 12, we spot and remove outliers by storing the number of removed rows. Removing
outliers was a task we performed in the Detecting and removing outliers recipe. Refer to this
recipe to understand how we do this.

We need to ensure that the number of outliers removed is stored within the n_outliers
variable.

In step 13, we build a filtering activity report. I have to admit this is one of my favorite parts.
We sum up all the stored numbers by composing a detailed report on the activities performed
and their results.

To accomplish this task, we created a vector by pasting together strings and numbers stored
within the entire analysis.

I would like to highlight the use of the \n token to start a new paragraph.

In step 14, we visualize the report. Running the (filtering_report) message will make
your report appear on your console. As you can see, on reading the report, we can understand
the impact of each activity performed and reconcile the original number of rows with the final
one. This is a really useful feature, particularly when sharing the results of your activities
with colleagues or external validators.

59

3
Basic Visualization

Techniques

In this chapter, we will cover the following recipes:

ff Looking at your data using the plot() function

ff Using pairs.panel() to look at (visualize) correlations between variables

ff Adding text to a ggplot2 plot at a custom location

ff Changing axes appearance to ggplot2 plot

ff Producing a matrix of graphs with ggplot2

ff Drawing a route on a map with ggmap

ff Making use of the igraph package to draw a network

ff Showing communities in a network with the linkcomm package

Introduction
You now have your data in R (as discussed in Chapter 1, Acquiring Data for Your Project) and
you gained a good understanding of its structure (in Chapter 2, Preparing for Analysis – Data
Cleansing and Manipulation), but do you have an idea of its, let's say, appearance?

Do you know how data is related to itself? Do any correlations exist?

If you want to model your phenomenon with accuracy and effectiveness, you have to know
the answers to these questions. This is where basic data visualization comes in handy. This
includes plotting your variables against one another, looking for correlations, understanding
relations (or absence of relations) without losing yourself in hundreds of lines of code.

Basic Visualization Techniques

60

In this chapter, we will do all of this mainly using base R and ggplot2, which is the data
visualization package that lets you produce plots by applying the grammar of graphics and
has become a standard of R dataviz.

Besides basic data visualizations recipes, some goodies are also provided in this chapter,
such as the recipe that lets you place text at a custom location on your ggplot or the one
about axis manipulation with ggplot2.

These recipes are provided here to let you get sufficient control over your plots and make
them a sound basis for the next data analysis activities.

Looking at your data using the plot() function
The plot() function is one of most powerful functions in base R. The main point of using the
plot() function is that it will always try to print out a representation of your data. It basically
tries to figure out which kind of representation is the best, based on the data type. This will let
you easily and quickly get a first view of the data you are working with.

Behind the scenes, the power of the plot() function comes from being packed with a
number of methods developed for specific types of object.

So, when an object is passed as an argument to plot(), it looks for the most appropriate
method within the ones available and uses it to represent data stored within the object.

It is even possible to further expand the plot() function, as is regularly done in various
packages, adding new methods for specific types of object by running setMethod() on it.
This is out of the scope of this recipe, but you can find a good explanation in the R language
documentation at https://stat.ethz.ch/R-manual/R-devel/library/methods/
html/setMethod.html.

Getting ready
Just like all other recipes in this chapter, we will use the iris dataset as a sample dataset.
You will find this dataset in every installation of the R environment.

The iris dataset is one of most used datasets in R tutorials and learning sessions, and is
derived from a 1936 paper The use of multiple measurements in taxonomic problems, by
Ronald Fisher.

50 samples of 3 species of the iris flower were observed:

ff Iris setosa

ff Iris virginica

ff Iris versicolor

https://stat.ethz.ch/R-manual/R-devel/library/methods/html/setMethod.html
https://stat.ethz.ch/R-manual/R-devel/library/methods/html/setMethod.html

Chapter 3

61

For each sample, four features were recorded:

ff Length of the sepals

ff Width of the sepals

ff Length of the petals

ff Width of the petals

To get an idea of this dataset, you can take a look at its structure by running the following code:

str(iris)

Well, to be honest, if you arrived here after walking through Chapter 2, Preparing for Analysis
– Data Cleansing and Manipulation, understanding the structure of your data shouldn't be
a problem for you. Nevertheless, you can always skip back to that chapter, specifically to the
Getting a sense of your data structure with R recipe.

How to do it...
1.	 Visualize your data by applying the plot() function:

plot(iris)

This will result into the following plot:

Basic Visualization Techniques

62

The preceding plot shows all variables against one other, for instance, the second rectangle
in the first row from the top shows Sepal.Length against Sepal.Width while the third shows
Sepal.Length against Petal.Length.

As you may have probably noted, the plot makes it easier to spot the presence, or absence,
of any relationship between variables.

1.	 Select a particular attribute to visualize.

Among the attributes recorded for each observation, you can easily select a specific
attribute by running the following code:
plot(iris$Sepal.Width)

The resulting plot shows on the x axis the row index of a given observation, which, as
per the data frame dimensions, ranges from 0 to 150. On the y axis, you will find the
value of the particular attribute y.

Select which is, in our example, Sepa.Width column.

Chapter 3

63

2.	 Change the plot type.

You can change the type of plot produced by the plot() function by changing the
value of the type argument.

Let's try with the value 0, which stands for points and lines overplotted:
plot(iris$Sepal.Width,type = "h")

3.	 Focus on another variable or a couple of variables.

You can now focus on different variables or even plot two plots against each other
using the following script:
plot(x = iris$petal.length, y = iris$petal.width)

Basic Visualization Techniques

64

How it works...
As discussed in the introduction to this recipe, the plot function basically looks at the data
type of plotting object and subsequently chooses an appropriate way to display it.

For instance in step 1, if plotting a simple vector, the plot() function will plot it against the
vector indexes:

x <- c(1,2,3)
plot(x)

If we plot the same vector together with another vector, the two of them stored in a dataframe
will instead result in a scatter plot with the two vectors on the axes:

x <- c(1,2,3)
y <- c(4,6,8)
data <- data.frame(x,y)
plot(data)

Consequently, passing a data frame composed of different n attributes and therefore n
columns to the plot() function will result in a matrix of n x n columns where each attribute
is plotted against the other, as seen in the recipe.

By now, you know what step 2 is all about. Plotting iris$sepal.length alone results in
a plot where x axis is represented by row indexes of the iris dataset the, while the sepal.
length values are represented on the y axis.

Chapter 3

65

Besides great flexibility on the input side, in step 3, the plot() function is characterized by
a good number of possible choices for the output.

In particular, changing the value of the type argument makes it possible to change the type
of data visualization that the plot will produce.

You can choose from among the following possibilities:

ff p for points (when plotting two variables this will result in a scatterplot)

ff l for lines

ff b for both

ff c for the lines part alone of b

ff o for both overplotted

ff h for histogram-like (or high-density) vertical lines

ff s for stair steps

ff S for other steps-refer to details provided later

ff n for no plotting

All these types are available for numerical variables, while more attention has to be paid to
categorical attributes.

Basic Visualization Techniques

66

ff Step 4 explains that plotting a categorical variable using the plot() function by
specifying a type argument will always result in a histogram representing the
number of occurrences of each possible value assumed by the attribute:

ff Be aware that while plotting two numerical variables will result in a scatter plot,
plotting a categorical variable against a numerical one will result in a box plot,
depicting the distribution of a given numerical variable within each subgroup
defined from the categorical attribute:

Chapter 3

67

Using pairs.panel() to look at (visualize)
correlations between variables

Within the R ecosystem, there are different packages offering ways to represent correlations
between variables in a dataset.

In a way, the powerful plot() function, as seen in the previous recipe, can also be useful for
correlation spotting, particularly when plotting all variables against one another (refer to the
previous recipe for more details).

Nevertheless, among different alternatives, the one I think may give you a quicker and deeper
understanding of the relationship between your data is the pairs.panels() function
provided by the psych package by William Revelle.

Getting ready
In order to use the pairs.panels() function, we first need to install and load the
psych package:

install.packages("psych")
library(psych)

To test the pairs.panels() functionality, we will use the Iris dataset.

The Iris dataset is one of most used datasets in R tutorials and learning sessions, and it is
derived from a 1936 paper by Ronald Fisher, named The use of multiple measurements in
taxonomic problems.

Data was observed on 50 samples of three species of the iris flower:

ff Iris setosa

ff Iris virginica

ff Iris versicolor

On each sample for features were recorded:

ff length of the sepals

ff width of the sepals

ff length of the petals

ff width of the petals

In the following example, we will look for correlations between these variables.

Basic Visualization Techniques

68

How to do it...
1.	 Visualize your dataset using pairs.panels():

pairs.panels(iris, hist.col = "white", ellipses = FALSE)

How it works…
The pairs.panels() function produces quite a comprehensive plot, showing in one picture
the following things:

ff The correlation coefficient between all variables (numbers on the upper-right side of
the plot) lets you understand whether a linear correlation is present between your
variables

ff The frequency distribution (the histograms on the diagonal) lets you quickly visualize
the typical values of your data and the general distribution shapes of your variables

ff The scatterplot among variables in pairs lets you visually find non-linear correlations

Some aesthetic parameters are set within the function call; these
involve colors for the histograms bars and the plotting of correlation
ellipses. You can refer to the There's more… section in this recipe for
more details on these arguments.

Chapter 3

69

There's more…
The pairs.panels() function allows you to customize the output; some customizations
are purely pertaining to aesthetics and others are related to the computations that happen
behind the panel visualization.

Part of the first group is the hist.col argument, which will set the color of the distribution
plots produced by the function.

It is also possible to change methods for correlation computation, leveraging the method
argument.

The following methods are available:

ff Pearson

ff Spearman

ff Kendall

We can also specify if correlation ellipses, also named confidence or error ellipses, should be
added to our plot through, as you may have probably guessed, the ellipses argument.

Adding text to a ggplot2 plot at a custom
location

When displaying the results of your analysis, even if at exploratory stages, it is crucial to have
the ability to customize your data visualization.

One thing I always find particularly useful is using the text annotations on your plot to highlight
the findings in the most effective way.

In ggplot2, you can do this using the geom_text() function, moving your string around the
plot to adjust the position argument. So, you will have to try and try again until you find the
correct position for your handful of words. But, what if you could just select a location for your
text by just clicking on it with your cursor?

That is exactly what this recipe is for; you will be able to add a custom text on your plot and
place it at the defined location with a simple click on the plot itself.

Getting ready
We first need to install and load the ggplot2 and ggmap packages:

install.packages(c("ggplot2","ggmap"))
library(ggplot2)
library(ggmap)

Basic Visualization Techniques

70

How to do it...
1.	 Build the ggplot2 plot and print it.

Define a basic ggplot where you want to add your text (refer to the How it works…
section for more information on ggplot2 plots):
plot <- ggplot(data = iris, aes(x = Sepal.Length, y = Sepal.
Width)) +
 geom_point()
plot

2.	 Define the text that is to be added:
text <- "there are some cool correlations here"

3.	 Select where to enter text:
 location <- gglocator(1, xexpand = c(0,0), yexpand = c(0,0))

Running this code will result in a small pointer appearing on the plot area within the
RStudio viewer pane, like the one shown here:

Chapter 3

71

After selecting a point within the plot area, the location object will have
two attributes:

�� x coordinate

�� y coordinate

You can easily see them by running location within your R console.

4.	 Add text to the plot:
plot +
scale_x_continuous(expand = c(0,0)) +
scale_y_continuous(expand = c(0,0)) +
geom_text(aes(x = location[[1]],y = location[[2]],label= text))

5.	 Change the text color.
plot +
 scale_x_continuous(expand = c(0,0)) +
 scale_y_continuous(expand = c(0,0)) +
 geom_text(aes(x = location[[1]],y = location[[2]],label=
text),colour = "red")

6.	 Change the text dimensions:
plot +
 scale_x_continuous(expand = c(0,0)) +
 scale_y_continuous(expand = c(0,0)) +
 geom_text(aes(x = location[[1]],y = location[[2]],label=
text),colour = "red",size = 7)

Basic Visualization Techniques

72

How it works…
Step 1 requires you to create a ggplot, which is a plot based on the grammar of graphics.

An extensive introduction to the grammar of graphics and its implementation in the ggplot2
package is outside the scope of this book. For the grammar of graphics, you can refer
to The Grammar of Graphics by Leland Wilkinson (http://www.springer.com/us/
book/9780387245447), which is the foundation of this data visualization theory.

Talking about ggplot2, even though the Web is full of articles and tutorials about the usage
of this package, I would rather suggest reading the original paper, A Layered Grammar of
Graphics by our dear Hadley Wickham (http://byrneslab.net/classes/biol607/
readings/wickham_layered-grammar.pdf); this is what everything started from.

For our purposes, we can just say that every ggplot must be composed at least of these
three layers:

ff Data, which means a specification where to look for data to be plotted

ff Mapping/aesthetics, containing specifications of the x and y variables (mandatory)
and aesthetic parameters (optional)

ff Geometric objects, which are the actual object representing points defined as
couples of x and y.

Let's look at an example based on the following data frame:

dataset <- data.frame(independent = seq(1:3),dependent = seq(4:6))

Now, we can define the first layer using the ggplot() function, as follows:

ggplot(data = dataset, aes(x = independent,y = dependent))+

Finally, as the + symbol suggests, we can add the geometric layer:

geom_point()

Summing up all:

ggplot(data = dataset, aes(x = independent,y = dependent))+ geom_
point()

http://www.springer.com/us/book/9780387245447
http://www.springer.com/us/book/9780387245447
http://byrneslab.net/classes/biol607/readings/wickham_layered-grammar.pdf
http://byrneslab.net/classes/biol607/readings/wickham_layered-grammar.pdf

Chapter 3

73

This is the base of every ggplot2 plot. Starting from this point, it is possible to build infinite
types of predefined and even customized plots, adding layer over layer.

In our example, we define a basic ggplot mapping to the Sepal.Length and Sepal.
Width variables from the Iris dataset.

In step 2, we define the text we want to add to the ggplot plot and assign it to a text
object, which is a string vector.

Step 3 leverages gglocator(), a function provided by the ggmap package, which is
intended to work as an equivalent of the locator() function for the plot() function.
After clicking with the crossed cursor on a point on the plot, the location object will be
populated by x and y space coordinates, which will then be used as a reference for custom
text placement.

In step 4, we reproduce our base plot by scaling it through scale_x_continuos() and
scale_y_continuos() to ensure that the origins of the axes are plotted. These two
functions actually define a new layer within our ggplot, namely a scale layer specifying
the scale for this plot.

This is needed in order to ensure comparability between plot coordinates and the coordinates
stored within the location object, setting all to the point(x = 0, y = 0) at the origin.

Finally, we add the text using the geom_text() function.

This function, in case you are wondering what it does, adds another layer to the plot
containing the specified text.

Basic Visualization Techniques

74

The geom_text() function requires you to specify the text to be placed as an annotation
through the argument label, and the x and y coordinates to be passed within the aes
argument, as seen in step 1. While the text is passed through the text object, the last two
parameters are set to extract from the location object attributes x and y.

Be aware that not passing x and y, and generally the aes argument, will result in
geom_text() looking within the aestethics arguments passed within the ggplot() call.

This will result in text being printed on every point of your plot, as if it were a label of your data.

In step 5, the text color can be changed through the colour parameter within the
geom_text() function.

If you want to get an idea of the colors you can use, you should take a look at the minimalist
but rather great document Colors in R (http://www.stat.columbia.edu/~tzheng/
files/Rcolor.pdf), which shows all the tonalities available in base R.

For more advanced color settings, I suggest the RColorBrewer package (https://
cran.r-project.org/web/packages/RColorBrewer/index.html). This is based on
the Color Brewer project, a really interesting initiative about colors in cartography developed
by Cynthia Brewer. You can get to know more about the project at http://colorbrewer2.
org/.

You can also change the size of the text using the size argument.

There's more…
In the help documentation for the geom_text() function, you will find that other aesthetic
parameters such as text font or text angulation can be set. You can take a look at the
documentation in the help tab of your RStudio IDE by running the following:

?geom_text

Changing axes appearance to ggplot2 plot
(continous axes)

This recipe shows you how to get control over an axis within a ggplot plot.

The ggplot2 package does a great job of automatically setting the appearance of the axes,
but sometimes, even in the early stages of your project, you may want your axis to appear in
a specific shape, showing, for instance, a defined number of tickmarks.

http://www.stat.columbia.edu/~tzheng/files/Rcolor.pdf
http://www.stat.columbia.edu/~tzheng/files/Rcolor.pdf
https://cran.r-project.org/web/packages/RColorBrewer/index.html
https://cran.r-project.org/web/packages/RColorBrewer/index.html
http://colorbrewer2.org/
http://colorbrewer2.org/

Chapter 3

75

This is what this recipe is all about—giving you control over the appearance of your ggplot axes.

In this example, we will use a plot based on the Iris dataset.

The Iris dataset is one of most used datasets in R tutorials and learning sessions, and it is
derived from a 1936 paper by Ronald Fisher, named The use of multiple measurements in
taxonomic problems.

Data was observed on 50 samples of three species of the iris flower:

ff Iris setosa

ff Iris virginica

ff Iris versicolor

On each sample for features were recorded:

ff length of the sepals

ff width of the sepals

ff length of the petals

ff width of the petals

For a general and brief introduction to ggplot plots, take a look at the How it works… section
of the previous recipe.

Getting ready
The first step needed to get started with this recipe is ggplot2 package installation
and loading:

install.packages("ggplot2")
library(ggplot2)

Basic Visualization Techniques

76

After doing that, we will be able to create a ggplot2 plot to work on in this recipe:

plot <- ggplot(data = iris, aes(x = Sepal.Length, y = Sepal.Width)) +
 geom_point()

How to do it...
1.	 Set axis range from 0 to 10.

Using the expand_limits() function, we can set the origin and the end of the x
and y axes, passing these values in two different vectors, one for the x and one for
the y argument of the expand_limits() function:
plot <- plot + expand_limits(x = c(0,10),y = c(0,10))

Chapter 3

77

This will result in setting the range of the x and y axes from 0 to 10.

.

By displaying predetermined tick marks, ggplot automatically defines a convenient
number of tick marks, working this out with its own internal algorithms. However,
you can force the plot to have a custom number of algorithms using the scale_y_
continuos() and scale_x_continuos() functions, passing a vector with the
desired breaks to the breaks argument:
plot <- plot + scale_y_continuous(breaks = c(0,5,10))

Basic Visualization Techniques

78

This piece of code, for instance, will result in a plot having tick marks only on 0, 5,
and 10:

2.	 Hide the tick marks:
plot <- plot + scale_y_continuous(breaks = NULL) + scale_x_
continuous(breaks = NULL)

Chapter 3

79

3.	 Set a fixed ratio between x and y axes:
plot <- plot + coord_fixed(ratio = 4/3)

It feels like some kind of pop art, doesn't it?

So, you are now a ggplot artist, congratulations!

Producing a matrix of graphs with ggplot2
Sometimes it is useful to display your plots next to one another. This recipe lets you do this by
leveraging the facet grid() function in the ggplot2 package.

Getting ready
The example we will cover in this recipe will require us to apply functions from the ggplot2
package, and we will therefore have to install and load this package.

Moreover, we will use functions from the rio and tidyr package in this section.

Let's install and load these packages before moving on:

install.packages(c("ggplot2","tidyr","rio"))
library(tidyr)
library(rio)
library(ggplot2)

Basic Visualization Techniques

80

Once we are done with all the installing and loading, we can build the dataset that will be
employed in this example.

This dataset is actually a composed one, that is, it is made by merging two different datasets
provided by the World Bank.

This institution produces a really great number of dataset packed with metadata and
convenient download facilities at the following website:

http://data.worldbank.org

As discussed, we will merge two different datasets, one recording life expectancy by country
from the year 1960 to 2015, and the other recording population for the same countries and
the same period.

But now it is time to get our dataset ready.

We will start with importing raw data from two separate .xlsx files (you can choose different
formats from the website) that are provided in the RStudio project related to this book.

You can download it by authenticating your account at http://packtpub.com.

The data loading task will be accomplished using the powerful import() function from
the rio package. If you want to know more on this, refer to the Loading data into R with
rio packages recipe from Chapter 1, Acquiring Data for Your Project.

Here is the script:

population <- import("population_by_country.xlsx")
expectancy <- import("expentancy_by_country.xlsx")

As you can see after running View() on these data frames, both of them have one country
for each row and one year for each column.

Since these datasets contain too many countries and years to be plotted all at once, we will
now filter rows and column to retain only eight countries and six years.

The following are the chosen countries:

ff Germany
ff Greece
ff Singapore
ff Sweden
ff Tajikistan
ff United States
ff Zambia
ff Zimbabwe

http://data.worldbank.org
http://packtpub.com

Chapter 3

81

The chosen years are 1968, 1978, 1988, 1998, and 2998:

population <- population[c(53,85,212,234),1:10]
expectancy <- expectancy[c(53,85,212,234),1:10]

We also want to add a continent variable to be used as a faceting variable, meaning a
variable against which to plot population and expectancy variables:

population <- data.frame("continent" = c("Europe","Europe","A
sia","Europe","Asia","North_America","Africa","Africa"),population)
expectancy <- data.frame("continent" = c("Europe","Europe","Asia","Eur
ope","Asia","North_America","Africa","Africa"),expectancy)

Since both data frames are in a form not really convenient for our visualization, we are now
going to apply the gather() function to them to change their structures and make them fit a
more tidy form, where each row corresponds to an observation:

population_tidy <- gather(population,year,population,3:ncol(populati
on))
expectancy_tidy <- gather(expectancy,year,expectancy,3:ncol(expectan
cy))

The gather() function is covered in great detail in Chapter 2, Preparing for Analysis – Data
Cleansing and Manipulation, in the Preparing your data for analysis with the tidyr package
recipe.

We are nearly done; just take a second to change column names before merging datasets:

colnames(population_tidy) <- c("continent","country","year","populati
on")
colnames(expectancy_tidy) <- c("continent","country","year","expectan
cy")

It is now time to actually merge the two datasets, specifying which column will be used
as a key:

dataset <- merge(population_tidy,expectancy_tidy,by =
c("continent","country", "year"))

Now that we are done with this warm up, we can go on to plot our data.

Basic Visualization Techniques

82

How to do it...
1.	 Plot your data.

Let's plot our data in a basic ggplot plot, where x denotes life expectancy and y
denotes population. Here, we will not distinguish between countries:
plot <- ggplot(data = dataset, aes(x = expectancy, y =
population)) +
geom_point()+
 ggtitle("life expectancy against population")
plot

Here comes a little quiz for you. How would you assign country names to these groups
of points within the plot?

Obviously, you don't have to worry; you will find the answer below.

Chapter 3

83

2.	 Add a first facet to plot your variables aggregated by country. Here is the answer:
plot_by_country <- plot + facet_grid(. ~ country)+
 ggtitle("life expectancy against population by country")
plot_by_country

Did you get all the countries right? Good, as you can see, faceting lets us easily
distinguish between different series of data within the dataset, and we can
immediately make sense.

Now, we will add another facet using the continent variable.

Basic Visualization Techniques

84

3.	 Add a second facet using the continent variable.

This requires you to specify a second argument within the facet_grid() function:
plot_by_continent <- plot_by_country + facet_grid(continent ~
country) +
 ggtitle("life expectancy against population by continent by
country")
plot_by_continent

How it works…
Step 1 requires you to produce a first basic ggplot plot composed of data specification and
variable mapping, along with a geom_point() layer used to plot the specified variables
against one an other.

You can find out more about the ggplot logic by reading the How it works… section of the
Adding text to a ggplot2 plot at a custom location recipe.

In step 2, in order to understand the facet_grid() mechanism, we need to think about the
dataset behind the plot we are showing off.

Our complete dataset is composed of 40 observations of 5 attributes, namely continent,
country, year, population, and expectancy. These 40 observations can be divided
into 8 subdatasets, considering that they come from 40 observations from eight different
countries.

Chapter 3

85

This division is exactly what the facet_grid(~ country) function does:

ff Splits the dataset data frame into eight subdata frames (one for each country)

ff Plots those data frames separately, following the indication given when initializing the
plot object (that is, aes(x =population, y =expectancy))

Step 3 talks about adding variables. This step is an incremental step. If we divide our iris
data frame by country within the previous one, obtaining 8 smaller data frames with this step,
we take this process further by dividing our 8 data frames by continent, obtaining 24 subdata
data frames:

4 possibile values for continent * 4 possible values for country = 24

The resultant plot is obtained by putting together all the singular plots of those data frames,
obtained following the aes() parameter provided to plot objects.

Drawing a route on a map with ggmap
Working with geospatial data is a simple task with R. Thankfully, the ggmap package provides
a good number of facilities for this task.

In particular, this recipe gives you the ability to draw on a map a custom defined route from
one point to another.

Getting ready
As you can imagine, we first need to install and load the ggmap package:

install.packages("ggmap")
library(ggmap)

How to do it...
1.	 Define the route points using the route() function:

trip <- (route(from = "rome", to = "milan",structure =
"route", output = "simple"))

2.	 Create the map where you want to draw the route:
route_map <- get_map("italy",zoom = 6)

3.	 Define the segment and segment_couple variables to link trip points:
segment <- c()
for(i in 1:nrow(trip)){
 if(i == 1){segment[i] <- 1}else{

Basic Visualization Techniques

86

 if(i %% 2 != 0){
 segment [i] <- i-segment[i-1]}else{
 segment [i] <- i/2
 }
 }
}
segment_couple <- c(0,segment[-length(segment)])
trip$segment <- segment
trip$segment_couple <- segment_coupleDraw the final map
route_map +
 geom_point(aes(x = lon, y = lat, size = 5, colour = hours),data
= trip)+
geom_line(data = trip,aes(group = segment)) +
 geom_line(data = trip, aes(group = segment_couple))

This code will result in the following map being plotted within the viewer pane
(Reference: Map data 2015 GeoBasis-De/BKG):

Chapter 3

87

How it works…
In step 1, we define route points using the route() function. The route() function queries
the Google Maps server to retrieve a set of points describing the requested route. Since we
specified output = "simple", the output will result in data.frame with the following
attributes:

$ m : num 15 49 66 124 157 173 546 139 393 243 ...

 $ km : num 0.015 0.049 0.066 0.124 0.157 0.173 0.546 0.139
0.393 0.243 ...

 $ miles : num 0.00932 0.03045 0.04101 0.07705 0.09756 ...

 $ seconds : num 3 25 26 20 34 44 134 37 75 45 ...

 $ minutes : num 0.05 0.417 0.433 0.333 0.567 ...

 $ hours : num 0.000833 0.006944 0.007222 0.005556 0.009444 ...

 $ leg : int 1 2 3 4 5 6 7 8 9 10 ...

 $ lon : num 12.5 12.5 12.5 12.5 12.5 ...

 $ lat : num 41.9 41.9 41.9 41.9 41.9 ...

Here are all possible arguments to be specified when calling the function:

Argument Description
from This is the name of the origin address in a data frame (vector accepted).
to This is the name of the destination address in a data frame (vector

accepted).
mode This can be driving, cycling, walking, or transit.
structure This is the structure of the output (refer to examples).
output This is the amount of output.
alternatives This answers the question, "should more than one route be provided?"
messaging This turns the messaging on or off.
sensor This states whether or not the geocoding request comes from a device

with a location sensor.
override_
limit

This overrides the current query count (.GoogleRouteQueryCount).

In step 2, we define the segment and segment_couple variables to link trip points. Custom
route visualization will be obtained by leveraging the geom_line() function and passing to
it a group argument in order to link adjacent points in the route (refer to the details of step 3
for further info rmation).

Basic Visualization Techniques

88

This can be done only after having defined the segment and segment_couple variables,
which are basically a way to link two points stored in two subsequent points, giving them a
common value for the segment and segment_couple variables.

Here is how it looks (only last columns are shown here):

> head(trip[,8:11])

 lon lat segment segment_couple

1 12.49640 41.90290 1 0

2 12.49623 41.90293 1 1

3 12.49573 41.90318 2 1

4 12.49600 41.90359 2 2

5 12.49710 41.90434 3 2

6 12.49587 41.90541 3 3

As you can easily see, every point is linked to the precedent by the segment variable and is
linked to the subsequent by the segment_couple variable.

We draw the final map in step 3. This step involves the following:

ff The creation of a route_map object through the get_map function, which produces
another query to the Google Maps server

ff The plotting of this map, consisting of points and lines

Points are obtained using the geom_point() function and passing to it lon and lat as x
and y, while lines are obtained with two calls to the geom_line() function, the first having
the segment variable as the grouping factor (that is, the rule you use to draw lines on your
plot) and the second having the segment_couple variable as the grouping factor. Through
this double call, we can be sure that every point is connected to each other.

See also
ff You can find out more about ggmap in the introductory paper ggmap: Spatial

Visualization with ggplot2 (http://vita.had.co.nz/papers/ggmap.html).

Making use of the igraph package to draw
a network

The igraph package is a reference point for network visualization in the R environment.

igraph is actually more than an R package, since you can use igraph tools even with
Python and C/C++.

http://vita.had.co.nz/papers/ggmap.html

Chapter 3

89

If you are performing analysis that involves network visualizations and R, you should look at
this package as one of your more relevant allies.

This recipe will let you enter the wide world of network visualization with R, showing you how
to create a network plot starting from a data frame.

Getting ready
Install the igraph package:

install.packages("igraph")
library(igraph)

We will use the flo dataset showing the relationship between Renaissance Florentine families.

Marriage between Adimari and Cascioni families, from Cassone Adimari, around 1420, Florence

This dataset is provided as an adjacency matrix within the network package.

Therefore, in order to make it available, we have to install the network package and load the
dataset by running the data() function on it:

install.packages("network")
library(network)
data(flo)

You can then visualize the flo dataset within the RStudio viewer pane by running the
View command:

View(flo)

Basic Visualization Techniques

90

This will result in the following visualization:

This dataset is actually an adjacency matrix, where 0 at the I, J cell expresses no
relationship between the i-esim and the j-esim families, while 1 represents evidence of
a relationship.

For instance, we can assume from the matrix that some kind of relationship exists between
the Albizzi and the Tornabuoni family. I am guessing you are curious, so I will let you know
what this relationship is.

At the age of 18, on June 15, 1486, Giovanna Albizzi linked her family to one of the
Tornabuonis by marrying Lorenzo Tornabuoni. Was it true love?

Ok, I think you are getting too curious now...

Be aware that this recipe can be applied even having as an input and hedge
list, simply by substituting steps 1 and 2 with a single step where the hedge
list is passed as an argument to the graph.data.frame() function.

How to do it...
1.	 Create a matrix object from the flo dataset:

dataset <- as.matrix(flo)

2.	 Create an igraph object from the defined dataset:
net <- graph.adjacency(dataset,mode = "undirected", weighted =
NULL)

Chapter 3

91

3.	 Compute the degree of each vertex:
deg <- degree(net, mode = "all")

4.	 Set the size of each vertex equal to its degree:
V(net)$size <- deg*4

5.	 Set the arrow size:
E(net)$arrow.size <- .2

6.	 Set the color of the edges:
E(net)$edge.color <- "gray"

7.	 Plot your network:
plot(net)

You will then see the following plot:

Basic Visualization Techniques

92

How it works…
In step 1, we create a matrix object from the flo dataset. The graph.adjacency() function
requires you to pass to it a matrix object in order to create an igrpah object. Therefore, we
cast our data frames into a matrix object, leveraging the as.matrix() function.

Then in step 2, we create an igraph object from the defined dataset. Creating an igraph
object is necessary in order to make use of all the great utilities made available through
the igraph package.

In this case, since we are working on an adjacency matrix, we will obtain this through the
graph.adjacency() function. This function takes as an input an adjacency matrix and
gives as an output an igraph object.

In step 3, we compute the degree of each vertex. The degree is a matrix associated to every
node of a network. It basically measures the number of edges connected to that node.

To begin with, it is a convenient way to measure the relevance of a node in a network. Why?
To answer this question, I will let you take a look at the Medici node.

How many connections did the Medici family have? Six connections, which is the maximum
number in the matrix. As you may know (if not, go to https://en.wikipedia.org/wiki/
House_of_Medici), the Medici were one of the most influent and powerful families of the
Italian Renaissance period, and the degree computed for this family accurately reflected this
reality.

We measure the degree of each node just by calling the degree() function on the net
object.

Next, in step 4 we set the size of each vertex equal to its degree. We now set the value of an
attribute of our network vertex (node). In particular, we set the node size, and this attribute is
set equal to the previously computed degree for each node.

As you would expect if you have not skipped the explanation in the previous step, the Medici
family is the one represented by the largest node. Note that using the same syntax, other
attributes can be added or set to vertexes and to edges as well (as you can see in the
next steps).

In step 5, we set the arrow size. In a way similar to what we have done with nodes, we now
set the size of the edges. In this case, we set it to a fixed number, but we can even set it as
a function of some other network parameter.

In step 6, we set the color of the edges. In this step, the edge color attribute is set to grey.

https://en.wikipedia.org/wiki/House_of_Medici
https://en.wikipedia.org/wiki/House_of_Medici

Chapter 3

93

Lastly, in step 7 we plot our network. Plotting an igraph object is really straightforward,
requiring you to only run the base R plot() function. As seen in the Looking at your data
using the plot() function recipe, this function is able to change its output depending on the
class of data given as input, thanks to specific methods that enrich the function's capabilities
for a given kind of object. Refer to the cited recipe for further information on this function,
but in the meanwhile, appreciate the result of your efforts!

Showing communities in a network with the
linkcomm package

The linkcomm package is an R package developed with the main aim of letting you discover
and study communities that exist within your network. These communities are discovered by
applying an algorithm derived from the paper Link communities reveal multiscale complexity
in networks by Ahn Y.Y., Bagrow J.P., and Lehmann.

Getting ready
In order to use linkcomm functionalities, we first need to install and load the linkcomm
package:

install.packages("linkcomm")
library(linkcomm)

As a sample dataset, we will use the lesmiserables hedge list, provided in the linkcomm
package. This dataset basically shows relations hips between characters in Victor Hugo's
novel Les Misérables.

You can get a sense of the dataset by running str() on it:

> str(lesmiserables)

'data.frame': 254 obs. of 2 variables:

 $ V1: Factor w/ 73 levels "Anzelma","Babet",..: 61 49 55 55 21 33 12 23
20 62 ...

 $ V2: Factor w/ 49 levels "Babet","Bahorel",..: 42 42 42 36 42 42 42 42
42 42 ...

Basic Visualization Techniques

94

How to do it…
1.	 Create a linkcomm object:

linkcomm_object <- getLinkCommunities(lesmiserables, hcmethod =
"single")

2.	 Show network with communities:
plot(linkcom_obj, type = "graph", layout = layout.fruchterman.
reingold)

Chapter 3

95

3.	 Select the nodes to be displayed:
plot(linkcom_obj, type = "graph", layout = "spencer.circle",
shownodesin = 3)

Basic Visualization Techniques

96

4.	 Show the composition of the communities:
plot(linkcom_obj, type = "members")

This plot shows members and the community that they belong to:

How it works…
In step 1, we create a linkcomm object. The linkcomm objects are, as you have probably
guessed, the base components of every network visualization within the linkcomm package.
These objects are characterized as a list object, storing relevant attributes for the given
network.

It is interesting to note that linkcomm objects are built on the base of an igraph object,
confirming the relevance of the latter package for network visualization in R.

What linkcomm adds to the igraph object is information about communities that exist
within the network. These communities are derived by applying the cited algorithm on the
hedge list provided. This is a good example of how the R community is able into begin the
language development starting from what of good has already been done.

Chapter 3

97

This algorithm basically looks for nodes that have a good enough number of common links
and can be considered as clustering algorithms, as made clear by the dendogram that
appears once getLinkCommunities() is executed.

In step 2, we show the network with communities. This step once again makes use of the
plot() function's flexibility. As seen in the Looking at your data using the plot() function
recipe, this function is able to change its output depending on the class of the data given as
input. Refer to cited recipe for further information on this function.

Also note that it is possible to change the layout of your plot by modifying the layout argument
in the plot() function.

Here are the available layouts:

ff spencer.circle

ff layout.random

ff layout.circle

ff layout.sphere

ff layout.fruchterman.reingold

ff layout.kamada.kawai

ff layout.spring

ff layout.reingold.tilford

ff layout.fruchterman.reingold.grid

ff layout.lgl

ff layout.graphopt

ff layout.mds

ff layout.svd

ff layout.norm

Next, in step 3 we select the nodes to be displayed. When working with large networks, having
the possibility to focus your attention on just a selection of them is a really useful feature. The
linkcomm package implements this feature through the shownodesin argument in the plot
function. This parameter lets you virtually filter your nodes, highlighting only nodes pertaining
to at least n communities, where n is a custom number having as a maximum the total
number of identified communities.

Lastly, in step 4 we show the composition of the communities. The plot displayed in step 4 is
a really useful visualization of our network, since it lets you easily analyze the composition of
the communities. I hope that looking at these Les Misérables. character links will make you
willing to read the great novel by Victor Hugo, or at least watch the movie!

99

4
Advanced and

Interactive Visualization

In this chapter, we will cover the following recipes:

ff Producing a Sankey diagram with the networkD3 package

ff Creating a dynamic force network with the visNetwork package

ff Building a rotating 3D graph and exporting it as a GIF

ff Using the DiagrammeR package to produce a process flow diagram in RStudio

Introduction
A legendary tale says that Michelangelo found his Moses so real; and shouted at him
"Why don’t you speak?!" Seeing that it wouldn’t, he slammed it down with his hammer.

Michelangelo's Mosè. Picture by Jörg Bittner Unna, CC BY 3.0,
https://commons.wikimedia.org/w/index.php?curid=46476418

https://commons.wikimedia.org/w/index.php?curid=46476418

Advanced and Interactive Visualization

100

From a similar desire of interaction, interactive visualization was born, making your data
visualizations interact with you and your analysis users.

Using interactive visualizations, we can make our plots do something more than just displaying
data, since we give them the ability to interact with the user, showing tooltips, navigation, and
zooming controls, and even rearranging them according to users' needs and preferences.

Interactive data visualization can be useful at the beginning and at the end of your work.

At the beginning, in your exploratory data analysis job, you can leverage interactive
visualizations in order to get a better understanding of your data without needing to
 write a lot of code for a great number of plots.

At the end of your job, you can use interactive data visualization to better communicate your
point, by showing your assumptions and their effects on your job results in a better manner.

In this chapter, you will learn some advanced techniques to produce interactive data
visualization, from force networks to animated 3D plots.

Producing a Sankey diagram with the
networkD3 package

A Sankey diagram is a really powerful way of displaying your data. Particularly, Sankey
diagrams are a really convenient way of showing flows of data from their origin to their end.

A really famous example of these kind of diagrams is the one presented by Charles Minard's
1869 chart showing the number of men in Napoleon's 1812 Russian campaign army, their
movements, as well as the temperature they encountered on the return path:

Source: https://en.wikipedia.org/wiki/Sankey_diagram#/media/File:Minard.png

Chapter 4

101

In a Sankey diagram, a given amount is shown on the leftmost side of the plot and, while
moving to the right (which can be interpreted as the flow of time), this given amount is split
into parts or simply reduced. The latter is the case for the Minard's diagram, where soldiers
died during the campaign and the number of deaths are counted in a separate line plot at
the bottom.

Getting ready
In order to get started with this recipe, you will need to install and load the networkD3
and jsonlite packages:

install.packages(c("networkD3","jsonlite"))
library(networkD3)
library(jsonlite)

The first package is the one which implements the sankeyNetwork() function that we will
leverage in our recipe, while the second one is simply required to parse the dataset we will
use from the JSON format to the data frame.

Our example will regard energy flow from production to the final usage or waste, using the
original dataset provided by Christopher Gandrud, creator of the networkD3 package.

In order to make this dataset available, we first need to download it and then convert it from
jsonlite to an ordinary list:

1.	 Define a URL object pointing to the data source:
URL <- paste0
("https://cdn.rawgit.com/christophergandrud/networkD3/",
 "master/JSONdata/energy.json")

2.	 Define an Energy object where we can store the data from the defined source:
Energy <- jsonlite::fromJSON(URL)

This Energy list will now be composed by two data frames; one for nodes (that is, vertex) and
one for links (that is, edges):

List of 2

 $ nodes:'data.frame': 48 obs. of 1 variable:

 ..$ name: chr [1:48] "Agricultural 'waste'" "Bio-conversion" "Liquid"
"Losses" ...

 $ links:'data.frame': 68 obs. of 3 variables:

 ..$ source: int [1:68] 0 1 1 1 1 6 7 8 10 9 ...

 ..$ target: int [1:68] 1 2 3 4 5 2 4 9 9 4 ...

 ..$ value : num [1:68] 124.729 0.597 26.862 280.322 81.144 …

Advanced and Interactive Visualization

102

The latter data frame is a list of weighted hedges, where a starting point and an end point are
exposed, and this link is weighted by a value attribute.

If you are willing to apply this recipe to your data, which I hope you are, you should have them
arranged within two distinct data frames with the following structure:

ff The nodes data frame:

�� Nodes: This is a vector of all your nodes' names, with no duplications

ff The links data frame:

�� From: This is a numeric column showing the first node of every connection
in your diagram. Let's say that if you want to introduce a connection between
the first and the third nodes defined with Nodes, you should write 0 here
(and 3 within the to argument) as shown in this example; be aware that
first node has value 0 and not 1

�� To: This is a numeric column showing the end of every connection in
your diagram

�� Weight: This is the value of your connection, meaning how much of your flow
passes through this connection

It may be useful to you to underline that the second data frame is rightly named a hedge list,
where each observation represents a hedge of your network.

How to do it...
1.	 Produce the Sankey diagram, as follows:

sankeyNetwork(Links = Energy$links, Nodes = Energy$nodes,
Source = "source",
 Target = "target", Value = "value", NodeID = "name",
 units = "TWh", fontSize = 12, nodeWidth = 30)

Chapter 4

103

This will result in the following Sankey diagram:

2.	 We will now adjust the font size by changing the value of the fontSize parameter:
sankeyNetwork(Links = Energy$links, Nodes = Energy$nodes,
Source = "source",
 Target = "target", Value = "value", NodeID = "name",
 units = "TWh", fontSize = 10, nodeWidth = 30)

Advanced and Interactive Visualization

104

3.	 Next, we change nodeWidth:
sankeyNetwork(Links = Energy$links, Nodes = Energy$nodes,
Source = "source",
 Target = "target", Value = "value", NodeID = "name",
 units = "TWh", fontSize = 12, nodeWidth = 5)

4.	 In order to embed your Sankey diagram, you can leverage the RStudio Save as Web
Page control from the Export menu:

This control will let you save your diagram as an HTML file.

How it works...
In step 1 we call the sankeyNetwork() function, which will produce an interactive Sankey
diagram in your RStudio Viewer pane, where the node alignment can be customized and flows
can be highlighted by clicking on them.

In step 4 we save your Sankey diagram as a web page, which will let you embed on websites,
preserving interactive features.

Creating a dynamic force network with the
visNetwork package

The visNetwork package is one among the most popular packages in the R community,
mainly because it lets you display networks and interact with them without having to invest
too much time.

This recipe will get you up and running with this package, showing you all that you need to
know to start exploring your network in a fully interactive way.

Chapter 4

105

Getting ready
In order to get started with this recipe, you will need to install and load the visNetwork
package to actually produce your network visualizations.

We will also use the jsonlite package to parse the dataset we will use from the JSON
format to the data frame:

install.packages(c("visnetwork","jsonlite"))
library(visnetwork)
library(jsonlite)

How to do it...
1.	 Download the dataset from the Web and assign it to the Energy object:

URL <- paste0
("https://cdn.rawgit.com/christophergandrud/networkD3/",
 "master/JSONdata/energy.json")
Energy <- jsonlite::fromJSON(URL)

2.	 Now create the nodes object:
nodes <- data.frame(label = Energy$nodes$name , id =
1:length(Energy$nodes$name))

3.	 Create the edges object:
edges <- data.frame(from = Energy$links$source,
 to = Energy$links$target,
 value = Energy$links$value)

Advanced and Interactive Visualization

106

4.	 Next, visualize the network:
visNetwork(nodes,edges)

This will result in the following interactive visualization:

5.	 Add explicative tooltips to your edges:
edges <- data.frame(from = Energy$links$source,
 to = Energy$links$target,
 value = Energy$links$value,
 title = paste0("flow = ", Energy$links$value))

This will make the following tooltip appear when hovering over the edge.color:

Chapter 4

107

6.	 Next, we will add a legend to the plot.

Adding a legend will require you to introduce groups in your data. Therefore, we will
need to modify the nodes object:
nodes <- data.frame(label = Energy$nodes$name ,
 group = c("Group A", "Group B"),
 id = c(1:length(Energy$nodes$name)))

A legend will then be added when you run the following code:
visNetwork(nodes,edges) %>%
 visLegend()

Advanced and Interactive Visualization

108

7.	 We will now add navigation buttons:

Adding a navigation button requires that you specify the visInteraction
parameter:
visNetwork(nodes,edges) %>%
 visInteraction(navigationButtons = TRUE)

Let's take a look at the following image:

How it works...
In step 1 we download the dataset from the Web and assign it to the Energy object.
The dataset we used shows data for energy flows right from their production to their
consumption or waste.

The dataset is composed of a nodes data frame and a links data.frame, as we can
clearly see when we run str(Energy):

List of 2

 $ nodes:'data.frame': 48 obs. of 1 variable:

 ..$ name: chr [1:48] "Agricultural 'waste'" "Bio-conversion" "Liquid"
"Losses" ...

 $ links:'data.frame': 68 obs. of 3 variables:

 ..$ source: int [1:68] 0 1 1 1 1 6 7 8 10 9 ...

 ..$ target: int [1:68] 1 2 3 4 5 2 4 9 9 4 ...

 ..$ value : num [1:68] 124.729 0.597 26.862 280.322 81.144 …

The nodes data frame contains label of our nodes, while the links data frame basically
contains the connection between our nodes weighted by an amount (value attribute)
representing the flow going from one node to another.

To apply this recipe to your data, you should have them arranged in two distinct data frames
with the following structure:

ff The nodes data frame:

�� Nodes: This is a vector of all your nodes' names, with no duplications

Chapter 4

109

ff The links data frame:

�� From: This is a numeric column showing the first node of every connection
in your diagram. Let's say that if you want to introduce a connection between
the first and the third nodes defined with Nodes, you should write 0 here
(and 3 within the to argument) as shown in this example; be aware that first
node has value 0 and not 1

�� To: This is a numeric column showing the end of every connection within
your diagram

�� Weight: This is the value of your connection, meaning how much of your
flow passes through this connection

The second data frame is useful for you to underline, in that the second data frame is rightly
named hedge list, where each observation represents a hedge of your network.

In step 2 we create nodes object. The nodes object required by the visNetwork() function
must be composed of a numeric ID and a character label. That is why we create a nodes
data.frame using the name attribute from the Energy object and adding a sequence from
1:length(Energy$nodes$name) as the IDs.

In step 3 we create the edges object. In a way analogous to what we have done with nodes,
we will now create edges for our network, taking data from the links data.frame within the
Energy object.

In step 4 we visualize your network. This is where your data visualization comes to life.
Running visNetwork on your previously created visNetwork object will make an
interactive plot showing up in your RStudio viewer pane.

Nodes composing the network can be fully rearranged by dragging and dropping, giving you
the possibility to have the clearest possible picture of your data.

This is not exactly like making the Mosè talk, but we are getting closer.

In step 5 we explicative tooltips to your edges. Tooltips are added to the plot, giving a title
column within the edges data frame. This attribute will automatically be recognized as a
tooltip source by the visNetwork() function that we call to visualize our network.

In step 6 we add a legend. The visLegend() function is piped into visInteraction using
the %>% operator, which is made available in R by the magrittR package that produces a
typical command-line pipe functionality into the R language.

In step 7 we add navigation buttons. Especially when dealing with complex and heavily
populated networks, adding navigation buttons will be of great help.

These tools will give the ability to zoom in to the plot, making it possible for us to focus
on particular communities within the network and fully understand relationships among
their members.

Advanced and Interactive Visualization

110

There's more...
Since visNewtork is a really popular package, you will find plenty of resources if you surf
the Web.

Nevertheless, if you are interested in deepening your knowledge about this instrument,
I warmly suggest that you look for the official documentation on its website (http://
dataknowledge.github.io/visNetwork/), which will give you a complete and
up-to-date view of its functionalities.

Building a rotating 3D graph and exporting
it as a GIF

When dealing with complex datasets, having the possibility to show your data in a 3D
environment can be really enhancing.

This recipe will show you how to create such a plot, animate it, and export your animation as
a GIF.

Getting ready
This recipe will leverage the rgl package specifically developed for 3D visualizations in R:

install.packages("rgl")
library(rgl)

We will also need to install ImageMagick in order to perform the export into the GIF format.

You can find instructions for software installation at http://www.imagemagick.org/
script/binary-releases.php.

As an explicative dataset, we will use the iris dataset, which is a built-in dataset available
with all base R installations.

The iris dataset is one of the most used datasets in R tutorials and learning sessions, and it
is derived from a 1936 paper by Ronald Fisher, named The use of multiple measurements in
taxonomic problems.

Data was observed on 50 samples of 3 species of the iris flower:

ff Iris setosa

ff Iris virginica

ff Iris versicolor

http://dataknowledge.github.io/visNetwork/
http://dataknowledge.github.io/visNetwork/
http://www.imagemagick.org/script/binary-releases.php
http://www.imagemagick.org/script/binary-releases.php

Chapter 4

111

On each sample, four features were recorded:

ff Length of the sepals

ff Width of the sepals

ff Length of the petals

ff Width of the petals

How to do it...
1.	 Let's start by creating and visualizing a 3D plot

The plot3d() function lets you easily create and visualize a 3D plot, specifying
which data is to be used for each one of three dimensions. The function can be
seen as a 3D version of the base R plot() function:
plot3d(iris$Sepal.Length, iris$Sepal.Width,
iris$Petal.Length,
 type = "p", col = as.numeric(iris$Species),size = 10)

This code will result in the following 3D plot:

Advanced and Interactive Visualization

112

2.	 Next, we will add a title. In order to add a title, we just have to specify a value for the
main argument in the plot3d() function:
plot3d(iris$Sepal.Length, iris$Sepal.Width,
iris$Petal.Length,
 type = "p", col = as.numeric(iris$Species),size = 10,
main = "iris dataset visualization")

3.	 In this step, we will launch a 3D animation. 3D animations can be produced by
combining the spin3d() and play3d() functions, where the first specifies rotation
and velocity, and the latter adds a duration argument to set the number of seconds
of automatic animation:
play3d(spin3d(axis = c(0, 0, 1), rpm = 20), duration = 2)

This code will result in the opening of a small window that shows the previously seen
plot rotating for two seconds. Beware that by changing the axis parameter, you can
change the axis on which the plot will rotate.

4.	 We can now increment the rotation duration as follows:
play3d(spin3d(axis = c(0, 0, 1), rpm = 20), duration = 10)

5.	 In this step, we will export our animation as a GIF. Animation export leverages the
movie3d() function to which we pass the spin3d() function and a duration
argument in a way similar to what we have seen for the play3d() function:
movie3d(spin3d(axis = c(0, 0, 1), rpm = 20),duration = 3,
movie = "the_movie_name_without_extension")

As a result, a .gif file will be created in your current directory, and it will be named
as per the value of the movie argument.

Using the DiagrammeR package to produce
a process flow diagram in RStudio

Process flow diagrams are powerful tools for process analysis, and having created a way to
produce them in R is one among the greatest credits to be given to Rich Iannone and his
DiagrammeR package.

Generally speaking, this package leverages HTML widgets to let you build an R diagram of
nearly every kind.

Even if more advanced and customizable tools are available as standalone software,
DiagrammeR lets you easily integrate different parts of your analysis without leaving R.

Moreover, DiagrammeR is perfectly integrated in RStudio and the Shiny framework, which is
one among the hottest tools in R community.

Chapter 4

113

Getting ready
As usual, we first have to install and load the necessary package, that is to say the
DiagrammeR package:

install.packages("DiagrammeR")
library(DiagrammeR)

We are now ready to create a data frame that stores nodes and hedges of our
process workflow.

Particularly, we will build an example from the healthcare environment regarding drugs
administration.

How to do it...
1.	 We will start by creating a nodes data frame running create_nodes().

First of all, we need to create a data frame storing all process flow nodes, that is to
say all steps composing the process we are looking at. This is done using create_
nodes() and by passing ID, label, shape, and colors:
 nodes <- create_nodes(nodes = seq(1:7),
 label = c("select drug", "is it in stock?", "administer
 it",
 "adquire it","has it solved disease?",
 "look for another drug","end of treatment"),
 distortion = c(0,2,3,30),
 sides = 4,
 shape = "rectangle",
 style = "filled",
 fillcolor = c("yellow", "lightgreen","azure",

 "azure","lightgreen","azure", "yellow")
)

2.	 Next, we create a list of all connections. The second element of every kind of network,
and process flows can be considered pertaining to this family as well, is a list of all
connection linking nodes.

To obtain this list, we will create the following list object composed of pairs of
nodes IDs:
edges_couples <-
list(c(1,2),c(2,3),c(2,4),c(4,3),c(3,5),c(5,6),c(5,7),
c(6,1))

Advanced and Interactive Visualization

114

3.	 We will now map the list to a from and to vector. In order to create diagram edges,
we will call the create_edges() function that requires you to pass a from and a to
vector. We will therefore export all first elements of our edge couple to the from vector
and all second elements to the to vector:
from_vect <- c()
to_vect <- c()
for(i in 1:length(edges_couples)) {
 from_vect <- c(from_vect,edges_couples[[i]][1])
 to_vect <- c(to_vect,edges_couples[[i]][2])
}

4.	 We can now call the create_edges() function, passing the previously created from
and to vectors, adding labels that we want to be shown on the edges:
edges <- create_edges(from = from_vect,
 to = to_vect,
 label = c("","yes","no","","","no","yes"))

5.	 In this step, we will display the process flow diagram in RStudio Viewer.

This step requires you to actually create a graph object through the
create_graph() function and render it through render_graph():
process_flow <- create_graph(nodes,edges,
 node_attrs = c("fontname = Helvetica
 color = grey80"),
 edge_attrs = c("color = lightblue",
 "arrowsize = 0.5"))
render_graph(process_flow)

This will result in the following diagram appearing in your RStudio Viewer pane:

Chapter 4

115

6.	 We can now export our diagram by leveraging the export control in the Viewer pane:

After clicking on Copy to Clipboard, the following window will appear, giving you the
possibility to resize your picture before actually copying it to your clipboard:

Once you are done with the resizing, you will just have to hit the Copy Plot button and
paste your diagram where it is needed.

117

5
Power Programming

with R

In this chapter, we will cover the following recipes:

ff Writing modular code in RStudio

ff Implementing parallel computation in R

ff Creating custom objects and methods in R using the S3 system

ff Evaluating your code performance using the profvis package

ff Comparing an alternative function's performance using the microbenchmarking
package

ff Using GitHub with RStudio

Introduction
This chapter introduces you to a few advanced programming techniques in R, leveraging some
of the unique features of the RStudio IDE, such as the embedded Git pane (refer to the last
recipe of this chapter, Using GitHub with RStudio, to know more).

The recipes accomplished in this chapter are usually encountered by R programmers when
dealing with large datasets (refer to the Implementing parallel computation in R recipe) and
optimization issues (refer to the recipes on the profvis and microbenchmarking packages).

Power Programming with R

118

Writing modular code in RStudio
Using modular code is a best practice of computer programming. It basically involves dividing
your code into independent pieces, where one module takes as an input the output of
another one.

This recipe implements modular programming by leveraging the + function, which lets you
execute R scripts from another script (or from the R terminal session itself) by collecting it
in the local environment code output.

The advantage of modular code lies in the orthogonality principle: two pieces of code are
orthogonal to each other if changing the first has no effect on the other.

Take, for instance, two pieces of code: the first one gives as an output a ZIP code from an
address, and the second one takes that ZIP code and calculates the shipping cost for that
ZIP code.

Until the first module gives a ZIP code as an output, the second module is totally unaware of
how this code was defined. That is to say that any change in the first code will have no effect
on the second one.

The Pragmatic Programmer by Andrew Hunt and David Thomas effectively shows this concept
with the following graph:

This diagram clearly exposes the concept: any movement parallel to the x axis will make no
difference on the y axis, since they are orthogonal to each other.

Getting ready
In order to get our work done, we are going to first analyze the process we are going to
model with a simple workflow diagram. We are going to draw the diagram, leveraging the
DiagrammeR package by Rich Iannone:

install.packages("DiagrammeR")
library(DiagrammeR)

Chapter 5

119

How to do it...
1.	 The first step is to define code workflow, outlying the input and output for each activity

of the process.

Refer to the recipe producing a process workflow diagram in RStudio in Chapter 4,
Advanced and Interactive Visualization using the DiagrammeR package for workflow
diagramming in R:

node_attrs = c("fontname = Helvetica
 color = grey80"),
 edge_attrs = c("color = lightblue",
 "arrowsize = 0.5")
define modules from your workflow

2.	 The next step is to define program scripts. In our example, we will have two modules:
�� zip_retrievement

�� shipping_cost_retrievement

Write these two modules and place them in the current working directory in order
to make them available for the following sourcing function:

3.	 Next, we create a main script, sourcing the others. Our main script will basically
source all the other scripts:
source("zip_retrievement.R",local = TRUE)
source("shipping_cost_retrievement.R", local = TRUE)

Power Programming with R

120

How it works...
In step 1 we define a workflow of your code, outlying the input and output for each activity of
the process.

The first step is quite relevant, even if in our example it seems to be a simple one. In this step,
we decide which activities performed from your code will be packed in one unique module.

You may ask, which rule could be used to decide which activities need to be put in a common
module? Well, there is no scientific rule for this kind of choice; nevertheless, we can be led by
two high-level principles, which are as follows:

ff Clarity

ff Ease of maintenance

Clarity will let us avoid over-decomposition of our code in hundreds of modules in order to
preserve the overall readability of our code. Ease of maintenance will push us to join the
pieces of code that will more realistically need maintenance at a common point in time.

That being said, we don't have to be too afraid of making mistakes, since this is an iterative
process and we will always be able to perfect it.

In step 2, we write each module in a script. For the second step, the main point is addressing
this question: couldn't we just create chunks of code in one unique R script?

Of course you could! Nevertheless, dividing your code into separate modules, both logically
and physically, will let you gain a greater clarity about your code's logical flow.

Moreover, which is not to be underestimated, this will make you quickly understand if the
orthogonality principle is respected in your code. This is because after changing something in
a module, you will find an error coming up from another module, and you will then know that
the two of them are not orthogonal to each other.

In step 3 we write a main script, sourcing the others. In the third step, the main script will
do nothing more than source all modules in their logical sequence. The crucial point in this
sourcing activity is the local argument that is set to True.

This argument tells R to store objects resulting from the sourced script in the general local
environment. This act will make these objects available as input for the next sourced scripts.

Implementing parallel computation in R
Avoiding loops in R is a kind of good general principle (if you are not sure about that, take
a look at this, a bit old but always great) post by Revolution Analytics at http://blog.
revolutionanalytics.com/2010/11/loops-in-r.html.

http://blog.revolutionanalytics.com/2010/11/loops-in-r.html
http://blog.revolutionanalytics.com/2010/11/loops-in-r.html

Chapter 5

121

The main reason why these kind of statements should be avoided is that R tends to handle
your loops really slowly and, therefore, inefficiently.

Nevertheless, sometimes, these loops are really the only way to apply a given function
or operation to your set of data. When dealing with these cases, and every time you are
interested in improving your code efficiency, implementing parallel computation can give
an important boost to your code.

The basic idea behind parallel computation is quite easy and described in the following points:

ff Take the full job; you need to, for instance, calculate the square root of one thousand
numbers in a vector

ff Split it into smaller chunks of vector, n

ff Send each chunk to one of the n workers that you previously created in your
CPU cores

ff Wait for the workers to do their job and send back results

ff Combine the results in one object (going on with the example, we will have one
thousand vectors storing the calculated squared roots)

Getting ready
On a Unix system, parallel computation can be implemented by leveraging the doParallel
package, while on a Windows OS, you will rather use the doSNOW package:

install.packages("doParallel")
install.packages("doSNOW")
library(doParallel)
library(doSNOW)

How to do it...
1.	 The first step is to create workers (the maximum number is equal to the available

core on your device or group of devices):
cl = makeCluster(2)

2.	 Then, register the parallel session:
registerDoParallel(cl) #unix OS
registerDoSNOW(cl) #windows OS

3.	 After this, initialize the object that is to be worked on:
vector <- seq(1:100000)

Power Programming with R

122

4.	 Apply your computation to the object with parallel computation:
result <- foreach(i = 1:length(vector), .combine= rbind)
%dopar% {
 return(vector[i]/sqrt(vector[i])^3)
}

5.	 Then, terminate the parallel session:
stopCluster(cl)

How it works...
In step one, we actually initialize two workers that are going to receive our job chunks and
work on them.

You may think that's nice, but how many workers can I initialize? Infinite!

Unfortunately, this doesn't really make sense, since initializing a number of workers greater
than your PC/PCs' cluster will not result in any improvement in efficiency.

The reason for this physical limit is that the core is the minimum unity that can perform an
operation in your PC.

Therefore, the maximum number of workers will be equal to the number of available cores.
To detect this number, you can leverage the detectCores() function from the parallel
package:

install.packages(parallel)
parallel:detectCores()

If step one is a simple declaration of an object with no effect on your machine, running
registerDoParallel will have the physical effect of initializing a parallel session. After
performing step two, your workers will be waiting for their job.

In step four, we apply your computation on the object with parallel computation. The
statement foreach()%dopar%{} is the actual piece of code that will take your complete
job and separate it into smaller chunks, sending them to the workers you created.

The resulting objects received from the workers will be combined in a cumulative entity,
following the value of the .combine argument:

ff c: This will result in chunks being combined into a vector, which could also be applied
in our example

ff rbind and cbind: These will produce a matrix output

ff +: This will add a numeric output into one resulting number

ff *: This will multiply numeric outputs into one resulting number

Chapter 5

123

There's more...
Given the increasing amount of data that is available and the consequent increasing average
size of datasets we work with, parallel computation is quite a hot topic.

R provides a specific task view where you can learn about all the available tools and best
practices for implementing this technique in R. You can find this task view at https://
cran.r-project.org/web/views/HighPerformanceComputing.html.

Creating custom objects and methods
in R using the S3 system

When dealing with a programming task pertaining to a specific business domain, developing
custom objects with their related methods can enhance your work quality and usability.

Consider, for instance, a programmer dealing with a logistics project. Imagine him facing
a choice of different types of means of transport packed with different attributes, cost
functions, and time availability.

Defining different classes for these means of transport and adding proper attributes and
methods to these classes will let you build a specific domain language that is able to represent,
in a convenient way, the real problem you are trying to solve with your code. This concept is
further explained in The Pragmatic Programmer by Andrew Hunt and David Thomas.

R comes packed with three different systems for object-oriented programming, which are
as follows:

ff The S3 system

ff The S4 system

ff Reference classes

In the following example, we are going to use the S3 system, define a custom truck class,
add attributes, and a proper method to change the date of last maintenance.

How to do it...
1.	 The first step is to create the truck class with custom attributes:

trucks <- function(plate = "XXNNNZZ", night_trips = TRUE,
kilometers = 0, last_maintenance = "00/00/1900") {

 me <- structure(list(
 night_trips = night_trips,
 kilometers = kilometers,

https://cran.r-project.org/web/views/HighPerformanceComputing.html
https://cran.r-project.org/web/views/HighPerformanceComputing.html

Power Programming with R

124

 last_maintenance = last_maintenance
), class= "trucks")
 return(me)
}

2.	 Next, we create a volvo truck specifying the plate, kilometers, and date of
last maintenance:
volvo <- trucks(plate = "BE705WT",kilometers =
2000,last_maintenance = "17/01/2013")Add a method to set
maintenance date after first initialization
set_last_maintenance <- function(entity,value_to_set) {
 UseMethod("set_last_maintenance",entity)
}
set_last_maintenance.default <-
function(entity,value_to_set) {
 return(NULL)
}
set_last_maintenance.trucks <-
function(entity,value_to_set) {
 entity$last_maintenance <- value_to_set
 message("maintenance date was set correctly")
 return(entity)
}

3.	 Then, we change the maintenance date:
volvo <- set_last_maintenance(volvo,"10/01/2016")Check
results
volvo$last_maintenance

How it works...
In step 1, we create the truck class with custom attributes. In the first step, new classes are
declared with a function-like syntax, where the default values for class attributes are passed
as arguments. In the body of the function, an inner reference is made using the pronoun me
in order to refer to the function itself.

Using this terminology, the class attributes and names are declared. Finally, with the
return(me) statement, the new truck class is returned as a value for the function.

Chapter 5

125

At the end of this procedure, a new trucks function will be stored in your environment,
as made clear by the RStudio environment explorer:

In step 2, we create a Volvo truck, specifying the plate, kilometers, and date of last
maintenance. This step simply involves calling the trucks() function and assigning a
function value to the volvo object.

Once again, the RStudio environment explorer clearly shows the class attribute for the newly
arrived volvo entity:

In step 3 we add a method to set a maintenance date after first initialization. The third step
basically involves three activities, which are as follows:

ff Defining a generic set_last_maintenance function.

ff Defining a value to be returned in case the function is called on an object which is
not of class truck.

ff Defining a function's resulting value when dealing with an object of the trucks class.
In this last step, we tell the function what to do with the trucks object being passed
to it.

Particularly, with the entity$last_maintenance <- value_to_set statement, we tell
the function to change the last_maintenance attribute to a value that was passed to
the function.

The final statement return(entity) is very important. The lack of this causes the changes
made in this function to have no effect on the outside environment.

Power Programming with R

126

Evaluating your code performance using the
profvis package

The profvis package is a powerful tool for line profiling in R.

This package is provided by the RStudio team, and its most appreciated feature is the
interactive report that is automatically produced, representing a really effective way of
visualizing and investigating time resources requested by each part of your code.

Getting ready
Since the lineprof package is not hosted on CRAN, but on GitHub, we first need it to install
the devtools package in order to leverage the install_github function provided by
this package.

Moreover, we will use the ggmap package to build the example to be profiled:

install.packages(c("devtools","ggmap"))
library(devtools)
install_github("rstudio/profvis")
library(profvis)
library(ggmap)

How to do it...
1.	 Define a profvis object containing the code to be profiled. Run the following piece

of code, initializing the report object.

2.	 The following code is used from the drawing a route on a map with ggmap recipe in
Chapter 3, Basic Visualization Techniques; refer to the recipe for further details:
report <- profvis ({
 library(ggmap)
 trip <- (route(from = "rome", to = "milan",structure =
 "route", output = "simple"))
 segment <- c()
 for(i in 1:nrow(trip)) {
 if(i == 1){segment[i] <- 1}else {
 if(i %% 2 != 0) {
 segment [i] <- i-segment[i-1]}else {
 segment [i] <- i/2
 }
 }
 }
 }

Chapter 5

127

 segment_couple <- c(0,segment[-length(segment)])

 trip$segment <- segment
 trip$segment_couple <- segment_couple
 route_map <- get_map("italy",zoom = 6)
 ggmap(route_map) +
 geom_point(aes(x = lon, y = lat, size = 5, colour =
 hours),data = trip) +
 geom_line(data = trip,aes(group = segment)) +
 geom_line(data = trip, aes(group = segment_couple))

})Print the object runing print(report)

This will open a web browser window, showing an interactive profiling report similar
to the following:

Power Programming with R

128

In the preceding screenshot, on the left-hand side, you can find your code produced
line by line, where each line has, on the right-hand side, a count of the required
milliseconds for running and a count of the proportion of the time on the total running
time. On the right-hand side part of the report, a barchart-like interactive plot is
produced, where the bottom line represents the first function that was called and the
upper bars represent the functions called by those first functions. You can hide lines
of code having zero running time. On the top-right corner of the left-hand side part of
your report, you can find a Settings control. Selecting it will open the following menu:

Selecting the checkbox next to Hide lines of code with zero time will result in hiding
of all the lines of code that have a running time less than a millisecond:

3.	 Focus on a single line of code. Selecting a single piece of plot on the right-hand side
of the window will let you zoom in on that piece and all the bars that come from that
first bar. Save the report as a web page (use the cmd + S or Ctrl + S shortcut).

Running cmd + S on Mac devices, or Ctrl + S on Windows devices, will let you save
your report as a fully functional web page:

Chapter 5

129

Comparing an alternative function's
performance using the microbenchmarking
package

When dealing with efficiency issues, a fast way to evaluate two alternative functions can be
really useful.

This recipe is going to show you how to do this quickly and effectively and display the results
of your comparison in a ggplot diagram that is easy to understand.

Getting ready
This recipe is going to leverage the microbenchmark package to compute the function
comparison and the ggplot2 package for comparison plotting:

install.packages(c("microbenchmark","ggplot2"))
library(microbenchmark)
library(ggplot2)

The example that follows is represented by two alternative functions to determine, for a given
numeric vector, which elements of the vector are even and which are odd.

Therefore, we first need to initialize the vector we are going to use, populating it with a
sequence of numbers from 1 to 1000:

vector <- seq(1:1000)

How to do it...
1.	 First, we need to define the functions that are to be compared. In order to test

code efficiency, you need to expose your pieces of code into a functional shape.
The following is an example involving the ifelse() vectorized function and the
standard if()else{} statement:
vectorised_if <- function(vector) {
 result <- c()
 for(i in 1:length(vector)) {
 ifelse(vector[i]%%2==0,result[i] <- "even",result[i] <-
 "odd")
 }
 return(result)
}
standard_if <- function(vector) {
 result <- c()

Power Programming with R

130

 for(i in 1:length(vector)) {
 if(vector[i]%%2 ==0){ result[i] <- "even"}
 else{result[i] <- "odd"}
 }
 return(result)
}

2.	 Create a microbenckmark object by passing the two functions that we defined
previously to the microbenchmark() function:
comparison <- microbenchmark(standard_if(vector),
vectorised_if(vector), times = 100)

What the microbenchmark() function does is run the two (or more) functions
a number n of times (specified from the times argument), recording running
time. This lets you understand which function requires less time to run. Plot the
microbenchmark object.

The microbenchmark objects can be easily plotted using a built-in autoplot()
function, as follows:
autoplot(comparison)

Calling this function on a comparison object will result in the viewer pane showing
up the following plot:

For each one of the two functions, a frequency distribution of the times it's run is shown,
assuming this typical mandolin shape. In our example, quite surprisingly, the standard_
if() function shows consistently better performance. For more information, refer to
the comparison details. A summary function is provided to gain greater insights on the
performed simulations and results:

summary(comparison)
 expr min lq mean median
uq max neval

Chapter 5

131

1 standard_if(vector) 3.354620 3.732035 4.540858 4.157452
4.524025 16.54318 100
2 vectorised_if(vector) 4.987396 5.497869 7.387133 6.009339
6.891614 19.61941 100

This summary shows the min, max, mean, median, and lower and upper quartile, for each
evaluated function.

Using GitHub with RStudio
Have you ever found yourself looking desperately at your RStudio console showing a runtime
error? Doesn't it make you think of those wonderful moments a few days ago, where you were
happily executing your code?

Have you ever thought "If I just had a time machine, I would go back to those days!"?

Well, what we will show you here is exactly that—a way to add your RStudio project to a
time machine.

The name of this time machine is Git, which is a popular version-control system created by
Linus Torvald; yes, he is the same guy who created Linux.

The basic rationale behind this kind of software is quite simple: the changes within a script
(and actually every kind of file) are stored in commits and all commits are stored in one
repository.

In every moment of code development is possible to restore previous commits and get back
in time.

Git actually offers a lot more, for example, letting you create branches in your code, to develop
and test new features or just fix bugs, and then merge them back into main repository,
integrating only the differences.

The place where these commits are stored in an ordered way is called a repository. There
are several web services for online repository hosting, but the most popular one is GitHub.
This platform has been around since 2008, and can now boast about hosting websites by
Google, Microsoft, and other prestigious software companies.

Getting ready
First of all, you need to install Git on your device. You can find the appropriate version of your
software at http://git-scm.com/downloads.

After downloading and installing Git, you are now ready to link it with RStudio and start using
it on an RStudio project.

http://git-scm.com/downloads

Power Programming with R

132

How to do it...
1.	 The first step is to link Git with RStudio. To apply this step, you first need to locate

your git.exe file (on PC) or git.app on Mac. You can do this from RStudio's
Global Options...:

Once the Global Options... window is open, you will need to place the path on your Git
application in the Git executable field, as shown in the following screenshot:

Chapter 5

133

2.	 The next step is to launch Shell. You can easily find the Shell... control under the
Tools menu:

3.	 Now we need to authenticate to Git. In the just-launched shell, write your GitHub
username and e-mail ID:
git config --global user.name "AndreaCirilloAC"
git config --global user.email "andreacirilloac@gmail.com"

4.	 Create a new repository on GitHub from www.github.com:

www.github.com

Power Programming with R

134

5.	 Copy the repository's SSH address. You can find the SSH address directly in the
window that you will access after creating the repository:

6.	 Create a new RStudio project. After selecting the new project control, select the
version control option:

Then, select the Git option:

Chapter 5

135

7.	 Paste the copied SSH address, as shown in the following figure:

8.	 Submit your first commit. Just to be sure that everything is OK, you can commit
whatever you like in your GitHub repository.

This can be done in the Git tab on the upper-right side of the toolbar of your RStudio
window, as shown in the following screenshot:

After making changes to your R script (or any other file within your repository), you will
be able to commit it using the Commit control visible in the preceding screenshot.

Power Programming with R

136

To commit something, you first need to check the corresponding file in the list
associated with the Git pane:

Clicking on the Commit control on the upper-left side of the Git tab will then result in
the following new window:

Chapter 5

137

In this window, you will be able to see all the changes made to your code from the
previous commit (green highlights are used for code addition, while red highlights
are reserved for deletion). Every commit will need to be associated with a commit
message.

Clicking on the Commit button will result in a pop-up window and confirm the
successful end of the committing step:

9.	 Go back to the GitHub repository. After performing a reasonable number of commits
(this is just common sense, since no minimum level is required), you can now send
your commits to the online GitHub repository, by clicking the Push button:

Power Programming with R

138

A new window will pop up, and a message will confirm the successful end of your
push to the GitHub server:

10.	 Next, visualize your commits history. As promised at the beginning of this chapter,
we are going to see the full history of your code here by just clicking on the clock
placed in the Git tab of RStudio:

This will pop up a new window, showing all the performed commits. As usual, you will
find that highlighted in red lines deleted with that given commit, and green-colored
added lines of code:

Chapter 5

139

This is great, isn't it? If you are already falling in love with the Git version control
system, you just have to look at the next section to know where to look for further
information on your new-found love.

There's more...
As you are already guessing, Git is a really powerful tool for programming tasks, particularly
when working in a team.

Describing the advantages and the complete list of functionalities of Git is out of the scope of
this recipe; nevertheless, I would like to point out a really good introductory interactive tutorial
on Git provided by Code School, which can be found at https://try.github.io.

If you are looking for something more articulate and complete, you can always turn to the
official project website, http://git-scm.com/.

https://try.github.io
http://git-scm.com/

141

6
Domain-specific

Applications

In this chapter, we will cover the following topics:

ff Dealing with regular expressions

ff Analyzing PDF reports in a folder with the tm package

ff Creating wordclouds with the wordcloud package

ff Performing a Twitter sentiment analysis

ff Detecting fraud in e-commerce orders with Benford's law

ff Measuring customer retention using cohort analysis in R

ff Making a recommendation engine

ff Performing time series decomposition using the stl() function

ff Exploring time series forecasting with forecast()

ff Tracking stock movements using the quantmode package

ff Optimizing portfolio composition and maximizing returns with the Portfolio
Analytics package

ff Forecasting the stock market

Domain-specific Applications

142

Introduction
I have to be honest: one of the things I love the most about R is the huge amount of domain-
specific packages.

I am sure you know that feeling. You start working on a new topic, let's say financial portfolio
optimization. You start studying a bit of theory and then ask yourself, "Will there be an R
package for this?"

In 90 percent cases, the answer will be "Yes." Actually, if R can be considered a powerful
programming language, it is in domain-specific applications that we can appreciate its
true power.

As of June 24, 2015, 6,712 packages for Windows OS were computed. We could even
paraphrase that well-known Apple remark into:

"There's a package for that."

Chapter 7, Developing Static Reports, which follows, highlights this R richness, showing 13
domain applications where specific packages play a central role.

Dealing with regular expressions
Regular expressions let you easily perform string manipulation with the help of just a handful
of characters. In this recipe, we will look for digits, punctuation, and uppercase and lowercase
in a vector of strings.

How to do it...
1.	 Define a test vector that you can search with regular expressions:

test_string <- c("012","345",";.","kdj","KSR" ,"\n")

2.	 Look for digits:
grep("[[:digit:]]",test_string, value = TRUE)

which will result in :

[1] "012" "345"

3.	 Look for punctuation:
grep("[[:punct:]]",test_string, value = TRUE)

which will have as a result

[1] ";."

Chapter 6

143

4.	 Look for lowercase letters:
grep("[[:lower:]]",test_string, value = TRUE)

Which will select the following:

[1] "kdj"

5.	 Look for uppercase letters:
 grep("[[:upper:]]",test_string, value = TRUE)

Which will select only upper cases:
 [1] "KSR"

Analyzing PDF reports in a folder with the
tm package

Text analytics is basically a way to perform quantitative analysis on qualitative information
stored in text. In this recipe, we will create a corpus of documents from PDF files and perform
descriptive analytics on them, looking for the most frequent terms.

This is a particularly useful recipe for professionals who work with PDF reports.

In this recipe, we will explore the full text of the Italian medieval masterpiece Divine Comedy
by Dante Alighieri. You can find out more on Wikipedia at https://en.wikipedia.org/
wiki/Divine_Comedy:

Source: http://www.theimaginativeconservative.org/category/great-books/dante

https://en.wikipedia.org/wiki/Divine_Comedy
https://en.wikipedia.org/wiki/Divine_Comedy
http://www.theimaginativeconservative.org/category/great-books/dante

Domain-specific Applications

144

Dante Alighieri is shown holding a copy of the Divine Comedy, next to the entrance to Hell,
the seven terraces of Mount Purgatory and the city of Florence, with the spheres of Heaven
above, in Michelino's fresco.

Getting ready
In this recipe, we will use the pdftotext utility in order to read text from the PDF format.

You can download pdftotext from http://www.foolabs.com/xpdf/download.html.
Depending on the operating system you are working on, you will have to perform different steps
in order to properly install the package. Proper instructions can be found in the INSTALL file
that comes with each package.

Once you are done with pdftotext, it is time to install the required packages:

install.packages(c("tm","ggplot2","wordcloud"))

library(tm)

library(ggplot2)

library(wordcloud)

How to do it...
1.	 Define the directory where PDF reports are stored:

directory <- c("pdf_files")

2.	 Create a corpus object from your reports:
corpus <- Corpus(DirSource(directory),

 readerControl = list(reader = readPDF(), language =
 "it", encoding = "UTF-8"))

3.	 Remove punctuation:
corpus <- tm_map(corpus,removePunctuation)

4.	 Remove numbers:
corpus <- tm_map(corpus,removeNumbers)

5.	 Change capital letters to lowercase:
corpus <- tm_map(corpus,tolower)

6.	 Remove stop words:
corpus <- tm_map(corpus,removeWords,stopwords(kind = "it"))

http://www.foolabs.com/xpdf/download.html

Chapter 6

145

7.	 Put every document into plain text format:
corpus <- tm_map(corpus,PlainTextDocument)

8.	 Define a document term matrix:
term_matrix <- DocumentTermMatrix(corpus)

9.	 Remove infrequent terms (sparse terms):
term_matrix <- removeSparseTerms(term_matrix,0.2)

10.	 Find out the most frequents words:
frequent_words <- (colSums(as.matrix(term_matrix)))

frequent_words <- as.data.frame(frequent_words)

frequent_words <- data.frame(
(row.names(frequent_words)),frequent_words)

colnames(frequent_words) <- c("term","frequency")

frequent_words$terms <- levels(frequent_words$terms)

row.names(frequent_words) <- c()

11.	 Remove insignificant terms:
to_be_removed <-
c("mai","<e8>","<ab>","s<ec>","pi<f9>","<f2>",

 "<ab>cos<ec>","<e0>","<e0>","s<e9>","perch<e9>",

 "gi<f9>","f<e9>","ch<e8>","cos<ec>","gi<e0>","tanto","
 ch<e9>", "n<e9>")

indexes <- match(to_be_removed,frequent_words$term)

frequent_words <- frequent_words[-indexes,]

12.	 Filter for only frequent terms:
frequent_words <- frequent_words[frequent_words$frequency >
100,]

13.	 Plot your frequent works:
plot <- ggplot(frequent_words, aes(term, frequency)) +
geom_bar(stat = "identity") +

theme(axis.text.x = element_text(angle = 45, hjust=1))

plot

Domain-specific Applications

146

Let's take a look at the following graph:

How it works...
In step 1, we define the directory where pdf reports are stored. Our first step set the path to
the directory to store all PDF reports to be read.

Be aware that since we are performing this analysis within the RStudio project related to this
book, the working directory is automatically set to the directory where the project is executed
from. We just need to specify the name of the relative path of the folder, that is, the part of
path from the working directory to the required folder.

In step 2, we create a corpus object from your reports. Corpora are the basic objects for
text analytics analysis. A corpus can be considered a collection of documents you are going
to analyze. We initialized a corpus object, adding to it all documents within the directory
specified in the previous step.

Arguments of the Corpus() function are:

ff Directory path

ff Reader to be used for document loading; this is where the previously installed
pdftotext comes to hand

Chapter 6

147

ff Document language

ff Character encoding (UTF-8 in our case)

In step 3 to 6, we prepare corpus for analysis. Preparing our corpus for analysis involves the
following activities:

ff Removing punctuation, which gives no added value to our analysis but can modify
counts and stats on the corpus content

ff Removing numbers, for a similar reason to punctuation

ff Transforming all capital letters to lowercase so that the same words with and without
capital letters are not counted twice

ff Removing stop words, such as "not," "or," or "and;" stop words can also be customized
by passing a custom defined vector of stop words to the tm_map() function

After performing those activities, our corpus will be ready for our analysis.

In step 8, we define a document term matrixDocument; term matrixes are matrixes
representing the frequency of terms that occur in a corpus. Within a document term matrix,
rows correspond to documents in the collection, and columns represent terms.

We define a document term matrix by running the DocumentTermMatrix() function on our
corpus object.

In step 9, we remove infrequent terms. In this step, we define a minimum frequency threshold
under which we consider words to not interest us. Be aware that sparsity is defined as a
percentage, in which:

ff 0 is the bigger sparsity represented by words that do not appear within the corpus

ff 1 is the smaller sparsity, that is, words with the maximum observed frequency

In step 10, we find out the most frequent words. This step computes the total frequency for
each word on the all corpus using the colSums() function. It then creates a data frame
composed of terms and frequency.

In step 11, we remove meaningless terms. This step is specifically related to PDF documents
since it results in removing the reading error in order to prevent errors within the final stat. For
instance, we remove <e8>, which is a wrong reading of the character è, which stand for "is"
in Italian.

In step 12, we remove infrequent words, leveraging the previously computed term frequencies
and setting a threshold at 100 repetitions.

In step 13, we now plot our data, leveraging a basic ggplot package. Refer to the Adding
text to a ggplot2 plot at a custom location recipe in Chapter 3, Basic Visualization Techniques,
which provides a good introduction to these plots.

Domain-specific Applications

148

Creating word clouds with the wordcloud
package

Word clouds are a nice and useful way to show text composition at a glance.

In a word cloud, words composing a text are composed in a kind of cloud, and usually their
size and color is related to the frequency of the given term in the source text.

In this way, it is possible to understand quickly which words are more relevant to the given
text. In this recipe, we will explore the Wikipedia page related to the R programming language.

Getting ready
We first need to install the required packages and load them into the R environment:

install.packages(c("wordcloud","RColorBrewer","rvest"))

library(wordcloud)

library(rvest)

library(RColorBrewer)

How to do it...
1.	 Define your document URL and download it in the R environment:

url <-
"https://en.wikipedia.org/wiki/R_(programming_language)"

page <- read_html(url)

page <- html_text(page,trim = TRUE)

page <- gsub("\n","",page, fixed = FALSE)

page <- gsub("\t","",page, fixed = FALSE)

2.	 Print out your word cloud:
wordcloud(page)

3.	 Filter for most frequent terms:
wordcloud(page,min.freq = 4)

4.	 Change the color combination of words:
palette <- brewer.pal(n = 9, "Paired")

wordcloud(page,colors = palette)

Chapter 6

149

Let's take a look at the following image:

How it works...
Our first step involves storing the Wikipedia page URL in an on-purpose variable and
downloading the HTML code stored on that page.

HTML reading is done through the read_html() function from the rvest package.

After performing this step, we downloaded all the HTML code, including the HTML tags such
as <h1> and <a href>.

In order to remove these tags and focus on the proper text, we just have to run html_text()
on the created page object.

We then remove \t and \n, since they are just escaping characters.

In step 2, we print out our word cloud. Creating our word cloud is as easy as running the
wordcloud() function on the page object.

Domain-specific Applications

150

Be aware that some default argument values apply here:

ff The size of each word in the cloud is proportional to the frequency of the word within
the text object. If not specified, the frequency argument would be automatically
computed within the function.

ff The min.freq argument is set to 3 by default, meaning that words that appear less
than three times will not show up within your word cloud.

In step 3, we filter for the most frequent terms. As said earlier, the frequency filter is set
through the min.freq parameter. Changing the parameter will consequently lead to changes
in the number of words displayed.

In step 4, we change the words' color combinations. By leveraging Rcolorbrewer, we can
easily define palettes of colors to use to color our word cloud.

To look at the available palettes, just run the following command on your R console:

display.brewer.all()

This function will produce the following plot:

Labels placed on the left-hand side of the plot can be substituted to be "paired" within
palette <- brewer.pal(n = 9, "Paired").

That said, you should be aware that changing the n argument will change the number of
colors retrieved from the given brewer palette for your custom palette.

Chapter 6

151

Performing a Twitter sentiment analysis
Twitter sentiment analysis is another powerful tool in the text analytics toolbox.

With sentiment analysis, we can analyze the mood expressed within a text.

In this recipe, we will download tweets relating to "data science with R" and perform a
sentiment analysis on them, employing the bag of word technique.

The main feature of this technique is not trying to understand the meaning of the analyzed
text but just looking at one word at the time, seeing whether it expresses a positive or
negative sentiment.

Our example will therefore result in computing the overall sentiment around the topic,
algebraically summing up the sentiment score of every single word in our bag.

Getting ready
This recipe will leverage powerful functions from three different packages: one for
downloading tweets, one for string manipulation, and the last one for text analytics activities.

We therefore need to install and load those packages:

install.packages(c("twitteR","stringr","tm"))

library(twitteR)

library(stringr)

library(tm)

How to do it...
1.	 Set up a Twitter session.

Refer to Chapter 1, Acquiring Data for Your Project, and the Getting data from
Twitter with the twitteR package recipe for further details on how to set up a
Twitter application:

setup_twitter_oauth(consumer_key = 'xxxx',

 consumer_secret = 'xxxx',

 access_token = 'xxxx',

 access_secret = 'xxxx')

2.	 Download tweets pertaining to a specific query:
tweet_list <- searchTwitter('"data science with R"', n =
20)

Domain-specific Applications

152

3.	 Create a data frame with the downloaded tweets:
tweet_df <- twListToDF(tweet_list)

4.	 Define positive and negative words:
pos_words = read.csv("lexicon/positive.txt",header =
FALSE,stringsAsFactors=FALSE)

pos_words <- c(pos_words)

pos_words <- unlist(pos_words)

pos_words <- unname(pos_words)

pos_words <- tolower(pos_words)

neg_words = read.csv("lexicon/negative.txt",header =
FALSE,stringsAsFactors=FALSE)

neg_words <- c(neg_words)

neg_words <- unlist(neg_words)

neg_words <- unname(neg_words)

neg_words <- tolower(neg_words)

5.	 Extract tweet text from the tweets database:
tweets <- tweet_df[,1]

6.	 Clean up tweets with the gsub() function and a regular expression:
tweets <- gsub('[[:punct:]]', '', tweets)

tweets <- gsub('[[:cntrl:]]', '', tweets)

tweets <- gsub('\\d+', '', tweets)

tweets <- gsub("RT", '',tweets)

tweets <- gsub(" », ‹›,tweets)

7.	 Remove stopwords:
tweets <- removeWords(tweets,stopwords(kind = "en"))

8.	 Split tweets into words using str_split() function from stringr package:

n = 140, maximum number of letters:
word_df <- str_split_fixed(tweets, '\\s+',n = 140)

word_df <- data.frame(word_df,"RT" = tweet_df[,12])

word_count <- melt(word_df,id <- c("RT"))

word_df <- data.frame("word" = word_count[,3],

 "RT" = word_count[,1])

Chapter 6

153

9.	 Match each word with its lexicon:
word_df$is_positive <- match(unlist(word_count[,3]),
pos_words)

word_df$is_negative <-
match(unlist(word_count[,3]),neg_words)

10.	 Remove blank rows:
word_df <- subset(word_df,word_df[,1] != "")

11.	 Define the scoring function:
sentiment_scorer <- function(pos_match,neg_match) {

 if (is.na(pos_match) && is.na(neg_match)) {0}

 else {

 if(is.na(pos_match) && is.na(neg_match) == FALSE){-
 1} else

 {1}

 }

}

12.	 Apply the sentiment_scorer() function:
word_df <- data.frame(word_df,score =
mapply(sentiment_scorer,word_df$is_positive,
word_df$is_negative))

13.	 Compute a final score by multiplying the score by the number of retweets:
popularity_scorer <- function(rt,basic_score) {

 if(rt == 0){basic_score}

 else{rt * basic_score}

}

word_df$final_score <-
mapply(popularity_scorer,word_df$RT,word_df$score)

14.	 Show the results:
total_df <-
aggregate(word_df$final_score,list(word_df$word),sum)

cloud <- wordcloud(total_df$Group,abs(total_df$x),
scale=c(10,.20),colors=brewer.pal(10,"Spectral"))

Find out the total sentiment score:
total_sentiment <- sum(word_df$final_score)

Domain-specific Applications

154

How it works...
In step 3, we define positive and negative words. This step involves reading the
positive.txt and negative.txt files in the R environment and manipulating them in
order to produce a familiar vector, such as the following one:

> head(pos_words)

[1] "a+" "abound" "abounds" "abundance" "abundant"
"accessable"

Since we read our words from a txt file and the contents first come into R as a list, we first
have to unlist the pos_words list and remove the row names.

A final touch is added, changing all capital letters to lowercase in order to ensure
comparability with tweet text.

In step 5, we clean up tweets with gsub() and regular expressions. In this step, we remove
punctuation and other specific words from our tweets, iterating the gsub() application
on them.

This function only requires that you have a pattern to look for and an object that you can look
for the pattern.

In step 6, we remove stopwords. Stopwords are words such as "and", "or," "even," and
other common words in a language. Since they add no great value to the text in terms
of comprehension, they are usually removed.

If you want to have a look at those words, you just need to run the following command:

> head(stopwords(kind = "en"))

[1] "i" "me" "my" "myself" "we" "our"

In step 7, we split tweets into words. Using the str_split_fixed() function, we split our
tweets into separate words in order to apply text analytics techniques on them, like the ones
seen in the previous recipes.

This function requires that you specify two main arguments:

ff The string to split

ff The pattern to look for in order to define the splitting points

After applying this function to all our tweets, we now have a data frame with the following
structure:

ff First word; second word; third word

ff First word; second word; NA; NA

ff First word; NA; NA; NA

Chapter 6

155

Here, each row corresponds to a tweet.

Since we will use the number of retweets in order to compute our final sentiment score, we
will now add this information to the data frame with the following line of code:
word_df <- data.frame(word_df,"RT" = tweet_df[,12])

Once we do this, the data frame will look like this:

ff First word; second word; third word; 20

ff First word; second word; NA; NA; 14

ff First word; NA; NA; NA; 2

This is not what we need yet, since our minimum object of analysis is the single word.

What we are looking for is actually a tidy dataset, like the ones introduced in Chapter 2,
Preparing for Analysis – Data Cleansing and Manipulation, where each row stores an
observation.

In order to obtain this kind of dataset, we will apply the melt() function, which will create a
unique column from all words, replicating the number of retweets received from the tweet for
each word.

In step 8, we match word with lexicon. In this step, we associate two new attributes to the
word_df data frame:

ff The is_positive data frame, which is true for words that are found within the
pos_words vector of positive words.

ff The is_negative data frame, which is true for words that are found within the
neg_words vector.

We then removed words that are neither positive nor negative, and are therefore not relevant
for sentiment analysis purposes.

In step 9, we define a scoring function. Our scoring function assigns 1 to every positive word
and -1 to every negative word. Quite linear, isn't it?

In step 10, we apply the function. We now apply the defined function to our real data,
obtaining a new score attribute, which applies 1 for positive words and -1 for negative
words.

In step 11, we compute a final score by multiplying the score by the number of retweets. Since
we want to take into consideration the number of retweets of a single tweet, we define a new
function. In the case of the absence of retweets, this function leaves the score untouched,
while where retweets are found, it will multiply the score by the number of retweets.

Applying this function over the vector of words and scores will result in a new column, named
final_score, containing weighted scores.

Domain-specific Applications

156

You may be asking, "So, the sentiment of a tweet increases if it gets retweeted?"

Well, we are actually measuring the sentiment around a topic, not a single tweet sentiment
(and the topic is the one defined in step 2).

We therefore count 1 for each positive tweet and -1 for each negative tweet.

If a tweet got retweeted, we consider it as another positive/negative tweet on that topic,
therefore adding +1/-1.

This is actually a distinctive point of this analysis, since usually data mining activities around
downloaded tweets make it impossible to take retweets into account.

In step 12, we show the results. This step performs two tasks:

ff It creates a final data frame, final_df, where the sum of scores are obtained for
each word (aggregating repeated words).

ff It plots a word cloud where the size of each word is related to the absolute value of
the final score of that word.

In step 13, we look at the total sentiment score. Since the score of positive words are positive
numbers and score of negative words are negative numbers, we can sum up all scores and
understand whether the general mood around the given search key is positive or negative.

Detecting fraud in e-commerce orders
with Benford's law

Benford's law is a popular empirical law that states that the first digits of a population of data
will follow a specific logarithmic distribution.

This law was observed by Frank Benford around 1938 and since then has gained increasing
popularity as a way to detect anomalous alterations in a population of data.

Basically, testing a population against Benford's law means verifying that the given population
respects this law. If deviations are discovered, the law performs further analysis for items
related to those deviations.

In this recipe, we will test a population of e-commerce orders against the law, focusing on
items deviating from the expected distribution.

Getting ready
This recipe will use functions from the well-documented benford.analysis package by
Carlos Cinelli.

Chapter 6

157

We therefore need to install and load this package:

install.packages("benford.analysis")

library(benford.analysis)

In our example, we will use a data frame that stores e-commerce orders, provided within the
book as an .Rdata file.

In order to make it available within your environment, we need to load this file by running the
following command (assuming the file is in your current working directory):

load("ecommerce_orders_list.Rdata")

How to do it...
1.	 Perform the Benford test on the order amounts:

benford_test <-
benford(ecommerce_orders_list$order_amount,1)

2.	 Plot the test analysis:
plot(benford_test)

This will result in the following plot:

Domain-specific Applications

158

3.	 Highlight digits deviating from expected distribution:
suspectsTable(benford_test)

This will produce a table showing, for each digit, the absolute differences between
expected and observed frequencies. The first digits will therefore be the anomalous
ones:
> suspectsTable(benford_test)

 digits absolute.diff

1: 5 4860.8974

2: 9 3764.0664

3: 1 2876.4653

4: 2 2870.4985

5: 3 2856.0362

6: 4 2706.3959

7: 7 1567.3235

8: 6 1300.7127

9: 8 200.4623

4.	 Define a function to extrapolate the first digit from each amount:
left = function (string,char) {

 substr(string,1,char)}

5.	 Extrapolate the first digit from each amount:
ecommerce_orders_list$first_digit <-
left(ecommerce_orders_list$order_amount,1)

6.	 Filter amounts starting with the suspected digit:
suspects_orders <- subset(ecommerce_orders_list,first_digit
== 5)

How it works...
In step 1, we perform the Benford test on the order amounts. In this step, we apply the
benford() function to the amounts.

Applying this function means evaluating the distribution of the first digits of amounts
against the expected Benford distribution.

Chapter 6

159

The function will result in the production of the following objects:

Info General information, including:
ff data.name: The name of the data used
ff n: The number of observations used
ff n.second.order: The number of observations used for second-order

analysis
ff number.of.digits: The number of first digits analyzed

Data A data frame with:
ff lines.used: The original lines of the dataset
ff data.used: The data used
ff data.mantissa: The log data's Mantissa
ff data.digits: The first digits of the data

s.o.data A data frame with:
ff data.second.order: The differences of the ordered data
ff data.second.order.digits: The first digits of the second-order

analysis
Bfd A data frame with:

ff digits: The groups of digits analyzed
ff data.dist: The distribution of the first digits of the data
ff data.second.order.dist: The distribution of the first digits of the

second-order analysis
ff benford.dist: The theoretical Benford distribution
ff data.second.order.dist.freq: The frequency distribution of the

first digits of the second-order analysis
ff data.dist.freq: The frequency distribution of the first digits of the

data
ff benford.dist.freq: the theoretical Benford frequency distribution
ff benford.so.dist.freq: The theoretical Benford frequency

distribution of the second order analysis
ff data.summation: The summation of the data values grouped by first

digits
ff abs.excess.summation: The absolute excess summation of the data

values grouped by first digits
ff difference: The difference between the data and Benford frequencies
ff squared.diff: The chi-squared difference between the data and

Benford frequencies
ff absolute.diff: The absolute difference between the data and

Benford frequencies

Domain-specific Applications

160

Mantissa A data frame with:
ff mean.mantissa: The mean of the Mantissa
ff var.mantissa: The variance of the Mantissa
ff ek.mantissa: The excess kurtosis of the Mantissa
ff sk.mantissa: The skewness of the Mantissa

MAD The mean absolute deviation
distortion.
factor

The distortion factor

Stats List of htest class statistics:
ff chisq: Pearson's chi-squared test
ff mantissa.arc.test: Mantissa Arc Test

In step 2, we plot the test results. Running plot on the object resulting from the benford()
function will result in a plot showing the following (from upper-left corner to bottom-right corner):

ff First digit distribution

ff Results of the second-order test

ff Summation distribution for each digit

ff Results of the chi-squared test

ff Summation differences

If you look carefully at these plots, you will understand which digits show a distribution
significantly different from the one expected by the Benford law. In order to have a sounder
base for our consideration, we need to look at the suspects table, showing absolute differences
between expected and observed frequencies. This is what we will do in the next step.

In step 3, we highlight suspects digits. Using suspectsTable() we can easily discover
which digits present the greater deviation from the expected distribution.

Looking at the suspects table, we can see that number 5 shows up as the first variable within
our table. In the next step, we will focus our attention on the orders with amounts that have
this digit as the first digit.

In step 4, we define a function to extrapolate the first digit from each amount. This function
leverages the substr() function from the stringr() package and extracts the first digit
from the number passed to it as an argument.

In step 5, we add a new column to the investigated dataset, where the first digit is
extrapolated.

In step 6, we filter amounts starting with the suspected digit.

Chapter 6

161

After applying the left function to our sequence of amounts, we can now filter the dataset,
retaining only rows whose amounts have 5 as the first digit. We will now be able to perform
analytical testing procedures on those items.

Measuring customer retention using
cohort analysis in R

Within the e-commerce field, customer retention metrics can be considered crucial for
several reasons. Among these, the virtual absence of a barrier to entry for competitors in
the virtual arena makes online sellers very willing to build an enduring relationship with
their customers.

This recipe gives you a straightforward way to compute retention metrics within the R
environment.

From the possible methods available for these tasks, we will use one from the family of
cohort methods.

In this method, customers are divided into homogenous groups (that is, cohorts) that share
relevant segmentation attributes, such as sex or age.

Purchases made by those groups are monitored monthly over a period of time, and a retention
rate is calculated each month using the following formula:

retention rate = (number of customers purchasing in a given month)/(number of customers
within the cohort at the starting point)

Getting ready
This recipe is not going to leverage any particular package, apart from the ggplot2 package.
In this recipe, we will build our own derived variables, leveraging the power of vector-based
R code.

Install the ggplot2 package:

install.packages("ggplot2")

library(ggplot2)

Our example will be based on a synthetic cohort dataset, based on four cohorts: one for
older people, one for younger people, one for men, and the last one for women.

Domain-specific Applications

162

Let's create the dataset with the following script:

elder_cohort <-
c(10567,9763,8327,8318,7108,6280,6279,5873,4986,3296,2986,1357)

younger_cohort <-
c(25000,24500,24324,19500,15078,11879,10856,10543,10234,9678,8542,
6321)

total <- elder_cohort+younger_cohort

women_cohort <- total - total*0.46

men_cohort <- total - women_cohort

cohort_dataset <-
data.frame(rbind(elder_cohort,younger_cohort,women_cohort,
men_cohort))

colnames(cohort_dataset) <- c(seq(1:12))

Our dataset will now look like this:

How to do it...
1.	 Compute retention rates for each cohort:

retention_younger <- younger_cohort/sum(younger_cohort)

retention_elder <- elder_cohort/sum(elder_cohort)

retention_women <- women_cohort/sum(women_cohort)

retention_men <- men_cohort/sum(men_cohort)

2.	 Create a unique dataset for all rates:
retention_rates <- rbind(retention_younger,retention_
elder,retention_women,
retention_men)

colnames(retention_rates) <- c(seq(1:12))

Chapter 6

163

3.	 Plot retention rates:
retention_plot <- ggplot() + geom_line(aes(x =
seq(1:12),retention_younger, colour = "younger")) +
geom_line(aes(x = seq(1:12),retention_elder,colour =
"elder")) + geom_line(aes(x = seq(1:12),retention_women,
colour = "women")) + geom_line(aes(x = seq(1:12),
retention_men, colour = "men"))

retention_plot

How it works...
In step 1, there is a given structure for our dataset, so it is easy to compute the retention rate
for each customer. This is done for each month with the lines of code that are provided and
results in 12 ratios for each cohort.

In step 2, all retention rate vectors are now joined within one dataset, which will serve as a
base for our plot.

In step 3, the retention_plot parameter is a ggplot2 plot built by starting with a blank
layer, namely the ggplot() function, and four geom_line() layers, one for each cohort.

Refer to the Adding text to a ggplot2 plot at a custom location recipe in Chapter 3, Basic
Visualization Techniques, which provides a good introduction to these plots.

Making a recommendation engine
Recommendation engines are a powerful way to boost sales on e-commerce websites, since
they allow us to suggest to customers products that are likely to meet their preferences.

These suggestions are produced by looking at previous purchases (or wish lists and visited
products) and comparing them with other customers and their purchases.

Basically, recommendation engines state that if you bought those products, you are similar
to these other customers who also bought these products. So, probably, you will like these
products as well.

Getting ready
In this recipe, we will compute the cosine measure of a matrix in order to measure similarity of
vectors composing the matrix.

The lsa package provides a specific cosine() function for this purpose. In order to use it,
we first have to install and load the package:
install.packages("lsa")

library(lsa)

Domain-specific Applications

164

Our recommendation engine will be applied to a data frame that stores movie reviews from
five critics, ranging from 1 to 4.

Let's create the data.frame list with the following script:

reviews <- data.frame("movie" =
c("the_chronicles_of_narnia","star_wars_IV","star_wars_VI",
"beautiful_mind"),

 "Thomas" = c(1,4,4,2),

 "Jannine" = c(3,2,4,4),

 "Francis" = c(2.4,3,2,1),

 "Mary" = c(3,2,4,3),

 "Zachary" = c(0,2,0,4))

How to do it...
1.	 Compute the cosine similarity measure between critics:

similarity_matrix <- cosine(as.matrix(reviews[,2:6]))

2.	 Transpose the original data frame list:
t_reviews <- as.data.frame(t(reviews))

colnames(t_reviews) <-
c("the_chronicles_of_narnia","star_wars_IV","star_wars_VI",
"beautiful_mind")

t_reviews[,1] <- as.numeric(t_reviews[,1])

t_reviews[,2] <- as.numeric(t_reviews[,2])

t_reviews[,3] <- as.numeric(t_reviews[,3])

t_reviews[,4] <- as.numeric(t_reviews[,4])

3.	 Define the weighted score by multiplying reviews for the similarity score of each critic
with Zachary:
weighted_scores <- similarity_matrix[,5]*t_reviews[,1:4]

4.	 Define movies that Zachary will probably like:
zachary_suggestions <- colSums(weighted_scores)

> zachary_suggestions

the_chronicles_of_narnia star_wars_IV
star_wars_VI beautiful_mind

 12.615616 8.010968
10.432623 11.751864

According to our recommendation engine, Zachary is most likely to appreciate
the_chronicles_of_narnia from the movies provided.

Chapter 6

165

Performing time series decomposition using
the stl() function

Nearly every phenomenon can be represented as a time series.

It is therefore not surprising that time series analysis is one of most popular topics within
data-science communities.

As is often the case, R provides a great tool for time-series decomposition, starting with the
stl() function provided within base R itself. This function will be the base of our recipe.

Getting ready
This recipe will mainly use the stl() function, which implements the Loess() method for
time-series decomposition.

Using this method, we are able to separate a time series into three different parts:

ff Trend component: This highlights the core trend of the phenomenon if perturbations
and external influence were not in place

ff Seasonal component: This is linked to cyclical influences

ff Remainder: This groups all non-modeled (in hypothesis random) effects

As mentioned earlier, this function is provided with every R base version, and we therefore
don't need to install any additional packages.

A dataset, named nottem, is provided with the R base as well, and is composed and
defined by R documentation as a time series object containing average air temperatures at
Nottingham Castle, in degrees Fahrenheit, for 20 years.

You can easily inspect it in the viewer pane by running the View() function on it:

View(nottem)

How to do it...
1.	 Apply the stl() function to the nottem dataset:

nottem_decomposition <- stl(nottem, s.window = "periodic")

2.	 Plot the decomposition results:
plot(nottem_decomposition)

Domain-specific Applications

166

Let's take a look at the following image:

3.	 Focus on the trend component:

plot(nottem_decomposition$time.series[,2],ylab =
"trend_component")

Let's take a look at the following graph:

Chapter 6

167

Exploring time series forecasting with
forecast()

The most logical next step after understanding a time series' features and trends is trying to
forecast its future development.

As one would imagine, R provides optimal tools to perform this task.

In this recipe, we will leverage the extremely popular forecast package by Professor Rob
J Hyndman. The package provides an always increasing number of tools for performing
univariate time series forecasting.

You can find out more on the package on Prof. Hyndman's personal site at
http://robjhyndman.com/software/forecast/.

Getting ready
As stated earlier, the only package needed to perform this recipe is the forecast package.
We therefore need to install it and load it:

install.packages("forecast")

library(forecast)

How to do it...
1.	 Apply the stl() function to the nottem dataset:

nottem_decomposition <- stl(nottem, s.window = "periodic")

2.	 Forecast five more years:
forecast <- forecast(nottem_decomposition,h = 5)

3.	 Plot the forecasted values:
plot(forecast(nottem_decomposition))

Let's take a look at the following graph:

http://robjhyndman.com/software/forecast/

Domain-specific Applications

168

In this plot, you will see a section highlighted in blue. I am sure you have already guessed it;
the blue section is exactly what we have been looking for in this recipe, that is, forecasted
values.

Tracking stock movements using the
quantmod package

An affordable and time-saving way to download and store stock prices can be considered a
prerequisite for every future analysis on financial portfolio data.

The quantmod package offers R users a really convenient way to perform this task. Complete
documentation for the package is available at http://www.quantmod.com.

Quantmod, through the getSymbols() function, lets you establish a direct connection with
financial data sources such as:

ff Yahoo Finance

ff Google Finance
ff www.oanda.com

ff Federal Reserve economic data

This recipe will leverage the getSymbols() function to download Apple's stock quotations. A
proper candle and bar chart will then be produced.

Getting ready
As you would expect, we first need to install and load the package:

install.packages("quantmod")

library('quantmod')

How to do it...
1.	 Download data from Yahoo Finance:

getSymbols("AAPL")

2.	 Plot your data on candlechart:
candleChart(AAPL, subset = 'last 1 year')

http://www.quantmod.com
www.oanda.com

Chapter 6

169

Let's take a look at the following chart:

3.	 Plot your data on a bar chart:
barChart(AAPL, subset = 'last 1 year')

Domain-specific Applications

170

Optimizing portfolio composition and
maximising returns with the Portfolio
Analytics package

Portfolio optimization is basically composed of four main steps:

ff Definition of portfolio components and past quotations

ff Definition of portfolio constrains, for instance, in term of diversification or
maximum loss

ff Definition of objective to be optimized, usually in terms of returns

ff Definition of optimal percentage composition, given constraints and objectives

In this recipe, we will employ PortfolioAnaltycs and some other packages by joining
together functionalities from different packages in order to provide a convenient and
straightforward way to compose a financial portfolio.

The recipe workflow will be as follows:

ff Downloading stock prices

ff Definition of portfolio constraints and objectives

ff Actual portfolio optimization

Getting ready
In this recipe, we will join together powerful functions from different packages.

First of all, we will download stock quotations from Yahoo Finance by leveraging the
quantmod package.

The downloaded information will then be grouped within a portfolio object and
an optimal portfolio composition will be computed, employing functions from the
PortfolioAnalytics, ROI, and Deoptim packages. The ROI package will be
employed in its extended version, thanks to the glpk and quadrprog plugins.

In order to add those plugins, we will first have to install the Rcmdr package.

Summing it all, you will have to run the following code to install and load the required packages:

library(DEoptim)

library(ROI)

library(ROI.plugin.glpk)

library(ROI.plugin.quadprog)

Chapter 6

171

library(plugin)

library(quantmod)

library(PortfolioAnalytics)

How to do it...
1.	 Download data and store it in a portfolio data frame:

stocks <- getSymbols(c("FCA","AAPL","GOOG"), env = sp500,

 from = as.Date("2015-01-01"),

 to = as.Date("2015-10-31"))

FCA <- sp500$FCA

FCA <- get("FCA",envir = sp500)

FCA <- with(sp500, FCA)

AAPL <- sp500$AAPL

AAPL <- get("AAPL",envir = sp500)

AAPL <- with(sp500,AAPL)

GOOG <- sp500$GOOG

GOOG <- get("GOOG",envir = sp500)

GOOG <- with(sp500,GOOG)

FCA <- as.data.frame(FCA)

FCA <- FCA$FCA.Adjusted

GOOG <- as.data.frame(GOOG)

GOOG <- GOOG$GOOG.Adjusted

AAPL <- as.data.frame(AAPL)

AAPL <- AAPL$AAPL.Adjusted

portfolio <- data.frame(FCA,GOOG,AAPL)

2.	 Change the portfolio row names by setting them equal to dates:
row.names(portfolio) <- seq.Date(from = as.Date("2015-01-01"),
to = as.Date("2015-01-01") + nrow(portfolio)-1,by ="days")

3.	 Initialize a portfolio object by passing to it stock names:
portfolio_obj <- portfolio.spec(assets = colnames(portfolio))

Domain-specific Applications

172

4.	 Add a minimum and a maximum composition constraint:
portfolio_obj <- add.constraint(portfolio = portfolio_obj,

 type = "box",

 min = c(0.01, 0.28, 0.1),

 max = c(0.4, 0.5, 0.25))

5.	 Add a diversification constraint:
portfolio_obj <- add.constraint(portfolio = portfolio_obj,
type = "diversification", div_target = 0.7)

6.	 Specify mean return maximization as an objective:
portfolio_obj <- add.objective(portfolio = portfolio_obj,
type = 'return', name = 'mean')

7.	 Compute optimal portfolio composition, given the constraints and objectives:
optimal_portfolio_obj <- optimize.portfolio(R = portfolio,
portfolio = portfolio_obj, optimize_method = "ROI", trace =
TRUE)

print(optimal_portfolio_obj)

> print(optimal_portfolio_obj)

PortfolioAnalytics Optimization

Call:

optimize.portfolio(R = portfolio, portfolio = portfolio_obj,
optimize_method = "ROI", trace = TRUE)

Optimal Weights:

 FCA GOOG AAPL

0.25 0.50 0.25

Objective Measure:

 mean

322.5

Chapter 6

173

Forecasting the stock market
In this recipe, we will develop a step-by-step 2-year forecast of the Fiat-Chrysler Automotive
stock price.

This task will be accomplished by applying the Arima modeling technique to FCA stock
time series.

Arima (Autoregressive integrated moving average) models basically involve the estimation
of an autoregressive model and a moving average, employed to estimate both the stochastic
part and the underlying trend.

Getting ready
This recipe is mainly based on the tseries package and forecast package, the first for
Arima model fitting and the second for prediction of future values. We will also need the
quantmod package in order to download stock data from Yahoo Finance.

We therefore need to install and load these three packages:

install.packages(c("tseries","forecast","quantmod"))

library(tseries)

library(forecast)

library(quantmod)

How to do it...
1.	 Download data:

sp500 <- new.env()

stocks <- getSymbols(c("FCA"), env = sp500,

 from = as.Date("2015-01-01"),

 to = as.Date("2015-10-31"))

FCA <- sp500$FCA

FCA <- get("FCA",envir = sp500)

FCA <- with(sp500, FCA)

FCA <- as.data.frame(FCA)

FCA <- FCA$FCA.Adjusted

Domain-specific Applications

174

2.	 Compute percentage log differences:
time_series <- 100 * diff(log(FCA))

3.	 Derive a train dataset:
time_series_train <- time_series[1:(0.9 *
length(time_series))] # Train dataset

4.	 Train an Arima model on the train dataset:
arima_fit <- arima(time_series_train, order = c(2, 0, 2))

arima_forecast <- forecast(arima_fit)

5.	 Plot a forecast:
plot(arima_forecast, main = "ARMA forecasts FCA returns")

Let's take a look at the following graph:

175

7
Developing Static

Reports

In this chapter, we will cover the following topics:

ff Using one markup language for all types of documents – rmarkdown

ff Writing and styling PDF documents with RStudio

ff Writing wonderful tufte handouts with the tufte package and rmarkdown

ff Sharing your code and plots with slides

ff Curating a blog through RStudio

Introduction
In this chapter, we will provide tools for the last part of your data-analysis project: result
sharing. This is a relevant phase since your work will give no added value if you do not
effectively communicate it.

You know this is true, but how do you do it?

The answer to this question can be split into two parts:

ff The marketing part

ff The technical part

Let’s first briefly address the first part, since the second one will be addressed throughout
the chapter. Talking about the marketing part, I refer to all those strategies and activities you
perform to sell your product better. Your product is your job, and if you don’t sell it properly,
nobody is going to buy it and you would have wasted your time.

Developing Static Reports

176

This is not the right place to address the point in a proper and complete way, but let me stress
at least two points:

ff Do not show data, tell a story with it: I know you are really proud of having found a
unexpected correlation between that variable and your revenues, but just showing
a correlation coefficient will not thrill anyone (except you). You should rather ask,
“What story does it tell? Does it mean we can influence our revenues by pushing hard
on that given variable?” OK, if you think so, show it. Say aloud that “by increasing
expenditure on this, we can grow our revenue by 25 percent.” Isn’t this better than
a correlation coefficient?

ff Always ask yourself, “So what?”: When you are crafting your report, you should
always imagine that you have someone in front of you who asks, “So what?” If you
are able to answer this question in a convincing way, you are preparing to win (and
sell). Let’s try it. We say, “We found that the number of injuries suffered in a year by
a person is strongly correlated to his age (surprise!), which is a significant variable for
our retention rate.” The impolite man says, “So what?” We reply, “So, we can reduce
our research costs by avoiding acquiring data about injuries”. So that’s the point:
expenditure cuts!

Let’s face the technical part now. In the modern world, the more precious resource is time.
It is therefore considered a waste of time copying and pasting results from your job into
a file external to your coding environment, and copying and pasting it again when even a
small detail changes.

This process can also be considered error prone. Within your copy-and-paste activity, you can
bet a considerable sum on forgetting to update some values and sending your boss outdated
numbers. This, as we know, is not a pleasant experience.

This chapter will help you avoid such unpleasant scenarios and give you great tools to develop
reports on your work directly from the place where it was produced: RStudio. In this chapter,
you will learn how to develop reports directly by embedding numbers, plots, and data frames
from your code. When you change the code and outputs change, your report will change
by itself.

Doesn’t it sound like a dream?

Our best friend in this chapter, and part of the next one as well, will be rmarkdown, a powered
markup language. It lets you embed and execute pieces of R code within documents written in
the Markdown language, the popular markup language created by Joghn Gruber in 2004. We
will employ rmarkdown in this chapter to write reports, PDF documents, and tufte handouts.
We will also use rmarkdown to curate a blog directly from your favorite IDE.

Chapter 7

177

Using one markup language for all types of
documents – rmarkdown

As mentioned earlier, Markdown is a popular markup language developed by John Gruber.

This language is based on the principle of the supremacy of plain text documents over all
other kinds of format.

Plain text is the base for any subsequent kind of manipulation and will be always readable
without any particular software. This will let your work be usable and understandable for years
to come and will not let you become the hostage of a particular software provider.

Rmarkdown integrates the Markdown language with some facilities for R code integration, which
lets you show results from running R code, such as plots or tables, in a Markdown document.

Getting ready
Let’s warm up by installing and loading the required packages:

install.packages(“rmarkdown”)

install.packages(“knitr")

library(rmarkdown)

library(knitr)

How to do it...
1.	 Create a new R Markdown document:

Developing Static Reports

178

2.	 Remove the default content from the document, except for YAML parameters, as
we don’t want to be bound by the already available default content. Just go and
delete it. The only part I ask you to preserve is the first chunk of text enclosed within
two ‘---’ tokens.

3.	 Specify the YAML parameters to obtain the table of contents.

To add the table of contents, you have to remove this line:
output: html_document

Insert at the same point the following lines:
output:

 html_document:

 toc: yes

You should be aware that YAML is in some way “space sensitive." This means that the
number of indentation spaces will be considered during document file rendering to
understand the meaning of the full line of code.

In our example, we have to place one space before html_document and two spaces
before toc: yes. The first space will let us read html_document as a value of the
output parameter, while the two spaces before toc: yes will signify that this token
is a value of the html_document: argument.

4.	 Add a setup chunk:
```{r setup, include=FALSE}

knitr::opts_chunk$set(echo = TRUE)

library(knitr)

```

5.	 Add a main title:
#main title

6.	 Add a structure:
first paragraph

second paragraph

first subparagraph

Chapter 7

179

7.	 Navigate the document structure using the outline viewer:

8.	 Add a plot:
```{r plot, echo= FALSE}

plot(iris$Sepal.Length,iris$Petal.Width)

```

9.	 Add a table from a dataset:
```{r kable, echo= FALSE}

kable(iris[1:10,])

```

10.	 Give the possibility to fold the code.

Add the following to the yaml parameters:
code_folding: hide

Developing Static Reports

180

11.	 Add a value within the text from the r elaboration.

In an R Markdown document, it is also possible to expose a value that comes from
running some R code. In our example, we will embed the number of rows composing
the iris dataset (150, if you are wondering). Two mandatory parts for embedding R
output within a document are the `r token at the beginning and the ` token at the end.

`r nrow(iris)`

12.	 Add a link to external resources:
[link to the R project website](https://www.r-project.org)

13.	 Add a link to internal resources:
[link to chapter 7 codefile](chapter_7.R)

14.	 Embed a picture:
![image](aclogo.png)

15.	 Render your document.

You can render you document through the knit control on the upper bar, or simply use Ctrl +
Shift + K.

How it works...
In step 1, the R Markdown is perfectly integrated in the RStudio environment. Creating a
new R Markdown report just requires you to select the File menu and the New R Markdown
report option.

In step 2, we just require you to delete the default content of the document. There is not much
to say here, am I right?

In step 3, the yaml parameters are used during the rendering phase (which you will start in
the last step of this recipe) to set some attributes of the document.

With an acceptable approximation, we can say that within the yaml chunk, we set the
document’s metadata.

Adding a table of contents requires you to modify the output:html_document statement to
let it receive more arguments to render the output.

Be aware that other parameters can be set for the HTML document. You can set them from
the output options, which you can access in the following menu:

Chapter 7

181

It’s even possible to specify a different kind of output from HTML, directly from the knit menu:

Refer to the Writing and styling PDF documents with RStudio recipe for more details on PDF
outputs.lòk.

In step 4, the question to ask is, "What is a setup chunk?" I am sure you are guessing right.
A setup chunk is a chunk of R code used to define the general settings of your document.

It is in no way different from other chunks, but it is a best practice to have all preliminary
activities necessary for your analysis development in one place.

For instance you can place within this chunk package installation and loading, data frame
import, code loading, and so on.

In step 5, we add a main title. This step and the following one will let you add a structure to your
document, dividing it into paragraphs and subparagraphs, all starting with a principal title.

If you have some familiarity with HTML code, it will help you in the following table, which
relates the HTML headers’ node tokens to the corresponding R Markdown code:

Html node R Markdown Output
<h1></h1> # Title

<h2></h2> ## Title

<h3></h3> ### Title

<h4></h4> #### Title

<h5></h5> ##### Title

<h6></h6> ###### Title

Developing Static Reports

182

Adding a number for # greater than six will simply result in the # tokens not being shown and
the following text being reproduced as body text.

In step 6, you can define a structure for your document using the heading shown in the
previous step.

In step 7, among the features introduced with the 0.99 version, which deserves a place of
honor, is certainly the outline viewer for R Markdown documents.

This viewer produces a navigable index for your document, letting you quickly understand the
structure it is assuming.

To achieve this, the RStudio IDE looks for the previously introduced # tokens and for chunks
of R code.

In step 8 we add a plot. The core feature of R Markdown is embedding embeds the results
from an R environment within a markdown document.

ff Even if our example here is a really basic one, it lets you completely understand the
power of this feature

You can embed the results of R code computations, such as plots or tables, within your
documents surrounding the piece of R code we want to run with the following tokens:

```{r name_of_the_chunck}

```

You can now decide some parameters to fine-tune the appearance of elaboration results. The
ones you will more likely use are as follows:

ff Echo FALSE/TRUE specifies whether results from the elaboration, different from
plots, should be shown within the document.

ff Warnings FALSE/TRUE should be set to true if you want R warnings to be printed
out (for instance, warnings on package loading).

ff Fig.caption is the caption of your plot, which sets the caption to be shown under
plots (if any) produced from the chunk of code. Be aware of setting fig_caption =
TRUE under html_document within yaml parameters to make captions visible.
See step 3 for more information on yaml parameters.

You can get a sense of all the available settings by writing:

```{r name_of_chunk,

After inputting “,” RStudio will show you a list of possible settings.

You can find a complete and explained list of possible settings on the website of yihui xie, 
the author and maintainer of the knitr package, which is the base of the rmarkdown 
package. You can find the website at http://yihui.name/knitr/options/.

http://yihui.name/knitr/options/


Chapter 7

183

In step 9, we add a table from a dataset. One of the most annoying things in markdown is 
probably table creation. You have to input them cell by cell, dividing your cells by “|”.

Fortunately, R Markdown doesn’t require you to do this, but rather provides a really easy and 
convenient way of showing your data frames as well as formatted tables, simply by calling the 
kable() function.

In step 10, we provide the ability to fold the code. To let a code fold/unfold, the controls 
appear in the upper-right corner of your document. You can add the following parameter 
within the yaml section:

code_folding: hide

This will make the following control appear:

Using this control, the reader will be able to specify whether pieces of code will be shown 
within the document or not. This control can significantly enhance the readability of your 
document, especially if long chunks of code are introduced within the text.

In step 11, we add a value within the text that comes from from R elaboration. This is a really 
nice feature of R Markdown. It greatly broadens its horizons. Be aware that even those small 
scripts will have access to the general document environment and will therefore be able to 
use all objects and functions within this environment.

In step 12, we add a link to external resources. Including a link to external sources is useful, 
especially when writing documents to be published online. You can add an external link 
specifying a proper label (the text that will appear) within squared brackets and the actual  
link to point to between round brackets. Here is an example:

[text to show](“www.the_actual_url.com”)

In step 13, we add a link to internal resources. The main difference between this step and 
the previous one is the relative location of the linked file. In this case, we are pointing to a 
file placed in the working directory of the calling file (our R Markdown document). We can 
therefore just specify the piece of path from the directory we are working on.

In step 14, we embed a picture. With a script not too different from the one used for links,  
we can embed an image, specifying the location of the image file in round brackets.



Developing Static Reports

184

In step 15 we render the document. If everything went right, after hitting the knit document 
button, you will see a new tab appear next to the console tab. The new tab will be labeled  
R Markdown.

In this new tab, logs from R Markdown processing will appear, acknowledging the activities 
being performed by RStudio to create an HTML file from your R Markdown document.

At the end of the process, your HTML document will show up.

There’s more...
Markdown is a really popular and always growing language.

You can use it in an increasing number of virtual places, from GitHub to Wordpress.

Here are some useful resources you can explore to broaden your topic knowledge:

ff R Markdown official website for RStudio at http://rmarkdown.rstudio.com

ff Markdown syntax introduction on the official markdown website at  
https://daringfireball.net/projects/markdown/syntax

Writing and styling PDF documents with 
RStudio

Even in the era of the Internet, PDF documents are a really convenient way to share  
your results.

That is probably why RStudio provides you with an easy way to create PDF documents  
from your R Markdown documents.

Getting ready
To produce PDF documents from our device, we first need to install the latest distribution  
of a convenient LaTeX engine.

On Apple devices, we suggest downloading the latest Mactex version from http://tug.
org/mactex/mactex-download.html, while Windows users can download Miktext  
from http://miktex.org/download.

Linux users can use Texlive, which can be found at https://www.tug.org/texlive/
quickinstall.html.

http://rmarkdown.rstudio.com 
https://daringfireball.net/projects/markdown/syntax 
http://tug.org/mactex/mactex-download.html
http://tug.org/mactex/mactex-download.html
http://miktex.org/download
https://www.tug.org/texlive/quickinstall.html
https://www.tug.org/texlive/quickinstall.html


Chapter 7

185

How to do it...
1.	 Create a new R Markdown document, specifying PDF as output:

2.	 Render your PDF document.

Rendering your PDF document simply involves hitting the Knit PDF button:

There’s more...
In the R Markdown framework, PDF is just one of the possible output formats. All possible 
customizations available within the R Markdown format are available. Refer to the Using one 
markup language for all types of documents – rmarkdown recipe for an extensive introduction 
to them.



Developing Static Reports

186

Writing wonderful tufte handouts with the 
tufte package and rmarkdown

Edward Tufte is one of most inspiring evangelists of effective data visualization of  
modern times.

His book on effective ways of showing data and telling stories with them has made a great 
impact on a lot of data-visualization tools and theories.

One of the most typical features of his books is the extensive use of side notes, with both 
images and text, to further explain concepts introduced in the main body text.

Given the popularity of this layout, R Markdown offers the possibility of creating documents 
containing side notes, letting you even introduce pieces of R code or plots generated from R 
code as side notes.

Getting ready
Before working with tufte handouts, we have to install and load the latest version of R Markdown 
on our computer (refer to the first recipe of this chapter for further information on markdown).

This can be easily done by running the following code:

install.packages(“rmarkdown”)
library(rmarkdown)

How to do it...
1.	 Create a new tufte handout.

First select a new R Makdown:



Chapter 7

187

Then, look for the tufte handout in the from the Template: tab:

This will produce your tufte handout, already populated with some explicative content.

2.	 Preview the handout.

To see how your handout looks, you just have to hit the run button above your file.

You can render your document through the knit HTML control on the upper bar, or 
simply by using Ctrl + Shift + K.

3.	 Add a side note.

Side notes are the core feature of the tufte layout. You can add one in a way similar to 
the one used for R code chunk insertion:
```{marginfigure}

We know from _ the first fundamental theorem of calculus _ that for x in $[a,
b]$:
$$\frac{d}{dx}\left(\int_{a}^{x} f(u)\,du\right)=f(x).$$

```

Be aware that the first line (or the top of the plot) of your side note will be aligned to 
the line of the main body, which is immediately before the ```{marginfigure} 
token.



Developing Static Reports

188

4.	 Add a quote:
> Essentially, all models are wrong

> but some are useful

> `r tufte::quote_footer(‘--- George E.P. Box’)`

5.	 Save your handout as HTML and knit your handout.

You can render your document through the knit HTML control on the upper bar or simply by 
using Ctrl + Shift + K.

Once your handout is rendered, hit the Open button in the browser. When in the browser, save 
your page. This can be done with cmd + S on Mac and Shift + F12 on Windows.

There’s more...
Within tufte handouts, all features available for R Markdown documents are available.

Refer to the Using one markup language for all types of documents – rmarkdown recipe.

Sharing your code and plots with slides
We live in slide times.

An ever-increasing portion of our knowledge is deposited on those horizontal decks, usually 
written in really unreadable 8-point characters.

Even if criticism on the bad use of slides is growing (see, for instance, the great book 
Presentation Zen by Garr Reynolds) at the moment, you will still have to face that fatal 
request, “Could you prepare a deck on that job you have done?."

So, why miss the opportunity to do it directly within your coding best friend, RStudio?

Here, I will show you how to prepare a nice deck of slides within the IDE, leveraging the R 
Markdown language once again.



Chapter 7

189

How to do it...
1.	 Create a new R Markdown presentation:

2.	 Preview your slides.

You can preview you slides through the knit HTML control on the upper bar or simply 
by using Ctrl + Shift + K.

3.	 Add a logo to your slides:
---

title: “slides”

author: “Andrea Cirillo”

date: “27 February 2016”

output:

  ioslides_presentation:

    logo: aclogo.png

---



Developing Static Reports

190

4.	 Enable and add captions to your figures.

Enabling captions on figures involves specifying it within the metadata of your  
slides, where we put the logo source path. The caption option is specified using the 
following code:
fig_caption: yes

You can now add a caption to a figure, making it explicit within the chunk containing 
the plot, as shown in the following chunk:

```{r pressure, fig.cap = “pressure plot”}

plot(pressure)

```

5.	 Save your slides as portable HTML.

You can render your slides through the knit HTML control on the upper bar or simply by using 
Ctrl + Shift + K.

Once your slides are rendered, hit the Open button in the browser, and when in the browser, 
save your page. This can be done with cmd + S on Mac and Shift + F12 on Windows.

Curating a blog through RStudio
So now you do all your analytical work in RStudio. You create reports about your job in 
RStudio, either as PDF documents or HTML files. You even produce slides in RStudio.

Excluding asking RStudio to pay your bills, what more could you expect from this IDE?

Perhaps producing websites to share your work on the World Wide Web.

Well, RStudio actually can do it!

This recipe will show you how to produce and maintain a blog directly from RStudio.

We will see how to produce a website composed of R Markdown files and structured in the 
following recipe.



Chapter 7

191

Getting ready
To perform some of the activities in this recipe, we will employ the wget utility, which is 
available both for Unix and Windows OS.

We will use it to download and save HTML files from the Web.

You can find information on wget installation for Unix OS at http://www.cyberciti.biz/
faq/howto-freebsd-installing-gnu-wget-command-port/.

For Windows OS, I suggest that you visit the page by Richard Baxter at https://
builtvisible.com/download-your-website-with-wget/.

In this recipe, we will interact with an online GitHub repository using a command-line session. 
Within RStudio, it is also possible to obtain same results linking your project to the online 
repository, and handling commits and pushing through the apposite Git pane in the top-right 
corner.

If you wish to know more about this, I suggest that you go through the Using GitHub with 
RStudio recipe in Chapter 5, Power Programming with R.

How to do it...
1.	 Create an RStudio project for your blog.

OK, this is easy. Just create a new empty RStudio project.

2.	 Create a github.io repository.

Some years ago, GitHub started offering a free website-hosting service, perfectly 
integrated with its Git repository hosting service. This service is named GitHub Pages 
and has got its own website at https://pages.github.com.

For our purpose, we just have to create an empty repository (don’t worry, we are going 
to fill it later) that has the same name as your GitHub user account, for instance, 
andreacirilloac/github.io.

http://www.cyberciti.biz/faq/howto-freebsd-installing-gnu-wget-command-port/
http://www.cyberciti.biz/faq/howto-freebsd-installing-gnu-wget-command-port/
https://builtvisible.com/download-your-website-with-wget/
https://builtvisible.com/download-your-website-with-wget/
https://pages.github.com


Developing Static Reports

192

Navigate to the following link (assuming you are already logged in to GitHub) to create 
a new repository, github.com/new:

3.	 Open your RStudio project and launch a terminal session.

RStudio comes with a proper menu control to open a shell/terminal session. Just go 
and hit it:

github.com/new


Chapter 7

193

4.	 Authenticate on Git from the terminal.

You now need to remotely authenticate to GitHub from your remote desktop, run the 
following command to accomplish this task (substituting andreacirilloac  
with your GitHub account name):
git config --global user.name “AndreaCirilloAC”

5.	 Execute the following command:
git config --global user.email “andreacirilloac@gmail.com”

6.	 Copy the repository URL.

In your online repository, you will find the URL of your repository. Just go and copy it 
while I wait for you here:

7.	 Clone the repository.

Now you can make a copy of your online repository on your local machine, that is, you 
can clone your repository, paste the previously copied HTTPS  address in the following 
command, and run it on the shell/terminal session:
git clone https://github.com/AndreaCirilloAC/andreacirilloac.
github.io.git

8.	 Download the RStudio Markdown website template.

The people at RStudio provided a website template to help us get started with this 
really nice way of blogging. Taking advantage of their kindness just requires us to 
download the template using wget within our terminal/shell session:
wget /rstudio/rmarkdown-website/raw/master/_navbar.html

This will add the template to our current directory, which is also our RStudio  
project directory.



Developing Static Reports

194

9.	 Open the .gitignore file and add the .rproj file.

.gitignore files are used to let the Git system know which files shouldn’t be 
tracked within Git.

We can specify within this file whatever we want. However, I would recommend that 
you add your .rproj file by writing your_rstudio_project_name.rproj within 
your .gitignore file, which should be placed within the RStudio project.

10.	 Download the makefile blog.

makefile is a file used during website building, containing relevant metadata such 
as the kind of output to produce.

We can easily download it using wget, once again due to the courtesy of the RStudio 
team, from https://github.com/rstudio/rmarkdown-website/blob/
master/Makefile.

11.	 Create an output.yaml file.

In this step, we will create a .yaml file, containing data on the output we want to 
produce from the Markdown code, which is, in our case, an HTML file.

Creating this file can be done using the touch command on the terminal/
session if you are on a Unix OS:
touch _output.yaml

If you are on a Windows OS, you should instead use the following command:

New-Item -ItemType file output.yaml

12.	 Add content to your .yaml file:

We are now going to add content to our .yaml file by specifying the required kind of 
the output and other parameters.

In both Unix and Windows OS, we can do this using the echo command and the pipe 
operator:

echo “html_document:

> self_contained: false

> lib_dir: libs

> “ > _output.yaml

13.	 Create an index.rmd file.

The index.rmd file will represent your blog home, so you can add to it all the content 
you would like to help your reader get oriented within the website.

Refer to the Using one markup language for all types of documents – rmarkdown 
recipe to see how to fill and style your document.

https://github.com/rstudio/rmarkdown-website/blob/master/Makefile
https://github.com/rstudio/rmarkdown-website/blob/master/Makefile


Chapter 7

195

14.	 Create an about_me.rmd file.

This blog usually contains an about me page to introduce the website author(s).

15.	 Write a first post in a first_pos.rmd file.

16.	 Push your modifications to your GitHub repository.

Push your new file to the online repository first by adding all modified files to a new 
commit. Then, commit and finally push from the terminal session:

git add -a

git commit

git push

17.	 Navigate to your site.

Before actually navigating to your freshly built website, you should wait a few minutes to let 
the GitHub service read and build your website.

After that, your website will be up and running, and you should see it at  
http://your_account_name.github.io.





197

8
Dynamic Reporting 

and Web Application 
Development

In this chapter, we will cover for the following topics:

ff Generating dynamic parametrized reports with R Markdown

ff Developing a single-file Shiny app

ff Changing a Shiny app UI based on user input

ff Creating an interactive report with Shiny

ff Constructing RStudio add-ins

ff Sharing your work on RPubs

ff Deploying your app on Amazon AWS with ramazon

Introduction
This final chapter will add some advanced communication tools to your programmer toolkit. 
These tools will enable you to show your analytics work in the best possible way.

We are going to deepen our knowledge of R Markdown, the RStudio version of the markup 
language markdown introduced in Chapter 7, Developing Static Reports. R Markdown integrates 
the core features of this language with some powerful facilities for R code integration.

This language will let us create dynamic and parametrized reports, perfect for periodical 
reporting activity, such as doing market surveys and audit follow-ups.



Dynamic Reporting and Web Application Development

198

We will always meet RPubs in the results-sharing field. It is an online publication platform 
perfectly integrated with RStudio, which will let you publish your work directly from your 
favorite IDE by just hitting a button.

Finally, we will explore the ever-expanding world of Shiny, the web application framework 
provided by RStudio.

Within this field, we will touch upon the advanced topic of dynamic UI development based on 
user inputs, along with the newest improvement to the Shiny framework: RStudio add-ins. By 
developing add-ins, RStudio users are able to expand the functionalities of their favorite IDE. 
They are able to define text macros or little Shiny apps for the accomplishment of custom 
activities, from simple data frame subsetting to polynomial regression fitting.

Generating dynamic parametrized reports 
with R Markdown

This recipe will leverage R Markdown to produce parametrized reports where the user is 
prompted to specify arguments related to the report, and the report is then produced.

In this recipe, you will find screenshots taken from an R Markdown document.

The full document is provided within the RStudio project related to the cookbook, under the 
name parametrized_report.rmd.

Getting ready
From a technical point of view, all you need in order to perform this recipe is to install the 
rmarkdown and knintr packages, so let's install and load them:

Install.packages("rmarkdown",type = "source")
install.packages("knitr)
library(rmarkdown)
library(knitr)

From a practical point of view, you should quickly run through the Using one markup language 
for all types of documents – rmarkdown recipe from Chapter 7, Developing Static Reports. It 
will make you confident about using the R Markdown language.



Chapter 8

199

How to do it...
1.	 Create a new R Markdown report.

R Markdown reports can be easily created using the appropriate control in the upper-
left corner of RStudio:



Dynamic Reporting and Web Application Development

200

You can now select the title of your report and the type of output. Refer to the Using 
one markup language for all types of documents – rmarkdown recipe in Chapter 7, 
Developing Static Reports for further details:

2.	 We then define the parameters:



Chapter 8

201

3.	 Next, let's define the function-calling parameters:

4.	 Test your report.

There are two ways to test your report. You can try out either of the following:

1.	 Select Knit to HTML and select Knit with Parameters...:

2.	 Submit the following line of code to the console:
rmarkdown::render("parametrized_report.Rmd", params = 'ask')

Both alternatives will result in a window popping up, asking you to specify the value of 
the parameters created:



Dynamic Reporting and Web Application Development

202

After having provided the selected value of the parameter (try for instance GOOGL 
instead of the default AAPL), you will have to press Knit to produce the actual report:



Chapter 8

203

How it works…
We first created the document. Then, we actually defined the parameter we will use to 
interactively change our report inputs.

Parameters are defined within the yaml chunk, which defines some metadata for the 
document. It is used within the document-deployment phase to understand the kind of output 
you expect, whether you need a table of content, and of course, whether some parameters 
are to be asked to the user.

Let's have a look at the structure of our stock parameter:

ff Label: This is the message the user will see. It is intended to explain what the 
parameter is about and how the user should define it.

ff Value: This is the default value of our parameter.

ff Input: This is the kind of input control shown to the user to let them select the 
parameter value. These controls are taken directly from the Shiny web application 
framework, which is explained in the Developing a single-file Shiny app recipe.

It is important to visualize that as parameters should be defined, all those values that are 
likely to change within the report, such as the cutoff date, geographical area, family of 
product, and relevant process to be investigated can't be hard coded within the report.

Once you make the effort to define a parameter, you can try using it. As you can see, 
parameters are stored within a list called params. Each parameter is a named object of the 
list, so you can call it using the familiar operator $.

To see your report appear, you can both run it with the custom control on the RStudio 
interface or run the render function from the rmarkdown package, specifying in this case 
that the parameter's value needs to be selected by the user. As you can guess, you could also 
pass their value within the render function with a script similar to the following one:

render("parametrixed_report.Rmd", params = list(stock= c("GOOGL"))

This can actually be a useful trick if you need to automate the production of reports. For 
instance, at a specific closing date, you may have to produce some reports on different 
subsidiaries of your company. You could write a loop to run this function once for each of  
your subsidiaries:

library(rmakdown)
subsidiaries <- c("alpha","beta","gamma)
for (i in 1:subsidiaries){
render("parametrized_report.Rmd", params = list(company= 
subsidiaries[i])
}



Dynamic Reporting and Web Application Development

204

The preceding code will produce a report in your working directory for each subsidiary. Isn't 
that great? Who is still saying R is just for statistical analysis?

There's more…
Parametrized reports are on the very edge of R Markdown development. You will therefore 
not find a lot of material on them. Nevertheless, I suggest that you check out the official 
R Markdown website at http://rmarkdown.rstudio.com/ for updated articles and 
documentation.

Developing a single-file Shiny app
Shiny apps probably were one of the most game-changing products developed by RStudio.

These apps, because of their ability to link the analytical environment to the production one, 
are great instruments in the hands of developers and researchers interested in transforming 
their work into an actual data-driven product.

In this recipe, I will introduce you to the single-file app, which is becoming the standard for 
Shiny app development.

When Shiny was first introduced, apps had to be composed of two separate files: one for the 
user interface and another for the server logic.

Among several refinements and improvements, the RStudio team later introduced a way to 
produce a Shiny app contained within a single R script. This app is named app.R.

Getting ready
First, we need to install the Shiny package and load it in the R environment:

Install.packages('shiny')
library(shiny)

How to do it…
1.	 Create an app.R file.

2.	 Add a call to the Shiny package:
library(shiny)

3.	 Create a ui object:
ui <- fluidPage()

http://rmarkdown.rstudio.com/


Chapter 8

205

4.	 Create a server object:
server ← function(input,output) { }

5.	 Define a reactive data frame:
dataset <- reactive({
    subset(iris,iris$Species == input$species  & iris$Petal.Length 
>= input$range[1] & iris$Petal.Length <= input$range[2])
  })

6.	 Define a table object within your server, depending on the data frame:
output$table <- renderTable({dataset()})

7.	 Define a plot object within your server, depending on the data frame:
output$plot <- renderPlot({
    plot(x=dataset()$Sepal.Length,y=dataset()$Sepal.Width)

8.	 Add a title to your ui object:
h1("custom filtering and visualization of your dataset"),

9.	 Add a brief description of your app:
p("using this app you can easily filter the iris dataset, choosing 
which species
    to show and which range of Sepal.Length to consider"),

10.	 Add a radio button control to your UI to select a species:
radioButtons('species',label='select the species you want to focus 
on',c("virginica","versicolor","setosa"),),

11.	 Add a slider control to filter the data frame based on the Petal.Length value:
sliderInput('range', label= 'select a range for Petal.Length 
attribute',min= 1,max = 6.9, value = c(1,6.9)),

12.	 Add a plot output to your ui object:
plotOutput('plot'),

13.	 Add a table output to your ui object:
tableOutput('table')

14.	 Execute your code:
Source("app.R")

15.	 Run your app:
shinyApp(ui=ui,server=server)



Dynamic Reporting and Web Application Development

206

Running this code will make your Shiny application show up:



Chapter 8

207

How it works…
We first created an R file that will contain all the code to compose your Shiny app. Be aware 
that naming the file app.R is mandatory.

The call to the Shiny package will make Shiny functions available to the app environment.

The logical framework behind Shiny requires every app to be composed of two main parts:

ff User interface (UI): This shows the user all available input controls and all 
elaboration results

ff Server logic: This actually contains the code that reacts to user inputs and prepares 
the results to be shown to the user

We thus initialized the user interface of our app.

We then initialized the server logic of our app, which is defined as a function that has an 
argument input and output.

ff input: This stores all user choices, captured from the input controls on the  
user interface

ff output: This stores all the object resulting from server elaboration, making them 
available to the user interface

The two arguments are assumed to be of the list type.

The next step involves a core concept of the Shiny framework: reactivity. Reactivity is the 
ability to intercept user choices and actions, and consequently trigger pieces of code and 
concatenate pieces of code if any.

Let's visualize the flow:

ff In the UI, the user specifies a choice, for instance, within the iris dataset, 
let me see only the observation pertaining to the versicolor 
species.

ff Within the server logic, a reactive() function intercepts this choice and reacts to 
it, filtering the iris dataset accordingly and giving us an output of a dataset object 
of the data frame type.

ff Still within the server logic, a renderplot() function reacts to the reactive() 
function filtering, since it has the dataset object within its brackets. The 
renderplot() function takes this modified dataset object as an input and gives a 
plot object as an output.

ff On the UI side, a plotOutput function reacts to the change of plot object on the 
server side, since it has this object as an argument. Consequently, plotOutput 
shows a plot for the iris dataset filtered on the versicolor species.



Dynamic Reporting and Web Application Development

208

That's it. The user's choice generates a long chain of actions and reactions that produce the 
final updated output.

However, here are two warnings:

ff The reactive() function must include curly brackets, for instance,  
reactive({ iris})

ff When you refer to the output of a reactive function, you need to add a () token on 
the right-hand side of the object, for instance, Dataset()

If you want to select an attribute of the object, you could add the usual dollar symbol or 
squared brackets.

We then created a table object that will let us show our filtered dataset to the user. Be aware 
of the use of renderTable({}), which is a special case of the more general reactive() 
function. We then defined a plot object, leveraging the renderPlot({}) function.

We then skipped to the ui side, adding a title.

You can write text using the following functions:

ff H1()

ff H2()

ff H3()

ff H4()

ff H5()

ff H6()

ff P()

While the first six functions are equivalent to the HTML title's tags, the last one is a general 
function for paragraph writing, corresponding to the HTML <p>…</p> tag.

We then used the p() function shown earlier.

Next, we actually added an input control, in the form of a radio button, which required us to 
perform only one choice among many.

We specified the following:

ff The ID of the control to be used within the server logic to retrieve choices performed 
by the user

ff The label, a piece of text to be shown to the user to help them make a choice

ff The available choices, in the form of a vector

ff The default choice



Chapter 8

209

In a way similar to what we have done with the radio buttons, we add a slider control to let the 
user specify a range for the Petal.Length variable of the iris dataset. The main difference 
here is the presence of a minimum and maximum value, used to specify the available range 
of choice.

In the UI, we add two functions that will let us show the plot defined in the server logic named 
plot and the table named table.

In order to see your app, you have to execute your code to actually make the ui and server 
objects available within the environment.

Running your app just requires you to run a line of code in which you specify which objects 
Shiny should consider as ui and server objects.

See also
ff Shiny apps deserved a separate section of the RStudio website at  

http://shiny.rstudio.com.

In this website, you can find a lot of learning material to get you up and running with 
Shiny, from easy tutorials to advanced topics.

ff In particular, I suggest that you further explore the UI controls that are available, in 
the reference section and the UI controls subsection: http://shiny.rstudio.
com/reference/shiny/latest/.

Changing a Shiny app UI based on  
user input

Employing tools acquired in the previous recipe, you will be able to go quite far exploring 
Shiny's possibilities.

However, there is a quite advanced topic that was excluded from the previous recipe: UI 
customization based on user input.

This is an amazing feature, and it is even more amazing if you think you don't have to learn 
JavaScript or any other language to apply it to your app. Only R code knowledge is needed.  
Our app will ask for a first question and consequently change the possible answers to a 
second question.

One last word; our app will be based on the Lord of the Rings characters. I hope you will 
appreciate this. Now, let's start without any ado; as Samwise Gamgee would say:

"It's the job that's never started as takes longest to finish."

http://shiny.rstudio.com
http://shiny.rstudio.com/reference/shiny/latest/
http://shiny.rstudio.com/reference/shiny/latest/


Dynamic Reporting and Web Application Development

210

Getting ready
In order to run our Shiny app, we will need to install and load the shiny and shinyBS 
packages:

Install.packages(c('shiny','shinyBS'))
library(shinyBS)
library(shiny)

Before looking at the actual recipe, I would like to recommend that you read the Developing 
a single-file Shiny app recipe in this chapter, which will help you gain knowledge of the basic 
features of the Shiny framework.

How to do it...
1.	 Create an app.R file. You just have to create a new R script within your current 

directory and name it app.R.

2.	 Create a ui object:
ui <- fluidPage()

3.	 Create a server object:
server ← function(input,output) { }

4.	 Put input controls into the UI:
  selectInput("first_choice", 
              label = h1("First Answer a General Question"),
              choices = list("select","A","B","C"),
              selected = "select"
  ),
  
  #collapsable panel for second choice
  
  h1("then get into details"),
  
  bsCollapse(
    bsCollapsePanel( title = "details",
                     uiOutput("second_choice")
    ),
    id = "collapser", multiple = FALSE, open = NULL
  ),
  h2("first answer"),
  h3(textOutput("first_answer")),
  h2("second answer"),
  h3(textOutput("second_answer"))



Chapter 8

211

Within this chunk of code, you should notice collapsible panels have been inserted 
using the bsCollapse() function made available through the shinyBs package  
we previously installed.

5.	 Put the server logic behind the UI's input control:
 #retrieve selected values and render text from selection
  
  output$first_answer  <- renderText({input$first_choice})
  output$second_answer <- renderText({input$dynamic})
  output$second_choice <- renderUI({
    
    switch(input$first_choice,
           "A" = checkboxGroupInput("dynamic", "Dynamic",
                                    choices = c("Aragon","Frodo"),
                                    selected = "option2"),
           "B" = checkboxGroupInput("dynamic", "Dynamic",
                                    choices = 
c("Bilbo","Gandalf","Sauron"),
                                    selected = "option2"),
           "C" = checkboxGroupInput("dynamic", "Dynamic",
                                    choices = 
c("Boromir","Legolas"),
                                    selected = "option2")
           
    )
    
  })

In this chunk of code, we add server logic to the previously defined UI. You should 
notice the renderUI() reactive function, which is the actual core of this recipe.

This function takes input$first_choice as input, which is the first choice 
performed by the user using control having the first_choice ID (look at the 
previous step). This choice is used to select one of three cases listed within 
the switch() function. The output of this function is one of three possible 
checkboxGroupInput, which are then retrieved in the uiOUtput() UI function 
(refer to the previous step again).

6.	 Add an observer related to the first input:
observe({
    if (input$first_choice != "select") {
      updateCollapse(session,"collapser",open = c('details'))     
    }
  })



Dynamic Reporting and Web Application Development

212

Observers are special types of reactive function. These functions can be considered 
always-active sentinels, which look for specific events (here, the value of 
input$first_choice) and consequently perform some action (here, collapsible 
panel update).

The main difference between general reactive functions and observers is that 
observers do not produce an output value, but just perform an action.

7.	 Run the UI and server lines.

This step involves running the lines of code related to the ui and server objects.  
It is mandatory in order to make these objects available for the upcoming 
shinyApp() function.

You can do this by sourcing your code file:
source('app.R')

8.	 Run your Shiny app:
shinyApp(ui = ui, server = server)

This will result in the following app:



Chapter 8

213

As you can see, after playing for a while with the app, choices within the second input control 
(then get into details one) will change based on the input of the first choice.

This is exactly what we were looking for: a dynamic UI able to change according to  
custom behavior.

See also
Shiny apps are a hot topic within the R community, particularly for the opportunity they offer 
for moving R closer to the data analytics production environment. You can, therefore, find a lot 
of great material on this topic online.

That said, if you want to deepen you knowledge of Shiny apps, you shouldn't miss visiting the 
following:

ff The official Shiny app website at http://shiny.rstudio.com.

In this website, you can find everything, from introductory tutorials for beginners to 
detailed articles on advanced topics.

ff A specific guide on the topic of dynamic UI is retrievable from http://shiny.
rstudio.com/articles/dynamic-ui.html.

ff If you then would like to experience Shiny's potential, you can look at the Shiny gallery 
at http://shiny.rstudio.com/gallery/.

Creating an interactive report with Shiny
This recipe gives you a perfect tool for sharing analysis results with third parties.

Interactive reports are electronic documents enriched by Shiny functionalities, giving the 
user the ability to change the assumptions on which analyses are based and consequently 
changing the document's output.

You should now be comfortable with your analysis, autonomously answering questions that 
arise while reading.

http://shiny.rstudio.com
http://shiny.rstudio.com/articles/dynamic-ui.html
http://shiny.rstudio.com/articles/dynamic-ui.html
http://shiny.rstudio.com/gallery/


Dynamic Reporting and Web Application Development

214

How to do it…
1.	 Create a Shiny document:

2.	 Remove the default content yaml parameters.

3.	 Add a setup chunk:
```{r setup, include=FALSE}
knitr::opts_chunk$set(echo = TRUE)
```

4.	 Embed your Shiny app:
```{r tabsets, echo=FALSE}
shinyAppDir(
 "app.R",
 options = list(
 width = "100%", height = 550
)
)
```



Chapter 8

215

5.	 Add an input panel and a related plot output:
```{r eruptions, echo=FALSE}
inputPanel(
 selectInput("selected_species", label = "iris species to plot",
 choices = c("virginica","setosa","versicolor"),
selected = "versicolor")

)
data <- reactive({
 subset(iris,iris$Species == input$selected_species)
})
renderPlot({
 plot(data())
})
```

6.	 Style your document.

How it works...
We first create a Shiny document. Shiny documents are actually R Markdown documents 
where an additional render argument is set to shiny. This argument is specified within 
the yaml chunk, as seen in the Using one markup language for all types of documents – 
rmarkdown recipe.

Next, we remove the default content, except the yaml parameters.

We don't want the default content to confuse us, do we? So, let's clean up our paper, leaving 
only our dear yaml chunk.

Next, we add a setup chunk. Setup chunks are chunks of R code where some general and 
preliminary activities are performed, such as package loading and data frame importing. Take 
a look at the Using one markup language for all types of documents – rmarkdown recipe.

We then embed our Shiny app. There are two ways of embedding a Shiny app in  
your document:

ff Embedding a previously developed Shiny app in your document by leveraging 
shinyAppDir()

ff Introducing inputpanel and a consequent ui element, such as plots or tables

The second option is treated in the next step, while here we source our previously developed 
app, passing only the relative path, since it is placed in the project directory.

Be aware of the option can specify within the options argument, which is the same as that 
available for the runApp function (see runApp for more on them), plus specific controls for 
the width and height of the app shown in your document.



Dynamic Reporting and Web Application Development

216

Further on, add an input panel and a related plot output.

This is a fairly specific way of using the Shiny framework, since we don't have to specify any 
server object or ui object to use control widgets and output objects.

The logical model behind this implementation is in some way different from the general 
approach in the following ways:

ff An input panel is required to store all control widgets, meaning all those elements 
that will appear in the document to let the user perform choices such as data filtering 
or model assumptions

ff Using a render function to show the results of user choices, such as renderPlot 
and renderTable

What is missing here? The output function. For instance, when dealing with a plot, you will not 
require a plotOutput function, since the renderplot function will do the job.

Lastly, we style our document. As we discussed at the beginning of this recipe, Shiny 
documents are R Markdown documents empowered by Shiny framework functionalities. 
This means you can leverage all the great features of R Markdown documents to style and 
customize your report. Refer to the Using one markup language for all types of documents – 
rmarkdown recipe for further information on this topic.

See also
As usual with Shiny, the sky is the limit. Given the relatively young age of the framework, a lot 
of development is still to come.

I suggest that you always keep an eye on the Shiny website, especially for this  
particular topic, on the section in the R Markdown website dedicated to Shiny at  
http://rmarkdown.rstudio.com/authoring_shiny.html.

Constructing RStudio add-ins
RStudio add-ins are one of the newest and most promising developments introduced recently 
by the RStudio team. They add infinite possibilities for improvement to users' workflows 
through the enhancement of their IDE.

There are two main types of add-ins:

ff Text macros: These only produce a text insertion within your code (for instance  
the (){} structure to be added after the function token).

ff Shiny gadgets: These are little Shiny apps that are shown within the viewer pane, a 
pop-up window, or a browser window. They let you perform advanced activities such 
as statistical parameter definition or data-wrangling tasks.

http://rmarkdown.rstudio.com/authoring_shiny.html


Chapter 8

217

In this example, we will develop the second type of add-in from the function definition,  
for deployment and installation as a package on GitHub.

Our example will be a funny one: we will develop an add-in that lets you see weather  
forecasts for a specified city within the R console.

Getting ready
Let's first install the shiny and miniUI packages:

install.packages(c("shiny", "miniUI"), type = "source")
library(shiny)
library(miniUI)

How to do it...
1.	 Define the function that will be called from your add-in:

weatheraddin <-function (){}

2.	 Define your ui add-in:
  ui <- miniPage(
    gadgetTitleBar("weather forecasts"),
    miniContentPanel(
      textInput("city","input your city name", value = "milan")
    )
  )

3.	 Define your server add-in:
  server <- function(input,output,session){
    observeEvent(input$done, {
      weather_command <- paste0("finger ",input$city,"@graph.no")
      system(weather_command)
      stopApp()
    })
  }

4.	 Define where your add-in will be displayed:
  runGadget(ui, server, viewer = dialogViewer("weather forecasts 
add in"))

5.	 Try your add-in:
weatheraddin()



Dynamic Reporting and Web Application Development

218

6.	 Put your add-in in a package.

RStudio offers a custom type of rproj for packages. Therefore, in order to create a 
new R package, you will just need to create a new project and select the R Package 
option:

After choosing this option, the following window will show up, asking you whether any 
source code is available on which to base the package:



Chapter 8

219

By clicking on the Add… button, you will be able to select the R file containing 
the add-in function. For the purpose of the recipe, we provided a separate R file 
containing our weather add-in function named addin_source.R.

The R package which will result from this procedure is a package ready for distribution. 

7.	 Host your package on GitHub.

We'll create a repository on the GitHub website to make it available for distribution 
and remote downloading by a potential user.

You can learn how to host an RStudio project within a GitHub repository by reading 
the Using GitHub with RStudio recipe in Chapter 5, Power Programming with R.

8.	 Install your package and try your add-in. In order to install your package, we will 
leverage the install_github() function from the devtools package, which you 
should have already installed from the getting ready section (if not, you can always 
skip back to that section; I will wait for you here).

Once you are done, you can just run the following command:
install_github("andreacirilloac/weather_addin_package")
load(weather_addin_package)

Substitute andreacirilloac with your GitHub username.

9.	 Create an addins.dcf file.

To register your add-in in the RStudio IDE, you will have an addins.dcf  
file located within your project directory, in a path similar to the following one: 
project_directory/inst/rstudio/addins.dcf.

The addins.dcf file is the file where installed add-ins are recorded and used  
by RStudio in order to define which functions have to be treated as add-ins rather 
than as simple functions. Feed your addins.dcf file.

Installing your add-in will result in the add-in menu showing your add-in, as in the 
following screenshot:



Dynamic Reporting and Web Application Development

220

In order to obtain this, you will have to locate the addins.dcf file and insert the 
following lines into this file:
Name: weather addin
Description: show weather forecasts within R console
Binding: weatheraddin
Interactive: false 
/inst/rstudio/addins.dcf

This piece of text will be separated from the previous one by a blank line.

There's more…
Having an RStudio add-in that lets you find out weather forecasts can be funny, but I don't 
really think you are going to consider it useful, unless you are a meteorologist, of course. In all 
the remaining cases, you should consider this recipe as an explanatory example, using it as a 
base to develop your custom add-in.

Sharing your work on RPubs
RPubs is the logical end of the path that starts with an R script:

ff Development of R code

ff Development of an R Markdown report embedding the R code

ff Publishing and sharing your R Markdown report online

One of the greatest advantages of RPubs is its good integration with the RStudio environment.

We will see how to publish your analyses on RPubs from the ground up.

Getting ready
In order to publish your work on RPubs, you will first have to create an account on this portal.

To sign up on RPubs, you just have to navigate to http://rpubs.com/users/new.

The signing-up procedure will ask you to fill in some fields.

After filling in the required fields, you will get an account on the platform, and you will be ready 
to publish your first report on RPubs.

In this recipe, we will publish one of the reports produced in our previous recipes, and 
specifically the parametrized reports produced in the Generating dynamic parametrized 
reports with R Markdown recipe in this chapter.

http://rpubs.com/users/new


Chapter 8

221

How to do it...
1.	 Hit the publish button in RStudio in the upper-right corner of the source editor:

2.	 Insert the document details:

3.	 Enjoy your document online:



Dynamic Reporting and Web Application Development

222

4.	 Share your document:

There's more…
You should have noticed that every published document comes with a Comments button, 
which lets you see whether someone has commented on your work. This feature, based 
on the Disqus platform, is particularly useful when your publication is aimed at stimulating 
exchanges of opinion around a topic linked to your work.

Deploying your app on Amazon AWS with 
ramazon

RStudio offers a great facility for Shiny apps deployment, named shinyapps.io. This 
hosting web platform is perfectly integrated with RStudio and lets you deploy your app by 
hitting a button. You can find convenient tutorials at http://shiny.rstudio.com/
articles/shinyapps.html.

A large number of developers are used to the structure and facilities of Amazon AWS,  
which provides an integrated and solid framework for web application deployment.

Amazon AWS is one of the best-known services of its kind. However, publishing apps on it 
can be laborious for non-expert users, requiring you to remotely log in on a Linux server and 
perform terminal downloading and installation activities. That is why I have developed the 
ramazon package, which lets you publish a Shiny application on Amazon simply by running a 
function. This recipe exposes the usage of the package.

Getting ready
In order to install a Shiny server on Amazon AWS, you first need to create an EC2 instance on 
Amazon AWS. This basically means you will have to create an up and running Linux server on 
which you can host your Shiny application. If you need help with this, I have provided a detailed 
tutorial on how to do this at http://www.slideshare.net/AndreaCirillo1/how-to-
launch-an-aws-ec2-instance-51349866?ref=https://andreacirilloblog.
wordpress.com/2015/08/18/deploy-your-shiny-app-on-aws-with-a-function/.

http://shiny.rstudio.com/articles/shinyapps.html
http://shiny.rstudio.com/articles/shinyapps.html
http://www.slideshare.net/AndreaCirillo1/how-to-launch-an-aws-ec2-instance-51349866?ref=https://andreacirilloblog.wordpress.com/2015/08/18/deploy-your-shiny-app-on-aws-with-a-function/
http://www.slideshare.net/AndreaCirillo1/how-to-launch-an-aws-ec2-instance-51349866?ref=https://andreacirilloblog.wordpress.com/2015/08/18/deploy-your-shiny-app-on-aws-with-a-function/
http://www.slideshare.net/AndreaCirillo1/how-to-launch-an-aws-ec2-instance-51349866?ref=https://andreacirilloblog.wordpress.com/2015/08/18/deploy-your-shiny-app-on-aws-with-a-function/


Chapter 8

223

How to do it...
1.	 Retrieve your server public DNS from Amazon AWS:

2.	 Retrieve your server key from Amazon AWS:



Dynamic Reporting and Web Application Development

224

3.	 Install the ramazon package from GitHub.

Currently, the ramazon package is only available through GitHub. In order to use it, 
you will have to execute the following code. This code installs devtools, which lets 
you download ramazon from the GitHub repo:
install.packages("devtools")
library(devtools)
install_github("andreacirilloac/ramazon")
library(ramazon)

4.	 Run ramazon().
ramazon(public_DNS ="your_Public_DNS", key_pair_name = "your_key_
pair_name")

5.	 Enjoy your app.



225

Index
A
alternative function’s performance

comparing, microbenchmarking package  
used  129-131

Amazon AWS
app developing on, ramazon used  222-224

API
accessing, with R  12-16
endpoints  15

app
deploying on Amazon AWS, ramazon  

used  222-224
Autoregressive integrated moving average 

(Arima)  173
axes

customizing, to ggplot2 plot  74-79

B
Benford’s law

used for detecting fraud on e-commerce 
orders  156-161

blog
curating, through RStudio  190-195

C
callback URL  15
character_wise search

performing, with twitteR  18
chunk options

reference link  182
code

sharing, with slides  188-190

code performance
evaluating, with profvis package  126-128

Code School  139
cohort analysis

used, for measuring customers retention  
in R  161-163

Colors in R
URL  74

communities
displaying, in network with linkcomm  

package  93-97
CSS selector  3
customers retention

measuring, with cohort analysis in R  161-163
custom objects and methods, R

creating, S3 system used  123-125

D
data

acquiring, from Web  2-11
cleansing  34
displaying, with plot() function  60-66
filtering activities, performing  48-58
format  2
getting from Facebook, Rfacebook package 

used  21-23
getting, from Google Analytics  24-27
getting from Twitter, twitteR package  

used  16-21
license  2
loading into R, with rio packages  27-31
manipulating  34
preparing for anyalysis, tidyr package  

used  36-40



226

structure  34-36
degree  92
DiagrammeR package

used, for producing process flow diagram in 
RStudio  112-115

dynamic force network
creating, with visNetwork package  104-110

dynamic parametrized reports
creating, R Markdown used  198-204

dynamic UI
URL  213

F
Fiat-Chrysler Automotive stock price  173
file formats

converting, rio package used  31, 32
forecast()

reference link  167
used, for exploring time series  

forecasting  167, 168
fraud, on e-commerce orders

detecting, with Benford’ s law  156-160

G
geom_text() function  74
ggmap

URL  88
used, for drawing route on map  85-88

ggplot2 plot
axes, customizing  74-79
matrix of graphs, producing  79-85
text, adding at custom location  69-74

Git
download link  131
interactive tutorial, reference link  139

GitHub
about  131
reference link  191
URL  13
using, with RStudio  131-139

Google Analytics
data, getting from  24-27
URL  24, 27

Google Query explorer
URL  26

Grammar of Graphics
reference link  72

H
HTML tags

URL  11
HyperText Markup Language (HTML  8

I
If This ThenThat (IFTTT)  12
igraph package

about  88
used, for drawing network  88-93

ImageMagick
about  110
reference link  110

interactive report
creating, Shiny app used  213-216

interactive visualizations
using  100

Internet of Things (IoT)  2

L
linkcomm package

about  93
used, for displaying communities in  

network  93-97

M
Mactex

reference link  184
map

route, drawing with ggmap  85-88
Markdown

reference link  184
syntax  177

matrix of graphs
producing, with ggplot2 plot  79-85

Medici
reference link  92



227

mice package
URL  47
used, for substituting missing values  43-47

microbenchmarking package
used, for comparing alternative function’s 

performance  129, 130
Miktext

reference link  184
missing values

detecting  40-43
removing  40-43
substituting, mice package used  43-47

modular code
writing, in RStudio  118-120

multiple imputation technique  43

N
NaN (not a number)  40
network

communities, displaying with linkcomm  
package  93-97

drawing, igraph package used  88-93
networkD3 package

used, for producing Sankey diagram  100-104
nottem  165

O
OAuth

URL  13
outliers

detecting  47, 48
removing  47, 48

P
pairs.panels()function

used, for visualizing correlations between  
variables  67-69

parallel computation
implementing, in R  120-123

PDF documents
styling, with RStudio  184, 185
writing, with RStudio  184, 185

PDF reports, folder
analyzing, with tm package  143-147

pdftotext
download link  144

plot() function
used, for displaying data  60-66

plots
sharing, with slides  188-190

Portfolio Analytics package
used, for maximising return  170-172
used, for optimizing portfolio  

composition  170, 171
profvis package

used, for evaluating code  
performance  126-128

Q
quantmod package

reference link  168
used, for tracking stock movements  168, 169

R
R

custom objects and methods, creating with  
S3 system  123-125

parallel computation, implementing  120-123
used, for accessing API  12-16

ramazon
used, for developing app on Amazon  

AWS  222-224
RColorBrewer package

URL  74
recommendation engine

creating  163, 164
regular expressions

dealing with  142
repository  131
results sharing phase  175
Revolution Analytics

reference link  120
Rfacebook package

used, for getting data from Facebook  21-23



228

rio package
used, for converting file formats  31, 32
used, for loading data into R  27-31

Rio vignette
URL  30

R Markdown
about  177-179
reference link  184
URL  204
used, for creating dynamic parametrized 

reports  198-204
used, for writing tufte handouts  186-188
working  180-183

rmarkdown-website
reference link  194

rotating 3D graph
building  110-112
exporting, as GIF  110-112

route() function, arguments
alternatives  87
from  87
messaging  87
mode  87
output  87
override_limit  87
sensor  87
structure  87
to  87

RPubs
URL  220
work, sharing  220-222

RStudio
blog, curating through  190-195
DiagrammeR package, used for process  

flow diagram production  112-115
GitHub, using with  131-139
modular code, writing  118-120
URL  11, 209, 222
used, for styling PDF documents  184, 185
used, for writing PDF documents  184, 185

RStudio add-ins
connecting  216-220
Shiny gadgets  216
text macros  216

rvest
URL  13

S
S3 system

used, for creating custom objects and  
models in R  123-125

Sankey diagram
producing, with networkD3 package  100-104

SelectorGadget
about  3
URL  4

setup chunk  181
Shell  133
Shiny app

framework, reactivity  207
framework  112
gallery, URL  213
server logic  207
single file Shiny app, developing  204-209
tutorial, URL  222
UI changing, based on user inputs  209-213
URL  213
used, for creating interactive report  213-216
user interface (UI)  207

single-file Shiny app
developing  204-209

slides
used, for sharing codes  188-190
used, for sharing plots  188-190

stl() function
used, for performing time series  

decomposition  165, 166
stock market

forecasting  173, 174
stock movements

tracking, quantmod package used  168, 169
stock parameter  203

T
task view

reference link  123
Texlive

reference link  184
text

adding, to ggplot2 plot at custom  
location  69-74



229

Tidy data
URL  40

tidyr package
used, for preparing data with analysis  36-40

time series decomposition
performing, stl() function used  165, 166
remainder  165
seasonal component  165
trend component  165

time series forecasting
exploring, with forecast()  167, 168

tm package
used for analyzing PDF reports in  

folder  143-147
tufte handouts

writing, with rmarkdown  186, 187
writing, with tufte handouts  186-188

tufte package
used, for writing tufte handouts  186-188

twitteR package
used, for getting data from Twitter  16-20

Twitter sentiment analysis
performing  151-155

U
UI controls

URL  209
Unix timestamp  23

V
variables

correlations, visualizing with pairs.panels()
function  67-69

visNetwork package
reference link  110
used, for creating dynamic force  

network  104-110

W
web scraping tasks  2-11
website

reference link  195
wget installation, for Unix OS

reference link  191
wide format  37
Windows OS

reference link  191
wordclouds

creating, with wordcloud package  148-150
work

sharing, on RPubs  220-222

Y
Your Access Token  17




	Cover
	Copyright
	Credits
	About the Author
	About the Reviewer
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Acquiring Data for 
Your Project
	Introduction
	Acquiring data from the Web – web scraping tasks
	Accessing an API with R
	Getting data from Twitter with the twitteR package
	Getting data from Facebook with the Rfacebook package
	Getting data from Google Analytics
	Loading your data into R with rio packages
	Converting file formats using the rio package

	Chapter 2: Preparing for Analysis – Data Cleansing and Manipulation
	Introduction
	Getting a sense of your data structure 
with R
	Preparing your data for analysis with the tidyr package
	Detecting and removing missing values
	Substituting missing values using the mice package
	Detecting and removing outliers
	Performing data filtering activities

	Chapter 3: Basic Visualization Techniques
	Introduction
	Looking at your data using the plot() function
	Using pairs.panel() to look at (visualize) correlations between variables 
	Adding text to a ggplot2 plot at a custom location
	Changing axes appearance to ggplot2 plot (continous axes)
	Producing a matrix of graphs with ggplot2
	Drawing a route on a map with ggmap
	Making use of the igraph package to draw 
a network
	Showing communities in a network with the linkcomm package

	Chapter 4: Advanced and Interactive Visualization
	Introduction
	Producing a Sankey diagram with the networkD3 package
	Creating a dynamic force network with the visNetwork package
	Building a rotating 3D graph and exporting 
it as a GIF
	Using the DiagrammeR package to produce a process flow diagram in Rstudio

	Chapter 5: Power Programming with R
	Introduction
	Writing modular code in RStudio
	Implementing parallel computation in R
	Creating custom objects and methods 
in R using the S3 system
	Evaluating your code performance using the profvis package
	Comparing an alternative function's performance using the microbenchmarking package
	Using GitHub with RStudio

	Chapter 6: Domain-specific Applications
	Introduction
	Dealing with regular expressions
	Analyzing PDF reports in a folder with the tm package
	Creating word clouds with the wordcloud package
	Performing a Twitter sentiment analysis
	Detecting fraud in e-commerce orders 
with Benford's law
	Measuring customer retention using 
cohort analysis in R
	Making a recommendation engine
	Performing time series decomposition using the stl() function
	Exploring time series forecasting with forecast()
	Tracking stock movements using the quantmod package
	Optimizing portfolio composition and maximising returns with the Portfolio Analytics package
	Forecasting the stock market

	Chapter 7: Developing Static Reports
	Introduction
	Using one markup language for all types of document – rmarkdown
	Writing and styling PDF documents with RStudio
	Writing wonderful tufte handouts with the tufte package and rmarkdown
	Sharing your code and plots with slides
	Curating a blog through RStudio

	Chapter 8: Dynamic Reporting with Web Applications
	Introduction
	Generating dynamic parametrized reports with R Markdown
	Developing a single-file Shiny app
	Changing a Shiny app UI based on 
user input
	Creating an interactive report with Shiny
	Constructing RStudio add-ins
	Sharing your work on RPubs
	Deploying your app on Amazon AWS with ramazon

	Index

