Supercharge
Power Bl

Power Bl is Better When You Learn To Write DAX

Matt Allington

Inside Front Cover - This page intentionally blank

Supercharge Power BI
Power BI is Better When You Learn to Write DAX

by
Matt Allington

Holy Macro! Books
PO Box 541731
Merritt Island, FL 32954

Supercharge Power Bl
© 2018 Tickling Keys, Inc.

All rights reserved. No part of this book may be reproduced or transmitted in any form or by any means,
electronic or mechanical, including photocopying, recording, or by any information or storage retrieval sys-
tem without permission from the publisher. Every effort has been made to make this book as complete and
accurate as possible, but no warranty or fitness is implied. The information is provided on an "as is" basis. The
authors and the publisher shall have neither liability nor responsibility to any person or entity with respect
to any loss or damages arising from the information contained in this book.

Author: Matt Allington

Layout: Jill Bee

Copyediting: Kitty Wilson

Cover Design: Emrul Hasan & Shannon Travise

Cover lllustration: Freepik

Indexing: Nellie Jay

Published by: Holy Macro! Books, PO Box 541731, Merritt Island FL 32954, USA
Distributed by: Independent Publishers Group, Chicago, IL

First Printing: January, 2018

ISBN: 978-1-61547-054-9 Print, 978-1-61547-237-6 PDF, 978-1-61547-360-1 ePub, 978-1-61547-131-9 Mobi
Library of Congress Control Number: 2017961952

Table of Contents

3T 4T [T o oo Y iv
1: Concept: Introduction to Data Modelling.......ccccuueiiiiiiiiiiiimniiiiiiiiiiiiinceniiinnsessseeniinessasssssssns 2
2: Concept: Loading Data......cccceiirieeemeeeiceiiriiiiennnnssseeessrereennnsssssessseeeesnnssssssssssseessnnnssssssssssssssnnnsssssssssanes 5
S 0T Lot o il 1Y == T N 23
4: DAX Topic: SUM(), COUNT(), COUNTROWS(), MIN(), MAX(), COUNTBLANK(), and DIVIDE()............ 32
5: Concept: Filter Propagationceeeeceiiiiiiiiieeecieiiiiireeenneseeesseseessnssssssssssessesnnsssssssssssessnnnnssssssssans 46
6: Concept: Lookup Tables and Data Tablescccceiiiieeiiiiiennniiiieneniiiieniieiienniennenniesnenessssnsssssennsss 51
7: DAX Topic: The Basic Iterators SUMX() and AVERAGEX()cccceeerrreiriiinisissssssssssssssssssssssssssssssssssssnnes 56
8: DAX Topic: Calculated COlUMNS.........uciiiiiiiiiecceeeeterrerenneeseeeeeereesnnnsssssesssseeesnnssssssssssssssnnnnssssssssnns 63
9: DAX TOPIC: CALCULATE() cuvuveueerererereresessssessssssessssesesssesesssssssssssessssesssssssssnssssnsssssssssensasssensasesssensns 66
10: Concept: Evaluation Context and Context Transition.......cccccceeeiiiniiiienieniiiiiiiniinieenieessee. 72
11: DAX Topic: IF(), SWITCH(), and FIND()ccoreevurerriiimeriisieeniiisnneiscsstessisssesssssssessssssssesssssssessssansens 78
12: DAX Topic: VALUES(), HASONEVALUE(), SELECTEDVALUE(), and CONCATENATEX() ...vevereevrrereerenenes 81
13: DAX Topic: ALL(), ALLEXCEPT(), and ALLSELECTED() ..cceveveueuereeremsessesesesessrssssssssssssssssssssssssessssans 89
14: DAX TOPIC: FILTER() cevecueeeiiiiieneiiinineniiiisesisisene s isssse s sssssse e ssssas e s s ssse s ssssssn e s sesan e s ssssnsessssssanessenns 102
15: DAX Topic: TiMe INteIlIENCE.....ccuiieereeecccceeeeeeeieeceeeeeeecrnennese e e e e eeennansssssssssseennnnsssssssssnessnnnnnns 112
16: DAX Topic: RELATED() and RELATEDTABLE()......cucueuiueeeeereriucsesesssssssesesssssesssssssssssssssssssssssssnsaes 135
17: Concept: DiscONNECted TabIEScciveeeiiiiiieiiiiieiiiiireneierrennneereennseereensseeeeennseessennseesssnnssesssnnnsesnes 139
18: Concept: Multiple Data Tables......ccccuuueiieieriiieiieiceieeeeeeeernnnseeeeeeeeeeennnssssssssssseennnnsssssssssssssnnnnnns 153
19: Concept: Using Analyze in Excel and Cube FOrmulascccccciiieeeiiiieniiiiienniiiiennccniennncennenneenne 159
20: Transferring YOUr SKills 10 EXCEl.....uuuiiiieiiiieeeiiiieieiiirenecereennecerrenneeeenensseesnenssesssenssssssnssssssansnnns 169
21: Next Steps 0N YOUr DAX JOUIN@Y ..u.ciiuuiiieuieinncirnesirnsssiasssresssnsessisssisnssssssssrssssssssssanssssssssssssssnessss 176
Appendix A: ANSWerS t0 PractiCe EXErCiSESccuuuiiiieeuiiiiimniiiienniiciiennieereensessennssessesnsssssssnsssssssnnsnns 178
Table of Here's HOW SECHONS.......ciiiiiiiumtiiiiiiiiiiiirtiee st sssssesere e sssssr e s s ss e asssseeeesnae 184

iv Supercharge Power Bl

Introduction

Power Bl is the latest and greatest in business intelligence (Bl) software. There are so many great things about
this Microsoft product that it is hard to know where to start. Perhaps one of the most important things to
note about Power Bl is that it is designed with business analysts and Excel users in mind. You do not need to
be an IT professional to be able to use this software well.

Power Bl has capabilities across four important phases of a business intelligence project:

¢ |t has a powerful data acquisition engine that helps a user fetch and load the data needed. The un-
derlying technology that supports data acquisition is called Power Query (accessed via the Get Data
menu), and the programming language is called M.

e It has a powerful data modelling engine that allows the user to model the loaded data to make it
more useful than it is in the raw state. The underlying technology that supports data modelling is
called Power Pivot, and the programming language is called DAX (short for Data Analysis Expressions).

e |t has a modern visualisation engine built using the latest technologies so you can build interactive
reports. The Power Bl visual engine has been open sourced so that anyone with the necessary skills
can build new visuals to use and share within Power BI.

e Finally, it has a framework that supports multiple ways to share data with others, including a cloud-
based web environment and native mobile apps. These tools make it easy to share reports and
dashboards with other people who need to see and interact with the data. The tool to share Power
Bl reports is called the Power Bl service, or PowerBl.com.

This book, Supercharge Power Bl: Power Bl Is Better When You Learn to Write DAX, teaches you the skills you
need to use Power Pivot (the modelling tool bundled with Power Bl) and the DAX language. Power Pivot brings
everything that is good about enterprise-strength Bl tools directly to you right inside Power Bl Desktop—and
without the negative time and cost impacts normally associated with big-scale Bl projects. In addition, it is
not just the time and money that matter. The fact that you can do everything yourself directly inside Power
Bl is very empowering. Analyses that you would never have considered viable in the past are now “can do”
tasks within the current business cycle.

It is worth pointing out that you can use Power Bl without learning Power Pivot. However, Power Bl is defi-
nitely better when you learn to write DAX. If you don’t invest time in learning DAX and Power Pivot, you will
be able to take advantage of only the basic capabilities of the Power Bl tool. Imagine being able to use only
the SUM () function in Excel. You would be able to produce only very basic and simplistic spreadsheets. Sim-
ilarly, with Power Bl, if you don’t learn the DAX language and how the Power Pivot engine works, you will be
limited to simplistic capabilities that restrict the value you can get from the tool.

There is another significant benefit to learning Power Pivot and DAX for Power BIl. These skills are fully
transferable to Excel. Although in this book you will be learning the DAX language using the Power Bl user
interface, you will be able to easily move these new skills into Power Pivot for Excel should you want to do
that. And who wouldn’t?

Supercharge Excel

Supercharge Power Bl: Power Bl Is Better When You Learn to Write DAX has been written specifically to
teach Power Pivot and DAX using Power Bl Desktop. | have written a sister book, Supercharge Excel: When
You Learn to Write DAX for Power Pivot. These two books cover the same basic content but with a different
user interface. Because the skills you will learn in this book are fully transferable to Power Pivot for Excel
and vice versa, you really need only one of these books to secure the required skills. However, if you want to
learn about the differences in the Ul and practice what you have learnt, then reading Supercharge Excel will
certainly help you cement your learning across the different Uls.

Why You Need This Book

I am a full-time Power BI consultant, trainer, and Bl practitioner. | have taught many Excel users how to use
Power Pivot and Power Bl at live training classes, and | have helped countless others online at various Power
Bl forums. This teaching experience has given me great insight into how Excel users learn Power Bl and what
resources they need to succeed. Power Bl is very learnable, but it is very different to Excel; you definitely

Introduction v

need some structured learning if you want to be good at using this tool. | have learnt that Excel users need
practice, practice, practice. The book you're reading right now, Supercharge Power Bl: Power Bl Is Better When
You Learn to Write DAX, is designed to give you practice and to teach you how to write DAX. If you can’t write
DAX, you will never be good at Power Bl or Power Pivot.

| refer above to Excel users, and that is quite deliberate. | have observed that Excel professionals learn DAX
differently than do IT/SQL Server professionals. IT/SQL Server professionals are simply not the same as Excel
business users. SQL Server professionals have a solid knowledge of database design and principles, table
relationships, how to efficiently aggregate data, etc. And of course there are some Excel users who also have
knowledge about those things. But | believe IT/SQL Server professionals can take a much more technical path
to learning DAX than most Excel users because they have the technical grounding to build upon. Excel users
need a different approach, and this book is written with them in mind. That is not to say that an IT/SQL Server
professional would not get any value from this book/approach; it really depends on your learning style. But
suffice it to say that if you are an Excel professional who is trying to learn DAX, this book was written with
your specific needs in mind.

Incremental Learning

| am an Excel user from way back—a long way back actually. I'm not the kind of guy who can sit down and
read a novel, but | love to buy Excel reference books and read them cover to cover. And | have learnt a /ot
about Excel over the years by using this approach. When | find some new concept that | love and want to
try, most of the time | just remember it. But sometimes | add a sticky note to the page so | can | find it again
in the future when | need it. In a way, | am incrementally learning a small number of new skills on top of the
large base of skills | already have. When you incrementally learn like this, it is relatively easy to remember
the detail of the new thing you just learnt.

It’s a bit like when a new employee starts work at a company. Existing employees only have to learn the name
of that one new person. But the new employee has to learn the name of every person in the entire company.
It is relatively easy for the existing employees to remember one new name and a lot harder for the new per-
son to start from scratch and learn all the names. Similarly, when you’re an experienced Excel user reading a
regular Excel book, you already know a lot and need to learn only a few things that are new—and those new
bits are likely to be gold. It is easy to remember those few new things because often they strike a chord with
you. Even if you don’t remember the details, the next time you face a similar problem, you’ll remember that
you read something about it once, and you’ll be able to go find your book to look it up.

Well, unfortunately for seasoned Excel users, Power Bl is a completely different piece of software from Excel.
It shares some things in common (such as some common formulas), but many of the really useful concepts
are very different and completely new. They are not super-difficult to learn, but indeed you will need to learn
from scratch, just as that new employee has to learn everyone’s name. Once you get a critical mass of new
Power Bl knowledge in your head, you will be off and running. At that point, you will be able to incrementally
learn all you want, but until then, you need to read, learn, and, most importantly, practice, practice, practice.

Passive vs. Active Learning

| think about learning as being either passive or active. An example of passive learning is lying in bed, reading
your Power Bl book, nodding your head to indicate that you understand what is being covered. When you
learn something completely new, you simply can’t take this approach. | read a lot of Power Pivot books early
in my discovery, but the first time | sat in front of my computer and wanted to write some DAX, | was totally
lost. What | really needed to do was change from a passive learning approach to an active approach, where
| was participating in the learning process rather than being a spectator.

Passive learning on its own is more suited to incrementally adding knowledge to a solid base. Passive learning
is not a good approach when you are starting something completely new from scratch. I’'m not saying that
passive learning is bad. It is useful to do some passive learning in addition to active learning, but you shouldn’t
try to learn a completely new skill from scratch using only passive learning.

How to Get Value from This Book

There are more than 40 “Here’s How” worked-through examples and more than 70 individual practices exer-
cises in this book. That gives you more than 110 opportunities to learn and practice. Make the most of these
opportunities to develop your skills; after all, that is why you purchased this book.

Vi Supercharge Power Bl

If you think you can get value from this book by reading it and not doing the practice exercises, let me tell
you: You can’t. If you already know how to complete a task and you have done it before, then just reading
is fine. However, if you don’t know how to do a task or an exercise, then you should practice in front of your
computer. First try to do an exercise without looking at the answers. If you can’t work it out, then reread the
worked-through examples (labelled “Here’s How”) and then try to do the exercise again. Practice, practice,
practice until you have the knowledge committed to memory and you can do it without looking.

Don’t Treat This Like a Library Book

When we were kids going to school, most of us were taught that you should not write in library books. And |
guess that is fair enough. Other people will use a library book after you are finished, and they probably don’t
want to read all your scribbles. Unfortunately, the message that many of us took away was “Don’t write in
any book ever.” | think it is a mistake to think that you can’t write in your own books. You bought it, you own
it, so why can’t you write in it? In fact, | would go one step further and say you should write in the reference
books you own. You bought them for a reason: to learn. If you are reading this book and want to make some
notes to yourself for future reference, then you should definitely do that.

But | guess | am forgetting the eBook revolution. | know you can’t write in an eBook, but | know you can
highlight passages of text in a Kindle, and | assume you can do something similar in other eBooks. You can
also type in your own notes and attach them to passages of text in many eBooks. There are lots of advantages
of eBooks, and the one that means the most to me is the fact that | can have a new book in front of me just
moments after | have decided to buy it.

Personally | find that eBooks are not a great fit as reference books. | prefer to have a tactile object so | can flip
through the pages, add sticky notes, and so on. But that is just me, and we are all different. | am sure there
are plenty of people in both camps. On the upside, eBooks are usually in colour, and printed books (like this
one) are more often in black and white. Whichever camp you are in—eBook or physical book—I encourage
you to write in this book and/or make notes to yourself using the eBook tools at your disposal. Doing so will
make this book a more useful, personalised tool well into the future.

There Are No Pivot Tables in Power Bl

In Microsoft Excel, the most common way to aggregate data for Bl-style reporting is to use a pivot table. But
there are no pivot tables in Power Bl. What’s worse (and confronting) is that there isn’t even a spreadsheet
grid for entering data on a page. Although Power Bl has no pivot tables, it does allow you to use matrixes. A
Power Bl matrix is very similar to a pivot table and is (in my view) the best visual to use when you are learning
to write DAX. Throughout this book, you will in many cases set up a matrix and then place your new measures
inside that matrix so that you can visualise the results of your work. Once you have seen that the results of
your measures are working as you expect, it is very easy to change the matrix into another type of visual to
better display the data.

Exercise Data

Itis surprisingly difficult to create your own database of meaningful data to use for data analysis practice. Think
about the data that exists in a commercial retail business, for example: customer data, finance data, sales
data, products, territories, etc. And it is not a simple task to create a meaningful quantity of realistic data from
scratch; it is a lot of work. Microsoft has created a number of sample databases that anyone can download and
use for free. | use a modified version of the Microsoft AdventureWorks database throughout this book, provid-
ed to you in Microsoft Access format. You can download a copy of it by going to http://xbi.com.au/learndax.
(Note that you do not need to have Microsoft Access installed to use this database.) This is the same sample
database | use in my live training classes.

AdventureWorks contains sample data for a fictitious retail bicycle company that sells bikes and accessories
in multiple countries. The data consists of the customers, products, and territories for the AdventureWorks
business, along with five years of transactional sales history. The examples | use in this book therefore focus
on reporting and analysis that would apply to a retail business, including such things as sales results, profit
margins, customer activity, and product performance.

Clearly, not everyone who wants to learn to write DAX will operate in a retail environment. However, the retail
concepts covered in this book should be familiar to everyone. So it doesn’t matter if your specific Bl needs

http://xbi.com.au/learndax

Introduction 1

are for something other than retail. The scenarios in this book are explained throughout, so you don’t need
to be a retail expert to complete or understand the exercises.

Getting Help Along the Way

Hopefully you will be able to complete the practice exercises in this book on your own. But sometimes you
might need to ask someone a question before you can move forward. | encourage you to become a member
of http://powerpivotforum.com.au and participate as someone who asks questions and also as someone
who helps others when they get stuck. Answering questions for other people is a great way to cement your
learning and build depth of knowledge. You will notice from the URL that this is an Aussie forum, but it is open
to everyone. At this writing, only 15% of all traffic at the forum is from Australia, with the balance coming
from more than 130 other countries around the world. | suggest that you sign up and get involved; your DAX
will be better for it.

You can find a subforum dedicated to this book at http://xbi.com.au/scpbiforum. In the unfortunate event
that there are errors in this book, you can go to this subforum for details.

How This Book Is Organised

I've organised this book to make sense to a new Power Bl user. The general structure of the chapters is as
follows:

e Each chapter title begins with either “DAX Topic” or “Concept.” The former type covers one or more
specific DAX formulas, including the syntax and usage; the latter type covers one or more principles
that you need to understand in order to be competent with Power BI. I've ordered the chapters so
that you can learn incrementally.

e Each “Concept” chapter starts with a description of the concept, and each “DAX Topic” chapter starts
with some information about the DAX language to help you understand the topic.

e Almost every chapter provides at least one worked-through example. When you see “Here’s How,”
you know you’re reading one of those, and it’s time to sit in front of your computer and follow along
with me as | explain the concept. See the "Table of Here's How Sections" on page 184.

¢ Almost every chapter includes a number of practice exercises that help you practice what you have
learnt. You will find guidelines to complete the exercises, and you can also find the answers at the
end of the book. | recommend that you complete the exercises first and only then look at the answers
to check that you got the correct results. This way you can cement the learning you are getting from
this book.

e DAXis a lot like Excel in that there is often more than one way to do something. If you do an exercise
differently than | show how to do it, as long as you get the correct/same answer, all is good.

Naming Conventions
This book uses best-practice naming conventions for Power Pivot and Power BI:
e There are no spaces in table names, like this:
TableName

e Columns in tables always include the table name followed by the column name in square brackets,
like this:

TableName [ColumnName]

e Measures never include a table name, they often include spaces, and they are wrapped in square
brackets, like this:

[MeasureName]

e Measure and column formulas are written with the formula name (without the square brackets)
followed by the formula, like this:

Total Sales = SUM(Sales[ExtendedAmount])

http://powerpivotforum.com.au/
http://xbi.com.au/scpbiforum

2 Supercharge Power Bl

1: Concept: Introduction to Data Modelling

The data modelling engine that is used inside Power Bl is the same one used in Power Pivot for Excel. Data
modelling is not a term that is often familiar to business users as it is normally the domain of IT Bl profession-
als. But this is no longer the case, thanks to the introduction of Power Bl and Power Pivot for Excel.

What Is Data Modelling?

Data modelling is the process of taking data from various sources; loading, structuring, and relating data
logically to other data; and enhancing, embellishing, and generally preparing the data for use. The objective
is to allow the data to be used without having to write a custom query every time you want to look at a
different subset of data.

The data modelling process includes:

e Determining the optimal structure and shape of the source data to analyse, including whether to
bring in all the data, full data, or summary data.

e Loading the data from the source into the data model (Power Bl in this case).

¢ Defining the logical relationships between the various tables (which is similar to what you do with
VLOOKUP () in Excel, except the data stays in the source table in Power Bl).

¢ Defining data types (e.g., specifying whether a column of data is numeric or a column of currency
values or a column of text fields).

e Creating new insights from the source data so that you can analyse concepts that don’t exist natively
in the source data but that can be calculated or created inside the data model. For example, if you
have a table of transactional data with cost price and sell price, you can extend the data model to
include calculations for margin, margin percentage, etc., even though these concepts are not explicitly
in the source data. Once you have modelled these new facts in the data model, they can be reused
over and over by people using your workbook.

e Giving meaningful names to your new business insights (i.e., to your measures).

When you learn the DAX language and join your tables of data in Power BI, you are actually learning data
modelling. The term can be a little bit scary, but there is no reason to be concerned. By the time you have
finished this book, you will be well on your way to being an accomplished data modeller using Power BI. Just
use the techniques covered in this book and keep in mind that what you are actually doing is learning to be
a data modeller.

Here’'s How: Getting Power BI Desktop

All the instructions in this book use Power Bl Desktop as the data modelling tool. To download this free tool,
follow these steps:

1. Navigate to http://powerbi.com and then go to the Products menu (see #1 below) and select Power
Bl Desktop (#2).

il Power Bl Desktop | Micre %

&« C | & Microsoft Corporation [US] | https://powerbi.microsoft.com/en-us/desktop/
B Microsoft Power Bl Pmducts‘-) Solutions Partners Learn

Power BI

C reate stun nir Power Bl Desktop @
Visualizations Power Bl Premium
Desktop Power Bl Mobile

Power Bl Embedded

http://powerbi.com

1: Concept: Introduction to Data Modelling 3

Note: At this writing, there are four other products shown above:
e Power Bl is the link to PowerBl.com
e Power Bl Premium is a capacity-based pricing model for large companies.
e Power Bl Mobile refers to the free Power Bl Apps for iOS and Android devices.

e Power Bl Embedded allows developers to build Power Bl reports directly inside their own custom
software.

2. Once you arrive at the Power Bl Desktop page, click the Download button.

DOWNLOAD LEARN MORE »

Advanced download options

Note: You need administrator rights on your PC to be able to install the software. Also note that
the default download is the 64-bit version of Power Bl Desktop. This is the best option for most
people. Power Bl Desktop 64-bit will work even if you have 32-bit Microsoft Office on your PC.
If for some reason you need the 32-bit version, you can click Advanced Download Options and
download it from there.

Updates to Power BI Desktop

Power Bl Desktop is constantly being updated, and new software updates are released every month. This
is great because each month you will be able to access new and exciting features developed by the team at
Microsoft. When there is a new version of Power Bl Desktop available for you to install, you will see a notifi-
cation in the bottom-right corner of the application, as shown below. You can simply click on this notification
to download the latest version—but note that you need to close Power Bl Desktop in order to complete the
installation.

al | £+ = | Untitled - Power Bl Desktop — m| %
Home Wiew Maodeling Matt Allingten a

o D DD E-/: * i |_—| E

Clipboard Get Recent Enter Edit Refresh Solution Partner Mew New From From Switch Manage '
@ Data = Sources = Data Queries ~ Templates Showcase Page~ Visual ':E" Store File Theme ~ Relationshi]
External data Resources Insert Custom visuals Themes Relationshi|

Visualizations ? Fields

==
ad &% [l 4y r

9o Ee

Filters

PAGE 1 OF 1 UPDATE AVAILABLE (CLICK TO DOWNLOAD)

4 Supercharge Power Bl

Note: One downside of Microsoft releasing new versions of Power Bl Desktop every month is
that it is inevitable that some of the screenshots in this book will look different to what you see
on your screen, given that you will have a later version of the software.

Windows App Store

In October 2017, Microsoft added Power Bl Desktop to the Windows App Store. To install from the App Store,
click the Windows button in the taskbar on your PC and then type store. Open the App Store and then search
for Power Bl Desktop.

S Store - O X
= POWERBI /O
Apps (14) 3 Showall

= —
Gl I |] =T
'] ' DATAZEN DATAZEN
Microsoft Power Microsoft Power Datazen Datazen Power Bl News INQsStats
Bl Bl Desktop *okk ok Publisher *okkkk Kok koA
KA KK Kk Kk KA Ak

Installed Installed Free Free Free Free

Note: In the image above, Microsoft Power Bl refers to PowerBl.com. Microsoft Power Bl Desktop
(the second app listed) is the software you need to install.

The advantage of installing from the App Store is that Microsoft will update the software automatically each
time there is a new version available. Note there may be an additional level of control from your IT depart-
ment that determines when the updates are available.

Power BI Pro vs. Power BI Free Accounts

Power Bl Desktop is a free data model authoring tool that is used to build data models and reports. After you
build a report, you can share it as a file with other Power Bl Desktop users (just as you can an xIsx file). Power
Bl Desktop can also publish your reports to PowerBl.com, where the reports can be easily shared with other
Power Bl users; this is the normal way to share.

You need a Power Bl account in order to use PowerBl.com. There are two types of Power Bl accounts: free
and Pro. A free account allows you to use most of the functionality of PowerBl.com, but there are some
notable exceptions. You cannot share your work with others other than public (unsecure) sharing, and you
can’t access the data by using Analyze in Excel or export to PowerPoint. If you want to share reports and
dashboards with other users, all users who want to be part of the sharing must have Power Bl Pro accounts.

2: Concept: Loading Data 5

2: Concept: Loading Data

The image below shows the data connector that appears when you connect to a SQL Server database. (There
is a different data connector for each data source. You’ll see how to get to the various data connector screens
later in this chapter.) There are two modes that you can use in Power Bl Desktop when loading data from a
database like SQL Server: Import and DirectQuery.

X

SQL Server database

Server (i

Database (opticnal)

Data Connectivity mode
® Import
DirectQuery

[- Advanced options

OK Cancel

Most data sources do not provide these two options and instead only allow you to use Import mode. This
book focuses on Import mode, which makes a physical copy of the data from the source and loads it into
Power Bl Desktop. When you use Import mode, Power Bl Desktop loads a complete copy of the source data
into the data model as the first step in the process. Once it’s loaded, you can share your pbix workbook with
others, and there is no need for anyone else to have direct access to the source data. Alternatively, you can
publish your reports to PowerBl.com and share the contents with others from there. When you publish a
report to PowerBl.com, a complete copy of the data is loaded into the cloud also, without the need for it to
access the source data.

When you load data, you have to decide which data to load, including which tables, which columns in each
table, etc. | call this the shape of the data. The following “Here’s How” shows how to load data that has been
prepared for you. But you need to be aware that the process of deciding which data to load is an important
part of the data modelling process, as discussed later in this chapter.

Here’'s How: Loading Data from a New Source

If you don’t already have a copy of the custom version of the AdventureWorks database used in this book, you
should download it now (from http://xbi.com.au/learndax), unzip it, and place it in a location that is easy for
you to find. You are going to start by loading the following tables from the AdventureWorks Access database:

e Sales

e Products
e Territory
e Calendar

e Customers

http://xbi.com.au/learndax
http://xbi.com.au/learndax

6 Supercharge Power Bl

The following steps show you how to load these tables and prepare them for use in Power Bl:

1. Open Power Bl Desktop. You should see a blank Power Bl Desktop file with a menu along the top,
as shown below.

ol | |5 & - = | Untitled - Power Bl Desktop

Home View Maodeling
Cut [m D D [- ‘ (1 al I Text box F |'*|]
. ® 7 ¥ b= 1 P ol

L_‘;. Image I
Paste . Get Recent Enter Edit Refresh Solution Partner New MNew From From Switch Manage New Publish
Format Painter Data~ Sources~ Data Queries = Templates Showcase Page~ Visual (EShEDﬁ' Store File Theme~ Relationships Measure
Clipboard External data Resources Insert Custom visuals Themes Relationships Calculations Share

From the home menu in Power Bl Desktop, select Get Data, All, Access Database (see #1 below) and
then click Connect (see #2 below).

X

Get Data
[— Y

Al 0 Ecel N
File B Tewcsy

Database B xma

Azure B3 sson

Online Services Folder

Other B SharePoint folder

1BM DB2 database

1BM Informix database (Beta)
1BM Netezza (Beta)

MySQL database
PostgreSQL database

Sybase database M

©)

co

3. Browse to the location of the sample database you downloaded and unzipped earlier and click Open.

Note: At this point, it is possible for things to go wrong, especially the first time you
load data from Access. The most common cause of problems is that you have 32-bit

Microsoft Office installed on your computer and 64-bit Power Bl Desktop. In that case,
you may see a message similar to this:

The Microsoft.ACE.OLEDB.12.0 provider is not registered on the
local machine. The 64-bit version of the Access Database Engine
is required to connect to read this type of file.

If this happens, | strongly recommend that you keep the 64-bit version of Power Bl Desktop as you

will need it to do any serious data processing with large data sets. You can solve the problem by

installing the missing data provider. For full instructions on how to do this, read my blog article at
http://xbi.com.au/3264.

4. Select the five views at the top of the list by placing a check mark in the box next to each one, as

shown below. The Navigator pane shows different icons for queries/views and for tables as can be
seen below.

http://xbi.com.au/3264

2: Concept: Loading Data 7

o X
Navigator
Select these 5 items P Territory (2
eviey . ded on Friday. 30 June 2017
Display Opfi De Preview downloaded on Friday, 30 June 20
entureWorks_Learn_To Write_DAX.accdb ... LE i, L) Region ELTii) Group
= lE| Calend I Northwest United States North America
alendar
= 2 Northeast United States North America
b'd Cust
0 Customers 3 Central United States North America
& lE' Products 4| Southwest United States North America
v lE| Sales 5 Southeast United States North America
v = Territary 6| Canada Canada Morth America
— rance rance urope
I Eu 7 F F E
ermany ermany urope
m & G G E
By . . A A
ustralia ustralia acific
| lcon Indicating a view S| Australi Australi Padifi
B d or query 10 United Kingdom United Kingdom Europe
B di 11 NA NA NA
A dimProduct
E dimProductCategory
E dimProductSubCategory
A dimTerritories
A fetSales
Icon indicating a table
Select Related Tables Load Edit Cancel

Tip: The sample data in this book has been well prepared for learning how to use Power BI. You
should not assume that your source database has the correct table structure for Power BI; in fact,
it seldom will.

Note: If you click the Edit button now, you will launch into the Query Editor (Power Query), where
you can transform the data prior to loading it into Power Bl Desktop. Power Query is beyond
the scope of this book, but | have a comprehensive online training course specifically designed
to teach you how to use this powerful tool. You can learn more about that training course at
http://xbi.com.au/powerquerytraining.

Also notice that the tables have names like dimProduct and fctSales, where dim indicates dimension,
and fct indicates fact. It is very common for database tables to have prefixes like this. Business users
can think of a dimension table as a lookup table and a fact table as a data (or transactions) table.
The fact that there are two different types of tables—lookup tables and data tables—is a very im-
portant concept in Power Bl, and you will learn a lot more about this as you work through this book.

It is best practice for Power Bl users to remove the dim and fct prefixes from the table names be-
fore importing these tables into Power BI. These prefixes have meaning to IT folk and help identify
the type of table, but given that these table names will be visible to business users who use your
Power Bl reports, it is best to remove the prefixes after import by simply right-clicking a table and
renaming it.

5. Click Load, and Power Bl Desktop loads your data. After the Table Import Wizard is closed, you see
the five tables you have just imported in Power Bl on the right side, as shown below. Each of the
tables is a complete copy of the data you imported from the source files (an Access database, in this

http://xbi.com.au/powerquerytraining

8 Supercharge Power Bl

example). You don’t need the source files again until you are ready to refresh the data—typically
when the data changes at some time in the future. This is one of the many great things about Power
BI: You can simply refresh the data when the data changes, and your workbooks are updated with
the new data.

al | H £+ = | Untitled - Power Bl Desktop — O *
Home View Modeling Matt Allington 0
8 B EZ [% & &g & &5

A Le A = [U
Clipboard Get Recent Enter Edit Refresh Solution Partner MNew New From From Switch Manage '
= Diata - Sources~ Data Queries = Templates Showcase Page = Visual CE' Store File Theme = Relationshi|
External data Resources Insert Custom visuals Themes Relationshil
Visualizations

Calendar
Customers
Products

Sales

Temritory

PAGE 1 0OF 1

6. Now switch to Data view by selecting the Data icon (see #1 above). In this view, you can see the data
in the tables.

7. In Data view, double-click the Territory table name on the right, as shown below, and rename it
Territories for consistency (e.g., naming all tables with plurals—except Calendar, of course).

Fields

Northwest United States North America
Northeast United States North America

Cents United Stat: North A i
entral ni es o merica Calendar

Southwest United States ~ Morth America =
ustomers
Southesst United States Narth America
Products

Canada Canada North America
France France Europe
Germany Germany Europe
Australia Australia Pacific

United Kingdom United Kingdom Europe
NA NA NA

8. The next stage of the data modelling process involves creating the logical relationships between the
tables. Switch to Relationships view by clicking the Relationship icon (see #1 below).

2: Concept: Loading Data 9
al | H 5 @ &~ = | Untitled - Power Bl Desktop — O ot
Home Modeling Matt Allington (7]

- ‘ A —]
s R E B s ¥ 9 =5 g
c. 7 & = A L_||;|
Clipboard Get Recent Enter Edit Refresh Solution Partner Mew New From From Manage Mey
= Data = Sources~ Data Queries ~ Templates Showcase Page = Visual CE Store File Relationships Meast
External data Resources Insert Custom visuals Relationships Calcul

X v

Territory Key
United States

United States

Naorthwest
Naortheast
Central
Southwest

United States
United States
Southesst United States
Canada Canada
France France

Germariy Germary

1
2
3
4
5
6
7
8
8

Australia Australia

[
=]

United Kingdom
NA

United Kingdom
NA

[
[y

9,
hidden tables.

North America
MNorth America
North America
North America
North America
Morth America
Europe
Europe

Pacific

Europe

MNA

Fields

Calendar
Customers
Products
Sales
Temitories
Country
Group
Region
Temitory Key

If you can’t see all five tables on the screen, click the Zoom to Fit button, shown below, to reveal the

al | | % @ &= = | Untitled - Power BI Desktop

File Home Modeling
=y M Cut I:B, D D E-l D * 6 j [E] Text box Eél
) sl -
Fa Copy O] A L5 [2 image
Paste N Get Recent Enter Edit Refresh Solution Partner New New From From Manage
¥ Format Painter pata~ Sources- Data Queries~ Templates Showcase Page - Visual (4 Shapes Store File Relationships
Clipboard External data Resources Insert Customvisuals Relationships

[Customers

CustomerKey

= GeographyKey

Name

BirthDate

E Calendar
bl »]
Date
2. DayNumberOfweek
DayName

[T Sales
ProductKey
OrderDate

3. OrderDateKey

Customerkey

= _

Calculations

[m] x

Matt Allington

g

Publish

iz
MNew
Measure

Share

= Products

ProductKey

X ProductSubcategory
ProductName

3 Standa

In the image shown here, three of the tables have automatically been joined. This is Power Bl guessing which
relationships should be used. These automatically created relationships may or may not be correct; in this

case, they are indeed correct.

10 Supercharge Power Bl

10. Position your tables so that any data table or tables (there is only one in this case) are at the bottom
of the screen and the lookup tables are at the top.

wl | [% @ &~ 5 | Untitled - Power Bl Desktop — O *
File Home Modeling Matt Allington ~ o
nie GREBE D € & Bwon =2

3
y Py E gy
ﬁ E@ Copy C ./J = ' ’__‘;,Image

Faste . . Get Recent Enter Edit Refresh Solution Partner MNew ew From From Manage New Publish

¥ Format Painter pata~ Sourcesw Data Queries~ Templates Showease Page~ Visual CEShﬁpﬁ Store File Relationships ~ Measure

Clipboard External data Resources Insert Custom visuals ~ Relationships Caleulations Share

1 Calendar [Customers [Products £ Territories

> D Customerkey ProductKey 3. Territory Key
Date ¥, GeographyKey ¥, ProductSubcategory Region

> DayNumberOfWeek Name ProductName Country
DayName BirthDate 3. standardCost Group

- ..

ProductKey
OrderDate
3 OrderDateKey

CustomerKey

|

Ll R R e

Once you’ve completed the preceding steps, you need to join the rest of the data table(s) to the lookup
table(s), as described in the following “Here’s How.”

Here’'s How: Joining Tables in Power BI Desktop

A customer table typically has a list of all customers that a business has on file. But some of these custom-
ers may have never purchased anything from the company, some customers may have made only a single
purchase, and some customers may have made many purchases. So for each entry in the Customers table,
there is either none, one, or many rows in the Sales table.

The Sales table can be joined logically to the Customers table by using the customer key (often called
customer number or ID). When these tables are joined on the customer key, there will be a one-to-many
(Customers-to-Sales) relationship between these two tables.

To join a lookup table to a data table in Power Bl Desktop, follow these steps:

1. Select a column from the data table (the table at the bottom of the Power Bl Desktop screen, as
shown below). To do this, click the OrderDate column in the Sales table and hold down the
mouse button (see #1 below).

2. Drag the column up and hover over the matching key in the lookup table (in this case, the Date
columnin the Calendar table; see #2).

3. Release the mouse button to complete the join.

2: Concept: Loading Data 11

al | | “ ¢ &~ = | Untitled - Power Bl Desktop - O X
File Home Modeling Matt Allingten [7]
e Wocut D D % ? D ‘ [Test box =

' = = g g
T Is) W]
E@ Copy O 'él L ' L_‘;. Image =l
Paste Get Recent Enter Edit Refresh Solution Partner Mew MNew From From Manage Mew Publish
s ;
¥ Format Painter pata~ Sources~ Data Queries~ Templates Showcase Page - Visual i shapes Store File Relationships ~ Measure
Clipboard External data Resources Insert Customvisuals ~ Relationships Calculations Share

[Calendar 7 Customers [Products £ Territories

XD 3 Teritory Key

9) Date
DayNumbe,

Customerkey
3 GeographyKey
Name

ProductKey

. Region
OrderDate ProductSubcategory q

TWveex Country

ProductName
>, StandardCost

DayMName BirthDate (€

~ o S -

3 OrderDateKey

Customerkey

bl P S

4. Complete the same process for the remaining tables. See if you can work out on your own which are
the correct columns to join before you look at the answers below:

Data Table Column Lookup Table Column

Sales ProductKey Products ProductKey
Sales CustomerKey Customers CustomerKey
Sales SalesTerritoryKey Territories TerritoryKey

Because these relationships are one-to-many, the joins are specifically single-directional. Always drag from
the data table up to the lookup table, not the other way around (as you would if you were writing a VLOOKUP

in Excel).

As you can see in the image below, there is an asterisk at the end of the relationship that points to the data
table, and there is a 1 at the end that points to the lookup table, and there is an arrow that points towards
the sale table (more on those arrows later).

[Calendar
> D
Date
>

DayMName

DayNumberOfweek

™ Customers

CustomerKey
¥ GeographyKey

Name

BirthDate

[Sales

[Products

ProductKey

ProductSubcategory
ProductMName
StandardCost

ProductKey
OrderDate

3 OrderDateKey

CustomerKey
IS

E Territories

Territory Key
Region
Country
Group

12 Supercharge Power Bl

By putting the data table at the bottom, you get a visual clue that the tables at the top of the screen are
lookup tables. (Get it? You have to “look up” to see the lookup tables.)

5. Save the Power Bl Desktop file

L ; il ¢ &4~ = | Untitled - Power Bl Desktop
by clicking the Save icon, shown
here, and specifying a suitable Home Modeling
name and location. ey ¥ oCut D D D [..'
-
Ly
l——LI E Copy © -‘ﬂ
Paste .] Get Recent Enter Edit
¥ Format Painter pata~ Sources~ Data Queries~
Clipboard External data

Shaping Data
It’s time to pause for a minute to discuss the optimal shape of data for Power Bl. When | say “shape” of data,

| am talking about things like how many tables you import, how many columns are in each table, which col-
umns are in each of the tables, etc.

Shaping data is a huge topic, and | don’t have room here to discuss it fully. But | do want to give some foun-
dational advice to get you started. One reason this advice is important is because the shape of data in trans-
actional systems (or relational databases) is seldom the ideal shape for Power Bl. When the IT department
executes an enterprise Bl project, one of the important first steps is to shape the data so it is optimal for
reporting. This step is normally completely transparent to the end user (i.e., you), and hence the end user is
shielded from the need to do this. But | am sharing this important information with you here and now because
you need to understand data shaping if you want to have efficient and effective Power Bl data models. Just
copying what you have in your source data is unlikely to be optimal.

Choosing a Schema (Table Structure)

The generally accepted approach to bringing data into Power Bl is to bring in the data in what’s known as a star
schema. This is a technical term that comes from the Kimball methodology (also known as dimensional mod-
elling; you can look it up online) and describes the logical way data should be structured for optimal reporting
performance. The objective of dimensional modelling is to allow the user to visualise the data without the
need to write a new query over the database for each report. The visual layout of the tables in the following
image (which includes exactly the same data you just imported) helps you see why it is called a star schema.

! Customers

Customerkey
>, GeographyKey
MName

BirthDate

[Calendar
]
Date
>, DayNumberOfweek

ProductKey E Territories
OrderDate Territory Key
3. OrderDatekey Region

CustomerKey Country

DayMame

~ _ PN

ColocTorciton . Group

[Products

ProductKey
5. ProductSubcategory
ProductName

Y StandardCost

2: Concept: Loading Data 13

In this schema, data tables (only one, Sales, in this example) are surrounded by lookup tables (Customers,
Products, Territories, and Calendar in this example), and together they visually make a star shape.
You can find more comprehensive coverage of this topic in Chapter 6.

The Visual Layout of Tables in Relationships View

When it comes to visually positioning tables in Relationships view, | teach business users to position the ta-
bles such that the lookup tables are located at the top of the window and the data tables are at the bottom
of the window (as shown below).

= Calendar = Customers [Products = Territories

I CustomerKey Productkey Territory Key
Date ¥ GeographyKey 2. ProductSubcategory Region
2. DayMumberOfweek MName ProductMName Country

DayName BirthDate 2. StandardCost Group

Lookup tables up above

ProductKey
OrderDate
5 OrderDateKey

CustomerKey

S Data tables down below

Note: There is no one correct way to shape your data, but the star schema is the recommended
approach and should be used where possible. While the optimum data model shape is a star
schema, other shapes work, too. For example, you can use a snowflake schema, with secondary
lookup tables joined to the primary lookup tables; however, the extra relationships can come at
the cost of degraded performance and possibly also confusion to users, particularly if they are
building their own reports.

If you compare the last two images, you will see that they both have exactly the same logical relationship
(links) between the tables: They are both star schemas, even though they have different visual layouts.

The visual layout in the second image, the one just above, is the one developed and recommended by Rob
Collie, and | call it the “Collie layout methodology.” The Collie layout methodology involves placing the look-
up tables at the top of the window and the data tables at the bottom. The importance of this for business
users learning Power Bl will become evident later in the book. For now, just trust me and do follow the Collie
layout methodology.

Understanding the Two Types of Tables: Lookup Tables
and Data Tables

In the IT world, lookup tables are referred to as dimension tables, and data tables are called fact tables. For
business users, though, | suggest using the terminology lookup tables and data tables.

A data table contains transactional information. In this book, the data table contains sales transactions. Lookup
tables contain information about logical groups of objects, such as customers, products, time ('Calendar"'),
etc.

Before Power Bl and Power Pivot, an Excel user needed to create one big flat table in Excel before creating
a pivot table. Often that meant writing VLOOKUP () formulas to bring other data from other tables into the
one allowed big flat table. It is no longer necessary to bring data from the lookup tables into the data tables
using VLOOKUP () . Instead, you can simply load the lookup tables and join them with a relationship.

14 Supercharge Power B

Lookup Tables

You should have one lookup table for each “object” that you need for reporting purposes. For example, in
the data being used here, these objects are customers, products, territories, and time (i.e., calendar). A key
feature of a lookup table is that it contains one and only one row for each individual item in the table, and it
has as many columns as needed to describe the object.

So there is only one row for each unique customer in the Customers table. The Customers table has lots
of columns describing each customer, such as customer number (key), customer name, customer address,
etc., but there is only one row for each customer. Each row is unique, based on the customer number, and
no duplicates of customer number (key) are allowed.

Data Tables

Itis possible to have many data tables, but there is only one in this example: the Sales table. This data table
contains lots of rows (60,000+ in this case) and all the transactional records of sales that occurred over several
years. Importantly, the data table can be joined to each of the lookup tables. In this case the Sales table
contains one column (technically called a foreign key) that matches each of the keys in each lookup table
(technically called a primary key). Stated differently, the Sales data table has four foreign key columns, a
date, a customer number, a product number, and a territory key. These columns allow the Sales data table
to be logically joined to each of the lookup tables.

Ideally, data tables should have very few columns but as many rows as needed to bring in all the data records.
Data tables normally have lots of rows (sometimes in the tens of millions).

The Shaping Bottom Line
When it comes to shaping data, you need to remember the following:

e There are two types of tables: data tables, which contain the data you want to analyse, and lookup
tables, which contain metadata about the objects you are going to analyse, such as the name, address,
and city of each customer.

e Therule of thumb is to load one table for each object. This is both efficient for the database to process
and easy for users to understand.

¢ The optimal way to shape your data is to use a star schema, but other schemas, such as a snowflake
schema, can work, too, though they may be less efficient.

e For business users, it is best to position tables in Power Bl Relationships view, using the Collie layout
methodology. (You’ll learn more about why you should do this in Chapter 5.)

Here’'s How: Making Changes to a Table That Is Already
Loaded

Say that you want to make changes to the Calendar table so that you only bring in dates for the years 2002
and 2003, and you also want to remove the fiscal date columns from the table. You can do this by using the
Query Editor. The following steps walk you through how to make changes like these to a table that is already
loaded:

1. In the fields list on the right (in Report view or Data view), right-click on the Calendar table and
select Edit Query.

2. In the Query Editor that appears, navigate to the CalendarYear column and click the drop-down
arrow (see #1 below).

2: Concept: Loading Data 15

al | B - B = | SuperCharge Power Bl - Query Editor — O b4
File Home Transform Add Column View o
=X D D D T D D:I Properties L ad] 2l ¥ % Data Type: Whole Number - ﬁ
() s | g =
uf (L) = [} Advanced Editor X zl it ™ Use First Row as Headers =
Close & MNew Recent Enter Data source Manage Refresh Choose Remove Reduce Split Group 3 Combineg
Apply~ Source - Sources~ Data settings Parameters~ Preview~ [] Manage ~ Columns = Columns = Rows = Column~ By < Replace Values -

Close Mew Query Data Sources Parameters Query Manage Columns Sort Transform

Queries [5] ki Query Settings
123 FiscalQuarter n 123 Fisy

|@ Calendar N] 4 PROPERTIES
2] Sort Ascending
% Customers

% Products
@ Sales

@ Territories

Name

Zl Sort Descending Calendar

4
Remove Empty APPLIED STEPS
Source

Mumber Filters > Navigation

(Select All)

2001]
™ 2002 @

% 2003
{2004

I, List may be incomplete. Load more

Cancel

15 COLUMNS, 999+ ROWS PREVIEW DOWMNLOADED AT 10:15 AM

3. Deselect the years 2001 and 2004 from the drop-down list (see #2 and #3 above) and then click OK.

4. Remove the three fiscal columns by first selecting them all using either the Shift or Ctrl keys (see #1
below) and then right-clicking on one of the selected columns and selecting Remove Columns (#2).

al | | & - i = | Super Charge Power Bl - Query Editor — m} X
File Home Transform Add Column WView o
H i [-4 . -
x D D D |:‘¥ ['i. D:Propertles L)(J Rl % Data Type: Whaole Mumber ﬁ
=t ' ** = Advanced Editor [Use First Row as Headers =
Close & MNew Recent Enter Data source Manage Refresh Choose Remove Reduce Split Group 1 Combine
Apply~ Source ¥ Sources™ Data settings Parameters~ Preview~ =] Manage ~ Columns * Columns = Rows * Column By 3 Replace Values -

Close Mew Query Data Sources Parameters Query Manage Columns Sort Transform

Queries [5] < = Table.SelectRows(_Calendar, each ([CalendarYear] = 2@82 or v Query Settings

= | 123 CalendarYear E FiscalQuarter FiscalYear
| @ Calendar

@ Customers
@ Products
E Sales

@ Territories

A=)

Remaove Columns o '

Remave Other Columns

(=R~

Add Column Frem Examples...

=]

Remove Duplicates

(=]

Remove Errors

=1

Replace Values...

Fill

=}

1
2
4
5
[
T
3
9

Change Type

=

Transform

(=R~}

Slolc olelc ole o oo ala ala
(=}
TR R e e P e e v R R R)

Merge Columns

=1

Sum

=1

Product

(=}

Group By...

R R R R N N R O R T

B A T O R *)

=]

Unpivot Columns

Unpivot Other Columns

15 COLUMNS, 730 ROWS. DOWMNLOADED AT 10:20 AM

Unpivot Only Selected Columns

Move 3

5. Click Close & Apply and then save the pbix workbook.

Note: When you are using the Query Editor as shown above, you are actually using Power Query
technology (the Get and Transform menu in Excel and the Get Data menu in Power BI). Using Power
Query is a big topic in its own right and is not covered in detail in this book. | recommend that you
refer to my online training course, at http://xbi.com.au/powerquerytraining, to find out more.

http://xbi.com.au/powerquerytraining

16 Supercharge Power Bl

Here's How: Deleting Steps in a Query

Now that you’ve seen how to make changes to a table that you have previously imported to the Power Bl
data model, you’re ready to get some practice. Go back and clear the filters you applied on the Calendar-
Year column because you need all the rows in the Calendar table for the practice exercises in this book.
Clearing the filters is quite easy to do:

1. Editthe queryforthe Calendar table as before, by right-clicking the table and selecting Edit Query.

Click the X next to the step Filtered Rows, as shown in the image below, to remove the step.

2
3. Click Close & Apply and then save the prX workbook.
H

al | @~ B = | Super Charge Power Bl - Query Edito — O *

Home Transform Add Column View o
=X D |:57_-, D I:B, [i D:I Properties I_>(J & ;l r I q % Data Type: Decimal Number ~ ﬁ
=t et ® [Z} Advanced Editor zl ™ Use First Row as Headers ~

Close & MNew Recent Enter Data source Manage Refresh Choose Remove Reduce Split Group Combine

1
Apply* Source T Sources ¥ Data settings Parameters~ Preview~] Manage ~ Columns * Columns ¥ Rows * Column~ By w3 ReplaceValues -

Clase Mew Query Data Sources Parameters Query Manage Columns Sort Transform

Queries [5] _ = Table.SelectRows(_Calendar, each ([Calendar¥Year] = 2882 or Query Settings

|@ ~ EE Date ﬂ 1‘~ DayNumberOfiWeek - AB DayName - 1‘~ DayNumberC
ooy 628 20/03/2003

EE Customers 629 21/03/2003

4 PROPERTIES

Name

-

Thursday
Friday

Saturday

"

ndar

-

R Products 3 630 22/03/2003
B sales 631 23/03/2003
@ Territories 3 632 24/03/2003
633 25/03/2003

634 26/03/2003

635 27/03/2003

636 28/03/2003

637 29/03/2003

638 30/03/2003

639 31/03/2003

104/

.

Sunday

—

Monday

.

Tuesday

4 Wedneaday

.

Thuraday

Friday

o e

Saturday

—

Sunday

.

Monday

—
R kR ke Ra R Ra R Ra Ry Ra Ry

Tuesday

£ Wednesday
Thuraday

Friday

20
aa
(]
aa
(]

o o G
| | | |
ke by Ra b

643

15 COLUMNS, i PREVIEW DOWMNLOADED AT 10:20 AM

Here’s How: Importing New Tables

In this exercise, you will use Get Data to bring in the ProductSubCategory table from the original Access
database and join it to your data model. Follow these steps:

1. On the Home tab (see #1 below), click Recent Sources (#2) and then select the AdventureWorks
Access database (#3).

- H & v = | Super Charge Power Bl - Power Bl Desktop

“ Home @ View Modeling
Cut I, . F -1
st [L () | B Lél

71_.' -
PR S

[Copy
Paste Get Recent | Enter Edit Refresh Solution Partner New
Format Painter pata~ |Sources | Data Queries~ Templates Showcase Page~ |
Clipboard Most Recent -~

@ AdventureWorks_Learn_To_Write_DAX.accdb 9)

2: Concept: Loading Data 17

Select the dimProductSubCategory table, as shown below, and click Edit.

o X
Navigator
£ dimProductSubCategory [
Display Options = [2‘ w downloaded on Friday, 14 July 2017
4 W AdventureWorks_Leam_To_Write_DAX.accdb [14] Fr RV g Y |Engisk
[E| Calendar ! 2|Ma
2 2| Rog
E Customers 2 /1o
[ﬁ Products r 4 Har
E Sales 5 5 Bat
3 Territory 6 6Bra
[Budget 7 7|chg
. & & Cra
[BudgetPeriod B oo
B dimCalendar 10 10| For
E1 dimCustomers 11 11 He:
B dimProduct 12 12 Mo
[dimProductCategory s 13|Peq
¥ E dimProductSubCategory = 14)Rox
15 1%|Sac
[dimTemitories 15 16/ Tou
E fctSales 17 17/ Wh
18 18 Bib
19 19 Carp
20 20 Glo
21 21 Jer:
22 22 Sh.:v
< >
Select Related Tables Load Edit Cancel

2. Remove the dimProduct prefix from the Name box on the right, as shown below, so you are left with
SubCategory and then click Close & Apply. Power Bl automatically connects the new SubCategory
table to the existing Products table.

il | [&~ i = | Super Charge Power Bl - Query Editor - [m] X
File Home Transform Add Column View o
=X Properties o 1 Data Type: Whole Number =
Lo [0 B[4 S o ¥ ®Ldh =g =

L DAdvanced Editor :l [Use First Row as Headers ~

Close & Mew Recent Enter Data source Manage Refresh Choose Remove Reduce Split Group 1 Combine

Applyr Source * Sources v Data settings Parameters= Preview = [0 Manage - Columns = Columns * Rows ™ Column~ By 3;ReplaceValues -
Close Mew Query Data Sources Parameters Query Manage Columns Sort Transform

Queries [6] = Source{[Schema="",Item="dimProductSubCategory"]}[Data] Query Settings

N ProductSubcategoryKey - 1;-'3 ProductSubcategoryAlternateKey - ABC EnglishProductSubcategoryMa
P Calendar PROPERTIES

Mountain Bikes

Customers Road Bikes Name

Products Touring Bikes dimProduct:

Sales Handlebars

Territories 5 Bottom Brackets

| E dimProductS

APPLIED STEPS
Brakes
Chains Source
Cranksets > Navigation

Derailleurs

L L T T N "R S

[

Forks

-
[

Headsets

Mountain Frames

[
Wby

Pedals

=
S

Road Frames

.
n

Saddles

=
Y

Touring Frames

8 COLUMNS, 3 i PREVIEW DOW|

18 Supercharge Power Bl

3. SubCategory is a lookup table of the Products table, so if you’re using the Collie layout methodology,
place the SubCategory table above the Products table, as shown below.

= Calendar £ Customers = SubCategory 1 Territories

3w § CustomerKey ProductSubcategory Territory Key
Date 3. GeographyKey ProductSubcategory Region

¥ DayNumberOfweek Name EnglishProductSubez Country
DayName BirthDate SpanishProductSubc Group

ProductKey
ProductSubcategoryt
ProductName

3 standardCost

[Sales

ProductKey
OrderDate
3 OrderDateKey

CustomerKey

4. Save the pbix workbook.

Note: Now that there is a second lookup table (SubCategory) connected to another lookup
table (Products), this is technically a snowflake schema. It will work, but it can be less efficient
than a star schema. In addition, this shape can be confusing to users of the report because it does
not follow the “one object, one table” rule; there are two tables that contain information about
products. It is not wrong to do it this way. It is just a guideline to try to build models that follow
the “one object, one table” rule where possible to keep things fast and easy to understand.

5. You won’t need this SubCategory table again, so you should now delete it. Just right-click the table
name in Report view or Data view and select Delete. The purpose of this exercise was simply to show
you how to add new tables of data, when needed.

Here’'s How: Changing the File Location of an Existing
Connection

It’s important to know how to move an Access database to a new location and then point the existing data
connection to the new location. You need to do this, for example, if you ever send a Power Bl workbook as
well as the data source to another user or if you need to change your file locations on your own computer.

The data connections you create in Power Bl are relative to your computer. When you send a Power Bl work-
book and data source to another user, that person will have to edit the data connection so that it will work
on his or her own PC.

Note: You need to follow the steps in this section only if you send both a workbook and a data
source to another user. But that is not normally what you do. Normally you just distribute a work-
book and not the data source.

2: Concept: Loading Data 19

To simulate what can happen when a file location changes, the first thing you need to do in this case is to
move the Access database to a new location so the existing query cannot find it. Then you can change the
file location of an existing connection. Follow these steps:

1.

2.
3.

In Windows Explorer, create a new folder.
Navigate to your Access database and move it into the new folder.
Try to refresh your queries (by clicking Refresh on the ribbon) and note that it doesn’t work, as
shown below.
X
f |
Refresh
b Calendar
= . e = ~
DataFormat.Error: Could not find file
‘AdventureWorks Learn To Wnte DAX.accdb',
8 Customers
Load was cancelled by an error in loading a previous table
L Products
Load was cancelled by an error in loading a previous table
5 Sales
Load was cancelled by an error in loading a previous table
b, Territories v
v ~ p—— | L R T -~ -~ - - b s
Close
Click Close.
On the Home tab, click Edit Queries (or right-click on one of the tables in the fields list and click Edit

Query there).

Note: The Query Editor keeps a cached copy of the data in the tables. When you first go into the

Query Editor, the tables may seem fine. If you click Refresh Preview, Refresh All, the Query Editor
will try to refresh the cache, and then you will see the resulting error messages.

6.

Click on Data Source Settings (see #1 below).

= Super Charge Power Bl - Query Editor

20 Supercharge Power Bl

7. Select the data source that relates to the Access database (#1 below), then click Change Source (#2
below).

Data source settings
Manage settings for data sources that you have connected to using Power Bl Desktop.

= Data sources in current file Global permissions

h chusers\matt\dropbox\book\adv. works_learn_to write daxaccdb | 9)

B
«

©)

Change Source Edit Permissions... Clear Permissions ™

Close

8. Locate the new file location using Browse (#1 below), then click OK when done.

Microsoft Access database

* Basic Advanced
File path

C:'\Userskmaﬁ"-,Dropb:nx‘\Ba:nk%.-'-'.dventureWorks_Learn_TD_Write_DAK.accdh{ Browse... 9)
Open file as

Access database -

¥ Include relationship columns

9) Ok Cancel

9. Click Close & Apply and then save the pbix workbook.

Here’'s How: Inserting a Matrix

The Power Bl report canvas is very different to what you are used to using in Excel. The report canvas looks a
lot more like a PowerPoint slide than like Excel. This can be quite confronting to Excel users who are getting
started with Power BIl. But the good news is that you will be comfortable with it in no time.

At this writing, there is no pivot table object in Power BI, but there is a matrix. A matrix is a very close sub-
stitute to a pivot table, and it is the best visualisation to use when you are starting out. There is also a table
visual that you can use. The table is similar to a matrix, but it doesn’t have an option to add a column. You
can explore the difference yourself by switching between the two visualisation types in a report.

There are several ways to insert a matrix into a report. | suggest that you do it like this:

1. Open Report view by clicking the Report icon (see #1 below).

2: Concept: Loading Data

21

LA~ 8-~
Home View Madeling Matt Allington (2]
. =z Bl === 3 t i il _iu] Teat bon y = e E [I_
i 5] lAas® | L -+ =i | i l&.
2 et o image It =
- G Recent Enter Edit Refresh Solution Paftner Mew New From From Switeh Mansge Mew Publith
Oata= Sowrces~ Dats Queries~ Tempiates Showcase Poge~ Visusl CHISMapes= Giore Fie Theme Relationships Measure~
Cl o 5 data Resources nsert Custem viuals Themes Relstionships Caleulations

Report icon

This is the Report canvas. It
looks a lot like PowerPoint!

PAGE 1 OF 1

o

Matrix lcon

Visualizations Fields

—— &

+ B Tertooes

Filters

ck once on a blank section of the report canvas (#2 above) and then click the Matrix icon (#3).

Wisual toals

View Drata / Drill

B3 B [

Get Recent Enter Edit Refresh
Data~ Sources~ Data Queries =

External data

Modeling Format

£ &

Solution Partner
Templates Showcase

ERy Copy
~ Format Painter

Clipboard Resources

©

PAGE 10F 1

Super Charge Power Bl - Power Bl Desktop

Saal
o~

Mew New

Page~ Visual i shapes ~

Insert

Text box
D;.Image I I

Matt Allington

Ev‘v

Switch
Theme *

=5

Manage
Relationships

i)
New
Measure =

From
File

From
Store

Custom visuals Themes Relationships Calculations

Visualizations Fields

Calendar
Customers
Products
Sales

Temitories

[m}

X
L]

wmY

Publish

Share

©)

22 Supercharge Power B
3. You now see a new matrix shell appear on the canvas (see #1 above). Note the fields list (#2) and
the Rows (#3), Columns (#4), and Values (#5) drop zones on the right-hand side. If you are experi-

enced using pivot tables in Excel, you will recognise this as being very similar to the Excel pivot table
experience.

Other Data Sources

In this book | teach you how to import data from the AdventureWorks Access database, but this is of course
just one of the many data sources that you may need to access. There are many other data source connec-
tors available in Power BI. To see a full list, simply click on Get Data, More, All. You can then see the full list
of currently supported data connectors in Power Bl, as shown below. Note that not all connectors are visible
in this screenshot.

=
Get Data
| | An
Al E== A
file B TexCsv
Database B xa
Azure (] Json
Online Services Folder
Other E} SharePoint folder

SQL Server database
@ Access database
SQL Server Analysis Services database
Oracle database
IEM DB2 database
IBM Informix database (Beta)
|BM Metezza (Beta)
MySQOL database
PostgreSQOL database

Sybase database

Connect Cancel

The general principle for importing data is the same for any data source you use: You simply select the appro-
priate data source and then follow the import wizard just as shown earlier in this chapter (see “Here’s How:
Loading Data from a New Source”).

Note: The process of shaping and cleaning the data from its source prior to loading can require
a significant amount of work, but that is a Power Query process and beyond the scope of this
book. Refer to my online training at http://xbi.com.au/powerquerytraining for more information.

http://xbi.com.au/powerquerytraining

3: Concept: Measures 23

3: Concept: Measures

Measures have been around for many years in the enterprise versions of Microsoft Bl tools, such as SQL
Server Analysis Services. Measures have now made it into the world of business users who want to learn to
create Power Bl reports. There is nothing confusing or hard to learn about measures. A measure is simply a
DAX formula that instructs Power Bl to do a calculation on data. In a sense, a measure is a lot like a formula
in a cell in Excel. The main difference, however, between a formula in a cell in Excel and a measure is that a
measure always operates over the entire data model, not over just a few cells in a spreadsheet. You’ll learn
more about this later, but for now you can just think of a measure as a formula that calculates a result from
the loaded data.

Techniques for Writing DAX Measures

Measures in Power Bl are always written in the formula bar, as shown below.

al | H £4 - = | Super Charge Power Bl - Power Bl Desktop

Home View kodeling
£ ¥ cut | &
N R E E bt ¥ %

[z Copy
Paste) Get Recent Enter Edit Refresh Solution Partner
Format Painter pata= Sources~ Data Queries~ Templates Showcase
Clipboard External data Resources

The formula bar is not visible unless you have a measure selected. When you select a measure, the formula
bar appears just below the ribbon, as shown above.

There are two ways you can start the process of writing a new measure in Power Bl:
e First, you can select the Modeling tab (see #1 below) and then click the New Measure button (#2).

al | H £4 - = | Super Charge Pows==BI - Power Bl Desktop

Home View Modeling o)
e Data type:
B |
Mew Me

Format:
Manage W Mew Sort by - B .
Relationships Measure Column Table Column ' do |Auto |

Relationships Calculations Sort Formatting

¢ | don’t recommend that you use this approach to create a new measure as it has one major problem:
Any time you create a new measure by clicking the New Measure button (see #1 below), the measure
is automatically added to whichever table you have selected in the fields list on the right (#2). It is far
too easy to place the measure in the wrong table when you use this approach. | therefore recommend
that you use the approach described next.

2+ 5 | Super Charge Power Bl - Power Bl Desktop - m] *
Home Wiew Modeling Matt Allington o
o Data type: Home Table: o
=5 ‘&g & 3 & Q
Format: Data Category: Uncategorized

Manage New Mew New Sort by Manage View as New Edit |*

Relationships Measure Column Table Column * 6o Auto .| Default Summarization: Don't summarize Roles Roles Group Group

Relationships Calculations Sort Formatting Properties Security Groups

Visualizations > Fields

» B Calendar
» B Customers
» B Products

24

Supercharge Power Bl

The second way to write a new measure in Power Bl is to right-click the table where you want to
store the measure (see #1 below). (Best practice is to store the measure in the table where the data
comes from. You'll learn more about this later.) Then select New Measure from the menu (#2) and
write the measure from there.

Mew measure
Mew column
Quick measures
Refresh data

Edit Query

Calendar

Customers

Fename Products

Delete Sales

Hide .
Temitories
View hidden

Unhide all

Caollapse all

Expand all

Here's How: Writing Measures

The approach to writing new measures described here is the best approach | have found to ensure that you
get the best possible outcome with the least amount of rework. Follow these steps:

1.

Create a new blank matrix (or use an existing one if you already have one set up from earlier). Make
sure that you have the matrix selected on the report canvas. You can see the drag handles (see #1
below) when the matrix is selected.

Add some relevant data to the rows in your matrix. For the sample database used in this book, |
suggest that you go to the Products table and place Products [Category] on Rows in the ma-
trix. To do this, select the Products [Category] column (see #2 below) and then drag and drop
the column into the Rows drop zone for the matrix (#3). Keep an eye out for the yellow dotted line
around the drop zone. When you see the yellow dotted line, you can release the column, and it will
be correctly placed in the matrix. You should always place measures in the table where the data
comes from. In this case, you write the measure [Total Sales], and the “data” you are using is in
the Sales [ExtendedAmount] column, which is in the Sales table.

Visualizations > Fields

; 9) Make sure you see : i » B Calendar

the yellow highlight = » B Customers
around the drop zone 4 B Products
' M Category ®
M Class
W Color

% DaysToManufa...
W > DealerPrice

Description

3: Concept: Measures

25

3. Right-click the Sales table (see #1 below) and select New Measure (#2).
Visualizations Fields
il
|
- "" B Calendar
- = r B Customers
Category D B Products

Accessories

Bikes

i 9 'New measure

Mew column

Clothing
Components .
. Quick measures
Refresh data

Edit Query

®

4. You now see Measure = appear in the formula bar at the top of the page, as shown below.
al | H R Visual tools Super Charge Pow
Home View Modeling Format Data / Drill
E@ |__I ﬂ !J Data type: Home Table:
E Format: - Data Categc
Manage MNew Mew Mew Sort by o g "
Relationships Measure Column Table Column $~9% + .¢i|Aute ;| Default Sum
Relationships Calculations Formatting
ﬁ a . _ 2

Note: The new measure has been given a default name, Measure, and an equals s

ign has been

automatically added. Also note that the entire text above Measure = is highlighted in blue, in-

dicating that it has been selected. The easiest way to proceed now is to simply type

over the top

of this text. Don’t waste your time and effort trying to “save” the equals sign and trying to edit
the word Measure. It is just not worth the effort. It is much faster to simply type over the top.

5. Inthe formula bar, type in the DAX formula Total Sales = SUM (Sales [ExtendedAmount])
and press Enter. Type it directly over the highlighted text Measure =.
6. Immediately click back into the formula bar (see #1 below) and apply the formatting $ (#2), Currency

General, and zero decimal places (#3) and then press Enter again. Get used to applying the format-

ting immediately so you don’t forget.

sl | H 8- - Wisual tools Super Charge Powse
Home View FModeling Format Data / Drill
E@ |__] ﬂ !J e Data type: Home Tabl
T
E w Format: 5 English [tustralia) = Data Catec
Manage Mew Mew Mew Sort by o
Relationships Measure Column Table Column $ h z’f:' éo |0 I Default Su
Relationships Calculations Sort Farmatting
W

m x W | Totzl Sales = SUT—‘.{Sal-EE[Ex:er‘ded.-—.mu:-L.Tt_]Il o.

26 Supercharge Power Bl

7. Check to make sure you still have the matrix selected by ensuring that you can see the drag handles
(see #1 below), navigate to the Sales table (#2), locate the new measure [Total Sales] (#3),
and drag and drop the measure into the Values drop zone for the matrix (#4).

Visualizations > Fields

1]
£
|

| . Calendar
r @) - -

Customers
Category i e
Accessories i] Sales
Bikes -
~ W CustomerKey
Clothing _
Components N = DiscountAmou...
W = EdendedAmo...
W = Freight
| I

W OrderDate
W = OrderDateKey
MW = OrderQuantity
B ProductKey
= ProductStanda...
B RegionMonthiD
W = SalesAmount
L - o erllEas e M = SalesOrderLine...
W SalesOrderMu...
W SalesTemitoryK..
N = TaxAmt
Total Sales
TotalProductC...
W = UnitPrice

Tip: Following this procedure will save you time because you will not have to go back and fix things
you missed. Practice doing it this way right from the start, and you will develop a good habit that
will serve you well in the future.

Your matrix should now look something like the one shown on the left below. You may want to increase the
font size of your matrix to make it easier to read, like the one on the right below.

Category Total Sales

Category Total Sales

Accessories £700,760

Bikes £28,318,145 .

Clothing $339773 Accessories $700,760
Total 529,358,677 -

ot Bikes $28,318,145

Clothing $339,773
Total $29,358,677

3: Concept: Measures

Here's How: Increasing Font Size

To increase the font size in a matrix, follow these steps:
1. Ensure that the matrix is still selected (see #1 below).
2. Navigate to the Format pane (#2).
3. Select Grid (#3).
4. Change the Text Size slider to an appropriate size or enter a new font size in the box (#4).

" (General

“ Matnx style @
| @
) E— i

— Vert grid off O—
Category | Total Sales

- Horiz grid off O—
Accessories $700,760 Row ..
Bikes $28,318,145 Outline color
| Clothing $339,773 ' outi. |1
Total $29,358,677 Texts.. |15

I
£

Imag...

Revert to default

“ Column headers

“ Row headers

28 Supercharge Power Bl

Avoiding Implicit Measures

You can add up the values in a column of numbers by dragging the column from a table (see #1 below) and
dropping it in the Values drop zone for the matrix (#2), as shown below. You can then see the column in the
matrix (#3). Note that you get the same answer this way as by using the measure [Total Sales].

4 B Sales
CustomerKey
r o — o Category
. @) - S . Freight
Category Total Sales ExtendedAmount o OrderDate
- o =L = OrderDateKey
Accessories $700,760 700,759.96 Pr::nﬁw
roductKey
Bikes $28,318,145 28,318,144.65 Total Sales > ProductStanda...
i Clothing $339,773 339,772.61 | ExtendedAmount :?:::OHTID
Total $29,358,677 29,358,677.22 Filters > SalesOrderline...

SalesOrderNu...
SalesTernitoryK...
Category(All) > TaxAmt

ExtendedAmount{All) Total Sales

Total Sales[All)

If you then click the drop-down arrow next to the column [ExtendedAmount] (see #1 below), you can see
a range of options for changing the default aggregation behaviour (#2).

Category Total Sales ExtendedAmount e W OrderDate
D plalg here B > OrderDateKey
Accessories $700,760 700,759.96 @ - ;’:ﬂ:ﬁt"
Bikes $28,318,145 28,318,144.65 Total Sales 5 ProductStanda...
| Clothing $339,773 339,772.61 e Rmovered
Total $29,358,677 29,358,677.22 Filters Fename

Conditional formatting 4

al level filters . |

Sum

Category(All}

Average

Extended Amount{All) Minimum

Total Sales(All) Maximum 9

| 9 - - | Count (Distinct) J
P i Count

Standard deviation

Variance

Median

When you do this, you create what | call an implicit measure (although Kasper de Jonge tells me this is not the
official name). This is not wrong, but personally | am not a fan of using implicit measures, and | recommend
that you avoid using them—for a number of reasons:

e The name of an implicit measure is not very helpful. Compare the name of this implicit measure,
[ExtendedAmount], with the name [Total Sales] that you provided when you explicitly wrote
the measure yourself. You can change the name of an implicit measure, but the name changes only for
the current visual (a matrix in this case). If you later add the same column again in a different visual,
you have to change the name again.

¢ No formatting is applied when you drag to create an implicit measure. Again, you can add the format-
ting, but you will have to do it each time you create an implicit measure.

e You can’t reference implicit measures inside other measures, so they have limited use.

e You won’t learn how to write good DAX if you always use implicit measures.

3: Concept: Measures 29

So do yourself a favour and don’t drag and drop your table columns. Of course, if you just want a quick look
at a field for some testing, then doing this is fine. But undo the change immediately after you have taken a
look. If you want to keep a measure, you should write it from scratch, using your DAX skills. It will be your
skill in writing DAX that will set you apart from other users of Power BI.

Here's How: Using IntelliSense

When you type in a DAX formula in the formula bar, | recommend that you learn to leverage the IntelliSense
tooltips that appear. Follow these steps to see how it works:

1. Type a function into the formula bar, as shown below, and you see the IntelliSense pop up to show
you the syntax of the function (on the first line) and also how the function works (on the second
line).

LEI ﬂ !J Data type: Home Table: 5

Format: 5 English [Australia) = Data Categon
MNew Mew Mew Sort by o . =
Measure Column Table Column $ - GIZI da [0 - Default Summ

Calculations Sort Formatting

W Total Sales = SUM
Ur{ColumniMame)

Adds all the numbers in a column.

e

) SUMMARIZE

i,

=

(&) SUMMARIZECOLUMNS

=
o

IS SUMX

i,

Tip: IntelliSense is your friend. Reading the information it provides will help you build your DAX
knowledge and skills.

2. ltis best practice in DAX to always type the table name before the column name. Power Bl has a very
good user interface that will help you do this. If you start typing the name of any column in your data
model, as shown in the example below, where I've typed ex, IntelliSense prompts you with the full
name TableName [ColumnName], as you can see here.

Tip: Always, always, always include the table name before the name of a column in your formulas.

Hame View Maodeling
< g D@ M e

Format: & English [Australia) -

Manage Mew Mew MNew Sort by - c "
Relationships Measure Column Table Column $ T OIZ' an |0 -

Relationships Calculations Sort Formatting

% o || Total Sales = SUM(
[g81] Sales[ExtendedAmount]

3. Simply use the up and down arrow keys to highlight the column you want from the list presented
by IntelliSense and then press Tab to select the column highlighted in blue. The table name is then
included automatically for you.

4. Finally, type) (a closing parenthesis) and press Enter.

Tip: Try to use the keyboard and not the mouse to select from the tooltips, particularly if the list
is short. This method may be slower for you to start with, but it will be faster in the long run if
you learn to do it this way.

30 Supercharge Power Bl

Here's How: Editing Measures

It is easy to go back and edit (or simply review) measures after you have written them. Follow these steps:

1. Find the measure you want to edit from the fields list on the right-hand side and click the measure
once to select it. The formula bar reappears at the top of the page.

2. Click in the formula bar and edit the measure as required.

Here's How: Adding Comments to Measures

Power Bl allows you to add notes and comments inside the measures you write. Follow these steps:
1. Select a measure from the fields list. It should then appear in the formula bar at the top of the page.
2. Expand the size of the formula bar by clicking the down arrow if needed (see #1 below).

Data type: Home Tabl
@ 2 3

Format: 5 English [Australia) =~ Data Cateq

Mew MNew Mew Sort by o "
Measure Column Table Column $ - || .00 - Default 5u
Calculations Sort Formatting
v | Total sales = SUM(Sales[ExtendedAmount])| 0}\,

3. Start a new line in the measure by pressing Shift+Enter.

4. Add comments as shown below. Use a double slash (//) at the start of a single-line comment and
use the /* */ pattern to create a multi-line comment, as shown below.

Data type: Home Tab
(@ 3 £

Format: 5 English [&ustralia) = Data Cate

Mew Mew Mew Sort by - "
Measure Column Table Column $ > S| * | .ol - Default 5
Calculations Sort Formatting
Total Sales = SUM(5ales[Extendedimount]) W

Jfthis is a comment
{/* this is
g multiline
comment */

When Something Goes Wrong as You Write DAX

At some point, you will start the process of creating a new measure, and something will go wrong. For one
reason or another, you will need to stop what you are doing and go and do something else. In cases where
you are partway through writing a formula but it is not finished, you can use the comments feature so that
you don’t have to scrap your measure.

Consider the following complex partially written measure (which is not from AdventureWorks).

Complex Measure = W
/¥ SUMK(Players,
COUNTROWS (
FILTER{
Tablel,

Tablel[Playing_Handicap] =
MAX(Handicaps[Possible Handicaps])
&% Tablel[PLayerID] = EARLIER(Players[PlayerID]

3: Concept: Measures 31

The formula shown in this example is not important; this example simply shows you what to do when you are
not finished writing a measure in order to avoid leaving it half written, going off and doing something else, and
forgetting to finish it. The easiest thing to do is to wrap the measure inside the multi-line comment indicators
/* */.This makes the entire measure a comment that can be stored in your table without throwing an error.

Here's How: Creating New Pages in Power BI

Power Bl has a tab section at the bottom of Report view where you can see the various pages you have cre-
ated. It is easy to create new pages by clicking the yellow plus symbol or by right-clicking any existing page
to create a duplicate (shown below).

Category Total Sales

Accessories $700,760

Bikes $28,318,145
Clothing $339,773
Total $29,358,677
Right-click Add new
to duplicate page

Page 1 £

An alternative to adding a new page is to duplicate an existing page. Duplicating is a great approach especially
in this case because it means you get a new page that already has one or more visuals (e.g., a matrix) that
you can use for the next exercise. You can also rename the pages to something more descriptive to help find
the exercises again later. You should duplicate instead of add new pages if you want to add similar visuals to
a new page.

32 Supercharge Power Bl

4: DAX Topic: SUM(), COUNT(),
COUNTROWS(), MIN(), MAX(),
COUNTBLANK(), and DIVIDE()

This chapter starts out with some basic DAX formulas to get you started. Most of the DAX functions in this
chapter accept a column as the only parameter, like this: =FORMULA (ColumnName) . The exceptions are
=COUNTROWS (Table) , which takes a table (not a column) as the parameter, and DIVIDE (), which | cover
later in the chapter.

All the functions in this chapter (except DIVIDE ()) are aggregation functions, or aggregators. That is, they
take inputs from a column or table and somehow aggregate the contents (differently for each formula).

Think about the column Sales [ExtendedAmount], which has more than 60,000 rows of data. You can’t
simply put the entire column into a single cell in a matrix because Power Bl can’t “fit” a column of 60,000
numbers into a single cell in the matrix.

The following example shows a DAX formula that uses a “naked” column, without any aggregation function.
This does not work when you’re writing a measure, as indicated by the error message.

|__I ﬂ !J Data type Home Table: Sales =
E Data Category: Uncategorized

Format
Mew Mew Mew Sort by -
Measure Column Table Column Y do Auto | Default Summarization: Don't summarize
Calculations Sort Formatting Properties
Test = Sales L

v A single value for column "BxtendedAmount” in fable "Sales’ cannot be determined. This can happen when a me

You have to tell Power Bl how to aggregate the data from this column so that it returns just a single value to
each cell in the matrix. All the aggregators in this chapter effectively convert a column of values into a single
value.

The correct way to write this measure is shown below.

LEI ﬂ !J Data type

Format: General =

Mew Mew Mew sort by o "
Measure Column Table Column $- 9% + ab|Auto 3
Calculations Sort Formatting

Test = SUM(5Sales[Extendedimount])

Did you notice that this example uses the table name and the column name in the formula? Remember that
this is best practice.

Note: Always refer to the table name and the column name when writing DAX. Never refer to a
column without specifying the table name first. Power Bl will do this for you automatically, but
you can delete the table name manually (accidentally or deliberately)—though you should not
do so! You will understand why | say this shortly.

Now IntelliSense Can Be Your Enemy, Too

It is worth mentioning at this point that sometimes IntelliSense can be your enemy. IntelliSense prompts
you with a list of the available functions, tables, columns, and measures only if you are writing the formula
correctly. This is very useful when you are doing it correctly because you get a list of the valid syntax. But
the downside is that it can be confusing if you can’t see the list of possible functions, tables, columns, and
measures that you are looking for and you don’t know why. If at any time when you are writing a formula

4:DAXTopic:SUM(),COUNT(),COUNTROWS(),MIN(),MAX(), COUNTBLANK(),andDIVIDE() 33

you can’t see the functions, measures, columns, or tables you are looking for, you should stop and check your
syntax. If the syntax is wrong, IntelliSense stops prompting you. Over time, you will learn to trust IntelliSense,
and you will learn to stop and check when it is not working as you expect it to.

Reusing Measures

One important capability in DAX is that you can reuse measures when writing other measures. Say that you
create a new measure called [Total Sales]. Once this measure exists in the Power Bl data model, it can
be referenced and reused inside other measures. For example, after creating the measure [Total Sales],
you could use the following formula to create a new measure for 10% tax on the sale of goods:

Total Tax = [Total Sales] * 0.1
Note that the new measure [Total Tax] is a calculation based on the original measure [Total Sales]
multiplied by 0.1.

It is good practice to reuse measures inside other measures.

Note: | did not add the table name in front of the measure name above. That is, | wrote [Total
Sales] and not Sales[Total Sales]. Although you should always add the table name in front
of a column (for example, Sales[ExtendedAmount]), it is best practice to omit the table name before
a measure. The reason for doing it this way is that a reader can look at Sales[ExtendedAmount]
and [Total Sales] and immediately tell that the first is a column and the second is a measure simply
by the existence (or not) of the table name.

Writing DAX

It’s time to start to write some DAX of your own to get some practice. When | say write, | mean sit in front
of your PC, open your workbook with the data from Chapter 1 loaded, and really write some DAX. Especially
if you have never written formulas using these functions, you should physically do it now, as you read this
section. Imagining yourself doing it in your mind is not enough.

If you haven’t already done so, go ahead and load the test data by following the steps in Chapter 1. Once it is
loaded and prepared, you are ready to create the new measures in the following practice exercises. The first
measure you will write is the same one from “Here’s How: Using IntelliSense” in Chapter 3.

Practice Exercises

Periodically throughout the rest of this book, you will find practice exercises that are designed to help you
learn. You should complete each exercise as you get to it. The answers to all these practice exercises are
provided in Appendix A.

Practice Exercises: SUM()

Try to write DAX formulas for the following measures without looking back at how it was done. If you can’t
do it, refer to Chapter 3 and then give it another go. Remember that you are here to practice! You can find
the solutions to these practice exercises"Appendix A: Answers to Practice Exercises" on page 178.

Write DAX formulas for the following columns, using SUM () .

1. [Total Sales]

You should have already written this measure earlier in this book. If not, write a new measure that is the total
of the sales in the ExtendedAmount column from the Sales table.

2. [Total Cost]

Create a measure that is the sum of one of the cost columns in the Sales table. This measure uses exactly
the same structure as the measure above, but it adds the cost of the product instead of the sales amount.
You can use any of the product cost columns in the Sales table; all the cost columns are the same in this
sample database.

34 Supercharge Power Bl

3. [Total Margin $]

Create a new measure for the total margin, which is total sales minus total cost. Make sure you reuse the two
measures you created above in this new measure.

4. [Total Margin %]

Create a new measure that now expresses the total margin from above as a percentage of total sales. Once
again, reuse the measures you created above. | don’t cover the DIVIDE () function until later in this chapter,
but you can try to work out how to use it by using the IntelliSense if you like.

5. [Total Sales Tax Paid]

Create another measure for total sales tax paid. Look for a tax column in the Sales table and add up the
total for that column.

6. [Total Sales Including Tax]

The total sales amount above excludes tax, so you need to add two measures together to get this total.

7. [Total Order Quantity]

This is similar to the other measures, but this time you add up the quantities purchased. Look for the correct
column in the Sales table.

How Did It Go?

As you worked through the practice exercises, did you do the following?

¢ Did you create a matrix first and put Products [Category] on Rows in your matrix? (Or did you
put something else on Rows, as appropriate for these measures?) This is best practice because it
enables you to you get feedback immediately after you write your measure; you can see the results.

¢ Didyouright-click the Sales table and select New Measure to start the process? Doing so guarantees
that the measure gets placed in the correct table, so you don’t lose it. Remember that you should
always put a measure in the table where the data is stored, so these practice measures belong in the
Sales table.

¢ Didyou reference all columns in your measures in the format TableName [ColumnName] (i.e., always
reference the table name)? Remember that you should never reference a column in DAX without
first specifying the table name; always use the table name and the column name. Power Bl makes
this easy for you most of the time.

¢ Did you immediately apply formatting to your measure after you wrote it?

¢ Did you use the keyboard and look at the IntelliSense when you typed the measures? Try not to use
the mouse. It may be faster for you now, but relying on the mouse will prevent you from getting faster
with the keyboard in the future. Learn to use the keyboard and follow the process covered in “Here’s
How: Using IntelliSense.”

Remember that the answers to all the exercises in this book "Appendix A: Answers to Practice Exercises"
on page 178. Try to avoid peeking at the appendix when you should be thinking and typing. If you do the
thinking now, you will learn how to do it, and that will pay you back in spades in the future.

Okay, it’s time to move on with a new DAX function.

The COUNT() Function

As you write the formula shown below using COUNT (), take the time to look again at how IntelliSense can
help you write DAX.

Remember that whenever you type a new formula, you can pause, and IntelliSense shows the syntax for
and a description of the function. The description includes some very useful information. For example, in
the figure below, the tooltip says that this function “counts the numbers in a column.” This gives you three
very useful pieces of information. You’ve already worked out the first one: It counts. In addition, this tooltip

4:DAXTopic:SUM(),COUNT(),COUNTROWS(),MIN(),MAX(), COUNTBLANK(),andDIVIDE() 35

tells you that the function counts numbers and also that the numbers need to be in a column. This should be
enough information about the COUNT () function for you to write some measures using it.

Total Number of Customers = CO _:'.Tl'l
COUNT(ColumnName)
Counts the numbers in a column.

Practice Exercises: COUNT()
Now it is time to write some DAX formulas using the COUNT () function. Find the solutions to these practice

exercises in "Appendix A: Answers to Practice Exercises" on page 178.

Note: Don’t forget to set up a matrix before you work the following exercises. A good approach
is to give the page in your last exercise a name, such as SUM, and then duplicate the page for this
next exercise, giving it the name COUNT. This way, you can easily look back at your work later for
a refresher. Whenever you set up a new matrix for a new exercise, make sure you have something
meaningful on Rows, such as Products[Category]. Look at the image in “How Did It Go?” after
these practice exercises if you are not sure how to set up the matrix.

8. [Total Number of Products]

Use the Products lookup table when writing this measure. Just count how many product numbers there
are. Product numbers and product keys are the same thing in this example.

9. [Total Number of Customers]

Use the Customers lookup table. Again, just count the customer numbers. Customer numbers and customer
keys are the same thing in this example.

How Did It Go?

Did you end up with the following matrix?

Category Total Number of Customers Total Number of Products
Accessories 18,484 35
Bikes 18,484 125
Clothing 18,484 48
Components 18,484 189
Total 18,484 397

If not, check your answers against those in"Appendix A: Answers to Practice Exercises" on page 178.

Note: The matrix above is a bit confusing because [Total Number of Customers] doesn’t seem to
be correct. It is returning the same value for every row in the matrix, and this is not something
you are used to seeing. But if you think about it, it actually does make sense. You are not count-
ing how many customers purchased these product categories; you are counting the number of
customers in the customer master table, and the number of customers doesn’t change based on
the product categories; the customers are either in the master table or not. (You’ll learn more
about this in Chapter 5.)

Did you get any errors that you weren’t expecting? Did you use the correct column(s) in your measures?
Remember from the tooltip above that the COUNT () function counts numbers. It doesn’t count text fields,
so if you try to count the names or descriptions, you get an error.

The COUNTROWS() Function

Let’s move on to a new function, COUNTROWS () . | prefer to use COUNTROWS () instead of COUNT (). It just
seems more natural to me. These functions are not exactly the same, even though they can be used inter-

36 Supercharge Power Bl

changeably at times. If you use COUNT () with TableName [ColumnName] and the column is missing a number
in one of the rows (for some reason), then that row won’t get counted. COUNTROWS () counts every row in
the table, regardless of whether all the columns have a value in every row. So be careful and make sure you
select the best formula for the task at hand.

Practice Exercises: COUNTROWS()

For these exercises, rewrite the two measures from Practice Exercises 8 and 9 using COUNTROWS () instead
of COUNT (). Find the solutions to these practice exercises in"Appendix A: Answers to Practice Exercises" on
page 178.

10. [Total Number of Products COUNTROWS Version]

Count the number of products in the Products table, using the COUNTROWS () function.

11. [Total Number of Customers COUNTROWS Version]

Count the number of customers in the Customers table, using the COUNTROWS () function.

How Did It Go?

Not surprisingly, for Practice Exercises 10 and 11, you should get the same answer you got with COUNT (),
as shown below.

Category Total Number of Customers COUNTROWS Version Total Number of Products COUNTROWS Version

Accessories 18,484 35
Bikes 18,484 125
Clothing 18,484 48
Components 18,484 189
Total 18,484 397

A Word on Naming Measures

You may have noticed that | sometimes use very long and descriptive names for measures. | encourage you
to make measure names as long as they need to be to make it clear what the measures actually are. You
will be grateful you did down the track, when you are trying to work out the fine difference between two
similar-sounding measures.

Here’'s How: Changing Display Names in Visuals
It is possible to change the display name of a measure or column once it is in a visual. Here are the steps:
1. Select the visual.
2. Find the measure or column in the Fields List Values section and click its down arrow (see #1 below).

3. Click Rename (#2). This renaming applies only to this single visual and does not change the actual
name of the measure or column.

Total Number of Custon

Remove field

Rename Q)

Total Number of Produc

Conditional formatting

Show value as

GLI ICK Measures

4:DAXTopic:SUM(),COUNT(),COUNTROWS(),MIN(),MAX(), COUNTBLANK(),andDIVIDE() 37

Here’'s How: Word Wrapping in a Visual

Changing the measure name is useful when you want a shorter name to appear in your visual. Sometimes
the name of a measure makes sense only in certain situations (i.e., in some visuals and not in other visuals).
For such situations, if you want to keep using a longer descriptive name but want to make it fit in a matrix,
you can turn on word wrap. To do so, follow these steps:

1. Make sure you have selected the matrix (see #1 below).
2. Navigate to the Format pane (#2).

3. Select Column Headers (#3).

4. Set Word Wrap to On by using the toggle (#4).

:ur@) » B Sales

+ B Temitories

2 Column headers @

Font color

Background color u -
Outline Bottom only ~
Auto-size... on —@
Font family Segoe Ul ~

Text Size oy O—
URL icon off O—
Word wrap @ off O—

5. Wrap the columns by hovering your mouse to the right side of the column header in the matrix and
then clicking and dragging the mouse to the left, as shown below.

Font color

Background color -

Outline Bottom only ~

Auto-size... on —@

Font family Segoe Ul v

Text Size

URL icon off O—

Word wrap

6. The following image shows the result of applying word wrap to the matrix from earlier in this chap-

ter.
by
Category Total Number of Customers Total Number of Products
COUNTROWS Version COUNTROWS Version
-~
Accessories 18,484 35
Clothing 18,484 48
Bikes 18,484 125

Components 18.484 189

38 Supercharge Power Bl

The DISTINCTCOUNT() Function

DISTINCTCOUNT () counts each value in a column once and only once. If a value appears more than once
in a column, it is still counted only once. Consider the Customers table. In this case, the customer key is
unique, and by definition each customer key appears only once in the table. (Keep in mind that customer key
= customer number.) So in this case, using DISTINCTCOUNT () with the customer key in the Customers
table gives you the same answer as using COUNTROWS () with the Customers table. But if you were to use
DISTINCTCOUNT () with the customer key in the Sales table, you would actually be counting the total
number of customers that had ever purchased something—which is not the same thing.

Practice Exercises: DISTINCTCOUNT()

To practice using DISTINCTCOUNT (), create a new matrix and put Customers [Occupation] on Rowsin
the matrix and [Total Sales] on Values. Then write the following measures using DISTINCTCOUNT ().
Find the solutions to these practice exercises in "Appendix A: Answers to Practice Exercises" on page 178.

12. [Total Customers in Database DISTINCTCOUNT Version]

You need to count a column of unique values in the Customers table. Go ahead and write the measure now.
When you are done, add the [Total Number of Customers] measure you created earlier to the matrix
as well. You should end up with a matrix like the one below.

Occupation Total Sales Total Customers in Total Number of
Database DISTINCTCOUNT Customers
Version
Clerical $4,684,787 2,928 2,928
Management $5467,862 3,075 3,075
Manual $2,857,971 2,384 2,384
Professional $9,907,977 5,520 5,520
Skilled Manual $6,440,081 4577 4577
Total $29,358,677 18,484 18,484
How Did It Go?

Did you get the same answer as above in the new measure? Did you remember to format the measure to
something practical (e.g., a whole number with thousands separators)?

13. [Count of Occupation]

Create a new matrix and put Customers[YearlyIncome] on
Rows. Then create the measure [Count of Occupation].

Use DISTINCTCOUNT () to count the values in the Occupation
column in the Customers table. You end up with a matrix like the
one shown here. The way to read this matrix is that there are cus-
tomers in three different occupations that have incomes of 10,000,
there are customers across four occupations that have incomes of $50,000

30,000, etc. $60,000
$70,000

$80,000
$90,000
$100,000
$110,000
$120,000
$130,000
$150,000
$160,000
$170,000
Total

Yearlylncome Count of Occupation

$10,000
$20,000
$30,000
$40,000

VI NN NN NN N WWWWWE B WW

4:DAXTopic:SUM(),COUNT(), COUNTROWS(),MIN(), MAX(), COUNTBLANK(),andDIVIDE() 39
Here's How: Applying Conditional Formatting

It is much easier to read a matrix if you apply some of the formatting features that come with Power BI. For
example, compare the matrix above left with the conditionally formatted version above right. | am sure you
agree that it is much easier to gather insights from the version on the right. Follow these steps to apply this
type of conditional formatting:

1. Make sure you have the matrix selected (see #1 below).

2. Go to the Format pane (#2), select Conditional Formatting (#3), and turn on the formatting effect
you want to use, such as Data Bars (#4).

Visualizations

r @) -

.. 1

Yearlylncome Count of Occupation

$10,000 N :
$30,000 = o
$50,000 3 \ Subtotals
$60,000 = 3
$70,000 3 v Grand total
1 $80,000 _ 3 I v Column formatting
$90,000 e
$100,000 = 2 PN T ———)
$110,000 : Count of Occupation .
$120,000 2
$130,000 = 2 Color sca... off O—
$150,000 2
$160,000 = 2 Databars (@) On —@
s170000 |G 2 s
Total 5
L _ r Vv Title off O—

v Background off O—

As you can see, using well-placed conditional formatting is a great way to make your matrixes easier to read
and helps the insights jump out.

40 Supercharge Power Bl

Practice Exercises: DISTINCTCOUNT(), Cont.

The following exercises give you more practice using DISTINCTCOUNT () . Find the solutions to these practice
exercises in "Appendix A: Answers to Practice Exercises" on page 178.

14. [Count of Country]

Create a new matrix and put Territories [Group] on Rows. Write a new measure called [Count of
Country], using DISTINCTCOUNT () over the Country column in the Territories table. This matrix,
as you can see below, shows you how many countries exist in each sales group.

Group Count of Country

Europe 3
NA 1
North America 2
Pacific 1
Total 7

15. [Total Customers That Have Purchased]

Create a new matrix and put Products [SubCategory] on Rows. Then, using DISTINCTCOUNT () on data
from the Sales table, create the new measure [Total Customers That Have Purchased]. If you hav-
en’t already done so, apply some conditional formatting to the matrix and then sort the column from largest
to smallest (by clicking on the heading). You can see below that Tires and Tubes has the largest number of
customers who have purchased at least once.

SubCategory Total Customers that have Purchased
Tires and Tubes |
Road Bikes = 6,397
Helmets 5,960
Bottles and Cages = 4,548
Mountain Bikes 4,089
Jerseys = 3,192
Touring Bikes 2,143
Caps = 2,132
Fenders 2,110
Gloves = 1376
Shorts 1,019
Cleaners = 875
Hydration Packs 719
Socks = 559
Vests 557
Bike Racks E 325
Bike Stands 243
Total 18,484

Here’s How: Drilling Through Rows in a Matrix

One of the features | really love about Power Bl is the ability to nest columns and then drill through. Let’s
look at how it works, using the matrix from above:

4:DAXTopic:SUM(),COUNT(),COUNTROWS(),MIN(),MAX(), COUNTBLANK(),andDIVIDE() 41

1. Make sure you have the matrix selected and then locate the Products [Category] columnin the
fields list (see #1 below).

2. Dragthe column to the Rows drop zone (#2). Take care to check for the dotted yellow line, as indicat-
ed below. This line tells you where the column will be dropped (above or below the existing column).

3. Dropthe Products[Category] column above the Products [SubCategory] column, as indi-
cated by the arrow below.

Visualizations > Fields

» B8 Calendar

» B Customers

Look for the
yellow line

. DaysToManut..
DealerPrice

4. Once you do this, the matrix changes in a few subtle ways, as shown below.

“Category Total Customers that have Purchased
-

Accessories [

Bikes 9,132
Clothing 6,852
Total 18,484
] f

5. Note there are three new icons at the top left of the matrix, and there is one new icon at the top
right. Also, if you right-click on a product category row (see #1 below), the submenu now has some
new menu items.

| g N (& e ~ = ...1

Category Total Customers that have Purchased
-

Accessories €

Bikes 9132
Clothing 6,852
Total 18,484

Include

Exclude

42 Supercharge Power Bl

6. All of these menus provide drill-through capabilities for the columns you have added to the Rows
drop zone in your matrix. Don’t get confused here; you add the columns from the tables to Rows in
your matrix (by stacking one on top of another), and then you can drill through. Spend a few minutes
trying out the various drill-through behaviours for each of these menus. You can drill down and drill
up through the matrix.

7. Now put 'Calendar' [CalendarYear] on Columns in your matrix and notice how the matrix
changes.

8. Go back to the conditional formatting settings for the matrix, turn off the data bars, and turn on
colour scales. You should end up with a matrix like the one below. (I have used the Expand to Next
Level drill-through feature in this matrix to get the nested layout shown below. This is very similar
to how a pivot table looks.)

Category 2001 2002 2003 2004 Total
Accessories 6,792 9,435 15,114
Tires and Tubes 3,76t - 8,490
Helmets 2541 3617 5960
Bottles and Cages 1,903 2744 4548
Fenders 879 1.236 2,110
Cleaners 376 509 875
Hydration Packs 300 425 719
Bike Racks 136 191 325
Bike Stands 117 129 243
Bikes 1,013 2,677 4875 5451 9,132
Road Bikes 840 2,062 2558 2369 6,397
Mountain Bikes 173 615 1,961 2094 4,089
Touring Bikes 824 1,332 2,143
Clothing 2,867 4,196 6,852
Jerseys 1316 1922 3,192
Caps 874 1,280 2,132
Gloves 567 829 1,376
Shorts 435 584 1,019
Socks 246 317 559
Vests 205 354 557
Total 1,013 2,677 9,309 11,377 18484

Tip: When you write these measures, remember to select the Sales table as the location to store
them. Remember that best practice says to put a measure in the table where the data comes from.
The easiest way to ensure that a measure is placed in the correct table is to start the process by
first right-clicking the correct table and then selecting New Measure.

Practice Exercises: MAX(), MIN(), and AVERAGE()

MAX (), MIN (), and AVERAGE () are aggregators. They take multiple values in a column as an input and re-
turn a single value to the matrix. In these next practice exercises, you will create new measures using these
aggregators. Find the solutions to these practice exercises in "Appendix A: Answers to Practice Exercises" on
page 178.

4:DAXTopic:SUM(),COUNT(),COUNTROWS(),MIN(),MAX(), COUNTBLANK(),andDIVIDE() 43

You should use the columns of data in the Sales table for these exercises. There are some additional pricing
columns in the Products table, but those prices are only theoretical prices, or “list prices.” In this sample
data, the actual price information related to a transaction is stored in the Sales table.

16. [Maximum Tax Paid on a Product]

Remember to use a suitable column from the Sales table and use the MAX () function.

17. [Minimum Price Paid for a Product]

Again, use a suitable column from the Sales table but this time use the MIN () function.

18. [Average Price Paid for a Product]
Again, use a suitable column from the Sales table but this time use the AVERAGE () function.

You should end up with a matrix like the one shown below.

Category Maximum Tax Minimum Price Average Price
Paid on a Paid for a Paid for a
Product Product Product
Accessories $12.72 $2.29 $19.42
Clothing $5.60 $8.99 $37.33
Bikes $286.26 $539.99 $1,862.42
Total $286.26 $2.29 $486.09

Note: Notice that when you add these measures straight into a matrix, you get positive immediate
feedback about whether your measures look correct. This is only a sense check, and you should
of course confirm that your formulas are correct as part of the process.

Here's How: Moving an Existing Measure to a Different
Home Table

If you have been following my advice, when you create a new measure, you first right-click on the table where
you want the measure to be placed, and then you select the new measure. However, even if you do it this
way, it is possible at some stage that you will end up with a measure being in the wrong table. This is fairly
easy to fix. Follow these steps to move a measure to a different table:

1. Locate the measure and select it. You can use the Search box at the top of the fields list, if necessary,
to find the measure.

Navigate to the Modeling tab (see #1 below)
. Select the Home Table drop-down list (#2) and select the correct table.
o HS &8 - = | Super Charge Power Bl - Power Bl Desktop

“ Home View Modeling 9‘) e

—r] e _— Data type Home Table: Sales ~
= LE = B
= = il Format: § English (Australia) ~ Calendar Categorized
Manage New New New Sart by o7 " ~
Relationships Measure Column Table Column $-%|2|dbi0 - Customers Han:bon larize
Relationships Calculations Saort Formatting T pperties
v Sales

Territories

44 Supercharge Power B

Practice Exercises: COUNTBLANK()

In the following exercises, you’ll use the COUNTBLANK () function to create a measure to check the com-
pleteness of the master data.

Create a new matrix and put Customers [Occupation] on Rows. Then start to write the new measure. In
these exercises, you need to create measures to find out two things:

¢ How many customers are missing Address Line 2 from the master data?
¢ How many products in the Products table do not have a weight value stored in the master data?

Find the solutions to these practice exercises in "Appendix A: Answers to Practice Exercises" on page 178.

19. [Customers Without Address Line 2]

The AddressLine2 columnisin the Customers table. As you write the measure [Customers Without
Address Line 2], be sure you do the following:
4. Select the table where you want to store the measure and be sure to add it there.
5. Give the measure a suitable name.
6. Start typing the measure. Pause after you have started to type the formula and read the IntelliSense
to see what the function does (if you don’t already know). As shown below, it does exactly what you
want it to do: It counts how many blanks are in this column.

View Modeling
| | i i Data type Home Table o
| | - . Ly
B Format: - Data Category: Uncategorized
New New Sort by = =1) Manage
re Column Table Column $~ % * .o|Auto T | Default Summarization: Dor Roles
Calculations Sort Formatting Properties Sec

Customers Without Address Line 2 =

- |
Counts the number of blanks in a column. r
i N

7. Complete the formula, apply the formatting, check the formula, and then save.

20. [Products Without Weight Values]

The column you need to use is in the Products table. You should end up with a matrix like the one shown
below.

Occupation Customers Products Without
Without Weight Values
Address Line 2
Clerical 2,878 122
Management 3,007 122
Manual 2,350 122
Professional 5440 122
Skilled Manual 4,497 122
Total 18,172 122

Note that the first measure, [Customers Without Address Line 2], is being filtered by the matrix (i.e.,
Customers [Occupation] on Rows), and the values in the matrix change with each row. But the second
measure, [Products Without Weight Values], is not filtered; the values don’t change for each row
in the matrix. You have seen this earlier in this book. The technical term for filtering behaviour in Power BI
is filter context. Chapter 5 provides a detailed explanation of what filter context is, and that will help you
understand what is happening here and why.

4:DAXTopic:SUM(),COUNT(),COUNTROWS(),MIN(),MAX(), COUNTBLANK(),andDIVIDE() 45

The DIVIDE() Function

DIVIDE () is a simple yet powerful function that is also known as “safe divide.” DIVIDE () protects you
against divide-by-zero errors in your visuals. A matrix, by design, hides any rows or columns that have no
data. If you get an error in a measure inside a matrix, it is possible that you will see lots of rows that you
would otherwise not see, and you will possibly also see some error messages. The DIVIDE () function is
specifically designed to solve this problem. If you use DIVIDE () instead of the slash operator (/) for division,
DAX returns a blank where you would otherwise get a divide-by-zero error. Given that a matrix will filter out
blank rows by default, a blank row is a much better option than an error.

The syntax is DIVIDE (numerator, denominator, optional-alternate-result) . If you don’t specify the alternate
result, a blank value is returned when there is a divide-by-zero error.

Practice Exercises: DIVIDE()

Create a new matrix and put Products [Category] on Rows. Then add [Total Sales] and [Total
Margin $] to the matrix so you have some data to look at. This helps set the context for the new measures
you will write next.

Write the following measures using DIVIDE (). Find the solutions to these practice exercises in "Appendix
A: Answers to Practice Exercises" on page 178.

21. [Margin %]

Write a measure that calculates the percentage margin on sales (Total Margin $ divided by Total Sales).
Reuse measures that you have already written.

Note: This is a duplicate of a measure, called [Total Margin %], that you wrote at the start of this
chapter. This time, however, you write the formula by using the DIVIDE() function and give it the
name [Margin %]. The result will be the same, of course.

22. [Markup %]

Find Total Margin $ divided by Total Cost.

23. [Tax %]

Divide the total tax by the total sales amount.

How Did It Go?

Did you format the last three measures as percentages, as shown below?

Category Total Sales Total Margin Margin % Markup % Tax %
Accessories $700,760 $438,675 62.6% 167.4% 8.0%
Bikes $28,318,145 $11,505,797 40.6% 68.4% B8.0%
Clothing $339,773 $136413 40.1% 67.1% 8.0%

Total $29,358,677 $12,080,884 41.1% 69.9% 8.0%

46 Supercharge Power B

5: Concept: Filter Propagation

In Chapter 4 we looked at the COUNT () function and saw some strange behaviour with the [Total Number
of Customers] measure. You need to understand the process of filter propagation before you can truly
understand what is happening there.

Consider the following matrix.

Category Total Number of Total Number of Products
Customers

Accessories 18,484 35
 Bikes , 18,484 125
Clothing 18,484 48
Components ' 18,484 189
Total 18,484 397

The result [Total Number of Products] in this matrix is displaying a different value for each product cat-
egory (i.e., each row in the matrix has a different number of products), but the value for [Total Number
of Customers] is the same for each product category in the matrix. The technical reason this happens is
because the row labels in the matrix (see #1 above) are “filtering” the products in the Products table in
the data model before this measure is evaluated. But these same rows (product categories) are not filtering
the Customers table at all.

A matrix “filters” data and then displays subtotals for each row in the matrix; that’s what it’s designed to
do. The filtering in a matrix is called the initial filter context—initial because it is possible to change the filter
context later by using the CALCULATE () function. (For more information, see Chapter 9.) So the initial filter
context is the standard filtering coming from a matrix (or any other visual) before any possible modifications
are applied from DAX formulas using CALCULATE () .

Cross-Filtering Visuals

So far in this book we have used only a single visual on a report page. Now is a good time to add a second
visual to the report canvas. Do you remember the process? After clicking on a blank section on the canvas,
click on the slicer visual (shown below) to add a new slicer to your report.

Visualizations

Category Total Number of Total Number of Products
Customers

Accessories 18,484 35

Bikes 18,484 125

Clothing 18,484 48

Components 18,484 189

Total 18,484 397

Tip: Before you try to add another visual to the report canvas, you should first click on a blank
area of the canvas to ensure that you don’t accidently have an existing visual selected. If you try
to add a new visual while you have an existing visual selected, the existing visual will be changed
instead of a new additional visual being added to the canvas. If you make a mistake, you can al-
ways click Undo, but it’s best to get into the habit of clicking on a blank area of the canvas before
adding a new visual.

After adding the slicer, locate and drag the Products [Size] column onto the slicer, as shown below.

5: Concept: Filter Propagation 47

Visualizations Fields

)

M & Products With...

M © ProductSubca...
W > SafetyStockle..
Size
SizeRange
> StandardCost
StartDate

The initial filter context in Power Bl comes from different areas of the matrix as well as other areas in the report:
e Rows (see #1 below)
e Columns (#2)
e Slicers (#3)
e Filters (#4)

"

5129@ Color Accessories Bikes 9) Clothing Total

(Blank) | Black $72,954 $8659,117 $106,341 $8,838,412

38 Blue $74,354 $2,169,056 $35687 $2,279,096 Category

40 Multi $106,471 $106,471

42 j NA o $435,117 $435,117

44 Red $78,028 $7,646,303 $7,724,331 S

46 Silver $40,308 §5,073,081 $5,113,389

48 White £5,106 $5,106 Eilters

- Yellow §4770,588 $86,168 $4,856,756

f‘;' Total = $700,760 $28,318,145 $339,773 $29,358,677 filt @
L - Category(All)

Color{All)

Total Sales(All)

In fact, with Power BI, instead of using the slicer (#3), you can use any other visual on the canvas to filter any
of the other visuals. In addition, from the Filters section (#4) you can choose a visual-level filter, a page-level
filter, or even a report-wide filter. There is a lot to look for when checking initial filter context in Power BI.

Reading the Initial Filter Context

The following matrix, which first appeared in Chapter 4, shows [Total Number of Customers] and [To-
tal Number of Products].

Category Total Number of Customers Total Number of Products
Accessories 18,484 35
Bikes 18,484 125
Clothing 18,484 48
Components 18,484 189

Total 18,484 397

48 Supercharge Power Bl

In Chapter 4 this matrix was a bit confusing because it had the same value for [Total Number of Custom-
ers] on every row in the matrix. Once you learn to read the initial filter context in a visual, you will be able
to make more sense of what is going on here.

Let’s step through the process of reading the initial filter context from this matrix. Before we do that, though,
you should add the [Total Sales] measure to the matrix so it looks as shown below.

Category Total Number of Customers Total Number of Products Total Sales
Accessories 18,484 35
Bikes 18,484 125 $28318,145
Clothing 18,484 48 $339,773
Components 18,484 189

Total 18,484 397 $29,358,677

Then point to the cell that’s highlighted in red above and say this out loud (really): “The initial filter context
for this cell is Products [Category] = Accessories.” Then point to the cell underneath the red-high-
lighted cell; this cell has an initial filter context of Products [Category] = Bikes. You can figure out the
rest based on this pattern. It is important that you learn to “read” the initial filter context from your visuals
because it will help you understand how each value in a visual is calculated. And it is important to refer to the
full table name and column name because that forces you to look, check, and confirm exactly which tables
and columns you are using in your visuals.

Understanding the Flow of the Initial Filter Context

Once you know what the initial filter context is, you can mentally apply the following steps to your data model
and track how the filters flow through relationships (though technically the filters propagate from one table
to another):

1. The initial filter context coming from the visual is applied to the underlying table(s) in the data
model. In this example, there is just one table involved, the Products table (see #1 below), where
Products [Category] = "Accessories". The Products table is filtered so that only rows in
the table that are equal to Accessories remain; all other rows are filtered so that they are not
in play. (Note that the initial filter context can impact more than one table, but in this example, it is
just the one table.)

2. The filter applied to the Products table automatically propagates through the relationship(s) be-
tween the tables, flowing downhill to the connected table(s) (see #2 below). The filters automatical-
ly flow from the “one” side of the relationship to the “many” side of the relationship, in the direc-
tion of the arrow; or you can think of the filters as flowing from the lookup table to the data table.
Whatever terms you use, it’s always downhill. This is one of the reasons it is good for beginners to
lay out the tables using the Collie layout methodology—with the lookup tables above and the data
tables below. This mental cue helps you instantly visualise how automatic filter propagation works.
(See “Shaping Data” in Chapter 2.)

3. The connected table, the Sales table, is then also filtered (see #3 below). (Remember that there can
be more than one connected table.) Only the products that are of the type Products[Category] =
""Accessories" remain in play in the Sales table, and all the other products are filtered away. This is
temporary—just for this calculation of this one single cell in the visual.

5: Concept: Filter Propagation 49

1 Calendar = Customers 2 Products g) = Territories
¥ Customerkey B Productkey 2 Tesitory Key
Date ¥ GeographyKey ¥ productSubcategory Region
¥ DayNumberOfweek Name ProductName Country

DayName BirthDate ¥ StandardCost

ProductKey
OrderDate

3 OrderDateKey
Customerkey

After the automatic filter propagation has been completed, then and only then does the measure get evalu-
ated. In this case, the measure is Total Sales = SUM(Sales[ExtendedAmount]). It returns the value $700,760
to the single matrix cell we started to look at in this example. This process is repeated for every single cell in
the matrix, including any subtotal and grand total cells.

Note: A subtotal and grand total are not the additions of the rows above. That’s not how it works.
Every cell goes through the same “filter, then evaluate” process described above, even if it is a
subtotal or grand total row.

Understanding Filter Propagation

Let’s look at another cell in the matrix. You always evaluate each cell on its own, without regard for any other
cellin the visual, even if the cell is a subtotal or grand total cell. All cells are evaluated using the same process,
without regard for any other cell in the visual (a matrix, in this example).

Look at the matrix below and read the initial filter context for the highlighted cell out loud: “The initial filter
context for this cell is Products[Category] = Clothing.”

Category Total Number of Customers Total Number of Products Total Sales
Accessories 18,484 35 $700,760
Bikes 18,484 125 $28,318,145
Clothing 48 $339,773
Components 18,484 189

Total 18,484 397 $29,358,677

The initial filter context filters the tables in the data model as follows:

1. The initial filter context is applied to the table(s). In this example, Products[Category] = "Clothing".
The Products table (see #1 below) is then filtered so that only rows in the table that are equal to
Clothing remain.

2. This filter automatically propagates through the relationships that exist between the tables, flowing
downhill only to the connected table(s) (see #2 below).

50 Supercharge Power Bl

3. The connected table (Sales in this example) is then also filtered so that the same products in the
Products table will remain in the Sales table (i.e., only clothing products will be unfiltered in the
Sales table) (see #3 below).

4. The filter applied to the Sales table does not automatically flow back uphill to the Customers table
(or to the other two tables, for that matter) (see #4 below). Filters only automatically propagate
through the relationships downhill from the “one” side of the relationship to the “many” side. The
arrow (see #4 below) indicates that the filters do not flow from the Sales table to the Customers
table.

= Calendar ™ Customers T Products g) = Territories
X CustomerKey B Productkey 2 Territory Key
Date ¥ Geographykey ¥ ProductSubcategory Region
¥ DayNumberOfweek Name ProductName Country

DayName BirthDate ¥ StandardCost

ProductKey
OrderDate

3 OrderDatekey
Customerkey

So the net result is that the Customers table is completely unfiltered by the initial filter context. Because
the Customers table is unfiltered, the total 18,484 is returned to the matrix in this cell (and the same is true
for every other cell for this measure in the current matrix).

Even if this doesn’t seem right to you yet, realise that it is working as designed. Understanding gives you
power, so stick with it until you are clear about how it works. Read this section a few times if you need to.
You will learn to love the way it is designed and will learn to make it work for you.

Tip: You simply must understand how filter propagation works in Power BI, or you will never be
really good at writing DAX. | suggest that you read this chapter multiple times, if necessary, to
make sure you are clear about it.

6: Concept: Lookup Tables and Data Tables 51

6: Concept: Lookup Tables and Data Tables

All the sample and exercise data in this book so far has been prepared for you; there has been nothing for
you to do except follow the instructions. But the simplicity of following my instructions shields you from a
deep and important topic: how you should structure the tables of data that you load. This chapter covers the
various types of tables you can load into Power BI.

This topic is easy to skim over and dismiss as trivial, but in my experience, it is one of the easiest things to
get wrong, particularly if you don’t know why it is important or how to do it properly. If you get the table
structure wrong, then everything else becomes orders of magnitude harder.

Tip: Don’t brush off this chapter as unimportant. You need to know this stuff if you want to pro-
ceed with speed and confidence, using your own data.

Data Tables vs. Lookup Tables

Two main types of tables are loaded into Power Bl: data tables (also called fact tables, or transaction tables)
and lookup tables (also called dimension tables, reference tables, or master data tables). These two types of
tables have some very important differences, as described in the following sections.

Data Tables

Although data tables don’t have to be the largest tables loaded into Power BI, they typically are. The Sales
table used in this book is a transactional table that contains details of individual transactions that occurred in
AdventureWorks retail outlets around the world. Every row in this table represents a line item on a register
receipt for an individual shopping transaction. Data tables can consist of millions (or even billions) of rows of
data. Some examples of data tables include Sales, Budget, Exchange Rates, General Ledger, Exam
Results, and Stock Count.

There is no limitation on how often similar transactions can occur and be stored in a data table. Consider a
burger chain selling burgers and fries. There could be literally hundreds of transactions each day that are all
but identical because the same type of burger can be sold many times on any given day.

Lookup Tables

Lookup tables tend to be smaller than data tables (with fewer rows) and often can be wider (with more
columns). Some examples of lookup tables include Customers, Products, Calendar, and Chart of
Accounts.

Lookup tables have a special feature that makes them different to data tables: A lookup table must have a
uniquely identifying code of some type to uniquely differentiate each row in the table. This unique code is
often called a key (or primary key, in the database world). Let’s consider the Products table used in this
book. AdventureWorks sells lots of different products—397 to be precise. Each of these products has a
unique product code, a three-digit number that is unique for that product. For example, ProductKey 212
is a Sports 100 Helmet, Red. No other product in the Product table has the same code. If you think about
it, this is the way it has to be; there would be chaos if a business used the same product code for different
products. The same is true for customers and store ID numbers. In fact, the same is true for the Calendar
table, given that the date field is a unique ID for each day in the calendar.

Flattened Tables

A good way to help you understand the importance of table structure and the different approaches you can
take to loading data is to talk about single large flattened tables. In the early days of Excel pivot tables (before
Power Pivot for Excel), you could only create a pivot table on top of a single table of data. If you wanted to
do some analysis over a table full of sales data, you could use a pivot table to aggregate the data.

52 Supercharge Power Bl

In the image below, the pivot table (see #2 below) has been built on the Sales table (#1), and the pivot can
easily add up the total sales for each of the products, as identified by the ProductKey.

Row Labels T|Total Sales

4

592 525,425 592 3/06/2004 13035 3 564.99
593 @ 522,035 592 3/06/2004 16684) 564.99
594 528,250 465 3/06/2004 11965 3 24.49
595 527,120 479 4/06/2004 16730) 8.99
596 525,920 482 4/06/2004 13643 3 8.99
597 526,460 595 6/06/2004 13036) 564.99
598 531,319 439 7/06/2004 18715 3 53.99
599 530,239 491 8/06/2004 19578 9 53.99
600 522,140 483 8/06/2004 13634 9 120
604 $194,396 484 9/06/2004 13668 9 7.95
605 $196,016 463 9/06/2004 12351 9 24.49
606 $208,436 541 9/06/2004 19623 9 28.99
Grand Total $837,755 578 9/06/2004 14262 9 1214.85

489 10/06/2004 17059 9 53.99

That is all well and good until your report needs some extra data that is not part of the Sales table. In the
image above, what would happen if you wanted to know the name of the product, or the product category,
or the subcategory, or anything else for that matter? Well, in the old days, you would find a Products table
somewhere, and then you would write a VLOOKUP (or INDEX/MATCH) to go and fetch the extra columns of
data that you needed for your reporting and bring it into the single Sales table. From there you could use
the new columns in your pivot tables. This process of bringing in the missing columns is called de-normalis-
ing. After you have de-normalised, your Sales table ends up looking something like the one below (but of
course it would be much bigger if you needed more columns).

ountain-500 Silver, 42 Mountain Bikes Silver 564.99
Mountain-500 Silver, 42 Mountain Bikes Silver 564.99

465 3/06/2004 Clothing Half-Finger Gloves, M Gloves Black 24.49
479 4/06/2004 Accessories Road Bottle Cage Bottles and Cages NA 8.99
482 4/06/2004 Clothing Racing Socks, L Socks White 8.99
595 6}’06}'20M0untain-500 Silver, 52 Mountain Bikes Silver 564.99
439 7/06/2004 Clothing Short-Sleeve Classic Jersey, M Jerseys Yellow 53.99
491 8/06/2004 Clothing Short-Sleeve Classic Jersey, XL Jerseys Yellow 53.99
483 8/06/2004 Accessories Hitch Rack - 4-Bike Bike Racks NA 120
484 9/06/2004 Accessaries Bike Wash - Dissolver Cleaners NA 7.95
463 9/06/2004 Clothing Half-Finger Gloves, 5 Gloves Black 24.49
541 9/06/2004 Accessaries Touring Tire Tires and Tubes NA 28.99

Do you spot the issue with the table above? The problem with a table like this is the duplication of data. Note
how the different product categories are repeated all the way down the Category column. The reality is
that for small tables of data (including lookup tables), such repetition doesn’t really matter much because
the overall file size will be quite small. However, if the table becomes large (millions or billions of rows), then
adding all these extra columns of information can become a big problem (literally). In the old days, you had
to bring all the relevant columns into the one table by writing one or more VLOOKUP columns to fetch the
extra columns needed. Power Bl is built differently, though. It doesn’t require you to bring all the columns
into the one table, and this makes everything easier and more efficient.

Note: The Power Bl data modelling engine is a columnar database that compresses the data it
loads. The details behind this are quite technical and beyond the scope of this book. However,
there are a couple of key points you should be aware of. The more unique values in a column, the
less the data will be compressed. In addition, the number of columns you have in your data tables
is much more important than the number of rows; that is, fewer columns and more rows is better
than more columns and fewer rows. This is particularly true for large tables.

6: Concept: Lookup Tables and Data Tables 53

Joining Tables by Using Relationships

A better approach to solving the problem of repetitive data is to keep the repeating data in separate subtables.
In the case of products, there is only one column of information that is needed in the Sales table to uniquely
identify every single product, and that is the product code (ProductKey). If the Sales table contains the
unique product key, it is possible to fetch any extra information needed from a product master table when it
is needed. So rather than requiring you to write a VLOOKUP to go and bring the product information into the
Sales table, Power Bl allows you to load both tables into the data model and create a single relationship
between them. Once the relationship has been created, the tables will work together as if they were a single
unit, without the need to inefficiently create duplicate data in the Sales table.

As mentioned briefly in Chapter 2, the structure of the tables and any relationships between them in a data
model is sometimes referred to as a schema. There are a few different classes of schemas, and the following
sections cover the most common types.

Star Schema

The image below shows the star schema structure used in this book. The Sales table (#1) is a data table
and is located at the centre of the star. The other tables (#2, #3, #4, #5) are lookup tables and are shown as
points on the star. This structure is called a star schema due to its shape.

™ Customers

Customerkey

3 GeographyKey

Mame

BirthDate

[Calendar
> ID

£

Date ProductKey £ Territories

DayMNumberOfweek OrderDate Territory Key

> OrderDateKey Region

CustomerKey Country

DayMame

 mll T e e ol e GrOUp

[Products

ProductKey
ProductSubcategory
ProductMame
StandardCost

However, as you learned in Chapter 2, you can reposition the tables any way you choose, and | recommend
using the Collie layout methodology, as shown below. You can see that the tables here are the same as in
the diagram above, but the layout is different. The layout has no impact at all on the way Power Bl operates,
but it does give you a visual clue as to which are the lookup tables and which are the data tables because
you have to “look up” to see the lookup tables. Also, in the old days, you would write a VLOOKUP to go and
fetch those extra columns, so there is another link to the past between the words VLOOKUP and lookup table.

54 Supercharge Power B

£ Calendar = Customers 1 Products 2 Territories

> ID Customerkey Productiey Territory Key

Date 3 GeographyKey 5. ProductSubcategory Region

¥ DayNumberOfeek Name ProductName Country

DayName BirthDate 3 standardCost Group

= .. . 2 m - e aoe .

Lookup tables up above

Productiey
OrderDate
5 OrderDateKey

CustomerKey

Salis Sl Data tables down below

Snowflake Schemas

Sometimes when normalising data into tables, there can be multiple levels of lookup tables. Consider the
image below. There is a single data table, Sales (see #1 below), and there are three lookup tables all chained
together in a row (#2, #3, and #4). Table #4 is a lookup table of table #3, which is a lookup table of table #2,
which is a lookup table of table #1.

0)

Category

[T ProductSubCategory

SubCategory
Category

= Products
Productkey
[sales \ ProductName
ProductKey X standardCost
OrderDate J Color

~ ..

CustomerKey

SalesTerritoryKey

This data structure is common in traditional transactional databases as it is the most efficient way to store the
data in those systems. However, this is not the best way to structure data in Power Bl. There are few reasons
this approach is not the best for Power BI:

e Everyrelationship comes at a cost. The extra relationships will potentially have negative performance
impacts on the database.

e Business users will be building reports using your database design, and they will see all the tables
in the data model. The structure above is confusing to and onerous on an end user who is trying to
understand.

e Power Bl was built from the ground up to be very efficient in the way it stores repetitive data in col-
umns, particularly in the smaller lookup tables, so there is simply no reason to do it as shown in the
image above.

6: Concept: Lookup Tables and Data Tables 55
Advice on Loading Your Own Data

There are a few things you can do to get off on the right track when it is time to build your own data models:

e Where possible, keep your data tables long and skinny. If necessary, get rid of extra columns of “data”
by unpivoting your data, particularly if a data table is very wide (i.e., has a lot of columns). Each ad-
ditional column of data compresses less well than the last one, which means long, wide data tables
can be a real issue.

e Move repeating attribute columns from your data tables and create lookup tables instead. But be
careful that you don’t overdo it. If a lookup table has only two columns (e.g., Key and Description),
then it may be better to drop the Key column and just load the description directly into the data table.

¢ If you have lookup tables joined to other lookup tables, consider flattening them out into a single
wider lookup table. This is generally a better design for Power BI.

Definitely do not just accept the table shape and structure coming from your transactional system.

Note: Transactional databases and reporting databases are not the same, so don’t try to use the
table structure from your transactional system in Power BI.

56 Supercharge Power Bl

7: DAX Topic: The Basic Iterators SUMX() and
AVERAGEX()

The functions covered in Chapter 4 are all aggregation functions. Each of those aggregation functions acts
on an entire column or table and uses a specific aggregating technique to return a single value to a cell in a
visual on a report.

Another class of functions can possibly return the same answers as the aggregation functions but using a
different approach. These “X-functions” (i.e., any functions that have an X at the end of the name) are part
of the family called iterators.

Iterators and Row Context

The main difference between iterators and the other functions we have looked at so far is that iterators have
what is called row context, which means that a function is “aware” of which row it is referencing at any point
in time. Rather than getting into a theoretical explanation, let’s move on to working with the iterator SUMX ()
and talk about row context as we use this function.

Using SUMX(table, expression)

SUMX () takes two parameters: a table name and an expression to evaluate. SUMX () creates a row context
in the specified table and then iterates through each row of the table, one row at a time, and evaluates the
expression for each row as it gets to it before finally adding together the interim results for each row. Row
context is a concept in DAX that involves creating “awareness” of the existence of the rows in the table so
a function can iterate through them one at a time until it has touched every single row once and only once.
You can think of row context as a checklist of all rows that SUMX () uses to keep track of where it is. SUMX ()
can work through the rows one at a time, metaphorically “checking off” each row to make sure none has
been missed. This row context exists only in certain DAX formulas, including the X-functions (discussed in this
chapter), calculated columns (see Chapter 8), and with Filter () (see Chapter 14).

To demonstrate the point, let’s look at how to write a new version of the [Total Sales Including Sales
Tax] measure. First, create a new matrix, put Products [Category] on Rows, and then write out this
measure:

Total Sales Including Tax SUMX Version
= SUMX (Sales, Sales[ExtendedAmount] + Sales[TaxAmt])

Notice that in this measure, you are not wrapping the columns in an aggregation function. In this case, you
are referring to “naked columns,” and that is perfectly okay inside an iterator. There is no need to wrap the
columns in an aggregation function when using an X-function (or any other function that creates a row con-
text). The way an X-function works is that it goes to the table specified (in this case, Sales), creates a row
context for it to use as a reference, and then takes each single row in the table, one at a time, and evaluates
the expression for that single row. Once it has created an interim result for each row in the table, it adds
together all the interim results.

As you can see illustrated below with the red box in the image, when
there is only one single row from the table in play, DAX is able to refer to
the exact intersection of each column referred to in the formula and the
specific row it is currently iterating over. Therefore, during each step of

the iteration process, the column names in the expression are actually i
only referring to a single value—the value that is the intersection of s e
the single column and the current row in the row context. 112049 89 6392
6999 55992
6999 55892
6999 55992
6999 55992
6999 55997

7: DAX Topic: The Basic Iterators SUMX() and AVERAGEX() 57

One row at a time, the single value in the Sales[ExtendedAmount] column is added to the single value of
the Sales[TaxAmt] column. After the first row is evaluated (and the result is stored temporarily in memory
for later), SUMX () selects a second row and does the same thing, then a third row and does the same thing,
and so on until it has iterated through every single row in the table, missing none. It iterates through every
single row once and only once (not necessarily in the order you see on the screen). When it has completed
this calculation for every single row in the specified table, it sums all the results together and returns a single
value to the matrix cell.

Note: | refer above to iterators working “one row at a time.” It is convenient to think of iterators
working in this way, and indeed that is the logical execution approach. In reality, though, the
Power Bl engine has been built and optimised to work very efficiently under the hood. In many
circumstances, the actual physical execution is much more efficient than is implied by “one row
at a time” logical execution. This is a very deep technical topic and is beyond the scope of this
book. The key thing to note is that you should not think that iterators are inherently inefficient
because the Power Bl engine optimisations can make the physical execution very efficient indeed.

Practice Exercises: SUMX()

Write the following measures for practice. Find the solutions to these practice exercises in "Appendix A:
Answers to Practice Exercises" on page 178.

24. [Total Sales SUMX Version]

Multiply quantity by unit price from the appropriate columns in the Sales table.

25. [Total Sales Including Tax SUMX Version]

Add the ExtendedAmount column together with the appropriate tax column in the Sales table.
26. [Total Sales Including Freight]

Add the ExtendedAmount column to the Freight cost.

How Did It Go?

Did you get the following matrix?

Category Total Sales Total Sales Total Sales
SUMX Version Including Tax Including Freight
SUMX Version
Accessories $700,760 $756,821 $718,281
Bikes $28,318,145 $30,583,596 $29,026,099
Clothing $339,773 $366,954 $348,267
Total $29,358,677 $31,707,371 $30,092,647

Make sure you are following these steps to minimise rework:

1. Put the measures in the correct table by right-clicking the target table and selecting New Measure.
(Do not select New Measure from the menu!)

Give the measure a meaningful name and include spaces in the name.
Apply suitable formatting immediately after writing the measure.

Write the formula and then check to ensure that it was written correctly by adding it to a matrix to
check your results.

27. [Dealer Margin]

Create a new matrix. You can select an existing matrix and then use Ctrl+C and Ctrl+V to copy and paste it as
a new matrix if you like. One benefit of doing this is that any formatting you have applied to your first matrix

58 Supercharge Power Bl

will be copied to the new matrix, which saves you time and effort. Put Product Category on Filters and
then select Accessories from this filter. Then put Product Name on Rows. You should have something
like what is shown below (though what is shown here is truncated). Note that | have used a filter from the
Visual Level Filters section to apply the filter on Product Category.

F ; E3 - E r » B Customers
ProductName . BR# ‘8 Podis
W B Average Safety...
. W Category
All-Purpose Bike Stand s
. . ProductMName ¥, Color
Bike Wash - Dissolver : > DaysToManufa..
Cable Lock o Przg the 3"_'”“’“
. opeusedina
Fender Set - Mountain . filter here
Headlights - Dual-Beam b W ModelName
o M ProductKey
| Headlights - Weatherproof | Filters B Productiine
. . Visual level! filters ProductName
Hitch Rack - 4-Bike oty L W Producs With.
HL Mountain Tire = Accessories —
Filter Type M 5 SafetyStocklevel
HL Road Tlre Basic filtering v N Size
. Select All M SizeRange
Hydration Pack - 70 oz. receories 35 W StandardCost
X) Bikes 125 W StartDate
LL Mountain Tire Clothing a8 _—
Components 189
H W SubCategory
LL Road Tlre W = Total Number...
Mlnlpump W E Total Number ...
. X . W = Weight
| ML Mountain Tire j b B Sales

Write a measure that shows the theoretical margin the dealer gets (i.e., the difference between the product
list price and the product dealer price). Both columns you need for this measure are in the Products table.
Did you get the answers shown below? (Once again, my matrix in the image below is truncated; it shows only
the first nine rows; in reality, it is longer.)

ProductName Dealer Margin "~
All-Purpose Bike Stand $63.60
Bike Wash - Dissolver $3.18
Cable Lock $10.00
Fender Set - Mountain $8.79
Headlights - Dual-Beam $14.00
Headlights - Weatherproof $18.00
Hitch Rack - 4-Bike $48.00
HL Mountain Tire $14.00
HL Road Tire $13.04

When to Use X-Functions vs. Aggregators

Now you know that you can use X-functions such as SUMX (), and you can also use aggregators such as SUM (),
and they do similar things but using different approaches. Which should you use? The following examples
will help you figure this out. The samples below are simplistic tiny tables for illustration purposes only. In real
life, tables of data are of course much larger.

Example 1: When the Data Doesn’t Contain the Line Total

If your Sales table contains a column for quantity (Qty in the image below) and another column for price
per unit, you need to multiply the quantity by the price per unit to calculate total sales (because the actual
total doesn’t exist at the line level in the table).

7: DAX Topic: The Basic Iterators SUMX() and AVERAGEX() 59

pate @ Product B aty B price Per unit B

1/01/2003 A 3 2.5
1/01/2003 B 1 6.8
2/01/2003 A 3 2.5
2/01/2003 C 3 3.5,

If this is the structure of your data, then you simply must use SUMX (), like this:
Total Sales 1 = SUMX(Sales,Sales[Qty] * Sales|[Price Per Unit])

In this example, you have to calculate the totals for each row first, one row at a time. This is what the iterator
functions are designed to do.

Example 2: When the Data Does Contain a Line Total

If your data contains a single column with the extended total sales for that line item, you can use SUM () to
add up the values:

Total Sales 2 = SUM(Sales[Total Sales])

1/01/2003 A 1.5
1/01/2003 B 6.8
2/01/2003 A 12.5
2/01/2003 C 10.5,

There is no need for an iterator in this example. Note, however, that you could still use SUMX () like this to
get the same answer:

Total Sales 2 alternate = SUMX (Sales, Sales[Total Sales])

Note: In the formula above, there is only a single column for the expression parameter: Sales[-
Total Sales]. This is a valid DAX expression, and it will work just fine. For each row in the iteration
of SUMX, the formula just takes the line-level total for this column. At the end, it simply adds up
all the values.

So Which Should You Use, SUM() or SUMX()?

Whether you use SUM () or SUMX () comes down to personal preference and the structure of your data.
For most data models, it will make little or no difference, so you can choose the one that suits you the best.
However, let’s take another look at the two approaches by looking at the examples from above. First, let’s
take another look at the table from Example 2 (see the previous image).

Every value in the column Sales[Total Sales] isunique (i.e., there are no duplicates). Assuming that the
real table is very large and has lots of unique values, this column would not compress well.

pate [Product B aty B price Per unit [

1/01/2003 A 3 2.5
1/01/2003 B 1 6.8
2/01/2003 A 3 2.5
2/01/2003 C 3 3.5,

Now look again at the table above again.

In this table, there are duplicate values in the Qt y column and also in the Price Per Unit column. Itis likely
that loading the data in this table (Example 1) will result in better compression than with the data in Example 2
because of these duplicate values in each column. In real life, data that compresses the best in columns often
is the most efficient. This may seem counterintuitive if you think about “iteration” as being a slow, row-by-row
evaluation—and it is understandable that you may think of it that way. However, the underlying Power Pivot
engine is optimised to work just as efficiently with SUMX () as it does with SUM () . (There are exceptions to
this rule, but that is quite a complex topic and beyond the scope of this book.)

60 Supercharge Power Bl

Avoiding Data You Don’t Need

One important point to note before moving on is that you should definitely not have all three columns as
shown across the previous two examples. It should be obvious that if you have quantity and price per unit in
a table, you can “calculate” the value of total sales any time you need it. Similarly, if you have total sales and
quantity in a table, you can calculate price per unit any time you like.

Generally speaking, you should not include in your data model columns of redundant data that can be calcu-
lated on-the-fly. Doing so increases file size and makes everything refresh more slowly. The general rule is to
bring in the minimum number of columns you need to do the job, and it is best to bring in the columns with
the lowest numbers of unique values where possible.

When Totals Don’t Add Up

There is another use case that requires you to use SUMX () or some other iterator. | have created a small table
of sample data (shown below) to explain the problem and show the solution.

Customer Spend per Visit Number of Visits

A 50 7
B a0 3
C 100 12
D 15 4

The table above shows four customers, with the average amount of money they have spent each time they
have shopped as well as the number of times they have shopped. If you load this data into Power Bl and then
use aggregating functions to find the average amount spent across all customers as well as the total amount
spent, you get the wrong answers, as shown below.

Customer Avg Spent per Total Number Total Spent Wrong
visit Wrong of Visits

A $50 7 $350
B $40 3 $120
C $100 12 $1,200
D $15 4 $60
Total $51 26 $1,333

The following measures are used above:

Total Number of Visits = sum(VisitData[Number of Visits])

Avg Spent per visit Wrong= AVERAGE (VisitData[Spend per Visit])

Total Spent Wrong = [Avg Spent per visit Wrong] * [Total Number of Vis-

its]
The first measure, [Total Number of Visits], is correct because the data is additive, but the other two
measures give the wrong results. This is a classic situation where you can’t perform multiplication on the
averages at the grand total level. Given the original sample data, the only way to calculate the correct answer
is to complete a row-by-row evaluation for each customer in the table, as shown below.

Customer Avg Spent per Total Number Total Spent SUMX
visit Correct of Visits

A $50.00 7 $350
B $40.00 3 $120
@ $100.00 12 $1,200
D $15.00 4 $60
Total $66.54 26 $1,730

The table above includes a SUMX() to find the total spent, row by row. Only then does the matrix calculate
the average spent per visit. Here is the complete set of correct formulas:
Total Number of Visits = SUM(VisitData[Number of Visits])
Total Spent SUMX = SUMX (VisitData,VisitData[Spend per Visit] * Visit-
Data [Number of Visits])

Avg Spent per visit Correct = DIVIDE([Total Spent SUMX] , [Total Number
of Visits])

7: DAX Topic: The Basic Iterators SUMX() and AVERAGEX() 61

Whenever you see that the totals in your visuals don’t add up, you should try to figure out what is happening
row by row in the visual that is not happening in the total row. Such a problem is always caused by some sort
of filter context provided by the rows in the visual that is not replicated in the total rows. You should look
at the visual and ask, “How can | simulate the row-by-row filtering that | see in the visual in the total row?”
When you answer that question, you will know how to solve the problem of totals not adding up, normally
using an iterating function like SUMX ().

Avoiding Too Many Calculated Columns

Now is a good time to talk about the most common mistake | see Excel users make when moving to Power
Bl. The formulas we have been writing using SUMX () can also be written directly into a calculated column in
a table. But this normally is the wrong way to do it. Let me explain why.

To write a calculated column, right-click on the table that should receive the new column and then select New
Column. You could rewrite the [Total Sales Including Tax SUMX Version] measure as a calculated
column as shown here:

Total Sales Plus Tax Column = Sales[Extendedimount] + Sales|[Taxfmi(]

Before we move on, let me point out something with regard to the syntax of the above calculated column
and the measure [Total Sales Including Tax SUMX Version]. Here are the two formulas:

Total Sales Plus Tax Column

= Sales[ExtendedAmount] + Sales[TaxAmt]

Total Sales Including Tax SUMX Version

= SUMX (Sales, Sales[ExtendedAmount] + Sales[TaxAmt])

Take a look at the part of the two formulas highlighted in bold. This section is identical in the two formulas;
it adds together the values in these two columns while iterating in a row context. What is different with the
SUMX () function is that there is an additional parameter that specifies which table SUMX () should iterate
over. This extra parameter is not required in a calculated column because the column is physically placed in the
table itself. In other words, a calculated column is an iterator that iterates over the table in which it is placed.

A calculated column has a row context—just like SUMX () —and as a result, it is fine to refer to naked columns.
Just as with SUMX (), the calculated column has a row context and iterates over the rows in the calculated
column one at a time. At each step in the process, there is only one row in play, and hence each column has
only one possible value for each row iteration step. So you end up with a column of data like the one below,
with the calculated total for each row stored in the column.

Ext ended Amount TanAumt Total Sales Plus Tax Column

24 95 1.9992 526.99
24 99 1.9992 526.99
539.59 431992 558319
LECEEN 471997
53995 431992 558319

But there is one big problem with this approach—and | do mean BIG. The problem is that a calculated column
always evaluates every row and stores the answer in the workbook as a value in the column in the table. This
takes up space in the workbook. What’s more, the compression applied to calculated columns is reportedly
not as good as for imported columns, and hence the data could be stored less efficiently in the workbook.
Now compare this to the SUMX () measure created earlier. The measure [Total Sales Including Tax
SUMX Version] does not store any values in your workbook other than values needed to display in any
visuals in your Power Bl workbooks. If your Sales table has 60,000 rows of data, it probably doesn’t matter.
But if your Sales table has 50 million rows of data, it definitely will matter.

People with an Excel background tend to gravitate toward writing calculated columns rather than writing
measures because that’s what they’re used to doing. They are used to living in a spreadsheet world, where
they have lots of rows and columns and can refer to them in calculations. Writing measures in DAX is a dif-
ferent experience because you don’t get to “see” the data table in front of you when you’re writing the code.

62 Supercharge Power Bl

Instead, you have to visualise in your mind what you are doing. This is why | recommend creating a matrix to
get immediate feedback after you write your formulas; it helps you visualise the result.

My number-one piece of advice for now is that you shouldn’t write calculated columns unless you have no
other option and you know why you need them. You’ll learn more about calculated columns and when to
use them in Chapter 8. Until then, you should assume that using a calculated column is not a good approach
unless you know from experience what the exceptions are—and you will learn this with time and experience.

Are You Writing Your Measures Correctly?

It’s time to practice using some new functions. Before you get into the following practice exercises, here is a
refresher on the process you should use to write all your measures:

1. Create a new matrix on a new sheet.

Put Products[Category] on Rows.

Right-click the table where the measure will be stored and select New Measure.
Give the measure a descriptive name.

oA W

Start typing the function and pause so you can read the IntelliSense description of the function and
the syntax, as shown below.

Measure = AVERAGEX(]
AVERAGEX(Table, Expression)

Calculates the average (arithmetic mean) of a set of expressions evaluated
gver a table.

339999 2713

6. Immediately after writing the function, click back into the formula bar and apply any formatting you
want to use.

7. Add the measure to your matrix so you can see the results.

Practice Exercises: AVERAGEX()

Set up a new matrix and put Products [Category] on Rows. Then write the following measures using
AVERAGEX (). Find the solutions to these practice exercises in "Appendix A: Answers to Practice Exercises" on
page 178. Don’t worry about the logic of weighted averages in these exercises. These exercises are designed
for simple practice, and you should ignore any real-world business logic.

28. [Average Sell Price per Item]

Find the column in the Sales table that gives the sell price per unit and use AVERAGEX () to find the average
of this column.

29. [Average Tax Paid]

Find the tax column in the Sales table. Find the average of this column.

30. [Average Safety Stock]

There is a safety stock column in the Products table. You should put the results in a matrix, as shown below.

Category Average Sell Average Tax Average Safety
Price Per Item Paid Stock
Accessories $19.42 $1.55 146
Bikes $1,862.42 $148.99 100
Clothing $37.33 $2.99 4
Components 500
Total $486.09 $38.89 283

Note: There are other X-functions that are not included in this book, such as MAXX(), MINX(),
COUNTAX(), and COUNTX(). You can find out how to use them by typing one of them at a time
into the formula bar and reading the IntelliSense.

8: DAX Topic: Calculated Columns 63

8: DAX Topic: Calculated Columns

It’s time for a change of pace. | have deliberately left the main discussion of calculated columns until now to
allow you to get accustomed to the power of measures. As mentioned in Chapter 7, the most common mis-
take | see Excel users make is to use too many calculated columns. And when you think about it, a calculated
column is a very comfortable place for an Excel user to hang out because a table in Data view in Power BI
looks and feels a lot like Excel. But as | warned previously, you should avoid using calculated columns until
you know when and why to use them. Consciously avoiding calculated columns and trying to find a measure
solution will make you a stronger DAX user. Trust me.

In general, you should not use a calculated column if:
¢ You can use a measure instead.
¢ You can bring the data into a table directly from the source data.
e You can create the column during data load by using Power Query.

| always recommend that you prefer the following order to source a missing column (when a measure will
not do the job):

1. Getitadded to the source and import it from there.
2. Create it in Power Query on data load.
3. Use a calculated column.

By pushing the column as far back to the source as possible, you increase the possibility of reuse down the
track. But the truth is that this is a purist view, and it doesn’t really matter that much. If you know how to
do it in a calculated column and you don’t know how to do it in Power Query, then there is no harm in using
the calculated column. Indeed, you can and should use calculated columns when you need them. You should
definitely use a calculated column when both of the following two conditions are satisfied at the same time:

¢ You need to filter/slice a visual based on the results of a column (i.e., you want to use the column on
Filter, Slicer, Rows, or Columns). Measures don’t work in this case.

e You can’t bring the column of data you need in from your source data or by using Power Query (for
whatever reason).

These are the most common reasons you can’t get a column you need from your source data:
e It doesn’t exist.
e You can’t arrange to get it added (e.g., you don’t have access to the source system).
e You can’t get it added in a timely manner.

e You want to reuse measures that exist in your data model as part of the formula needed to create
the new column.

As mentioned earlier, if possible, you should try to get the column you need added to the source data. When
you do this, you get the full benefit of compression on data import; in addition, the column is available for
reuse in all your future workbooks. But sometimes this simply isn’t possible, and other times it is possible,
but you can’t wait two weeks (or two years!) to get it done. Calculated columns are useful in such cases. And
if a new column becomes available in the future, you can simply delete your calculated column and replace
it with the new column coming in from the source.

Here’'s How: Creating a Day Type Calculated Column

Let’s look at an example of where you should use calculated columns. Let’s say that you extract the Cal-
endar table from your enterprise database, and you want a new column that shows whether each date is a
weekend, but you can’t arrange to have this column added for now. Of course, you could use Power Query,
but this book is about DAX, so this section discusses how to create a calculated column to solve this problem.

Follow these steps to create a Day Type calculated column in the Calendar table:
1. Select the Calendar table from the fields list on the right-hand side of Power BI.

2. Right-click the table name and select New Column.

64 Supercharge Power B

3. Immediately start typing the following over the top of Column = in the formula bar:

Day Type = IF('Calendar' [DayNumberOfWeek] = 1 || 'Calendar' [DayNumber-
OfWeek]=7, "Weekend", "Weekday")

Note: Note the use of the two pipe symbols (| |) in the formula above. The pipe can be found on
your keyboard above the backslash key (which is right above the Enter/Return key). The two pipe
symbols are the inline text version of a logical OR function.

4. You can also write an OR function in DAX as follows:
OR('Calendar' [DayNumberOfWeek] = 1, 'Calendar' [DayNumberOfWeek] = 7)
5. Personally, | prefer to use the two pipes because you can have as many of them as you like in a single
formula. The OR() function above accepts only two parameters as inputs; if you have more than two
“or” logical inputs, you need to use multiple nested OR() functions to make it work.

Note: The inline version of the logical AND is the double ampersand (&&), which equates to the
AND() function.

6. If you are not currently in Data view, switch to it now and check to make sure your column is calcu-
lating correctly. You are the person writing the formulas, and hence you are personally responsible
for making sure they are evaluating correctly.

7. Note that the formula you just created, as shown below, is a single formula for the entire column.
Just as with Excel tables, with Power Bl, it is not possible to have more than one formula in a calcu-
lated column. You therefore have to write the one formula so that it evaluates and handles all the
possible scenarios you need.

Date DayMNumb er0fiVeck DayMame Day Type

1072001 12:00:00 AM 1 Sunday Weskend
2/07/2001 i}?un:m AM 2 Monday Weekday
3/07,/2001 12-00-00 AM 3 Tuesday Weekday
440 7/2001 12:00:00 AM 4 Wednesday Weekday
5/407,/2001 12-00-00 AM 5 Thursday Weekday
64 7/2001 12-00-00 AM & Friday Weekday
7072001 12:00:00 AM 7 Saurday Wesekend
8072001 12:00-:00 AM 1 Sunday Weekend
9072001 12:00-:00 AM 2

Monday Weekday

8. Now that you have the new calculated column, go to a new page in your workbook and create a
new matrix. Place Products [Category] on Rows, place your new column 'Calendar' [Day
Type] on Columns, and then add [Total Sales] to the Values section. You end up with the ma-
trix shown below.

Category = Weekday Weekend Total

Accessories $495,995 $204,764 $700,760

Bikes $20,047,702 $8,270,442 $28,318,145
Clothing $240,664 $99,109 $339,773
Total $20,784,362 $8,574,316 $29,358,677

You have successfully extracted some new insights from the data that didn’t exist before: You have used data
modelling techniques to enhance the data for weekday/weekend analysis. Sweet!

8: DAX Topic: Calculated Columns 65
Practice Exercise: Calculated Columns

Write the following calculated column in the Calendar table. Find the solution to this practice exercise
on"Appendix A: Answers to Practice Exercises" on page 178.

31. Creating a Half-Year Column

Write a calculated column in the Calendar table that returns the value H1 for the first half of each year
(January through June) and H2 for the second half of each year (July through December). Hint: You might
want to use an IF statement to do this.

66 Supercharge Power Bl

9: DAX Topic: CALCULATE()

CALCULATE () is the most important and powerful function in DAX. It is the only function that has the ability
to modify the filter context coming from your visuals.

Note: Actually, there is another function that can modify filter context: CALCULATETABLE(). This
function is typically used inside DAX queries, though discussing it is beyond the scope of this book.

| am going to provide you with a solid understanding of how CALCULATE () works in this book, but you will
need to continue to learn in the future; there is a lot to learn. If you want to be an expert, you need to read
lots of other books and blogs to build on the foundation you get from this book.

Note: You can find an up-to-date curated list of the best Power Bl, Power Pivot, and Power Query
books at the links provided in Chapter 21.

Altering the Standard Offering

Have you ever gone into a restaurant and looked at the menu, only to discover that the standard offering is
not quite what you are after? Lots of people love Caesar salad, but many people do not like anchovies. Say
that you’re one of them, and you read the following on the menu:

Caesar Salad: Romaine lettuce, croutons, parmesan cheese, anchovies, and egg tossed in a creamy Caesar
dressing.

When you order the salad, you alter the standard menu option and instead say, “I'll have the Caesar salad,
no anchovies.” CALCULATE () is a lot like that: It allows you to alter the standard offering (that you get from
a visual rather than a menu) so you can get some variation that ends up being exactly what you want.
Technically speaking, CALCULATE () alters filter context. It modifies an expression (which can be a measure
or another DAX formula) by applying/removing/modifying filters. The syntax of CALCULATE () is:
=CALCULATE (expression, filter 1, filter 2, filter n...)
CALCULATE () alters the filter context coming from the visual by applying none, one, or more filters prior
to evaluating the expression. CALCULATE () “reruns” the built-in filter engine in Power Bl—the one that
makes the filters automatically propagate from the lookup tables and flow downhill to the data tables. When
the filter engine is rerun by CALCULATE (), if there are any filters inside the CALCULATE () function, these
filters become part of the filter context before the filter engine kicks in. (You’ll find more about how this
works in Chapter 10.)

Note: | mentioned above that you can use none, one, or more filters inside CALCULATE(). It may
seem strange that you can use none at all. Why would you want to do this? Using no filters is a
special use case that is covered in Chapter 10.

Simple Filters

CALCULATE () can use two types of filters. A simple filter (or raw filter) has a column name on the left and
a value on the right, as in these examples:

Customers[Gender] = "F"
Products[Color] = "Blue"
'Calendar' [Date] = "1/1/2002"
'Calendar' [Calendar Year] = 2003

You can use these simple filters as the second and subsequent parameters to CALCULATE () to alter the
original meaning of an expression (which is the first parameter). Simple filters are really important in Power
Bl because they were designed to be easy to use and understand. Taking a filter from a lookup table and
propagating it to the data tables is what the Power Pivot engine in Power Bl was built and optimised to do.

9: DAX Topic: CALCULATE() 67

Note: Under the hood, Power Bl converts a simple filter into a much more complex formula that
is harder for beginners to learn and understand. Take the following measure, using a simple filter:

Total Sales to Females

= CALCULATE ([Total Sales], Customers|[Gender] = "F")

Under the hood, Power Bl converts this into the following formula prior to execution:

Total Sales to Females

= CALCULATE ([Total Sales],
FILTER (ALL (Customers [Gender]),
Customers [Gender] = "F"

)
| am sure you will agree that the first formula is easier to read and understand. The Microsoft
developers call this type of simple syntax “syntax sugar.” The simple syntax is provided to allow
beginners to use Power Bl without having to first become DAX experts.

| cover the ALL() and FILTER() functions later in this book.

To see CALCULATE () in action (using the simple syntax), set up a new matrix like the one below,
with Products [Category] on Rows and [Total Sales] on Values. (You should be getting
used to this by now!)

Category Total Sales

Accessories $700,760

Bikes $28,318,145
Clothing $339,773
Total $29,358,677

Then write the following measure:
Total Sales of Blue Products
= CALCULATE ([Total Sales], Products[Color]="Blue")
In the image below, can you see how the simple filter used here, Products [Color]="Blue", has altered
the initial filter context coming from the matrix and given a variation to the regular measure [Total Sales]?
Itis as if you have changed the recipe for the standard product on the menu and instead received a variation
of that regular menu item. Think Caesar salad without anchovies.

Category Total Sales Total Sales of Blue Products

Accessories $700,760 $74,354
Bikes $28,318,145 $2,169,056
Clothing $339,773 $35,687

Total $29,358,677 $2,279,096

68 Supercharge Power Bl

Practice Exercises: CALCULATE() with a Single Table

It’s time for you to write some simple CALCULATE () examples that filter a single table. Set up a new matrix
with Customers [Occupation] on Rows and [Total Number of Customers] on Values. You should
have the matrix shown below as your starting point.

Occupation Total Number of
Customers

Clerical 2,928
Management 3,075
Manual 2,384
Professional 5,520
Skilled Manual 4,577
Total 18,484

Then write the following measures, using CALCULATE(). Find the solutions to these practice exercises in"Ap-
pendix A: Answers to Practice Exercises" on page 178.

32. [Total Male Customers]

Write a new measure that modifies the [Total Number of Customers] measure you wrote previously to
come up with a total for male customers only. You need to look for a suitable column from the Customers
table to use in your filter.

33. [Total Customers Born Before 1950]

In this case, you need to enter the date < January 1, 1950, into the formula as the filter parameter. You need
to use the DATE () function to be able to refer to a date. Remember that you can get help from the tooltips
that IntelliSense provides when writing the measure. Just start typing =DATE inside the formula bar, and a
tooltip pops up, explaining the purpose and syntax of the function, as shown below.

ATE(Year, Month, Day)
Returns the specified date in datetime format.

Measure =

Returns the specified date in datetime format.

£ mATrARD

Now that you know how to write a date inside a formula, you can go ahead and write the measure [Total
Customers Born Before 1950].

34. [Total Customers Born in January]

This exercise is similar to Practice Exercise 33, but this time you need to use the MONTH () function to turn
the information in the Customers [BirthDate] column into a month.

35. [Customers Earning at Least $100,000 per Year]

Write a measure that counts the number of customers who earn more than $100,000 per year. The following
matrix shows what you should end up with. Look for a suitable column to use for the filter in the Customers
table.

Occupation Total Number of Total Male Total Customers Total Customers Earning

Customers Customers Born Before 1950 Customers at Least $100,000
Born in January per Year
-~

Clerical 2,928 1,488 433 132
Manual 2,384 1,251 134 128
Skilled Manual 4,577 2,293 234 192
Professional 5,520 2,727 609 254 792
Management 3,075 1,592 1,543 136 1,406

Total 18,484 9,351 2,953 842 2,198

9: DAX Topic: CALCULATE() 69

Using CALCULATE() over Multiple Tables

In Practice Exercises 32—35 above, the CALCULATE () function touches only a single table; the filtering is
applied to a table, and the expression is evaluated on the same table. However, CALCULATE () can work
over multiple tables, too. When you use the CALCULATE () function, it first applies the filters to the rele-
vant tables, and then it reruns the filter propagation engine and makes sure that any new filters inside the
CALCULATE () function automatically propagate from the “one” side of the relationship to the “many” side
(i.e., the filters flow downbhill) before the expression is evaluated. So you can apply a filter to one or more of
the lookup tables, and these filters will propagate to the data tables, and any expression that evaluates over
the connected data tables will reflect the filters from the lookup tables. Are you feeling supercharged now?!

Practice Exercises: CALCULATE() with Multiple Tables

Set up a new matrix. Put Territories[Region] onRowsand [To- Region Total Sales @)
tal Sales] on Values. Note that there are now two tables involved. = -

The initial filter context is coming from the Territories table (see Australia L1 $9,061,001

#1 here), and the calculation [Total Sales] is operating over the Canada $1,977,845

Sales table (#2). Central $3,001

With your matrix set up as described above, write the following new France e
measures. Find the solutions to these practice exercises in"Appendix ~2€'many $2,894,312
A: Answers to Practice Exercises" on page 178. Northeast $6,532

36. [Total Sales of Clothing]

Use the Products[Category] column in your simple filter. The filter gets applied to the lookup table, but then
the measure [Total Sales] is modified by the filter (and Total Sales comes from the Sales table), so you
use CALCULATE() with multiple tables in this formula.

37. [Sales to Female Customers]

As the name of this measure suggests, you use CALCULATE () to modify the standard calculated field [Total
Sales] and create a new measure that is for sales to female customers.

38. [Sales of Bikes to Married Men]

You need to use multiple filters on two tables for this one. CALCULATE () can accept as many filters as you
pass to it. Just separate the filters with commas.

When you have finished these three practice exercises, you should have a matrix like the one shown below.

Region Total Sales Total Sales Sales to Female Sales of Bikes
of Clothing Customers to Married Men
Australia $9,061,001 $70,260 $4,634,993 $2,205,159
Canada $1,977,845 $53,165 $1,011,320 $517,808
Central $3,001 $157 $124
France $2,644,018 $27,035 $1,271,964 $726,649
Germany $2,894,312 $23,565 $1,539,713 $694,776
Northeast $6,532 $106 $3,836 $2,295
Northwest $3,649,867 $58,230 $1,843,586 $982,266
Southeast $12,239 $301 $11,938
Southwest $5,718,151 $74,714 $2,881,098 $1,451,036
United Kingdom| $3,391,712 $32,240 $1,615,046 $1,031,765
Total $29,358,677 $339,773 $14,813,619 $7,611,754

70 Supercharge Power Bl

Advanced Filters
So far you have used only simple filters inside CALCULATE (), in this format:

TableName [ColumnName] = some value

You can also use a more advanced filter that is passed in the form of a table containing the values required
for the filter. This table can be either of the following:

e A physical table
e A function that returns a table (e.g., ALL(), VALUES(), FILTER())

Importantly, both types of tables used as advanced filter parameters retain all relationships that exist in the
data model. Advanced filters and the way the tables retain their relationships in the data model is a complex
topic that is covered in more detail in the coming chapters. For now, it is enough to know that so far you have
only learnt about simple filters for CALCULATE (), and the advanced table filters are coming later.

Making DAX Easy to Read

Now is a good time to pause and talk about how to lay out your DAX so it is easy to read. Consider this example:

Total Sales to Single Males in Australia =

CALCULATE ([Total Sales], Customers[MaritalStatus]="S",

Customers [Gender]="M", Territories[Country]="Australia")
Formulas like this one that are very long can be difficult to read. The generally accepted approach is to lay out
a formula by using line breaks and spaces so it is easier to see which parts of the formula belong together.
There is no single right way to do this. Here is one way that | find useful:

Total Sales to Single Males in Australia

= CALCULATE([Total Sales],

Customers[MaritalStatus] = "S",
Customers [Gender] = "M",
Territories[Country] = "Australia"

)
To create a new line in the formula dialog box, you need to press Shift+Enter on the keyboard. Then you can
use the Tab key to create indented space from the left-hand side.

In the example above, | put the first parameter in CALCULATE () (which is the expression) on the first line,
followed by a comma. Then | placed each filter on a new line and indented them so it is easy to see that they
belong to the CALCULATE () function.

The final closing parenthesis for the CALCULATE () function is on a new line of its own, aligned with the C
in CALCULATE () so that | know that this bracket closes the CALCULATE () function.

Using DAX Formatter

DAX Formatter is a very useful (and free) tool that you can use to help format your DAX. Marco Russo and
Alberto Ferrari from SQLBI developed the free http://daxformatter.com website. You simply paste your DAX
code into the website, and DAX Formatter formats the code for you. You can then cut and paste it back into
the formula bar in Power BI.

When you use DAX Formatter, you have a choice about whether to include the measure name. You can omit
the name if you like, but it is just as easy to copy the entire formula, including the measure name.

The image below shows the [Total Sales to SingleMales inAustralia] formulafrom DAX Format-
ter, including the measure name.

DAX Total Sales to Single Males in Australia =
o CALCULATE (
[Total Sales],

Customers[MaritalStatus] = "S",
Customers[Gender] = "M",
Territories[Country] = "Australia”

http://daxformatter.com/

9: DAX Topic: CALCULATE() 71

The image below shows the same formula without the measure name after DAX formatter has applied for-
matting.

[Total Sales],

Customers[MaritalStatus] =
Customers[Gender] = ,
Territories[Country] =

Error Checking

DAX Formatter does another important job for you: It checks whether your DAX formula is valid and written
correctly. If it is not, DAX Formatter does its best to show you where any errors are located. To see this in
action, try removing one of the commas from the DAX code above, such as the one after Gender ="M", so
it looks like this:

Total Sales to Single Males in Australia
= CALCULATE ([Total Sales],

Customers[MaritalStatus] = "S",
Customers[Gender] = "M"
Territories[Country] = "Australia"

)
When you put this erroneous code into DAX Formatter, a triangle points to the part of the code where an
unexpected value is found, as shown below. In this case, DAX Formatter is expecting a comma but instead
finds the letter T—the start of the column name.

EEEE Total Sales to Single Males in Australia =
CALCULATE (
[Total Sales],
Customers[MaritalStatus] = "S",

customers[Gender] = "M"
Territories[Country] = "Australia”

DAX Formatter is a great tool for helping you debug your DAX code when you can’t work out what is wrong
(although it was not strictly designed to do this). | use DAX Formatter all the time to help me with my DAX.
| suggest you do, too.

Note: Marco Russo told me that DAX Formatter was never designed to be an official error-checking
tool, as | describe using it above. As a result, the error checking is not perfect, but in my view, it
is still worth trying this approach if you are stuck.

72 Supercharge Power Bl

10: Concept: Evaluation Context and Context
Transition

This chapter covers one of the hardest topics to understand and master in DAX. As you saw in Chapter 5,
some DAX functions have what is called a filter context. As you saw in Chapter 7, DAX also has a row context.
Filter context and row context are the two different types of evaluation context, the topic of this chapter.

A Refresher on Filter Context

In Chapter 5 | introduced a number of concepts, including filter context and initial filter context. Here is a
quick refresher.

Filter context refers to any filtering that is applied to the data model in DAX. Filter context is created by a
visual (e.g., a matrix) and also by the CALCULATE () function. The initial filter context is the natural filtering
that is applied by a visual. The initial filter context can come from the following areas on a report:

e Rows (see #1 below)
e Columns (#2)

e Filters (#3)

e Slicers (#4)

e Any other visual on the canvas (e.g., a column chart, as shown in #5)

Color Accessories Bikes 9) Clothing Total 5‘2935@
. Black 472,954 $8,659,117 $106,341 $8,838,412 -
. ©) Blue $74,354 $2,169,056 $35,687 $2,279,096 4 _—
Multi $106471 $106,471 " p——
o NA €) $435117 $435,117 2)
. Red $78,028 $7,646,303 $7,724,331 54 TEHES=F
. I I I Silver $40,308 $5,073,081 $5,113,389 5 ;
v — o . White $5,106 $5,106 60
R Yellow $4,770,588 $86,168 $4,856,756 ”
Total = $700,760 $28,318,145 $339,773 $29,358,677 N

Don’t confuse the filter context coming from Rows in a matrix with row context. These are two completely
different things. Filter context is the natural “slicing” that comes from the coordinates of a matrix or another
visual. The Rows section in a matrix is one of the locations that can slice your data and therefore is part of
the initial filter context.

The filter context coming from a report filters the underlying tables in the data model. If the tables are joined,
the filters propagate from the “one” side of the relationship to the “many” side of the relationship. But the
filter does not propagate from the “many” side of the relationship to the “one” side. This is why | recommend
(for Excel users anyway) laying out the data model using what | called the Collie layout methodology, described
in Chapter 2 and shown again below. When you use this layout, you have less to get your head around, and
you can simply visualise filter propagation flowing downhill like water.

10: Concept: Evaluation Context and Context Transition 73

[Calendar = Customers Products E Territories

XD CustomerKey ProductKey Territory Key
Date ¥ GeographyKey ProductSubcategory Region

3 DayNumberOfweek Name ProductName Country
DayName BirthDate > StandardCost

1

They don't Filters flow
flow uphill downbhill
[Sales l

3 ExtendedAmount (R

® -
3 TaxAmt
- -
OrderDate

= Total Sales Plus Tax €

e Data Table(s)

This setup provides a visual clue that the filters flow downhill through the relationships but do not flow uphill
through the relationships.

Note: It is possible to filter a lookup table (sitting above) based on the results in a data table (sitting
below) by using DAX instead of filter propagation. But filters only ever automatically propagate
through the relationships downbhill.

A Refresher on Row Context

Row context refers to the ability of a special iterating function or calculated column to be “aware” of which
row it is acting on at each stage of formula evaluation. Some functions (e.g., FILTER (), the X-functions)
and all calculated columns have row context. When you think about row context, think of the function (or
calculated column) iterating through the table one row at a time and selecting the single value (the intersec-
tion between the column and row) and then acting on that single value. Regular measures can’t do this; only
functions that have row context and calculated columns can perform this trick.

Let’s look again at the SUMX () measure from Chapter 7, shown below.

Home View Modeling Format Data / Drill

Data type: Home Table: Sales = o
@ & E T & iQ
New New New

Format: § English (Australia) = Data Category: Uncategorized
sort by o 0 . o) . Manage View as
s Measure Column Table Column $ T éE‘ .0 |0 - Default Summarization: Don't summarize Roles Roles

5 Calculations Sort Formatting Properties Security

Total 5ales Including Tax SUMX Version = sumx(Sales,Sales[Extendedfmount] + Sales[TaxAmt])
SUMX () first creates a row context over the Sales table (see #1 above). It then iterates through this table
one row at a time. At each row, it takes the single value that is the intersection of the Sales [Extend-
edAmount] column and the current row (#2) and adds it to the single value that is the intersection of the

Sales[TaxAmt] column and the current row (#3). It does this for each row in the table (#1) and then adds
up all the values (#4).

74 Supercharge Power B

Note: One thing | often get asked at this point is “Why does the formula refer to
the table name twice—once in the first parameter and again inside the second pa-
rameter?” The main reason is that the table names inside the second parameter are
actually a fully qualified address of the column. It is possible to have two columns
with the same name in two different tables. You must specify the table name first
(TableName [ColumnName]); otherwise, you may get the wrong answer from the
wrong column (same column name, different table). Also, it is possible that the table
in the first parameter could be (and often is) different to the tables where the columns
come from in the second parameter.

In short, think of the first parameter as the name of the table to iterate over and think
of the references to the table name in the second parameter, TableName [Column-
Name], as being the fully qualified address of the column you are using.

Row Context in Calculated Columns

You already know that iterator functions and also calculated columns have row context. The main difference
between an iterator function (e.g., SUMX ()) and a calculated column is that the calculated column stores
the value calculated at each row of the iteration process in the column itself. Measures do not do this. In
the SUMX () example, the function returns the final result to the visual in your report without storing all the
intermediate values (beyond the need to temporarily keep track of them during the calculation process). This
is the main reason you should avoid using calculated columns, if possible: They take up storage space in your
data model and hence make your files larger and generally slower.

Understanding That a Row Context Does Not Automati-
cally Create a Filter Context

This is a very important point that you must understand clearly: A row context does not automatically create
a filter context. Also, a row context does not follow relationships. To understand this better, right-click the
Products table in the fields list (see #1 below) and select New Column (#2).

Visualizations > Fields

r B Products

Mew measure

Mew column @
Cuick measures
Refresh data

Edit Query

Add the following calculated column to the table but don’t press Enter yet:
Total Sales Column = SUM(Sales[ExtendedAmount])

You should recognise the right side of this formula because it is exactly the same as the first formula in this
book.

10: Concept: Evaluation Context and Context Transition 75

What value do you think will appear in every row of this new column? Do you expect it to be the total for
the product in each row? Do you expect it to be the total for all products? Well, the answer may surprise
you, and it is directly related to the point that a row context does not automatically create a filter context.
After pressing Enter, if you are not already in Data view, you need to switch to Data view to see the column.

As you can see in the figure below, the value is the same for every single row in the table. There is no filtering
on the Sales table (or any other table, for that matter) as a result of this formula, and hence the answer
is always the same for every row. There is a row context in this formula: The rows are evaluated one at a
time. But that row context does not create a filter context. Given that there is no filter context, the Sales
table is completely unfiltered, and hence SUM (Sales [ExtendedAmount]) must return the result of the
unfiltered Sales table.

Total Sales Column = SUM{Sales[Extendedfmount]) L Fields
ate End Date Status SubCategory Category Total Sales Column
002 12:00:00 AM 30/06/2003 12:00:00 AM Handlebars Components 2935867 7.220702
003 12:00:00 AM Current Handlebars Compaonents 2935867 7.220702
002 12:00:00 AM 30/06/2003 12:00:00 AM Handlebars Components 2935867 7.220702 StartDate
003 12:00:00 AM Currert Handlebars Components 2935867 7. 220702 Status
002 12:00:00 AM 30/06/2003 12:00:00 AM Handlebars Components 2935867 7220702 SubCategory
003 12:00:00 AM Current Handlebars Components 2935867 7. 220702 B Total Number of Pro...
002 12:00:00 AM 30/06/2003 12:00:00 AM Handlebars Components 2935867 7220702 B Total Number of Pro...
003 12:00:00 AM Current Handlebars Compaonents 2935867 7.220702 | |
002 12:00:00 AM 30/06/2003 12:00:00 AM Handlebars Components 2935867 7.220702

It is, however, possible to turn the row context from this calculated column into a filter context through a
process called context transition. To do this, simply wrap the above formula in a CALCULATE () function, as
shown below.

Total Sales Column = CALCULATE[SUM{Sales[ExtendedAmount])) W Fields
3 Total Sales Column
02 12:00:00 AM 30,/06/2003 12:00:00 AM Wheels Components
\001 12:00:00 AM 30/06/2002 12-:00:00 AM Caps Clothing
002 12:00:00 AM 30,06,/2003 12:00:00 AM Caps Clothing StartDate
003 12:00:00 AM Current Caps Clothing 519,688.10 Status
003 12:00:00 AM Current Bike Racks Accessories $39,360.00 SubCategory
003 12:00:00 AM Current Bike Stands Accessories $39,591.00 B Total Number of Pro...
003 12:00:00 AM Current Bottles and Cages Accessories $21,177.56 E Total Number of Pro...
003 12:00:00 AM Current Bottles and Cages Accessories $20,229.75 |m
003 12-00:00 AM Current Bottles and Cages Accessories 515330.55 DU

= Weight

b am e e a s - _ - - - e

When you do this, the row context that exists in the calculated column is transformed into an equivalent filter
context. The CALCULATE () function then “pulls the handle” on the filter engine so the filter on the Products
table propagates through the relationship to the Sales table before the calculation is completed (for each
row in the table). You therefore potentially end up with a different value in each row of the column. The value
is actually the total sales for the product in each row (and some rows are blank because there are no sales).

You can think of the formula working like this:

= CALCULATE (SUM(Sales[ExtendedAmount]),
Products[ProductKey] = the product represented by this row in the

table

)
The concept of context transition works anywhere that a row context exists—that is, in calculated columns as
well as in iterators like FILTER () and SUMX (). This is the special use case mentioned in Chapter 9, where
there are nofilters at all needed inside CALCULATE () butinstead CALCULATE () creates a new filter context
from the row context by using context transition. You can add additional filters inside CALCULATE (), too, if
you want or need to, but none are required.

76 Supercharge Power Bl

The Hidden Implicit CALCULATE()

Now that you know that you can use CALCULATE () to convert a row context into a filter context, there is
one more thing you need to know. Consider this formula from earlier in the book:

Total Sales = SUM(Sales[ExtendedAmount])
Now think back to what you read on the previous page. What happened when we added a new column in
the Products table, as follows?

Total Sales Column =SUM(Sales[ExtendedAmount])
Do you remember? We got the value $29.3 million all the way down the new column in the Products table.
Why? Because there is a row context in a calculated column, but there is no filter context. The Sales table
is therefore completely unfiltered, and hence SUM (Sales [ExtendedAmount]) simply must return $29.3
million for every row.

Now back to this measure:
Total Sales = SUM(Sales[ExtendedAmount])

Notice that the formula for this measure is identical to the calculated column (the first example above but with
a different name, of course). So if the formula inside the measure is identical to the formula in the calculated
column, you can be excused for thinking that you could substitute the formula in the calculated column with
the actual measure, adjusted as shown below:

Total Sales Column = [Total Sales]

If the measure [Total Sales] hasthe same formula, won’t we get the same result? Well, actually no; we
get a different result from before, as shown below.

ol H £ - = | Super Charge Power Bl - Power Bl Desktop — O K
Home Modeling Matt Allington o

Data type: Decimal Mumber = Home Table: .."
=5 @ 72 R &

Format: § English [Australia) = Data Category: Uncategorized

Manage Mew Mew New Sort by 8 a o o Manage View as Mew Edit
Relationships Measure Column Table Column = $ e /{:!Iz‘ an |2 o Default Summarization: Sum ~ Roles Raoles Group Groups
Relationships Calculations Sort Formatting Properties Security Groups

[Total Sales]

Total Sales Column

Fields
Total Sales Column

nteea smooth ride. 1/07/2002 12:00:00 AM 30/06/2003 12:00:00 AM =
; one-size fits all. 1/07/2001 12:00:00 AM 30/06/2002 12:00:00 AM C Clothing
; one-size fits all. 1/07/2002 12:00:00 AM 30/06/2003 12:00:00 AM Caps Iy - B

; one-size fits all. 1,07/2003 12:00:00 AM Current Caps Clothing 519,688.10 B Products Without W..
struction, fits 2" receiver hicch. 1,07/2003 12:00:00 AM Current Bike Racks Accessories 539,360.00 % ProductSubcategory...
working on your bike at home. @ 1/07/2003 12-:00:00 AM Current Bike Stands Accessories 539,591 00 5 SafetyStocklLevel

Components

oz; leak-proof. 10 7/2003 12:00:00 AM Current Bottles and Cage Accessories 521,177.56 Size

E securly on tough terrain. 107/2003 12:00:00 AM Current Bottles and Cage Accessories 520,229.75 SizeRange
mountain version; perfect for ko 107/2003 12:00:00 AM Current Bottles and Cage Accessories 515,390.88 = StandardCost
e; dissolves grease, environmer 1,07/2003 12:00:00 AM Current Cleaners Accessories 57,218.60 StartDate
bikes. 1/07/2003 12:00:00 AM Current Fenders Accessories 546,619.58 Status

ight , snap-on visor. 107/2001 12:00:00 AM 30/06/2002 12:00:00 AM Helmets Accessories SubCategory
ight , snap-on visor. 1/07/2002 12:00:00 AM 30/06/2003 12:00:00 AM Helmets Accessories § Total All Products
Nt , SNap-on visor. 1/07/2003 12:00:00 AM Current Heimets ACCessories 578,027.70
ight , snap-on visor. 1/07/2001 12:00:00 AM 30/06/2002 12:00:00 AM Helmets Accessories

ight , snap-on visor. 1/07/2002 12:00:00 AM 30,06/2003 12:00:00 AM Helmets Arceszories

ight , snap-on visor. 1/07/2003 12:00:00 AM Current Helmets Accessories 57295415
ight . snap-on visar. 1/407/200112:00:00 AM ' 30/06/2002 12:00:00 AM Helmets Accessories

& Total Number of Pro...
& Total Number of Pro...
| I8 TowmlSales Column |

Go back and look again. Here is a summary of what you will find:

Total Sales Column 1 = SUM(Sales[ExtendedAmount])
This calculated column will return $29.3 million all the way down the column. There is a row context but no
filter context, so the formula must return $29.3 million for each row in the table.
This next calculated column will return the total sales for each product in the products table (a different
number for each product):

Total Sales Column 2 = CALCULATE (SUM(Sales[ExtendedAmount]))

There is a row context, and because of the CALCULATE () function, the row context is converted to an equiv-
alent filter context through the process of context transition. CALCULATE () converts the row context from

10: Concept: Evaluation Context and Context Transition 77

the Products table into an equivalent filter context, and this new filter context propagates to the Sales

table for each row of the calculated column.

The following calculated column also returns the total sales for each product in the Products table:
Total Sales Column 3 = [Total Sales]

This calculated column returns exactly the same result as Total Sales Column 2. If you take a look inside
the measure [Total Sales], you can’t actually see a CALCULATE () function; you didn’t include CALCU-
LATE () inthe measure. But there is an implicit CALCULATE () there that you can’t see. Every measure has an
implicit CALCULATE (), and that is why this calculated column behaves like column 2 and not like column 1.

Note: Thereis a lot to learn about context transition that is more advanced and beyond the scope
of this book. Any book by Marco Russo and Alberto Ferrari that covers context transition would
be a great learning resource. There are also some great videos available at http://sqglbi.com and
several articles on my blog, http://xbi.com.au/blog, on the topic. | provide links to these and many
other resources in Chapter 21.

If you’ve gotten to this point and don’t fully understand context transition, don’t worry, you are not alone.
This is one of the hardest topics to learn and understand well. Sleep on it for a few nights, do some practice,
and then come back and reread this chapter again (along with Chapter 9, on CALCULATE ()). You may need
to reread this content many times before it completely sinks in.

http://SQLBI.COM/
http://xbi.com.au/blog

78 Supercharge Power Bl

11: DAX Topic: IF(), SWITCH(), and FIND()

DAX has a number of useful functions that allow you to apply a test and then branch the formula based on
the results from that test. You will most likely be familiar with this concept from the IF () function in Excel.

The IF() Function

The IF () function in DAX is almost identical to IF () in Excel:
IF(Logical Test, Result if True, [Result if False])

Note that the last parameter, [Result if False], is optional. If you omit this parameter and the result is FALSE,
the IF () formula returns BLANK (). This is very useful because a matrix or chart in Power Bl will not show
values if the result in the Values section is BLANK ().

The SWITCH() Function

The SWITCH () functionis alotlike Select Casein VBA programming. The syntax of a SWITCH () function
is as follows:

SWITCH (expression, value, result|, value, result]...[, else])
This syntax is a little confusing, so let’s go through a simple example with another calculated column.

Right-click on the Customers table, select New Column, and enter the following formula:

House Ownership = SWITCH (Customers[HouseOwnerFlag],1l,"Owns their
house™", 0, "Doesn't own their house", "Unknown")
It is much easier to understand SWITCH () if you use DAX Formatter to improve the layout, as shown below.
You can see in this figure that line 3 is the branching point. The possible values in the HouseOwnerFlag column
are 0 and 1 in this instance. Lines 4 and 5 offer up pairs of input and output values. So if the value of Hou-
seOwnerFlagis 1, then the result "Owns their house" is returned. If the value of HouseOwnerFlagis
0, then the result "Doesn't own their house" is returned.

DAX House Ownership =

FORMATTER

Customers[HouseOwnerFlag],

2]

2

Line 6 is a single value, and it applies to all other possible values of HouseOwnerFlag (although there are
none in this example).

Note: There is a much more exciting use of the SWITCH () function later in the book. See "The
SWITCH() Function Revisited" on page 144 in Chapter 17.

The FIND() Function

The FIND () function in DAX is almost identical to the FIND () function in Excel. In DAY, it has this format:
= FIND (FindText, WithinText, [StartPos], [NotFoundValue])

Even though this syntax suggests that StartPos and NotFoundValue are optional, in my experience (as of this
writing), you actually do need to provide values for these parameters.

11: DAX Topic: IF(), SWITCH(), and FIND() 79
An Example Using IF() and FIND()

This example shows how to create a calculated column on one of your lookup tables. As | have said previously,
it is perfectly valid to create calculated columns in lookup tables, but wherever possible, it is better practice
to create these columns in your source data or using Power Query. Remember why this is important:

¢ Calculated columns may take up more space than imported columns (but this is generally not a major
issue for lookup tables).

¢ |f you are manually creating a calculated column, it exists only in that single workbook, and you need
to re-create it over and over for every other workbook where you need the column.

If it is not possible to create the calculated column in your source data for some reason, then creating a cal-
culated column instead is a great solution, particularly for lookup tables.

In this example, you are going to create a Mountain Products column that doesn’t exist in your lookup
table. Any product with the word mountain in the description will be flagged as a mountain product.

Right-click the Products table in the fields list, select New Column, and type the following formula:
Mountain Products = FIND("Mountain", Products[ModelName] ,1,0)

Switch to Data view so you can check the results of your new column. (Remember that it is your responsibility

to ensure that the formulas are working as expected.)

This formula searches for the word mountain in the Mode1Name column. Remember that because a calcu-
lated column has a row context, it is possible to refer to the column in this way, and it will calculate a result
for every row in the Products table and store the answer in the column.

The result is an integer representing the starting position where the word mountain is found. If the word
mountain is not found, then the value 0 (the last parameter in the formula) will be returned. So you get
something like the table shown below.

Mountain Products = FIND{|"Mountain", Products[ModelName],1,8() v

Fields
Category Total Sales Column Mountain Products

16,2003 12:00:00 AM Handlebars Components 4

Current Handlebars Components 4
16,2003 12:00:00 AM Handlebars Components 4

Current Handlebars Components 4
16,2003 12:00:00 AM Handlebars Components 4

Current Handlebars Components 4
96/2003 12:00:00 AM Handlebars Components i} ModelName _

Current Handlebars Components 1] | I Mountain Products |
26/2003 12:00:00 AM Handlebars Components 0 ProductKey

This table is not overly useful as is, but you can wrap an IF () statement around this formula to make it more
useful. As shown below, you can use the IF () statement to return TRUE if the number is greater than zero
(i.e., if it is a mountain product) and return FALSE if it is equal to zero (i.e., it is not a mountain product).

80

Supercharge Power Bl

Mountain Products = if|(FIMD("Mountain®, Products[ModelName],1,®)>@,TRUE(),FALSE()])

[line DealerPrice Class
24 2845
26.724
337745 M

==

37152 M
65.6018 H
72162 H
242545
26.724
337745 M

==

37152 M
65.6018
72162
27.654
54842

T(F|IF |

12144

ModelName

LL Mourtain Handlebars

LL Mountain Handlebars

ML Mountain Handlebars
ML Mountain Handlebars
HL Mountain Handlebars
HL Mountain Handlebars
LL Road Handlebars

LL Road Handlebars

ML Road Handlebars

ML Road Handlebars

HL Road Handlebars

HL Road Handlebars

LL Touring Hand lebars

HL Touring Handlebars

Chain

Description

All-purpose bar for on or off-road.
All-purpose bar for on or off-road.

Tough aluminum alloy bars for downhill.
Tough aluminum alloy bars for downhill.
Flzt bar srong enough for the pro circuit.
Flat bar strong enough for the pro circuit.

Unique shape provides easier reach to the levers.

Unigue shape provides easie reach to the levers.

Anatomically shaped aluminum tube bar will suit allriders

Anatomically shaped aluminum tube bar will suit allriders

Designed for racers; high-end anatomically shaped bar from alumi

Designed for racers; high-end anatomi

Unigque shape reduces fatiguefor entry leve riders.

A lght yet s6ff dluminum bar for long distanceriding.

Superior shifting performance.

Fields
Mountain Products

True

True

True SEmmaaes

T Description

True EndDate

True 5 ListPrice
False ModelName
P8 [2 Mountain Products |
Faise ProduciKey
False Productline
Faise ProductMame

lly shaped bar from alumi Faise Products Without W...

False ProductSubcategory...
A 5. SafetyStockLevel
Faise

Size

Now you have a new calculated column, and you have further enhanced your data model to be more useful.
Remember that this calculated column will take up space in your file and disk. However, given the small num-
ber of unique values (only True and False in this case) and the fact that this column is in a lookup table,
this column won’t take up much space. The greater the number of unique values in a column, the more disk
space and memory the column will consume.

You can now use this new column anywhere in your Power Bl report to produce new insights that weren’t
previously visible in the data. Because this formula is a column in the data model, it can be used to filter a
matrix, or it can be used on an axis in a chart, as shown below.

r

Mourtain Products @ False @

I‘: . I

Visualizations

Occupation

Mountain Products

Total Sales

Fialds

Stacked column chart

» B Customers
4« B Products

W E Average Safety...
Category
Class
Color
DaysToManufa...
» DealerPrice
Description
EndDate
» ListPrice
ModelName
I 2 Mountain Pro...
W ProductKey
M Productline

12: DAX Topic: VALUES(), HASONEVALUE(), SELECTEDVALUE(), and CONCATENATEX() 81

12: DAX Topic: VALUES(), HASONEVALUE(),
SELECTEDVALUE(), and CONCATENATEX()

In Chapter 9 | introduced the idea that CALCULATE() can use two types of filters: simple filters and advanced
filters. Simple filters are in this form:

TableName [ColumnName] = some value

On the other hand, an advanced filter takes a table as a filter input. In other words, you use an existing table
(or create a virtual table on-the-fly) that contains the rows you want included in the filter, and CALCULATE ()
applies that filter to the data model before completing the evaluation of the main expression.

Creating Virtual Tables

The tables you create using functions can be thought of as being “virtual” because they are not physically
stored as part of the data model. They are created on-the-fly inside your DAX formulas and can be used
during the evaluation of just the specific formulas containing the virtual table. Importantly, when you create
a virtual table using a formula, the new virtual table will have a virtual relationship to the data model, and
that virtual relationship will propagate the filter context in exactly the same way that the permanent rela-
tionships do. (You’ll learn more about this later in the chapter.) Virtual tables are said to retain lineage with
their source tables.

The VALUES() Function

VALUES () is the first function you have come to in this book that returns a (virtual) table. If you type the
word VALUES into the formula bar and read the tooltips, you can see that this function returns a table, as
shown below.

|II

. Measure = VALUES(
VaLUES(TableNameOrColumnMame)

Returns a one column table or a table that contains the distinct {unique)
values in a column,

One important thing to note about VALUES () is that it respects the initial filter context coming from your
visuals. So if you combine this fact that VALUES() respects the current filter context with the information
provided by IntelliSense in the image above, you will see that VALUES () returns a single-column table that
contains the list of all possible values in the current filter context.

It’s time to work through some examples to demonstrate the point.

A Calendar Example

Set up a new matrix as shown below and put Calendar Year on Rows. Then write

the following measure in the Calendar table: CalendarYear

Total Months in Calendar 2001
= COUNTROWS (

VALUES ('Calendar' [MonthName]) 2002

) 2003

2004

Note: The following formula does not work here:

Total Months in Calendar wrong
= COUNTROWS ('Calendar' [MonthName])

This formula doesn’t work because COUNTROWS() expects a table as the input, but
‘Calendar’[MonthName] is not a table; rather, it is a column that is part of a bigger table
(the Calendar table, in this case).

82 Supercharge Power Bl

When you wrap 'Calendar' [MonthName] inside the VALUES () function, this single column that is part
of the Calendar table is converted into a table in its own right, and it retains a relationship (lineage) to the
original Calendar table. This new table returned by VALUES () is still a single column, but now it techni-
cally is a table and a column instead of simply being a column of some other table (Calendar, in this case).

So VALUES ('Calendar' [MonthName]) returns a single-column table of possible values that respects the
initial filter context coming from the matrix. It is not possible to put this new table created by VALUES ()
into a measure unless you wrap it inside some other formula (e.g., an aggregator). In the example above,
you first create the table (the VALUES part of the formula) and then count how many rows are in the table
by using the COUNTROWS () function:

Total Months in Calendar
= COUNTROWS (
VALUES ('Calendar' [MonthName])
)

CalendarYear Total Months in Calendar

2001 6
2002 12
2003 12
2004 12
Total 12

Notice how the year 2001 has only 6 months, and the other years all have 12. This is proof that the VALUES()
function respects the initial filter context from the matrix. The initial filter context for the first row in the matrix
is 'Calendar' [Year] = 2001. That filter is applied before the formula [Total Months in Calendar]
is calculated. VALUES () takes this “prefiltered” table (only dates where the year = 2001 are left unfiltered)
and returns a single-column table that contains a distinct list of the possible values.

Returning a Single Value

VALUES () returns a single-column table of unique values from an- MonthName Total Months
other column in another table, and this new table of values respects

in Calendar
the current filter context coming from the visual in the report. There
is another very cool feature of VALUES () that is very powerful: In April 1
the special case where VALUES () returns just a single row (i.e., one August 1
value), you can refer to this value directly in your formulas. December 1
If you take the example created above, remove CalendarYear from February L
Rows, and put MonthName on Rows instead, you should get the fol- January 1
lowing. July 1
June 1
March 1
May 1
November 1
October 1
September 1
Total 12

Now you can see below that with the exception of the grand total, each row in the matrix has only a single
value for [Total Months in Calendar]. So as long as you write the formula in such a way that it operates

12: DAX Topic: VALUES(), HASONEVALUE(), SELECTEDVALUE(), and CONCATENATEX() 83

over only a single row of the table, you can create a measure that returns the name of the month into the
matrix’s Values section (i.e., not Rows or Columns).

MonthName Total Months Month Name

in Calendar (Values)
April 1 April
August 1 August
December 1 December
February 1 February
January 1 January
July 1 July
June 1 June
March 1 March
May 1T May
November 1 November
October 1 October
September 1 September
Total 12

To write this formula, you need to provide protection for the other possible scenario, where VALUES ('Cal-
endar' [MonthName]) has more than one row in the table. This is done using the function HASONEVAL-
UE (), like so:
Month Name (Values)
= IF (HASONEVALUE ('Calendar' [MonthName]),
VALUES ('Calendar' [MonthName])

)
Remember that the structure of an IF () statement is as follows:
= IF(Logical Test, Result if True, [Result if False])
The last parameter is optional. If you leave it out, then you are accepting the default value, BLANK ().
If you write the above formula without the HASONEVALUE () function, it will throw an error. Even if you

remove the grand total from the matrix, it will still throw an error. DAX allows you to use the single value
returned in a single row of the single-column table only if you protect the formula with HASONEVALUE () .

The New SELECTEDVALUE() Function

In August 2017, Microsoft released a new function in Power BI, called SELECTEDVALUE (). You may recall
that earlier | discussed the concept of syntax sugar—an approach Microsoft developers use to make difficult
formulas easier to use. Here is the syntax for SELECTEDVALUE () :
SELECTEDVALUE (ColumnName, AlternateResult)
SELECTEDVALUE () was created to replace the complex formula in the previous section. Here is the formula
from above:
Month Name (Values)
= IF (HASONEVALUE ('Calendar' [MonthName]),
VALUES ('Calendar' [MonthName])
)
The new SELECTEDVALUE () function allows you to rewrite the same formula as follows:
Month Name Alternate
= SELECTEDVALUE ('Calendar' [MonthName])
Under the hood, SELECTEDVALUE () performs the IF HASONEVALUE test, and it returns the single value
in the column if there is just one. AlternateResult is BLANK () by default.

Note: This new function is not available in Power Pivot for Excel at the time of this writing, so you
need to use the previous pattern when using Excel.

84 Supercharge Power Bl

CONCATENATEX() to the Rescue

Power Bl has a special DAX function called CONCATENATEX () that iterates over a list of values in a table and
concatenates them together into a single value. By using this function, you can write a formula that returns
the single value when there is just one value but concatenate all the values into a single value when there
are multiple values. You could write the earlier VALUES formula like this:
Month Name (Values)
= CONCATENATEX (VALUES ('Calendar' [MonthName]),
[MonthName],", ™)

With this formula, you get the result shown below.

MonthName Total Months Month Name (Values)

in Calendar

April 1 April

August 1 August

December 1 December

February 1 February

January 1 January

July 1 July

June 1 June

March 1 March

May 1 May

November 1T November

October 1 October

September 1 September

Total 12 July, August, March, April, May,
November, December, September,
October, January, February, June

Here’s How: Changing the MonthName Sort Order

In the example above, you can see that the month names in the matrix are sorting in alphabetical order rather
than in the logical month order of a calendar year. By default, all columns in all tables sort in alphanumeric
order. It is, however, possible to change the sort order.

Follow these steps to change the sort order in a table:
1. Go to Data view and navigate to the Calendar table.

2. Click in the MonthName column (see #1 below), click the Sort by Column button (#2), and then se-
lect the MonthNumberOfYear column to be the sort column (#3).

12: DAX Topic: VALUES(), HASONEVALUE(), SELECTEDVALUE(), and CONCATENATEX() 85

al | 2%~ = | Super Charge Power Bl - Power Bl Desktop

Home Modeling o
I:%l |__] ﬂ !J nkrilata type: Text = Home Table:
E 'L Format: Text =

Data Category: Uncategorized =
Manage New MNew MNew Sort by

Relationships Measure Column Table Column = * 4o Auto L Default Summarization: Don't summarize
Relationships Calculations " MonthMName [Default) 19 Properties
o
b erlfWeck DayMName [ia Date er(fYear WeekiNumberOfYear MaonthMame
1 Sunday DayMNumberOfWeek 182 27 luly o
2 Monday DayMame 183 27 uly _)
3 Tuesday DayMumberOfMaonth 1584 27 luly
4 Wednesday DayNumberOf¥ear 185 27 July
5 Thursday 186 27 luly
WeekNumberOfYear
& Friday Y 1587 27 luly
l MonthMumberOfyear
7 Saurday 9 158 27 July
1 Sunday CalendarQuarter 189 28 luly
2 Monday Calendarvyear 130 28 luly

3. When you return to your matrix, the rows are sorted in logical month order, as shown below.

MonthMName Total Months Month Name (Values)

in Calendar
January 1 January
February 1 February
March 1 March
April 1 April
May 1 May
June 1 June
July 1 July
August 1 August
September 1 September
October 1 October
Movember 1 Movember
December 1 December
Total 12 July, August, March, April, May,

November, December, September,
October, January, February, June

Note: Even though the columns are now sorting in the correct month name order, the concatenated
value in the total row does not sort correctly. There is an optional OrderBy parameter available
inside CONCATENATEX (), but it is not well documented and is difficult to use in this scenario. |
therefore do not provide a solution to this problem in this book.

Itis best practice to always load a numeric column in your lookup table for every alphabetic column that needs
to be sorted in a different order. You should therefore always include a numeric column in your Calendar
table for days of week as well as months of year.

Note: When you create a numeric sort column in a table, there must be a one-to-one match be-
tween the values in the numeric sort order and the values in the column to be sorted.

86 Supercharge Power Bl
Practice Exercises: VALUES()

Create a new matrix and put Products [Category] on Rows and the measure [Total Number of Prod-
ucts] on Values. Then write the following measures by first creating a VALUES () table and then wrapping
this table inside a COUNTROWS () function, as in the example shown earlier in this chapter. Find the solutions
to these practice exercises in "Appendix A: Answers to Practice Exercises" on page 178.

39. [Number of Color Variants]
40. [Number of Sub Categories]
41. [Number of Size Ranges]

Use the column Products [SizeRange] for this one.

You should end up with a matrix that looks like the one below.

Category Total Mumber MNumber of Mumber of Sub Mumber of
of Products Color Variants Categories Size Ranges
e,
Accessaries 35 6 12 2
Bikes 125 5 3 5
Clothing 48 5 8 5
Components 189 7 14 6
Total 397 10 37 11

Note: Each of these measures is the equivalent of dragging the column name and dropping it into
the Values section of the matrix. When you drop a text field into the Values section of a matrix in
Power BI, the matrix creates an implicit measure and uses COUNT() as the aggregating method.
But recall that | recommended that you avoid doing this. The names created by implicit measures
are ugly, and you need the DAX practice, so instead | recommend that you write explicit DAX
measures, particularly while you are learning.

The New Table Button

Business users (i.e., those who don’t have a professional IT background) often find it somewhat difficult to
understand the VALUES () function because you can’t actually “see” the table. So far | have shown you that
even though you can’t see the table, you can wrap the table inside a COUNTROWS () function—so at least
you can see the number of rows in the table.

Power Bl Desktop has a feature called New Table that is not currently available in Power Pivot for Excel. The
New Table button is on the Modeling tab (see #1 below).

il | E . o o) Visual tools Supe
“ Hame View Modeling Farmat Data / Drill
S N)

Format
Manage Mew Mew J Mew Sort by o N
Relationships Measure Column Tablee’.culumn ' oo Auto
Relationships Calculations Sort Formatting

m bt @ Table =

When you click this button (#2), you see that you can write a formula in the formula bar (#3). When you
create a new table using this button, you can write a formula that returns a table (e.g., VALUES ()), and the
table is added to the data model.

12: DAX Topic: VALUES(), HASONEVALUE(), SELECTEDVALUE(), and CONCATENATEX() 87

Say that you write a table with the following DAX formula:
Product Colors = VALUES (Products[Color])
You get the new table shown below in the data model (visible in Data view).

Product Colors = VALUES(Products[Color])

Black
Siver
Yellow

Red

MA

Siver /Black
Muld
White

Grey

Recall that VALUES () returns all the unique values in the current filter context. A new table doesn’t respond
to filters from Report view, so there is no initial filter context for a new table. The table above therefore shows
a complete list of all possible values for Product [color] inthe entire Products table (no filters applied).

The New Table button is very useful for “materialising” any virtual table so you can “see” the contents of the
table. Later in the book, | will show you how you can add your own filter to one of these tables so you can
see a subset of a table with a filter applied. For now, it is just good to know that if you ever can’t get your
head around a virtual table, you can always materialise it by using this feature so you can take a peek, and
then you can delete it when you are done.

Practice Exercises: VALUES(), Cont.

Next, you should use the same matrix from the Practice Exercises 39—41 but remove the measure [Number
of Size Ranges] from the matrix. Then write the following measures that each return a single value (the
text name) into a cell in the matrix. Each formula has the word (Values) inthe name, so it is clear that the
formulas are returning the actual name value to the matrix; this is just a “note to self” In each example, make
sure you wrap your VALUES () functioninan IF () or HASONEVALUE () function, as in the example earlier
in the chapter. Alternatively, you can use the SELECTEDVALUE () function if you prefer.

42, [Product Category (Values)]
43. [Product Subcategory (Values)]
44. [Product Color (Values)]

When you have finished, your matrix should look as shown below. Notice that two of these measures are
blank. This is because the VALUES formula has more than one value, and hence the TF HASONEVALUE (or
SELECTEDVALUE) part of the formula returns BLANK () ; this is the default if you omit the last parameter.

Category Total Number Number of Number of Sub Product Product Product
of Products Color Variants Categories Category SubCategory Color

(Values) (Values) Q/alues)

Accessories 35 6 12 Accessories

Bikes 125 5 3 Bikes

Clothing 48 5 8 Clothing

Components 189 7 14 Components

Total 397 10 37

88 Supercharge Power Bl
45. Modifying Practice Exercise 43

Try editing the IF () statement for [Product Sub Category (Values)] sothatit returns the value More
than 1 SubCategory instead of BLANK (). The syntax for IF is IF (Logical Test, Result if True, Result if
False) .

46. Modifying Practice Exercise 44

Now try editing the IF () statement for [Product Color (Values)] so that it returns More than 1
Colour instead of BLANK () . You should end up with something like the following (which shows answers
for Practice Exercises 45 and 46).

Category Total Number Number of Number of Sub Product Product SubCategory (Values) Product Color (Values)
of Products Color Variants Categories Category
(Values)
-
Accessories 35 6 12 Accessories More than one SubCategory More than one color
Bikes 125 5 3 Bikes More than one SubCategory More than one color
Clothing 48 5 8 Clothing More than one SubCategory More than one color
Components 189 7 14 Components More than one SubCategory More than one color
Total 397 10 37 More than one SubCategory More than one color

Finally, add a couple of slicers to your report from the Products table for color and subcategory.

Note: If you add a slicer on a numeric column, it will look different to mine below. You can change
the way a slicer displays from the drop-down arrow menu in the top-right corner of the slicer visual.

When you click on these slicers, the values in the matrix update to reflect the filtering in the slicer(s).

Category Total Number Number of Number of Sub Product Product SubCategory (Values) Product Color (Values)
of Products Color Variants Categories Category
(Values)
-~
Accessories 3 1 1 Accessories Helmets Blue
Bikes 13 1 1 Bikes Touring Bikes Blue
Clothing 1 1 Clothing Vests Blue
Components 1 1 Components Touring Frames Blue
Total 28 1 4 More than one SubCategory Blue
SubCategory Color : N

Helmets Black

Touring Bikes W Blue

Touring Frames Grey

Vests Multi
NA

13: DAX Topic: ALL(), ALLEXCEPT(), and ALLSELECTED() 89

13: DAX Topic: ALL(), ALLEXCEPT(), and
ALLSELECTED()

The DAX functions ALL (), ALLEXCEPT (), and ALLSELECTED () are all very similar in what they do. Let’s
start with ALL () and then look at the other two variants.

The ALL() Function

The ALL () function removes all current filters from the current filter context. For this reason, ALL () can be
considered the “remove filters” function. The easiest way to understand this is with an example.

Create a new matrix and put Products [Category] on Rows and put the [Total Number of Products]
measure you created earlier on Values. You get the matrix shown below.

Category Total Number
of Products

[Accessories ' 35]
Bikes | 125
Clothing 48
Components 189
Total 397

Technically what is happening above is that the first row in the matrix is filtering the Products table so that
only products that are of type Products[Category]="Accessories" are visible in the underlying table; the other
products are all filtered out. They are not really visible, but you can imagine what the underlying table in your
data model would look like with a filter applied to Accessories behind the scenes. After the matrix applies
a filter to the underlying tables, the measure [Total Number of Products] counts the rows that survive
the filter. It does this for every cell in the matrix, one at a time, including the total cell. There is no filter ap-
plied to the total cell, so the measure counts all rows in the table (a completely unfiltered copy of the table).

Now create a new measure that uses the ALL () function:
Total All Products = COUNTROWS (ALL (Products))

The ALL () function returns a table. You can’t see the table, but you can wrap COUNTROWS () around it so
you can see how many rows are in the table. As you type this formula, if you pause while typing, IntelliSense
displays the syntax for ALL (), as shown below.

Pause here See IntelliSense here

Clipboard External data Resources Vﬂsert Custom wvisuals

x vy | Total All Products = COUNTROWS (ALL(
FLL(‘I’abIeNameOrCnlumnName, [ColumnMameT], .. N

Returns all the rows in a table, or all the values in a column, ignoring
any filters that miﬂht have been applied.

In this case, IntelliSense is saying you that you can pass either a table or a single column as the first parameter
for ALL () . In this example, you are passing the entire table. When you have finished typing this formula, add
the measure to your matrix, and you should get the results shown below in your matrix.

90 Supercharge Power Bl

Category Total Number Total All

of Products Products
Accessories 35 397
Bikes 125 397
Clothing 48 397
Components 189 397
Total 397 397

You can see from this matrix that the new measure (the one on the right) is ignoring the initial filter context
coming from the rows in the matrix. What is happening here is that first of all, the initial filter context is set
by the row Products [Category], but the ALL () function always returns an unfiltered copy of the table,
and hence it returns the entire Products table instead of the filtered Products table. So COUNTROWS ()
returns 397 for every row in the matrix—including the total, as before.

Using ALL() as an Advanced Filter Input

The most common use of ALL () is as an advanced filter table input to a CALCULATE () function. Let’s look
at an example using ALL () as a table input to CALCULATE ().

A good use for ALL () inside CALCULATE () is to remove the filters that are naturally applied to a visual so
that you can access the number that is normally in the total line of the visual. Once you can access the equiv-
alent total in a visual (such as a matrix) from any row in the matrix, you can then easily create a measure that
finds the percentage of the total, which would be very useful indeed. The concept will make more sense as
you work through the following example.

Calculating the Country Percentage of Total Sales

Say that you want to calculate the country percentage of global sales. First of all, set up a matrix with Ter-
ritories[Country] on Rows and [Total Sales] on Values, as shown below.

Country Total Sales

Australia $9,061,001
Canada $1,977,845
France $2,644,018
Germany $2,894,312
United Kingdom| $3,391,712
United States $9,389,790
Total $29,358,677

13: DAX Topic: ALL(), ALLEXCEPT(), and ALLSELECTED() 91

It is then possible (as shown below) to select the matrix (see #1 below), click on the drop-down arrow next
to the measure [Total Sales] (#2), and then select Show Value As (#3) and Percent of Grand Total (#4).

W = OrderDateKey
W = OrderQuantity

r 9) =: & -1 B ProductKey

W = ProductStanda...

Country Total Sales R ——
: St—— B B Sales of Bikes t..
Australia $9,061,001 Values R
Canada $1,977,845 e ot T
{ France $2,644,01 8 | Filters Rename |
Germany $2,894;31 2 Conditional formatting ’
- - +" Mo calculation Show value as 9) »
UnItEd KI ngdom $3’39 1 ‘71 2 o Percent of grand tota Quick measures :
UnltEd States .'1‘99,3'89J 790 ' Percent of column total =—
M & Total Cost
TOta| $2 9,358,677 pE'CEHt of row tctal M & Total Custome...
rage leveliters W E Total Margin
Class(All) 4 E Total Sales
L - |

But if you do this, you are only changing the display format of the result and not actually calculating the
percentage as part of your data model. This means you can’t use these percentages inside other measures,
and you also can’t reference the percentages from cube formulas (discussed in Chapter 19). Of course, you
are also not learning to write DAX!

Writing Your Own DAX Measures

As illustrated in the preceding section, it is much better practice to create a new measure that will return the
actual value as a reusable asset in your data model. You can do this in two steps.

Tip: Remember that it is good practice to break the problem you are solving into pieces and solve
one piece of the puzzle at a time.

92 Supercharge Power Bl

Step 1: Create a Grand Total Measure

Right-click the Sales table and create the following new measure:

Total Global Sales
= CALCULATE ([Total Sales] , All(Territories))

Don’t forget to apply suitable formatting immediately, before moving on.

As you know, the first parameter of CALCULATE () is an expression, and the subsequent parameters are
filters that modify the filter context. In this case, you are passing a table as the filter context. This table is
ALL (Territories), which is actually an unfiltered copy of the entire Territories table.

After you add the new measure to the matrix, your matrix looks as shown below. Do you see that the new
measure is ignoring the initial filter context coming from the matrix? CALCULATE () is the only function that
can modify the filter context. In this case, CALCULATE () is replacing the initial filter context on Territo-
ries [Country] with a new filter context (an unfiltered copy of the Territories table).

Country Total Sales Total Global Sales
Australia $9,061,001 $29,358,677
Canada $1,977,845 $29,358,677
France $2,644,018 $29,358,677
Germany $2,894,312 $29,358,677
NA $29,358,677
United Kingdom $3,391,712 $29,358,677
United States $9,389,790 $29,358,677
Total $29,358,677 $29,358,677

Step 2: Create the Percentage of Total
After you have created the measure [Total Global Sales], itis easy to create a new measure to calculate
the country percentage of global sales, as follows:
% of Global Sales
= DIVIDE ([Total Sales] , [Total Global Sales])

Make sure you format this measure so that Format is set to Percentage and Decimal Places is set to 1. You
end up with the matrix shown below.

Country Total Sales Total Global Sales % of Global Sales
Australia $9,061,001 $29,358,677 30.9%
Canada $1,977,845 $29,358,677 6.7%
France $2,644,018 $29,358,677 9.0%
Germany $2,894,312 $29,358,677 9.9%
NA $29,358,677

United Kingdom $3,391,712 $29,358,677 11.6%
United States $9,389,790 $29,358,677 32.0%
Total $29,358,677 $29,358,677 100.0%

The final step is to remove the [Total Global Sales] measure from the matrix.

Note: You don’t actually need the interim measures you write to be placed in the matrix in order
for the [% of Global Sales] measure to work. But you should notice how much easier it is to visualise

13: DAX Topic: ALL(), ALLEXCEPT(), and ALLSELECTED() 93

what is happening when you write these measures in the context of a matrix. When you do it this
way, you can easily see how the [Total Global Sales] value is the same, regardless of the country
in the matrix, and hence you can immediately see that you just need to divide the country sales
by this total global sales amount, and it is going to work.

The final matrix is shown below, with some conditional formatting applied to make it easier to read.
Country Total Sales % of Global Sales

Australia $9,061,001

Canada $1,977,845 6.7%
France $2,644,018 9.0%
Germany $2,894,312 9.9%
United Kingdom $3,391,712 11.6%
United States $9,389,790
Total $29,358,677 100.0%

Using the Quick Measures Option
You may already know—or may have noticed in one of the earlier images—that there is a New Quick Measure

option available in Power BI. If you click the drop-down button next to Total Sales (see #1 below), you see the
New Quick Measure option (#2).

Note: At this writing, Quick Measures is still in preview. If you can’t see the New Quick Measure
option in the menu (as shown below), you can turn this preview feature on via the following menu:
File\Options and Settings\Options\Preview Features\Quick Measures

Remove fisld
Fename
Conditional formatting b
Remove conditicnal formatting
Show value as

Mew quick measure

Drag data fields here

If you select the New Quick Measure option, Power Bl will help you write a measure, and you don’t have to
have any knowledge DAX at all. Using New Quick Measure is much better than creating implicit measures, as
discussed earlier in this chapter. Some reasons are that you can rename the measure, edit the measure, and
reuse the measure inside other measures. The image below shows Total for Category (Filters Not Applied)
selected for the calculation in a new quick measure. All you have to do is drag a column or measure from the

94 Supercharge Power Bl

fields list on the right into the relevant placeholders on the left. In the example below, | have added [Total
Sales] to Base Value and Territories [Country] to Category.

Note: Did you notice that | didn’t need to tell you that [Total Sales] isa measure and Terri-
tories [Country] is a column? This is best practice at work. You should always omit the table
name from the measure and always include the table name in front of a column; if you do, others
in the DAX authoring community will understand what you mean.

Quick measures

Calculation Fields
Total for category (filters not applied) A O Search
Calculate the total across all values in a category -
ignering any filters applied in your report. Learn more Calendar
. Customers
Base value ©
Product Colors
Total Sales ' Products
) Sales
Category @
Territories
IS - " -
Country VisitData

The measure that Power Bl creates is shown below.

Total 5ales total for Country =
CALCULATE[]'Sales"' [Total Sales], ALL('Territories’[Country]))

Note that this is a real measure—almost identical to the one that was hand-written above. However, at this
writing, the New Quick Measure feature is not using best practice. Can you spot what is wrong with the
measure above? The first parameter in CALCULATE () is a measure, but the measure is referencing the
table name before the measure name. You should never do this—never ever! Always add the table name
before a column name; do not add the table name before a measure name. The good news, however, is that
because this is a real measure, you can simply edit what the New Quick Measure feature created and correct
the syntax yourself. (I expect that this “poor practice” will be fixed at some point in the future. | have already
reported it to Microsoft.)

Note: Using the New Quick Measure option is a great help for writing more complex DAX functions
quickly and without a lot of knowledge about how it all works. However, | do not spend any more
time talking about the feature in this book because this is a book about writing your own DAX
formulas. If you want to use New Quick Measure, then do so by all means. | don’t recommend that
you use New Quick Measure in place of learning how the DAX language works; rather, | recommend
that you use New Quick Measure as a tool to help you learn the DAX language.

13: DAX Topic: ALL(), ALLEXCEPT(), and ALLSELECTED() 95
Passing a Table or a Column to ALL()

Before we finish with ALL (), it is worth pointing out that this next measure would return exactly the same
result as [Total Global Sales] in the matrix example in the section “Step 1: Create a Grand Total Mea-
sure,” above:
Total All Country Sales
= CALCULATE ([Total Sales],
ALL (Territories[Country])

)

Notice that this measure passes a single column instead of the entire table to the ALL () function. So in this

specific matrix (shown below), the values for [Total Global Sales] and [Total A1l Country Sales]
are identical.

Country Total Sales Total Global Sales Total All
Country Sales

Australia $9,061,001 $29,358,677 $29,358,677
Canada $1,977,845 $29,358,677 $29,358,677
France $2,644,018 $29,358,677 $29,358,677
Germany $2,894,312 $29,358,677 $29,358,677
NA $29,358,677 $29,358,677
United Kingdom $3,391,712 $29,358,677 $29,358,677
United States $9,389,790 $29,358,677 $29,358,677
Total $29,358,677 $29,358,677 $29,358,677

However, the measure [Total A1l Country Sales] would not work (i.e., it would not remove the filter)
if there were some other column on Rows in the matrix (i.e., something other than Country). To test this,
remove Territories [Country] from Rows in the matrix and replace it with Territories[Region].
You get the result shown below.

Region Total Sales Total Global Sales Total All
Country Sales

Australia $9,061,001 $29,358,677 $9,061,001
Canada $1,977,845 $29,358,677 $1,977,845
Central $3,001 $29,358,677 $3,001
France $2,644,018 $29,358,677 $2,644,018
Germany $2,894,312 $29,358,677 £2,894,312
NA $29,358,677

Northeast $6,532 $29,358,677 $6,532
Northwest $3,649,867 $29,358,677 $3,649,867
Southeast $12,239 $29,358,677 $12,239
Southwest $5,718,151 $29,358,677 $5,718,151
United Kingdom $3,391,712 $29,358,677 $3,391,712
Total $29,358,677 $29,358,677 $29,358,677

Notice the difference between passing the entire table name to the ALL () function and passing a single
column. [Total Global Sales] removes the filter from the entire Territories table, but [Total
All Country Sales] removes filters only from the Territories [Country] column of the table. In the
image above, there is no filter on the Territories [Country] column of the table, and hence ALL () has
no effect on the visual.

Remove [Total All Country Sales] from the matrix before proceeding.

96 Supercharge Power Bl

The New Table Option Revisited

Now is a good time to revisit the New Table feature introduced earlier in the book. Remember that you can
use the New Table button (see #1 below) to “materialise” a table into the data model. Normally you can’t
“see” a table function in a DAX formula, and that makes it hard to understand what the table function is
doing. But if you take the table function and add a new table, as shown below, you can actually see the table
that is generated.

Data type:
i1 HO)
LE] Format:

Mew Mew Mew Sort by o o .
Measure Column Table Column $ /0 Y .do|Auto

Calculations Sort Formatting

A1l Countries = ALL{Territories[Country][}

After creating the table above, switch to Data view and click on the new table. You can see that this table
consists of a list of six countries plus NA.

All Countries = ALL(Territories[Country])

Country
United States
Canada

France

Germany

Australia
United Kingdom
MNA

This table is just a test table. It isn’t connected to the data model at all, but it can be if you want to connect
it. | just like to materialise tables like this as part of the learning experience because it is helpful to be able to
visualise table functions. You should delete such test tables when you are done so you don’t get confused.

The ALLEXCEPT() Function

ALLEXCEPT () allows you to remove filters from all columns in a table except the ones that you explicitly
specify. Consider the following example:
Total Sales to Region or Country
= CALCULATE ([Total Sales],
All (Territories[Region],Territories[Country])
)
ALLEXCEPT () solves the problem implied above, where you need to specify many columns individually in
the case that you want most but not all columns in your formula. The above formula works when you have
Territories[Country] on Rowsand also whenyou have Territories[Region] on Rows, butit does
not work with Territories [Group] on Rows. If you have a lot of columns in your table, you have to write
a lot of DAX code to make such a formula work for all but a few of the columns. This is where ALLEXCEPT ()
comes into play. The above formula can be rewritten as follows:
Total Sales to Region or Country 2
= CALCULATE ([Total Sales],
ALLEXCEPT (Territories, Territories[Group]))

Note: You must first specify the table that is to be included and then specify the exception columns.

13: DAX Topic: ALL(), ALLEXCEPT(), and ALLSELECTED() 97

The ALLSELECTED() Function

The ALLSELECTED () function is useful when you want to calculate percentages, as shown above, and you
have a filter applied (say, via a slicer) but you want the total in your matrix to add up to 100%.

Say that you’re working with the same matrix used earlier in this chapter but now with a slicer that filters
on Territories[Group]. Notice below that [$ of Global Sales] adds up to 38.7%; this is correct
because the other countries that make up the remaining 61.3% have been filtered out by the Group slicer.

Region Total Sales % of Global Sales

T e Canada $1977845 I 67%
.Einhmm Central $3,001 | 0.0%
Pacific Northeast $6,532 i 0.0%
Northwest $3,649,867 NN 12.4%

Southeast $12,239 | 0.0%

southwest, $5.718,151 IS

Total $11,367,634 38.7%

But say that you want to see the percentage of each region out of all the values in the matrix (in this example,
just the regions in the group North America). This is where ALLSELECTED () comes in. ALLSELECTED ()

removes the filters from the matrix but respect the filters in the slicer.

Add the following measure to the matrix above:

Total Selected Territories

Group
Europe
NA

W North America
Pacific

= CALCULATE ([Total Sales],

ALLSELECTED (Territories))

% of Global Sales Total Selected

Region Total Sales

Canada 31,977,845 [N 6.7%
Central $3,001 | 0.0%
Northeast $6,532 | 0.0%
Northwest| $3,649,867 | 12.4%
Southeast $12,239 | 0.0%
southwest| $5,718,151 | G0
Total l$11,367,634 l 38.7%

Territories

|

$11,367,634
$11,367,634
$11,367,634
$11,367,634
$11,367,634
$11,367,634
$11,367,634

Notice how the interim measure [Total Selected Territories] returnsthe same value as the total of
the items in the matrix. Using the same steps as before, you can now write a new measure [% of Selected
Territories] and then remove the interim measure [Total Selected Territories] from the matrix.
Now write the following measure:

% of Selected Territories
= DIVIDE ([Total Sales] ,

Remember to format this new measure using percentage and one decimal place.

[Total Selected Territories])

Group Region Total Sales % of Global % of Selected
;LXO”E Sales Territories
B e ™ Canada s1977845 [67 I 174%
Central $3,001 | 0.0% 0.0%
Northeast $6,532 | 0.0% 0.1%
Northwest | $3,649,867 [N+ E:. >
Southeast $12,239 | 0.0% 0.1%
Southwest| $5,718,151 . 503%
Total $11,367,634 38.7% 100.0%

98

Using Interim Measures

Remember that it is good practice to split a problem into pieces and solve one piece of the problem at a
time. My advice is to get used to creating interim measures first and then writing the final measure that you
actually need. Doing this helps you visualise each step of the process and makes it easier to get each part of

the end-state formula correct before you proceed to the next step.

It is, of course, possible to write one single measure that does all the steps you just went through. This is

what it would look like:

% of Selected Territories ONE STEP

= DIVIDE ([Total Sales] ,
CALCULATE ([Total Sales],
ALLSELECTED (Territories)

)
)

But this all-in-one formula is much harder to write, read, and debug—particularly when you are learning to
write DAX. It’s not wrong; it’s just harder, and life is too short to do things that are harder than they need to be.

Practice Exercises: ALL(), ALLEXCEPT(), and ALLSELECTED()

It’s time for some practice. Create a new matrix and put Customers [Occupation] on Rows and the mea-

sure [Total Sales] on Values. You get the matrix shown below.

Occupation Total Sales

Clerical $4,684,787
Management $5,467,862
Manual $2,857,971
Professional $9,907,977
Skilled Manual| $6,440,081
Total $29,358,677

Then, using the principles covered in this chapter, create the following measures by first creating the inter-
im measure you need and then creating the final measure. Find the solutions to these practice exercises in
"Appendix A: Answers to Practice Exercises" on page 178.

47. [Total Sales to All Customers]

48. [% of All Customer Sales]

Now add a slicer for Customers[Gender] to the report you have just created and filter by Gender = M, as

shown below.

Gender

F

Occupation Total Sales Total Sales to

R All Customers
Clerical $2,421,327 $29,358,677
Management $2,793,527 $29,358,677
Manual $1,463,060 $29,358,677
Professional $4,773,493 $29,358,677
Skilled Manual $3,093,651 $29,358,677
Total $14,545,059 $29,358,677

Note how [% of A1l Customer Sales] doesn’t add to 100%. This is correct because the other 50.5% of

customers are filtered out with the slicer.

Customer Sales

8.2%
9.5%
5.0%
16.3%
10.5%
49.5%

Supercharge Power Bl

13: DAX Topic: ALL(), ALLEXCEPT(), and ALLSELECTED() 99

Set up another matrix with Customers[NumberCarsOwned] on Rows, Customers [Occupation] on Slicer,
and [Total Sales] on Values. Your job is to create the other measure in this matrix: [$ of Sales to Se-
lectedCustomers]. When you are done, your matrix should look like the one below, with the last column
showing the percentage of sales to customers based on the number of cars they own.

Oceupation NumberCarsOwned Total Sales % of Sales to Selected
W Clerical Customers
Management
e 0 $2,660,886 56.8%
rofessional
Skilled Manual 1 $1,204,496 25.7%
2 $790,154 16.9%
3 $28,141 0.6%
4 $1,109 0.0%
Total $4,684,787 100.0%

Remember that in this case, you want to create an interim measure first, so you actually need to create the
following two measures and then remove the first one from the matrix.

49. [Total Sales to Selected Customers]
50. [% of Sales to Selected Customers]

Create the following two measures. The first one is an interim formula and can be removed from the matrix
once you have finished the second formula. Find the solutions to these practice exercises in "Appendix A:
Answers to Practice Exercises" on page 178

51. [Total Sales for All Days Selected Dates]
52. [% Sales for All Days Selected Dates]

Here’'s How: Using ALLEXCEPT()

| don’t use ALLEXCEPT () much, and you may not either, but it is still good to work through an example of
how it can be used. This section will give you some practice while also demonstrating one possible use case.

Say that you want to compare the percentage of sales across all occupations and see how it changes depending
on the other customer filters. Follow these steps:

1. Set up a new matrix and place Customers[Occupation] on Rows.

2. Add slicers for Gender and NumberCarsOwned.

3. Put [Total Order Quantity] on Values. You should have the setup shown below. Note that the total
order quantity will change as you click on the slicers.

Here | have set the NumberCarsOwned slicer to be horizontal by selecting the slicer (see #1 below), going
to the Format pane (#2), selecting General (#3), and then setting Orientation to Horizontal (#4).

@ “@
4 - = A General
MNumberCarsOwned enere @
0 1 2 3 4 Outline coler -
Outli... 1 O——
. . Orienta... Horizontal @
Gender Occupation Total Order Quantity
F X Position 828
hf .
Clerical 9,624 e B
Management 10,594)
Width 444
Manual 6,924
Prnfaccinnal 12 QAR

A number of steps are required to get to the end state (which is shown below). The following practice exer-
cises show the measures you need to create, in the proper order, to get to the end state. As you create each

100

Supercharge Power Bl

measure, check that the results you see in your matrix make sense. Once again, this is the reason to write
DAX in the context of a matrix: It makes it easier to get your head around what you are doing.

The following matrix shows all the measures you need to write so you have an overview of what you’ll ac-
complish with the following measures. Note that there are some slicers applied to the report already.

Occupation Total Order Total Orders Baseline Orders Baseline % this Total Occupation % Percentage
Quantity All Customers for All Occupationis Orders of Selected Point Variation
Customers with of All Customer Selected Customers to Baseline
this Occupation Orders Customers
Clerical | 7 60,398 9,624 15.9% 2,199 0.3% -15.6%
Management | 872 60,398 10,594 17.5% 2,199 39.7% 22.1%
Manual 1 60,398 6,924 11.5% 2,199 0.0% -11.4%
Professional 1,263 60,398 18,995 31.4% 2,199 57.4% 26.0%
Skilled Manual 56 60,398 14,261 23.6% 2,199 2.5% -21.1%
Total | 2,199 60,398 60,398 100.0% 2,199 100.0% 0.0%

The image below shows the end state you are working toward, with just the final measures included.

MumberCarsOwned

W

0 1 2 3
G.Enser Occupation Total Order Occupation % Baseline % this Percentage
M Quantity of Selected Occupation is Point Variation
Customers of All Customer to Baseline
Orders

Clerical 7 0.3% 15.9% -15.6%
Management 72 |Eb.7% 17.5% [
Manual 1 0.0% 11.5% -11.4%
Professional 1,263 F _
Skilled Manual 56 2.5% 6% -21.1%
Total 2,199 100.0% 100.0% 0.0%

As you can imagine, with this matrix, it is possible to select different combinations of gender and number of
cars and then compare the variation between the baseline order quantity and the order quantities for the
selected filter.

Practice Exercises: ALL(), ALLEXCEPT(), and ALLSELECT-
ED(), Cont.

Write the following DAX formulas one at a time and check to make sure each looks correct before moving to
the next one. Find the solutions to these practice exercises in "Appendix A: Answers to Practice Exercises"
on page 178.

53. [Total Orders All Customers]

To check this measure, click on the slicers and note that [Total Order Quantity] should change, but
[Total Orders All Customers] should not change based on the slicers.

54. [Baseline Orders for All Customers with This Occupation]

This measure should also not change when you make changes to the slicers. However, note that you should
get a different value for each occupation—unlike with [Total Orders All Customers] above. This will be the
baseline for comparison.

13: DAX Topic: ALL(), ALLEXCEPT(), and ALLSELECTED() 101
55. [Baseline % This Occupation of All Customer Orders]

This measure converts the baseline measure above into a percentage of the baseline for all orders. The de-
scription of this measure should help you work out how to write the DAX. Test the slicers again and make
sure this new baseline percentage doesn’t change with the slicers.

56. [Total Orders Selected Customers]

This measure should adjust depending on the selections you have in the slicers. Hint: Use ALLSELECTED ().

57. [Occupation % of Selected Customers]

You can use the interim measures above to create this measure. Click the slicers a few times and see which
values change. This new measure should change based on the values you select in the slicers.

58. [Percentage Point Variation to Baseline]

This measure is the percentage of selected customers (Practice Exercise 57) minus the baseline (Practice
Exercise 55).

Now you should have an interactive report that allows you to drill into customer attributes (gender and num-
ber of cars owned) to see the impact on the mix of business vs. the baseline of all customers.

Itis worth pointing out here that sometimes it may be useful to change the descriptions of the final measures
as they appear in a matrix. So while [Baseline % This Occupation of A1l Customer Orders] isagood
name for your measure because you know what it means, when you use this measure in a specific matrix, it
may be a good idea to rename it. You can do this by selecting the matrix, going to the Values section on the
right-hand side of the screen, and double-clicking the measure name you want to change. The name changes
just for this single visual (the matrix in this case).

After giving your measures new names, you might end up with something like the matrix shown below.

NumberCarsOwned

0 1 2 3
G.enser Occupation Total Order Share of Baseline Share Variation to
M Selected Filter All Customers Baseline
Clerical 7 | 03% I 15.9% -15.6%
Management | 872 7% [7.5
Manual 1 0.0% MM 11.5% 11.4%

Professional | 1263 [INEEE ST GG
Skilled Manual 56 | 25% [6% 21.1%

Total 2,199 100.0% 100.0% 0.0%

Note: If you change the description in the matrix, the easiest way to change it back is to remove
the measure from the visual and then add it back again.

102 Supercharge Power Bl

14: DAX Topic: FILTER()

FILTER () is a very powerful function in DAX. When FILTER () and CALCULATE () are combined, these
two functions allow you to alter the filter context in your matrixes any way you want. However, before we
move to using FILTER () with CALCULATE (), | think it is worth looking at FILTER () on its own with a
couple simple examples.

Note: These examples demonstrate how the FILTER() function works, but you probably would not
actually write such formulas in real DAX. These formulas are created here just for demonstration
purposes.

The syntax of FILTER () is as follows:
= FILTER (Table, myFilter)

Table is any table (or function that returns a table, such as ALL ()), and myfFilter is any expression that eval-
uates to a TRUE/FALSE answer.

The FILTER () function returns a table that contains zero or more rows from the original table. Said another
way, the table returned by FILTER () can contain zero rows, one row, two rows, or any other number of rows,
up to and including the total number of rows in the original table. The purpose of FILTER (), therefore, is to
determine which rows will be returned to the final table result after you use the myFilter test.

FILTER () is an iterator, and it can therefore complete granular analysis to determine which rows will be
included in the final table. Generally, it is fine to use FILTER () over lookup tables, but it’s somewhat more
risky to use it over data tables, particularly if they are very large (millions of rows). Whether you should use
FILTER () depends on your data, on the quality of your DAX formulas inside FILTER (), and on what you
need to achieve.

Let’s work through an example. Set up a new matrix with Customers [Occupation] on Rows and the mea-
sure [Total Number of Customers] on Values. The matrix, shown below, indicates how many customers
there are in the entire customer database for each occupation type.

Occupation Total Number of
Customers

Clerical 2,928
Management 3,075
Manual 2,384
Professional 5,520
Skilled Manual 4,577
Total 18,484

But what if you want to know how many customers in the database have an income of more than $80,000
per year? Consider the following formula:
=FILTER (Customers, Customers|[YearlyIncome] >= 80000)

The result of this formula is a table of customers, and this new virtual table of customers includes all the
customers that have an income greater than or equal to $80,000 per year. But note that it is a table, and you
can’t put a table of values into a matrix. So if you want to see the result (in this case, the total count of rows)
inside a matrix, you have to wrap this table that was returned by FILTER () inside a function that returns a
value instead of a table of values (such as an aggregator).

Itis possible to count the number of rows in this table by wrapping the formula above inside another formula,
like this:

14: DAX Topic: FILTER() 103

Total Customers with Income of $80,000 or above
= COUNTROWS (
FILTER (
Customers, Customers[YearlyIncome]>=80000

)
If you write this formula and put it in the matrix, it looks as shown below. You should do this now for practice.

Occupation Total Number of Total Customers with

Customers Income of $80,000 or
above

Clerical 2,928

Management 3,075 1,963

Manual 2,384

Professional 5,520 1,976

Skilled Manual 4,577 443

Total 18,484 4,382

You can see from the matrix that not all occupations have customers that earn this amount of money.

New Table Strikes Again

Don’t forget about that cool New Table button you’ve seen a couple times already. If you want to “see” the
filtered copy of the Customers table from the preceding section—just as a test and to get your head around
what is happening under the hood—create a new table with the following formula:
Customers > 80000 Table = FILTER(Customers, Customers|[YearlyIn-
come]>=80000)
If you switch to this new table in Data view, you can see the table and also check how many rows are in it. As
you can see below, it is indeed a filtered copy of the original Customers table.

Customers » B@B@E Table = FILTER(Customers, Customers[YearlyIncome]>=88888)

Jagmine Waker 9/1954 12:00:00 AM S F
Sydney Brown ,;'DS,"IH:T-i 12:00:00 AM 5 F

0 JordynSmmons -5,*’1 1/1954 12:00:00 AM § F
) Monigue Ramos 8/08/195412:00:00 AM 5 F
Jennier Taylor 19/10/195412:00:00 AM S F
Krystal Sun 17/08/1954 12-:00:00 AM 5 F
Allsan P hillip f 16/10/195412:00:00 AM 5 F
Sierra Gonz : 9409/955 12:00:00 AM 5 F
15/03/1956 12:00:00 AM 5 F

16/04/1955 12-:00:00 AM S F

11/05/1956 12:00:00 AM 5 F

12/11/195612:00:00 AM S F

7/02/1956 12:00:00 AM 5 F

17/09/1956 12:00:00 AM 5 F

21/09/1955 12:00:00 AM 5 F

6/02/195512:00:00 AM 5 F

éharun Nara 1508/1955 12:00:00 AM 5 F

/ i Ay Wu 26/10/1956 12:00:00 AM 5 F
B lodiGoel 2/403/1956 12:00:00 AM 5 F
Bethany Goe 70241956 12:00:00 AM 5 F

TABLE: Customers = 80000 Table (4,332 rows)

104

Supercharge Power Bl

These are the key points to take away from this example:

FILTER() returns a table. It is a virtual table unless it is materialised using the New Table option.

The virtual copy of the table that is used inside the measure above (not the materialised copy) retains
a link to the original table and can have an effect on the other tables in the data model. (You’ll learn
more about this later in this chapter.)

You can’t put the table returned by Filter() into a matrix as is because you simply can’t put a table
into a matrix. But you can count how many rows there are in the table and put that answer into the
matrix. This is exactly what happens with this measure.

So How Does FILTER() Actually Work?

It is essential that you understand how the FILTER () function works before moving on. Let’s look just at
the FILTER () portion of the formula above:

FILTER (Customers, Customers[YearlyIncome]>=80000)

FILTER () is an iterator just like SUMX (), covered in Chapter 7. As such, FILTER () first creates a row
context on the specified table (the first parameter) and then iterates through each row in the table to check
whether the row passes the test. If an individual row passes the test, it is retained in the final table result. If
an individual row fails the test, it is omitted from the final table result.

Note: As mentioned in Chapter 7, it is convenient to think of iterators working one row at a
time, and indeed that is the logical execution approach. In reality, though, the Power Bl engine
has been built and optimised to work very efficiently under the hood. You should not think that
iterators are inherently inefficient because the Power Bl engine can make the physical execution
very efficient indeed.

Let’s look at a simple example. Assume that the Customers table has five rows, as shown below.

Row CustomerKey Yearlylncome

1 11003 S 70,000
2 11004 S 80,000
3 11005 S 70,000
4 11007 S 60,000
5 11008 S 80,000

The Row column has been added here to assist in the explanation of how FILTER () works; it
does not actually exist in the Customers table.

Here again is the FILTER () portion of the formula from above:

FILTER (Customers, Customers[YearlyIncome]>=80000)

This is what the FILTER () function does (logically speaking):

1.

It first creates a new row context over the Customers table. The row context allows FILTER() to keep
track of which row it is looking at, and it also provides the capability to isolate a single row (one at a
time) and refer to the single value that is the intersection between the single row and any column(s)
in the table.

Now that there is a row context, FILTER()goes to row 1 and asks the question (from the myFilter
portion of the formula) “Is the value in the column Customers[Yearlylncome] for the customer in this
row greater than or equal to $80,000?” If the answer is yes, row 1 survives the filter test, and the
row is kept in the final table result. If the answer is no, row 1 is discarded from the final table result.

14: DAX Topic: FILTER() 105

So in this case (row 1), the yearly income is $70,000, so it fails the test, and row 1 is discarded from
the final table result.

3. FILTER() then moves to the second row (using the row context to keep track of where it is) and asks
the same question again for this new row: “Is the value in the column Customers[Yearlylncome] for
the customer in this row greater than or equal to $80,000?” If the answer is yes, the row survives
the filter test, and the row is kept in the final table result. If the answer is no, it fails the test, and the
row is discarded from the final table result. In the case of row 2, it passes the test, and hence row 2
is retained.

4. FILTER()works down the table one row at a time and tests each row against the filter test. It decides
which rows to keep and which rows to discard by checking each row, one at a time, against the filter
test.

5. When the last row has been evaluated, FILTER() returns a table that contains just the rows that
passed the test, as shown below. All rows that failed the test are discarded.

Row CustomerKey Yearlylncome
2 11004 S 80,000
5 11008 S 80,000

So it is clear from the image above that if you now count the rows of the table on the left (which is the result
of FILTER ()), you get the answer 2 (i.e., there are two rows in this filtered table).

If you now refer back to the earlier example, it is clear how the formula gave you the results. Here is the
formula, shown again for convenience:

Total Customers with Income of $80,000 or above
= COUNTROWS (
FILTER (
Customers, Customers[YearlyIncome]>=80000

)
The measure [Total Customerswith Income of $80, 000 or Above] iterates through the Customers
table using the FILTER () function, checking the value in the Customers [YearlyIncome] column of each
individual customer to see if the value is greater than or equal to $80,000. FILTER () returns a table of all
customers that passed this test, and then COUNTROWS () counts them. As shown below, the formula finds that
1,963 customers with the occupation management pass this test, and 4,382 customers in total pass the test.

Occupation Total Number of Total Customers with
Customers Income of $80,000 or
above
Clerical . 2,928
| Management | 3,075 1,963
Manual ! 2,384
Professional 5,520 1,976
Skilled Manual 4,577 443

Total 18,484 4,382

106 Supercharge Power Bl

As mentioned earlier, FILTER () is most commonly used as an advanced filter inside CALCULATE (). FIL-
TER () is aniterator, and it therefore allows a very granular level of evaluation of a table and is a very powerful
tool for altering the filter context of a matrix any way you want and at a level of detail that is not possible by
using a simple filter inside CALCULATE ().

Consider the following formula:
Total Customers with Income of $80,000 or above 2
= CALCULATE (COUNTROWS (Customers),
Customers[YearlyIncome]>=80000)
This formula returns exactly the same result as the FILTER () version above. In this version, the filter portion
of the formula uses a simple filter, or raw filter. A simple filter has a column name on one side of the formula
(in this case, Customers [YearlyIncome]) and a value on the right side (in this case, 80000).

CALCULATE () is designed to accept this type of simple syntax without using the FILTER () function. But
in reality, as mentioned earlier, this is just “syntax sugar” created by the developers to make it easier for you
to write measures. Under the hood, the formula above is converted to the following formula:
Total Customers with Income of $80,000 Under the Hood

= CALCULATE (COUNTROWS (Customers),

FILTER (ALL (Customers) ,Customers|[YearlyIncome]>=80000)

)
Note the inclusion of ALL (Customers) instead of just Customers as the first parameter of the FILTER ()
function. | cover why the ALL () function is needed here in more detail in Chapter 15.

There is a limit to what CALCULATE () can do with one of these simple filters. It works only if you have a
column name compared to a value. But what if you want to do something more complex, like check whether
another measure is greater than a value? Let’s look at another example.

Example: Calculating Lifetime Customer Purchases

Say that you want to know how many customers have purchased more than $5,000 of goods from you over
the course of time. You can’t use a simple CALCULATE () filter in this case because customers may have
purchased from you on many occasions, and you don’t have a column that contains a single value that tells
the total sales for each customer. If you tried to write this formula using a simple filter, it would look like this:
Customers with Sales Greater Than $5,000 Doesn't Work
= CALCULATE (COUNTROWS (Customers), [Total Sales] > 5000)
This formula includes a measure on the left side—and that is not allowed with a simple filter! A simple filter
must have a column compared to a value, so a simple filter doesn’t work in this scenario.
This is where you have to write your own FILTER () functions. Now take a look at the following formula:
Customers with Sales Greater Than $5,000
= CALCULATE (
COUNTROWS (Customers) ,
FILTER (Customers,
[Total Sales] >= 5000

)

It is worth stepping through how FILTER () works in this example because there is a slight difference from
the earlier example.

Note: The FILTER() portion of the formula is evaluated first. With CALCULATE(), the filter portion
is always evaluated first (for both simple filters and advanced filters).

Let’s start by looking at just the FILTER () portion of this formula:
FILTER (Customers, [Total Sales] >= 5000)
Here’s what’s happening in this portion of the formula:

1. FILTER() creates a row context for the Customers table. FILTER() then goes to row 1 in the Customers
table and applies a filter to that single customer.

14: DAX Topic: FILTER() 107

2. This is very important: Because of the implicit CALCULATE() inside the measure [Total Sales], context
transition occurs, and the row context is converted to an equivalent filter context. Because of the
context transition, the filter then propagates down through the relationship from the Customers
table to the Sales table and, hence, filters the Sales table so that only sales for this one customer are
unfiltered. Do you remember this from the end of Chapter 10?

3. The measure [Total Sales] is evaluated after the Sales table is filtered for this one single customer.

FILTER() then asks the question “Is the value of [Total Sales] for this one customer in this first row
of the Customers table greater than or equal to $5,000?” If the answer is yes, then this customer
survives the filter test, and the row is kept in the final table result. If the answer is no, the customer
is discarded from the final table result.

5. FILTER() then moves to the second row in the row context of the Customers table. Because of the im-
plicit CALCULATE () inside the measure [Total Sales], the row context is converted to a filter context
(context transition), and the filter propagates the filter for the second customer from the Customers
table through to the Sales table, evaluates the measure [Total Sales] against the rows in the Sales
table that remain, and then checks whether [Total Sales] for this second customer is greater than
$5,000. Once again, if the answer is yes, the customer survives the filter and remains in the final
table results. Any customer that fails the test is discarded.

6. FILTER() proceeds through every customer in the Customers table, testing each one to see if the
[Total Sales] of all the records for that specific customer in the Sales table is greater than $5,000.
All customers that pass the test are retained in the final table, and the ones that fail the test are
discarded from the final table.
When the FILTER () portion finishes its work, FILTER () returns a table of customers that passed the test.
You can imagine the myFilter portion of the original formula looking like this:
Customers with Sales Greater Than $5,000
= CALCULATE (
COUNTROWS (Customers),
Only Use The Table of Customers Provided By FILTER
)
The FILTER () formula above determines which customers passed the test and returns this table of cus-
tomers to CALCULATE () . The resulting filtered table of customers is then accepted and applied as a filter
by CALCULATE(). Finally, CALCULATE() evaluates the COUNTROWS(Customers) potion of the formula. There
are actually 1,732 customers out of a total of 18,484 customers that passed the FILTER () test. By the time
COUNTROWS () is executed, just the 1,732 customers that passed the FILTER () test remain, so COUN-
TROWS () returns 1,732.

Practice Exercises: FILTER()

Set up a new matrix with Products [Category] on Rows and [Total Sales] on Values and then write
the following two formulas. Find the solutions to these practice exercises in "Appendix A: Answers to Practice
Exercises" on page 178.

59. [Total Sales of Products That Have Some Sales but Less
Than $10,000]

What you need to do here is get FILTER () to iterate over the Products table to determine whether each
product has some sales and also whether the total of those sales is less than $10,000.

Note that you can use the double ampersand operator (&&) if you need more than one condition in your
filter expression:

Conditionl && Condition2
Alternatively, you can use two separate FILTER functions.

108 Supercharge Power Bl

60. [Count of Products That Have Some Sales but Less Than
$10,000]

You should end up with a matrix like the one below.

Category Total Sales Total Sales of Products Count of Products
that have Some Sales that have Some Sales
but Less than $10,000 but Less than $10,000

Accessories $700,760 $31,431 4
Bikes $28,318,145
Clothing $339,773 $5,106 2
Total $29,358,677 $36,538
Category @ Total Sales of Products Count of Products
that have Some Sales that have Some Sales
but Less than $10,000 but Less than $10,000
Accessories $31,431 4
Bike Wash - Dissolver $7,219 1
Patch Kit/8 Patches $7,307 1
Road Tire Tube $9,480 1 Total Sales of Products t
Touring Tire Tube $7,425 1 SAAEALS
Clothing $5,106 2 Filters
Racing Socks, L $2,427 1 vl Fltere
Racing Socks, M $2,679 1 Category(All
Total $3 6' 5 3 8 6 Count of Products that ha...

ProductName{All)

Total Sales of Products th...

Revisiting Filter Propagation
Earlier in this chapter, we looked at a FILTER () example with a measure on the left side of the filter test
and a value on the right side:
Customers with Sales Greater Than $5,000
= CALCULATE (COUNTROWS (Customers),
FILTER (Customers,
[Total Sales] >= 5000
)
)
Let’s revisit how FILTER () operates in the formula above. (You can’t hear this too many times.) The FIL-
TER () portion is evaluated first:
1. FILTER() creates a row context for the Customers table. FILTER() then goes to row 1 in the Customers
table, and because of the implicit CALCULATE() inside the measure [Total Sales], context transition
occurs, converting the row context from FILTER() into an equivalent filter context.

2. Because of the context transition, the filter on the first row of the Customers table propagates down
through the relationship with the Customers table and filters the Sales table so that only sales for
this customer are unfiltered.

14: DAX Topic: FILTER() 109

3. The measure [Total Sales] is evaluated after the Sales table is first filtered for this one single custom-
er (returning the value $8,249 in this case, as you should see in the results of your practice exercise).

Context Transition Revisited

Let me go over this again as it is very important. Do you remember what the formula for [Total Sales]
is? The formula is as follows:

[Total Sales] = SUM(Sales[ExtendedAmount])
Given that [Total Sales] evaluates to exactly the same result as SUM (Sales [ExtendedAmount]), what do
you expect will happen if you substitute SUM (Sales [ExtendedAmount]) into the formula above, like this:

Customers with sales greater than $5,000 Version2

= CALCULATE (COUNTROWS (Customers),
FILTER (Customers,
SUM (Sales [ExtendedAmount]) >= 5000

)

You should go ahead and create this formula and see what happens. When you do this, you create a matrix
like the one below.

Category Total Sales Customers Customers with Customers with
That Have Sales Greater sales greater than
Purchased Ihan $5,000 $5,000 Version2
Accessories $700,760 15,114 18,484
Clothing $339,773 6,852 18,484
Bikes $28,318,145 9,132 1,712 18,484
Total $29,358,677 18,484 1,732 18,484

The new formula returns the entire table of customers instead of the value you are looking for. Why is this?
There is a very important difference between a measure and the formula inside a measure. Technically speak-
ing, when you write the following measure:
Total Sales = SUM(Sales[ExtendedAmount])
what is actually happening under the hood is the following:
Total Sales = CALCULATE (SUM(Sales[ExtendedAmount]))
Power Bl adds a CALCULATE () function and wraps it around your formula. You can’t see this CALCULATE (),
but it is there. We call this “invisible” CALCULATE () an “implicit CALCULATE ().” Okay, let’s get back to
the problem at hand. Go back into the new measure you just created and wrap the SUM () function inside a
CALCULATE () as follows:
Customers with Sales Greater Than $5,000 Version2
= CALCULATE (COUNTROWS (Customers),
FILTER (Customers,
CALCULATE (SUM (Sales [ExtendedAmount])) >= 5000

)
When you manually place CALCULATE () like this, it is called an “explicit” CALCULATE () . Once you make
this change, you get the expected result, as shown below.

110 Supercharge Power Bl

Country Total Sales Customers Customers with Customers with
That Have Sales Greater sales greater than
Purchased Than $5,000 $5,000 Version2
Australia $9,061,001 3,591 719 719
Canada $1,977,845 1,571 42 42
France $2,644,018 1,810 163 163
Germany $2,894,312 1,780 158 158
United Kingdom $3,391,712 1,913 280 280
United States $9,389,790 7,819 370 370
Total $29,358,677 18,484 1,732 1,732

Note: | have swapped the column Products[Category] with Territories[Country] to show an al-
ternate view of the data. The measures work regardless of which column you have on Rows on
the matrix.

The point is that without the CALCULATE() function wrapped around SUM(Sales[ExtendedAmount]), some-
thing stops working. It doesn’t matter if there is an implicit CALCULATE () that you can’t see (inside another
measure) or if there’s an explicit CALCULATE () that you add yourself. You simply must have a CALCULATE ()
if you want this formula to work. Why is this?

Remember that Chapter 10 said that a row context does not automatically create a filter context. Chapter
10 was talking about the row context in a calculated column, but it is exactly the same in a function that has
a row context—in this case, the FILTER() function. The CALCULATE() function tells Power Bl to “run the filter
engine again.” If you don’t have this extra CALCULATE (), the filter that is first applied to the Customers
table will not propagate to the Sales table as described above. It is the second CALCULATE () (either im-
plicit or explicit) that causes the filter on the Customers table to propagate through the relationship to the
Sales table before the rest of the FILTER () expression is evaluated for each row in the table.

So let’s step through what happens without the extra CALCULATE () by going back to this version, which
didn’t work:
Customers with sales greater than $5,000 Version2
= CALCULATE (COUNTROWS (Customers),
FILTER (Customers,
SUM (Sales [ExtendedAmount]) >= 5000

)
Of course, the FILTER portion is evaluated first, just as before. And then the following happens:

1. FILTER() creates a row context on the Customers table.

2. FILTER() then goes to the first row in the table. No filter context currently exists because a row con-
text doesn’t automatically create a filter context.

3. SUM(Sales[ExtendedAmount]) is then evaluated over the entire Sales table for all customers and
returns the value $29,358,677. There is no filter context, and hence the Sales table is completely
unfiltered. Since $29 million is greater than $5,000, this customer survives the filter test.

4. FILTER() then goes to the next customer, and exactly the same thing happens again. It doesn’t matter
what customer is selected in the row context in the Customers table; there is no filtering through
to the Sales table, and therefore the result of every iteration step is that every customer passes the
test. Because they all pass the test, all customers are returned in the answer.

Note: The only way to create a filter context in this example is if you use a second CALCULATE()
function (implicit or explicit) wrapped around SUM (Sales [ExtendedAmount]) to tell Power Bl
to convert the row context into a filter context; then you need to propagate the filter down through
the existing relationships before completing the evaluation. If this CALCULATE() (implicit or explicit)
is omitted, then no filtering happens, and, as a result, the Sales table is completely unfiltered.

14: DAX Topic: FILTER() 111

This topic can take some time to get your head around. If this is not crystal clear, | recommend
that you go back through this chapter (and also Chapter 10) and work through the examples again
until it is clear in your mind.

Virtual Table Lineage

Let’s jump back to the version of the measure we’ve been working on that works:

Customers with Sales Greater Than $5,000
= CALCULATE (COUNTROWS (Customers),
FILTER (Customers,

[Total Sales] >= 5000

)
When you think about the new table returned by FILTER () in the above formula, your first inclination
may be to think about it as a standalone table, but that’s not the case. Any virtual table object returned by
a table function in DAX always retains a link to the data model for the life of the evaluation of the measure
or calculated column; this is called lineage. | find it useful to visualise an imaginary temporary table being
created above the real table in the data model, as shown below.

™ ImaginaryTempTableFromFilter

N : Imaginary table
Lineage to the = Geographey returned by filter
original table iame

BirthDate

1 Colentar Dproducts B ertores

Y D " CustomerKey . Productkey
Date . ¥, GeographyKey p 3 ProductSubcategory?

Territony Key
Region
Country
Group

5. DayMumberOfNesk MName Producthame

BirthDate 3 StandardCost

DayMame

= Sales
., ExtendedAmount
3 TaxAmt
OrderDate
I Total Sales Plus Tax C

This new temporary table contains a subset of rows as determined by FILTER (), but, importantly, it has the
link back to the original table (lineage). Therefore, when this new temporary table is used inside CALCULATE ()
(as is the case here), CALCULATE () tells Power Bl to run the filter propagation again, and this new table
therefore filters the original table and any other tables that are connected downstream to the original table.

Remember that the image above is just an illustration of what is happening under the hood. The imaginary
table is never materialised, and you can’t see it, but it behaves as if it were part of the data model, as illus-
trated here.

Note: Don’t confuse lineage as described above with what happens when you use the New Table
button in Power BI. Lineage only happens with virtual tables used inside DAX formulas such as
measures and calculated columns. At the end of the execution of a DAX formula, a virtual table
ceases to exist, and the lineage is gone. On the other hand, the New Table button creates a new
(physical) table that is stored in the data model. This new table does not retain lineage to the table
it came from. If you want a table created by the New Table button to filter your data model, you
need to connect the new table by using a relationship in Relationships view.

112 Supercharge Power Bl

15: DAX Topic: Time Intelligence

Time intelligence is a very important and powerful feature in DAX. Time intelligence refers to the ability to
write formulas that refer to other time periods within a visual without needing to change the time filters.
Consider the following matrix, which shows sales for the year 2003.

Filters

Visual level filters

Category Total Sales

CalendarYear
is 2003

Accessories $293,710 Category(All
Bikes $9,359,103 Total Sales(All
Clothing $138,248
Total $9,791,060

Page level filters

a fields here

Now what if you wanted to see the sales for the preceding year as well as the change in sales compared to
the preceding year? Well, one thing you could do is to toggle the filter between the calendar years 2003 and
2002 to see the results for the preceding year, or you could bring CalendarYear and place it on Columns
and then filter out the years that you are not interested in, as shown below.

Filters

evel filters

CalendarYear

Category 2002 2003 Total Ferfpe
Basic filterin
Accessories $293,710 $293,710 5-.;.|ectm?
Bikes $6,530,344 $9,359,103 $15,889,446 oon
Clothing $138,248 $138,248 2002

Total $6,530,344 $9,791,060 $16,321,404

But doing it this way is a bit of a hack, and it isn’t reusable in other matrixes without doing further hacks. And
besides, you can’t calculate the change compared to the preceding year.

Using Time Intelligence Functions

You can use time intelligence functions to create new relative measures, such as [Total Sales Last
Year], asdiscussed above without having to change the date selections in the matrix to see the prior year.
This makes everything easier to do, and it also means you can build visuals, like the one shown below, that
would not be possible any other way.

15: DAX Topic: Time Intelligence 113

CalendarYear Total Sales Change in Sales vs Prior Year

2001 $3,266,374 $3,266,374
2002 $6,530,344 $3,263,970
2003 $9,791,060 $3,260,717
2004 $9,770,900 -$20,161
Total $29,358,677 $9,770,900

DAX comes bundled with a number of inbuilt time intelligence functions, and you can also write custom
time intelligence functions yourself when needed. There are some limitations to the inbuilt time intelligence
functions, and they work only under certain circumstances. These are a couple of the rules for using inbuilt
time intelligence functions:

¢ You must have a Calendar table that contains a contiguous range of dates that covers every day in the
period you are analysing. Every date must exist once and only once in the Calendar table. You can’t
skip any dates (e.g., you can’t skip weekend dates just because you don’t work weekends).

¢ Inbuilt time intelligence works only on a standard calendar—that is, a calendar like one that you might
hang on a wall, where the start of the year is January 1, the end of the year is December 31, the last
day of May is May 31, etc. A standard calendar can also be customised for different financial years
(e.g., you can set the end date for a calendar to be June 30 instead of December 31, or any other
date for that matter).

If for some reason these rules can’t be met, then you can’t use the inbuilt time intelligence functions. In
such a case, you can write your own custom time intelligence functions from scratch, using FILTER (). The
DAX for this tends to be a bit complex, but don’t worry, you can learn it and | explain it later in this chapter.

Nonstandard Calendars

In some cases, you may need to use a nonstandard calendar for your reports. These are some examples of
when you could not use a standard calendar:

e When you are building a data model using weekly or monthly time periods and using a weekly or
monthly calendar instead of a daily calendar. (Note that you could load your data weekly or monthly
and still use a daily calendar—and this would still work with inbuilt time intelligence, as long as all
the other criteria were still met.)

e |f you use an ISO or 445 calendar for your accounting periods. This is very common in the retail in-
dustry, where businesses want to have regular trading periods. In the case of a 445 calendar, there
are 2 months that consist of 4 calendar weeks followed by 1 month with 5 calendar weeks. This helps
smooth the months so they all start on a Monday and finish on a Sunday (for example) while also
having 91 days in the quarter (91 x 4 quarters = 364 days)

e With 13 4-week periods instead of calendar months.
e |f you had a calendar that uses time as well as date (e.g., an hourly calendar).

There are so many variations that it is impossible to mention them all here, and it is also impossible for Pow-
er Bl to cater for them all with inbuilt functions. So the rule is, if you have a standard calendar, you can use
the inbuilt functions. If you don’t have a standard calendar, then you need to write your own custom time
intelligence using FILTER ().

114 Supercharge Power Bl

Here's How: Turning Off Auto Date/Time

At this writing, Power Bl has a feature called Auto Date/Time that acts like an automatic time intelligence
feature for anyone who doesn’t want to learn about calendar tables and time intelligence. | personally do not
like this feature. It automatically creates time intelligence—like behaviour for every table in your data model
that has a date column—which can make your data models very large very quickly. Besides, you are learning
to write DAX, so why not learn to do it properly with a dedicated calendar table? | recommend that you turn
off the Auto Date/Time feature. If you want to do so, follow these steps:

1. Select File, select Options and Settings, and select Options.
2. Navigate to the Current File section and choose Data Load (see #1 below).
3. Uncheck Auto Date/Time (#2).

At this writing, it is not possible to turn off the Auto Date/Time feature by default; you must do it for each
workbook.

X
Options
GLOBAL Type Detection
Data Load ¥ Automatically detect column types and headers for unstructured sources
Query Editor Relationships
DirectQuery ¥ Import relationships from data sources (i
R scripting Update relationships when refreshing queries (i
Security ¥ Autodetect new relationships after data is loaded G
Privacy . . .
e Time intelligence
Updates I
peats Auto Date/Time G
Usage Data
i) Background Data
Diagnostics

. ¥ Allow data preview to download in the background
Preview features

Auto recovery Parallel loading of tables

¥ Enable parallel loading of tables

@
Data Load o
R

egional Settings
Privacy

Auto recovery

OK Cancel

Inbuilt Time Intelligence

Before using the inbuilt time intelligence functions, you need to validate that the prerequisite requirements
are covered.

Using a Contiguous Date Range

In the sample data that you have been working with, the Calendar table already contains all the days of
the year for the period that covers the Sales table. It is easy to check this. Just create a new matrix, put
'Calendar' [CalendarYear] on Rows, and drop any string-based column (such as MonthName) into the
Values section. After adding MonthName to the Values section (see #1 below), click the drop-down arrow
and change the settings so that Values displays Count (#2).

15: DAX Topic: Time Intelligence 115

CalendarYear Count of MonthName B & Month Name (...

o Count of MonthName
Remaove field

2001 1 84 Rename
Filters
2002 365 Conditional formatting »
al level filters .
2003 3 6 5 First
CalendarYear(All) Last
2004 366 Count (Distinct)
Filter Ty
TOtaI 1 2 80 Basic:r:;ring o \@)

Shew walie as]

You're right. | did tell you never to create implicit measures unless you are just doing a quick test. This is
one of those cases where it is fine to use them, though. These are not wrong; it is just that you can’t reuse
implicit measures inside other formulas. In this case, | don’t need to reuse this measure, so it is fine. As you
can see above, the Calendar table has half a year for 2001 plus a full year for each of the following three
years (including a leap year for 2004). Now that | have confirmed the data in my Calendar table, | can just
remove this implicit measure from my visual as | don’t need it any more.

The SAMEPERIODLASTYEAR() Function

Let’s look at an inbuilt time intelligence function you can use to easily write the [Total Sales Last Year]
measure discussed earlier.

First, set up your matrix like the one below, with 'Calendar' [CalendarYear] on Rows and [Total
Sales] on Values.

CalendarYear Total Sales

2001 $3,266,374
2002 $6,530,344
2003 $9,791,060
2004 $9,770,900
Total $29,358,677

Right-click on the Sales table, select New Measure, and write the following measure:
Total Sales LY
= CALCULATE ([Total Sales],
SAMEPERIODLASTYEAR ('Calendar' [Date])
)
As shown below, if you pause after typing SAMEPERTIODLASTYEAR (, IntelliSense says that this function will
return a list of dates from the current filter context but time shifted back by a year.

% o || Total sales LY = CALCULATE([Total Sales],SAMEPERIODLASTYEAR(

D
CalendarYear Total Sales PHEPERIOD e TR Dates)]

Returns a set of dates in the current selection from the previous year

You should recognise that SAMEPERIODLASTYEAR () is a table of values and that that table is being used
inside CALCULATE () as an advanced filter.

Note: The word Calendar is a reserved word in Power Bl. Calendar is actually a function that
will return a calendar table. Personally | never use this function as | think there are better ways to
create calendar tables. It is still okay to call a calendar table Calendar, but you must always add
single quotes when referencing the table inside your formulas, as shown in the formula above.

Also notice in the IntelliSense that SAMEPERTIODLASTYEAR () takes a single Dates parameter as its only
input. All inbuilt time intelligence functions ask for this Dates parameter, and it always refers to the date
column in the Calendar table.

116 Supercharge Power Bl

How Does SAMEPERIODLASTYEAR() Work?

In Chapter 14 | explained that CALCULATE () can take a table as an advanced filter input, and you can imag-
ine the new table being connected to the data model. The table inside CALCULATE then filters the rest of
the tables in the data model (in this case, the Calendar table and the Sales table) before CALCULATE ()
completes the calculation. It is exactly the same with SAMEPERIODLASTYEAR (), as shown below:

Total Sales LY

= CALCULATE ([Total Sales],
SAMEPERIODLASTYEAR ('Calendar' [Date])

)
In this instance, SAMEPERIODLASTYEAR () returns a table of dates that are the same dates coming from the
matrix for the selected year, but SAMEPERTIODLASTYEAR () time shifts the original dates back by one year.

Consider the cell highlighted in the matrix below. The function SAMEPERTIODLASTYEAR () first reads the
filter context from the current matrix to see which dates apply for “this year.” In this case, the filter is on
CalendarYear, and the filter for this cell is 2003 (see #1 below). So the dates for “this year” are all dates
from January 1, 2003, through to December 31, 2003. The SAMEPERIODLASTYEAR () function then takes
the dates from the current filter context in the matrix, removes the current filters, and then time shifts them
back one year before returning a table of dates from January 1, 2002, through December 31, 2002.

CalendarYear Total Sales Total Sales LY
.

2001 $3,266,374

2002 $6,530,344 $3,266,374
2003 (€)) $9,791,060
2004 $9,770,900 $9,791,060
Total $29,358,677 $19,587,777

You can imagine the new table created by SAMEPERIODLASTYEAR () as a temporary table sitting above the
Calendar table and retaining a relationship to the original Calendar table, as shown below. Remember
that this is logically how it works; you can’t actually see this table.

Imagine a temporary
virtual table

[Calendar = Customers [Products = Termitories
3D Customerkey Productkey Territory Key
Date GeographyKey r 2. ProductSubcategory Region
¥ DayMNumberOfNeek ' Mame Productiame Country

Dayhame BirthDate *, StandardCost Gy

bl S v Y

= Sales
3 ExtendedAmount
3 TaxAmt
OrderDate
[Total Sales Plus Tax C

15: DAX Topic: Time Intelligence 117

This table is then passed to CALCULATE (), and CALCULATE () uses this temporary table to rerun the filter
propagation. The temporary table (the table of dates from SAMEPERIODLASTYEAR ()) filters the Calendar
table, which then filters the Sales table before the calculation for [Total Sales LY] is evaluated.

Tip: Read the paragraph above a couple of times if you need to until you have it clearly in your head.

Calculating Sales Year to Date

A very common business need is to calculate figures on a year-to-date (YTD) basis. Fortunately, there is an
inbuilt function for this. Before you write any YTD formula, it is a good idea to set up a matrix that will give
you immediate feedback if your formula is performing as expected. It is also important to set up your matrix
so that you have a continuous date range. Set up a new matrix like the one shown below before proceeding.
Note the filter on CalendarYear = 2003.

MonthName Total Sales

January $438,865 Ti =
February $489,090

March $485,575 Filters
April $506,399 Visustsvelfikers
May $562,773 Colendrtear
June $554,799 Filter Type
July $886,669 e
August $847,414 2004
September $1,010,258 2002
October $1,080,450 .
November $1,196,981

December $1,731,788

Total $9,791,060 MonthName(All}

Total Sales(All)

Note how the periods in the matrix are contiguous (i.e., the months of the year 2003). If you didn’t have a
filter on CalendarYear = 2003 but instead had CalendarYear = ALL, the matrix would show the total
sales for January across all years, for February across all years, etc. This would not be a contiguous range, and
hence the formula would not work.

Now right-click on the Sales table and write the following measure:
Total Sales YTD = TOTALYTD([Total Sales], 'Calendar' [Date])

118

Supercharge Power Bl

Apply appropriate formatting to the measure and then add the measure to your matrix.

When you are done, it is very easy to check whether the formula is working correctly. As you can see below,
| have added a new slicer (see #1 below) and turned off Single Select. To do this, go to the Format pane and
select General (#2), select Selection Controls (#3), and turn off the Single Select option (#4). You can then
select the months January, February, and March in the slicer, and it is easy to compare the YTD value for
March YTD (#5) with the summed total of January, February, and March (#6).

(1); =

MonthMame
January
February
March
April
May
June
July
August

Cantambhar

]

|

“ General

#~ Selection Controls @

Select All

MonthName Total Sales Total Sales YTD

Janua Fy $438,865 $438’865 Revert to default
Fet)ruary $489p090 $927‘956 “ Header
March 5485575 [$1,413,530 I@ o
Total $1,413,530 l : $1,413,530

~ Title

O‘[fo—

(6)

“ Background Off O—

Note: It is very important that you test your measures after you write them. You are a data mod-
eller now! Along with this title comes the responsibility to check that the measures you write are
returning the expected results.

This is a really good example of the benefit of writing measures in the context of a matrix. The immediate
feedback you get allows you to check whether your formula is correct and is well worth the effort. Once you
have written a formula, you can apply some conditional formatting to your matrix, as shown below, to get
another visual clue about whether all is working well.

MonthName Total Sales

January

February

March

April

May

June

July

August

September

October

November

December
Total

Total Sales YTD

$438,865 $438,865
$489,090 $927,956
5485575 M $1,413,530
$506,399 I $1,919,930
$562,773 | $2,482,702
$554,799 [3,037,501
$886,669 ,924,170
$847,414 771,584

$1,010,258

$1,080,450

$1,196,981

$1,731,788

$9,791,060 $9,791,060

15: DAX Topic: Time Intelligence 119
Practice Exercises: Time Intelligence

When writing the previous formula, you may have noticed from the IntelliSense tooltip that there are two
other functions that are very similar: TOTALMTD () and TOTALQTD () . In this section you’ll get some practice
using these two functions. Before you do these two exercises, make sure you set up a matrix like the one
below that will give you feedback if your formula is correct. Set up the matrix like this:

1. Place CalendarYear and MonthName on Filter.
2. Filter for CalendarYear = 2003 and MonthName = January.
3. Put ‘Calendar’[DayNumberOfMonth] on Rows.

Filters

=t Visual level filters

DayNumberOfMonth Total Sales . Calendar¥ear
is 2003

1 $12,445 DayNumberOfMonth(All
2 $19,703 :‘J‘::::‘:"E :
3 $1 3-‘ 520 Total Sales{Ally

4 $18,629

5 $13,497

6 $4,363

7 $14,623
Total $438,865 ’

Write formulas for the following measures. Find the solutions to these practice exercises in "Appendix A:
Answers to Practice Exercises" on page 178.

61. [Total Sales Month to Date]
62. [Total Sales Quarter to Date]

Tip: Did you set up a matrix with suitable values on rows like | showed with [Total Sales YTD]
earlier in this chapter? Placing MonthName on rows will not work for Practice Exercise 61. Instead
you need to put a column such as DayNumberOfMonth in the matrix if you want to be able to
“see” that the formula is working correctly.

Changing Financial Year-Ending Dates

Many of the inbuilt time intelligence functions allow you to specify a different end-of-year date. In such a
case, there will be an optional parameter where you specify the year-end date:
Total Sales FYTD
= TOTALYTD ([Total Sales],
'Calendar' [Date], "YearEndDateHere"
)
Here’s an example for a financial year ending June 30:
Total Sales FYTD
= TOTALYTD ([Total Sales],
'Calendar' [Date],"30/6™)
Note that this example uses a non-U.S. date format. If you are using the U.S. date format, then it would be
as follows:
Total Sales FYTD USA
= TOTALYTD([Total Sales], 'Calendar'[Date],"6/30"™)
Notice that there is no need to specify a year when referring to the year-end date. It is simply day and month.

120 Supercharge Power Bl

Practice Exercises: Time Intelligence, Cont.

Write formulas for the following measures. Find the solutions to these practice exercises in "Appendix A:
Answers to Practice Exercises" on page 178.

63. [Total Sales FYTD 30 June]
64. [Total Sales FYTD 31 March]

Format your matrix by selecting Conditional Formatting, Data Bars to make it easier to spot the pattern.

Practicing with Other Time Intelligence Functions

There are a lot of inbuilt time intelligence functions, and it’s easy to tell what most of them do. PREVI-
OUSMONTH (), PREVIOUSQUARTER (), and PREVIOUSDAY (), for example, all return tables of dates referring
to the previous period and probably don’t need further explanation. To see how they work, set up a matrix
with contiguous months, as shown below.

— E7 Filters

MonthName Total Sales 5 Visual level filters
CalendarYear

January $438,865 is 2003
February $489,090 Seh s
March $485,575 fotal Sales(El
April $506,399 Page level filters
M ay $562f7?3 Drag data fields here
June $554,799 Report level filters
JU |y $886, 669 Drag data fields here

Total $9,791,060

Practice Exercises: Time Intelligence, Cont.

Write the following formulas. Find the solutions to these practice exercises in"Appendix A: Answers to Practice
Exercises" on page 178.

Tip: As always, | suggest that you set up a suitable matrix with a suitable column on Rows and
[Total Sales] on Values before writing these measures. Doing this will help you check wheth-
er the measures are working and also should help you comprehend how the measures work. If
you don’t understand, go back and re-read the section about SAMEPERIODLASTYEAR (). These
functions in this practice section work in exactly the same way.

65. [Total Sales Previous Month]

Given that the PREVIOUSMONTH () function will return a table of dates, you need to embed the time intel-
ligence formula inside a CALCULATE () function.

66. [Total Sales Previous Day]

You need to set up a suitable matrix that gives you immediate feedback about whether your formula is work-
ing. Put ‘Calendar’[DayNumberOfMonth] on Rows and make sure you filter for a single month.

15: DAX Topic: Time Intelligence 121

67. [Total Sales Previous Quarter]

As with Practice Exercise 66, you need to set up a suitable matrix for context. You can work out how to do
this one yourself.

Writing Your Own Time Intelligence Functions

As mentioned earlier in this chapter, writing your own time intelligence functions is a bit harder than using the
inbuilt functions, particularly when you are learning. However, once you get the hang of it, you will find it quite
easy, and this will also be a good sign of how much progress you are making in your understanding of DAX.

There are a couple of strange things in the syntax that you need to get your head around before you can fully
understand what you’re doing. The good news is that | explain these things in this section, and you will be
writing your own custom time intelligence functions in no time at all. These are the two concepts you need
to get your head around:

e Concept 1: Thinking “whole of table” when thinking about filter context
e Concept 2: Knowing how to use MIN() and MAX()

Let me cover these concepts before we get into any examples. That way, by the time you reach the examples,
you will be primed and ready to go.

Concept 1: Thinking “"Whole of Table” When Thinking About
Filter Context

Consider the single row highlighted in the matrix below. (This is the same matrix you were just looking at
above.)

Filters

MonthName Total Sales & Visual level filters

CalendarYear

I January $438,865 I is 2003

February $489,090 MonthName(All)
March $485,575 Total Sales(Al)
April $506,399 vel fiters
May $562,773

June $554,799

July $886,669

Total $9,791,060 ’

This matrix is filtered for ‘Calendar’[CalendarYear]= 2003 in the filter. Also, the highlighted row (January) is
also filtered—by 'Calendar' [MonthName]="January", which appears in the Rows drop zone for the
matrix. When these two filters are combined, the single cell/value for [Total Sales] is filtered for the
period January 2003. So there are only 31 days that are used in the Calendar table in the data model for
this cell. With this in mind, it is possible to imagine this filter applied on the back end.

Tip: Practice using your imagination to think about what these “filtered” tables would look like
after the filters have been applied. (For example, in the example above, the Calendar table would
have only 31 days visible.) This is all happening in computer memory, on-the-fly. You can’t peek
in the back end and see this filtering happening, but it is important that you be able to imagine it
happening in your mind. Thinking about what is happening behind the scenes like this will make
it easier to write custom time intelligence formulas.

122 Supercharge Power Bl

When thinking about the filtering that is being applied, you should think about the whole table, not just the
two columns with filters applied. It is clear that there is only one month visible (January) and only one year
visible (2003), but it is also true that there are 31 DayNumberOfMonth values visible (those from 1 through
31), and there are 4 different WeekNumberOfYear values (1 through 4). It is possible to reference any and
all of these other columns and values in your DAX formulas after the initial filter context is applied, and this
makes it very powerful indeed.

This is one of the main reasons you should also include an ID column in your Calendar table if you are going
to write custom time intelligence functions. As you can see in the next image, after you filter the Calendar
table based on January and 2003, there are actually 31 rows in the table, and the ID numbers of those rows
run from 550 to 580. You can reference these ID values that remain in the filtered table in your DAX formulas
to write very powerful DAX. But you need to be able to think “whole of table” to be able to understand how
to do this.

R o 0l DayNumberOfWeek DayName DayNumberOfVionth DayNumberOffear WeekNumberOffear MonthName
549 314 2/2002 12:00:00 AM 3 Tuesday 31 365 53 December
580 T TAOT 200312200000 AM 4 Wednesday i il 1 January
551 2401,/2003 12:00:00 AM 5 Thursday 2 2 1 lanuary
552 3/401,/2003 12:00:00 AM & Friday 3 3 1 lanuary
553 44012003 12:00:00 AM 7 Saurday 4 4 1 lanuary
554 5401/2003 12:00:00 AM 1 Sunday 5 5 2 January
555 6401,/200312:00:00 AM 2 Monday 6 6 2 January
556 71,2003 12:00:00 AM 3 Tuesday 7 7 2 January
557 81,2003 12:00:00 AM 4 Wednesday g 4 2 January
558 9401,2003 12:00:00 AM 5 Thursday 9 9 2 January
550 104012003 12:00:00 AM & Friday 10 10 2 lanuary
560 11401,2003 12:00:00 AM 7 Saurday 11 11 2 January
561 12/401/2003 12:00:00 AM 1 Sunday 12 12 3 January
552 13401,2003 12:00:00 AM 2 Monday 13 13 3 January
563 14/401/2003 12:00:00 AM 3 Tuesday 14 14 3 January
554 15401,2003 12:00:00 AM 4 Wednesday 15 15 3 January
585 16/01,/2003 12:00:00 AM 5 Thursday 16 16 3 January
566 17/01,2003 12:00:00 AM & Friday 17 17 3 lanuary
567 18/A01/2003 12:00:00 AM 7 Saurday 18 18 3 January
568 19401,/2003 12:00:00 AM 1 Sunday 15 15 4 January
569 20/01/2003 12:00:00 AM 2 Monday 20 20 4 January
570 2101,/2003 12:00:00 AM 3 Tuesday 21 21 4 January
571 22012003 12:00:00 AM 4 Wednesday 22 22 4 January
572 23/401/200312:00:00 AM 5 Thursday 23 23 4 January
573 24/01,2003 12:00:00 AM & Friday 24 24 4 lanuary
574 25/401/2003 12:00:00 AM 7 Saurday 25 25 4 January
575 26/01,2003 12:00:00 AM 1 Sunday 26 26 5 January
576 27401/2003 12:00:00 AM 2 Monday 27 27 5 January
577 28012003 12:00:00 AM 3 Tuesday 28 28 5 January
578 29/401,/2003 12:00:00 AM 4 Wednesday 28 29 5 January
579 30/01,2003 12:00:00 AM 5 Thursday 30 30 5 January
580 31401/2003 12:00:00 AM & Friday 31 21 5 January

7 Saurday i 32 5 February
582 2/02/200312:00:00 AM 1 Sunday 2 33 & February

Concept 2: Knowing How to Use MIN() and MAX()

It is very common to use the MIN () and MAX () functions inside FILTER () when you write custom time
intelligence functions. (You can also use FIRSTDATE () and LASTDATE () if you prefer.) You’ll learn more
detail in the examples that follow, but for now there is one key concept about MIN () and MAX () that you
should understand: Whenever you use an aggregation function around a column in a DAX formula, it will
always respect the initial filter context coming from the visual.

So let’s go back to the matrix from before, shown here again for convenience.

15: DAX Topic: Time Intelligence 123

— EA Filters
MonthName Total Sales 3 Visual level filters
CalendarYear
| January $438,865 I is 2003
February $489,090 S
March $485,575 oralSales(Al
April $506,399
May $562,773
June $554,799
July $886,669
Total $9,791,060 ’

You know that the matrix has filtered the Calendar table so that only 31 days remain. Given that MIN () and
MAX () always respect the current filter context, what would be the results of the following DAX formulas for
the highlighted row in the matrix above? Answer in your head before moving on. It will help you if you can
imagine the filtered copy of the table in your head.

1. =MIN('Calendar'[Date])

2. =MAX('Calendar' [Date])

3. =MIN('Calendar'[ID])

4, =MAX('Calendar'[ID])
The answer to Question 1 is, of course, January 1, 2003—the first date in the filter context. It’s not the first
date in the Calendar table but the first date in the current filter context. And the answer to Question 2 is

January 31, 2003, the last date in the filter context. But, importantly, the answers to Questions 3 and 4 are
550 and 580, respectively, even though this ID column was not part of the filter.

So you can think of MIN () and MAX () as tools that can “harvest” the value from the current filter context,
in any available column across the whole table, and you can use this harvested value in your DAX formulas.
Remember this fact about MIN() and MAX() when you get into the examples below.

Note: If you want to validate the answers 550 and 580, go to the Calendar table, find the rows
January 1, 2003, and January 31, 2003, and check 'Calendar' [ID] for each row.

Writing Custom Time Intelligence Functions

Now you are going to write a custom version of [Total Sales YTD], using CALCULATE () and FILTER ().
| strongly encourage you to write this formula yourself for practice. There is a lot that can (and will) go wrong
when you type your own custom time intelligence functions, and you will need lots of practice to get it right.
There are square bracket sets, sets of parentheses, new line spacing to make it easier to read, commas to be
added in the right places, etc. So make sure you actually write the following formula on your own computer.
Go ahead and do that now before moving on to the explanation:
Total Sales YTD Manual = CALCULATE ([Total Sales],
FILTER (ALL ('Calendar'),
'Calendar' [CalendarYear]=MAX ('Calendar' [CalendarYear])
&& 'Calendar'[Date] <=MAX('Calendar' [Date])

)
Also make sure you set up a matrix like the one you used earlier so that you can get immediate feedback
about whether your formula is correct.

124 Supercharge Power Bl

This formula needs a bit of explanation. | have used http://daxformatter.com in the following pages to make
it easier to refer to the lines in the formula. | mentioned DAX Formatter in Chapter 9, and you can see here
that it is a great tool for helping you read DAX formulas.

You can see below that lines 4 through 8 are all part of a FILTER () function because you can see that the
) on line 8 is left aligned to the Fin FILTER () on line 4.

DAX Total Sales YTD Manual =

FORMATTER

[Total Sales],

‘Calendar’ |,
'Calendar’'[CalendarYear] = 'Calendar'[CalendarYear]
&8 'Calendar’[Date] <= ‘Calendar’'[Date]

This FILTER () function returns a table to the function CALCULATE (). CALCULATE () then applies a filter
for this table of dates and propagates this filter to the Sales table prior to evaluating [Total Sales]. Let’s
look more closely at lines 6 and 7 in the FILTER () function. Line 6 reads:
'Calendar' [CalendarYear] = MAX('Calendar'[CalendarYear])

Okay, | hear you saying, “How can the calendar year be equal to the MAX () of the calendar year?” What
is really happening is that there is a column name on the left side of the equals sign, and there is a MAX ()
function on the right side. Remember from earlier in this chapter that whenever you see MIN () or MAX ()
in a formula like this, it always respects the current filter context. So the way to read line 6 of this formula
is as follows: “Add a filter to the table so that the column 'Calendar' [CalendarYear] is equal to the
maximum value in my current filter context coming from my matrix.”

For example, in the matrix below, the maximum of the highlighted row is March 31, 2003, and hence
MAX ('Calendar' [CalendarYear]) =2003.

MonthName Total Sales Total Sales YTD Manual *

Filters

Visual level filters

January $438,865 $438,865 C'em”
February $489,090 $927,956 MonthName(All
rl\/larch $485,575 $1,413,530 Total Sales(All
Aprll $506r399 $1191 9]_930 Total Sales YTD Manual(All)
May $562,773 $2,482,702
June $554,799 $3,037,501
July $886,669 $3,924,170
Total $9,791,060 $9,791,060

See how you need to think “whole of table” here? The initial filter context is applied over the month of March
2003, but the MAX () formula is working over the year column. Imagine this filter context acting on the table
in your data model by mentally applying the filters: There were 31 rows left in the Calendar table, and for
each of these rows, the value in 'Calendar' [CalendarYear] was 2003. As a result (in this case), the
MIN () of 'Calendar' [CalendarYear] would also return 2003, as would SUM () and AVERAGE (), for
that matter. So line 6 is really saying “filter my table where 'Calendar'[CalendarYear] = the current filter
context year,” which is 2003 in this case.

Let’s move on. Line 7 starts with the double ampersand operator (which means and—i.e., do both line 6 and
line 7) and then says:
'Calendar' [Date] <=MAX('Calendar' [Date])

The same applies here as with line 6. MAX ('Calendar' [Date]) reads the initial filter context from the
matrix and hence returns the value March 31, 2003, for the highlighted row in the matrix. Therefore, this

http://daxformatter.com/

15: DAX Topic: Time Intelligence 125

part of the formula adds an AND condition so that the underlying table is filtered for 'Calendar' [Calen—
darYear] = 2003 and also for the condition 'Calendar' [Date] is on or before March 31, 2003. As you
can deduce, this is all the dates year to date.

As you go to the next row in the matrix, the calendar year stays the same, but the month-end date moves to
the end of the next month. So the number of days that are included increases as you work down the rows
in the matrix.

Now it is important to point out that you could not use MIN () in line 7 as you could do in line 6; this time
it has to be MAX (). If you used MIN (), you would get March 1, 2003, as the last date, and the year-to-date
result would be out by almost a full month of sales. It is important to think about what your formulas need
and make sure you provide the right formulas to achieve that outcome (of course).

Now let’s go backto ALL ('Calendar"'). Line 5 of the formula refers to ALL ('Calendar"') instead of just
the Calendar table (which you have used previously). ALL (), as discussed in Chapter 13, is the “remove
filter” function. (If necessary, go back and refresh your memory about ALL () before moving on.)

It is important to use the ALL () function here because you know that the matrix reads the current filter
context before doing the calculation. Probably the easiest way to explain why you need the ALL () function
is to consider what would happen if you didn’t use ALL ().

Consider again the highlighted row in the matrix above. You know that the initial filter context for this row
of the matrix is for all 31 days in the month of March 2003. You can “imagine” that the Calendar table is
filtered behind the scenes so that only these 31 days of March 2003 are visible.

Now let’s look at why the [Total Sales YTD] formula does not work without the ALL () function. You
should write the following formula and add it to your matrix, as shown below. (Don’t miss the opportunity
to practice now!)

DAX Total Sales YTD Doesn't Work =

FORMATTER

[Total Sales],

Calendar,
"Calendar'[CalendarYear] = 'Calendar'[CalendarYear]
&& 'Calendar’[Date] <= ‘Calendar’ [Date]

MonthName Total Sales Total Sales YTD
Doesn't Work

January $438,865 $438,865
February $489,090 $489,090
March $485,575 $485,575
April $506,399 $506,399
May $562,773 $562,773
June $554,799 $554,799
July $886,669 $886,669
Total $9,791,060 $9,791,060

You can see in the matrix above (and in the one you have created yourself) that this formula is giving the sales
for the current month rather than YTD in each row of the matrix. The reason it doesn’t work is related to the
initial filter context discussed earlier. For the row of March 2003, the initial filter context applied a filter so
that only the 31 days of March 2003 were “visible” in the Calendar table (behind the scenes). So how can
the formula possibly return sales for all days “year to date,” including the sales from January and February?
The dates in January and February were already filtered out by the matrix from the initial filter context, so
you can’t get the sales for these months to somehow reappear for the new formula if you write it this way.

126 Supercharge Power Bl

If you want to include sales from January and February in the row next to the actual sales for March, you
must first “remove the filter” created by the matrix. This is what ALL () does when it is wrapped around
the Calendar tablein line 5: It removes the filter context that comes from the matrix that is automatically
applied to the Calendar table. You then reapply the filters you want to use in lines 6 and 7 so that you end
up with all the dates YTD.

Note: Custom time intelligence always uses some form of ALL ('Calendar') to remove the
initial filter context. The FILTER () function therefore iterates through an unfiltered copy of the
Calendar table. But the MIN () and MAX () functions operate in the initial filter context before
the ALL () function removes it.

Tip: Go back and read this section again if necessary until you understand it well.

Now let me come back to that ID column | talked about earlier. A good ID column in a Calendar table
starts at 1 and increments by 1 for each row in the table. So in the case of this Calendar table, each day of
the year has an ID value that increments by 1. But the same applies to 445 calendars and weekly calendars.
You should always have an ID column that increments by 1 for each row in the table (in chronological order,
of course). This gives you a nice clean numeric column to move back and forward inside your formulas. To
illustrate this point, the following formula will work for YTD:
Total Sales YTD Manual ID = CALCULATE ([Total Sales],
FILTER (ALL ('Calendar'),
'Calendar' [CalendarYear]=MAX ('Calendar' [CalendarYear])
&& 'Calendar'[ID] <=MAX('Calendar'[ID])

)
Notice that here you replace the Date column with the ID column. Using the ID column like this is very
powerful and allows you to jump back and forward in time, using your knowledge of the Calendar table
structure by just doing numeric addition and subtraction on the ID column.

For one more example using the ID column, write a measure that returns the total sales for the same pe-
riod last year. You did this earlier, using the function SAMEPERIODLASTYEAR (), but recall that this inbuilt
time intelligence function works only for a standard calendar. You can also write a custom time intelligence
function that works with a custom calendar using FILTER () . Note in the matrix below that [Total Sales
LY] works on both the month level and the year level.

CalendarYear Total Sales Total Sales LY ID A

2002 $6,530,344 $3,266,374
January $596,747
February $550,817
March $644,135
April $663,692
May $673,556
June $676,764
July $500,365 $473,388
August $546,001 $506,192
September $350,467 $473,943
October $415,390 $513,329
November $335,095 $543,993
December $577,314 $755,528
2003 $9,791,060 $6,530,344
January $438,865 $596,747
February $489,090 $550,817
March $485,575 $644,135

Total $29,358,677 $19,614,172

15: DAX Topic: Time Intelligence 127

Here is the formula you need to write for this:

Total Sales LY = CALCULATE ([Total Sales],
FILTER (ALL ('Calendar'),
'Calendar'[ID] >=MIN('Calendar'[ID])
'Calendar'[ID] <=MAX('Calendar'[ID])

-365 &&
- 365

)
Note that you can use the IDcolumn to your advantage here to move back in time by 365 days. Also note how
the first reference inside FILTER () istoMIN ('Calendar' [ID]), and the second oneisto MAX ('Calen-
dar' [ID]).It’s time to think “whole of table” again. Let’s take a look at two different areas of the following
matrix.

Total Sales LY ID 2

9{ $6,530,344

CalendarYear Total Sales

2003 $9,791,060
January $438,865 $596,747
February $489,090 $550,817
March $485,575 $644,135
April $506,399 $663,692
May $562,773 $673,556
June $554,799 $676,764
July $886,669 $500,365
August $847,414 $546,001
September $1,010,258 $350,467
October $1,080,450 o $415,390
November $1,196,981 $335,095
December $1,731,788 $577,314

2004 $9,770,900 $9,817,454
January $1,340,245 $438,865
February $1,462,480 $499,127
March $1,480,905 $494,572

Total $29,358,677 $19,614,172 Y

In the matrix cell marked #1 above (October 2003), you need to be able to visualise the Calendar table as it
is currently filtered. In the case of October 2003, there are 31 rows that remain unfiltered. The first (earliest)
of these rows is October 1, 2003, and it has an ID of 823. The last unfiltered row is October 31, 2003, and it
has an ID of 853. So “October this year” can be thought of as:
'Calendar'[ID] >=823 && 'Calendar'[ID]
And October last year can be thought of as:
'Calendar'[ID] >=823 - 365 && 'Calendar'[ID] <=853 - 365
When you write it this way, it is obvious why you use >=MIN for the first filter line and <= MAX for the second
one. And the really great thing is that this works regardless of the time period you are looking at. In this first
example, you are looking at a month, but if you look at the #2 in the matrix above, this time the filter context
is on an entire year. The formula therefore is filtering for all periods after the first date of the entire year
(1/1/2003: 'Calendar' [ID] = 550) and also for less than the last date of the calendar year (31/12/2003:
"Calendar' [ID] = 914). Once you learn to trust this “whole of table” behaviour, you will be able to very
quickly write custom time intelligence formulas by referencing the ID column alone.

<=853

128 Supercharge Power Bl

What About Leap Years?

Astute readers will be crying foul about leap years by now. In fact, if you compare the measure [Total Sales
LY ID] with the measure [Total Sales LY], you will notice that there is a different answer for leap years.
Well, as | said earlier, every business is different, and different businesses handle these things in different
ways. It is beyond the scope of this book to provide solutions to this problem, but you can read about some
possible approaches at http://www.daxpatterns.com/time-patterns/.

A Final Word on ID Columns

In the examples above, we have used an ID column on the day level of granularity—the same level of granu-
larity as the Calendar table. | also like to load integer ID columns for the other important columns of data
in a Calendar table. For example, | like to add a MonthID column to my Calendar tables. It starts with 1
for the first January in the calendar, 2 for the first February, . . . 12 for the first December. But then it would
become 13 for the second January, 14 for the second February, etc. Having a MonthID column like this makes
it easy to reach back in time and grab the same monthly period from any time in the past.

Practice Exercises: Time Intelligence, Cont.

It’s time for some more practice. Write the following formulas. First set up an appropriate matrix so that
you will get immediate feedback about whether your formula is correct. Find the solutions to these practice
exercises in "Appendix A: Answers to Practice Exercises" on page 178.

68. [Total Sales Moving Annual Total]

With this DAX formula, you need to create a rolling 12-month total of sales. It will always show you 12 months’
worth of sales, up to the end of the current month. Think about the problem using English words first and
then convert that to DAX, using the techniques you have learnt here. | show my tips for writing this measure
later in this chapter, but give it a go yourself first.

69. [Total Sales Rolling 90 Days]

This is the same as the formula for Practice Exercise 68, but instead of delivering a rolling 12-month total,
you will instead deliver a rolling 90-day total. Try to do this one from scratch, without referencing Practice
Exercise 68. This is good practice to help you think like the DAX engine.

Tips for Writing a Moving Annual Total

This section walks through how to create the formula in Practice Exercise 68. Start by setting up a new matrix
with Years and Months on Rows and [Total Sales] on Values, as shown below.

http://www.daxpatterns.com/time-patterns/

129

15: DAX Topic: Time Intelligence
CalendarYear Total Sales
2001 $3,266,374
July $473,388
August $506,192
September $473,943
October $513,329
November $543,993
December $755,528
2002 $6,530,344
January $596,747
February $550,817
March $644,135
April $663,692
May $673,556
June 676,764
July $500,365
August $546,001
September $350,467
Total $29,358,677

Then write your formula:
Total Sales Moving Annual Total
= CALCULATE ([Total Sales],
FILTER (ALL ('Calendar'),
'Calendar'[ID] > MAX('Calendar'[ID]) - 365
&& 'Calendar'[ID] <= MAX('Calendar'([ID])

)

Note: This is not the only way to write this formula. Just as in Excel, there are often multiple ways
to write a formula in Power BI. If you have something different and it works, that’s great. Also
note that this formula may not work with leap years, depending on how your business handles
the extra day. (Some businesses ignore the extra day and actually have 6 x 364-day years followed
by 1 x 371-day extraordinary year, so it depends.)

130 Supercharge Power Bl

Now check your formulas against the matrix, as shown below. You can check the Moving Annual Total at the
end of December 2002 (see #1 below) against the matrix calculated total (#2) to validate that the formula
is working.

CalendarYear Total Sales Total Sales Moving *

Annual Total

- .9{=[

2002 $6,530,344_ $6,530,344
January $596,747 $3,863,120
February $550,817 $4,413,937
March $644,135 $5,058,072
April $663,692 $5,721,764
May $673,556 $6,395,321
June $676,764 $7,072,084
July $500,365 $7,099,061
August $546,001 $7,138,871
September $350,467 $7,015,395
October $415,390 $6,917,456
November $335,095) $6,708,557 .
December $577,314 1 $6,530,344 |

2003 $9,791,060 $9,791,060
January $438,865 $6,372,462
February $489,090 $6,310,736

Total $29,358,677 $9,744,506

One thing to note is that the first FILTER () line in the formula says greater than, and the last FILTER ()
line says less than or equal to. It is easy to get these things wrong when writing formulas, but you should not
worry about this because it is easy to check and verify. As long as you set up a matrix so that you can test the
formulas you are writing, you can just take a guess and then change it if you need to (i.e., if you got it wrong).
In this example, if you used greater than or equal to, you would end up with 366 days, which is incorrect.

But What About the First Year?

Now, if you want to get technical, the [Total Sales Moving Annual Total] result really doesn’t make
sense in the first 11 months of the sales data because you didn’t have a full year of sales until the end of June
2002. There are many ways to solve this problem by using the IF () function. Here is one solution:
Total Sales MAT Improved = IF(MAX('Calendar'[ID])>=365,
CALCULATE ([Total Sales],

FILTER (ALL ('Calendar'),

'Calendar'[ID] > MAX('Calendar'[ID]) - 365

&& 'Calendar'[ID] <= MAX('Calendar'[ID])

)

)

Tip: By now you may have realised that it is easiest to copy one formula and then edit the copied
version for the new formula. Indeed, this is a good idea, but try to keep the copying and changing
to a minimum while you are learning. It’s a good idea to get as much DAX writing practice as you
can. Once you know how to do it, using copy and paste is a great way to go faster.

15: DAX Topic: Time Intelligence 131
Researching DAX Functions

There are a lot of other time intelligence functions that you can use to write time-based DAX formulas. A
key piece of advice as you learn how to use these other time intelligence functions (indeed, all other DAX
functions) is to do a quick online search and read the relevant information in the documentation. To do this,
do a web search for the function name followed by the word DAX. In the example below, | have searched for
“DATEADD DAX.”

'm" dateadd dax $,§ Q

All News Videos Images Shopping More Settings Tools

About 25,900 results (0.68 seconds)

DATEADD Function (DAX) - MSDN - Microsoft
https://msdn.microsoft.com/en-us/library/ee634905.aspx v

Time Intelligence Functions DATEADD Function. DATEADD Function ... on Boolean expressions are
described in the topic, CALCULATE Function (DAX).

The first result returned is normally the official Microsoft documentation (MSDN) site. When you click on this
MSDN link, you see something like the following.

DATEADD Function (DAX)

Other Versions «

Returns & table that contains a column of dates, shifted either forward or backward in time by the specified number of intervals from the dates in the
current context.

Syntax £

DATEADD(«<dates>,<number_of_intervals»,<interval:)

Parameters
Term Definition
dates A column that contains dates,

number_of_intervals | An integer that specifies the number of intervals to add to or subtract from the dates.

interval The interval by which to shift the dates. The value for interval can be one of the following: year, quarter, month, day

Return Value

A table containing a single column of date values.

In many cases, the official documentation is not as useful as other websites. But there is some very important
information that you can get from MSDN: the syntax, parameters, and return value. You can find the syntax
and parameters by typing a formula directly into the formula bar, but sometimes the IntelliSense help doesn’t
clearly tell you the return value—and this is where doing a web search can help. The return value is a key
piece of information that helps you understand how to use a function. In the case of DATEADD () above, the
return value is a table, and hence you would use DATEADD () inside CALCULATE () to do a time shift. So
you might write something like this:

132 Supercharge Power Bl
Total Sales LY DATEADD = CALCULATE ([Total Sales],
DATEADD ('Calendar' [Date], -1, Year)

)
This formula works on various different time horizons, including quarters as well as years, as shown below.
(You may realise that this is basically the same as the SAMEPERIODLASTYEAR () example shown earlier in
this chapter.)

r= = =
CalendarYear Total Sales Total Sales LY 5
DATEADD
2001 $3,266,374
3 $1,453,523
4 $1,812,851
2002 $6,530,344 $3,266,374
1 $1,791,698
2 $2,014,012
| 3 $1,396,834 $1,453,523 |
4 $1,327,799 $1,812,851
2003 $9,791,060 $6,530,344
1 $1,413,530 $1,791,698
2 $1,623,971 $2,014,012
3 $2,744,340 $1,396,834
4 $4,009,218 $1,327,799
2004 $9,770,900 $9,791,060
1 $4,283,630 $1,413,530
2 $5,436,429 $1,623,971
I_Tc:t::ul $29,358,677_ $19,587,777 ”J

As another example, when you do a quick search for FIRSTDATE, you find the MSDN site the first time again.

.w " firstdate dax L Q

All Images Videos Mews Maps More Seftings Tools

About 92,900 results (0.67 seconds)

FIRSTDATE Function (DAX) - MSDN - Microsoft

https://msdn.microsoft. com/en-us/flibrary/ee634806.aspx v

Time Intelligence Functions FIRSTDATE Function. FIRSTDATE Function ... on Boolean expressions are
described in the topic, CALCULATE Function (DAX)

If you click through to the MSDN site, you can see that the returned value is a special table that has a single
column and a single row, as shown below.

15: DAX Topic: Time Intelligence 133

FIRSTDATE Function (DAX)

Other Versions

Returns the first date in the current context for the specified column of dates.

Syntax

FIRSTDATE (<dates>)

Parameters

Term Definition

dates A column that contains dates.

A table containing a single column and single row with a date value.

[Return Value

FIRSTDATE () returns a single value in a table. This is a special type of table that can be placed directly into
a cell in a matrix. (Normally you cannot do this.) So you could write a formula like this:

First Date = FIRSTDATE ('Calendar' [Datel])

CalendarYear Total Sales Total Sales LY First Date
DATEADD
2001 $3,266,374 1/07/2001
3 $1,453,523 1/07/2001
4 $1,812,851 1/10/2001
2002 $6,530,344 $3,266,374 1/01/2002
1 $1,791,698 1/01/2002
2 $2,014,012 1/04/2002
3 $1,396,834 $1,453,523 1/07/2002
4 $1,327,799 $1,812,851 1/10/2002
2003 $9,791,060 $6,530,344 1/01/2003
1 $1,413,530 $1,791,698 1/01/2003
2 $1,623,971 $2,014,012 1/04/2003
3 $2,744,340 $1,396,834 1/07/2003
4 $4,009,218 $1,327,799 1/10/2003
2004 $9,770,900 $9,791,060 1/01/2004
1 $4,283,630 $1,413,530 1/01/2004
2 $5,436,429 $1,623,971 1/04/2004
Total $29,358,677 $19,587,777 1/07/2001

134 Supercharge Power Bl

Other Time Intelligence Functions

Here is a list of other time intelligence functions that you might want to explore:

DATESINPERIOD (date column, start date, number of intervals,
DATESBETWEEN (column, start date, end date)
DATEADD (date column, number of intervals, interval)
FIRSTDATE (datecolumn)

LASTDATE (datecolumn)

LASTNONBLANKDATE (datecolumn, [expression])
STARTOFMONTH (date column)

STARTOFQUARTER (date column)
STARTOFYEAR (date column [,YE date])
ENDOFMONTH (date column)
ENDOFQUARTER (date column)
ENDOFYEAR (date column)
PARALLELPERIOD (date column)
PREVIOUSDAY (date column)
PREVIOUSMONTH (date column)

PREVIOUSQUARTER (date column)
PREVIOUSYEAR (date column)
NEXTDAY (date column)

NEXTMONTH (date column)

NEXTQUARTER (date column)
NEXTYEAR (date column [,YE date])
DATESMTD (date column)

DATESQTD (date column)

DATESYTD (date column [,YE date])

TOTALMTD (expression, dates, filter)

TOTALQTD (expression, dates, filter)

A Free Quick Reference Guide

intervals)

| have produced (and | maintain for new functions) a quick reference guide of all DAX functions in PDF format
that you may like to download and use. The DAX Reference Guide PDF is not meant to replace the online doc-
umentation but to supplement it. As shown below, the PDF is fully indexed, and you can jump to the relevant

sections by clicking on the hyperlinks in the table of contents.

You can download the DAX Reference Guide for free by visiting my online shop at http://xbi.com.au/shop and

then navigating to the Books section.

DAX Functions List

This DAX functions quick reference guide has been prepared by Matt Allington from http://excelera-
torbi.com.au and contains a list of all current DAX functions in a summarised and easy to use format.
You can print the document and/or use the search features for PDF documents to search for the
function you are looking for.

This document is a supplement and is not intended to replace the more detailed documentation that
is available online.

When looking for online documentation it is best to do a web search from your favourite search engine
by specifying the function name followed by the word DAX i e “FunctionName DAX"

Tip: If you are going to search this document for a function name using search, then type the function
name followed by a space then an open bracket. E.g. instead of searching for VALUES you should
search VALUES (, including the space.

Contents
DAX Functions List

DAX Aggregation Functions (Aggregators)

DAX Date and Time Functions
DAX Filter Functions
DAX Information Functions

DAX Logical Functions

http://xbi.com.au/shop

16: DAX Topic: RELATED() and RELATEDTABLE() 135

16: DAX Topic: RELATED() and RELATEDTABLE()

The functions RELATED () and RELATEDTABLE () are typically used in calculated columns to reference
relevant records in other tables, although they can be used in measures, too. They are a bit like VLOOKUP ()
for tables that have a relationship. As mentioned briefly in Chapter 10, a row context does not follow a re-
lationship. So even though there may be a relationship between two tables, a row context cannot use this
relationship—unless you use one of these two functions that can. Basically, RELATED () and RELATEDTA-
BLE () allow a row context to leverage an existing relationship so it can access columns in related tables.

When to Use RELATED() vs. RELATEDTABLE()

To understand when to use the RELATED () and RELATEDTABLE () functions, you need to understand what
each one returns. As you know, you can use IntelliSense in the formula bar to find out what each of these
functions returns.

You can see below that RELATED () returns a single value from another table.

X « | Column = RELATED(]
RELATED({ColumnName)
Returns a related value from another table,

As shown below, RELATEDTABLE () returns a table.

X ' || Column = RELATEDTABLE(
RELATEDTABLE(Table)

Returns the related tables filtered so that it only includes the related
rows.

Remember from Chapter 2 that relationships between tables in Power Bl are normally of the type one-to-many.
Also remember from Chapter 2 that best practice (especially for people coming from an Excel background)
is to lay out tables in Relationships view with the lookup tables at the top (the “one” side of the relationship)
and the data tables at the bottom (the “many” side of the relationship), as shown below.

[T Calendar & Customers £ Products = Territories

= CustomerKey Productkey Territory Key
T GeographyKey 3. ProductSubcategory Region
DayMumberOfesk fame AEEDEIE GOty

: 5
DayName BirthDate ¥ standardCost

Tables on the
one side of the
relationships

3. ExtendedAmount - Tables on the

S TaxAmt ' | many side of the
OrderDate relationships

[T Total Sales Plus Tax C

T T

The two RELATED functions allow you to refer to columns in another connected table. So when you think
about it, if you want to add a custom column in a table on the “one” side of the relationship—i.e., add a new
columnin a lookup table (a table above the line in the image above)—then it is highly likely that there will be
multiple rows on the “many” side of the relationship. So when writing a formula in a calculated column on a
lookup table, you must use the RELATEDTABLE () function because it will fetch a table of values, including

136 Supercharge Power Bl

all the matching values in the data table. Conversely, if you are writing a calculated column in a table on the
“many” side of the relationship (i.e., a data table), then there will be only one matching row in the lookup
table, and hence you use RELATED () to return that single value.

The RELATED() Function

This section provides an example of bringing a value from a column in a lookup table into a table on the “many”
side of the relationship. For the sake of this example, assume that your business has a new management layer,
and you want to add a new level of reporting to cover this new management layer. In effect, you need to en-
hance the Territories table to add a new geographic region. To achieve this, you could do the following:

1. Create a new table that contains the logic of the new management layer.
2. Import the new table into the data model.

3. Join the new table to the existing Territories table (in this example).

4

Create a new calculated column in the Territories table (on the “many” side of the relationship) and
bring in the new management layer from the new table into the Territories table as a new column.

This will all make more sense as you work through the following example, which also shows how you can
manually add new tables of data in Power BI.

Here’'s How: Manually Adding Data to Power BI

This example shows how to add data directly into Power Bl without having to use another tool like Excel:

1. Onthe Home tab in Power Bl Desktop, click Enter Data.
2. As shown below, click the * to add a new column.

Create Table

Column1

3. Change the column names (double-click them and type a new name) and then enter the data as
shown below. Rename the table Hemisphere and then click Load.

Create Table

Group Hemisphere =
1 | Europe Morthern
2 | NA MNA

3 | North America Maorthern

4 | Pacific Southern

Fame: | Hemisphere

16: DAX Topic: RELATED() and RELATEDTABLE() 137

4. Switch to Relationships view and rearrange the new tables so that the new table is sitting above the
current Territories table, as shown below. This new lookup table is a lookup table to another lookup
table and will be on the “one” side of the new relationship. Power Bl should automatically join the
tables.

= Hemisphere

Group

Hemisphere

= Products

[Customers [Territories

[Calendar

D CustomerKey Productkey Territory Key

P GeographyKey >, ProductSubcategory Region

DayNumberOfweek blame ProductName Country

BirthDate

2. StandardCost Group

DayMName

[T Ty s

[T Sales
¥ ExtendedAmount
3 TaxAmt
OrderDate
T2 Total Sales Plus Tax C

W

Note: The Territories table now has two roles. It is now acting as a lookup table to the Sales table
and as a data table to the new Hemisphere table.

5. Bring the data that resides in the Hemisphere[Hemisphere] column into a new calculated column
inside the Territories table. Switch to Data view, right-click on the Territories table, select New Col-
umn, and then type in the formula shown below. After you press Enter, you see all the values appear
in the new calculated column. It is a lot like VLOOKUP()!

Hemisphere = RELATED(Hemisphere[Hemisphere])

LTI - B T = R S T L I

[
&

Morthwest
Morthesst
Central
Southwest
Southeast
Canada
France
Germany

Australia

United States
United States
United States
United States
United States
Canada
France
Germany

Australia

United Kingdom United Kingdom

MA

MA

Morth America
Morth America
Maorth America
Morth America
Morth America
Morth America
Europe
Eurcpe

Pacific

Europe

MNA

138 Supercharge Power Bl

6. Finally, to hide the Hemisphere table from the client

. . . . B Al Countries
tools, in Data view, right-click the table (see #1 be-

low) and select Hide in Report View (#2). B Calendar
It is good practice to bring data from an add-on table like this I=
Hemisphere table into the main Territories table asan E odLY
additional column rather than use the data in an additional o
lookup table. It is possible to leave the Territories table New measure
untouched and use the columns from the Hemi sphere table Mew column

in your matrix. But the problem is that this can be confusing
to users. It doesn’t make business sense to have all the geo-
graphicinformationinthe Territories table except for the
hemisphere information, which is in the Hemi sphere table. Edit Query
So for consistency and simplicity for the end user, it is better
to bring all the “like data” into the same table.

Quick measures

Refresh data

Copy Table

Fename
Note: Better practice is to do this when you load Delete
the data using Power Query, but you can also do it ' Hide in Report View
as shown here. And best practice is to change the
Territories table back at the source to include

the new Hemisphere column in the Territories | Hemisphere
table, but that is not always possible in a timely fenon
manner. emiayiiey

The RELATEDTABLE() Function

As discussed earlier, RELATEDTABLE () is used to reference a table on the “many” side of the relationship. A
simple example is to add a new calculated column to count how many sales there have been for each product.
Once again, | generally don’t recommend that you do this (because you can do it in a measure), but there
may be valid reasons to do it in some cases.

Go ahead now and add the following calculated column in the Products table:
= COUNTROWS (RELATEDTABLE (Sales))

As you know, RELATEDTABLE () returns atable, and COUNTROWS () counts the rows in that table. This calcu-
lated column in the Products table therefore takes the row context in the calculated column and leverages
the relationship with the Sales table to count the rows in the Sales table for just the single product. As a
result, you end up with a new column that indicates the number of items sold (over all time) for each prod-
uct in the Products table. (The quantity for each line in the Sales table is always 1 in this sample data.)

Note: You do not need to use CALCULATE() with RELATEDTABLE() to force context transition and
convert the row context to a filter context. RELATEDTABLE() will work on its own.

One valid use case for using RELATEDTABLE () would be if you want to create a slicer to filter on slow-,
moderate-, and fast-selling products. If you want to use a slicer, you must write your DAX as a calculated
column. (You can’t place measures in slicers.) You could first create a calculated column and then use the
banding technique discussed in the next chapter to group products into slow-, moderate-, and fast-moving
products. (Park this thought for now and come back after you have read Chapter 17 if you want to try out
this technique.)

17: Concept: Disconnected Tables 139

17: Concept: Disconnected Tables

So far as you have worked through this book, you have always loaded tables into the data model and then
connected them to other tables. This is a fundamental technique with Power Bl that allows you to work across
multiple tables without using VLOOKUP () . However, you are not required to join tables together in the data
model, and indeed there are some instances when it doesn’t make sense to do so. This chapter discusses
two techniques that do not involve connecting tables:

e Using What-If analysis
e Using banding

Using What-If Analysis

| first learnt to do What-If analysis by manually creating a table of values and then writing a special measure
that would “harvest” the value selected by the user so it could be used inside a formula. In Aug 2017 Microsoft
released a new feature called What-If that replaces the need to complete this process manually. With this
new feature, it is easier than ever to do your own What-If analysis. Let’s look at an example to demonstrate
how to use the What-If capability.

Imagine that in your data, the sales result is directly proportional to the profit result. You have sales data and
want to see what impact an increase in sales will have on your total profit. You could write a new measure
hard-coded at a 10% increase, as shown below.

wl | = < | Visual tools Super

m Home View Modeling Help Format Drata / Drill
2%, Cut D [
FRE 7 2 & ¢

ER Copy
Paste .) Get Recent Enter Edit Refresh Solution Partner
¥ Format Painter pata= Sources+ Data Queries~ Templates Showcase
Clipboard External data Resources

m Total Margin (incr sales 18%) = [Total Margin %] * 1.1

And it would look as shown below in a matrix.

FILTERS
Category Total Sales Total Margin $§ Total Margin

. Visual level filters
(incr sales 10%)

CalendarYear

Access.. | $293,710 $183,862 $202,248 i 2003

Bikes $9,359,103 $3,833,345 $4,216,680 Category(All
Clothing | $138,248 $55,526 $61,078 Total Margin (incr saies 1.
Total | $9,791,060 $4,072,733 $4,480,006 T

Total Sales(All)

But what if you wanted to see what it looks like for a 5% increase in sales, or 15%, or some other percentage?
It would not be efficient to create lots of new measures, one for each value. A better approach is to use the
What-If analysis capability provided by Power BI.

Here’'s How: Using What-If
1. Create a new blank page in your Power Bl workbook.

2. Navigate to the Modeling tab and click on New Parameter as shown below.

Supercharge Power Bl

140
o g5 -s Visual tools
Home View Modeling Help Format Data / Drill

= =

: |'_-’ Format

Manage New New New New Sort by i

Relationships Measure Column Table Parameter Jf Column o Auto
Formatting

Relationships Calculations What If Sort

3. Enter a minimum and maximum value that will be used inside the What-If analysis, along with the
increment. As you can see below, | have entered a range of integers from 0 to 15. | have also given

my parameter a name “Increase”.

What-if parameter

Mame

|ncrease

Data type

Whole number v

Minimum Maximurm

X

0 15

Increment Default

1

» | Add slicer to this page

4. Click OK.

Ok Cance

5. Notice that there is a new Table (including a new measure [Increase Value] in Fields list (#1)

and also a new Slicer (#2) on the Report.

MCrease

* B Customers
B DatesSamePeriodlY

2 Increase

M= Increase

W & Increase Value

* B8 Product Colors
* B Products

Drag data fields here » B Queryl

6. Write the following new measure that utilises the [Increase Value] measure shown above.

17: Concept: Disconnected Tables 141

Total Margin with Selected Increase =
[Total Margin $] * (100 + [Increase Value]) /100
7. Add the above measure in the matrix from before, as shown below. Note | still have a visual level
filter on CalendarYear = 2003. You can now use the Slicer (#1) to vary the sales increase and see what
impact that increase has on [Total Marginwith Selected Increase].

Increase

4

)

Category Total Sales Total Margin § Total Margin
with Selected

Increase
Accessories $293,710 $183,862 $191,216
Bikes $9,359,103 $3,833,345 $3,986,679
Clothing | $138,248 $55,526 §57,747
Total 49,791,060 $4,072,733 $4,235,642

How It Works

When you click the New Parameter button in Power Bl, Power Bl automatically creates three things. A new
table of values, a new measure and a new slicer (optional but created by default).

The New Table

Select the new table created by the New Parameter button in the Fields list on the right (#1 below). You will
see that this new Increase table is a calculated table that uses the formula shown as #2 below.

ol HS = | Super Charge Power Bl - Power Bl Desktop — O x
Home View Modeling Help Matt Allington 0
E@ |__] ﬂ !J |_|3 Data type: Home Table:
E H Format: Data Category: Uncategorized
Manage Mew Mew Mew Mew Sort by o [N o . Nt
Relationships Measure Column Table Parameter Column * o Auto .| Default Summarization: Don't summarize
Relationships Calculations What If Sort Formatting Properties

g)hcrease = GENERATESERIES(@, 15, 1)

VISUALIZATIONS > FIELDS

4 B Increase @

M 155 Increase

W £ Increase Value
» B Product Colors
» B Products

i 1 tables What-If Budgets
- ° » B Queryl

PAGE 28 OF 18 UPDATE AVAILABLE (CLICK TO DOWNLOAD)

142 Supercharge Power Bl

It is pretty easy to work out the syntax of the function GENERATESERIES () just by looking at the formula.
GENERATESERIES () is a new function in Power Bl desktop that you can use anytime you want to create a
new table of values with a constant increment between values.

If you switch to Relationships view, you will see the new table. (You may need to select Fit to Screen to be
able to see it.) This time the table is not joined to any other table — it is a disconnected table. Just position it
somewhere so it is easy to see on the screen, as shown below.

1 Hemisphere

Group

Hemisphere

[Calendar T Customers = Products [Territories

1D CustomerKey ProductKey Territory Key
Date GeographyKey ProductSubcategory Region

DayNumberOfWeek Name ProductName Country
DayName BirthDate StandardCost Group

_— e P SETET . [--Lan

[Z Budget [sales
Increase

Cat 3. ExtendedA t
ategory 22 | A= A B Increase Value

¥ Budget - 3. TaxAmt

2. Period OrderDate

B Total Budget = Total Sales Plus Tax C

The New Slicer

Switch back to Report view. The new slicer that was automatically created uses the only column in the table
Increase[Increase] astheinputfield. The slicer then allows the user to select a single value to represent
the increase in sales required for analysis.

The New Measure
If you now click on the [Increase Value] measure, you will see that the measure formula is as follow:
Increase Value = SELECTEDVALUE (Increase[Increase])

This measure uses the new function SELECTEDVALUE (). You may recall from Chapter 12 that this function
returns the single value selected in the filter context, or blank if there is more than 1 value selected. This
is the secret sauce of this What-If parameter. The SELECTEDVALUE () function “harvests” the selection
from the user in the slicer and then passes that selected value to your formula. By default, if the user hasn’t
selected a single value, it returns BLANK () . (However, this can be changed via an optional final parameter.)

Note: The behaviour of slicers tends to change as Microsoft is improving and developing Power
BI. At this writing, there are a number of different configuration choices for slicers. Click the drop-
down arrow in the top-right corner of the slicer to change the way the slicer is displayed.

Seeing All What-If Variants at Once

As well as using the slicer to see one of the What-If numbers at a time, it is also possible to use the In-
crease[Increase] Column on Rows in a matrix to see all the single values at once. | have modified the
matrix from earlier as shown below. | have removed Product [Category] from Rows and added In-
crease[Increase] to Rows in its place (#1 below). | also cleared the selection from the slicer on the

17: Concept: Disconnected Tables 143

page to see the full list of values. Lastly, | added some conditional formatting to make the changes in Margin
measure more obvious.

r - o B AgeBands
- = B Al Countries
Increase Total Sales Total Margin $ Total Margin B Budget
with Selected B Calendar
Increase B Customers
= B DatesSamePeriodlY
0 $9,791,060 $4,072,733 - S e
1 $9,791,060 $4,072,733 Increase [—
2 $9791,060 $4,072.733 [NSANSA188] R
3 $9791,060 $4,072,733 [NSAISA015) BB Increase Valos
4 $9,791,060 $4,072,733 - e
5 $9,791,060 $4,072,733 B Products
6 $9,791,060 $4,072,733 [NSARTROOH palee B Query!
17 $9,791,060 $4,072,733 [Tot! Margin $ B sales
8 59,791,060 54‘072'733 Total Margin with Select : Tablel
Territories
9 $9791,060 $4,072,733 [NSAAE0I270) CLTERS .
10 $9,791,060 $4,072,733 [NSAEE0I008]
Visual leve! filters B vear
EE VearTable

11 $9,791,060 $4,072,733 -

12 $9,791,060 $4,072,733 Calendarear

13 $9,791,060 $4,072,733 [NSAG0SHGE

14 $9,791,060 $4,072,733 -

15 $9,791,060 $4,072,733

Total $9.791,060 $4,072,733 $4,072,733 L —
Total Sales(All)

is 2003

Increase{All)

Total Margin ${All)

[- = | Page level filters

Practice Exercise: Harvester Measures
In Chapter 9, you created the following DAX formula:

Total Customers Born Before 1950 =
CALCULATE ([Total number of Customers],
Customers[BirthDate] <DATE (1950,1,1))
In the next practice exercise, you will write a measure that allows you to change the “before year” using the
What-If feature.

Write the following new DAX formula. Find the solution to this practice exercise in "Appendix A: Answers to
Practice Exercises" on page 178.

70. [Total Customers Born Before Selected Year]

Using the technique described above, create a new matrix (on a new page) that allows the user to select from
a list of years in a slicer using a new What-If parameter. Change the above measure from being hard coded
to 1950 and instead make the year selectable from the slicer.

This is quite a difficult problem and you will have to think back on what you have learnt in previous chapters
to make it work. You should try to do it yourself, and if you get stuck, read the start of the worked through
solution below, then try to solve the problem again.

Here’s How: Solving Practice Exercise 70

There is a trick to this practice exercise. The original measure you created used a “simple filter” in CALCU-
LATE (). If you replace the “year value” from the first formula with the What-If measure [Year Value],
you get the error message shown below.

Total Customers Born Before Selected Year Error =
CALCULATE ([Total number of Customers],Customers[BirthDate] < DATE ([Year Value], 1, 1 J}l

I A function "CALCULATE' has been used in a True/False expression that is used as a table filter expression. This is not allowed.

144 Supercharge Power Bl

The problem is that you cannot use measures in a “simple” CALCULATE () formula. If you want to use
measures (as you do in this case), you must use the FILTER () function inside CALCULATE (). So instead
of writing this:

Customers[BirthDate] < DATE ([Year Value], 1, 1)
you need to write a FILTER () function that filters the Customers table to replace the line above.

Go back and give it a go: See if you can write the correct formula by using the FILTER () function. If you still
need more help, read on to see the correct formula.

Here is the worked-through solution for Practice Exercise 70:

1. Create a new What-If parameter using values (say 1900 through 2000). Give it a name such as Year.
Note the new measure created called [Year Value].

2. Write the following measure and then add it to your matrix:
Total Customers Born Before Selected Year

= CALCULATE (
[Total number of Customers],
FILTER (
Customers,
Customers[BirthDate] < DATE ([Year Value], 1, 1)

)
You should end up with something that looks as shown below.

Note: | have changed the slicer layout do be a list of values. You can change a slicer from the
drop-down arrow in the top-right corner of the slicer.

When you click on a year in the slicer, the [Year Value] measure updates, and the results for [Total Cus-
tomers Bornbefore Selected Year] update to show the value for year you have selected in the slicer.

vear Occupation Total Customers Born
1959 Before Selected Year
1960
:3“ Clerical 1,567
62
1963 Management 2,229
1964 Manual 860
- RELE _
1966 Professional 3,382
o Skilled Manual 2,071
s]
1969 Total 10,109

The SWITCH() Function Revisited

In Chapter 11, | introduced you to the SWITCH () function. One really cool feature of SWITCH () is that you
can create a switch measure that allows you to toggle between multiple other measures. Take a look at the
image below.

17: Concept: Disconnected Tables 145

£10M

$8M

$6M

$4n

© Total Sales @Total Cost

§6M

£4M

lII SEM .I

$2M
oM $0M
2001 2002 2002 2004 2001 2002 2003 2004
Measure
Bl Total Sales o| Measure
Total Cost Total Sales
Total Margin B Total Cost 9
Total Margin

The image on the left has Total Sales selected in the slicer (#1). When Total Sales is selected, the chart updates

to show

Total Sales (#2). When the user selects a different value in the slicer such as Total Cost (#3), the chart

changes to show Total Cost (#4). This toggle effect is really engaging for the report user and can be used to
create very complex and useful interactive reports.

Here’'s How: Creating a Morphing Switch Measure

You need to create a disconnected table and a harvester measure to be able to complete this technique:

1.
2.

On the Home menu, click Enter Data.

Enter 3 rows of data as shown below. Call the table DisplayMeasure, then click Load.

Create Table

Bd P =

Measure ID Measure *
1 Total Sales

2 Total Cost

3 Total Margin

Navigate to Data view, click the new DisplayMeasure table, go to the Modeling menu and change
the sort order of the Measure column so it sorts by Measure ID column instead. Do you remem-
ber how? You did it in Chapter 12.
Right click on the DisplayMeasure table and add a new measure as follows.

Selected Measure = SELECTEDVALUE (DisplayMeasure[Measure ID])
This measure is called a Harvester Measure and it uses the same technique used
withWhat-If earlier in the chapter. It checks tosee if there isasinglevalue
selected for DisplayMeasure [Measure ID] and if so it returns that value, otherwise it re-
turns BLANK. It “harvests” the selection from the user when used with a slicer.

146 Supercharge Power Bl

6. Go back to Report view and create a new page. Place a Card (#1) on the report and add the Dis-
playMeasure [Measure] column to the Card Fields. Then place a Slicer (#2) on the report and
place the DisplayMeasure [Measure] on the Slicer as well.

r = Tz |
9) - VISUALIZATIONS
' Total Cost =n=mn
e kel K m
- - . 9 HEe
Measure = M D 1=]
Total Sales EERS
Total Cost -
Total Margin ? a
2 '

First Measure

7. Now when you click on the slicer, the Card will update to show you which measure you have select-
ed. This Card will be the title for the chart that will be added next.
8. Click on the Card, go to the Format pane, and turn off Category Label.
9. Right click on the Sales table and write the following measure.
Measure to Display = SWITCH([Selected Value],
1, [Total Sales],
2, [Total Cost],
3, [Total Margin $]
)
10. Add a new Column Chart to the report (clustered or stacked column chart, both will work). Place
Calendar[Year] on the Axis and the new [Measure to Display] measure as the Value as
shown below.

VISUALIZATIONS

Total Margin

r e L,
Weasure
Total Sales 55M
Total Cost
B Total Margin $4M
§3m
| I
52m
N .
£0M ;
5001 2002 5003 2004 Measure to Display
L - [e - N |

11. Goto the Format pane for the chart and turn off the default Title. Also expand the X-Axis section and
change the Axis type to Categorical.
When done, you should have an interactive chart that will display the measure selected by the user in the slicer.

17: Concept: Disconnected Tables 147

Using Banding
Another disconnected table technique is banding; | learnt this technique from Marco Russo and Alberto
Ferrari at http://sqlbi.com.

To understand banding, think about the earlier example, in which you created a slicer based on the year the
customer was born. A more common and practical need is to be able to analyse customers based on their
age group rather than their actual age, like this:

e Under 20

e 20 but less than 30
e 30tolessthan 40
e 40tolessthan 50
e 50 toless than 60
e 60and over

It is possible to write a calculated column in the Customers table that creates these age group bands. But
it would be a very complex formula, and it would be hard to edit.

Note: For the sake of the exercise, | use January 1, 2003, as the “current date” from which to
work out the age of each customer. Of course, in reality, each customer’s age band will change
over time, but | have ignored that fact for this example so that the results you see onscreen will
be the same as my results shown below. If | used TODAY () in this exercise, my results would be
different to yours.

A hard-coded calculated column formula for age group might look like this:

=IF(((date(2003,1,1) - Customers[BirthDate])/365)<20,"Less than 20", IF
(((date (2003,1,1) - Customers[BirthDate])/365)<30,"20 to less than
30", IF(((date(2003,1,1) - Customers[BirthDate])/365)<40,"30 to less
than 40",IF(((date(2003,1,1) - Customers[BirthDate])/365)<50,"40 to
less than 50", IF(((date(2003,1,1) - Customers[BirthDate])/365)<60,"50
to less than 60","Greater than 60")))))
This DAX works, but it is not very user friendly, it is hard to write, and it is even harder to read and maintain.
A better approach is to use banding.

Here’'s How: Applying Banding
The first step in banding is to create a table of data that contains the upper and lower values for each band,
as well as a text description. You can type these values directly into Power BI. Follow these steps:

1. Click Enter Data in Power BI.

2. Enter the data into the form as shown below. Make sure you give the table a name and then click

Load.
O X
Create Table

Low High Band =
1 |0 20 Less than 20
2 |20 30 20 to less than 30
3 |30 40 30 to less than 40
4 140 50 40 to less than 50
5 |50 60 50 to less than 60
6 |60 909 Greater than 60

Mame: | AgeBands Load Edit Cancel

http://SQLBI.COM/

148

Supercharge Power Bl

Note: It is important to set up the banding table so there is no crossover of ages between the
Low and High ranges. The table above covers all possible ages between 0 and 999, without any
duplication. Of course, the 999 value is any arbitrarily large value to catch everyone.

Note: There is no need to join this table to any other table in the data model. In fact, there is no
workable way you can do that anyway. Even if there were an age column in the Customers table, you
still couldn’t join this table to the age column. This banding table doesn’t contain all the possible
ages for customers; it just has the age bands. So if you first create a customer age column and then
join the Low column to this new column, the data will only match for customers who are 20, 30,
40, etc. There will be no match for customers with ages that don’t end in a zero (e.g., 21, 22, 23,
etc.). So that is not going to work. This table is not joined; hence, it is called a disconnected table.

3.
Age =(DATE (2003,1,1) - Customers[BirthDate]) /365

Note: Although it is not required to make this banding technique work, you could enhance this
formula with some rounding, as follows:

= ROUNDDOWN ((date (2003,1,1) - Customers[BirthDate]) /365, 0)

Age = ROUNDDOWN({date(2083,1,1) - Customers[BirthDate])/365,8)

Fields
HouseOwnerFlag NumberCarsOwned Addresslinel AddressLine2 Phone DateFirstPurchase Age
1 2 6787 Phessant Circle 746-555-0115 17/07/2002 12:00:00 AM
1 2 5749 Esperanza 8B5-555-0148 31/10/2002 12:00:00 AM
1 2 6111 Guadaldara 3B81-555-0139 14/03/2004 12:00:00 AM y B AgeBands
1 2 B299 Fearnwood Drive 136-555-0129 27/08/2002 12:00:00 AM _
1 2 6108 Estudello St. 418-555-0176 28/03/2004 12:00:00 AM o L s
1 2 1516 Court Lane 195-555-0131 25/08/2003 12:00:00 AM » B Calendar
1 2 5160 Mt. Wikon Way 257-555-0150 23,/02/2004 12:00:00 AM 4 B Customers
1 2 B629 Pepper Place 649-555-0177 6408/2003 12:00:00 AM
1 2 5065 Fairfield Ave 161-555-0187 29,/04/2004 12:00:00 AM
1 2 3997 Ash Lane 175-555-0196 20/05/2004 12:00:00 AM | Age
1 2 3392 ElDorado 757-555-0172 6/08/2003 12:00:00 AM BirthDate
1 2 B315 Near Ct. 302-555-0133 2105/2004 12-00:00 AM . (T ufO(cupiﬂ]Dn
1 2 6474 Helen Ave. 131-555-0112 3/02/200412:00:00 AM CustomerKey
4. Now you have a new calculated column, as shown above, and you can write some DAX to create the

banding column.

5. Right-click the Customers table, select New Column, and enter the following formula:
Age Group = CALCULATE (VALUES (AgeBands[Band]),
FILTER (AgeBands,
Customers[Age] >= AgeBands|[Low]
&& Customers[Age]
< AgeBands [High]

)

Right-click the Customers table in Data view, select New Column, and enter the following formula:

The key to this formula is the FILTER () function. This function iterates over the AgeBands table
and checks each customer’s age against the low and high values for each band. There is only ever one
single row in the AgeBands table that matches the age of the customer. The FILTER () function
inside CALCULATE () first filters the AgeBands table so that only the one row that matches the age
band is left visible. Then CALCULATE () evaluates the expression VALUES (AgeBands [Band]),
and because there is only one row visible, VALUES () returns the name of the band as a text value
into the column.

17: Concept: Disconnected Tables 149

Note: There are two main benefits of taking this approach to banding:

e The DAX formula is easier to read and understand. Once you get used to the concept, it
is easier to write, too.

e |tis easy to make changes in the future. For example, if you want to add another age band
to your analysis (e.g., a new “Greater than 70” age band), all you need to do is add another
row to your AgeBands table and then click Refresh.

Here’s How: Editing a Table Previously Created with En-
ter Data

Add a new row to the table, like this:
1. Right-click the AgeBands table in the fields list and select Edit Query.

2. Inthe Query Editor (shown below), click on the cog next to the Source step.

_ Query Settings

EE - vien B A Bana
Less than 20 4 PROPERTIES

20 to less than. Name

30 to less then. AgeBands

40 to less than. All Properties

30 to less than.
~ 4 APPLIED STEPS
Greater than 60

Source

Changed Type

3. Edit the data in the dialog box to add the new bands of data. Your table should look like the one
shown below.

Create Table

Low High Band N

1 |0 20 Less than 20

2 20 3 20 to less than 30

3 30 40 30 to less than 40

4 40 30 40 to less than 50

5 50 &0 50 to less than 60

6 60 70 60 to less than 70

T |70 999 Greater than 70

4. Click OK.

5. Click Close & Apply on the Query Editor Ribbon and then save the pbix workbook.
Maintaining a banding table like this is much easier than editing a complex nested IF statement.
It’s time to use this new calculated column in a visual. Create a new matrix on a new sheet. Put Custom-
ers [Age Group] on Rows and then add a couple of the measures you wrote earlier (in Practice Exercise 15):
[Total Customers That Have Purchased] [Total Sales]

You can also add some conditional formatting so that the matrix is easier to read. You should end up with a
matrix something like the one shown below.

150 Supercharge Power Bl

Age Group Customers That Total Sales
Have Purchased

20 to less than 30 $4,356,580
30 to less than 40 $11,537,347
40 to less than 50 | 37 $8,585,476
50 to less than 60 M 2,727 $3,685,270
60 to less than 70 | I 1076 $1,117,530
Greater than 70 | | 124 $76,475
Total 18,484 $29,358,677

3,319

It is easy to see the power of banding. It is unlikely that you will ever want to analyse a business based on
sales to customers who are 20, 21, 22, etc. Grouping customers into age brackets is more practical, and this
disconnected table banding technique makes it a snap.

Interim Calculated Columns

In the banding example, you first created an Age calculated column and then created an Age Group calculated
column. Breaking the problem into parts like this makes the DAX easier to read, write, and debug. However,
you should be aware that it is generally not considered good practice to leave interim calculated columns
in a data model as they inefficiently take up extra space (unless you want to use the interim column in your
data model as well, of course). What you really should do after you get the final calculated column working as
expected is combine all the unwanted interim columns into a single final calculated column, and then delete
the unwanted interim columns. This will save space in your workbook which will improve efficiency. Making
this change could also make the formula harder to read. To solve this problem, | am going to introduce you
to the concept of variables in DAX. Let me first explain the variables syntax and then | will show you how to
remove the interim column.

Variables Syntax
Two keywords in DAX allow you to create and refer tovariables in your DAX formulas. The

first keyword is VAR (which stands for Variable).

Note In reality VAR is more like a constant than a variable as its value cannot change during
evaluation.

VAR is always accompanied by a second keyword, RETURN.

Here is the syntax for VAR:

My Column (or Measure) =

VAR FirstVariableName = <valid DAX expression>

VAR SecondVariableName = <another DAX expression>

Return

<another DAX expression that can reference the variables>

17: Concept: Disconnected Tables 151

The above generic syntaxcanbe abit confusing, so let me show youa real example using
the formula fromabove.

Age Group =
Age =

- Customers[BirthDate]

AgeBands[Band] |,
AgeBands, Age >= AgeBands[Low] && Age < AgeBands[High]

Note how 1lines 2 and 3 in the formula above set the value of the variable Age to be the
value that waspreviously storedintheoriginal Agecalculatedcolumn fromearlierin
thisexercise. Once thevariablehasbeenset, it isreferredtoagain (twice) inline 7.

Some Important Things to Note

Avariable can refer to another variable as shown in line 4 below

Age Group =
AgelInDays =
- Customers[BirthDate]),
Age = AgelInDays /

AgeBands[Band]),
AgeBands, Age >= AgeBands[Low] && Age < AgeBands[High]

Avariable can containa table aswell as avalue as shown in row 5 below.
Age Group =
AgeInDays =
- Customers[BirthDate]),
Age = AgelnDays /
BandsTable =
AgeBands, Age >= AgeBands[Low] && Age < AgeBands[High]

AgeBands[Band]), BandsTable

Variables are set inthe initialfilter and row context. It doesn'tmatter if thefilter
and/or row context changes after the RETURN keyword, the variables have already been
assignedandhence theywill not change as aresult of anychangingfilter or row context.

Now you know how the VAR syntax works, let me show you how to remove the interimcalcu-
lated column andmove everything into the final banding column.

Here’s How: Deleting Interim Calculated Columns

Follow these steps to combine the interim column into the final banding calculated column, and then delete
the interim column:

1. Navigate to the interim calculated column in the table (Age in this example).

2. Highlight the formula, then Ctrl+C to copy the entire formula from the interim column as shown
below.

ROUNDDOWIN((date(2@83,1,1) - Customers[BirthDate])/365,8)

Age

3. Navigate to the final banding calculated column (Age Group in this example). You can enlarge the
formula bar by clicking the drop-down arrow in the top right if needed.

152 Supercharge Power Bl

4. Create two new blank lines after the = in the formula (press Shift+Enter). You should now have as
shown below

Age GQroup =

CALCULATE({VALUES{ AgeBands[Band]),
FILTER{AgeBands,
Customers[Age] »= AgeBands[Low] &&
Customers[Age] < AgeBands[High]

5. Type the keyword VAR (#1 below), paste the Age column code (#2), and then type the RETURN
keyword (#3) as shown below.

. Age GQroup =

CALCUL #.LJES{AEM
TER{AgeBands, 9)

Customers[Age] »= AgeBands[Low] &&
Customers[Age] < AgeBands[High]

|

6. Replace the two instances of the original column names Customers [Age] with the reference to
the variable Age as shown below.

I'J.ge Group = VAR Age = ROUNDDOWN((date(2883,1,1) - Customers[BirthDate])s365,8)
RETURM
CALCULATE{VALUES({AgeBands[Band1),
FI gefands,
= AgeBands[Low] &&

AgeBands [High]

7. Delete the interim column Customers [Age].

Note: Of course, if you need the interim column in your table, you should keep it. But if you don’t
need it, you should remove it by using the process shown above. There is deeper coverage of the
use of variables at my blog: https://exceleratorbi.com.au/using-variables-dax/.

https://exceleratorbi.com.au/using-variables-dax/

18: Concept: Multiple Data Tables 153

18: Concept: Multiple Data Tables

So far in this book, we have used only a single data table, the Sales table. It is quite likely that you will want
or need to use multiple data tables in your data models. When you bring a second data table into Power BI,
it is common for people to think that they should join the new data table to the original data table, but this
is incorrect. The correct way to join a second data table to a data model is to treat the new data table exactly
the same as the first data table.

To help you understand how to do this, let’s look at a common business scenario in which a business wants to
load a budget table as well as a sales table. One of the challenges of this scenario is that the budget is often
at a different level of granularity than actual sales. For example, sales may be captured and reported every
day for every individual product, but budgets may be set only for each month and for each product category.

Here’'s How: Adding a Budget Table

The following steps walk you through the process of importing a Budget table, creating a new BudgetPe-
riodtable, and then creating a measure for the budget:

1. In Power BI, click Get Data, More, Access Database and navigate to the Access database you used
in Chapter 2.

2. Select the Budget and BudgetPeriod tables from the list, as shown below.

Navigator

o

dimProductCategory B
gory)

=

Display Options ~ o ProductCategoryKey ProductCategoryAltern
4 AdventureWorks_Learn_To_Write_DAX.accdb [...
Calendar

Customers

da | W k|

Products
Sales
Territory

Budget

LA
HBAEBABQEoaa

BudgetPericd

dimCalendar

3. Click Load. You now see that the Budget table has a monthly sales budget for each category. The
Period column is in the format YYYYMM for year and month, as shown below.
Category Bud pet Period

Arcessories 16000 200307

Accessaries 53000 200308

Arcessories 56000 200309

Accessaries 56000 200310

Acrcessories 54000 200311

Arcessories 72000 200312

Accessaries 61000 200401

Arcessories 63000 200402

154 Supercharge Power Bl

4. You can also see that the BudgetPeriod table is a type of calendar table and is different from what
you have used so far. Like the Budget table, it contains a Period column in the format YYYYMM, as
shown below.

CalendarYear MonthMName Month Number Period

2003 July 7 200207
2003 August 8 200208
2003 September 9 200309
2003 October 10 200210
2003 Movember i1 200311
2003 December 12 200212
2004 lanuary 1 200401
2004 February 2 200402

5. You need a ProductCategory table, so click the New Table button and type the formula shown
below.

ProductCategory = ALL{Products[Category]))

Category

Bikes
Components
Clothing

AcCcessories

6. The new ProductCategory table has a list of the four possible product categories.
Note: The reason you need all these new tables will make sense shortly.

7. Switch to Relationships view.

Rearrange your tables as shown below. Place the BudgetPeriod table (see #1 below) above the Cal-
endar table and place the Budget table (#2) next to the Sales table. Put the ProductCategory table
(#3) above the Products table, as shown.

Note: The relationship between BudgetPeriod and Budget is a physical relationship automat-
ically created by Power Bl when the New BudgetPeriod table was created. Don’t confuse this
with lineage, which is an inherited relationship for a virtual table that exists only during formula
evaluation.

= BudgetPeriod 0) m = Hemisphere
Calendarvear Category

Group
MenthName Hemisphere
Menth Number
Period

I Calendar = Customers [Products I Territories
E Customerkey Productiey Teritory Key
Ea GeographyKey 3. ProductSubcategory Region
DayNumberOfeek Name ProductName Country
DayName BirthDate) % StandardCost Group

[Budget = Sales = Increase
Category 3 BxtendedAmount X value
2 Budget 3 Taxhmt [selected Value
period OrderDate

[T Total Sales Plus Tax ¢

18: Concept: Multiple Data Tables 155

9. Now let me explain why you need the BudgetPeriod table. Go ahead and try to join the Budget ta-
ble to the Calendar table. It is a bit hard to drag and drop the Period column, so instead go to the
Home tab, click Manage Relationships, and try to create a new relationship between the Budget
table and the Calendar table, as shown below. Note the error message.

Create relationship

Select tables and columns that are related.

Budget -

Category Budget Period

Accessories 15000 = 200307

Accessories 53000 200308

Accessories 56000 200309

Calendar e

umberOfYear MonthName MonthNumberOfYear CalendarQuarter CalendarYear Period Day Type
27 luly 7 3 2001 200107 Weekend
27 luly 7 3 2001 200107 ‘Weekday
27 luly 7 3 2001 200107 ‘Weekday

< >
Cardinality Cross filter direction

Many to one (*:1) * Single -

¥ Make this relationship active Apply security filter in both directions

Assume referential integrity

! You can't create a relationship between these two columns because one of the columns must have unigue values.

10. Click Cancel and close the Create Relationship window. Do you see the issue? The Calendar table is
a daily calendar, but the Budget table is a monthly budget (a very common business scenario). The
Period column in the Calendar table has between 28 and 31 entries for each month in the budget
table. But Power Bl supports only one-to-many relationships. The lookup table (Calendar) at the top
simply must have a single value for Period if you are to make the join, so this is not going to work.
You therefore need the BudgetPeriod table. There is only one value for each period in the Budget-
Period table, and hence you are able to join the Budget table to the BudgetPeriod table. In fact, this

relationship (see #1 below) was auto-created when the data was loaded.
11. Join the Calendar table to the BudgetPeriod table by dragging the Period column from the Calendar

table to the Period column in the BudgetPeriod table (see #2 below).

3. CalendarYear

7 ProductCategory
Category
MonthName
= Meonth Number
Period

£ Calendar
3D
Date
3. DayNumberOfweek
DayMame

- _ . i

1 Budget
Category
2. Budget

Period

[T Customers
CustomerKey
Geographykey
Name
BirthDate

[sales

ProductKey
> OrderDateKey

CustomerKey

SalesTerritoryKey

1 Products

Productiey

¥ ProductSubcategory
ProductName

3 standardCost

156 Supercharge Power Bl

12. Now you need to join the ProductCategory table to the Budget table. If you try to join the Budget[-
Category] column to the Products table, you get the same error as before.

13. Tojoin the Budget table to the ProductCategory table, click and drag the column Budget [Catego-
ry] to ProductCategory[Category].

14. To join the Products table to the ProductCategory table, click and drag the column Products [-
Category] to the ProductCategory[Category] column.

When you are finished, you should have something like the layout shown below. Notice that it becomes dif-
ficult to keep track of all the relationships when you have lots of tables in a data model. This is one reason |
recommend arranging the tables using the Collie layout methodology, as shown below.

1 BudgetPeriod o J ™1 ProductCategory

3 Calendaryear Category
MonthName
Month Number
Period

[Calendar . = Customers T Products

5D CustomerkKey ProductkKey

Date GeographyKey ProductSubcategory
3 DayNumberOfiNeek Name ProductMame
DayMName BirthDate StandardCost

7 Budget

Category 2. BxtendedAmount
2. Budget : TaxAmt
Period OrderDate
= Total Sales Plus Tax C

b

As you can see in the image above, the tables on the “many” side of the relationship should be down below,
and the tables on the “one” side of the relationship should be up high. The filters always flow downhill, and
this layout makes it much easier to understand how the filters flow. So if you filter on the BudgetPeriod
table (see #1 above), this table directly filters the Budget table (#4) via the direct relationship. In addition,
the BudgetPeriod table (see #1) directly filters the Calendar table (#2), and the Calendar table (#2)
filters the Sales table (#3). So the net result is that any filter you apply to the BudgetPeriod table (#1)
filters both the Sales table (#3) and the Budget table (#4). The same concept applies with the Product-
Category table.

When working with data tables of differing granularities, as in this case, it is important to use the correct
tables and columns in your matrix filters. So when working with both the Sales table and the Budget table,
you must use the columns from the BudgetPeriod table in your matrixes; columns from the Calendar
table will not work.

18: Concept: Multiple Data Tables 157
Practice Exercises: Multiple Data Tables

It’s time to get some practice writing new DAX formulas across the two data tables: Budget and Sales. First,
create a new matrix. Then put ProductCategory[Category] on Rows, BudgetPeriod[Period] on
Rows, and [Total Sales] on Values. Make sure you select the correct columns from the two new tables
(ProductCategory and BudgetPeriod).

Once your matrix is set up, click on the Expand All Down icon, as shown below, to expand all levels in the matrix.

r= n - ~

Category Total Sales)

Accessories $700,760
200,307.00 $14,468
200,308.00 $52,057
200,309.00 $52,150
200,310.00 $54,595
200,311.00 $54,832
200,312.00 $65,608
200,401.00 $56,457
200,402.00 $56,996
200,403.00 $60,098
200,404.00 $62,674
200,405.00 $71,880
200,406.00 $65,201
200,407.00 $33,745

Bikes $28,318,145
200,107.00 $473,388
200,108.00 $506,192

Note that the periods shown on Rows in the image above are not formatted properly. The periods should
be in the format YYYYMM, but they are displayed with commas and decimal points. This is an easy fix. Just
select the BudgetPeriod[Period] column in the fields list and change the data type to Whole Number.

Now it is time to create some measures. Right-click the Budget table, select New Measure, and then write
the following new measures. Find the solutions to these practice exercises in"Appendix A: Answers to Practice
Exercises" on page 178.

158 Supercharge Power Bl

71. [Total Budget]
72. [Change in Sales vs. Budget]

73. [% Change in Sales vs. Budget]

The image below shows what the matrix looks like with these formulas and the addition of conditional for-
matting.

Category Total Sales Total Budget Change in Sales % Change in

vs Budget Sales vs Budget
Accessories $700,760 $739,000 -$38,240 -5.2%
200307 $14,468 $16,000 -F1,532 -9.6%
200308 $52,057 $53,000 -$943 -1.8%
200309 $52,150 $56,000 153,850 -6.9%
200310 $54,595 $56,000 §1,405 -2.5%
200311 $54,832 $54,000 Cssn2 0 1s%
200312 $65,608 $72,000 k6,392 -8.9%
200401 $56,457 $61,000 k4,543 -7.4%
200402 $56,996 $63,000 6,004 -9.5%
200403 $60,098 $63,000 £2,902 -4.6%
200404 $62,674 $68,000 5,326 -7.8%
200405 $71,880 $78,000 6,120 -7.8%
200406 $65,201 $63,000 2,201 ISR
200407 $33,745 $36,000 $2,255 -6.3%
Bikes $28,318,145 $28,750,000 -$431,855 -1.5%
200107 $473388 $483,000 k9,612 -2.0%
200108 $506,192 $516,000 K9,808 -1.9%
200109 $473,943 $502,000 Bbs 057 -5.6%

19: Concept: Using Analyze in Excel and Cube Formulas 159

19: Concept: Using Analyze in Excel and Cube
Formulas

So far in this book, you have consumed and visualised the information from data models in reports inside
Power BI. But after you have invested so much time and effort building your Power Bl data models, you may
want to get to the data by using good old traditional Excel. Fortunately, there is an easy way to do this from
PowerBl.com, as long as you have a Power Bl Pro licence: You can use Analyze in Excel. Before you can use
Analyze in Excel, however, you must first publish your Power Bl Desktop file to PowerBl.com.

Note: If for some reason you are not able to publish to PowerBl.com, you can still com-
plete the cube formulas exercises later in this chapter. Simply go to my website,
http://xbi.com.au/localhost, and follow the instructions on how to connect Excel to a local instance
of Power Bl Desktop running on your PC.

Here’s How: Publishing a Report to PowerBI.com

Follow these steps to publish a report to PowerBl.com:

1. Save the Power Bl workbook.

2. Onthe Home tab (see #1 below), click the Publish button (#2).
al | H S & - = | Super Charge Power Bl - Power Bl Desktop
“ Homeo‘ View Maodeling 9
s cut — D [H l:l E- [H * > j Text box F E(E' =
|——L‘ Copy 9 »/J ' — L_';,Image v LE] ! t&
Paste . Get Recent Enter Edit Refresh Solution Partner MNew Mew From From Switch Manage Mew Publish
Format Painter pata~ Sources~ Data Queries ™ Templates Showcase Page~ Visual CH shapes ~ Store File Theme~ Relationships Measure =
Clipboard External data Resources Insert Customvisuals Themes Relationships Calculations Share
]

3. Ifthisis the first time you are using PowerBl.com, you will be prompted to create an account. Simply
follow the instructions to create yourself a new account. If you already have an account, just sign in
with your credentials. You get a success message when the file has been loaded to PowerBl.com. If
you are creating an account for the first time, you need to activate the 60-day trial in order to use
Analyze in Excel.

Note: Your access to PowerBl.com may be controlled by your IT department. If you cannot create
an account as described above, you may need to contact your IT department for support. Also,
as at this writing, it is not possible to sign up to PowerBl.com using a generic email address such
as @gmail.com or @hotmail.com

4. In a browser, navigate to http://powerbi.com and click the sign-in link in the top-right corner of the
website, using the same credentials you specified in step 3.

5. Once you are logged in, expand the menu
on the left-hand side (see #1 here) and open
the workspace where you uploaded your
workbook, such as My Workspace (#2).

Power BI . My Workspace

Search content.

Dashboards Reports Workbooks Datasets

6. Find your data model under Datasets (see
#3 here) and all your reports in the Reports
section (#4).

NAME

)

WORKBOOKS

DATASETS

http://xbi.com.au/localhost
http://powerbi.com/

160 Supercharge Power Bl

Before you can use Analyze in Excel the first time, you need to install the Analyze in Excel updates. Follow
these steps:

1. Click on the download arrow in the top-right corner of the browser (see #1 below) and select Ana-
lyze in Excel Updates (#2).

2. After the update is downloaded, run the downloaded file on your PC. You need administration rights
on your computer to be able to complete the installation.
[_ Y

rEyn o

BN a0

Power Bl Desktop — Create
Data Gateway
Power Bl for Mobile

Name (A-Z)
Power Bl publisher for Excel

Analyze in Excel updates e'

Here’'s How: Using Analyze in Excel

Using Analyze in Excel could not be easier. Simply follow these instructions:

1. Navigate to either Reports (see #1 below) or Datasets (#2) on the left-hand side and right-click the
ellipsis to open the menu and then select Analyze in Excel (#3). An ODC file is then downloaded to
your PC.

Note: An ODC file is a small text file that contains a set of instructions to tell Excel how to connect
directly to Power BIl. You can open an ODC file with a text editor and see what it contains if you
are interested.

Super Charge Power Bl

REPDRTS OPEN

ver Charge Power Bl

REMAME
WORKBOOKS

You have no v REMONVE

DATASETS @ ANALYZE IN EXCEL }—}

5 Charge Power Bl

19: Concept: Using Analyze in Excel and Cube Formulas 161

2. Find the ODC file that was downloaded (probably to your downloads folder, depending on your
browser) and click to open it. The figure below shows what this might look like using Google Chrome
(bottom left hand corner of the Chrome screen).

O Super Charge Pow...odc

3. If you’re prompted with a security warning when Excel launches, click Enable.

Microzoft Excel Security Motice ? >
@ Microsoft Office has identified a potential security concern.

File Path: | C\Users\matt\Downloads\Super Charge Power Bl.odc

Data connections have been blocked. If you choose to enable data
connections, your computer may no longer be secure, Do not enable
this content unless you trust the source of this file.

Enable

If everything has gone well, you should now have a new pivot table in a new Excel workbook that looks like
the one below. You will have to log in again to your account if prompted.

H ©- I Book2 - Excel Matt Allington &3l O
File Home Insert Pagelayout Formulas Data Review View Developer Power Pivot Design Q Tell me
3 Insert Slicer n

= . e w & 1 B
:) =5 Insert Timeline : -)
PivotTable Active Group Refresh Change Data Actions Calculations PivotChart Recommended =~ Show

= Field = - Filter Connections < Formene - - PivaotTables -

Filter Data Tools L
Al 2 f v
D E F G H -
1 PivotTable Fields ~ *
2
3 Show fields: | (All} - -
4 | Tobuild a report, choose Search p
5| fields from the PivotTable
6 Field List 4 Z Budget -
7 [] Total Budget
8
4 X Calendar
? | oo — [First Date
10 = [Month Mame (Values)
11 =
= O [] Total Menths in Calendar

12
13 O — 4 T Customers -
14
15 Drag fields between areas below:
. Fil Col
17 ilters olumns
18
19
0

The really cool thing about this Excel workbook/pivot table is that it has a direct connection to PowerBl.com.
The data model remains at PowerBl.com, and only the data needed to display the pivot table is stored in the
Excel workbook. The data model could be as big as 10 GB on PowerBl.com, but the Excel workbook could be
as small as 20 KB. We call these “thin workbooks.”

162 Supercharge Power Bl

The PivotTable Fields list on the right-hand side of Excel looks slightly different to this list for a regular pivot
table. There are measure tables and also column tables, differentiated by the two different icons shown below.

-

PivotTable Fields ~ *

Show fields: | (All) - -

Search 2
'WL .

I X Sales

P Z Territories Measures

b X VisitData

I Z YearTable

b [E AgeBands

3 D All Countries

b [E Budget

3 D BudgetPericd

| Columns
b [E Calendar

| MR -

You should be able to build a pivot table similar to one of the matrixes that you have already built in Power
Bl Desktop. (See the example below.)

Occupation y= Total Sales Column Labels -
Row Labels ~ Accessories Bikes Clothing Grand Total
Clerical 2001 $3,266,374 43,266,374
Management 2002 56,530,344 56,530,344
— 2003 $293,710 $9,359,103 $138,248 $9,791,060
2004 $407,050 $9,162,325 $201,525 $9,770,900
Professional Grand Total $700,760 $28,318,145 $339,773 $29,358,677
Skilled Manual

Using Cube Formulas

The final concept topic in this book is one of my favourites: cube formulas. Cube formulas have been around
for many years. But before Power Bl was launched, the main way you could use cube formulas was to con-
nect to a SQL Server Analysis Services (SSAS) multidimensional cube. Some large companies have SSAS set
up. Some of those companies may connect directly to SSAS from Excel, and some of the ones that do may
have discovered cube formulas. But given how rare this scenario is, most people have not come across cube
formulas prior to discovering Power BI.

Pivot tables in Excel are great, and | use them all the time, but they do have some limitations. The biggest
limitation is that a pivot table locks you into a particular format. But what if you want to put a single value in
a single cell in a workbook? In that case, you could create a pivot table and then point the cell in question to
the pivot table, but that involves a lot of overhead. In addition, if the pivot table changes shape at any time
(e.g., on refresh), then chances are the cell positions will change, and your formula may point to the wrong
cell. The best-case scenario is that you realise there is a problem. The worst-case scenario is that your formula
points to another similar cell in the pivot table, and you don’t even notice!

“What about GETPIVOTDATA () ?” | hear some of you say. Well, yes, you can use GETPIVOTDATA (), but
you still have the overhead of the pivot table, and the bottom line is that cube formulas are much better.
The easiest way to get started with cube formulas is to convert an existing pivot table to cube formulas. The
following pages walk you through how to do that.

19: Concept: Using Analyze in Excel and Cube Formulas 163

Here's How: Converting a Pivot Table to Cube Formulas

Follow these steps to convert a pivot table to cube formulas:

1. Create a new blank sheet in your Excel workbook and insert a pivot table like the one shown below,
which is the same one created in Chapter 18.

Occupation Total Sales Amount Column Labels |~

Row Labels - | Accessories Bikes Clothing Grand Total
[Clerical l 2001 $3,266,374 43,266,374
| Management | | 2002 $6,530,344 $6,530,344
[Manual] 2003 $293,710 59,359,103 S5138,248 59,791,060

2004 5407,050 59,162,325 5201,525 59,770,900
[Professional] Grand Total $700,760 528,318,145 $339,773 $29,358,677
[Skilled Manual]

2. Put ‘Calendar’[CalendarYear] on Rows, Products[Category] on Columns, and [Total Sales] on Values.
Also add a slicer for Customers[Occupation]. Click on the slicer and make sure it works before pro-
ceeding.

3. To convert the pivot table to cube formulas, click inside the pivot table and then select the Analyze
tab (see #1 below), click OLAP Tools (#2), and select Convert to Formulas (#3).

Analyze in Excelxlsy - Excel

@ Tell me what you want to do

i B3 0§ 07 BF il

Refresh Change Data Clear Select Mowve Fields, ltems, POLAPY Relationships | PivotChart Recommer

- Source~ - - PivotTable 8t Sets~ Tools~ PivotTabl
Data Actions Ce als
Offline OLAP...
’ , | % Convert to Formulas 9 '
E% What-If Analysis 2

MDX Calculated Measure...
MDX Calculated Member...
Manage Calculations...

Bam! Your pivot table is converted to a stack of standalone formulas that you can move around as you want
on the spreadsheet.

A B C D E F
1 Occupation y= Total Sales Column Labels
z Row Labels Accessories Bikes Clothing Grand Total
5 ||| clerical | | 2001 43,266,374 |_s3,266,374]
4 [Management l 2002 56,530,344 56,530,344
5 [Ma"ual l 2003 4293710 59,359,103 $138,248 $3,791,060
& 2004 5407,050 $9,162,325 5201,525 59,770,900
7 [Professional l Grand Total $700,760 $28,318,145 $339,773 $29,358,677
8 || skilled Manual]
g

What'’s more, the slicer still works! Go ahead and drag the formulas around to new locations in your spread-
sheet and then click on the slicer to verify that it works.

164 Supercharge Power Bl

Writing Your Own Cube Formulas

| =cube |
':E;-':' CUBEKPIMEMEER

() CUBEMEMEER

(%) CUBEMEMBERPROPERTY
| CUBERANKEDMEMBER

| CUBESET

| CUBESETCOUNT

() CUBEVALUE

f;

| (5w (5
J\"‘/ '\:1/

f;

..,;1

i)

There are seven cube formulas in total in the family, and they all start with the word CUBE. You can see the
list by typing =CUBE into a cell in your workbook, as shown below.

This book covers the two most-used formulas, CUBEVALUE () and CUBEMEMBER () . Once you have mastered
these two formulas, you can do some research to learn about the other five.

CUBEVALUE() vs. CUBEMEMBER()

Go back to the pivot table that you just converted and double-click inside the grand total cell (see #1 below)
so that Excel is in Edit mode. Notice in the formula bar (#2) that this grand total cell is a CUBEVALUE () for-
mula, and it points to a number of other cells (#3). The formulas inside each of these other cells (labelled
#3) are CUBEMEMBER () formulas.

SUM hd x [P = e UBEVALUEQ'https://analysis.windows.net/powerbi/api; 7aefsdad-35a4-4d0e-b2e3-¢

A B 9 C D E F G H

1 || occupation i= |Total sales .8);Iumn Labels I
2 Row Labels Accessories Bikes Clothing | Grand Total =

Clerical e ——
3 2001 3,266,374 3,266,374
4 Management 2002 56,530,344 56,530,344
5 Manual 2003 $293,710 59,359,103 5138,248 59,791,060
& 9 5407050 59,162,325 5201,525 9,770,500
7 Professional |Grand Total _.) $700,760 $28 318,145 5339,77 —CUBEVALUE{ https://analysis.win
8 | | skilled Manual 94) Click here
g

CUBEVALUE () is used to extract the value of a measure from the data model, and CUBEMEMRER () is used
to extract a value from a column/lookup table. When they are used together, CUBEMEMBER () filters the data
model before calculating the CUBEVALUE () expression.

Now that you know about cube formulas, you can build a pivot table that contains the cube formulas you
want in your spreadsheet and then simply select Analyze, OLAP Tools, Convert to Formulas. Once you have
done this, you can copy and paste the resulting formulas wherever you want. But it actually isn’t very hard
to write cube formulas from scratch, so let’s do that together now.

Here’'s How: Writing CUBEVALUE() from Scratch

The important keyboard keys when writing cube formulas are the double quote, the square brackets, and
the full stop (period in the USA). This information will make sense as you work through these steps. Be sure
to follow these steps exactly:

1. Click in an empty cell in your workbook and type =CUBEVALUE (. Notice the tooltip that pops up,
asking for a connection and one or more member expressions. The member expressions can be
either measures or table columns from your data model.

| =CUBEVALUE(

CUBEVALUE(connection, [member_expressionl], ..)

2. Type " (a double quote). You are presented with a list of connections available to the workbook.
Given that this is a thin workbook created using Analyze in Excel, you should have a connection

19: Concept: Using Analyze in Excel and Cube Formulas 165

string that looks something like the one shown below. Note that the long number (GUID) is unique
to your instance of Power Bl. Anyone who can access your Power Bl data set (e.g., someone else in
your organisation) will also be able to interact with this thin workbook when it is done.

=CUBEVALUE("

CUBEVALUE(connection, [member_expressionl], ...)

hitps:/fanalysis.windows.net/powerbifapi; 7aefdda9-35a4

Note: If you are writing a cube formula using my localhost workbook http://xbi.com.au/localhost,
then you will get a different connection string experience than shown above.

3. Press the Tab key to select the connection and then type " again.
Type , (a comma).

5. Type " (a double quote) again to start the next parameter. This time notice that the tooltip shows
you a list of all the tables in the data model (see below). There is also one additional item in the list,
[Measures]. All of your DAX formulas are stored in [Measures].

5 =CUBEVALUE("https://analysis.windows.net/powerbi/api; 7aef8dag-35a4-4d0e Model","
] CUBEVALUE(connection, [member_expression1], [member_expression2], ...} |G H
Total Sales Column Labels I,d [All Countries]
Row Labels Accessories Bikes Clothing Grand Total :;;f[BUdgeﬂ _
2001 43,266,374 43,266,374 - [BudgetPeriod]
[¢ [Calendar]
2002 6,530,244 $6,530,244
[[Customers]
2003 $293,710 $9,359,103 $138,248 $9,791,060 (3 [DatessamePeriodL]
2004 $407,050 59,162,325 $201,525 59,770,900 |) [ImaginaryTempTableFromFilter]
Grand Total $700,760 $28,318,145 $339,773 $29,358,677 ngrease
olors]

Type [and then M and press Tab to select [Measures].

7. Type . (afull stop/period), and you see a list of all the measures that exist in the data model. From
here you can either keep typing [followed by the name of the measure or use the up and down
arrow keys on the keyboard to navigate to the measure you want to select.

F:3 =CUBEVALUE("https://analysis.windows.net/powerbi/api; 7aefdda3-35a4-4d0e- Model","[r\.-'leasures].|
CUBEVALUE{connection, [member_expression1], [member_sxpressien2], ..} |6
Total Sales Column Labels [[Measures].[% of All Customer Sales]
Row Labels Accessories Bikes Clothing Grand Total 4l [Measures]. % of Global Sales]
2001 43,266,374 43,266,374 |l [Measures).[% of Sales to Selected Customers]
[[Measures].[% of Selected Territories]
2002 56,530,344 56,530,344 [[Measures] [Average Price Paid for a Product]
2003 $293,710 $9,359,103 $138,248 39,791,060 [Measures] [Average Safety Stock]
2004 $407,050 59,162,325 $201,525 99,770,900 I:) [Measures].[Average Sell Price Per ltem]
Grand Total $700,760 $28,318,145 $339,773 $29,358,677 () Measures).[Average Tax Paid]
[[Measures].[Avg Spent per visit Correct]
[:}[Measures]‘[Avg Spent per visit Wrong]
|[[Measures].[Baseline % this Occupation is of All Customer Orders] “

8. Type [and then type Total S. This brings the [Total Sales] measure to the top.

9. PressTab, type "), and press Enter.
If you follow these instructions exactly, you end up with a value in a cell, as shown below. This is your first

handwritten cube formula:

= CUBEVALUE (<your connection string>," [Measures].[Total Sales]")

Note: In the formula above, | have used <your connection string> in place of the actual connection
string because what you have on your screen will be different.

5 =CUBEVALUE("https://analysis.windows.net/powerbi/api; 7aef8dag-35a4-4doe

B iz D E

Maodel","[Measures].[Total Sales]")

H |] K

| 52‘3,358,6??!

http://xbi.com.au/localhost

166 Supercharge Power Bl

You probably noticed that the value you end up with after writing this cube formula is the grand total for
all the data in the data model. It should therefore be clear that the data model is completely unfiltered. It
is possible to filter this formula just as in a pivot table by adding some CUBEMEMBRER () functions into the
formula (sort of like adding a column to Rows in a pivot table).

Note: Before moving on, you should rewrite the formula above a couple of times for practice. Re-
member that the most important keys on your keyboard in this process are double quotes, square
brackets, and the full stop/period, along with Tab to select the highlighted selection. Practice the
rhythm of writing these formulas using these keys on the keyboard.

Here’s How: Applying Filters to Cube Formulas
To filter an existing formula, follow these steps:
1. Select one of the formulas you have already written and start to edit it.
Delete the last) and then type , (a comma). The tooltip asks for member_expression2.
Type " [.
Use the down arrow key to select [Calendar] and then press Tab.
Type . (full stop/period) and use the down arrow key to select [CalendarYear]. Then press Tab.

o vk wN

Type . (full stop/period) and notice that the tooltip offers only a single choice, [All]. Select [All] and
then press Tab.

7. Type . (full stop/period) again and notice that you now have a list of the possible years to select
from. Select [2003].
8. Finish the formula by typing ") and pressing Enter.
This is the final formula:
= CUBEVALUE (<your connection string>,"[Measures].[Total Sales]", "[Cal-
endar] . [CalendarYear].[A11].[2003]")
Go back into this formula again and delete the closing bracket), add another , (a comma), and then follow
the same process as above to add another cubemember, this time for Products [Category] = "Cloth-
ing". This is the formula you need:
= CUBEVALUE (<your connection string>,
"[Measures].[Total Sales]",
"[Calendar]. [CalendarYear].[All].[2003]",
"[Products]. [Category].[All].[Clothing]"
)
You can add any measure from your data model into your spreadsheet by writing a cube formula like this.
You can further filter the measure in your cube formula by adding additional CUBEMEMBER () expressions
inside the cube formula you are writing.

Here’s How: Adding a Slicer Without a Pivot Table

Connecting your formulas to slicers is easy. You should have a slicer for Customers [Occupation] on the
sheet. If you don’t have this slicer, then go ahead and add it now. Here are the steps to add a slicer when
there is no pivot table:

1. Select Insert, Slicer.

Note: In this case, you can’t right-click on a column in the PivotTable Fields list because there is
no pivot table.

2. In the Existing Connections dialog that appears, select the Connections tab (see #1 below), select
Connections in This Workbook (#2), and then click Open.

19: Concept: Using Analyze in Excel and Cube Formulas 167

Existing Connections ? e

Select a Cnno' n or this workbook's Data Model
Qonnectiom—‘élata Model

show: | Al Connections e

Connections in this Workbook e
t https.//analysis.windows.net/powerbi/api; 7aef8da9-35a4-4d0e-b2 e
[Blank]

Connection files on the Network

<MNo connections found =

3. Find the Products[color] slicer in the list, select the correct checkbox, and click OK. You now have a
slicer on your sheet, but it is not connected to your formula.

Here’'s How: Connecting a Slicer to a Cube Formula

Follow these steps to connect a slicer to a cube formula:
1. Check the unique name for the slicer you want to connect by right-clicking on the slicer and select-
ing Slicer Settings.
2. In the Slicer Settings dialog that appears, note and memorise the value that appears in the second
line in the dialog box, Name to Use in Formulas. You will need the name of the slicer in the next step.
In the example shown here, it is called Slicer_Products. In your case, it may be called something dif-
ferent. Once you’ve noted the slicer name, click Cancel.

Slicer Settings ? =

Header
Display header

Caption: | Color

ltem Sorting and Filtering

@ Data source order D ﬂld& items with no data
() Ascending (A to Z) Wisually indicate items with no data
() Descending [Zto A) Show items with no data last

3. Write a new version of the Total Sales cube formula and this time add the slicer to this formula.
Simply add a comma after [Total Sales], followed by the slicer name from step 2, and then type
). Your formula should now look something like this (though your slicer may have a slightly different
name):
= CUBEVALUE (<Your Connection String>,
" [Measures].[Total Sales]",

Slicer Products

168 Supercharge Power Bl

Occupation = Total Sales Column Labels fo! O — ')
: Row Labels Accessories Bikes Clothing Grand Total Color = %
[Clerical l 2001 43,266,374 53,266,374 Black
[Management] 2002 46,530,344 46,530,344
[] l 2003 $293,710 $9,359,103 $138,248 59,791,060 Blue
2004 $407,050 $9,162,325 $201,525 $9,770,900 Grey
[Professional l Grand Total 4700,760 428,318,145 $339,773 $29,358,677 |
Multi
' skilled Manual |))
MNA
Red
Here is my hand -
5106,471 . Y Silver
written cube formula .
Silver/Black v
e, O O

Note: You do not use double quotes around slicer names. This is an unfortunate inconsistency,
but it is just how it works.

4. Now test it out: Click on your slicer and watch your cube formula update.
Take a deep breath and be amazed. How cool are cube formulas?!

Writing CUBEMEMBER() Formulas

In addition to referencing a column name inside a CUBEVALUE () formula, it is possible to write a CUBEMEM-
BER () formula directly in a cell in a workbook. Here is an example of a CUBEMEMBER () formula:

= CUBEMEMBER (<Your Connection String>,
"[Customers] . [Occupation].[All].[Manual]"

)
You can see a lot more of these formulas if you go back to the original pivot table that you converted and
click in the column and row headings. If you write a CUBEMEMBRER () formula as a standalone formula in a
cell, you can reference that cell from within your CUBEVALUE () formula by using cell references. Once again,
you can see this by examining the formula in your converted pivot table.

20: Transferring Your Skills to Excel 169

20: Transferring Your Skills to Excel

Power Bl is a relatively new product from Microsoft. It first became generally available in July 2015, and the
pace of change over the few years since its release has been phenomenal. The fact that you have purchased
this book and have now arrived at this point probably means that you already know this. But the truth is
that both Power Pivot and Power Query are technologies that were first built (and continue to evolve) for
Microsoft Excel. Microsoft didn’t (and still doesn’t) do a really great job at marketing the existence of these
products as part of Excel, and as a result, many (most?) people who could benefit from the technologies
inside Excel don’t know they exist. The good news, however, is that the skills you have learnt in this book are
completely transferable to Power Pivot for Microsoft Excel. This chapter is here to help you transfer those
skills with a minimum of pain.

Differences Between Power BI and Power Pivot for Excel
There are a couple of differences between Power Bl and the various versions of Power Pivot for Excel that
you should be aware of as explained below.
Note: | use the following conventions below:
e Power Bl means Power Bl Desktop

e Power Pivot is the data modelling engine that exists in both Power Pivot for Excel and
Power Bl Desktop.

e Power Query is the data acquisition tool that exists in both Excel and Power Bl Desktop.

All Versions of Excel

e Each version of Excel has a unique version of Power Pivot, and not all functions are available in all ver-
sions. Power Bl contains the latest and most up-to-date version of Power Pivot. | keep an up-to-date quick
guide to all the functions in Power Pivot that you can download from http://xbi.com.au/quickguide.

e All Excel versions of Power Pivot support relationships of the type one-to-many; they do not support
one-to-one like in Power BI. This is not a major issue as it is not a common relationship type.

e There is no bidirectional cross-filtering available in any of the Excel versions of Power Pivot.

e You can convert the data models produced in Excel 2010 to Excel 2013 or 2016 data models (upgrade),
but you can’t go back the other way (downgrade).

e Excel 2013/2016 data models can be opened in both 2013 and 2016.

http://xbi.com.au/quickguide

170 Supercharge Power Bl

e Excel 2010 and 2013 have a different user experience in Diagram view compared to Excel 2016 and
Power Bl Desktop. You can see the differences between the different Uls in the image below. The
earlier versions of Excel (see #1 below) have an arrow pointing to the “one” side of the relationship
(#3) and a black dot on the “many” side (#5). Excel 2016 and Power Bl have the new, improved Ul (#2)
with a 1 on the “one” side of the relationship (#4) and an * on the “many” side (#6).

Excel 2010/2013

] Productey
. [T GeographyKey 1 Productame
:_: z::umwofwu 71 Name 7 standardtost [T country
m ami 7 eirthDate =1 Color :
171 DayNumberOfMon.., 1 stacinalttatie 2 i
§ietBrics A ralrilstadralismat

T salesTersitorykey
71 salesOrderdumber

[Calendar = T Products T Territory
Zp . Customerkey 2 Productiey Tersitory Key
) Date X GeographyKey ProductName " Region
¥ DayhumberOfweek Name ¥ standardCost Country
. DayNamea . BirthDatle Calor | Group

Productkey
OvderDate
Customeriey
SalesTerntorykey

T A Tvon,

Excel 2013

¢ |nExcel 2013, the term calculated fields is used instead of measures. This was an unfortunate change
made in Excel 2013 that lasted for this one version of Excel only, fortunately.

Excel 2010

e The ribbon in Excel 2010 is slightly different in that it has a Power Pivot Window option (as shown
below) instead of Manage in the later versions of Excel. The Power Pivot icon is the same in all Excel
versions.

EIL= R o

Home Insert Page Layout Formulas Data Review View Developer Add-Ins PowerPivot

= X O ST B = e
=2 L e - - Y

New Delete Measure | PivotTable | Create Edit KPI Delete Create Update | Settings Field i i
Measure Measure Settings KPl Settings KPI Linked Table All List

Measures | | KPls | Excel Data | | |

20: Transferring Your Skills to Excel

171

e Excel 2010 is the only version that uses a completely separate add-in to deploy Power Pivot, and this
means there are two completely different field lists for pivot tables. The first time you stumble on the
traditional PivotTable field list, you may be confused about what is happening, so being forewarned
is forearmed. In the image below, note the different titles in the two different field lists. The one on
the left (see #1 below) is the newer PowerPivot Field list; this is the one you should be using when
working with Power Pivot. The one on the right (#2) is the original field list, and you don’t use it with
Power Pivot pivot tables. But it is possible to have both open at the same time, and what is more
confusing is that you can accidently open the wrong one without realising it. The key visual clues as to
which one you have open are easy to spot: The titles are different, the PivotTable field list has special
icons (#3), and the PowerPivot field list has a slicer drop zone (#4).

PowerPreot Field List

) W X | PivotTable Field List } v X
'J

Search

Calendar
Customers
Products
Sales

F FH FHEHEH

Territory

1] Slicers Vertical

ff] Slicers Horizontal

L

“ Report Filter

] Column Labels

Show fields related to: ﬂ'a v

i

Drag fields between areas below:
“W Report Filter] Column Labels

You Need Office Professional Plus

Not all versions of Excel come with Power Pivot as part of the offering. If you have the Home Edition or one
of the many other lower-priced versions, you may be out of luck. And if you don’t have Power Pivot with your
version of Excel, it is not something you can just upgrade to; you need to purchase a different version of Excel.
If you have an Office 365 subscription, this will not be a major issue, but if you have a one-time purchase
product, you will face a new expense to get a new version of Excel with Power Pivot.

172 Supercharge Power Bl

Excel 2010

For Excel 2010 you can download the free Power Pivot add-in from the Microsoft website. You can search
using a browser for the download. Just make sure you find and install Service Pack 2. You should search for
Power Pivot for Excel 2010 SP2.

Excel 2013/2016

For these newer versions of Excel, you need to purchase Microsoft Office ProPlus to be able to get the Power
Pivot add-in. ProPlus is used by most large organisations that purchase an E3 licence. You can see a full list of
the versions that have Power Pivot (and the ones that don’t) at http://xbi.com.au/versions.

Power Query
Excel 2010/2013

Power Query is a free add-in that you can download from Microsoft. Just search for Power Query in a web
browser. After installing you will have a new tab called Power Query.

Excel 2016

Power Query comes bundled with Excel 2016. You can find it on the Data tab, Get and Transform.

Migrating Data from Power BI to Excel

If you read this heading and got excited, then | am sorry to tell you that you cannot migrate a Power Bl Desktop
data model into Power Pivot for Excel. It is possible to migrate the other way, though (from Excel to Power
Bl), as shown below.

Don’t forget that it is possible to use Analyze in Excel to create a new Excel workbook that points to a Power
Bl workbook loaded to PowerBl.com. This feature does require a Power Bl Pro licence, however.

Here’'s How: Importing Excel Power Pivot Workbooks to
Power BI Desktop

It is possible to import a Power Pivot data model from an Excel workbook into Power Bl Desktop, along with
all the data connections, relationships, and measures. Unfortunately, any reports you have created in Excel
will not be migrated and will need to be re-created in Power BI.

Follow these steps to import a Power Pivot workbook from Excel into Power Bl Desktop:
1. In Power Bl Desktop, select File, New. This will open a new blank Power Bl Desktop file.

2. Select File, Import, Excel Workbook Contents.
3. Navigate to the Excel workbook you want to migrate, select it, click OK, and then select Import.
4

When you get the choice to copy the data from your queries or keep the connection (shown below),

click Keep Connection.
X
Import Excel Workbook Contents

There are queries and Data Model tables that depend on the
following worksheet tables in the original workbook:

- Hemisphere

- Increase

- YearTable

Do you want to copy the data from those tables to your Power Bl

Desktop file or keep a connection to the original Excel workbook for
this data?

Keep Connection Cancel

http://xbi.com.au/versions

20: Transferring Your Skills to Excel 173

Note: Power Bl Desktop doesn’t include the concept of linked tables. When you import an Excel
workbook that contains linked tables into Power Bl Desktop, you can either bring the data in as
a one-off migration or retain the link to the original linked table in the original Excel workbook.

The Excel workbook data model is then imported into Power Bl Desktop. From there you can proceed to use
Power Bl Desktop instead of Excel and build your own visualisations on top of the Power Pivot data model.

Writing DAX Measures in Excel
There are three places you can write DAX measures in Excel:

e You can write a measure in the formula bar in the Power Pivot window, as shown below. If you use
this method, you must specify the measure name followed by a colon and then the formula.

{’B | @8 [5 | Power Pivot for Excel - Learn to write DAX samples for bookadsx

Home Design Advanced
Paste Append D Data Type :
-\.'.-_.ﬂh.I e |
& '(:) L J Format : Currency =

Paste Replace

Paste From From Data From Other Existing Refresh PivotTable
B 3.0 .00
EEI Copy Database * Service™ Sources Connections - - $-% » Tio S0

Clipboard
[Froductkey] = Ni

Iﬂ ProductKey % B Order..

¢ You can write and edit measures in any empty cell in the calculation area at the bottom of the Power
Pivot window, as shown below. You also need to add a colon when writing a measure here.

Formatting

Total Cost Value:=sum(Sales[TotalProductCost])
% Bl| OrderDatekey E@| Custome... % K3

SalesTerritor.. " |

Blgeld ©- = | Power Pivot for Excel - Learn to write DAX samples for book.dsx - O x
Home Design Advanced o
Data Type : AutoSum ~ Diagram View
E[g i >]
L Format : Create KPI {+f Show Hidden
Paste Get External Refresh PivoltTable Clear All Sort by Find Data -
Data - - - $-% > %54 Filters Column view |t Caleulation Area
Clipboard Formatting Sort and Filter Find Caleculations Vie
|[UnitPriceDisc... + fx|
u ProductkKey % B ord... % B OrderDatekey ﬂ SalesTerritor... " B3
465 03/06/2004... 20040603 11965 9 S072066
479 04/06/2004... 20040604 16730 9 S072138
482 04/06,/2004... 20040604 13643 9 S072185
H\T"I"I'IW

Total Cost Value: 517,2... Average Pr.. Total SalesLY: 51... Changein Sales... Total Sales ¥TD: 39,7... Total Sales QTD: (blank) Total ! ™
Total Order Quantity: ... Discount %...

Total Sales Including T... Total Margi... This is the Calculation Area
Maximum Tax Paid: 52... Markup %: ...

Minimum Price Paid: 5... Tax %: 8.0%

MAXA test: 396 Margin %: ... % You can write measures in any cell

Total Sales SUMX versi... Total Sales ...

_ > |

174 Supercharge Power Bl

You can write measures in the Measure dialog in Excel, as shown below.

Measure ? d

Table name: |Sales ﬂ

Measure name: |T01a| Cost Value

Description: |

Formula: f_rl Checkformulal

=sum{Sales[TotalProduct Cost])

Formatting Options

Category:
General Symbol: | 3 ﬂ
Mumber
Decimal places: 0 3:
Date
TRUE/FALSE ¥ Use 1000 separator ()

¢ You open this dialog in Excel by navigating to the Power Pivot tab (see #1 below) and selecting Mea-
sures (#2), New Measure (#3) or by right-clicking the Table name in the Pivot Table Fields list and
choosing Add Measure....

H - xS % Learn to write DAXxlsy - Excel PivatTable Toals

“ Home Insert Page Layout Formulas Data Query Review View Dmelnper@ Power Pivot Analyze Design

-‘P X =| [et e =r'a1
& SN E ©E =§ 4
Manage |Measures KPls Addto Update Detect Settings
bl Data Model Al
Data Model ;‘1] Mew Measure., @) les Relatianships

Al ,ff} Manage Measures...

M M

]
I
=~
—

A B C D E F

Tip: In general, | recommend that Excel users write DAX in the Measure dialog box in Excel. | also
recommend to first create a pivot table that provides some context for the measure you are about
to write. If you do it this way, you will immediately see the measure appear in the pivot table once
you click OK, and this will give you immediate feedback about whether the formula looks correct.

Note: At this writing, some versions of Excel 2016 do not automatically add a new measure to a
pivot table as described in the tip above. However, Microsoft plans to reverse this change in a fu-
ture update. Some older versions of Excel 2016 may therefore not automatically add the measure.

Here’'s How: Writing Measures

To create a new measure in Excel, follow these steps:

1. Create a new blank pivot table connected to your data model (or use an existing one if you already
have something appropriate).

Add some relevant data to the rows in your pivot table (see #1 below).

Click inside the pivot table, navigate to the Power Pivot tab, click the Measures drop-down arrow
(#2), and then select New Measure (#3). The Measure dialog appears.

20: Transferring Your Skills to Excel 175

H ©- B s Lez

Home Insert Page Layout Formulas Data a
ol § = [=8 o

Manage Measures KPls Addto Update Detect Settings
= M Data Maodel Al

Data Model bfjl New Measure... @ les Relationships

A2 D’}e Manage Measures... -

A B C D E F
Row Labels -

2 |Accessories ﬂ_};
3 Bikes
4 |Clothing
3 Components
& Grand Total
Tip: You should use the Measure dialog shown below as a process flow/guide. If you don’t do this,
you risk missing one or more of the steps. Missing a step will end up costing you time and causing
rework. Get in the good habit of following the process steps | describe here, using the dialog to
remind you of all the steps. Always follow the order outlined here.
4. Inthe Table Name drop-down (see #1 below), select the table where your measure will be stored.
5. Inthe Measure Name text box (#2), give the new measure a name.
6. Inthe Formula box (#3) write the DAX formula.
7. Click Check Formula (#4) to check whether the formula you wrote is syntactically correct. Fix any
errors if you need to.
8. Select an appropriate formatting option from the Category list (#5), including a suitable symbol and
decimal places in the area to the right of the Category list.
9. Click OK (#6) to save your measure.
Note: | generally don’t enter anything in the Description box, but it is there for you to use if you
like. It’s for reference only and doesn’t impact the behaviour of the formulas.
Measure 7 x
Table name: |Sales g) ﬂ

Measure name: |Tota| Sales Value @/l

Description: |

Formula: fxl Check formula B]-‘

=sum{Sales[Exdtended Amount]) @)

Formatting Options

Category:
Symbal: | § ﬂ
@/- Decimal places: 0 3:
Date
TRUE/FALSE [Use 1000 separator (,)

176 Supercharge Power Bl

21: Next Steps on Your DAX Journey

You have almost finished reading all the chapters of this book. Now what? First of all, let me assure you that
this is just the start, not the end, of your journey to learning how to supercharge Power Bl (and now Excel)
by learning to write DAX. As | have been saying all through the book, the most important thing is to practice,
practice, practice. Start using your new skills at work and at play so that you build your depth of skill and
knowledge. It will take you many months of using your new skills before you become an expert, but you are
well on your way already. Now that you have a basic understanding of Power Bl and DAX, you can incremen-
tally learn and improve over time. But there are some things that will help you learn more and faster.

Three Person Teaching/Learning

I am a big believer in “three-person teaching/learning.” | first heard of this concept from Stephen Covey, at one
of his seminars. The basic idea is that you learn more when you learn with the intent to teach others, and you
learn more from the process of teaching others. For this reason, | really believe in the benefits of participating in
user forums. As | mentioned at the start of the book, | have set up a forum at http://powerpivotforum.com.au,
and it is free for anyone and everyone to ask questions and also to help others. If you want to really cement your
new skills and knowledge, then sign up and ask for help, and, more importantly, answer questions and teach
others on the forum. When you teach others, you cement your knowledge and become better and stronger
with your DAX. There is also an excellent Power Bl community and forum at http://community.powerbi.com.
You can participate in the forums and maybe also join a local Power Bl user group in your region.

Blogs

There are a number of Power Pivot blogs that | recommend you subscribe to. Reading blogs is a great way to
keep in touch with the latest thinking from people who spend their life working with Power Pivot. Here are
some that | think are especially useful:

e My blog: http://xbi.com.au/blog
e Rob Collie’s blog: http://powerpivotpro.com

e Marco Russo and Alberto Ferrari’s blog: http://sqlbi.com

e Reza Rad’s blog: http://radacad.com/blog

e Gilbert Quevauvilliers’ blog: https://www.fourmoo.com

Books

There are a few really good DAX books that | recommend (and have mentioned previously). | keep a list
of books | recommend on my website and update it over time. You can always find an updated list at
http://xbi.com.au/books.

Online Training

| offer online training for Power Pivot and also Power Query. You can find out more from these links:

e Supercharge Power BI: http://xbi.com.au/scpbitraining

e Power Query: http://xbi.com.au/powerquerytraining

Live Training

Some people learn best in a classroom environment. If you’re one of them, you might want to attend a live
training event in a location suitable for you. | personally deliver live training courses in Australia. For details
about upcoming events, see http://xbi.com.au/training. | also deliver customised in-house training for com-
panies that have larger groups of users and are looking for a more personalised experience.

If you are in the United States, | recommend that you take a look at Rob Collie’s live offerings. For information,
see http://powerpivotpro.com.

There are many great things about these training courses, but one super benefit is that both Rob and | teach
Power Pivot using the same techniques | have used in this book. By attending one of our live training courses,
you will continue to learn using the same methodology you have used in this book.

http://powerpivotforum.com.au
http://community.powerbi.com
http://xbi.com.au/blog
http://powerpivotpro.com/
http://SQLBI.COM/
http://radacad.com/blog
https://www.fourmoo.com
http://xbi.com.au/books
http://xbi.com.au/scpbitraining
http://xbi.com.au/powerquerytraining
http://xbi.com.au/training
http://powerpivotpro.com/

21: Next Steps on Your DAX Journey 177

Power Query

Power Query is a desktop ETL (extract, transform, and load) tool for Excel users. It is the same technology
that comes bundled with Power Bl. Power Query allows you to connect to data from anywhere, change the
shape of that data, and then load it into your workbooks. Once the data is loaded with Power Query, you can
easily refresh the link at any time and bring in the latest updated data.

| often blog about Power Query at http://xbi.com.au/blog, and you can also get great information from these
websites and books:

e Ken Puls’ blog: http://www.excelguru.ca/blog/

e Chris Webb’s blog: http://blog.crossjoin.co.uk/

e Gil Raviv’s blog: https://datachant.com

e Chris Webb’s book Power Query for Power Bl and Excel: http://xbi.com.au/ChrisWebbBook

e Ken Pul's book Master Your Data with Excel and Power Bl: Leveraging Power Query to Get & Transform
Your Task Flow: http://xbi.com.au/masteryourdata

That's All, Folks

| hope you have enjoyed this book and that it has successfully started you on your journey to becoming a
DAX superstar. If you liked this book, please tell your Power Bl and Excel friends and colleagues so they, too,
can become DAX superstars.

http://xbi.com.au/blog
http://www.excelguru.ca/blog/
http://blog.crossjoin.co.uk/
https://datachant.com/
http://xbi.com.au/ChrisWebbBook

178 Supercharge Power Bl

Appendix A: Answers to Practice Exercises

This appendix provides the answers to the practice exercises scattered throughout the book. The answers
are in the same order the exercises appear in the book and are numbered so you can easily match up the
exercises and the answers.

SUM() These practice exercises appear in Chapter 4. As you compare your answers to the ones shown here,
consider the following questions: Did you remember to put your measures in the correct table? Did you put
the measure in the table where the data comes from? Did you format with an appropriate number format?

1. Total Sales

= SUM(Sales[ExtendedAmount])

Or:

Total Sales

SUM(Sales[SalesAmount])

Total Cost

SUM (Sales[TotalProductCost])

Or:

Total Cost

= SUM(Sales[ProductStandardCost])

3. Total Margin $

= [Total Sales] - [Total Cost]

4. Total Margin % = [Total Margin $] / [Total Sales]
Or:

Total Margin % = DIVIDE ([Total Margin $] , [Total Sales])
5. Total Sales Tax Paid

SUM (Sales[TaxAmt])

N

6. Total Sales Including Tax
= [Total Sales] + [Total Sales Tax Paid]
7. Total Order Quantity

SUM (Sales[OrderQuantity])

COUNT() These practice exercises appear in Chapter 4.
8. Total Number of Products

COUNT (Products [ProductKey])

Total Number of Customers

= COUNT (Customers[CustomerKey])

©

Note: Counting the “key” columns is generally pretty safe because, by definition, each one must
have a value. Technically, you can count any column that has a numeric value in each cell, and
you will get the same answer. Just be careful if you are counting a numeric column that may have
blank values because COUNT()will not count blanks.

COUNTROWS() These practice exercises appear in Chapter 4.

Note: Remember that COUNTROWS () takes a table, not a column, as input.

10. Total Number of Products COUNTROWS Version
= COUNTROWS (Products)
11. Total Number of Customers COUNTROWS Version
= COUNTROWS (Customers)
DISTINCTCOUNT() These practice exercises appear in Chapter 4.
12. Total Customers in Database DISTINCTCOUNT Version
= DISTINCTCOUNT (Customers[CustomerKey])
13. Count of Occupation
= DISTINCTCOUNT (Customers[Occupation])
14. Count of Country

Appendix A: Answers to Practice Exercises 179

= DISTINCTCOUNT (Territories|[Country])
15. Total Customers That Have Purchased
= DISTINCTCOUNT (Sales[CustomerKey])

MAX(), MIN(), and AVERAGE() These practice exercises appear in Chapter 4.

16. Maximum Tax Paid on a Product

= MAX (Sales[TaxAmt])

17. Minimum Price Paid for a Product

= MIN(Sales[ExtendedAmount])

18. Average Price Paid for a Product

= AVERAGE (Sales[ExtendedAmount])
COUNTBLANK() These practice exercises appear in Chapter 4.

19. Customers Without Address Line 2

= COUNTBLANK (Customers [AddressLine?])

20. Products Without Weight Values

= COUNTBLANK (Products [Weight])
DIVIDE() These practice exercises appear in Chapter 4.

Q

21. Margin %

= DIVIDE ([Total Margin $] , [Total Sales])

22. Markup %

= DIVIDE ([Total Margin $] , [Total Cost])

23. Tax %

= DIVIDE ([Total Sales Tax Paid] , [Total Sales])
SUMX() These practice exercises appear in Chapter 7.

24 . Total Sales SUMX Version

= SUMX (Sales, Sales[OrderQuantity] * Sales[UnitPricel])

Note: In this sample database, the order quantity is always 1.

25. Total Sales Including Tax SUMX Version

= SUMX (Sales, Sales[ExtendedAmount] + Sales[TaxAmt])

26. Total Sales Including Freight

= SUMX (Sales, Sales[ExtendedAmount] + Sales[Freight])

27. Dealer Margin

= SUMX (Products,Products|[ListPrice] - Products[DealerPricel])
AVERAGEX() These practice exercises appear in Chapter 7.

28. Average Sell Price per Item

= AVERAGEX (Sales, Sales[UnitPrice])

Note: The expression can be a single column. It doesn’t have to be an equation using multiple
columns.

Or: Average Sell Price per Item Weighted

= AVERAGEX (Sales, Sales[OrderQuantity] * Sales[UnitPrice])
In fact, this sample database always has Sales [OrderQuantity] =1, so the answer will be the same as
the previous formula.

29. Average Tax Paid = AVERAGEX (Sales, Sales[TaxAmt])

30. Average Safety Stock

= AVERAGEX (Products, Products[SafetyStockLevel])
Calculated Columns This practice exercise appears in Chapter 8.

31. = IF(

OR('Calendar' [CalendarQuarter]=1,
'Calendar' [CalendarQuarter]=2

)y
"Hl", "H2"

180

Supercharge Power Bl

)

Note: There are a number of ways to write this calculated column. If yours is different from this

but works, then all is well and good.

CALCULATE() with a Single Table These practice exercises appear in Chapter 9.

32. Total Male Customers

= CALCULATE ([Total Number of Customers],
Customers [Gender] = "M")

33. Total Customers Born Before 1950

= CALCULATE ([Total Number of Customers],
Customers[BirthDate] < DATE(1950,1,1))

34. Total Customers Born in January

= CALCULATE ([Total Number of Customers],
MONTH (Customers [BirthDate])=1)

35. Customers Earning at Least $100,000 per Year

= CALCULATE ([Total Number of Customers],
Customers[YearlyIncome]>=100000)

CALCULATE() with Multiple Tables These practice exercises appear in Chapter 9.

36. Total Sales of Clothing

= CALCULATE ([Total Sales],
Products[Category]="Clothing")

37. Sales to Female Customers

= CALCULATE ([Total Sales],
Customers [Gender]="F")

38. Sales of Bikes to Married Men

= CALCULATE ([Total Sales],
Customers[MaritalStatus]="M",
Customers [Gender]="M",
Products|[Category]="Bikes"

)
VALUES() These practice exercises appear in Chapter 12.

39. Number of Color Variants
= COUNTROWS (VALUES (Products[Color]))
40. Number of Sub Categories
= COUNTROWS (VALUES (Products [SubCategory]))
41. Number of Size Ranges
= COUNTROWS (VALUES (Products[SizeRange]))
42. Product Category (Values)
= IF (HASONEVALUE (Products[Category]),
VALUES (Products [Category])

)
Or:
= SELECTEDVALUE (Products[Category])
43. Product Subcategory (Values)
= IF (HASONEVALUE (Products[SubCategory]),

VALUES (Products[SubCategory])

)
Or: = SELECTEDVALUE (Products[SubCategory])
44 . Product Color (Values)
= IF (HASONEVALUE (Products[color]),

VALUES (Products([color])

Or: = SELECTEDVALUE (Products[color])

Appendix A: Answers to Practice Exercises 181

45. Product Subcategory (Values) edited
= IF (HASONEVALUE (Products[SubCategory]),
VALUES (Products[SubCategory]),
"More than 1 Sub Cat"
)
Or: = SELECTEDVALUE (Products|[SubCategory]),"More than 1 Sub Cat")
46. Product Color (Values) edited
= IF (HASONEVALUE (Products[color]),
VALUES (Products[color]),
"More than 1 Color"
)
Or: = SELECTEDVALUE (VALUES (Products[color]), "More than 1 Color")
ALL(), ALLEXCEPT(), and ALLSELECTED() These practice exercises appear in Chapter 13.

47. Total Sales to All Customers
= CALCULATE ([Total Sales] , All(Customers))

Note: This measure belongs in the Sales table, not the Customers table.

48. % of All Customer Sales

= DIVIDE ([Total Sales] , [Total Sales to All Customers])

49. Total Sales to Selected Customers

= CALCULATE ([Total Sales] , ALLSELECTED (Customers))

50. % of Sales to Selected Customers

= DIVIDE ([Total Sales] , [Total Sales to Selected Customers])
51. Total Sales for All Days Selected Dates

= CALCULATE ([Total Sales] , ALLSELECTED('Calendar'))

Note: Did you know to use ALLSELECTED() and not ALLEXCEPT()?

52. % Sales for All Days Selected Dates
= DIVIDE ([Total Sales] ,[Total Sales for All Days Selected Dates])
53. Total Orders All Customers
= CALCULATE ([Total Order Quantity] , ALL(Customers))
54. Baseline Orders for All Customers with This Occupation
= CALCULATE ([Total Order Quantity] ,
ALLEXCEPT (Customers, Customers[Occupation])
)
55. Baseline % This Occupation of All Customer Orders
= DIVIDE (
[Baseline Orders for All customers with this Occupation] ,
[Total Orders All Customers]
)
56. Total Orders Selected Customers
= CALCULATE ([Total Order Quantity] , ALLSELECTED (Customers])
57. Occupation % of Selected Customers
= DIVIDE (
[Total Order Quantity] ,
[Total Orders Selected Customers]
)

58. Percentage Point Variation to Baseline

[

= [Occupation % of Selected Customers] -

Q

[Baseline % this Occupation is of All Customer Orders]
FILTER() These practice exercises appear in Chapter 14.

59. Total Sales of Products That Have Some Sales but Less Than $10,000
= CALCULATE ([Total Sales],

182 Supercharge Power Bl

FILTER (Products,
[Total Sales] < 10000 &&
[Total Sales] >0

Or: = CALCULATE ([Total Sales],

FILTER (Products, [Total Sales] <10000),

FILTER (Products, [Total Sales] >0)

)

60. Count of Products That Have Some Sales but Less Than $10,000
= CALCULATE (COUNTROWS (Products),

FILTER (Products,

[Total Sales]<10000 && [Total Sales] >0

Or: = CALCULATE (COUNTROWS (Products),
FILTER (Products, [Total Sales] <10000),
FILTER (Products, [Total Sales] >0)
)

Time Intelligence These practice exercises appear in Chapter 15.

61l. Total Sales Month to Date
= TOTALMTD ([Total Sales], 'Calendar'[Date])
62. Total Sales Quarter to Date
= TOTALQTD ([Total Sales], 'Calendar'[Date])
63. Total Sales FYTD 30 June
= TOTALYTD([Total Sales], 'Calendar'[Date],"30/6™)
64. Total Sales FYTD 31 March
= TOTALYTD([Total Sales], 'Calendar' [Date],"31/3")
65. Total Sales Previous Month
= CALCULATE ([Total Sales],
PREVIOUSMONTH (Calendar [Date])
)
66. Total Sales Previous Day
= CALCULATE ([Total Sales],
PREVIOUSDAY ('Calendar' [Date])
)
67. Total Sales Previous Quarter
= CALCULATE ([Total Sales],
PREVIOUSQUARTER ('Calendar' [Date])
)
68. Total Sales Moving Annual Total
= CALCULATE ([Total Sales],
FILTER (ALL ('Calendar'),
'Calendar'[ID] > MAX('Calendar'[ID]) - 365 &&
'"Calendar' [ID] <= MAX('Calendar'[ID])

)
69. Total Sales Rolling 90 Days
= IF(MAX ('Calendar'[ID])>=90,
CALCULATE ([Total Sales],
FILTER (ALL('Calendar'),
'Calendar'[ID] > MAX('Calendar'[ID]) - 90 &&
'Calendar'[ID] <= MAX('Calendar'[ID])

Appendix A: Answers to Practice Exercises 183

)
Harvester Measures This practice exercise appears in Chapter 17.

70. Total Customers Born Before Selected Year

= CALCULATE ([Total number of Customers],
FILTER (Customers,
Customers[BirthDate] < DATE ([Selected Year], 1, 1)

)
Multiple Data Tables These practice exercises appear in Chapter 18.

71. Total Budget = SUM(Budget [Budget])

This measure should be placed in the Budget table.

72. Change in Sales vs. Budget

= [Total Sales] - [Total Budget]

This measure could be placed in either the Sales table or the Budget
table. I normally place it in the Sales table because the name of the
measure is [Change in Sales vs. Budget].

73. % Change in Sales vs. Budget

= DIVIDE ([Change in Sales wvs. Budget] , [Total Budget])

Also place this measure in the Sales table.

184

Supercharge Power Bl

Table of Here's How Sections

Here’s How:
Here’s How:
Here’s How:
Here’s How:
Here’s How:
Here’s How:
Here’s How:
Here’s How:
Here’s How:
Here’s How:
Here’s How:
Here’s How:
Here’s How:
Here’s How:
Here’s How:
Here’s How:
Here’s How:
Here’s How:
Here’s How:
Here’s How:
Here’s How:
Here’s How:
Here’s How:
Here’s How:
Here’s How:
Here’s How:
Here’s How:
Here’s How:
Here’s How:
Here’s How:
Here’s How:
Here’s How:
Here’s How:
Here’s How:
Here’s How:
Here’s How:
Here’s How:
Here’s How:
Here’s How:
Here’s How:

Getting POWEr Bl DESKEOP ...cccevuuueeieieiieiiiinureeeeeeeeeeennnnssseeseseeennnnsssssssssseesnnnnsssssssssessnnnnnns 2
Loading Data from @ NEW SOUICEccuuueeiiiiiiiiiimmmmniiiiiiiiiimesssssssieniiiiesssssssssssssssssssssssssssnns 5
Joining Tables in Power Bl DeSKEOPccuuuiiiiiiiiiirinniiiiiiiireeieneessisseneeennenssssssssssessnnnnssnns 10
Making Changes to a Table That Is Already Loadedcccveeeiiiiirenciiiienniiiienenieneennceneen 14
Deleting Steps iN @ QUEIY......cciiiiiiiiieemeciiiiiiiiiieennseiiiiiniiesssns 16
IMPOrting NEW Tables....cceeeeeiiiiiiiiieiccciiiirrreeneeeeeeessesreeennesssessessseesnnsssssssssssneennnnnnnens 16
Changing the File Location of an Existing Connectionccccceeeeuueccceeereeennnnnnscceeeeeeennnns 18
INSErting @ MatriX ...covveueiiiiiiniiiiiiiiiiiiinirrsr st ss s reness s s renes s ssenssssssenssssssennsssssens 20
WIItING IMIEASUIES ..cuuvviiineniiiireeniiiienessstienesssiienssssimenssssssesssssssansssssssnsssssssnsssssssnssssssanssssss 24
INCreasing FONT SIZe ...cc..iiiiieiiiiiiniiiiiieiiiiirenisnieneiettenesisseenssssseenssssssensssssssnnssssssnnsssssenn 27
USING INtEIIISENSEiiiiiiiieeeiiiiiiiiiieiiieinninnreeeeeeesssssrssssssssssssssssssessssssssssssssssssnnnnsssns 29
Editing IM@ASUIEScciiieeeeeeeeeceieiirieennneeseeeseerreennnssssesssssseesnnnssssssssssnsesnnnsssssssssnseennnnnnnnns 30
Adding CommMENtS t0 IMIEASUIES ...c..uiiiieuriciiirnnieriireieeienessissennsssssenssssssennssssssnnssssssnnsssssans 30
Creating New Pages in POWEY Bl........ccoiieeiiiiiieeiiiiieniiiiieeiniineeisnnesssennssssssnsssssssssnsssens 31
Changing Display Names in VisSUQlSccceeeeeeceieiiiiiiineccceesiceernnneessessseeeenennssssssssseeeennns 36
Word Wrapping in @ VISUAI ...cceeeiiiiieiiiiiiiiiiiiinniiiieneiiniennieneensscesnenneessenssessssnsssssssnssnsns 37
Applying Conditional FOrmattingcuueiiiiiiiiiiiiiniiiiiiniinceisisssnnneeseessssssssssessnssssnns 39
Drilling Through ROWS iN @ MatriX....cceeeuceiiiiiiieeemenecciiniirreeennessseessssseeennnsssesssssseesnnnnnnnnns 40
Moving an Existing Measure to a Different Home Tablec....ccciiiiiiiiieeecccciinnnreeeeeeneneen. 43
Creating a Day Type Calculated Columncciiiiiiiiimniiiiiniiinnrinnsseseeeeesnenssssssssssesesnnns 63
Changing the MonthName Sort Ordercccceeeiieeeieeeceieeerieeerennnsseeeseeeennnnssssssssseeennnns 84
USING ALLEXCEPT() +.ueuvevereerirerereseessesessesesessesesssssessesenessssssssesensosenestesenenssssssssessnssssnsases 99
TUrning Off AULO Date/TiMEcceeereerrrrrrrrrrrrsrrsssnssnsssnnnnnn 114
Manually Adding Data t0 POWEr Blccoiiiiieeeeeeeceiiiiirreeeneeenccisssseeeennesssesssssseeennnnnnes 136
USING WRAt-If ...ttt ssenes s s senes e s e ennsssseennsssssennsssssennsssssennsssnnes 139
SOIVING Practice EXErCIiSE 70 ...c..ceereeeeierrennnierrennniereensseereensseessenssesssenssessssnssessssnssasssnnnnnns 143
Creating a Morphing SWitCh IMEASUIeuuuceieiiiiiiieiccccerreecernneeseeeeeeeernnnnssssesseeeenns 145
APPIYING BANAING ..c..eiiieeiiiiiiiiiieiciiiieeccrreencesreeneesrennsessesnssessssnssessennssssssnnssssssnnnnnns 147
Editing a Table Previously Created with Enter Datacc..cccceeeeiiieeeniiiieenniceneennceneenneennes 149
Deleting Interim Calculated COlUMNScciiiieeeeeecccciiiirreeeeceeceee e e e e eeennenssesseseeeennnnnnnes 151
Adding a Budget Tableccceuiiiiemiiiiiiiiiieeccrreeccrrennc e rennseesennsessennsssssennssssennnnnns 153
Publishing @ Report to POWErBI.COM.......ccccueeeiiieeeniiienenierieenncereenscerennseeenennseesssensseseees 159
USING ANAIYZE iN EXCEL...ceeeeeeeciiiiiiieeiieecceeintereeeeneneeceesseseeennnnsssesssssseesnnnnsssssssssseennnnnnnes 160
Converting a Pivot Table to Cube FOrmulascccuviiremnneiiiiiiininnnnnnniiiniinenmmn, 163
Writing CUBEVALUE() from SCratcheeeeeeeeeeeeeereeieeeiieeeieeeeeeeeeeeeeeeeeeeseeeseeeseeeeeseesseeeees 164
Applying Filters to Cube FOrmulas..........ccceeiiiieiieeicciieeerieceneensecseeeeeeeneenssssssseseesnnnnnnes 166
Adding a Slicer Without @ Pivot Tablecccccciiiiiimmmnniiiiiiniiinineee. 166
Connecting a Slicer to a Cube FOrmula.......cceeeeeieiiiiiiiieeecicccniirrrreneeeseees e reesnnnessssesnnes 167
Importing Excel Power Pivot Workbooks to Power Bl Desktop......ccccceeeeeecciiinneeecnnnnnnne. 172

WIItING IMIEASUIES ...c..uiiiieeiiiiieeiiiirieiititeeisirenesstreassstrsasssstrsasssstrsssssssrsnssssssnnssssssnnsssss 174

Index

185

Index

Symbols

13 4-week period calendar 113
445 calendar 113

&& And operator 107

/I comment character 30

/* */ multi-line comment 30

|| OR operator 64

A
Active learning v
Add-in
Excel 2010 171
AdventureWorks vi
Age bands 147
Aggregators vs. X-functions 58
ALL 89
with Calendar 125
with Column 95
with New Table 96
ALLEXCEPT 99
ALLSELECTED 97
Analyze in Excel 159
AND function 64
App Store 4
Auto Date/Time 114
AVERAGE 42
AVERAGEX 62

B
Banding 147

Upper & lower values 147
Baseline calculation 100
BLANK 83
Blogs 77,176, 177
Books, suggested 176
Budget vs. actual 153

C
Cached copy 19
Caesar salad 66
CALCULATE 66

Explicit 109

Implicit 76, 109

with ALL 90

with multiple tables 69

with no filter 75
Calculated columns

and row context 74

for Filtering 63

versus Measures 61
Calculated fields 23

Excel 2013 170
Calendar, reserved word 115
Calendar table 113

ID column 122,126
Changing a table 14
Check formula 175
Collie layout 13
Collie, Rob 13,176
Colour scales 42
Comments 30
Community.powerbi.com 176
Compression 52

CONCATENATEX 84
Conditional formatting 39
Context transition 75

with FILTER 109
Convert to Formulas 163
COUNT 34
COUNTAX 62
COUNTBLANK 44
COUNTROWS 35

with FILTER 103

with VALUES 81
COUNTX 62
Covey, Stephen 176
Cross-filtering 46
Cube formulas 162

with Filters 166

with Slicer 167

Writing 164
CUBEMEMBER 168
CUBEVALUE 164
Current filter context 123
Customers born before N 143

D
Data bars 39
Data modelling 2
Datasets 159
Data sources 22
Data tables 13

Multiple 153

versus Flattened 51
Data view 8
DATEADD 131
DAX

in Excel 173

Researching 131
DAX Formatter 70, 124
DAX Reference Guide PDF 134
Day type 63
de Jonge, Kasper 28
Deleting steps 16
De-normalising 52
Dimension tables 13
DirectQuery 5
Disconnected tables 139
Display names 36
DISTINCTCOUNT 38
DIVIDE 45
Drag direction 11
Drill Through 40

E

Enter data 136
Editing later 149

Errata 1

Error checking 71

ETL 177

Excel 159
Convert to Formulas 163
DAX Measures 173
Power Pivot 169
Slicer drop zone 171
Slicer without pivot table 166
Writing measures 174

Exercise data vi

Expand to next level 41

F
Fact tables 13
Ferrari, Alberto 70
Blog 176
Field list in Excel 2010 171
File location, changing 18
FILTER 102
in CALCULATE 106
Filter context 47
Modifying 66
Removing with ALL 89

Wrong result when missing 110

Filter propagation 46
Downbhill only 72
with FILTER 108

Financial year 119

FIND 78
inside IF 79

FIRSTDATE 133

First year 130

Fiscal year 119

Flattened tables 51

Font size 27

Format pane 27

Formula bar 23
expanding 30

Forum 1

Free versus Pro 4

G

GENERATESERIES 142
GETPIVOTDATA 162
Granularity 153

H

Half year calculation 65
Harvester measures 143
Harvest filter context 123
HASONEVALUE 83
Hemisphere 136

Hidden CALCULATE 76
Hide column 138

House owner 78

I
ID column
in Calendar 122
with Month 128
IF 78
versus Banding table 149
Imaginary temporary table 111
Implicit CALCULATE 76
Importing table 16
Import vs. DirectQuery 5
Incremental learning v
Initial filter context 47
IntelliSense 29
for Cube formulas 165
Interim calculated columns 150
Deleting 151
Interim measures 98
Iterators 56
FILTER 102

J

Joining tables 10

186

Supercharge Power Bl

K

Key column, counting 178
Kimball methodology 12

L

Leap years 128
7-year system 129
Lifetime purchases 106
Live Training 176
Loading data 5
Lookup tables 13
versus Flattened 51

Manage relationships 155
Matrix, inserting 20
MAX 42

Harvest filter context 123
MAXX 62
Measures 23

Adding comments 30

Default name 25

Editing 30

from SWITCH 144

Grand total 92

Harvester 143

Implicit 28

in Excel 174

Interim 92

Morphing switch 145

Moving 43

Naming 36

Quick 93

Renaming 101

Reusing 33

Testing 118

versus Calculated columns 61
Migrating Excel to Power BI 172
MIN 42

Harvest filter context 123
MINX 62
Modeling tab 23
Months in year 81
Morphing switch measure 145
Moving annual total 128
MSDN 131

N
Naked columns 32
Names, display 36
Naming conventions 1, 94
Navigator pane 6
New measure 23
New table 86
from Parameter 141
with ALL 96
with FILTER 103
Nonstandard calendars 113
Number format 157

o

ODC file 160

Office Professional Plus 171
One-to-many 11

Online Training 176

OR function 64

P
Pages

Adding 31

Duplicating 31
Parameter 139
Percentage of Total 90

as Measure 92
Percent of Selected 97
Pipe symbols 64
Pivot table alternative 20
Pivot table connect to PowerBI 161
PowerBl.com 159
Power BI Desktop, downloading 2
Powerpivotforum.com.au 176
Powerpivotpro.com 176
Power Query 7,138,172
PREVIOUSDAY 120
PREVIOUSMONTH 120
PREVIOUSQUARTER 120
Pro versus Free 4
Publishing to PowerBIl.com 159
Puls, Ken 177

Q

Query, deleting steps 16
Query Editor 7, 14

Cached data 19
Quevauvilliers, Gilbert 176
Quick measures 93

Editing measure 94

Naming convention fail 94

R
Rad, Reza 176
Raviv, Gil 177
RELATED 135
Snowflake schema 137
RELATEDTABLE 135
from many side 138
Relationships 53
1-to-many 155
Manage 155
Relationships view 8
Reports 159
RETURN keyword 151
Return value 131
ROUNDDOWN 148
Row context 56
from FILTER 104
versus Filter context 74, 110
Russo, Marco 70, 176

S
SAMEPERIODLASTYEAR 115
for Custom calendar 126
Sample data vi
Seeing results of VALUES 87
Select Case 78
SELECTEDVALUE 83
Shaping data 12
Sheets, adding 31
Show next level 41
Show Value As 91
Slicer
from Parameter 140
Numeric column 88

Snowflake schema 13, 18, 54
Sorting with numeric column 85
Sort order 84
SQLBI 70
SQL Server 5
Star schema 12, 53
SUM 32,33
SUMX 56
SWITCH 78
Measure 144
Syntax sugar 67
FILTER 106
SELECTEDVALUE 83

T
Table, new 86
Territory builder 136
Three person learning 176
Time intelligence 112
ALL calendar 126
Custom 121
List of functions 134
Total for Category 93
TOTALMTD 119
TOTALQTD 119
TOTALYTD 117
Training 176

)

Unique values 80, 87

\")
VALUES 81, 82

Single value 82

with COUNTROWS 86
Variables using VAR 150
VAR keyword 152
Virtual tables 81

Lineage 111
Visual layout 13
VLOOKUP alternative 13

)

Webb, Chris 177
Weekend calculation 64
What-if analysis 139
Whole of table 121
Windows App Store 4
Word wrap 37
Worksheets, adding 31
Workspace 159

X

X-functions vs. aggregators 58

Y

Year to date 117, 124
YYYYMM 154

Z

Zoom to Fit 9

Need More Help?

5 video lessons that support
the chapters in this book

Live Q&A sessions each week B
with Matt Allington

Find Out More at

http:/xbi.com.au/scpbi

Ready to Learn More?

Power Query
Online Training

Over 7 hours of video lessons

Now that you know
how to write DAX, it's
time to learn how to
cleanse and load data
using Power Query.

Free sample videos

Lessons taught using real world
examples

Sample files available for you to
practice

Developed by
Microsoft® MVP

Matt Allington

Find Out More at
http:/xbi.com.au/pqth

Inside Back Cover - This page is blank

Shelving Category: Spreadsheets
Reader Level: Intermediate

Practical, hands-on lessons for mastering
the DAX language in Power Bl and Excel

Microsoft Power Bl is a self-service business intel-
ligence tool. Anyone can get started with Power
Bl by downloading Power Bl Desktop, loading up
some data, and building a report. But with this
basic approach, you can only scratch the surface
of Power Bl’s capabilities. If you want to be able
to supercharge Power BIl, you need to learn to
write DAX. Data Analysis Expressions (DAX) is the
formula language of Power Bl and Power Pivot for
Excel. With the help of a good book that prompts
readers to put their new skills to the test,

Excel users can rather quickly learn the required y | 1
DAX skills. This is such a book, written to give L N
you hands-on practice using Power Bl Desktop MiCI'OSOft@
and writing DAX. Inside you will find explanations Most Valuable

of concepts, examples, and practice exercises Professional
and answers to maximize learning retention and
experience.

Matt Allington is a career
data professional who has

Supercharge Excel worked in the retail and
consumer packaged goods

This is a sister book to Supercharge Excel 2nd industries for more than

Edition. These two books use the same content, 35 years.

teaching, and practice format but with different _ .

software versions, as indicated in the titles. When Matt is a Microsoft MVP

you read and complete the exercises in this book, and specialises in Power

Supercharge Power Bl, you will be learning how BI, Power Pivot, and

to supercharge Excel at the same time. The DAX Power Query.

language is fully transferable to Microsoft Excel.

ISBN 978=1=-61547=-052=5 U5%29.95
529055
Holy Macro! Books
PO Box 541731
Merritt Island, FL 32953

$29.95 US | $32.95 CAN 9 7816157470525

	Appendix_A:_Answers_to_Practice_Exercise
	Here’s How: Getting Power BI Desktop
	Here’s How: Loading Data from a New Source
	Here’s How: Joining Tables in Power BI Desktop
	Here’s How: Making Changes to a Table That Is Already Loaded
	Here’s How: Deleting Steps in a Query
	Here’s How: Importing New Tables
	Here’s How: Changing the File Location of an Existing Connection
	Here’s How: Inserting a Matrix
	Here’s How: Writing Measures
	Here’s How: Increasing Font Size
	Here’s How: Using IntelliSense
	Here’s How: Editing Measures
	Here’s How: Adding Comments to Measures
	Here’s How: Creating New Pages in Power BI
	Here’s How: Changing Display Names in Visuals
	Here’s How: Word Wrapping in a Visual
	Here’s How: Applying Conditional Formatting
	Here’s How: Drilling Through Rows in a Matrix
	Here’s How: Moving an Existing Measure to a Different Home Table
	Here’s How: Creating a Day Type Calculated Column
	Here’s How: Changing the MonthName Sort Order
	Here’s How: Using ALLEXCEPT()
	Here’s How: Turning Off Auto Date/Time
	Here’s How: Manually Adding Data to Power BI
	Here’s How: Using What-If
	Here’s How: Solving Practice Exercise 70
	Here’s How: Creating a Morphing Switch Measure
	Here’s How: Applying Banding
	Here’s How: Editing a Table Previously Created with Enter Data
	Here’s How: Deleting Interim Calculated Columns
	Here’s How: Adding a Budget Table
	Here’s How: Publishing a Report to PowerBI.com
	Here’s How: Using Analyze in Excel
	Here’s How: Converting a Pivot Table to Cube Formulas
	Here’s How: Writing CUBEVALUE() from Scratch
	Here’s How: Applying Filters to Cube Formulas
	Here’s How: Adding a Slicer Without a Pivot Table
	Here’s How: Connecting a Slicer to a Cube Formula
	Here’s How: Importing Excel Power Pivot Workbooks to Power BI Desktop
	Here’s How: Writing Measures
	Introduction
	1: Concept: Introduction to Data Modelling
	2: Concept: Loading Data
	3: Concept: Measures
	4: DAX Topic: SUM(), COUNT(), COUNTROWS(), MIN(), MAX(), COUNTBLANK(), and DIVIDE()
	5: Concept: Filter Propagation
	6: Concept: Lookup Tables and Data Tables
	7: DAX Topic: The Basic Iterators SUMX() and AVERAGEX()
	8: DAX Topic: Calculated Columns
	9: DAX Topic: CALCULATE()
	10: Concept: Evaluation Context and Context Transition
	11: DAX Topic: IF(), SWITCH(), and FIND()
	12: DAX Topic: VALUES(), HASONEVALUE(), SELECTEDVALUE(), and CONCATENATEX()
	13: DAX Topic: ALL(), ALLEXCEPT(), and ALLSELECTED()
	14: DAX Topic: FILTER()
	15: DAX Topic: Time Intelligence
	16: DAX Topic: RELATED() and RELATEDTABLE()
	17: Concept: Disconnected Tables
	18: Concept: Multiple Data Tables
	19: Concept: Using Analyze in Excel and Cube Formulas
	20: Transferring Your Skills to Excel
	21: Next Steps on Your DAX Journey
	Appendix A: Answers to Practice Exercises
	Table of Here's How Sections
	Index

