

Table of Contents

Cover

Title Page

Copyright

About the Authors

Credits

Acknowledgments

Foreword

Introduction

The Data Warehouse and Business Intelligence System

The Kimball Lifecycle

How This Book Is Organized

Additional Information

On the Website

Part 1: Requirements, Realities, and Architecture

Chapter 1: Defining Business Requirements

The Most Important Determinant of Long-Term Success

2

Adventure Works Cycles Introduction

Uncovering Business Value

Prioritizing the Business Requirements

Revisiting the Project Planning

Gathering Project-Level Requirements

Summary

Chapter 2: Designing the Business Process Dimensional
Model

Dimensional Modeling Concepts and Terminology

Additional Design Concepts and Techniques

The Dimensional Modeling Process

Case Study: The Adventure Works Cycles Orders
Dimensional Model

Summary

Chapter 3: The Toolset

The Microsoft DW/BI Toolset

Why Use the Microsoft Toolset?

Architecture of a Microsoft DW/BI System

3

Overview of the Microsoft Tools

Summary

Chapter 4: System Setup

System Sizing Considerations

System Configuration Considerations

Software Installation and Configuration

Summary

Part 2: Building and Populating the Databases

Chapter 5: Creating the Relational Data Warehouse

Getting Started

Complete the Physical Design

Define Storage and Create Constraints and Supporting
Objects

Partitioned Tables

Finishing Up

Summary

Chapter 6: Master Data Management

Managing Master Reference Data

4

Introducing SQL Server Master Data Services

Creating a Simple Application

Summary

Chapter 7: Designing and Developing the ETL System

Round Up the Requirements

Develop the ETL Plan

Introducing SQL Server Integration Services

The Major Subsystems of ETL

Extracting Data

Cleaning and Conforming Data

Delivering Data for Presentation

Managing the ETL Environment

Summary

Chapter 8: The Core Analysis Services OLAP Database

Overview of Analysis Services OLAP

Designing the OLAP Structure

Physical Design Considerations

5

Summary

Chapter 9: Design Requirements for Real-Time BI

Real-Time Triage

Scenarios and Solutions

Summary

Part 3: Developing the BI Applications

Chapter 10: Building BI Applications in Reporting Services

A Brief Overview of BI Applications

A High-Level Architecture for Reporting

The Reporting System Design and Development Process

Building and Delivering Reports

Ad Hoc Reporting Options

Summary

Chapter 11: PowerPivot and Excel

Using Excel for Analysis and Reporting

The PowerPivot Architecture: Excel on Steroids

Creating and Using PowerPivot Databases

6

PowerPivot for SharePoint

PowerPivot’s Role in a Managed DW/BI Environment

Summary

Chapter 12: The BI Portal and SharePoint

The BI Portal

Planning the BI Portal

Using SharePoint as the BI Portal

Summary

Chapter 13: Incorporating Data Mining

Defining Data Mining

SQL Server Data Mining Architecture Overview

Microsoft Data Mining Algorithms

The Data Mining Process

Data Mining Examples

Summary

Part 4: Deploying and Managing the DW/BI System

Chapter 14: Designing and Implementing Security

7

Identifying the Security Manager

Securing the Hardware and Operating System

Securing the Development Environment

Securing the Data

Securing the Components of the DW/BI System

Usage Monitoring

Summary

Chapter 15: Metadata Plan

Metadata Basics

Metadata Standards

SQL Server 2008 R2 Metadata

A Practical Metadata Approach

Summary

Chapter 16: Deployment

Setting Up the Environments

Testing

Deploying to Production

8

Data Warehouse and BI Documentation

User Training

User Support

Desktop Readiness and Configuration

Summary

Chapter 17: Operations and Maintenance

Providing User Support

System Management

Summary

Chapter 18: Present Imperatives and Future Outlook

Growing the DW/BI System

Lifecycle Review with Common Problems

What We Like in the Microsoft BI Toolset

Future Directions: Room for Improvement

Conclusion

Index

Advertisements

9

10

The Microsoft® Data Warehouse Toolkit: With SQL
Server 2008 R2 and the Microsoft® Business
Intelligence Toolset, Second Edition

Published by
Wiley Publishing, Inc.
10475 Crosspoint Boulevard
Indianapolis, IN 46256
www.wiley.com

Copyright © 2011 by Joy Mundy and Warren
Thornthwaite with Ralph Kimball

Published by Wiley Publishing, Inc., Indianapolis, Indiana

Published simultaneously in Canada

ISBN: 978-0-470-64038-8ISBN: 978-1-118-06793-2
(ebk)ISBN: 978-1-118-06795-6 (ebk)ISBN:
978-1-118-06794-9 (ebk)

Manufactured in the United States of America

10 9 8 7 6 5 4 3 2 1

No part of this publication may be reproduced, stored in a
retrieval system or transmitted in any form or by any
means, electronic, mechanical, photocopying, recording,
scanning or otherwise, except as permitted under Sections
107 or 108 of the 1976 United States Copyright Act,
without either the prior written permission of the
Publisher, or authorization through payment of the

11

appropriate per-copy fee to the Copyright Clearance
Center, 222 Rosewood Drive, Danvers, MA 01923, (978)
750-8400, fax (978) 646-8600. Requests to the Publisher
for permission should be addressed to the Permissions
Department, John Wiley & Sons, Inc., 111 River Street,
Hoboken, NJ 07030, (201) 748-6011, fax (201) 748-6008,
or online at http://www.wiley.com/go/permissions.

Limit of Liability/Disclaimer of Warranty: The
publisher and the author make no representations or
warranties with respect to the accuracy or completeness of
the contents of this work and specifically disclaim all
warranties, including without limitation warranties of
fitness for a particular purpose. No warranty may be
created or extended by sales or promotional materials. The
advice and strategies contained herein may not be suitable
for every situation. This work is sold with the
understanding that the publisher is not engaged in
rendering legal, accounting, or other professional services.
If professional assistance is required, the services of a
competent professional person should be sought. Neither
the publisher nor the author shall be liable for damages
arising herefrom. The fact that an organization or Web site
is referred to in this work as a citation and/or a potential
source of further information does not mean that the author
or the publisher endorses the information the organization
or website may provide or recommendations it may make.
Further, readers should be aware that Internet websites
listed in this work may have changed or disappeared
between when this work was written and when it is read.

For general information on our other products and services
please contact our Customer Care Department within the

12

United States at (877) 762-2974, outside the United States
at (317) 572-3993 or fax (317) 572-4002.

Wiley also publishes its books in a variety of electronic
formats. Some content that appears in print may not be
available in electronic books.

Library of Congress Control Number: 2011920894

Trademarks: Wiley and the Wiley logo are trademarks or
registered trademarks of John Wiley & Sons, Inc. and/or
its affiliates, in the United States and other countries, and
may not be used without written permission. Microsoft is a
registered trademark of Microsoft Corporation. All other
trademarks are the property of their respective owners.
Wiley Publishing, Inc. is not associated with any product
or vendor mentioned in this book.

13

About the Authors

Joy Mundy has focused on DW/BI systems since 1992
with stints at Stanford, WebTV, and Microsoft’s SQL
Server product development organization. Joy graduated
from Tufts University with a BA in Economics, and from
Stanford University with an MS in Engineering Economic
Systems.

Warren Thornthwaite began his DW/BI career in 1980.
After managing Metaphor’s consulting organization, he
worked for Stanford University and WebTV. Warren holds
a BA in Communications Studies from the University of
Michigan and an MBA from the University of
Pennsylvania’s Wharton School.

Ralph Kimball founded the Kimball Group. Since the mid
1980s, he has been the DW/BI industry’s thought leader on
the dimensional approach and has trained more than
10,000 IT professionals. Prior to working at Metaphor and
founding Red Brick Systems, Ralph co-invented the Star
workstation at Xerox’s Palo Alto Research Center
(PARC). Ralph has a Ph.D. in Electrical Engineering from
Stanford University.

14

Credits

Executive Editor

Robert Elliott

Project Editors

Sara Shlaer

Ginny Munroe

Technical Editor

Ralph Kimball

Senior Production Editor

Debra Banninger

Copy Editor

Kim Cofer

Editorial Director

Robyn B. Siesky

Editorial Manager

Mary Beth Wakefield

Freelancer Editorial Manager

15

Rosemarie Graham

Marketing Manager

Ashley Zurcher

Production Manager

Tim Tate

Vice President and Executive Group Publisher

Richard Swadley

Vice President and Executive Publisher

Barry Pruett

Associate Publisher

Jim Minatel

Project Coordinator, Cover

Katie Crocker

Compositor

Craig Johnson, Happenstance Type-O-Rama

Proofreader

Jen Larsen, Word One

16

Indexer

Robert Swanson

Cover Image

© Getty Images

Cover Designer

Ryan Sneed

17

Acknowledgments

First, we want to thank the thousands of you who have
read the Kimball Group’s Toolkit books, attended our
courses, and engaged us in consulting projects. We always
learn from you, and you’ve had a profound impact on our
thinking and the business intelligence industry.

This book would not have been written without the
assistance of many people on the SQL Server product
development team. Dave Wickert reviewed the PowerPivot
and SharePoint chapters and provided many excellent
suggestions for improving the content. Bryan Smith was
kind enough to read the chapters on Integration Services
and Analysis Services, and those chapters are the better for
his assistance. Carolyn Chau reviewed the Reporting
Services chapter, Eric Hanson read the relational database
chapter, Pej Javaheri commented on the SharePoint
chapter, and Raman Iyer read the data mining chapter. Our
sincere gratitude to all of them.

Other members of the SQL Server team provided
significant assistance reviewing the SQL Server 2005
version of this book, and we were too embarrassed to
impose on them a second time. These include Bill Baker,
Stuart Ozer, Grant Dickinson, Donald Farmer, Siva
Harinath, Jamie MacLennan, John Miller, Ashvini Sharma,
Stephen Quinn, and Rob Zare.

Our colleagues at the Kimball Group were invaluable.
Their encouragement kept us going while we were writing
the book, and their reviews helped us polish and prune

18

material. Ralph Kimball, of course, had a huge impact on
the book, not just from his writing and thinking in the
business intelligence arena but more directly by helping us
improve the book’s overall structure and flow.

Sara Shlaer, Ginny Munroe, and Bob Elliott, our editors at
Wiley, have been very helpful and encouraging. It’s been a
pleasure to work with them.

To our life partners, thanks for being there when we
needed you, for giving us the time we needed, and for
occasionally reminding us that it was time to take a break.
Tony Navarrete and Elizabeth Wright, the book wouldn’t
exist without you.

19

Foreword

In the five years since the first edition was published,
Microsoft has made impressive progress in building out its
data warehousing and business intelligence tools suite. It is
gratifying to those of us who work in this space to see the
steady commitment that Microsoft has made to provide
usable, professional quality tools. During these five years,
Warren and Joy have consulted with dozens of clients,
taught scores of classes, answered hundreds if not
thousands of questions, had many “schema lunches” where
the schema diagrams competed with the food, and have
pounded on every module in Microsoft’s DW/BI toolset.
This current edition remains a unique reference, combining
overall perspectives on what the tools do with accurate
assessments of how well they do it. This book teaches
judgment, not button clicks!

—Ralph Kimball

20

Introduction

The goal of this book is to guide the reader down the best
path toward designing and building a successful business
intelligence system and its underlying data warehouse
databases using the Microsoft SQL Server product set.

The Data Warehouse and Business Intelligence System

Data warehousing and business intelligence are techniques
to provide business people with the information and tools
they need to make both operational and strategic business
decisions. We’ll break this down a bit so you can really
understand the nature and magnitude of what you’re about
to take on.

First, your customers are the business people in the
organization. Not all business people carry the same
importance to you — you should be especially concerned
with those who make strategic business decisions. One
well-made business decision can translate to millions of
dollars in many organizations. Your main customers are
executives, managers, and analysts throughout the
organization. The data warehouse and business intelligence
(DW/BI) system is high impact and high profile.

Strategic also means important. These are decisions that
can make or break the organization. Therefore, the DW/BI
system is a high-risk endeavor. When strategic decisions
are made, someone often wins or loses. The DW/BI system
is a highly political effort.

21

Increasingly, the DW/BI system also supports operational
decisions, especially where the decision maker needs to
see historical data or integrated data from multiple sources.
Many analytic applications have this operational focus.
Whether the decision making is strategic or operational,
the DW/BI team needs to provide the information
necessary to make decisions.

Any given decision will likely require a unique subset of
information that generally cannot be predetermined. You’ll
need to build an information infrastructure that integrates
data from across the organization, and potentially from
outside the organization, and then cleans, aligns, and
restructures the data to make it as flexible and usable as
possible. Whereas most transaction system modules work
with one type of information, such as billings, orders, or
accounts receivable, the DW/BI system must eventually
integrate them all. The DW/BI system requires technically
sophisticated data gathering and management.

Finally, you need to provide the business decision makers
with the tools they need to make use of the data. In this
context, “tools” means much more than just software. It
means everything the business users need to understand
what information is available, find the subsets they need,
and structure the data to illuminate the underlying business
dynamics. “Tools” includes training, documentation, and
support, along with ad hoc query tools, reports, and
analytic applications.

Let’s review. The DW/BI system:

• Is high profile and high impact

22

• Is high risk
• Is highly political
• Requires technically sophisticated and complex data

gathering and management
• Requires intensive user access, training, and support

Creating and managing the DW/BI system is an extremely
challenging task. We want you to take on this task with
full knowledge of what you’re getting into. In our
experience, it’s easier to deal with all of the challenges if
you’re at least somewhat forewarned.

We don’t mean this to discourage you, but rather to warn
you before you jump in that the waters are swift and deep.
All the reasons that make the data warehouse challenging
are also what make it a fun and exciting project.

The Kimball Group

While it’s true that building and managing a successful
DW/BI system is a challenge, it’s also true that there are
ways to approach it that will increase your likelihood of
success. That’s what the Kimball Group is all about.
We’ve been working in the DW/BI area for more than 25
years. The authors of this book, who are members of the
Kimball Group, have spent their careers working on data
warehousing and business intelligence systems as vendors,
consultants, implementers, and users. Our motto is
“Practical techniques — proven results.” We share a
common drive to figure out the best way to build and
manage a successful DW/BI system. We are also teachers
at heart, with a strong desire to help you succeed and avoid
the mistakes we and others have made.

23

Why We Wrote This Book

Data warehousing and business intelligence have been
around in much the same form since at least the 1970s, and
continue to enjoy an incredibly long technology lifecycle.
In 1995, when the primary authors formed our first
consulting organization, one of us voiced the opinion that
data warehousing was finished, that the wave had crested
and we’d be lucky to get a few more projects before we
had to go find real jobs again. Years later, data
warehousing and business intelligence are still going
strong.

As the DW/BI industry has matured, it’s become
dominated by single-source providers — a safe choice for
risk-averse organizations. The DW/BI technology stack
covers everything from esoteric source system knowledge
to user interface design and best-practice BI applications.
Database vendors are best positioned to provide end-to-end
solutions. Since SQL Server 2000 and especially SQL
Server 2005, Microsoft has been forcing the concept of a
viable, single-source data warehouse system provider into
reality, and at an attractive price.

The book you’re currently holding is a substantial revision
of The Microsoft Data Warehouse Toolkit with SQL Server
2005. In addition to updating the content for new features
and functionality such as PowerPivot and Master Data
Services, the new version updates our previous
recommendations with all that we’ve learned in recent
years about building a DW/BI system with the Microsoft
tools. The current book is based on the SQL Server 2008
R2 release, but the vast majority of its recommendations

24

are valid for SQL Server 2008 as well. Any technology or
recommendation that’s new for SQL Server 2008 R2 is
clearly identified in the text.

Who Should Read This Book

This book covers the entire DW/BI system lifecycle. As a
result, it offers useful guidance to every member of the
DW/BI team, from the project manager to the business
analyst, data modeler, ETL developer, DBA, BI
application developer, and even to the business user. We
believe the book will be valuable to anyone working on a
Microsoft SQL Server DW/BI program.

The primary audience for this book is the new DW/BI
team that’s launching a project on the Microsoft SQL
Server platform. We don’t assume you already have
experience in building a DW/BI system. We do assume
you have a basic familiarity with the Microsoft world:
operating systems, infrastructure components, and
resources. We also assume a basic understanding of
relational databases (tables, columns, simple SQL) and
some familiarity with the SQL Server relational database,
although that’s not a requirement. Throughout the book we
provide many references to other books and resources.

A second audience is the experienced Kimball Method
DW/BI practitioner who’s new to the Microsoft SQL
Server toolset. We’ll point out which sections and chapters
will be review for anyone who’s read our other Toolkit
books and practiced our methodology. But we’ve found
that it doesn’t hurt to read this material one more time!

25

Whatever your background, you’ll benefit most if you’re
just starting on a new project. While we do provide
suggestions on working with existing data warehouses, in
the ideal case you won’t have to contend with any existing
data warehouse or data marts — at least none that will
remain in place after the new system is deployed.

The Kimball Lifecycle

We’ve all felt the empty pit of panic in our stomach when,
deep into a project, we realize the scope and scale of the
effort before us will take much more work than we
imagined at the outset. Many DW/BI projects begin with
the notion that you’ll just move some data to a new
machine, clean it up a little, and develop some reports.
That doesn’t sound so bad — six weeks of effort, two
months at the most. You charge into the forest and soon
realize it’s a lot darker and denser than you thought. In
fact, you can’t even see the road out.

The best way to avoid this sense of panic — and the
resulting disaster — is to figure out where you’re going
before you jump in. It helps to have a roadmap and
directions to lead you safely through unfamiliar territory
— one that will tell you the places you have to visit and
point out the danger zones on the trip ahead. This book is
that roadmap for the Microsoft SQL Server DW/BI system
project. This book follows the basic flow of the Kimball
Lifecycle described in the book The Data Warehouse
Lifecycle Toolkit, Second Edition (Wiley, 2008). The steps,
tasks, and dependencies of the Lifecycle were crafted
based on our collective experience of what works. The

26

Lifecycle is an iterative approach based on four primary
principles:

• Focus on the business: Concentrate on identifying business
requirements and their associated value. Use these efforts to
develop solid relationships with the business side and
sharpen your business sense and consultative skills.

• Build an information infrastructure: Design a single,
integrated, easy-to-use, high-performing information
foundation that will meet the broad range of business
requirements you’ve identified across the enterprise.

• Deliver in meaningful increments: Build the data warehouse
in increments that can be delivered in 6 to 12 month
timeframes. Use clearly identified business value to
determine the implementation order of the increments.

• Deliver the entire solution: Provide all the elements
necessary to deliver value to the business users. This means
a solid, well designed, quality tested, accessible data
warehouse database is only the start. You must also deliver
ad hoc query tools, reporting applications and advanced
analytics, training, support, website, and documentation.

This book helps you follow these four principles by using
the Kimball Lifecycle to build your DW/BI system. These
four principles are woven into the fabric of the Lifecycle.
The secret to understanding the Kimball Lifecycle is that
it’s business-based, it takes a dimensional approach to
designing data models for end user presentation, and it is a
true lifecycle.

Lifecycle Tracks and Task Areas

The DW/BI system is a complex entity, and the
methodology to build that system must help simplify that
complexity. Figure 1 outlines the Kimball Lifecycle. The
13 boxes show the major task areas involved in building a

27

successful data warehouse and the primary dependencies
among those tasks.

Figure 1: The Business Dimensional Lifecycle

There are several observations to make about the Lifecycle
at this level. First, notice the central role of the Business
Requirements Definition box. Business requirements
provide the foundation for the three tracks that follow.
They also influence the project plan, hence the arrow
pointing back to the Project Planning box. You usually end
up modifying the plan based on a more detailed
understanding of the business requirements and priorities.

Second, the three tracks in the middle of the Lifecycle
concentrate on three separate areas:

• The top track is about technology. These tasks are primarily
about determining what functionality you will need, and

28

planning which pieces of Microsoft technology you’ll use,
and how you’ll install and configure them.

• The middle track is about data. In the data track you’ll
design and instantiate the dimensional model, and develop
the Extract, Transformation, and Load (ETL) system to
populate it. You could think of the data track as “building
the data warehouse databases,” although your data
warehouse will not succeed unless you surround it with the
rest of the Lifecycle tasks.

• The bottom track is about business intelligence applications.
In these tasks you design and develop BI applications for the
business users.

The tracks combine when it’s time to deploy the system.
This is a particularly delicate time because there’s only one
chance to make a good first impression. Although we’ve
placed maintenance after deployment in the diagram, you
need to design your system with the ability and tools for
maintaining it. The growth phase of the project links to the
arrow heading back to the beginning. This simple arrow
has major implications. The Lifecycle’s incremental
approach is a fundamental element of delivering business
value.

Underlying the entire Lifecycle is the Project Management
box. The most important thing to remember here is that
you need a leader, and that person needs access to senior
management. The team leader is ideally one of those
difficult-to-find people who can communicate effectively
with both technologists and business people, including the
most senior executives in the company.

Key Terminology and the Microsoft Toolset

29

The business intelligence industry is plagued with
terminology that’s used imprecisely, or in contradictory
ways. Some of the most long-standing debates in the
industry derive as much from misunderstandings about
what others mean by a term, as from true differences in
philosophy. Keeping that in mind, we’ll try to be clear and
consistent even if we don’t settle all the historical debates.
We highlight some of the key terms here.

As we define each term, we also relate it to the associated
Microsoft technologies, most of which are components of
SQL Server.

• The data warehouse is the “platform for business
intelligence.” In the Kimball Method, the data warehouse
includes everything from the original data extracts to the
software and applications that users see. We disagree with
other authors who insist that the data warehouse is merely a
centralized and highly normalized store of data in the back
room, far from the end users. To reduce confusion, in this
book we consistently use the phrase “data warehouse/
business intelligence system” (DW/BI system) to mean the
entire end-to-end system. When we’re talking specifically
and exclusively about the atomic level user queryable data
store, we call it the data warehouse database.

• The business process dimensional model is a specific
discipline for modeling data that is an alternative to
normalized modeling. A dimensional model contains the
same information as a normalized model but packages the
data in a symmetrical format whose design goals are user
understandability, business intelligence query performance,
and resilience to change. Normalized models, sometimes
called third normal form models, were designed to support
the high-volume, single-row inserts and updates that define
transaction systems, and generally fail at being
understandable, fast, and resilient to change. We use the
term “business process dimensional model” to refer both to

30

the logical dimensional model that supports a business
process and the corresponding physical tables in the
database. In other words, dimensional models are both
logical and physical.

• The relational database is a general purpose technology for
storing, managing, and querying data. The SQL Server
database engine is Microsoft’s relational database engine.
The business process dimensional model can be stored in a
relational database. Normalized data models that support
transaction processing can also be stored in a relational
database.

• The online analytic processing (OLAP) database is a
technology for storing, managing, and querying data
specifically designed to support business intelligence uses.
SQL Server Analysis Services is Microsoft’s OLAP
database engine. The business process dimensional model
can be stored in an OLAP database, but a transactional
database cannot, unless it first undergoes transformation to
cast it in an explicitly dimensional form.

• An Extract, Transformation, and Load (ETL) system is a set
of processes that clean, transform, combine, de-duplicate,
household, archive, conform, and structure data for use in
the data warehouse. These terms are described in this book.
Early ETL systems were built using a combination of SQL
and other scripts. While this is still true for some smaller
ETL systems, larger and more serious systems use a
specialized ETL tool. Moving forward, almost every DW/BI
system will use an ETL tool such as SQL Server Integration
Services because the benefits are significant and the
incremental dollar cost is low or zero.

• Business intelligence (BI) applications are predefined
applications that query, analyze, and present information to
support a business need. There is a spectrum of BI
applications, ranging in complexity from a set of predefined
static reports, all the way to an analytic application that
directly affects transaction systems and the day-to-day
operation of the organization. You can use SQL Server
Reporting Services to build a reporting application, and a

31

wide range of Microsoft and third-party technologies to
build complex analytic applications.

• A data mining model is a statistical model, often used to
predict future behavior based on data about past behavior or
identify closely related subsets of a population called
clusters. Data mining is a term for a loose (and
ever-changing) collection of statistical techniques or
algorithms that serve different purposes. The major
categories are clustering, decision trees, neural networks,
and prediction. Analysis Services Data Mining is an example
of a data mining tool.

• Ad hoc queries are formulated by the user on the spur of the
moment. The dimensional modeling approach is widely
recognized as the best technique to support ad hoc queries
because the simple database structure is easy to understand.
Microsoft Office, through Excel pivot tables and
PowerPivot, is the most popular ad hoc query tool on the
market. You can use Reporting Services Report Builder to
perform ad hoc querying and report definition. Nonetheless,
many systems supplement Excel and Report Builder with a
third-party ad hoc query tool for their power users.

• Once again, the data warehouse/business intelligence (DW/
BI) system is the whole thing: source system extracts, ETL,
dimensional database in both relational and OLAP, BI
applications, and an ad hoc query tool. The DW/BI system
also includes management tools and practices, user-oriented
documentation and training, a security system, and all the
other components that we discuss in this book.

Roles and Responsibilities

The DW/BI system requires a number of different roles
and skills, from both the business and technical
communities, during its lifecycle. In this section, we
review the major roles involved in creating a DW/BI
system. There is seldom a one-to-one relationship between
roles and people. We’ve worked with teams as small as

32

one person, and as large as forty (and know of much larger
teams). The vast majority of DW/BI teams fall between
three and ten full-time members, with access to others as
required.

It’s common for a single DW/BI team to take on both
development and operational duties. This is different from
most technology project teams, and is related to the highly
iterative nature of the DW/BI project development cycle.
The following roles are associated with design and
development activities:

• The DW/BI manager is responsible for overall leadership
and direction of the project. The DW/BI manager must be
able to communicate effectively with both senior business
and IT management. The manager must also be able to work
with the team to formulate the overall architecture of the
DW/BI system.

• The project manager is responsible for day-to-day
management of project tasks and activities during system
development.

• The business project lead is a member of the business
community and works closely with the project manager.

• The business systems analyst (or business analyst) is
responsible for leading the business requirements definition
activities, and often participates in the development of the
business process dimensional model. The business systems
analyst needs to be able to bridge the gap between business
and technology.

• The data modeler is responsible for performing detailed data
analysis including data profiling, and developing the detailed
dimensional model.

• The system architect(s) design the various components of the
DW/BI system. These include the ETL system, security
system, auditing system, and maintenance systems.

33

• The development database administrator (DBA) creates the
relational data warehouse database(s) and is responsible for
the overall physical design including disk layout,
partitioning, and initial indexing plan.

• The OLAP database designer creates the OLAP databases.
• The ETL system developer creates Integration Services

packages, scripts, and other elements to move data from the
source databases into the data warehouse.

• The test lead sets up the test environment, writes scripts to
automate test execution, develops and distributes reports on
the test log database, reaches out to the business user
community to get user input into data quality tests, manages
the ongoing process of automated data quality testing once
the system is in production, and publishes data quality
reports to the user community.

• The DW/BI management tools developer writes any custom
tools that are necessary for the ongoing management of the
DW/BI system. Examples of such tools include a simple UI
for entering metadata, scripts or Integration Services
packages to perform system backups and restores, and a
simple UI for maintaining dimension hierarchies.

• The BI application developer is responsible for building the
BI applications, including the standard reports and any
advanced analytic applications required by the business. This
role is also responsible for developing any custom
components in the BI portal and integrating data mining
models into business operations.

Most of the rest of the roles play a part in the latter stages
of the DW/BI project development cycle, as the team
moves toward deploying and operating the system. A few
of the roles are strictly operational.

• The data steward is responsible for ensuring the data in the
data warehouse is accurate. The data stewardship role is
often best filled by someone in the business user community,
who has a deep understanding of the data and can well judge
its accuracy.

34

• The security manager specifies new user access roles that
the business users need, and adds users to existing roles. The
security manager also determines the security procedures in
the ETL “back room” of the DW/BI system.

• The relational database administrator (DBA) is responsible
for managing the performance and operations of the
relational data warehouse database.

• The OLAP DBA is responsible for managing the
performance and operations of the OLAP data warehouse
database.

• The compliance manager ensures that the DW/BI policies
and operations comply with corporate and regulatory
directives such as privacy policies, HIPAA, and
Sarbanes-Oxley. The compliance manager works closely
with the security manager and internal audit.

• The metadata manager has the final word on what metadata
is collected, where it is kept, and how it’s published to the
business community. As we discuss in Chapter 15, metadata
tends not to be managed unless there’s a person identified to
lead the charge.

• The data mining analyst is deeply familiar with the business
and usually has some background in statistics. The data
mining analyst develops data mining models and works with
the BI application developers to design operational
applications that use the data mining models.

• The BI portal content manager manages the BI portal. She
determines the content that’s on the portal and how it’s laid
out, and keeps it fresh.

• The DW/BI educator creates and delivers the training
materials for the DW/BI system.

• User support personnel within the DW/BI team must be
available to help business users, especially with ad hoc
access. Corporate-wide help desks tend not to have the
specialized expertise necessary to do more than assist with
minor connectivity issues.

How This Book Is Organized

35

We’ve divided the book into four parts:

1. Requirements, Realities, and Architecture

2. Building and Populating the Databases

3. Developing the BI Applications

4. Deploying and Managing the DW/BI System

Part 1: Requirements, Realities, and Architecture

Part 1 sets the stage for the rest of the book. Most of you
are eager to get your hands on the Microsoft toolset. That’s
fine while you’re experimenting and learning about the
technology, but it’s the kiss of death for a project. Stop,
back away from the keyboard, and think about what you’re
setting out to do.

Chapter 1: Defining Business Requirements

Part 1 begins with a brief summary of the Kimball
Lifecycle. We drill down on the most important step,
gathering the business requirements, and briefly present
the business requirements for the Adventure Works Cycles
case study used throughout the book. Chapter 1 refers to
the Business Requirements Definition box in Figure 1.

Readers who are very familiar with the Kimball Method
can skip the first part of the chapter but should read the
case study.

36

Chapter 2: Designing the Business Process Dimensional
Model

We present a brief primer on how to develop a
dimensional model. This chapter presents terminology and
concepts used throughout the book, so it’s vital that you
understand this material. This chapter refers to the
Dimensional Modeling box in Figure 1.

Readers who are very familiar with the Kimball Method
can skim most of this material and review the Adventure
Works overview at the end of the chapter.

Chapter 3: The Toolset

The Architecture and Product Selection tasks are
straightforward for a Microsoft DW/BI system. In this
short chapter we talk in more detail about how and where
to use the various components of SQL Server, other
Microsoft products, and even where you’re most likely to
use third-party software in your system. This chapter
provides a brief overview of the Technical Architecture
Design and Product Selection & Installation boxes in
Figure 1.

Even readers who are very familiar with SQL Server 2005
should review this chapter, as it contains information about
the new features of SQL Server 2008 R2, some of which
are significantly different.

Chapter 4: System Setup

37

Chapter 4 is focused on the Product Selection &
Installation box in Figure 1, and describes how to install
and configure the various components of SQL Server 2008
R2. We talk about system sizing and configuration, and
how — and why — you might choose to distribute your
DW/BI system across multiple servers.

Part 2: Building and Populating the Databases

The second part of the book presents the steps required to
effectively build and populate the data warehouse
databases. Most Microsoft DW/BI systems will implement
the dimensional data warehouse in both the relational
database and the Analysis Services database.

Chapter 5: Creating the Relational Data Warehouse

Chapter 5 talks about creating the database structures for
the relational data warehouse. We’re not moving data yet,
but we’re getting closer. We begin by talking about the
minor differences between the Kimball logical design and
the physical data models, including issues such as the
initial indexing plan, key structures, and storage decisions.

One of your key decisions for the relational data
warehouse is whether or not to partition the fact data. As
we discuss, partitioning provides many advantages, and is
a necessity for large data warehouses.

Chapter 6: Master Data Management

Master data is reference data that is managed centrally for
an organization. New with SQL Server 2008 R2, Master

38

Data Services provides a toolset for building a master data
management system. Chapter 6 describes master data
management and the Master Data Services tools, then
discusses some quick and easy uses of this new technology
to improve the data warehouse. Over time, some
organizations may shift the management of their
dimensions from a classic ETL system implemented in
SQL Server Integration Services, toward more active data
stewardship via Master Data Services.

Chapter 7: Designing and Developing the ETL System

Finally it’s time to start moving data. This chapter talks
about the basic design for your ETL system. We begin by
introducing SQL Server Integration Services (SSIS), then
walk through how to use SSIS to build the 34 subsystems
of any ETL system. The 34 subsystems have four major
groups: data extraction, data cleaning and conforming, data
presentation, and system management. Each of these areas
is discussed within the context of SSIS.

Chapter 8: The Core Analysis Services OLAP Database

We recommend that your Microsoft DW/BI system use
Analysis Services OLAP as the main database for users to
query. The more closely the relational database and ETL
process are designed to meet your business requirements,
the easier it is to design the Analysis Services database.
The Analysis Services wizards are easy to use, and with a
small system, you don’t need to worry very much about
advanced settings. However, if you have large data
volumes or a lot of users, you need to develop a deep
understanding of the OLAP engine. Much of this chapter is

39

focused on helping you learn enough to implement
Analysis Services across your enterprise.

Analysis Services contains three major pieces of
functionality: the core OLAP database, the data mining
platform, and the PowerPivot user-driven Excel analytics.
Data mining is addressed in Chapter 13, and PowerPivot in
Chapter 11.

Chapter 8 revisits the Physical Design and ETL boxes of
Figure 1, this time from the perspective of the OLAP
database engine.

Chapter 9: Design Requirements for Real-Time BI

Chapter 9 takes on the topic of real-time business
intelligence, discussing how to bring real-time data —
loosely defined as data refreshed more frequently than
daily — into the DW/BI system. SQL Server contains
many features to enable real-time business intelligence.
We talk about how to use these features, and the inevitable
tradeoffs you face when implementing real-time BI.

Part 3: Developing the BI Applications

The third part of the book presents the steps required to
present the data to the business users. BI applications are a
key component of the complete DW/BI system. To most
business users, BI applications are synonymous with the
data warehouse. BI applications range from simple static
reports to complex data mining applications, user-driven
ad hoc analyses using PowerPivot and Excel, and the BI

40

portal that provides a single point of entry into the business
intelligence system.

Chapter 10: Building BI Applications in Reporting
Services

Chapter 10 provides the basic information you need to
understand the range of BI applications available to you.
We start with an introduction to BI applications in general.
We then offer a BI applications development process in the
context of the Kimball Lifecycle. The rest of the chapter
drills into Reporting Services as a platform for creating
and distributing standard reports.

Chapter 11: PowerPivot and Excel

The core component of PowerPivot is an in-memory
database add-in for Excel 2010. It allows Excel users to
work with millions of rows of data at memory speeds.
Business users can join data from multiple, disparate
sources in the PowerPivot database, and create complex
calculations and measures.

Chapter 11 begins with a look at Excel as an analysis and
reporting tool. The rest of the chapter is dedicated to
PowerPivot, starting with a brief description of PowerPivot
and its product architecture. The bulk of the chapter is
dedicated to working through an example. We’ll finish up
with a brief discussion of PowerPivot in the SharePoint
environment and its role in the overall DW/BI system.

Chapter 12: The BI Portal and SharePoint

41

The BI portal is the primary starting point in the
information quest for a large part of the business
community. It needs to be structured in a way that allows
people to find what they are looking for within an ever
increasing number of reports and analyses. SharePoint is
Microsoft’s offering in the portal platform category.

The first part of Chapter 12 is a discussion of the BI portal
including design guidelines and a simple example. In the
second part, we take a high level look at SharePoint as a BI
portal platform and discuss the process of getting
SharePoint going with a set of BI-related functionality
including Reporting Services and PowerPivot for
SharePoint.

Chapter 13: Incorporating Data Mining

Data mining is perhaps the most powerful — and certainly
the least understood — technology in the BI toolkit. This
chapter defines data mining, and provides examples of
how it can be used. We talk about Microsoft’s data mining
technology, including the algorithms that are included with
SQL Server Analysis Services. We provide practical
guidance on how to build a data mining model and how to
incorporate the results of data mining into your systems.
To make this theoretical discussion more concrete, we
work through two case studies.

Part 4: Deploying and Managing the DW/BI System

The final section of the book includes information about
how to deploy and operate your DW/BI system. It is one of
the most exciting sections of the entire book.

42

Chapter 14: Designing and Implementing Security

We start our discussion of the DW/BI system’s security by
encouraging you to develop an open access policy for
information. Sensitive data must of course be protected,
but we think most contents of the data warehouse should
be available to most authenticated users.

Even with an open security policy, some data must be
protected. We describe how to control access in the
various components of SQL Server: Reporting Services,
the relational database, and Analysis Services. We also
discuss the separate issues of security in the back room
development area of the data warehouse.

The discussion of security is most closely related to the
Deployment and Maintenance boxes of Figure 1.

Chapter 15: Metadata Plan

Lots of people talk about metadata, but we’ve seen few
examples of it being implemented thoroughly and
successfully. We’d like to have seen an integrated
metadata service in SQL Server, which we could simply
describe to you, but that’s not the case. Instead, we spend
most of this chapter detailing the metadata that we think is
most important, and describing the steps to maintain and
publish that information.

Metadata is related to the Deployment and Maintenance
boxes of Figure 1.

Chapter 16: Deployment

43

Deploying the DW/BI system consists of two major sets of
tasks. First, you need to deploy the system. This effort
consists primarily of testing: testing of data, processes,
performance, and the deployment scripts themselves. The
deployment scripts should include a playbook, with
step-by-step instructions for how to deploy the system
changes.

The other major set of deployment activities is focused
more on the business users than on the technology. You
need to develop and deliver training and documentation
materials. You need to pull together the BI portal that we
describe in Chapter 12. And you need to develop a plan for
supporting the business users, who will inevitably have
questions.

Chapter 17: Operations and Maintenance

As business people begin to use the warehouse to answer
their questions on a regular basis, they’ll come to rely on
it. If users don’t believe the warehouse is reliable, they’ll
go back to their old ways of getting information. This
reliance is a kind of trust, and you must do everything you
can to build and keep that trust. You need to monitor usage
and performance — both for data loads and user queries.
Track system resources and make sure you don’t run out of
disk space. In short, maintain the warehouse as the
production system it now is. You must be meticulous in
your attention to the quality of the data that’s loaded into
the data warehouse. Once a business user loses trust in the
accuracy of the data, that trust is nearly impossible to
regain.

44

Chapter 18: Present Imperatives and Future Outlook

Chapter 18 reviews the major phases of the DW/BI project
and highlights where the most significant risks are to the
overall success of the project. We finish the book with a
wish list of features and functionality that we hope to see
in the Microsoft BI toolset in the years to come.

Additional Information

This book includes most of the information you need to
successfully build and deploy a basic DW/BI system using
SQL Server 2008 Release 2. In an effort to keep the book
small enough to fit into a large backpack, we chose not to
replicate tool instructions that could be easily found in
SQL Server Books Online. Where appropriate, we provide
search topics to assist in finding related materials. In
several places, we recommend that you work through the
tutorials provided by the SQL Server team before you can
expect to fully understand some technical material.

This book doesn’t attempt to re-teach the fundamentals of
data warehousing. We summarize many of the concepts
and techniques found in the other volumes in the Kimball
Data Warehouse Toolkit series rather than including all the
details found in those books. We also provide references to
key sections of those books as needed. Table 1 shows the
core books in the Toolkit series, their major focus, and
their primary audiences.

These books encapsulate the collective wisdom of the
Kimball Group about data warehousing and business

45

intelligence. We recommend that you add these books to
your team’s library.

We’ve laced this book with tips, key concepts, sidebars,
and chapter pointers to make it more usable and easily
referenced. We draw attention to some of these with the
following formats:

REFERENCE

Look for reference pointers to find other
materials you can use to supplement your
DW/BI library. This includes references to
SQL Server Books Online, other books and
articles, and online reference materials.

RESOURCES

Resources provide references to other
Kimball Group material, such as the
Toolkit books, articles, or design tips.

note Notes provide some extra information on the topic
under discussion, adding explanation or details to clarify
the material.

warning Warnings help you avoid potential dangers that
might cost you time, data, or sanity.

46

DOWNLOADS

Resources that you can download.

Table 1: The core Kimball Data Warehouse Toolkit titles

Title Subject Primary Audience

The Data
Warehouse
Lifecycle Toolkit,
Second Edition

Implementation
guide

Good overview for all project
participants; key tool for project
managers, business analysts, and data
modelers

The Data
Warehouse
Toolkit, Second
Edition

Dimensional
data modeling

Data modelers, business analysts,
DBAs, ETL developers

The Data
Warehouse ETL
Toolkit

ETL system
architecture ETL architects and developers

The Kimball
Group Reader

DW/BI system
design and
development

A topical reference book for all project
participants

On the Website

We’ve collected most of the listings and examples and
made them available on the book’s website along with
additional links and references: http://www.kimballgroup.com/
html/booksMDWT.html

47

Part 1: Requirements, Realities, and Architecture

Chapter 1: Defining Business Requirements

Chapter 2: Designing the Business Process Dimensional
Model

Chapter 3: The Toolset

Chapter 4: System Setup

This first part of the lifecycle is where you lay the
foundation for your success. Working with the business
folks to understand and prioritize their requirements for
analytics as we describe in Chapter 1 helps you set specific
goals for your first pass through the lifecycle that are both
valuable to the organization and achievable in a reasonable
timeframe. Your understanding of the business
requirements becomes the basis for designing a flexible,
usable, high-performing dimensional model in Chapter 2.

What you learn in the first two chapters helps you tackle
the architecture and technology track at the top of the
Lifecycle. Your business understanding helps you
determine what architectural components are important for
your DW/BI system. Once you know the problem, you can
identify the specific functionality you need, and where that
functionality will come from in the Microsoft SQL Server
toolset. This, in turn, allows you to make decisions on the
server configurations and disk subsystems that will form
the basic infrastructure of your DW/BI system.

48

Part 1 is about getting the lay of the land before you decide
what you are going to build and where you will build it.
Your primary focus here is on identifying the most
promising business opportunities and designing the data
structures and system architectures needed to deliver them.
By the end of this section, you should have all the pieces in
place for you to dig into the development work of creating
the DW/BI system database. Skip this section at your peril.

The Kimball Lifecycle steps covered in Part 1

49

Chapter 1

Defining Business Requirements

Building the foundation.

Business requirements are the bedrock of the successful
data warehouse/business intelligence (DW/BI) system.
Business requirements guide the development team in
making the biggest strategic choices, such as prioritizing
subject areas for implementation, and in making the
smallest tactical design decisions, such as how to present
key performance indicators on the users’ screens. In this
chapter, we cover the process of gathering business
requirements and converting them into a DW/BI system
strategy. We describe the process of interviewing business
and IT representatives and mapping their analytic
requirements back to the core business processes (such as
orders, page views, or account transactions) that generate
the needed data. These business processes are the building
blocks of the DW/BI system. After the requirements are
documented, we offer a technique for working with senior
management to prioritize the implementation of those
business-process–based projects. We also illustrate these
tasks with an example based on Microsoft’s sample
database business, Adventure Works Cycles.

As Figure 1-1 illustrates, the Business Requirements
Definition step is the foundation of the Kimball Lifecycle
methodology. Business requirements and their associated
business value give you the guidance you need to make

50

v.ghorbani
Highlight

v.ghorbani
Highlight

decisions in all three downstream tracks. As you’ll see,
they influence the project scope and plan, too.

RESOURCES

If you skipped the Introduction to this
book, you should at least go back and read
the overview of the Kimball Lifecycle
because it is the organizing framework for
this book and for implementing a
successful DW/BI system.

Figure 1-1: The Business Requirements Definition step of
the Kimball Lifecycle

This chapter is primarily about resisting temptation.
Gathering business requirements is often outside a
technical person’s comfort zone. The overall success of the
project is largely determined by your understanding of the
business requirements and your relationships with the

51

business people. Resist the temptation to just start loading
data.

In this chapter you learn the following:

• The importance of understanding business requirements and
securing solid business sponsorship

• The steps used to define enterprise-level business
requirements, including the interview process, synthesizing
requirements into their underlying business processes,
developing the enterprise analytic data framework called the
data warehouse bus matrix, and prioritizing business
processes with senior management

• How to plan the initial business process dimensional model
implementation and gather project-level business
requirements

• What goes into a typical requirements summary document
and how it links to business requirements for analytics and
business process implementations

RESOURCES

Throughout the book, we provide specific
references to the various titles in the
Kimball Toolkit library to help you find
more details on the concept or technique
described. Each book in the Toolkit series
is described in the Introduction to this
book.

The Most Important Determinant of Long-Term Success

52

There is one common factor in successful business
intelligence projects: delivering business value. Your DW/
BI team must embrace the goal of enhancing business
value as its primary purpose. This seems like an obvious
statement, but most DW/BI folks are technologists at heart.
We like the certainty of computers and programming and
shy away from the vague uncertainties of the business side.

You can’t deliver business value unless you work closely
with business people. You need to understand their
language and learn to see the world from their points of
view. You’ll be working in a non-technical, highly
ambiguous, politically sensitive environment. Are you
feeling queasy yet? This unsettled environment is what the
DW/BI system is all about. You must develop the business
knowledge and people skills right along with your
technical skills to meet the needs of your business users.
We realize the entire team will not become smooth-talking
MBAs. However, someone on the team must have strong
business and communications skills, and everyone will be
more effective if they learn more about the business.

NOTE

Perhaps your organization uses the “agile”
development methodology. If so, then you
have heard this story already! In the agile
approach, projects are owned and driven by
the business users. To learn more about this
approach, see “agile software

53

development” on www.wikipedia.org. For
guidance relating agile to DW/BI system
development, see The Kimball Group
Reader, pp. 109–112.

So, while many DW/BI teams and consultants pay lip
service to business value, the reality of their day-to-day
behavior is that technology rules. Do not let this happen to
you. Technology is important; business value is
mandatory. We understand you bought this book to learn
about the SQL Server DW/BI toolset, but SQL Server is
just a tool. Your success in using that tool in your
organization depends on your understanding of the
organization’s unique requirements and priorities for
business intelligence.

As you read this book, you’ll encounter recommendations
that may seem unnecessarily complicated or just plain
unnecessary. Every time you’re tempted to dismiss the
authors as overly fond of their design methodology or just
overzealous, consider whether your reactions are driven by
your technical convenience or by the business users’
needs. Never lose sight of the business.

Adventure Works Cycles Introduction

It always helps to see new concepts in the context of a
specific example. Since everyone’s organization is
different, we’ll use some of the business requirements for
Microsoft’s demo database company to illustrate the

54

process of defining business requirements described in this
chapter.

The current SQL Server sample business intelligence
databases are based on a fictitious company called
Adventure Works Cycles, a multinational manufacturer
and seller of bicycles and accessories. The database and
associated samples are not part of the software distribution
set. Instead, you download them from the Microsoft
code-sharing site called Codeplex (Search for “SQL Server
Samples Database” at http://www.codeplex.com) or download
the database from the Wiley web site at www.wiley.com/go/
MsftDWToolkit2E. You will need to download and install the
SQL Server 2008R2 version of the sample databases to
follow the examples later in this book.

DOWNLOADS

You can find several detailed documents
illustrating what the business
requirements-gathering process might look
like at a company such as Adventure
Works Cycles on the book’s web site
(http://kimballgroup.com/html/
booksMDWTtools.html). These include
interview summaries and additional
background information.

Uncovering Business Value

55

If you’re going to be driven by business value, you need to
go out and identify, understand, and prioritize the needs of
the business. This is easier said than done if your focus has
historically been on technology. Fortunately, the Kimball
Lifecycle provides the tools to work through an entire
development iteration of a data warehouse, beginning with
business requirements.

Where do you start with your business intelligence
system? What is the first step? Well, it depends on a host
of factors, such as how your organization works, what you
already know about the business, who is involved in the
project at this point, what kinds of DW/BI efforts came
before, and many other factors.

Let’s talk about the most common scenario first, and then
we’ll address a few exceptions. More often than not, the
DW/BI system starts as a project hosted by the Information
Technology (IT) department of the organization. The
IT-driven DW/BI project gets cranked up because the CIO
decides the company needs a data warehouse, so people
and resources are assigned to build one. This is a
dangerous situation. Please refer to the first point in this
chapter: Focusing on business value is the most important
determinant of long-term success. The problem with the
IT-driven DW/BI system is that it almost always centers
on technology. The team has been assigned the task of
building a “warehouse,” so that’s exactly what they do.
They get some hardware and some software and start
extracting data.

We know some of you are thinking, “Oops, I already
bought the ETL server and the user reporting tools.” That’s

56

probably okay, but put those tools aside for the moment.
Step away from the keyboard. If you get sucked into the
technology, you’re missing the whole point. You can build
a technically great DW/BI system that provides very little
business value. As a result, your project will fail. You have
to start with business value, and identifying business value
involves several major steps:

• Recruiting strong business sponsorship
• Defining enterprise-level business requirements
• Prioritizing business requirements
• Planning the project
• Defining project-level business requirements

We’ll run through each of these steps in the following
sections.

Obtaining Sponsorship

Developing solid business sponsorship is the best place to
start the DW/BI project. Your business sponsors (it is
generally good to have more than one) will take a lead role
in determining the purpose, content, and priorities of the
DW/BI system. You will call on them to secure resources
and to evangelize the DW/BI system to the rest of the
organization. This includes activities such as arranging for
a planning meeting with senior staff, speaking to a room
full of business users at the project kick-off, and getting
spending approval for your new server. You need to find at
least one person in the organization who scores well in
each of the following areas:

57

• Visionary: Someone who has a sense for the value and
potential of information and some clear, specific ideas on
how to apply it.

• Resourceful: Someone who is able to obtain the necessary
resources and facilitate the organizational change the data
warehouse will bring about.

• Reasonable: Someone who can temper his or her enthusiasm
with the understanding that it takes time and resources to
build a major information system.

If you’ve been with your company for a while, you already
know who these people are. In this case, your task is to
recruit them onto the project. However, if you’re new to
the company, or you don’t get out of the IT group much,
you’ll need to investigate and find your business sponsors.
In either case, the best way to find and recruit these people
is by conducting an enterprise business requirements
gathering project. Obtaining business sponsorship is fairly
easy and well worth the effort. Good business sponsorship
can provide the resources and support you need to deliver
real business value.

RESOURCES

Learn more about developing sponsorship
in The Data Warehouse Lifecycle Toolkit,
Second Edition, pages 16–21.

Defining Enterprise-Level Business Requirements

The successful DW/BI effort is an ongoing program
guiding the multiple, iterative projects that build out the

58

DW/BI system. Before you concentrate your efforts on
specific projects within the larger data warehouse
endeavor, you need a broad enterprise perspective that will
help you set priorities and make better, more flexible
implementation decisions. One long-term goal of the DW/
BI team is to build an enterprise information infrastructure.
Clearly, you can’t do this unless you understand business
requirements from an enterprise level.

We almost always preface the first iteration of the
Lifecycle with an enterprise business requirements
definition project. This project is essentially a set of
interviews, documentation, and a prioritization session
with senior management. It provides a clear
implementation plan for the DW/BI system, and it can be
done in three to six weeks for most organizations.

Every DW/BI program has to keep the enterprise
requirements context in mind. Larger organizations need to
begin by establishing this broad understanding because it
is rare for the DW/BI team to have such an enterprise-level
perspective. Even in a smaller company or a departmental
effort, the enterprise perspective will help build in
flexibility and resilience. It is also particularly important
for organizations that are just starting their first DW/BI
system (or starting over) because getting the enterprise
perspective built into the initial project helps you avoid
painful and costly redesign down the road. By the same
token, DW/BI systems that are well into their
implementation will gain by taking a little time to validate
their understanding of the enterprise business
requirements. This usually results in significant changes to
the DW/BI system strategy. Better late than too late.

59

Given this need for an enterprise perspective, it’s best to
preface your first Lifecycle iteration with a narrow-scoped
enterprise requirements definition project as shown in
Figure 1-2.

In this subsection of the Lifecycle, defining the business
requirements happens in several distinct steps. The rest of
this section describes each of these steps in more detail.

Figure 1-2: Prefacing the core Lifecycle with an
Enterprise Requirements phase

Business Process: The DW/BI System Unit of
Work

We use the term business process to mean an
operational activity the organization engages in to
accomplish its primary goals. You can think of
business processes as the links in the organization’s

60

value chain. Each business process typically has its
own operational system or module that enables it,
such as the order entry system, or the call tracking
system, or the inventory management system. The
information generated by these business processes
measures only the business process itself, but that
information usually has value well beyond the
boundaries of the individual business process.
Information from a single business process, such as
orders information, could be of great interest to
sales, marketing, customer service, and other
groups across the organization.

Each business process is a unique, coherent
measurement system implemented as an
operational system. If you need data from a given
business process, you need to extract that data in its
business context. In other words, you need to pull
the measures and all of the associated descriptors
in a careful, systematic fashion. This makes the
business process the fundamental unit of work for
the DW/BI system. Unless you have unlimited
resources, your DW/BI team will concentrate on
designing and loading data from one business
process at a time.

Establishing Initial Enterprise Requirements Project Scope

The initial scope usually covers only the enterprise-level
requirements definition and requirements prioritization
steps, leaving the detailed project implementation plan for

61

later when you have a much better idea of what the project
needs to accomplish from a business perspective. The
requirements and prioritization usually involve user
interviews, interview write-ups, a few meetings, and the
creation of the final requirements document. It typically
takes three to six weeks (or more) depending on how many
interviews you do.

Combining Enterprise and Project
Requirements Gathering

Some organizations we’ve worked with have a
clear understanding of which business process is
their top priority right from the start. In these cases,
we often combine the enterprise requirements
definition step and the project requirements
definition step into a single effort.

This does not lessen the importance of
understanding the full range of enterprise
requirements for information. In fact, we almost
always go through the enterprise prioritization
process with senior management. However,
because the top priority is clear early on, we make
sure we gather enough detailed information about
that business process and the data it generates in
the same interview set so we can create the design
for the first business process in one pass instead of
two.

62

RESOURCES

Learn more about DW/BI project planning
and management in Chapter 2 of The Data
Warehouse Lifecycle Toolkit, Second
Edition.

Gathering and Documenting Enterprise-Level Business
Requirements

The enterprise requirements definition step is designed to
gather a broad, horizontal view of the organization from a
business point of view. The process flow chart in Figure
1-3 breaks the Enterprise requirements definition box from
Figure 1-2 down into its subtasks. As you see in Figure
1-3, the bulk of the work involves gathering and
documenting those requirements.

While the four steps that are circled on the left side of the
figure are shown as separate subtasks, we usually do them
in a pipeline fashion, conducting and documenting an
interview, and extracting its analytic requirements. As the
interviews progress, we begin synthesizing what we’ve
learned, identifying the business processes that support the
users’ analytic needs. At the same time, it’s important to
conduct initial data profiling to match analytic needs with
data realities. At the end of the interview process, we build
an initial bus matrix to summarize the business processes
we’ve heard about during the interviews. We describe the
bus matrix and each of the core subtasks in Figure 1-3 in

63

this section, leaving the senior management prioritization
session for its own section.

Figure 1-3: The enterprise requirements definition process
flow chart

64

65

Preparation

Requirements definition is largely a process of
interviewing business and technical people, but before you
get started, you need to do a little preparation. Learn as
much as you can about your business, your competitors,
your industry, and your customers. Read your
organization’s annual report; track down any internal
strategy documents; go online and see what’s said about
your organization, the competition, and the industry in the
press. Find out what the big challenges are. Learn the
terms and terminology the business people use to describe
what they do. In short, do your homework.

Part of the preparation process is figuring out whom you
should actually interview. This usually involves carefully
examining an org chart with your sponsor and other key
supporters. For the enterprise requirements pass, start the
interview list with the CEO and senior staff. Add the
analysts and managers who are known as leaders in the
business intelligence area — folks whom senior
management and co-workers turn to when they need
information. They are also usually the folks who bug IT
the most. If you’ve been at your company more than 12
months, you know who these people are. They have their
own Access databases, they write SQL against the
transaction system, and they create reports and charts with
whatever tools they have available (mostly Excel and
Access). Finally, add on a couple of the key IT folks who
can educate you about the nature of the source systems and
the quality of the data they collect.

66

NOTE

You are just making the list of whom to
interview at this point, not the interview
schedule. When you do start the schedule,
begin with a few people you know and trust
before you turn to senior management. At
the same time, make sure you get the
elusive executives on the calendar as early
as possible. Some of these folks can be
tough to pin down.

A major goal during the interviews is to build positive
working relationships with the business folks. These
relationships will hinge on your understanding of the
business issues your organization faces. In short, be
prepared. Fortunately, gathering this information is not as
difficult as it used to be, thanks to the internet. However,
you still have to read it.

RESOURCES

You can find additional information about
preparing for interviews in The Data
Warehouse Lifecycle Toolkit, Second
Edition, pages 68–80.

Adventure Works Example: Preparation

67

Much of preparation is about knowing your business. Not
being a real business, Adventure Works does not have
much strategic or market information available. However,
you can get a good sense for the nature of any business
with SQL Management Studio and a basic knowledge of
SQL, or even better, a query tool like Report Builder 3.0.
You also need permission to query the source system (or a
copy of it, so you don’t cause any transaction problems).

A few simple SELECTs and SUMs can tell you what
products are selling well, where they are selling, who is
selling them, and how this has all changed over time. At
Adventure Works, you could quickly find out that over 80
percent of their business is bicycles, versus clothing or
accessories, and almost half their business is overseas.
From a time series perspective, the company has been
growing rapidly and the internet sales channel is a major
contributor to this growth. Figure 1-4 shows a pivot table
of the results of a query against the
AdventureWorks2008R2 transaction database.

Figure 1-4: Adventure Works sales by category by year

68

If you have a couple of hours, you can dig into other parts
of the business, such as customer support, manufacturing,
and finance.

DOWNLOADS

See the web content for more examples of
these kinds of queries and results for the
Adventure Works business.

Conduct Business and IT Interviews

The key to success in requirements interviews is to
remember your overall mission. You are designing a
system to add significant long-term business value. The
most common mistake in these interviews is to ask the
business person what they want (or need). Asking this
question is the equivalent of abdicating your design
responsibility. You are saying, “Tell me what you want
and I’ll build it.” At best, you will get a limited description
of what the person wants to solve today’s problem. For
example, you may get a request to have all the data
provided for a given report in an Excel format. This may
sound great to you because it is easy to understand and
execute. So, you go off to extract, clean, and load that data
into a data warehouse, then set up a distribution system to
put it into Excel and email it to the analyst every night.
Once you are finished, you show it to the analyst, and they
say, “It’s nice, but what I really want is this other report in
an Excel format.” This is when we hear statements like
“The business people don’t know what they want!” Or,

69

“The business people don’t understand business
intelligence!”

This lack of understanding is not their fault, and it’s an
easy mistake to avoid by changing the questions you ask in
the interview. Remember, it’s your job to design the
system. In order to do that, you have to understand the
business; you need to know what your users do and how
they use information to do it. Once you know this, the
required system designs, data models, and BI applications
all become clear.

The easy way to find this out is to start out with the simple
question: “What do you do? Tell me about your roles and
responsibilities.” Explore each of the areas they describe in
terms of the information they need, and the value they
provide to the organization (or could provide with better,
more accessible information). Be flexible and follow the
leads provided by the interviewee. Avoid sticking to a
predetermined script planned in too much detail.
Interviewing is a very valuable skill.

RESOURCES

For more in-depth interviewing tips and
techniques, see the articles in the Kimball
Group Reader on pages 113 and 117.

In this first pass at gathering requirements, you will
interview more senior level folks across the different
departments and get a comprehensive list of the major

70

challenges and opportunities your organization faces.
These challenges and opportunities often (but not always)
line up with the strategic goals and initiatives of the
organization.

You will also interview some of the source systems experts
to understand the structure and content of the source
systems and the nature of any data problems that might be
lurking out there. You must also perform data profiling on
all candidate data sources. (Data profiling is described in
an upcoming section.)

Debrief and Document Interviews

At the end of each interview the interview team must take
a few minutes to debrief. Review your notes, fill in the
blanks, make sure you understand the terms you heard, and
capture the key issues. The longer you wait to do this, the
less you will remember. We’ve found ourselves staring at
a sentence that reads, “The most important factor in our
business is . . .” with no idea what came next. Debrief as
soon as possible. As you go through your notes, highlight
and add comments to fully describe the following items:

• Common, repetitive business requirements themes
• Business processes (data sources) needed
• Business requirements for specific reports and analyses
• Misunderstandings or incomplete notes (the lead interviewer

should keep a list of open issues)
• Data or other feasibility issues known to the team
• Success criteria

The individual interviews will yield a wealth of
information including descriptions of the analytic

71

requirements and their associated business processes, a
starting point for the organization’s overall information
architecture, and a list of any feasibility issues such as poor
data quality.

Identifying the business requirements for analytics is the
hardest part. Depending on who you are talking to, similar
analytic opportunities may be described broadly or
specifically. As the interviews progress, you’ll see
common requirements repeated over time. For example,
the marketing person responsible for internet promotions
might describe an opportunity to improve promotion
response and conversion rates by better targeting certain
geographic and demographic subsets of the population.
The person responsible for product promotions might
describe an opportunity to improve conversions by
offering product recommendations based on customer
behaviors. Both of these opportunities could be grouped
together under a broader heading called Improve Customer
Acquisition.

Each of these broader analytic themes should have brief
descriptions of the kinds of reports or analyses you heard
in the interview. It should also include some sense of the
business value of meeting the requirements. In other
words, how much is improving customer conversion rates,
or negotiating better prices and terms worth? Look for
action words to identify these opportunities. Words like
improve, reduce, increase, and enhance all lead to a
business requirement we’d like to know about.

Do not put this review off. After a day of interviews, you
will have a hard time remembering who you spoke with,

72

let alone the details of what they said. Be cautious about
scheduling too many interviews in one day. Our rule of
thumb is four interviews and four debriefing periods per
day.

It’s a good idea to write up a summary document of each
interview based on the annotated set of interview notes as
soon as you can. This is more work because you need to
summarize the various analytic areas covered in the
interview, but it is a good communication and
relationship-building tool with the business folks. Share
this summary with the interviewee and ask for feedback; it
shows that you listened to what they had to say and have
an interest in helping. It also gives them a chance to clarify
any misunderstandings and add any relevant items they
overlooked.

RESOURCES

You can find additional information about
conducting the interviews and debriefing
on pages 80–85 of The Data Warehouse
Lifecycle Toolkit, Second Edition.

Adventure Works Example: Interview Documentation

Adventure Works has close to 300 employees. The CEO
has seven direct reports, and the vast majority of
employees are manufacturing workers. In most small- to
medium-sized organizations like this, you could build a
solid set of business requirements for analytics by

73

speaking to most of the senior staff and a subset of
managers and analysts; maybe 15 people, plus or minus
five.

The primary content of each interview summary write up
will be a list of business analysis requirements. Each
analytic requirement should also include a list of the
business processes that generate the data needed to support
the analysis, and any associated issues or concerns, such as
data quality or availability problems. Figure 1-5 shows a
summary of the business requirements identified by the VP
of Sales.

DOWNLOADS

You can find an Adventure Works
organizational chart and an example
interview summary from the Adventure
Works VP of Sales in the web content
downloads.

It should come as no surprise that most of the VP of Sales’
business requirements for analysis are based on data from
the orders business process. However, there are several
other business processes that inform decision making for
the sales department. Note that the VP has described a
requirement for a customer satisfaction dashboard. By
decomposing it to its underlying data sources, it becomes
clear that you will need data from three major source
systems: orders, call tracking, and returns. This means
three iterations of the Lifecycle with three sets of ETL

74

code, BI applications, testing, and deployment. Now is a
good time to start educating and setting expectations.

Data Auditing/Data Profiling

At the same time you are interviewing people and creating
the summaries, you will also need to do some queries
against the source system data to get a firsthand
understanding of the data issues. This kind of querying has
come to be known as data profiling or data auditing, and
there are several tools on the market designed to support it.
There are three major points in the Lifecycle where data
profiling is helpful. The first is here, during the
requirements definition process where you should do a
simple red light/green light assessment of your
organization’s data assets. You aren’t looking for nuances
at this point, but if a data source needs to be disqualified,
now is the time. The second place to do data profiling is
during the design of the dimensional model, and the third
is during the design and implementation of the ETL
process. You will want to do more in-depth data profiling
once you select a specific business process and begin
defining project-level business requirements. We describe
data profiling in more detail when we discuss the
dimensional modeling process in Chapter 2.

Figure 1-5: Business requirements and supporting
business processes from the interview summary

75

Creating the Program Requirements Findings Document

76

The overall findings document for the enterprise-level
requirements includes the business process summaries, the
bus matrix, and the prioritized results. You might want to
include the interview summaries as an appendix for those
readers who want all the detail.

The bulk of the requirements document will be a list of the
business processes and the business requirements they
support. Each business process section should include
some sense for the business value it would generate, the
data quality and other feasibility issues associated with it,
and the parts of the organization that will benefit from it.
Some of the requirements on the list may represent new
ways of doing business and will require new transaction
systems, or at least significant changes to existing
transaction systems. But even a quick review of the simple
list provided begins to bring out ideas about how the DW/
BI system can address some of these needs in the short
term.

Synthesize Around Business Processes

The goal here is to tie the business requirements back to
the underlying data needed to make them happen. This is
the primary factor in determining the level of effort
required to deliver a solution to a given business
requirement.

As you extract the business requirements from the
interview summaries, you need to dig into each
opportunity to identify the business process (or processes)
that generate the data needed to perform the desired
analyses. For example, the requirement to reduce

77

purchasing costs through better contract negotiations can
be supported by historical data from the purchasing
transaction system. You convert from requirements to
business processes because business processes are the units
of work in building the DW/BI system. Each business
process is usually measured by a single source system
module, which translates into a single pass through the
Kimball Lifecycle process. (Refer back to the related
sidebar, “Business Process: the DW/BI System Unit of
Work,” for more information.)

Although many business requirements need information
only from a single business process, one challenge you
will face is that some requirements need data from
multiple business processes to meet the overall analytic
needs. Customer and product profitability analyses are
good examples. The “customer scorecard” may sound like
a single analysis, but it actually requires data from many
separate business processes. We call these consolidated
requirements (or, occasionally, second level business
processes) because they cannot be completely built until
data from all prerequisite business processes have been
loaded into the data warehouse.

Tying business requirements to the underlying business
processes helps determine the level of effort needed to
support a given requirement. If a requirement must have
data from more than one business process, it will take
more than one iteration of the Lifecycle. While these
passes can happen in parallel with additional resources,
there is no way around doing the work.

78

Converting from business requirements to business
processes involves thinking about which business
processes are required to support each requirement. For
example, you can get a start at improving promotion
response rates with data from a single business process:
orders. As long as the order data captures a promotion
code, you can calculate response rates and purchase
amounts associated with each promotion. Better analysis
would need to include data from the promotions business
process; specifically, what was the total population of
prospects who received a promotion. Now you can see
who responded from orders, and who didn’t from
promotions. In the best case, you may want to bring in
demographic data for prospects and use a data mining
model to help identify the characteristics of prospects that
are more likely to respond to a given promotion.
Ultimately, complete promotions analysis would need data
from at least three business processes (at least one,
demographic data, comes from an external source). If
improving promotion response rates is a top business
priority, this decomposition process will help you show
why it will take three iterations to complete the required
data set. It will also show that basic analysis can begin
once the first business process (orders) is loaded.

The most demanding type of business requirement is often
called a scorecard or executive dashboard. This
deceptively simple application draws on data from almost
all business processes in the organization. You can’t create
the entire dashboard until you’ve built the whole data
warehouse foundation. Or worse, you end up building the
dashboard by hand every day, manually extracting,
copying, and pasting data from all those sources to make it

79

work. It can be difficult to get business folks to understand
the magnitude of the effort involved in creating this
“simple” report.

Adventure Works Example: Enterprise Requirements
Documentation

This section walks you through the steps to create a
requirements findings document for the Adventure Works
example. The easiest way to create the requirements
summary is to start with the requirements from one
interview, such as those shown in Figure 1-5, and add in
requirements from subsequent interviews. Often
requirements from different interviews will fall into
existing business requirements categories.

To understand what analyses will be enabled by each
iteration of the Lifecycle, you need to re-sort the
requirements by business process. Table 1-1 shows a
subset of the analyses enabled by each individual business
process. The Letter column is meant to serve as a
shorthand reference you may use later in the prioritization
process.

This table includes analytic requirements from across the
Adventure Works enterprise. The VP of Sales’
requirements are underlined. You should keep track of
where the individual requirement for analysis came from
within the organization. This will help you track back to
the originator later on, after you re-sort the requirements
by underlying business process.

80

Table 1-1: A subset of business processes derived from
the requirements interviews

Letter Business
Process

Supported Business Analyses

A Orders

Orders reporting and analysis, orders forecasting,
advertising effectiveness, customer satisfaction,
production forecasting, product profitability, customer
profitability

B Orders
forecast

Sales performance, business planning, production
forecasting

C Call
tracking

Call center performance, customer satisfaction, product
quality, call center resource planning, customer
profitability, product profitability

D Returns Customer satisfaction, product quality, customer
profitability, product profitability, net sales

Building the Initial Data Warehouse Bus Matrix

As you identify the business processes needed to support
each analytic requirement, you will also add those business
processes to an enterprise data framework called the Data
Warehouse Bus Matrix. This matrix maps your
organizational business processes to the entities or objects
that participate in those processes.

Each row in the matrix is a business process. Figure 1-6
shows a simplified example bus matrix for a retail
company. Notice how the business processes down the left
side of the matrix follow the organization’s value chain. In
this case, the company buys goods from their vendors and
stores them in distribution centers. Then, as goods are
demanded by consumers, they are moved out to the retail
stores where they’re held on shelves until the customer
buys them and the goods leave the company’s value chain.

81

These business processes generally correspond to
individual source systems or modules in the overall
Enterprise Resource Planning (ERP) system.

The columns in the bus matrix are the descriptive objects
that participate in the various business processes, such as
store, product, and date. They contrast with the
measurement-driven business processes that label the rows
of the matrix. We call these objects dimensions in the
dimensional model. Each dimension participates in one or
more business processes — we indicate this by placing an
X in the intersecting cell in the matrix. For example, the
Vendor dimension is involved in both the purchasing and
delivery processes. The store sale business process, on the
other hand, does not involve the vendor or distribution
center.

Figure 1-6: Example enterprise bus matrix for a retail
company

The bus matrix is essentially your enterprise dimensional
data architecture. For each business process (row), you can
see exactly which dimensions (columns) you need to
implement. And for each dimension, you can see which

82

business processes it must support. This
dimension-oriented view is the visual representation of
conformed dimensions — a concept we define in the next
chapter.

The business processes in the bus matrix, and the analytic
requirements they support (and the value those
requirements represent) become the major inputs to the
next step in the requirements definition process: a
prioritization session with senior management.

Adventure Works Example: Bus Matrix

As you go through the interview process, you may be
surprised to discover a many-to-many relationship between
people and data. That is, people need access to data from
multiple business processes, and many people often want
to look at data from the same business process, but from
their own business perspective. For instance, people in
marketing might be interested in orders data by product
over time, while folks in sales might be interested in the
same orders data, only by sales rep and region. As a
reminder, this means you would design the orders data
model at the atomic level so the same data set could be
used to support both sales and marketing. It does NOT
mean you should have two separate data marts, one for
each department.

Figure 1-7 shows the start of a bus matrix for Adventure
Works based on the interview with the VP of Sales that is
included on the book’s web site.

83

Figure 1-7: Bus Matrix business processes referred to in
the VP of Sales interview

Here you see that one person, the VP of Sales, is interested
in data from five different business processes.

Once you’ve got the requirements documented, it will
become clear that you can’t deliver them all at once. The
prioritization process will help you and your organization
figure out the appropriate order of events.

Prioritizing the Business Requirements

If you’re a technical person, it’s safe to say the
prioritization process we describe here is one of the most
powerful business tools you’ll ever use. This is a bold
statement, but we have used this tool many times and have
been repeatedly successful. We’ve conducted a few
prioritization sessions where the client decided not to
move forward with the DW/BI project right away. This

84

decision is usually reached because the prioritization
process helped senior management better understand the
nature of the commitment or the size of the data problems.
This is also a success because it means they will work to
fix the problems rather than try to build a DW/BI system
on shaky ground.

The prioritization process is a planning meeting involving
the DW/BI team, the DW/BI project business sponsors,
and other key senior managers from across the
organization.

In this meeting, you describe the business processes you
identified in the enterprise requirements gathering process
so everyone has an understanding of the full list of
possibilities. Go into this session armed with a PowerPoint
presentation that describes each business process, gives a
few examples of the associated analyses it will support
along with a feel for the business value of those analyses,
and includes an initial sense of level of effort needed to
implement the business process (its feasibility). Be as crisp
and clear as possible. Try to keep this presentation under
90 minutes. As you describe each business process, you
also describe the relative effort involved in supplying the
needed data. Once everyone has an understanding of the
business processes and terminology, take a break.

The second half of the session involves prioritizing the
business processes. Lead the group in placing a sticky note
for each business process onto a large version of a
two-by-two grid like the Adventure Works example shown
in Figure 1-8. This is an interesting exercise in negotiation

85

and education and can easily take another hour and a half
or more.

Figure 1-8: Example prioritization grid from Adventure
Works Cycles

The prioritization grid is deceptively simple: Study it
carefully. The Y axis is about relative business value. The
group needs to reach consensus on the relative impact of
implementing each business process. The participants need
to remember to take an organizational approach to
assigning business value. There will always be someone
who thinks any given business process is the absolute top
priority. Gently remind them that there’s more to the
business than their little slice.

The X axis represents the level of effort each business
process will take to implement. It is stated in terms of
relative feasibility so the easier business processes go to
the right (high feasibility) and the harder business

86

processes go to the left (low feasibility). The DW/BI team
leads the assignment of feasibility because team members
have a better sense about the technical difficulties involved
in each business process (although feasibility is not just
technical — there are often organizational and political
difficulties as well).

The true feasibility is not fully understood at this point. If
you have someone on the team who’s been in the
organization long enough, she should have a good sense
for the level of effort required to implement each business
process. One obvious factor is when business processes
must be implemented together to support a high value,
consolidated theme, such as customer or product
profitability.

The prioritization session is a good opportunity to educate
the business folks about how bad things really are. You
don’t want to sound negative, but it’s important to explain
the level of effort it takes to gather the data and make it
useful. For example, integrating customer IDs from two
different source systems is a grind.

When reviewing Figure 1-8, note that there are two items
on the grid that are not actually business processes.
Customer profitability and product profitability are
consolidated themes that senior management has expressed
significant interest in analyzing. These have been included
on the grid to show their importance, but they are far over
to the left to indicate the difficulty involved in building all
the needed business processes. Given the number of
analyses supported by data from the orders business

87

process, it should come as no surprise that orders is the top
priority. The team should get to work on this right away!

A Credibility Booster

The prioritization process uses a common business
school tool called the two-by-two matrix. This
matrix was popularized in the early 1970s by the
Boston Consulting Group. BCG used a
“Growth-Share Matrix” to compare different
business units in a portfolio by comparing relative
market share with industry sales growth rates. A
business unit with high market share in an industry
with high growth rate was called a “Star.” By
contrast, a business unit with low market share in a
low-growth industry was a “Pet” (later referred to
as a “Dog”).

The great thing about the matrix is the positive
impression the DW/BI team makes by cleverly
adapting a classic MBA tool.

Sources: The Boston Consulting Group,
Perspectives on Experience, and The Product
Portfolio (Boston, MA: The Boston Consulting
Group, 1968).

Once all the business processes have been placed and
everyone agrees on their relative locations, convert the
matrix to a prioritized list of projects. One way to do this is
to start in the upper-right corner of the prioritization grid

88

and move to the lower-left corner, numbering the business
processes as you encounter them. The two-dimensional
nature of the matrix makes this a little difficult. Use the
concept of concentric circles to establish a priority order,
like ripples on a pond, centered in the upper-right corner.

The output of the prioritization process is a list of business
processes in priority order. This list is your DW/BI
roadmap; it tells you which row on the matrix, and which
dimensions, to implement first. Less tangible, but equally
important outcomes of the prioritization process are senior
management consensus around the DW/BI roadmap, and a
general improvement in the relationships between IT and
the business.

In most cases, you will make only one pass at the
enterprise requirements. Once the priorities are in place,
the next pass and all subsequent passes will be at the level
of the individual row on the bus matrix, the business
process. Each row essentially becomes a project in the
overall DW/BI program. From here on out, you will update
enterprise business requirements and revisit priorities as
the business changes, but most requirements definition
efforts will be at the business process project level.

RESOURCES

Learn more about the requirements
prioritization process on pages 91–93 of

89

The Data Warehouse Lifecycle Toolkit,
Second Edition.

Once you’ve completed the prioritization session you can
finalize the overall requirements document by including
the resulting list of prioritized business processes. At this
point the conceptual foundation of the DW/BI system is in
place. The rest of the Lifecycle depends on what you
learned in these initial steps to make decisions and set
priorities for all three tracks that follow, and on into the
deployment, maintenance, and growth phases.

RESOURCES

You can find additional information about
creating the requirements deliverables on
pages 85–91 of The Data Warehouse
Lifecycle Toolkit, Second Edition.

Revisiting the Project Planning

Now that you have a clear idea of your top priority
business process, the data it generates, and the business
requirements it supports, you can lay out a more detailed
and precise project plan. This process is not much different
from project planning for any major information
technology project.

90

The plan will continue to evolve as you get more detail
about the business requirements in the next step. There is a
two-way arrow between the project planning and business
requirements definition steps in Figure 1-1, but the
backward flow is not as large because you gained
significant understanding of the nature of the opportunity
in the enterprise requirements gathering and narrowed your
scope in the prioritization process.

Gathering Project-Level Requirements

Gathering project requirements follows the same basic
process as the enterprise requirements gathering process
described earlier. The difference is that now you have
selected a particular business process on the bus matrix to
implement. The enterprise requirements definition process
provides a solid foundation for the project requirements.
You now will deepen your understanding of the chosen
business process.

The project requirements gathering step is about pulling
together the information you need to be successful in the
three tracks that follow. Specifically, you need enough
detail to create real, practical, flexible data models that will
support a broad range of analytic needs. You need a solid
understanding of the technical issues around data volumes,
data cleaning, data movement, user access, and a host of
other issues so you can create a capable, flexible technical
architecture to support the warehouse now and in the
future. Finally, you need a clear understanding of the
business analysis requirements to build the initial set of
business intelligence applications to demonstrate value
from the very start.

91

The same three steps you followed in the enterprise
requirements process apply to the project requirements
process: preparation, interviews, and documentation.

As we described in the enterprise requirements section,
preparation is the critical first step. If you haven’t already,
do your homework. Study the particular business process
in detail. Figure out as much as you can about how it
works before you begin the interviews. Learn the business
terminology, the steps in the business process, and how it
is measured.

The goal with this round of interviews is to drill down on
the selected business process in detail to understand the
analyses, data models, and technologies required to make
it work. This time you may take a more vertical slice of the
organization, depending on the business process (some
business processes have broader organizational appeal than
others). Talk to the analysts, managers, report developers,
and source systems people who can help you understand
the intricacies of the business process in question. The
actual interview process itself is generally the same as
before.

Applying this interview approach to the Adventure Works
example, the team will need to hold an additional set of
interviews to drill down on orders-related analyses before
it can start working designing the Orders business process
dimensional model. The team needs to understand several
issues that were raised in the enterprise requirements
process. We’ll look at the impact of a detailed
understanding of questions like, “What is a customer?”
and, “How do we determine the Sales Territory?” in the

92

next chapter, which is on dimensional modeling. The team
should also get more specific about the kinds of new
reports and analyses people want to see as input to the BI
Application track.

In fact, all of the information gathered in this second pass
becomes the grist for the Adventure Works Cycles
business dimensional modeling process case study in
Chapter 2.

Alternatives to Individual Interviews

If interviews won’t work in your situation, we have
had success with group requirements gathering
sessions, but they are more risky. If you must do
group sessions, here are a few tips:

• Preparation is even more important. You have to
know the business, and you also have to know what
you want to accomplish and how you are going to go
about it.

• Have a clear agenda with times listed for each
section, breaks, and food and drink. Reserve a good
room with plenty of space and comfortable chairs.
Make sure you have all the tools you need — flip
charts, markers, white boards, computers, and a
projector — whatever makes sense for your plan.

• Get a strong, experienced design meeting leader to
run the meetings. You have only a short time. If
someone takes the meeting off course, you won’t get
what you need.

Depending on the business process selected, consider
whether to interview your customers and suppliers. They
are, or could be, business users of information in the DW/

93

BI system. In fact, the need to offer information outside
the organization is common enough that many of the BI
tool vendors include extranet access functionality as part
of their product line. Listen carefully during the interviews
to see if this is a likely source of significant business value
for your organization.

Interviews with key source system people and data
profiling play a bigger role in the project requirements
gathering process. Strive to learn as much as possible
about both the business requirements and the data realities.

The documentation process for the project requirements is
similar to that of the enterprise definition process, except it
is more detailed. Where the analytic requirements at the
enterprise level ranged across all the business processes, at
the project level, they should all be focused on the initial
business process.

Although the project requirements definition task sounds a
bit abbreviated here, it is actually the definition task you
will repeat over and over, every time you iterate through
the Lifecycle to bring the next priority business process
into the DW/BI system. Let’s hope you need to do the
enterprise-level task only once, and then keep it updated.

RESOURCES

To learn more about defining project level
requirements, see pages 93–101 of The

94

Data Warehouse Lifecycle Toolkit, Second
Edition.

Search kimballgroup.com for the topics “Business
Requirements” and “Business Acceptance” for several
related articles.

Summary

This chapter concentrated on the early tasks in the
Lifecycle involving business requirements gathering,
prioritization, and project planning. We gave special
emphasis to the importance of understanding and
documenting the business requirements.

We described a process for gaining sponsorship, defining
and documenting the enterprise-level business
requirements, prioritizing the opportunities with senior
business people, and gathering project requirements related
to the top priority business process. This process also
included the challenging task of tying the analytic
requirements down to the business processes that provide
the underlying information.

The chapter also summarized some of the business
requirements that might be found at a company like
Adventure Works Cycles. The VP of Sales provided a set
of analytic business requirements that tied to the business
processes that fed into the bus matrix and the prioritization
process.

95

These upfront business-related phases of each DW/BI
project iteration are the most important. Unfortunately,
they can be intimidating for technologists. Do not resist or
avoid the requirements gathering phase of the project. The
resulting understanding of the business issues, their
priorities, and the data that supports their solution is
priceless for the DW/BI team. The requirements document
will be your reference point for all major decisions from
here on out. You get huge value just from the content of
the document alone.

But wait, there’s more! The requirements gathering
process also helps you build positive working relationships
with the business people. As the business people
participate in the requirements process, they see that
you’ve done your homework. You understand them, you
speak their language, you want to help solve the problem
— in short, you get it.

If that’s not enough to convince you, there are even more
benefits to this process. Not only do you get documented
requirements and better relationships, you gain active user
support. As the business folks begin to understand your
vision for an information solution, they see how your
success ultimately leads to their success. They begin to see
how their involvement will improve the chances of success
for the DW/BI system and for the business itself.

96

Chapter 2

Designing the Business Process Dimensional Model

“To arrive at the simple is difficult.”

— Rashid Elisha

This chapter is about the basic concepts of dimensional
modeling and the process of designing a business process
dimensional model. Designing the dimensional model falls
within the central section of the Kimball Lifecycle, as
shown in Figure 2-1. This middle row of the Lifecycle’s
central section focuses on data, hence the clever name: the
data track. The main objective of the data track is to make
sure users get the data they need to meet ongoing business
requirements. The key word in this objective is ongoing:
Your goal in this step is to create a usable, flexible,
extensible data model. This model needs to support the full
range of analyses, both now and for the foreseeable future.

The dimensional model is the true heart of the DW/BI
system. It is the target for the ETL system, the structure of
the database, and the model behind the user query and
reporting experience. Clearly, the model must be well
designed. The first part of this chapter is a brief primer on
dimensional modeling, including an overview of facts,
dimensions, the data warehouse bus matrix, and other core
concepts. The second major section of the chapter delves
into more detail on several important design techniques,
such as slowly changing dimensions, hierarchies, and
bridge tables. Once the basic concepts are in place, the

97

third section presents a process for building dimensional
models.

The fourth part of the chapter describes a dimensional
model for the Adventure Works Cycles orders business
process, providing an opportunity to explore several
common dimensional modeling issues and their solutions.

Figure 2-1: The dimensional modeling step in the
Lifecycle context

RESOURCES

This chapter describes what a dimensional
model is, why it’s a useful design technique
for a DW/BI system, and how to go about
designing a strong data foundation. You
cannot possibly learn everything you need
to know about dimensional modeling in a

98

single chapter — even a long one like this.
For additional detailed guidance on the
techniques, including industry case studies,
we refer you to The Data Warehouse
Toolkit, Second Edition, Ralph Kimball and
Margy Ross (Wiley, 2002). We provide
page references for more information on
specific concepts and techniques
throughout this chapter.

Dimensional Modeling Concepts and Terminology

We approach the modeling process with three primary
design goals in mind. We want our models to accomplish
the following:

• Present the needed information to users as simply as possible
• Return query results to the users as quickly as possible
• Provide relevant information that accurately tracks the

underlying business processes

Albert Einstein captured the main reason we use the
dimensional model when he said, “Make everything as
simple as possible, but not simpler.” As it turns out,
simplicity is relative. There is broad agreement in data
warehousing and business intelligence that the dimensional
model is the preferred structure for presenting information
to users. The dimensional model is much easier for users to
understand than the typical source system normalized
model even though a dimensional model typically contains
exactly the same content as a normalized model. It has far
fewer tables, and information is grouped into coherent

99

business categories that make sense to users. These
categories, which we call dimensions, help users navigate
the model because entire categories can be disregarded if
they aren’t relevant to a particular analysis.

Unfortunately, as simple as possible doesn’t mean the
model is necessarily simple. The model must reflect the
business, and businesses are complex. If you simplify too
much, typically by presenting only aggregated data, the
model loses information that’s critical to understanding the
business. No matter how you model data, the intrinsic
complexity of the data content is ultimately why most
people will use structured reports and analytic applications
to access the DW/BI system.

Achieving our second goal of good performance is a bit
more platform-specific. In the relational environment, the
dimensional model helps query performance because of
the denormalization involved in creating the dimensions.
By pre-joining the various hierarchies and lookup tables,
the optimizer considers fewer join paths and creates fewer
intermediate temporary tables. Analytic queries against the
SQL Server relational database generally perform better —
often far better — against a dimensional structure than
against a fully normalized structure. At a more
fundamental level, the optimizer can recognize the
dimensional model and leverage its structure to
dramatically reduce the number of rows it returns. This is
known as star join optimization, and is, of course, an
Enterprise Edition feature.

In the Analysis Services OLAP environment, the engine is
specifically designed to support dimensional models.

100

Performance is achieved in large part by pre-aggregating
within and across dimensions.

Achieving the third goal requires a full range of design
patterns that allow us to create models that accurately
capture and track the business. Let’s start with the basic
patterns first. A dimensional model is made up of a central
fact table (or tables) and its associated dimensions. The
dimensional model is also called a star schema because it
looks like a star with the fact table in the middle and the
dimensions serving as the points on the star. We stick to
the term dimensional model in this book to avoid
confusion.

From a relational data modeling perspective, the
dimensional model consists of a normalized fact table with
denormalized dimension tables. This section defines the
basic components of the dimensional model, facts and
dimensions, along with some of the key concepts involved
in handling changes over time.

Facts

Each fact table contains the measurements associated with
a specific business process, like taking an order, displaying
a web page, admitting a patient, or handling a customer
support request. A record in a fact table is a measurement
event. These events usually have numeric values that
quantify the magnitude of the event, such as quantity
ordered, sale amount, or call duration. These numbers are
called facts (or measures in Analysis Services).

101

The primary key to the fact table is usually a multi-part
key made up of a subset of the foreign keys from each
dimension table involved in the business event.

Just the Facts

Most facts are numeric and additive (such as sales amount
or unit sales), meaning they can be summed up across all
dimensions. Additivity is important because DW/BI
applications seldom retrieve a single fact table record. User
queries generally select hundreds or thousands of records
at a time and add them up. A simple query for sales by
month for the last year returns only 12 rows in the answer
set, but it may sum up across hundreds of thousands of
rows (or more!). Other facts are semi-additive (such as
market share or account balance), and still others are
non-additive (such as unit price).

Not all numeric data are facts. Exceptions include discrete
descriptive information like package size or weight
(describes a product) or store square footage (describes a
store). Generally, these less volatile numeric values end up
as descriptive attributes in dimension tables. Such
descriptive information is more naturally used for
constraining a query, rather than being summed in a
computation. This distinction is helpful when deciding
whether a data element is part of a dimension or fact.

Some business processes track events without any real
measures. If the event happens, we get an entry in the
source system; if not, there is no row. Common examples
of this kind of event include employment activities, such
as hiring and firing, and event attendance, such as when a

102

student attends a class. The fact tables that track these
events typically do not have any actual fact measurements,
so they’re called factless fact tables. We usually add a
column called something like event count that contains the
number 1. This provides users with an easy way to count
the number of events by summing the event count fact.

Some facts are derived or computed from other facts, just
as a net sale number might be calculated from gross sales
minus sales tax. Some semi-additive facts can be handled
using a derived column that is based on the context of the
query. Month end balance would add up across accounts,
but not across date, for example. The non-additive unit
price example could be addressed by defining it as an
average unit price, which is total amount divided by total
quantity. There are several options for dealing with these
derived or computed facts. You can calculate them as part
of the ETL process and store them in the fact table, you
can put them in the fact table view definition, or you can
include them in the definition of the Analysis Services
database. The only way we find unacceptable is to leave
the calculation to the user.

NOTE

Using Analysis Services to calculate
computed measures has a significant
benefit in that you can define complex
MDX calculations for semi-additive facts

103

that will automatically calculate correctly
based on the context of each query request.

The Grain

The level of detail contained in the fact table is called the
grain. We strongly urge you to build your fact tables with
the lowest level of detail that is possible from the original
source — generally this is known as the atomic level.
Atomic fact tables provide complete flexibility to roll up
the data to any level of summary needed across any
dimension, now or in the future. You must keep each fact
table at a single grain. For example, it would be confusing
and dangerous to have individual sales order line items in
the same fact table as the monthly forecast.

NOTE

Designing your fact tables at the lowest
practical level of detail, the atomic level, is
a major contributor to the flexibility of the
design.

Fact tables are very efficient. They are highly normalized,
storing little redundant data. For most transaction-driven
organizations, fact tables are also the largest tables in the
data warehouse database, often making up 95 percent or
more of the total relational database size. The relational

104

fact table corresponds to a measure group in Analysis
Services.

Dimensions

Dimensions are the nouns of the dimensional model,
describing the objects that participate in the business, such
as employee, subscriber, publication, customer, physician,
vehicle, product, service, author, and store. Each
dimension table joins to all the business processes in which
it participates. For example, the product dimension
participates in supplier orders, inventory, shipments, and
returns business processes. A single dimension that is
shared across all these processes is called a conformed
dimension. We talk more about conformed dimensions in a
bit.

Think about dimensions as tables in a database because
that’s how you’ll implement them. Each table contains a
list of homogeneous entities — products in a
manufacturing company, patients in a hospital, vehicles on
auto insurance policies, or customers in just about every
organization. Usually, a dimension includes all
occurrences of its entity — all the products the company
sells, for example. There is only one active row for each
particular occurrence in the table at any time, and each row
has a set of attributes that identify, describe, define, and
classify the occurrence. A product will have a certain size
and a standard weight, and belong to a product group.
These sizes and groups have descriptions, like a food
product might come in “Mini-Pak” or “Jumbo size.” A
vehicle is painted a certain color, like “White,” and has a
certain option package, such as the “Jungle Jim sports

105

utility” package (which includes side impact air bags,
six-disc CD player, DVD system, and simulated leopard
skin seats).

Some descriptive attributes in a dimension relate to each
other in a hierarchical or one-to-many fashion. A vehicle
has a manufacturer, brand, and model (such as GM
Chevrolet Silverado, or Toyota Lexus RX Hybrid).
Dimensions often have more than one such embedded
hierarchy.

The underlying data structures for most relational
transaction systems are designed using a technique known
as normalization. This approach removes redundancies in
the data by moving repeating attributes into their own
tables. The physical process of recombining all the
attributes of a business object, including its hierarchies,
into a single dimension table is known as denormalization.
As we described earlier, this simplifies the model from a
user perspective. It also makes the join paths much simpler
for the database query optimizer than a fully normalized
model. The denormalized dimension still presents exactly
the same information and relationships found in the
normalized model — nothing is lost from an analytic
perspective except complexity.

You can spot dimensions or their attributes in conversation
with the business folks because they are often the “by”
words in a query or report request. For example, a user
wants to see sales by month by product. The natural ways
users describe their business should be included in the
dimensional model as dimensions or dimension attributes.
This is important because many of the ways users analyze

106

the business are often not captured in the transaction
system. Including these attributes in the warehouse is part
of the added value you can provide.

The Power of Dimensions

Dimensions provide the entry points into the data.
Dimensional attributes are used in two primary
ways: as the target for constraints and as the labels
on the rows and columns of a report. If the
dimensional attribute exists, you can constrain and
label. If it doesn’t exist, you simply can’t.

Bringing Facts and Dimensions Together

The completed dimensional model has a characteristic
appearance, with the fact table in the middle surrounded by
the dimensions. Figure 2-2 shows a simple dimensional
model for the classic example: the retail grocery sales
business process. Note that this is one of the business
process rows from the retail bus matrix shown in Figure
1-6 back in Chapter 1. It all ties together if you do it right.

This model allows users across the business to analyze
retail sales activity from various perspectives. Category
managers can look at sales by product for different stores
and different dates. Store planners can look at sales by
store format or location. Store managers can look at sales
by date or cashier. There is something for everyone in the
organization in this dimensional model. While this model
is reasonably robust, a large retail grocer would have a few

107

more dimensions, notably customer, and many more
attributes.

Figure 2-2: A basic dimensional model for Retail Grocery
Sales

In Figure 2-2, fields labeled PK are primary keys. In other
words, these fields are the basis of uniqueness for their
tables. In a dimensional model, the primary keys of
dimensions are always implemented physically as single

108

columns. The fields labeled FK are foreign keys, and must
always match the corresponding PKs in the dimensions in
order to ensure referential integrity. The field labeled DD
is a special degenerate dimension, which is described later.

RESOURCES

To grasp the concept of dimensions and
facts, it’s helpful to see examples of
dimensional models from a variety of
industries and business processes. The Data
Warehouse Toolkit, Second Edition has
example dimensional models from many
different industries and business processes,
including retail sales, inventory,
procurement, order management, CRM,
accounting, HR, financial services,
telecommunications and utilities,
transportation, education, health care,
e-commerce, and insurance.

The Bus Matrix, Conformed Dimensions, and Drill Across

The idea of re-using dimensions across multiple business
processes is the foundation of the enterprise DW/BI
system and the heart of the Kimball Bus Matrix. In the
retail grocery example, a dimension such as product will
be used in both the retail sales and the store inventory
dimensional models. Because they are exactly the same
products, both models must use the same dimension with
the same keys to reliably support true, cross-business

109

process analysis. If the logistics folks at the grocer’s
headquarters want to calculate inventory turns, they need
to combine data from retail sales and inventory at the
product level. This works only if the two business
processes use the exact same product dimension with the
same keys; that is, they use a conformed dimension.
Conformed dimensions are the cornerstone of the
enterprise-enabled DW/BI system. This kind of analysis
involving data from more than one business process is
called drill across.

NOTE

The precise technical definition of
conformed dimensions is that two
dimensions are conformed if they contain
one or more fields with the same names
and contents. These “conformed fields”
must then be used as the basis for the
drill-across operation.

Note that this idea of drilling across
multiple fact tables and combining the
answer sets requires a front-end tool
capable of supporting this function. A
powerful reason to use Analysis Services is
that conformed dimensions are part of the
basic architecture of the cube, so its
calculation engine smoothly supports drill
across.

110

Examine the Adventure Works Cycles high-level bus
matrix shown in Figure 2-3. Each row of the bus matrix
represents a business process and defines at least one fact
table and its associated dimensions. Often, a row in the
matrix will result in several related fact tables that help
track the business process from different perspectives. The
orders business process might have an orders transaction
fact table at the line-item level and an orders snapshot fact
table at the order level. Both of these orders-based
dimensional models belong to the orders business process.
We call this grouping a business process dimensional
model. The fully populated enterprise DW/BI system
contains sets of dimensional models that describe all the
business processes in an organization’s value chain. As
you create the business process dimensional models for
each row in the bus matrix, you end up with a much more
detailed version of the matrix. Each dimensional model has
its own row grouped by business process. Order
transactions and order snapshot would be separate rows
under the orders business process.

Figure 2-3: Adventure Works Cycles high-level enterprise
bus matrix

111

The bus matrix is the enterprise business intelligence data
roadmap. Creating the bus matrix is mandatory for any
enterprise-wide DW/BI effort. Getting enterprise
agreement on conformed dimensions is an organizational
challenge for the data modeler and data steward. Having a
single dimension table to describe the company’s products,
customers, or facilities means the organization has to agree

112

on how each dimension table is defined. This includes the
list of attributes, attribute names, hierarchies, and the
business rules needed to define and derive each attribute in
the table. This is politically hard work, and the effort
grows as a function of the number of employees and
divisions. But it is not optional. Conformed dimensions
ensure that you are comparing apples to apples (assuming
you are selling apples).

Additional Design Concepts and Techniques

Even though the dimensional modeling concepts we’ve
described are fairly simple, they are applicable to a wide
range of business scenarios. However, there are a few
additional dimensional modeling concepts and techniques
that are critical to implementing viable dimensional
models. We start this section with a couple of key
concepts: surrogate keys and slowly changing dimensions.
Then we look at several techniques for modeling more
complex business situations. Finally, we review the
different types of fact tables. We briefly describe each
concept or technique and provide references so you can
find more detailed information if you need it.

Surrogate Keys

You will need to create a whole new set of keys in the data
warehouse database, separate from the keys in the
transaction source systems. We call these keys surrogate
keys, although they are also known as meaningless keys,
substitute keys, non-natural keys, or artificial keys. A
surrogate key is a unique value, usually an integer,
assigned to each row in the dimension. This surrogate key

113

becomes the primary key of the dimension table and is
used to join the dimension to the associated foreign key
field in the fact table. Using surrogate keys in all
dimension tables reaps the following benefits (and more):

• Surrogate keys help protect the DW/BI system from
unexpected administrative changes in the keys coming from
the source system.

• Surrogate keys allow the DW/BI system to integrate the
same data, such as customer, from multiple source systems
where they have different keys.

• Surrogate keys enable you to add rows to dimensions that do
not exist in the source system. For example, the date table
might have a “Date not known” row.

• Surrogate keys provide the means for tracking changes in
dimension attributes over time.

• Integer surrogate keys can improve query and processing
performance compared to larger character or GUID keys.

The ability to track changes in dimension attributes over
time is reason enough to implement surrogate keys that are
managed by the data warehouse. We’ve regretted it more
than once when we decided not to track changes in
attribute values over time, and later found out the historical
values were important to support certain business analyses.
We had to go back and add surrogate keys and re-create
the dimension’s change history. This is not a fun project;
we encourage you to do it right the first time. If you use
surrogate keys for all dimensions at the outset, it’s easier to
change a dimension later so that it tracks history.

The biggest cost of using surrogate keys is the burden it
places on the ETL system. Assigning the surrogate keys to
the dimension rows is easy. The real effort lies in mapping
those keys into the fact table rows. A fact row comes to the

114

DW/BI system with its source transaction keys in place.
We call the transaction system key the business key (or
natural key), although it is usually not business-like. In
order to join these fact rows to the dimension tables, the
ETL system must take each business key in each fact row
and look up its corresponding surrogate key in the
appropriate dimension. We call this lookup process the
surrogate key pipeline. Integration Services, used to build
the ETL system, provides functionality to support this
lookup, as we describe in Chapter 7.

RESOURCES

The following resources offer additional
information about surrogate keys:

• The Data Warehouse Toolkit, Second
Edition, pages 58–62.

• Search http://msdn.microsoft.com using
the search string “surrogate key.”

Slowly Changing Dimensions

Although we like to think of the attribute values in a
dimension as fixed, any attribute can change over time. In
an employee dimension, the date of birth should not
change over time (other than error corrections, which your
ETL system should expect). However, other fields, such as
the employee’s department, might change several times
over the length of a person’s employment. Many of these
changes are critical to understanding the dynamics of the
business. The ability to track these changes over time is

115

one of the fundamental reasons for the existence of the
DW/BI system.

Almost all dimensions have attributes whose values will
change over time. Therefore, you need to be prepared to
deal with a change to the value of any attribute. The
techniques we use to manage attribute change in a
dimension are part of what we call slowly changing
dimensions (SCDs). However, just because something
changes, it doesn’t mean that change has significance to
the business. The choice of which dimension attributes you
need to track and how you track them is a business
decision. The main technique used to deal with changes
the business doesn’t care about is called type 1, and the
main technique used to handle changes the business wants
to track is called type 2.

How Slow Is Slow?

We call this concept a slowly changing dimension
attribute because the attributes that describe a
business entity generally don’t change very often.
Take customer address, for example. The US
Census Bureau did an in-depth study of migration
patterns (www.census.gov/population/www/pop-profile/
geomob.html), and found that 16.8 percent of
Americans move in a given year, and 62 percent of
these moves are within the same county. If a
change in zip code is considered to be a significant
business event, a simple customer dimension with

116

name and address information should generate less
than 16.8 percent change rows per year. If an
attribute changes rapidly, causing the dimension to
grow at a dramatic rate, this usually indicates the
presence of a business process that should be
tracked separately, either as a separate dimension,
called a mini-dimension, or as a fact table rather
than as a dimension attribute.

Handling changes using the type 1 technique overwrites
the existing attribute value with the new value. Use this
method if the business users don’t care about keeping track
of historical values when the value of an attribute changes.
The type 1 change does not preserve the attribute value
that was in place at the time a historical transaction
occurred. For example, the Adventure Works customer
dimension has an attribute for commute distance. Using
type 1, when a customer moves, their old commute
distance is overwritten with the new value. The old value
is gone. All purchases, including purchases made prior to
the change, will be associated with the new value for
commute distance.

If you need to track the history of attribute changes, use
the type 2 technique. Type 2 change tracking is a powerful
method for capturing the attribute values that were in
effect at a point in time and relating them to the business
events in which they participated. When a change to a type
2 attribute occurs, the ETL process creates a new row in
the dimension table to capture the new values of the

117

changed dimension attribute. The attributes in the new row
are in effect as of the time of the change moving forward.
The previously existing row is marked to show that its
attributes were in effect right up until the appearance of the
new row.

Using the type 2 technique to track changes to the example
commute distance attribute will preserve history. The ETL
system writes a new row to the customer dimension, with a
new surrogate key and date stamps to show when the row
came into effect and when it expires. (The system also
updates the expiration date stamp for the old row.) All fact
rows moving forward will be assigned the surrogate key
for this new row. All the existing fact rows keep their old
customer surrogate key, which joins to the old row.
Purchases made prior to the change will be associated with
the commute distance that was in effect when the purchase
was made.

Type 2 change tracking is more work to manage in the
ETL system, although it’s transparent to the user queries.
Most of the popular ETL tools, including Integration
Services, have these techniques built in. The commute
distance example is a good one in terms of its business
impact. If a marketing analyst does a study to understand
the relationship between commute distance and bicycle
purchasing, type 1 tracking will yield very different results
than type 2. In fact, type 1 will yield incorrect results, but
that may not be apparent to the analyst.

Here’s a good guide for deciding if it’s worth the effort to
use type 2 change tracking for an attribute: Ask yourself if
the data has to be right.

118

NOTE

A third change tracking technique, called
type 3, keeps separate columns for both the
old and new attribute values — sometimes
called “alternate realities.” In our
experience, type 3 is less common because
it involves changing the physical tables and
is not very extensible. If you choose to use
type 3 tracking, you will need to add a new
type 3 column for every major change,
which can lead to a wide table. The
technique is most often used for an
organization hierarchy that changes
seldom, perhaps annually. Often, only two
versions are kept (current and prior).

RESOURCES

The following resources offer additional
information about slowly changing
dimensions:

• The Data Warehouse Toolkit, Second
Edition, pages 95–105.

• Books Online: A search for “slowly
changing dimension support” will return
several related topics.

119

DOWNLOADS

You can find a more detailed version of the
commute distance example with example
data on the book’s web site
(kimballgroup.com/html/booksMDWTtools.html).

Dates

Date is the fundamental business dimension across all
organizations and industries, although many times a date
table doesn’t exist in the operational environment.
Analyses that trend across dates or make comparisons
between periods (that is, nearly all business analyses) are
best supported by creating and maintaining a robust date
dimension.

Every dimensional DW/BI system has a date (or calendar)
dimension, typically with one row for every day for which
you expect to have data in a fact table. Calling it the date
dimension emphasizes that its grain is at the day level
rather than time of day. In other words, the Date table will
have 365 or 366 rows in it per year.

NOTE

The date dimension is a good example of a
role-playing dimension. It is common for a

120

date dimension to be used to represent
different dates, such as order date, due date,
and ship date. To support users who will be
directly accessing the relational database,
you can either define a view for each role
named appropriately (e.g., Order_Date),
or define synonyms on the base view of the
date dimension. The synonym approach is
simple, but it only allows you to rename
the entire table, not the columns within the
table. Reports that can’t distinguish
between order date and due date can be
confusing.

If your users will access the data through Analysis
Services only, you don’t need to bother with views or
synonyms to handle multiple roles. Analysis Services has
built-in support for the concept of role-playing dimensions.
As we discuss in Chapter 8, however, the Analysis
Services role-playing dimensions are akin to creating
relational synonyms: You can name the overall dimension
role, but not each column within the dimension role.

We strongly recommend using a surrogate key for date
because of the classic problem often faced by technical
people: Sometimes you don’t have a date. While we can’t
help the technical people here, we can say that transactions
often arrive at the data warehouse database without a date
because the value in the source system is missing,
unknowable, or the event hasn’t happened yet. Surrogate
keys on the date dimension help manage the problem of

121

missing dates. Create a few rows in the date dimension that
describe such events, and assign the appropriate surrogate
date key to the fact rows with the missing dates.

In the absence of a surrogate date key, you’ll create date
dimension members with strange dates such as 1-Jan-1900
to mean Unknown and 31-Dec-9999 to mean Hasn’t
happened yet. Overloading the fact dates in this way isn’t
the end of the world, but it can confuse users and cause
erroneous results.

The date dimension surrogate key has one slight deviation
from the rule. Where other surrogate keys are usually a
meaningless sequence of integers, it’s a good idea to use a
meaningful value for the date surrogate key. Specifically,
use an integer that corresponds to the date in
year-month-day order, so September 22, 2010 would be
20100922. This can lead to more efficient queries against
the relational database. It also makes implementing
date-based partitioning much easier, and the partition
management function will be more understandable.

Just to prove that we’re not entirely dogmatic and
inflexible, we don’t always use surrogate keys for dates
that appear as dimension attributes. Generally, if a
particular date attribute has business meaning, we use the
date surrogate key. Otherwise we use a date or
smalldatetime data type. One way to spot a good
candidate for a date surrogate key is if the attribute’s date
values fall within the date range of the organizational
calendar, and therefore are all in the Date table.

122

RESOURCES

The following resources offer additional
information about the date dimension:

• The Data Warehouse Toolkit, Second
Edition, pages 38–41.

• Books Online: Search for the topic “Time
Dimensions (SSAS)” and related topics.

Degenerate Dimensions

Transaction identifiers often end up as degenerate
dimensions without joining to an actual dimension table. In
the retail grocery example, all the individual items you
purchase in a trip through the checkout line are assigned a
transaction ID. The transaction ID is not a dimension — it
doesn’t exist outside the transaction and it has no
descriptive attributes of its own because they’ve already
been handled in separate dimensions. It’s not a fact — it
doesn’t measure the event in any way, and is not additive.
We call attributes such as transaction ID a degenerate
dimension because it’s like a dimension without attributes.
And because there are no associated attributes, there is no
dimension table. We include it in the fact table because it
serves a purpose from an analytic perspective. You can use
it to tie together all the line items in a market basket to do
some interesting data mining, as we discuss in Chapter 13.
You can also use it to tie back to the transaction system if
additional orders-related data is needed. The degenerate
dimension is known as a fact dimension in Analysis
Services.

123

Snowflaking

In simple terms, snowflaking is the practice of connecting
lookup tables to fields in the dimension tables. At the
extreme, snowflaking involves re-normalizing the
dimensions to the third normal form level, usually under
the misguided belief that this will improve maintainability,
increase flexibility, or save space. We discourage
snowflaking. It makes the model more complex and
therefore less usable, and it actually makes it more difficult
to maintain, especially for type 2 slowly changing
dimensions.

In a few cases we support the idea of connecting lookup or
grouping tables to the dimensions. One of these cases
involves rarely used lookups, as in the example of joining
the Date table to the date of birth field in the customer
dimension so we can count customers grouped by their
month of birth. We call this purpose-specific snowflake
table an outrigger table. When you’re building your
Analysis Services database, you’ll see this same concept
referred to as a reference dimension.

Sometimes it’s easier to maintain a dimension in the ETL
process when it’s been partially normalized or snowflaked.
This is especially true if the source data is a mess and
you’re trying to ensure the dimension hierarchy is
correctly structured. In this case, there’s nothing wrong
with using the normalized structure in the ETL application.
Just make sure the business users never have to deal with
it.

124

NOTE

Analysis Services can handle snowflaked
dimensions and hides the added complexity
from the business users. In the interest of
simplicity, we encourage you to fully
populate the base dimensions rather than
snowflaking. The one exception is that the
Analysis Services build process can go
faster for large dimensions, say more than 1
million rows, when the source is
snowflaked or fully denormalized in the
ETL staging database. Test it first before
you do all the extra work.

RESOURCES

The following resources offer additional
information about snowflaking:

• The Data Warehouse Toolkit, Second
Edition, pages 55–57.

• Books Online: Search for the topic
“Dimension Structure” and other Books
Online topics on dimensions.

Many-to-Many or Multivalued Dimensions

The standard relationship between a dimension table and
fact table is called one-to-many. This means one row in the
dimension table will join to many rows in the fact table,

125

but one row on the fact table will join to only one row in
the dimension table. This relationship is important because
it keeps us from double counting. Fortunately, in most
cases this relationship holds true.

There are two common instances where the real world is
more complex than one-to-many:

• Many-to-many between the fact table and a dimension
• Many-to-many between dimensions

These two instances are essentially the same, except the
fact-to-dimension version is missing an intermediate
dimension that uniquely describes the group. In both cases,
we introduce an intermediate table called a bridge table
that supports the more complex many-to-many
relationship.

The Many-to-Many Relationship Between a Fact and
Dimension

A many-to-many relationship between a fact table and a
dimension occurs when multiple dimension values can be
assigned to a single fact transaction. A common example is
when multiple sales people can be assigned to a given sale.
This often happens in complex, big-ticket sales such as
computer systems. Accurately handling this situation
requires creating a bridge table that assembles the sales rep
combinations into groups. Figure 2-4 shows an example of
the SalesRepGroup bridge table.

The ETL process needs to look up the appropriate sales rep
group key in the bridge table for the combination of sales
reps in each incoming fact table record, and add a new

126

group if it doesn’t exist. Note that the bridge table in
Figure 2-4 introduces a risk of double counting. If we sum
dollar sales by sales rep, every sales rep will get credit for
the total sale. For some analyses, this is the right answer,
but for others you don’t want any double counting. It’s
possible to handle this risk by adding a weighting factor
column in the bridge table. The weighting factor is a
fractional value that sums to one for each sales rep group.
Multiply the weighting factor and the additive facts to
allocate the facts according to the contribution of each
individual in the group.

Figure 2-4: An example SalesRepGroup bridge table

Note that you might need to add a SalesRepGroupKey

table between Orders and SalesRepGroup to support a
true primary key - foreign key relationship. This turns this

127

fact-to-dimension instance into a dimension-to-dimension
instance.

Many-to-Many Between Dimensions

The many-to-many relationship between dimensions is an
important concept from an analytic point of view. Most
dimensions are not entirely independent of one another.
Dimension independence is more of a continuum than a
binary state. At one end of the continuum, the store and
product dimensions in a retail grocery chain are relatively
independent, but not entirely. Some store formats don’t
carry certain products. Other dimensions are much more
closely related, but are difficult to combine into a single
dimension because of their many-to-many relationship. In
banking, for example, there is a direct relationship between
account and customer, but it’s not one-to-one. Any given
account can have one or more customers as signatories,
and any given customer can have one or more accounts.
Banks often view their data from an account perspective;
the MonthAccountSnapshot is a common fact table in
financial institutions. The account focus makes it difficult
to view accounts by customer because of the
many-to-many relationship. One approach would be to
create a CustomerGroup bridge table that joins to the fact
table, such as the SalesRepGroup table in the previous
many-to-many example. A better approach takes
advantage of the relationship between account and
customer, as shown in Figure 2-5.

Figure 2-5: An example many-to-many bridge table
between dimensions

128

An AccountToCustomer bridge table between the
account and customer dimensions can capture the
many-to-many relationship with a couple of significant
benefits. First, the relationship is already known in the
source system, so creating the bridge table will be easier
than the manual build process required for the
SalesRepGroup table. Second, the account-customer
relationship is interesting in its own right. The
AccountToCustomer bridge table allows users to answer
questions such as “What is the average number of accounts
per customer?” without joining to any fact table.

Bridge tables are often an indicator of an underlying
business process. This is especially true if you must keep
track of changes to bridge tables over time (that is, the
relationship itself is type 2). For customers and accounts,
the business process might be called account maintenance,
and one of the transactions might be called “Add a
signatory.” If three customers were associated with an
account, there would be three Add transactions for that
account in the source system. Usually these transactions
and the business processes they represent are not important
enough to track in the DW/BI system with their own fact
tables. However, the relationships and changes they
produce are important to analyzing the business. We

129

include them in the dimensional model as slowly changing
dimensions, and in some cases as bridge tables.

NOTE

Analysis Services has functionality to
support many-to-many dimensions.
Analysis Services expects the same kind of
structure that we described in this section.
They call the bridge table an intermediate
fact table, which is exactly what it is.

RESOURCES

The following resources offer additional
information about many-to-many
relationships:

• The Data Warehouse Toolkit, Second
Edition, pages 262–265 for many-to-many
between fact and dimension and pages
205–206 for many-to-many between
dimensions.

• Books Online: Enter the search string
“Defining a Many-to-Many Relationship”
for a list of related Books Online topics.

Hierarchies

Hierarchies are meaningful, standard ways to group the
data within a dimension so you can begin with the big
picture and drill down to lower levels to investigate

130

anomalies. Hierarchies are the main paths for summarizing
the data. Common hierarchies include organizational
hierarchies, often starting from the individual person level;
geographic hierarchies based on physical location, such as
a customer address; product hierarchies that often
correspond to merchandise rollups such as brand and
category; and responsibility hierarchies such as sales
territory that assign customers to sales reps (or vice versa).
There are many industry-related hierarchies, such as the
North American Industrial Classification System
(replacement for the Standard Industrial Classification
[SIC] code) or the World Health Organization’s
International Classification of Diseases — Tenth
Modification (ICD-10).

Simple hierarchies involving a standard one-to-many
rollup with only a few fixed levels should be denormalized
right into the granular dimension. A four-level product
hierarchy might start with product, which rolls up to brand,
then to subcategory, and finally to category. Each of these
levels would simply be columns in the product dimension
table. In fact, this flattening of hierarchies is one of the
main design tasks of creating a dimension table. Many
organizations will have several different simple hierarchies
in a given dimension to support different analytic
requirements.

Of course, not all hierarchies are simple. The challenge for
the dimensional modeler is to determine how to balance
the tradeoff between ease of use and flexibility in
representing the more difficult hierarchies. There are at
least two common hierarchy challenges: variable-depth (or
ragged hierarchies) and frequently changing hierarchies.

131

Both of these problems require more complex solutions
than simple denormalization. We briefly describe these
solutions here, and refer you to more detailed information
in the other Toolkit books if you should need it.

Variable-Depth Hierarchies

A good example of the variable-depth hierarchy is the
manufacturing bill of materials that provides the
information needed to build a particular product. In this
case, parts can go into products or into intermediate layers,
called sub-assemblies, which then go into products, also
called top assemblies. This layering can go dozens of
levels deep, or more, in a complex product (think about a
Boeing 787).

Those of you who were computer science majors may
recall writing recursive subroutines and appreciate the
efficiency of recursion for parsing a parent-child or
self-referencing table. In SQL, this recursive structure is
implemented by simply including a parent key field in the
child record that points back to the parent record in the
same table. For example, one of the fields in an Employee

table could be the Parent Employee Key (or Manager
Key).

Recursive Capabilities

SQL 99 introduced recursion into the “official”
SQL language using the WITH Common Table

132

Expression syntax. All the major relational
database products provide this functionality in
some form, including SQL Server. Unfortunately,
recursion isn’t a great solution in the relational
environment because it requires more complex
SQL than most front-end tools can handle. Even if
the tool can recursively unpack the self-referencing
dimension relationship, it then must be able to join
the resulting dataset to the fact table. Very few of
the query tools are able to generate the SQL
required to navigate a parent-child relationship
together with a dimension-fact join.

On the other hand, this kind of recursive
relationship is easy to build and manage in the
Analysis Services dimensional database. Analysis
Services uses different terminology: parent-child
rather than variable-depth hierarchies.

The Data Warehouse Toolkit, Second Edition describes a
navigation bridge table in Chapter 6 that solves this
problem in the relational world. But this solution is
relatively unwieldy to manage and query. Fortunately, we
have some powerful alternatives in SQL Server. Analysis
Services has a built-in understanding of the parent-child
data structure, and Reporting Services can navigate the
parent-child hierarchy using some of the advanced
properties of the tablix control. If you have variable-depth
hierarchies and expect to use the relational database for
reporting and analysis, it makes sense to include both the

133

parent-child fields and the navigation bridge table to meet
the needs of various environments.

Frequently Changing Hierarchies

If you need to track changes in the variable-depth
hierarchy over time, your problem becomes more complex,
especially with the parent-child data structure. Tracking
changes, as you recall, requires using a surrogate key. If
someone is promoted, they will get a new row in the table
with a new surrogate key. At that point, everyone who
reports to that person will have to have their manager key
updated. If manager key is a type 2 attribute, new rows
with new surrogate keys will now need to be generated for
these rows. If there are any folks who report to these
people, the changes must ripple down until we reach the
bottom of the org chart. In the worst case, a change to one
of the CEO’s attributes, such as marital status, causes the
CEO to get a new surrogate key. This means the people
who report to the CEO will get new surrogate keys, and so
on down the entire hierarchy.

Ultimately, this problem is really about tracking the
Human Resources business process. That is, if keeping
track of all the changes that take place in your employee
database is a high priority from an analytic point of view,
you need to create a fact table, or a set of fact tables that
track these events. Trying to cram all this event-based
information into a type 2 dimension just doesn’t work very
well.

134

RESOURCES

The following resources offer additional
information about hierarchies:

• The Data Warehouse Toolkit, Second
Edition, pages 161–168.

• The Data Warehouse Lifecycle Toolkit,
Second Edition, pages 268–270.

• SQL Server Books Online: Enter the search
string “Attributes and Attribute
Hierarchies” as a starting point.

Aggregate Dimensions

You will often have data in the DW/BI system at different
levels of granularity. Sometimes it comes to you that way,
as with forecast data that is created at a level higher than
the individual product. Other times you create it yourself
to give the users better query performance. There are two
ways to aggregate data in the warehouse, one by entirely
removing a dimension, the other by rolling up in a
dimension’s hierarchy. When you aggregate using a
hierarchy rollup in the relational database, you need to
provide a new, shrunken dimension at this aggregate level.
Figure 2-6 shows how the Adventure Works Cycles
Product table can be shrunken to the subcategory level to
allow it to join to forecast data that is created at the
subcategory level.

Figure 2-6: A Subcategory table extracted from the
Adventure Works Cycles Product dimension table

135

Each subcategory includes a mix of color, size, and weight
attributes, for example. Therefore, most of the columns in
the Product table do not make sense at the Subcategory
level. This results in a much shorter dimension, hence the
common term shrunken dimension.

The keys for aggregate dimensions need to be generated in
the ETL process and are not derived from the base table
keys. Records can be added or subtracted from the base
table over time and thus there is no guarantee that a key

136

from the base table can be used in the aggregate
dimension.

NOTE

The Analysis Services OLAP engine
automatically manages all this behind the
scenes.

You can easily hook in a fact table at any
level of a dimension. Of course you may
still need aggregate dimensions to support
business process metrics (such as forecast),
which live at the aggregate level only.

RESOURCES

The following resource offers additional
information about aggregate dimensions:

• Kimballgroup.com: Search for the string
“Shrunken Dimensions” for an article on
aggregate dimensions. This article also
appears on page 539 of the Kimball Group
Reader.

Junk Dimensions

Many business processes involve several flags or status
indicators or types. In a pure dimensional model, these
would each be placed in their own dimension table, which

137

often is just the surrogate key and the descriptive column,
usually with only a few rows. For example, an order
transaction might have a payment type dimension with
only three allowed values: “Credit,” “Cash,” or “Account.”
Another small order dimension could be transaction type
with only two allowed values: “Order,” or “Refund.” In
practice, using a single table for each small dimension can
make the model confusing because there are too many
tables. Worse, it makes the fact table much larger because
each small dimension table adds a key column to the fact
table.

The design pattern we apply to this situation is called a
junk dimension. A junk dimension is a combination of the
columns of the separate small dimensions into a single
table. Transaction type and payment type could be
combined into a single table with two attribute columns:
Transaction_Type and Payment_Type. The resulting
TransactionInfo table would only need six rows to hold
all possible combinations of payment type and transaction
type. Each fact row would contain a single transaction info
key that would join to the dimension row that holds the
correct combination for that fact row.

NOTE

In Analysis Services, each of the different
attributes included in the junk dimension
becomes a separate attribute hierarchy. As
in the relational data model, the disparate

138

attribute hierarchies would be grouped
together under one dimension,
TransactionInfo in our example. You’d
hide the bottom level of the dimension that
has the surrogate key representing the
intersection of the codes.

RESOURCES

The following resources offer additional
information about junk dimensions:

• The Data Warehouse Toolkit, Second
Edition, pages 117–119.

• The Data Warehouse Lifecycle Toolkit,
Second Edition, pages 263–265.

• Kimballgroup.com: Search for the topic
“Junk Dimensions” for a relevant article.

The Three Fact Table Types

There are three fundamental types of fact tables in the
DW/BI system: transaction, periodic snapshot, and
accumulating snapshot. Most of what we have described
thus far falls into the transaction category. Transaction fact
tables track each transaction as it occurs at a discrete point
in time — when the transaction event occurred. The
periodic snapshot fact table captures cumulative
performance over specific time intervals. It aggregates
many of the facts across the time period, providing users
with a fast way to get totals. Where periodic snapshots are

139

taken at specific points in time, after the month-end close,
for example, the accumulating snapshot is constantly
updated over time. Accumulating snapshots is particularly
valuable for combining data across several business
processes in the value chain. Generally, the design of the
accumulating snapshot includes several date fields to
capture the dates when the item in question passes through
each of the business processes or milestones in the value
chain. For an orders accumulating snapshot that captures
metrics about the complete life of an order, these dates
might include the following:

• Order date
• Requested ship date
• Manufactured date
• Actual ship date
• Arrival date
• Invoice date
• Payment received date

The accumulating snapshot provides the status of open
orders at any point in time and a history of completed
orders just waiting to be scrutinized for interesting metrics.

NOTE

Transaction fact tables are clearly what
Analysis Services was designed for. Your
Analysis Services database can
accommodate periodic and accumulating
snapshots, but you do need to be careful.

140

The problem is not the model, but the
process for updating the data. Snapshot fact
tables — particularly accumulating
snapshots — tend to be updated a lot in the
ETL process. This is expensive but not
intolerable in the relational database. It’s
far more expensive for Analysis Services,
which doesn’t really support fact table
updates at all.

For snapshot facts to work in Analysis
Services for even moderate-sized data sets,
you’ll need the Enterprise Edition feature
that allows cube partitioning or you’ll need
to reprocess the entire cube on every load.

RESOURCES

The following resources offer additional
information about the three fact table types:

• The Data Warehouse Toolkit, Second
Edition, pages 128–130 and 132–135.

• The Data Warehouse Lifecycle Toolkit,
Second Edition, pages 273–276.

• Kimballgroup.com: Enter the search string
“Snapshot Fact Table” for articles on the
different fact table types.

Aggregates

141

Aggregates are precalculated summary tables that serve the
primary purpose of improving performance. If the database
engine could instantly roll the data up to the highest level,
you wouldn’t need aggregate tables. In fact, precalculating
aggregates is one of the two reasons for the existence of
OLAP engines such as Analysis Services (the other reason
being more advanced analytic capabilities). SQL Server
Analysis Services can create and manage aggregate tables
in the relational platform (called relational OLAP or
ROLAP) or in the OLAP engine. The decision to create
aggregate tables in the relational versus OLAP engines is a
tradeoff. If the aggregates are stored in Analysis Services’
format, access to the data is limited to tools that generate
MDX. If the aggregates are stored in the relational
database, they can be accessed by tools that generate SQL.
If your front-end tool is adept at generating MDX, using
Analysis Services to manage aggregates has significant
advantages. If you must support relational access,
especially ad hoc access, you need to create and manage
any aggregate tables needed for performance (using
indexed views if possible), along with the associated
aggregate dimensions described earlier.

NOTE

Kimball Group refers to the summary
tables as aggregates and the summarization
process as aggregation. SQL Server
Analysis Services uses essentially the
opposite terminology; in that environment,

142

an aggregation is the summary table, and
aggregates are the rules that define how the
data is rolled up.

In this section, we have covered several of the common
design challenges you will typically run up against in
developing a dimensional model. This is not an exhaustive
list, but it should be enough to help you understand the
modeling process. If you are charged with the role of data
modeler and this is your first dimensional modeling effort,
we again strongly encourage you to continue your
education by reading The Data Warehouse Toolkit, Second
Edition.

The Dimensional Modeling Process

With a basic understanding of dimensional modeling and
the core techniques under your belt, this section shifts
focus to describe the process of building a dimensional
model. Creating a dimensional model is a highly iterative
and dynamic process. After a few preparation steps and
some exploratory data profiling, the design process begins
with an initial graphical model pulled from the bus matrix
and presented at the entity level. This model is critically
scrutinized in a high-level design session that also yields
an initial list of attributes for each table and a list of issues
requiring additional investigation. Once the high-level
model is in place, the detailed modeling process takes the
model table by table and drills down into the definitions,
sources, relationships, data quality problems, and
transformations required to populate the model. The last

143

phase of the modeling process involves reviewing and
validating the model with several interested parties. The
primary goals of this process are to create a model that
meets the business requirements, provides the ETL team
with a solid starting point and clear direction, and verifies
that the data is available to fill out the model.

Designing a dimensional model is a series of successive
approximations, where you create more detailed and robust
models based on your growing understanding of the source
systems, the business needs, and the associated
transformations. Often we’ve made changes that sounded
clever at the time, but ended up changing them back in a
later pass because they didn’t work, either from the user or
technical perspective, or both! This series of iterations
usually stops once the model clearly meets the business
needs in a flexible and extensible way. This iterative
process typically takes a few weeks for a single business
process dimensional model, but can take longer depending
on the complexity of the business process, availability of
knowledgeable participants, existence of well-documented
detailed business requirements, and the number of
pre-existing reusable dimension tables.

RESOURCES

We dedicated an entire chapter to the
dimensional modeling process in the
Lifecycle Toolkit. This is required reading
for the lead dimensional modeler: The Data

144

Warehouse Lifecycle Toolkit, Second
Edition, Chapter 7 (pages 287–325).

NOTE

Creating the dimensional model is where
an expert can help. If your team is new to
the dimensional modeling process, bringing
in someone who has extensive experience
creating dimensional models can save you
weeks of time, pain, and suffering.
However, do not let the consultant take
over the process — make them lead the
team and facilitate the effort so everyone
can participate in the design process and
learn why various design decisions were
made. Don’t let the consultant disappear
for a few days or a week or two and bring
you back a completed model. The goal is to
learn what goes into a dimensional model
and why, so you know how to maintain and
improve your model over time. More
important, you need to know how to do the
next one, so you don’t have to pay
someone to do this for you forever.

Preparation

145

It’s a good idea to do a little preparation before you pull
everyone into a conference room to create the dimensional
model. First, you need to figure out who is going to be
involved and what they are supposed to do. Next, the core
participants should revisit the business requirements and
the data architecture strategy. Meanwhile, the lead modeler
needs to get the modeling tools in place and prepare a set
of naming conventions. Let’s discuss each of these
preparation steps in a bit more detail.

Identify Roles and Participants

As Table 2-1 shows, several roles are involved in the
modeling step, but a core modeling team of two or three
people usually does most of the work. The core modeling
team includes a data modeler with a strong technical
background and solid experience with the source systems,
and a business analyst who brings a solid understanding of
how the data is used in the analysis process and how it
could be made more useful or accessible. The core
modeling team often includes someone from the ETL team
with extensive source systems development experience
and an interest in learning. The data modeler has overall
responsibility for creating the dimensional model.

Table 2-1: Major participants in creating the dimensional
model

Participant Purpose/Role in Modeling Process

Data modeler Primary responsibility

Business analyst Analysis and source expert, business definitions

Data steward Drive agreement on enterprise names, definitions,
rules, and data quality

146

Participant Purpose/Role in Modeling Process

Business power user Describe and refine data sources and business rules
from a user perspective

Source system
developer Source expert, business rules and data quality

DBA Design guidance, early learning

ETL designer Early learning

ETL developer Early learning

Steering/Governance
Committee Naming, business definitions, model validation

The core modeling team works closely with source system
developers who can explain the contents, meaning,
business rules, timing, and other intricacies of the
particular source system involved in the dimensional
model.

We also suggest you include the DBA who will be
implementing the physical database and the ETL designer
and developer in the modeling process. These folks do so
much better if they understand the business rationale for
the model. This is especially true of the DBA who may
have a transaction system background and does not
understand the purpose of dimensional modeling.

There are generally a few additional participants as well.
Although you risk slowing down the design process a bit
by including more people, the benefits of a more robust
design and engaged partners are almost always worth the
price.

Revisit the Requirements

147

After the modeling team and the data strategy are in place,
the team’s first step will be to pull out the detailed
requirements documentation and carefully comb through
it. If you skipped to this chapter with the idea that you
could avoid all that business stuff, sorry, but you need to
go back and do the work. The modeling team must
understand the business problems the users are trying to
solve and the kinds of analyses they perform to solve them.
It’s the team’s job to translate those requirements into a
flexible dimensional model that can support broad classes
of analysis, not just re-create specific reports. This isn’t an
easy job. The data modeler must be able to function at an
advanced level in both the business and technical areas. In
fact, much of the initial dimensional modeling effort
actually begins as part of the requirements definition
process.

The detailed business requirements document discussed in
Chapter 1 has several sections that describe the
high-priority business processes in detail. That document
identifies analytic requirements supported by each
high-priority business process. It describes the broad
classes of questions and problems that management and
business analysts have been trying (or would like to try) to
answer. The requirements document should include a list
of data elements, example questions, and even a list of
desired reports that would help answer the analytic
questions. These all play a central role when it comes time
to defining the dimensional model. Your dimensional
model must not only be able to answer these specific
questions easily when it is finished, but also allow business
users to explore new opportunities.

148

Data-Driven Models versus Business
Requirements–Driven Models

An experienced dimensional modeler can build a
reasonable dimensional model based on the source
system data structures. However, this model will
inevitably fall short of meeting the business needs
in many small but substantive ways. These little
shortcomings add up to a weak dimensional model.
We recently worked with a client whose
requirements gathering had revealed a need for a
field called PricingCategory. It turns out there
is no such thing as PricingCategory in the
source system. However, there was a Rate_Code

field that in combination with some other status
flags was the basis of what the business users
called PricingCategory. A dimensional model
based literally on the source system would have
included Rate_Code (maybe) and left the users to
re-create the business rules for determining
PricingCategory every time they built a query
that needed the field.

In short, you must understand the business
requirements in detail before you dive into the task
of designing the dimensional model. Your designs
will start with the source content but typically need
to be augmented with additional fields defined by
your organization’s business rules.

149

NOTE

It is too easy for technical folks to build a
data model that meets specific report
requirements and only those requirements:
to build a reporting system, not a DW/BI
system. For that reason, we prefer to
merely glance at the report specifications in
the early phases of the design process.
Once the data model is largely developed,
look at the report specifications in depth to
ensure the design can easily support those
reports.

Understand the Data Architecture Strategy

One of the big DW/BI architecture discussions centers on
the issue of how you structure and manage your data. The
questions are: What data do you keep, where do you keep
it within your technical architecture, and how is it
structured. Our standard approach is to build a set of
dimensional models in the relational database platform that
hold the lowest level of detail. This atomic-level relational
database enables consistent data definitions, business rules,
and tracking of history. It supports the integration of data
from multiple sources across the enterprise and from
external sources such as vendors, customers, and
third-party data providers. This atomic level also provides
a means for including value-added data that is important to
the analytic process but that currently exists only in
spreadsheets on users’ desktops, or embedded deep within

150

a report definition. The atomic-level dimensional data
warehouse is designed to be queried by users and built to
meet their analytic needs and performance expectations.
As we describe in Chapter 3, this is generally true even
though we encourage you to build atomic-level Analysis
Services databases from the atomic-level relational
warehouse and use Analysis Services as the primary query
platform.

We believe both the relational and Analysis Services
databases are key components of a successful enterprise
Microsoft DW/BI system. The goal of this chapter, and of
all the chapters that focus on the data track of the
Lifecycle, is to make sure we build the system in a way
that leverages the strengths of both tools. The good news is
that a solid, well-designed dimensional model is the best
foundation for both platforms.

Set Up the Modeling Environment

It helps to get a few tools in place before you dive into the
modeling process. We often start the modeling process
using a spreadsheet as our initial tool because it allows us
to make changes easily. This spreadsheet captures the key
elements of the logical model plus many of the physical
attributes you’ll need later. It also gives you a place to
begin capturing some of the ETL information, such as
source system table and column(s), and a brief description
of the extract and transformation rules. Finally, it includes
the initial set of business metadata in the form of the
names, descriptions, example values, data quality issues,
and comments. In our ETL Toolkit book, we call this the
“logical data map.” Regardless of the name, the central

151

idea is to describe each attribute in the final target and
associate them all with their original sources and required
transformations.

DOWNLOADS

You can get a copy of the modeling
spreadsheet we use at the book’s web site.
It includes a simple macro to generate the
DDL to create the target tables in SQL
Server. You can then use the
reverse-engineering capabilities of your
modeling tool to pull the model out of the
database. Our spreadsheet also writes the
metadata info, such as the column
descriptions, transformations, and
comments columns, into extended
properties fields in the database system
tables. Afterward, you can move this
information into the metadata schema.

Once the model gets fairly firm, typically after a few
weeks, you can convert to your standard modeling tool.
Most of the popular modeling tools (such as ERwin,
PowerDesigner, and E/R Studio) allow you to lay out the
logical model and capture physical and logical names,
descriptions, and relationships.

Once the design is considered complete (for the first
round, anyway), the modeling tools can help the DBA
forward engineer the model into the database, including

152

creating the tables, indexes, partitioning, views, and other
physical elements of the database. Chapter 4 discusses
these physical design issues. If you start using your
modeling tool early on, things will be easier later.

Establish Naming Conventions

Naming conventions are the rules you use to consistently
name the objects in your dimensional model, and
ultimately in the physical database. Spending time
determining your naming conventions is one of those
irritating tasks that feels like make-work. But it is
definitely worth it in the long run.

Fortunately, it doesn’t have to become your life’s work.
There are ways to abbreviate the process. First, don’t start
from scratch. Use whatever naming conventions your
organization has in place. Almost all large organizations
have a group of data modelers and/or DBAs somewhere —
they might be called data administration, or data
management. Somewhere in that group is the holder of the
organization’s official naming conventions. Given that you
are reading the dimensional modeling chapter, you are
likely either one of the folks in this group, or very close to
them. Find the document and see if you can make the
existing conventions work for the DW/BI system. Existing
naming conventions don’t always work because sometimes
they are not oriented toward user-friendly, descriptive
names.

As you develop the DW/BI naming conventions,
remember that table and column names will be visible to
the user community. They’re an important component of

153

the ad hoc user experience, and they show up in report
titles and headers. Names must be descriptive, but not so
long that users and report developers will be tempted to
rename them every time they use the data element.

DOWNLOADS

If you’re in a smaller organization, don’t
despair. The web site for this book has an
example of naming conventions along with
links to a few other examples on the
internet. The point is, you don’t need to
start from scratch.

Data Profiling and Research

Once you’ve done your prep work, you can get started on
the model. Throughout the modeling process, the modeler
needs to dig into the underlayers of the data to learn about
its structure, content, relationships, and derivation rules.
You need to verify that the data exists (or can be created),
that it’s in a usable state, or at least its flaws are
manageable, and that you understand what it will take to
convert it into the dimensional model form. You don’t
have to find every piece of bad data or completely
document every transformation at this point. Leave a little
bit for the ETL folks to do.

This is not your first trip into data exploration. The
requirements definition process in Chapter 1 included
initial data profiling and data audit tasks to aid in the

154

assessment of feasibility. The findings from those tasks are
the starting point for this one.

Although data profiling is listed here as part of the
preparation step, it’s an ongoing process. As you work
through the model table by table, filling in the list of
attributes, you’ll return to these data profiling and research
tasks many times to resolve issues and clearly define each
attribute.

There are several useful sources for detailed information
about an organization’s data, including the source system,
data experts, and existing reporting systems.

Data Profiling and Source System Exploration

The data modeler usually has the benefit of both first-hand
observation and documentation from the source system
under investigation. Unfortunately, these two don’t always
line up. Gather and carefully review whatever
documentation is available for the source systems. This
might include data models, file definitions, record layouts,
written documentation, and source system programs. More
advanced source systems may have their own metadata
repositories with all this information already integrated for
your convenience. Don’t count on this.

Perusing the source system data itself usually provides a
quick jolt of reality. First, what you see typically does not
match the documentation you carefully gathered and
reviewed. Second, it usually is more difficult to unravel
than you would hope. The older the system, the more time
it’s had to evolve. This evolution, usually driven by

155

short-term business needs, often takes the form of one or
more of these standard fixes: substituted fields where data
is stored in a field with a different name; overloaded fields
where multiple values are stored in a single field; variable
definition fields where the meaning of the content changes
depending on its context; and freeform entry fields where
there are no controls on the values being entered.

This is only a short list — there are plenty of other
problems to be discovered. You can discover many of the
content, relationship, and quality problems firsthand
through a process known as data profiling or data
auditing. Data profiling is about using query and reporting
tools to get a sense for the content of the system under
investigation. Data profiling can be as simple as writing
some SQL SELECT statements with COUNTs and
DISTINCTs. An experienced modeler with a decent query
tool and a source system data model can quickly develop a
good understanding of the nature of the source system data
required for a given business process dimensional model.

There are also tools to help with the data profiling process.
Integration Services has a data profiling task that can be
configured to write out an XML file of profiling statistics
including counts, length and value distributions, candidate
keys, and column patterns. To use the data profiling task,
you must create an SSIS package, include the task, and
configure it to generate the statistics you would like to
view against the tables you are profiling, and execute the
task. You then open the Data Profile Viewer and navigate
to the resulting XML output file.

156

If your source data is in SQL Server, we have created a set
of reports that serve as a simple data profiling tool. Figure
2-7 shows a data profile report for the
Production.Product table from the Adventure Works
Cycles transaction database. It gives a good sense for what
the data in the Product table looks like. Starting at the top
of the report, we see that there are 504 rows in the table.
There are 504 distinct ProductIDs, Names, and
ProductNumbers. It’s interesting to note the
ProductNumber isn’t really a number at all. Moving
down the list, only about half the products have a Color,
the rest are NULL, and there are only nine distinct values
for Color. A commercial tool would give you more
information at the table level, and more sophisticated
results at the detail level. But even this simple report gives
you a good start on understanding the contents of the table.

DOWNLOADS

The Reporting Services project that was
used to create the data profiling report
shown in Figure 2-7 is available at the
book’s web site. They work on SQL Server
tables only, but they do give you an easy
place to start.

Your goal is to make sure the data exists to support the
dimensional model and identify business rules and
relationships that will have an impact on the model. Write
down any interesting complexities you uncover so the ETL
folks won’t have to re-discover them. You may not

157

understand the exact business rules and derivation
formulas as part of the modeling phase, but the modeling
team should all agree that what you are proposing is
reasonable, or at least possible.

Figure 2-7: A simple data profile report for the Adventure
Works OLTP Product table

Data profiling helps you understand the complexities of
the source system data, but it should not be your only
source of source information, so to speak. You need to
develop good working relationships with the source system
developers and DBAs. These folks often know the
business rules and quality problems you could never find
with a tool, such as the fact that a middle initial of $ means
the customer is difficult to work with. Some of the expert
business users will also be able to shed additional light on
the data. They have often worked with it for years and
know what transformations are needed to make it line up

158

with the official reports. The official reports themselves
are also a good source of understanding. Look through the
queries and report calculations to see what business rules
they include. Even better, find the main developer of the
existing reporting system and get him or her involved in
the modeling process.

Building Dimensional Models

After a round of data exploration, the process of building
dimensional models typically moves through three phases.
The first is a high-level dimensional model design session
that defines the boundaries of the business process
dimensional model. The second phase is detailed model
development that involves filling in the attributes table by
table and resolving any issues or uncertainties. The third
phase is a series of model review, redesign, and validation
steps.

High-Level Dimensional Model Design Session

The first dimensional modeling design session is meant to
put several major stakes in the ground in terms of the basic
structure and content of the dimensional model. This
session is facilitated by the lead data modeler, and involves
the core modeling team and any interested participants
from the source system group and the ETL group. It can
take a day or more to work through the initial model, so set
expectations accordingly.

159

NOTE

It is extremely valuable to learn from the
experience of those in your organization
who developed earlier versions of reporting
systems or data warehouses, but be very
careful not to frighten or offend them. They
may be threatened by the possibility that
they will no longer be needed. They might
be angry or offended that you, not they, are
building the DW/BI system. This is where
your interpersonal skills will save you.
Work to include them as part of the team
early on. Keep them informed as the
project moves forward. Involve them in the
design of the database. Teach them how to
use the reporting tools and include them in
the development of new reports and
applications from the DW/BI system. Let
them (and their boss) know how much you
appreciate their help.

The first part of this session involves creating the
high-level dimensional model — a graphical
representation of the dimension, fact, and utility tables
involved in representing the business process. As we
describe in the next section, you should follow a four-step
process for creating this high-level dimensional model.
The second part of the session is creating the initial list of
attributes for each dimension. The three deliverables are:

160

1) the high-level graphical model; 2) the initial attribute
list; and 3) the initial issues list.

Creating the High-Level Dimensional Model: The
Four-Step Modeling Process

The initial task in the design session is to create a
high-level dimensional model for the top priority business
process. The high-level dimensional model is a data model
at the entity level. Draft your starting point model straight
from the bus matrix. You may also include any utility
tables, such as lookup tables or user hierarchies, but
usually these don’t surface until later in the process. The
design process generally flows through four steps:

• Step 1: Identify the business process. In other words, what
row on the bus matrix should you start with? In most cases,
you will already know the business process as the outcome
of the prioritization process. It’s the row on the bus matrix
associated with the top priority opportunity.

• Step 2: Declare the grain. The grain is the level of detail
captured in the fact table. Your goal is to describe the
meaning of a single fact row. Filling in the statement, “The
fact table has one row per X” where “X” is the business
event, is a good way to get started. The answer might be one
row per order line item, one row per customer call, or one
row per employee status change. This is a subtle, but
important step. If you aren’t clear on the grain, you may end
up with a fact table that does not capture data at the atomic
level, and is therefore less flexible. Make sure that the grain
declaration is not a list of dimensions. That comes in the
next step. Grain is a business event.

• Step 3: Choose the dimensions. Now ask yourself the
question, what objects participate in the target business
process at the declared grain? Most of these will come
directly from your understanding of the business process and

161

the bus matrix should give you a starting point. As you list
dimensions, you will also begin listing all the individual
attributes associated with each dimension. It helps to refer to
user information requests and source system models to
verify your choice of dimensions and their attributes.

• Step 4: Choose the facts. The facts are the measures of the
business process in question. There are usually a set of facts
that are directly measured by the source system that supports
the business process, and a set of facts that are derived from
the base facts. Make sure the facts are true to the grain.

The High-Level Graphical Model

Graphically summarize the initial design session in a
deliverable called the high-level graphical model (or the
bubble chart, for short). The model shown in Figure 2-8 is
an example of a starting point dimensional model for
Adventure Works Cycles’ orders business process based
on the bus matrix from Chapter 1. We improve on this
model in the next section.

Figure 2-8: Initial Adventure Works Cycles high-level
orders dimensional model

162

Identifying Dimension Attributes and Fact Measures

The second part of the initial design session involves
filling in each table with a robust attribute list. List all the
relevant attributes needed by the business, grouped
according to the dimension or fact table to which they
belong. If you’re using the dimensional modeling
spreadsheet from the book’s web site to keep track of your
attribute lists, create one worksheet per table in the model
and fill in its attribute list.

163

The team will identify a large number of attributes for each
dimension coming from a wide range of sources and a list
of base level and computed measures for the fact tables.
List them out brainstorm-style, grouping them by the
dimension or fact table to which they belong. Don’t get
caught up in naming or derivation yet; just pick a name
and make a note of the alternative names and the
controversy on the issues list, one of the deliverables from
the high level modeling session. The issues list comes to
life in the high level model design session, but it’s
constantly updated throughout the detailed modeling
process. It’s the best way we’ve found to remember all the
little details about the problems we encountered and how
we decided to resolve them.

Assign someone the role of list keeper in every meeting.
This person notes every data-related issue that comes up
during the meeting and marks off previous issues that have
been resolved. It helps to save time at the end of each
meeting to review and validate the new entries and their
assignments. The data modeler can be the keeper of the
issues list, but we’ve often seen it fall into the hands of the
project manager. This is in large part because keeping the
list updated and encouraging progress on resolving issues
are usually strengths of a good project manager.

The results of this initial design session, the high level
dimensional model, the attributes list, and the issues list,
are the foundation for the logical and physical business
process dimensional models. At this point, you’ve
identified the dimension and fact tables, each with a list of
its associated attributes or measures. This model, along

164

with the issues list, gives the data modeling team enough
guidelines to carry the process into the next level of detail.

Developing the Detailed Dimensional Model

Once this high level dimensional model is completed, the
hard work of filling in the dimension attributes and
hierarchies, identifying and validating data sources, and
defining names begins. At this point, the process gets
specific to each individual organization. The last part of
this chapter explores the process of identifying dimension
attributes and facts, and validating the model in the context
of the Adventure Works Cycles business.

Detailed dimensional model development is primarily
about filling in all the missing information in the
dimensional model and testing it against the business
requirements. This process is ultimately about defining the
contents of the DW/BI system, table by table and column
by column. Because the DW/BI system is an enterprise
resource, these definitions must work for the entire
enterprise. The data definition task is a business data
governance task — the BI team and the data steward
usually drive the process, but the business folks must
determine and approve the standard names and definitions.
This will take some time, but it’s an investment that will
provide huge returns in terms of users’ ability to
understand and willingness to accept the dimensional
model. This is another one of those organizational
processes that can be uncomfortable for the technically
minded.

165

One of the most important decisions from this detailed
modeling process is the assignment of the type 1 or type 2
change tracking technique to each column in each
dimension. This is a business decision and relates to the
need for accurate historical analysis. If there is now, or
may someday be, a need for predictive analytics using a
given attribute, you must use type 2 change tracking. In a
similar vein, if there is any need to report historical data as
it was when it occurred, for example, sales by sales region
as of December 31st last year, you must use type 2 change
tracking.

The team should meet on a regular basis, perhaps daily or
every other day, to discuss the proposed alternatives and
make decisions on open issues. Use these meetings to
critically explore the progress, review any
recommendations, and update the issues list. Focus these
meetings on one or two tables at a time — too many and
the meeting starts to get bogged down.

Address all the data quality issues you find in a separate
meeting (or two) with key business and source systems
people. The quality experts tell us the only way to truly
solve a quality problem is to fix it at its source. If you “fix”
these data quality problems in the ETL system, you will
reduce the incentive for the organization to fix them in the
source systems. The reality is, the source systems team
usually does not have resources or even the necessary
information to fix all of the problems, or even just the most
important ones. Therefore, you will end up taking on the
task of fixing some of these problems in the ETL system
until the business recognizes the importance of data quality
and allocates resources to correct the source system. The

166

earlier you discuss data quality issues, the better, because
many data quality problems end up being roadblocks, or at
least add unexpected work to the ETL process.

DOWNLOADS

If you aren’t already using it, try the
modeling spreadsheet mentioned in the
“Preparation” section of this chapter. It
provides a place to capture most of the
important descriptive information about
each table and attribute. It allows the
modeler to quickly move or copy attributes
around the model as needed. It is a
spreadsheet, after all.

The model will go through some major shifts during this
phase. You’ll identify additional attributes, along with new
dimensions and facts. If this is the primary focus of the
dimensional modeling team, the model should begin to
settle down with a week or two of intensive work.

RESOURCES

See the following resources for additional
information about developing the detailed
model:

167

• The Data Warehouse Lifecycle Toolkit,
Second Edition, Chapter 7, “Designing the
Dimensional Model.”

• Kimballgroup.com: Search for the topic
“Naming Game” for an article on the
process of driving organizational
agreement on attribute names. It can also
be found in the Kimball Reader on page
220.

Testing and Refining the Model

Once the model is fairly stable, step back and test it against
the business requirements. The requirements are an
integral part of the model development process, but a
separate test step helps you think at a more practical level.
Approach the test by asking the question “How would I
actually get this information out of the model?”

The requirements document should have a bundle of test
materials, including a candidate list of structured reports,
example user reports, and ad hoc or future-oriented
questions people would like to investigate. Pull these out
and go through them one by one. For each request, decide
how it could be answered (we often think up the SQL it
would take) and assign it an effort score: low, medium, or
high. A low effort query would be a simple SQL SELECT

statement — no sub-selects or case statements or unions —
that would be easy to construct in any desktop query tool.
At the end of the test, most of the questions should fall into
the low effort category — shoot for 75 percent.

Invariably, this testing process leads to several refinements
in the model. You may identify missing attributes or

168

hierarchies. Occasionally, you’ll make major structural
changes to the model based on a deeper understanding than
you had before you created the detailed model.

Reviewing and Validating the Model

Once you’re confident in the model’s stability, the process
moves into the review and validation phase. This phase
involves reviewing the model with successive audiences,
each with different levels of technical expertise and
business understanding. At a minimum, plan on talking to
three groups. Start with the core DW/BI team and involved
expert users. Next, review the model with key folks in the
IT organization; the source system developers and DBAs
can often spot errors in the model very quickly. (You may
need to teach these folks about dimensional modeling
before they start normalizing your dimensions.) Finally,
get feedback from any core business users who were not
directly involved in the model development process. After
each meeting, incorporate the feedback into the
dimensional model.

You may want to end by reviewing the model with the
broader user community. Do this more in the form of a
presentation and tie the model back to the business
requirements. A series of statements that show how a user
might get answers to a range of questions pulled right from
the requirements document can be very powerful.

The modeling team will get valuable feedback from the
review and validation process. The DW/BI team also gets
value from these reviews in the form of a more informed
and engaged user community.

169

Case Study: The Adventure Works Cycles Orders
Dimensional Model

This fourth major section of this chapter is meant to impart
a sense of how business requirements drive the
dimensional model. We draw our example from the
Adventure Works Cycles business and source system data
in the AdventureWorks transaction database. We use the
initial orders dimensional model from Figure 2-8 as our
starting point and discuss the major design changes that
were driven by business requirements, including the facts
and the employee, customer, and currency dimensions.

The Orders Fact Table

The grain of the fact table is at the order line item level.
This is the atomic level, and the only point in the
transaction where the product is specified. However, there
are some facts, such as taxes and shipping, which appear at
the order header level. Our goal would be to allocate those
down to the individual line item level if at all possible.
This would give us one atomic level fact table that can be
rolled up to any level across any dimension for any
order-related analytic purpose. This is how we create a
flexible model with long-term viability.

There could be some confusion about what goes into the
Orders fact table at Adventure Works because there are
two distribution channels: internet and resellers. Since the
sales organization is generally only interested in sales for
which they receive compensation, giving them a reseller
sales fact table removes the risk of accidentally including
internet sales in their analyses. However, separate fact

170

tables would require more complex cross-table queries to
generate reports at the total company level. It makes more
sense to combine all orders into a single fact table and use
dimension constraints, (e.g.,
Customer_Type = 'Reseller'), to help the sales
people get what they need.

The Dimensions

Using the dimensional model shown in Figure 2-8 as our
starting point, we’ll summarize how the Adventure Works
Cycles DW/BI team resolved major design issues with
several dimensions. At the end of this section, we show the
resulting updated high-level orders dimensional model.

Employee

Several business requirements had been voiced about
tracking the impact of organizational changes, and about
basic employee counts. (Note that these are questions
about the Human Resources business process.) Without a
type 2 dimension, it would be impossible to relate the
employee attributes that were in effect at the time a
transaction occurred with the actual transaction itself. Only
current attribute values could be used to analyze history.

Based on this discussion, the team decided to treat the
employee dimension as a hybrid slowly changing
dimension, with most of the attributes tracked as type 2
attributes. This decision had a significant ripple effect on
the model. First, it revealed a weakness in the sales
territory dimension. Having a type 2 attribute called
historical sales territory in the employee dimension tracks

171

the same information as the Sales Territory table, only
better: It locks in both the sales territory and the sales rep
that got credit at the time of the sale.

As a result, the sales territory dimension can be removed
from the model. Second, there is still a need to apply the
currently assigned sales territory to all of history, which
means keeping the current sales territory attribute in the
employee dimension as a type 1 attribute. The ETL
process will have to change all historical rows in the
employee dimension for the current sales territory when
the sales territory changes for a given employee.

NOTE

The decision to include type 2 attributes in
the employee dimension really means
expanding the scope to include a second
business process: Human Resources
transactions. In a large organization, the
ETL process will essentially create an
employee transaction fact table that can
then be used to build the employee
dimension. For Adventure Works Cycles,
with fewer than 300 employees, this
decision is probably not too onerous. For a
larger organization with thousands of
employees, this could be a lot of work.

The team also noted that the issue of finding reliable
historical information for employee changes will have to

172

be researched, but lack of historical data is a bad reason to
avoid implementing type 2 tracking. The sooner you get
started, the more history you will have.

Customer and Reseller

The initial design identified two customer-related
dimensions, customer and reseller, based on the two major
distribution channels. While these do share some
attributes, like an address, the company has certain
information about each that it doesn’t have about the other.
The sense when the bus matrix was created was that the
two customer types are different enough to be split into
separate dimensions.

Business requirements can help the team decide whether
they need one or two versions of the customer dimension.
First, there is a clear need to report total sales across both
customer types in the same report, so the model must
include an integrated master customer dimension of some
kind. Second, there are fewer than 20,000 customers in
total, and the distribution is highly imbalanced: Less than 4
percent are resellers. Third, only 10 or so attributes are
unique to reseller customers (items such as store annual
sales and number of employees).

Based on these requirements, the design team decided to
combine all the attributes of the two customer types into a
single, master customer dimension. This decision allows
much greater reporting and analysis flexibility and
simplifies the dimensional model. However, it means the
users need to understand and be able to work with the idea
that both customer types are in the same table. When they

173

want a count of internet customers, they will need to limit
the customer type field to “Internet.” (It’s also possible to
create views on the combined customer dimension that
would look exactly like the separate dimensions, for those
folks who can’t handle two customer types in one table!)

Currency

Every sale in the source system is captured in its original,
local currency. The source system relies on a currency
conversion table for translating currencies and reporting in
U.S. dollars. This table tracks the conversion rate between
the local currency and U.S. dollars both at the end of each
day and as an average for each day. Getting standardized
reports in U.S. dollars to compare across countries requires
a fairly complicated query and has long been a sore point
for most of the folks in headquarters. At the same time,
sales people in the field want to create reports in local
currency to show their customers. Finance, of course,
wants both, along with the conversion table so they can
assess the impact of exchange rates on budget variances.

Based on these requirements, the design team decided to
include both local currency and U.S. dollar fields in the
fact table, with a currency dimension to indicate the
currency of the local data. This means the ETL process
would have to bring in the Exchange Rates table to
convert non-U.S. sales into U.S. dollars.

Although it was out of scope for the initial phase 1 project,
the design team also decided to include the exchange rates
as a separate business process dimensional model. The
exchange rates model is essentially the Exchange Rates

174

fact table combined with the currency dimension and the
date dimension. Making this available to the users was an
easy political decision because it is incrementally very
little work. The Exchange Rates table must already be
brought into the ETL staging area in order to support the
currency conversion in the Orders table. Besides, the
Director of Finance is particularly interested in getting
access to this data.

NOTE

This is already the second piece of scope
creep in the design, the first being treating
employee as a type 2 dimension. We don’t
encourage this kind of scope creep in real
life. In our experience, almost all DW/BI
teams are overly ambitious in their first
iteration. We’re constantly coaching our
clients not to over-commit — your mantra
should be under-promise and over-deliver.

Those are the major changes that came out of the
high-level modeling discussion. Before we show the
updated model, let’s complete the second part of the
design session because there still might be a few changes.

Identifying Dimension Attributes and Facts for the Orders
Business Process

The second half of the initial design session involves
creating an initial data element list. This is an attribute list

175

for each dimension and a list of fact-related data elements.
The starting point for this list is the detailed requirements
document — one of its appendices should be a list of key
data elements (attributes) that people specifically identified
as important.

Figure 2-9 shows what a portion of the attributes list might
look like for the Adventure Works Cycles orders business
process dimensional model. The Sample Values column is
helpful in identifying attributes.

NOTE

Creating a stand-alone attribute list can be
helpful, but if you are using the modeling
spreadsheet we described earlier in the
chapter, you already have a place to keep
your attribute lists.

The process of creating the attribute list can trigger
changes to the initial high-level dimensional model. The
Adventure Works Cycles modeling team came across two
attributes that did not have an obvious home: sales reason
and channel. The business expert on the design team
explained how sales reason comes from a list on the
internet order form where customers could select one or
more reasons for their purchase. This is an example of a
many-to-many relationship, and a good candidate for a
bridge table. However, discussions with the business users
revealed that they were interested in the primary reason
only, which can be identified in the ETL process. In an

176

effort to avoid additional scope creep, the team decided to
include only the primary sales reason. (This will probably
be a decision they regret in the long run.)

Users also mentioned sales channel several times in the
business requirements document — usually referring to
resellers or the internet. If sales channel refers only to
reseller and internet, the Customer Type field can handle
this distinction. However, it was clear during the
requirements interviews that there is a drive to open up
new sales channels, including opening Adventure Works
Cycles retail stores and providing private label bikes for
large retailers.

Figure 2-9: Promotion dimension portion of the
Adventure Works Cycles initial Orders attribute list

A quick query of the source system revealed there are only
ten sales reasons and two sales channels so creating two
separate dimensions seemed inefficient to the design team.

177

They opted to create a junk dimension called Order Info

that would contain both concepts. The ETL process will
have to manage the assignment of surrogate keys and
watch for new entries in the source systems.

Revisit the source system tables at this point, as a final
check to make sure you haven’t left anything useful
behind. This is meant to be a validation step, not a starting
point.

Not all of the data elements on the attribute list will
necessarily be attributes of the final dimensional model.
Some of them are not really attributes; rather they’re
aggregates or constraints. Others are the same attribute
masquerading under a different name. Still other attributes
are missing altogether, either because they were so obvious
people didn’t think to mention them, or they were so little
used, people didn’t know to mention them. As you build
the lists, keep an eye out for these kinds of redundancies
and omissions. Start to boil down all this information to
create the master attribute list for each table.

The Final Draft of the Initial Orders Model

At the end of the initial design session, the team has
created a good high-level dimensional model for the orders
business process. The high-level model shown in Figure
2-10 is the result of merging the changes identified in the
process of creating the attributes list (adding the order info
dimension) along with the changes from the model design
session itself (merging reseller and customer, removing the
sales territory dimension, and adding the exchange rates
business process). This dimensional model contains all the

178

elements needed to meet Adventure Works Cycles’ orders
related business requirements in a simple, powerful,
flexible form — at least as far as the team understands
them at this point. This model will change, but it is a
strong first pass.

We encourage you to compare this model with the initial
model in Figure 2-8 to see how it evolved during the initial
design session. Review the business requirements
described in Chapter 1 and available from the book’s web
site to get a sense for how well the model will meet the
needs.

The last deliverable from the initial modeling session is the
issues list. This list will evolve as you work through the
details of each table, solving some issues and adding
others.

DOWNLOADS

You can see an example of the issues list
from the Adventure Works Cycles Orders
business process design session on the
book’s web site.

Figure 2-10: The high-level dimensional model from the
initial design session

179

Detailed Orders Dimensional Model Development

Develop the detailed dimensional model one dimension at
a time. Begin with the attribute information you captured
in your modeling spreadsheet in the initial design session.
Start with an easy dimension such as date, and fill in as
much of the spreadsheet as possible based on current
information. Source tables and columns are often fairly
clear for most of the attributes. Transformations for most
of the attributes are direct copies from the source. Target
data types can be inferred based on the source system as
well, although the data warehouse DBA will have the final
say in determining the data types.

Once the known information is filled in, the open issues
are more obvious. At this point, it’s time to continue with

180

the data exploration/data profiling process described
earlier in this chapter.

Identifying SCD Change Types

One of the columns in the modeling spreadsheet is the SCD
Change Type. The data modeler will use this to identify
how each attribute needs to be tracked over time and flag it
appropriately. Remember, this is a business question. It’s
okay to make a first pass and flag all the attributes whose
changes obviously must be tracked over time, or whose
changes have no impact on the business whatsoever. All of
the less obvious attributes should be discussed with the
modeling team. Review all of these change-tracking
decisions with the core business users before you make a
final decision.

The ETL process must re-create the historical changes for
every type 2 SCD attribute in each dimension, at least as
far back in time as the oldest fact table rows the dimension
will support. This is because the ETL process will need to
load historical fact rows with the dimension surrogate keys
that were in effect when the fact row occurred. Therefore
the ETL developer has to go back into the transaction
system to find all relevant historical changes that apply to
the dimension in question. While this is not the data
modeler’s task, it’s helpful to look for indicators as to
whether or not re-creating historical dimension data will be
difficult or even possible.

Reviewing the Issues

181

Even though you may have filled in most of the
spreadsheet, there will still be several issues that require a
second or third opinion. In some cases, you can resolve
these issues using the research tools described earlier in the
chapter. In other cases, you need a sounding board to
explore alternative solutions. Bring up open issues in the
next data modeling team meeting and work them through.
Then move on to the next dimension.

Identifying the Facts

Filling in the detailed fact table description is much like
filling in the dimensions. Start by copying in the list of
measures and filling in all the easy items. Then use the
research tools to address as many of the open items as
possible. Finally, work with the data modeling team to
resolve the remaining issues.

There are several issues that are specific to fact tables.
These include:

• Derived columns: Identify the formula and indicate whether
the derivation is additive or semi-additive, as in a month-end
account balance.

• Allocations: In the case of the Adventure Works Cycles
orders dimensional model, the grain is at the order line item
level. The team must decide how to handle the handful of
facts that are collected at the order level. Sales tax can easily
be allocated to each line item. Other facts, such as shipping
costs, might need to be allocated based on weight or size.

NOTE

182

Don’t avoid the allocations! If you leave
shipping costs in a fact table at the order
(not line item) level, all your product
related financial rollups will omit the
shipping costs. Grit your teeth and allocate!

• Conformed facts: The dollar sales field is a good example of
creating a conformed fact. As the team discussed in the design
session, there’s a need to have all transactions stated in a single
currency (U.S. dollars), as well as the original local currency
from the source system.

• Degenerate dimensions: While no transformations need to be
applied to any degenerate dimensions in the dimensional model,
you do need to indicate which fields in the fact table are
degenerate dimensions. In the orders dimensional model, there
are several degenerate dimensions.

Final Dimensional Model

When all the design reviews are finished, the user
meetings over, the source systems carefully scrutinized,
and the requirements reviewed, it’s time to physically
instantiate the dimensional model. This is a job for the
DBAs, but we usually set up a test database and run the
script from the spreadsheet. (You will probably already
have done this several times by now so you could reverse
engineer the model into your modeling tool to create a
presentable data model.)

DOWNLOADS

183

You can find the completed modeling
spreadsheet we used to create the
MDWT_AdventureWorks database at the
book’s web site: kimballuniversity.com/html/
booksMDWTtools.html.

At this point, you’re ready to take on the real database
physical design process and start thinking about designing
the ETL system.

Summary

Designing dimensional models for business intelligence is
no simple trick. The first part of this chapter concentrated
on defining and describing the basic concepts of
dimensional modeling: facts, dimensions, the bus matrix,
and conformed dimensions. The next section expanded the
description of dimensional modeling with key concepts
such as surrogate keys and tracking changes with slowly
changing dimensions. We described several techniques to
model a broad range of common (and uncommon)
business processes and relationships like many-to-many
relationships, hierarchies, and junk dimensions.

The third part of this chapter covered the process of
dimensional modeling. Begin with a preparation step to
identify the team, set up the modeling environment, and
determine naming conventions. Begin the modeling
process by using our four step approach to create a high
level business dimensional model, along with attributes
and issues lists. The next step is to develop the detailed

184

model, table by table and column by column, filling in all
the needed information and addressing all the issues. The
last step in the process of creating the dimensional model
involves reviewing the proposed model with several
interested parties, including other IT people and core
business users.

The last part of the chapter applied the dimensional
modeling concepts and process to the Adventure Works
Cycles case study, resulting in a dimensional model for the
orders business process. This dimensional model will be
the target for the physical database creation and the ETL
system described over the next several chapters.

185

Chapter 3

The Toolset

“But lo! Men have become the tools of their tools.”

— Henry David Thoreau, Walden

In this chapter, we describe the architecture and product
selection for the Microsoft data warehouse/business
intelligence (DW/BI) system. It may seem pointless to talk
about architecture alternatives and product selection for a
Microsoft system, but Microsoft offers enough software
components that there’s a significant element of product
selection.

Figure 3-1 repeats the familiar Kimball Lifecycle diagram,
highlighting the Architecture and Product Selection boxes
that are the focus of this chapter. In this version of the
diagram, we’ve included a mapping between the Lifecycle
boxes and the Microsoft products and components you
may use during your development and management
processes.

The first part of this chapter walks through the overall
architecture of a Microsoft-based DW/BI system and the
rationale behind the major components. We next discuss
the specific product editions and components that make up
Microsoft’s DW/BI related offerings.

This chapter continues with a description of the two main
tools that you’ll use to develop and operate your DW/BI

186

system. You’ll use a single integrated environment called
the Business Intelligence Development Studio (BIDS) to
develop most of your DW/BI system, and a second
environment called the SQL Server Management Studio to
manage it. We introduce the two tools here and provide an
overview of the elements that are the same no matter what
part of the DW/BI project you’re working on.

Figure 3-1: Kimball Lifecycle and Microsoft technologies

The Microsoft DW/BI Toolset

The core set of DW/BI tools that Microsoft Corporation
sells is Microsoft SQL Server. SQL Server includes
several major components of primary interest for DW/BI
projects:

• The relational engine (RDBMS) to manage and store the
dimensional data warehouse database.

187

• SQL Server Integration Services (SSIS) to build the extract,
transformation, and load (ETL) system.

• SQL Server Analysis Services (SSAS) analytic database to
support users’ queries, particularly ad hoc use.

• SQL Server Analysis Services data mining to develop
statistical data mining models, and also to include those
models in advanced analytic applications.

• SQL Server Reporting Services (SSRS) to build predefined
reports. The majority of the Reporting Services features are
most appropriate for the DW/BI team, but you may provide
some ad hoc query and report building functionality with
Report Builder.

• Master Data Services (MDS) to create a range of master data
management applications to feed the data warehouse, and
possibly integrate that data management with the source
transaction systems.

• Development and management tools, especially SQL Server
BI Development Studio (BIDS) and SQL Server Management
Studio to build and manage your DW/BI system.

The SQL Server product contains the software necessary
to build, deploy, populate, and manage your DW/BI
system. Microsoft also offers a second significant set of
tools beyond the SQL Server product designed for the
business user, including:

• Excel is the most common tool for ad hoc users to access
Analysis Services databases. The Excel pivot table controls
connect directly into SSAS cubes, in an environment that
most users are already familiar with. Pivot tables can also
connect directly to a relational data warehouse.

• PowerPivot functionality is new in SQL Server 2008 R2. It
combines the power of Analysis Services and Excel in an
in-memory desktop experience. It’s very popular with power
analytic users and provides a strong BI application platform
in conjunction with SharePoint.

188

• SharePoint has several roles within the DW/BI system.
Many organizations develop their BI portals in SharePoint,
providing an integrated place to host reports, ad hoc query
tools, online training, user support, and documentation.

• PowerPivot for SharePoint expands the usefulness and
manageability of PowerPivot, by enabling power users to
share their PowerPivot workbooks via SharePoint.

• Master Data Services can also be configured to integrate
with SharePoint, in order to provide workflow functionality
in the master data management system.

Some organizations supplement their Microsoft end-user
tools with third-party query, reporting, and analytic
software.

Microsoft Visual Studio is a fundamental tool for the DW/
BI development team. The SQL Server DW/BI
development tools are hosted in Visual Studio. The
necessary Visual Studio components are installed for you,
and you may not even realize that you are using the
standard Microsoft development environment.

You can use Visual Studio to build a custom application,
such as an analytic application that connects your DW/BI
system back to transaction systems. The heavy lifting of
such an application may occur within your Analysis
Services data mining model, but you’d still need to
develop a bit of plumbing to connect the two systems.

Why Use the Microsoft Toolset?

Before we go on to describe how to build a DW/BI system
using Microsoft technologies, it’s worth asking the
question: What is interesting about the Microsoft toolset?

189

As it turns out, there are several compelling answers to this
question:

• Completeness: From the operating system, database engines,
and development environment, to a SharePoint portal and
the Office and Excel desktop, you can build a complete DW/
BI system using only Microsoft software. You have an extra
margin of confidence that all the components work together
effectively.

• Lower cost of ownership: The licensing cost of SQL Server
has been less than comparable product suites from other
vendors, but total cost of ownership depends as much on
ongoing support, training, and operations costs as on
licensing costs. Microsoft asserts that SQL Server systems
need fewer administrative resources than competitive
products. Your organization may already have .NET
programming skills. If so, it may be possible for you to
customize and extend your DW/BI system.

• Openness: Although you can build a complete DW/BI
system with Microsoft software — and this book describes
how to do it — you don’t have to. Any component of the
Microsoft DW/BI framework can be swapped out for a
third-party product, and many customers build DW/BI
systems in heterogeneous environments.

• High performance and scale: At the time of this writing,
Microsoft-based DW/BI systems with data volumes of 10
terabytes are fairly common and 50 TB is not rare. As DW/
BI systems are built on sub-transactional data like
clickstreams and RFID data streams, even moderate-sized
organizations may find themselves in the “terabyte club.”
Microsoft recognizes this trend, and has engineered and
tested its products, especially the SQL Server components,
to perform well at high data volumes. Microsoft has also
extended its SQL Server product line with the Parallel Data
Warehouse system that uses a massively parallel processing
architecture to scale up to hundreds of terabytes.

• Microsoft investment in business intelligence: The SQL
Server business intelligence suite consists of real tools that

190

work together, if not seamlessly, then at least with seams
that have been professionally sewn. Some of the tools —
notably Analysis Services — are best of breed. All of the
tools are competitive on their own merits with standalone
products. Microsoft is clearly committed to building tools to
enable you to build great business intelligence applications.
And you can be reasonably confident that Microsoft will
remain in business for a long time.

Architecture of a Microsoft DW/BI System

All DW/BI systems consist of several major components,
as pictured in Figure 3-2: sources of data, an ETL system,
data warehouse databases, and a wide variety of uses.
Metadata is the glue that binds together the complete DW/
BI system.

As we explained in Chapter 2, the data warehouse
databases should be in a dimensional form, consisting of
fact tables and their associated dimension tables.
Dimensions should be conformed across the enterprise.
For example, all business processes that are described by
the customer dimension should use the same customer
dimension with the same keys.

Some enterprises take advantage of SQL Server Master
Data Services (MDS) to build a master data management
system. As we explain in Chapter 6, simple MDS
deployments fall squarely within the purview of DW/BI,
supplementing the ETL system. But complex, enterprise
master data management systems are more closely aligned
with the source systems. That’s why the Master Data
Services box straddles the source systems and ETL in
Figure 3-2.

191

Figure 3-2: Microsoft DW/BI system architecture

The primary place to store and manage the dimensional
model is in the relational data warehouse database. In
Microsoft terms, this is the SQL Server database engine.
You’ll use Integration Services to develop an ETL system
that populates that database, performs inserts and updates,
and also manages system resources such as disk space,
partitions, and indexes.

The second place to store and manage the dimensional
model is in the core online analytic processing (OLAP)
data warehouse database. In Microsoft terms, this is the
Analysis Services OLAP engine. You’ll write a small ETL
module to incrementally populate the core SSAS database
from the clean, conformed relational data warehouse
database.

There are two major categories of DW/BI system usage:
BI applications and exploratory use. There are many kinds
of BI applications, ranging from standard predefined
reports to complex analytic applications that use data
mining technology to affect business operations. Microsoft

192

offers many technologies here, from Reporting Services
for predefined reports, to Analysis Services data mining
and the Visual Studio development environment to build
custom applications.

The other kind of usage is exploratory or ad hoc. Here,
Office Excel continues to be popular, although many
organizations struggle with the data anarchy that comes
with extensive use of Excel in the enterprise. New to SQL
Server 2008 R2, the PowerPivot analytic tool that
combines Excel and Analysis Services may help with the
data anarchy problem. Or it may make it worse! Many
organizations use non-Microsoft tools to deliver more
structured, yet still highly flexible, ad hoc query
functionality. As we discuss in Chapter 10, the Report
Builder component of Reporting Services is designed to
provide some ad hoc functionality. Data mining is another
kind of exploratory use, delivered by the Analysis Services
data mining features. Most business users will access
SSAS data mining via the Excel add-in.

All these tools use metadata for development and
operations, but there’s no specific metadata feature or
central metadata management capability that we can point
to. That doesn’t mean the metadata is missing or even that
it’s unavailable; it’s just not as easy to get to, nor as
integrated as we’d like.

Most readers understand why the relational data warehouse
database is important. Let’s talk first about why your
architecture should include Analysis Services.

Why Analysis Services?

193

What functionality is addressed by the OLAP database
engine? Why would you want an OLAP engine — an
Analysis Services implementation — in addition to the
dimensional model stored in the relational database?

All DW/BI systems need a user-oriented layer on top of
the dimensional data stored in the relational database. This
layer can simply be a set of predefined reports. But for
successful ad hoc access by business users, you need a
layer that performs the following basic functions:

• Easy user navigation: User-oriented names for database
objects, and transparent join paths between dimensions and
facts and between multiple fact tables

• Complex calculations: Centralized storage of calculation
logic and execution of calculations

• Fast user query performance: Usually accomplished through
aggregate navigation and aggregate management

• Data security definition and enforcement: Preferably
managed on a server rather than on users’ desktops

For many years, people have used relational techniques
such as views and client-side query tools to deliver this
functionality. An OLAP engine such as Analysis Services
provides a better way. Analysis Services supports the basic
user-oriented functions already described, with two key
additional features:

• Query language: OLAP engines use a different — and better
— query language than SQL to express complex
calculations.

• Computational performance: The OLAP engine has been
designed as a high-performance server — its enterprise
functionality, data capacity, and capability to resolve the
most complex calculations far outstrips any client-based
tool.

194

The concepts introduced here are discussed more
thoroughly in Chapter 8, which describes how to design
the core Analysis Services database.

Although Analysis Services is an extremely popular
component of SQL Server, there are still several common
objections to using it:

• Scalability: Relational data warehouses can scale higher than
Analysis Services. We wouldn’t hesitate to implement
systems with several terabytes of data in Analysis Services,
but we’d be cautious at scales approaching 10 TB. We’ve
seen implementations larger than 5 TB, but they are rare.

• Duplication of data: Many users dislike the notion of
duplicating all the relational data warehouse data into a
second database management system.

• Changes to the user applications: Your business users are
accustomed to using a SQL-based query and reporting tool,
which might not work the same way (or at all) against an
Analysis Services database. There is significant cost in
purchasing new tools and retraining your users.

Of the three common arguments against using Analysis
Services, we find only the third to be broadly compelling.
Worries about scalability and data duplication shouldn’t
prevent the vast majority of SQL Server implementations
from reaping the very real benefits of a DW/BI system
that’s built on Analysis Services.

Why a Relational Store?

Perhaps you’re convinced that Analysis Services is a vital
part of your DW/BI system architecture. Your next
question may be: why do you need to store the
dimensional data in the relational database? You aren’t

195

required to do so: Microsoft provides several mechanisms
for populating cubes directly from non-dimensional source
systems. Why go to the trouble and expense of
implementing a relational data warehouse database?
Here’s why:

• Manageability: As discussed in Chapter 17, it’s much easier
to handle changes in structure and content in the relational
database than in Analysis Services.

• Conforming dimensions and facts: In a hypothetical, simple
example, you can conform data on the way into the Analysis
Services database. In the real world, you’ll have to update
and delete some data in the ETL pipeline, and you really
want to do this in a relational database.

• Comfort: DBAs and power users are familiar with SQL and
relational databases and will violently resist the elimination
of the relational layer.

• Future flexibility: The notion of eliminating the relational
data warehouse database and populating the Analysis
Services database directly from transaction systems may
sound appealing. But if you choose this approach, you’re
committing to an architecture that’s difficult to transfer to
another database platform, not that you would ever want to
do that.

There are scenarios, particularly around the real-time
delivery of analytic data, where it may make sense to skip
the relational storage of the dimensional data and populate
the Analysis Services database directly from transaction
systems. But these are edge cases. Most of us, most of the
time, should plan to store and manage the dimensional data
in the relational database, and use that store to feed
Analysis Services. Think of the Analysis Services layer as
metadata for the dimensional database, which possibly
includes a data cache for enhanced performance.

196

ETL Is Not Optional

We expect that most of the readers of this book are
interested in building a data warehouse system. We will
only briefly review the reasons that most in the
information management industry agree that a data
warehouse is a good idea. In short, the data warehouse:

• Separates analytic workloads from transaction processing
• Integrates multiple transaction data sources
• Reduces the complexity of data models for easier reporting

and ad hoc analysis
• Improves query performance for reporting and ad hoc

analysis by redesigning the data models
• Enhances analytics by supporting the addition of information

that’s not managed in the transaction systems
• Maintains a longer time series of data for facts and selective

dimension attributes than is typically found in the transaction
systems

• Presents a single version of the truth to the business user
community

More to the point, the data warehouse adds significant
value to the data. A well designed and built data
warehouse provides data capture, searching, extracting,
staging, archiving, cleaning, conforming, duplicating,
allocating, transforming, computing, arranging, packaging,
aggregating, presenting, analyzing, modeling, estimating,
projecting, recommending, and connecting the decision to
operations!

From time to time, observers argue that a data warehouse
is too expensive. Instead, they propose a virtual data
warehouse to provide many of the advantages of a real
data warehouse, with presumably less cost. The ETL

197

system is particularly expensive; isn’t it possible to
provide a user navigation layer on top of the transaction
systems, and skip ETL altogether? In fact, Microsoft
provides tools that could do that. It’s theoretically possible
to build an Analysis Services database, a PowerPivot
workbook, or a Report Builder model directly on top of a
transaction database or even multiple databases.

In all but the most trivial cases, this approach is so deeply
flawed as to be unworkable. You’ll be shifting the burden
of ETL onto the business users, who will do the same thing
multiple times, with inefficient tools (usually Excel), and
in inconsistent ways. Attempting to implement a virtual
warehouse technique on even a simple and clean sample
database such as AdventureWorks is an exercise in
frustration.

ETL is a job for IT professionals, not the user community.
Build it once, build it right, and the downstream uses such
as cubes, reports, and PowerPivot snap into place much
more easily. It’s easy to create a cube or PowerPivot
workbook from very clean, well structured, and integrated
data, such as the data in a dimensional data warehouse.
With PowerPivot, it’s not terribly difficult to integrate one
or two additional data sources, such as demographic
information or custom groupings.

Even if your user community is saying they just want tools
such as PowerPivot without an underlying infrastructure,
they most assuredly will not enjoy doing IT’s job in the
long term.

The Role of Master Data Services

198

SQL Server Master Data Services has an unusual position
in the data warehouse architecture, as pictured in Figure
3-2. It straddles the source transaction systems and the data
warehouse ETL system.

Although most information architectures do not yet include
a formal master data management system, almost every
existing data warehouse does perform some master data
management. Functionality to integrate customer names or
product lists from multiple source systems and applets to
manage reporting hierarchies or custom attributes are
required by most data warehouse environments.

We’re advocating several changes from the status quo:

• Manage this master data externally and explicitly, rather
than folding it into the batch ETL operations. One of the key
advantages of explicit management is the opportunity to
leverage experts’ judgment as entities are created, rather
than during the nightly batch ETL process.

• Consider using Master Data Services to replace most of the
complex logic for dimension table ETL. Master Data
Services can process changes during the day, and then
submit the new and changed rows to the batch ETL system
for processing into the dimension tables.

• Set the stage for your organization to implement “real”
master data management, which integrates tightly with the
source transaction systems and eliminates the need for
downstream data integration. Data is integrated at the source.
As we discuss in Chapter 6, this admirable goal is out of
immediate reach for many organizations, which haven’t even
begun to take a serious view of data stewardship.

Delivering BI Applications

199

Reporting Services is the primary platform in the SQL
Server toolset for delivering BI applications. It is
essentially a standalone enterprise report definition,
storage, execution, and delivery service. It offers a
reasonable set of report creation and distribution tools,
primarily targeted at the developer community.

Reporting Services includes Report Builder, a desktop tool
that offers almost the same report design experience as the
BIDS-based report designer without the need for BIDS or
Visual Studio. This makes it more accessible to power
users, and it has an optional metadata model to help
simplify the data set definitions even further. However, it
is still a fairly complex tool and does not find broad use in
most organizations. We explore Reporting Services and
Report Builder in greater detail in Chapter 10.

If you want to deliver more flexible data interaction to
your users, you need to include tools outside the SQL
Server toolset. The obvious candidate under the Microsoft
umbrella is Excel. Its PivotTable control connects directly
to Analysis Services cubes and shows the available facts
and dimensions based on the cube’s metadata. This makes
it easy for business users to create their own simple queries
and reports against Analysis Services cubes. PivotTables
can also access relational data sources, but it is difficult to
present the dimensional model because there is no
associated metadata in the relational environment to define
it.

The PowerPivot add-in for Excel 2010 takes PivotTables
to a new level. It is a desktop-based Analysis Services
cube that uses an in-memory column store technology to

200

support fast access to millions of rows of data in
combination with an enhanced PivotTable control called
the PowerPivot Field List. The big leap forward of the
PowerPivot Field List is its capability to allow the user to
define new columns that are computed in the PowerPivot
database. This enables users to embed computed columns
in their reports that are completely context-aware, a critical
function for creating flexible, modifiable reports.

PowerPivot has a SharePoint component that allows you to
share access to PowerPivot reports across your
organization. In order to reach this level of reporting, you
need Microsoft Office 2010 or higher on every user
desktop and a SharePoint server. We will explore the
implications of these additional tools in Chapter 11 on
PowerPivot and Chapter 12 on the BI Portal and
SharePoint.

Overview of the Microsoft Tools

Many readers will start to work with SQL Server by
experimenting with its functionality in a single machine
sandbox. If you have the time and bandwidth to do so, this
is a great way to determine which product features are
important to your business and users. In this environment,
we recommend that you acquire a true sandbox machine: a
new or rebuilt machine with a clean operating system and
no other applications. You can use virtual machine
technology to simulate a clean machine and run SQL
Server well enough to evaluate functionality.

Other readers are launching real projects and need to be
more rigorous and thoughtful in setting up their

201

environments. As we discuss in Chapter 16, plan from the
outset for the standard three-tier system, with separate
servers for development, test, and production. Your test
system should be as similar to the production system as
you can possibly make it. The more different your test and
production systems are, the more difficult it is for your
database administrators to evaluate alternative approaches
to tuning and configuration before rolling those changes
into production.

Most teams set up their development environment with a
central server or two to hold relational and Analysis
Services databases. Developers install the development
tools — the studio workbenches described in the next
section — on their own machines, and point those tools to
the development database server. Early in the development
cycle, developers may have personal databases, either on
the shared server or on their own machines.

Which Products Do You Need?

There are four editions available that are interesting for
DW/BI projects, starting at the high end:

• Data Center Edition
• Enterprise Edition
• Standard Edition
• Developer Edition

You will need to purchase and run either Data Center,
Enterprise, or Standard Edition on your production servers.
Enterprise Edition contains almost the entire product
feature set, and — unsurprisingly — costs several times as
much as Standard Edition. Enterprise Edition lacks a few

202

features that are available in Data Center Edition, having
to do with managing multiple instances. But the main
difference between Enterprise and Data Center is the
hardware: Enterprise Edition is limited to 8 CPU sockets
and 2 TB of memory.

RESOURCES

You can find detailed information on each
edition at www.microsoft.com/sql, and in
Books Online. See the Books Online topic
“Features Supported by the Editions of
SQL Server.”

There is no hard and fast rule for which edition you should
purchase. A simple rule of thumb suggests that Standard
Edition is probably sufficient for most small and some
medium implementations. If your data volume, measured
as data only without indexes, is 50 gigabytes (GB) or less,
then you can do without the scalability features in
Enterprise Edition. Depending on incremental load
volumes, frequency, and uptime requirements, a
medium-sized implementation of up to 250 GB can also
work on Standard Edition. Any large, real-time, or
otherwise challenging implementation should plan to use
Enterprise Edition. Extremely large deployments, which
plan to use more than 8 CPU sockets for a component of
the DW/BI system, should use Data Center Edition.

Whichever edition you use in production, your developers
should use Developer Edition. Developer Edition is

203

extremely inexpensive, it will run on desktop operating
systems such as Windows 7, and it contains all the
functionalities of the Enterprise and Data Center Editions.

Editions and Features of SQL Server 2008 R2

The features that are excluded from Standard
Edition support scalability in the enterprise.
Mostly, scalability refers to data volumes, and
often has more to do with maintaining and
operating very large systems than actually storing
and querying them. Another aspect of scalability is
complexity; some of the excluded features would
help your business users navigate a complex
enterprise-level system more easily.

Here, we list and comment on our favorite
Enterprise Edition features:

• Relational database engine

Relational database partitioned tables are a key
feature for fast loading and improved
maintainability of large tables. We talk about
partitioning in Chapter 4.

Relational database maintenance functionality,
including online index operations and parallel
index operations, is particularly important for
loading new data into large tables in a short time
frame and performing periodic maintenance.

204

Resource Governor lets you define groups of users
and types of usage, and define ceilings for their use
of the relational database. The Resource Governor
can help prevent one or two killer queries from
taking over the server. Resource Governor is
described in Chapter 17.

Change Data Capture is defined on the source
transaction database. It will generate tables with
images for rows that have been added, updated, or
deleted.

Star join query optimization can dramatically
improve the performance of queries on the
dimensional or star schema structures in the
relational data warehouse.

Data compression can reduce storage and have a
significant improvement on query performance
from the relational data warehouse.

• Integration Services

Integration with Analysis Services dimensions,
cubes, and data mining models is a really nice
feature, but not absolutely necessary. You could
have SSIS launch a script that updates the cube or
data mining model.

Advanced transforms such as fuzzy lookup and
text mining are very cool, but they may be too

205

complicated for most small projects to deal with
anyway.

• Analysis Services OLAP engine

Scalability and performance features, such as
automatic parallel processing and partitioned
cubes, are very important for delivering great
performance with medium and large data volumes.

Features such as Account Intelligence, Writeback
Dimensions, and particularly Perspectives,
Semi-additive Measures, and Translations let you
build more usable and complex OLAP databases.

• Analysis Services data mining

Parallelism for processing and prediction is
important for large data volumes and heavy usage
scenarios.

The statisticians in your organization will
appreciate the advanced tuning and configuration
options for the algorithms.

The integration with Integration Services, as we’ve
already described, is useful but not absolutely
necessary.

• Reporting Services

206

Scale-out report servers are an important feature
for large-scale deployments. This is basically
creating a web farm for the report servers.

Data-driven subscriptions may be useful for a large
enterprise. With this feature, you can email a
personalized budget variance report to a dynamic
list of managers, run from a single report
definition.

• PowerPivot for SharePoint

PowerPivot for SharePoint is not available in
Standard Edition.

• Master Data Services

Master Data Services is not available in Standard
Edition.

SQL Server Development and Management Tools

Two toolsets are installed as part of the client tools
installation. The SQL Server Management Studio
(Management Studio) is used to operate and manage your
DW/BI system. The Business Intelligence Development
Studio (BIDS) is used to design and develop your business
intelligence system.

SQL Server Management Studio

207

Management Studio is the primary tool for database
administrators. In most cases, the Management Studio
client tools are the only component of SQL Server that is
installed on database administrators’ workstations. The
Management Studio screen is pictured in Figure 3-3.

Figure 3-3: SQL Server Management Studio

Relational Database Management Operations

Within Management Studio, you perform most
development and management activities for the relational
database. There are point-and-click user interfaces to:

• Create, delete, back up, and restore databases.
• Create tables.
• View the data in tables.
• Create database diagrams.
• Create and manage stored procedures, views, security, and

other database objects.
• Generate a T-SQL script to create any database object.

208

Alternatively, from within Management Studio, you can
open a SQL window to perform all of these functions
through T-SQL.

Management Studio includes many predefined server
management reports. The server dashboard report is
illustrated in Figure 3-3. There are additional reports
available for the server, each database, and other objects
such as security.

Analysis Services Management Operations

When you connect to an existing Analysis Services
database in Management Studio, you can perform
management operations including:

• Delete the SSAS database.
• Back up and restore SSAS databases.
• Define storage characteristics for cube partitions.
• Create and process partitions.
• Manage security.
• Run aggregation design wizards, and create and process

performance aggregations.

You can also open three types of query windows for an
Analysis Services database:

• Multidimensional Expressions (MDX): MDX is the query
language for Analysis Services. Use a simple control to
browse the cube, or type your own MDX.

• Data Mining Extensions (DMX): Using a syntax similar to
SQL, issue queries on the data management views for
Analysis Services. Alternatively, from within this same
query window, use SQL syntax or a simple UI to issue
queries into an existing data mining model.

209

• XML for Analysis (XMLA): Issue a query to browse the
structure of the SSAS structure, modify that structure, or
process the cube. As you might guess from the name,
XMLA uses XML syntax.

It is technically possible to edit and re-issue the Analysis
Services object creation XMLA. In fact, it is technically
possible to write a complete cube definition or Integration
Services package by typing an XML file. Just because
something is possible doesn’t mean it’s a good idea. Use
BIDS to design and debug BI objects (except for the
relational database). In the rare cases when you need to
automatically generate an object, you should use the
appropriate programming object model rather than attempt
to manipulate the XML directly.

Reporting Services Management Operations

When you connect Management Studio to a Reporting
Services instance, you can manage security and shared
schedules. Many organizations use the Reporting Services
default web application to perform these activities, rather
than Management Studio.

Integration Services Management Operations

When you connect Management Studio to an Integration
Services instance, you see the packages that are currently
executing. You can also see all packages that have been
installed in the SQL Server database or package store. As
we discuss in Chapter 7, many organizations simply leave
their packages in the file system, in which case they do not
show up here in Management Studio.

210

Business Intelligence Development Studio (BIDS)

BIDS is designed for all BI system designers and
developers, with user interfaces for designing and
debugging Analysis Services databases, data mining
models, Integration Services packages, and Reporting
Services reports. The obvious omission from this list is the
design and development of the relational data warehouse
database. Use Management Studio for the relational part of
the project and BIDS for the rest.

Like Management Studio, BIDS is integrated with Visual
Studio. This is great news for developers who already use
Visual Studio because the interface will be somewhat
familiar. Even though the Visual Studio environment
appears complex at first, everyone benefits from this
integration. Your team can use integrated source control to
manage project files; you can set breakpoints and debug
Integration Services packages and MDX scripts; any code
you may need to develop is integrated in the same
environment; and all projects benefit from a unified
approach to separating development from deployment.

BIDS uses the same kind of hierarchical grouping as
Visual Studio. You will create one or more solutions; each
solution has one or more projects; each project has one or
more associated files. Each project is associated with a
technology such as Integration Services or Reporting
Services. In theory, you can have one BI solution that
spans your DW/BI system, with multiple projects inside it
for each component of that system (SSIS, SSAS, and
SSRS). Practically speaking, most teams keep a one-to-one
correspondence between projects and solutions, or at most

211

a handful of projects for each solution. That’s because the
solution takes a long time to open up if there are hundreds
of files in it.

DW/BI development teams should manage their files
under source control, and BIDS makes that very easy to
do. You won’t see this functionality unless you’ve
integrated your source control product into Visual Studio.

The files in the project folder completely define the
project: They are the source code for the project. During
the development process (especially if you’re not using
source control!), you may want to share your project
definition with a colleague so she can view your work.
You can simply send her a copy of the project folder,
ensure she has appropriate database permissions, and she is
set.

BIDS shows different windows depending on whether
you’re working on an Analysis Services, Integration
Services, or Reporting Services project. Figure 3-4
illustrates the BIDS window for an Integration Services
project. This is a new project that doesn’t have much
content yet.

All the different types of projects use a similar layout,
imposed by Visual Studio. The Solution Explorer window,
located by default in the upper right, lists the files in the
project and lets you navigate between them. The Properties
pane, located by default in the lower right, shows all the
properties associated with an object; read-only properties
are gray. As you’ll see in subsequent chapters, BIDS

212

contains extensive wizards whose job, in effect, is to help
you set these properties.

Figure 3-4: Basic layout of the BIDS windows and panes

BIDS gobbles up screen real estate, and is a good excuse
to get an upgraded monitor and video card. You can
maximize screen real estate by setting windows such as the
Solution Explorer and Properties pane to “auto-hide.”

Many of the BIDS components use the Toolbox pane on
the left-hand side. The big section in the middle, which
currently displays the control flow for a new SSIS
package, is used as a design surface. In here you’ll design
Integration Services packages, Analysis Services
dimensions, cubes, and data mining models, Reporting

213

Services reports, and so on. You generally want this
central area to be as big as possible.

Finally, the BIDS tools use Visual Studio’s build, deploy,
and debugging features such as watch windows.
Sometimes it feels like there are dozens of extra little
windows, located by default at the bottom of the screen.

The other chapters in this book focus on the specific BI
features such as Analysis Services and Integration
Services. In those chapters, we spend more time describing
how to use BIDS, although this book is not intended to be
a product tutorial. The tutorials that ship with SQL Server
do a very good job of explaining how to use the product.

Summary

In this chapter, we described how the Microsoft BI toolset
maps to industry standard terminology. We made a
compelling argument that you can build your entire
business intelligence system using software only from
Microsoft. You’re not tied to Microsoft for your entire
project, however: the components are “open,” in the sense
that they are linked together by published interfaces. If you
wish, you can use a non-Microsoft product for any
component of your DW/BI system.

We described the basic recommended architecture of a
Microsoft DW/BI system and introduced the studio tools
— SQL Server Management Studio and BI Development
Studio. We will provide much more information about
these tools in upcoming chapters.

214

Chapter 4

System Setup

Let’s get physical.

Up to this point, we’ve been talking about project
management, business requirements, logical data models,
and system architectures. Until now, you haven’t needed
any technology more sophisticated than a laptop with
Office. That changes in this chapter, as we discuss issues
surrounding the setup of your development, test, and
production systems, and get you ready to start the
development process.

As you can see in Figure 4-1, the product installation and
setup issues addressed in this chapter come toward the end
of the technology track of the Kimball Lifecycle, once
you’ve created your system architecture, and selected any
additional products you might need, and worked through
the dimensional model design.

We begin by helping you get a handle on the size of your
business intelligence system, so you can make decisions
about its basic physical configuration. Will you install all
the server software components for your DW/BI system on
a single machine or several? Will you use clustering or
web farms? Do you need to budget for server hardware or
expensive storage networks? We can’t answer these
questions for you, but we’ve provided some guidance that
should help you answer them for yourself.

215

The decisions you make about your production hardware
and software configuration should be reflected, as much as
economically feasible, in your test or quality assurance
system. It may seem wasteful to spend money on test
systems, but if you’re serious about delivering
good-quality service to your existing business users, you
need to be serious about testing before you roll system
changes into production.

Figure 4-1: System setup in the Kimball Lifecycle

We suspect many readers will be tempted to skip this
chapter. At least one person on your project team should
read it, even if you have a separate server management
group who will do all the work for you.

In this chapter, we address the following specific
questions:

• Early in the design process, how can you determine how
large your DW/BI system will be? What are the usage

216

factors that will push you to a larger and more complex
configuration?

• How should you configure your system? How much memory
do you need, how many servers, what kind of storage and
processors?

• How do you install the SQL Server software on the
development, test, and production servers? What do different
members of the DW/BI team need to install on their
workstations?

System Sizing Considerations

We’re sure that all readers of this chapter are hoping for a
simple chart that will specify what kind of server machine
they should buy. Sorry, it’s not going to happen: The
problem is too difficult to reduce to a simple matrix or
tool. The best we can do is describe the different options
and parameters, and the kinds of operations that require
bigger and more expensive hardware.

There are four main factors that will push your project to
more expensive hardware: data volumes, usage
complexity, number of simultaneous users, and system
availability requirements. These factors are illustrated in
Figure 4-2 and discussed in the following sections.

Calculating Data Volumes

The first and most obvious characteristic of your DW/BI
system that will affect your hardware purchases is data
volumes. By the time you’ve finished your logical model
and initial data profiling, you should have enough
information to estimate how big your DW/BI system is
going to be. Later, during the database setup, your DBAs
will calculate database sizes in great detail, but for now

217

you can just think about fact table row counts. Unless you
have a monster dimension of 50–100 million rows,
dimension sizes are insignificant.

For starters, just figure out what order of magnitude
number of rows you’ll have for your initial historical load
of fact data. Multiply that number by 100 bytes, which is
our generous rule-of-thumb for fact row sizes. You can get
more precise if you like, but we like arithmetic that we can
do on our fingers. One hundred million fact rows require
about 10GB as stored in the relational database, measured
as uncompressed atomic data only, no indexes. It might be
7GB; it might be 12GB; it won’t be 100MB or 100GB.
When you add relational indices and Analysis Services
indices and MOLAP storage, multiply that base number by
2 to 4. In the early stages, before we have a specific
design, we use a factor of 3. The requirements for the ETL
staging area could conceivably add another factor,
although the staging area may be relatively small.

Figure 4-2: DW/BI system sizing considerations and
configuration options

218

The incremental daily or monthly load volume is
important, too. From the incremental volumes, you can
compute expected data volumes for each fact table one,
three, and five years out, which will help you decide what
class of storage system to buy today.

Although we’ve talked in this section about counting all
the fact rows in your system, not all fact tables are created
equal. A single billion-row fact table is going to be more
demanding of system resources than ten 100 million–row
fact tables would be. We don’t have a scientific way to
quantify this difference, but you should list the fact table
sizes by fact table, in addition to an overall count.

In Figure 4-2, a small system is characterized by less than
500 million rows of fact data, or 50GB using our simple
multiplier. A large system is more than 5 billion fact rows,
into the terabyte range and above.

Determining Usage Complexity

219

The next key factor in deciding how big your hardware
needs to be is to consider how your business users are
going to use the data. There are two main questions: how
many users will be working simultaneously, and what will
they be doing? The usage patterns of a business
intelligence system are quite different from the familiar
workload of a transaction system. Even the simplest DW/
BI query — for example, a query browsing a dimension —
is more complex than most transactional queries. And the
most complex DW/BI query is several orders of magnitude
more complex, and touches more data, than any
operational transaction.

You can’t expect to already have a great understanding of
system usage during the design phase of the DW/BI
system; however, you do need to think about different
kinds of usage and the approximate volume of use in each
category. The data model tests we described in Chapter 2
are a good place to start. Your business requirements
document should also contain information about the kinds
of usage you will need to support.

Simple or Controlled Access

The more simple or predictable the users’ queries, the
more simultaneous users can be supported on the same size
system. Examples of simple use include:

• Predefined queries and reports based on highly selective sets
of relational or Analysis Services data: Because these
queries are relatively simple and predefined, a relational
system can easily be tuned to support them. On the other
hand, it’s particularly hard to understand what’s simple and
what’s challenging to Analysis Services OLAP databases.

220

Please refer to the related discussion in the following two
subsections.

• Reporting Services scheduled and cached reports: As
described in Chapter 10, scheduled reports may be extremely
complex. But because they are run and cached at night, the
load placed by users of these reports during business hours is
relatively light.

• Data mining forecasting queries: Data mining represents
another kind of predefined query. As we discuss later,
training a data mining model is most definitely not simple
access. But performing a forecasting query on new
information about a customer is highly selective.

Moderate Complexity

Examples of moderately complex use include:

• Predefined reports based on a broad set of relational data
not supported by aggregates, such as specific constraints on
all sales for the past year. On the positive side, the report is
predefined and so it can be tuned. On the negative side, the
underlying query touches a lot of data and so is expensive.
Consider using Analysis Services as the report’s data source,
scheduling and caching these reports in Reporting Services,
or experimenting with aggregated indexed views.

• Ad hoc query and analysis using Analysis Services, where
the analysis does not need to look at a large portion of the
atomic data. If a lot of business users are performing ad hoc
queries, the odds are good that they’re hitting different parts
of the OLAP database. In this case, the server’s data cache
will be of limited use (unless you have a lot of memory).
Contrast this moderately complex ad hoc use of Analysis
Services with the highly complex situation described next.

Highly Demanding Use

Examples of highly complex use include:

221

• Ad hoc query and analysis using the relational data
warehouse database: These queries typically join many
tables and often access large volumes of data. The business
users aren’t experts, so they may make mistakes. It’s not
feasible for them to use query hints.

• Advanced ad hoc query and analysis on Analysis Services:
The analysis requires wide queries that access a large portion
of the atomic data. There is a class of analytic problems that
by definition must touch very detailed data. For example, a
query that counts the unique values in a large set is
unavoidably expensive because it must touch detailed rows.
Similarly, a query that returns a median or top N percent
must also touch many more rows than are handed back in the
result set.

• Training of a data mining model: As we discuss in Chapter
13, creating the case sets for a data mining model often
involves several full table scans of the fact tables.

Most DW/BI systems will be used in all these ways. The
mix on a typical DW/BI system will lean toward the
simple end, with about 60 percent simple, 30 percent
moderately complex, and 10 percent demanding usage, as
illustrated in Figure 4-2. At the other end, a challenging
usage profile has 35 percent simple, 40 percent moderate,
and 25 percent demanding usage.

Estimating Simultaneous Users

The number of potential users of the DW/BI system
provides only the roughest possible estimate of how many
people are using the system at the same time. One analyst
doing very complex work, or a manager opening a
multi-report dashboard, can use as many resources as
dozens of users who are accessing simple reports. It’s as
important to know the system usage characteristics as it is
to know how many people access the system.

222

If you currently have no DW/BI system in place, it will be
difficult for you to forecast usage frequency and timing.
Even our old standby recommendation, that you interview
the business users, will be of little value. During the design
and development phase, business users are not able to
guess how much they’ll use the system, and during what
times of day.

A few broad patterns are easy to predict. There is usually a
surge of demand in the morning, when people arrive at
work and check the reports run on yesterday’s data. Other
cycles may be based on obvious work patterns, like
month-end, quarterly, or year-end financial reporting
calendars. It’s a good idea to plan your system capacity to
meet these peak times, even if your system is underutilized
the rest of the year. These peaks are when people need the
data most urgently and will be most frustrated with delays.

Even with these patterns, however, remember that a DW/
BI workload is quite different from the fairly constant
stream associated with a transaction system. In most cases,
a business user executes a query or report, and then
examines and thinks about the information before
executing a follow up query. You should be careful to
incorporate this think time into your understanding of
simultaneous usage. If you buy or develop a performance
testing suite, make sure it uses randomly generated think
times of between 30 seconds and several minutes.

If you have a DW/BI system already in production, the
current usage statistics will provide a more certain estimate
of future use. But if the current DW/BI system performs
poorly, expect increased use with a new higher

223

performance system than with the old. A lot of DW/BI
queries and reports are somewhat optional for business
users. If the current system is painful to use, they won’t
use it; they’ll get the data some other way, or do without.

A small system may have only a dozen simultaneous users
— people who are issuing queries and reports at more or
less the same time. A large system, by contrast, will have
hundreds or even thousands.

Assessing System Availability Requirements

The final factor affecting system size and configuration is
the business requirements for system availability. These
requirements can range from an 8-hour load window
(midnight to 8 a.m.) during which the DW/BI system can
be offline, to the opposite extreme of providing system
availability 24 hours a day, 7 days a week. If your business
users require high availability, you may need to purchase a
substantially larger and more complex system than you’d
otherwise need.

The stronger the business need for a high availability
system, the more likely you will be to cluster some of the
components, notably the relational database and Analysis
Services database, and to set up a web farm for Reporting
Services. You may also need parallel server resources
allowing you to run ETL jobs against one version of the
data while users query yesterday’s version at the same
time. We’ll see one version of using parallel structures
when we explore partition switching in Chapter 5.

How Big Will It Be?

224

With a little thought and research, you should be able to
determine where you fall on the spectrum in each of the
four sizing factors in Figure 4-2. This leads to a general
sense for the size of the system and your high level scaling
options. A small system can work with a single server; in
the mid-range, consider a single large server, or multiple
good sized commodity servers; and at the high end, you
may need to look at multiple large servers. We’ll look at
how all these servers might be configured in the next
section.

System Configuration Considerations

At this point, you might be wondering how you can
possibly determine what configuration is the most
appropriate for your workload. It helps to break the
question down into the major system components and
configuration options. These include memory, monolithic
or distributed systems, storage, and high availability
systems.

Memory

All of the SQL Server DW/BI components love physical
memory. The relational database uses memory at query
time to resolve the DW/BI style of query, and during ETL
processing for index restructuring. Analysis Services uses
memory for resolving queries and performing calculations,
for caching result sets, and for managing user session
information. During processing, Analysis Services uses
memory to compute aggregations, data mining models, and
any stored calculations. The whole point of Integration
Services’ data flow pipeline is to avoid temporarily writing

225

data to disk during the ETL process. Depending on your
package design, you may need several times as much
memory as your largest incremental processing set.
Reporting Services is probably the least memory-intensive
of the four major components, but rendering large or
complex reports will also place a strain on memory
resources.

Because all the DW/BI system components are memory
intensive, the obvious solution is to buy hardware that
supports a lot of memory. When we wrote this, you could
purchase a two processor, four or six-core 64-bit server
with 32GB of memory for around $5,000. A commodity
64-bit eight or twelve-way machine like this can be an
all-in-one server for smaller systems, and the basic
workhorse system for more complex configurations. The
largest and most complex DW/BI systems will need one or
more high-performance systems sold directly by the major
hardware vendors. As a general guide, we try to outfit our
servers with at least four GB of memory per CPU core.
More is better. Remember, SQL Server 2008 R2 Standard
Edition is limited to four CPU sockets and 64 GB total, but
Windows Server 2008 R2 Standard Edition is limited to 32
GB.

Monolithic or Distributed?

There are two primary strategies for applying more
horsepower to your DW/BI system: using fewer, larger
machines or using more, smaller machines. The monolithic
approach is also known as scaling up; the distributed
approach is also known as scaling out.

226

For smaller systems, an all-in-one configuration is
appealing: You’ll minimize operating system and SQL
Server licensing costs, and one server is easiest to manage.
If you need a larger system and decide to use the scale out
approach with several distributed servers, the first way to
do so is by putting one or more SQL Server components
onto separate machines. This architecture is easier to
manage than distributing the workload by splitting up the
data sets and hosting them on separate servers, each with
its own set of SQL Server components. You need a
high-bandwidth network between the DW/BI system
servers, and between the ETL server and the source
systems, as significant volumes of data are shipped back
and forth between the components.

The all-in-one configuration illustrated in Figure 4-3 has
all server components, including possibly SharePoint
Server as a reporting portal, running on a single machine.
Note that SharePoint is resource intensive, and will do
better on its own server. Most users (clients) will access
the DW/BI system by connecting to Reporting Services,
either directly or through SharePoint. Some analytic
business users will connect directly to Analysis Services or
the relational database for ad hoc and complex analyses.

Figure 4-4 illustrates a common step up from the all-in-one
configuration by creating a reporting server. Consider this
configuration if your business users make heavy use of
standardized reports built primarily from Analysis
Services, and your DW/BI system processing occurs at
night when users are not on the system. In this
configuration, the Reporting Services catalog database will
probably work best on the SQL Server Data Store server,

227

although it could be placed on the reporting server. In the
reporting server configuration, some business users access
the SQL Server data store directly.

REFERENCE

The Microsoft SQL-CAT team has a white
paper at SQLCAT.com called “Report
Server Catalog Best Practices” that
describes how to manage and tune the
report server catalog in detail.

Figure 4-3: All-in-one business intelligence system

Figure 4-4: SQL Server data store and separate reporting
server

228

If your system is allowed only a relatively short downtime,
you should separate Analysis Services from the relational
database, as pictured in Figure 4-5. In this configuration,
the ETL process and relational database load will not
compete with Analysis Services queries, most of which
will use the data cache on the reporting and analysis
server. The Reporting Services catalog, located on the data
store server, will compete with the ETL process for
resources, but this is almost certainly better than having it
compete with the reporting and analysis services. This
configuration is not appropriate for a very high availability
operation, which requires the use of clusters as discussed
later in this chapter.

Figure 4-5: SQL Server data store and reporting and
analysis server

229

As your system grows larger and places more demands on
the hardware, you may end up at the logical end point of
the scale out approach: with each SQL Server component
on its own server. Each of the chapters about the different
components discusses some of the issues around
distributing the system. But in general there is no built-in
assumption that any two of the components are co-located
on a single physical server.

You can even push the SQL Server architecture past the
point of one server per component. Analysis Services can
distribute the partitions of an OLAP database across
multiple servers. Reporting Services can run on a web
farm, which can greatly enhance scalability. Your network
of Integration Services packages can also be distributed
across multiple servers, although we expect only the most
extreme ETL problems would need to use this architecture.

After you’ve reached the limit of distributing the SQL
Server components to multiple machines, you can think
about partitioning along the lines of business process
dimensional models. Usually, when a DW/BI system is

230

distributed throughout the organization, it’s for political
rather than performance reasons. Only for really large
systems is it technically necessary to partition the DW/BI
system along dimensional model boundaries. Also, various
components may employ varying approaches to achieve
uptime guarantees. We discuss how to make a horizontally
distributed system work, but we prefer and recommend a
more centralized architecture.

In the development environment, a common configuration
is for developers to use a shared instance of the relational
database and Analysis Services database on a two- or
four-socket server. Some developers may also choose to
run local instances of the database servers, in order to
experiment in isolation from their colleagues.

Server Architecture Options

All of the server machines discussed thus far are
known as symmetric multi-processing (SMP)
machines. The CPUs on SMP machines generally
have shared access to all the available system
memory and disk. As the machine gets bigger, the
system bus becomes a bottleneck as all these CPUs
try to process different threads in parallel,
accessing memory and disk through the same
system bus. Larger machines use a non-uniform
memory architecture (NUMA) to mitigate this by
grouping subsets of memory and CPUs together on
local busses, called nodes, and tying the nodes

231

together with a cross-node bus. If you are facing
the prospect of a multi-terabyte data warehouse,
you have another system architecture option called
massively parallel processing (MPP). MPP systems
use a network of smaller SMP nodes, each with its
own memory and disk. Microsoft’s Parallel Data
Warehouse product allows you to implement an
MPP SQL Server data warehouse on commodity
hardware from most of the major vendors.

Storage System Considerations

Reading and writing data to and from disk is by far the
slowest point in the system. There are several issues to
consider when it comes to data storage. Regardless of what
kind of storage system you use, you must make sure the
data pipeline from the CPUs down to the disk drives is
properly balanced. You also need to make sure your
storage system provides some level of fault tolerance to
protect against data loss, and you need to determine
whether you will use a storage area network, or attach
storage directly to your server.

Balancing the Data Pipeline

Every data bit processed in the data warehouse has to
travel from the source system through a CPU and out to a
disk for long-term safekeeping. The data is then retrieved
from disk, often many times, to answer user queries. There
are several components along the way that may act as
bottlenecks if they do not have sufficient capacity. Figure

232

4-6 shows the major components in this pipeline, any one
of which could choke off your throughput if it does not
have sufficient capacity.

Figure 4-6: The data pipeline

There are six major potential bottlenecks in Figure 4-6:
CPUs, host bus adapters, the fibre channel switch ports,
the storage subsystem ports, the array controllers, and the
disk drives. This system is reasonably balanced, with the
1.6 gigabytes per second maximum consumption rate of
the CPUs being the overall limiting factor. A system like
this should be able to scan a 1 billion row fact table in
about 60 seconds.

Microsoft has created reference hardware architectures
with each of the major hardware vendors called SQL

233

Server Fast Track Data Warehouse architecture. The
system architecture concentrates on balancing the data
pipeline and storing data for sequential access, where disk
drives perform best.

REFERENCE

You can find a detailed white paper
describing the fast track architecture,
including throughput calculations, in a
document titled “Fast Track Data
Warehouse 2.0 Architecture” on MSDN.
This is a very helpful document if you are
responsible for architecting your server
environment.

Disk Performance

The disk drives are the slowest component in the DW/BI
system; as much as 100 times slower than memory. Disk
drive system designers have worked to overcome this
problem for decades. One major technique has been to put
memory in the disk drive and at the disk controller level.
Recently requested data is cached in this memory in the
hopes that it may be needed again soon. SQL Server uses
system memory to do the same thing on a much larger
scale, caching whole tables and results sets for future use.

The basic disk strategy in the data warehouse is to use
more, smaller disks rather than fewer large disks. When
configured in an array with data spread across multiple

234

disks, several disks can be used to read or write a data set
in parallel. This is the reason for the 12 disks in Figure 4-6.

Silicon Storage Devices

Silicon Storage Devices (SSDs) are basically
non-volatile memory packaged to look like a disk
drive. They perform much faster than standard hard
disk drives for certain operations. In particular,
random access reads can be an order of magnitude
faster or more. However, they have some
limitations in other areas, such as sequential writes,
which might be a major part of the ETL process.
They also have some technical limitations in terms
of the number of times a particular cell can be
written to (called the program-erase cycle). As
these technologies improve, they will
fundamentally change our disk subsystem
strategies. Meanwhile, SSDs may be a relatively
cheap and easy way to boost performance for
certain parts of the DW/BI system. The Analysis
Services database is an ideal candidate because of
its heavy random access read patterns.

Fault Tolerance and RAID

Almost all DW/BI system servers use a Redundant Array
of Independent Disks (RAID) storage infrastructure.
RAID-1, also known as mirroring, makes a complete copy
of the disk. RAID 1+0 (or RAID 10) is an array of at least
two mirrored disk sets with the data striped across the

235

mirrors. RAID-1 and RAID-1+0 are used for replicating
and sharing data among disks. They are the configurations
of choice for performance-critical, fault-tolerant
environments, but require 100 percent duplication of disks.
RAID-1 has the same write performance as single disks,
and twice the read performance. RAID-5’s read
performance is good, but its write performance suffers in
comparison to RAID-1. All of these RAID configurations,
including RAID-5, are vulnerable to a kind of
second-order disaster that occurs when a failed drive is
being restored and simultaneously a disk read error occurs.
In this case the entire data set is lost. An enhanced version
of RAID-5, known as “RAID-6 with hot spare” avoids this
situation.

The RAID array needs to be managed, either by hardware
or by software. A wide variety of hardware
RAID-controlling technologies are available, including the
Fibre Channel used by many SAN solutions. Use hardware
to control the RAID. If you let the operating system
control the RAID, those activities will compete with the
operation and performance of the DW/BI system.

Don’t skimp on the quality and quantity of the hardware
controllers. To maximize performance you may need
multiple controllers; work with your storage vendor to
develop your requirements and specifications.

Storage Area Networks

The most flexible, although most expensive, approach for
disk storage is to use a storage area network (SAN). A
storage area network is defined as a set of interconnected

236

servers and devices such as disks and tapes, which are
connected to a common high speed communication and
data transfer infrastructure such as Fibre Channel. SANs
allow multiple servers access to a shared pool of storage.
The SAN management software coordinates security and
access. Storage area networks are designed to be
low-latency and high-bandwidth storage that is easier to
manage than non-shared storage.

A SAN environment provides the following benefits:

• Centralization of storage into a single pool: Storage is
dynamically assigned from the pool as and when it is
required, without complex reconfiguring.

• Simplified management infrastructure: Adding capacity,
setting up RAID configurations, allocating data across
multiple disks, and providing access to the shared storage to
multiple machines can all be easily accomplished with the
SAN’s management tools.

• Data can be transferred at fibre channel speeds directly
from device to device without server intervention: For
example, data can be moved from a disk to a tape without
first being read into the memory of a backup server.

• The SAN can be physically implemented on a campus
several kilometers in size: For example, backup staging
copies of all data sets can be physically located in a separate
building from the primary DW/BI servers, thereby
supporting disaster recovery scenarios. The remote staging
copies can be updated and refreshed at disk channel speeds
over the SAN.

These benefits are valuable to a DW/BI system
environment. As the DW/BI system grows, it’s much
easier to allocate storage as required. For very large
systems, a direct copy of the database files at the SAN
level is the most effective backup technique. Finally,

237

SANs play an important role in a DW/BI system with high
availability requirements.

NOTE

Directly attached RAID disks can offer
better performance at a much lower price
than SANs, particularly for sequential I/O.
However, the advantages of the SAN
technology usually, although not always,
outweigh the difference in performance for
DW/BI applications.

One common problem with SANs is they are often
considered a shared resource. This means they are
managed by a separate group and a single SAN often hosts
multiple applications. If you use a SAN, insist on a
dedicated SAN and make sure it is configured properly for
data warehousing.

Processors

To make a gross generalization, DW/BI systems are more
likely to be limited by memory or I/O than processing
power. However, all of the SQL Server components
individually are designed for parallelism, so systems will
benefit — often significantly — from additional
processors. It’s hard to imagine anyone taking the time to
build a DW/BI system that wouldn’t at least benefit from a
dual processor box, and most systems use four or more
processors. Multi-core CPUs are an easy way to add

238

processing capacity without increasing your SQL Server
license costs.

The additional memory address space and processing
capacity that comes from the 64-bit platform is mandatory
for the DW/BI system. Given that Windows Server
stopped offering 32-bit versions with Windows Server
2008, the option for 32-bit servers is almost a thing of the
past.

Setting Up for High Availability

What does high availability mean for a DW/BI system?
The answer, as you might expect, lies with the business
users’ requirements. The job of the DW/BI team is to
gather requirements, evaluate and price technical options,
and present the business sponsor with a recommendation
and cost justification.

Because the DW/BI system is most often focused on
longer term decisions and inquiries, the business users may
be satisfied with access to the system from approximately
7 or 8 a.m. to 10 p.m. local time. A DW/BI system that’s
used primarily for strategic and non-operational decision
making can tolerate an occasional downtime during the
day. As a result, relatively few DW/BI teams deliver 24x7
availability for the entire DW/BI system.

Very high availability for the entire system is most
common for multinational companies with business users
spread throughout the globe. Even so, extremely high
availability is seldom a mandate. If you add real-time data
to your DW/BI system, you’ll need to design more

239

rigorously for high availability. Typically, although not
always, real time affects a relatively small subset of the
data, and the high availability requirements might not
affect the bulk of data and operations.

It may be necessary to cluster your Analysis Services and
relational database servers in order to deliver the highest
availability. A properly configured cluster can provide
failover in the event of an emergency. A cluster can also
provide scalability under normal circumstances. You can
run Reporting Services in a web farm configuration, which
provides similar advantages for both scalability and
availability for that portion of your DW/BI system. SQL
Server Books Online provides clear instructions for
clustering databases and installing Reporting Services on a
web farm. But if high availability is mission critical, you
should contact your Microsoft sales team for references to
highly qualified consultants who can help with the system
design and configuration.

RESOURCES

The following references help when scaling
out the individual components across
multiple servers:

• SQL Server Books Online topic “How to: Configure a Report
Server Scale-Out Deployment (Reporting Services
Configuration).”

• White paper titled “Scale-Out Querying for Analysis Services
with Read-Only Databases” can be found at SQLCAT.com.

240

For the vast gray area between needing 24x7 availability
and having an 8-hour load window, there are a lot of things
that you can do to minimize the system’s downtime. The
easiest thing to do is to use Analysis Services as the
primary or only presentation server. The heavy lifting of
the ETL processing occurs in Integration Services and in
the relational database. Once the data is cleaned and
conformed, the process of performing an incremental
OLAP database update is generally quite fast. And even
better, Analysis Services performs updates into a shadow
partition so the database remains open for querying during
processing. You can’t expect query performance to remain
at the same level while the database is being processed, but
in most cases you can schedule the update at a time when
the system is lightly used.

Even if you use the relational data warehouse database to
support queries and reports, you can minimize the amount
of downtime. Dimension updates are seldom the problem;
it’s the fact table inserts and especially updates, for
example for a rolling snapshot fact table, which are most
problematic. As we discuss in Chapter 5, you can use
partitioned fact tables to load current data without
affecting the availability of yesterday’s fact table. If your
fact table is small and you’re not using partitioning, you
can use a similar technique to perform inserts and updates
on a copy of yesterday’s fact table, and then quickly switch
it into production with an extremely short downtime. See
the “Partitioned Tables” section in Chapter 5 for a more
detailed description of this technique.

241

NOTE

Partitioning for Analysis Services and
relational databases are features of SQL
Server Enterprise Edition. These features
are not available in the Standard Edition.

If you need very high availability for the relational data
warehouse database, you may need to use the database
snapshot feature. Users would query the snapshot while the
underlying database is being loaded. This approach is most
useful for those delivering 24-hour access to a global
enterprise.

Software Installation and Configuration

The basic installation of the SQL Server and other
Microsoft components is straightforward and well
documented in Books Online. We won’t discuss the
installation experience here. Instead, we’ll describe which
pieces of software need to be installed on different
developers’ workstations, depending on what part of the
DW/BI project they’re working on. Next, we’ll describe
some best practices for the initial configuration of the
various SQL Server components, including the relational
database, Analysis Services, Integration Services, and
Reporting Services.

Most multi-person development teams share one or two
database servers and install only the development tools on

242

their personal machines. A common development team
configuration is illustrated in Figure 4-7.

Figure 4-7: A common development team configuration

Depending on their roles, different members of the
development team will need to install different
components of SQL Server, and some will need to install
other Microsoft and third-party software. These
requirements are outlined in the next section.

Development Environment Software Requirements

The following section outlines the software to be installed
on the development database server, and the workstations
for different common development roles.

243

How Powerful Should Development and Test
Systems Be?

In a perfect world, the test system will be
physically identical to the production system. The
test system plays two key roles. First, it’s the
system on which modifications are tested. In this
first role, it’s as important to test the scripts that
deploy the system changes as it is to test the
changes themselves. For testing the deployment
process, the test system doesn’t need to be identical
to the production system. It’s not uncommon to use
a virtual machine in this functional test role.

The second major role of the test system is to serve
as a place to experiment with performance
optimizations, such as indexes and aggregates. For
performance tests to be valid, the test system
should have similar physical characteristics as
production. Virtual machines are not yet as
effective as performance test environments,
although they are getting better. Many hardware
vendors have Technology Centers, and may make
those resources available to help validate system
sizing prior to purchasing your production servers.

Development often takes place on a subset of data.
If so, the developers’ systems, including shared
development database servers, can be much less
powerful than the test and production servers.

244

Memory is important. Install at least 8GB of RAM
on any computer that’s running one of the database
services.

The ETL system developer may need to work on
the development server by way of a Remote
Desktop session because Integration Services
packages run in debugging mode on the machine
where BI Studio is running. With significant data
volumes, package execution can overwhelm a
typical developer’s desktop.

Finally, the screenshots in this book should
convince you that team members who use BI
Studio will need big monitors. The screenshots in
this book were taken at 1024 × 768, and that’s
really not big enough.

Development Database Server

As we described in the previous sidebar, most DW/BI
teams share a database server for development purposes.
The SQL Server components to install on the development
database server are:

• Relational engine
• Integration Services
• Analysis Services
• Reporting Services
• BI Studio for remote use by ETL developers

245

Most development occurs with small data volumes, so
co-hosting all the server components on a single machine
is usually fine from a technical point of view. If you have
access to plenty of servers, distribute the components in
the same way for development as is planned for
production.

Database Designer

BI Development Studio (BIDS) is the main design tool for
Analysis Services databases. The relational data warehouse
database is primarily developed in Management Studio.
Relational database designers may choose to install the
relational database server on their local workstation. The
SQL Server components to install on the database
designer’s workstation are:

• SQL Server Management Studio
• BI Development Studio
• Analysis Services
• Relational database engine (optional)

In addition, the database designer should install Visual
Studio Team System, or any other source control product
that can be integrated with Visual Studio.

The relational database designer may want a
data-modeling tool such as ERwin, ER/Studio, or
PowerDesigner. These tools support visual modeling of the
database, with excellent forward engineering capabilities.

Development Database Administrator

246

Development databases are usually not managed very well
— they are for development, after all. However, someone
needs to perform some basic DBA tasks like ensuring the
database has enough space. Backups are a really good idea,
too. Management Studio is the tool for operating and
maintaining databases (relational and OLAP), and
managing the operation of Integration Services packages.
The only SQL Server component required on the
development DBA’s workstation is Management Studio.

The development DBA should install and use the team’s
source control system for the management of any database
maintenance scripts.

ETL System Developer

The ETL system developer will create Integration Services
packages. BIDS is the tool for developing and debugging
Integration Services, and the Integration Services
components also need to be installed on the developer’s
workstation. The SQL Server components to install on the
ETL developer’s workstation are:

• SQL Server Management Studio
• BI Development Studio
• Integration Services

In addition, the ETL system developer should install the
source control client. Depending on how complex and
unusual your ETL problems are, the ETL system developer
may need to install the full Visual Studio product in order
to develop custom objects in C# or VB. This is relatively
unusual; the vast majority of ETL systems can be

247

developed without any need for custom coding in a Visual
Studio .NET language.

The ETL system developer often uses the development
server to work on packages because packages run in debug
mode on the same machine where BI Studio is running.
Some teams start developing packages on the development
server from the outset. Others may start on the developer’s
workstation but move packages to the development server
when it’s time to test with a reasonable volume of data.
Still other teams find that it’s easiest to simply buy bigger
workstations for the ETL developers.

Report Designer

The DW/BI team members who develop reports need the
following software on their workstations:

• BI Development Studio.
• Source control software.
• Microsoft Office, especially Excel with the PowerPivot for

Excel add-in. Excel is often the final delivery platform for
more complex reports and dashboards.

• Optional: A non-Microsoft relational ad hoc query tool. It’s
a matter of taste, but some folks prefer to use a third-party
tool to formulate the query and then paste the SQL into the
report designer.

• Optional: A non-Microsoft Analysis Services query tool. As
we have discussed elsewhere in this book, many
Microsoft-based DW/BI systems use a third-party Analysis
Services query tool to circumvent the limitations of the
Office suite. The PowerPivot pivot table controls help
address some of the limitations, but they can’t be used
directly against standard relational or Analysis Services
sources.

248

Reporting Portal Developer

As we discuss in Chapter 12, many DW/BI systems embed
Reporting Services into a reporting portal built using
SharePoint Server or some other portal software. The
reporting portal developer needs the following software:

• BI Development Studio
• Source control software
• Microsoft Office Excel and the PowerPivot for Excel add-in
• Microsoft SharePoint Designer
• Access to a server running Microsoft SharePoint Server with

PowerPivot for SharePoint

It would be unusual for the reporting portal developer to
need Visual Studio .NET to implement functionality not
included with SharePoint.

Data Mining Model Developer

As we discuss in Chapter 13, the first major step in
building a data mining application is to develop and train
data mining models. This is an activity that requires
knowledge of statistics, of the business problems, and of
the data, but it does not require actual coding skills. The
software required includes:

• BI Development Studio for developing the data mining
models

• Write access to Analysis Services
• Relational and Analysis Services query tools for building the

input data sets and investigating the data
• Source control software

Analytic Application Developer

249

Analytic applications embed domain expertise and best
practices into a guided analytic activity. Although some
analytic applications are just a collection of predefined
reports, sometimes they’re more structured than that. The
more structured the application, the more likely the
developer is to write code, and perhaps to integrate the
data mining model described previously with the
operational systems. The analytic application developer
needs the following software:

• SQL Server client and developer tools. The application
developers typically work with databases and data mining
models that others have developed. You will need the SQL
Server object models, which are installed by default with the
client components.

• Source control software.
• Visual Studio, with one or more .NET languages such as C#

or VB.

Test and Production Software Requirements

In a perfect world, your test and production machines will
have the same physical configuration. We recognize that’s
not always realistic, but it is realistic and mandatory that
they have the same software configuration. They must
have the same operating system and the same SQL Server
components, with the same configurations and versions,
including service packs.

If you’re using your test system only for testing, and not
for any production use, you can use Developer Edition on
the test systems. This is extremely appealing for
components that use Enterprise Edition in production, not
only because Enterprise Edition is expensive but also

250

because the feature set of Developer Edition is the same as
that of Enterprise Edition. But it’s problematic to use
Developer Edition on test machines where the production
machines are running Standard Edition. That’s because the
Developer Edition feature set is richer, and you might not
discover a dependency on an Enterprise Edition feature
until too late. This issue is discussed at greater length in
Chapter 16.

If the test system is for functional testing only, it may be a
virtual machine candidate. Make sure you have someone
with extensive VM experience to set this up.

Earlier in this chapter we discussed how a small system
might build an all-in-one server, with all SQL Server DW/
BI components on a single machine. A large system will
require a larger server and/or distribute the components
across multiple machines.

Database Server

The database servers, unsurprisingly, require the SQL
Server components:

• Relational database and/or
• Integration Services and/or
• Analysis Services and/or
• Reporting Services

To manage the system effectively, you should install the
following Windows Server components:

• Performance Monitor (also known as System Monitor) is
installed automatically with Windows. It is the tool that

251

exposes the performance counters that are published by the
database servers, and is an invaluable tool for monitoring
system performance.

• Microsoft Systems Center Operations Manager is a Systems
Center product that provides system monitoring and
management services. Large or complex systems should
evaluate whether they should purchase Operations Manager
or use alternative systems operations software.

Database Administrator

The DBAs for the test and production machines will use
SQL Server Management Studio (Management Studio) to
operate and maintain the DW/BI system, and manage the
operation of Integration Services packages.

Operating Systems

SQL Server 2008 R2 requires a Windows Server operating
system in production: Windows Server 2003 SP2, or later.
In general, you will get more functionality from more
current versions of Windows Server and from Enterprise
versus Standard Edition. For example, the Hyper-V virtual
machine role can dynamically allocate memory across
virtual machines in Windows 2008 R2 SP1, and Windows
Server 2008 R2 Standard Edition is limited to 32GB of
memory, while Enterprise Edition can support up to 2TB.
The SQL Server setup program will not let you install on a
machine that is not configured appropriately.

Server operating systems and software are usually installed
on a RAID-1 array, for data redundancy and failover.

SQL Server Relational Database Setup

252

Use the following guidelines when installing, configuring,
and securing SQL Server.

Install the relational database component of SQL Server
Enterprise Edition or Standard Edition. You may choose to
install the Management Studio tools on a server; often the
server is managed remotely from a DBA’s workstation.
Upgrade the instance to the latest service pack. You can
install the relational database as either a default instance or
a named instance. The only compelling reason we’ve come
up with for installing multiple instances on a single server
is to test multiple scenarios on a single machine.

NOTE

Multiple SQL Server components can be
installed on the same machine. Most
organizations use per-processor licensing
for DW/BI systems rather than licensing
based on the number of users. Your
licensing cost is the same if you install and
use all SQL Server components on a
machine, or only one component such as
the relational engine.

The SQL Server relational database is resource intensive
and you’d seldom choose to share the physical server that
holds the data warehouse database with another data
application. In production, you usually create the data
warehouse databases in the default instance. In the

253

development and test environments, multiple named
instances may be very useful.

The SQL Server relational database is a Windows service
just like any other Windows service. Use the Management
Studio tool to start, stop, administer, and manage a SQL
Server relational database instance. The SQL Server
database engine service has no dependencies on any other
component of SQL Server. If you already have other DW/
BI products in place, you can choose to install and use the
relational database as the only component from the SQL
Server product suite.

Security Options During Installation

Install and run the SQL Server relational database using
Windows Authentication mode only. The mixed
authentication mode is inherently less secure and should be
avoided if possible. During installation, you are asked to
provide a Service Account to run each service. This gives
you greater security control by granting each service
account only the permissions required to do its job. On the
other hand, it’s easier to manage if you use the same
account for all the services. You can modify this choice
later by using the SQL Server Configuration Manager
utility.

warning Use the SQL Server Configuration Manager
utility to change the characteristics of the service account,
rather than the Administrative Tools ⇒ Services tool from
the Control Panel.

254

Restrict access to SQL Server data and log files to system
administrators and the SQL Server and SQL Server Agent
service accounts. The system databases are secured by
default by the SQL Server setup program, but we still like
to check.

After you’ve installed the SQL Server database engine,
you may need to run the Configuration Manager to turn on
or enable some features and services. If, for example,
you’d like to access the database from another computer,
you need to go to the Network Configuration directory in
the Configuration Manager and enable a protocol, such as
TCP/IP.

Security issues are discussed in detail in Chapter 14.

Files, Filegroups, and RAID

SQL Server data is stored in files, which can be grouped
into filegroups at the database level. Each file in a
filegroup is assigned a location on disk. Database objects
are assigned to filegroups, so when data is written out to a
table, for example, it will actually write to each file in the
filegroup in proportion to the available space in the file.
Filegroups make it easier to balance I/O across multiple
disks from within SQL Server. If you place database files
on RAID drives with striping, this I/O balancing is handled
by the RAID controller.

Smaller systems can keep their filegroups simple. Start by
creating a single filegroup for data with a single file on the
RAID array, and set it to be the default filegroup. If you
have larger data volumes, you may consider creating a

255

filegroup and file for all dimensions and a filegroup and
file for each fact table. A single file should be adequate for
the staging database and the metadata database, unless
your DBAs have strong feelings about an alternative
configuration. Partitioned tables often have their own
filegroups. You can mark the older filegroups as read-only
to reduce your backup workload.

We strongly recommend that all relational database files
be placed on RAID arrays, either RAID-1+0 or RAID-5,
preferably with hardware controllers rather than managed
by the operating system. RAID-1+0 is significantly better
than RAID-5, although predictably more expensive,
because it’s faster both for writes and for recovery after a
disk failure.

The SQL Server system master, model, and msdb
databases can be placed on the RAID-1+0 array that holds
the operating system. These databases are typically very
small, and there’s usually plenty of room for them on that
array. Alternatively, place them on their own small
RAID-1 array. A third alternative is to place them on the
same RAID array as user databases. It is vital that these
databases, especially master, be placed on a fault-tolerant
array.

The fourth system database, tempdb, could grow
significantly as the data warehouse database is being used.
You should pre-allocate tempdb to a large size to avoid
auto-growth during query operations. Don’t place tempdb
on the system RAID-1+0 array, which is usually small.
Use at least one file per CPU for high-performance tempdb
operations. Be sure to spread tempdb out over many drives

256

to maximize I/O performance. If the total number of drives
on your system is limited, you can place tempdb on the
same RAID array as the user databases, especially if you
use RAID-1+0 for the user databases. However, if you set
up the user databases on a RAID-5 array, you should
consider separating out tempdb onto its own RAID-1+0
array to minimize potential bottlenecks.

You’ll likely have at least three user databases: the data
warehouse database, a staging database, and a metadata
database. Reporting Services has two separate databases,
which in some circumstances can grow to be quite large.
You can put all these databases together on a single
RAID-1+0 or RAID-5 array. Because of the size of the
data warehouse database and possibly the Reporting
Services catalog, the size of this array will dwarf the other
databases’ arrays.

Assuming you’re using RAID, you could put all of the data
warehouse’s data into a single file and let the RAID array
distribute the file across multiple drives. But long before
you reach 2TB, the maximum drive size that SQL Server
can address, you’ll want to break the database into
multiple files and filegroups in order to simplify
management and backup.

REFERENCE

The file layout discussion in this section
was directed primarily at small- to

257

medium-sized systems. If you have larger
data volumes, in the terabyte range and
above, you should work with your storage
vendor to lay out your files and disks very
carefully. Search for the “Fast Track Data
Warehouse 2.0 Architecture” white paper
on MSDN (http://msdn.microsoft.com/) for
more information.

Database Recovery Model

SQL Server logs every change to the structures and
contents of a database. These log files are used to return
SQL Server to a consistent state in case of a system crash,
and in conjunction with backups, to restore a database in
case of a data loss event, such as the failure of a disk that
was not part of a RAID array.

SQL Server provides three recovery modes: Full, Bulk
Logged, and Simple. All changes are still logged in all
three modes; the differences lie in the level of detail
captured, and how the log file is managed. In Simple
recovery mode, transactions are cleared from the log file
once they complete and have been committed to the
database. This keeps the log file relatively small, and
reduces the maintenance effort. However, a database that
is operated with Simple recovery mode can be recovered
only to the point of the last backup.

258

NOTE

Even if you empty out the staging database
at the beginning of each load, keep a copy
of the extracted data somewhere. We often
keep a copy of the extracts in the file
system, in a file whose name includes the
date and time of the extract. These extracts
should be backed up, as should any
permanent data in the staging database.
More often than not, the kinds of backups
you can do with the Simple recovery model
meet the needs of backing up the staging
database.

The Full recovery model keeps every change in the log file
since the last backup, which enables you to do a full
recovery after a crash, hence the name. The problem with
the Full recovery model is the log files can grow to large
sizes, and need to be actively managed.

The Bulk Logged recovery model logs individual
transactions like the Full recovery model, but it treats bulk
inserts like the Simple recovery model. This is useful for a
database that supports both transactions and bulk loads.
The log file is smaller because certain bulk loads are
minimally logged, but non-bulk transactions are kept. Bulk
Logged is meant as an adjunct to Full recovery mode and
has the same log file management requirements. You
would generally operate in Full recovery mode, switch to

259

Bulk Logged when you load a large dataset, and then
switch back once the load is completed.

In general, we don’t do individual transactions in the data
warehouse. If you back up your database immediately after
the nightly ETL process is finished, there should be few if
any changes until the next ETL run.

Given this, the Simple recovery model makes sense for
most data warehouses. It requires less maintenance and
supports bulk inserts when the conditions are met. You
will probably set your staging and development databases
to Simple recovery mode as well. Just make sure your
DBAs are backing everything up on a regular basis, and
that they test those backups and restores.

There are other implications of the recovery model choice.
One of the ways to speed up data loading is to invoke
minimal logging in a bulk load. Minimal logging requires
either the Simple or Bulk Logged recovery model. On an
ongoing basis, many of our incremental loads don’t meet
other conditions for minimal logging: we are not inserting
into an empty table, or we have not dropped all the
indexes. However, you may want to create the necessary
conditions for a minimally logged load because it is so
much faster. This is particularly true when you’re using
partitioned tables or other parallel structures, as we discuss
in Chapter 5.

Initial Database Size

Set up your SQL Server database with an initial size
adequate to hold the initial historical load plus anticipated

260

growth for the next year or so. You might permit automatic
growth up to a certain maximum to avoid a crisis, but you
should monitor the database size carefully and manually
increase the database’s file size during a period of slow
usage. That’s because the initial allocation and subsequent
increases are resource-intensive. It’s better to pay this file
initialization price at a time managed by the DBAs than
during the DW/BI system’s load processing window.

Windows Server 2003 and higher versions include a
feature called Instant File Initialization that improves the
performance of database allocation. However, “instant” is
a bit of a misnomer; it’s still a resource-intensive process.
For best performance, especially for very large databases,
don’t rely on auto-grow. Instead, set up an automated
process to check for needed file space, programmatically
increase file sizes if necessary, and set an alert well before
you run out of space.

As we discuss in Chapter 17, you should set up an
automated process to check for disk space on a weekly,
daily, or load-by-load basis.

RESOURCES

See the Books Online topic “Database File
Initialization” for more information.

After the database tables’ physical design has been
finalized, as we discuss in Chapter 5, you can accurately

261

assess the storage requirements for the initial database
setup and storage layout.

Analysis Services Setup

The Analysis Services server machine must have at least
the Analysis Services component of SQL Server installed
on it. Other components, including the relational database
engine and the Studio tools, are not required on that server.
Often, especially in locked down production environments,
the server is always managed remotely from the DBA’s
workstation. Make sure you keep up to date with service
packs.

You can run Analysis Services alone, if you wish, without
using any other SQL Server technology because it keeps
its metadata in XML files. It’s not unusual to run Analysis
Services as an intermediate data platform between the
users and a large non-Microsoft relational data warehouse
that has not been optimized to support ad hoc queries.

NOTE

Remember that if you install the relational
database on one machine and Analysis
Services on a second machine, you have to
pay for two licenses.

Like the relational database, Analysis Services supports
multiple instances on a single server machine. In a
standard production environment, we don’t see a

262

compelling argument for using multiple instances rather
than multiple databases within the same instance. Multiple
instances may be useful during development and testing. If
you’re building a solution for external parties such as
vendors, you may find that multiple instances provide an
extra level of security or comfort to your customers.

Analysis Services File Locations and Storage
Requirements

The main configuration choice to make at or soon after
installation time is where the program, data, and log files
are located. These choices are made for an instance; all
cubes and databases within that instance use the same
default location. A RAID array, either RAID-1,
RAID-1+0, or RAID-5, is the best choice for all file
locations. The program files for a production system
should be installed on a RAID-1 array, often the operating
system array.

The best place for the log files is their default location,
near the SQL Server program files. We recommend using
RAID-1 or RAID-1+0 for these files, as you would
probably use for the program files.

Analysis Services data files are by far the largest kind of
files. It is nearly impossible at design time to estimate with
any degree of accuracy how big the Analysis Services data
files will be. Let’s start with a simple rule of thumb: an
Analysis Services database that’s built at the same grain as
a relational fact table will take approximately 25 percent of
the space of that fact table (non-compressed atomic data
only, no indexes). This 25 percent rule includes Analysis

263

Services data and indexes, before aggregations are added,
and again it’s worth emphasizing that this is at the same
grain as the fact table. We have seen Analysis Services
atomic data at 15–40 percent of its corresponding
relational data, but 25 percent is a reasonable midpoint.

When you add well-designed aggregations, the total data
size is usually 35–100 percent of the non-compressed
relational data. You will be at the high end of that range if
you use distinct count measures. In our experience,
Analysis Services databases including indexes and
aggregations typically take 35–50 percent of the data of the
corresponding non-compressed relational table at the same
grain, data only, no indexes. This factor was included in
the very high-level storage space guesstimate that we
discussed at the beginning of this chapter.

For small- and medium-sized installations, a 50 percent
factor should suffice for disk planning. For larger
installations, you should partition your Analysis Services
database. Build a test database with several partitions, and
then scale that storage requirement by the number of
partitions.

We recommend that you use RAID-1+0 to store the data
files. Use a SAN for large installations. To maximize
processing speed, use a different RAID array, with a
different physical controller, than the location of the
relational data warehouse database that feeds the Analysis
Services database.

If you’re too cost conscious to use RAID-1+0 for the data
files, but don’t want to take the write performance hit of

264

RAID-5, it’s not as important to use redundant storage for
the Analysis Services database as for the relational
database. After all, you can always reprocess the Analysis
Services database from the relational data warehouse
database, or restore it from backup. Be warned, however,
that it could take many hours to process an Analysis
Services database that covers multiple terabytes of
relational data. We strongly recommend using some level
of fault tolerant storage.

When you create a partition for an Analysis Services cube,
you can place that partition anywhere in your storage
system. Assuming you’re using RAID, we see no
compelling reason for placing data files anywhere but in
the default location.

Finally, you may want to avoid all this disk design work
and just put the Analysis Services data on a silicon storage
device (SSD). Ad hoc queries against an Analysis Services
database are primarily random access reads; the sweet spot
for SSDs. It may actually cost you less because you won’t
need as many high speed hard disk drives in a large array,
and your users will be amazed at how well the system
performs.

Analysis Services Metadata

There is no formal repository for Analysis Services
beginning with SQL Server 2005. Instead, the
metadata consists of the XML files throughout the

265

OLAP Data directory, such as
DatabaseName.db.xml, CubeName.cub.xml,
DimensionName.dim.xml, and so on.

The main implication for Analysis Services
administrators is improved manageability,
particularly for backups and restores, as described
in Chapter 17.

Analysis Services and Memory

Analysis Services loves memory. Analysis Services was
redesigned with SQL Server 2005 to solve the most
intractable memory problems associated with prior
versions. Nonetheless, the more data you can cache in
physical memory, the happier you and Analysis Services
will be.

Analysis Services dimensions do not need to be memory
resident. Information about dimension members will move
in and out of memory cache as needed. This is great, for
certainly a server should handle memory contention
gracefully. Nonetheless, for excellent query performance
you want plenty of memory for dimension members, a
result set cache, the computation engine’s cache, and other
uses. Don’t skimp on memory.

Integration Services Setup

Integration Services has two major components: a design
environment, which is part of the BI Studio; and a runtime

266

environment, which is what you install on your production
servers. The design environment is where you create and
edit packages. You can see a visual representation of the
package’s tasks, and run the package in debug mode on the
development machine, and only on the development
machine. The only way to remotely execute an Integration
Services package in development/debugging mode is to
use a remote desktop connection to the remote machine.

On the production server, install the Integration Services
component of SQL Server Enterprise Edition or Standard
Edition. You may install the Management Studio tools on
your production server, although often production
instances of SQL Server are managed remotely from an
administrator’s workstation.

You can use Management Studio to interactively execute a
package that’s been deployed to test or production. But for
the ETL system, you will use SQL Agent to schedule the
execution of the DTExecUI or DTExec utility. Using these
utilities, you can run on one server a package that is stored
on a second server. In production, Integration Services
packages can be located anywhere, and can be run on any
server that has the Integration Services runtime
executables.

You can design your ETL system to run multiple packages
on multiple servers. If you choose this architecture for
your large scale ETL problem, install Integration Services
executables (and pay SQL Server licenses) on all of the
servers on which the packages are running.

267

Integration Services has no dependency on any other
component of the SQL Server product suite. It could even
be used as the ETL tool for an otherwise non-SQL Server
DW/BI system.

Integration Services presents the option of storing package
definitions in the SQL Server. This is not something you
need to decide at installation time.

As we described earlier in this chapter, most DW/BI
systems will run Integration Services on the same server as
the relational data warehouse database. It is easy to change
package locations as your warehouse matures and your
requirements change.

Integration Services File Locations and Storage
Requirements

You may use a relational database to stage data during
ETL processing. As we describe in Chapter 7, you will
probably use both a relational staging area and a file
system staging area. You may use the file system staging
area to rest data after it has been extracted from the source
systems but before the heavy duty ETL processing begins;
you may also use this staging area for intermediate storage
and for a kind of backup of changed data before launching
an update. Many people hold on to the source system
extracts for days, weeks, or months before deleting them or
moving them to offline storage. The volume of disk space
you’ll need for the file-based and relational staging areas
depends completely on the design of your ETL system.

268

If you can extract the exact same data sets from the source
system as needed, you may not need fault tolerant storage
for the staging area. However, many source systems
overwrite data and do not keep history. In these cases, the
extract is the only record of the source system at that point
in time. It’s best not to lose it. RAID-1 or RAID-1+0, as
always, is recommended.

Reporting Services Setup

Like all the other components of SQL Server, Reporting
Services can be installed on a standalone reporting server,
or it can share a server with one or more other components
of SQL Server. However, Reporting Services does require
access to a SQL Server relational database to store its
metadata, known as the report server catalog.

When you install Reporting Services, you must supply
several pieces of configuration information:

• The location of the report server catalog database: The
report server catalog is where report definitions, metadata,
histories, and snapshots are stored. The installation program
will create the report server database for you. The report
server database can be located on a different machine, but
your service account must have appropriate database
creation privileges on that machine. This catalog database
must be a SQL Server relational database.

• Configuration options for email delivery of reports: You will
probably want to run a subset of standard reports, and use
email to deliver either the report or a link to the report. The
email service account information and other configuration
options are well documented in Books Online.

269

You may choose to install the client-side report authoring
tool, Report Designer, on the server. Report Designer is
integrated into BI Development Studio, and most
developers use it on their workstations rather than on the
server.

Reporting Services is a Windows service just like the SQL
Server relational database or any other Windows service. It
is also implemented as an ASP.NET Web service based on
http.sys. Both the Windows service and the Web service
are implemented on the report server. Use the Reporting
Services Configuration Manager tool to configure, start,
stop, administer, and manage a Reporting Services
instance.

Reporting Services doesn’t require any significant file
storage other than the report catalog database. Issues
around the potential size and placement of the report server
catalog were discussed earlier in this chapter, in the section
on the SQL Server relational database setup.

NOTE

Like the other components of SQL Server,
Reporting Services can be installed in
isolation. However, it does need access to a
SQL Server relational database server for
the report catalog.

Summary

270

We began this chapter by discussing various options for
configuring your DW/BI system. System sizing is
challenging because it depends on so many factors —
some of which you won’t have much information on until
your system is in production. The easy factors to predict
are data volumes and system availability requirements. It’s
harder to guess how many simultaneous users you’ll have,
and how many of them will be performing challenging ad
hoc queries. Nonetheless, we conclude that the vast
majority of systems will use one or several commodity 2 to
4 socket, multi-core 64-bit servers. High-end systems will
use one or more 8 or 16 socket, or even larger 64-bit
servers. The 64-bit architecture is necessary because it
allows so much more addressable memory. All the BI
software components love memory.

We discussed storage architecture and the importance of
creating a balanced data pipeline between the disks and
CPUs. We also stressed the importance of using a fault
tolerant disk subsystem to reduce the impact of the
inevitable disk drive failures. These needs emphasize the
value of a storage area network with some level of
hardware-controlled redundant RAID.

We briefly described the SQL Server software installation
issues for the development, test, and production servers.
We also touched on standard workstation configurations
for key roles on the DW/BI team. General installation and
setup issues are well documented in SQL Server Books
Online. This chapter is long enough that it makes no sense
to repeat that information here. Instead, we focused on
issues that are specific to data warehousing.

271

Part 2: Building and Populating the Databases

Chapter 5: Creating the Relational Data Warehouse

Chapter 6: Master Data Management

Chapter 7: Designing and Developing the ETL System

Chapter 8: The Core Analysis Services OLAP Database

Chapter 9: Design Requirements for Real-Time BI

The second part of the Lifecycle is where you create the
back room infrastructure for the data warehouse, where
you realize the designs described in Part 1. The first big
step is creating the relational data warehouse database. The
logical model you’ve already developed translates directly
to the physical database, though there are still plenty of
physical design decisions for the database administrator to
make.

Once you’ve built the relational data warehouse, it’s time
to start populating it. The most successful data warehouse
projects take place in organizations with strong data
governance practices. You can use SQL Server Master
Data Services to implement a wide range of master data
management systems, including simple applications for
those organizations new to data governance. Most of your
DW/BI team’s time and effort is spent using Integration
Services to build the ETL system. The cost and quality of
that system are greatly improved by thinking through the

272

architectural issues before you start writing packages to
move data.

The last chapter in Part 2 describes how to build and
populate the core Analysis Services OLAP database,
which is a recommended component of any Microsoft
DW/BI system. The Analysis Services database includes
rich metadata that helps business users navigate the data,
which is so vital for successful ad-hoc use.

The Kimball Lifeycle steps covered in Part 2

273

Chapter 5

Creating the Relational Data Warehouse

Where the rubber starts to meet the road.

This chapter is about instantiating the target relational
dimensional model in a SQL Server database. Now that
you have your servers set up, software installed,
development environment in place, dimensional model
designed and well documented, and, of course, your
business requirements and priorities clearly defined, you
can actually start writing some code in this chapter, if
T-SQL counts as code in your book. Figure 5-1 provides a
graphical example of the lifecycle context just described
for this chapter.

Our goal in this lifecycle step is to get the physical
structures in place so they can be populated by the ETL
process in the next step. Creating the database and building
the tables is a task for the DBA role. Folks who have prior
SQL Server DBA experience should have no problem with
this chapter. Those of you who are not really DBAs, but
ended up with this role because no one else volunteered
shouldn’t panic. Basic DBA work in SQL Server is
generally straightforward. Although this chapter is not a
tutorial, we will tell you the key tasks and provide some
examples to point you in the right direction.

In this chapter, you will learn:

274

• How to deal with specific table and column implementation
decisions such as surrogate keys, string data types, Unicode,
NULLs, and default values

• How to use table and column extended properties to capture
descriptive metadata

• About adding housekeeping columns that may not be in the
logical dimensional model to support change tracking,
process auditing, and sort orders

• What to do about declaring entity and integrity constraints
• A good starting point for indexes and an approach to

creating relational aggregate tables
• The value and cost of data compression
• What table partitioning is and how to implement it in SQL

Server

Figure 5-1: The Business Dimensional Lifecycle

Getting Started

Before you start the relational database physical design
process, you should have completed the logical model. In
fact, you should have very little design work to do in
translating from the logical model to the physical model.
Here are some of the key elements that should already be

275

in place as deliverables from your dimensional modeling
process:

• Object names should be clearly defined and agreed to by
your data governance team. Your logical model should
already be using good, clear, sensible names that conform to
your naming conventions. You should already have defined
naming conventions for database objects such as tables and
columns.

• All columns should have the correct data types. Start off
with the column definitions from the modeling process, but
you may need to modify data types later, after you’ve
completed the data profiling discussed in Chapter 2. For
example, you may learn that some customer surnames take
more than the 35 characters called for in the logical model.

• Primary keys and foreign key relationships should be
identified.

The best tool for developing the physical model is a data
modeling tool such as ERwin, PowerDesigner, or ER/
Studio. These tools can generate the data definition
language (DDL) needed to create your database, a feature
known as forward engineering. Using a modeling tool
makes it very easy to modify the database during the early,
iterative design phases.

NOTE

At this time, Microsoft is not selling an
effective data modeling tool. Old versions
of Visio were usable (though hardly best of
class), but that functionality has been
removed. There are various tools in the

276

Microsoft world that offer modeling
capabilities, but they are not as effective as
the standalone database modeling tools.
Visio 2010 can document models, but has
no forward engineering capabilities. Visual
Studio 2010 has a database project type
that is meant more to support DBAs with
ongoing database management and
maintenance. You can add an ADO .NET
Entity Data Model template to a Visual
Studio project to get a graphical design
environment, but you need the full Visual
Studio product. Or, you can use the
Database Diagram feature in SQL
Management Studio, but it is tightly linked
to the database objects.

The high-end data modeling tools can be expensive, and
some small companies will balk at purchasing them. In
Chapter 2, we introduced the Excel workbook and macro
to support the logical modeling process. You can use the
workbook and macro to generate the DDL to create the
physical database if you don’t have a data modeling tool.
We provide this spreadsheet because not all readers will
have a real data modeling tool.

Complete the Physical Design

There are always some decisions the DBA must make with
regard to the makeup of the tables and columns. These
include managing surrogate keys, working with string data

277

types, handling NULLs, adding housekeeping columns,
and creating extended property entries to capture basic
metadata. We’ll walk through each of these topics in this
section.

Surrogate Keys

The primary key for dimension tables should be a
surrogate key assigned and managed by the DW/BI
system. The most common method for creating surrogate
keys in SQL Server is to enable the IDENTITY property on
the surrogate key column. Every time a row is inserted, the
identity column populates itself by incrementing.

Check to ensure the surrogate key column is an integer
data type. If you have Enterprise Edition and will use page
compression, just use regular integers, unless you need the
larger size. Be a little more thoughtful with Standard
Edition. Choose the appropriate integer type given the
anticipated size of the dimension:

• Tinyint takes values in the range 0 to 255 and requires 1 byte
of storage. Note that tinyint does not support negative
numbers.

• Smallint ranges from –215 (–32,768) to 215 – 1 (32,767) and
takes 2 bytes.

• Int ranges from –231 to 231 – 1 and takes 4 bytes.
• Bigint ranges from –263 to 263 – 1 and takes 8 bytes.

Choose the smallest integer type that will work for your
dimension, keeping in mind how much the dimension will
grow over time. This isn’t important for the dimension
table itself, but it makes a difference for the fact table’s
size and performance. These same surrogate keys show up

278

as foreign keys in the fact table. Using the small data types
is also important for minimizing memory use during data
processing. Make sure you use the same integer types for
the foreign key columns in the fact table as for the
corresponding dimension tables.

We usually frown on using meaningful surrogate keys —
which is something of an oxymoron — but we make an
exception in every DW/BI system we build. The date
dimension should use a surrogate key. That surrogate key
should be a 32-bit integer. But it’s awfully convenient for
it to be a meaningful integer of the form year-month-day,
such as 20110723. Developers are people, too.

String Columns

If you didn’t pay close attention to string column lengths
during the modeling process because you were focused on
business meaning, you need to clean this up in the physical
model. This is particularly true for columns in very large
dimensions, and the occasional string column in fact
tables. The relational database stores variable length string
columns, type varchar and nvarchar, efficiently. It doesn’t
pad these columns with spaces. However, other parts of the
SQL Server toolset will fill these columns out to their full
width. Notably, Integration Services and Analysis Services
pad string columns with spaces as they are loaded into
memory. Both Integration Services and Analysis Services
love physical memory, so there’s a cost to declaring string
columns that are far wider than they need to be.

279

TIP

Start by making the string columns in the
data warehouse database the same length as
in the source database. We’ve seen source
systems that routinely use varchar(100) for
all string columns. In this case, investigate
the actual lengths of string data. Make the
data warehouse columns wider than any
historical width, just for insurance. Add a
data quality screen to your ETL application
to catch especially long strings in the
future.

Don’t get carried away by the varchar data type. Any
column smaller than 5 (some people say 10) characters
should just be a char data type, even if the data length
varies somewhat. If the string length varies little, say from
10 to 13 characters, simply use the char type.

Char and varchar can be used to support text in many
languages, including most European languages. The
corresponding Unicode data types, nchar and nvarchar, can
store any character including cursive and glyph languages
such as Arabic or Korean. Unicode accomplishes this feat
by assigning two bytes to store each character, instead of
one byte used by char and varchar. Microsoft uses Unicode
data types in AdventureWorks because the same sample
database structure needs to work worldwide.

280

There are several good reasons to use the Unicode data
types for strings, and one reason not to. On the plus side,
using Unicode will ensure you can load any strings that get
thrown at you in the future, even if you are storing only
ASCII characters today. Unicode doesn’t require any
conversion or code page when you move data from one
environment to another, and it is the standard encoding for
web-based systems. Finally, SQL Server Integration
Services is heavily biased toward working with Unicode
data. On the minus side, all your strings will require twice
as much space.

Our recommendation is to use Unicode data types
wherever possible. Most dimensions are so small that the
extra space hit won’t matter. If you have large dimensions
with lots of strings, you should still consider Unicode if
you are using SQL Server 2008 R2 Enterprise Edition or
higher because you can apply row or page compression,
which will recover most of the space. In the worst case, go
ahead and use char and varchar if you will never need to
support non-Latin character sets, and you don’t have
Enterprise Edition.

If the character column is in a fact table, for example to
hold a degenerate dimension such as an invoice number,
you should use a char data type. Unless, of course, your
invoice numbers require Unicode.

To Null, or Not to Null?

At this point in creating the tables, you need to decide
whether you want the database to allow null values or not.
When you define columns, you can tell the database

281

engine to not allow NULLs. In general, you should avoid
null values in the data warehouse dimension tables. They
are confusing to business users, especially when
constructing queries that filter or report on a dimension
attribute that’s sometimes null. If you decide to let a
column be null, document your rationale in your system
documentation.

Numeric fields in fact tables, on the other hand, generally
act more gracefully with null values. All of the aggregate
operators (SUM, MIN, MAX, COUNT, and AVG) do the
“right thing” when a null is encountered. Generally the
null value is ignored by all these operators as if the record
didn’t exist. In almost all situations, a zero value (instead
of a null value) would produce undesirable and misleading
results.

It’s not strictly necessary to enforce nullability in the
database. The data warehouse tables are loaded through an
ETL process and only through the ETL process. Your ETL
process should look for nulls and substitute an appropriate
value, so no nulls should sneak through. One easy way to
do this is to define a default value constraint on any
column that might have a null. Something simple, such as
“Missing Region” will usually do the trick. As long as you
don’t actually load any null values, you should be okay.

But let’s be professional here. If a column isn’t supposed
to be null, it should be declared NOT NULL in the database.

Housekeeping Columns

282

There are several columns that should be added to the
physical model, if they’re not already included in the
logical model. Any dimension that includes an attribute
that’s tracked as type 2 needs columns to track the date
range for which each dimension row is valid.

NOTE

You don’t have to add these columns to a
dimension table that has no type 2 (track
history) slowly changing dimension
attributes in it. Although, you should have
a only few dimensions that don’t have type
2 attributes.

The RowStartDate and RowEndDate columns indicate
the date range for which the dimension row is valid. Make
these dates be inclusive, so that a SQL statement that
includes a BETWEEN clause works as expected. If these
columns are at the grain of a calendar day, make sure that
the RowEndDate is one day less than the RowStartDate

of the succeeding record for that dimension member so
that the BETWEEN syntax fetches back only a single
dimension record. If these columns must be at the grain of
minute or second, then the RowStartDateTime and
RowEndDateTime fields have to be administered more
carefully. In this case the RowEndDateTime of a record
must be set exactly equal to the RowStartDateTime of
the succeeding record, and you must replace the BETWEEN

283

constraint with
RowStartDateTime <= YOURDATETIME < RowEndDateTime.

For the current row, you can leave RowEndDate as a NULL,
but it works better if you make it the maximum date for
your data type. These maximum dates are 12/31/2079 for
smalldatetime, and 12/31/9999 for datetime, datetime2, or
date data types. Populate a third column, RowIsCurrent,
with the value yes or no (Y/N). Although this column can
be inferred from the row’s end date, sometimes it’s easier
to use the current indicator. In the MDWT_2008R2 case
study data model, the customer and employee dimensions
include type 2 attributes. Therefore, their table definitions
include these tracking columns.

Occasionally it’s interesting to the business users to be
able to easily tell which of several columns propagated a
type 2 change in the dimension. A simple way to do this is
to add a column to track the RowChangeReason: the
columns that changed on the date this row was added. The
customer and employee dimensions in our case study
database include this column.

RESOURCES

For more information on how to populate
the RowChangeReason column, search for
Design Tip #80 Adding a Row Change
Reason Attribute at www.kimballgroup.com.

284

The audit dimension keeps track of when and how a row
was added to the DW/BI system. It is closely tied to the
ETL system, and keeps track of the package and step that
loaded the data. Using an audit dimension for both fact and
dimension rows is becoming more important, as
increasingly strict compliance regulations mean we must
track the lineage of the data in our warehouse. In Chapter
7, we provide examples of how to populate a simple audit
dimension. All dimension and fact tables in our case study
database include a key to the audit dimension. In fact, we
add two audit dimension key columns to each table: one
for the process that initially loaded a row, and one for the
latest update to that row.

REFERENCE

The Data Warehouse ETL Toolkit (Wiley,
2004) outlines more complex auditing
procedures. You need to evaluate your
business and auditing requirements against
the cost and complexity of maintaining a
richer data auditing system.

Consider adding one or more sorting columns to your
dimension tables. There may be some sort order other than
alphabetical that makes sense to your business users. This
is especially true of chart of accounts dimensions.

Table and Column Extended Properties

285

When your team developed the DW/BI system’s logical
model, you specified several metadata elements including
sources, descriptions, and how each dimension tracks
history. We like to capture this information in the physical
database using column extended properties. For tables and
views, we recommend storing a business description and
possibly a second technical description as table extended
properties at a minimum.

• For each table, create a table extended property called Table
Description to hold the business description of the table.

• For each column in each dimension table, create a column
extended property called Description to hold the business
description of the column. Create a column extended
property called Source System to hold a business-oriented
summary of the source system.

• For each non-key column in each dimension table, create a
column extended property called SCD Type. The value of the
SCD Type extended property should be 1-Overwrite History
or 2-Track History.

REFERENCE

The Excel spreadsheet that we’ve already
talked about, and which is posted on the
book’s website at
shttp://www.kimballgroup.com/html/
booksMDWTtools.html automatically creates
these and other extended properties for
you.

Define Storage and Create Constraints and Supporting
Objects

286

The core definition of the tables and columns are enough
to get started, and for a small data warehouse, they are
probably all you need. DBAs building larger data
warehouses will need to spend some time working on
creating files and filegroups for storage, determining a data
compression strategy, declaring primary and foreign keys,
building indexes and aggregates for performance, creating
views to support user access, and adding data rows to
support missing values.

Create Files and Filegroups

Before you can create your tables and indexes, you have to
know where you are going to put them. Where data gets
stored in the file system can dramatically impact
performance. Files and filegroups are the mechanisms for
determining where SQL Server stores the data. Files are
the physical operating system files where data and
transaction logs are stored. Filegroups are sets of files that
SQL Server manages together. There are more layers in
the file subsystem that determine where the data actually
gets written, but they are determined outside of SQL
Server by the file system and the disk subsystem. You
need to deal with files and filegroups when you create your
tables because the CREATE TABLE statement includes a
filegroup assignment.

SQL Server creates two default files when you create a
database: the main datafile with a suffix of .mdf and the
transaction log file with a suffix of .ldf. It puts these files
in the default location, which is in the /MSSQL/DATA/
directory in SQL Server directory in Program Files. SQL
Server also creates the default filegroup called PRIMARY,

287

which contains the main datafile. Log files can be located
wherever you like, but they cannot be assigned to
filegroups. By default, all data will be written to the
PRIMARY filegroup and into the default datafile it
contains.

You will need to determine where your files should live
and how many you should have per filegroup. This is
based on how many disk drives you have and how they are
configured in the disk subsystem, along with the nature
and usage of your data and indexes. Here are a few
guidelines:

• Create at least one additional filegroup and make it the
default.

• Create files on all available local disks and add them to the
filegroup.

• Pre-allocate a generous amount of space evenly across all
files; enough for all the history you are loading, plus at least
an additional year. Three years of additional space would be
even better if you can see that far into the future.

• Put the transaction log file on a separate disk from your data
files.

If a filegroup has multiple files, SQL Server writes data to
them in a round robin fashion, but prorated based on the
space available in each file. Keep the file sizes the same so
the data will be distributed evenly across the disks.

Much of what you do with files and filegroups will depend
on the nature of your disk subsystem. You can achieve the
goal of distributing data across multiple disks using files
and filegroups, or by how you define your disk subsystem
or SAN. If you create one file on a logical disk on the
SAN, that logical disk can be designed to stripe the data

288

across an array of physical disks. In other words, the SAN
can accomplish the same data distribution you get with
multiple files and filegroups within SQL Server.

Our recommendation is to get help from someone who is
an expert at configuring disk subsystems for SQL Server
data warehousing on your hardware.

REFERENCE

Search msdn.microsoft.com for the MSDN
page titled “Using Files and Filegroups”
and search TechNet.Microsoft.com for the
white paper titled “Fast Track Data
Warehouse 2.0 Architecture” for two good
starting points on files and filegroups.

Data Compression

Data compression came to SQL Server with the 2008
release. Data compression offers several benefits and a few
costs. The benefits are space related: Compressed data
takes up less disk space. Often the compressed table is less
than half the original table size and it can be as small as 10
percent of the original size depending on the table
definition and data distribution. Compression uses less
memory because table rows are kept in a compressed form
in the buffer cache until the contents of a row are needed
by the relational engine. More rows on each page and more
rows in memory also mean less I/O needed to resolve any
given query. As a result, you will typically see both a

289

space savings and query speed improvement with data
compression.

There are two major costs to data compression. The first is
a true dollar cost: Data compression is an Enterprise
Edition feature. The second is a CPU cost. All this
compression and uncompression requires additional CPU
cycles, so if your system is already CPU bound, data
compression will actually reduce performance.

SQL Server offers two major types of compression: row
and page. Row compression essentially applies the concept
of variable-width encoding to all columns in the table.
Row compression may not make a huge difference because
most data warehouse dimensions are relatively small, and
they already use varchar for the character attributes. Large
dimensions with many Unicode fields will benefit from a
special Unicode compression added to row and page
compression in SQL 2008 R2. Row compression is
generally not recommended for the data warehouse.

Page compression applies three different algorithms to
compress all the data on a given page. First it applies row
level compression. Next it applies what is known as prefix
compression, where a value is stored in the compression
information section after the page header for each column
with a commonly used prefix. Some columns can take
better advantage of this than others. Donald Farmer uses
the example of the page in the Scottish phone book with all
the last names that start with ‘Mac’. By storing ‘Mac’ in
the page header, you can save significant space.

290

The third step in page compression, called dictionary
compression, looks for repeating values within a page and
stores a single copy of frequent values in a dictionary
section of the page. In individual rows that contain these
values, an index is stored that points back to the value in
the page dictionary. In the phone book example, dictionary
compression might store “MacDonald” in the dictionary
with pointers to that entry from all fields in the page that
contain “MacDonald.”

Page compression can make a big difference on fact tables
and large dimensions. You can explore the impact of
compression using a stored procedure called
sp_estimate_data_compression_savings that
estimates compression results by sampling rows from the
target table. For example, the stored procedure predicted a
data size reduction of the Adventure Works
FactInternetSales table and its associated indexes as
follows:

Compression Type Size (KB) % Reduction in Size

None 19,272 0%

Row 11,000 43%

Page 7,104 63%

You’ll want to experiment with data compression in terms
of table size and query performance, but in general, you
should expect a size reduction from page compression of
50% or more.

291

REFERENCE

For more information on data compression,
search Technet (www.technet.com) for the
topic titled Creating Compressed Tables
and Indexes.

Backup compression is separate from table compression.
Most DBAs who deal with larger datasets have used third
party backup utilities, which have included compression
for years. Backup compression was introduced in the core
SQL Server product with the SQL Server 2008 release, as
an Enterprise Edition feature.

Entity and Referential Integrity Constraints

In the data warehouse, most of the tables have certain rules
and relationships they must follow. All tables have a
primary key, which is that column or set of columns that
will identify a single row when constrained to a single
value. This is known as entity integrity. For the dimension
tables, the primary key is obviously the surrogate key. For
the fact tables, the primary key is usually a combination of
all of the foreign keys from each dimension.

Foreign keys define the relationships between the fact and
dimension tables. It says every value for a given foreign
key found in the fact table is guaranteed to have an entry in
the associated dimension table. This is known as
referential integrity.

292

Declaring the primary key on a table means the database
will not allow the insertion of duplicate rows. The database
will look up each new row to make sure it doesn’t already
exist before it is inserted. With foreign key constraints in
place, every time a row is added to the fact table the SQL
Server engine will check that each dimension key exists in
its corresponding dimension table.

The issue before you at this point is deciding whether you
want the database to enforce these constraints for you.
Declaring the primary key on the dimensions makes sense,
but what about the primary key on the fact table? And
what about the foreign key constraints between the fact
table and the dimension tables? The textbook DBA answer
is that of course you should declare the fact table keys,
both primary and foreign. Even though you should do so, a
few paragraphs from now we’ll talk about why you often
don’t.

Let’s start with the technically right, but practically wrong
approach. Declaring primary and foreign keys in the
database is technically the right thing to do. Database
administrators without data warehouse experience will
look at you funny if you suggest anything different. In the
case of a fact table, there is usually little value in defining
a surrogate (integer) primary key on the fact table. Instead,
you can enforce uniqueness by creating a unique index
over the set of columns, usually dimension keys, that
makes a fact row unique. In Figure 5-2 it’s all three
dimensions, but that’s not always the case.

293

NOTE

The unique, primary key index on a fact
table should never be a clustered index.
The primary key index is a big,
multicolumn index. If it’s a clustered index,
all other indexes on the fact table will be
huge and inefficient because they will use
the clustered index as their row identifier.

In the indexing section coming up, you will create
single-column indexes on some of the individual foreign
key columns in the fact table, and their primary key
reference columns in the corresponding dimension tables.
If you are doing things by the book you should add a
foreign key constraint between the fact table and its
dimensions. You need to let SQL Server check referential
integrity, usually when you add the constraints, but you
can schedule this task for later. If SQL Server doesn’t
check referential integrity, the constraints are just window
dressing and don’t do anything.

In practice, data warehouse DBAs often do not create the
primary key and foreign key constraints on the fact table.
Maintaining these structures is extremely expensive and
slows down the data loads. As we describe in Chapter 7,
one of the most important jobs of your ETL system is to
prevent referential integrity violations — and substituting
surrogate keys in the fact table is a nearly foolproof way to
do that. Having the database look up foreign keys in every
dimension for every incoming fact row is a very expensive

294

check for something that you did just moments before
when you looked up the fact table’s surrogate keys. Along
the same lines, for SQL Server to maintain a
multiple-column unique index is obviously expensive.
Since SQL Server resolves most queries by using the
single-column indexes that you’ve created on the more
selective dimension keys in the fact table, this unique
index provides very little value for its cost of maintenance.

NOTE

Generally, you won’t declare referential
integrity constraints. If you feel it’s
important, test the options in your
environment to understand the cost. Build
your fact tables the right way, with key
constraints defined and enforced in the
database. For the initial historical load,
disable the constraints, load all the data,
and then re-enable and check the
constraints. Test your incremental load
process. If it’s too slow, and you’re
positive the slowness is occurring during
the insert step, test the performance gains
that result from removing the primary key
index and foreign key constraints. If you
decide to run without these constraints,
check periodically (weekly or daily) for
referential integrity violations, which can

295

creep in no matter how beautifully you’ve
designed your ETL system.

Initial Indexing and Database Statistics

Indexes are one of two major performance tools available
in the data warehouse database platforms, the other being
aggregates. In this section we provide a simple starting
point indexing plan for your relational data warehouse
database. You will need to evaluate your query workload
against your data on your test system, in order to optimize
your indexing plan. We’ll talk more about performance
tuning in Chapter 17 on maintenance.

Dimension Indexes

Dimension tables with a single column integer surrogate
primary key should have a clustered primary key index.
The clustered part defines the physical order of the rows.
In this case, the clustered index actually becomes the
physical table itself. The primary key part is that column
(or columns) that uniquely identify a single row in the
table: the surrogate key. When you define a primary key
on a table in SQL Server it also creates a clustered index
by default. Unless the dimension is small, you should also
create an index on the business key to support the ETL fact
table key substitution process.

For small dimensions, the only other index you might want
to define at the outset is a single column index on any
foreign keys. In the case study database, all dimensions

296

have two foreign keys to DimAudit, so we created indexes
on those columns. All of the dimensions in our sample
database are small enough that it’s unlikely to be
worthwhile creating any additional indexes.

For larger dimensions, your indexing plan depends on how
the relational data warehouse database will be used. The
hardest case to tune for is if the relational data warehouse
will support significant reporting and ad hoc queries.
Insofar as you know what that query and reporting load
will be, you can tune the index plan for the expected use.
Any attribute commonly used in query constraints or select
lists is a candidate for a single-column index. Often,
columns in a hierarchy are such candidates. You should
already have identified the hierarchical relationships in
your dimension. For a large dimension supporting direct
queries, these hierarchical attributes are probably the first
non-key attributes that you’ll want to index. A very simple
dimensional model is illustrated in Figure 5-2. If
DimProduct is large and heavily used, consider
single-column indexes on ProductCategory,
ProductSubcategory, and ProductName.

Figure 5-2: Simple dimensional diagram illustrating key
constraints

297

Indexing Very Large Dimensions

A very large dimension that contains some type 2
slowly changing dimension attributes should have
a four-column index on the business key, row
begin date, row end date, and the surrogate key.
The row end date and surrogate key can be created
as INCLUDE columns in the index. This index will
speed the performance of surrogate key
management during the ETL process, especially for
loading historical fact rows.

See the Books Online topic “Indexes with Included
Columns.”

Microsoft SQL Server’s query engine will use multiple
indexes on a single table when resolving a query. With a
specific workload of predefined queries, you can probably
define multicolumn indexes that are very useful. However,

298

if you know very little about how users will access the
data, the single-column index approach is the most
sensible starting point.

Fact Table Indexes

For fact tables, the standard starting point is to create a
single-column clustered index on the date key. If your fact
table has multiple date foreign keys, start with the
transaction date or, if your fact table is partitioned, start
with the field that’s used in the partitioning strategy. This
will keep your fact table from getting too fragmented
because new transactions will be added to the end of the
table. However, business queries may not perform well if
they refer to some other date, such as effective date. In this
case, you may need to index the queried date and rebuild
your index every so often.

Next, create a single-column index on most of the other
foreign keys to the dimension tables. If you have a low
cardinality dimension that won’t limit the selected rowset,
such as a transaction type with only five values, it’s
probably not worth creating an index.

In the simple database illustrated in Figure 5-2, you would
create a clustered index on OrderDateKey and
single-column indexes on CustomerKey and ProductKey

in the FactOrders table. Most DW/BI systems do use the
relational database for some queries and reports, so the
simple fact table indexing described here is a good starting
point. As with the dimensions, you should tune the fact
table indexing plan with your data and query mix.

299

Statistics

The optimizer looks at indexes in conjunction with a set of
statistics it keeps about the cardinality and distribution of
column values across the tables in a query. In most cases,
you can rely on the default settings for statistics which will
autocreate and autoupdate statistics as the system sees fit.
In larger data warehouse databases, especially when you
are loading data into a date partition or your fact table is
clustered by date, you should update statistics for that date
column after every load. Otherwise, the optimizer won’t
realize the data is available. You may also want to consider
creating multicolumn statistics on combinations of fact
table foreign keys that are often used together. You will
need to script these and update them on a regular basis
because they will not be included in the autoupdate.

NOTE

If your relational data warehouse is being
used only to stage the Analysis Services
database, you can get away with building
fewer indexes. You’ll certainly want to
keep the primary key index on dimensions.
Fact tables can be left largely unindexed.
Because the queries Analysis Services uses
to find data for processing are always the
same, you can run the Database Tuning
Advisor and tune the relational database
exactly for that set of queries.

300

Aggregate Tables

Most BI reports and analyses start at a summary level, and
then allow the users to drill down into greater detail. A
time series report showing sales by month for the last two
years returns only 24 rows, but if it is built on the atomic
level detail, it may have to sum up hundreds of millions, or
even billions of rows each time it is run. If you can
preaggregate this data during the ETL process, any report
that uses the aggregates will run dramatically faster. In
fact, aggregate tables are the single most useful way to
improve query performance on a dimensional DW/BI
system. An aggregate table summarizes data at a higher
level than the atomic data maintained in the detailed fact
table. You create aggregate tables by either omitting one or
more of the dimension foreign keys entirely, or by
summing to a parent level in a dimension, say at category
of product, country of geography, or month of date. Some
or all of the other dimensions would remain at their leaf
levels.

RESOURCES

The process of designing and maintaining
aggregate tables in the relational data
warehouse database is discussed in the
books The Data Warehouse Toolkit
(Chapter 14), The Data Warehouse ETL
Toolkit (Chapter 6), and Mastering Data
Warehouse Aggregates by Chris Adamson

301

(Wiley, 2006), and in several articles in
The Kimball Group Reader.

Most Microsoft DW/BI systems that would benefit from
aggregates use Analysis Services to manage those
aggregates. As we describe in Chapter 8, the Analysis
Services OLAP functionality has a host of features for
designing and maintaining aggregates. This is one of the
core features of Analysis Services. Even if Analysis
Services provided no other benefits, its usefulness as an
aggregate manager and navigator makes implementing it
worthwhile.

Microsoft has a few tools to help you maintain aggregate
tables in the relational database. We’ve seen people use
indexed views as a substitute for aggregate tables. You can
define an indexed view on a fact table which will
summarize the detailed data and physically store the
summary in an indexed view. This approach is most
appealing to people who have done a lot of data
warehousing in Oracle, which has a similar feature. One
big advantage of an indexed view over simply creating a
summary table is the optimizer understands that the view is
based on the atomic fact table. When a user submits a
query against the atomic fact table, the optimizer will
automatically try to use the summary level indexed view if
it can resolve the query. The incoming query does not have
to be aware of the existence of a separate indexed view.
This query redirection is known as aggregate navigation
and is a key component to making aggregates broadly
usable.

302

There are a lot of little rules about creating indexed views.
Most importantly, they work automatically only in
Enterprise Edition. In Standard Edition, you need to refer
to the indexed view by name and use the NOEXPAND hint to
make the optimizer use it as if it was a stored table. At that
point, you might as well simply create a stored table. Even
in Enterprise Edition, you may need to use the NOEXPAND

hint to get the optimizer to choose the indexed view.

NOTE

Indexed views are not perfect in SQL
Server. Most importantly, they work
automatically only in Data Center,
Enterprise, and Developer editions. Future
releases beyond SQL Server 2008 R2 will
likely turn to other technologies, such as
column store indexes, to accelerate analytic
queries against the relational database.

If you are running Standard Edition and just can’t do
OLAP, and really need to maintain relational aggregate
tables for performance, we recommend that you don’t use
indexed views, since they don’t provide automatic
aggregate navigation. Instead, maintain separate aggregate
tables the old-fashioned way: in your ETL process. You
will have to update the aggregates by hand. If you only
ever add new, incremental rows to your data warehouse
database, and you only build aggregates on type 2 slowly
changing dimensions, then maintaining aggregate tables
isn’t that difficult. In most cases, it’s a bit more effort.

303

Again, see the books referenced above for a more
complete description of the issues and approaches.

REFERENCE

For more details, search msdn.microsoft.com
for the article titled “Improving
Performance with SQL Server 2008
Indexed Views.”

Create Table Views

All business user access to the relational data warehouse
database should come through views. Similarly, Analysis
Services databases should be defined on views, rather than
the underlying tables. In both cases, the rationale is to
provide a protective layer between the users and the
underlying database. This layer can be very helpful when
you need to modify the DW/BI system after it’s in
production. It is also a bit of a pain for the developers
because some of the design tools in the BI studio rely on
foreign key constraints to identify join paths between
tables. These design tools are unable to pull these
relationships up through the views, so you will need to
draw them in yourself.

All user access should be through views rather than to the
underlying tables. The table names shouldn’t even show up
in a user’s list of database objects. In the simplest case, a
table’s view would select all the columns from the
underlying table. You may want to omit some columns

304

from the view, especially some of the housekeeping
columns described previously.

If you have snowflaked a dimension, create a single view
for the dimension that collapses the multiple tables into a
single logical table. To improve performance, you may
choose to make this an indexed view.

All of your database object names should be business user
friendly. But the view definition is an opportunity to
rename columns, especially when you use a dimension in
multiple roles, such as Order_Date and Ship_Date.

Insert an Unknown Member Row

A corollary to forbidding nulls, especially for the fact table
foreign keys, is how to handle a fact row that does have a
null as one of its incoming business keys. For example,
how would we load a fact row that has a missing customer
ID? We talk about handling other referential integrity
failures in Chapter 7, but a good solution to the missing
source key problem is to add an unknown member row to
each dimension table. We habitually do this as soon as we
create the table, and we use –1 as the unknown member’s
surrogate key (unless the key is a tinyint).

If you enable the identity column property to generate
dimension surrogate keys, you can add the unknown
member row by using the following logic:

SET IDENTITY_INSERT Dim_MyDim ON

INSERT
Dim_MyDim (MyDim_Surrogate_Key, MyDim_Business_Key, Attribute1, Attribute2)

305

VALUES (-1, NULL, 'Unknown', 'Unknown')

SET IDENTITY_INSERT Dim_MyDim OFF

Example CREATE TABLE Statement

The following T-SQL creates the DimProduct table from
Figure 5-2 with most of the constraints and associated
items we’ve discussed thus far. You might not use all of
these settings for every table, but we wanted to include the
syntax.

-- Create the table with an IDENTITY generated surrogate key, default

-- values, a primary key and clustered index on the surrogate key, on a

-- specific filegroup with page level data compression

CREATE TABLE [dbo].[DimProduct](

[ProductKey] [int] IDENTITY(1,1) NOT NULL,

[BKProductSKU] [nvarchar] (25) NOT NULL DEFAULT N'ZZ-000-ZZ',

[ProductName] [nvarchar](50) NOT NULL

DEFAULT N'Product unknown or not provided',

[ProductSubCategory] [nvarchar](50) NOT NULL

DEFAULT N'Product Subcategory unknown or not provided',

[ProductCategory] [nvarchar](50) NOT NULL

DEFAULT N'Product Category unknown or not provided',

CONSTRAINT [PK_dbo.DimProduct] PRIMARY KEY
CLUSTERED ([ProductKey]

ASC)

306

) ON [DimFileGroup]

WITH (DATA_COMPRESSION = PAGE); -- only if this is a very big

dimension

-- Create the extended property entry for the table description

exec sys.sp_addextendedproperty @name=N'Table Description',

@value=N'Information about products', @level0type=N'SCHEMA',

@level0name='dbo', level1type=N'TABLE', @level1name=DimProduct;

GO;

-- Create the user access view of the table

CREATE VIEW [Product] AS SELECT [ProductKey], [BKProductSKU],

[ProductName], [ProductSubCategory], [ProductCategory]

FROM [DimProduct];

GO;

You may want to separate the table creation DDL from the
index DDL for tables with multiple indexes, and especially
for fact tables. This will allow you to drop and recreate the
indexes separate from the table itself. Also, note that if you
create a default value such as 'ZZ-000-ZZ' for
BKProductSKU, you must make sure that value will never
be used to describe a different entry in the table.

Partitioned Tables

307

A partitioned table is essentially a large table split out into
smaller tables under the covers. Each of these smaller
tables, called partitions, can be accessed, indexed, and
managed independently. Meanwhile, the set of partitions
still looks and behaves like a single table to any incoming
query. Partitioned tables are important for the scalability of
the relational data warehouse database. The big win comes
from greatly increased manageability of very large tables.
With a very large partitioned table, everything from
loading data, to indexing, and especially to backing up the
data, can be much easier and faster than with a single
monolithic table.

Because large is the operative word, you would typically
partition only the fact tables in a relational data warehouse
database. The definition of large depends on the size and
strength of your server and disk system, but as a rule of
thumb, tables with around 100 million rows, and/or ten
gigabytes of data are low end partition candidates.
Dimension tables, even very large dimension tables,
seldom benefit from partitioning.

Analysis Services databases can also be partitioned. Most
people use the same partitioning scheme for Analysis
Services as for the relational database, and create, merge,
and delete partitions from the two data stores on the same
schedule. This is just a convenience; there is no
requirement that Analysis Services partitions be
synchronized with relational partitions.

Relational and Analysis Services partitioning are both
features of SQL Server Enterprise Edition only. Like many
SQL Server features, there are wizards to help you create

308

and maintain partitioned tables. These can be helpful
learning tools, but in most cases you will want to create
scripts and use tools you can programmatically invoke
from your ETL system.

How Does Table Partitioning Work?

The classic partitioning scheme is to partition by month.
Each month of fact data goes into a separate physical table,
which is tied together with the other months’ identically
structured tables. There are some specific requirements,
discussed shortly, for how the partitions are physically
structured.

DOWNLOADS

In this section, we illustrate an extremely
simple partitioned table that is loaded
monthly. These scripts, along with example
data, are available under the Tools and
Utilities tab on the book’s website:
http://www.kimballgroup.com/html/
booksMDWT.html

There are four basic steps to creating a partitioned table:

1. Create files and filegroups if needed

2. Define the partition function

3. Define the partition scheme

309

4. Create the partitioned table on the partition scheme

We’ll use a simple example of creating a partitioned table
to hold the first three months of data for 2012 to
demonstrate each of these steps.

Create Files and Filegroups

You can map the partitions in your partitioned table to one
or more filegroups. The single filegroup approach allows
for simpler management, and can make it easier to set up
the underlying storage for faster sequential access.
However, because backup and restore occur at the
filegroup level, you must backup and restore the entire
table. By creating partitions on separate filegroups, you
can set older filegroups that no longer receive data or
updates to Read Only. You can create a backup process
that will recognize these filegroups as unchanged and back
them up only once, thus greatly speeding the differential
backup and reducing its size. You can also do a partial
restore of a single partition if need be.

In our example, we will create a filegroup for each
partition. Create files and filegroups with simple ALTER

DATABASE commands. This code creates a new filegroup,
MDWT_FG1, and a new file, MDWT_Data1.ndf on the G:
drive, adding it to the filegroup:

ALTER DATABASE MDWT_2008R2 ADD FILEGROUP MDWT_FG1;

ALTER DATABASE MDWT_2008R2

310

ADD
FILE (NAME = MDWT_2008R2_Data1, FILENAME = 'G:\MDWT_Data1.ndf',

SIZE = 1GB, MAXSIZE = 1200MB, FILEGROWTH = 100MB)

TO FILEGROUP MDWT_FG1;

It’s a good idea to define the initial file sizes large enough
to accommodate your initial historical load plus data for
some time out into the future. Having files autogrow can
cause unexpected slowdowns and file fragmentation.

Since our example involves three months of data, we
would copy the filegroup and file creation code to create a
total of five files and filegroups. This will make more
sense in the next step.

Create the Partition Function

Once the filegroups are in place, the first step in defining a
partitioned table is to define a partition function, using the
CREATE PARTITION FUNCTION syntax that’s well defined
in Books Online. If you’re creating monthly partitions for
a DateKey surrogate key, you would use syntax like:

CREATE PARTITION FUNCTION PFMonthly (int)

AS RANGE RIGHT

FOR VALUES (20120101, 20120201, 20120301, 20120401);

In this very simple example, we have four breakpoints,
which results in five partitions. The first partition holds all
data before January 2012, the second partition holds
January data, the third holds February data, the fourth
holds March data, and the fifth holds all data for April

311

onward. Note that a partition function automatically
creates partitions to hold all possible values. Four
boundary points, as in the preceding example, create five
partitions, hence the five filegroups.

At this point, the alert reader is wondering why we created
five partitions since our goal is to create a partitioned table
to hold three months of data. Look carefully at the
preceding paragraph and you will see we have created an
empty partition on either side of the partitions that will
have data in them. This allows us to add new data at either
end of the table without having to split a populated
partition. Splitting a populated partition is a slow process
because SQL Server has to examine each row to see which
of the new partitions it belongs to.

If you’re using meaningless surrogate date keys, you need
to create an integer function that uses the appropriate key
ranges. You can create complex partition functions, but
most people will just create simple functions like the one
illustrated here. (This is the main reason to use a
meaningful surrogate key for Date.)

TIP

Always leave yourself at least one empty
partition that covers the date range that you
plan to split later. Create new partitions and
filegroups well before you need them, so
that you are always splitting an empty

312

partition. In most cases, you want the first
and last partitions always to be empty.

Create the Partition Scheme

The next step is to define a partition scheme, which maps
each partition in a partition function to a specific physical
location. A simple example is illustrated here:

CREATE PARTITION SCHEME PSMonthly

AS PARTITION PFMonthly

TO (MDWT_FG1, MDWT_FG2, MDWT_FG3, MDWT_FG4, MDWT_FG5);

This is where the filegroups we created in the first step
come into play. It is possible to map more than one
partition to a filegroup. This makes managing partitions
easier, but reduces flexibility.

Create the Partitioned Table

Finally, create your partitioned table on the partition
scheme. The syntax is really simple: Basically you’re
replacing the standard ON <filegroups> syntax with an
ON <PartitionScheme> clause. Here is example DDL for
the FactOrders table from Figure 5-2:

CREATE TABLE FactOrders

(OrderDateKey int NOT NULL,

CustomerKey int NOT NULL,

313

ProductKey int NOT NULL,

OrderQty int,

SalesAmt money

)

-- The ON clause refers to the partition scheme

ON PSMonthly(OrderDateKey);

NOTE

The partition key (OrderDateKey in our
example) must be NOT NULL.

The end result of all this is a single table called
FactOrders with the characteristics shown in Figure 5-3.

Figure 5-3: Partitions, files, and filegroups for the
FactOrders example

314

Inserting a row into FactOrders invokes the partition
scheme, PSMonthly with OrderDateKey as its argument.
This passes through the partition function to determine the
partition to which the row belongs. The row is then
inserted into the proper partition, which lives in a filegroup
on a particular disk (or set of disks if you are designing for
high performance).

RESOURCES

To examine data and partition information
within the specific partitions, see the Books
Online topic “Querying Data and Metadata
from Partitioned Tables and Indexes.”

315

At this point, you can insert the three months of data
directly into your partitioned table just like any other table.
However, it shouldn’t surprise you to learn that this is not
a fast loading process: At best it’s as fast as an insert into a
normal table because every row has to go through the
partition function to determine the partition to which it
belongs. Especially for your initial load, you’ll want to
know how to load the partitioned fact table as fast as
possible. There’s an elegant trick that works great, which
we’ll describe in the next section.

Managing Partitioned Tables

Once your partitioned table is defined, you will need to
manage it on an ongoing basis. This section covers the
major repeating tasks including adding new partitions,
loading data quickly, using mixed grain partitions, and
dropping old data.

Adding a New Partition

This very simple example can keep going until the end of
March, but then what happens? How do you add a new
partition for April? Remember, you want to keep an empty
partition out in front of the data, so split the existing empty
partition at the May 1 breakpoint to create an empty April
partition and an empty partition starting at May 1.
Assuming you have already created files and a filegroup
for the new, split partition, you can use the following
ALTER PARTITION commands:

-- Alter the Partition Scheme to use a new filegroup for the next

partition

316

ALTER PARTITION SCHEME PSMonthly

NEXT USED MDWT_FG6; -- this filegroup must already exist

-- Split the partition function range at May 1

ALTER PARTITION FUNCTION PFMonthly ()

SPLIT RANGE (20120501);

Just like INSERTING, splitting a partition would be very
slow if it contained data because SQL Server runs each
row through the partition function to determine the
partition to which it belonged. Splitting an empty partition
is clearly the way to go.

A second syntax for the ALTER PARTITION FUNCTION

command will merge two partitions. As with splitting
partitions, you’d prefer to merge empty partitions. We’ll
discuss how to do so most effectively.

Use Table Partitions for Fast Data Loads and Minimal
Downtime

Now that there’s an empty partition in place for April data,
we will unveil our fast data load trick. The trick is to create
a separate table structured exactly like the target partition,
load data into it, add indexes and constraints, and then
swap it with the actual partition. We’ll call this separate
table a pseudo-partition. It has to structurally match the
target partition before we can swap it — same columns,
data types, indexes, filegroups, and so on. Note the
CREATE TABLE script that follows is exactly the same as

317

we used for the partitioned table, excluding the ON

<PartitionScheme> clause:

-- Create an empty table nearly identical to the partitioned table

CREATE TABLE PseudoPartition_201204

(OrderDateKey int NOT NULL,

CustomerKey int NOT NULL,

ProductKey int NOT NULL,

OrderQty int,

SalesAmt money,

CONSTRAINT CKPseudoPartition_201204 CHECK

(OrderDateKey >= 20120401 and OrderDateKey <= 20120431)

)

ON MDWT_FG5; -- The same filegroup as the April partition

Pseudo-Partition Characteristics

The pseudo-partition table must be defined on the
same filegroup as the partition it’s destined to
replace. At the point where you switch the
partitions, everything about the pseudo-partition
table must be exactly the same as the target
partitioned table, with one exception. You must
define a check constraint for the partition key
(OrderDateKey in our example), to ensure that the

318

pseudo-partition table contains only data
appropriate for the partition.

If you have indexes on keys other than the
partitioning key, you must INCLUDE the
partitioning key in the indexes of the
pseudo-partition. SQL Server automatically adds
the partitioning key as an INCLUDE column to any
partitioned index that doesn’t already have it
included, but it’s better to do it in advance so the
partition switch can be very fast.

See the Books Online topic “Index with Included
Columns.”

Use standard fast load techniques to load the data into that
pseudo-partition:

• Set the database to Bulk-Logged or Simple recovery mode if
it’s not already.

• Confirm the pseudo-partition is empty and/or disable all
indexes and constraints.

• Bulk Insert or BCP from a file, or develop an Integration
Services package using a SQL Server Destination task in the
data flow.

• Enable (or create) indexes and constraints.
• Return the database to the desired recovery mode.
• Perform appropriate backups.

Once the data is loaded into the pseudo-partition, the
indexes rebuilt, and the constraints re-enabled, switch the
pseudo-partition into the partitioned fact table. This switch

319

is a metadata operation and executes very quickly,
although it requires a schema-modification lock and can be
blocked while other DML locks complete.

-- The magic switch – very fast even with large data volumes

ALTER TABLE PseudoPartition_201204 SWITCH TO FactOrders
PARTITION 5;

FactOrders now contains data through April, 2012, and
the table PseudoPartition_201204 is empty. When we
executed the ALTER TABLE … SWITCH TO command, no
data actually moved. Instead, the system’s metadata
logically swapped the places of the empty partition and the
populated pseudo-partition. This is why they have to be
structured identically and located on the same filegroup.

NOTE

For populating the initial historical data,
it’s usually fastest to create all indexes after
the entire partitioned table is populated and
stitched together. SQL Server will build the
indexes in parallel.

This partition switching technique minimizes overall load
time and system resources because you can perform a fast,
non-logged load of large volumes of data. At the same
time, you’re minimizing the impact on the database’s
users. The data is loaded into a table that’s invisible to
users; during that load the partitioned table remains
available for query, and the switch step executes extremely

320

fast. In addition, the pseudo partition can be backed up as a
separate table, improving system manageability.

The Broader Parallel Structure Design Pattern

Partition switching is an example of using parallel
structures to enable high availability. You can use
the same basic technique at the table, database,
disk subsystem, or virtual machine level. At the
table level, for example, you can load incremental
data into Fact_Sales_Load, manage its indexes,
indexed views, and any other dependencies, and
then, when all is ready, change the table names like
so:

EXEC sp_rename ‘Fact_Sales’,

‘Fact_Sales_Temp’;

EXEC sp_rename ‘Fact_Sale_Load’,

‘Fact_Sales’;

EXEC sp_rename ‘Fact_Sales_Temp’,

‘Fact_Sale_Load’;

Users would be able to query Fact_Sales while
Fact_Sales_Load is being loaded without
blocking the load process.

The first step of the load process would be to bring
Fact_Sales_Load up to date. The easiest way to

321

do this might be to insert the last two incremental
loads because Fact_Sales_Load will start out
two days behind.

All you need to provide this high availability is
enough disk space to copy your tables, and enough
CPU and memory to process user queries and data
loads at the same time.

Using Mixed Grain Partitions

Most systems with partitioned fact tables will partition
monthly by date. Most will implement the fast load and
partition switching technique for the historical load, but
not bother to do so for the daily incremental loads. If your
DW/BI system has extreme data volumes, on the order of
10 million new fact rows a day or more, you may need to
play this game on your daily loads.

If you’re in this situation, the easiest thing to do is to
partition by day instead of by month. However, you want
to keep the total number of partitions for any one table to
several hundred. There’s a default limit of 1,000 partitions
per table.

Clearly daily partitioning is in conflict with the 1,000
partition limit; keeping even one year of data, or 365 daily
partitions, is a bit worrisome. If you need daily partitions
to support the load process, you should consolidate the
daily partitions into weekly or monthly partitions as they
age. Obviously you want to do this the fast way, using

322

partition switching, rather than by merging populated
partitions. The recommended approach is to build a
monthly merge Integration Services package that would
automate the following steps:

1. SELECT INTO the new monthly pseudo-partition
from all the daily partitions (you can do this right from
the partitioned table).

2. Switch the empty daily partitions into the partitioned
table.

3. Change the partition function and partition scheme so
the breakpoints fall on the new boundaries — a whole
month instead of days for last month, and individual
days for the next month.

4. Switch the merged month pseudo-partition into the
partitioned table.

5. Clean up the leftover daily pseudo-partitions that are
still lying around.

Have fun.

Dropping Old Data from a Partitioned Table

One of the great advantages of a partitioned table is that it
makes it so easy — and fast — to drop aged data. It’s a
common practice to keep a rolling window of data in the
fact table, usually in multiples of a year plus one month
(for instance, 61 months). Without table partitioning,

323

dropping the oldest month of data requires a resource
intensive DELETE FROM statement.

The best way to drop an old partition is to create an empty
pseudo-partition, and swap it into the partitioned table for
the old partition. As before, the pseudo-partition table must
be structured identically to the partition it replaces,
although in this case you don’t need to add a check
constraint on the partition key.

After you execute the ALTER TABLE … SWITCH

PARTITION command, the pseudo-partition will contain
the aged data and can be backed up, truncated, and
dropped from the database if you wish.

Using Partitioned Tables in the Data Warehouse Database

If you’ve read this whole section on partitioned tables,
you’ve already figured out that partitioned tables are too
complicated to use unless you really need them. So when
do you need them? As we said earlier, 100 million rows is
a reasonable point. If you have a fact table that contains a
billion rows, you certainly want it to be partitioned. You
should seriously consider partitioning for smaller fact
tables if you can’t find a better way to reduce your backup
window or load window to an acceptable target. At the low
end, it’s hard to imagine that a 10 million row fact table
would truly need to be partitioned.

If you decide to partition your fact table, you must
automate the process of loading and managing the table
and partitions. Your ETL system should be

324

partition-aware, and automatically add new partitions as
needed to accommodate new data.

DOWNLOADS

Books Online provides examples of best
practices for how to manage partitions.
You can also download a utility from
Microsoft’s Codeplex site that automates
the creation of new partitions and the roll
out of aged partitions at
http://sqlpartitionmgmt.codeplex.com/.

Partitioned Table Limitations

We really like the partitioned table feature. But
there are some limitations that it’s important to
know about.

• There’s a limit of 1,000 partitions per table in most
SQL Server editions. (SQL Server 2008 SP2 can
support 15,000 partitions, but this is not part of SQL
Server 2008 R2, and is expected to be a Data Center
Edition feature in the future.)

• Partitioned tables can have indexed views defined on
them, but they add a layer of management overhead
when you use partition switching to load data.

• Either the target or source partition/table needs to be
empty to use the partition switch technique.

• Issue the ALTER PARTITION FUNCTION …
MERGE RANGE and SPLIT RANGE commands
only against empty partitions. SQL Server will let

325

you issue the command against a populated partition,
and it will move the data around, but it will do it very
slowly. If you have enough data that you’re using
partitions, you need to move the data yourself, most
likely with an Integration Services package.

• For simplicity, the examples in this section did not
include indexes on the partitioned table. Indexes can
— and should — be partitioned!

RESOURCES

There are two useful white papers on
TechNet.Microsoft.com with additional
information on partitioned tables: The
“Fast Track Data Warehouse 2.0
Architecture” paper previously mentioned,
and “Partitioned Table and Index Strategies
Using SQL Server 2008”.

Finishing Up

With all the tables, indexes, aggregates, storage, partitions,
and related items created, there are still a few more items
to get in place before the initial physical setup is complete.
You need to set up the staging tables that will be used in
the ETL system, and you need to set up your business and
process metadata structures.

Staging Tables

One of the last steps in your physical design process is to
develop staging tables. Staging tables are relational tables

326

that are used to hold data during the ETL process. Use
staging tables for data that you want to use as a lookup for
other processing. You may create a staging table based on
each dimension that contains today’s version of the key
lookups, for use during the fact table surrogate key
assignment process. You may create a staging table to tie
together similar members such as people from multiple
source systems.

Because staging tables are intimately tied to the ETL
process, the ETL developer is usually the person who
specifies the requisite structure. A defining characteristic
of a staging table is that it is not available to business users
for querying. Best practice puts staging tables in a separate
database from the relational data warehouse, though
usually on the same server.

During your staging area design process, it’s particularly
important to stage in relational tables any data that is used
for lookups, and to index it appropriately to speed those
lookups. You can use the file system, and especially the
Integration Services raw file format, to stage data that’s
not used for lookups.

Metadata Setup

At this point in the process, when you are setting up your
other databases and file system, you should also define
your metadata database. We have an entire chapter devoted
to metadata, in which we suggest some structures that
integrate with the way we like to build Microsoft DW/BI
systems. See Chapter 15 for details.

327

Aside from the data model for metadata that you define,
the other issue with metadata is where it is stored. We like
to store user-defined metadata in its own relational
database. Usually this database is on the same server as the
data warehouse database. The reason you want it in a
separate database is that the metadata database is more
transactional than the data warehouse or staging databases.
You should back it up frequently — which is easy to do
because it’s small.

Summary

This chapter discussed setup and design issues for
physically instantiating the target dimensional model in the
relational data warehouse database. We described how to
convert the logical data model into a physical data model,
including surrogate keys, string data types, and NULLs.
We also discussed the initial index recommendations,
statistics, creating aggregates with indexed views or
separate summary tables, data compression, and primary
key/foreign key enforcement. We described relational table
partitioning, which can greatly improve the manageability
of large fact tables. We finished up with a brief mention of
staging tables and metadata structures.

Once you have completed the initial database setup and
table creation, you should be ready to start the ETL
process.

328

Chapter 6

Master Data Management

“The truth will set you free, but first it will make you
miserable.”

— Attributed to James A. Garfield

If you are reading this book from start to finish, you should
now have the target dimensional model built in the
relational database and be ready to start working on the
ETL system. One of the big issues you may have struggled
with in designing the dimensional model was figuring out
where all the attributes in a given conformed dimension
were going to come from. In many organizations, there are
multiple sources for the same attribute, and multiple
versions of the same entity. In addition, you probably
identified attributes the business users need in the
dimension that only exist in an Excel spreadsheet.

If this describes your source environment, you would do
well to deal with these data integration issues before you
pull the dimensions into the warehouse. In the broader IT
world, this is called master data management. Master data
is reference data that is managed centrally for an
organization. Master data describes the business entities
that participate in the transaction systems. These business
entities include people such as customers and employees;
places such as warehouses, sales offices, and
manufacturing plants; physical entities such as products

329

and assets; and logical entities such as organizational
structures and charts of accounts.

Master data sounds a lot like dimensions. Dimension data
and master data are closely related, but they are not exactly
the same thing. Ideally, master data is much closer to the
transaction systems. A master data management system
can be an excellent source for the dimension data in the
data warehouse. A data warehouse architect would love to
have a robust master data management system in place in
the transaction environment, because such a system would
solve the hardest problems in the dimension table ETL
process.

In this chapter, we describe master data and master data
management. We introduce a wide range of potential
master data management implementations, and discuss
how such implementations can benefit the downstream
DW/BI system. In SQL Server 2008 R2, Microsoft
introduced a new component of SQL Server, called Master
Data Services. As you can infer from its name, you can use
Master Data Services, or MDS, to build a master data
management solution. We provide an overview of the new
MDS, and describe how to implement a simple MDS
deployment.

In this chapter, you will learn:

• What master data management is, and how it may fit into
your enterprise.

• What are the scenarios in which it makes sense to manage
master data before the ETL process.

• What is Microsoft’s Master Data Services product.

330

• How to get started with simple applications in Master Data
Services.

Managing Master Reference Data

Master data should more properly be called master
reference data. Master data is the centrally managed
reference data for your organization. Few organizations
have a clear system in place to manage the master
reference data in the transaction environment. This has led
to multiple versions of the same data entities being created
and maintained in different transaction subsystems. Data
warehouses have long managed the process of
reintegrating these entities for the purposes of reporting
and analysis. This is sometimes called downstream master
data management. Only a few organizations have
leveraged this downstream master data management to
improve the transactional data because rarely are there
effective pipelines for the reverse flow of data from the
data warehouse back to the transaction systems. Practically
speaking, the best place for managing your organization’s
master reference data is before the data warehouse, in a
separate though related management system.

RESOURCES

For more information on master data
management system architectural
approaches, see The Kimball Group
Reader, pp. 515–520, or search
KimballGroup.com for “MDM.”

331

Master data management is also related to data
governance: the processes and rules for managing data in
your organization. These rules include required fields,
standard values, data retention policies, and so on. Some
organizations have mature data governance policies in
place; others have scarcely given it a thought. Most
organizations are a patchwork, with some areas strongly
managed, such as definition of a chart of accounts. Within
the same organization, other data is managed in a more ad
hoc fashion. The more rigorous your organization is about
data governance, the easier it will be to implement a
master data management system. Indeed, it’s impossible to
be truly serious about data governance without some kind
of master data management system in place. But even
organizations with little rigorous data governance can
benefit from a new master data management solution, as
we’ll describe.

An effective master data management solution must enable
effective data governance, while providing the technical
infrastructure to solve a wide range of data problems. The
most common master data management problems include
incomplete attributes, data integration, and systems
integration.

Incomplete Attributes

Few transaction systems include all the descriptive
attributes needed for rich reporting and analytics. After all,
transaction systems are built to process transactions, for
which a rich set of descriptive attributes is seldom
necessary. Most organizations use purchased ERP systems

332

for some or all of their key operations, and these packaged
systems can be difficult to extend.

As you gather the business requirements for the data
warehouse, the business users often voice complaints
about incomplete attributes. Most often the missing
attributes are alternate rollups or hierarchies. Business
users maintain additional product rollups or organizational
hierarchies in various unmanaged applications, typically
Excel or Access.

NOTE

One recent client, a large multinational
corporation, was limited by its accounting
software to a 5-level organizational
hierarchy. The top three levels were Global
Area (Americas, EMEA, Asia), Region
(such as Western Europe and SE Asia), and
Country. This left just two levels to
describe the organization inside a country,
which worked fine for Switzerland or
Columbia but not so well for the U.S. or
China where this company did most of its
business.

As crazy as this sounds, the organizational
structure enabled transactions to be
processed, and senior management to get
the top line reports they needed. But as

333

you’d expect, middle managers throughout
the world had created all sorts of rollups to
help them analyze their operations in
sufficient detail. Consolidating those
rollups into a single hierarchy — or at
worst two or three hierarchies — presents
challenges both technical and managerial.

The data warehouse team attempts to address the problem
of incomplete attributes. Often, the team begins by
importing the missing attributes from an Excel file on a
business user’s desktop. There are two advantages to the
Excel solution: it puts the business people in charge of
defining the analytic attributes, and it’s quick and easy
(until it breaks). But Excel is a fragile building block for
systems, and we all know where this will lead. Eventually,
either the process breaks causing a failed load, or the data
is incorrectly attributed causing data quality problems and
retroactive updates.

A better solution is to build a custom applet for business
users to maintain the attributes. Many data warehouse
teams have done so, building a handful of custom
applications for the most important attributes that need to
be maintained outside of the transaction system. As we
describe later in this chapter, you can use SQL Server’s
Master Data Services as the platform for business users to
maintain dimensional attributes and hierarchies.

334

There are plenty of data governance issues to consider
even in such a simple master data management project as
adding attributes to existing members. These include:

• Which user or users are responsible for maintaining the
attributes?

• As new members, or rows, are added to the master data, such
as new products or new customers, what are the procedures
for ensuring new attributes are assigned and confirmed?

• How will the organization manage changes to the attributes?
• What is the process for managing a structural change to the

attributes or hierarchies, for example adding a new attribute
or a new level to a hierarchy?

• Even if the master data management application exists solely
to create new attributes for the data warehouse, other
legitimate uses of the same information may arise. How will
you manage those external dependencies?

Data Integration

One of the goals of a data warehouse is to integrate
information from multiple source systems. It’s all too
common for an entity such as customer to be sourced from
multiple transaction systems. This is certainly true if your
organization has grown by acquisition. Even within a
unified company, the sales system and the customer care
system may both maintain their own copies of customer
attributes. The business wants a single master source for
customer data, combining information from all transaction
systems and subsidiaries.

Data integration is often attempted as part of a data
warehouse project. The initial project to map and combine
data is bad enough, and often takes two to three times as
long as anticipated. Nonetheless, there are tools to help

335

uniquely identify persons and organizations from one or
more sources. As long as you can tolerate some level of
unresolved noise, the initial cleanup and mapping is
generally doable.

In the dimensional modeling world, we often talk about
conformed dimensions as the key enablers of enterprise
integration. A conformed dimension is a dimension, or part
of a dimension, that’s common to many different business
processes. The conformed attributes in such a dimension
have the same names, values, and keys wherever they
appear. Using these conformed attributes, business users
can drill across multiple business processes and assemble
integrated reports. But we must be careful to not make the
process of deploying conformed dimensions be too
ambitious. These integration projects can easily take too
long, and raise political resistance if the content of the
conformed dimension appears to override the favorite
dimensional attributes of each separate business process.

The best approach for achieving data integration through
conformed dimensions is to start modestly and proceed
incrementally, ideally with techniques drawn from the
agile development community. Start by proposing a small
number of “enterprise attributes” that will be added
non-destructively to a key dimension, such as customer.
Introduce these attributes into the local copies of
dimension tables maintained by separate business
processes. Expand the coverage of business processes one
at a time, perhaps as agile “sprints.” In each sprint, show
the business users how to build BI reports drilling across
the supported subject areas, constraining and grouping on
the conformed attributes. Once the business users

336

understand the value of analyses that leverage conformed
dimensions and integrated drill across, they will eagerly
await each sprint!

The biggest problem with data integration is the process of
maintaining it over time. So often we’ve seen massive data
integration efforts generate a lovely mapping, which
begins to be polluted the day it goes live.

It’s extraordinarily difficult to maintain data integration
over time within a “lights-out” (fully automated) data
warehouse ETL process. The lights-out ETL process
requires that data integration be algorithmic and
deterministic. No matter how good your algorithms,
there’s an inevitable trickle of transactions that a person
will need to eyeball. You need these integration decisions
to be made before the ETL load — before the fact data is
associated with the wrong dimension key, and before
performance aggregations are computed or updated. For
the majority of data warehouses on a nightly ETL process,
it makes sense to manage mapping changes during the day,
before the nightly load begins. And the technical solution
to the mapping maintenance problem must include a loop
for some or all mapping decisions to be evaluated by a
person before being finalized and passed downstream.

Data integration is a second kind of master data
management system, more complex than merely adding
missing attributes and hierarchies. You can use SQL
Server MDS to host the entities, attributes, and mapping
tables, and use its workflow features to interact with the
decision maker.

337

A data integration master data management system must
address all the data governance issues we’ve already
discussed, and many new ones, including:

• What level of confidence from a matching algorithm is
accepted without triggering a review by a person? The
decision depends on the cost of incorrect matches relative to
the cost of the review.

• Some attributes will be maintained in multiple systems. If
these attribute values are inconsistent, what are the rules for
determining a winner?

• What is the process for undoing an incorrect match?

Systems Integration

A master data management system that performs data
integration is always going to be a struggle to maintain.
The system and business users must continually react to
data entered in a variety of source systems, with a broad
range of data quality. Of course, as you build a data
integration master data management system you will
(hopefully) improve your data governance. Nonetheless,
data integration is a stopgap measure — though in most
cases it’s a necessary step along the road to a more
complete solution.

The real solution should be obvious: in a perfect world the
various source transaction systems are integrated with each
other. Entities are managed centrally, and various systems
subscribe to the master data. How can you reach that
utopia?

Most organizations have a mixture of transaction systems
from various vendors, including some systems developed

338

internally. In such a heterogeneous environment, it makes
sense to have a separate master data management system
as the communications hub — the system of record
connecting the various transaction systems. You may resist
the notion of yet another major system in your IT
environment. But the more heterogeneous your
environment, the more attractive a separate master data
management solution becomes.

Implementing a systems integration master data
management solution is not for the faint of heart. Most
existing transaction systems are designed as if they’re the
center of the universe. You need to coerce these systems
into accepting new entities such as products or customers
from an external source — the master data management
system — rather than always creating new entities
themselves.

Often, one transaction system is identified as the source for
new entities; other systems cannot create a new entity but
can modify the attributes of an existing entity. Your
organization may decide that only the ERP system can
create a new customer; the CRM system — even if it has
functionality to create an account — is configured only to
update customer attributes. The master data management
system must communicate in both directions. As with the
data integration scenario, it receives feeds of new entities
and updated attributes. It also distributes the updated
attributes to the various systems, though not all attributes
must be consumed by all systems.

An even stronger form of systems integration master data
management is where all of the transaction systems turn

339

over control of entity creation and updates to the master
data management system. Any request to create a new
customer account is passed to the master data management
system, which creates the basic structure and hands back
the new customer account key.

Master Data Management Systems and the Data
Warehouse

The master data management system straddles the line
between the data warehouse and the operational systems.
The data warehouse team can certainly develop an entry
level master data management system to manage attributes
and hierarchies that are not collected in the operational
systems.

More complete systems integration implementations feel
much closer to the operational systems than to the data
warehouse. The data warehouse will subscribe to the
integrated information, but the architecture of the solution
belongs on the transactional side of the IT organization. In
our experience, the role of the data warehouse team is
usually to set the stage for robust master data management
and data governance. The early efforts of the data
warehouse team will prove the value of integrated
information to the organization.

The remainder of this chapter focuses on the simplest
master data management applications, and does not
address the issues of bi-directional communication,
latency, and systems modification that are characteristic of
the systems integration master data management
implementations.

340

Introducing SQL Server Master Data Services

People have been managing master data for decades
without the benefit of a class of software called master
data management. Yet this class of software has been
growing, and now Microsoft has entered the game with its
Master Data Services (MDS). What features does MDS
offer?

• User interface to define the master data structures, called
models

• Database structure to hold the master data
• Security for both model definition and data management
• Hierarchy management, including security that can limit a

user to a portion of the tree
• Programmability
• Full versioning of models
• User interface to manage the master data, including

workflow
• Mechanisms to import and update elements
• Mechanisms to export data
• Full versioning of all attributes

SQL Server Master Data Services is an Enterprise Edition
feature, and can be installed only on 64-bit hardware.

Model Definition Features

The first set of MDS features support the creation of new
models, and the improvement of existing models. These
features work at the metadata level, manipulating the
structure of the data rather than its contents.

User Interface: Defining the Master Data Model

341

Somewhat surprisingly, the user interface to define and
manipulate the MDS data models is not part of SQL Server
BI Development Studio. Instead, it’s a web application.
The same web application can be accessed by business
users to maintain data in an existing MDS model, though
of course business users will have fewer permissions than
the developer of a model.

Figure 6-1 illustrates the home screen of the Master Data
Manager web application, which is included in the MDS
installation and configuration. As an administrator, a user
can define models, manage security, import and export
data, enter or update data through the Master Data
Manager user interface, or browse the structure of the
models.

A Master Data Services model corresponds roughly to a
dimension in the data warehouse. It’s the base level entity
that you’ll be managing in MDS. A complete deployment
will have many models, one for each conformed dimension
you’re managing through the system.

The initial tasks involved in defining the model are:

• Create the model; for example, the Product model. This step
creates the basic structure of the master data management
system.

• Create attributes whose values are limited to a specific set,
called a domain, such as product type. MDS refers to these
as entities.

• Create attributes that do not have a domain, such as product
description. MDS refers to these as attributes.

• Create hierarchical relationships.

342

• Define business rules for data validation. A simple rule
would check that a numeric field called percent ownership is
less than or equal to 100. Rules can also send email to notify
a user of violations.

Later in this chapter we provide additional detail on how to
define models.

Figure 6-1: Master Data Manager home screen

Creating Database Structures

343

There is no explicit data modeling task to create database
objects that will hold the master data. All of the database
work is handled by the Master Data Services application.

Security

As we’ve already discussed, one of the key advantages of a
master data management solution is that it provides an
opportunity for users, even business users, to participate in
the management of the data. This is particularly important
for adding attributes and managing hierarchies that are not
sourced from existing transaction systems. Clearly, this
access must be secured.

You can assign permissions to modify the structure of a
model, or to add or modify the data within a model. You
can even specify which users are permitted to modify a
branch of a hierarchy definition.

The security definition tasks can be accomplished from
within the Master Data Manager web application.

Programmability of Model Definition

Every task that you undertake in the Master Data Manager
web application can be accomplished instead by
programming to the MDS API. You can completely
replace the Master Data Manager web application with
custom code, if you wish. Most organizations that build
master data management applications will use the Master
Data Manager to define the model structure.
Programmability will be very important for the ongoing

344

data governance, especially for systems integration
applications.

Full Versioning of Models

Master Data Services contains features for you to easily
archive the structure of a model, explore the ancestry of a
model, and validate a model.

Data Management Features

Once an MDS model has been defined, efforts turn to
populating it with data. Most of the Master Data
Manager’s features are focused on managing data contents.

User Interface: Exploring and Managing the Master Data

The administrator of an MDS model will grant browsing
and editing privileges to a handful of users. Those users
can use the Master Data Manager web application to
maintain the data. Although users can create new
members, such as a new product, their main tasks will be
to resolve data conflicts and add or change attributes that
are not sourced from the transaction systems.

It’s easy for users to find data that fails business rules, in
order to resolve those issues. In addition, the system can be
set up to email notifications to users.

NOTE

345

“Easy” is probably not the right word. We
find the Master Data Manager user
interface a bit confusing. As a web
application, it doesn’t have all the
navigational richness that we’d like.
However, when you use Master Data
Manager with user privileges (rather than
full administrative or developer privileges),
it’s a lot less confusing.

As we’ve already described, reporting and analysis
hierarchies are a common initial master data management
application. The Master Data Manager web application
contains hierarchy maintenance functionality, including
the ability to move a branch of a hierarchy from one node
to another — and helps prevent the inevitable mistakes that
arise when this activity is managed in Excel.

You can see the structure of a sample customer model and
hierarchy in Figure 6-2. If the user browsing the hierarchy
has editing privileges, she can browse the data elements
and restructure the hierarchy by dragging and dropping a
hierarchy branch from one parent to another.

Figure 6-2: Master Data Manager Model Explorer

346

As we will describe subsequently, all MDS transactions,
including those entered directly into the UI, can and should
be logged.

Importing and Updating Data

347

Although you can use the Master Data Manager web
application to type in the contents of a model, that’s not a
scalable method to add or update members. MDS relies on
several staging tables to populate and maintain a model.
Staging tables are a comfortable interface for the DW
team, which certainly has the skills to load data into a
table.

There are three staging tables. The tables are in the
canonical form of attribute/value pairs. In other words, the
same three tables work for all master data models, no
matter their structure.

• tblStgMember is used to stage new members, such as a
new product or customer. You provide only the member
name and identifying code or source system key in this table,
plus a little metadata to describe the target model, entity,
data owner, and so on.

• tblStgMemberAttribute is used to stage attribute values
for each member. Stage the data with one row per attribute: a
product model with 100 attributes will use 100 rows in this
staging table for each product. The column in the staging
table that contains the attribute value is nvarchar(2000),
so you may need to explicitly cast numeric or date attributes.
You must also supply identifying metadata, including the
member code to map the attribute to the applicable member.
If the attribute exists already, it will be updated and the prior
value logged. Use a system attribute called
MDMMemberStatus to “delete” a member by turning its
status to inactive.

• tblSTGRelationship is used to add or maintain
parent-child or explicit hierarchies.

You can use any method you wish to populate these
staging tables. The obvious candidates include:

348

• Write a SQL INSERT … SELECT statement. This is a good
choice for demo and experimentation purposes, where the
source database is on the same server as Master Data
Services.

• Use SQL Server Integration Services.
• Export to a text file and bulk load.

Once you have candidate rows in the staging tables, you
can use the Master Data Manager to launch the process to
bring them into MDS. Navigate to Data Integration and
choose Import, as illustrated in Figure 6-3. Batches are
logged, and each staged row is updated with the batch that
loaded it, the current status, and any error code. You can
keep appending data into the staging tables; MDS is smart
enough to grab only unprocessed rows. However, you
should develop a process for periodically pruning the fully
staged rows.

In most production scenarios, you should schedule an
automated process to import the staged data, rather than
relying on a person to click the button in the Master Data
Manager. The easiest way to do this is to use the
processing stored procedures in the MDS database, notably
updStagingSweep.

Figure 6-3: Master Data Manager Import Data screen

349

Once the data has been imported, validate it by processing
it against the business rules embedded in the model.
Within Master Data Manager, you can navigate to Version
Management⇒ Validate Version to manually validate the
data in the model. Once you’ve automated the import, you
should automatically launch validation once the import
batches have completed by executing the
updValidateModel stored procedure.

RESOURCES

None of these stored procedures nor the
steps to automate and schedule processing
is documented in the early releases of
Books Online. Luckily the Microsoft MDS
team is good about monitoring and
responding to the official MDS forum,
which you can find at

350

http://social.msdn.microsoft.com/Forums/en-US/
sqlmds/threads.

Exporting Data

Master Data Services is a back room, helper application.
It’s of no use to your organization unless you can easily
extract the master data in a form that other applications can
consume. Our discussion will of course focus on extracting
the data for loading into the data warehouse. But other
systems — even operational transaction systems — can
extract information from MDS as well.

Master Data Services makes exporting data very easy, by
providing a tool to create data export views. These views
are simply relational database views that the UI creates for
you in the database that’s installed with MDS. Unlike the
strange attribute/value pair format for the import tables, the
export views look perfectly normal: one row for each
member, with its attributes displayed as columns.

There is one slight oddity, which is that you need to create
additional views for each hierarchy that’s derived from
attribute relationships. The main attribute view contains
only the first level of the hierarchy; the second view
contains the first level and continues up the tree. To get all
the columns in your flattened star dimension table, you
need to join the main attribute view with the hierarchy
view. No doubt there’s a good reason they didn’t create
one view that spans all the attributes (hierarchical or not),

351

but it’s so easy to combine them that it doesn’t really
matter.

The nicest feature of these export views is that they’re
created with interesting metadata like:

• Version: Filter on this to extract only the current model’s
data.

• Member entered and last updated date and time, user,
and model version: Filter on these to extract only the rows
that have been added or changed since your last data
warehouse update.

• Validation status: Filter on this to extract only rows that
meet all the model’s business rules.

Figure 6-4 illustrates the output from an attribute view on
the Product model.

Figure 6-4: Sample rows from an export view for product
attributes

352

Full Versioning of All Attributes

Master Data Services keeps a complete audit trail of each
attribute: every value it’s ever been assigned, where it
came from, who changed the attribute’s value, and when.
This is a useful feature that can simplify the ETL
application and associated staging area.

Part of the dimensional design process for the data
warehouse is to determine, based on business user
requirements, which dimension attributes are to be
managed as type 1 (restate history) and which as type 2
(track history). The decisions should be made once and
apply to all subject areas of the eventual complete
conformed data warehouse, even those for business
processes you’ve not yet analyzed during the iterative
design process. Inevitably, some of the attributes you
initially identify as type 1 are later determined to require

353

type 2 tracking. Often we keep the history of all attributes,
even type 1 attributes, in the data warehouse staging area.
Being able to rely on Master Data Services for that history
makes the ETL system that much simpler.

Creating a Simple Application

Now that we have described master data, master data
management, and Master Data Services, we will walk
through the development process for an extremely simple
MDS application. Our goal is not to present a tutorial, but
rather to provide a picture of what it’s like to create the
simplest possible application.

The Business Scenario

The business problem that we’re illustrating in this
scenario is the common problem of business users wanting
to see attributes that don’t have a systematic source. The
data warehouse currently has a product dimension, and a
development project is under way to improve that
dimension by adding a few attributes, as illustrated in
Figure 6-5.

Figure 6-5: Product dimension, with new attributes
highlighted

354

The data warehouse team is going to become familiar with
Master Data Services by maintaining these new attributes
in MDS. There will be several new attributes: product
category manager name and email, product category
group, and alternate category.

NOTE

You should always create a logical model
of your dimension before you get started
building the MDS model, as illustrated in
Figure 6-5. The model highlights the
attribute relationships that imply
hierarchies (product, brand, subcategory,
and so on). You must clarify your thinking
about which entities an attribute is
associated with. You should develop a
taxonomy for which attributes are freeform,
and which belong to a domain.

If you don’t have access to modeling
software, simply draw a picture as
illustrated in Figure 6-5.

355

Keep It Simple

The data warehouse team doesn’t want to have to sell
MDS and data governance throughout their organization.
That’s an eventual goal, but for this little project they just
want to kick the tires of MDS while solving a real
problem. The team recognizes it will take a long time and
many small steps to get from where they are — near-zero
data governance — to their desired goal of integrated
master data.

With that goal in mind, the team decides to keep the MDS
model as small as possible. They initially assumed they’d
model the entire product dimension, and add these new
attributes to that model. But management decided that was
too risky, and asked the team to modify the current
dimension ETL process rather than replace it entirely. If
this little test is successful, that will be the next step.

The MDM model will encompass only a piece of the
product dimension. If you look back at Figure 6-5 you can
see that all the new attributes are based on hierarchy levels
above subcategory. So the MDM model will start at
subcategory and include category, category group, and alt
category (and all their attributes).

Create the MDS Model

Installing Master Data Services from the SQL Server
Developer Edition media took a little time because it
wasn’t immediately obvious that they needed to run a
separate install process. This is such a small project that
the team initially decided to use an old 32-bit server. Once

356

the team read the documentation and switched to a 64-bit
machine, things went more smoothly.

NOTE

MDS has its own installation process that’s
not integrated with the main SQL Server
installation. You need to browse the install
DVD and navigate to the
MasterDataServices directory. MDS only
runs on 64-bit hardware. Search MSDN for
“Install Master Data Services.” You can
download sample MDS models from
MSDN that are useful for exploring the
product.

The team downloaded the sample master data services
models and explored their contents. After a few hours of
poking around, they felt ready to move ahead to create
their own application.

The first piece of work was to create a new model: Product
Subcategory. That work took two seconds, and is
illustrated in Figure 6-6.

Figure 6-6: Creating the Product Subcategory model

357

REFERENCE

The simple model described here is
available for download from the book’s
website.

Looking at Figure 6-5, you can see that the model needed
to have additional entities for category, category group,
and alt category. The basic structure for the subcategory
entity was automatically created with the model itself. If
you want to declare referential integrity between the levels
of these hierarchies, the level attributes must be created as

358

separate entities. Creating those entities was equally easy,
as illustrated in Figure 6-7.

Figure 6-7: Creating an entity for a hierarchical level

The next step was to hook these entities together, declaring
referential integrity between the levels of the hierarchy. To
do so, the team edited the Product Subcategory entity to
add a leaf attribute, told MDS that it’s constrained to a
domain, and pointed it to the category entity created
earlier. Figure 6-8 illustrates the screen for creating a
domain attribute.

359

Figure 6-8: Creating an attribute that’s associated with a
domain

The team finished up the subcategory entity by creating a
freeform attribute for short name, as illustrated in Figure
6-9.

Figure 6-9: Creating a freeform attribute

360

With similar steps they created links between category and
category group, between subcategory and alt category, and
between alt category and category group. Finally, they
defined freeform attributes for category manager, category
manager email, and the short name for the alt category.

Load the Subcategory Members

There are 37 subcategories in the transaction database,
which the team deems far too many to type by hand. They

361

choose to populate the staging tables with a SQL script
(assuming the source database is on the same server as
MDS):

-- insert 37 Subcategory members into the staging table

INSERT INTO mdm.tblStgMember

(

ModelName

, EntityName

, MemberType_ID

, MemberName

, MemberCode

)

SELECT

'Product Subcategory'

, 'Product Subcategory'

, 1

, Name

, ProductSubcategoryID

FROM AdventureWorks2008R2.Production.ProductSubcategory

By navigating to the Integration Management⇒ Import
page from the Master Data Manager home page, the team
quickly figured out how to load the subcategories into the
model. Loading only took a few seconds, and the newly
imported members can be viewed by navigating to

362

Explorer⇒ Entities⇒ Product Subcategory, as illustrated
in Figure 6-10.

Figure 6-10: Exploring the newly added members

The initial data import process added only the new
members; none of the attributes is populated yet. There are
categories in the source database, but the other attributes
don’t exist anywhere else and must be added by hand.
Remember that loading the categories uses the
mdm.tblStgMemberAttributes staging table.

Polish the Model

The basic structure of this model was very simple to
create, but there are some additional steps to make the

363

model production-ready. Most important, the team needs
to add business rules to ensure the data is correct. This is
particularly important in the current business scenario,
where some of the attributes must be added by hand. The
team has the following wish list for business rules:

• Null or empty values are not allowed.
• Referential integrity between levels is maintained at all

times. The team lead notes that linking together the
hierarchy levels as domain-driven entities ensures this will
always be the case.

• The category manager name should look like a person’s
name, containing 2–4 capitalized words. Similarly, the
category manager email should look like an email.

• The names and emails should be validated in Active
Directory.

• If the short name attributes aren’t supplied in an import, the
business rule should copy the standard name.

• An email should be sent to team members when any data
element violates these business rules.

The team should define named hierarchies for subcategory,
category, category group and subcategory, alt category,
category group. Even though the attribute relationships
exist, the hierarchies must be defined in order for Master
Data Manager to create the export view for the hierarchical
levels.

Export to the Data Warehouse

The team created three export views: one for the base level
attributes for subcategory, one for the main hierarchy, and
one for the alternative hierarchy.

364

The data warehouse load process for the product
dimension is a straightforward SSIS package. That
package must be modified to pick up the category,
category group, and alt category information from the
MDS export views. This is a minor change, and is
expected to take only a few days to code and thoroughly
test.

Even though the data in this model is fairly static, it’s
possible that new subcategories will be added in the future.
The team hasn’t done a good job of thinking through how
they will learn about new subcategories, other than a
failure in the ETL processing. They will probably begin by
querying the subcategory table in the transaction database
on a daily basis. Longer term, they need to better
understand the business process that leads to the creation
of new products, subcategories, and other product-related
entities. They need a clear notification that something has
been added or changed, and default strategies for dealing
with those changes.

Summary

The information stored in Master Data Services can be the
perfect input for the periodic — usually nightly — data
warehouse ETL process. Many of the cleaning steps of the
ETL process that we perform on dimension data can be
accomplished by Master Data Services.

What MDS does particularly well is provide a mechanism
for people to augment data and fix data problems. ETL, by
contrast, is typically a batch process. There’s certainly no
built-in mechanism in SSIS for someone to review,

365

correct, and validate data. Some of the problems that are
most intractable for the data warehouse ETL system,
especially data integration problems, are well suited for a
master data management system.

For MDS to work well in a data warehouse environment,
the MDS model for a dimension must be updated in
advance of the data warehouse ETL cycle. There must be
time for users to react to data validity issues before the
new or updated information is used in the data warehouse.
For this to really work, management and business users
must commit to data governance. They may have to
change their workflows in order to ensure there’s enough
lead time for the data to be well managed.

This is a hard sell for the data warehouse team to make.
The carrot is improved data quality, and a mechanism by
which user-driven attributes can be maintained and
included in the data warehouse. As ever, the impetus must
come from the user community, because in the long run
they are the ones who must maintain the data.

As we described at the beginning of this chapter, a full
master data management system falls outside the purview
of the data warehouse team. For most organizations, such a
system is simply infeasible at the moment. We need to
solve simpler problems, and nurture the organization’s
commitment to data governance, a little bit at a time.
Successful MDS implementations, however small, will
move us toward that goal.

366

Chapter 7

Designing and Developing the ETL System

Measure twice; cut once.

Some people like to plan, specify, and document systems;
most don’t. We’ve observed that Extract, Transformation,
and Load (ETL) system development draws folks in the
latter category. We’ve found so few people who write
adequate design specifications for their ETL systems that
we’ve practically stopped asking to see our clients’
planning documents. Either they’re unaware of the
impending complexity, or they don’t have the planning
tools.

In this chapter, we begin by discussing the steps you need
to take before you start development of your ETL system:
Round up your requirements and write an ETL plan. Next,
we briefly introduce SQL Server Integration Services
(SSIS) and present some of the basic concepts and
vocabulary of that product.

Most of this chapter is structured around the 34 subsystems
of a well designed ETL system. We describe each of the
34 subsystems and recommend alternative approaches for
implementing them within SSIS. Throughout, we will refer
to the Adventure Works Cycles case study.

As Figure 7-1 illustrates and common sense dictates, the
ETL portion of the project is part of the data track.
Remember, however, that these boxes aren’t to scale. The

367

ETL effort is the most time-consuming step in the data
track and often in the entire project.

In this chapter, you learn:

• How to plan for the ETL system, including the components
of a solid ETL design specification, and how to create this
document.

• What SQL Server Integration Services is and its role in the
DW/BI system. You’ll receive an overview of its most
important features for ETL system design.

• The components and functionality of a well designed ETL
system, grouped into 34 subsystems.

• How to implement those subsystems in the SSIS
environment.

Figure 7-1: The Business Dimensional Lifecycle

RESOURCES

368

This chapter describes the basic
components of an ETL system and how to
go about implementing a production
quality system in SSIS. For additional
detailed guidance about the ETL
subystems, we refer you to The Data
Warehouse Lifecycle Toolkit, Second
Edition. We will provide page references
for more information on specific concepts
and techniques throughout this chapter.

Round Up the Requirements

Establishing the architecture of your ETL system begins
with one of the toughest challenges: rounding up the
requirements. By this we mean gathering and
understanding all the known requirements, realities, and
constraints affecting the ETL system. The list of
requirements can be overwhelming, but it’s essential to lay
them on the table before launching into the development of
your system.

The ETL system requirements are mostly constraints you
must live with and adapt to. ETL system requirements
should not drive or even affect the target dimensional
model. And the ETL developers seldom have any ability to
substantially affect the design or operation of the source
transaction systems. The job of the ETL system is to
bridge those two immovable objects. Within the
framework of these requirements, there are opportunities
to exercise your judgment and leverage your creativity, but

369

the requirements dictate the core elements that your ETL
system must deliver. These elements include:

• Business needs: Wise ETL designers maintain a dialogue
with the business community. Often, we learn during
development that the source data doesn’t match our
expectations. The business requirements, rather than the
whim of the developer, should dictate how these issues are
resolved. Make sure the ETL designers and developers have
good lines of communication with the team members who
best understand the users’ requirements.

• Compliance: Changing legal and reporting requirements
have forced many organizations to tighten their reporting
and provide proof of report accuracy. Of course, DW/BI
systems in regulated industries have complied with
regulatory requirements for years. But the tenor of financial
reporting has become more rigorous for everyone. Typical
due diligence requirements for the ETL system include:

• Saving archived copies of source data.
• Providing proof of the complete ETL flow.
• Fully documenting algorithms for allocations,

adjustments, and derivations.
• Supplying proof of security of the data copies over

time.
• Data quality: Business users demand quality data. They are

increasingly using data rather than intuition to run their
businesses. Regulation and compliance issues also heighten
the demand for good data. Unfortunately most business users
have no idea what data problems exist, where they originate,
or how hard it is to identify and fix them. The ETL team
needs to be agile and proactive:

• Push back hard on the transaction systems to clean
data at the source.

• Implement a master data management system to
fix data before it enters the ETL stream.

370

• Decide what can and should be fixed in ETL based
on business requirements, not on developer
convenience.

• Enlist the user community as partners to identify
and prioritize data faults. Ideally, this would be
part of an overall data governance/data
stewardship program.

• Data latency: Data latency describes how quickly the source
system data must be delivered to the business users via the
DW/BI system. As we discuss in Chapter 9, most DW/BI
systems process data on a daily basis; we expect this to
continue to be true for the near future. As far as ETL is
concerned, the basic system architecture can remain
unchanged for populating data several times a day. If you are
planning to deliver DW/BI data with very low latency
(seconds or minutes), your ETL system and data warehouse
database architectures may profoundly change.

• Archiving: Archiving requirements are driven by auditing
and compliance demands. Depending on your architecture,
other reasons to store copies of extracted and staged data
include:

• Maintain extracted data for restarting the ETL
process after a failure.

• Determine historical changed rows in the absence
of a reliable source of changed data from the
transaction system.

• Lineage: Lineage requirements, like archiving requirements,
are driven by auditing and compliance demands. But
business users are also interested in lineage. They’d like to
look at a number in a report and be able to learn exactly how
and when it entered the data warehouse, and what
transformations occurred to it along the way. Delivering
lineage information to business users in the context of a
report is a bit impractical today because Microsoft doesn’t
provide a tool to make it easy. Nonetheless, the ETL system
design should strive to make lineage as transparent as
possible.

371

• Cube processing: If your DW/BI system architecture
includes Analysis Services cubes, the ETL job flow includes
cube processing. If you’re not using Analysis Services, your
architecture probably includes summary tables (also called
aggregates) in the relational database. In this case, the ETL
job flow includes updating the summary tables. In sum, the
ETL job flow includes all the processing steps necessary to
present a complete, consistent set of data to the business user
community.

• Available skills: The most important experience for the ETL
team on the SQL Server platform is to have good system
development skills, knowing how to develop as part of a
team, being able to write and execute comprehensive unit
tests, and to build resiliency and redundancy into the ETL
system. Of course, good SQL skills are required. And every
production quality SSIS ETL system will need a little bit of
scripting in a scripting language (VB or C#). Most ETL
systems do not use any coding beyond SQL and some simple
scripting; the rest is provided by SSIS. It is helpful to have at
least one team member who already has experience with
SSIS 2005 or later, but many teams learn as they go.

Develop the ETL Plan

Before you begin the ETL system design for populating a
dimensional model, you should have completed the logical
dimensional model, drafted your high-level architecture
plan, and drafted the source to target mapping for all data
elements. The physical design and implementation work
described in Chapters 4 and 5 should be well under way.

The ETL system design process is critical. You should
make some key architectural design decisions up front, and
design all the components of your system in a consistent
way. Any deviations from the standard pattern should be
briefly justified and fully documented.

372

Start the design process with a simple schematic of the
pieces of the plan that you know: sources and targets. Keep
it high level, highlighting in one or two pages the data
sources and annotating the major challenges that you
already know about.

Next, develop a schematic for each table in the target
dimensional model, graphically diagramming the complex
restructurings. Where the high level plan graphics can fit
all the target tables in a business process onto a single page
(more or less), the detailed plan graphics may devote a
page or more to each complex target table. This detailed
schematic is backed up with a few pages of discussion and
pseudo-code for any truly complex derivations.

Figure 7-2 illustrates what we mean. This schematic
describes the ETL flow for part of the customer dimension
of the Adventure Works data warehouse. The SSIS
package for this part of the customer dimension will follow
the flow of this schematic very closely.

NOTE

We use some shorthand notation in our
detailed schematics. These include:

• (+) indicates we can’t rely on the source
system for referential integrity, and must
use some kind of outer join technique with
defaults for the missing values.

• SCD(2) indicates the business users have
told us these attributes should be managed
as type 2.

373

• Hist indicates the question or issue is
related to the one-time historical load.

• Incr indicates the question or issue is
related to the ongoing incremental load.

RESOURCES

See The Data Warehouse Lifecycle Toolkit,
Second Edition, pages 428–436 for more
information about developing the ETL
plan.

Figure 7-2: Example draft of detailed load schematic for
the customer dimension

374

The ETL specification document should include:

• Default strategies for the major subsystems, including data
extract, archiving, data quality tracking, and dimension
attribute change management

• High level schematics
• Table design, detailed source to target mappings, and data

profile reports
• Detailed table-level schematics

DOWNLOAD

The book’s web site at
http://kimballgroup.com/html/
booksMDWTtools.html contains a sample
outline ETL specification document.

Introducing SQL Server Integration Services

Before we dive into the details of ETL system design on
the Microsoft platform, we present an overview of SQL
Server 2008 R2 Integration Services. The goal of the
introduction is to familiarize you with SSIS so that you can
understand its features and grow comfortable with its
vocabulary. This overview is not a tutorial on Integration
Services; we’re focusing more on the “what and why” of
the tool than on the “how.”

SQL Server 2008 Release 2 Changes

375

SQL Server 7.0 and SQL Server 2000 included a
product called Data Transformation Services, DTS
for short. SQL Server 2005 introduced Integration
Services (SSIS), which was effectively a new
product. When you move from the old DTS to
SSIS you should completely redesign your ETL
system. Moving from SSIS 2005 to SSIS 2008
requires a simple, relatively painless upgrade
process. Moving from SSIS 2008 to SSIS 2008 R2
requires no change.

Your ETL team will develop SSIS packages to populate
your DW/BI system. A package is analogous to a
computer program or a script. You can execute a package
to perform a database maintenance task, to load a table, or
to populate an entire business process dimensional model.

An Integration Services package contains a single control
flow which contains one or more tasks. In the ETL
application you’ll use a handful of control flow tasks, like
manipulating files, sending email to an operator, or
executing a SQL statement. By far the most interesting
control flow task is called the data flow task, in which
most of the real ETL work is done. We’ll talk a lot more
about the data flow task later in this chapter.

Prepare the Development Environment

376

There are a few characteristics of the development
environment, discussed in Chapter 4, which we’ll
briefly repeat here.

• Install SSIS and SQL Server BI Development Studio
on a shared machine. Plan for developers to remote
desktop into that shared server for their ETL
development. If developers use BI Studio locally,
then during their development and testing the
packages will run on their local machines. If your
development database is large, you may be moving a
lot of data to the developer’s desktop.

• Install the BIDSHelper add on, which is available for
free download from CodePlex (www.codeplex.com).
It includes many features to help you develop SSIS
packages. BIDSHelper affects only the development
environment; it contains no code that runs in
production.

• Most development teams store packages in the file
system during development, and use source control to
check packages in and out.

• For initial package development, especially for the
packages for the one-time historic load, it’s useful to
work from a static copy of the source database(s).

Control Flow and Data Flow

There are two major design surfaces in SSIS: control flow
and data flow. They look similar — rectangles connected
by arrows on a pale yellow background — but they are
quite different. Control flow is where the basic logic of the
package is defined, and a package has only one control
flow. Most ETL packages consist of the following
components, as illustrated in Figure 7-3.

377

• A few control flow tasks to define variables, setup auditing
metadata, and so on. Usually these tasks consist of Execute
SQL statements and scripts.

• One or more data flow tasks to perform the heavy lifting of
the ETL.

• A few control flow tasks to clean up the package.

Figure 7-3: Viewing a control flow

There are dozens of control flow tasks available. Of these,
you will heavily use:

• Execute SQL
• Execute package
• Data flow
• Script

You will undoubtedly use some of the other types of tasks
as well.

378

NOTE

The Execute SQL task, like many other
tasks and objects in Integration Services,
uses an interface such as OLE DB or
ADO.NET to execute SQL even against
SQL Server. You may find that a statement
that you develop and test in Management
Studio will generate an error inside the
Execute SQL task. Errors are most
common if your T-SQL scripts include
parameters.

Data Flow

The data flow task is a pipeline in which data is picked up,
processed, and written to a destination. The key
characteristic of the pipeline is defined by the task’s name:
The data flows through the pipeline in memory. An
implication of the data flow pipeline architecture is that
avoiding I/O provides excellent performance, subject to
the memory characteristics of the physical system.

In the control flow design surface, the data flow task looks
like any other task. It’s unique in that if you double-click
on the data flow task, you switch tabs to the data flow
design surface where you can view and edit the many steps
of the data flow, as illustrated in Figure 7-4.

Figure 7-4: Viewing a data flow

379

The appearance and content of data flow tasks varies
widely, depending on the work that they need to perform.
Most data flow tasks will include:

• One or more data sources: Think of a data source as a query
that brings a set of data into the data flow. Data flows out of
a data flow source.

• Multiple transformation steps: Common transformations
derive new columns, perform lookups to database tables,
combine multiple data flow sources, and split one data flow
into multiple streams. Data flows into and out of a data flow
transform.

• One or more data destinations: The data destination is
typically the data warehouse relational table or staging table
that the data is being written to. Data flows into a data flow
destination; it’s the end of the line.

Error Flows

380

Most of the data flow sources, targets, and transformations
support two kinds of output flows: normal flows (which
appear in green on the design surface) and error flows (in
red). The error flow from a flat file source would include
any rows with a type mismatch, for example string data in
a numeric field. The error flow from an OLE DB
destination would include any rows that violate table
constraints. The error flow is a data flow just like the
normal flow. You can transform the data to fix the error,
and hook it back up with the normal flow. You can write
the error flow to a table or file.

The most important characteristic of the error flow
construct is that an error in some data rows does not halt
the entire data flow step unless you design the flow to do
so. And, you can perform arbitrarily complex
transformations to the error flow, to correct the data or to
log the bad rows for a person to examine and fix.

Error flows are arguably the single most valuable feature
of SSIS.

WARNING

By default, all steps in the data flow are set
up to fail (and therefore halt the process) if
an error is encountered. To make use of
error flows, you’ll need to modify this
default behavior by setting up an error flow

381

and changing the error flow characteristics
of the transform.

Database Engine versus Data Flow Pipeline

The data flow pipeline is a distinct execution
engine from the relational database engine. When a
data flow task executes, SSIS picks up a batch of
data, buffers it, and operates on that batch. If you
watch a package execute in BI Development
Studio, you may notice SSIS picking up a second
batch at the top while the bottom of the flow is still
working on the first batch.

At design time it feels like you’re designing
something that operates row by row, which sets off
warning bells to experienced ETL developers.
Experienced ETL developers know that for good
processing performance, you need to operate on
data in batch. The data flow pipeline does operate
on batches of data, and is designed to be intelligent
and perform well.

We’ve reviewed many SSIS implementations that
do most of the ETL in the query embedded in the
data flow source. At its extreme, this approach
performs all the work in SQL, and uses SSIS only
as a framework to glue scripts together. At this

382

extreme, the data flow tasks consist only of a
source and a target, with no transformation steps
between. Some vendors call this architecture
“ELT,” meaning that the data is extracted (E),
immediately loaded (L) into a relational table, and
then all the heavy transforming (T) is done by
complex SQL commands.

We prefer to use SSIS as it has been designed. We
recommend keeping source queries simple, and
using data flow transforms to do most of the
transformation work. The advantages of this
approach include:

• Error flows: Leverage the power of the error flow
architecture to handle errors elegantly, within a single
pass over the data.

• Readability and maintainability: A recent client had
source queries that combined 30 tables. Pity the
future developer who is charged with maintaining
that SQL query!

• Transparency of lineage: Recall our desire for a user
to click on a number in Excel and see a report
describing exactly how that data got into the data
warehouse. If all the transformation logic is
embedded in a SQL statement, we’ll never be able to
track the detailed lineage in any useful or readable
way.

• Comparable performance: It’s impossible to make a
blanket statement that SSIS data flow pipeline is
faster or that SQL is faster. It depends on too many
variables. We have observed roughly comparable
performance from well designed packages using the
two approaches.

383

This preference for transforming within SSIS
rather than SQL does not mean blind adherence.
The SQL Server relational engine is a powerful
tool. Throughout this chapter we’ll highlight
several places where you can save yourself a lot of
pain — and greatly improve performance — by
staging data to a table and using the power of the
relational engine.

SSIS Package Architecture

The standard ETL system design approach in SSIS is to
develop a separate package to load each table, and a master
package that calls each of these table-specific packages.
The master package contains one Execute Package task for
each child package. Many of the dimension packages can
execute in parallel, but some dimension tables may have a
dependency on another table. Use control flow precedence
arrows to define these dependencies.

A master package can use package configurations to pass
variables to the child package. Variables you might want
to coordinate between all packages include auditing
information and the date range for which the current set of
packages is to be run.

When the child package finishes, it returns control to the
master package, along with an indicator of whether the
package succeeded or failed. You must design the logic for
whether the master package should continue loading other

384

tables or stop all work when it receives notification of
child package failure.

WARNING

Other than success or failure, there is no
direct mechanism for a child package to
communicate to the master package. It can
be useful for the child package to
communicate an error reason (if any),
count of rows loaded, and so on. The only
way to do this is to have the child package
write the information — usually to a table
— and have the master package read that
same information.

The Major Subsystems of ETL

Now that you have an understanding of the existing
requirements, realities, and constraints; a commitment to
design before you develop; and a basic understanding of
SSIS; it’s time to introduce the critical subsystems that
form the architecture for every ETL system. Although
we’ve adopted the industry ETL acronym to describe these
steps, the process really has four major components:

• Extracting: Gathering raw data from the source systems and
usually writing it to disk in the ETL environment before any
significant restructuring of the data takes place. Subsystems
1 through 3 support the extracting process.

• Cleaning and conforming: Sending source data through a
series of processing steps in the ETL system to improve the

385

quality of the data received from the source, and merging
data from two or more sources to create and enforce
conformed dimensions and conformed metrics. Subsystems
4 through 8 describe the architecture required to support the
cleaning and conforming processes.

• Delivering: Applying the standard dimensional constructs
such as surrogate keys, attribute change tracking, and fact
table key substitution. Physically structuring and loading the
data into the presentation server’s target dimensional
models. Subsystems 9 through 21 provide the capabilities for
delivering the data to the presentation server.

• Managing: Managing the related systems and processes of
the ETL environment in a coherent manner. Subsystems 22
through 34 describe the components needed to support the
ongoing management of the ETL system.

Our descriptions of these four major components, and the
34 subsystems they encompass, may be familiar to readers
of other Kimball Group books such as The Data
Warehouse Lifecycle Toolkit and The Kimball Group
Reader. In this chapter, we’ve provided just enough
description of the subsystems to provide context for the
descriptions of how to implement those subsystems in the
Microsoft toolset.

Extracting Data

To no surprise, the initial subsystems of the ETL
architecture address the issues of understanding your
source data, extracting the data, and transferring it to the
data warehouse environment where SSIS can work on it
independent of the operational systems.

Subsystem 1: Data Profiling

386

Data profiling is the technical analysis of data to describe
its content, consistency, and structure. In some sense, any
time you perform a SELECT DISTINCT investigative query
on a database field, you’re doing data profiling.

As we’ve already discussed in Chapter 2, data profiling
must begin as soon as you identify a possible data source.
Serious profiling occurs during the dimensional model
design process, as you develop the source to target map
that describes exactly how each data warehouse column is
populated. Any holes in your early data profiling must be
plugged now.

SSIS contains a Data Profiling task and viewer that you
can run against your source databases. That feature,
combined with the interactive reports described in Chapter
2, inexpensively meets most data profiling requirements.
In addition, many teams are finding the PowerPivot feature
of Excel described in Chapter 11 to be an effective ad-hoc
data profiling tool. This certainly isn’t the main use for
which PowerPivot was developed, but it’s a great way to
poke around and get a feel for the structure of the data in
the source systems.

WARNING

ETL development is too late to start
profiling! If you’ve waited to begin
profiling your source system data until
you’re starting ETL development, you are

387

virtually guaranteed to uncover roadblocks
that you cannot maneuver around. If you’re
not already deeply familiar with the source
systems and data, drop everything else until
you are comfortable that you actually can
populate your dimensional database with
the data available today.

Subsystem 2: Change Data Capture System

During the data warehouse’s initial historic load, capturing
incremental source data content changes is not important
because you’re loading all data from a point in time
forward. However, many data warehouse tables are so
large they cannot be refreshed during every ETL cycle.
You must have a capability to transfer only the relevant
changes to the source data since the last update. Isolating
the latest source data is called change data capture.

There is no one-size-fits-all solution to change data
capture: the best solution varies from source to source. The
most common approaches include:

• Audit columns: Many source systems include audit columns
that store the date and time a record was added or most
recently modified. For daily processing, a new row is
identified as where the date part of the inserted timestamp
equals the date part of the modified timestamp.

WARNING

388

If you’re using source system audit
columns, make sure they are reliable. Often
these columns are maintained by
application logic, and a batch operation by
a database administrator might not
maintain the audit columns. Even if the
columns are correctly maintained by
database constraints or triggers, we’ve seen
the DBAs turn off those constraints before
performing a batch operation. There’s no
perfect solution; the best is to have detailed
written procedures for DBAs to follow
whenever they touch the transaction
database.

• Triggers: A trigger is an obvious solution to the problem of
identifying changed rows in the source database. It’s not a
perfect solution, however — it suffers the same fragility as the
audit column technique. We’ve seen triggers used most often to
capture deletes from transaction systems that perform hard
deletes, but use audit columns for inserts and updates. A hard
delete is when a data row is physically deleted, as opposed to
being marked as inactive. In most systems, deletes are relatively
unusual, so you can overcome DBAs’ resistance to triggers by
confining them to deletes.

• Replication: Replication is a time honored technique for
capturing the change data stream. Set up replication on the
source database to see changes flow to the replicated database.
Replication alone doesn’t solve the problem, as it creates a copy
of the replicated elements. But sometimes you can create
triggers on the replica, when those same triggers are forbidden
on the transaction system.

389

• Change Data Capture: If your source transaction system is
implemented in SQL Server 2008, the new change data capture
(CDC) feature is the obvious solution. Like replication, CDC
works from the SQL Server logs. When you set up CDC on a
source system table, it will accumulate an image of all new or
deleted rows, and the before and after image of any changed
rows. You can track a subset of the table’s columns. In most
cases with daily processing you’ll want only the end of day
image of the updates, which is easy to find. Be aware that you
will need to prune the CDC tables periodically, and that pruning
should be synchronized with your ETL job stream.

• Change Tracking: The Change Tracking feature is very similar
to CDC, but it identifies only the keys for changed rows, not the
full text of the changes. For that reason, it uses fewer system
resources at the time the transaction is entered, at the cost of a
more expensive query during the ETL process.

RESOURCES

There is a Books Online topic that clearly
describes how to access CDC data from
SSIS. Look for the topic “Improving
Incremental Loads with Change Data
Capture.”

Change Data Capture versus Replication

If you’re trying to decide whether to use SQL
Server Replication or Change Data Capture to
identify changed rows in your source system, the
answer is CDC. Replication is a great feature with

390

many uses, and it may still have a place in your
overall architecture. But if CDC is available to you,
it’s the right choice for capturing changed data.

Using replication to identify changed rows is a
trick to overcome poorly designed transaction
systems that don’t have modified date audit
columns. You add that column to the replication
target and add a trigger to maintain it. Replication
lets you circumvent a proscription against
modifying the transaction database itself.

CDC by contrast delivers exactly what you want:
an image of new, deleted, and changed rows;
accurate timestamps of the event; and an indicator
of what the event was (insert, update, delete).

Both replication and CDC work from the SQL
Server logs. You can have replication and CDC
active on the same table.

• Non SQL Server techniques: If your source database is not
SQL Server, there may still be non-Microsoft tools available
to help you identify the change data stream. Other relational
database engines have their own versions of replication and
CDC. And there are third party “log scraper” tools that may
meet your requirements.

• Full “diff compare”: A full diff compare keeps a snapshot of
yesterday’s data and compares it, record by record, against
today’s data to find what changed. This technique is very
resource intensive. Investigate using cyclic redundancy
checksum (CRC) or hash algorithms to quickly tell if a

391

complex record has changed. Full diff compare is the
solution of last resort, especially for fact tables and very
large dimension tables. The only sensible place to identify
new and changed rows is in the source system itself.

Subsystem 3: Extract System

Extracting data from the source systems is a fundamental
component of the ETL architecture. If you’re lucky, all
your source data is in a single system that can be readily
extracted using SSIS. More commonly, each source is in a
different system, environment, and/or DBMS.

For each source system, identify the best way to
implement the extract. Except in the simplest cases, you’re
unlikely to come up with a single solution for all sources.
Organizations that need to extract data from mainframe
environments often run into issues involving COBOL
copybooks, EBCDIC to ASCII conversions, packed
decimals, and multiple and variable record types. Older
legacy systems may require the use of different procedural
languages. Although you might be able to write or
purchase an SSIS task or transform to read an idiosyncratic
source, it’s usually easiest to have older source systems
push the data for you into a flat file.

Most source data is stored in databases, usually relational
databases. Integration Services can access a wide variety
of databases through its OLE DB and .NET providers,
including the .NET provider for ODBC. SQL Server ships
with providers for all sorts of Microsoft formats, including
Excel, Access, and even Analysis Services. It includes
providers for Oracle. Other providers are available from
database vendors or third party vendors.

392

NOTE

Providers are not created equal. If you’re
accessing data from a non-Microsoft
database, you should evaluate a variety of
providers. If you do a web search on
“oracle ole db providers” you’ll see
conflicting anecdotes about which provider
is faster. As far as we can tell, there is no
clear winner. As ever, “it depends.”

If you’re having trouble getting good performance between
SSIS and a non-Microsoft data source, consider pushing
the data from the source system into flat files. Let SSIS
begin its work with the flat files rather than touching the
source database directly.

The extract system should be separate from the
transformation and delivery systems. In other words, you
should create separate SSIS packages for the extract that
simply pull the appropriate data from the source systems
and stage it, untransformed, in a staging database or flat
files. If you’re using a push technique, you already have
those extracts as flat files.

WARNING

393

Many SSIS demos and examples work
directly from transaction databases rather
than use the separate extract-to-stage
design pattern that we advocate. That’s fine
for demos, but there are excellent reasons
to decouple the extract from the
transformation and load:

• Reduce the connection time into the source database. This can
be a very important issue for large data volumes, creating
significant pressure on the source database logs while the
package is running.

• Provide a consistent restart point in the event of a failure. Not
only do you avoid touching the source database again, but also
you have the consistent image as of the extract date and time.

• Maintain the untransformed data for auditing purposes. Your
internal auditors will love you.

It may seem that decoupling extract from transformation
and load is a lot of busy work. As with much of the
Kimball Group’s advice, it’s a recommendation based on
experience: any time we’ve skipped this step, we’ve come
to regret it.

Figure 7-5 illustrates the data flow for the extract of a
single table. The source query is trivial, performing no
joins, transformations, or even column name changes. The
staging table is structured the same as in the source
database.

The untransformed extracts should be archived for at least
a week. Many organizations archive the extracts for a
month or even forever.

394

Figure 7-5: A simple extract data flow

Loading Data

The point at which you load data into a database table —
whether a staging table as in Figure 7-5, or a real data
warehouse target table — is a potential bottleneck for the
performance of the ETL application. You want to load data
as fast as possible, but you also don’t want the load to fail
because of one bad row in a billion.

As we discuss in Chapter 5, SQL Server can load data
quite fast, but certain conditions must be in place for the
fastest possible loads:

• Slow: Row-by-row or very small batches
• Medium: Reasonable sized batches (1000, 10k, 100k),

depending on your system

395

• Fast: Large batches plus the target table either has no data or
no indexes (or both)

We can meet the conditions for fast bulk load during the
initial extract to staging tables, and for the one-time
historical load into the data warehouse tables. But medium
bulk load is still pretty good, and a lot faster than row by
row. The problem with medium bulk load is that if we
encounter a bad row — violating a constraint in the target
table — the entire batch is rejected.

Our recommended design pattern for loading data is
illustrated in Figure 7-5. First, always build and test your
packages so that you test and fix data before inserting. In
other words, a design goal is to create an insert stream into
the target table that will insert without errors. That said,
one of our mantras is Bad Things Happen, so design a
failsafe.

With SSIS, our favorite feature of error flows provides that
failsafe. Build in an error flow from all of your destination
adaptors. The first destination (labeled Stage SpecialOffer
in Figure 7-5) uses large batches. If there are no bad rows
in a batch, all the data is inserted with good performance.
However, any batch that contains an error row has all its
rows flow into the error flow (labeled Error Batch). We
immediately attempt to insert those rows again, this time
one-by-one. The first and second destination transforms
are identical, except the first one uses a batch (in this case,
1,000 rows), and the second inserts row by row.

Finally, we must do something with the true error rows.
There might be only one error, or perhaps many. In this
case, we’re writing the error rows into a raw file.

396

NOTE

A raw file is a data file stored in a format
unique to SSIS. It’s effectively the memory
image of the data flow written down onto
disk. There are several advantages and
disadvantages of raw files:

• Good: It is a fast write, because there is no
conversion between the memory data
stream and the disk file.

• Good: It won’t throw a data type error,
because there’s no conversion.

• Bad: It can only be written onto the server
where SSIS is running.

• Bad: It can only be read by an SSIS
package. However, there are inexpensive
third-party utilities that will read raw files
for you.

Our sample packages make ample use of
raw files, but that’s merely to make it easy
to install the sample packages. Most
organizations write data to structured flat
files instead of using raw files, but raw files
are a good choice in the real world if you
are strongly constrained by performance.

If you’re working with large data volumes, you may create
larger batches, say of 100,000 rows. In that case, you can
design a cascade of successively smaller batches on the
error flows before you implement the row by row insert as
the final error step.

397

Figure 7-6 illustrates how to configure a data flow
destination with batches, whose controls are revealed by
selecting Table or view - fast load in the Data access mode
box. Figure 7-7 shows a data flow destination that will
load row by row when the Data access mode is set to Table
or view.

Figure 7-6: SSIS Destination Editor, batches

Figure 7-7: SSIS Destination Editor, row by row

398

Cleaning and Conforming Data

Cleaning and conforming data are critical ETL system
tasks. These are the steps where the ETL system adds
value to the data. The other activities, extracting and
delivering data, are obviously necessary, but they simply
move and load the data. The cleaning and conforming
subsystems actually change data and enhance its value to
the organization. In addition, these subsystems can be
designed to create metadata used to diagnose problems
with the source systems. Such diagnoses should eventually
lead to business process reengineering initiatives to
address the root causes of dirty data and improve data
quality over time.

Subsystem 4: Data Cleaning System

399

The ETL data cleaning process is often expected to fix
dirty data, yet provide an accurate picture of the data as it
was captured by the organization’s production systems.
Striking the proper balance between these conflicting goals
is essential.

The heart of the ETL architecture is a set of quality screens
that act as diagnostic filters in the data flow pipelines.
Each quality screen is a test. If the test against the data is
successful, nothing happens and the screen has no effect.
But if the test fails, the package must either attempt to fix
the data, tag the data, or halt the process. The SSIS error
flow is well suited for this architecture.

There are three categories of quality screens:

• Column screens: Test the data within a single column, for
example for nulls, data type, or range violations.

• Structure screens: Test data relationships, for example
lookup failures.

• Business rule screens: Test complex business logic, for
example requiring that a Platinum customer has a high
lifetime value and has made a purchase in the last two years.
Business rule screens often require a historical time series or
comparison to aggregate data, and as such may be run on a
periodic (perhaps monthly) basis on data already in the data
warehouse.

RESOURCES

You can learn more about data quality and
data screens by reading:

400

• The Data Warehouse ETL Toolkit, pages
131–147

• The Data Warehouse Lifecycle Toolkit,
Second Edition, pages 381–383.

• Data Quality: The Accuracy Dimension,
Jack Olson (Morgan Kaufmann, 2002).

In most cases you want to identify data problems and fix
them as quickly and smoothly as possible. Only in the
most extreme cases would you want to halt processing.
Most of the “pull the plug” tests that we build into the ETL
process are actually looking for incomplete or corrupted
extracts.

Cleaning Data in the Data Flow

The data flow step is the logical place to perform data
cleaning operations. Recall from earlier in this chapter that
we advocate a separate package for the extract of each
table. The data flow for the cleaning step will consist of a
data source, several transformation steps, and then a load
into the destination table.

The vast majority of the data cleaning screens and
subsequent transformations are column screens. Of these,
we see many examples of data type conversions and filling
in null values. Checking for and fixing up range or domain
violations is less common, as even the simplest transaction
system data entry interfaces tend to do an adequate job of
this task.

Within the SSIS framework, there are two main methods
for fixing the column screen violations:

401

• Make conversions within the source query, using for
example the ISNULL or CAST function.

• Implement conversions explicitly using SSIS data flow
transforms such as the derived column transform.

We have a slight preference for the second approach, but
in most cases either approach is just fine. Many ETL
developers prefer to implement column screen transforms
in SQL because they are comfortable with SQL. Our
reasons for preferring the alternative approach include:

• Readability: Transforms are explicitly called out and
graphically displayed.

• Error event logging: As we discuss in the next section, you
may decide to log data quality screening errors in an error
event schema. Usually you’d do this only if required for
compliance purposes. If you’re logging quality screen errors,
it’s more elegantly done by using SSIS transforms, because
you can perform the test, log the error, and fix the data in a
single pass over the row. Not only is the SSIS transform
solution more elegant, but it also should perform better than
the SQL approach when you’re logging errors.

The second most common type of data quality screen and
data cleaning are the structure screens, for example
translating a code into a more readable text string. It’s
surprisingly common for decode tables to be missing
values. It seems even with the best source systems, there’s
always some historical data floating around that violates
the rules for full and complete text descriptions of all
coded values.

As with the column screens, there are two methods for
implementing structure screens and transformations: SQL
and SSIS transforms. If you implement a structure screen
and cleanup in SQL, you’d write your source SQL

402

statement with an outer join to the decode table, and fill in
any missing values with a default. Figure 7-8 illustrates a
data flow task that uses the SQL-based approach. It has a
relatively complex source query and a simple data flow
structure. This is the clean and transform package for the
product dimension, whose logical flow was outlined in
Figure 7-2.

Figure 7-8: Using SQL to join and clean data

All the work in the package illustrated in Figure 7-8 occurs
in the SQL query in the source adapter:

SELECT [ProductID] AS ProductSKU

,p.[Name] AS ProductName

,p.[Name] AS ProductDescr

403

,ISNULL(m.[ProductModelID],0) AS ProductModelID

,ISNULL(m.[Name], N'Unknown Model') AS ProductModel

,p.[ProductSubcategoryID]

,s.[Name] AS ProductSubcategory

,s.[ProductCategoryID]

,c.[Name] AS ProductCategory

,CASE p.ProductLine

WHEN 'T' THEN N'Touring'

WHEN 'M' THEN N'Mountain'

WHEN 'R' THEN N'Road'

WHEN 'S' THEN N'Accessory'

ELSE N'Bike part'

END AS ProductLine

,ISNULL(p.Color, N'None') AS [Color]

,CASE p.[Class]

WHEN 'H' THEN N'High'

WHEN 'M' THEN N'Medium'

WHEN 'L' THEN N'Low'

ELSE N'No product class'

END AS [Class]

,CASE p.[Style]

WHEN 'M' THEN N'Men'

WHEN 'W' THEN N'Women'

404

WHEN 'U' THEN N'Unisex'

ELSE N'No product style'

END AS [Style]

,CASE p.[FinishedGoodsFlag]

WHEN 1 THEN N'Finished good'

ELSE N'Unfinished good'

END AS IsFinishedGood

,CASE p.[Size]

WHEN 'L' THEN N'Large'

WHEN 'M' THEN N'Medium'

WHEN 'S' THEN N'Small'

ELSE ISNULL(p.[Size], N'N/A')

END AS [Size]

,cast(ISNULL(p.[SizeUnitMeasureCode], N'N/A') AS NCHAR(5))

AS SizeUnitMeasureCode

,p.[Weight]

,CASE p.[WeightUnitMeasureCode]

WHEN 'LB' THEN N'pound'

WHEN 'G' then N'gram'

ELSE ISNULL(p.[WeightUnitMeasureCode], N'N/A')

END AS WeightUnitMeasureCode

,p.[DaysToManufacture]

,p.[StandardCost]

405

,p.[ListPrice]

,p.[SafetyStockLevel]

,p.[ReorderPoint]

,p.[SellStartDate]

,p.[SellEndDate]

,CASE

WHEN SellEndDate IS NULL THEN N'Current'

ELSE N'Discontinued'

END AS ProductCurrentStatus

FROM [StageProduct] p

LEFT OUTER JOIN StageProductSubcategory s ON

(p.ProductSubcategoryID=s.ProductSubcategoryID)

LEFT OUTER JOIN StageProductCategory c ON

(s.ProductCategoryID=c.ProductCategoryID)

LEFT OUTER JOIN StageProductModel m ON

(p.ProductModelID=m.ProductModelID)

The data flow displayed in Figure 7-8 is simple, but the
mess is swept under the rug and hidden in the SQL query
embedded in the source adapter.

The alternative approach is to use a lot of SSIS data flow
transforms. Begin with a source query that simply pulls the
StageProduct table, without performing any joins or
transformations. Set up a Lookup transform for each code
lookup. Transform the stream of lookup failures, logging

406

to the error event schema if required. Then union the error
flow back into the main stream and implement the next
lookup. Figure 7-9 illustrates the same ETL process as
Figure 7-8, but uses the SSIS transform approach. As you
can see, the data flow design surface is filled with
transforms as each error screen is handled separately.

Comparing Figures 7-8 and 7-9, the first method is
probably more appealing. But recognize that we’ve chosen
a very simple example for the purposes of exposition. We
do not like to see 300-line SQL statements joining 30
tables as the source query of a data flow step. No one
wants to maintain such a thing. Also, recognize that your
ability to perform complex actions, such as logging the
error to an error schema, is very limited within a single
SQL statement.

As part of your ETL design process, you should decide on
a general approach to data quality screening and
transformation. An example policy would be:

• Use the source SQL statement to:
• Replace a null with a single default value.
• Cast data types.
• Rename columns.
• Use simple (non-outer) joins to decode lookups

where referential integrity is strictly enforced in
the source systems.

• Use outer joins to decode lookups where all
lookup failures are assigned a simple text such as
“Unknown: <code>”.

• Join fewer than six tables. Queries that join six or
more tables must be reviewed and justified in the
system documentation.

407

• Pull data only from the extract tables in the staging
database.

• Use SSIS transform logic to:
• Log data quality violations to an error event

schema.
• Perform complex transformations (other than

isnull or cast).
• Handle lookup violation errors in a more complex

way than can be handled in SQL.

In most cases, performance is not the deciding factor in
determining whether to use SQL or SSIS transforms to test
and clean the data. Both approaches should have similar
performance characteristics.

Figure 7-9: Using SSIS transforms to join and clean data

Halting Package Execution

408

When you’re finished with the data quality screening and
subsequent transformation, you’re still not quite ready to
write the data into the destination data warehouse table.
After all, data cleaning is only subsystem 4 of the 34
subsystems. Even the simplest ETL system still needs to
add audit information, manage changes to dimension
attributes, and manage fact table surrogate key
substitution.

Post-cleaning is a good checkpoint for staging the data a
second time. Staging data at this point can improve
restartability. Also, if you’re processing data in small
batches during the day, you may accumulate the cleaned
data and perform the final delivery steps at midnight.

That said, we often don’t bother to stage the data after
cleaning. Instead the data flow goes on to perform the
delivery steps and write directly into the target data
warehouse tables. In many implementations, we’ll stage
the data once on extract, and write it again only when it
goes into the data warehouse tables.

However, at the beginning of this section on data cleaning,
we described data quality screens that might cause you to
halt processing or at least to notify an operator. A simple
example would be a huge drop in data volume in today’s
load, indicating a potential problem with an extract or
transfer. If you need to halt processing because of a data
quality screen violation, you must stage the data to a table
and exit the data flow task. In SSIS, the only place you can
gracefully halt execution is in the control flow. The data
flow task will halt only if it triggers a fatal error, which is
not the same as a data quality screen violation.

409

Figure 7-10 illustrates the control flow for a package that
conditionally halts after data quality screening. It contains
two data flow steps; the first for the data quality screening
and the second for the delivery into the target fact table.
Between the two data flow tasks is a simple script that
evaluates whether or not processing should continue. If all
is good, the second data flow is launched. If not, page the
operator and return to the master package with an error
condition.

Figure 7-10: Halting package execution based on a data
quality failure

Fun with Scripts

410

You can’t develop a production-ready ETL system
in SSIS without writing a few scripts. It’s really not
hard. Let’s take a closer look at the two scripts in
Figure 7-10.

The first script, DQ Continue, performs a few
basic checks on the data after the data flow task.
Table 7-1 shows the SSIS variables used in the
script.

Table 7-1: SSIS variables used in sample script

Variable Use of the Variable

ProdLowLimit Default value for variable

ProdCount
Count of distinct products loaded into the staging
table in the first data flow step (populated in an
Execute SQL task)

XtrctLowLimit Default value for variable

RC_Xtrct
Count of rows loaded into the staging table in the
first data flow step (populated in an Execute
SQL task)

bXtrctOK Set by the script

All the script does is evaluate whether the number
of rows extracted today is above some minimum
threshold, and the same for the number of product
types in the extract. If so, continue with processing,
and set the value of bXtrctOK to TRUE; otherwise
bXtrctOK remains FALSE.

411

When you create a script task or transform, SSIS
creates the outline of the script for you. The
quantity of code that you need to write is often
quite small: in this case, the seven lines shown
here:

Dim ProdCount As Integer =

CType(Dts.Variables("ProdCount").Value, Integer)

Dim ProdLowLimit As Integer =

CType(Dts.Variables("ProdLowLimit").Value, Integer)

Dim RC_Xtrct As Integer =

CType(Dts.Variables("RC_Xtrct").Value, Integer)

Dim XtrctLowLimit As Integer =

CType(Dts.Variables("XtrctLowLimit").Value, Integer)

If ProdCount > ProdLowLimit AndAlso
RC_Xtrct > XtrctLowLimit Then

Dts.Variables("bXtrctOK").Value = True

End If

Looking back at Figure 7-10 you can see two
precedence constraints labeled GOOD and BAD.
The expression for the “good” path is
@bXtrctOK==True. This example is simple
enough that we could have eliminated the script
and conducted our test in the precedence

412

expression. But we recommend using a script,
because it is much easier to read, understand, and
edit.

The second script in Figure 7-10 is absolutely
trivial. On the BAD path, after we notify the
operator of the error, we want to pass an error
condition up to the master package. We need to
translate the business logic that identified our
extract as a bad one into a message to SSIS so the
master package can stop processing of other
packages. This script contains one line of code:

Dts.TaskResult = ScriptResults.Failure

The package ends at this point and reports failure
to the master package.

Subsystem 5: Error Event Schema

The error event schema is a centralized dimensional
schema whose purpose is to record every error event
thrown by a quality screen. The error event schema
consists of a fact table at the grain of an error event — at
the grain of a failure of any quality screen. For each row
that fails, for example, a referential integrity check would
add a row to the error event schema. The error event
schema holds error events from across the ETL pipeline,
and as such is a great place to evaluate overall data quality.

413

RESOURCES

You can find more information about
logging error events in The Data
Warehouse Lifecycle Toolkit, Second
Edition, pages 383–385.

In addition to the integrated error event schema, it is often
very useful to create error tables for each target table. The
error table is designed to hold rows that have failed a
critical data screening, and will hold the image of the row
at the time of the failure. Error tables don’t have to be SQL
Server tables — a raw file or flat file can be good choices
for error tables.

Note that error tables are usually limited to critical data
screening errors, such as a lookup failure. We seldom log
an error image row for something as simple as a null
violation. There are several characteristics of error tables
that you need to include in your design:

• Table layout: Columns and data types.
• Table location: Database, table name, and/or file name.
• Error type: You should develop a taxonomy for the types of

errors to track. Possible error types include, but aren’t
limited to:

• RI violation (specify which foreign key).
• Numeric value out of bounds (specify which

column).
• Business rule violation (specify which rule).

• Error level: Usually critical or moderate. Critical error tables
contain data rows that were not inserted into the target table.

414

Moderate error tables contain data rows that were inserted
into the target table, but we want to hold the image of the
row at the time of data screening.

• Resolution information: For critical error tables, was the row
eventually “fixed” and added to the data warehouse? When
and how?

The error tables are part of the back room — we don’t
expect the business user community to use them. One
possible exception is an auditing user or a data steward.

DOWNLOAD

Several of the sample packages on the
book’s web site, including ExchangeRates,
Orders_SQL, and Orders_SSIS, use error
tables.

Subsystem 6: Audit Dimension Assembler

The audit dimension is a special dimension that’s
assembled in the back room by the ETL system. The audit
dimension in Figure 7-11 contains the metadata context at
the moment a specific row is created. Every data
warehouse table contains two keys to the audit dimension:
the key for the batch in which the row was originally
inserted, and the key for the batch where the row was most
recently updated.

The audit dimension receives one row each time an SSIS
package is executed. The audit dimension is a small table.
You might notice that the sample packages on the web site

415

also use the audit dimension for loads into staging and
error tables.

The mechanics of implementing the audit dimension in
SSIS are very straightforward. Each package begins with a
few steps that insert a new row into the audit dimension
table. Those steps update an SSIS variable with the key for
the new audit dimension row. The work of the ETL occurs
in the data flow task, and any inserts or update are flagged
with today’s audit key for this table. Finally, after the data
flow, end the package with a few steps that update the
audit table with information such as the number of rows
processed and the time processing finished.

The audit dimension contains a foreign key to itself: the
audit key points to the parent audit key. When a master
package begins, it creates a row in the audit table, and
generates its own audit key. It passes that audit key down
to any child package. You can use the parent audit key to
tie together all the packages that ran in a single batch,
called from a single parent.

DOWNLOAD

Every package on the book’s web site
contains the same design pattern for using
the audit dimension.

Figure 7-11: Sample audit dimension

416

Subsystem 7: Deduplication System

Often dimensions are derived from several sources. This is
a common situation for organizations that have many
customer-facing source systems that create and manage
separate customer master tables. Customer information
may need to be integrated from several lines of business
and outside sources. Sometimes the data can be matched
through identical values in important columns. However,
even when a definitive match occurs, other columns in the
data might contradict one another, requiring a decision on
which data should survive.

Unfortunately, there is seldom a universal column that
makes the merge operation easy. Sometimes the only clues
available are the similarity of several columns. SSIS
contains data flow transforms that can help develop a

417

solution to this problem — the Fuzzy Lookup and Fuzzy
Grouping transforms.

As we discussed in Chapter 6, it is extraordinarily difficult
to build deduplication into the standard automated ETL
stream. The ETL jobs must run without human
intervention, but some deduplication problems cannot be
resolved without human eyes. We strongly advocate that
the deduplication system be initiated before the nightly
ETL process runs. Within the Microsoft SQL Server
product, we suggest that you implement a deduplication
system in Master Data Services.

Subsystem 8: Conforming System

Conforming consists of all the steps required to align the
content of some or all of the columns in a dimension with
the columns in similar or identical dimensions in other
parts of the data warehouse. For instance, in a large
organization you may have fact tables capturing invoices
and customer service calls that both use the customer
dimension. The source systems for invoices and customer
service often have separate customer databases, with little
consistency between the two sources of customer
information. The data from these two customer sources
needs to be conformed to make some or all of the columns
describing customers share the same domains.

The conforming subsystem is responsible for creating and
maintaining conformed dimensions and conformed facts.
Incoming data from multiple systems need to be combined
and integrated so that it is structurally identical,
deduplicated, filtered, and standardized in terms of content

418

rows in a conformed image. A large part of the conforming
process is the deduplicating, matching, and survivorship
processes described previously. In the SQL Server data
warehouse, this work is best implemented in a master data
management system that serves as a source to the ETL
process.

The hardest effort of the conforming system is political —
wresting agreement across the enterprise about entity and
attribute names and business rules. These political
problems fall under the umbrella of data governance, and
they need to be solved during the design phase of your
DW/BI project.

The conformed dimension should be managed in one place
and distributed to “subscribers” of the dimension. The
easiest way to distribute copies of conformed dimensions
is to set up a simple SSIS package to copy the updated
dimension tables to the other servers in a distributed
environment. The packages can end with a notification to
the subscribers that the dimensions have been successfully
published. Alternatively, you can set up SQL Server
replication to publish the centrally managed dimension to
other databases.

NOTE

The Kimball Approach supports a
distributed data warehouse, with separate
databases for, say, accounting and

419

customer care. Where separate business
process dimensional models have
dimensions that are completely identical —
such as customer — those copies of the
dimension should have the same keys.
Each can be a subset of the master
dimension — each subset can filter rows
and/or columns — but they should use the
same warehouse surrogate keys.

The payoff for building conformed
dimensions is the ability to drill across
separate business processes, assembling an
integrated final result. The bare minimum
requirement for drilling across is that the
separate conformed dimensions have at
least one common field with the same
contents. When such a common field is
used in the SELECT list of each of the SQL
or MDX queries in the drill across report,
the results can then be merged to produce
the integrated final result. This simple
recipe has a profound result. It is the core
of enterprise data warehouse integration.

Delivering Data for Presentation

The primary mission of the ETL system is the handoff of
the dimension and fact tables in the delivery step. For this
reason, the delivery subsystems are the most pivotal
subsystems in your ETL architecture. Though there is

420

considerable variation in source data structures and
cleaning and conforming logic, the delivery processing
techniques for preparing the dimensional table structures
are more defined and disciplined. Use of these techniques
is critical to building a successful dimensional data
warehouse that is reliable, scalable, and maintainable.

Many of these subsystems focus on dimension table
processing. Dimension tables are the heart of the DW/BI
system. They provide context for the fact tables. Although
dimension tables are usually smaller than the fact tables,
they are critical to the success of the DW/BI system
because they provide the entry points into the fact tables,
through constraints and grouping specifications.

The delivery process begins with the cleaned and
conformed data resulting from the subsystems just
described. For many dimensions, the delivery plan is
simple. Perform basic transformations to the data to build
dimension rows for loading into the target presentation
table. This typically includes surrogate key assignment,
splitting or combining columns to present the appropriate
data values, and joining underlying third normal form table
structures into denormalized flat dimensions. Dimension
tables are usually small, and subject to many
transformations.

Preparing fact tables is important because fact tables hold
the key measurements of the business. Fact tables can be
very large and time consuming to load. However,
preparing fact tables for presentation is typically
straightforward.

421

Subsystem 9: Slowly Changing Dimension Manager

One of the more important elements of the ETL
architecture is the capability to implement slowly changing
dimension (SCD) logic. The ETL system must determine
how to handle a dimension attribute value that has changed
from the value already stored in the data warehouse.

In Chapter 2, we talked about the two main techniques for
handling changes in dimension attributes:

• Type 1: Restate history by updating the dimension row when
attributes change.

• Type 2: Track history by propagating a new dimension row
when attributes change.

Standard Handling for Slowly Changing Dimensions

Any dimension that contains a type 2 attribute should track
the date range for which each dimension row is valid. For
any dimension with a type 2 attribute, add three columns:
RowStartDate, RowEndDate, and IsRowCurrent. For
every dimension member like customer, there should be
one and only one current row at any one time. Older rows
have their RowStartDate and RowEndDate set
appropriately. Figure 7-12 illustrates the logic for handling
updates to a dimension with both type 1 and type 2
attributes during the daily incremental load.

We’ve seen companies get so intimidated by this
complexity that they decide to manage all dimensions as
type 1, even if that’s not what the users want. The SSIS
Slowly Changing Dimension transform is a useful feature.
It does most of this work for you.

422

Figure 7-12: Logic flow for handling dimension updates

423

Using the Slowly Changing Dimension
Transform

The SSIS Slowly Changing Dimension (SCD)
transform is available in the data flow. Typically,
your dimension’s data flow begins by sourcing data
from the extracted data in the staging database, and
performs any necessary cleaning and
transformation steps. The final section of the data
flow is where you insert and update this flow into
the target dimension table.

When you drag the SCD transform into the data
flow design palette, it consists of a single rectangle
like all the other transforms. When you edit it, it
launches a wizard with several pages of questions.
And when you finally click Finish, the wizard
generates a bunch of transforms and flows for you.
The generated transforms and flows do the work
that’s outlined in Figure 7-12.

The wizard starts by asking you to specify the
dimension table you’ll be loading. Next, identify
the business key, used to tie together all the
instances of a particular entity. In a customer
dimension the business key is usually the account
number or customer ID. Map the other columns in
the input flow to the attributes in the target
dimension.

424

The wizard next has you identify how to manage
the changes in each attribute. In addition to the
types 1 and 2 (restate and track history) described
previously, Integration Services includes a Fixed
attribute, which should never be updated. Set the
attribute change type for all the columns in your
target table.

On the next screen you’re asked several
housekeeping questions. Do you want the
processing to fail when you encounter a change to
a Fixed attribute? Answer No (you rarely want
processing to fail outright). Do you want the bad
row to go into an error flow? Answer Yes. You’re
also asked if a type 1 change, when encountered,
should update all the historical rows for the
dimension entity, or just the current row. The
textbook definition of a type 1 attribute indicates
you should update all the rows, and this is the
recommended setting.

If you have any type 2 attributes in your
dimension, you’re next asked how to identify the
current row. Do you use row start and end dates, or
an indicator like IsRowCurrent?

You can’t have the SCD Wizard maintain both the
row start and end date and the row current
indicator. It’s one or the other. As we discuss in the
next section, you can edit the results of the wizard,

425

and you can generally make it do what you want.
We find it easier to generate the SCD Wizard using
the row current indicator technique, and then edit
the resulting transforms to add the row date
handling.

Perhaps you’re exasperated with the complexity of
the SCD wizard, although we’ll point out that it’s a
complex problem. Your reward comes when you
click Finish and see all the transforms that have
been created for you. These objects insert new
rows, update rows that have a type 1 change, and
perform the update and insert steps for existing
rows that have a type 2 change.

The Slowly Changing Dimension transform will meet
many projects’ requirements without any further changes.
However, there are circumstances where you need to do
something tricky, or circumvent the wizard altogether. The
next few sections discuss some advanced topics around
handling dimension changes.

Custom Handling for Slowly Changing Dimensions

You will probably want to customize the output from the
SCD Wizard. It may even make sense for you to develop
custom handling for dimension changes.

The SCD Wizard will identify the current row for an entity
like customer in one of two ways: with a True/False (or
Yes/No) indicator, or with a range of dates for which the

426

row is valid. If you choose the date range approach, the
SCD transform will look for the single row for each
natural key that has a null end date.

We recommend that you use both the row current indicator
technique and the valid date range technique. Also, set the
end date to a date far in the future, rather than leave it null.
Can you still use the SCD Wizard? Yes you can, but you
need to modify the generated objects in order to populate
your dimension the way you want. This is easy to do, but
be warned: If you need to go through the wizard again,
perhaps to switch an attribute from type 1 to type 2
handling, you’ll lose any customizations you’ve made to
the generated objects.

NOTE

The objects generated by the SCD Wizard
are standard Integration SSIS transforms.
You can edit them to do whatever you like.

The only logic that you can’t modify is the comparison
logic that’s hidden in the SCD transform itself. Under the
covers, this transform takes a row in the pipeline and
compares it to the current row in the dimension table;
determines if the pipeline row is new or an update; and
sends the row to the correct downstream path or paths.
You can’t change any of the logic in this transform without
going through the wizard again.

Alternatives to the Slowly Changing Dimension Transform

427

We like the SCD transform because it’s well thought out
and reasonably flexible. However, it’s not perfect. The two
main issues are:

• Performance: The SCD transform, particularly the
comparison logic, does not perform as fast as some
alternative approaches. The slow performance is a cost you
pay every time the package executes.

• Resilience: If you need to change the dimension table, for
example to add a column or change a column from type 1 to
type 2, you will have to reapply any edits you’ve made to the
objects generated by the transform. As we have already
described, you’re very likely to want to edit the objects
generated by the transform. This problem doesn’t affect the
execution of the package in production, but it can be quite
frustrating for the developers. This is particularly true if you
rushed into ETL development before your data model design
was finalized.

There are many alternatives to using the SSIS SCD
transform. You can develop the logic yourself, or there are
a variety of free and moderate cost transforms that you can
download.

DOWNLOADS

The two most popular third-party tools for
replacing the Microsoft SCD transform are:

• Kimball Method SCD Transform, available
for free download from
www.codeplex.com/kimballscd/ and
developed by Todd McDermid. This
transform offers more functionality than
the Microsoft SCD transform, and
performs much better. Edits are not

428

destructive to downstream elements. This
transform is not associated with the
Kimball Group, though the developer
followed Kimball published best practices
in his design.

• TableDifference, available for purchase
from www.cozyroc.com and designed by
the folks at SQLBI.eu. This component
does only the “comparison” step of the
SCD problem. You need to build out the
updates, inserts, and so on. The comparison
step is notably faster than the Microsoft
SCD transform, and edits are not
destructive to downstream elements.

The good news is that the problem of managing SCDs has
been solved many times by many people. Our advice is to
use the Microsoft component unless you find its faults
intolerable. If you choose an alternative approach, you’ll
assume the risk of incorporating a third-party object into
your solution. Are you better off with a very functional,
free solution with limited support? Or a low cost solution
backed by a company that — we can safely say — does
not have the financial resources of Microsoft? No solution
is free of risk.

Another approach to handling SCDs is to perform the work
not in the SSIS data flow, but in the database. To
implement this technique, the final step of the clean and
transform data flow would write the dimension data to a
staging table. Out in the control flow, write an Execute
SQL task that uses the MERGE statement to perform the
SCD processing.

429

RESOURCES

You can find a discussion of how to use the
MERGE statement for slowly changing
dimensions in the Kimball Group design tip
#107, available at www.kimballgroup.com/html/
designtips.html.

Subsystem 10: Surrogate Key Generator

As you recall from Chapter 2, we strongly recommend the
use of surrogate keys for all dimension tables. This implies
that you use a robust mechanism for producing surrogate
keys in your ETL system. The goal of the surrogate key
generator is to create a meaningless integer key to serve as
the primary key of the dimension row.

In SQL Server, we implement the surrogate key generator
in the database, by defining the table’s primary key with
the keyword IDENTITY. Inserts into the table exclude the
primary key column, and each new row generates a new
surrogate key. We have implemented this technique with
very large dimensions, and have not experienced problems
with performance or logic.

Subsystem 11: Hierarchy Manager

It’s normal for a dimension to have multiple, simultaneous,
embedded hierarchical structures. These multiple
hierarchies coexist as dimension attributes within the
denormalized dimension table. The hierarchy manager

430

ensures that each attribute be a single value in the presence
of the dimension’s primary key. For example, a product
rolls up to one and only one brand; a brand to one and only
one product subcategory; and a subcategory to one and
only one product category.

Hierarchies are either fixed or ragged. A fixed hierarchy
has a consistent number of levels and is modeled and
populated as a separate dimension attribute for each of the
levels. Slightly ragged hierarchies like postal addresses are
most often modeled as a fixed hierarchy, with placeholders
for the “missing” levels. Profoundly ragged hierarchies are
typically used for organization structures that are
unbalanced and of indeterminate depth. The data model
and ETL solution required to support ragged hierarchies in
relational databases require the use of a bridge table
containing the organization map. Ragged hierarchies in
Analysis Services are supported more directly, not
requiring a bridge table. Please see Chapter 8.

Snowflakes or normalized data structures are not
recommended for the presentation level. However, the use
of a normalized design may be appropriate in the ETL
staging area to assist in the maintenance of the ETL data
flow for populating and maintaining the hierarchy
attributes. The ETL system is responsible for enforcing the
business rules to assure the hierarchy is populated
appropriately in the dimension table.

One of the biggest challenges with hierarchies is that
transaction systems typically contain stripped down
hierarchies that contain only the groupings needed to enter
transactions. Business users often have alternative ways of

431

viewing and analyzing the data, and there is no official
source for these alternate hierarchies. They are often
sourced from Excel.

The main problem with sourcing from Excel is that it’s an
unstructured source. Referential integrity violations are
common. And the solutions usually require a person’s
intervention — it’s not a problem that is well solved by the
overnight ETL loading process.

The new SQL Server 2008 R2 feature Master Data
Services, discussed in Chapter 6, is the best place to
manage the integration of this kind of user information.
Redefine your business processes so that Master Data
Services maintains good clean hierarchies, and have your
ETL job stream subscribe to those hierarchies.

Subsystem 12: Special Dimensions Manager

The special dimensions manager is a catch-all subsystem:
a placeholder in the ETL architecture for supporting an
organization’s specific dimensional design characteristics.
These design techniques were introduced in Chapter 2.
Some organizations’ ETL systems will require all of the
capabilities discussed here, whereas others will be
concerned with few of these design techniques:

• Date and time dimensions: Date and time are unique in that
they are completely specified at the beginning of the data
warehouse project and they don’t have a conventional
source. Most often, these dimensions are built in a
spreadsheet.

432

DOWNLOADS

The book’s web site contains a sample date
dimension in Excel, and a package for
loading that dimension into the
MDWT_2008R2 database.

• Junk dimensions: Junk dimensions are made up from text and
miscellaneous flags left over in the fact table after you’ve
removed all the fields related to the other dimensions. As we
describe in Chapter 2, you sometimes combine unrelated flags
and text into a junk dimension to avoid creating dozens of tiny
dimensions. If the theoretical number of rows in the dimension
is fixed and a relatively small number, you can populate the
junk dimension in advance. In other cases, you must load the
junk dimension as you load the fact table, inserting dimension
rows as you observe new combinations of flags and text. As
illustrated in Figure 7-13, this process requires assembling the
junk dimension attributes and comparing them to the existing
junk dimension rows to see if the row already exists. If not, a
new dimension row must be assembled, and the row loaded into
the junk dimension on the fly during the fact table load process.
In SSIS, this design pattern is easily implemented as part of the
fact table surrogate key pipeline. There is a more thorough
discussion of this design solution later in the chapter, in the
section on the surrogate key pipeline.

• Shrunken dimensions: Shrunken dimensions are conformed
dimensions that contain a subset of rows or columns of one of
your base dimensions. Shrunken dimensions are used to support
data at different levels of granularity, for example monthly
budgets. The ETL data flow should build conformed shrunken
dimensions from the base dimension to assure consistency.

• Small static dimensions: A few dimensions are created entirely
by the ETL system without a real outside source. These are
usually small lookup dimensions where an operational code is

433

translated into words. In these cases, there is no real ETL
processing. The lookup dimension is simply created by the ETL
team as a relational table in its final form.

Figure 7-13: Architecture for building junk dimension
rows

Subsystem 13: Fact Table Builders

The fact table builder subsystem focuses on the ETL
architectural requirements to effectively build the three
primary types of fact tables: transaction grain, periodic
snapshot, and accumulating snapshot fact tables. Your fact
table load packages must maintain referential integrity with
the associated dimensions. The surrogate key pipeline
(subsystem 14) is designed to support this need.

434

You will almost certainly need two sets of fact table
builder packages: one for the one-time historical load and a
second set for the ongoing incremental loads. First, it’s
common for transaction systems to evolve over time, so
the historical load packages need to track the changes to
the data structures and meanings. In addition, the historical
fact table surrogate key pipeline must associate each fact
row with the type 2 dimension member in effect when the
fact event occurred. The problem is discussed in greater
detail in the late-arriving fact problem (subsystem 16). As
far as the surrogate key pipeline is concerned, the
historical load is one huge set of late arriving fact data!

NOTE

As you design your fact table packages,
you need to remember the demands of SQL
Server Analysis Services (SSAS)
processing. As we describe in Chapter 8,
SSAS can be a very effective database
engine for the presentation area. But the
ETL team needs to be aware that during
processing of the SSAS database, Analysis
Services cannot easily handle fact table
updates or deletes. The only way to process
a fact row update or delete is to fully
process the SSAS partition that contains
that fact row.

435

The easiest approach is to fully process the
fact table into SSAS every day. This is a
fine idea for modest data volumes (in the
tens of gigabytes), but doesn’t scale well.

For larger data volumes, you need to:

• Partition the SSAS fact data by date.
• In the fact table ETL, keep track of the

dates that are receiving updates.
• Fully process the SSAS partitions with

updates (or deletes, though we usually
don’t design hard deletes into the data
warehouse).

Transaction Grain Fact Table Loader

The transaction grain represents a measurement event
defined at a particular instant. A line item on an invoice is
an example of a transaction event. A scanner event at a
cash register is another. Transaction grain fact tables are
the largest and most detailed of the three types of fact
tables. The transaction grain fact table loader receives data
from the changed data capture system and loads it with the
proper dimensional foreign keys. Most rows are inserted.
In the SSIS data flow, use the bulk load options of the
destination, as we described in subsystem 3.

Loading into a Partitioned Table

436

Large fact tables are often partitioned, usually by
date. Monthly partitions are the most common. For
most fact tables, it is perfectly fine to use the
partitioned table in the data flow’s destination.
SSIS performs the load into the destination table,
and SQL Server determines to which physical
partition each row belongs. It’s not the fastest
possible load performance, but in many cases it’s
just fine.

However, transaction grain fact tables may be very
large, and loading the data into the target table may
become a bottleneck. We have worked with some
organizations that are loading a billion rows a day
into a single fact table. Obviously, such
implementations need to be careful to optimize
load performance.

To get the very fastest load performance, you need
to load into an empty table. For daily loads,
partition the fact table on a daily basis, load into an
empty pseudo-partition, and then swap that
partition into the fact table. Refer back to Chapter 5
for a discussion of partitioning.

Implementing this load-and-swap technique in
SSIS requires some steps in both the control flow
and the data flow. First, in the control flow, you
need to perform the following steps:

437

• Modify the partitioning scheme, creating an empty
partition for “yesterday’s” data by splitting the last
empty partition.

• Create new standalone tables (and indexes) as
pseudo-partitions that correspond to the real
partitions.

• Define a view on the standalone pseudo-partition
table with a static name. Each pseudo-partition table
usually includes the date in the table name; you need
an unchanging view name to use inside the data flow
step, as you cannot change the target table name in
SSIS at runtime.

The data flow task is completely normal, except
you set up the destination adapter to load into the
view rather than either the partitioned fact table or
one of the pseudo-partitions. The data will flow
into the view, which points to the newly created
empty pseudo-partition.

Once the data flow task is complete and the new
pseudo-partition is populated, return to the control
flow. There, you need to complete a few more
steps:

• Index the pseudo-partition, if you didn’t load it with
indexes in place.

• Switch the new pseudo-partition into the partitioned
table. The pseudo-partition table now has zero rows
in it; all those rows are in the partitioned table.

• Periodically, consolidate the daily partitions into
weekly or monthly partitions. This is usually a
separate process.

All the partition management activities in the
control flow are straightforward to set up. You can

438

write scripts to handle the logic, but a much better
choice is to use the partition management utility
designed and built by the SQL Server customer
advisory team. It’s available for download from
CodePlex.com (search for Partition Management).
The Partition Management utility does not have an
SSIS task wrapper. It’s a command line tool, so to
call it from SSIS you need to use the Execute
Process task. Write a simple script to construct the
list of arguments.

The addition of late arriving records is more difficult,
requiring processing capabilities described in subsystem
16.

As much as we like to think of a transaction grain fact
table as only receiving new rows, updates are necessary. In
some cases, updates are relatively unusual, driven from
fixing an earlier error. But in other cases there are
systematic business rules that call for updating a fact. If
you have a small volume of fact table updates, you may
implement them in SSIS within the data flow, by using the
OLE DB Command transform.

The OLE DB Command transform is the only way to
perform database updates and deletes within the data flow.
The advantage of the OLE DB Command transform is the
availability of the error flow discussed previously. Any
row for which the attempted update fails will go into the
error flow and can be handled or at the very least captured.

439

There is one huge disadvantage of the OLE DB Command
transform: it operates row by row and hence is very slow.
If you need to update many rows, you should instead flow
the entire image of the row to be updated into yet another
staging table. Once you exit the data flow, use an Execute
SQL task to execute a bulk UPDATE or MERGE statement.

WARNING

The OLE DB Command transform is one
of the first things we look for when
reviewing the design of SSIS packages that
have performance problems. It’s great for
small data volumes because of the error
flow. But it is several orders of magnitude
slower than the SQL-based bulk update
technique.

Periodic Snapshot Fact Table Loader

The periodic snapshot grain represents a regular repeating
set of measurements, such as financial account balances.
Periodic snapshots are a common fact table type and are
frequently used for monthly account balances, standard
financial reporting, and inventory balances. The
periodicity of a periodic snapshot is typically daily,
weekly, or monthly. Periodic snapshots are often paired
with a transaction fact table that details the movements
into and out of the snapshot.

440

Periodic snapshots have similar loading characteristics to
those of the transaction grain fact tables, especially if you
load the latest snapshot at the end of the period. A
common design for periodic snapshots is to maintain the
current period daily, then freeze that snapshot at the end of
the period. This design creates a twist for the ETL
processing, because you need to completely replace
(update!) the current period’s set of data.

Luckily, this problem is rendered very simple by the use of
table partitions. If the periodic snapshot is monthly, design
monthly partitions with the usual pseudo-partition staging
tables. Load into the pseudo-partition and swap it into the
partitioned tables. For each month you only need one
pseudo-partition table, which you truncate, load, and swap
every day.

If you’re not using table partitions, you can either bulk
delete the current month’s rows before entering the data
flow, or you can use the bulk update technique described
previously.

Accumulating Snapshot Fact Table Loader

The accumulating snapshot grain represents the current
evolving status of a process that has a finite beginning and
end. Order processing is the classic example of an
accumulating snapshot. The order is placed, shipped, and
paid for at different points in time. The transaction grain
provides too much detail separated into individual records
in multiple fact tables. Business users want to see all the
events related to a given order in a single record so they
can easily explore bottlenecks in processes.

441

The design and administration of the accumulating
snapshot is different from the first two fact table types. All
accumulating snapshot fact tables have many roles of the
date dimension, usually four to ten. These are the dates
that the snapshot tracks, such as order date, order fulfilled
date, ship date, payment date, and delivery date. At the
time the fact row for the new order is created, only the
order date is known. The other date keys point to a row in
the date dimension that indicates “Hasn’t happened yet.”
Each time a significant event occurs, the same row in the
accumulating snapshot fact table is updated.

The ETL design must account for the heavy updates. If
you’re using Enterprise Edition or Data Center Edition,
you can partition the accumulating snapshot fact, say by
order month. In many implementations, it is faster to
completely reload the most recent month or two (into an
empty pseudo-partition) than to perform even a bulk
update.

There’s inevitably a trickle of data from months ago. The
older updates are best handled through the bulk update
technique described previously.

Accumulating snapshot fact tables present a particular
challenge for Analysis Services cubes. Even if you get just
one fact row update for an order opened six months ago,
you need to fully process its entire SSAS partition. You
can increase the granularity of your SSAS partitions, but
accumulating snapshot fact tables in SSAS are often faced
with fully processing a large chunk of the cube.

Subsystem 14: Surrogate Key Pipeline

442

Every ETL system must include a step for replacing the
operational natural keys in the incoming fact table record
with the appropriate dimension surrogate keys. Referential
integrity (RI) means that for each foreign key in the fact
table, one and only one entry exists in the corresponding
dimension table.

WARNING

Maintain referential integrity! Of all the
rules and advice included in the Kimball
Method, this is the one we feel most
strongly about: Never build a system that
does not maintain referential integrity
between facts and dimensions. You should
never have a null foreign key in the fact
table. You should never have a fact key
that does not correspond to a row in the
dimension table. Never. Not ever.

A dimensional model without RI is
unusable for ad hoc business users, and is
highly dangerous even for expert users like
IT staff. It is too easy to construct a query
that unintentionally drops rows.

As we discuss in Chapter 5, you might
choose not to have the SQL Server
database enforce the foreign key
constraints. But the underlying data

443

absolutely must not violate RI, and the
surrogate key pipeline is the ETL
subsystem where you do that work.

After the fact data has been cleaned and transformed, just
before loading into the presentation layer, a surrogate key
lookup needs to occur to substitute the source system keys
in the incoming fact table record with the proper current
surrogate key. To preserve referential integrity, complete
dimension processing before starting the surrogate key
pipeline. The dimension tables are the legitimate source of
primary keys to be replaced in the fact table.

There are several methods of handling an RI failure. Your
choice depends on the business requirements. This is
seldom a requirement that you collect during the initial
design, but the ETL team needs to discuss the design
issues and decisions with a representative of the user
community. The possible approaches include:

• Throw away the fact rows. This is rarely a good solution.
• Write the bad rows to an error table. This is the most

common solution, but it should not be implemented unless
you have procedures (both human and technical) to get the
bad rows out of prison and into the fact table.

• Insert a placeholder row into the dimension. The
placeholder dimension row contains the only information
you have at the moment: the natural key. It receives a
surrogate key, which is inserted in the fact table. All other
attributes are set to appropriate defaults agreed to by the
business users. This is an excellent solution if you can
identify a legitimate business process or technical reason
why you can receive a fact row before its corresponding

444

dimension member. Keeping such “early arriving facts” in
the fact table preserves overall totals and measures of
activity even while you are waiting for the dimension detail
to arrive. Once you do receive the dimension row, simply
update the default labels with the correct ones. No changes
need to be made to the fact table.

• Fail the package and abort processing. This seems a bit
draconian.

WARNING

In our consulting practice we review
existing DW/BI implementations. We’ve
often seen another technique for handling
RI failures, which we cannot recommend.
That solution is to map all the bad fact
rows to a single Unknown member (such as
-1). The single unknown member solution
is popular because it gets the bad rows into
the fact table so amounts add up, and it’s
incredibly easy to implement. But it makes
no business sense.

Most often in normal daily batch processing designs, we
write the bad rows to an error table. For a minority of the
dimensions, and in aggressive low latency situations where
early arriving facts are more common, we use the
placeholder dimension row technique. We almost never
throw away the bad rows, and failing the package just
seems silly.

445

The surrogate key pipeline is one of the heaviest
processing activities of the ETL system. With large data
volumes, it’s important to implement it as efficiently as
possible. As with most of the ETL subsystems, there are
two main approaches to implementing the surrogate key
pipeline in SSIS: use SSIS lookups, or use database joins.

Surrogate Key Pipeline Technique #1: Cascading Lookups

The Cascading Lookups technique can be implemented in
the same fact table data flow where cleaning and
transforming occurs. Alternatively, if you chose to stage
the fact data after cleaning and transforming, the OLE DB
source query would pull in the entire staging table.

Figure 7-14 illustrates a sample package for populating the
FactOrders table. Displayed here is a portion of the data
flow, including the surrogate key pipeline for six keys. All
of the lookups illustrated here use the technique of flowing
error rows to an error table.

Figure 7-14: Example fact table surrogate key pipeline
with RI violations flowing to an error table

446

The main work of the surrogate key pipeline occurs in the
Lookup transform, which looks up the source system key
from the fact table flow into a database table, in this case,
the dimension table. The lookup adds the surrogate key to
the flow. The Lookup transform does the same thing as a
simple SQL join, but performs that operation on the data in
the flow, rather than having to stage the data to write SQL.
The lookup can be cached, and in most cases you want to
fully cache the lookup.

WARNING

Always specify a SQL query for the lookup
data source. In most cases you need just
two or three columns. For example, the

447

source query for a lookup to the date
dimension for the surrogate key pipeline is

SELECT DateKey, FullDate FROM DimDate

The default behavior is to bring in the
entire dimension table. The lookup table is
cached in memory, so you want it to be as
small and efficient as possible.

There are two misleading characteristics of this cascade of
lookups:

• It appears that the lookups will operate in series, one after
the other. Actually, SSIS is smart enough to perform the
work in parallel.

• It appears that the referential integrity failures are not
handled. Each lookup is set to ignore failures, with missing
surrogate keys set to null. However, the failures are being
handled. They are collected near the end of the data flow and
placed in an error table. The conditional split labeled “Look
for bad rows” strips out rows with a null value in any
surrogate key column. This design lets you collect an error
row only once, even if it has problems with RI to multiple
dimensions. The target error table looks just like the real fact
table, but it also includes columns for the source system
keys.

The sample package Orders_SSIS also includes a sample
of the design pattern for creating a placeholder row in the
dimension table. Figure 7-15 illustrates this design pattern.
The data flow splits the unmatched data: the rows for
which there was no corresponding entry in the currency
dimension. The OLE DB Command transform adds a

448

placeholder row to DimCurrency, followed by an
uncached lookup to pick up the key for that new row. (You
can do this in the OLE DB Command transform. It’s the
same work either way.) Finally, the Union transform
combines the main flow with the error flow.

WARNING

The Union transform can be troublesome
during development. If you change the
shape of the data flow above the transform,
for example by adding a column, the Union
transform often doesn’t adjust properly.
We’ve found a measure of peace by always
deleting and replacing the Union transform,
rather than trying to fix it. Most other
transforms can be fixed up, often as easily
as opening the object. But you occasionally
have to delete and replace more
complicated objects than the Union
transform as well.

Figure 7-15: RI violations create placeholder row in
dimension

449

Surrogate Key Pipeline Technique #2: Database Joins

The database intensive technique requires that you stage
the data before the surrogate key pipeline. As we discussed
in subsystem 4, you may already have chosen to stage the
data after cleaning and transformation, for auditing or
restarting the ETL process.

The design pattern starts with a big query, joining the clean
staged data to each of the dimensions. In the case of the
Orders fact table, this query joins the fact table to eight
dimension tables (date is used twice), using outer joins to
pick up the RI violations. The output flow from the source
adapter contains columns for all eight surrogate keys, all
eight natural keys, and all the other columns in the fact
table.

450

Stage the clean, transformed data to a table, then write a
SQL query joining the staged data to the dimension tables.
This approach is illustrated in Figure 7-16. Note that the
surrogate key lookups that are handled in the standard way
— by flowing into an error table — do not explicitly show
up in the data flow. Their design pattern here is the same
as in Figure 7-15, using the conditional split near the
bottom of the flow.

The SQL-based design pattern for adding a placeholder
row to the dimension, as we saw in the currency lookup, is
very similar to before. But here we use a conditional split
to identify unmatched rows (where the CurrencyKey is
null). The OLE DB Command, Lookup, and Union All
transforms are the same as previously. You would add a
conditional split branch for each dimension that may need
a placeholder entry.

Figure 7-16: Database joins perform surrogate key
lookups

451

Which Technique Is Best?

We don’t have a strong opinion about which is the best
technique for incremental loads. Both techniques use the
data flow task, and so you still have an opportunity to
perform complex manipulations on error flows. As a rule
of thumb, if you’re already staging the cleaned and
transformed fact data for other reasons, the database join
technique probably performs better. If not, you need to
count the cost of staging and indexing the fact data in your
assessment of relative performance.

When you’re designing the packages for the one-time
historic load, the database join technique is likely to be
your best choice. The historic load requires a complex join
to each dimension with type 2 attributes, in order to pick
up the surrogate key associated with the dimension

452

member at the time the fact event occurred. As we discuss
in subsystem 16, the data volumes associated with the
historic load push you toward using the database join
technique.

Subsystem 15: Multi-Valued Dimension Bridge Table
Builder

Sometimes a fact table must support a dimension that takes
on multiple values at the lowest granularity of the fact
table, as described in Chapter 2. If the grain of the fact
table cannot be changed to directly support this dimension,
the multi-valued dimension must be linked to the fact table
via a bridge table. Bridge tables are common in the
healthcare industry, financial services, insurance, and for
supporting variable depth hierarchies (see subsystem 11).

The challenge for the ETL team is building and
maintaining the bridge table. As multi-valued relationships
to the fact row are encountered, the ETL system has the
choice of either making each set of observations a unique
group, or reusing groups when an identical set of
observations occurs. Reusing groups is more work for the
ETL process, but results in a much faster user query
experience. In the event the multi-valued dimension has
type 2 attributes, the bridge table must also be
time-varying, such as a patient’s time-varying set of
diagnoses.

Within SSIS, the bridge table row can be constructed on
the fly during fact table loading. If a row does not already
exist in the bridge table for the current set of observations,
construct it, add it to the bridge table, and return the key to

453

the fact table flow. The design is almost identical to the
“placeholder row” technique detailed in subsystem 14.

Subsystem 16: Late Arriving Data Handler

Data warehouses are built around the ideal assumption that
fact rows arrive around the same time the activity occurs.
When the fact rows and dimension rows both refer to
“yesterday,” the ETL design for the incremental load is
straightforward and performs well. However, there may be
cases where either fact or dimension rows trickle in long
after the event occurs.

Late Arriving Dimension Members

We’ve already described the design pattern for late
arriving dimension data. If your business processes or
technical environment are such that you can reasonably
expect to see fact rows arrive before their corresponding
dimension rows, the best approach is to insert the
placeholder row in the dimension table, as detailed in
subsystem 14. When the dimension information eventually
shows up, all you need to do is update the attributes in the
dimension row. The fact row doesn’t have to change.

NOTE

There’s a nuance here around how you
treat the first update to the dimension row,
in the case where the dimension has any
type 2 attributes. You should be able to

454

make the initial update to the dimension
attributes as a type 1 change. The best way
to handle this is to add a metadata column
to the dimension table that tracks whether
the row was added by the fact table
processing, and flips a bit when you update
the attributes the first time. The SSIS
slowly changing dimension transform can
handle this situation, with the feature called
Inferred Member Support.

Late Arriving Dimension Updates

What if you have a dimension member already, but you
receive a late notification of a change to a type 2 attribute?
This happened with a recent client who was building a
schema around employees’ projects and activities. The
human resources business process queued up changes until
the end of the month and then made those changes en
masse. But the employee might have had new
responsibilities for a full month by the time the systems
received the information! The monthly update included a
retroactive effective date.

Although it’s easy to say the business process is stupid and
should change (you can rest assured we did say that, but a
little more diplomatically), the reality is that a change to
the underlying business process is unlikely in the
necessary timeframe. In this scenario, the ETL system
needs to monitor for retroactive type 2 changes to
dimension rows. The unfortunate cascading implication is

455

that the existing fact rows for events after the late arriving
change may need to update their surrogate key to point to
the dimension member in effect at the time the fact event
occurred.

The ripples of the late arriving update continues into
Analysis Services. The fact table updates imply that you’ll
usually be fully processing the most recent month or two
of partitions in SSAS (or the entire cube if you’re not using
cube partitions).

Note that late arriving dimension members and updates are
far more likely to occur the closer to real time you’re
pushing your data warehouse. There can be a significant
performance issue associated with frequent updates of the
fact table keys.

Late Arriving Facts

At first glance, late arriving facts don’t appear to be a
problem. It seems the only difference is that the surrogate
key for the date dimension isn’t yesterday, but some other
date in the past. The wrinkle comes with a dimension that
has type 2 attributes. You need to assign the late arriving
fact row the dimension surrogate key that was in effect at
the time the fact event occurred, not the surrogate key
that’s in effect today.

It turns out this problem is not a difficult one to solve in
SSIS. The solution depends on which surrogate key
pipeline technique you’re using (subsystem 14):

456

• Database joins: If you’re using a large outer join query to
perform the work of the surrogate key pipeline, you need to
make that query a bit more complex. The join to any type 2
dimensions for fact tables that may experience late arriving
data needs to use a BETWEEN clause. Join on the source
system key, where the event date on the fact table is
BETWEEN RowStartDate and RowEndDate: the dates for
which this is the active row for this dimension member.

DOWNLOADS

You can see the database joins design
pattern in the Orders_SQL package on the
book’s web site. The cascading lookups
design pattern is illustrated in the
Orders_Lookups package.

• Cascading lookups: The situation is a little trickier if you’re
using cascading lookups to implement your surrogate key
pipeline. The reason is that the Lookup transform doesn’t have
an easy way to set up a BETWEEN clause on the implicit join. But
you can trick the Lookup transform into doing what you want.
An overview of the steps are to:

• Use a conditional split to divide the data flow into
current and late arriving fact data streams.

• Use the standard cached lookup on the current stream,
as described in subsystem 14.

• Use a derived column transform to add a copy of the
event date to the late-arriving stream.

• Use an uncached lookup on the late arriving stream.
On the mappings tab, map one event date to
RowStartDate and the second derived event date to
RowEndDate. Finally, on the Advanced tab, you can
modify the query to be parameterized.

457

• Use the Union All transform to combine the current
and late-arriving data streams, and continue
processing.

In most cases of late arriving facts, the late arriving stream
is less than 3% of the incremental load. The cascading
lookups technique works surprisingly well for incremental
loads where a small minority of fact data is late arriving.
Make sure there’s an index on the natural key in the
dimension table.

Don’t use the cascading lookups technique to perform the
surrogate key pipeline work for the one time historic load,
unless you have no history of type 2 dimension changes.
For the historic load, the vast majority of data is not
current, and hence would go through the uncached lookup.
Use the database join technique to implement the surrogate
key pipeline for the historic load.

Subsystem 17: Dimension Manager

The dimension manager is a centralized authority who
prepares and publishes conformed dimensions to the data
warehouse community. A conformed dimension is by
necessity a centrally managed resource; each conformed
dimension must have a single, consistent source. The
dimension manager’s responsibilities include the following
ETL processing tasks:

• Implement the common descriptive labels agreed to by the
data stewards and stakeholders during the dimensional
design.

• Add new rows to the conformed dimension for new source
data, generating new surrogate keys.

458

• Manage attribute changes, generating new surrogate keys or
updating in place, as appropriate.

• Distribute the revised dimension simultaneously to all fact
table providers.

If you have a single centralized data warehouse, perhaps
feeding downstream Analysis Services cubes, the
dimension manager’s job is easy: there’s only one copy of
the dimension table. The job is harder in a distributed
environment. As described in subsystem 8, many of the
challenges are political as much as technical.

RESOURCES

For a longer discussion of the Dimension
Manager system, see The Data Warehouse
Lifecycle Toolkit, Second Edition, page
402.

Subsystem 18: Fact Provider System

The fact provider owns the administration of one or more
fact tables, and is responsible for their creation,
maintenance, and use. If fact tables are used in any
drill-across applications, then by definition the fact
provider must be using conformed dimensions provided by
the dimension manager. The fact provider’s
responsibilities include:

• Receive duplicated dimensions from the dimension manager.
• Add new records to fact tables after replacing their source

system keys with surrogate keys.

459

• Modify records in all fact tables for error correction,
accumulating snapshots, and late arriving dimension
changes.

• Remove and recalculate prestored aggregates that have
become invalidated (see subsystem 19).

• Assure the quality of all base and aggregate fact tables.
• Bring updated fact and dimension tables online.
• Inform users that the database has been updated. Notify them

of any major changes or issues.

Subsystem 19: Aggregate Builder

Aggregates are the single most dramatic way to affect
performance in a large data warehouse environment.
Aggregates are like indexes: they are specific data
structures created to improve performance.

In SQL Server implementations, most organizations that
need performance aggregates implement them in Analysis
Services. As we describe in Chapter 8, SSAS has a wealth
of features for designing, defining, and updating
performance aggregates.

RESOURCES

For a longer discussion of building
aggregates when you are deploying to a
relational database, see The Data
Warehouse Lifecycle Toolkit, Second
Edition, page 134–137, and also detailed
articles in The Kimball Group Reader,
pages 536–546.

460

Subsystem 20: OLAP Cube Builder

OLAP cubes present dimensional data in an intuitive way,
enabling analytic users to slice and dice data. SQL Server
Analysis Services is a sibling of dimensional models in the
relational database, with intelligence about relationships
and calculations defined on the server that enable faster
query performance and more interesting analytics from a
broad range of query tools. You shouldn’t think of SSAS
as a competitor to a relational data warehouse, but rather
an extension. Let the relational database do what it does
best: provide storage and management.

The relational dimensional schema is the foundation for
the Analysis Services cubes. It is easy to design cubes on
top of clean, conformed, well maintained dimensional
models. If you try to perform ETL and data cleaning
during cube design and processing, you’re asking for
trouble.

You can launch Analysis Services processing from within
your SSIS packages. Most often, the master package
launches dimension table processing, then fact table
processing, and then ends with a package or packages that
perform SSAS processing. An alternative approach is to
integrate SSAS processing with each object: end the
customer dimension package with a task to process the
customer dimension in SSAS. We’ll return to this question
in Chapter 8.

Subsystem 21: Data Propagation Manager

461

The data propagation manager is responsible for the ETL
processes required to transfer conformed, integrated
enterprise data from the data warehouse presentation
server to other environments for special purposes. Many
organizations need to extract data from the presentation
layer to share with business partners, customers, vendors,
data mining applications, or government organizations.

These situations require extraction from the data
warehouse, possibly some light transformation, and
loading into a target format: ETL. The big difference
between data propagation projects and normal data
warehouse projects is usually that the target format is
completely non-negotiable. Consider data propagation as
part of your ETL system and leverage SSIS to provide this
capability. The SSIS packages to deliver data warehouse
data to downstream BI applications are usually much
simpler than the “real” ETL packages.

Managing the ETL Environment

A DW/BI system can have a great dimensional model,
compelling BI applications, and strong sponsorship. But it
will not be a success until it can be relied upon as a
dependable source for business decision making. One of
the goals for the data warehouse is to build a reputation for
delivering timely, consistent, and reliable information to
the user community. The ETL system must strive for
reliability, availability, and manageability.

The remaining thirteen ETL subsystems have to do with
managing your ETL environment. We briefly introduce

462

them here, and talk about many of these issues in more
depth in Chapter 17.

• Subsystem 22 — Job Scheduler: Every enterprise data
warehouse needs a robust ETL scheduler. The ETL process
should be managed through a metadata-driven job control
environment. In production, many organizations launch the
SSIS master package from SQL Agent. SQL Agent supports
simple job scheduling and dependency, and the master
package itself provides more complex control. There is
nothing special about using SQL Agent to launch the master
package. An alternative approach is to use command line
utility dtexec to start the package; use a script or other
enterprise scheduling software to call dtexec.

• Subsystem 23 — Backup System: The data warehouse is
subject to the same risks as any other computer system. Disk
drives fail and power supplies go out. Though typically not
managed by the ETL team, the backup and recovery process
is often designed as part of the ETL system. We discuss
backup and recovery at greater length in Chapter 17.

• Subsystem 24 — Recovery and Restart System: After your
ETL system is in production, failures can occur for countless
reasons beyond the control of your ETL process. Common
causes of ETL process failures include network, database,
disk, and memory failures. As we have discussed throughout
this chapter, you need staged data sets as a basis for
restarting the system. Without staged data, you’ll have to
redo all the hard ETL work, and may be in a situation where
you do not have a consistent starting point. SSIS contains
features for checkpoints and binding multiple tasks into
transactions. These features are useful, but you need to
design your packages for restartability; there’s no magic.
One of the easiest recovery and restart systems to implement
is simply to snapshot the data warehouse database as the first
step in the ETL process. If there is a failure in ETL, the
database can simply roll back to the snapshot. The snapshot
adds a bit of overhead to the system, but remarkably little for
such a convenient technique.

463

• Subsystem 25 — Version Control System: The version
control system is a “snapshotting” capability for archiving
and recovering your SSIS packages. As we discuss at the
beginning of this chapter, the BI Development Studio
integrates with a wide variety of source control applications
including Microsoft’s Team Foundation Server.

• Subsystem 26 — Version Migration System: After the ETL
team gets past the difficult process of designing and
developing the ETL process and manages to complete the
creation of the jobs required to load the data warehouse, the
jobs must be bundled and migrated to the next environment
— from development to test and on to production. Migrating
SSIS packages between environments is quite
straightforward. These issues, and the use of package
configurations to modify variables and connection
information at runtime, are discussed in Chapter 16.

• Subsystem 27 — Workflow Monitor: The ETL system must
be constantly monitored to ensure the ETL processes are
operating efficiently and the warehouse is being loaded on a
timely basis. The audit system, ETL logs, and database
monitoring information are your key tools. In Chapter 17 we
provide an overview of the kind of monitors to place on your
system, and some items to keep an eye out for.

• Subsystem 28 — Sorting System: Certain common ETL
processes call for data to be sorted in a particular order.
Because sorting is such a fundamental ETL processing
capability, it’s called out as a separate subsystem. SSIS
contains a Sort transform within the data flow. This
transform works well for small to medium data volumes, but
should be avoided for very large data sets. The Sort
transform functions well when the entire data set fits in
memory; its performance degrades significantly when data
must be paged to disk. You have two alternatives to the
built-in Sort transform. If the data is in a staging table, use
an ORDER BY clause on the source query to pre-sort the data.
You need to go into the Source Editor and tell SSIS that the
data is sorted. This is easy to do; you just need to remember
to do it. Alternatively, there are third-party sort utilities
available, including SyncSort, CoSort and NSort. These

464

utilities constitute the “high end” for extreme high
performance sorting applications. In some cases, it makes
sense to drop data out of a relational format just in order to
use these packages. As ever, you’ll need to evaluate your
specific problem to reach a conclusion as to the best course
for you.

• Subsystem 29 — Lineage and Dependency Analyzer: Two
increasingly important elements requested of enterprise-class
ETL systems are lineage and dependency. Lineage is the
ability to look at a data element — for example a number in
a report — and see exactly how it was populated.
Dependency is the other direction: look at a source table or
column, and identify all the packages, data warehouse tables,
cubes, and reports that might be affected by a change.
Although you can lay the groundwork for a lineage and
dependency analyzer by following the practices outlined in
this chapter, Microsoft does not provide such an analyzer.
The good news is that all SQL Server components rely on
well structured metadata, so the problem is theoretically
solvable. Someday.

• Subsystem 30 — Problem Escalation System: The execution
of the ETL system should be a hands-off operation, running
like clockwork without human intervention. If a problem
occurs, the ETL process should handle it gracefully: logging
minor errors, and notifying the operator of major errors. In
subsystem 4 we discussed the design pattern for halting
package execution in the event of a major error. Before you
go to production, you should have processes in place for
examining the error logs, and rehabilitating bad data.

• Subsystem 31 — Parallelizing/Pipelining System: The goal
of the ETL system, in addition to providing high quality
data, is to load the data warehouse within the allocated
processing window. For many organizations this can be a
challenge, and you should always look for opportunities to
parallelize your process flows. SSIS is good at doing this on
your behalf. There are several properties of the Data Flow
task that you can adjust for each task to improve
performance. These are DefaultBufferMaxRows,
DefaultBufferSize, and EngineThreads. In addition,

465

since each target table has its own package, you can
experiment with the layout of dependencies in the master
package, executing different packages at the same time. Of
course, dimensions must be processed before facts, but
different fact tables can start at different times. Also consider
that if you’re staging the data at multiple points in the
process, you’ll be creating varying loads on the database
server and SSIS.

• Subsystem 32 — Security System: The ETL system and
staging tables should be off limits to all business users, with
the possible exception of an auditing organization.
Administer role-based security on the servers and databases
and backup media. Security is discussed in greater detail in
Chapter 14.

• Subsystem 33 — Compliance Manager: In highly regulated
environments, supporting compliance requirements is a
significant new requirement for the ETL team. Compliance
in the data warehouse boils down to maintaining the chain of
custody of the data. The data warehouse must carefully
guard the compliance-sensitive data entrusted to it from the
moment it arrives. The foundation of your compliance
system is the interaction of several subsystems already
described: lineage and dependency analysis, version control,
backup and restore, security, the audit dimension, and
logging and monitoring.

• Subsystem 34 — Metadata Repository Manager: We
continue to hope that Microsoft will deliver a Metadata
Repository Manager someday. Metadata is discussed in
greater detail in Chapter 15.

Summary

Developing the ETL system is one of the greatest
challenges of the DW/BI project. No matter how thorough
your interviews and analyses, you’ll uncover data quality
problems when you start building the ETL system. Some
of those data quality problems may be bad enough to force
a redesign of the schema.

466

One of the key early steps in the ETL system development
is to write the ETL plan. Ideally, we like to see a
specification document that describes your standard
approaches for the subsystems presented in this chapter
and that documents nonstandard techniques for specific
challenges. All of these issues need to be addressed before
you go into production, and it’s best to give some thought
before you start writing your first SSIS package. At the
very least, you need to finish the logical and physical data
models, complete the source to target maps, and write a
brief overview of your planned approach.

The extract logic is a challenging step. You need to work
closely with the source system programmers to develop an
extract process that generates quality data, does not place
an unbearable burden on the transaction system, and can
be incorporated into the flow of your automated ETL
system.

The ETL system may seem mysterious, but hopefully at
this point you realize it’s fairly straightforward. We’ve
tried to demystify the jargon around implementing
dimensional designs, emphasizing the importance of using
surrogate keys and maintaining referential integrity.

We hope that the many ideas presented in this chapter have
sparked your creativity for designing your ETL systems.
More than anything else, we want to leave you with the
notion that there are many ways to solve any problem. The
most difficult problems require patience and perseverance.

467

Chapter 8

The Core Analysis Services OLAP Database

The tip of the iceberg.

Once you’ve designed, built, and loaded the relational data
warehouse, it’s time for the fun part: delivering
information to the business user community. In order for
users to be able to consume that information — especially
for ad-hoc use — you need to make sure they can
formulate queries and get responses quickly. The Analysis
Services OLAP database is a popular and effective tool for
meeting these goals, and should be a core part of your
strategy to enable self-service business intelligence. OLAP
stands for On Line Analytic Processing, to distinguish this
analytic database from the more familiar OLTP transaction
processing database.

Designing and developing the Analysis Services database
straddles the data track of the Kimball Lifecycle, as
illustrated in Figure 8-1. The OLAP design process begins
with modeling. If you’ve followed the Kimball Method to
implement the dimensional model in the relational
database, the OLAP design step is a straightforward
translation from that existing design. There are some
physical design decisions to be made later in the
development process, and a modest extension of the ETL
system for populating the OLAP database.

Start the process of building the OLAP database by
sourcing it from a robust, cleanly populated, relational

468

dimensional model, as described in the previous chapters.
From a solid starting point, you can develop a decent
prototype in a few days.

It’ll take more than a few days to polish that prototype,
adding complex calculations and other decorations,
making the physical design decisions, and setting up and
testing the process to keep the Analysis Services database
up-to-date. But you’re starting from a clean and conformed
dimensional model, so it’s really not that hard. The
investment in building and populating the OLAP database
is typically measured in person-weeks, not person-months.

Figure 8-1: Business Dimensional Lifecycle: The data
track

This chapter starts with an overview of SQL Server
Analysis Services (SSAS) OLAP. We discuss why you
should include an SSAS database in your DW/BI system.
What it comes down to is this: It’s substantially easier, and
lots more fun, to deliver fast query performance and
complex analytics in Analysis Services than in a relational

469

database. Analysis Services works well. Especially when
you consider its price, it’s the obvious choice of OLAP
technology on the Microsoft platform.

We spend most of the chapter discussing how to develop
your SSAS dimensions and measures. We end with a
discussion of physical design considerations, including
precomputed aggregations and partitions, along with an
overview of the approaches for keeping your Analysis
Services database up-to-date.

This chapter describes how to use Analysis Services as a
core presentation server in your DW/BI system. The core
OLAP database is typically managed centrally, and is
closely tied to the relational data warehouse and ETL
systems. In Chapter 11 we describe the Power Pivot
functionality of SSAS, new in SQL Server 2008 Release 2.
Power Pivot is a standalone Excel add-in version of
Analysis Services designed for business users. It can query
data from a central OLAP cube for some or all of its data.
In Chapter 13, we look at the other part of Analysis
Services’ functionality: data mining.

Overview of Analysis Services OLAP

The relational database is a great place to store and
manage the data in your DW/BI system. But the relational
database doesn’t, by itself, have enough intelligence. There
are several things missing from the relational data store:

• Rich metadata to help users navigate the data and create
queries.

470

• Powerful analytic calculations and functions defined in a
context-sensitive query language

• Excellent and consistent query performance for a broad
range of ad hoc queries.

For non-Microsoft DW/BI systems, the most common
approach to providing these missing elements is to use a
full-featured reporting tool on the relational data
warehouse. The reporting tool contains the metadata to
help users navigate. And the reporting tools work closely
with the database engine to construct well-formed SQL
queries. Some reporting tools can also provide transparent
aggregate navigation for performance and more advanced
analytics.

This is a common architecture in Microsoft DW/BI
systems as well. In the SQL Server environment, you can
use Reporting Services Report Builder as the ad hoc query
and reporting tool, accessing the relational data warehouse
directly. This scenario is described in Chapter 10.

The preferred architecture in the Microsoft platform is to
use SSAS as the primary presentation database. As you’ll
see in this chapter, when you define an Analysis Services
database on top of your relational data warehouse, you’re
creating that rich metadata layer. At the same time, you
can create a physical storage layer that includes
aggregations and indexes to deliver excellent query
performance. Analysis Services also brings a powerful,
although complex, language that supports advanced,
context sensitive analytics.

In the Microsoft SQL Server DW/BI system, we
recommend building an Analysis Services database for ad

471

hoc users, and possibly to serve as the database for most
predefined reports as well. This chapter describes how to
use SSAS as the presentation database — what we call the
core OLAP database.

Why Use Analysis Services?

The obvious reason for using Analysis Services is that it
plugs several gaps in the relational database’s analytic
functionality. We’ll begin with a summary of why we
generally recommend this architecture for SQL Server.

• User-oriented metadata: The definition of an OLAP cube
highlights elements of the dimensional model that improve
the user experience, especially for ad hoc queries. These
metadata elements include the distinction between facts and
dimensions, hierarchies and drilldown paths, groupings of
attributes and facts, and the ability to easily combine facts
from multiple business processes through conformed
dimensions. These elements are defined once on the SSAS
server, and are available to any client tool without further
configuration.

• Calculations: You can define business calculations like
profit, sales year to date, and sales same period last year.
You can define sets like top 10 customers and a host of other
calculations. Once these calculations are defined, all
business users — no matter what tool they use to access
Analysis Services — will use the same formula. Complex
calculations can be challenging to define correctly, but the
work is done once by the development team and shared by
all. The cube calculations that you define using the MDX
language can be orders of magnitude more complex than
those supported by SQL.

• Complex security rules: One of the challenges of providing
ad hoc access to the relational data warehouse is to secure
detailed data but provide open access to summarized data.

472

This is particularly true for ad hoc use. SSAS security
enables complex security rules, as we discuss in Chapter 14.

• Query performance: Query performance is the first reason
most people are attracted to OLAP. In general, Analysis
Services offers excellent dimensional query performance, in
a way that’s usually cheaper and easier to manage than is
possible from the relational database alone. You can get
good query performance from a pure relational system, but it
requires a lot of work that SSAS does for you. Best of all,
achieving this performance is transparent to the user.

NOTE

The SQL Server relational database has an
indexed views feature, which performs
some aggregate navigation. However,
we’ve not found it to be particularly useful
for dimensional schemas. Analysis
Services works so well that almost no one
uses SQL Server indexed views directly for
aggregate navigation on dimensional
schemas. There are some storage
configurations, known as relational OLAP,
in which SSAS uses indexed views to build
performance aggregations in the relational
database. In this scenario, Analysis
Services manages the indexed views for
you.

• Aggregation management: The single most important thing you
can do to improve the query performance of any DW/BI system,
regardless of platform, is to define aggregations. Aggregations
are precomputed and stored summarizations of the detailed data
in the fact table. They’re nothing mysterious: They’re simply

473

summary tables at different grains, for example monthly, or by
geographic region, or both. We called these aggregate tables in
the relational database, but Analysis Services calls them
aggregations, so that’s what we call them here. Defining a good
set of aggregations is more valuable to query performance than
indexing and cheaper than upgrading your hardware. SSAS
helps you define and maintain these aggregations. And queries
into your OLAP cube will seamlessly use the appropriate
aggregations.

What’s New in Analysis Services 2008 R2
OLAP?

Not much. The core OLAP database tools and
technology improved slightly between SQL Server
2005 and 2008, and even more slightly between
SQL Server 2008 and 2008 Release 2. Look for the
following improvements made in SQL Server
2008:

• Improved query performance.
• Improved aggregation design wizards. You can now

manually specify which aggregations you want SSAS
to build. Aggregations are discussed in greater detail
later in this chapter.

• Attribute relationship designer. Attribute
relationships are, unsurprisingly, how you specify
that two attributes are related. Correctly setting
attribute relationships is vital for query performance
for medium and large cubes, as we discuss later in
this chapter.

• Better design guidance. The wizards and editors do a
better job of encouraging good dimension and cube
design.

• Improved backup and restore.

Why Not Analysis Services?

474

We recommend that most DW/BI systems use Analysis
Services as the primary query server. The relational
version of the dimensional schema serves as the permanent
store of the cleaned and conformed data, and feeds data to
the OLAP database.

Some systems will close the relational data warehouse
database to business users. This is an appealing
architecture, for in this case the relational database can be
lightly indexed. The Analysis Services database, including
data, indexes, and a reasonable set of precomputed
aggregations, is smaller than the relational indexes it
replaces. Standard reports, KPIs, analytic reports, and ad
hoc analyses can all be sourced from SSAS, using
Reporting Services, Excel, and SharePoint.

Other systems will permit user access to both Analysis
Services and the corresponding relational database. And
others don’t use Analysis Services at all. What are some of
the common reasons to commit less than fully to SSAS?

• The Analysis Services development market is immature.
There are fewer tools, experts, and informational material
about how to work with SSAS than there are for relational
data warehouses.

• The query and reporting tool market is confusing and
immature. Companies have a large investment in existing
client tools and developer and user skills.

• Some kinds of analyses are intrinsically difficult in OLAP.
This is particularly true for analyses that align data not by
dimension attributes but by an event that’s buried in the
facts.

475

NOTE

Most ad hoc analyses are easier to
construct with MDX and OLAP than with
SQL. A counter-example from a
clickstream business process is to analyze
how users behave after they first visit a
certain page. First you need to go into the
facts to find who visited the page (and
when). Then you may want to align all the
users’ page clicks by time to see patterns in
behavior. This is moderately difficult in
SQL but extremely challenging in OLAP
and MDX. In truth, this kind of analysis is
best handled by data mining. But
sometimes we just want to poke around,
and for this kind of problem we prefer
SQL.

Designing the OLAP Structure

If you’ve followed our instructions to build the relational
layer of your DW/BI system with surrogate keys,
conformed dimensions, and well-managed dimension
changes, then building an Analysis Services OLAP
database is straightforward. There are several major steps:

1. Develop your plan.

2. Set up the design and development environment.

476

3. Create a Data Source View.

4. Create and fine tune your dimensions.

5. Run the Cube Wizard and edit the resulting cube.

6. Create calculations and other decorations.

7. Iterate, iterate, iterate.

Later in the chapter, we discuss physical storage issues,
which are largely independent of the database’s logical
design.

NOTE

Analysis Services contains features to help
you overcome flaws in the design of the
source database, like referential integrity
violations, but we’re not going to talk about
those features. Instead, build your DW/BI
system correctly, as described in this book.

Planning

The first step in developing your SSAS database is to
document its scope. If you’re following the Kimball
Method, your phase 1 project includes a single business
process dimensional model. This is a reasonable sized
chunk for the first phase of an Analysis Services cube:
usually 3–5 related fact tables and their associated

477

dimensions. You will need to consider the contents of each
cube, the grain of the fact tables and their dimensions, and
the nature of cube usage in your plan.

RESOURCES

We reviewed the Kimball Method very
briefly in the introduction to this book. For
much more detail, see The Data Warehouse
Lifecycle Toolkit — an entire book devoted
to the subject of the Kimball Method.

Cube Content

A single cube can — and should — contain multiple fact
tables. The most challenging aspect of cube planning is to
decide how many fact tables to include in a single cube.
There’s no physical upper limit on the number of fact
tables to include, and the best design for you depends on
your data and usage patterns. When two fact tables are in
the same cube, it’s trivial for users to develop queries and
analyses that include information from both. This is hugely
valuable, and is the reason we create conformed
dimensions in the first place. The payoff for building
conformed dimensions is the ability to drill across separate
business processes, assembling an integrated final result.

How Many Fact Tables in a Cube?

478

There is a hierarchy of sorts inherent in an Analysis
Services installation. At the top is the server
instance. Usually there is one server instance on a
machine, just as with the relational database
engine.

A server can have multiple databases, and a
database can contain multiple cubes. Finally, each
cube can contain multiple fact tables, which
Analysis Services somewhat confusingly calls
Measure Groups. All of the measure groups and
cubes in a database share conformed dimensions.

Most organizations will have a handful of
databases in production, each of which has 1–10
cubes. There’s no technical limit on how many
databases, cubes, or fact tables you have.

Rules of thumb: Five fact tables in a cube should
be entirely comfortable in most situations. A cube
that includes fifteen fact tables is often reasonable,
though your experience will depend on your data
volumes, the complexity of your calculations, and
usage patterns. Fifty fact tables in a cube is almost
certainly too many for broad use.

If you have resources to spare, consider creating an
exploratory cube that contains many or all fact
tables, but is open only to the DW team and a very
small number of power users. The exploratory cube

479

is used to inform the development of smaller subset
cubes.

The fact table and dimensions in a single business process
dimensional model equates comfortably to a single cube. It
is certainly the place to begin for your first SSAS core
cube development effort. But as you iterate through the
Lifecycle and add new business process dimensional
models, don’t blindly spin up a new cube for each. There is
so much analytic richness to be gained from including
additional fact tables in a single cube. The problem is that
as the cube grows in complexity, its performance degrades.

Cube Granularity

As you’re deciding which fact tables are included in the
cube, you should also determine which dimensions, and
which grain of the dimensions, are included. Analysis
Services scales very well, and in many cases it is
reasonable — and best practice — to build cubes with the
same grain as the underlying fact tables. Cubes that are
built on and include a terabyte of relational data are not
uncommon. Remember, SSAS manages and uses
precomputed performance aggregations, so most user
queries will not actually use the detailed data.

Our initial approach is to build the cubes at the same grain
as the dimensional data in the relational database. The
factors that might lead us to deviate from that approach
include:

480

• Severe resource constraints.
• Potential usability problems, usually because of poorly

structured natural hierarchies that lead to a huge number of
children in a drilldown path. It’s not a good idea to have
100,000 nodes open up when a user clicks a + sign in an
Excel spreadsheet, as she will wait a long time for the data to
return or Excel to crash.

• Clearly defined business cases for accessing the lowest grain
of detail. In this case, it can be quite effective to reach back
into the relational database for that lowest level of detail.

We usually exclude the audit dimension described in
Chapter 7.

Cube Usage

The cube scope document should also detail how much of
the overall ad hoc access will go through Analysis
Services. Typically, the answer is between 90 percent and
100 percent. Document any scenarios where business users
need to access the relational data warehouse directly for ad
hoc use. Also, document how much of standard reporting
will go through SSAS. This is a much broader range,
typically between 50 percent and 100 percent.

Getting Started

There are several steps in the setup process. First, you need
to install and configure one or more Analysis Services
development servers. You need to ensure the correct
software is installed on developers’ desktops. You should
have some clean data loaded into the data warehouse
database, and you should have created a set of views on
those database tables.

481

Setup

As the Analysis Services database developer, the only SQL
Server components you must have on your desktop PC are
the development tools, notably BI Development Studio
(BIDS) and Management Studio. Many developers run the
server components on their desktop PCs, but it’s not
required. You can point to a shared Analysis Services
development server, just as you would share a
development relational database server. Use BI Studio to
design and develop the Analysis Services database, and
Management Studio to operate and maintain that database.

Work through the tutorial that ships with SQL Server
before trying to design and build your first OLAP
database. It’s a good tutorial, and not only teaches you
which buttons to push but also provides information about
why. This chapter is not a replacement for the tutorial.
Instead we assume you’ll learn the basics from the tutorial.
Here, we focus more on process and design issues.

Create Relational Views

In Chapter 5, we recommended that you create a database
view for each table in the dimensional model. End users’
and Analysis Services’ access to the relational database
should come through these views. The views provide a
layer of insulation, and can greatly simplify the process of
making future changes to the DW/BI system. Give the
views and columns user-friendly names: These names
become SSAS object names like dimensions and attributes.

482

NOTE

Analysis Services does a pretty good job of
turning the common styles of database
object names into friendly names. It will
parse CamelCase and Underscore_Case
names, stripping underscores and inserting
spaces as appropriate. It’s not perfect; you
do need to review the friendly names in the
Data Source View.

The downside of using views is that you obscure any
foreign key relationships defined in the data. Many tools
automatically create join paths based on these
relationships; these join paths must be added by hand when
you use views.

NOTE

Creating the view layer sounds like
make-work. But we’ve always regretted it
when we’ve skipped this step.

Populate the Data Warehouse Database

You don’t need to wait until the ETL system is finished,
and the relational data warehouse is fully populated with
historical and incremental data, before you start working
on the Analysis Services database. Technically, you don’t

483

have to populate the database at all. But that’s just a
theoretical point: In practice, you want to look at the data
as you’re designing the OLAP database.

NOTE

There is nothing like designing, processing,
and exploring an SSAS dimension to
highlight data inconsistencies. We
recommend that you experiment with
building SSAS dimensions as soon as you
have data available. You will be amazed by
what you’ll turn up in what you perhaps
imagined was very solid and clean data.

We hate to see projects that finish the ETL work before
anyone begins poking around the data in SSAS. Some
organizations run projects in a very compartmentalized
way and declare that once ETL is accepted, it cannot be
changed. If your organization is that way, you will be well
served to mock up your dimensions as soon as possible.
It’s helpful during the design process to work from a static
copy of the warehouse database. It’s much easier to design
and debug the cube if the underlying data isn’t changing
from day to day. Most people fully populate the
dimensions and several months of data in the large fact
tables. Small fact tables, like the Exchange Rates fact
table in the Adventure Works Cycles case study, can be
fully populated.

484

Fully populate most of the dimensions because that’s
where most of the design work occurs. Dimensions are
usually small enough that you can restructure and rebuild
them many times, without an intolerable wait to see how
the modified dimension looks. If you have a larger
dimension, say 100,000 to 1 million members, you may
want to work on a dimension subset for the early phases of
the design cycle. Define your dimension table view with a
WHERE clause so that it subsets the dimension to a
reasonable size, iterate on the design until you’re satisfied,
and then redefine the view and rebuild the dimension at its
full size. We can almost guarantee you’ll still tweak the
design a few more times, but you should be past the worst
of the iterations.

We mentioned that most people use a few months of fact
data. This works great for structural design tasks like
setting the grain, dimension usage, and base measures for
that fact data. But defining complex calculations is often
easier to do with a longer time series. As a simple
example, consider a measure that compares sales this
month to the same month last year.

If you have really big dimensions and facts, you should
take the time to build a physical subset of the relational
database. Keep all small dimensions intact, but subset
large dimensions to fewer than 100,000 members.
Randomly choose leaf nodes rather than choose a specific
branch of the dimension. In other words, if you have 5
million customers, randomly choose 100,000 of them
rather than choose all of the customers from California
(who may not be representative of your full customer
base). Choose the subset of facts from the intersection of

485

your dimensions. Be very careful to avoid grabbing facts
for the dimension members you’ve excluded from the test
database. In other words, load facts for the 100,000
selected customers only.

Create a Project and a Data Source View

Finally, you’re ready to use the tools to get started on the
design process. Create an Analysis Services project in BI
Studio. By default, BI Studio points to the default instance
on the local server — the developer’s desktop. To specify
a different Analysis Services instance or server, right-click
the project name in the Solution Explorer, and choose
Properties. As illustrated in Figure 8-2, you can specify
several properties of the development and deployment
servers.

NOTE

Most DW/BI teams will use SQL Server
Developer Edition, which contains all the
functionality of the Data Center and
Enterprise Editions. If you’re using
Standard Edition in production, change the
Deployment Server Edition property of the
project to Standard. That way, you’ll get
warnings if you attempt to use functionality
that’s not available in Standard Edition.

Figure 8-2: Choose the Deployment Server Edition

486

The next step in designing the Analysis Services database
is to create a Data Source View (DSV) on the relational
data warehouse database. The Analysis Services database
is built from the Data Source View, so you must create a
DSV before designing the database.

The DSV contains the tables that will be included in your
cube. As its name implies, it is a view of your data source
— in this case, the relational data warehouse database. The
main activities that you will perform in the DSV are:

• Identify the subset of dimension and fact tables that will be
included in the cube.

• Identify the primary key in dimension and fact tables.
• Specify foreign key relationships between fact and

dimension tables, and between multiple dimension tables.
These usually show up correctly if you build the DSV
directly from tables, but you have to add them by hand if
you build the DSV from views. This is a task that takes 20
seconds, so it’s not a good enough reason to avoid using
relational views.

487

• Rename the tables and columns, although the relational view
definition is a better place to do this. Note that dimension
and attribute naming should take place during the
dimensional modeling step with the active involvement of
key users. In general, those names should be used in the
relational database and here in SSAS.

• Add computed columns, although the relational view
definition is a better place to do this. The kinds of computed
columns you can add in the DSV are exactly the same kinds
of things you can do in the relational view definition. This is
not the same thing as an Analysis Services computed
measure, which we discuss later in this chapter.

NOTE

There’s an option on the first screen of the
Data Source Wizard to create a data source
based on another object. Use this option to
pick up the data source from another
project rather than creating a new one.

Figure 8-3 illustrates the DSV for the MDWT_2008R2
database in the DSV Designer. Use the list of tables on the
left-hand side to quickly find a table.

You must construct the relationships correctly in the DSV
because these relationships help define the Analysis
Services database. A relationship between a fact and
dimension table appears as an arrow, as you can see in
Figure 8-3. Make sure you set the relationship in the
correct direction.

Figure 8-3: A Data Source View

488

WARNING

Avoid using the DSV to cobble together an
Analysis Services database from a variety
of heterogeneous sources. First, unless
you’ve scrubbed all the data, it’s not going
to join well at all. Second, there’s a
considerable performance cost to joining
remotely. You’re almost certainly better off
cleaning and aligning the data and hosting
it on a single physical server before
building your cube. Yes: You’re better off
building a data warehouse.

489

However, if you’re careful and judicious,
you can use this distributed sources feature
to solve some knotty problems, especially
for a prototype. A distributed DSV uses the
SQL Server engine under the covers to
resolve the distributed query. At least one
SQL Server data source must be defined in
order to create a distributed DSV.

Dimension Designs

The database that you design and build in Analysis
Services will be very similar to the relational data
warehouse that you’ve built using the Kimball Method.
This section describes how Analysis Services handles
dimensions in general, and how it handles several of the
dimension design issues we discussed in Chapter 2.

After we’ve talked about how OLAP dimensions
correspond to the dimension tables in your relational data
warehouse, we describe the actual process of creating and
editing those dimensions.

Standard Dimensions

A standard dimension contains a surrogate key, one or
more attributes (columns), and usually one or more
multilevel hierarchies. Analysis Services can build
dimensions from dimension tables that:

490

• Are denormalized into a flat table structure, as the Kimball
Method recommends

• Are normalized into a snowflake structure, with separate
tables for each hierarchical level

• Include a mixture of normalized and denormalized structures
• Include a parent-child hierarchy
• Have all type 1 (update history) attributes, type 2 (track

history) attributes, or a combination

Even though Analysis Services doesn’t require a surrogate
key, recall that surrogate keys are a cornerstone of the
Kimball Method — build a permanent, enterprise Analysis
Services database only from a dimensional relational
source with surrogate keys.

Your business users will tell you whether dimension
attributes should be tracked as type 1 or type 2. We’ve
found that most dimension attributes are tracked as type 2.
In Chapter 6 we talked extensively about how to set up
your ETL process to manage the propagation and
assignment of surrogate keys for type 2 dimension
attributes. Although type 2 dimensions seem harder to
manage in the ETL system, the payoff comes with your
SSAS database. Analysis Services handles type 2 attribute
changes gracefully. The larger your data volumes, the
more you should be relying on type 2 changes, where they
make sense for the business user.

Type 1 attributes can cause some problems for OLAP
databases for the same reason they’re troubling in the
relational world: precomputed aggregations. When a
dimension attribute is updated in place, any aggregations
built on that attribute are invalidated. If you were
managing aggregations in the relational database, you’d

491

have to write logic to fix the historical summary tables
when an attribute changes. Analysis Services faces the
same problem. You don’t have to perform any action to fix
up the historical attributes — SSAS does that for you. But
this is an expensive operation. If you have a lot of type 1
changes in a very large database, you’re going to be
unpleasantly surprised by the incremental processing
performance, as the system responds to your changes and
rebuilds its aggregations.

Variable Depth or Parent-Child Hierarchies

Variable depth or parent-child hierarchies are a useful way
of expressing organization hierarchies and bills of
materials. However, these dimension structures are
difficult to maintain in the relational data warehouse. This
is especially true if the dimension has type 2 attributes.

If you can maintain your variable depth hierarchy in the
relational database as either a type 1 or type 2 dimension,
then Analysis Services can consume it. It’s straightforward
to set up a Parent-Child dimension in Analysis Services.
It’s straightforward to query that dimension — far more so
in Analysis Services, by the way, than using standard SQL.

NOTE

Parent-Child hierarchies are a valuable
feature in Analysis Services. However, it’s
not a trivial exercise to get them to perform

492

well in a very large database or with many
members in the Parent-Child dimension. If
your system is large, you may want to
bring in an expert or launch phase 1 using a
standard dimension. Add the variable depth
relationship when your team has developed
more expertise.

We usually try to avoid implementing a
variable depth hierarchy in our dimensional
models. Sometimes it’s possible to
shoehorn the variable depth hierarchy into
a standard hierarchy of fixed levels, and
that’s our preferred approach. If that’s just
not possible, the SSAS Parent-Child
hierarchy is the best way to store the
information for consumption by the users.

When you build a Parent-Child hierarchy in Analysis
Services, you don’t need a bridge table, although it can
improve performance for large hierarchies. You may have
built a bridge table to facilitate relational queries, as
described in Chapter 2. If so, you should eliminate that
bridge table from the DSV for the SSAS database.

Multivalued or Many-to-Many Dimensions

A multivalued dimension has a many-to-many relationship
between a dimension and the fact table, or between two
dimension tables. Each row in the fact table connects to
potentially many rows in the dimension table. Common

493

examples are patient hospital visits and diagnoses (one
patient visit can have multiple diagnoses), and purchase
reasons (a customer can have multiple reasons for
purchasing your product).

The relational design for a multivalued dimension includes
a bridge table between the fact and dimension tables. This
bridge table identifies a group of dimension values that
occur together. The example in the Adventure Works
Cycles case study is the sales reason. Adventure Works
Cycles collects multiple possible reasons for a customer
purchase, so each sale is associated with potentially many
reasons. The bridge table lets you keep one row in the fact
table for each sale, and relates that fact event to the
multiple reasons.

This same structure serves to populate the Analysis
Services database. The only nuance is that the bridge table
is used as both a dimension table and a fact table, or as just
a fact table, within Analysis Services. This seems odd at
first, but it really is correct. The fact the bridge table tracks
is the relationship between sales and sales reasons — you
can think of it as the Reasons Selected fact table.

Keep the bridge table from your relational data warehouse
in your DSV. The designer wizards correctly identify the
structure as a multivalued dimension, which Analysis
Services calls a many-to-many dimension.

Role-Playing Dimensions

Often a dimension plays multiple roles within the context
of a fact table. For example, you may track several roles of

494

an employee dimension, such as the sales executive and
the salesperson for an account. It’s quite common for the
date dimension to play multiple roles in a fact table.

There are two ways to implement role-playing dimensions
in Analysis Services, and neither is entirely satisfactory:

• Create one relational view corresponding to the physical
dimension table, include that one view in the DSV, and
create one physical dimension in Analysis Services. Use the
Analysis Services role-playing dimension feature to use that
single dimension many times.

• Advantage: The resulting cube is more efficient,
because only one physical dimension is created.

• Disadvantage: Analysis Services does not let you
rename columns for each role. You rename the
entire dimension, but not each attribute. This may
be acceptable when a user is constructing an
analysis, because that user knows which
dimension she’s working with. But it presents
serious challenges to other people looking at the
same analysis or report, because the context of the
dimension role is not always obvious. If you take
this approach, you will need to train users to label
their reports thoroughly (good luck with that).

• Create one relational view for each role, include those
multiple views in the DSV, and create multiple Analysis
Services dimensions.

• Advantage: You can uniquely name each attribute
in each role.

• Disadvantages: This approach uses more system
resources, which can be a significant performance
drain in a complex system. Also, it substantially
increases development complexity as there’s no
good way to keep the dimension definitions in
sync.

495

Despite the disadvantages of the second approach, we are
inclined to recommend it as the default strategy. Having
two objects with the same name (such as currency name
rather than local currency name and standard currency
name) violates a fundamental principle of good
dimensional design.

However, the Analysis Services role-playing feature
should be used for the dimension that most often plays
multiple roles: date. That’s because you should define one
and only one dimension of type Time. Having an officially
designated Time dimension lets you use functions like
YearToDate in calculations, and create measures that are
semi-additive across time. Later in this chapter, we
describe how to designate the date dimension as type
Time.

It’s a judgment call whether to treat the date dimension
one way and other role-playing dimensions another, or to
handle all dimensions consistently by using the SSAS
role-playing feature. We dislike both alternatives.

Creating and Editing Dimensions

The process of creating a new dimension consists of two
steps: run the Dimension Wizard and then edit the results.
Create one dimension at a time, refining and improving it
until you’re satisfied. Remember, dimensions are the
windows into the data. They are a key element of the
user’s experience, so you need to make them as clean and
well formed as possible.

496

As you run through the Dimension Wizard, you’re asked
to identify the key of the dimension. You should identify
the surrogate key as the key column, which SSAS does for
you automatically. However, by definition the surrogate
key is anonymous and is not at all useful to business users.
In the Dimension Wizard, always change the surrogate key
name column to something meaningful to business users,
like the date as illustrated in Figure 8-4, or an account
number (perhaps combined with customer name) for a
customer dimension. The data warehouse surrogate key
becomes the physical key in the SSAS dimension, but the
user never sees it.

Running the Cube Wizard: The One-Click
Cube

In most materials about Analysis Services,
including Books Online and the tutorials, you’re
encouraged to start building your OLAP database
by running the Cube Wizard after you’ve defined
the DSV. The Cube Wizard reads the relationships
you’ve defined in your Data Source View, and
automatically generates the definition for the entire
OLAP database, including all dimensions.

We’ve found that most people will take this route
two or three times. It certainly makes a fun demo.
But if you’re trying to get work done, you’ll
probably find this alternative process more
productive. Create dimensions one at a time, as we

497

describe in the next section. Work on each
dimension, setting its attributes and properties
correctly, processing and browsing it until you like
the way it looks. Move down the list of dimensions
until you’ve defined all the dimensions associated
with a fact table. Only then should you run the
Cube Wizard.

Figure 8-4: Defining the key in the Dimension Wizard

498

The next step of the Dimension Wizard is to identify the
attributes that you want to include in the SSAS dimension.
It’s tempting to choose to include all attributes, but there
are costs:

• Users have to locate the attributes they really want.
• Each attribute — especially those attributes that are available

for users to slice and dice during analysis — uses valuable
system resources.

499

WARNING

Small databases, say less than 100 GB, can
often be casual in their definition of the
cube’s dimensions and measures. The
defaults are good enough for a wide range
of scenarios. However, as the demands of
your system increase — including more
data, more complexity, and more users —
you need to be increasingly careful of
decisions that can impact performance.
Pruning the list of browsable attributes is
one of those decision points.

As you can see in Figure 8-5, for each column in the
dimension table you have three choices in the Dimension
Wizard:

• Make the column into a completely flexible attribute, which
can be included in multilevel hierarchies, dragged, dropped,
used in filters, and so on. Activate this option by checking
“Enable browsing” for the column in the Dimension Wizard,
as shown in Figure 8-5.

• Include the column as a non-drillable attribute. Users can
display this non-browsable attribute in analyses, but it’s not
something they can use to pivot, slice, or dice. There are
additional options for this type of attribute, which we discuss
shortly.

• Exclude the column from the SSAS dimension.

Any of the choices you make in the Dimension Wizard can
be changed later in the Dimension Designer.

500

Figure 8-5: Choosing attributes in the Dimension Wizard

As you exit the Dimension Wizard, BI Studio generates
the metadata for the dimension and leaves you looking at
the basic dimension structure in the Dimension Designer.
Next, edit your dimensions in the Dimension Designer,
getting each dimension the way you like it before moving
on to the next one. At this point in the process, you have
only metadata — the definition of the dimension. Later we

501

describe how you build, deploy, and process the dimension
so you can actually look at the dimension’s data.

Figure 8-6 shows the final version of the date dimension.
In the rightmost pane of the Dimension Designer is a
representation of the tables or views that underlie the
dimension. This pane is linked to the Data Source View; if
you try to edit the entities in this pane, you’re flipped over
to the DSV Editor. When you edit the DSV and return to
the Dimension Designer, the changes follow.

Figure 8-6: The Dimension Designer

The left-hand pane of the Dimension Designer is the
Attributes pane, and shows the list of attributes within the
dimension. Within the Attributes pane, you can rename
and delete attributes, and change the properties of those

502

attributes. To create a new attribute, drag a column from
the data source in the DSV. You may need to create a
calculated column in the DSV.

In the central pane of Figure 8-6 is the view of Hierarchies.
Create a new hierarchy by dragging an attribute into the
background area. Add levels to hierarchies by dragging
and dropping.

The final pane in Figure 8-6 is the Properties pane, which
is sometimes docked below the Solution Explorer. We set
it to float in order to maximize screen real estate. Some of
these properties are very important; others you might never
change.

When you’re editing a new dimension, take the following
steps:

• Edit the name and other properties of the dimension.
• Edit the names and other properties of each attribute in the

dimension.
• Create hierarchies.
• Create attribute relationships.
• If necessary, define dimension translations.
• Build, deploy, and process the dimension so you can look at

the dimension’s data.
• Iterate, iterate, iterate.

The order of these steps isn’t very important, but it helps to
have a checklist. As you can see by reviewing the
preceding list, the process of editing the dimension is
largely a process of editing object properties. There are
only a few other design tasks, like creating attribute
relationships and creating hierarchies.

503

In the next few sections, we’ll run through the properties
of dimensions, attributes, hierarchies, and levels. We’ll
talk only about the most important properties that you can
change; see Books Online for the details. In all cases, the
Properties pane shows the properties for the highlighted
item. Properties that you’ve changed from the default
values are highlighted in boldface.

Editing Dimension Properties

A dimension has several editable properties. The most
important during your initial development phase are:

• Name: You’ve had many opportunities to get the dimension
name right. This is your last chance.

• Description: Most query tools for Analysis Services have a
way of showing the description to the user, usually as a tool
tip. Populate the Description metadata from the information
you captured as part of the dimensional modeling process
step in Chapter 2.

DOWNLOADS

There is no way to directly connect
descriptions held in the relational database
to the Description property in SSAS
dimensions and attributes. SSAS orphans
the descriptions collected in the Excel
spreadsheet that we introduced in Chapter
2. However, there is an extremely useful
tool called BIDS Helper than you can
download from Codeplex

504

(http://bidshelper.codeplex.com). BIDS Helper
extends the functionality of BI Studio
(BIDS) with several dozen features. One of
those features lets you copy descriptions
held in SQL Server table and column
extended properties, into dimension and
attribute descriptions.

• AttributeAllMemberName: This label will show up to users
when they start to drill down in the dimension and look at the
highest level member of the dimension. The default name is
“All.”

• ErrorConfiguration: Analysis Services provides a lot of
different options for handling problems with the dimension data,
such as duplicate keys and referential integrity violations. You
can see the options if you set ErrorConfiguration to (custom). If
you’re sourcing your dimension from a solid Kimball Method
relational dimension table, as we’ve described in great detail in
this book, you shouldn’t have to worry about this property. You
shouldn’t have bad dimension data; shame on you if you do.

NOTE

Though you shouldn’t have duplicate
surrogate keys — or bad data anywhere in
your dimension — it’s not unheard of
between levels of a dimension hierarchy.
For example, Postal Code should roll up to
State, but in the source data there may be a
handful of violations. If your ETL process
doesn’t catch and fix these violations, it

505

should be modified to do so. If you change
the ErrorConfiguration from its default to
custom, and change the KeyDuplicate
property from IgnoreError to
ReportAndContinue or ReportAndStop,
you’ll enlist Analysis Services’ help in
figuring out where your data problems are.
We usually turn on at least this level of
error checking on dimensions.

RESOURCES

See the Books Online topic “Database
Dimension Properties” for a complete list
and extremely brief descriptions of all the
dimension properties.

Editing Attribute Properties

As with the dimension properties, most of the important
properties of an attribute are set correctly by the
Dimension Wizard. A few useful properties aren’t set by
the wizards. And if you add attributes within the
Dimension Designer, you need to be aware of how to
define these important attributes.

• Name and Description: Ensure these properties are set
correctly, as we discussed earlier for the dimension.

506

• Usage: This property is usually set correctly by the
Dimension Wizard. One attribute for the dimension can and
should have its usage set as Key. This is, obviously, the
surrogate key for the dimension. Almost always, the other
attributes are correctly set as Regular. The exception is the
parent key for a Parent-Child dimension (set to Parent).

• NameColumn: You have an opportunity to set the
NameColumn for the Key attribute in the Dimension
Wizard. If you forgot to set it there, set it here. Sometimes,
you set the NameColumn for other attributes of a dimension,
especially levels that you will make into a hierarchy. The
Key for each attribute must be unique, but the NameColumn
doesn’t have to be. If you don’t explicitly supply a different
NameColumn, SSAS uses the Key as the name.

• OrderBy: You can set the default sort order for each attribute
to its Key or its NameColumn. You can even define one
attribute to be sorted by another attribute, as long as you’ve
already defined an attribute relationship between the two
attributes. Later in this chapter, we describe how to define
relationships between attributes.

• AttributeHierarchyEnabled: This property can be set to True
or False. If it’s set to False, the user can include the attribute
in a query or report, but usually cannot pivot, slice, or dice
on it. You can substantially improve the performance of your
cube by setting many attributes to False. Consider setting
AttributeHierarchyEnabled to False for any attribute, such as
an address line or product description, that’s not constrained
to a domain.

• AttributeHierarchyDisplayFolder: You can add a lot of
value to your Analysis Services database by adding display
folders for the Attribute Hierarchies. If you have more than
10 to 12 attributes in your dimension, you should create
multiple display folders and assign attributes to them.
Creating a display folder is as simple as typing a name into
the attribute’s AttributeHierarchyDisplayFolder property.

507

NOTE

The usefulness of the display folder
depends on the client tool you’re using to
access the Analysis Services database. The
display folder shows up in a Report Builder
Report Model that you build atop the SSAS
database, and in Excel. Using display
folders substantially improves the user
experience.

RESOURCES

See the Books Online topic “Defining
Dimensional Attributes” for a complete list
of attribute properties, and a terse
description of each property. There are
many more attribute properties than we’ve
listed here.

Time and Account Dimensions

You may have noticed the Type property of a dimension or
attribute. It’s a frustratingly vague name for a property, but
it’s hard to think of a better name. Type is a classification
of the dimension that’s used by Analysis Services only in a
few special cases (Time and Account). Most of the time, if
you set the dimension type to anything other than Time or
Account, nothing happens.

508

The best way to set the types correctly is to run the Add
Business Intelligence Wizard. To set up Time intelligence,
the wizard has you identify the core date dimension, and
then specify which attribute refers to year, quarter, month,
and so on. The advantage of going through this step is that
you’ll be able to use built-in MDX functions like
YearToDate and PriorPeriod. If you have multiple
physical date dimensions, run through the wizard for only
one of them.

If your cube includes financial data, such as in a chart of
accounts, the Add Business Intelligence Wizard will let
you identify accounts as assets, liabilities, and so on.

There are about a dozen other kinds of dimension types
that you can add, but Time and Account are the only ones
that do anything within Analysis Services.

NOTE

If you’re a software developer building a
packaged application on Analysis Services,
you can use the dimension Type property
to identify dimensions that are important to
your application. You can’t rely on the
name because users can name the
dimension whatever they want.

Creating Hierarchies

509

A hierarchy is a metadata relationship that defines standard
drill paths in the data. Classic examples of hierarchies
include calendar (day, month, year); geography (city, state,
country, region); and product rollups. The dimension
design should include hierarchies where appropriate,
because a hierarchy will provide:

• User navigation of the dimension. A hierarchy is essentially
a paved road for user navigation to drill up and down the
data.

• Complex calculations. A hierarchy provides a framework for
many interesting calculations and analyses, such as sales
contribution to parent.

• Improved query performance. As we discuss in this section,
SSAS leverages hierarchies to provide substantial query
performance gains, by storing precomputed aggregations.

• A framework for security. It’s common to define a security
role that limits a user group to one branch of a hierarchy,
such as the western region. Security is discussed in Chapter
14.

Creating multilevel hierarchies is incredibly easy. Just drag
and drop attributes from the Attribute pane to the
Hierarchies pane. You can create many hierarchies, or
none at all.

When you first create a new hierarchy such as the standard
Date-Month-Quarter-Year calendar hierarchy as shown
back in Figure 8-6, you’ll see a warning sign on the
hierarchy. What this exclamation point is telling you is that
you have not defined attribute relationships between the
levels of this hierarchy. We’ll describe how to do that in
the next section. Here we’ll discuss when and why you
need to worry about attribute relationships for hierarchies.

510

The hierarchy just defined, even with the exclamation
point warning in place, is a valid hierarchy. Users can start
at year and drill down to quarter, month, and day. Whether
or not you define attribute relationships on the hierarchy
doesn’t affect the user experience of browsing the
dimension.

What’s missing is an assurance to Analysis Services that a
month rolls up to one and only one quarter, and a quarter
to one and only one year. That sounds kind of stupid when
we’re talking about the date dimension, but it’s a very
good example.

What if your quarter attribute took the values Q1, Q2, Q3
and month took the values Jan, Feb, Mar. This won’t
work! A month (Jan) always rolls up to Q1, but it rolls up
to many years. You can’t define the levels that way. Our
sample date dimension includes attributes YearQtr
(2010Q1) and YearMonth (2010-01). You have two
options:

• Build key columns for hierarchical levels into your relational
date dimension table or view definition. This is our
recommended solution.

• Use concatenated keys for the hierarchical levels. In other
words, the key of the quarter attribute is actually year and
quarter. Set this up in the Key Columns property of the
attribute.

If a hierarchy really does have referential integrity in
place, you should declare the attribute relationships. Once
you do so, that warning will go away. There are two
reasons why it’s important to declare attribute relationships
(where they exist) between levels of a hierarchy:

511

• Analysis Services will build intermediate performance
aggregations only within hierarchies with attribute
relationships defined. Remember that performance
aggregations are a cornerstone to good query performance.

• As your system grows to include fact tables at different
levels of granularity, they connect correctly only if the
attribute relationships are in place. For example, you have
detailed transaction data at the daily level and want to hook
it to planning data at the quarterly level. Analysis Services
needs your guarantee that daily data rolls cleanly to monthly
and quarterly.

The warning about not having attribute relationships in
place is just that: a warning. You can process, browse, and
deploy a hierarchy without attribute relationships defined.
In some cases it makes sense to do so: if users for
whatever reason want to drill down in a product dimension
from color to size to manufacturing location, you can make
that easy. Analysis Services still calls this a hierarchy, and
no analytic tool’s UI will distinguish between it and a
clean, structured hierarchy.

There are a handful of little details to clean up in the new
hierarchy:

• Fix the name: The default name generated by SSAS is quite
long.

• Add a description: As usual.
• Hide the non-hierarchical attributes: When you create a

multilevel hierarchy, the hierarchy’s levels are still available
as standalone attributes. In most cases you want to hide the
standalone attribute, and force users to navigate through the
hierarchy. Do this by setting the attribute’s
AttributeHierarchyVisible property to False.

• Set the display order for multiple hierarchies: A subtlety of
the Dimension Designer interface is that the order in which
the hierarchies are displayed in the hierarchy pane is the

512

same order in which they’ll appear in most query tools’ user
interfaces. You can drag and drop the hierarchies to re-order
them. This isn’t an official property that you can edit, except
by re-ordering the hierarchies.

RESOURCES

See the Books Online topic “User
Hierarchy Properties” for a complete list of
the properties of a multilevel hierarchy.

See the Books Online topic “Level
Properties” for a complete list of the
properties of hierarchy levels.

Set Up Attribute Relationships

We’ve already described the most important scenario for
which you must set up attribute relationships: declaring
referential integrity between levels of a multilevel
hierarchy. Attribute relationships are also used to sort one
column by another, for example month name by month
number.

A careful dimension designer will think about attribute
relationships for all attributes, not just those that define the
level in a hierarchy or need a sort order. Think about
shrunken subset dimensions — the piece of a dimension
that’s associated with fact tables at a higher grain, such as
quarterly forecasts by brand. In Analysis Services, you
don’t need to create separate shrunken subset dimensions.
They come “for free” when you bring in a fact table and

513

associate it with a dimension at the appropriate grain. But
you do need to tell SSAS which dimension attributes are
available at a higher grain. For example, a product
dimension has some attributes that are rightfully associated
with the brand, such as brand manager. If you accept the
default, which is to associate all attributes with the
dimension key (the product SKU), then queries of
quarterly sales forecasts by brand won’t have access to the
name of the brand manager.

All of these relationships should have been documented in
your initial dimensional model design. Dig back through
your documentation and spreadsheets, and take a few
minutes to set up the attribute relationships correctly and
completely.

It’s easy to set up attribute relationships in Analysis
Services 2008. Go to the Attribute Relationships tab of the
Dimension Designer, as illustrated in Figure 8-7. The first
time you go to the Attribute Relationships tab, Analysis
Services provides a hint of where you need to fix
relationships. All attributes that are used in multilevel
hierarchies have been dragged up to the yellow design
surface. Your job is to drag and drop (from left to right or
detailed to summary), to fix up the relationships.

Figure 8-7: Create attribute relationships

514

Looking closely at 8-7, you can see that there are six
attributes correctly associated with the date: if you know
the date, you know the day of the month. There are three
multilevel hierarchies: calendar year, quarter, month, day;
calendar year, week, day; and fiscal year, quarter, month,
day. The layout is a little messy, and there’s nothing you
can do to change it, but Figure 8-7 illustrates correctly
defined attribute relationships for these three hierarchies.
Several of the levels contain additional attribute
relationships. The Calendar Year Month level is expanded
to show the two attributes that apply to this level.

NOTE

515

An observant reader may be surprised by
the path of attribute relationships that goes
day, month, fiscal month, fiscal quarter,
fiscal year. Why did we put the calendar
month between day and fiscal month? For
Adventure Works Cycles, fiscal months
directly map to calendar months; they’re
simply offset. If you know the calendar
month, you know the fiscal month. The
advantage of setting up the attribute
relationships this way is that Analysis
Services can create aggregations at the
calendar month level, and use those same
aggregations for queries along the fiscal
calendar. Monthly aggregations are very
common, and this one little trick
substantially cuts down the number of
aggregations that Analysis Services will
need to build and maintain. Adding
calendar month to the attribute
relationships doesn’t change the way the
hierarchy works for the users.

By declaring attribute relationships correctly, you’re
informing SSAS that it can index and aggregate the data
and rely on that relationship. Query performance will
improve relative to a dimension whose attribute
relationships are not set correctly. For medium and large
data volumes, especially with very large dimensions, query
performance improves substantially, largely because of

516

improved design of aggregations that are based on the
attribute relationships.

NOTE

It can be tricky to define the attribute
relationships correctly, but it’s vital that
you do so. If you’ve defined a relationship
between two attributes, but the relationship
is not truly many-to-one, problems will
crop up when you process the dimension.
You’ll see error messages complaining
about duplicate keys.

Consider a U.S. geography hierarchy that
rolls from zip code to city to state. If the
city attribute is built on the city name,
you’ll get many duplicate key errors for the
city named Riverside (46 U.S. states have a
location named Riverside). You can solve
this problem in several ways:

• Redesign the relational dimension to
include a surrogate key for the city. The
surrogate key would distinguish Riverside,
CA from all the other Riversides. In SSAS,
define the attribute so that the Key uses the
surrogate key and the NameColumn
property uses the city name. This approach
is recommended if the hierarchy is defined
as type 2 (tracking history).

• Redesign the dimension in Analysis
Services to use state plus city as the key for
the city attribute.

517

• Remove the attribute relationship from the
hierarchy.

There is one vital property associated with a Related
Attribute: RelationshipType, which can be Rigid or
Flexible. RelationshipType affects how Analysis Services
manages dimension changes. Rigid means the historical
relationship is fixed. Usually this means that you’re
managing those attributes as type 2, and not updating
history. Flexible means the historical relationship can
change over time: Your ETL can perform updates on the
hierarchical attributes. As you might expect, Flexible is the
default, and this setting works well and is easy to manage
for small- to medium-sized cubes.

The date dimension is an unusual example, because of
course the relationship between a day, month, and year
will not change over time. For the date dimension, define
all attribute relationships as rigid.

If your cube is built on hundreds of gigabytes or terabytes
of data, you need to pay careful attention to the settings for
RelationshipType, and the aggregations that are built on
attributes with flexible relationships. The issue, as we
discuss later in the chapter, is about whether aggregations
are dropped during incremental processing. Aggregations
build really quickly, so this isn’t a big deal for small cubes.
But it’s an important tuning consideration for large cubes.

RESOURCES

518

See the Books Online topic “Attribute
Relationships” for a description of attribute
relationships.

See the Books Online topic “Attribute
Relationship Properties” for a complete list
of the properties of attribute relationships.

Browsing Dimension Data

The fourth tab across the top of the Dimension Designer is
labeled Browser. This is where you can look at the
dimension’s data and hierarchies, as illustrated in Figure
8-8.

Before you browse the dimension’s data, you need to
process the dimension. Up to now we’ve been dealing at
the logical level, refining the dimension’s structure without
reference to its data.

Later in this chapter, we talk more about building and
deploying the Analysis Services database. But for the
purposes of looking at a dimension whose attributes
you’ve been editing, it’s sufficient to know that you don’t
need to build, deploy, and process the entire database in
order to look at the dimension. You can right-click the
dimension in the Solution Explorer, and choose to build
and deploy the changes to the project, then process the
changed dimension.

519

Take time to look at the dimension in the browser. Look at
the different hierarchies, available from the dropdown list
as highlighted in Figure 8-8. Drill around the different
levels and attributes in the dimension to ensure everything
looks the way you want it to. It’s a good bet that you’ll
need to adjust something. On the first time through, you’re
fairly likely to have to go back to your ETL team and talk
about improving the cleaning of the dimension’s data. You
should get detailed feedback from a representative of the
business user community before you decide that a
dimension is correctly defined.

Keep working on your dimensions, hierarchies, and
dimension data until you’re pleased with them. At the very
least, be sure to define the key level of each dimension
correctly before moving on to the Cube Designer.

NOTE

It’s hard to overemphasize the importance
of ensuring that the dimension’s data and
structure are clean and make sense to the
business users. The dimension attributes
are used for drilling down in queries; they
also show up as report column and row
headers. Spend time now to get them right,
or you’ll be stuck with ugliness and
confusion for years to come.

Figure 8-8: Browsing dimension data

520

Creating and Editing the Cube

After you’ve created and perfected your dimensions, it’s
time to run the Cube Wizard to bring in the facts and
create the cube structure. As illustrated in Figure 8-9, the
Cube Wizard asks you to identify the fact tables (which it,
somewhat perplexingly, calls measure group tables). You
can have it suggest fact tables for you, though you really
should know which tables in your DSV are fact tables.

The Cube Wizard automatically creates a measure for each
numeric non-key column in the fact table, plus a count
measure. This is usually what you want. Next, the Cube
Wizard identifies the existing dimensions that will be
included in the new cube. Finally, it may suggest creating
some new dimensions; as we discussed previously, you
should have built out all your dimensions already.

521

Figure 8-9: Identifying fact tables in the Cube Wizard

When you finish with the Cube Wizard, you’re dropped
into the Cube Designer interface, illustrated in Figure 8-10.
Anything you did in the Cube Wizard, you can do in the
Cube Designer. You can — and will! — modify the
objects that were created by the Cube Wizard. Use the
Cube Designer to improve the cube, add new dimensions
to a measure group, and add new measure groups.

522

Figure 8-10: The Cube Designer

There’s a lot going on in the Cube Designer, but it’s
organized logically. Note the tabs going across the top of
the window of Figure 8-10, titled Cube Structure,
Dimension Usage, and so on. We’ll examine these tabs in
greater depth, but first we’ll quickly describe what each is
for.

• Cube Structure: Use this tab to examine the physical layout
of the cube’s sources, and to modify the properties of
measures. This is the active pane in Figure 8-10.

• Dimension Usage: Use this tab to refine the dimensionality
of each measure group.

• Calculations: Use this tab to define, edit, and debug
calculations for the cube.

• KPIs: Use this tab to create and edit the Key Performance
Indicators (KPIs) in a cube.

523

• Actions: Use this tab to create and edit Drillthrough and
other actions for the cube. Actions are a powerful
mechanism for building an actionable business intelligence
application that does more than just view data.

• Partitions: Use this tab to set up the physical storage of the
measure groups. We usually accept defaults during initial
development, and turn our attention to these issues later in
the development cycle. Physical storage decisions are
discussed later in this chapter.

• Aggregations: Do not use this tab during initial
development. Defining and building performance
aggregations are tasks for later in the development cycle.

• Perspectives: Use this Enterprise Edition tab to create and
edit the perspectives in a cube, to provide a simplified
logical view of the cube for a set of business users.

• Translations: Use this Enterprise Edition tab to create and
edit the translated names for objects in a cube, like measures.

• Browser: Use this tab to look at the data in the cube, once
the cube has been deployed and processed.

Edit the Cube Structure

Figure 8-10 illustrates the Cube Structure tab of the Cube
Designer. In the center pane is a representation of the Data
Source View of the relational tables or views on which the
cube is built. This is similar to the source data pane in the
Dimension Designer, but a lot more complicated because it
includes all the tables used in the cube. As with the
Dimension Designer, if you want to edit the Data Source
View you’re flipped into the DSV Editor. Changes in the
underlying DSV are reflected here immediately. In this
view, fact tables are coded in yellow and dimensions in
blue.

As with dimensions, the main activity in editing the cube
structure consists of editing the properties of objects. In the

524

case of the cube, edit the properties of measure groups,
measures, and cube dimensions.

Edit Measure Groups and Measures

Measure group is the Analysis Services term for fact table.
The small pane in the top left is where the cube’s measure
groups are listed. Open a measure group to see its
measures. The most important properties for a measure
group are the name and description. We discuss the other
properties of the measure group later, in the discussion of
physical design considerations. For the initial iterations of
the design and development, these other settings are not
very important.

The most important properties for a measure are:

• Name, Description, and FormatString: Ensure these are set
correctly. Most Analysis Services client query tools
automatically format data correctly, according to the
FormatString (search Books Online for
“FORMAT_STRING Contents” for more on format strings).

• DisplayFolder: Measures are grouped by measure group.
Since each measure group can have many measures,
DisplayFolders give you an extra grouping layer within a
measure group. They don’t exist anywhere else. You make
them up by typing them in the property window.

• AggregateFunction: Most measures are defined to
summarize by summing or counting; less frequently by
distinct count, min, or max. You can also define options for
semi-additive or non-additive measures: averaging,
beginning of period, end of period, and so on.

525

NOTE

Perhaps you noticed that one obvious
aggregate function is missing from the list:
a simple average. There’s an average of
children, but not a simple average. The
reason is that Analysis Services requires
you to explicitly define how the average is
computed: the numerator is a simple sum,
and the denominator is some kind of count.
You need to create a calculated measure to
present a measure that aggregates by
averaging. We usually change the name of
the measure we want to average and set its
visibility property to False. Then we create
a new calculated measure with the correct
name, as you’ll see later in this chapter in
the section “The Calculations Tab,” with
Unit Price USD.

• Visible: It’s surprisingly common to hide a measure. Many
measures are used for calculations but aren’t very interesting on
their own. Hiding them reduces clutter for the business users.

Edit Dimensions in the Cube

The small pane in the lower left is where the cube’s
dimensions are listed. You can launch the Dimension
Editor from here or from the Solution Explorer as we
discussed earlier.

526

The primary editing activity in the Dimensions pane of the
Cube Structure tab is to add a new dimension or to re-order
dimensions. The order of the dimensions in the cube, as
they appear in this pane, is the same as they’ll show up to
the users. Put the obscure dimensions at the bottom!

NOTE

There is a second implication of the order
of the dimensions in this list, which is vital
if you have complex calculations. The
order of dimensions in this list affects the
application of dimension calculations, like
unary operators. This is particularly
important for a financial model, where you
might allocate along one dimension before
calculating along a second dimension
(usually the account dimension). You can
see this in the Adventure Works DW 2008
Analysis Services database. The
organizations dimension in that database
must be listed before the accounts
dimension for the calculations to work
properly. Try reordering the dimensions
and recalculating the measure group to see
how important the ordering is.

Dimensions are defined first at the database level, then
optionally added to the cube. As we discussed earlier in
this chapter, most cubes correspond roughly to a business
process dimensional model, and contain between 5 and 15

527

fact tables or measure groups. If you add new dimensions
to your database after your initial run through the Cube
Wizard, you may need to add them to your cube as well.
Do so here.

The properties of a cube dimension that you might edit are:

• Name: The dimension name as created in the database is
usually the correct name. The only time you’re likely to
want to edit the name of the dimension in the cube is if the
dimension has multiple roles. This is very common with the
Date dimension: Order Date, Due Date, Ship Date, and so on
are different roles of the Date dimension.

• Description: Similarly, adjust the Description property for
dimension roles.

You can also edit the properties of the hierarchy of a cube
dimension, and attributes of a cube dimension. It’s
unlikely that you’d want to do this.

Cube Properties

There are a few properties of the cube that you might want
to adjust during development. You can see the list of these
properties by clicking the cube in either the Measures or
Dimensions panes of the Cube Structure tab.

• Name and Description: Edit the cube’s name and description
as appropriate.

• DefaultMeasure: One measure will come up by default, if
users don’t specify a measure in a query. You should choose
which measure that is, rather than letting Analysis Services
choose it for you.

Most of the other options have to do with physical storage
and processing, and are discussed later in the chapter.

528

During the first part of the development cycle, the defaults
are usually fine.

Edit Dimension Usage

You specify exactly how dimensions participate in
measure groups on the next tab of the Cube Designer.
Figure 8-11 illustrates the Dimension Usage tab for the
MDWT_2008R2 sample cube. Our simplification of the
Adventure Works schema presents a simple display. To
see a more realistic display of dimension usage, check out
the Adventure Works DW 2008 sample Analysis Services
database that you can download from CodePlex.

The Dimension Usage tab’s summarization is very similar
to the Kimball Method bus matrix with the rows and
columns flipped. At a glance you can identify which
dimensions participate in which measure groups, and at
which level of granularity.

Figure 8-11: Dimension usage

529

The dimensionality of the Orders measure group displayed
in Figure 8-11 has been modified from the defaults
generated by the Cube Wizard. There are three date keys in
the two fact tables, each with a different name. Originally,
Analysis Services defined three roles for the date
dimension: date from the Exchange Rates measure group,
and order date and due date from the Orders measure
group. However, the business users think of the order date
as the main date key. Therefore, we deleted the order date
role, and reassigned the OrderDateKey to the main date
role, using the Define Relationship window shown in
Figure 8-12.

Figure 8-12: Define the relationship between a fact table
and a dimension

530

Measure Groups at Different Granularity

Measure groups, and their underlying relational fact tables,
may hook into a conformed dimension at a summary level.
The most common scenario is for forecasts and quotas.
Most businesses develop forecasts quarterly or monthly,
even if they track sales on a daily basis. The fundamentals
of dimensional modeling tell you to conform the date
dimension across uses, even if those uses are at different
grains. By re-using the dimension, you’re making it easy to
compare quarterly data from multiple measure groups.

Analysis Services makes this conformation easy for you.
All you have to do is correctly define the granularity
attribute in the Define Relationship dialog box. Make sure
you set the attribute relationships properly in any
dimension for which some measure groups join in at a
coarser grain.

531

WARNING

It’s absolutely critical to set the attribute
relationships properly in any dimension
that’s used at multiple granularities. You
need to inform Analysis Services that it can
expect referential integrity between various
attributes in the dimension. If you aren’t
careful here, you can see inconsistent query
results because aggregations are computed
and stored incorrectly.

Complex Relationships Between Dimensions and
Measure Groups

There are several kinds of relationships between
dimensions and measure groups, which you can set in the
Dimension Usage tab. Most dimension relationships are
Regular, but you can also specify Fact, Reference, Data
Mining, and Many-to-Many relationships here.

The Cube Wizard does a good job of setting up these
relationships correctly, but you should always check them.

Build, Deploy, and Process the Project

At this point in the development cycle, you’ve worked on
your dimensions, and you’ve built and processed them
several times. You’ve defined the basic structure of your
cube, including the relationships between measure groups
and dimensions.

532

Now is a good time to perform the first processing of the
OLAP database. The easiest way to do this is to right-click
the project name in the Solution Explorer and choose
Process. By choosing Process, you’re doing three things:

• Building the project, looking for structural errors.
• Deploying that project to the target Analysis Services server,

creating a new database structure (or updating an existing
database structure).

• Processing that database, to fully or incrementally add data.

The last tab of the Cube Designer is where you browse the
data in the SSAS database. You don’t need to work
through all the other tabs before you take a look at the
data. After you’ve defined the basic cube structure and
verified the relationships with the dimensions, you
generally want to check your work.

As we described earlier when talking about browsing the
dimensions, you need to build, deploy, and process the
cube before you can browse the data. The browser tab will
remind you to do that if necessary.

Earlier in this chapter, we talked about starting your
Analysis Services development against a much reduced
data set. As you process the cube for the umpteenth time to
check the implications of an edit, you’ll recognize why this
was a good idea.

Create Calculations

The third tab of the Cube Designer is where you’ll create
calculations using the Multidimensional Expression
language, or MDX. Most BI teams we’ve worked with

533

have resisted learning MDX as long as they can. No one
wants to learn a new language, but all eventually agree that
at least one person on the team needs to step up to this
challenge. The good news is that the BI Studio tools
include wizards to help you define common calculations.
And you can learn a lot about MDX by looking at how
these calculations are defined for you.

You have opportunities to sprinkle MDX throughout the
definition of the cube. The most obvious place is here, on
the Calculations tab, where you can create calculated
measures, other calculated members, sets, and calculated
sub-cubes. You’ll greatly improve the usefulness and
user-friendliness of your Analysis Services database by
defining common calculations that benefit all business
users regardless of how they’re accessing the cube.

• Calculated measures will show up under the Measures
dimension. Many calculated measures are quite simple, like
the sum or ratio of two other measures. To a business user
browsing the cube, calculated measures are largely
indistinguishable from physical measures. Some query tools,
including the Cube Browser integrated with BI Studio, will
show a different icon for calculated measures and physical
measures. A calculated measure is really just a calculated
member, assigned to the Measures dimension. A very
complex calculated measure may perform less well than a
physical measure because calculations are performed at
runtime.

• Calculated members can be created on any dimension.
Non-measure calculated members can be very powerful.
They’re a way to create a kind of calculation that applies for
some or all measures. For example, you can create a
calculated member Year To Date on the Date dimension, to
automatically calculate multiple measures year-to-date.

534

NOTE

The Add Business Intelligence Wizard will
create a wide variety of calculations for
you, including the Year To Date calculated
member.

• Named sets are a set of dimension members. A really simple
named set would specify the set explicitly, perhaps as a list of
important products. More complicated set definitions locate the
set of products with a high price, products that sold well this
year, and so on.

• Calculated sub-cubes are a way to calculate an arbitrary portion
of the cube’s data and summarizations. A common use of
calculated sub-cubes is to allocate summary data (like monthly
quotas) down to more fine-grained data. Or, calculated
sub-cubes can provide a complex summarization method, if
your business rules are more complicated than can be supported
by the standard aggregate functions.

NOTE

How do you know whether you need a
calculated member or a calculated
sub-cube? A calculated member changes
the visible structure of the cube; you can
see the calculated member in the list of
dimension members. A calculated sub-cube
doesn’t change the list of members or
attributes in a dimension. Instead, it

535

changes the way the numbers inside the
cube are calculated.

The Calculations Tab

The Calculations tab of the Cube Designer is illustrated in
Figure 8-13. As you can see, this is another complicated
screen. But let’s face it: Calculations are complicated.

In the upper left is the Script Organizer. This pane lists the
calculations that have been defined for this cube. The
selected calculation is a calculated measure called [Unit
Price USD], which calculates unit price as an average.
Recall from earlier in this chapter that there is no standard
aggregation method for a simple average: if you want to
display an average, you need to create a calculation. The
main area of the Calculations tab shows a form where this
calculation is defined. The lower-left pane contains three
tabs that show a list of objects in the cube; a list of
available functions, which you can drag into your
calculation; or a set of templates, which can provide a
starting point for some kinds of calculations.

Figure 8-13: The Calculations tab

536

This calculated member is defined on the Measures
dimension; it’s a calculated measure. The next area
contains the MDX for the calculation. Even if you don’t
know anything about MDX, you can probably parse this
statement:

• If the denominator — [Orders Count] — is not zero, return
[Unit Price USD HIDE], which aggregates as a sum, divided
by [Orders Count], which aggregates as a count.

• Otherwise, the denominator — [Orders Count] — is zero, so
return zero.

There are several important properties of a calculated
member:

• Description: It’s possible to set the description of a
calculated member, but they sure don’t make it easy to find.
It’s on a different screen entirely, called Calculation
Properties, that you can launch from a toolbar icon.

537

• Format string and Visible: The same as for physical
measures.

• Non-empty behavior: You should always set this to one or a
few items in the calculation. What you’re telling Analysis
Services by setting this property is that if the base measure
([Unit Price USD HIDE] in this case) is empty, don’t spend
any time calculating the measure.

WARNING

Always set the non-empty behavior
property. It can make a huge difference in
the query performance of your calculated
measures. In one case, we saw query
performance drop from hours to seconds,
simply by filling in the non-empty behavior
property.

• Associated measure group and Display folder: These settings
are largely cosmetic, but can make it much easier for users to
find the measures you’ve so painstakingly created.

The calculation form view shown in the Calculation tab is
a good way to create new measures and named sets. It is an
item-by-item form that builds an underlying script. If you
want to look at the entire script, switch to the script view
by choosing Cube ⇒ Show Calculations in Script (or click
the Script toolbar icon).

Let’s take a look at the MDX for a second calculation:
[Contribution to Parent Product]. Wherever you are in the
product hierarchy, whether at the category, subcategory, or
product level, calculate the current member’s contribution

538

to the sales of the parent. If you’re at the product category
level it’s your sales divided by all sales, at the subcategory
level it’s those sales divided by all sales for this category,
and so on. The MDX for this calculation is:

Case

When [Product].[Product Categories].CurrentMember IS

[Product].[Product Categories].[All Products]

Then 1

Else [Measures].[Sales Amt USD] /

([Product].[Product Categories].CurrentMember.Parent,

[Measures].[Sales Amt USD])

End

This may not be clear to someone new to MDX, but it’s
fairly straightforward:

• If you’re at the “all” level of the product dimension, return 1.
• Otherwise, wherever you are in the product category

hierarchy, return the ratio of your sales divided by your
parent’s sales.

You can get an idea of how the calculation works by
viewing the browser output in Figure 8-14.

Figure 8-14: Browsing a cube to examine calculated
members

539

NOTE

If you find yourself defining lots of similar
calculations, like [Product Contribution to
Subcategory] and [Subcategory
Contribution to Category], you should step
back and figure out how to generalize.
Probably you really need a single
calculation that computes relative to the
current position in the cube — a far more
elegant solution.

RESOURCES

540

Like so much we’ve introduced,
Calculations and MDX are rich and
complex topics about which entire books
are written. We’ve barely scratched the
surface here.

The first place to go for help is the
excellent section on Calculations in the
SQL Server Analysis Services tutorial. This
tutorial walks you through the process of
creating several calculated members,
named sets, and calculated sub-cubes. The
tutorial shows you how to debug your
Calculation Script by setting breakpoints,
stepping through calculations, and
watching how each step modifies the
cube’s structure and data.

The debugger is a great feature. Learn how
to use it, especially if you have any MDX
scripts. The debugger is absolutely vital if
you have multiple calculations that overlap
one another.

The MDWT_2008R2 database is available
on the book’s website
(http://kimballgroup.com/html/
booksMDWTtools.html). It contains a handful
of calculated members and sets, for the
same simplified version of the Adventure

541

Works case study that we’ve used
throughout this book.

The Adventure Works DW 2008 SSAS
database that’s available on CodePlex is a
good learning tool for MDX and
calculating. It contains a lot of fairly
complex calculations, especially for the
finance module.

There are several books that the MDX
expert on your team should own:

• SQL Server 2008 MDX Step by Step by
Smith and Clay (Microsoft, 2009). This is
probably the best place to start if you need
to learn MDX. Like other books in the Step
by Step series, it’s practically an extended
class or tutorial.

• MDX Solutions by Spofford, Harinath,
Webb, Huang, and Civardi (Wiley, 2006).
Make sure you get the edition for Analysis
Services 2005 and Hyperion Essbase.
MDX has not changed substantially since
SQL Server 2005, and the reference is still
up-to-date.

• Professional SQL Server Analysis Services
2008 with MDX by Harinath, Zare,
Meenakshisundaram, and Quinn (Wrox,
2009). This book covers a lot more than
MDX.

Adding Business Intelligence

Unless you’re already an MDX expert, one of the best
ways to get started in adding calculations to your cube is

542

by using the Business Intelligence Wizard. This wizard
will build for you the most common kinds of calculations.
You can launch the Business Intelligence Wizard in
several ways, including from the leftmost icon on the
toolbar in the Calculations tab.

Most application developers will use the Business
Intelligence Wizard to add “time intelligence” to their
cube. This wizard option will automatically create for you
calculations like [Year to Date], [12 Month Moving
Average], and so on. These calculations appear on the Date
dimension. They’re non-measure calculated members. As
such, they can apply to multiple underlying measures in
one fell swoop.

A second advantage of the Business Intelligence Wizard is
that you can pick apart the calculations to learn how they
were done.

Define Key Performance Indicators

Key Performance Indicators (KPIs) are numbers or
displays that are intended to measure the health of the
organization. When KPIs are based on a clear
understanding of the factors that drive the business, and a
robust DW/BI platform, they can be an extremely powerful
organizational management tool. Unfortunately, most KPIs
are either brain-dead simple, divorced from the underlying
data, or both. Really, who cares that sales are down 0.1
percent today unless we know that today is a Friday and
Friday’s sales are usually up 0.1 percent? And even if we
did know the context, simply telling the executive that

543

sales are down doesn’t provide any understanding about
why.

We hope that the definition and display of KPIs with
Analysis Services will help address these shortcomings.
The KPI implementation is well thought out. Because KPIs
are defined in the cube, the supporting data can be made
available in useful ways.

Any KPIs you create should be defined as part of the BI
Applications track based on the business requirements and
with business user involvement. Do not try and make them
up here on the fly.

Analysis Services defines a KPI on the KPIs tab of the
Cube Designer:

• Name of the KPI: And the measure group with which the
KPI is associated.

• Value to be measured: The underlying measure for the KPI.
Most often you’ll use a calculated measure that you’ve
already defined. You can enter an MDX expression here, but
it usually makes more sense to create a calculated measure
and use that. In the very simple example we used in this
section, the value to be measured might be [Sales Revenue].

NOTE

Whenever you specify an MDX expression
when you create a KPI, the server will
create a hidden calculated measure.

544

• Goal for the value: An MDX expression that defines the target
for the measure. A trivial goal would be a number: The sales
target is $100,000. That would give a stupid KPI. More
interesting would be a goal to increase sales 0.1 percent from
the same day the previous week, or a goal that’s based on sales
quotas. Often, targets are defined and stored as their own
measure group within the cube. The KPI goal is then a simple
reference to the appropriate measure within the sales target
measure group.

• Status: A graphic and an MDX expression that describe how the
value to be measured is doing relative to its goal. Analysis
Services provides several built-in graphic gauges, including
thermometers, traffic lights, and happy faces. The MDX
expression needs to evaluate to numbers between –1 (very bad)
to +1 (very good). If you’re clever about defining the status
expression, you can do a good job of conveying important
information about wide deviations from the goal, and keep
minor deviations quiet.

• Trend: A graphic and an MDX expression that describe whether
the value to be measured is moving toward or away from its
goal. Is the situation getting better or worse? As with the status
graphic, Analysis Services provides a few built-in trend
graphics, notably a trend arrow. The MDX expression must
evaluate to numbers between –1 (going south in a hurry) and +1
(getting better fast).

To display your KPIs, you need some client software that
understands KPIs. Microsoft’s current versions of Excel,
Reporting Services, and SharePoint are able to work with
Analysis Services KPIs. Software vendors who sell
packaged analytics on Analysis Services often use KPIs
extensively in their front ends.

NOTE

545

Excel, Reporting Services, and SharePoint
all do a very nice job of displaying KPIs
that are defined in the cube. There is
SharePoint functionality that lets power
users define and modify KPIs while
working in the BI portal. The functionality
to play “what if” scenarios with SharePoint
KPIs does not write those KPIs back to the
Analysis Services database.

Create Actions

The next tab in the Cube Designer is the Action tab. An
Analysis Services Action is a command that’s stored on the
server. Actions are defined using MDX, which means that
the command is context-sensitive. In other words, you can
define an Action that executes when the user right-clicks a
cell in a report. The Action knows the values of each of the
dimensions that make up the address of the cell and can
execute a customized command for that address.

Like KPIs, the server-side definition of an Action is only
half of the solution. You need a client tool that implements
Actions. It’s the job of the query tool to intercept the
“right-click” on a report cell, and present (and execute) the
appropriate list of Actions. Luckily the most common
query tool, Excel, does implement Actions.

The most obvious use of an Action is to execute a
relational query. As we’ve already described, Analysis
Services databases are often built at the same grain as the

546

underlying dimensional model. An interesting BI
application can include an Action that drills back to
enterprise data, perhaps even back to the original
transaction system. This query Action can easily be
implemented as an Action that launches a Reporting
Services report.

Analysis Services provides for several kinds of Actions
including:

• Execute a Reporting Services report.
• Execute a generic Action. Actions can bring up a URL,

return a rowset or data set, or execute a command. An
Action is defined as an MDX statement, and can be attached
to specific parts of the cube. For example, you can have one
Action that executes when someone right-clicks the Month
label in the Date dimension, and a second Action that
launches when someone right-clicks a data cell.

WARNING

Two kinds of Actions — HTML scripts
and Command Line Actions — pose
security risks and should be avoided.
Microsoft has moved these Action types
out of the BI Studio interface. You’d have
to create the Action by writing a script
without the benefit of the UI.

Under the covers, the Drillthrough Action is simply a kind
of rowset Action that’s common enough that Microsoft
built a simple user interface for defining it. Similarly, the
Report Action is just an instance of a URL Action.

547

Drillthrough and Reporting Services Actions are very easy
to set up. Generic Actions, like launching a parameterized
web page, are pretty tricky. Start with something really
simple, like launching a static web page (like Google or
MSN). Add complexity a bit at a time. Process the cube
and try out the Action in the browser window before
adding another layer of complexity. If you change only an
Action definition between processing, the processing step
refreshes only metadata (not data), so processing occurs
quickly.

Partitions and Aggregations

Partitioning allows you to break up a large cube into
smaller subsets for easier management, much like
relational partitioning. You can use the Partitions and
Aggregations tabs of the Cube Designer to define the
physical storage characteristics of your cube. During the
first part of your development cycle, don’t bother with
these tabs. Use the default settings so you can focus on
getting the cube structure and calculations correct.

In the next section of this chapter, we discuss physical
design considerations. We talk at some length about what’s
going on under the covers, so you can make informed
decisions about how to deploy your Analysis Services
database in production.

Maintain Perspectives

An Analysis Services Perspective limits a user’s view to a
set of related measure groups and dimensions. A
Perspective is analogous to a business process dimensional

548

model in the Kimball Method vocabulary. It’s a very nice
approach because you’re not replicating data into multiple
cubes. You’re simply providing different users with
different views of the same data.

You’ll almost certainly define a few Perspectives if you
follow the best practice recommendation of creating a
large Analysis Services cube that contains multiple
measure groups. Unless your implementation is really
simple, this single-cube approach will lead to a structure
that’s challenging for business users to navigate.
Remember, though, the advantage of many measure
groups (fact tables) in a cube is that it’s easy for users to
construct analyses that combine data from those fact tables
— which is the whole point of conformed dimensions and
the bus architecture.

Use the Perspectives tab of the Cube Designer to define
your cube’s Perspectives. You can create as many
Perspectives as you like; it’s a simple matter of choosing
which portions of the overall cube to hide in each
Perspective. You can also specify which measure is shown
by default in each Perspective.

Most users will use only a few Perspectives, rather than the
entire cube containing all measure groups. You can hide
the cube itself by setting its Visible property to False,
and reveal only the Perspectives that contain the
information your user communities are interested in.

It may feel as though Perspectives are a security
mechanism. Not so! As we discuss in Chapter 14, Analysis
Services security is applied at the database object level.

549

NOTE

Unfortunately, Perspectives are not
available in SQL Server Standard Edition.
Many organizations don’t have the users or
data volumes needed to justify Enterprise
Edition or Data Center Edition, but almost
all organizations can benefit from
Perspectives.

Translations

Translations are a very nice feature of Analysis Services
Enterprise and Data Center Editions. If your company is
multinational, business users will probably prefer to view
the cube in their native languages. A fully translated cube
will have translations for its metadata (names and
descriptions of dimensions, attributes, hierarchies, levels,
and measures) as well as the dimension data itself
(member names and attribute values). In other words, the
dimension name Date needs to be translated, the attribute
name Month, and the attribute values January, February,
and so on.

The translations for the metadata occur in two places: in
the Translations tab of the Dimension Designer and the
Translations tab of the Cube Designer. You can create
translations in multiple languages.

If you want to translate the dimension attribute values,
your relational dimension table or view needs to have

550

additional columns for the new languages. These don’t
become additional attributes in the Analysis Services
dimension; instead you can set them up as the translation
content in the dimension Translations tab.

NOTE

Be very careful when you are setting up the
translations, especially translations of the
dimension attribute values. If you make a
mistake in the translation, users of different
languages will find it very difficult to
construct comparable reports.

When you use the Browser tab to browse the data, you can
view the data in different languages. This is fun to do, and
if your organization is multilingual, it is certainly worth
including in any demos you create for senior management.
The Adventure Works DW 2008 sample database includes
a rich set of translations.

The Translation feature works really well. It leverages the
localization technology in all Microsoft products. It picks
up the locale ID from the user’s desktop and automatically
displays either the appropriate translation, if it exists, or
the default language. Most client tools don’t need to do
anything special.

Designing the Analysis Services cube is generally
straightforward if you’re starting from a clean,
dimensionally structured relational data warehouse. In

551

most cases, the only hard part is defining the calculations.
Someone on the DW/BI team is going to have to learn
MDX for that. But most concepts translate very smoothly
from the relational dimensional database into Analysis
Services. When we’ve seen people struggle with designing
their cubes, it’s usually because they’re trying to build the
cube from a faulty dimensional design.

Physical Design Considerations

Up to this point in this chapter, we have discussed the
logical design process for the Analysis Services OLAP
database. We recommend that you work with a small
subset of data so that you can concentrate on the structure,
calculations, and other cube decorations, without worrying
about the physical design.

Now it’s time to address the physical issues. Most of the
time, physical implementation decisions are made
independently of the logical design. That’s not completely
true, and in this section, we discuss how some design
decisions can have a large impact on the manageability and
performance of your cube.

Cube Physical Storage Terminology

Readers who are familiar with older versions of
Analysis Services will already be familiar with the
terminology for the physical storage and
processing of the Analysis Services database. This

552

sidebar merely defines these concepts.
Recommendations and implications are discussed
in detail elsewhere in the chapter.

• Leaf data: Leaf data is the finest grain of data that’s
defined in the cube’s measure group. Usually, the leaf
data corresponds exactly to the fact table from which
a cube’s measure group is sourced. Occasionally
you’ll define a measure group at a higher grain than
the underlying fact table, for example by eliminating
a dimension from the measure group.

• Aggregations: Precomputed aggregations are
analogous to summary tables in the relational
database. You can think of them as a big SELECT
… GROUP BY statement whose result set is stored
for rapid access.

• Data storage mode: Analysis Services supports three
kinds of storage for data:

• MOLAP (Multidimensional OLAP): Leaf data and
aggregations are stored in Analysis Services’
MOLAP format.

• ROLAP (Relational OLAP): Leaf data and
aggregations are stored in the source relational
database.

• HOLAP (Hybrid OLAP): Leaf data is stored in the
relational database, and aggregations are stored in
MOLAP format.

• Dimension storage mode: Dimension data,
corresponding to the relational dimension tables, can
be stored in MOLAP format or left in the relational
database (ROLAP mode).

• Partition: Fact data can be divided into partitions.
Most systems that partition their data do so along the
Date dimension; for example, one partition for each
month or year. You can partition along any
dimension, or along multiple dimensions. The
partition is the unit of work for fact processing.
Partitions are a feature of SQL Server Enterprise and
Data Center Editions.

553

• Fact processing: Analysis Services supports several
kinds of fact processing for a partition:

• Full processing: All the data for the partition is pulled
from the source system into the Analysis Services
engine, and written in MOLAP format if requested.
Aggregations are computed and stored in MOLAP
format if requested, or back in the RDBMS (ROLAP
mode).

• Incremental processing: New data for the partition is
pulled from the source system and stored in MOLAP
if requested. Aggregations — either MOLAP or
ROLAP — are updated. It’s your job to tell Analysis
Services how to identify new data.

• Proactive caching: Proactive caching is a mechanism
for automatically pushing data into a cube partition.
When you set up proactive caching, you’re asking
SSAS to monitor the relational source for the measure
group’s partition and to automatically perform
incremental processing when it sees changes.

Understanding Storage Modes

The first question to resolve in your physical design is the
easiest one. Should you use MOLAP, HOLAP, or ROLAP
mode to store your Analysis Services data? The answer is
MOLAP.

We’re not even being particularly facetious with this terse
answer, but we will justify it a bit.

Analysis Services MOLAP format has been designed to
hold dimensional data. It uses sophisticated compression
and indexing technologies to deliver excellent query
performance. All else being equal, query performance
against a MOLAP store is significantly faster than against
a HOLAP or ROLAP store.

554

Some people argue that MOLAP storage wastes disk
space. You’ve already copied data at least once to store it
in the relational data warehouse. Now you’re talking about
copying it again for the cube storage. To this argument we
reply that a relational index also copies data. No one
asserts you shouldn’t index your relational database.

MOLAP storage is highly efficient. The 20 percent rule
says that leaf data in MOLAP mode (data and indexes)
tends to require about 20 percent of the storage of the
uncompressed relational source (data only, no indexes).
The MOLAP store of the leaf data is probably smaller than
a single relational index on the fact table — and buys a lot
more for you than any single relational index can possibly
do.

Another common argument against MOLAP is that it
slows processing. ROLAP is always the slowest to process
because writing the aggregations to the relational database
is expensive. HOLAP is slightly faster to process than
MOLAP, but the difference is surprisingly small.

Dimensions also can be stored in MOLAP or ROLAP
mode. Use MOLAP.

NOTE

Why does Microsoft offer these alternative
storage modes, if they’re inferior to
MOLAP storage? The main answer is

555

marketing: It’s been an effective strategy to
get Analysis Services into companies that
would never countenance an instance of the
SQL Server relational database in their data
center. The multiple storage modes make
the initial sale. Often, the DW/BI team
figures out how much faster MOLAP is,
and convinces management that it’s okay.
It’s also a hedge against the future. It’s
possible that improvements to relational
technology can make HOLAP or ROLAP
storage more appealing. Certainly we’d
love to see Analysis Services’ indexing,
aggregation, compression, and processing
abilities integrated into the SQL Server
RDBMS, as does appear to be happening.

In Chapter 9 we back off slightly from the strong
recommendation to use MOLAP in situations where you
have a compelling business need for near-zero data
latency. In this case, you may set up a ROLAP partition for
data for the current hour or day.

Developing the Partitioning Plan

You can define multiple partitions for a measure group.
Multiple partitions are a feature of SQL Server Enterprise
Edition, and are very important for good query and
processing performance for large Analysis Services
measure groups. If you have a measure group with more

556

than 50 million rows, you probably should be using
partitioning.

Partitioning is vital for large measure groups because
partitions can greatly help query performance. The
Analysis Services query engine can selectively query
partitions: It’s smart enough to access only the partitions
that contain the data requested in a query. This difference
can be substantial for a cube built on, say, a billion rows of
data.

The second reason partitioning is valuable is for
management of a large cube. It’s faster to add a day’s
worth of fact data to a small partition than to incrementally
process that same day of data into a huge partition that
contains all of history. With a small partition for current
data, you have many more options to easily support
real-time data delivery.

Partitioning also makes it possible — even easy! — to set
up your measure group to support a rolling window of
data. For example, your users may want to keep only 90
days of detailed data live in the cube. With a partitioned
measure group, you simply drop the dated partitions. With
a single partition, you have no option for deleting data
other than reprocessing the entire measure group.

If your ETL performs updates or deletes on fact table rows,
partitioning is important for good processing performance.
Recall from Chapter 7 that the only way to process an
update or delete to a fact row is to fully process the
partition that contains that row. This means that even if
only one fact row in a measure group is updated, the entire

557

partition that contains that fact must be fully processed. If
you have a large fact table that requires many updates,
SSAS partitions are a necessity.

Partitioning improves processing performance, especially
for full processing of the measure group. Analysis Services
automatically processes partitions in parallel.

The largest measure groups, containing hundreds of
millions or even billions of rows, should be partitioned
along multiple dimensions — say by month and product
category. More partitions are better for both query and
processing performance, but at the cost of making your
maintenance application more complicated.

NOTE

If you’ve defined a lot of partitions, say a
thousand, Management Studio will be
slow. It’ll take a few minutes to populate
the lists of database objects.

NOTE

You can always set up partitioning on your
development server because SQL Server
Developer Edition contains all the
functionality in Data Center Edition. But

558

those partitions won’t work on your
production server if you use Standard
Edition in production. As we described
previously in this chapter, be sure to set the
project’s Deployment Server Edition
property, so Analysis Services can help you
avoid features that won’t work in
production.

There are two ways to define multiple partitions:

• Create multiple relational views, one for each partition. You
can use multiple physical fact tables, but most people want
an integrated relational fact table.

• Define a WHERE clause in the SSAS source query for each
partition, limiting each partition to the appropriate range in
the single fact table. This is our recommended approach, as
the alternative leads to a large number of otherwise useless
relational views.

Every measure group initially has one partition. To create
additional partitions, you first need to explicitly change the
scope of the original partition. Whether in BIDS or
Management Studio, change the binding type on the
original partition from Table Binding to Query Binding.
Then you can add the WHERE clause. For a cube that’s
partitioned by date, we usually change the WHERE clause on
the first partition to span the period before the data in the
fact table begins. In effect, it becomes an empty partition,
there as a safeguard in case you unexpectedly get old data.

559

WARNING

When you convert the original partition
from Table Binding to Query Binding, you
break its connection to the table in the Data
Source View. If you modify the fact table
structure in the DSV, you will need to
remember to come into each partition and
adjust the source query appropriately. This
is yet another reason you should wait until
the logical cube development is very nearly
complete, before implementing
partitioning.

Once you’ve added a WHERE clause to the original
partition, you can add new partitions. Although most
partitioning plans are simple — the majority of them are
monthly — partitioning plans can be complex. If you
partition by multiple dimensions, say by product category
and month, you can put each large category in its own
monthly partition, and lump all the small product
categories in a single monthly partition.

WARNING

You need to be very careful to define the
WHERE clauses correctly. Analysis Services
isn’t smart enough to see whether you’ve

560

skipped data or, even worse,
double-counted it.

When you’re working with your database in development,
you set up the partitions by hand in BIDS or Management
Studio. In test and production, you need to automate the
process of creating a new partition and setting its source.
These issues are discussed in Chapter 17.

Designing Performance Aggregations

The design goal for aggregations is to minimize the
number of aggregations while maximizing their
effectiveness. Effective aggregations will greatly improve
query performance, but they’re not free. Each aggregation
adds to the time it takes to process the cube, and the
storage required. You don’t have to define every possible
aggregation. At query time, Analysis Services will
automatically choose the most appropriate (smallest)
aggregation that can be used to answer the query.
Aggregation design is a difficult problem, and Analysis
Services provides several tools to help you out.

Before we talk about designing aggregations, however, it’s
worth pointing out that small cubes don’t really need
aggregations at all. During your development cycle, you’re
probably working with a small enough data set that you
don’t need to worry about aggregations. Systems with
small data volumes may not need to create any
aggregations even in production. If you have only a
hundred thousand rows in your measure group’s partition,

561

you don’t need to worry about aggregations. Even large
enterprises can find that many of their measure groups —
for example for quotas and financial data — are so small
that aggregations are unnecessary.

Large data volumes, of course, do require thoughtful
aggregation design. You should be experimenting with
different aggregation plans in the later part of your
development cycle, when you start to work with realistic
data volumes. During development, you can design
aggregations within BIDS, by launching the Aggregation
Design Wizard from the Partitions tab of the Cube
Designer. Often, this task is deferred until the database has
been deployed to the larger test server. Exactly the same
functionality is available from SQL Server Management
Studio.

The Aggregation Design Wizard will design aggregations
based on the cardinality of your data. It looks at your
dimensions and figures out where aggregations are going
to do the most good. As a simplification of what it’s doing,
consider that aggregating data from a daily grain up to
monthly creates an aggregation that’s one-thirtieth the size
of the original data. (This isn’t strictly true, but suffices for
explanatory purposes.) Summarizing from monthly to
quarterly gives an aggregation that’s only one-third the
size. The Aggregation Design Wizard has sophisticated
algorithms to look at the intersection of hierarchical levels
to figure out where aggregations are best built.

562

NOTE

One of the most common physical design
mistakes is to build too many aggregations.
The first several aggregations provide a lot
of benefit. After that, the incremental
benefit at query time is slight; and the cost
during processing time can grow
substantially.

Run the Aggregation Design Wizard only once you’ve
loaded the full dimensions, usually in the test environment.
The first time you run the Aggregation Wizard, it will
connect to the relational database to count dimension
attribute objects. Those counts are cached as metadata. If
you ran the wizard against subset dimensions in the
development database, you will need to flush the stored
counts in order to gather new counts. Or, you can enter
estimated counts manually. This is all very easy to do in
the wizard.

We recommend running the Aggregation Design Wizard at
5–10% “performance improvement,” rather than the
default 30% that shows up in the wizard. We think 30% is
too high, and the SQL CAT team agrees with us, as you
can see in their technical note (search www.sqlcat.com for
“aggregation design strategy”).

As clever as the Aggregation Design Wizard is, and as
good as its recommendations are, it’s missing the most
important information in aggregation design: usage. The

563

aggregations that you really want are those based on the
queries that business users issue. Once the system is in
production you can monitor what queries are issued
against the system. Even during the test phase, you can
build aggregations for the queries underlying standard
reports and ad hoc usage of the system. Rely primarily on
the Usage-Based Optimization Wizard for the ongoing
design of SSAS aggregations. The Usage-Based
Optimization Wizard is available from Management
Studio.

You have to perform a little bit of setup before you can use
the Usage-Based Optimization Wizard. First, you need to
turn on the query log, to collect information about which
queries are being issued. Note that the query log used by
the wizard is not the SQL Profiler query log that we will
discuss in Chapter 17. Instead, this usage log is designed
exclusively for use by this wizard. You can find the
properties needed to turn on the usage log by right-clicking
on the server name in Management Studio and choosing
Properties. The TechNet article titled “Configuring the
Analysis Services Query Log” provides detailed
instructions.

Once you’ve turned on the query log, you should let it run
for a few days. The log is stored in a relational table,
configured when you turn on the query log. Maintain a
script that contains all the known queries from predefined
reports, so that it’s easy to automatically run the known
set. Delete from the query log any very fast queries, for
example any query that takes less than a tenth of a second.
There’s no point in designing aggregations for those
queries.

564

Finally, run the Usage-Based Optimization Wizard from
Management Studio, to design an effective set of
aggregations for your system. Continue re-running the
wizard weekly during the test phase, and into the first
month or two of production. Ongoing, plan to evaluate
aggregation design monthly or even quarterly.

Planning for Deployment

After you’ve developed the logical structure of your
Analysis Services database using a subset of data, you
need to process the full historical data set. This is unlikely
to take place on the development server, unless your data
volumes are quite small. Instead, you’ll probably perform
full cube processing only on the test or production servers.

In Chapter 4, we discussed some of the issues around
where the Analysis Services data should be placed. We
discussed using RAID and SAN arrays; you should have
your hardware vendor assist with the detailed
configuration of these technologies. Note that Solid State
Drives are a strong candidate for Analysis Services
database storage.

One of the biggest questions, of course, is how to size the
system. Earlier in this chapter, we mentioned the 20
percent rule: The leaf level MOLAP data tends to take 20
percent of the space required by the same data in the
uncompressed relational database (data only, no indexes).
Another equally broad rule of thumb is that aggregations
double that figure, up to a total of 40 percent of the
uncompressed relational data. This is still amazingly small.

565

NOTE

We’ve seen only one or two cubes whose
leaf data plus aggregations take up more
space than the uncompressed relational
data (data only, no indexes). The
uncompressed relational data size is a
reasonable upper bound to consider during
the early stages of planning for Analysis
Services.

Your system administrators, reasonably enough, want a
more accurate number than this 40 percent figure pulled
from the air. We wish we could provide you with a sizing
tool, but we don’t know how to solve that problem. Exact
cube size depends on your logical design, data volumes,
and aggregation plan. In practice, the way people perform
system sizing for large Analysis Services databases is to
process the dimensions and one or two partitions using the
initial aggregation plan. The full system data requirements
scale up the partitions linearly (ignoring the dimension
storage, which usually rounds to zero in comparison to the
partitions).

When you’re planning storage requirements, it’s very
important to understand that during processing, you’ll need
temporary access to significant extra storage. Analysis
Services is designed to remain available for queries while
processing is under way. It does so by keeping a shadow
copy of the portion of the SSAS database being processed.
If you plan to process the entire database as one

566

transaction, you’ll need double the disk space during
processing. Most very large SSAS databases are processed
in pieces (each dimension, each measure group), in order
to save disk space during processing.

Processing the Full Cube

In an ideal world, you’ll fully process a measure group
only once, when you first move it into test and then
production. But change is inevitable, and it’s pretty likely
that one or more necessary changes to the database’s
structure will require full reprocessing.

You can fully process a measure group from within
Management Studio: right-click the measure group and
choose Process. Once you’re in production, this is not the
best strategy for full processing. Instead, you should write
a script or Integration Services package to perform the
processing.

NOTE

Don’t get in the habit of using Management
Studio to launch processing. This isn’t
because of performance — exactly the
same thing happens whether you use
Management Studio, a script, or Integration
Services. The difference is in a
commitment to an automated and hands-off

567

production environment. These issues are
discussed in Chapter 17.

We recommend that you use Integration Services to
perform measure group processing. This is especially true
if you’re using Integration Services for your ETL system,
as you’ll have a logging and auditing infrastructure in
place. Integration Services includes a task to perform
Analysis Services processing.

If you’re not using SSIS as your ETL tool, you can still
automate cube processing by writing a script. There are
two approaches for writing a script: XMLA (XML for
Analysis) or AMO (Analysis Management Objects). We
find AMO easier to work with than XMLA, but exactly the
same thing happens under the covers, no matter which
interface you use.

Developing the Incremental Processing Plan

Long before you put your Analysis Services database into
production, you need to develop a plan for keeping it
up-to-date. There are several ways to do this. Scheduled
processing will continue to be the most common method of
processing.

NOTE

568

The alternative to scheduled processing is
to use the SSAS feature called Proactive
Caching. Proactive Caching is a feature
that lets your cube monitor the source
database — the relational data warehouse
in this case — and automatically kick off
processing when new data is detected. In
the vast majority of cases, you know
exactly when you added data to the data
warehouse. It’s more straightforward
simply to tack on cube processing at the
end of the ETL job, rather than use
Proactive Caching. We discuss Proactive
Caching in Chapter 9 when we describe
low latency scenarios.

Scheduled Processing

Scheduled processing of Analysis Services objects is
basically a pull method of getting data into the cube. On a
schedule, or upon successful completion of an event like a
successful relational data warehouse load, launch a job to
pull the data into the cube. In this section we provide an
overview of techniques. We go into greater detail in
Chapter 17.

Full Reprocessing

The simplest strategy is to perform full processing every
time you want to add data. We’re surprised by how many
people choose this strategy, which is akin to fully

569

reloading the data warehouse on every load cycle. It’s
certainly the easiest strategy to implement. Analysis
Services performs processing efficiently, so this approach
can perform tolerably well for monthly or weekly load
cycles — or even daily for small measure groups.

The same script or Integration Services package that you
used for the initial population of the cube can be
re-executed as needed. If full processing completes within
the ETL load window, it’s the simplest approach and
there’s no need to develop an incremental processing plan.

Incremental Processing

If your data volumes are large enough that full processing
is not desirable, the next obvious choice is to schedule
incremental processing.

Incremental dimension processing is straightforward and
can be scripted in the same way as database, cube, or
measure group full processing. In Chapter 7, we
recommend that you create an Integration Services
package for each dimension table. You can add the
Analysis Services processing task to each dimension’s
package, to automatically start dimension processing when
the corresponding relational dimension has successfully
loaded. Alternatively, wait until the relational work is done
and process all Analysis Services objects together in a
single transaction.

Incremental measure group processing is more
complicated than dimension processing because you must
design your system so you process only new data. Analysis

570

Services doesn’t check to make sure you’re not
inadvertently adding data twice or skipping a set of data.

The best way to identify the incremental rows to be
processed is to tag all fact table rows with an audit key, as
we describe in Chapter 7. All rows that were added today
(or this hour, or this month) are tied together by the audit
key. Now, you just need to tell Analysis Services which
batch to load. You can write a simple program that would
redefine a view of the fact table that filters to the current
batch. Or, define a static metadata-driven view definition
that points Analysis Services to the fact rows that haven’t
been loaded yet.

NOTE

It’s tempting to use the transaction date as
the filter condition for the view or query
that finds the current rows. In the real
world, we usually see data flowing in for
multiple days, so we tend to prefer the
audit key method. If you’re sure that can’t
happen in your environment, you can use
the transaction date.

As before, once your view of the fact table has been
redefined (if necessary) to filter only the new rows, it’s
simple to launch measure group processing from a script or
package.

571

NOTE

Every time you incrementally process a
partition, it gets a bit fragmented. If you
rely primarily on incremental processing,
you should fully process occasionally. For
daily processing, monthly full reprocessing
should be fine.

Incremental Processing with Multiple Partitions

If you’re using SQL Server Data Center or Enterprise
Edition and are partitioning your measure groups, your
incremental processing job is even more challenging. First,
you need to be sure that you create a new partition or
partition set before you need it. In other words, if you’re
partitioning your measure group by month, then each
month you need to create a new partition designed to hold
the new month’s data.

NOTE

There’s no harm in creating twelve
monthly partitions in advance. But you still
need to add some logic to your Integration
Services package, to be sure you march
through the partitions as each new month
begins.

572

Make sure that the source query for the measure group’s
incremental processing has two filters:

• Grab only the rows that are new.
• Grab only the rows that belong in this partition.

This is particularly tedious if you have late-arriving facts
— in other words, if today’s load can include data for
transactions that occurred a long time ago. If this is the
case, you’ll need to set up a more complicated Integration
Services package. Query the data loaded today to find out
which partitions you’ll need to incrementally process;
define a loop over those time periods.

REFERENCE

SQL Server includes a sample Integration
Services package that manages Analysis
Services partitions. Explore and leverage
this excellent sample. It’s installed by
default at C:\Program

Files\Microsoft SQL

Server\100\Samples\Integration

Services\Package

Samples\SyncAdvWorksPartitions

Sample.

Planning for Updates to Dimensions

Updates to dimensions generally happen gracefully and
automatically in the dimension incremental processing.

573

The easiest kind of dimension update is a type 2 dimension
change. Analysis Services treats a type 2 change as a new
dimension member: It has its own key, which the database
has never seen before. From the point of view of
dimension processing, there’s no way to distinguish
between a new set of attributes for an existing customer
and a new row for a new customer.

Type 1 changes are picked up during dimension
processing. Type 1 changes are potentially expensive
because if any aggregation is defined on the type 1
attribute, that aggregation must be rebuilt. Analysis
Services drops the entire affected aggregation, but it can
re-compute it as a background process.

Specify whether or not to compute aggregations in the
background by setting the ProcessingMode property of the
dimension. The ProcessingMode can be:

• Regular: During processing, the leaf-level data plus any
aggregations and indexes are computed before the processed
cube is published to users.

• LazyAggregations: Aggregations and indexes are computed
in the background, and new data is made available to the
users as soon as the leaf-level data is processed. This sounds
great, but it can be problematic for query performance,
depending on the timing of the processing. You want to
avoid a situation where many users are querying a large cube
at a time when that cube has no indexes or aggregations in
place because it’s performing background processing.

Most dimensions should be defined to use lazy
aggregations, combined with the processing option to
Process Affected Objects. This processing option ensures

574

that indexes and aggregations are rebuilt as part of the
incremental processing transaction.

The place to worry about a type 1 change is if you have
declared the attribute to have a rigid relationship with
another attribute: in other words, if you have declared
there will never be a type 1 change on the attribute. You do
want to use rigid attribute relationships because they
provide substantial processing performance benefits. But if
you try to change the attribute, Analysis Services will raise
an error.

Deleting a dimension member is impossible, short of fully
reprocessing the dimension. Fully reprocessing a
dimension requires that any cubes using this dimension
also be fully reprocessed. If you must delete dimension
members, the best approach is to create a type 1 attribute
to flag whether the dimension member is currently active,
and to filter those dimension members out of most reports
and queries. Monthly or annually, fully reprocess the
database.

Planning for Fact Updates and Deletes

The best source for an Analysis Services cube is a ledgered
fact table. A ledgered fact table handles updates to facts by
creating an offsetting transaction to zero out the original
fact, then inserting a corrected fact row. This ledgering
works smoothly for the associated Analysis Services
measure group, because the ledger entries are treated as
new facts.

575

Sometimes it’s not that easy. How do you plan for the
situation where you mess up and somehow incorrectly
assign a bunch of facts to the wrong dimension member?
The only solution — unless you want to ledger out the
affected rows — is to fully reprocess the affected partition.

NOTE

Multiple partitions are starting to sound
like a really good idea.

There are several kinds of deleted data. The simplest,
where you roll off the oldest month or year of fact data, is
easily handled with a partitioned measure group. Just
delete the partition by right-clicking it and choosing Delete
in Management Studio or, more professionally, by
scripting that action.

The only way to delete a fact row is to fully process the
partition that contains that row. The scenario is fairly
common: You inadvertently load the same data twice into
the relational database. It’s unpleasant but certainly
possible to back out that load from the relational tables,
especially if you use the auditing system described in
Chapter 7. But within Analysis Services, you must fully
reprocess the affected partition.

NOTE

576

As we describe in Chapter 7, your ETL
system should perform reasonableness
checks to ensure you’re not double-loading.
If you have late-arriving facts, where
you’re writing data to multiple partitions
during each day’s load, you’ll be especially
motivated to develop a solid ETL system.

Summary

Analysis Services is one of the key components of the
Microsoft Business Intelligence technologies. It’s a solid,
scalable OLAP server that you can use as the primary or
only query engine for even the largest DW/BI system. In
Chapter 11, we discuss the new PowerPivot functionality
of Analysis Services, which enables power users to define
their own cubes and powerful analyses. In Chapter 13, we
discuss how to use Analysis Services to build a data
mining application.

In this chapter, you learned:

• After you build a conformed dimensional relational data
warehouse database, building the Analysis Services database
is relatively easy.

• The tools and wizards in the BI Studio give you a good head
start on the logical design of your cube database.

• There’s still lots of editing to do when you’ve finished the
wizards. The more challenging your application — in data
volumes or complexity — the more careful you need to be in
your logical and physical design choices.

577

• There’s still more work to do to integrate cube processing
with the ETL system.

• You must set attribute relationships correctly to get good
query performance. The single most important Analysis
Services feature of SQL Server Enterprise and Data Center
Editions is measure group partitioning. Partitioning greatly
improves the query and processing performance of your
database, and provides greater flexibility in system
management. These benefits come with the fairly substantial
cost of increased system complexity.

• Some of the interesting features of Analysis Services, such
as KPIs and Actions, require support from client software in
order to be useful additions to your system. The Microsoft
tools (Excel, ReportBuilder, and SharePoint) generally
support these SSAS features.

• Most features, like calculations, storage mode, advanced
processing techniques, and even translations, are available to
even the simplest Analysis Services client software.

Analysis Services is a complex piece of software. In this
chapter, we presented only the bare essentials of the
information necessary for you to be successful. The
Analysis Services expert on your team should plan to
purchase a few additional books devoted to the subject of
Analysis Services and MDX.

578

Chapter 9

Design Requirements for Real-Time BI

“The only reason for time is so that everything doesn’t
happen at once.”

— Albert Einstein

What does real time mean in the context of data
warehousing and business intelligence? If you ask your
business users what they mean when they ask for real-time
data, you’ll get such a range of answers that you may
decide it simply means “faster than they get data today.”

Throughout this book we’ve been assuming the DW/BI
system is refreshed periodically, typically daily. All the
techniques we’ve discussed are perfectly appropriate for a
daily load cycle. In this chapter, we turn our attention to
the problem of delivering data to business users throughout
the day. This can be every 12 hours, hourly, or possibly
even with a very low latency of seconds.

We’ll begin the chapter by confessing that we’re not huge
fans of integrating real-time data into the data warehouse.
This isn’t to say we don’t think real-time data is interesting
— just that putting it in the data warehouse database can
be very expensive and may be requested impulsively by
end users who haven’t made a solid case for real-time data.
The best use cases we’ve heard for very low latency data
come from mixed workload operational applications where
a customer is on the phone or online.

579

Putting aside our doubts, and assuming your business users
truly require intraday data, we turn our attention to the
hard problem: getting low latency data to the business
users. Depending on users’ requirements, as well as the
technologies you’re sourcing data from, there are several
ways to deliver real-time data. The first and easiest
approach is to skip the data warehouse database entirely
and write reports directly on the source systems.

Next, we talk about several approaches for bringing the
real-time data into the DW/BI system. These techniques
are most valuable for solving the data transformation and
integration problems inherent in complex reporting. We
recommend that you segregate the real-time data in its own
relational database: the real-time partition. Set up a nightly
process to consolidate the real-time partition into the
historical data warehouse. Because most of the data
cleaning and conforming tasks have taken place as the data
flows into the partition during the day, this nightly
processing is usually quick.

If your business users need to perform ad hoc analysis on
the real-time data, you should set up Analysis Services to
process the incoming data stream. There are several
techniques for processing real-time data into the Analysis
Services cube.

Real-Time Triage

If you ask your business users if they want “real-time”
delivery of data, they’re almost certain to answer yes. So
don’t ask that question. During business requirements
interviews, ask the users if “having yesterday’s data today”

580

meets their analytic needs. In the cases where the answer is
no, you may ask a few additional questions to determine if
the problem can be solved by improvements to the
transaction system (as it is a majority of the time). If the
real-time need is complex, we suggest you make a note of
it during your initial interviews, and plan to return later for
a discussion exclusively around real time.

You need to understand several elements of the real-time
requirements in order to craft an effective architecture with
the resources you have available.

What Does Real-Time Mean?

What is meant by real-time delivery of data? Is it
instantaneous, frequent, or daily? Many times we’ve
spoken with users who’ve asked for real-time data, only to
learn that they mean daily. As we’ve already discussed,
daily loads are the most common business practice, and in
most cases nothing to get alarmed about. When
requirements call for a latency of less than 24 hours, there
is a significant boundary that drives changes in your ETL
architecture and data structures. This is the boundary
between frequent and instantaneous updates.

Daily is the norm for business today. Whether your DW/BI
system supports daily, weekly, or monthly loads, the
design for that system is fundamentally the same.

NOTE

581

A fairly common scenario related to timely
data updates affects global companies,
whose customers — and DW/BI users —
span the globe. It’s common for a global
company to process data in a handful of
regions, after local midnight. This isn’t a
true real-time scenario because each
region’s data is processed daily.

Frequent means that the data visible in a report or analysis
is updated many times a day but is not guaranteed to be the
absolute current truth. Most of us are familiar with stock
market quote data that’s current to within 15 minutes.
Frequently delivered data is usually processed as
micro-batches using a conventional ETL architecture: SQL
Server Integration Services (SSIS). The data undergoes the
full gamut of change data capture, extraction, staging,
cleaning, error checking, surrogate key assignment, and
conforming.

Very low latency means the data must be delivered to the
business users faster than we can load it into the DW/BI
system, but not truly instantaneously. The lower bound for
very low latency is measured in seconds. The upper bound
is measured in minutes, usually less than 5 minutes. A very
low latency BI solution is usually implemented as an
enterprise information integration (EII) application. Such a
system must limit the complexity of query requests.
BizTalk is a key Microsoft technology for EII solutions.
BizTalk offers lightweight data cleaning and
transformation services, but the underlying ETL cannot

582

approach the complexity that SSIS can handle. Usually,
the very low latency application has its own data store, and
is an application that is related to the data warehouse, but
not actually in the data warehouse database.

Instantaneous means that the data visible on the screen
represents the true state of the transaction system(s) at
every instant. When the source system status changes, the
screen responds instantly and synchronously. An
instantaneous BI solution is outside the scope of this
chapter, and this book. It’s a requirement that the
transaction system itself must meet.

This chapter focuses on the “frequent” scenario: Latency
of less than a day but not instantaneous. We touch on the
“very low latency” scenario, as we discuss techniques to
reduce the latency of “frequent” delivery of information.

Who Needs Real Time?

The requirements for your real-time BI system should
include a specification of which business users need
real-time access, and for what. Most often, the consumers
of real-time information are those in operational roles. This
makes perfect sense: your executives ought not to be
worrying about how many orders were placed in the past
15 minutes. The operational focus of the information
consumers is good news for the real-time system designer,
because you can focus on delivering the required
information without having to support ad hoc use of the
current data.

583

NOTE

We have seldom seen ad hoc requirements
for real-time data. In the vast majority of
cases, real-time needs are met by a handful
of predefined reports and displays, usually
parameterized along a very small set of
attributes such as customer account
number. You may have to do some work to
extract crisp requirements from the users,
because a demand for ad hoc access may be
covering up uncertainty about what
information is important. But delivering
predefined reports on real-time data is an
order of magnitude easier than supporting a
wide range of random ad hoc queries.

As you consider the tradeoffs that must inevitably be made
in order to accommodate real-time information, you need
to keep the usage scenarios in mind. Don’t weaken a
powerful analytic system to deliver real-time data unless
the rewards are great and the alternatives poor.

Real-Time Scenarios

My favorite example of a silly real-time data
warehouse was a chain of dental clinics whose
CEO wanted to know how many teeth have been

584

filled as of right now. I can just picture the CEO
pushing the refresh button on his BI dashboard
while his ship is sailing onto the rocks. On the
other hand, the IT guy who related this anecdote
actually did deliver this report, though not
integrated with the entire DW/BI system. The CEO
was so impressed that he provided enough funds to
build a real data warehouse.

The best examples we’ve seen of a strong need for
real-time information is in the new economy.
Consider an online services company that has a
team of analysts who adjust the placement and
pricing of advertisements based on usage not just
for the last 30 days but also up to the moment. In
the long term this task would have to be automated
and hence not at all ad hoc. But in the short to
medium term there’s a clear need for analytic
access to low latency data.

The most common scenario for real-time
information is a call center support application.
The help desk operator needs to know the caller’s
historical usage, including the current activity.
Often this information is scattered across multiple
transaction systems, so we can’t solve the problem
by improving the operational systems. Note,
however, that this scenario does not require the call
center operator to perform any ad hoc analysis.
Rather, we must simply provide a report or screen

585

that contains very low latency data. This is a
requirement that we can fill in a variety of ways,
without necessarily hosting the real-time data in the
data warehouse database.

Real-Time Tradeoffs

Responding to real-time requirements means you’ll need to
change your DW/BI architecture to get data to the business
users faster. The architectural choices you make will
involve tradeoffs that affect data quality and
administration.

We assume that your overall goals for your DW/BI system
are unchanged by the move to real-time delivery. You
remain just as committed to data quality, integration,
conformance, usability, and security as you were before
you started designing a real-time system. If you agree with
this statement, you will have to juggle a number of
tradeoffs as you implement a real-time architecture:

• Delivering real-time data to people who want it, while
insulating those who don’t. One of the biggest issues for the
DW/BI team is to meet both the demands of those who want
real-time data, and those who most decidedly do not. You
may think that pushing latency closer to real time would be a
win for everyone. Surely, in the absence of any cost of
delivering data, we’d all prefer to have real-time data?

Actually, no. Anyone who’s trying to develop a non-trivial
analysis knows that you need to work on a static dataset,
where the numbers aren’t changing from moment to

586

moment and query to query. If you try to make these
analysts work against a dynamic database, they’ll copy a
bunch of data to a personal computer — exactly the kind
of behavior you’re probably hoping to stem with your DW/
BI project.

• Managing a DW/BI team that has an operational focus. If you
add operational duties to your team’s charter, you risk having
the urgent overwhelm the important. In other words, the
real-time operations will co-opt the strategic nature of the DW/
BI system. Think about it: This is why strategic groups
generally have no operational responsibility.

• Replacing a batch file extract with reading from a message
queue or transaction log file. A batch file delivered from the
source system should represent a clean and consistent view of
the source data. The extract contains only those records
resulting from completed transactions. Message queue data and
frequent pulls of transaction log (change data capture or CDC)
data, on the other hand, is raw instantaneous data that may not
be subject to any corrective process or business rule
enforcement in the source system. In the worst case, the
incoming data is incorrect or incomplete. In this case we
recommend a hybrid strategy where today’s data residing in the
“hot partition” is replaced during the quiet period at night with
data that is extracted from the conventional batch source.

• Restricting data quality screening only to column screens and
simple decode lookups. As the time available to process data
moving through the ETL pipeline is reduced, it may be
necessary to eliminate more costly data quality screening.
Recall that column screens involve single field tests or lookups
to replace or expand known values. Even in the most aggressive
real-time applications, including instantaneous, most column
screens should survive. But the more complex structural and
business rule screens, which by definition require more fields,
rows, and tables, may not be feasible to execute within the time
and resources allowed. For example, you may not be able to
perform a remote credit check through a web service. You may

587

need to educate users about the provisional and potentially
unreliable state of the real-time data.

• Allowing current facts to be posted with old copies of
dimensions. In the real-time world, it’s common to receive
transaction events before the context (such as the attributes of
the customer) of those transactions. In other words, you’re very
likely to get facts arriving before their dimension members. If
the real-time system can’t wait for the dimensions to be
resolved, you can use the technique described in Chapter 7 of
posting generic placeholder versions of the dimension members
in order to maintain referential integrity between facts and
dimensions. You are much more likely to need to design this
logic in the real-time ETL than for a daily batch.

• Eliminating data staging. Some real-time architectures,
especially very low latency EII systems, stream data directly
from the production source system to the users’ screens without
writing the data to permanent storage in the ETL pipeline. If this
kind of system is part of the DW/BI team’s responsibility, you
should have a serious talk with senior management about
whether backup, recovery, archiving, and compliance
responsibilities can be met, or whether those responsibilities are
now the sole concern of the production source system. At the
very least, the data stream going through the DW/BI system
should be captured in its entirety.

• Tracking misleadingly separate dimension attribute changes.
Depending on your source system architecture and your latency
requirements, you run a real risk of tracking an unreasonable
number of dimension attribute changes during the day when
actually there is only one administrative event taking place that
needs to change several attributes. Recall that a type 2
dimension adds a new row to the dimension table when a
tracked attribute is updated. If you don’t have a good way of
pulling only fully committed changes from the source system,
you can find yourself adding multiple rows to your customer
dimension, dated seconds or minutes apart, for what is really
one address change. Remember that this conformed dimension
table is used throughout the DW/BI system, not just the portion
of it being updated in real time.

588

• Recalculating performance aggregations. Perhaps the greatest
design challenge in integrating real-time data into your DW/BI
system has to do with type 1 updates to dimension attributes.
The update to the dimension table itself isn’t so problematic.
The challenging operation is to keep all performance
aggregations or summary tables updated. Let’s say you’re
managing customer address as type 1, and some of your fact
tables have performance aggregations on levels of the
geography hierarchy (region, country, state, and city). When
you update a customer’s address as type 1, updating the attribute
in place, you also need to adjust the pre-computed aggregations.
You need to move that customer’s historical fact rows from the
old geography to the new one. This problem ripples to every
fact table that subscribes to the dimension, whether or not that
fact table itself is being updated in real time.

WARNING

If you’re updating a dimension in real time,
and an important attribute is managed as
type 1 (update in place), you are placing a
huge constraint on all fact tables that
subscribe to that dimension. Every
performance aggregation that’s built on the
type 1 attribute, for each fact table in your
DW/BI system, for all of history, must be
adjusted. As your latency drops and you get
closer to instantaneous, there are only a few
practical alternatives:

• Forbid the processing of type 1 attributes
during the day. You can add new
dimension members and process type 2
attributes, but type 1 updates must be
deferred to nightly processing. Depending

589

on your requirements, this approach may
be unacceptable to the business users.

• Forbid the use of performance aggregations
on type 1 attributes that will be updated in
real time. This proscription applies to all
fact tables whether or not that fact table is
updated in real time. You may see a large
negative impact on query performance if
the performance aggregation was
frequently used.

• Use a different version of the customer
dimension for the real-time data than for
the rest of the data warehouse. You’ll need
to educate users about the potential data
inconsistencies. As mentioned above, it’s
common to reprocess the real-time data on
a nightly basis, at which point the
inconsistencies would be resolved.

If you’re using Analysis Services as your
presentation server, as described in Chapter
8, it will identify these type 1 attribute
changes during incremental processing, and
will rebuild the affected performance
aggregations for you. The problem is that
as you get closer to real time, SSAS will be
spending all of its time dropping and
re-creating the aggregations. It will not be
pretty.

In general, we’ve found that real-time DW/BI systems are
harder, more costly, and more time consuming to build.
Adding a real-time element to your project will greatly
increase its risk of failure. We certainly don’t recommend
pushing toward zero latency data delivery in a phase 1
project.

590

Scenarios and Solutions

The business has a problem: It needs better, more flexible
access to real-time data. Business users often look at the
DW/BI tools, and ask for that same level of functionality
and flexibility on operational systems.

Often, the best solution is to improve the operational
systems. If your operational system is purchased — as
most are — your company can extend the set of reports
that are shipped with the product. If those reports can’t be
modified, you should think about whether you made a
great product selection. But in the meantime, you can
certainly replace or extend the packaged reports with a
Reporting Services portal. That portal may even be
integrated with the DW/BI portal.

The problem is more interesting if the need for real-time
data spans several operational data sources. In this case,
you must perform some data transformation and
integration steps. For really simple scenarios, where the
data is perfectly clean (what alternate universe would that
be?), both Analysis Services and Reporting Services can
span multiple data sources. But realistically, any
integration that’s not trivial will require that the data flow
through Integration Services. From there it can populate a
relational database, or even flow directly into a cube. The
most common and effective scenario is to create a
real-time partition rather than to flow real-time data
directly into the historical data warehouse tables.

The remainder of this chapter describes the technical
features in the SQL Server toolset that you can use to

591

create an architecture that supports access to real-time
data. Always strive to keep your solution as simple as
possible. The different technological approaches usually
require a compromise between latency and integration.
The closer to instantaneous you need the data, the less
opportunity and ability you have to integrate and transform
that data. Table 9-1 below summarizes the options
discussed in this section.

Table 9-1: Alternative architectural solutions to delivering
real-time business intelligence

Solution Latency Integration

Execute reports in real
time

Very low latency; instantaneous at
the moment the report is executed None

Serve reports from a
cache Frequent None

Create an ODS using
database mirror and
snapshot

Frequent None

Create an ODS using
replication Very low latency Very little

Build a BizTalk
application Very low latency Moderate

Build a real-time partition Frequent Substantial

Executing Reports in Real Time

The most common way to use SQL Server technology to
access real-time data is to use Reporting Services. A report
written against the transaction system will, by default, be
executed on demand using live data. If your system is
small, your usage is light, you have few cross-system
integration requirements, and no one needs ad hoc access

592

to the real-time data, you can serve real-time data from
standard reports.

The main drawback of this approach is that it stresses the
transaction system. Many companies decided to build a
DW/BI system in part to move reporting off of the
transaction systems. A popular report that queries a large
section of the relational tables is going to be very
expensive to run in real time. You shouldn’t abandon
Reporting Services immediately, however. As we describe
in the next section, Reporting Services provides several
caching features that will help you address this
performance problem.

Executing reports directly from the transaction systems
provides very low latency information. It delivers
instantaneous access at the moment the report is executed,
but changes in the data are not automatically pushed into
the report. The closest you can get to instantaneous is to
have the user hit the refresh button repeatedly (which we
are not recommending!).

Reporting directly from the transaction database provides
no opportunity to integrate or improve the data, beyond
that which can be done in the report definition.

Serving Reports from a Cache

Reporting Services offers two ways to cache reports to
improve user query performance, but at the cost of an
increase in latency. The first technique is to cache reports
on a schedule. A user can’t tell the difference between a
cached report and a normal on-demand report, except for

593

the date and time the report ran. The first user to run the
report has to wait for the query to execute and the report to
render. Subsequent users simply pull the report from the
cache. You specify a schedule for each report, detailing
how long the report can be cached before it expires. Once
the cached report expires, the next query will result in a
new, refreshed report being created and cached. Users may
be surprised to see uneven query performance from one
time the report is run to the next.

The second very easy technique for improving
performance of reports against live data is to create a
snapshot report. A snapshot report is a feature of Reporting
Services Enterprise and Data Center Editions. A snapshot
report saves the report’s body, including the dataset, in the
report catalog database. A snapshot report addresses the
problem of cached reports’ uneven performance. Someone
— we can’t predict who — is going to pay the price of
executing a cached report after the old cache has expired.
With a snapshot report you can instead schedule the
execution of the report to run on a schedule and store its
results. You’d probably choose this approach if you’re
worried that the CEO would be the one who might execute
the expired cached report and have to wait for the refresh.

Cached and snapshot reports can be parameterized, but you
need to define and cache the parameter values that will be
used. Realistically, most parameterized reports are not
served from a cache but instead execute directly against
the underlying database. Cached and snapshot reports are
very easy to implement. You should certainly consider
whether they meet your needs, before turning to more
complex architectures.

594

Creating an ODS with Mirrors and Snapshots

The phrase Operational Data Store (ODS) has been used to
mean so many things that we hesitate to use it. By ODS,
we mean a low latency copy of the transaction systems.
The ODS may be part of the overall DW/BI system, but is
definitely not the data warehouse database itself.

The simplest ODS is a copy of a transaction database with
little or no integration. If the transaction database is in
SQL Server 2005 (or later), the easiest way to set up the
ODS is to create a database snapshot of a mirror of the
transaction system.

Mirroring is a feature of SQL Server that’s used primarily
to increase the availability of a transaction database.
Typically, the transaction database is mirrored to a
separate server in a different location. Depending on how
you configure and run the mirror, it can act as either a hot
or warm standby.

Mirroring by itself doesn’t help the ODS, because a
characteristic of a mirror is that it cannot be queried.
Create a database snapshot on top of the mirror, and serve
low latency reports from the snapshot. A database snapshot
is a read-only, static view of the source database.
Snapshots always reside on the same server instance as the
source database, which is why it’s better to snapshot a
mirror rather than the transaction database directly.

Mirroring and Snapshots are enterprise features of SQL
Server.

595

REFERENCE

Books Online has a lot of information on
mirroring and snapshots, and more is
available on MDSN. To get started, read
these Books Online topics:

• How Database Snapshots Work
• Database Mirroring and Database

Snapshots
• Database Mirroring Overview

Creating an ODS with Replication

An alternative approach for creating an ODS is to use SQL
Server replication. Most people use database mirrors and
snapshots to create an ODS, but replication continues to be
a popular technique. It has several advantages over the
mirror + snapshot approach, including:

• Replication is available on older versions of SQL Server,
prior to SQL Server 2005.

• Replication can be defined on a subset of the source
database. If the real-time requirements are focused in a
specific area of the database, replication may be faster and
use fewer resources.

• Slight transformations are possible as the data is moved into
the replication target. This feature doesn’t come close to
providing the functionality available in Integration Services,
and should be used with caution. Any significant
transformations can affect performance on the source
system. This will not make you popular with the DBAs.

Building a BizTalk Application

596

BizTalk Server is a Microsoft development environment
for enterprise application integration, business process
automation, and inter-business communication. BizTalk is
a rich and robust environment for building integration
applications, but it’s not a general-purpose replacement for
Integration Services. SSIS can do far more complex
transformations, on a much higher volume of data, than
BizTalk.

However, you may want to consider using BizTalk to build
an application to meet your real-time information
requirements. The scenarios in which BizTalk is
particularly appealing to include in the DW/BI system
architecture are:

• Well-defined, such as a report or dashboard.
• Integrating data from multiple sources. Otherwise, the

reporting solutions are more appealing.
• Very low latency. Otherwise, the DW/BI team will use the

more familiar Integration Services.

We view a BizTalk application as ancillary to the core
DW/BI system. We would consider using it to solve a
specific problem, to populate a table that feeds a specific
report or dashboard object, or feed data into a data mining
application. Depending on the circumstances, its target
data structures may be nearby, but not exactly inside, the
main data warehouse database.

Building a Real-Time Relational Partition

It’s time to discuss how to load the DW/BI system in real
time. The problems with loading the relational data
warehouse database are design issues, not technology

597

issues. There’s no technical reason that you could not
trickle-feed your relational data warehouse database every
hour, even every minute. The problem, as we’ve already
discussed, is meeting a diverse set of requirements with a
single integrated system.

The design solution for responding to the business users’
demands is to build a real-time partition as an extension of
the conventional daily data warehouse. To achieve
real-time reporting, build a special partition that is
physically and administratively separated from the
conventional data warehouse tables.

The real-time partition should meet the following tough set
of requirements. It must:

• Contain all the activity that has occurred since the last
update of the historical data warehouse, for the fact tables
that have a low latency requirement.

• Link as seamlessly as possible to the grain and content of the
historical data warehouse fact tables.

• Be indexed so lightly that incoming data can continuously be
trickled in.

• Support highly responsive queries.

The real-time partition is usually not a true table partition.
Instead, it’s a separate physical table, usually in a different
database that uses transactional database options. Most
implementations will use Integration Services to populate
this real-time partition intraday. If you need very low
latency, and have (or can obtain) BizTalk expertise
in-house, you may consider using BizTalk instead of SSIS.
The real-time partition should store data for the current day
only.

598

NOTE

It’s usually best to put the real-time
partition database on the same server as the
historical data warehouse database.
Presumably, your users will need to
combine current and historical data.
Although distributed queries are feasible,
it’s easier and works better if all the data is
on the same server.

The real-time partition should contain tables that are
structured similarly to the relational data warehouse
database. Start with the fact tables that you plan to track in
real time. These fact tables should look just like the
corresponding fact table in the data warehouse database,
with the same columns in the same order. There is one
vital difference: these fact tables contain the transaction
system keys, not the surrogate keys that are managed by
the data warehouse. You will want to add the date and time
of the transaction, and any other information necessary to
identify the transaction, like a transaction number. We
generally recommend that you include such information in
the main fact table, but be sure to include it here.

Dimension tables are a little trickier, because conformed
dimensions are used throughout the enterprise data
warehouse, not just in the portion being updated in real
time. Most often, you’d copy dimensions to the real-time
partition each morning, and make inserts and updates into
those versions of the dimension. Create a nightly process

599

to consolidate those changes into the permanent
dimensions at the same time the real-time fact data is
moved over.

There are several reasons for implementing the real-time
partition with transaction system keys rather than surrogate
keys.

• The surrogate key pipeline is usually the most expensive
piece of processing in the ETL system, by a substantial
margin.

• All of the type 2 (track history) dimension attribute changes
for a dimension member can be compressed to the
end-of-day state. Most DW/BI environments choose to track
attribute changes daily.

• The main data warehouse database is insulated from the type
1 (restate history) dimension attribute changes. Recall from
earlier in this chapter that any performance aggregations in
the entire data warehouse which are built on a type 1
attribute will have to be adjusted whenever that attribute is
updated.

If you have decided not to process dimension attribute
changes during the day, then evaluate whether you can
support the fact table surrogate key pipeline in real time. If
so, you can integrate the real-time partition into the main
data warehouse as part of the normal fact table.

NOTE

Even if you don’t have a compelling need
to query integrated data in real time, you
may still develop a real-time partition. By

600

populating it in real time, you can spread
much of the ETL burden over 24 hours,
and reduce the time required to perform the
DW/BI system’s daily update.

Querying Real-Time Data in the Relational Database

A purely relational implementation of real-time data is
appealing, because it minimizes the processing steps.
However, the drawback of a pure relational
implementation is that we don’t have a way to break apart
a query into the portion that needs to be sent to the
historical data warehouse tables, and the portion to be
resolved from the real-time partition.

In a scenario where there is no ad hoc use of the real-time
partition, this isn’t a deal-breaker. Report builders in IT
should not find it difficult to construct a report that
combines identically structured data from the historical
data warehouse with the real-time partition. The data can
be combined into a single consolidated chart or report.
This may be as simple as a query that UNIONs today with
history, or you may need to join the result sets in
Reporting Services. Today’s data is always queried with
the current set of attributes. Depending on the report’s
business requirements, the historical data will include
either the current attributes from the real-time partition or
the historical attributes from the data warehouse. Given the
nature of operational information needs, it’s more likely
that you’ll use the current image of the dimension for the
entire report.

601

Alternatively, a very useful display might show the most
recent activity as a heartbeat-style graph, with a different
format such as a table for older data. This scenario can be
implemented as two separate but similar queries presented
together in a linked report or dashboard.

Using Analysis Services to Query Real-Time Data

If your users absolutely, positively, have to have ad hoc
access to real-time data, the best way to provide this access
is to use Analysis Services. SSAS can provide the service
to redirect the historical part of a query to one storage
location, and the low latency part of the same query to a
different data store.

WARNING

Build a separate Analysis Services database
exclusively for the business users who need
real-time information. Don’t attempt to
modify your core SSAS database to be
updated in real time. Strip down this
real-time cube to be as small as possible
while still meeting users’ needs.

Build a real-time cube much the same as described in
Chapter 8, in an SSAS database devoted to delivering
real-time data. You should be using Enterprise Edition,
because you’ll need multiple partitions.

602

The dimensions should be structured identically to the
corresponding dimension in the core SSAS database, but
they will be built from the real-time versions of the
dimension tables located in the relational real-time
partition.

The cube’s measure groups must be partitioned by date,
with the majority of the data coming from the historical
fact table in the main data warehouse, and the current day
from the real-time partition. Make sure your aggregation
plan for this real-time cube does not contain any
pre-computed performance aggregations for dimension
attributes managed as type 1, as we described earlier in this
chapter.

Often, you can get perfectly acceptable query performance
by leaving the real-time partition in the relational database
(using ROLAP storage mode). For best processing
performance, the real-time partition should have no
performance aggregations defined on it. The dimensions
and the historical fact data should use MOLAP storage
mode as usual, with plenty of performance aggregations. If
query performance is not good enough with this approach,
use MOLAP storage on the real-time partition.

There are several ways to get the real-time data into
Analysis Services. All of these methods allow background
processing while users are connected to, and actively
querying, the cube.

• Schedule frequent processing. You can set up scheduled
processing of the real-time dimensions and partition. Have
SSIS perform its ETL into the relational database at the

603

latency you need, such as hourly. When the ETL is done,
kick off dimension processing and then incremental
processing of the real-time partition. If the real-time partition
is stored as ROLAP with no aggregations, processing will be
extremely fast. The design of the ETL is fundamentally the
same as for the common daily processing scenario described
in Chapter 7. As always, the Analysis Services cube remains
available for user queries while processing is under way.

• Use SSIS to process data directly. Similar to the processing
scenario just described, you can use the SSAS destination
adapter of the SSIS data flow to reduce latency a little bit.
The difference between this scenario and the scheduled
processing just described is that SSIS flows the data directly
into SSAS instead of into a relational table first, and from
there, into SSAS. If you implement this approach, you
should multicast the flow just before the insert, and flow it
into the relational real-time partition at the same time it’s
processed into Analysis Services. This approach is unlikely
to shave more than a few seconds from the data delivery
time, as SSAS processing is quite fast, especially if the
Analysis Services partition is in ROLAP with no
aggregations.

• Use proactive caching. Proactive caching is a feature of
SSAS that transparently maintains a dimension or partition.
Proactive caching consists of two components:

• A mechanism for watching the relational database
from which the cube is sourced, to identify new
data.

• Sophisticated caching that enables uninterrupted
high-performance querying while the new data is
being processed and added to the cube.

Proactive caching itself does not provide real-time
capability; it’s a feature that helps you manage your
real-time business needs.

Summary

604

We’ve spent a lot of time in this chapter talking about the
challenges of real-time BI. These challenges are even
greater if you’re trying to deliver real-time data that’s
consistent across the enterprise with the well managed data
warehouse database.

Our goal in this chapter is to present you with a realistic
description of the challenges, the alternatives and their
pros and cons, and practical advice for implementing each
significant alternative.

These alternatives start with encouraging you to keep the
real-time data out of the data warehouse database, and
away from the DW/BI team. We’ve seen strategic-thinking
DW/BI teams get sucked into delivering real-time data,
never to be heard from again. A lot of the business
requirements for real-time data can be met by the
transaction system owners using the very nice functionality
in SQL Server, especially Reporting Services, directly
against the transaction systems.

If you need to present data in real time that integrates
information from multiple sources, you’ll need to use
Integration Services. Store the results of these expensive
integration and transformation operations in the real-time
partition of the relational data warehouse. We described
several designs and techniques for populating the DW/BI
system in real time.

We believe that the greatest benefit to the real-time
functionality offered in SQL Server 2008 will be to
software vendors who are building and improving
operational systems, and the future customers of those

605

systems. Ideally, the operational systems will present
information in a useful, timely, flexible way. We hope
software developers will use these features to deliver
products that delight rather than frustrate their users.

606

Part 3: Developing the BI Applications

Chapter 10: Building BI Applications in Reporting
Services

Chapter 11: PowerPivot and Excel

Chapter 12: The BI Portal and SharePoint

Chapter 13: Incorporating Data Mining

We’ve reached the point in the DW/BI Lifecycle where we
can actually start delivering value to the business
community. It turns out this delivery step is more
important than you might think. We believe the business
folks should be wildly enthusiastic about getting at their
data and understanding it better.

The problem with this belief is that most business people
do not seem to agree. In fact, based on our experience, you
will be lucky to get 10 percent of your user base to actually
build their own reports from scratch. We suspect this is
because learning the tools and the data is just too far
outside the comfort zone of most business people.
Therefore, a critical part of every DW/BI project is
providing the other 90 percent of the user community with
a more structured, and easier, way to access the data
warehouse.

This section is about the components in the SQL Server
platform, and in the broader Microsoft product line, which
you will use to close the last gap between the DW/BI

607

system and the business users. These components include
Reporting Services and Report Builder, Excel and
PowerPivot, SharePoint, and SQL Server data mining.

The Kimball Lifecycle steps covered in Part 3

608

Chapter 10

Building BI Applications in Reporting Services

Building a bridge for those who don’t want to swim.

We refer to all the tools, reports, and applications used to
access the DW/BI system for business purposes as BI
applications. This covers a range of concepts and
technologies, which we will describe in the first part of this
chapter.

One of the BI application categories is called standard or
enterprise reports. These are the core DW/BI system
reports, usually created and maintained by the DW/BI
team, that provide the business with official numbers for a
given business process. Reporting Services is SQL
Server’s standard report delivery platform. Therefore, most
of this chapter is focused on creating and delivering
standard reports on the Reporting Services platform.

Every user of your DW/BI system will access it through BI
applications and especially standard reports. The vast
majority of those users — typically between 70 and 90
percent — will use only standard reports. To them, the
standard reports and the portal they live in are the DW/BI
system. After working through the relational and OLAP
database designs and the ETL system to populate them,
creating reports seems easy. If you’ve built a solid,
dimensional information infrastructure, creating reports is
the fun part where all that work finally pays off.

609

Reporting Services has been well received by the
Microsoft customer base and has been successfully
implemented in many large organizations. Given its
reasonable level of functionality and its more than
reasonable incremental cost, we expect that a large
percentage of folks reading this book will choose
Reporting Services as the delivery vehicle for their
standard reports and analytic applications.

This chapter provides the basic information you need to
understand the range of BI applications available to you
and to build your core set of BI applications. We start with
an introduction to BI applications in general. We then offer
an overview of Reporting Services as a platform for
creating and distributing standard reports. Moving down to
the practical level, we provide a development process for
creating standard reports in the context of the Kimball
Lifecycle. This development process applies equally to the
creation of other kinds of BI applications. The last section
walks through the creation of a standard report in
Reporting Services.

By the end of this chapter, you should be able to answer
the following questions:

• What are the various types of BI applications and why are
they important?

• What is Reporting Services? How does it work, and where
does it fit in the overall DW/BI system?

• What process and techniques should one employ to design
and develop standard reports or other BI applications?

• What tools does Reporting Services provide for report
development?

610

• What does it take to create a standard report in the Reporting
Services environment?

• What does it take to manage and maintain the standard
report set?

• What are the additional components of Report Builder 3.0
that help make it a reasonable ad hoc query and reporting
tool?

Learning Reporting Services

This chapter is not a tutorial on Reporting Services.
If you’ve been charged with the task of building
the initial set of reports, you should first install
Reporting Services and the samples on your
development machine. Then review the
documentation in Microsoft’s Books Online and
work through the tutorials. You may also want to
get one of the many Reporting Services books
available, or even take one of the many classes
offered on Reporting Services. Visit the book’s
website for references to a few current books.

A Brief Overview of BI Applications

Before we describe how to build a set of BI applications,
we should be clear about what they are and why they are
important. This section defines several types of BI
applications and covers why BI applications are important.

Types of BI Applications

611

There are many tools and report types that pull data from
the data warehouse, from canned, pre-run reports to
custom coded applications. In an effort to bring some
structure to this confusion, Figure 10-1 lists several
categories of BI applications along with the roles they
play, the consumer types who typically use them, and the
Microsoft tools used to build them. These categories
include:

• Direct access query and reporting tools: These applications
allow users to query the dimensional model directly and
allow users to define a results set. Simple ad hoc tools
deliver only tabular results sets, while more advanced tools
allow the creation of fully realized, complex reports. These
more sophisticated ad hoc tools also serve as the
development tools for standard reports that other users can
run themselves.

• Data mining: Data mining applications are included in the
direct access box in Figure 10-1 because the process of
developing a data mining model involves a highly iterative
direct access data exploration process. The models that are
the outcome of the data mining process are often embedded
in other BI applications. We’ve dedicated a chapter (Chapter
13) to data mining because it is such a powerful component
of the SQL Server platform.

Figure 10-1: BI applications, consumer modes, and
associated Microsoft tools

612

• Standard reports: These are predefined, preformatted reports
that generally provide some level of user interaction, like the
ability to enter a parameter, drill down to a lower level of
detail, and link to related reports.

• Analytic applications: These applications are managed sets
of reports that usually embed domain expertise about how to
analyze a particular business process. Most analytic
applications require an interface layer for user access.
Analytic applications that include forecasting or prediction,
such as a promotion analysis system or a sales rep
dashboard, often take advantage of data mining models.

• Dashboards and scorecards: These applications generally
involve a combination of multiple reports and charts in a
seamless interface that use exception highlighting and
drill-down capabilities to analyze data from multiple
business processes.

• Operational BI and closed loop applications: These include
the use of applications that are more sophisticated than
typical operational reports. These applications leverage the

613

rich historical context across multiple business processes
available in the data warehouse to guide operational decision
making. Operational BI applications often include data
mining models to help identify patterns and opportunities,
and make recommendations, at the operational level.

• The BI portal: The portal is the business’s primary interface
to the BI applications. It provides an organizing framework
to help people find the information they need. We describe
the BI portal in Chapter 12.

There is a significant overlap across these categories. For
example, a dashboard may be essentially a collection of
standard reports integrated into a single interface with a
common set of parameters. Or, you may use dashboard
tools to build an analytic application. We recommend you
concentrate on doing whatever you need to do to deliver
business value, and don’t get too caught up on the terms.

The Value of Business Intelligence Applications

Before we dive into the details of creating these
applications, it’s worth reviewing the value you get from
them to help justify the effort. As it turns out, they add
significant value in several ways.

• Business value: The process of identifying and creating BI
applications based on business requirements almost
guarantees that you will provide something of significant
value to the business.

• Broad access: The BI applications provide data warehouse
access for a broad, important user community. Remember,
80 percent or more of your knowledge workers will not
develop the technical skills and data acumen needed to build
their own reports. You must provide them with a means to
get the information they need to make informed decisions.

614

• Early impact: BI applications built in the development phase
of the Lifecycle demonstrate the value of the DW/BI system
from day one. Business users across the organization can
take advantage of the initial business process dimensional
model as soon as you deploy it.

• Data validation: BI applications help validate the data
warehouse content because they represent real-world
analyses that bring together dimensions and facts in a way
that hasn’t happened prior to this point. Typically, you will
uncover some data irregularities, in spite of your rigorous
data quality and design efforts.

• Query performance: Similar to data validation, the BI
applications generate more complex queries than the basic
testing that has taken place prior to this point. So much so,
you should capture the SQL and MDX queries from the BI
applications and use them to generate some of the ongoing
performance metrics.

• Tool functionality: Because the BI applications are real
business analyses, it is important that your front-end tool be
able to handle them easily. Building BI applications during
development provides an opportunity to test the ability of the
tools to meet the business needs. You can bring in a
development expert from the vendor’s consulting
organization (surely, you negotiated this as part of your
purchase) to show you how to work around some of the
rough edges of the product.

• Relationship building: Including your power users in the BI
application development process is a great way to keep them
excited about the DW/BI system and motivated to climb the
learning curve. The users get early, supervised training on
the reporting tool and the data, and the team gets extra help
building the applications. (So maybe it isn’t so helpful in
terms of actually getting reports built, but the relationship
part is worth the extra effort.) Make this process more fun by
setting up a development lab where users and team members
can all work and learn together. Bring donuts.

• Feedback: Finally, building BI applications helps the DW/BI
team experience the impact of their design decisions. Many

615

of the tradeoffs that were made during the design phase
surface at this point. For example, it is now possible to
estimate the full cost of decisions about pre-calculating a
value versus letting the users calculate it in their reports.
Consider having your data modelers and ETL developers
participate in creating some of the BI applications.
Experience is the best teacher.

We hope you were already planning to include BI
applications as part of your DW/BI system development
effort and this section has served only to highlight the
wisdom of your plans. Now that you are appropriately
motivated, let’s dig into the process of designing and
developing the standard reports set of BI applications on
the Reporting Services platform, starting with the
product’s overall architecture.

A High-Level Architecture for Reporting

With an understanding of BI applications in place, we now
turn our attention to the technology in SQL Server used to
create and deliver them. Remember, the initial step in any
development effort is to understand the business
requirements. The Lifecycle shows that business
requirements determine the architecture, and the
architecture defines product requirements. Standard report
users’ business requirements should determine the
capabilities your BI applications need to provide, and the
specific functionality of the tool you use.

Following the Lifecycle flow, this section begins with a
list of high-level business requirements for standard
reporting and the architectural or functional implications of
each of these requirements. Next we present an

616

architectural overview of Reporting Services, Microsoft’s
enterprise reporting platform. Then, we examine Reporting
Services to see how well it maps back to the general
reporting requirements.

This is a good time for you to pause and consider your
organization’s reporting and analysis requirements because
it may turn out that Reporting Services doesn’t provide all
the functionality your users need. You will need to gather
detailed requirements for reporting and analysis as part of
the requirements definition process. The functional list we
provide here is not enough for you to do a rigorous product
evaluation.

Reviewing Business Requirements for Reporting

The real, detailed business requirements will come from
the requirements-gathering process. The steps outlined in
this section are not a substitute for that process. However,
it’s possible to identify some common, high-level business
requirements for reporting. Create a mental image of your
user community. The group includes people at all levels of
the organization, with a broad range of technical skills.
The common element is that they’re business focused. As
a result, they’re generally not that excited by technology
and will rarely build their own queries from scratch.
They’re more interested in getting a quick answer to a
specific business question than in working through an
analysis process or figuring out the correct SQL or MDX
syntax for a query.

Table 10-1 summarizes the major, high-level requirements
of this group related to standard reports. A few of the

617

major functional implications are listed for each
requirement. Look at the second row of the table for
example: In order to meet the business need to find reports,
the DW/BI team will need to provide navigation, metadata,
and search functions. Table 10-1 serves as a roadmap for
describing the basic requirements for reporting and their
architectural implications.

Table 10-1: User requirements and functional implications

Business
Requirement

Functional Implications

Create reports

• Powerful, easy, fast report development tool • Variety of
presentation formats (tables, charts, matrices, interactive
pivots, maps, and so on)
• Compound reports with shared controls and parameters

Find reports
• Navigation framework • Metadata
• Search
• Personalization (“My Reports”)

View reports
• Access through a variety of methods and devices •
User-initiated (for example, browser-based)
• System-initiated (for example, auto email)

Receive
results in most
useful way

• Output to a variety of file types, formats, and locations

Change report
as needed

• Parameters • Drill down/additional attributes
• Linking

Solid, reliable
system

• Performance • Scalability
• Management

In practice, you need to back up each functional
implication with a more detailed description of the
required functionality. For example, if you ask any tool
vendor a question like “Do you provide a variety of
presentation formats?” the answer, spoken in a loud,

618

confident manner, will be “Absolutely!” Instead, you need
to list several detailed examples of how people need to see
information in your organization. Make them tough,
real-world examples and use them to test out the tool’s
functionality and to give you a chance to see how difficult
it is to work with the tool.

Examining the Reporting Services Architecture

The primary intent of Reporting Services is to provide a
solid, scalable, extensible enterprise reporting
infrastructure. This helps us understand the pieces of the
architecture and how they fit together to become Reporting
Services. Figure 10-2 shows the high-level architecture of
Reporting Services and its operating environment.

Reporting Services is a Windows service that contains
three applications: Report Manager, Reporting Services
Web service, and a background processing application.
Each of these applications call on a set of shared
processing extensions that provide specific functionality.
Reporting Services uses HTTP.SYS to provide web
functionality, which means the service is accessible either
through a browser pointed to the Report Server URL, or
through an application using the SOAP API. The SOAP
API allows developers to integrate reports seamlessly into
other applications. It also means Reporting Services no
longer has a dependency on Microsoft’s web server, IIS.

The Report Server communicates with its metadata store
hosted in a SQL Server database called ReportServer. The
ReportServer database stores all the information needed to
define and manage the reports and the report server. It also

619

is used to cache data to improve performance. It is not the
source for report data.

At the core of the report server is a processing engine that
supports functions like sorting, filtering, aggregations, and
conditional formatting. It has several components that are
designed to be extensible: Data, Rendering, Security, and
Delivery.

• Data: A data extension allows the server to connect to a data
source. Reporting Services ships with several data
extensions, including SQL Server, Analysis Services,
Oracle, SAP NetWeaver BI, Teradata, Hyperion Essbase,
and ADO.NET. ADO.NET indirectly provides access to a
wide range of data sources that have OLE DB or ODBC
drivers. Microsoft provides a set of APIs in the data
extension space if you need to add a data extension of your
own. If you have invested in an ADO.NET data extension,
you can plug it into the Report Server.

Figure 10-2: The Reporting Services 2008 R2 architecture

620

• Rendering: Rendering extensions allow the processing
engine to take a report defined in the Report Definition
Language (RDL) and output it to any number of formats
including HTML, Excel, PDF, CSV, images, and others.
There is also a rendering extension that generates
Atom-compliant data feeds that can be read by an
application. For example, an easy way to get a chunk of data
to PowerPivot might be via a Reporting Services Atom data
feed. Beyond this, you can write your own rendering
extension and add it to the list, but it is non-trivial because of
the complexity of the formatting options in RDL.

• Security: The standard edition of Reporting Services relies
on existing Windows authentication for security. If you have
an application that is not using Windows Integrated security,
you can support it through an extensible security component
included in SQL Server Enterprise Edition.

• Delivery: Reporting Services supports several ways to
distribute reports in addition to direct access to the web
server. The delivery function allows you to send reports
through file shares and email. This, too, is extensible, and

621

partners have built other delivery options like fax and
networked printers.

From a user access perspective, the upper-right corner of
Figure 10-2 shows how Reporting Services provides three
major methods for directly interacting with the server.
Most users access the server through the web browser
using a URL that points to the reporting service. As we
described earlier, it is also possible to access the server
through an application using SOAP APIs. The
management functions are accessible through the
Windows Management Instrumentation (WMI) provider
objects. This is what the Report Manager uses from the
browser or from the Management Studio to manage
Reporting Services.

Overall, the Reporting Services architecture accomplishes
its primary intent — it is an extensible, scalable reporting
infrastructure designed to meet the technical needs of a
broad range of organizations, from small companies to
large enterprises. While good technology is important,
technical products succeed only if they meet business
users’ needs. The next section compares this architecture
to see how it maps to the business requirements for
reporting.

Using Reporting Services as a Standard Reporting Tool

The goal here is to make sure Reporting Services provides
the necessary functionality to meet a general set of
business requirements for reporting. We compare
Reporting Services to the list of general requirements from
Table 10-1 to see how it does.

622

Creating Reports

Reporting Services has two primary tools for authoring
reports: the Report Designer in BI Development Studio,
and Report Builder 3.0. As we discussed in Chapter 3,
BIDS lives in, and leverages the power of, the Visual
Studio development environment. This means the person
creating the reports in Report Designer is working in a
software development environment. The report creator
needs to know about words like debug, build, and deploy.
He’ll need to be able to create a data connection and write
SQL. It’s not a place for the faint of heart, and certainly
not a place for the vast majority of end users. Report
Designer allows developers to create reports, manage them
in source control, and publish them up to the report server.

Report Builder 3.0 is a stand-alone report authoring tool.
You can access it by selecting the Report Builder button
on the menu bar in the Report Manager, or you can
download and install it as a stand-alone reporting tool. It
has a more Office-like Ribbon interface, and offers
essentially the same report components and design
experience as the Report Designer in BIDS. In addition,
Report Builder can use shared datasets and pre-defined
report parts that it draws from a library on the report
server. Report Builder can read and write reports directly
to the report server, or save them locally.

After the report is defined in Report Designer or Report
Builder, the definition is saved in Report Definition
Language (RDL), which is an open XML schema for
defining all the components of the report. This includes the
definition of the datasets; calculations, expressions,

623

conditional formatting, sorts, and filters; and layout of
information including tables, pivots, charts, text, and
formatting. When you publish, or deploy, a report to the
Report Server, it writes the RDL out to the Reporting
Services database in an XML data type field in one of the
metadata tables. Any tool that creates RDL files can
leverage Reporting Services as their enterprise report
distribution and execution engine.

Report Definition Language

You can see what the Report Definition Language
looks like by opening up a report in a browser
(look for files ending in .rdl). If you want to see the
full XML schema, go to the beginning of the .rdl
file and look for the URL of the namespace. It
should be right after “xmlns=”. Copy the URL you
see into the address box of another browser
window. You can see the entire XML schema of
the Report Definition Language.

Report Designer and Report Builder include tools to create
complex cross-tab reports, charts, maps, sparklines, data
bars, and various indicators. Because Report Designer is
oriented more toward programmers, the solution to many
problems is to write code rather than use the GUI to make
a selection, drag and drop, or check a box, as with some of
the third party tools used for creating reports. Report
Builder can also be fairly complex to use. Of course, this is
the universal tradeoff: power and flexibility versus ease of
use. The nature of this tradeoff will become clearer later in

624

this chapter when we create an example report. It will
become obvious when you begin working with the tool
firsthand to create real reports.

Finding Reports

After the developers have created and deployed a set of
standard reports, users need to be able to find a report they
want when they want it. This begins when you organize
the reports into categories that make sense to users, as we
described in the section on creating the navigation
framework earlier.

Microsoft has included a basic navigation framework
system as part of the Reporting Services product called
Report Manager. The Report Manager plays two roles. It
allows the developer to set some of the parameters and
properties of the report server environment and the reports
themselves. It can also serve as a simple vehicle to
organize standard reports and deliver them to the users.

Figure 10-3 shows the top level of a simple Report
Manager home page. The interface is essentially a list of
directories that follow the basic file system tree structure
of the projects that have been deployed to the report server.
This simple three-level hierarchy (Home/Project/Report)
serves as the rough navigation framework for the user.
You can add levels to this hierarchy by adding folders in
the Report Manager or in the TargetReportFolder property
of the Project Properties under the View menu of the
Report Designer. When the report is deployed to the
server, the default target folder is based on the BIDS
project name. To view a report, the user navigates the

625

folders starting with the Report Manager home and then
selects the desired report name.

Figure 10-3: Report Manager home page

Figure 10-4 shows the three Sales by Product reports
available when the user clicks on the 01 - Product Mgmt -
Sales by Product directory shown in Figure 10-3.

Figure 10-4: Reports in the Sales by Product directory

626

Under the covers, Report Manager is a web application
that uses the SOAP and WMI protocols to access to the
Report Server and its contents. SQL Server Management
Studio also provides some operational report management
functionality. This primarily includes defining security
roles and shared schedules, and monitoring of report
execution. Management Studio does not display the
contents of the reports or provide the other user-oriented
functions that Report Manager in the browser does.

Report Manager does provide many useful functions.
Because it’s based on the file system directory structure,
users can view reports as soon as they’ve been deployed. It
also provides some means for users to subscribe to reports
and publish their own reports if they have appropriate
permission. There is a search capability within the report
site, which searches both the file names and description
metadata in the Reporting Services catalog. Report
Manager displays parameter entry boxes and dropdown
choice lists in the Report Manager header area, enabling
users to enter their own choices and rerun the report. There
is a Find function to search within the body of a report,
which can be particularly helpful in large reports. Finally,
users have the ability to export the report to a file in any of
several formats.

In spite of all this useful stuff, Report Manager is a limited
report delivery solution. You can customize its appearance
by changing the color scheme and displaying your own
logo. But at the end of the day the reports are still grouped
by project and ordered by name. If Report Manager
doesn’t offer the functionality you need, you can build

627

your own portal. The sample set includes a sample called
RSExplorer that shows you how.

On the other hand, this is why SharePoint is often part of
the overall BI delivery solution, in spite of the extra effort.
You can completely customize the look and feel of the BI
portal in SharePoint. We begin to explore this option in
Chapter 12. All of the report management capabilities are
available when you run Reporting Services in SharePoint
integrated mode.

While it is not a full-featured information portal, Report
Manager does provide enough functionality to be
considered a viable delivery solution. Even in the face of
these (and other) limitations, many companies have
successfully employed Report Manager as their standard
report delivery vehicle. In any case, it does give you an
out-of-the-box starting point you can use to get going
quickly and verify your business users’ needs before
building a custom portal.

Viewing Reports

After a user has found a report that seems like it might
contain the needed information, he has to have a way to
view its contents. This is known as a “pull” model, where
the user finds the reports and interactively pulls the data
from the server.

Users can view reports through any application that can
access the report server, either through a URL with an
Internet browser or through an application that uses the
SOAP methods, like the Report Manager interface. Both

628

allow easy integration of Reporting Services reports into
existing portals or into custom-built or third-party
applications.

The browser is the most popular tool for viewing reports.
Using a browser means users don’t need additional
software installed on their machines and IT doesn’t need to
manage the software distribution and upgrade process.
(Unless, of course, your users have browsers other than
Internet Explorer, or they have a version of Internet
Explorer not supported by Reporting Services.)

Figure 10-5 shows what the user would see in the browser
as a result of clicking on the Product Subcategory Trend
link shown in Figure 10-4.

This example shows the report in the Report Manager
interface. You can view the report directly in the browser
without the Report Manager’s organizing structure. You’ll
see this direct access when we include a report in a simple
portal structure later in this chapter.

The custom application approach to accessing reports
might be something like an ASP.NET application built to
integrate reports into a larger system that provides
additional functionality. For example, a customer care
system might use Reporting Services to display a
customer’s purchasing and returns history to the customer
care agent. On the same screen, there can be a button to
allow the agent to select a recent order and submit it to the
transaction system to generate a Returned Merchandise
Authorization.

629

Figure 10-5: The Product Subcategory Sales Trend report

Receiving Results

Reporting Services offers several delivery methods and file
formats other than the pull approach described in the
Viewing Reports section. It’s helpful to look at these
options in two separate categories: first in terms of
delivery methods, and then in terms of formats.

The idea of the push model is to deliver the report to the
user based on a predefined schedule. Selecting
“Subscribe…” from a given report’s drop-down menu in

630

the Report Manger takes the user to a page for defining the
nature and timing of the subscription. The reports data
sources must use the proper credential settings to allow it
to be executed in a batch fashion. The subscription
includes a schedule based on a time event or a data event.
In the case of a time event, the report is distributed at a
certain time on a periodic basis (at 8:00 a.m. every
weekday, for example). In the case of a data event, the
report is distributed whenever the underlying report
snapshot is updated. Users can create their own
subscriptions to reports they’d like pushed to them, or the
report administrator can create shared schedules that send
reports to a list of users. Reporting Services supports
pushing reports out through email or to a file share.
However, because this function is extensible, several
companies are offering more push-style delivery options,
like faxing and printing.

Reporting Services provides several output formats for
exporting or subscribing to a report. These formats include
Excel, XML, TIFF, PDF, CSV, images, and various
HTML versions. Like the delivery mode, the format
choices are extensible.

Changing Reports

Static reports based on carefully identified business
requirements often provide enough information to answer
commonly asked questions. In most organizations,
standard report users want the ability to make changes to a
report without having to ask someone else to do it, or
having to learn the complexities of the data model and the
ad hoc tool. In these cases, it makes sense to provide users

631

with the ability to customize the standard reports to meet
their individual needs. Reporting Services includes several
common functions that provide users with the ability to
change a report, including parameters, report linking,
drill-down, and content modification.

The report in Figure 10-5 includes a parameter in the
control section above the body of the report section labeled
Select Product Category. The parameter has been set to the
value Bikes using a pull-down menu. A user can select a
particular product category and then click the View Report
button to re-execute the report. We discuss some of the
other functions for allowing users to interact with reports
in the second half of this chapter when we step through the
process of building a report.

The Limits of Security

Once someone removes a report from the
Reporting Services environment, either through
email or by directly exporting the report, access to
the data is no longer managed by Reporting
Services. Once users have the information in a file
format, there’s very little the DW/BI team can do
to control what they do with it. This is one of the
reasons the DW/BI system must have a clear
security and privacy policy, and compliance with
that policy must be monitored. See Chapter 14 for
more details.

Solid, Reliable System

632

Having a solid, reliable system is not the kind of business
requirement you like to hear from your users. The only
time they specifically mention this requirement is when
previous efforts haven’t performed well or have been
unreliable. Regardless of the history, you want your DW/
BI system to meet expectations. This involves setting up
the standard reporting process infrastructure, securing
access to reports, and managing performance.

The process infrastructure is a combination of Reporting
Services functions like shared schedules, and
process-oriented metadata connections with the rest of the
DW/BI system. You need to create a mechanism for
initiating the execution of a set of standard reports when a
particular ETL process completes. The process should
implement simple logic like, “When the nightly orders
update is finished, start these reports.”

Security is also part of a solid, reliable reporting system.
After you’ve designed the report, you need to control who
has access to the report, when they can view it, and how
they can interact with it. This can be accomplished using
role-based security. These roles can be managed through
SQL Server Management Studio and assigned to users in
Report Manager.

Performance is part of the system reliability job. If the
report server is too slow, users will get frustrated.
Reporting Services has several options for managing
performance, including scaling out to multiple report
servers, and scheduling reports to be executed during low
demand windows like early in the morning. You can set up
a large report to execute on a regular schedule, and save its

633

results in an intermediate snapshot structure. Users have
fast access to the snapshot rather than re-executing the
report itself. This option works well for the daily load
cycle of the standard DW/BI system. In Chapter 17, we
discuss ways to monitor performance over time to find
opportunities for improvement.

Reporting Services Assessment

Overall, Reporting Services provides the basic
functionality needed to create and deliver standard reports
that will meet a majority of the business requirements.
Because it’s oriented toward developers, it’s more difficult
to use than other reporting tools. Creating reports will take
a bit longer. This is balanced by the flexibility of the
programming paradigm. You can generally create a
work-around to solve most any problem.

In a way, Reporting Services is a “nobody ever got fired”
choice. The incremental cost and reasonable functionality
make it an easy decision. Reporting Services’ Report
Builder component offers acceptable ad hoc query
functionality to those advanced business users who are
capable of and interested in developing their own queries.
When you add in the reporting and analysis capabilities of
Office/Excel, and the collaboration and structure of
SharePoint, you should be able to solve most of the
significant reporting and analysis related business
problems.

Of course, there are third party tools for query and
reporting, and many organizations already have licenses
for one or more of these tools. You will need to decide

634

how these tools will fit into your overall DW/BI system
strategy. Remember, selecting end-user tools is more than
just a technical process. It is also highly political and
personal. You need to get the end users deeply involved in
making these decisions.

The Reporting System Design and Development Process

With an understanding of the Reporting Services
architecture in place, you can now start working on your
standard reports. This section uses the Lifecycle approach
to outline a process for defining and building your standard
reports. This same process can be easily adapted to other
BI applications types as well.

The BI application track highlighted in Figure 10-6
includes two major steps: design and development. The
design step begins soon after the business requirements are
complete. Most of the design effort is about identifying
and documenting the set of reports and analyses you will
deliver as part of the current Lifecycle iteration.

Figure 10-6: The BI application track in the Kimball
Lifecycle

635

The development step is about building the target set of
reports and analyses and the portal environment where
they can be found. Of course, you can’t really get started
on the development step until you have data available in
the target dimensional model and the BI tools are installed.
Let’s examine these two steps in more detail.

Reporting System Design

The goal of the design step is to capture what you learned
about reporting needs during the requirements definition
process in a way that can be quickly turned into real
applications once the pieces are in place. Create these
specifications as soon after gathering requirements as
possible. The longer you wait, the harder it will be to
remember the details. It’s a good idea to include some of
your key end users in this process of defining the
applications, assigning priorities, and generally making
sure you get it right. Report specification typically includes
the following tasks:

• Determining the initial report set

636

• Creating a standard look-and-feel template
• Creating a mock-up and documentation for each target report
• Designing the navigation framework
• Conducting the user review

Let’s go through each of these tasks in a bit more detail.

RESOURCES

The Data Warehouse Lifecycle Toolkit,
Second Edition (Wiley, 2008) pp. 505–521
offers additional details and tools on the BI
application design process.

Determining the Initial Report Set

The first step in creating the target BI application or report
set is to go back through the user interview documentation
and pull out every reporting/analysis request, desire,
fantasy, or hope that anyone expressed. As you make this
list of candidate reports, give each report its own name and
description. Capture your best sense of its business value
and the effort it will take to build. Group related reports
that draw on the same data sources to speed the
prioritization process. It also helps to make note of who
asked for it, (there may be several people), and any other
parties you think might benefit from it. These are the folks
who will help you further define the report should it make
it on to the target list.

It’s easiest to capture this list in a spreadsheet, like the
example shown in Figure 10-7, or perhaps in SharePoint.

637

The list shown here is a bit simplified in order to fit on the
page. Your list will likely have additional descriptive
information.

Figure 10-7: Example candidate report list

Work with some of the key business users to make sure
you have a complete list of candidate reports and that they
are ranked in priority order. Review the list and the
business value scores with the group, making sure
everyone understands the reports. Some reports, like actual
orders versus quota, might be particularly interesting to the
VP of Sales, but they may get a lower priority than the
reports that include only orders data because quota
information may not be in the DW/BI system yet. If
everyone agrees on the business value score, the rest is
relatively easy.

638

NOTE

You may find yourself in a scenario where
you have a requirement to replace an
existing reporting system so it can be
phased out. This is unfortunate because it
means you will do a lot of work and end up
with the same set of reports everyone
already had. You may be saving some
money when you turn off the old system,
but the perceived value of your efforts will
be close to zero.

In this case, see if you can improve the
reports in the migration process. Perhaps
combine several similar reports by using
parameters or sub-reports. You may even
get agreement on removing some reports
that are no longer used, and adding some
new reports that people would like to have.

After the whole list has been reviewed, re-sort the rows
and set a cutoff point at about 10 to 15 reports down the
list. This is your initial target list. Eyeball the results with
the group to make sure all the reports on the target list
deserve their success. Also, make sure all the reports that
didn’t make the target list deserved to be cut. Remember,
this decision is often as political as it is logical, and just
because a report doesn’t make the initial list doesn’t mean
it won’t get done. Many of these may be handed off to the

639

experts from the departments (the power users) who were
most interested in the reports in the first place.

Creating the Report Template

People can find information more quickly if it’s presented
to them in a consistent fashion. If you read the newspaper
at all, you are well aware of this (or at least you benefit
from it). The information is grouped in categories: sports,
business, lifestyle, and world news. Even though different
newspapers generally carry much of the same information,
each has its own standard structures and formats.

The BI applications team is in the publishing business.
You need to have your own format and content standards
and use them consistently. You’ll need standards at the
portal level and at the individual document level. (We deal
with the portal level in the section on navigation structure.)
Create a template to identify the standard elements that
will appear on every report, including their locations and
styles.

It’s helpful to define the standard report template before
you begin documenting the individual reports because the
template will give you some context for defining the
reports. The following standard elements need to be
defined and in most cases included on every report that
comes out of the DW/BI system:

• Report name: Create a clear, descriptive name for each
report that communicates the contents of the report to the
viewer.

• Report title: Develop standards for the information that’s
included in the title and how it’s displayed.

640

• Report description: Every report should have a comment or
description. This is what we often have appear when the
users hits the help button.

• Report body: Establish standards for each report component,
including the column and row layout of data, including data
justification, data precision, column and row heading
formats, background fills and colors, and formatting of totals
or subtotal breakout rows.

• Header and footer: Create a standard layout, font, and
justification scheme, and stick to it. The header and footer
typically include the report name, parameters used, report
location information, report notes, page numbering, report
execution date and time, data sources, confidentiality
statement, and of course, the DW/BI logo.

• Report file name: Create the report definition file name that
is based on your standard file-naming convention. The file
itself and any associated code should be under source
control.

Figure 10-8 shows one way to lay these elements out on a
page. The angle bracket signs (<>) and curly brackets ({})
indicate elements that are context sensitive. That is, they
may be system variables, or parameters specific to the
report that is being run.

Figure 10-8: Example standard template

641

Not all report information is displayed on the report itself.
You will also need to identify and document the following
information for each report:

• All parameter values used in the execution of the report.
This is often set up as an addendum to the report that prints
as a separate page. It’s especially useful for identifying why
two reports are different.

• User entered parameters and other user interactions like drill
downs and report links.

• Report metadata, including descriptions, calculations,
derivations, author, the date created, and so on.

• Security requirements, including a list or description of the
security groups that can see the report.

• Execution cycle, if the report is to run automatically on a
periodic basis.

• Execution trigger event, if the report is to be executed in
response to a system event like the completion of the nightly
HR data load.

• Delivery mechanisms, like email, web site, file directory, or
printer.

• Delivery list, which is generally the name of an email
distribution list.

642

• Standard output format, like text, html, PDF, Excel, or
Word.

• Page orientation, size, and margin settings.

Observe that all of these elements are essentially report
metadata. Therefore, this information should be kept in a
metadata repository at some point, so it can be used during
report creation or accessed by the users on demand when
they need to understand more about a given report.
Meanwhile, you can use a spreadsheet or text document
while you are creating the specs. Metadata structures for
Reporting Services are discussed in Chapter 14.

Creating Report Specifications and Documentation

It may sound obvious, but during the application
specification step in the Lifecycle, you should create a
specification for each report. The report specification
consists of the template information outlined previously
plus a report mock-up and supporting detail. The report
mock-ups are a great way to communicate the content and
purpose of the reports. Beyond the mock-up itself, create
two additional items to complete the spec: a user
interaction list and detailed documentation. We’ll go
through the report mock-up first, and then discuss the user
interaction list and the detailed documentation.

Report Mock-Ups

The example report mock-up shown in Figure 10-9 is
based on the standard template we created earlier. The
difference is we’ve filled in the report structure for one of
the reports on our target list (you can see another report
mock-up example later in this chapter).

643

It’s helpful to indicate several user interaction functions on
the mock-up. For example, the double angle bracket signs
(<<>>) indicate drill-down capabilities — that is, a user
can click on an entry in this column or row header and drill
down to the next level of detail. We’ve found it useful to
indicate the functions shown in the following table on the
mock-up. You may have additional needs, or prefer to use
other indicators.

< > User-entered variable

<< >> Drillable field

{ } Application-entered variable (either from the system or metadata)

\\ \\ Link/URL — link to another report or documentation source

() Page or section break field

[] Report template comments

Figure 10-9: Example Product Performance Report
mock-up

644

User Interaction List

Although the function indicators on the report template tell
you what kind of interaction is possible, they don’t tell you
what that interaction is like. The user interaction list
identifies the nature and degree of interaction a user may
have with a given report. This can range from None for a
completely static report to an extensive list of fields and
behaviors for a fully interactive report. Capture the basic
interactions: variable specification (and its sub-types: user
entry or user selection), drill down, and field addition/
replacement. Figure 10-10 shows an example user
interaction list for the Product Performance report shown
in the mock-up in Figure 10-9.

645

Figure 10-10 shows a row on the user interaction list for
each function indicator on the report mock-up. Include
enough information so that someone who’s building this
report can use the mock-up and the user interaction list to
do the job.

Detailed Documentation

Create detailed documentation to collect the information
you haven’t captured elsewhere. Note the report category,
the sources of the data in the report, the calculations for
each column and row, and any exceptions or exclusions to
build into the query. Additional information about the
report might include creation and modification tracking,
and an expiration date, if the report has a limited useful
life. A good place to keep this is at the end of the user
interaction list.

Figure 10-10: Example user interaction list

646

Designing the Navigation Framework

Once you know which reports to build, you need to
categorize them so the users can find the information
they’re looking for as quickly as possible. We call this
organizing structure the navigation framework, or
navigation hierarchy. Ideally, this structure is
self-explanatory. That is, anyone who knows something
about the business can generally find what they want fairly
quickly.

The best approach we’ve found, and this may sound
obvious, is to organize the reports by business process. If
someone knows your business, even at a cursory level,
they will be able to find what they need. There are a lot of
additional design principles that come into play here, but
we will leave them to the SharePoint chapter when we

647

describe a simple navigation framework for Adventure
Works Cycles.

Conducting the User Review

Once you have a solid set of application specs in place, it’s
extremely helpful to go over them with the user
community. This design review covers a lot of ground.
Validate your choice of high priority applications and test
the clarity of the specifications — do they make sense to
the business folks? The review involves users in the
process, emphasizing their central role and developing
their commitment. It also can keep people engaged in the
project by giving them a sense for what will be possible in
just a few short months. Leave time in your project plan to
make any modifications to the specs that come out of this
design review.

Once the specs are complete and have been reviewed, you
can put them on the shelf, so to speak. Unless you’re
planning to do a BI tool evaluation, in which case these
specs can be invaluable, there isn’t much you can do with
them until you’re ready to begin the report development
process.

Reporting System Development

It’s difficult to start the reporting system development
process before a lot of the DW/BI system infrastructure is
in place. You need the final dimensional model
implemented in the presentation database and populated
with a reasonably representative subset of the data. The BI
tools must be selected and installed. And of course, you

648

must have completed the report specifications. Typically,
all of these events don’t occur until sometime close to the
system test process we describe in Chapter 16. As a result,
we usually develop the reporting application at the same
time as the system testing phase just prior to deployment.
This makes sense because these reports are excellent test
cases for several reasons: They represent a range of
analyses, they are typically more complex than fake test
reports, and they are real-world in that they are based on
how users want to see the data.

The reporting system development process itself is a fairly
typical development effort. We usually cover the steps
listed in Table 10-2 within the Prepare-Build-Test-Rollout
framework.

Table 10-2: Reporting System Development Process

Let’s examine each of these tasks in more detail.

Prepare

• Install software: Installing Reporting Services by itself isn’t
difficult, but integrating with SharePoint can be. We
described some of these options in Chapter 4.

• Set up security: As we describe in Chapter 14, most standard
reports and other BI applications rely on security in the BI
application layer (Reporting Services and/or SharePoint). A
relatively small number of reports rely on row level security
implemented in the database.

• Create business metadata: As you begin report
development, you should plan ahead for the business

649

metadata that describes the contents of the standard reports.
See Chapter 15 for more information on business metadata.

• Create process metadata: Process metadata for the BI
applications is information about the execution of reports,
and usage of other applications. As we describe in Chapter
15, Reporting Services naturally captures information about
every connection and report execution. Other BI
applications, such as a data mining application, may need to
be explicitly designed to collect process metadata.

Build

• Build reports: Finally, you get to have some fun! Actually
building the reports takes relatively little time compared to
the rest of the process. As we mentioned earlier, it also
provides a great opportunity to build relationships with your
user community. Set up a temporary lab (it can be the
training room) and dedicate it to report development for as
long as necessary. Bring in a group of power users to help
build out the initial target list of reports. Encourage lots of
interaction. Keep at least two lists of issues and difficulties:
one for the data and one for Reporting Services. If this is
your first experience developing reports with Reporting
Services, bring in an expert as a consultant toward the
mid-point of the development process. Go through your list
of issues and have the person show you how to solve or
work around the problems you’ve encountered. You may
have to actually pay for the consulting unless you negotiated
it as part of the software purchase. Either way, get help from
an expert. It’s worth it.

• Create the navigation portal: At the same time you’re
building the initial set of reports, you need to be building
them a home as well. Although Reports Services ships with
a default website, called Report Manager, it doesn’t provide
all the functionality needed to help your users successfully
navigate the DW/BI system. As we describe in Chapter 12,
most Microsoft shops will implement a navigation portal in
SharePoint.

650

• Build other BI applications: Building other BI applications
follows a similar process, although with different tools. Even
if you are building a .NET application, it’s a great idea to get
business users involved in a similar agile-style rapid iteration
approach.

Test

• Unit test: Test each report. Have someone other than the
developer go through the report piece by piece, testing the
calculations, report layout, user inputs, and results. If
possible, compare the results to those from another,
independent source from outside the DW/BI system. We
cover testing in Chapter 16 when we describe the
deployment process.

• System test: Once the report is deemed to work on a
stand-alone basis, see how it works as part of the production
process. Depending on your front-end tool and the
complexity of your warehouse environment, there can be a
large number of elements that need to be tested, including
time- or event-based scheduling, distribution, and failure
notification processes. If you’re supporting a large user
community with these reports, plan for some stress testing as
well. Include ample time in your project plan to tune these
applications for large user communities.

• User test: If the users have not yet seen the reports, or you’d
like to get reactions from non-technical users, include a task
in your process to give them a chance to inspect and approve
them. This may be a hands-on session, or it may take the
form of a demo to a group of users with time for questions
and answers. Or, it can be something users do from their
desks with a simple web survey form or email response.

Deploy

• Publish: The initial release of a report set is primarily a
public relations process. You need to notify users that the
new reports are now available in the BI portal and give them
a link to check it out. The users will immediately begin to

651

think of many other reports they would like to see, so you
should plan for a period of additional report development
and deployment. Report deployment also includes creating a
system for users to get the help they need. These issues are
discussed in Chapter 16.

• Maintain: Ensure the existing report set is available and
continues to perform as expected. Make sure that the
existing reports are being used; prune or replace them if their
usage falls below the expected level. Chapter 17 describes
the activities associated with maintaining a healthy DW/BI
system.

Building and Delivering Reports

At last, it’s time for you to put together your standard
reporting environment. This section concentrates on the
process of building the environment and the reports
themselves. As always, our process starts with a bit of
planning and preparation. We then proceed to the creation
of the initial set of standard reports based on the prioritized
list created in the BI application design phase. We leave
the topics of creating the BI portal, and report operations
and maintenance for subsequent chapters. Although this
section is not intended to be a step-by-step tutorial, we will
build an example report based on the Adventure Works
DW 2008 R2 Analysis Services database that is included
in the SQL Server samples. You should be able to follow
this walk through and create the example report once you
get a little Reporting Services experience.

Planning and Preparation

The temptation to dive in and start building reports is
almost irresistible at this point. Be strong. Even if you’re a
Reporting Services pro, it’s worth taking a few days to set

652

up your reporting environment and figure out the overall
reporting process before you start creating reports. You
should also have done all the application specification
work described earlier in this chapter. The major setup
items you need to address are setting up the development
environment, creating standard templates and styles,
setting up the delivery and notification metadata and
processes, and setting up a usage tracking system.

Setting Up the Development Environment

We discussed setting up the development environment for
Reporting Services in Chapter 4. The main challenge lies
in finding the optimal combination of services and
machines. There are two major components to consider:
the Reporting Services server and the Reporting Services
metadata database called ReportServer. While it is possible
to have a single SQL Server machine with Reporting
Services, the ReportServer database, and the data
warehouse database all together, it’s generally not a good
idea for all but the smallest implementations. Moving
Reporting Services and its metadata database to its own
SQL Server instance on a separate machine is the easiest
way to improve Reporting Services performance. Of
course, this has licensing implications.

Depending on your reporting workload, it is common to
develop new reports and run production reports on the
same server. You can set up folders in Report Manager
that are only accessible to the developers. Once a report is
finished, tested, and ready for public use, you simply move
it into a publicly accessible folder.

653

Creating Standard Templates

Once the development environment is in place, you need
to set up the standard report layout templates we described
earlier. The easiest way to create a report template is to
create a blank report with the standard elements you and
your business partners defined, and lay it out according to
your design specifications. We won’t go through the
step-by-step process of creating the template because it’s
the same process as creating a report, which we do in the
next section. Figure 10-11 shows what a simple report
template might look like in the Report Designer. It
includes both a Table and Matrix pre-formatted with the
appropriate styles (fonts, background colors, and the like)
predefined, but there are no data fields in these items.
Usually, the developer uses the appropriate controls for the
report and deletes the controls that are not needed.

After you’ve defined your layout template, use your source
control system to make it available to the development
team. If you’d like to have it appear as a template in the
dialog box when you choose Add New Item … from the
Project menu in BIDS, you need to save the template to a
special directory. Save the completed layout template
report to its project directory and copy the resulting .rdl
file to the template directory. To make the template
available to Report Builder, put it on the Report Server, or
put it in the file system.

There are other ways to impart a basic look and feel to all
your reports. If you are handy with cascading style sheets,
you might consider creating a report style sheet and
referencing it in the RSReportServer.config file.

654

Books Online doesn’t provide much help with this, but
search for the string “customizing style sheets” to get
started.

NOTE

The location of the template directory for
BIDS depends on how your system is
configured. It’s usually located under the
Visual Studio folder inside Program Files.
Search for the ReportProject directory in
the Program Files directory.

Figure 10-11: Example Adventure Works Cycles report
template in the Report Designer

655

In most cases, experienced report designers will start each
report from the standard layout template by selecting the
Add New Item … choice in the Project menu, or by
right-clicking on the project in the Solution Explorer pane.
One of the report item choices will be your standard layout
template, if you put it in the right directory.

NOTE

The Report Wizard is a great place to start
if you are just learning Reporting Services
because it provides a structured
step-by-step framework for creating a
report. However, you will soon move
beyond its capabilities as you begin to
create real-world reports. Also, the wizard
does not provide the opportunity to select a
layout template.

One drawback of the standard layout template in Reporting
Services is that it does not include a master style sheet.
The developer can define the style of each individual
element in the template — bold type, font, color, and so on
— but he or she cannot set default styles for any new
elements that are added once the template is being used to
create a specific report. New controls added to the report
take on the bland styles of the generic report. This is where
a cascading style sheet would be particularly useful.

Interestingly enough, while the Report Wizard does not
access the layout template, it does allow the selection of a

656

style template. You can choose from at least six predefined
styles in the Report Wizard and in the wizards for the
various controls: Slate, Forest, Corporate, Bold, Ocean,
and Generic. If these don’t work for you, you can add to
the XML document that defines the available styles. This
XML document is called StyleTemplates.xml.

RESOURCES

Search Books Online for the “Creating a
Report Using Report Wizard” topic for
more information on finding and editing
the StyleTemplates.xml document.

Creating Reports

Now that you’re ready to build some reports, revisit the
report specifications you created in the BI Application
Design step of the Lifecycle described earlier to figure out
where to start. These specifications list the standard reports
in priority order along with mock-ups and documentation
on the definitions and contents of the reports. After
reviewing the specification document, work through the
report creation process to build out your report set. When
the set is complete, deploy them to the test server for
testing. Finally, deploy them to the production server.
We’ll go through each of these steps in this section using
the Report Designer in BIDS. You can use Report Builder
3.0 just as easily, because they share most design
components.

657

Revisit the Report Specifications

The BI Application Design step of the Lifecycle involved
creating a list of candidate reports based on the
requirements interviews and then prioritizing the list with
the business folks. At a smaller product-oriented company
such as Adventure Works, orders data is almost always the
top priority. During the requirements gathering process, it
becomes clear that everyone wants to see orders data, but
they all want to see it sliced differently. Because you did
such a great job capturing the standard reporting needs in
the design step, all you need to do at this point is pull out
the prioritized list and the associated mock-ups and start at
the top.

The specifications from Figure 10-7 list the Sales Rep
Performance Ranking report as the top priority report. The
specifications include a report mock-up for this report,
illustrated in Figure 10-12. At first glance, this is a simple
report, but as you’ll see as you work through this section,
even a straightforward report like this presents some
development challenges.

Reporting Services Workarounds

Your standard template should include the layout
of standard elements on the page (headers, titles,
footers) and the standard formatting styles (fonts,
sizes, colors). Reporting Services can use standard
layout templates or custom report styles, but not

658

both at the same time. If you’re willing to go the
extra mile, you can have both a layout template and
a style template. Create a metadata table with the
standard style entries in your database, and then
create a dataset to retrieve the style information
into your report. You can then use this to set style
properties based on the query results. If the dataset
is named StyleDataSet, and it has a column called
FontFamily, then an expression to assign the
FontFamily property of a Textbox might look like
the following:

=First(Fields!FontFamily.Value,"StyleDataSet"))

This option is probably overkill for most DW/BI
projects, but it does give you the best of both
worlds. You can create a standard layout template
and include a dataset that reads the style
information along with the code that applies it. You
need to create this only once and save it out to the
template directory. From then on, all reports built
from this template will have the standard layout
and style. An extra benefit comes from the fact that
the styles are applied dynamically, every time the
report is run. When you change the standard styles
in the metadata table, all the standard reports will
automatically change to the new style the next time
they are run.

The Report Creation Process

659

The process of creating a report in the Reporting Services
world goes through the following five basic steps, whether
you are working with Report Designer or Report Builder.
This list defaults to Report Designer, but we note Report
Builder differences.

1. Create or select the data source(s): In Report
Designer you can create a data source connection that
will be embedded in the report, or choose from a list of
existing shared data sources in your BIDS report project,
or from the report server in the case of Report Builder.

2. Create or select the dataset(s): You can create a
dataset based on a data source from step 1 using a query
designer. The resulting dataset is a flattened table of
rows and columns with repeating values as needed to fill
each row. Or, in Report Builder, you may choose to use
an existing, shared dataset which you select from the
Report Server. In this case, if the original dataset is
updated, it will update your version automatically. Note
that you can create and deploy a shared dataset in BIDS,
but you cannot use it in the Report Designer in SQL
2008 R2. If you are creating your own query, you will
work with one of several query designers depending on
the type of data source you select.

RESOURCES

For a descriptions and screen captures of
the major query designers, search Books

660

Online for “Query Design Tools in
Reporting Services.”

3. Define report layout on the Design tab: You can
build the structure of your report from scratch by
dragging toolbox components onto the design pane and
populating them with fields from your datasets. The
design pane is under the Home Ribbon in Report
Builder. Report Builder also allows you to drag in report
parts from the Report Part Gallery. A report part is a
predefined report component that will bring any needed
data sources and datasets along with it. Once the report
part is in place, you can change it as needed. If the
original is updated, Reporting Services will ask if you
want to update your copy the next time you edit the
report.

4. Preview report by selecting the Preview tab: This
is usually an iterative process. You make changes in the
design pane and preview the report to see how it looks,
repeating until it looks the way you want it. To preview
a report in Report Builder, select Run in the Home
Ribbon.

5. Deploy report to the server: You can deploy a
single report to the report server in BIDS by
right-clicking on the report name and selecting Deploy.
In Report Builder, you deploy a report by simply saving
it to the report server. You can also save the report
locally.

661

This outline should help keep you from getting lost as you
work your way through the creation of a standard report in
BIDS or Report Builder.

TIP

To get the most out of this section, you
should be at your computer with SQL
Server and the Adventure Works relational
and Analysis Services sample databases
installed. This section uses a walk-through
format to describe the process of creating a
report. We don’t describe every mouse
click, but if you’ve at least worked through
the SQL Server Reporting Services
tutorials, there should be enough
information in each step for you to follow
along.

Creating Your First Standard Report

Begin by creating a new Report Server Project in BIDS.
Check the box labeled “Create directory for solution,”
rename the solution to Sales Reports, and rename the
project to Sales Rep Performance. Close the Report
Wizard and add a new report to the project by
right-clicking the Reports directory in the Solution
Explorer pane and select Add ⇒ New Item from the popup
menu. Be careful not to use the Add New Report choice
because it will bring up the Report Wizard, and you won’t
be able to select your standard template.

662

Figure 10-12: Sales Rep Performance Ranking report
mock-up

Select your standard template in the Add New Item dialog
window and rename it Sales Rep Performance Ranking.
Click the Add button, and the new report should open up
in the Report Designer design surface with the Design tab
selected and all the standard report elements in place. At
this point, it should look much like your version of the
standard report template shown back in Figure 10-11. If
you haven’t defined a standard template, just add a new
blank report item.

Creating the Data Source and Dataset Query

Reporting Services uses the same kind of data sources that
Integration Services and Analysis Services use. Share data

663

sources across the reports in your projects to make it easy
to change connection information. Create a shared data
source called AdventureWorksAS that references the
Adventure Works DW 2008 R2 Analysis Services
database, which you can download from the CodePlex
website. Be sure to test the connection before you proceed.
While you’re at it, create another shared data source called
AdventureWorksDW that references the
AdventureWorksDW2008 R2 SQL Server relational
database.

TIP

In general, it makes sense to use the
production data warehouse databases as the
sources, even for report development
(assuming the data has already been loaded
into production). Report development is
essentially the same as ad hoc querying and
poses no significant additional risks to the
database server. Using the production data
warehouse server makes the development
job easier because the data used for
creating the report is the final data. In
addition, you don’t need to change the data
sources when you move from development
to test to production. Of course, you will
need to work against dev or test databases
for new data sources that are not yet in
production.

664

Next you need to make your shared data source from the
project available to the new report. You should see a
Report Data pane on the far left of your BIDS window.
Select Data Source… from the New dropdown menu in the
Report Data pane and create a data source named AWAS
using a shared data source reference to the
AdventureWorksAS data source.

Now select Dataset… from the New dropdown menu in
the Report Data pane and create a dataset called
SalesRankData based on the AWAS data source. You
typically define the dataset query by clicking the Query
Designer… button in the Dataset Properties window. This
will bring up the appropriate designer tool depending on
the nature of the data source you are using.

If your data source was a SQL Server relational database,
the query designer would allow you to enter SQL into the
upper pane and view the results in the lower pane. The
relational query design also has a more graphical interface
mode called the query builder. It looks suspiciously like
the Microsoft Access query builder. If the data source was
a report model, you’d use the report model query designer
to define datasets.

In this case, when you click the Query Designer… button,
BIDS displays the Analysis Services query designer in a
separate window. The Analysis Services query designer
lets you build simple MDX queries with a drag-and-drop
interface. You can view the MDX or enter it directly, by
switching out of design mode in the upper-right corner of
the designer.

665

The query design tools in the Report Designer and Report
Builder are getting better as Reporting Services matures.
However, in many cases, developers will end up creating
the SQL or MDX in some other tool and pasting it in. Even
in our simple example, the fields for the Sales Rep
Performance Ranking report require the creation of
calculated members in MDX.

WARNING

If you enter your SQL or MDX directly, do
not try to switch over to the query builder
or into design mode. The designer will try
to rewrite your query and may fail because
of its complexity, ruining the SQL and the
formatting in the process. In the MDX
case, it doesn’t even pay to rewrite the
query. You have to start over.

According to the mock-up for the Sales Rep Performance
Ranking report in Figure 10-12, the VP of Sales wants to
compare current year and prior year sales by sales rep.
Like many business requests, this is conceptually simple,
but it turns out to be not so easy to do in MDX, SQL, or
the Report Designer. For purposes of the example, this
report will use an MDX query against the Analysis
Services database. The Query Designer window in Figure
10-13 shows the completed dataset.

When you create a report, you need to break it down into
subsets to make it easier to build. You usually need a

666

minimum of two datasets: one for the report contents and
at least one for the user input parameter prompt lists. The
report in Figure 10-12 is more complex than it first appears
because it has two subsets of data, current year sales and
prior year sales by employee. To make matters worse, you
need to rank each of those subsets independently and
calculate the change in ranking from the prior year to the
current year. In MDX, the easiest way to accomplish the
creation of subsets within the Query Designer is to create
calculated members for each of the two sales subsets (in
the Calculated Members pane in the lower-left corner),
then create calculated members that rank those subsets,
and finally, calculate the difference of the two rank
members.

NOTE

By far the easiest way for the report
developer to get Prior Year Sales is to
have the Analysis Services cube developer
create the measure inside the database.
Then all you’d have to do is drag and drop
it into the query designer. Measures that are
likely to be used in many reports and
analyses should be defined within the cube.
Nonetheless, report developers inevitably
will need to create some complex MDX
snippets.

First, drag the Employee attribute from the Employee

Department hierarchy in the Employee dimension onto

667

the results pane. Next, the current year sales calculated
member is easy because it is just the Reseller Sales

Amount measure. To create this calculated member,
right-click in the Calculated Members box and select New
Calculated Member. Drag the appropriate measure from
the Measures list in the Metadata box in the lower-left
corner of the Calculated Member Builder window into the
Expression box. For this report, the expression would be:

[Measures].[Reseller Sales Amount]

Technically, you don’t need a calculated member for this
measure, but it helps clarify the contents of the report and
subsequent calculations. Next, recall that the mock-up
identified the target year as a user-entered parameter. If
you limit the calendar year to CY 2008 in the filter pane at
the upper part of the designer, you will see a check box to
make this limit a parameter. When you check the box, the
Analysis Services report designer creates a Reporting
Services parameter along with the query needed to
populate the choice list.

Figure 10-13: The completed data tab for the Sales Rep
Performance Ranking report

668

The next calculated member is the prior year sales field.
This is a bit more complex because it relies on the
ParallelPeriod function:

SUM({ParallelPeriod([Date].[Calendar Year].LEVEL,1)},

[Measures].[Current Year Sales])

This says to sum the measure for one year lagged behind
the current year. Notice that it refers to the Current Year

Sales measure you defined first.

The next calculated measure, Current Year Rank, does
a rank on current year sales. Like so much of the MDX
language, the RANK function in MDX is not like the RANK

function in SQL, although it has the same name. The MDX
RANK tells you the location of a member in its current set.
For employees, the current set might be in alphabetical
order. Therefore, a straight ranking of sales reps would

669

rank Amy Alberts as number one, even though she’s
sixteenth on the list as measured by sales. When you use
the RANK, you need to tell it what set it is part of, and what
order the set is in, as follows:

IIF (ISEMPTY([Measures].[Current Year Sales]), NULL,

RANK (

[Employee].[Employee Department].CurrentMember,

ORDER (

[Employee].[Employee Department].[Employee].Members

, ([Measures].[Current Year Sales])

, BDESC

)

)

)

This MDX uses the ISEMPTY function to make sure the
employee has Current Year Sales before it does the
RANK. This is because only a handful of employees are
sales reps, and you don’t want the report to list all 296
employees. Next, the expression ranks the current
employee according to where it is in a set of employees
ordered by Current Year Sales, in descending order.
The Prior Year Rank is the same expression ordered by
Prior Year Sales.

The final column, Rank Change, is simply the difference
in the two ranking calculated members:

670

[Measures].[Prior Year Rank] - [Measures].[Current Year Rank]

While this may seem complicated, there are two aspects to
consider that might make it seem relatively easy. First, you
can define commonly used calculated members, like
Current Year Sales or Prior Year Sales, in the
Analysis Services OLAP database once; then they become
drag-and-drop fields in the query designer, just like any
other measure. Second, the SQL alternative to this query is
even less attractive; it goes on for almost a page to
accomplish the same results. (You can get a script for the
equivalent SQL query at the book’s Web site:
www.KimballGroup.com/html/booksMDWTtools.html.)

Even though the primary dataset is complete, you still have
at least one more dataset to consider. When you select the
parameter check box in the Date.Calendar Year limit,
the MDX query designer automatically creates a second
dataset, called DateCalendarYear, and links that dataset
to a parameter also called DateCalendarYear. The
dataset retrieves the distinct list of choices for the attribute
selected and includes a value field and a caption field. The
caption field is used to populate the choice list of a
pulldown menu in the user interface, and the
corresponding value field is passed to the
DateCalendarYear parameter in the MDX query. If you
use the SQL query designer, you have to create the dataset
to populate the parameter choice list yourself.

NOTE

671

To see the DateCalendarYear dataset,
right-click the Datasets folder in the
ReportData tab and toggle the Show
Hidden Datasets choice. To change the
parameter so the user cannot choose more
than one target year, right-click the
DateCalendarYear parameter in the
Parameters folder and uncheck the Allow
multiple values check box. See if you can
figure out how to omit the All Periods

choice. Even better, see if you can omit the
earliest year from the list because there
won’t be a prior year for the earliest year.

Design the Report Layout

Once your datasets are defined, switch over to the Design
tab in the Report Designer design surface and start laying
out the actual report. Fortunately, the Sales Rep
Performance Ranking report has a simple layout. We’ll
start with the core report layout, and then add a few subtle
items like the DateCalendarYear parameter and some
conditional formatting to highlight potential problem areas.

The design surface in the Design tab should look familiar
to anyone who has created forms or reports with Access,
Visual Basic, VBA, or Visual Studio. The basic process
involves dragging various Report Items from the Toolbox
(a tab in the same pane as the Report Data tab on the left)
onto the design surface and then specifying their properties
as appropriate.

672

The standard template shown back in Figure 10-11 already
has predefined Table and Matrix items. The report
mock-up looks like a good candidate for the Table control,
so delete the Matrix control to clear up a little space. (If
you’re not using a standard template, just drag a Table
from the Toolbox into the report area.) Fill in the Table
control by dragging columns from the dataset in the Report
Data pane onto the columns of the Table control. Once you
have the columns in place, select the Preview tab to see
how the initial report looks.

NOTE

If the template doesn’t have enough
columns in the table, you can add more by
right-clicking in the gray header for any
column. You can also drop a data field in
between two columns. Either way, the
report designer will clone any pre-set
formatting into the new column.

WARNING

Be careful if you drop-insert a column
because it may create an item with the
same name as an existing item except with
a difference in case. Thus, you may end up
with TextBox1 and Textbox1. If you have

673

expressions in the text boxes, the parser
won’t like the similar names and will give
you a fairly unhelpful error message.

When you select Preview, the report should run and
generate results for the default calendar year of 2008. Try
changing the Date.Calendar Year parameter in the
pulldown menu at the top of the report. You need to hit the
View Report button to re-execute the query. If you haven’t
already fixed it, the pulldown menu allows you to select
more than one year by default. This will break the prior
year calculations, so go back and change this.

To improve the default settings, return to the Design tab
and select the Parameters folder in the Report Data pane
on the left. Double-click the
DateCalendarYear parameter to display the Report
Parameter Properties dialog box, as illustrated in Figure
10-14.

Change the prompt string to make sense to your business
users, and uncheck the multi-value box in the Properties
section. Now, if you select the Preview tab, you should be
able to select only a single year in the pulldown menu.

Figure 10-14: Report Parameter Properties dialog box

674

Creating reports is a classic 80/20 process, or even 90/10,
in that it takes only 10 percent of the time to create 90
percent of the report. Most of the final 10 percent of
creating a report is formatting, and it usually takes much
longer than you would expect. In this case, the Sales Rep
Performance report now has the key elements it will have
when it’s finished, but it doesn’t look very professional.
Go back to the Layout view and take a few minutes to
clean up some of the following appearance problems:

• Change the column widths to make better use of the available
space.

• Format the sales columns to get rid of all those decimal values
and add some commas. Try selecting the field in the Detail row
and putting an “N0” in its Format property, or try a custom
format string, like “#,##0.” (Search for the “Predefined Numeric

675

Formats” topic in the Visual Basic language reference at
http://msdn.microsoft.com for more options.)

NOTE

You might think that number formatting
would be easier if the data source is
Analysis Services rather than SQL. One of
the advantages of Analysis Services is that
it contains metadata about such things as
formatting for measures. Reporting
Services will show the correct formatting,
but it is not the default. You have to change
the text box expression to =Fields!<your

field name>.FormattedValue.

• Verify the line spacing and borders.
• Add and format appropriate totals.

Figure 10-15 shows the finished report in the Preview tab
of the Report Designer environment.

The guiding philosophy for creating and formatting reports
is that they should be as clear, consistent, and
self-explanatory as possible. Users will not take the time to
look elsewhere for report documentation, nor should they
be expected to. Clarity is one of the major challenges the
DW/BI team takes on when it includes standard reports as
part of its responsibilities. Involve someone who has solid
graphic design expertise in the design process of the layout
template and the initial report set. Experiment with
alternatives and get feedback from users as to which one

676

works best. A bit of extra work at this point will pay off
massively in the long run.

Figure 10-15: Final report layout for the Sales Rep
Performance Ranking report

Tweaking the Report Layout

To create a clear, understandable,
professional-looking report, you need to go beyond

677

these basic formatting items. Some additional
improvements to consider include:

• Add a report description to the report’s metadata.
This description lives in the properties of the report
itself. To access these properties, select the area
outside the design surface in the Design tab and look
for the description property in the properties window.

• Add conditional formatting. Reporting Services
supports expressions written in Visual Basic .NET.
You can use this powerful capability to define most
of the properties in the report programmatically.
Conditional formatting is a good example of this
capability. (Search for the “Expression Examples”
topic in Books Online for more examples.)

For example, in the Sales Rep Performance
Ranking report, the VP of Sales might want to
highlight those sales reps that have risen or slipped
more than two places in the rankings. You need a
soothing green color for the rising stars and an
ominous red color for the slackers. To accomplish
this, apply conditional formatting to the entire
detail group row. Select the row, and then select
the pulldown menu for the BackgroundColor
property in the Properties window. The last choice
in the menu is <Expression … >. Select it and the
Edit Expression dialog window opens. Delete the
contents of the Expression box and enter the
following expression:

=iif(Fields!Rank_Change.Value > 2, "LightGreen",

iif(Fields!Rank_Change.Value < -2, "MistyRose", "White"))

678

Select OK, and then select the Preview tab. You
should see some nice highlighting at this point. Can
you tell who is going to be in trouble when you
publish this report?

• Add parameterized labeling. This is another useful
application of expressions. Rather than have generic
column labels that don’t tell the user exactly what is
in the column, you can use expressions to incorporate
parameters right into the report text. This is
particularly helpful for when reports are printed.
Once you separate the report from the Reporting
Service, it is unclear which parameters you used to
generate the report. Labels can be made more
descriptive by using expressions as follows:

• Right-click the SalesAmnt header field and select
Expression. In the Expression box, delete the text title
and enter the following expression:

=Left(Right(Parameters!DateCalendarYear.Value,5),4) & " Sales"

• Select OK, and then select the Preview tab. If the
TargetYear is still set to 2008, the Sales column
header should now be 2008 Sales.

• Make appropriate, similar changes to the
CurrentRank, PriorSalesAmnt, and PriorRank
header fields. Remember, the parameter is a string
value, so you may need to use the Val() and Str()
functions to get the prior year into the titles.

• Add an interactive sort. Enable the Interactive Sorting
in the Text Box Properties on the Current Ranking
column header text box. This will allow your users to
sort out the top or bottom performers.

• Verify print layout. It is rare that a report you have
created to fit on the screen will also fit on the printed
page the first time. You may need to change the
column widths and font sizes to squeeze things in a
bit. You can change the page setup as well, adjusting
margins and switching from portrait to landscape. If

679

you can’t keep all the columns on a single page, you
may need to change some of the properties of certain
fields and groups to cause them to repeat on
subsequent printed pages.

Unit Test

Report developers should do the first round of testing right
in the development environment. At the very least, the
developer should test various combinations of the
parameters and validate the results with existing reports if
possible.

Test different parameters. For example, try the Sales Rep
Performance Report with the year 2007. What happens? It
looks like some of the rows are missing a few values. This
makes sense in this case because you would expect some
sales reps to have data in one year and not the other.
Fortunately, Analysis Services does an outer join for you
to make sure everyone in the target year is represented in
the report. Try it again with the year 2005.

Validate the numbers. Check the numbers as carefully as
possible. Compare them to any known alternative sources
for the same information. If the numbers should be the
same and they are not, figure out why. Research the
business rules in the alternative source and compare them
to your own. The problem may be in your query, or all the
way back somewhere in the ETL process. If there’s a
problem, resolving it is serious detective work and can
take a lot of time and energy.

680

If the numbers are supposed to be different because they
have been improved or corrected in the ETL process,
carefully document the reasons for the differences. If
possible, show how you can get from the data warehouse
numbers back to the alternative source numbers. This
documentation should be available in the BI portal, and the
report description should refer to it.

Before you actually deploy the report, you may want to
create a few more reports and deploy an entire project all
at once. In this case, you can add a Sales Rep Detail report
or a report that includes quota information and set up the
ranking report to drill-through to the detail.

Deploy to the Test Report Server and Test Some More

In large environments with hundreds or thousands of users
pounding on the standard report set, it makes sense to
deploy the reports to a test server environment that is as
similar to the production environment as possible. This
step allows the reporting team to stress test the new reports
to ensure they perform and they don’t reduce the
performance of other reports before moving them into
production. In medium-sized or smaller organizations
where the user population is smaller, it may not be
necessary for a full test server environment. The reporting
team can deploy the reports to the production Report
Server and test them there. You can minimize the risk of
this move by limiting access to the new report directories,
and by not publishing the new reports in the BI portal until
you have completed testing.

681

This test phase typically involves several steps. The
process begins with deploying the project to the target
Report Server (either test or production). Once there, the
reports need to be retested to ensure proper performance,
display, and printing. If they are not working well enough,
there are a number of tuning techniques available. These
range from tuning the query to creating report snapshots to
actually changing the server configurations.

Deploying the project or report to a report server is
straightforward. Each project has its own configuration
properties, so if you have multiple projects in a solution,
you will need to set up the properties for each project.
Within each project, there are several configurations and
each can have its own target Report Server. The default
configurations are DebugLocal, Debug, and Production.
To set up the target server in the project properties, in the
Project menu, select Properties. This opens a
project-specific Properties pages window. To deploy the
project, you need to provide a target server URL for the
active configuration. In the simplest case, where the web
server is on the same machine as the development
environment, the target server URL can be
http://localhost eportServer.

After you test the basics of appearance and performance,
the next step is to integrate the new reports into the
production process. If there are standard schedules these
reports depend on, the reports should be linked to the
appropriate schedules in the Report Manager. If there are
standard distribution lists that should receive these reports,
they should be set up at this point. The DW/BI team
should also validate the subscription process to make sure

682

the report is available for users to subscribe to and receive
on a regular basis.

Deploy to Production

When there is an actual deployment to the production
server, you will need to repeat many of the steps you went
through to move the reports into test. These include
schedules, snapshots, subscriptions, and email distribution
lists. However, in most cases, the deployment to
production has already taken place in the test step, so this
step is more of an unveiling than anything else. This is
especially true when the primary user interface with the
reporting environment is through a web site or portal. In
this case, the reports are not visible to the users until you
make them available in the portal.

The BI portal is such a powerful tool for the DW/BI
system that we explore it in detail in Chapter 12 when we
discuss SharePoint. At this point, it is enough to say that if
you are providing reports through a portal, you need to
integrate this new set of reports into that portal as part of
the production deployment.

An important part of deploying a report to production is
setting the security for the report. Reporting Services has
several options for managing security, as do the relational
engine and Analysis Services. We discuss security in
Chapter 14.

Reporting Operations

683

The report deployment process included steps to tie the
new reports in with existing reporting operations processes
like schedules and distribution. These operations processes
will also need to be maintained on an ongoing basis,
independent of the introduction of new reports.

In addition to deploying the reports to the report server,
you may need to cause a set of reports to run automatically
when the data load for a business process dimensional
model is finished. Reporting Services isn’t directly tied to
the ETL system, but it does have a control structure called
a subscription that can help. Create a set of subscriptions
that the main load processes will kick off as part of the
regular update process.

One way to accomplish this is to write a script that invokes
the subscription from within the data load Integration
Services package. The problem with this approach is it
hard-codes the link between Integration Services and
Reporting Services, making it difficult to maintain and
enhance.

An alternative solution is to create a metadata layer
between the two components. You can use a simple
metadata table to drive the relationships between your ETL
and reporting systems. The table-driven approach is easy
for an administrator to manage once it’s set up.

REFERENCE

684

We uploaded detailed instructions on how
to build this metadata-driven system,
including scripts and an example
Integration Services solution to the book’s
website: www.kimballgroup.com/html/
booksMDWTtools.html.

As you deploy new standard reports to the Report Server,
add them to the appropriate schedules and create any
system subscriptions to distribute the reports as needed.
The DW/BI team will also need to maintain any
data-driven subscriptions that involve individual users and
email lists. The team may need to add and delete users
from these lists as they come and go from the organization.

The same goes for other distribution mechanisms, like file
shares. Computers and networks have a tendency to
change. For example, the accounting department may have
requested a set of reports distributed to their file server.
Then they get a new file server and turn off the old one
without telling you. At this point, you have a subscription
failing on a regular basis and a set of users not receiving
scheduled reports.

Ad Hoc Reporting Options

There is a class of users who actually want to get their
hands directly on the data. This group of power users is
relatively small, but very important, so you need to make
sure they have the tools they need. There are many options
for providing ad hoc access to the DW/BI system.

685

Reporting Services has Report Builder 3.0, as we’ve
mentioned, and Office has Access and Excel. As we
describe in Chapter 11, Pivot tables and PowerPivot are
particularly enticing data access tools for many of the
power users because these users are very comfortable with
Excel. Beyond Microsoft, there are dozens of products
designed to support this user community, some of which
are big, multi-platform products, and some of which are
targeted specifically at one platform, such as Analysis
Services.

Given that Report Builder is part of Reporting Services,
we will describe some of its unique capabilities. There are
previous versions of Report Builder, but beginning with
Report Builder 3.0, the product has progressed far enough
to be considered a broadly useful query and reporting tool.
As you can see in Figure 10-16, Report Builder shares
most of its report controls and design panes with the
Report Designer, so much of what you’ve seen in this
chapter applies to Report Builder. Report Builder has made
several efforts to simplify the report creation process.
These efforts began with the metadata layer called the
report model, that Report Builder can use to access
relational and Analysis Services data. They also include
the concepts of shared datasets and report parts.

Figure 10-16: The Report Builder design interface

686

The Report Model

The report model is a remnant of the original reporting tool
Microsoft bought in 2004 that became Report Builder 1.0.
It is a metadata layer between the tool and the data that
defines the tables and columns and the relationships
among tables. It also defines aggregation options, such as
sum and count, and allows the user to choose the
appropriate option for a given query. You only work with a
report model when you define a data source on a model
and then build a dataset based on that data source. You can
auto-generate a model for both Analysis Services and
relational databases by navigating to the appropriate data
source in the Report Manager and selecting Generate
Model in the header bar. Relational models work best if
you create them via a report model project in BIDS. You
are probably better off using the Analysis Services query
designer rather than creating a report model for an
Analysis Services cube. The report model was originally

687

created for relational access, and doesn’t do its best work
against Analysis Services.

Interacting with the model takes a bit of getting used to.
The model follows the join paths, so if you have a model
of the Adventure Works DW Analysis Services database,
and select the Customer table in the Entities list as a
starting point, and then select the Location folder, you
see Customer location columns in the Fields list below. If
you select the Country field and drag it to the column list,
your choice of entities now shrinks to those tables that are
joined to Customer in the model. In this case, Customer
only joins to the Internet Sales fact table, so you can
continue to select Customer columns, or select the fact
table. If you select the fact table, you can now select fields
from the fact table, or select any of the tables the fact table
is joined to, which of course is all of the dimensions.

Shared Datasets

Rather than having to define a dataset from scratch, a
Report Builder user can select a pre-existing dataset from a
directory on the Report Server. This can simplify the
process of defining the dataset, but it introduces its own
issues. The user only sees the name of the dataset and its
directory path. The description is not shown. This means
the naming convention for datasets must be carefully
thought out, documented, and followed. You can ease the
navigation problem by keeping the number of shared
datasets as low as possible. This means each shared dataset
will likely have a fairly large set of data that can be filtered
within the report itself. This can result in everyone
building reports that run large queries to answer smaller

688

questions. In other words, it may lead to an unnecessary
increase in query workload.

Once the shared dataset is linked to Report Builder, it
appears in the Datasets tree on the left of Figure 10-16.
The arrow in the icon, similar to a shortcut icon,
distinguishes a shared dataset from an embedded dataset.
This link is fixed, which means changes to the master
dataset will be reflected in all reports that use that shared
dataset.

Shared datasets might be a good way to define common
parameter pick lists across your standard report set.

Report Parts

Report parts are a similar attempt to reuse existing
components rather than build from scratch for each report,
but rather than stop at the dataset, report parts go all the
way out to the finished and formatted data region or other
report element. This means a user can build a report by
simply dragging in report parts as needed. Report parts are
on the Report Server; you can specify a default directory
by clicking the Options button under the Report button at
the top left of the Report Builder window. The report parts
available to the user are displayed in a pane called the
Report Part Gallery, seen on the right side of Figure 10-16.

The Report Part Gallery is more advanced in terms of how
it displays its contents than the basic dataset selection
window. The gallery allows a user to search for report
parts based on the name and description. The gallery
displays the results with a thumbnail of each report and

689

displays the selected report’s metadata at the foot of the
gallery. It also displays the report description when you
mouse-over the report.

The Report Part Gallery is a good start at providing a
means to organize and access a set of report parts. Its
success will be determined by how well you manage your
business metadata, especially the names and descriptions
of each report part.

It will be interesting to see how effective report parts are at
easing the report creation task. It may be the case that
report parts are too specific and users always need to make
changes to someone else’s work, which may be harder
than starting from scratch. Or, it may be a big timesaver.

Summary

BI applications are the vehicle for delivering value to the
business users. There are different kinds of BI applications
you might need to create depending on the business
requirements for your DW/BI system, including ad hoc
access tools, standard reports, dashboards and scorecards,
analytic applications, and data mining tools.

Delivering a set of high value standard reports is usually a
major DW/BI team responsibility. These reports are the
primary interface to the DW/BI system for a large majority
of the user community. Since Reporting Services is SQL
Server’s standard reporting platform, we examined the
Reporting Services architecture to see what functions it
provides to meet the organization’s reporting needs. This
gave you a good sense for the components of the tool and

690

how those components fit together. Comparing the
Reporting Services architecture to the business
requirements for reporting, we concluded that Reporting
Services has a reasonable feature-cost ratio, especially
considering its incremental cost.

With this understanding in place, the next section offered a
detailed process for creating a set of standard reports. Start
with some preparation steps to get the development
environment set up and to create a standard template that
serves as a starting point for every new standard report.
Next, revisit the standard report prioritization list,
specifications, and mock-ups that you captured as part of
the requirements gathering process early on in the
Lifecycle.

The last major section of this chapter walked through a
case study that picked the top-priority report from
Adventure Work’s list and dove into the development
process.

We ended up with a brief look at ad hoc reporting options
including the Report Builder and its report model, shared
datasets, and report parts.

Delivering the reports is only half of delivering the
information. The DW/BI team needs to provide a
navigation framework to help users find the reports they
need. You can build this framework using standard web
tools, a web portal system like SharePoint, or using the
portal capabilities of a third-party BI tool. We explore this
more in Chapter 12.

691

The standard reports are a critical part of the DW/BI
system, but they take a fair amount of work to build and
maintain. The DW/BI team must plan for that work on an
ongoing basis, as we describe in Chapter 15.

692

Chapter 11

PowerPivot and Excel

“Easy” is a relative term.

Depending on how you count, Excel is arguably the most
popular reporting and analysis tool on the planet today.
This is not to say it is the best tool, but its broad
availability, powerful expression language, programming
capabilities, fine grained formatting functions, and data
accessibility make it the starting point for most business
analysts.

Microsoft’s PowerPivot add-in for Excel 2010 takes Excel
reporting and analytics to a whole new level. PowerPivot
for Excel is an in-memory database add-in that allows
Excel users to work with millions of rows of data at
memory speeds. This evokes a high level of enthusiasm
among its supporters. One of Microsoft’s white papers on
PowerPivot includes the line: “The ultimate goal of
PowerPivot for Excel is to make data analysis really easy.”
It goes on to describe PowerPivot as “…a new product that
provides self-service BI (Business Intelligence)
functionality for users of Microsoft Office.” It sounds like
all you really need to do is hand out Office 2010 licenses
and set free all that self-service BI. Once you’ve heard
these kinds of statements enough times, you might start to
question your efforts to create a full-scale DW/BI system.
In fact, you’re probably wondering why you read this far
in the first place.

693

Of course, reality is seldom as rosy as marketing would
have you believe. PowerPivot is the equivalent of pivot
tables on steroids. You can load and effectively work with
much larger data sets, with millions of rows of data. You
can join data from multiple, disparate sources in the
PowerPivot database. You can employ an expression
language to create complex calculations and measures that
calculate correctly in any context within the pivot table.
How easy all this is depends on your background and
experience level with Excel, databases, the structure and
complexity of the data you are working with, and BI in
general.

We start this chapter with a brief description of Excel as an
analysis and reporting tool. We then take a look at
PowerPivot and its product architecture. The bulk of the
chapter is dedicated to working through an example to give
you a sense for what it takes to apply PowerPivot to a
simple, realistic problem. We’ll finish up with a brief
discussion of PowerPivot in the SharePoint environment
and its role the overall DW/BI system.

In this chapter, you learn the following:

• Options for using Excel as a reporting and analysis tool
• The functionality and architecture of the PowerPivot add-in

for Excel and the supporting components in SharePoint
• The main steps in creating a PowerPivot database and an

associated PivotTable
• A basic understanding of how to create calculations and

measures in a PowerPivot database
• A sense for how PowerPivot works in the SharePoint

environment

694

• Guidance on how to include PowerPivot as part of your
managed DW/BI system strategy

Using Excel for Analysis and Reporting

Excel has clearly staked its claim as one of the leading
tools for business intelligence analysis and reporting. The
ability it provides to create formulas, tables, and to
manipulate data is the heart of many ad hoc BI style
investigations. In many organizations, Excel is also the
standard delivery vehicle for enterprise reports.

Excel does have basic functionality built in to support
reporting and analysis. Data connections allow authorized
users to access both the SQL and Analysis Services
databases in the data warehouse. The relational query
designer is not very sophisticated: It returns a single, flat
record set rather than separate dimensions and facts. The
Analysis Services connection leverages the cube metadata
to group columns in the field list by the dimension or fact
table they came from.

While it is possible to access this dataset using Excel
commands, the Excel PivotTable control is the primary
data manipulation tool for analytics. It allows the user to
create basic row and column matrix reports by dragging
and dropping attributes from the field list. Excel 2007
added report filter fields to the PivotTable Field List, and
Excel 2010 enhanced this filtering capability with slicers.
A slicer is a visual list of the available values for a given
field. You can filter the PivotTable display by selecting
values in the slicer control. A single slicer can control
multiple PivotTables and charts. Figure 11-1 shows an
Excel dashboard with three slicers in the lower-left

695

quadrant that allow the report user to filter the report based
on country, year, and customer type.

Figure 11-1: A simple Sales Summary dashboard in Excel

Creating flexible, parameter-driven reports in Excel is
often much harder than it might first appear because our
organizations, products, and customers are not
symmetrical. For example, if you chose a country other
than the United States in the report in Figure 11-1, the
regional sales section falls apart because other countries
have different numbers of regions. The report has to be
able to expand and contract based on the user’s parameter
choices. While it is possible to do almost anything in
Excel, these complexities often lead to programming in
Excel macros — an activity that is not for everyone.

Excel, and especially the PivotTable control, is an
excellent tool for ad hoc projects where the analyst needs

696

to analyze data in a new way, potentially bringing in data
from multiple sources. This ad hoc access works best
against a well designed Analysis Services cube because of
the nature of the PivotTable control. However, interactive
pivot table browsing of Analysis Services data is not very
practical against cubes with large dimensions. It’s too easy
to drag in the wrong column and get stuck while Excel
tries to load 20 million customers into the PivotTable. As
you will see later in this chapter, PowerPivot for Excel
greatly expands the limits of what’s possible in Excel in
terms of analytic capabilities and raw data volumes.

The PowerPivot Architecture: Excel on Steroids

There are actually two major components to PowerPivot:
PowerPivot for Excel 2010 and PowerPivot for
SharePoint.

PowerPivot for Excel is a free add-in for Microsoft Office
Excel 2010 that provides greatly enhanced data
management and query capabilities to the Excel users’
desktops. Users can install PowerPivot for Excel and use it
on a standalone basis; it does not require a separate server
component to function. As Figure 11-2 shows, the add-in
includes the assembly and the database, called the
VertiPaq engine. The VertiPaq database is designed to load
the data into memory in a highly compressed,
column-oriented format that is especially well suited to
analytic slicing and dicing. This engine, known as an
in-memory, column-store database, was developed by the
Analysis Services product team.

697

Figure 11-2: PowerPivot for Excel application
architecture

The data itself is stored in a compressed form in a section
of the spreadsheet file. You may see some large
spreadsheets when you start using PowerPivot, but they are
surprisingly small relative to the number of rows in the
tables because of the compression. The PowerPivot add-in
and its data are loaded into the Excel process address
space. This is particularly important for 32-bit Excel
because it must share the available 2GB of memory with
Excel and any other add-ins.

PowerPivot for SharePoint is a SharePoint add-in that is
the enterprise version of PowerPivot, allowing Excel users

698

to publish their PowerPivot workbooks and share them
with others in the organization. Users and applications can
access PowerPivot workbooks via two main Service
applications, shown in the middle of Figure 11-3. Users
who do not have Excel and PowerPivot installed can come
in through a web

Figure 11-3: PowerPivot for SharePoint system
architecture

browser via SharePoint Excel services and get most of the
functionality of the desktop PowerPivot. PowerPivot for
SharePoint also adds its own web service so PowerPivot
for Excel and other clients can access PowerPivot for
SharePoint data as a data source.

699

The SharePoint implementation allows IT to monitor and
manage these shared PowerPivot workbooks through the
PowerPivot Management Dashboard. It also supports an
automated data refresh function and provides a graphical
interface called a gallery that lets users view screen shots
of worksheets in PowerPivot files without having to open
them up. Unlike the free PowerPivot for Excel add-in,
PowerPivot for SharePoint requires licensing for
SharePoint and SQL Server 2008 R2.

PowerPivot is positioned as a tool that can enable business
users familiar with Excel to easily create powerful
analytics on their desktops, and share those analytics with
other users via SharePoint. IT helps in this process by
setting up the SharePoint environment to support
enterprise access to PowerPivot-based reports and
analyses. IT will also ensure performance by monitoring
report usage and managing the PowerPivot update and
maintenance process.

We agree with this positioning in theory, but it’s important
for you to have a good understanding of what it takes to
make PowerPivot work in your environment before you
decide what role it plays in your DW/BI system. Let’s dive
in to PowerPivot at this point and create a simple analysis.

Creating and Using PowerPivot Databases

The best way to understand PowerPivot is to work with it
hands-on. We’ll run through the process of creating a
PowerPivot database and an associated analysis. If you
haven’t used PowerPivot before, you’ll get the most out of
this section by installing it on your computer, downloading

700

the example files from the book’s website, and following
along. (If you don’t have Office 2010, you can always set
up a virtual machine and download a trial version.)

Our scenario is a simple one: we’re going to load
population and income data from an external source and
join it to the customer dimension. Our goal is to explore
the data for relationships between our customers and the
demographics of the geographies in which they live. The
initial exploration will be to see if there is a correlation
between customers and per capita income. If there is a
relationship, we could use it to tune our marketing
campaigns. For example, if it turns out our products are
more popular in higher income states, we can target our
advertising toward those states, or to media channels that
focus on higher income households across all states.

This kind of ad hoc integration of disparate data sources is
generally known as an analytic mashup, a term we borrow
from the web development space. In this example, we
might get demographic data from the U.S. Census Bureau.
It offers extensive demographic data down to the zip code
level and lower in some cases. The example we’ll work
with in this section uses small tables of simplified data so
you can see what PowerPivot is doing. We are not out to
test its ability to load millions of rows here.

DOWNLOADS

701

You can download the source files and
resulting Excel workbook from the book’s
website at kimballgroup.com/html/
booksMSDWTtools.html. You can also
download a few other useful tables, such as
a Date table from 2000 to 2020, and
census data at the zip code level from the
2000 census.

Getting Started

If you are starting from scratch, you need to have Office
2010 and the PowerPivot for Excel add-in installed.
Installation of PowerPivot is fairly straightforward. Once
you have Office 2010 installed, you download and run the
PowerPivot for Excel installation package from
Microsoft’s PowerPivot website: http://www.powerpivot.com.
You need to install the 32-bit version if you have 32-bit
Office installed, or 64-bit if you have 64-bit Office
installed. They are not interchangeable. Note that the
64-bit version will allow you to access more memory,
which is important to support larger data sets. If your data
doesn’t fit in memory, PowerPivot won’t be able to load it.

Once you’ve installed the add-in, Excel may still ask if you
want to install it when you open Excel. Once it’s fully
installed, you should see a message indicating that Excel is
loading the add-in every time you start the program.

Start by exploring the add-in a bit to get familiar with its
functions and interface. When you select the new

702

PowerPivot Ribbon tab, you’ll see around 10 buttons
arranged in categories. The one you will use most often is
the PowerPivot Window button on the left of the Ribbon,
which launches a separate window used to design and load
data into the PowerPivot database. You’ll see two main
ribbon tabs in the PowerPivot window: Home and Design.
The Home Ribbon includes the buttons for getting external
data. This is where you will typically start building your
PowerPivot database.

PowerPivot Table Design

You can load data from a range of sources including
relational databases, Analysis Services, flat files, and
Excel spreadsheets. In our example, we load data into
PowerPivot from a table already in the Excel spreadsheet
and from an external flat file. These data sets are small and
don’t prove PowerPivot’s ability to handle large data, but
they do make it easier to understand what PowerPivot is
doing when we start adding calculations and measures.

First let’s get a sense for the analysis we want to create.
Figure 11-4 shows the final layout of the report with the
appropriate calculated columns.

Figure 11-4: Target Analysis — Customer counts,
population, and per capita income by state

703

This analysis brings together customer counts by state and
lines them up with external income and population
measures. The two data columns in the middle measure
how popular we are in each state. CustPer100MPop is a
relative measure of how far we’ve penetrated into the
population of each state. We are doing relatively well in
Alaska, for example. The two customers we have in a state
with a population of 4 million people gives us a relative
penetration rate of 50 customers per 100 million
population. The math looks like this: (2/4) × 100 = 50.0.

The NormPenRate column simply normalizes the
CustPer100MPop column by dividing each row’s value by
the overall number. For Alaska, the math looks like this:
50.0/17.5 = 2.857. This says our penetration rate is above
average if the normalized penetration rate is greater than
one, and below average if it is less than one. We will use
this column on the chart at the end of this exploration.

The per capita income, the last column on the right,
provides the values for the X axis in the final chart. Let’s
deal with generating the numbers since that’s the hard part.

704

Loading the Data

If you’d like to work through this exercise, start with the
spreadsheet named 1 Simple Cust and Pop Example

Starting Point.xlsx and follow these steps to load
the example customer data from an Excel table into a
PowerPivot table:

1. Open the spreadsheet and select any cell in the
Customer table. Normally you would load in customer
data from a clean, trustworthy, reliable source, such as
the data warehouse. In this case the Customer table is
only 18 rows so you can load it into PowerPivot directly
from Excel.

2. Select the PowerPivot Ribbon tab at the top of the
Excel window and select the Create Linked Table button
in the Excel Data section of the Ribbon.

3. This should open the PowerPivot window and copy
the customer data over into a PowerPivot table called
Customer. That’s one table loaded — you’re half way
there! Examine the PowerPivot window to see what
functions are available.

Next, you’ll load in some data from an external source, in
this case, from the U.S. Census Bureau. Again, the data set
is abbreviated so you can more easily understand what
PowerPivot is doing.

1. In the PowerPivot window, on the Home Ribbon,
select the From Text button in the Get External Data

705

section. This will open a Table Import Wizard to help
you provide the parameters of the import.

2. Change the Friendly connection name to PopByState.

3. Click the Browse button next to the File Path box and
navigate to the Simple Population Data.txt file.
Select the file and select Open. PowerPivot will do its
best to parse the file with the default settings.

4. Change the Column Separator from Comma (,) to Tab
(t).

5. Finally, check the “Use first row as column headers”
box. If everything looks good, click Finish. You should
now have two tables in separate tabs in the PowerPivot
window.

6. Notice that the new table name is Simple

Population Data. Select the name by
double-clicking, or right-clicking and selecting Rename.
Change the name to CensusData. PowerPivot can
handle names with spaces, but this simpler name with
no spaces will make our formulas a bit easier later.

Creating the Relationships

Now that you have these two tables in place, you have the
data you need to do the calculations in Figure 11-4.
However, you still need to define the relationship between
the two tables in order for PowerPivot to be able to join
them together.

706

1. Select the Design Ribbon at the top of the PowerPivot
window. Select Manage Relationships from the
Relationships section. The Manage Relationships dialog
box should open with no relationships. Sometimes
PowerPivot can figure out the relationships but in this
case, you need to help it.

2. Click the Create button at the top of the Manage
Relationships dialog box. You should see a Create
Relationship window like the one shown in Figure 11-5.
The order of the tables in this dialog box is important
because you are defining a one-to-many relationship. In
this case, the “many” table is Customer and the join
column is StateCode. The “one” table is CensusData
and the join column is also StateCode. This says a
single customer from a given state should only return
one row from the CensusData table, but a row from the
CensusData table for a single state may return many
customers. Click Create to create the relationship, and
then close the Manage Relationships window.

Figure 11-5: The Create Relationship window

707

PowerPivot will use this relationship to properly align data
from the two tables in the same query. Note that the
relationship definition can use only a single column from
each table, and any given column can be used in only one
relationship. This means you may need to create a single
“key” column for some of your input tables. One way to
do this is by adding a calculated column to the table that
concatenates multiple fields from the table together to
create a unique join field.

PowerPivot does help define these table relationships by
importing existing primary key/foreign key relationships,
and by recommending relationships it has auto-detected
using common naming semantics, cardinality, and data
patterns.

PowerPivot does not support the concept of a role-playing
dimension. For example, if you have OrderDate and

708

RequestedShipDate in your fact table, you will need to
load two separate copies of your date dimension.

At this point, you’ve brought data from multiple sources
into a single, high performance, “mashup” database.

Creating Analytics with PowerPivot

Now that the data’s loaded (that was easy, wasn’t it?), you
can start doing some analytics in a PivotTable back in the
Excel worksheet. This section goes through the steps
needed to create a PivotTable and the calculations used to
generate our target analysis.

Creating a PowerPivot PivotTable

First, insert a PivotTable that is tied to the PowerPivot
database you just created into a new worksheet:

1. Select the Home Ribbon in the PowerPivot window
and then select the PivotTable button in the Reports
section. PowerPivot should shift control back to Excel
and you should see a Create PivotTable window. Click
OK to let the PivotTable default to a New Worksheet.
You should see a PowerPivot Field List and a
PivotTable results area in the new worksheet.

2. Take a look at some data. Expand the CensusData

table in the field list and check StateName, or drag it to
the Row Labels well at the bottom of the field list. Next,
check the Pop field, or drag it to the Values well. Your
spreadsheet should now look similar to Figure 11-6.

709

Explore the PivotTable a bit at this point. You can work
with the CensusData table, but the Customer table
doesn’t add much value yet. In particular, you need a
customer count as part of the calculation for several of the
columns shown in Figure 11-4.

DAX — Yet Another Expression Language

PowerPivot has its own language for creating
custom calculations and measures called the Data
Analysis Expressions language, or DAX for short.
DAX uses a syntax that was explicitly designed to
be familiar to Excel formula experts, but because it
works with the PowerPivot database, its arguments
are columns and tables, not cells or arrays. There
are more than 80 functions, operators, and
constants in the initial version of DAX. Most of
these functions will be familiar to Excel users; a
few are unique to PowerPivot and are critical to
creating correct calculations across multiple tables.

Figure 11-6: Initial PivotTable results

710

There are a couple of concepts that will be helpful in
working with PowerPivot data. Users can define two kinds
of computed columns: measures and calculated columns.
Measures are computed columns that get added to the field
list in the PowerPivot field list in Excel. Measures are
calculated according to the row and filter context in which
they appear in any given PivotTable report. Calculated
columns are computed columns that get added to the base
tables in the PowerPivot window. Calculated columns are
populated with values when they are created, and act like
any other data element in the database. When they are
reported in a PivotTable, they can only be aggregated
using the core aggregate functions (Sum, Count, Min, Max,
and Average). Calculated columns generate row level
detail data and are not as flexible or as sensitive to the row
and filter context as measures.

Adding New Measures to the PivotTable

The best way to create calculations and measures in
PowerPivot is to break long, complex formulas up into

711

their component parts and build them incrementally. This
allows you to experiment with the data and quickly see the
results of your formulas. We’ll start with the CustCount
measure and build up from there.

1. Right-click on the Customer table in the PivotTable
Field List in Excel and select Add New Measure (or
select Customer and then select New Measure from the
PowerPivot Ribbon).

2. Change the Measure Name to CustCount.

3. Since COUNT() seems like the right function, enter
the following in the Formula box:

=COUNT(Customer[Customer_ID])

4. Click OK and you should see a new column appear in
your PivotTable and at the end of the Customer field
list. It should match the CustCount column in Figure
11-4: a total of 18 customers with none in New Mexico.

That was easy! But let us share a few words of warning.
The COUNT() function counts cells in a column that
contain numbers. Since Customer_ID is a number, this
works in this case. If you needed to count cells with any
values in them, you would use the COUNTA() function. The
real world begins to creep in when you realize your
Customer table will likely have multiple rows per
customer because you have type 2 change tracking in place
in your data warehouse. In that case, you could use the
DISTINCT() function on the Customer_ID column to
only count the distinct Customer_IDs. However, the

712

DISTINCT() function returns a table that contains a
one-column list of distinct values, and the COUNT()

functions expect a column as an argument. Fortunately,
there is a COUNTROWS() function that counts the number of
rows in a table. As a result, the following formula is more
likely to give you the count you want across a variety of
data structures:

= COUNTROWS(DISTINCT(Customer[Customer_ID]))

You might want to edit the CustCount column to give this
a try even though it won’t make a difference in our simple
example.

Explore the PivotTable a bit more at this point. Add in
CustType from the Customer table. Note that the state
population is repeated, independent of customer.
PowerPivot does an outer join to include all values of
CustType and displays the lowest grain of population it
has: state population. The customer count, which is based
on the Customer table, is only shown where a customer
exists.

The CALCULATE() Function

Next you want a calculation that shows how many
customers you have per 100 million people
(CustPer100MPop); this is your penetration rate. The
basic formula would be (Customer Count *100)/

Population. Naively converting this to the DAX syntax
you’ve learned thus far, you might create a formula like
this:

=(Customer[CustCount]*100)/CensusData[Pop]

713

Unfortunately, this formula will give you an error claiming
the value for Pop cannot be determined in the current
context. The problem here is CustCount is a measure that
creates an aggregate based on the row and filter context,
but Pop is a detail level field. You need to apply some
form of aggregation to the Pop column so PowerPivot can
properly roll it up to the row and filter context.

We’ve found it to be a useful practice to create a measure
that automatically applies the appropriate aggregation; we
then use that measure in subsequent calculations. This is
the root of our earlier recommendation to build measures
incrementally. In this case you’ll create a TotalPop

measure, and then use it to create the CustPer100MPop

measure.

1. Right-click on the CensusData table in the
PivotTable field list and select Add New Measure.

2. Change the Measure Name to TotalPop.

3. Enter the following formula in the Formula box and
click OK:

=SUM(CensusData[Pop])

4. Add another new measure to the CensusData table
called CustPer100MPop with the following formula:

=(Customer[CustCount]*100)/CensusData[TotalPop]

At this point, your PivotTable should look something like
the one shown in Figure 11-7, assuming you removed the
CustType column. Note that the total under

714

CustPer100MPop is a division of the sums, not a sum of
the divisions.

Figure 11-7: Intermediate PivotTable results

The formula for the CustPer100MPop measure is actually
a shorthand version of a very powerful DAX function
called CALCULATE(). The full syntax is

CALCULATE(<aggregate expression>, <filter 1>, <filter 2>,...)

We provided the aggregate expression, but we didn’t use
any filters in the formula, relying entirely on the row
context to determine the appropriate inputs. (You are also
allowed to leave off the word CALCULATE() as we did.)

715

The next computed column is the normalized penetration
rate value, called NormPenRate, which will serve as the Y
axis column. The challenge here is that every row must be
divided by the overall average to normalize the values
around 1. Fortunately, DAX offers a particularly useful
filter called the All() function. The filter list in the
CALCULATE function allows you to override the existing
row and filter setting in the context of the cell. The generic
formula should be something like this: CustPer100MPop/
Average Total CustPer100MPop. You use the All()

function in the CALCULATE filter to return the total
CustPer100MPop over the entire CensusData table.

1. Add a new measure to the CensusData table called
NormPenRate with the following formula:

=CensusData[CustPer100MPop]/
CALCULATE(CensusData[CustPer100MPop],

ALL(CensusData))

2. Take a look at this new column in the PivotTable. The
largest penetration rate should be around 2.86 in Alaska.
The Grand Total value should be 1.

So far, all your calculations have been associated with
population and customer counts. As the last step in your
PivotTable, bring in the per capita income numbers which
will become the X axis in our chart.

1. Check the box next to the PerCapitaIncome field in
the field list under the CensusData table, or drag it
down to the Values well.

716

2. Notice the name of the new column in the PivotTable
is Sum of PerCapitaIncome. This default
aggregation isn’t right because per capita income is not
directly additive. The total number in this column of
275.6 has no useful meaning.

3. Try changing the aggregation to Average by clicking
the Sum of PerCapitaIncome field in the Values
well and selecting Edit Measure from the pop-up menu
and then selecting Average in the Measure Settings
window. Changing from sum to average is better, but
it’s still not right. You’ll fix this next.

Adding a Computed Column to the PivotTable Database

The 34.45 total value is the sum of each state’s per capita
income divided by the number of states. Instead it should
be the total income across all states, divided by the total
number of people in all states. Since you already have a
TotalPop column, all you need is a total income column
to do this right. You’ll create a TotalInc measure in two
steps, by first creating a TotalIncome calculated column
and then creating a measure on that column that uses the
SUM() function. Finally, you’ll finish by creating a
PerCapitaInc measure that is TotalInc/TotalPop.

1. To create the TotalIncome calculated column, open
the PowerPivot window and select the CensusData

table tab. Remember, a calculated column is defined in
the PowerPivot window and is part of the underlying
table, as opposed to the measures you’ve been creating
out in the PivotTable field list.

717

2. Select the first cell in the Add Column column (or the
entire column), and enter the following formula:

=CensusData[Pop]*CensusData[PerCapitaIncome]

3. Change the name of the new column from
CalculatedColumn1 to TotalIncome.

4. Return to the PivotTable field list in Excel and add a
measure called TotalInc to the CensusData table with
the following formula:

=SUM(CensusData[TotalIncome])

5. Add the final measure called PerCapitaInc to the
CensusData table with the following formula:

=CensusData[TotalInc]/CensusData[TotalPop]

This calculation gives you an opportunity to learn the
importance of verifying your calculations. Compare the
PerCapitaInc column with the Average of

PerCapitaIncome column. The value in the total line for
PerCapitaInc is 36.35. The raw difference is only 1.9,
but in the business context, this translates to a difference in
per capita income of almost $2,000 per person compared
to the Average value. Over the 103 million people in our
simple data set, this is a total of $196 billion. This is not an
amount you would care to lose due to an incorrect
calculation.

You’ve created all the calculations you need. Wasn’t that
easy? The rest of this example is standard Excel work and
is left as an exercise to the student. You might want to

718

remove the unused columns, format the remaining
columns, and add in a scatter chart. Figure 11-8 offers a
completed PivotTable and chart, along with a correlation
calculation.

Try adding a few slicers to the report; drag CustType and
StateGroup down to the Slicers Horizontal well and see
how that changes the user experience. If you add multiple
pivot tables from the PowerPivot window, the slicers are
automatically configured so they apply to all of the pivot
tables. In other words, when you change the values
selected in a slicer, all of the pivot tables change. Slicers
are pretty cool, but they work best with low cardinality
columns.

Note that the scatter chart control does not work directly
with PivotTable data. You can trick it by choosing Select
Data in scatter chart, then clicking the Add button in the
Select Data Source window. Name the series in the Edit
Series window that pops up, then select the numbers in the
PerCapitaInc column for the Series X values, and the
numbers in the NormPenRate column for the Series Y
values. By the way, when you work through the chart,
you’ll figure out you need to go back and add an
IF(ISBLANK(),0,…) around the NormPenRate formula
in order to show a zero for New Mexico. This will result in
data points for all eight states on the chart.

Figure 11-8: Final PivotTable and chart

719

To finish the business scenario, Figure 11-8 shows a clear
correlation between the penetration rate and median
income. You don’t know cause and effect and your data set
is a little small to be conclusive, but you have shown an
interesting relationship that you can explore in more detail.

Observations and Guidelines on PowerPivot for Excel

The tag line for this chapter is “Easy is a relative term.”
Look back over the steps you just went through to create a
fairly simple analysis. Our conclusion after this and several
other efforts is that using PowerPivot is not easy. True, it is
a very powerful tool, and it is easier to load data and query
it than in earlier versions of Excel. And it’s faster, and you
can load much more data. However, like other BI tools,
there are a lot of nuances and subtleties to master before
you can fully apply the tool. Most organizations will find
that the people who will be able to do self-service BI using

720

PowerPivot are the same people who were already able to
query data sources, create macros, and use complex
functions in Excel.

Whatever your opinion is, our main point is, don’t oversell
the power of PowerPivot. It has a role in the DW/BI
system, and can add significant value, but it is not a
miracle tool.

Here are a few guidelines for working with PowerPivot for
Excel, some of which we’ve already mentioned:

• Work from a dimensional model: PowerPivot is a
dimensional engine under the covers, and it is most easily
understood if you create the PowerPivot database using a
dimensional model. That is, design your PowerPivot
database with a fact table that joins to a set of dimension
tables on a strict many-to-one basis.

• Create incremental calculations: As we described in the
example, it’s very helpful to build simple measures first, and
then use those measures to create more complex
calculations.

• Check your work: Work through any calculations you do
manually to verify they are correct. Drag in attributes from
all of the tables in the PivotTable to verify your calculations
work across all dimensions as expected. Look for common
problems like edge condition failures, such as a
year-over-year calculation in the first year of data, or blanks
or zeros in the denominator of a ratio.

• Create a robust date dimension: This is a table with one row
for every date in your fact table. You can build this in Excel,
download one from the book’s website, or simply extract it
from the data warehouse. The date dimension is important
because PowerPivot has 35 functions expressly designed for
working with dates. For example, there are functions for
comparison, such as PREVIOUSYEAR() or

721

SAMEPERIODLASTYEAR(), and for selecting data on specific
dates, such as STARTOFMONTH() or ENDOFYEAR().

• Use naming conventions: It’s a good idea to establish some
simple naming conventions for calculated columns and
measures to help distinguish data that comes directly from
the source versus data that has been manipulated locally in
some way. You may also want to hide some of the
underlying fields if you create measures on top of them, in
order to reduce the level of complexity other users see in the
PowerPivot Field List.

The goal of this section was to give you a good sense for
what PowerPivot for Excel is and how it works. You can
make your own assessment of how easy it is, especially
after you’ve had a chance to get your own hands on the
tool and try it out.

The other part of the PowerPivot story is the centralized
SharePoint component. The next section takes a high level
look at the main capabilities of PowerPivot for SharePoint.

PowerPivot for SharePoint

SharePoint is Microsoft’s web portal and application
platform. One of the services SharePoint can host is
PowerPivot. This service is called the PowerPivot add-in
for SharePoint and it provides three main functions. First it
allows a PowerPivot for Excel developer to upload a
PowerPivot-based spreadsheet and share it with others in
the organization in conjunction with Excel Services.
Second, it brings server-level resources to bear on
PowerPivot applications. And third, it allows IT to monitor
and manage these shared resources, including
automatically refreshing PowerPivot databases.

722

The PowerPivot SharePoint User Experience

Users work with PowerPivot for SharePoint in three
different modes: publishing, viewing, and data sourcing.
We’ll look at each of these in turn.

PowerPivot Publishing

PowerPivot for SharePoint is primarily a PowerPivot for
Excel “viewer” application. The SharePoint user
experience begins when a user publishes a PowerPivot
report or analysis. It’s easy for users to upload a
PowerPivot workbook to the BI Portal site in one of two
ways. From within the Excel workbook on the user’s
desktop, open the PowerPivot window and select Publish
from the File menu. Enter the URL to the appropriate
directory in the BI Portal and click the Save button. Figure
11-9 shows the resulting Save As window. Users can
upload to any SharePoint document library with the
appropriate permission. Commonly used PowerPivot
workbooks will usually end up in a special type of
SharePoint document library called a PowerPivot gallery.

Figure 11-9: Publishing a PowerPivot workbook from
Excel to SharePoint

723

The Excel publish capability offers two advantages. First,
it is asynchronous and restartable, so a user can start a
large upload and proceed with other work. Second, users
can publish a subset of objects from within an Excel file,
such as certain worksheets, or even selected objects within
a worksheet.

Alternatively, users can upload their PowerPivot
workbooks by navigating to the appropriate SharePoint
directory in a web browser and selecting Upload
Document from the Documents Ribbon under Library
Tools. A third approach is to use the WebDAV facility,
where a SharePoint site is made to look like a file share. In
this case the user would navigate to the SharePoint
directory in Windows Explorer, and copy in the
PowerPivot file.

724

Once the PowerPivot workbook is in SharePoint, users can
browse available workbooks using one of several list
formats, known as views. The Gallery view is the default
view for a PowerPivot workbook stored in a PowerPivot
gallery. The Gallery view uses Silverlight to give users a
more visual sense for the contents of the available
PowerPivot workbooks. Figure 11-10 shows the thumbnail
pictures from a PowerPivot report in the Gallery view.

The ability to visually browse through the PowerPivot
workbooks and the sheets within those workbooks is
particularly helpful when you don’t know exactly what
you are looking for. However, it may not be the best
interface for infrequent users who need to look through
hundreds of workbooks for a report they might not
recognize visually.

Figure 11-10: SharePoint PowerPivot Gallery view

By the way, much of the SharePoint user interface,
including the PowerPivot gallery, uses Silverlight to
achieve its visual impact. This means PowerPivot users
will need to view the SharePoint BI portal using a 32-bit
browser until Microsoft releases a 64-bit version of
Silverlight.

725

PowerPivot Viewing

Once you click a PowerPivot workbook in the gallery,
SharePoint invokes the Excel Services web access control
and opens up the workbook in the browser. Excel Services
does not offer full Excel functionality, therefore
PowerPivot for SharePoint offers a very limited set of the
full featured desktop version of PowerPivot. SharePoint
users can slice and dice the data using the slicer controls
and can set or change filters. They cannot make changes to
the report layout or format, or access the PowerPivot field
list.

This server-based functionality is fine for reports and
analytics that can be driven by a relatively small set of user
specified parameters. This makes PowerPivot for Excel
and SharePoint a good candidate for developing the
enterprise set of standard reports that are often the starting
point for most business inquiries.

PowerPivot as a Data Source

In addition to interacting with a PowerPivot workbook,
Excel users can use the data set as a starting point for their
own analyses. There are several ways this can be
accomplished, each with its own capabilities. The most
powerful and flexible approach is to simply download the
Excel workbook and go from there. If you have
permission, you can do this by selecting the workbook, and
then selecting Download a Copy in the Documents Ribbon
under Library Tools. Of course, this copy is now on your
desktop and will no longer be automatically updated,
tracked, or managed by SharePoint. You also need Excel

726

2010 to manipulate the workbook, and the PowerPivot for
Excel add-in to edit PowerPivot.

Users can also extract data from an existing PowerPivot
data set and use it to create a local PowerPivot data set by
using the Get External Data from Database function in the
PowerPivot window. This brings up the same Analysis
Services report designer we saw in Reporting Services.
The resulting data set is imported into the workbook and
becomes a flattened, single table in the PowerPivot
window. In other words, all the fact and dimension fields
you select are joined together to create a single table in the
new PowerPivot window. This can then be refreshed like
any other PowerPivot data source by clicking the Refresh
button in the PowerPivot window.

Finally, the PowerPivot workbook can be used as a data
source for either an Excel pivot table, a Reporting Services
report, or any other application that can connect to and
query SQL Server Analysis Services. Users can have
SharePoint set this up by selecting the new document
button in the upper right of the Gallery view for each
PowerPivot workbook. This creates a workbook
connection in Excel, which allows the user to access a
PowerPivot data set hosted in SharePoint much like
accessing an Analysis Services cube (which is actually
what it is doing). In this case PowerPivot for Excel does
not need to be installed locally, although the SQL 2008 R2
Analysis Services OLE DB provider does need to be
installed. No data is downloaded to the Excel workbook
except the PowerPivot table definitions, which are fed into
a pivot table control. The PowerPivot cube is re-queried
for every change in the pivot table definition. Since this is

727

not PowerPivot, you are limited to the standard pivot table
functionality.

Server-Level Resources

SharePoint brings enterprise functionality to PowerPivot
through its server infrastructure. This includes workload
management, data caching, automated data refreshing, and
security.

SharePoint can scale out PowerPivot across multiple
servers in the SharePoint farm to support large numbers of
users. Incoming user queries can be allocated across
available servers based on a round robin or server
health–based methodologies.

The PowerPivot System service also caches data on
PowerPivot servers rather than re-extracting the data from
content servers to speed query response times. There is
also an associated caching discovery and maintenance
function that unloads cached data that is no longer needed,
or that may not be valid.

Keeping data in spreadsheets current is typically a manual
process. Fortunately, PowerPivot for SharePoint can be set
to automatically refresh PowerPivot data. Each PowerPivot
workbook can be set to refresh its data on its own
schedule. The data refresh facility is fairly simple. The
refresh is set to run based on day and time of day, and the
most frequent refresh interval available is once a day.

Security within SharePoint does not have the fine grain
that can be defined in an Analysis Services database, but it

728

is much better than a standalone Excel workbook.
SharePoint security is integrated with the Windows Active
Directory structures, and can be administered at the site
and document level. The IT or DW/BI system security
manager can monitor who is accessing which workbook.

There is a whole list of SharePoint and third party
capabilities you can leverage for PowerPivot files. Since
these files are SharePoint documents, you can enable
version management, set up approval workflows, create
email alerts for content changes, and define record
retention rules.

PowerPivot Monitoring and Management

PowerPivot for SharePoint includes a usage logging
function and a set of BI dashboards to allow the DW/BI
team to monitor usage and system functions. There will be
a set of management activities including system resource
allocation, performance tuning, and security. The DW/BI
team can leverage some of SharePoint’s workflow
functions to create a content validation and approval
process to manage the submission of workbooks for
publishing, rather than allow users to publish directly.

PowerPivot Monitoring

The PowerPivot Management dashboards are built using
PowerPivot and provide a nice example of how the tool
can be used. You can view these reports by selecting the
PowerPivot Management Dashboards link under General
Application Settings on the SharePoint Central
Administration home page.

729

The PowerPivot Management dashboard includes a whole
set of reports that look at several measures of user and
server activity across several dimensions, including date,
user, server, and workbook. The measures include CPU
and memory usage, user counts, query counts and response
times, workbook size, and refresh duration.

Figure 11-11 shows the Activity view of one of the
sub-reports on the home page of the PowerPivot
Management dashboard. This report takes advantage of
Excel 2010’s conditional formatting and data bars to
highlight peak days across a range of measures including
connections, queries, data loaded and unloaded, and user
counts.

Figure 11-11: A sub-report in the SharePoint PowerPivot
Management dashboard

730

The PowerPivot Management dashboard home page
includes a report with a Silverlight slider control that gives
an animated view of how usage for each workbook is
changing over time. Very sexy. There are a few additional
reports that can be accessed from the Reports list in the
lower-right area of the management dashboard home page.
Figure 11-12 shows the Workbook Activity report, which
lists each workbook and shows the users, queries, and
maximum load size.

Figure 11-12: The Workbook Activity report from the
SharePoint PowerPivot Management dashboard

PowerPivot Management dashboard reports can be a big
help in identifying performance problems and tracking
down the likely causes. SharePoint collects and aggregates
the usage data every night and puts it in a PowerPivot
workbook. Because the data’s in PowerPivot, you can add
your own reports to the dashboard, or create separate

731

reports that do not require SharePoint Central
Administration access rights.

RESOURCES

Search the internet for “custom powerpivot
management dashboard” to find several
Microsoft and third party documents on
customizing the dashboard.

PowerPivot Workbook Publishing Process

Even though it’s pretty easy for a user to publish a
PowerPivot workbook in SharePoint, you may want to
help them do it right. This has to do with making sure the
report contents and calculations are correct, verifying that
there is no hidden data in the workbook, and determining
the appropriate security settings.

RESOURCES

Search technet.microsoft.com for “Secure a
PowerPivot Workbook on SharePoint” to
find additional guidance.

You can set up a SharePoint workflow and alerts to allow
users to submit a PowerPivot workbook (or Reporting
Services report). The workflow would notify the
appropriate member of the DW/BI team, and guide them

732

through the review and approval process. You can start
creating an approval workflow by selecting the Library
Settings button in the Library Ribbon of the PowerPivot
gallery library. Then select Workflow Settings under the
Permissions and Management heading. The setup forms
are fairly self-explanatory.

RESOURCES

Search the internet for “PowerPivot
approval workflow” to find several
Microsoft and third party documents on
creating SharePoint workflows to manage
PowerPivot publishing.

PowerPivot’s Role in a Managed DW/BI Environment

Since PowerPivot for Excel is a standalone tool, Excel
2010 users can download and install it without knowledge
or permission of the IT organization, for free. Regardless
of what you would prefer, PowerPivot will be part of your
BI environment.

While there are limits to what PowerPivot can do, and how
easy it is to do it, many Excel experts will be able to use it
to create useful analytics they never could have created
before. Many of these, like many Excel-based BI
applications, will be one-off analyses to help understand a
unique situation, or explore a new idea; or they will only
be of individual or departmental interest. Some of them
will prove to have broader value and will rise to the top,

733

perhaps identified through SharePoint’s PowerPivot
Management dashboard.

Once the broader appeal of these popular reports is known,
the data sources they use that are not in the data warehouse
should be brought in through your rigorous ETL process so
they match the structure, quality, and availability of the
rest of the DW/BI system. In a way, this is a usage-based
method for identifying the business value of data. It should
not be the only method you use to determine what goes
into the DW/BI system, but it can play a role. The dark
side of this monitoring is it can be used to police data
usage and confront users with evidence of their
transgressions. Do not do this. One of the fastest ways to
drive your users away is to use these Big Brother tactics.

On its own, PowerPivot can offer significant value to the
individual Excel advanced user. It does bring many of the
same costs Excel has always had in terms of data quality,
data updates, business rules, and multiple versions.
PowerPivot for SharePoint helps mitigate some of those
costs by bringing these reports out into the open where
they can be validated, shared, and better managed.
However, SharePoint itself is a big cost, both in terms of
money and resources.

Summary

PowerPivot is powerful analytic tool that allows advanced
users of Excel to pull together large, disparate data sets and
explore them to find new relationships and insights that
can add significant business value. PowerPivot can act as a
platform to support the development of reports and

734

analyses that would otherwise take too long, or would not
be possible to create at all.

PowerPivot for SharePoint provides a way for creators of
PowerPivot databases and analytics to share those with
others in the organization who may be able to use the same
analyses. PowerPivot for SharePoint also allows IT to
monitor and manage these PowerPivot reports, and to
automatically update the data in the underlying PowerPivot
databases.

We see PowerPivot adding value to the DW/BI system in
the following major ways:

• Database prototyping: The DW/BI team can use PowerPivot
to test out dimensional model design options based on real
data.

• Data profiling: The DW/BI team can pull data from the
source systems into PowerPivot and quickly create a set of
data profile reports and an issues list.

• Report/Dashboard prototyping and delivery: The DW/BI
team can use PowerPivot to design complex reports and
analyses that can be distributed across the enterprise via
SharePoint. Business users may also create analytics that
migrate into the DW/BI standard report set.

• Business user analytics: Power users can create more
advanced ad hoc analyses, combining data from multiple
sources with relative ease. This could include external data,
or new attributes or hierarchies.

PowerPivot does not remove the need for the DW/BI
system. All the work that goes into creating a robust ETL
system and data warehouse, with its data cleaning,
dimensionalization, and quality controls, is work that must
be done to support accurate analytics, whether or not

735

PowerPivot is part of the system. PowerPivot users will
generally source their internal data, such as customer,
account, product, or promotion, straight out of the data
warehouse database.

PowerPivot does not replace other components in the BI
layer either. You will still need Reporting Services to
manage the execution and distribution of standard reports,
and to provide interactive execution of those reports as
needed. Users who are not Excel experts, but who want ad
hoc access to the data warehouse, may prefer a query and
reporting tool such as Report Builder 3.0.

PowerPivot does enable rapid data combination and
exploration. For those who can use it, it will open up a
whole new level of analytic possibilities. It will likely be
the source of much of the unforeseen value of the DW/BI
system. PowerPivot users are good for you and you need to
make sure they are well supported.

736

Chapter 12

The BI Portal and SharePoint

Thinking outside the box.

Reporting Services and PowerPivot bring significant
functionality to the BI user community. However, these
are not the complete solution to the problem of delivering
business value. As you add more and more reports and
analyses to the DW/BI system, you will need to provide
some means for organizing and structuring them. This is
the role of the BI portal. The BI portal is the primary
starting point in the information quest for a large part of
the business community. It needs to be structured in a way
that allows people to find what they are looking for within
an ever increasing number of reports and analyses. Ideally,
it will be more than just a directory structure; it will
provide additional useful features such as search,
customization, collaboration, metadata access, and user
support.

For many smaller organizations, the Report Manager
component of Reporting Services, along with basic web
development skills, can be made to serve as a crude BI
portal. However, DW/BI teams who want to provide rich
portal experience, especially in larger organizations, will
need a portal environment to serve as the BI portal
platform.

SharePoint is Microsoft’s offering in the portal and
web-based application platform category. Microsoft has

737

chosen SharePoint 2010 to serve as the hosting
environment for several BI related components, including
Reporting Services, Excel Services, PowerPivot, Office
Web Applications, Visio Services, and PerformancePoint
Services. SharePoint also includes a broad set of portal
functions to help you create a powerful BI portal
experience.

The first part of this chapter is a discussion of the BI portal
concept, including design guidelines and a simple
example. In the second part, we take a high level look at
SharePoint as a BI portal platform and provide a summary
of what it takes to get SharePoint going with a set of
BI-related functionality including Reporting Services and
PowerPivot for SharePoint.

In this chapter, you will learn the following:

• The major design principles and guidelines for a BI portal
• The general structure and organization of a BI portal
• What SharePoint is and how it works as a BI portal
• An approach to setting up SharePoint as a BI portal

The last section of the chapter summarizes the major steps
involved in setting up a test SharePoint environment with
its major BI-related components. We have provided a more
detailed walk through of these steps on the book’s website,
but decided to spare you the pain of reading through those
steps here.

The BI Portal

In Chapter 10, we introduced the concept of the navigation
framework as the organizing structure for the standard

738

report set. Any time we use the word portal, it invokes
visions of a major enterprise effort to collect and
categorize all structured and unstructured information
throughout the organization and make it available through
a rich user interface with intelligent search capabilities and
the ability to personalize the experience. Building the
enterprise information portal may be a useful and
important task, but in most cases, it is someone else’s task.
What you need to worry about is the BI portal, not the
overall enterprise portal. Think of the BI portal as the
central place where people can find the analytic
information they need.

The success of the DW/BI system is determined by
whether or not the organization gets value out of it. For the
organization to get value from the DW/BI system, people
have to use it. Since the BI portal is the primary interaction
most people have with the DW/BI system, the DW/BI
team needs to do everything in its power to make sure the
BI portal provides the best possible experience.

As you begin the design process, keep in mind that a
significant component of the work a DW/BI team does is
about managing organizational change (which is just
another way to say “politics”). The BI portal plays a
significant role in this change process, so it has to work at
several levels. It must be:

• Usable: People have to be able to find what they need.
• Content-rich: It should include much more than just the

reports. It should include as much support information,
documentation, help, tutorials, examples, and advice as
possible.

739

• Clean: It should be nicely laid out so people are not
confused or overwhelmed by it.

• Current: It needs to be someone’s job to keep the content
up-to-date. No broken links or 12-month-old items labeled
“New!” allowed.

• Interactive: It should include functions that engage the users
and encourage them to return to the portal. A good search
tool, a metadata browser, maybe even a support-oriented
discussion group are all ways for people to interact with the
portal. The ability for users to personalize their report home
page, and to save reports or report links to it, makes it
directly relevant to them. It also helps to have new items
appear every so often. Surveys, class notices, and even data
problem warnings all help keep it fresh.

• Value-oriented: This is the organizational change goal. We
want everyone who comes to the BI portal to end up with the
feeling that the DW/BI system is a valuable resource,
something that helps do their jobs better. In a way, the BI
portal is one of the strongest marketing tools the DW/BI
team has and you need to make every impression count.

In short, the design principles that apply to any good
website apply to the BI portal.

Planning the BI Portal

The process of creating the BI portal requires the careful
combination of two basic design principles: density and
structure.

• Density: The human mind can take in an incredible amount
of information. The human eye is able to resolve images at a
resolution of about 530 pixels per inch at a distance of 20
inches. Even though computer monitor resolutions have been
improving over the years they still don’t come close to this
number. Typical desktop LCD monitors have a resolution of
about 100 pixels per inch. Our brains have evolved to
rapidly process all this information looking for the relevant

740

elements. The browser gives us such a low-resolution
platform that we have to use it as carefully and efficiently as
possible. Every pixel counts.

• Structure: Although we need to fill the BI portal home page
with information, it doesn’t work if we jam it full of
hundreds of unordered descriptions and links. Your brain
can handle all this information only if it’s well organized.
For example, a typical major daily newspaper has an
incredible amount of information but you can handle it
because it’s structured in a way that helps you find what you
need. At the top level, the paper is broken up into sections. If
you’re looking for certain kinds of information, you know
which section to start with. Some readers look at every
section, but most skip a few that they deem irrelevant to their
lives. At the next level down, each section may be divided
into subsections and all sections use headlines as their
common organizing structure. Headlines (at least
non-tabloid headlines) attempt to communicate the content
of the article in as few words as possible. These headlines
are the “relevant elements” that allow readers to quickly
parse through the newspaper to find information that is
interesting to them.

RESOURCES

For interesting reading about image
density, see the work of R. N. Clark: Visual
Astronomy of the Deep Sky, Cambridge
University Press and Sky Publishing, 1990.

• http://www.clarkvision.com/articles/
eye-resolution.html.

Edward Tufte’s three-volume series
provides a good general reference for

741

structure and information display. Tufte has
described the three books as being about,
respectively, “pictures of numbers, pictures
of nouns, and pictures of verbs.”:

• The Visual Display of Quantitative
Information, Second Edition, Graphics
Press, May, 2001.

• Envisioning Information, Graphics Press,
May, 1990.

• Visual Explanations: Images and
Quantities, Evidence and Narrative,
Graphics Press, February, 1997.

Impact on Design

The idea of density translates to the BI portal in a couple
of ways. Primarily, it means we flatten the information
hierarchy. Categories are often represented as hierarchies
in the browser. You see a list of choices, each representing
a topic. Click on a topic, and you’re taken to a page with
another list of choices, and so on until you finally reach
some content. Flattening the hierarchies means bringing as
much information to the top-level pages as possible.
Information that was hidden in the sub-pages is now pulled
up to an indented list of category and subcategory headings
on a single page.

Figure 12-1 translates these concepts into the world of
Adventure Works Cycles. The BI portal shown here
demonstrates how two levels of report categories have
been collapsed into one page. The portal is easy to
navigate because you can identify major categories of

742

information based on the headings and ignore them if they
don’t apply to your current needs, or examine them more
closely if they seem relevant. Having the two levels on the
same page actually gives the user more information
because the two levels help define each other. For
example, Sales helps group the sales-related subcategories
together, but at the same time, the subcategory descriptions
help the user understand what activities are included in
Sales.

Figure 12-1: The Adventure Works Cycles BI portal home
page

743

You can see other examples of this dense design with
flattened hierarchies in the management pages in
SharePoint. When you get to the SharePoint section later
in this chapter, take a look at the Site Settings page on any
SharePoint site. The entire SharePoint Central
Administration site follows this highly dense, flattened
hierarchy approach. (See Figure 12-7.) It’s not so easy to
use for someone who is new to SharePoint because the
categories and descriptions are not obvious to the
uninitiated.

Business Process Categories

Every word you include on the portal — every header,
description, function, and link — all need to communicate
what content people will find behind it. The categories you
choose as the top level of your taxonomy will determine
how understandable the BI portal is to your users.
Generally, the best way to organize the portal is to use
your organization’s business processes as the main outline.
Look at Figure 12-1 from a business process perspective.
The left column under Standard Reports includes
Adventure Works Cycles’ major business processes. You
can also think about this as the organization’s value chain.
In Adventure Works Cycles’ case, marketing and sales
business processes come early in the value chain, working
to bring in new customers and new orders. Once the
company has orders, they purchase materials from their
suppliers, manufacture the bikes, and ship them out to the
customers. Customer support may interact with the
customers at any point along the way, and even after the
product has been shipped. There are also internal business
processes that generate information that is useful across

744

the organization, like headcount data from HR, or cost data
from finance.

Beyond business process categories, the BI portal needs to
have a standard layout so people can easily find what
they’re looking for. If your organization has a standard
page layout that you can adapt for the BI portal, use it.
Your users won’t have to learn a new interface when they
come to the BI portal.

Additional Functions

Although one of the main purposes of the BI portal is to
provide access to the standard reports, it must offer much
more than just reports. In addition to the categories and
reports lists, you need to provide several common
functions:

• Search: The search tool serves as an alternative report
locator if the business process categories aren’t helpful. A
good search tool that indexes every report name and
description, document, and page on the BI website can
dramatically shorten the amount of time it takes users to find
what they want.

• Metadata browser: A metadata browser can be as simple as
a few ASP.NET pages or even Reporting Services reports
that allow users to browse through the metadata’s
descriptions of the databases, schemas, tables, columns,
business rules, load statistics, report usage, report content,
and so on. You could also build this using Master Data
Services and export the taxonomy into SharePoint. However
you build it, interested users will learn a lot about the DW/BI
system through the metadata browser.

• Forum: It may make sense to host a support-oriented forum
or discussion on the BI portal. This can be a good way for
users to find help when they need it. It can also create a

745

record of problems and their solutions for future reference. It
takes a fairly large user community to generate the critical
mass of activity needed to make a forum successful. The
DW/BI team should be active participants.

• Personalization: Users should be able to save reports or
report links to their personal pages. This personalization can
be a powerful incentive for people to return to the portal
every day.

• Announcements and calendars: It helps keep things
interesting to have new items appear on a regular basis.
Offer a survey, have people sign up for tool training, or post
a notice of an upcoming User Forum meeting.

• Feedback: You need to provide a direct means for your user
community to submit requests and suggestions. You should
also enable social media style feedback mechanisms such as
document ratings and rankings.

There is also a whole set of support and administration
content the BI portal needs to provide. This includes online
training/tutorials, help pages, metadata browser, example
reports, data cheat sheets, help request forms, and contact
info for the DW/BI team. This information all goes in the
lower right corner, the least valuable real estate on the
screen (at least for languages that read from left to right
and top to bottom). We discuss this supporting content
again in Chapters 15 and 17.

Building the BI Portal

Creating and maintaining the BI portal is much more work
than most DW/BI teams expect. However, the effort is
worth it because the BI portal is the farthest-reaching tool
the DW/BI team has for delivering value to the
organization. It is also one of your best tools for marketing
the DW/BI system.

746

• Line up the resources: You will need to have resources on
the BI team, or dedicated to the BI team, who are proficient
at web development and web content creation. This includes
some facility with the server operating system, user
authentication, and the portal software.

It’s also a brilliant idea to get a good graphic designer
involved; someone who has a clean, practical sense of
design. Do not blindly copy our examples because they
were designed to be shrunk down and printed in black and
white. Besides, we are not the best graphic designers.

• Learn the tools: How much learning you will need depends on
what expertise you already have and what areas you will be
managing. At the very least, someone on the BI team will need
to know how to create and maintain the BI portal pages and the
reports they reference. You may also need to know how to set
up a portal site and enable the various functions you’d like to
provide, such as search, help requests, and discussion forums. In
the worst case, you may need to develop expertise in installing
and maintaining the BI portal software itself. This can be a
significant effort, as you will see in the SharePoint section later
in this chapter.

If you don’t have any recent experience with web
development, plan to spend some time learning how to be
productive and efficient in the portal development
environment. There’s a whole lot more to it than just
writing some HTML code. Templates, cascading style
sheets, scripting languages, and graphic design tools can
help you create a flexible, easy to maintain website. But it
takes time to figure out how they work and how to use
them well.

• Create a code management process: Most of the portal tools
have change management systems built in. After all, they are
primarily web content management tools. Spend a little time

747

learning how you put a directory or site under management,
how you check a page out and in, and how you revert to a
previous version.

You will need to get the basics of your portal security in
place at this point as well. From a code management
perspective, you need to have security groups to determine
who can see, edit, and create or delete which pages. This
becomes especially important once you have users
uploading their own reports to the portal.

• Create a report submission process: You will have a set of
reports that are your organization’s official BI reports. They
have been tested by the BI team and bear the official DW/BI
logo. BI professionals in other parts of the organization will
want to add their work to the BI portal. This has pros and cons.
On the pro side, the reports they create will likely be useful to
many people in their groups and you want to encourage these
folks to develop their skills and share their expertise. On the con
side, they may not have the same attention to detail and quality
control that you have. Their reports may be wrong, and
ultimately undermine the DW/BI system’s credibility.

Consider having separate locations for user submitted
reports in the portal. They can have a specific directory or
site for their department where they keep local reports.
These reports are not created, tested, or maintained by the
BI team, and should not sport the DW/BI system logo. A
certain percentage of these reports will prove to have value
to a broader audience. Move those reports into the official
reports section after you have verified their contents,
structure, and calculations.

• Create the core BI portal pages: Design the BI portal home
page and sub-pages based on the navigation framework from the
BI applications design process. The BI portal home page
typically corresponds to the overall bus matrix. It represents

748

information from across the enterprise. Sub-pages usually
correspond to individual business processes, such as orders or
shipments, and typically include several standard report groups,
including time series, time comparisons, geographic
comparisons, key indicators, or KPIs.

You will usually need to start your BI portal at the
business process sub-page level because you do not have
data for the rest of the bus matrix. If you start at the home
page level, most of the links will be inoperative. Such a
limited home page would undermine your credibility.

Over time as you add more rows on the bus matrix and the
associated BI applications your home page will gradually
move toward the full BI portal shown in Figure 12-1.

• Manage expectations: As you learn more about your portal
tools, the BI applications, and your user community, the BI
portal will change. You should let people know this early on,
and even enlist them in helping design new generations of the
BI portal. People can deal with changes they have been a part of
creating, but unexpected change will almost always generate
resistance.

These principles, guidelines, and preparation steps will
help you create a BI portal in any web environment. We
now shift our focus to delivering a BI portal in a specific
portal environment: Microsoft’s SharePoint.

Using SharePoint as the BI Portal

While it is possible to create a workable BI portal using
HTML editors, there are several major enterprise portal
players on the market offering an extended set of web
functionality (search www.wikipedia.org for “Enterprise
Portal” to see a list of vendors and products). SharePoint is

749

Microsoft’s full service portal and web application
platform with multi-tier, workload-balanced, distributed
application support. SharePoint is an enterprise class tool.
It is complex and multi-faceted, and can be a challenge to
install and manage.

You can use SharePoint strictly as the website
environment for the BI portal. However, SharePoint
provides much more than just website hosting. It offers a
range of features including connection and collaboration
tools, an application platform, data capture, and workflow.
Many parts of your organization could use SharePoint
functionality but may have limited interest in the BI portal.

Let’s be clear right from the start: SharePoint is big.
Ideally, your organization already has SharePoint installed
and working. If that’s the case, see if the folks who have
the scars of experience will help you get the incremental
components needed to support BI installed and working. If
your organization does not have SharePoint up and
running, see if you can get some other group in IT to own
SharePoint and be responsible for its broader use in the
organization. This will likely be the team who already
provides intranet support. This may slow things down, but
it is generally a good idea because of SharePoint’s
complexity and broad applicability. In the worst case, if
you need to install SharePoint and get it working yourself,
be prepared for a few weeks of work. It may not take that
long, but the probability of it taking longer than you expect
is very high.

Because SharePoint is so big, we don’t have the room (or
the patience, or frankly, the expertise) to give you

750

step-by-step guidance on installing all the pieces you will
likely need. This section points out the major landmarks in
the SharePoint ecosystem, but you still need to do a lot of
work to get them going. We will list out the major
BI-related components, offer general guidance on how to
get those components working, and provide references on
where to get more details. If you want real hands-on
experience, which we strongly encourage, we have posted
a guide to installing the test system we describe here on the
book’s website at http://www.kimballgroup.com/

html/booksMDWTtools.html.

RESOURCES

If you are going to manage SharePoint
yourself, you will need more detailed
instruction. One useful resource is
Professional SharePoint 2010
Administration, by Todd Klindt, Steve
Caravajal, and Shane Young (Wiley, 2010).

Architecture and Concepts

This section provides an overview of the SharePoint
product, including a description of the software editions,
the architecture, and key terminology.

There are three major editions of SharePoint 2010:
SharePoint Foundation, SharePoint Server Standard, and
SharePoint Server Enterprise. Each level includes the
functionality of the previous level. Microsoft SharePoint

751

Foundation 2010 was known as SharePoint Services. It
provides the core website, service management, and
document sharing features. Microsoft SharePoint Server
2010 Standard edition extends SharePoint Foundation
2010 to provide a full-featured business collaboration
platform that scales from the enterprise to the Web. It
provides additional collaboration, content management,
and more robust search features. Microsoft SharePoint
Server 2010 Enterprise edition includes many of the BI
features such as Excel Services and PerformancePoint
Insight. SharePoint uses Internet Information Service (IIS)
as its underlying web server in all its editions.

RESOURCES

You can learn more about SharePoint’s
features and capabilities, and the various
SharePoint editions at Microsoft’s main
SharePoint marketing site:
http://sharepoint.microsoft.com.

SharePoint’s Three-Tier Architecture and Topology

Microsoft SharePoint Server 2010 and SharePoint
Foundation Server 2010 provide the infrastructure for
hosting services. SharePoint services and functions
generally map to one of three roles that relate to each other
in a three-tier structure. In Figure 12-2, the user-facing role
is assigned to the web server tier. The primary function of
the servers in this layer, also known as Web Front Ends or

752

WFEs, is to serve web pages and process requests for
services from the farm.

Figure 12-2: SharePoint’s three-tier architecture

Most of the services are found in the application server tier
in the middle of Figure 12-2. You deploy only the services
you need, and a deployed service is known as a service
application. Service applications are services that are
shared across sites within a farm (for example, Search and
Excel Calculation Services) or in some cases across
multiple farms. You deploy service applications by starting
the associated services on the desired server computers

753

using the Services on Server page on the SharePoint
Central Administration site. Service applications can be
co-hosted on a single computer, deployed on a dedicated
server, or activated on multiple servers across the farm,
depending on the scale required.

Some services include multiple components and
deployment of these components requires planning. For
example, the PowerPivot for SharePoint feature mentioned
in Chapter 11 includes multiple application components
and multiple databases.

The third tier is the database. SharePoint sets up several
databases to store technical metadata and content. The
search function, for example, starts with three separate
databases: administration, crawl, and property. You can
create more crawl and property databases as you scale out
the search function. For a list of SharePoint databases,
search technet.microsoft.com for “using DBA-created
databases.”

SharePoint will automatically create the necessary
databases for you as part of creating a new service
application. Since the default names are based on GUIDs,
you might want to override this and provide more friendly
names. You can find a guide to creating SharePoint 2010
database names by searching technet.microsoft.com for
“Introduction to the Microsoft SharePoint 2010 Database
Layer.”

SharePoint Terminology

754

Understanding all the terms used in the SharePoint world
can give you a big advantage. Starting with the big picture,
a SharePoint farm is the collection of all servers running in
a SharePoint deployment and the services running on those
servers. You can have a single server farm, or spread your
service applications and websites across many servers. The
point of the farm is to provide load balancing, scalability,
and availability.

From the web perspective, a top-level domain URL is
known as a web application, and it corresponds to an
Internet Information Services (IIS) website. A web
application contains one or more site collections, which is
a set of one or more websites that have the same owner
and administration settings. The top-level site collection in
a web application contains the default site for the web
application itself. For example, entering http://finance/
will display the default home page from the top-level site
in the http://finance web application.

A site collection always has a top-level site and can
contain many additional sub-sites. A site is a coherent set
of pages with a home page, libraries, lists, a common
layout template and theme, all based off the same root
URL. Each site can have multiple sub-sites. A typical
company might have several web applications at the top
level of its SharePoint implementation, each with a
different base URL. For example, SharePoint may be
supporting the organization’s extranet site, and several
independent intranet sites. The associated web applications
in SharePoint might be as follows:

Root URL Purpose

755

http://www.adventureworks.com/ Extranet

http://finance Finance

http://hrweb Human Resources

http://AWweb General organization intranet

This hierarchy-based approach gives significant flexibility
to the SharePoint administrator because it allows the
assignment of servers, services, databases, and other
resources at multiple levels. It also allows different groups
and individuals to create and maintain their own section of
the overall SharePoint environment. Figure 12-3 shows a
hierarchy for the http://enterprise web application we create
later in this chapter.

Figure 12-3: An example web application hierarchy

756

Note that the default URL for a web application would
typically start with the name of the SharePoint server. You
would need to use your Domain Name Server (DNS) to
map a friendly name such as http://enterprise to the actual
web application name which might be
http://ServerGrpShrPtProd01:59732. If this organization only
had one SharePoint server, each of the preceding web
applications would map to different ports on the same
server. This is known as alternate access mapping, and it
makes the websites easier to remember.

Once you have your sites set up, you have to have some
content for people to work with. When you direct your

757

browser to a website, the web server displays a page (or
invokes a program that generates the page). SharePoint has
several types of content that are often displayed, entered,
and edited on SharePoint pages: lists, libraries, and Web
Parts.

Lists are collections of items of a single type. SharePoint
lists include tasks, calendars, announcements, links, and
contacts. Think of a list like a spreadsheet table with one
row per entry and columns of attributes appropriate for that
type of list. For example, a calendar is a list of events with
attributes such as event date, event description, start time,
and duration. A calendar list is displayed in a Web Part
that provides the known context of a calendar: days,
weeks, and months.

Views are ways to view the contents of a library or list, sort
of like a report definition. They provide a display format
for the list and allow you to filter it. For example, you can
change the view from Calendar to the All Events view to
see the individual items in the calendar list.

Libraries are a special type of list that store files as well as
information about files (essentially directories). Libraries
may be set to hold certain content types, such as pages,
reports, or images. You can have different content types in
a library, but you may have to enable this in the library’s
properties (via the Library Settings button in the Library
Ribbon under Library Tools). You can add content types
from the set of types enabled on the site. The library’s
property page is also where you identify what types of new
documents a user can create in this library. If you want to
enable a new content type on the site, you need to activate

758

it through the Manage site features under Site Actions, or
Site collection features under Site Collection
Administration in Site Settings.

The kinds of lists and libraries (and sites) available to you
in the Site Actions/More Options list depend on the site
features you have activated in the Site Settings menu (both
under Site Actions for the BI Portal site, and under Site
Collection Administration (Site collection features) for the
overall set of sites). The initial template you select to
create your BI Portal site will determine the initial feature
set available. For example, the Business Intelligence
Center template only includes a few libraries and lists, and
some sample PerformancePoint pages. The PowerPivot
site template includes announcements, calendar, links, and
task lists; several empty document libraries; and a team
discussion list. We have created a site template that
includes all these features and more.

Web Parts are reusable code modules that allow you to
display various types of content on your pages. You may
use a Web Part to show a mini version of the calendar in
the corner of the page, for example. Two of the most used
Web Parts in BI are the Excel viewer and Reporting
Services report viewer. These allow you to embed reports
in a web page, and provide some level of interaction for
the users.

Setting Up SharePoint

If you plan to use SharePoint as your BI portal, now is as
good a time as any to dig in and get your hands dirty. This
is one case where actually working with the product will

759

help you understand what it is and how it works. If you
don’t have SharePoint 2010 already running in your
company, and if the BI team will be responsible for
providing its own SharePoint functionality, we strongly
recommend getting started with a simple test installation of
SharePoint and supporting components. Find an available
64-bit server, set up a 64-bit virtual machine, and get
started. The earlier you do this the better because you have
a lot to learn about how to get SharePoint working in your
DW/BI system environment, and you will make a lot of
mistakes.

Installing SharePoint is very much like the old example of
bad documentation for shutting down a nuclear power
plant where the instructions read:

1. Pull the red lever.

2. But first, push the green button.

A lot of pieces must fall neatly into place to get SharePoint
working, but sometimes they step on each other. There is
no perfect install order, and you often need to go back and
redo some steps before you can move forward with the
next step. Because of this uncertainty, we can only provide
a summary of the install process for a test system here. We
have posted a more detailed set of instructions on the
book’s website if you are inclined to actually set up a test
system.

We strongly recommend using a virtual machine for your
test environment. One huge advantage is that you can take
snapshots at the end of each major install step, once you’ve

760

verified the successful completion of that step. This will let
you go back to a known good point rather than starting all
over if something goes wrong.

The Installation Process

Figure 12-4 illustrates the flow of the install steps you will
need to take to get a test installation of SharePoint going
along with the other products, add-ins, and SharePoint
services that help provide a full featured BI portal. You
can install the various components in a different order, but
you will have a different set of configurations needed for
each install order. There are a lot of steps to this process in
the initial release of SharePoint Server 2010 and SQL
Server 2008 R2. We hope Microsoft will quickly make this
process less cumbersome, and we suggest search
technet.microsoft.com for “SharePoint Server installation and
deployment” for more recent information.

Figure 12-4: Installation steps for SharePoint and related
components

761

Our test system install process is based on a clean version
of Windows Server 2008 R2 installed on a dedicated
server in an existing domain. Create a virtual machine on
this server, also running Windows Server 2008 R2, and
make sure you can allocate plenty of memory; 4 or more
gigabytes would be good and at least two CPU cores.
Note: If you need to create a true standalone installation
with its own domain controller, go to
http://www.powerpivot-info.com/ and search for “single
machine.”

Following Figure 12-4, the remainder of this section starts
with a few planning steps, and then summarizes the install

762

steps for SharePoint and its supporting products and
add-ins, including SQL Server Analysis Services in
SharePoint mode and PowerPivot for SharePoint, SQL
Server Reporting Services in SharePoint integrated mode
for reports. We’ll also mention some supporting steps
around access and security and enabling various
SharePoint services. Once you have the base infrastructure
in place, you can do some simple experimentation with
PowerPivot and Reporting Services.

In the last part of this install summary, we offer you two
options to build out the rest of SharePoint’s BI portal
related services, both of which require a download from
the book’s website. The first option is to create a new site
based on a special template created from the site shown in
Figure 12-1. The second option is to follow a separate
guide to build out the full BI portal yourself. Wait until
you’ve had some experience with SharePoint before you
decide which option to take.

Plan SharePoint for BI

Before you slip the install disks into your DVD drive, take
some time to plan out your installation. Here are several
prerequisites for you to think through and get in place first.

Verify software versions and editions. Most of the
features we describe here require the enterprise editions of
both SharePoint 2010 and SQL Server 2008 R2, or higher.
Many BI features will not work with the standard editions,
and most will not work with prior versions of these two
products. Some features, such as PowerPivot for

763

SharePoint 2010, also require Windows Server 2008 SP2
or Windows Server 2008 R2.

Obtain install files and product keys. Download all the
software install files or gather the DVDs you will need
ahead of time and have your product keys handy. This
includes 64-bit versions of the following:

• Windows Server 2008 R2 (unless your server OS is already
running)

• SQL Server 2008 R2 Enterprise edition
• SharePoint 2010 Enterprise edition

If you have an MSDN license, you can get the install files
and keys online from the download section of
http://msdn.microsoft.com. There are a few other components
and add-ins you will download along the way.

Create service accounts in the domain. SharePoint
server(s) must be part of a Windows domain to manage
network security and accounts. Out test system install had
eight service accounts to support various SharePoint and
SQL Server services. The list of accounts we used is
included in the walk through guide on the book’s website.
Your real install should include additional accounts to
support additional SharePoint services and IIS application
pools, depending on which services you enable and how
you want to scale out your farm. You may want to adopt
your server group’s account naming conventions.

Our recommendation is to set these up in Active Directory
on your domain and give them appropriate permissions on
your test machine right away. When you set up your
official system, you should also create separate service

764

accounts for each SQL Server service and SharePoint
service application to properly isolate them. Search
technet.microsoft.com for “service accounts required for initial
SharePoint deployment” for more detail about the
permissions these accounts will need.

Plan authentication and secure store. Windows default
authentication mode, called NTLM, does not support the
pass-through of user credentials resulting in a login failure
if more than two machines are involved in an interaction.
This phenomenon, known as the double-hop problem, is
common in the DW/BI system environment when the
database is on a separate machine from the report access
server. This is almost always the case when SharePoint is
introduced into the DW/BI system environment because
the SQL Server data warehouse database is usually located
on a separate server from SharePoint. In this case, a user
connects from client machine A to the SharePoint server
B, and then selects a report from the BI portal. SharePoint
then attempts to connect to SQL Server on server C, at
which point the login fails because SharePoint cannot
provide enough information for SQL Server to authenticate
the user. To avoid this, you must switch to a different
authentication method called Kerberos if you want to have
user-level authentication. Kerberos is considered more
secure than the default Windows authentication system and
has been part of the Windows environment since 2000. It
can be a challenge to configure, but it is getting easier as
Windows improves its implementation.

Kerberos will solve the double-hop problem whether
SharePoint is part of your DW/BI system or not. If the
problem is limited to data access from SharePoint, you

765

could address it with Secure Store Services, which replaces
Single Sign On from SharePoint 2007. Secure Store
Services provides an option to store credentials in a Secure
Store database on the SharePoint server. Credentials are
then mapped as user-to-user or Domain Group-to-user and
can be renewed at the SharePoint server. Secure Store
Services are used in SharePoint to manage PowerPivot
data refreshes and other unattended account activity. They
require storing a copy of user name and password
information in the secure store database.

You don’t need to get Kerberos working for your test
SharePoint install. You can avoid the double hop problem
by doing your testing on the SharePoint server, perhaps via
remote desktop, rather than using a browser from a
separate client machine. You will need to figure out your
authentication strategy when you build out your
SharePoint development and production systems. If you
control all the servers you are working with, this is a
manageable problem. If others are involved, you are
probably facing some negotiations. You also don’t need
Kerberos if you are only querying PowerPivot for
SharePoint databases. This is because they are hosted
within the SharePoint environment and do not require
additional authentication.

There are a lot of online guides to getting Kerberos
working with SharePoint. This one from the SQL Server
Customer Advisory Team, called “Configuring Kerberos
Authentication for Microsoft SharePoint 2010 Products,”
is particularly helpful: http://go.microsoft.com/fwlink/
?LinkID=196600.

766

Installing the Test System

This section summarizes our test installation based on the
steps in Figure 12-4.

Set Up the Test Server

Once you’ve done the BI planning, you need to set up the
test system itself. Figure 12-5 shows the topology and
environment for the SharePoint test server installation we
created. This is by no means a model or recommended
topology for anything you might put into production. All
three layers of the SharePoint architecture are on one
machine. Even if you choose to access data on an existing
database machine, the SharePoint test machine will still
have SQL Server to host the SharePoint databases. A more
robust version of this farm would have two load-balanced
front end servers to host the Web Front End (WFE), two
load-balanced application servers to host the services
layer, a failover cluster setup for the database layer, and
perhaps a separate cluster for the Reporting Services
component. We set our goals a little lower to get it all
working on one machine first.

Figure 12-5: Test SharePoint environment topology and
services

767

The test server doesn’t start out with all the servers and
services installed. Each of the following steps adds one or
more servers and services to the environment. It’s this
incremental process that can cause conflicts because each
new layer may reconfigure the system in a way that breaks
one of the previous layers.

SQL Server in particular plays several roles in the
SharePoint world. It acts as the database engine for the
SharePoint admin, content, and property databases. In the
case of this book, SQL Server is the data warehouse
platform for the relational dimensional model and for the
Analysis Services database. SQL Server also provides a

768

separate Analysis Services engine for PowerPivot for
SharePoint. Finally, SQL Server Reporting Services is
commonly used in an integrated mode with SharePoint to
access data kept in a SQL Server data warehouse. All of
these roles are installed and configured at different points,
and have the potential to cause problems for SharePoint
and for the other SQL Server roles.

Install SharePoint Server 2010

SharePoint has several prerequisites that must be in place
before the actual product can be installed. Install the
prerequisites from the SharePoint installer, then install
SharePoint itself. Because of the install order we chose for
our test system, we ran the installation, but did not run the
SharePoint Products Configuration Wizard. As a result,
this initial install step only enables the Web Front End and
a few of the service applications. You can’t view a
SharePoint site or the central administration site yet.

Once the SharePoint install has completed without errors,
this is a good point to take a snapshot of your virtual
machine.

Install PowerPivot for SharePoint

The approach we took for the test server lets the
PowerPivot installer configure SharePoint server for us.
This part of the installation is run from the SQL Server
2008 R2 installer. Once you get to the Setup Role step,
select SQL Server PowerPivot for SharePoint, and make
sure the Add PowerPivot for SharePoint To option is set to
New Server.

769

The PowerPivot installation adds the PowerPivot service,
the PowerPivot SQL database instance, and the Analysis
Services engine in SharePoint mode. It also configures the
top-level site.

You can find install guides for other scenarios, such as
installing PowerPivot on an existing SharePoint farm, on
MSDN. Search msdn.microsoft.com for “How to:
Install PowerPivot for SharePoint.”

Verify the SharePoint Install

Once you have the PowerPivot for SharePoint components
installed, there are several things you can do to make sure
your server is working as it should be. First, open a
browser and navigate to the top-level site of your test
server. Figure 12-6 shows the homepage for this site which
was automatically configured using the PowerPivot site
template.

At this point, you can upload a PowerPivot for Excel
workbook and see how it is displayed in the PowerPivot
Gallery (which we saw back in Figure 11-10 in the chapter
on PowerPivot). You can also take a look at the SQL
Server instance in SQL Server Management Studio and see
what databases SharePoint has created.

It’s a good idea to visit the SharePoint Central
Administration Site to see how it works and check the
status of your server. This site is command central for
running your SharePoint farm. From here you can enable
new service applications, manage servers and services
running on those servers, monitor usage, and much more.

770

Figure 12-7 shows the Central Administration site’s
homepage. To get to the Central Administration site, enter
the URL with the port number in your browser. If you
neglected to memorize the port number, you can always
find a link to the Central Administration site in Start ⇒ All
Programs ⇒ Microsoft SharePoint 2010 Products ⇒
SharePoint 2010 Central Administration.

Note that the Central Administration site follows the portal
design patterns we described in the first part of this
chapter, with a dense set of links grouped into a collapsed
hierarchy of categories. If you know what the categories
mean in the SharePoint context, you should be able to find
what you are looking for. If you’re not familiar with
SharePoint terminology, it’s a bit mysterious.

Figure 12-6: The default PowerPivot site template
homepage

771

Figure 12-7: SharePoint Central Administration home
page

Install, Configure, and Verify Reporting Services

772

The next step for the test server is to install Reporting
Services along with the default instance of SQL Server to
give you a chance to create some reports and display them
on a SharePoint page. Remember, the relational database
and Reporting Services would typically be installed on a
separate machine (or machines). In fact, the SharePoint
Health Analyzer will flag SQL Server on the same
machine as a problem.

The final installation step is to configure Reporting
Services to work in SharePoint integrated mode from
SharePoint Central Administration. Verify that the
integration was successful by uploading a reporting
services RDL file to the Shared Documents library. Once it
is in SharePoint, click on the file name to execute the
report.

Completing the BI Portal

At this point, you have the core capabilities enabled in
SharePoint to build a basic BI portal. You can offer
Reporting Services reports and PowerPivot reports to your
user community from a common interface. You can learn a
lot about SharePoint by experimenting with your test
server in its current state. You did good work.

However, you still have a long way to go before you have
a fully functioning BI portal to unveil at the first user
deployment education session. If you want to learn all the
details, you can continue from this point and install
PerformancePoint, enable a whole range of useful services
and content types, and create your portal home page along
with the site theme and layout. This is the best path to take

773

if managing SharePoint will be one of your jobs, or if you
are truly interested in understanding how SharePoint works
and what you can do with it.

The individual steps for this detailed installation are in a
document titled SharePoint BI Portal Detailed

Install Completion Step-by-step.doc in the zip
file you can download from the book’s website. We
encourage you to pull them out and work through them to
get the full SharePoint experience.

Alternatively, if you don’t need to learn all the portal
creation details, you can still get the full experience by
creating a new SharePoint site with the BIPortal template
also included in the zip file, which will do most of the
setup and configuration for you.

The steps for installing the template are also included in a
file in the zip file called SharePoint BI Portal

Template Install Steps.doc.

The end result of either path is a full featured BI portal
site.

The Added Functionality of the BIPortal Site Template

Both the BI Portal site template and the step-by-step guide
enable many features that are not grouped together in the
standard templates found in SharePoint. We started with
the BI Center template and added on the following
features, each of which requires several steps to enable
within SharePoint:

774

• PerformancePoint dashboard and scorecard capabilities
• Search across the portal environment
• Announcements to provide information to users
• Web-based surveys
• User support discussion groups
• User support request database
• Alerts to notify users when documents or other items of

interest change
• User personalization capabilities (my reports, custom

layouts, and so on)
• A workflow to manage user submission and approval of

reports and PowerPivot analytics
• Group work lists including calendars and team resource

scheduling tools

In addition to these features, there are examples of the
actual pages that make up the portal: the home page,
sub-pages for the enterprise business process reports, and
supporting pages for documentation and user support,
along with the navigation links on the left side of the site.

The point is, once you get the core SharePoint and SQL
Server components installed, there is still a lot more work
to do. By using the BIPortal site template, you will be able
to experiment with all this added SharePoint functionality,
but you will not gain a good understanding of how it got
there. If you are going to use SharePoint as your BI portal
and application delivery platform, you, or someone else on
the BI team, will have to learn the details of how to make
it work. That’s where the detailed step-by-step approach
will help.

Exploring SharePoint

775

Once you get the BI Portal site template loaded, or go
through the steps to build it out yourself, you should spend
some time playing around with it. Upload some of your
own PowerPivot examples and see what they look like in
SharePoint. Try to create a report in Report Builder. Try to
edit a SharePoint page in SharePoint Designer. Experiment
with the PerformancePoint Dashboard Designer. Work
with security groups a bit to see how you tie them to
Active Directory.

The best way to do this would be to create a beta version
of your own BI portal. Start working on your standard
page layouts, color themes, navigation bar, user
documentation, and user interactions. This will likely take
a couple of weeks, so make sure it is built into the project
plan.

Summary

Your BI portal will provide the first impression of the DW/
BI system for most users in your organization. You need to
make sure it’s a good impression. It needs to be usable,
fast, clear, and complete. It also should look appealing to
the eye. Building and maintaining an effective BI portal is
a lot more work than most teams imagine. You can judge
your success by the number of people who use the portal,
and how often they use it. These should be part of your
standard DW/BI system metrics.

The obvious choice for a BI portal platform in the
Microsoft world is SharePoint. One of the main goals of
this chapter was to take you far enough into SharePoint to
give you a sense for the capabilities of the product and the

776

effort involved in getting it to work. If you installed
SharePoint following the guide on the book’s website, and
your SharePoint experience has been anything close to
ours, you must be exhausted. Nonetheless, we encourage
you to continue on and create a BI portal site with the site
template, or build out all the features yourself following
the step-by-step guide from the book’s website.

Microsoft has created a flexible, distributed, web-based
application platform that can be scaled out to meet the
information and collaboration needs of large enterprises.
But all this power and flexibility is a two-edged sword. It
is a fair amount of work to install and maintain, and much
of the complexity of SharePoint is overkill for most
small-to-medium sized businesses.

However, Microsoft has chosen SharePoint as its
application delivery vehicle for its enterprise BI offerings.
Using SharePoint is appealing because of the add-on
connections it has to many of Microsoft’s BI products and
the core portal and collaboration functions it provides.

777

Chapter 13

Incorporating Data Mining

“We dig up diamonds by the scoreA thousand rubies,
sometimes more.”

— From Snow White by Walt Disney Company, music by
Frank Churchill, words by Larry Morey, ©1938

Data mining is not a single topic; it’s a loosely related
collection of tools, algorithms, techniques, and processes.
This makes it a difficult subject area to tackle, especially in
a single chapter. However, we must tackle it for two main
reasons: First, data mining offers the potential of huge
business impact; and second, SQL Server includes a suite
of data mining tools as part of the product. In short, high
value, low cost — the motivation is obvious.

The first part of this chapter sets the context for data
mining. We begin with a brief definition of data mining
and an overview of the business motivation for using it.
We then look at the Microsoft data mining architecture and
environment provided as part of SQL Server, including a
brief description of the data mining service, the algorithms
provided, and the kinds of problems for which they might
be appropriate. We next present a high-level data mining
process. The process breaks into three phases: business,
mining, and operations. The business phase involves
identifying business opportunities and understanding the
data resources. The data mining phase is a highly iterative
and exploratory process whose goal is to identify the best

778

model possible, given the time and resource constraints.
Once you identify the best model, you need to implement
it in a production form where, you hope, it will provide the
intended business value.

The second part of the chapter puts these concepts and
processes into practice by demonstrating the application of
SQL Server data mining in two examples. The first
example creates clusters of cities based on economic data,
and the second creates a model to recommend products for
the Adventure Works Cycles website.

By the end of this chapter, you should have a good
understanding of the following:

• What data mining is and how it can be applied to a range of
business opportunities

• The major components of the SQL Server data mining
toolset and how they work together

• A high-level process for employing data mining in your
organization

• And, although this is not a tutorial, you should also end up
with a basic idea of how to use the SQL Server data mining
toolset

Defining Data Mining

We generally describe data mining as a process of data
exploration with the intent to find patterns or relationships
that can be made useful to the organization. Data mining
takes advantage of a range of technologies and techniques
for exploration and execution. From a business
perspective, data mining helps you understand and predict
behavior, identify relationships, or group items (customers,

779

products, and so on) into coherent sets. These models can
take the form of rules or equations that you apply to new
customers, products, or transactions to make a better guess
as to how you should respond to them.

The field of data mining is known more broadly as
Knowledge Discovery and Data Mining (KDD). Both
terms shed light on the purpose and process of data
mining. The word “mining” is meant to evoke a specific
image. Traditional mining involves digging through vast
quantities of dirt to unearth a relatively small vein of
valuable metallic ore, precious stones, or other substances.
Data mining is the digital equivalent of this analog
process. You use automated tools to dig through vast
quantities of data to identify or “discover” valuable
patterns or relationships that you can leverage in your
business.

Our brains are good examples of data mining tools.
Throughout the course of our lives, we accumulate a large
set of experiences. In some cases, we’re able to identify
patterns within these experiences and generate models we
can use to predict the future. Those who commute to work
have an easy example. Over the weeks and months, you
develop a sense for the traffic patterns and adjust your
behavior accordingly. The freeway will be jammed at 5:00
p.m., so you might leave at 4:30, or wait until 6:00, unless
it’s Friday or a holiday. Going to the movies is another
example of altering behavior based on experience.
Deciding when to arrive at the theater is a complex
equation that includes variables like when the movie
opened, whether it’s a big budget film, whether it got good
reviews, and what’s showing that you want to see. These

780

are personal examples of building a data mining model
using the original neural network tool.

The roots of data mining can be traced back to a
combination of statistical analysis tools like SAS
(Statistical Analysis System) and SPSS (Statistical
Package for the Social Sciences) that took form in the
academic environment in the 1960s and 1970s, and the
Artificial Intelligence surge back in the 1980s. Many of the
techniques from these areas were combined, enhanced, and
repackaged as data mining in the 1990s. One benefit of the
internet bubble of the late 1990s is that it showed how data
mining could be useful. Companies like Amazon began to
mine the vast quantities of data generated by millions of
customers browsing their websites and making purchase
selections, popularizing the phrase “Customers who
bought this item also bought these items.”

Data mining has finally grown up and has taken on a
central role in many businesses. All of us are the subject of
data mining dozens of times every day — from the junk
mail in our mail boxes, to the affinity cards we use in the
grocery store, to the fraud detection algorithms that
scrutinize our every credit card purchase. Data mining has
become so widespread for one reason: it works. Using data
mining techniques can measurably and significantly
increase an organization’s ability to reach its goals. Often
those goals can be boiled down to “sell more stuff.” Our
goal here is to describe the technology, not judge the
application; how you use it is up to you.

There are two common approaches to data mining. The
first is usually a one-time project to help you gain an

781

understanding of who your customers are and how they
behave. We call this exploratory or undirected data
mining, where the goal is to find something interesting.
The second is most often a project created to work on a
specific problem or opportunity. We call this more focused
activity directed data mining. Directed data mining
typically leads to an ongoing effort where models are
generated on a regular basis and are applied as part of the
transaction system or in the ETL application. For example,
you might create a model that generates a score for each
customer every time you load customer data into the BI
system. Models that come from the data mining process
are often applied in the transaction process itself to identify
opportunities or predict problems as they are happening
and guide the transaction system to an appropriate
response on a real-time basis.

While exploratory data mining will often reveal useful
patterns and relationships, this approach usually takes on
the characteristics of a fishing expedition. You cast about,
hoping to hook the big one; meanwhile, your guests, the
business folks, lose interest. Directed data mining with a
clear business purpose in mind is more appealing to their
business-driven style.

In Chapter 10, we defined an analytic application as a BI
application that’s centered on a specific business process
and encapsulates a certain amount of domain expertise. A
data mining application fits this definition perfectly, and its
place in the Kimball Lifecycle is clearly in the Application
track boxes for BI Application design and development.

Basic Data Mining Terminology

782

Data miners use a lot of terms that sound familiar to the
general public, but have specific meaning in data mining.
It’s helpful for us to define a few of these terms early on.
This is not an exhaustive list of data mining terms, only the
relevant ones for our discussion.

• Algorithm: The programmatic technique used to identify the
relationships or patterns in the data.

• Model: The definition of the relationship identified by the
algorithm, which generally takes the form of a set of rules, a
decision tree, a set of equations, or a set of associations.

• Case: The collection of attributes and relationships
(variables) that are associated with an individual instance of
the entity being modeled, usually a customer. The case is
also known as an observation.

• Case set: A group of cases that share the same attributes.
Think of a case set as a table with one row per unique object
(like customer). It’s possible to have a nested case set when
one row in the parent table, like “customer,” joins to
multiple rows in the nested table, like “purchases.” The case
set is also known as an observation set.

• Dependent variable(s) (or predicted attribute or predict
column): The variable the algorithm will build a model to
predict or classify.

• Independent variable(s) (or predictive attribute or input
column): The variables which provide the descriptive or
behavior information used to build the model. The algorithm
creates a model that uses combinations of independent
variables to define a grouping or predict the dependent
variable.

• Discrete or continuous variables: Numeric columns that
contain continuous or discrete values. A column in the
Employee table called Salary that contains the actual
salary values is a continuous variable. You can add a column
to the table during data preparation called SalaryRange,
containing integers to represent encoded salary ranges (1 =
“0 to $25,000”; 2 = “between $25,000 and $50,000”; and so

783

on). This is a discrete numeric column. Early data mining
and statistical analysis tools required the conversion of
strings to numeric values like the encoded salary ranges.
Most tools, including most of the SQL Server data mining
algorithms, allow the use of character descriptions as
discrete values. The string “0 to $25,000” is easier to
understand than the number 1. Discrete variables are also
known as categorical. This distinction between discrete and
continuous is important to the underlying algorithms in data
mining, although its significance is less obvious to those of
us who are not statisticians.

• Regression: A statistical technique that creates a best-fit
formula based on a data set. The formula can be used to
predict values based on new input variables. In linear
regression, the formula is the equation for a line.

• Deviation: A measure of how well the regression formula
fits the actual values in the data set from which it was
created.

• Mining structure: A Microsoft data mining term used as a
name for the definition of a case set in Analysis Services.
The mining structure is essentially a metadata layer on top of
a Data Source View that includes additional data
mining–related flags and column properties, such as the field
that identifies a column as input, predict, both, or ignore. A
mining structure can be used as the basis for multiple mining
models.

• Mining model: The specific application of an algorithm to a
particular mining structure. You can build several mining
models with different parameters or different algorithms
from the same mining structure.

Business Uses of Data Mining

Data mining terminology has not yet become completely
standardized. There are terms that describe the business
task and terms that describe the data mining techniques
applied to those tasks. The problem is, the same terms are

784

used to describe both tasks and techniques, sometimes with
different meanings.

The terms in this section are drawn from the book Data
Mining Techniques: For Marketing, Sales, and Customer
Relationship Management by Michael J. A. Berry and
Gordon S. Linoff, Second Edition (Wiley, 2004). Berry
and Linoff list six basic business tasks that are served by
data mining techniques: classification, estimation,
prediction, affinity grouping, clustering, and description
and profiling. We’ve added a seventh business task to the
list called anomaly detection. We describe each of these
business task areas in the following sections, along with
lists of the relevant algorithms included in SQL Server
Data Mining. A word of warning: Some of these tasks
overlap in what seems to be odd ways to the uninitiated
because the distinctions between the areas are more
mathematical than practical.

Classification

Classification is the task of assigning each item in a set to
one of a predetermined set of discrete choices based on its
attributes or behaviors. Consumer goods are classified in a
standard hierarchy down to the SKU level. If you know the
attributes of a product, you can determine its classification.
You can use attributes like size, sugar content, flavor, and
container type to classify a soda. Typical classes in
business include Yes and No; High, Medium, and Low;
Silver, Gold, and Platinum. What these are classes of
depends on the business context; Good Credit Risk classes
might be Yes and No. Classification helps organizations
and people simplify their dealings with the world. If you

785

can classify something, you then know how to deal with it.
If you fly often with the same airline, you have no doubt
been classified as an elite level, or Platinum, customer.
Knowing this classification allows the airline employees to
work with you in a way that is appropriate for top
customers, even if they have never met you before. The
key differentiating factors of classification are the limited
(discrete) number of entries in the class set and the fact
that the class set is predefined.

A common example of classification is the assignment of a
socioeconomic class to customers or prospects in a
marketing database. Companies like Nielsen Claritas, with
its PRIZM system, have built an industry around
classification. These systems identify classes of consumers
who have common geographic, demographic, economic,
and behavioral attributes and can be expected to respond to
certain opportunities in a similar way.

Classification algorithms predict the class or category of
one or more discrete variables, based on the other variables
in the case set. Determining whether someone is likely to
respond to a direct mail piece involves putting them in the
category of Likely Responder or not. Microsoft Decision
Trees, Microsoft Neural Network, and Microsoft Naïve
Bayes are the first choice algorithms for classification
when the predict column is a discrete variable.

Estimation (Regression)

Estimation is the continuous version of classification. That
is to say, where classification returns a discrete value,
estimation returns a continuous number. In practice, most

786

classification is actually estimation. The process is
essentially the same: A set of attributes is used to
determine a relationship. A direct mail marketing company
could estimate customers’ likelihood to respond to a
promotion based on past responses. Estimating a
continuous variable called Response_Likelihood that
ranges from zero to one is more useful when creating a
direct marketing campaign than a discrete classification of
High, Medium, or Low. The continuous value allows the
marketing manager to determine the size of the campaign
by changing the cutoff point of the Response_Likelihood
estimate. For example, a promotions manager with a
budget for 200,000 pieces and a list of 12 million prospects
would use the predicted Response_Likelihood variable to
limit the target subset. Including only those prospects with
a Response_Likelihood greater than some number, say
0.80, would give the promotions manager a target list of
the top 200,000 prospects. The continuous variable allows
the user to more finely tune the application of the results.

Estimation algorithms estimate a continuously valued
variable based on the other variables in the case set.
Microsoft has built several algorithms that can be used for
either discrete or continuous variables. Microsoft Decision
Trees and Microsoft Neural Network are good choices for
estimating a continuous variable.

Most of the estimation algorithms are based on regression
analysis techniques. As a result, this category is often
called regression, especially when the algorithm is used
for prediction. Microsoft includes a separate linear
regression algorithm in its list of algorithms, but it is a
specially-parameterized version of the decision trees

787

algorithm. You will also see the Microsoft Logistic
Regression algorithm on the list; it is based on the neural
network algorithm.

Prediction

Where classification and estimation are assignment of
values that are “correct” by definition, prediction is the
application of the same techniques to assign a value that
can be validated at some future date. For example, you
might use a classification algorithm to classify your
customers as male or female based on their purchasing
behaviors. You can use this classification as an input to
designing various marketing programs.

TIP

Be careful not to reveal your guess to your
customers because it could adversely affect
your relationship with them. For example,
it would be unwise to use this variable by
itself to send out promotional pieces for a
“For Women Only” sale. However, the
variable is useful for the business even
though you will never know for certain
which customers are actually male or
female.

Prediction, on the other hand, seeks to determine a class or
estimate as accurately as possible before the value is
known. This future-oriented element is what places

788

prediction in its own category. The input variables exist or
occur before the predicted variable. For example, a lending
company offering mortgages might want to predict the
market value of a piece of property before it’s sold. This
value would give them an upper limit for the amount
they’d be willing to lend the property owner, regardless of
the actual amount the owner has offered to pay for the
given property. In order to build a predictive data mining
model, the company needs a training set that includes
predictive attributes that are known prior to the sale, such
as total square footage, number of bathrooms, city, school
district, and the actual sale price of each property in the
training set. The data mining algorithm uses this training
set to build a model based on the relationships between the
predictive variables and the known historical sale price.
The model can then be used to predict the sale price of a
new property based on the known input variables about
that property.

One interesting feature of predictive models is that their
accuracy can be tested. At some point in the future, the
actual sale amount of the property will become known and
can be compared to the predicted value. In fact, the data
mining process described later in this chapter recommends
splitting the historical data into two sets: one to build or
train the model and one to test its accuracy against known
historical data that was not part of the training process.

TIP

789

The real estate sale price predictor is a
good example of how data mining models
tend to go stale over time. Real estate
prices in a given area can be subject to
significant, rapid fluctuations. The
mortgage company would want to re-build
the data mining model with recent sales
transactions on a regular basis.

Microsoft Decision Trees and Microsoft Neural Network
are the first choice algorithms for regression when the
predict column is a continuous variable. When prediction
involves time series data, it is often called forecasting.
Microsoft Time Series is the first choice algorithm for
predicting time series data, like monthly sales forecasts.

Association or Affinity Grouping

Association looks for correlations among the items in a
group of sets. E-commerce systems are big users of
association models in an effort to increase sales. This can
take the form of an association modeling process known as
market basket analysis. The online retailer first builds a
model based on the contents of recent shopping carts and
makes it available to the web server. As the shopper adds
products to the cart, the system feeds the contents of the
cart into the model. The model identifies items that
commonly appear with the items currently in the cart.
Most recommendation systems are based on association
algorithms.

790

Microsoft Association is an association, or affinity
grouping algorithm. Other algorithms, like Microsoft
Decision Trees, can also be used to create association
rules.

Clustering (Segmentation)

Clustering can be thought of as auto-classification.
Clustering algorithms group cases into clusters that are as
similar to one another, and as different from other clusters,
as possible. The clusters are not predetermined, and it’s up
to the data miner to examine the clusters to understand
what makes them unique. When applied to customers, this
process is also known as customer segmentation. The idea
is to segment the customers into smaller, homogenous
groups that can be targeted with customized promotions
and even customized products. Naming the clusters is a
great opportunity to show your creativity. Clever names
can succinctly communicate the nature and content of the
clusters. They can also give the data mining team
additional credibility with the business folks.

Once the clustering model has been trained, you can use it
to categorize new cases. It often helps to first cluster
customers based on their buying patterns and
demographics, and then run predictive models on each
cluster separately. This allows the unique behaviors of
each cluster to show through rather than be overwhelmed
by the overall average behaviors.

One form of clustering involves ordered data, usually
ordered temporally or physically. The goal is to identify
frequent sequences or episodes (clusters) in the data. The

791

television industry does extensive analysis of TV viewing
sequences to determine the order of programs in the
lineup. Companies with significant public websites may
use sequence analysis to understand how visitors move
through their website. For example, a consumer electronics
product manufacturer’s website might identify several
clusters of users based on their browsing behavior. Some
users might start with the Sale Items page, then browse the
rest of the e-commerce section, but rarely end with a
purchase (Bargain Hunters). Others may enter through the
home page, and then go straight to the support section,
often ending by sending a help request e-mail (Clueless).
Others may go straight to the e-commerce pages, ending
with a purchase, but rarely visit the account management
or support pages (Managers). Another group might go to
the account management pages, checking order statuses
and printing invoices (Administrators). A Sequence
Clustering model like this one can be used to classify new
visitors and customize content for them, and to predict
future page hits for a given visitor.

Microsoft Clustering and Microsoft Sequence Clustering
are segmentation algorithms. The Microsoft Sequence
Clustering algorithm is primarily designed for sequence
analysis (hence the clever name).

The Power of Naming

When Nielsen Claritas originally created its
customer segmentation system called PRIZM, it

792

likely used clustering techniques to identify about
60 different groups of consumers. The resulting
clusters, called lifestyle types, were numbered 1
through 60+. It’s clear that someone at Nielsen
Claritas realized that numbers were not descriptive
and would not make good marketing. So, they
came up with a clever name for each cluster; a
shorthand way to communicate its unique
characteristics. A few of the names are: 02. Blue
Blood Estates (old money, big mansions), 51.
Shotguns and Pickups (working class, large
families, mobile homes), and 60. Park Bench
Seniors (modest income, sedentary, daytime TV
watchers).

Anomaly Detection

Several business processes rely on the identification of
cases that deviate from the norm in a significant way.
Fraud detection in consumer credit is a common example
of anomaly detection. Anomaly detection can take
advantage of any of the data mining algorithms. Clustering
algorithms can be tuned to create a cluster that contains
data outliers, separate from the rest of the clusters in the
model.

Anomaly detection involves a few extra twists in the data
mining process. Often it’s necessary to bias the training set
in favor of the exceptional events. Otherwise, there may be
too few of them in the historical data for the algorithm to

793

detect. After all, they are anomalies. We provide an
example of this in the case studies later in this chapter.

Description and Profiling

The business task Berry and Linoff call description and
profiling is essentially the same activity we earlier called
undirected data mining. The task is to use the various data
mining techniques to gain a better understanding of the
complexities of the data. Decision trees, clustering, and
affinity grouping can reveal relationships that would
otherwise be undetectable. For example, a decision tree
might reveal that women purchase certain products much
more than men. In some cases, like women’s shoes, this
would be stereotypically obvious, but in others, like
hammers, the reasons are less clear and the behavior would
prompt additional investigation. Data mining, like all
analytic processes, often opens doors to whole new areas
of investigation.

Description and profiling can also be used as an extension
to the data profiling tasks we described in previous
chapters. You can use data mining to identify specific data
error anomalies and broader patterns of data problems that
would not be obvious to the unaided eye.

Business Task Summary

The definitions of the various business tasks that are
suitable for data mining and the list of which algorithms
are appropriate for which tasks can be a bit confusing.
Table 13-1 gives a few examples of common business

794

tasks and the associated data mining algorithms that can
help accomplish these tasks.

Table 13-1: Examples of business tasks and associated
algorithms

Business Task Example Microsoft Algorithms

Classifying
customers into
discrete classes

Assigning each customer to an
Activity Level with discrete
values of Disinterested, Casual,
Recreational, Serious, or
Competitor.

Decision TreesNaïve
BayesClusteringNeural
Network

Predicting a
discrete attribute

Predicting a variable like
ServiceStatus with discrete
values of Cancelled or Active
might form the core of a
customer retention program.

Decision TreesNaïve
Bayes
ClusteringNeural
Network

Predicting a
continuous
attribute

Predicting the sale price of a real
estate listing or forecasting next
year’s sales.

Decision TreesTime
SeriesNeural Network

Making
recommendations
based on a
sequence

Predicting website usage
behavior. The order of events is
important in this case. A
customer support website might
use common sequences to
suggest additional support pages
that might be helpful based on
the page path the customer has
already followed.

Sequence Clustering

Making
recommendations
based on a set

Suggesting additional products
for a customer to purchase based
on items they’ve already selected
or pages they’ve viewed. In this
case, order is not important.
(“People who bought this book
also bought . . .”).

AssociationDecision
Trees

Segmenting
customers

Creating groups of customers
with similar behaviors,

ClusteringSequence
Clustering

795

Business Task Example Microsoft Algorithms

demographics, and product
preferences. This allows you to
create targeted products and
promotions designed to appeal to
specific segments.

Roles and Responsibilities

Microsoft’s Data Mining tools have been designed to be
usable by just about anyone who can install BIDS. After a
little data preparation, a competent user can fire up the
Data Mining Wizard and start generating data mining
models. Data mining is an iterative, exploratory process. In
order to get the most value out of a model, the data miner
must conduct extensive research and testing. The data
mining person (or team) will need the following skills:

• Good business sense and good-to-excellent working
relationships with the business folks: This skill set is used to
form the foundation of the data mining model. Without it,
the data miner can build a sophisticated model that is
meaningless to the business.

• Good-to-excellent knowledge of Integration Services and/or
SQL: These skills are crucial to creating the data
transformations needed to build the case sets and packaging
them up in repeatable modules.

• A good understanding of statistics and probability: This
knowledge helps in understanding the functionality,
parameters, and output of the various algorithms. It also
helps to understand the data mining literature and
documentation — most of which seems to have been written
by statisticians. Microsoft has tried hard to minimize the
amount of statistics you need to know, but the more you
know, the better.

• Data mining experience: Much of what is effective data
mining comes from having seen a similar problem before

796

and knowing which approaches might work best to solve it.
Obviously, you have to start somewhere. If you don’t have a
lot of data mining experience, it’s a good idea to find a local
or online data mining special interest group you can use to
validate your ideas and approach.

• Programming skills: To incorporate the resulting data
mining model into the organization’s transaction systems,
someone on the team or elsewhere in the organization will
need to learn the appropriate APIs.

SQL Server Data Mining Architecture Overview

Microsoft SQL Server Data Mining offers a rich,
well-tuned, integrated, and easy-to-use data mining
environment. In this section, we give an overview of the
data mining environment using the high-level architecture
drawing presented in Figure 13-1 as a guide.

From a system point of view, integrating data mining into
the overall SQL Server product allows the data mining
service to take advantage of the functionality offered by
the rest of the system. For example, point A in Figure 13-1
shows how data mining models are built using the
Analysis Services dimensional engine, leveraging its
ability to load data and quickly perform the base statistical
calculations like sums, averages, and counts. The data
mining server can easily pull case data through the Data
Source View from a wide variety of data sources including
relational and Analysis Services, as seen at point B in
Figure 13-1.

Figure 13-1: The SQL Server data mining architecture

797

From a system point of view, integrating data mining into
the overall SQL Server product allows the data mining
service to take advantage of the functionality offered by
the rest of the system. For example, point A in Figure 13-1
shows how data mining models are built using the
Analysis Services dimensional engine, leveraging its
ability to load data and quickly perform the base statistical
calculations like sums, averages, and counts. The data
mining server can easily pull case data through the Data
Source View from a wide variety of data sources including
relational and Analysis Services, as seen at point B in
Figure 13-1.

Point C in Figure 13-1 shows how the typical data miner
will first experience data mining by creating an Analysis
Services project in BIDS and then using the Data Mining
Wizard to create a new data mining structure and an initial
data mining model. The mining structure is a construct that

798

provides a metadata layer allowing several mining models
to work with the same input data. Each mining model in a
mining structure can have different algorithms and
parameters. The wizard provides model building guidance
with auto selection and adjustment of variables based on
the algorithm selected. The wizard also helps you create
case sets, including complex, nested queries.

The Data Mining Design Environment

When the wizard is finished building the mining structure
and the initial data mining model, it drops the developer
into the data mining design environment. At this point, the
mining model has not been built; the project contains only
the metadata that defines the model. The Data Mining
Designer is broken up into five tabs to support the data
mining process. Several of these tabs work with the
completed mining model as it exists on Analysis Services,
so they are not available until the model has been built and
deployed. The first tab shows the Mining Structure with its
underlying Data Source View. The second tab is the
Mining Models tab, showing the source mining structure
and all the data mining models that have been defined
based on this structure. The third tab is the Mining Model
Viewer that lets you select a model and a viewer type, and
then provides several sub-tabs, each with a different
graphic or tabular representation of the contents of the
model. The Mining Model Viewer tab is the primary tool
the data miner uses to explore the various models. The
fourth tab is the Mining Accuracy Chart. This tab provides
three ways to compare the relative accuracy of certain
kinds of predictive models: the Lift Chart, the
Classification Matrix, and Cross Validation. Finally, the

799

fifth tab is the Mining Model Prediction tab that allows the
data miner to specify a prediction query using a
rudimentary query builder interface. You will see
examples of most of these tabs in the screenshots
throughout this chapter.

Build, Deploy, and Process

Most of the functions in the Data Mining Designer work
with the actual model as it exists in Analysis Services. This
means once the wizard is complete, the developer must
build and deploy the project (which includes processing
the model cubes) before any more progress can be made.
Building the project writes the metadata out to project files
in the development environment. The actual model does
not come into being until the project is deployed to an
Analysis Services instance. At that point, BIDS creates a
database for the project in Analysis Services. It writes out
the mining structure metadata and the definition of each
model. Finally, it creates a cube for each mining structure
and processes the models, inserting the training data so the
algorithm can calculate the rules, correlations, and other
relationships. Until the project is deployed and a model is
processed, it cannot be viewed in the viewers.

TIP

It is possible to process a single model
rather than all models in a mining structure
by selecting the model in the Mining

800

Models tab, and then selecting Process
Model from the Mining Model menu. This
can save a lot of time if you are working
with large case sets and complex models.

Accessing the Mining Models

As you see at point D in Figure 13-1, the Data Mining
eXtensions to SQL language (DMX) is at the core of all
the Microsoft data mining APIs. As the name suggests,
DMX is an extension to SQL designed to create, train,
modify, and query data mining models. DMX was
introduced with SQL Server 2000 and enhanced in 2005
and 2008 as part of the OLE DB for Data Mining APIs. An
easy way to begin learning about DMX is to use the
Mining Model Prediction tab in the Data Mining Designer
and examine the syntax it generates for DMX queries. The
code can be copied to a DMX query window in SQL
Studio for further exploration. There are also some data
mining schema rowsets in Analysis Services that act like
the predefined system views in the relational system.
Although DMX is an extension to SQL, queries are
submitted to the Analysis Services server — that’s where
the data mining services are.

The development environment works with Analysis
Services mostly using Analysis Management Objects
(AMO) to define and build the underlying cubes. Once the
models are in place, they are available to any application
as a web service by using SOAP protocols because
Analysis Services is a native XMLA server. It is still

801

possible to access the server with OLE DB APIs, ADO,
ADO.NET, or ADOMD.NET.

Point E is where many analysts, and some data miners,
will experience Microsoft data mining, often without even
realizing it. Microsoft has created a set of add-ins for Excel
and Visio. The Excel add-ins bring some of the core
algorithms into the Excel analytic environment and
provide an Excel friendly interface to create, access, and
manage Analysis Services-based data mining models. The
Excel data mining add-ins are an excellent way for many
analysts to get started exploring data mining without
having to first conquer the Visual Studio development
environment. You’ll see this Excel interface in the first
data mining case study later in this chapter.

Integration Services and Data Mining

Integration Services can play a major role in the data
mining process as shown in Figure 13-1. Many of the
standard transforms used for data cleaning and data
integration are particularly valuable for building the
training and test data sets. Besides the obvious tasks, like
Data Conversion and Derived Column, tasks like the
Percentage Sampling, Row Sampling, Conditional Split,
Lookup, and Merge Join are powerful components the data
miner can use to build a set of packages to prepare the case
sets for the data mining process. This is shown at point F
in Figure 13-1. In addition to the standard tasks, there are
two Integration Services tasks that directly interact with
the data mining models, shown at point G in Figure 13-1.
The Data Mining Model Training destination
transformation feeds the data flow into a training

802

command for a mining model. This capability is perfect for
the ongoing re-training required to keep certain mining
models current — recommendation models, for example.
The Data Mining Query task is specifically designed to do
prediction joins against a model in the SSIS pipeline, once
the model has been trained and tested. The task passes
query values to a model and receives the results, which
could be used to add scores to the Customer table or
identify significant data anomalies during the nightly ETL
process. It could also be used in a low latency mode to flag
transactions that were potentially fraudulent.

Additional Features

There are several additional features that will be important
for certain applications. Most of these can be found at
point H in Figure 13-1 and are listed briefly here:

• Extensibility: Microsoft has provided a set of COM APIs
that allow developers to integrate additional data mining
algorithms into the data mining engine. They can integrate
custom viewers into the Data Mining Designer as well.
Someone could even create a new viewer for an existing
Microsoft algorithm.

• Analysis Management Objects (AMO): AMO is an API for
managing the creation and maintenance of data mining
objects, including creating, processing, backing up,
restoring, and securing.

• Stored procedures and user-defined functions: A developer
can create what are essentially stored procedures or
user-defined functions and load them as managed assemblies
into Analysis Services. This allows clients to work with
large mining models through the intermediate layer of the
server-based managed assembly.

803

• Text mining: It is possible to do some interesting data mining
on unstructured text data, like the text in HTML files in a set
of web directories, or even text fields in a database. For
example, use the Integration Services Term Extraction
transformation to build a dictionary of terms found in the
text files. Next, use the Term Lookup transform to convert
the contents of the unstructured document data into term
vectors. Then use data mining to create classification rules to
categorize the documents according to the terms they
contain. This is essentially a data mining application, not a
new data mining algorithm, but it has value in dealing with
unstructured data.

RESOURCES

To find more information about the text
mining technique, see the Books Online
topic “Term Extraction Transformation,” or
visit www.sqlserverdatamining.com for a text
mining tutorial.

Architecture Summary

Our goal in this section is to show how data mining fits
into the overall SQL Server architecture, and to show how
well data mining has been integrated into the SQL Server
environment. It should be clear by now that data mining is
a serious component of the BI toolset, and that it leverages
the capabilities of other SQL Server components. Data
mining and application developers will have a lot more to
learn before they are proficient with all the data mining
components. Fortunately, Microsoft’s documentation is
heavily weighted toward the development community.

804

Additional help should be easy to find. A good place to
start is a website called www.sqlserverdatamining.com,
maintained by members of the SQL Server data mining
development team.

Microsoft Data Mining Algorithms

Data mining algorithms are the logic used to create the
mining models. Several standard algorithms in the data
mining community have been carefully tested and honed
over time. One of the algorithms used to calculate decision
trees uses a Bayesian method to determine the score used
to split the branches of the tree. The roots of this method
(so to speak) trace back to its namesake, Thomas Bayes,
who first established a mathematical basis for probability
inference in the 1700s.

The Data Mining group at Microsoft has been working
diligently to expand the number of algorithms offered in
SQL Server and to improve their accuracy. SQL Server
Data Mining includes seven core algorithms that cover a
large percentage of the common data mining application
areas. The seven core algorithms are:

• Decision Trees (and Linear Regression)
• Naïve Bayes
• Clustering
• Sequence Clustering
• Time Series
• Association
• Neural Network (and Logistic Regression)

The two regression algorithms set parameters on the main
algorithm to generate the regression results. Some of these

805

higher-level algorithms include parameters the data miner
can use to choose from several underlying algorithms to
generate the model. If you plan to do serious data mining,
you need to know what these algorithms are and how they
work so you can apply them to the appropriate problems
and are able to get the best performance. We briefly
describe each of these algorithms in the following list. The
Books Online topic “Data Mining Algorithms” is a good
starting point for additional information about how each of
these algorithms work.

RESOURCES

For more detailed information on
Microsoft’s algorithms, see the following
resources:

• Data Mining with Microsoft SQL Server
2008 (Wiley, 2008) by Jamie MacLennan,
ZhaoHui Tang, and Bogdan Crivat; all
current or former members of the
Microsoft SQL Server Data Mining team.

• Search in SQL Server Books Online for
“data mining algorithms” for descriptions
and links to technical details, query guides,
and model content.

Decision Trees

The Microsoft Decision Trees algorithm supports both
classification and estimation. It works well for predictive
modeling for both discrete and continuous attributes.

806

The process of building a decision tree starts with the
dependent variable to be predicted and runs through the
independent variables to see which one most effectively
divides the population. The goal is to identify the variable
that splits the cases into groups where the predicted
variable (or class) either predominates or is faintly
represented. The best starting variable for the tree is the
one that creates groups that are the most different from
each other — the most diverse.

For example, if you’re creating a decision tree to identify
couples who are likely to form a successful marriage,
you’d need a training set of input attributes for both
members of the couple and an assessment of whether or
not the partnership is successful. The input attributes might
include the age of each individual, religion, political views,
gender, relationship role (husband or wife), and so on. The
predictable attribute might be MarriageOutcomewith the
values of Success or Fail. The algorithm might determine
that the first split in the decision tree — the one that
creates the biggest split — is based on a variable called
PoliticalViews: a discrete variable with the values of
Similar and Different. Figure 13-2 shows that this initial
split results in one group (PoliticalViews=Similar) that
has a much higher percentage of successful marriages than
the other (PoliticalViews=Different). The next split
might be different for each of the two branches. In Figure
13-2, the top branch splits based on the height difference
between the two (calculated as height of husband minus
height of wife). The lower branch also splits on height
difference, but uses different cutoff points. It seems that
couples can better tolerate a greater height difference if
their political views are similar.

807

Figure 13-2: A simple decision tree to predict relationship
success

The bottom branch of this tree indicates that the chances of
having a successful marriage are more likely when the
couple shares similar political views (.72). Following
down that same branch, the chances get better when the
husband is at least as tall as, but not more than 10 inches
taller than the wife (.81). The group with the lowest
probability of success (.08) is characterized by different
political views and a height difference where the husband
is either less than 2 inches taller or 8 inches or more taller
than the wife. Once you build a decision tree like this, you
could use it to predict the success of a given relationship
by entering the appropriate attributes for both partners. At
that point, you’d be well on your way to building a
matching engine for a dating website.

808

Naïve Bayes

The Microsoft Naïve Bayes algorithm is a good starting
point for many data mining projects. It is a simplified
version of Decision Trees, and can be used for
classification and prediction for discrete attributes. If you
select the Naïve Bayes algorithm in the Data Mining
Wizard, it will offer to ignore any continuous variables in
the input case set. You can always use the mining structure
to “discretize” these variables.

The Naïve Bayes algorithm is fairly simple, based on the
relative probabilities of the different values of each
attribute, given the value of the predictable attribute. For
example, if you had a case set of individuals with their
occupations and income ranges, you could build a Naïve
Bayes model to predict Income Range given an
Occupation. The decision tree in Figure 13-2 could have
been generated by the Naïve Bayes algorithm because all
the variables are discrete (although the Tree Viewer is not
available for Naïve Bayes models). The required
probability calculations are almost all done as part of the
process of building the mining model cube, so the results
are returned quickly.

Clustering

The clustering algorithm is designed to meet the clustering
or segmentation business need described earlier. Clustering
is generally considered a density estimation problem with
the assumption that there are multiple populations in a set,
each with its own density distribution. (Sentences like the
preceding one serve to remind us that statisticians speak a

809

different language.) It’s easier to understand clustering
visually: A simple spreadsheet chart of data points serves
as an eyeball clustering tool — especially with only two
variables. It’s easy to see where the dense clusters are
located. For example, a graph showing per-capita income
versus per-capita national debt for each country in the
world would quickly reveal several obvious clusters of
countries. We explore the idea of graphically identifying
clusters further in the next section. The challenge is
finding these clusters when there are more than two
variables, or when the variables are discrete and
non-numeric rather than continuous.

NOTE

The Microsoft Clustering algorithm uses
what’s known as an
Expectation-Maximization (EM) approach
to identifying clusters. An alternative,
distance-based clustering mechanism called
K-means is available by setting parameters
on the model.

Sequence Clustering

Sequence clustering adds another level of flexibility to the
clustering problem by including an ordering attribute. The
algorithm can identify common sequences and use those
sequences to predict the next step in a new sequence.
Using the website example, sequence clustering can
identify common click-paths and predict the next page (or

810

pages) someone will visit, given the pages they have
already visited.

Time Series

The Microsoft Time Series algorithms can be used to
predict continuous variables, like Sales, over time. The
algorithms include both ARIMA- and ARTxp-based
algorithms to provide the best prediction over variable
time spans. The algorithm includes time-variant factors
like seasonality and can predict one or more variables from
the case set. It also has the ability to generate predictions
using cross-variable correlations. For example, product
returns in the current period may be a function of product
sales in the prior period. (It’s just a guess, but we’d bet that
high sales in the week leading up to December 25 may
lead to high returns in the week following.)

Association

The Microsoft Association algorithm is designed to meet
the business tasks described as association, affinity
grouping, or market basket analysis. Association works
well with the concept of nested case sets, where the parent
level is the overall transaction and the child level is the
individual items involved in the transaction. The algorithm
looks for items that tend to occur together in the same
transaction. The number of times a combination occurs is
called its support. The MINIMUM_SUPPORT parameter
allows the data miner to set a minimum number of
occurrences before a given combination is considered
significant. The Association algorithm goes beyond item
pairs by creating rules that can involve several items. In

811

English, the rule sounds like “When Item A and Item B
exist in the item set, then the probability that Item C is also
in the item set is X.” The rule is displayed in this form: A,
B → C (X). In the same way the data miner can specify a
minimum support level, it is also possible to specify a
minimum probability in order for a rule to be considered.

Neural Network

Neural network algorithms mimic our understanding of the
way neurons work in the brain. The attributes of a case are
the inputs to a set of interconnected nodes, each of which
generates an output. The output can feed another layer of
nodes (known as a hidden layer) and eventually feeds out
to a result. The goal of the Microsoft Neural Network
algorithm is to minimize the error of the result compared
with the known value in the training set. Through some
fancy footwork known as back propagation, the errors are
fed back into the network, modifying the weights of the
inputs. Then the algorithm makes additional passes
through the training set, feeding back the results, until it
converges on a solution. All this back and forth means the
Neural Network algorithm is the slowest of the algorithms
in terms of the time it takes to build a model. The
algorithm can be used for classification or prediction on
both continuous and discrete variables.

Using these seven core algorithms, separately or in
combination, you can create solutions to most common
data mining problems.

The Data Mining Process

812

There are probably as many ways to approach data mining
as there are data mining practitioners. Much like
dimensional modeling, starting with the goal of adding
business value leads to a clear series of steps that just make
sense.

You’ll be shocked to hear that our data mining process
begins with an understanding of the business opportunities.
Figure 13-3 shows the three major phases of the data
mining process — Business, Data Mining, and Operations
— and the major task areas within those phases.

RESOURCES

We didn’t invent this process; we just
stumbled on it through trial and error.
Others who’ve spent their careers entirely
on data mining have arrived at similar
approaches to data mining. We’re fortunate
that they have documented their processes
in detail in their own publications. In
particular, three sources have been valuable
to us. The book Data Mining Techniques,
2nd Ed. by Michael J. A. Berry and Gordon
S. Linoff (Wiley, 2004) describes a process
Berry and Linoff call the Virtuous Cycle of
Data Mining. Another, similar approach
comes from a special interest group that
was formed in the late 1990s to define a
data mining process. The result was

813

published as Cross Industry Standard
Process for Data Mining (CRISP). Visit
www.crisp-dm.org for more information.
Also, search SQL Server Books Online for
“Data Mining Concepts” to see Microsoft’s
version of the approach.

Like most of the processes in the DW/BI system, the data
mining process is iterative. The arrows that point back to
previous processes in Figure 13-3 are the most common
iteration points. There are additional iteration points; for
instance, it is also common to return to the business phase
tasks based on what is learned in the data mining phase. In
this section, we examine the three phases and their task
areas in order, beginning with the business phase.

Figure 13-3: The data mining process

814

The Business Phase

The business phase is a much more focused version of the
overall requirements gathering process. The goal is to
identify an opportunity, or a list of opportunities and their
relative priorities, that can have a significant impact on the
business. The business opportunities and data
understanding tasks in Figure 13-3 connect to each other
because the process of identifying opportunities must be
bounded by the realities of the data world. By the same
token, the data itself may suggest business opportunities.

Identifying Business Opportunities

As always, the most important step in successful business
intelligence is not about technology; it’s about
understanding the business. In data mining, this usually

815

takes the form of a set of discussions between the business
folks and the data miner about potential opportunities, and
the associated relationships and behaviors that are captured
in the data. The purpose of these meetings is to identify
several high value opportunities and think through each
one carefully. First, identify the overall business value goal
of the data mining project. It helps to describe this in as
narrow and measurable a way as possible. A goal like
“increase sales” is too broad. A goal like “reduce the
monthly cancellation, or churn, rate” is a bit more
manageable. Next, think about what factors influence the
goal. What might indicate that someone is likely to churn,
or how can we tell if someone would be interested in a
given product? While you’re discussing these factors, try
to translate them into specific attributes and behaviors that
are known to exist in a usable, accessible form. The data
miner may hold several of these meetings with different
groups to identify a range of opportunities. At the end of
these meetings, the data miner should work with the
business folks to prioritize the various opportunities based
on the estimated potential for business impact and the
difficulty of implementation. These priorities will change
as you learn more about the data, but this is an important
starting point.

The data miner then takes the top-priority business
opportunity and its associated list of potential variables
back to the BIDS for further exploration.

Understanding the Data

The data miner typically spends a significant amount of
time exploring the various data sets that might be relevant

816

to the business opportunities discussed. At this stage, the
goal is to be reasonably confident that the data needed to
support the business opportunity is available and clean
enough to be usable. This exploration is generally not
much more complex than the data exploration and data
profiling that took place during the data modeling step in
Chapter 2, and in designing the ETL process in Chapter 7.
Any problems identified at this point should be noted so
they can be included in the data mining opportunity
document.

Describing the Data Mining Opportunity

The data mining opportunity document describes the
top-priority opportunity discussed with the business folks.
The opportunity description should include the following
sections:

• Business Opportunity Description
• Data Sources, Transformations, and Potential Data Issues
• Modeling Process Description
• Implementation Plan
• Maintenance Plan

It’s important to document the opportunity, and have the
business folks review it to make sure you understand their
needs, and they understand how you intend to meet them.
The data mining opportunity document is also a milestone
in the data mining process. Once the data miner has a
solid, clearly described, approved business opportunity, the
data mining process enters the second phase: the data
mining phase.

The Data Mining Phase

817

Once you understand the business opportunities and
supporting data, you can move into the data mining phase
of the project. The data mining phase is where the data
miner works through the tasks of preparing the data,
developing alternative models, comparing their accuracy,
and validating the final model. As Figure 13-3 shows, this
is a highly iterative process. Data preparation feeds the
model development task, which often identifies the need
for further data preparation. By the same token, the process
of validating a model commonly indicates the need for
further improvements, which loops the data miner right
back to the model development task, and potentially back
to data preparation. In some cases, when serious problems
arise, the loop goes all the way back to the business
opportunity step. We ignore all this iteration in our
description and move sequentially through the tasks.

Data Preparation

The first task in the data mining phase is to build the data
mining case sets. Recall that a case set includes one row
per instance or event. For many data mining models, this
means a data set with one row per customer. Models based
on simple customer attributes, like gender and marital
status, work at the one-row-per-customer level. Models
that include behaviors like purchasing work at the
one-row-per-event level. A case set for customer purchases
would have one row for each product purchased by a
customer. This is called a nested case set with two
components — the customer case set with one row per
customer and all the applicable customer attributes, and the
nested product data set, which includes the customer key
and the products purchased by the given customer.

818

Building the case set involves creating SQL scripts, MDX
scripts, and/or Integration Services packages to clean and
transform the data, and copy it into the data sets needed to
support the model building process.

Cleaning and Transforming

Ideally, the variables in the data set are fully populated
with only the appropriate values and no outliers or null
values. The bulk of this book describes the incredible
amount of work it takes to create that cleaned, conformed
information infrastructure we call the data warehouse. This
is why the data warehouse is the ideal source for data
mining case data. In the easiest case, many of the variables
identified in the business opportunity already exist as
attributes in the data warehouse database. This is often true
with fields like CustomerType, or ProductColor. The data
miner’s world gets even better when demographics and
other external data are already loaded as part of the
standard ETL process. While these variables can be
integrated directly into the data mining training set from
their sources, it is always a good idea to verify that basic
data quality rules have been appropriately applied.

Unfortunately, directly selecting variables from the data
warehouse database rarely provides us with a rich enough
data set to build a solid mining model. You may have to
apply additional transformations to the data to make it
more relevant to the business opportunity. This might
include converting variables into more useful forms, such
as combining fields or creating standard discrete ranges for
continuous variables. Your organization or industry may
already have them — audience age range in television

819

programming and advertising is a common discrete range.
If no standard ranges exist, the data mining designer can be
used to automatically discretize these variables based on
different methods, like a histogram of the values, or an
even distribution. This can also be done by preprocessing
the data in a SQL statement using the CASE function. Some
attributes might need multiple conversions, like birth date
might be converted to age, which could then be converted
to age range.

As you work through the data mining phase, you may
discover that these descriptive variables are generally not
enough to build a highly predictive model, even after they
have been transformed into more relevant forms. The most
influential variables in a data mining model are typically
behavior-based, not descriptive. Behaviors are generally
captured as facts. What did customers do, how often did
they do it, how much did they do it, and when did they do
it are basic behavior questions. For example, knowing
which web pages someone has viewed, what products they
bought, what services they used, what problems they
complained about, when the last time they complained
was, and how many complaints they had in the last two
months can help you build a clear picture of the status of
your relationship with that customer.

These behavioral variables are painstakingly extracted
from the detailed fact tables as part of the data preparation
process. The initial choice of which behavioral variables to
create is based on the business’s understanding of
behavior. Note that many of these behavior-based
attributes require full table scans of the fact tables to
create.

820

Integrating External Variables

Unfortunately, behavioral variables may still not be
enough. Building an effective model often means bringing
in additional data. These attributes, like demographics,
come from various systems around the company or even
from external sources. They will need to be merged
together to make a single case set. When the source tables
share a common key, this typically means joining them
together to create a single row per case (usually per
customer). However, it is not uncommon to have to map
keys from the external source to the transaction system’s
natural keys, and then to the dimension’s surrogate keys.
In the worst case, the external data will not have a known
key that ties to any field in the data warehouse database.
When this happens, the relationship will need to be
determined using matching tools such as Master Data
Services or third party software. You can also use
PowerPivot and the data mining add-ins for Excel to pull
data together. You still need an instance of Analysis
Services to process the mining models and you need to
flatten the pivot tables and convert them to regular tables.

In organizations with large analytic communities, such as
insurance companies or large web retailers, a tension may
exist between professional data miners and the DW/BI
team. Data miners sometimes reach for the raw source
system data, clean it, analyze it, and then go directly to
management with recommendations for decision making.
The resulting models will not include all the data cleaning
and conforming that goes into the data warehouse, but will
contain whatever changes each data miner felt was

821

appropriate. This results in another variety of the multiple
versions of the truth problem.

warning Accurately tracking history is critical to
successful data mining. If your DW/BI system or external
sources overwrite changes in a type 1 fashion, your model
will be associating current attribute values with historical
behavior. This is particularly dangerous when integrating
external data that might have only current attribute values.
See the section “Slowly Changing Dimensions” in Chapter
2 for an example of how this might create problems.

Building the Case Sets

Build these data sets by defining data cleaning and
transformation steps that build a data structure made up of
individual observations or cases. Cases often contain
repeating nested or child structures. These case sets are
then fed into the data mining service. It’s helpful to
manage these tables independent of the data warehouse
itself. Keep the data mining case sets in their own
database, on their own server if necessary, where the data
miner has permission to create tables. The process of
building the case sets is typically very similar to the
regular ETL process. It usually involves a set of
transformations and full table scans that actually generate a
resulting data set that gets loaded into the data mining
database.

There are two main approaches to data preparation in the
SQL Server environment. Folks who come from a SQL/
relational background will be inclined to write SQL

822

scripts, saving the results to separate case set tables that
become inputs to the data mining process.

NOTE

Creating case sets can also be done through
views if you are creative enough with your
SQL. We don’t recommend this because if
the underlying data changes (like when
new rows are added), the mining model
may change for no apparent reason.

Folks who come from an ETL background will be more
comfortable using SSIS to merge, clean, and prepare the
data mining case sets. The Integration Services approach
has some advantages in that there are many transformation
components built into the SSIS toolbox. Integration
Services can also more easily pull data from external
sources and in different formats and can be used to deposit
the prepared case set wherever it is needed, in a variety of
formats.

Depending on the business opportunity and the data
mining algorithms employed, creating the initial data sets
often involves creating separate subsets of the data for
different purposes. Table 13-2 lists two common data sets
used for data mining. The Microsoft mining structure has
the ability to automatically divide its input case set into
training and test subsets. The data miner’s main task is to
identify the appropriate source data sample to serve as the
input case training set to the data mining process. In some

823

cases, the Percentage Sampling and Row Sampling tasks
are particularly well suited to creating the input case set.

Table 13-2: The primary data mining data sets

Set Purpose

Training Used as input to the algorithm to develop the initial model.

Test Data not included in the training sets — often called holdout data.
Used to verify the accuracy or effectiveness of the model.

One last advantage Integration Services offers is that it
allows you to build a package or project that contains all of
the steps needed to prepare data for a given data mining
project. Put this SSIS project under source control, and
re-use it to create new data sets to keep the model current.
In our opinion, SSIS is the best choice for data mining data
preparation. SQL plays a role in defining the initial
extracts and some of the transformations, and will be part
of any data preparation effort, but building the whole flow
generally works best in Integration Services.

Model Development

The first step in developing the data mining model is to
create the mining model structure in BIDS. The mining
model structure is essentially a metadata layer that
separates the data from the algorithms. The Data Mining
Wizard creates the initial mining model structure, which
can then be edited as needed.

Once the mining structure is defined, the data miner builds
as many mining models and versions as time allows, trying
different algorithms, parameters, and variables to see

824

which combination yields the greatest impact or is most
accurate. Usually this involves going back and redefining
the data preparation task to add new variables or change
existing transformations. These iterations are where SQL
Server Data Mining shines. The flexibility, ease of use,
range of algorithms, and integration with the rest of the
SQL Server toolset allows the data miner to run through
more variations than many other data mining environments
in a given time period. Generally, the more variations
tested, the better the final model.

Model Validation (Evaluation)

There are two kinds of model validation in data mining.
The first involves comparing models created with different
algorithms, parameters, and inputs to see which is most
effective at predicting the target variable. The second is a
business review of the proposed model to examine its
contents and assess its value. We will look at both
validation steps in this section.

Comparing Models

Creating the best data mining model is a process of
triangulation. Attack the data with several algorithms like
Decision Trees, Neural Network, and Naïve Bayes. You’d
like to see several models point to similar results. This is
especially helpful in those cases where the tool spits out an
answer but doesn’t provide an intuitive foundation for why
the answer was chosen. Neural Network models are
notorious for this kind of result. Triangulation gives all the
observers (especially end users and management)
confidence that the predictions mean something.

825

Analysis Services Data Mining provides three tools for
comparing the effectiveness of certain types of data mining
models — a lift chart, a classification matrix, and cross
validation. These can be found under the Mining Accuracy
Chart tab in the Data Mining Designer. To use the
Accuracy tab tools, first select the mining structure that
supports the models you want to compare and join it to
your test data set. The lift chart works in a couple of
different ways, depending on the models being compared.
The basic idea is to run the test cases through all of the
models, and compare the predicted results with the known
actual results from the test data set. The lift chart then plots
the percentage of correct predictions for a given
percentage of the overall test population, beginning with
the most accurate portions of the model (the cases with the
highest predicted probability). Figure 13-4 shows a lift
chart that compares two simple models used to predict
Income Range based on the other non-income
demographics in the AdventureWorksDW Customer

table.

Figure 13-4: An example lift chart comparing two models
designed to predict Income Range

826

The lines representing the two models are bounded by an
upper limit that represents the best possible prediction. In
the best case, the model would be 100 percent correct for
whatever percent of the population it processed. The best
case is represented by the heavy, straight line between 0
and 100. The worst case would be a random guess.
Because this model has only six possible values of
predicted income ranges, a random guess would be right
1/6 or 16.67 percent of the time. The Decision Trees model
called Income-DT is clearly more predictive than the
Naïve Bayes model called Income-NB. At the 100 percent
point, the Decision Trees model accurately predicts 90.39
percent of the cases while the Naïve Bayes has tailed off to
only 72.28 percent of the cases. The Lift Chart tab also
includes the ability to add in incremental costs, fixed costs,

827

and revenue to create a profit chart that helps determine
the optimal percentage of the overall population to target.

The second tool, called the classification matrix, is a
matrix with the actual values of the data set on the columns
and the values predicted by the model on the rows. Ideally,
you’d like to see a single vector down the diagonal of the
matrix with values, and the rest of the cells should be
zeros. This would represent the outcome where all of the
cases the model predicted to be in a certain Income Range
actually were in that range. Figure 13-5 shows the
classification matrices for the Decision Trees and Naïve
Bayes models from Figure 13-4.

In this example, the Naïve Bayes model clearly is incorrect
more often than the Decision Trees model. For example,
for cases where the actual range is 70,812.1–98,020.4 (the
third data column), the Naïve Bayes model incorrectly
predicts an Income Range of 39,272.8–70,812.1 for 105
cases, while the Decision Trees model makes this error
only 54 times.

Figure 13-5: Example classification matrices for the
Income Predictor models

828

The fourth Mining Accuracy Chart tab is called Cross
Validation. It breaks up the input data set into a number of
subsets and creates models based on those subsets for each
of the mining models in the mining structure. It then
generates a report with a set of statistics about the accuracy
of each data subset within each mining model. The results
are not so visually interesting to the average business
person, but do have value to an experienced data miner/
statistician.

Unfortunately, the mining accuracy tools work only for
single-valued results at this point. They don’t work for
result lists, like recommendation lists. In those cases, you
will need to build your own comparison tests using the
Integration Services tasks or the Excel data mining add-in
to query the mining model with the test data set and

829

compare the results. We show an example of this in one of
the case studies later in this chapter.

RESOURCES

For more information about using lift
charts, classification matrices, and cross
validation, search for “Validating Data
Mining Models” in SQL Server Books
Online.

Business Review

The data mining phase ends with the selection of the
“best” model based on its performance in the model
comparison process and its implementation cost.
Ultimately this is a business decision, so you need to
review the contents and performance of the model with the
business folks to make sure that it makes sense.

Prepare for this review by carefully combing through the
selected model to understand and document the rules it
uses, the relationships it defines, and the impact you expect
it to have. The various tabs in the Data Mining Designer
are particularly helpful in developing this understanding.
Or, consider using the model rendering template for Visio,
which is part of the Office Data Mining Addins. Present
this documentation to the business users and carefully
walk them through the logic behind the recommended
model. This presentation also includes evidence of the
model’s performance from the Mining Accuracy Chart tab

830

tools and other sources. This helps all participants
understand the expected impact of the model. Once the
business review is complete, the next step is to move the
model out into the real world.

The Operations Phase

The operations phase is where the rubber meets the road.
At this point, you have the best possible model (given the
time, data, and technology constraints) and you have
business approval to proceed. Now you get to put it into
production and see what kind of impact it has. The
operations phase involves three main tasks:
implementation, impact assessment, and maintenance.

Implementation

After all participants have approved the final model and
the implementation plan, the team can move the model
into production in the implementation task. Production can
range from using the model once a quarter to assess the
effectiveness of various promotions, to classifying
customers as part of the nightly ETL process, to
interactively making product recommendations as part of
the web server or customer care transaction system.

Each of these alternatives involves a different cast of
characters. At one end of the spectrum, the quarterly
update of the customer dimension may involve only the
data miner and the ETL developer. At the other end of the
spectrum, making online recommendations will clearly
involve the production systems folks. And, depending on
the transaction volume, they will likely want a production

831

Analysis Services server (or cluster) dedicated to providing
recommendations. Moving the data mining model into
production may also involve significant changes to the
transaction system applications to incorporate the data
mining query and results into the business process and user
interface. This is usually a big deal. You must figure out
who needs to be involved in the implementation task for
your data mining model and let them know as early as
possible, so they can help determine the appropriate
timeframes and resources. Deploy in phases, starting with
a test version, to make sure the data mining server doesn’t
gum up the transaction process.

Assess Impact

Determining the impact of the data mining model can be
high art. In some areas, like direct mail and web-based
offers, the process of tuning and testing the marketing
offers and collateral and the target prospect lists is often
full-time work for a large team. They do test and control
sets with different versions of the mailing before they do
the full mass mailing. Even in the full campaign, often
several phases with different versions and control sets are
built in. The results of each phase help the team tweak
subsequent phases for best results. One method, known as
A/B testing, involves comparing the responses of people
who are randomly selected into subgroups that receive
different versions of an offer. A/B testing is a simple and
powerful way to minimize the influence of external
variables.

In general, the data miner should adopt as much of this
careful assessment process as possible.

832

Maintain the Model

Almost all data mining models will need to be re-trained,
or be completely rebuilt over some period of time. As the
world changes, the behaviors that have been captured in
the model become outdated. This is particularly noticeable
in a fast changing industry like retail where new fashions,
products, and models are announced on a daily basis. A
recommendation engine that didn’t include the most recent
behavior and latest models would be less than useful to the
customer. In a case like this, the basic model structure may
still apply, but the rules and relationships must be
re-generated based on new behavior data.

Metadata

In the best of all possible worlds, the final data mining
model should be documented with a detailed history of
how it came into being. What sources contributed to the
case set? What kinds of transformations were applied to
the variables, and at what points in the process were they
applied? What was the initial model and what were the
intermediate versions considered and discarded? What
parameter values were used for which versions of the
model? A professional data miner will want to know
exactly what went into creating a model in order to explain
its value, to avoid repeating the same errors, and to
re-create it if need be. The data miner should also keep
track of how and when the model is used, and when it
should be maintained.

The problem with tracking the history of a mining model is
that because Analysis Services makes it so easy to create

833

additional versions of the model, it takes much more time
to document each iteration than it does to actually do the
work. Nonetheless, you still need to keep track of what
you have and where it came from. We recommend keeping
a basic set of metadata to track the contents and derivation
of all the transformed data sets and resulting mining
models you decide to keep around. This can get much
more complex if you like, but the simplest approach is to
use a spreadsheet, as pictured in Figure 13-6.

Figure 13-6: A simple spreadsheet for tracking data
mining models

NOTE

834

The data mining process takes place across
the various DW/BI system platforms and
relies on their security mechanisms. The
data miner needs to have enough privileges
on the data source servers to create new
tables and/or cubes. Additionally, to create
and modify data mining models, the data
miner must be a member of the Analysis
Services Administrators group on the data
mining computer.

Data Mining Examples

For many of us, the best way to learn something is by
doing it. This is especially true for technical folks, and
even more so for data mining. You really need to work
through the SQL Server basic data mining tutorial before
you run through the following examples. This will give
you a chance to get familiar with the tools and the user
interface, which will make these examples easier to
understand and follow. If you haven’t already done so,
please take the time to work through the data mining
tutorials now.

In this section, we start with a simple example to get a feel
for the data mining tool environment and the data mining
process. In fact, the first example is so simple that its case
set of economic data can be presented on a single page. It’s
perfect to show the power and accessibility of the data
mining add-ins for Microsoft Office Excel. Then we dig
into a more detailed example based on the Adventure

835

Works Cycles data warehouse data. Both of these
examples are based on business scenarios and will follow
the general flow of the data mining process presented in
the previous section.

Case Study: Categorizing Cities

This first example is a small, simplified problem designed
to provide a clear understanding of the process. The data
set has only 48 cases total — not nearly enough to build a
robust data mining model. However, the small size allows
us to examine the inputs and outputs to see if the resulting
model makes sense. The scenario is based on a large
non-governmental organization (NGO) with a mission and
operations much like that of the World Bank:

(T)o fight poverty and improve the living standards of
people in the developing world. It is a development Bank
that provides loans, policy advice, technical assistance and
knowledge sharing services to low and middle income
countries to reduce poverty. The Bank promotes growth to
create jobs and to empower poor people to take advantage
of these opportunities.

http://web.worldbank.org/

Categorizing Cities: Business Opportunity

The data miner on the NGO’s DW/BI team held meetings
with key directors and managers from around the
organization to identify business opportunities that are
supported by available data and can be translated into data
mining opportunities. During these meetings it became

836

clear that there were not enough resources to properly
customize the NGO’s programs. The NGO had historically
focused its efforts to provide financial aid at the country
level. Several economists felt that targeting policies and
programs at the city level would be more effective,
allowing for the accommodation of unique regional and
local considerations that are not possible at the country
level.

A switch to the city level would mean the people who
implemented the NGO’s programs would need to deal with
potentially thousands of cities rather than the 208 countries
they were working with around the world. This switch
would significantly expand the complexities of managing
the economic programs in an organization that was already
resource limited.

The group discussed the possibility of designing programs
for groups of cities that have similar characteristics. If
there were a relatively small number of city groups, the
economic analysts felt it would be possible to design and
manage much more appropriate economic programs.

Categorizing Cities: Data Understanding

During the meetings, there was discussion about what
variables might be useful inputs. The analysts had a gut
feel for what the city groups might be, and some initial
guesses about which variables would be most important
and how they could be combined. The group came up with
a list of likely variables. The data miner combed through
the organization’s databases to see if these inputs could be
found, and to see what other relevant information was

837

available. This effort turned up 54 variables that the
organization tracked, from total population to the number
of fixed line and mobile phones per 1,000 people. This
wealth of data seemed too good to be true, and it was.
Further investigation revealed that much of this data was
not tracked at the city level. In fact, there were only ten
city-level variables available. The data miner reviewed this
list with the business folks and the group determined that
of the ten variables, only three were reliably measured.
Fortunately, the group also felt these three variables were
important measures of a city’s economic situation. The
three variables were average hourly wages (local
currency), average hours worked per year, and the average
price index.

At this point, the data miner wrote up a description of the
data mining opportunity, its expected business impact, and
an estimate of the time and effort it would take to
complete. The project was described in two phases; the
goal of the first phase was to develop a model that clusters
cities based on the data available. If this model made sense
to the business folks, phase two would use that model to
assign new cities to the appropriate clusters as they contact
the NGO for financial support. The data mining
opportunity description was reviewed by the economists
and all agreed to proceed.

Categorizing Cities: Data Preparation

The data miner reviewed the data set and realized it needed
some work. First, the average hourly wages were in local
currencies. After some research on exchange rates and
discussion with the economists to decide on the

838

appropriate rates and timing, the data miner created a
package to load and transform the data. The package
extracted the data from the source system and looked up
the exchange rate for each city and applied it to the wages
data. Because the consumer price data was already indexed
relative to Zurich, using Zurich as 100, this package also
indexed the wage data in the same fashion. Finally, the
package wrote the updated data set out to a separate table.
The resulting data set to be used for training the cluster
model, containing three economic measures for 46 cities
around the world, is shown in Figure 13-7 (split into two
tables in the figure for easier viewing). Note that the total
data set has 48 cities, but we held out two cities to use later
as examples in the implementation section.

NOTE

This data comes from the Economics
Research Department of the Union Bank of
Switzerland. The original set contains
economic data from 48 cities around the
globe in 1991. It has been used as example
data for statistics classes and can be found
on many websites. You can find this data
set by searching for “cities prices and
earnings economic (1991) globe.” You can
find more current versions by searching for
“UBS Prices and Earnings.” The current
version includes 73 cities.

839

Observe that two of the cities do not have complete data.
The data miner might opt to exclude these cities from the
data set, or include them to see if the model can identify
them as outliers. This would help spot any bad data that
might come through in the future.

Figure 13-7: The city economic dataset after data
preparation

Categorizing Cities: Model Development

Because the goal in the first phase was to identify groups
of cities that have similar characteristics, and those
groupings were not predetermined, the data miner decided
to use the Microsoft Clustering algorithm. Once the Data

840

Mining Add-in for Microsoft Office was installed, the data
miner copied the data into a table in a worksheet, and then
selected Create Mining Structure under the Advanced
button in the Data Modeling section of the Data Mining
Ribbon as shown in Figure 13-8. (The Cluster button
would be a more obvious choice, but the add-in assumes
you want to include the city name in the clustering process.
The Advanced button requires a two step process, but it is
still pretty easy.)

This opened a wizard to create a new mining structure. The
wizard asks for a source, defaulting to the data set in the
local table. On the Select Columns screen, the data miner
set the Usage of the RowID to Do Not Use, and set the
usage of the CityName to Key. On the “Split data into
training and testing sets” screen, the data miner set the
percentage of data for testing to 0, so data from all the
cities will be used to determine the clusters. The structure
name was entered on the last screen, and then the data
miner clicked the Finish button to write the new mining
structure out to Analysis Services.

Figure 13-8: Data Mining Ribbon in Excel

841

With the mining structure metadata layer in place, the data
miner then selected the Advanced button again, and
selected “Add model to structure.” A wizard asked which
data mining technique should be used. The data miner
chose Microsoft Clustering and specified the city name as
the key and the other columns as input and changed the
model name on the final wizard screen. After the wizard
finished processing the model on Analysis Services, it
opened up a model browser window and presented the
cluster diagram shown in Figure 13-9.

Figure 13-9: Cluster diagram for the city economic data

842

At first glance, this diagram isn’t that helpful. Without
knowing anything about the problem, the Microsoft
Clustering algorithm is limited to names like Cluster 1 and
Cluster 2. At this point, the data miner can explore the
model by using the other tabs in the model browser, and by
using the drill-through feature to see which cities have
been assigned to which nodes. The data miner can also use
the other tabs in the model browser to examine the
underlying rules and distributions. The data in Figure
13-10 is grouped by cluster and was created by
right-clicking each cluster in the model browser and
selecting Drill Through Model Columns.

Figure 13-10: City economic data listed by cluster

843

The clusters in Figure 13-10 make general sense given a
basic understanding of the world economic situation in
1991. Many of the poorer cities of South and Central
America and Africa ended up in Cluster 2. Similar cities
ended up in Cluster 5, except Cluster 5 has significantly
more work hours on average. The two cities that had only
price data, Cairo and Jakarta, are on their own in Cluster 8,
and that cluster was not connected to the other seven in

844

Figure 13-9. Cluster 8 seems to be the data anomalies
cluster.

While you can make some sense of the raw tabular output,
SQL Server also provides tools to improve your
understanding. For example, the Cluster Profiles tab of the
model browser shown in Figure 13-11 makes it easier to
identify the characteristics of the individual clusters. The
table shows the average value and range of each cluster for
each of the three input variables. The clusters are listed
from largest to smallest starting with the distribution for all
46 cities. Cluster 1 includes cities whose wages and prices
are relatively high, and have relatively low work hours.
These are the cities that make up the day-to-day workforce
of their respective countries — we might call this cluster
the “Heartland” cities, although Paris might not like that
name. The next cluster, Cluster 3, is even more upscale,
with the highest average prices, second highest average
wages, and the lowest work hours. Cluster 2, on the other
hand, has extremely low wages, higher work hours than
most, and relatively lower prices. This is similar to Cluster
5, which has even higher work hours. These are the newly
developing cities where labor is cheap and people must
work long hours to survive. You might call this cluster the
“Hard Knock Life” cities. The NGO would likely call it
something a bit more politically correct, like the
“Developing Cities” cluster. As we mentioned earlier,
good names can help crystallize the defining
characteristics of each cluster.

Figure 13-11: The Cluster Profiles tab of the model
browser

845

Categorizing Cities: Model Validation

Some data mining models are easier to test than others. For
example, when you’re building a prediction model, you
can create it based on one historical data set and test it on
another. Having historical data means you already know
the right answer, so you can feed the data through the
model, see what value it predicts, and compare it to what
actually happened.

In the City cluster example, validating the model is not so
straightforward. You don’t know the categorization ahead
of time, so you can’t compare the assigned cluster with the
right cluster — there is no such thing as “right” in this
case. Validation of this model came in two stages. First,
the data miner went back to the economic analysts and
reviewed the model and the results with them. This was a
reasonableness test where the domain experts compared
the model with their own understanding of the problem.
The second test came when the model was applied to the
original business problem. In this case, the team monitored

846

the categorization of new cities to make sure they
continued to stand up to the reasonableness test.
Ultimately, the question was “Do the categorizations seem
right, and do they help simplify how the organization
works at the city level?” Is it easier and more effective to
work with eight clusters rather than 48 (or 4,800) cities?

Categorizing Cities: Implementation

Once the team decided the model would work, or at least
that it was worth testing in an operational environment, it
was time to move it into production. This can mean a
whole range of activities, depending on the nature of the
model and the business process to which it’s being applied.
In this city categorization example, new economic data at
the city level can arrive at any time. While is it easy to
assign new cities to clusters using the Excel data mining
add-in, the team decided to have this new data entered into
a table in the database and assign clusters to it in a batch
process once a night.

The data miner wrote a simple Integration Services
package that reads in unassigned cities, submits them to
the data mining model for cluster assignment, and writes
the full record out to a table called CityMaster with a
batch date identifying when the cluster was assigned.
Figure 13-12 shows what the data flow for this simple
package might look like. This flow has a data viewer
inserted right after the Data Mining Query transformation
showing its output. Compare the cluster assignments for
Kuala Lumpur (Cluster 5), and Lisbon (Cluster 6), with the
other cities in those clusters in Figure 13-10. Do these
assignments pass the reasonableness test?

847

Implementation would also integrate this package into the
rest of the nightly ETL process. The package should
include the standard data and process audit functions
described in Chapter 7. Ultimately, the process should be
part of the package that manages the City dimension.

This nightly data mining batch process is a common one in
many DW/BI systems, using a data mining model to
populate a calculated field like a Default Risk score across
all loan records or a Credit Rating across all customers.
These scores can change depending on customer
behaviors, like late payments or deposit balances. Every
loan and customer may have to be re-scored every night.
The same batch process can be used on a one-time basis to
address opportunities like identifying customers who are
likely to respond to a new product offering or who are at
risk of canceling their service.

NOTE

The Integration Services Data Mining
Query transformation is an Enterprise
Edition feature.

Figure 13-12: An Integration Services package to assign
clusters to new cities

848

Categorization Cities: Maintenance and Assessment

As the data changes, the data mining model will likely
change as well. In this case, the data mining model should
be re-built as existing data is updated or data about
additional cities is collected. The team would then review
the resulting clusters to make sure they make sense from a
business perspective. Given the nature of the business
process and the changing data, this review should probably
happen on a regularly scheduled basis — perhaps monthly
to start, then quarterly as the model and data stabilize.

This example shows how clustering can be used to
improve an organization’s business processes. Although
this data set is too small to produce reliable results, it does
generate a model that makes sense and shows how that
model can be applied to new incoming data.

Case Study: Product Recommendations

849

The ability to recommend products that might be
particularly interesting to a given customer can have a
huge impact on how much your customers purchase. This
example follows the data mining process from identifying
the business requirements through to the implementation
of a product recommendation data mining model. It’s
based on the SQL Server Adventure Works Cycles data
set. Recall from Chapter 1 that Adventure Works Cycles is
a manufacturer, wholesaler, and internet retailer of
bicycles and accessories.

The SQL Server data mining tutorial steps you through the
process of building a model that predicts whether or not
someone will be a bike buyer. While this is interesting
information, it doesn’t help you figure out what to display
on the web page. Even if you’re pretty certain someone
will be a bike buyer, you don’t know which bike to show
them. Also, what products should you show all those folks
who are not bike buyers? Our goal in this example is to
create a data mining model that produces a custom list of
specific products that you can show to any given website
visitor based on demographic information provided by the
visitor. To the extent that the custom product list is more
appealing than a random list of products, the visitor is
more likely to make a purchase.

In this example, we try to give you enough information to
work through the model creation process yourself. It’s not
a complete step-by-step tutorial, but if you’ve already
worked through the SQL Server data mining tutorial, you
should be able to follow along and see how it works
firsthand.

850

Product Recommendations: The Business Phase

Recall that the business phase of the data mining process
involves identifying business opportunities, and building
an understanding of the available data and its ability to
support the data mining process. The Adventure Works
Cycles data is not real, but it is more complete than many
real-world systems we’ve seen, and it has more than
enough customers and purchases to be interesting.

Product Recommendations: Business Opportunities

In many companies, the DW/BI team has to sell the idea of
incorporating data mining into the business processes. This
is usually either because the business folks don’t
understand the potential or because the business will have
to change the transaction system, which is a big and scary
task. Sometimes, the team gets lucky and data mining
starts with a request from the business community. This is
how it worked in the Adventure Works Cycles example.
One of the folks in marketing who is responsible for
e-commerce marketing came to the DW/BI team asking
for ways to boost web sales. Web sales accounted for
about $9,000,000 in the first half of 2008, or about
one-third of Adventure Works Cycles total sales. The
marketing group has created a three-part strategy for
growing the online business: Bring in more visitors
(Attract), turn more visitors into customers (Convert), and
develop long-term relationships with customers (Retain).
The marketing person who came to the DW/BI team is
responsible for the Convert strategy — that is, for
converting visitors to customers.

851

TIP

In a case like this, if the marketing person
has a PowerPoint presentation that goes
into detail on the marketing strategy, the
data miner should review it. We feel sure
they have such a presentation.

Because the marketing person is responsible only for
conversion, the team will investigate alternatives for
increasing the conversion of visitors to customers. They
will check to see if the final model also increases the
average dollars per sale as a beneficial side effect. After
some discussion, the team decided that influencing
purchasing behavior (conversion) with relevant
recommendations is likely to be the best way to achieve
their goals. They translated the idea of recommendations
into specifics by deciding to dedicate one section of the
left-hand navigation bar on the e-commerce website to
hold a list of six recommended products that will be
tailored to the individual visitor. While the marketing
person investigated the level of effort required to make this
change on the website, the data miner dug into the
availability of relevant data.

Product Recommendations: Data Understanding

After some research, the data miner discovered that when
visitors come to the Adventure Works Cycles website, they
are asked to fill out an optional demographics form (“to
better serve them”). A few queries revealed that about

852

two-thirds of all visitors actually do fill out the form.
Because the form is a required part of the purchase
process, the information is also available for all customers.
In either case, this demographic information is placed in a
database and in cookies in the visitor or customer’s
browser. The DW/BI system also has all historical
purchasing behavior for each customer at the individual
product and line item level. Based on this investigation, the
data miner felt that sufficient data was available to create a
useful mining model for product recommendations.

The data miner knew from experience that demographic
based models are generally not as predictive as behavior
based models (like purchases or page views). However,
there were several opportunities to make recommendations
where no product related behavioral data was available but
demographic data was available. As a result, the data
miner believed that two data mining models might be
appropriate: one to provide recommendations on the home
page and any non-product pages, and one to provide
recommendations on any product related pages. The first
model would be based on demographics and would be
used to predict what a visitor might be interested in given
their demographic profile. The second model would be
based on product interest as indicated by the product
associated with each web page they visit or any products
added to their cart.

At this point, the data miner wrote up a Data Mining
Opportunity document to capture the goals, decisions, and
approach. The overall business goal was to increase
conversion rates with an ancillary goal of increasing the
average dollars per sale. The strategy was to offer products

853

that have a higher probability of being interesting to any
given visitor to the website. This strategy breaks down into
two separate data mining models, one based on
demographics and one based on product purchases. This
decision was considered a starting point with the
understanding that it would likely change during the data
mining phase. This example goes through the creation of
the demographics-based model. The product-based model
is left as an exercise for the reader.

The team also agreed on metrics to measure the impact of
the program. They would compare before and after data,
looking at the change in the ratio of the number of new
customers (conversions) to the total unique visitor count in
the same time periods. They would also examine the
change in the average shopping cart value at the time of
checkout. A third impact measure would be to analyze the
web logs to see how often customers viewed and clicked
on a recommended link. Some of these comparisons could
be done by randomly assigning visitors either to a server
on the web farm that offers recommendations or to other
servers that are unchanged. This A/B comparison evens
out the influence that any external factor, such as a big
holiday, may have.

Product Recommendations: The Data Mining Phase

With the opportunity document as a guide, the data miner
began with the demographics-based model. This section
follows the development of the model from data
preparation to model development and validation.

Product Recommendations: Data Preparation

854

The data miner decided the data source should be the
AdventureWorksDW2008R2 relational database. The
advantage of sourcing the data from the data warehouse is
that it has already been through a rigorous ETL process
where it was cleaned, transformed, and aligned to meet
basic business needs. While this is a good starting point,
it’s often not enough for data mining.

The data miner’s first step was to do a little data
exploration. This involved running some data profiling
reports and creating some queries that examined the
contents of the source tables in detail. The goal is to relate
customer information to product purchases based on the
theory that if someone bought something, they must have
had an interest in it. Customers have a one-to-many
relationship with purchases, which results in two levels of
granularity to the case sets. The demographic case set is
generally made up of one row per observation: in this
example, one row per customer. Each row has the
customer key and all available demographics and other
derived fields that might be useful. The product sales
nested table is at a lower level of detail, involving
customers and the products they bought. This is a master/
detail relationship, where each row in this case set has the
customer key and the product model name
(DimProduct.ModelName) of the purchased product
along with any other information that might be useful.
Thus, each customer case set row has a one-to-many
relationship with the product sales case set (called a nested
case set). You could create a single case set by joining the
demographics and sales together up front and creating a
denormalized table, but we prefer to rely on the data
mining structure to do that for us.

855

After reviewing the source data in the
AdventureWorksDW database, the data miner decided to
pull the demographic case data from the DimCustomer

table and combine it with other descriptive information
from the DimGeography and DimSalesTerritory

tables, and to pull the product purchasing case data from
the InternetSalesFact table along with some product
description fields from DimProduct and related tables.
The data exploration also helped the data miner identify
several additional transformations that might be useful in
creating the data mining model. These are shown in Table
13-3.

Table 13-3: Additional transformations used to create the
example case set

Transformation Purpose

Convert
BirthDate to
Age

Reduce the number of distinct values by moving from day
to year, and provide a more meaningful value (Age) versus
YearOfBirth.

Calculate
YearsAsCust

DATEDIFF the DateFirstPurchase from the
GetDate() to determine how many years each case has
been a customer. This may help as an indicator of
customer loyalty.

Create bins for
YearlyIncome

Create a discrete variable called IncomeGroup to use as
input to algorithms that cannot handle continuous data.
Note: This is optional when creating the case set because
binning can also be accomplished in the Mining Structure
tab, or through the Data Mining Wizard.

The size of the case set depends on the nature of the
model. In this example, we are really building a model for
each product model in the product dimension, so we need
enough data to support up to 119 data mining models, not
just one. After a bit of customer count experimentation, the

856

data miner decided to build an Integration Services
package to randomly select 18,000 customers from the
customer dimension. As a critical part of data preparation,
the data miner recognized the need to split the historical
data set into two subsets: one to train the initial model, and
one to test its effectiveness. SQL Server 2008’s mining
structure metadata layer can be set to automatically select a
random subset of the input data set to use as a test set. The
data flow shown in Figure 13-13 is the part of this package
that selects the customers, adds the derived columns, and
writes them out to a table called DMCustInput.

Figure 13-13: An Integration Services data flow to create
the input data set

TIP

857

This approach works for the Adventure
Works Cycles customer data set because
there are only 18,484 customers total. If
you have millions of customers, you might
look for a more efficient way to extract
your data mining input set. One possible
approach is to use the last few digits of the
customer key (as long as it is truly
random). For example, a WHERE clause
limiting the last two digits to “42” will
return a 1 percent subset.

Another data flow later in this package joins the selected
customer input set to the FactInternetSales table and
writes their purchases out to a table called DMCustPurch.
This is the nested product data set. Depending on how
rapidly the product list changes, it might make sense to
limit the data sets to only those products that have been
purchased in the last year and their associated customers.

You can see the tables for the input data set and the nested
product data set in the Data Source View in Figure 13-14.

Figure 13-14: The product recommendation input data
sets, presented as a Data Source View

858

The nested product case set has one or more rows for each
customer. Just the fact that someone with a certain set of
demographics bought a certain product is all the
information you need. Notice from Figure 13-14 that the
data miner decided to include some additional fields from
the orders fact table that will not play a role in making
recommendations but may be helpful in troubleshooting
the data set.

TIP

Integration Services makes it easy to create
separate physical tables of the exact data
sets and relationships at a point in time.
You can then use these tables to build and
test many different mining models over a
period of time without tainting the process
with changing data. It’s common to set up a

859

separate database or even a separate server
to support the data mining process and
keep the production databases clear of the
toxic tailings of data mining debris.

The SQL Server Data Mining Tutorial uses
views to define the case sets. This helps
keep the proliferation of physical tables in
the database to a minimum, but it’s not our
preferred approach. The views need to be
defined carefully; otherwise their contents
will change as the data in the underlying
database is updated nightly. It also creates
the burden of re-executing potentially
complex, full table scans every time the
model is re-processed.

At this point, the data miner has enough data in the proper
form to move on to the data mining model development
process.

Product Recommendations: Model Development

The data miner began the model development process by
creating a new Analysis Services project in BIDS called
Data Mining Projects. She added a data source that pointed
to the DMWorkingDB relational database created to store
data mining data sets. She then created a Data Source
View that included the two tables created in the Integration
Services package: DMCustInput and DMCustPurch. After
adding the relationships between the tables, the project and

860

Data Source View looked like the screen capture shown in
Figure 13-14. The keys shown in the tables are logical
primary keys assigned in the Data Source View.

Next, the data miner used the Data Mining Wizard to
create a new mining structure by right-clicking the Mining
Structures folder and selecting New Mining Structure. The
data is coming from an existing relational data warehouse,
and the data miner chose the Microsoft Decision Trees
data mining technique in order to predict the probability of
purchasing a given product based on a set of known
attributes (the demographics from the registration process).
In the Specify Table Types dialog window of the wizard,
the data miner checked DMCustInput as the Case table
and DMCustPurch as the Nested table.

The Specify the Training Data window can be a bit tricky
because it’s unclear what columns should be used in what
ways. For this model, you would check the input column
of all of the demographic variables because they are the
independent variables — you’re trying to use known
demographics such as age or gender to predict an interest
in products.

Also, you need to correctly specify which column or
columns you’d like to predict. These are product related
and can be found in the nested DMCustPurch table. First
you need to specify a key for the nested data set.

In this example, ProductModel is the appropriate key for
the DMCustPurch data, although it’s not enforced in the
creation of the table. You can now specify which column
or columns to predict. ProductModel is the obvious

861

choice because it contains the description of the products
to recommend. The data miner also included
EnglishProductCategoryName as a predicted column
because it groups the product models and makes it easier
to navigate later on in the Model Viewer. Finally, the data
miner did not include the quantity and amount fields
because they are not relevant to this model. Remember,
these are the nested purchases for each customer case.
With a new visitor, you’ll know their demographics and
can use that as input to the model, but you won’t have any
purchase information so it makes no sense to include it as
available input data. The bottom section of the completed
Specify the Training Data window is illustrated in Figure
13-15.

The next step in the Data Mining Wizard is meant to
specify the content and data types of the columns in the
mining structure. The data miner accepted the defaults at
this point and went to the next screen, called Create
Testing Set. By entering 10 percent, the data miner set the
mining structure to automatically hold out 1,800 rows from
the model training process to use as test data. On the final
screen, the data miner changed the mining structure name
to ProductRecs1, and the mining model name to
ProductRecs1-DT (for Decision Trees). When the Finish
button was clicked, the wizard completed the creation of
the mining structure and the definition of the Decision
Trees data mining model. The data miner could then view
and verify the model definitions by selecting the Mining
Models tab.

Figure 13-15: The nested table portion of the Specify the
Training Data window

862

The next step is to deploy and process the model.
Typically, a data miner works with one model at a time to
avoid the overhead of processing all the models in the
project (even though there is only one at this point, there
will be more).

TIP

863

To deploy and process the model, select
any column in the ProductRecs1-DT

model, right-click, and select Process
Model. Select Yes to build and deploy the
project, Run at the bottom of the Process
Mining Model window, Close in the
Process Progress window (when it’s
finished), and finally Close back in the
Process Mining Model window. This
should all look very familiar if you’ve built
Analysis Services cubes before (since
that’s exactly what you are doing).

The Decision Trees algorithm generates a separate tree for
each predicted value (each product model), determining
which variables historically have had a relationship with
the purchase of that particular product. This means it will
build 40 trees, one for each distinct value of the predicted
variable, ProductModel, found in the DMCustPurch

table. Once the processing is complete, the data miner is
finally able to explore the results. Selecting the Model
Viewer tab automatically brings up the currently selected
mining model in the appropriate viewer — in this case, the
Decision Trees sub-tab of the Microsoft Tree Viewer. The
tree that appears is for the first item alphabetically in the
predicted results set: the tree for the All-Purpose Bike
Stand, which seems to have a slight bias toward females
(at least in our random subset). Selecting a more
interesting product like the Mountain-200 mountain bike
from the Tree pull-down menu at the top of the window

864

brings up a more interesting tree — or at least one with
more nodes. Figure 13-16 shows an example of the
Mountain-200 decision tree later in the data mining
process.

The first time you run through this example on your own
machine, you will notice that the first split in the initial
Mountain-200 tree is on DateFirstPurchase, and then
several other fields come into play at each of the
sub-branches. The data miner immediately recognized a
problem with this model. The DateFirstPurchase field
was included in the case set inadvertently because it is an
attribute of the customer dimension. However, it’s not a
good choice for an input field for this model because
visitors who have not been converted to customers will not
have a DateFirstPurchase by definition. Even worse,
after looking at several trees for other bicycle products, it
is clear that DateFirstPurchase is always a strong
splitter — perhaps because the longer someone has been a
customer, the more products they have purchased, and the
more likely they are to have purchased a bike. If you
included the YearsAsCust field, you will notice the same
problem because it is a function of DateFirstPurchase,
and contains essentially the same information. The data
miner decided to remove these fields from the model and
reprocess it.

One easy way to do this is to delete the fields from the
Mining Structure by right-clicking the field and selecting
Delete. The more cautious way is to leave them in the
structure, but remove them from the mining model by
changing their type from Input to Ignore in the dropdown
menu on each field. This keeps the fields in the mining

865

structure, just in case. After changing the type to Ignore on
these two fields and reprocessing the model, the decision
tree for the Mountain-200 now looks something like the
one shown in Figure 13-16.

After exploring the model in the Decision Tree tab for a
bit, it’s useful to switch over to the Dependency Network
tab. This tool provides a graphical way to see which
demographic variables are predictive of which product
models. The dependency network shows the relationships
between the input variables and the predicted variables.
But the meaning of the initial view of the dependency
network for this example, shown in Figure 13-17, is not
immediately obvious. Each node in the network stands for
one of the variables or products in the mining model. Some
input variables are predictive of many product models,
others only a few. Because the model contains 19 input
variables and 40 individual product models and so many
relationships among those variables, the dependency
network looks like a spider web. In fact, the viewer
automatically limits the number of nodes it will display so
as not to overwhelm the user.

Figure 13-16: The Mountain-200 decision tree

866

Figure 13-17: The default Dependency Network drawing
for the ProductRecs1 Decision Trees model

867

Fortunately, there’s more to the Dependency Network tab
than just this view. Zooming in to see the actual names of
the variables is a good way to start. Selecting a node
highlights the nodes with which it has relationships. The
tool uses color and arrow directions to show the nature of
those relationships. Finally, the slider on the left of the
pane allows the user to limit the number of relationships
shown based on the strength of the relationship. The
default in this viewer is to show all the relationships.
Moving the slider down toward the bottom of the pane
removes the weakest relationships in ascending order of
strength.

Working with the Tree Viewer

It’s worth taking a few minutes to discuss the
elements of the tree viewer and how to work with
it. The main pane where the picture of the tree is
presented holds a lot of information. Starting with
the parameter settings at the top of the Decision
Tree tab in Figure 13-16, you can see the
Mountain-200 is the selected tree. (Okay, you can’t
really see the whole description unless you select
the dropdown menu. This is an argument in favor
of using very short names for your case tables and
columns.) The Default Expansion parameter box to
the right shows that you’re viewing All Levels of
the tree — in this case, there are four levels but
only three are visible on the screen. Some trees
have too many levels to display clearly so the

868

Default Expansion control lets you limit the
number of levels shown.

The tree itself is made up of several linked boxes
or nodes. Each node is essentially a class with
certain rules that would determine whether
someone belongs in that class. (This is how
decision trees can be used for classification.) The
shading of each node in Figure 13-16 is determined
by the number of people who have Mountain-200s
in that node divided by the total number of people
who meet the rules for that node. The darker the
node, the higher the probability that a person
classified in that node owns a Mountain-200. You
can change the shading calculation to divide by the
total number of cases to show the overall
distribution of cases. Then, the darkest nodes
would have the most Mountain-200 bikes,
regardless of the probability calculation.

Selecting a node reveals the counts and
probabilities for that node along with its
classification rules. In Figure 13-16, the node at the
top of the second column labeled Yearly Income
>= 122000 has been selected. As a result, its values
and rules are displayed in the Mining Legend
window in the lower right of the screen. We see
that 697 cases meet the classification rules for this
node. Of these 697 cases, 241 have Mountain-200
bikes, which results in a probability of 241/697 =

869

34.63%. In English, this reads “If you are one of
our customers and your income is $122,000 or
greater, the chances are about 1 out of 3 that you’ll
own a Mountain-200.”

When the model is used for predicting, the theory
is that probabilities based on existing customers
can be applied to the folks who are not yet
customers. That is, the chances are about 1 out of 3
that someone with an income of $122,000 or
greater would purchase a Mountain-200. All you
need to do to use this model is feed your web
visitor’s demographic input variables in and it will
find the nodes that the visitor classifies into and
return the trees (ProductModels) that have the
nodes with the highest probabilities.

One way to get a better sense of the relationships in the
Dependency Network tab is to drag the predictive (input)
variables over to one corner of the screen. Figure 13-18
shows the model from Figure 13-17 after the data miner
dragged the predictive variables to the upper-left corner.

Figure 13-18: The Dependency Network with predictive
variables dragged to the upper-left corner

870

This is still not very helpful. By zooming in on the
upper-left corner, as shown in Figure 13-19, you can see
that these, in fact, are some of the input variables. Note
that there are only 12 shown in the dependency network.
Variables such as First Name, Last Name, and
StateProvinceName did not play enough of a role in the
model to make it onto the graph. Figure 13-19 has had
another adjustment as well: The slider on the left side was
moved down to about one-third of the way up from the
bottom. This shows that most of the relationships, and the
strongest relationships, come from only a few variables.
This comes as no surprise to an experienced data miner.
Often there are only a few variables that really make a
difference — it’s just difficult to figure out ahead of time
which ones they’ll be. (Actually, it’s not so difficult for
certain models. When you specify the input and predicted
variables in the Data Mining Wizard, there is a Suggest

871

button at the bottom of the window that will calculate the
strength of the relationship between the predictable
variable and the input variables. This lets you narrow the
model down right from the start.)

Figure 13-19: The Dependency Network zoomed in on the
predictive variables

The input variables with the strongest relationships shown
in Figure 13-19 are Yearly Income, English Country

Region Name, Number Cars Owned, Age, and Total

Children. True to the iterative data mining process, this
brings up an opportunity. Removing some of the weaker
variables will allow the model to explore more
combinations among the stronger variables and to generate
a more predictive model. For example, Figure 13-20 shows
the decision tree for the Women’s Mountain Shorts
product based on the initial model.

872

There is clearly a variation in preference for these shorts
by country. More than 15.5 percent of the Canadians
bought a pair, but about one-half of one percent of the
Germans bought a pair. Given this information,
recommending Women’s Mountain Shorts to a German
website visitor is probably a waste of time.

Figure 13-20: The initial decision tree for Women’s
Mountain Shorts

Figure 13-21 shows the decision tree for the same product
after the model has been narrowed down to the five
strongest input variables shown in Figure 13-19.

Figure 13-21: The expanded decision tree for Women’s
Mountain Shorts after reducing the number of input
variables

873

The first split is still based on English Country Region

Name, but now there is a second split for three of the
country nodes. Canada can be split out by income,
showing that Canadian customers making >= $74,000 are
more likely to own a pair of Women’s Mountain Shorts
(probability 23.65 percent) — much higher than the 15.5
percent we saw for Canada based on the English

Country Region Name split alone in Figure 13-20.

The process of building a solid data mining model involves
exploring as many iterations of the model as possible. This
could mean adding variables, taking them out, combining
them, adjusting the parameters of the algorithm itself, or
trying one of the other algorithms that is appropriate for
the problem. This is one of the strengths of the SQL Server
Data Mining workbench — it is relatively easy and quick
to make these changes and explore the results.

874

Moving back to the case study, once the data miner
worked through several iterations and identified the final
candidate, the next step in the process would be to validate
the model.

Product Recommendations: Model Validation

As we described in the data mining process section, the lift
chart, classification matrix, and cross validation sub-tabs in
the Mining Accuracy Chart tab are designed to help
compare and validate models that predict single, discrete
variables. The recommendations model in this example is
difficult to validate using these tools because, rather than
one value per customer, the recommendations data mining
model generates a probability for each ProductModel for
each customer.

Another problem with validating the model is that the data
miner doesn’t really have historical data to test it with. The
test data available, and the data used to build the model, is
actually purchasing behavior, not responses to
recommendations. For many data mining models, the
bottom line is you won’t know if it works until you try it.

Meanwhile, the data miner wants to be a bit more
comfortable that the model will have a positive impact.
One way to see how well the model predicts actual buying
behavior is to simulate the lift chart idea in the context of
recommendations. At the very least, the data miner could
generate a list of the top six recommended products for
each customer in the test case set and compare that list to
the list of products the person actually bought. Any time a
customer has purchased a product on their recommended

875

list, the data miner would count that as a hit. This approach
provides a total number of hits for the model, but it doesn’t
indicate if that number is a good one. You need more
information: You need a baseline indication of what sales
would be without the recommendations.

In order to create a baseline number for the
recommendations model, the data miner also created a list
of six random products for each customer in the test case
set. Table 13-4 shows the results for these two tests. As it
turns out, the random list isn’t a realistic baseline. You
wouldn’t really recommend random products; you would
at least use some simple data mining in the form of a query
and recommend your six top-selling products to everyone
— people are more likely to want popular products. Table
13-4 includes the results for the top six list as well.

Table 13-4: Recommendations model validation data
points

The data miner and marketing manager learn from Table
13-4 that the model is reasonably effective at predicting
what customers bought — it’s not great, but it’s better than
listing the top six products, and a lot better than nothing at
all. Note that the hit rate in Table 13-4 has very little to do
with the click-through rate you’d expect to see on the
website. The real number will likely be significantly lower.

876

However, based on these results, the data miner and the
marketing manager decided to give the model a try and
carefully assess its impact on the original goals of the
project, increasing the percentage of visitors who become
customers, and increasing the average sale amount.

Product Recommendations: The Operations Phase

The decision to go forward moved the project into the
operations phase of the data mining process. The
implementation details are well beyond the scope of this
book, but the high-level steps would involve making the
data mining model available to the web server, and writing
the ADOMD.NET calls to submit the visitor’s
demographic information and to receive and post the
recommendation list. Figure 13-22 shows an example of a
DMX query to return the top 6 products for an individual
from the ProductRecs1-DT mining model.

In this case, for a 43-year-old person from France who
makes $70,000 per year, has no children, and owns one
car, the model recommendations include a Mountain-200,
a Road-250, and a Touring-1000. This is good — you like
seeing those high-revenue bikes in the recommendations
list.

Assessing the impact of the model would involve several
analyses. First, the team would look at the number of
unique visitors over time, and the percentage of visitors
that actually become customers before and after the
introduction of the recommendation list. Increasing this
percentage is one of the goals of providing
recommendations in the first place. This analysis would

877

look at the average purchase amount before and after as
well. It may be that the conversion rate is not significantly
affected, but the average purchase amount goes up because
current customers are more interested in the
recommendations and end up purchasing more.

Figure 13-22: Sample DMX for a data mining query to get
product recommendations based on an individual’s
demographics

The second analysis would look at the web browsing data
to see how many people click one of the recommendation
links. The analysis would follow this through to see how
many people actually made a purchase. In a large enough
organization, it might be worth testing the
recommendation list against the top six list, or with no
recommendations at all, using the random assignment
process described earlier in this chapter.

878

The model would also have to be maintained on a regular
basis because it is built on purchasing behaviors. New
product offerings and changes in fashion, preference, and
price can have a big impact on the purchasing behaviors —
you don’t want your recommendations to go stale.

Summary

Congratulations for making it this far. You should have a
basic understanding of the data mining concepts and how
data mining can have an impact on your organization. Data
mining is not just a tool; it’s a process of understanding
business needs and data issues, working through various
alternative models, testing and validating their viability,
rolling them out into production, and making sure they
address the opportunity and don’t get stale.

Early in the chapter we reviewed some basic data mining
concepts, describing how data mining is used for several
different business tasks: classification, estimation or
regression, prediction, association or affinity grouping,
clustering or segmentation, anomaly detection, and
description and profiling. We then discussed SQL Server’s
data mining architecture and toolset, reviewing the key
components and showing how they fit together. Digging
down into the technology, we briefly described the seven
algorithms provided with the product and how they applied
to the various business tasks.

Next we went into some detail on the process of data
mining, outlining a step-by-step approach starting with
identifying business opportunities and the associated data,
moving through the actual data mining phase with its data

879

preparation, model development, and model validation
steps, and ending with the operations phase with the
implementation of the model, maintenance, and an
assessment of its impact.

Most of the second part of the chapter walked through this
process based on two data mining scenarios: a large
international lending organization that wants to cluster and
classify cities, and an Adventure Works Cycles marketing
person who wants to increase the number of website
visitors who become customers by offering targeted
product recommendations.

By this point, we hope it’s clear that data mining is a
powerful set of tools the DW/BI team can use to add
significant, measurable business value. And that the SQL
Server Data Mining toolset is effective, easy to use, and
easy to incorporate into your overall system environment.

We encourage the data miner on the team or in the
organization to explore SQL Server’s data mining
capabilities. The Excel add-in is a particularly easy way to
get started. We also encourage everyone who uses the data
mining tools to be careful with them. Data mining is a true
power tool. As with a chainsaw, you can do amazing
things, but you can also hurt yourself. It doesn’t help your
credibility if you roll out a model based on the clever
finding that customers who have been with you longer tend
to have purchased more items.

880

Part 4: Deploying and Managing the DW/BI System

Chapter 14: Designing and Implementing Security

Chapter 15: Metadata Plan

Chapter 16: Deployment

Chapter 17: Operations and Maintenance

Chapter 18: Present Imperatives and Future Outlook

The last part of the Lifecycle is the most exciting.
Security! Deployment! Operations! As you can see in the
diagram, we’ve placed these steps at the end of the
Lifecycle. But don’t wait too long to start thinking about
these issues. The successful deployment and operations of
your data warehouse must be built into the system from the
outset.

As you’re designing your plans for securing the data in the
system, a good business sponsor can keep you on track.
The costs of not securing the data are easily understood,
but don’t underestimate the costs associated with tightly
securing information. The biggest cost of restrictive
security is that it hinders the analyst’s ability to combine
data in unexpected ways, which can lead to valuable
insights into your business.

A large part of deploying the fully developed and tested
system is ensuring the user community is ready to use the
new tools effectively. You should augment the metadata
that underlies all the system components with

881

business-oriented descriptions. These descriptions become
part of the user-facing documentation and must be ready as
soon as the system is launched. In production, you should
rely on your operational procedures to load the DW/BI
system with excellent data quality and system reliability.

Just as your system will grow as you include new business
process dimensional models, so too do we expect the
Microsoft toolset to continue to grow and improve. You’re
embarking on an exciting project with your DW/BI
system, and we wish you the best of luck with it.

The Kimball Lifecycle steps covered in Part 4

882

Chapter 14

Designing and Implementing Security

How much security is enough?

Security is another one of those black holes of the DW/BI
system. It seems straightforward at first glance, but it often
ends up being more complicated and uses more resources
than originally planned.

If you’re serious about security, and take the necessary
steps to educate yourself, keep up-to-date on security
bulletins and software updates, and design your system to
minimize your attack surface, you’ll be in a good position
to run a safe system. Microsoft throws so much
information and so many security options at you that the
greatest risk may be that you’ll give up out of frustration
and confusion. We hope this chapter helps by highlighting
the most important issues for a DW/BI system.

You can minimize the cost and risk of implementing
security by — yes! — writing a security plan. That plan
should have a section for securing the environment,
including the hardware and operating system; a section for
securing the operations and administration of the system;
and a section for securing data. No security plan is
complete without a discussion of how to test the security.
Designing and implementing tests for whether the right
people have access to the right data can be as hard as any
other task in developing and operating the DW/BI system.

883

In this chapter, we talk about the major components of
DW/BI system security. These are the components that
should be included in your security plan. The easy part is
securing the physical environment and operating systems.
A serious corporate environment will lock down the
physical servers and systems. Turn on only those services
and features that are necessary to run your system.

After you’ve slammed the security doors shut, you need to
start re-opening them to allow users into the system. A
DW/BI system is valuable only if people can access it. The
more information that’s broadly available, the more
valuable your system will be. Information is an asset. If
you keep it in the equivalent of a Swiss bank account with
zero interest, you’re doing your organization a disservice.
Careful stewardship of data requires that you protect the
information that’s truly confidential and broadly publish
the rest. Some organizations’ executive teams and culture
are diametrically opposed to open access, but it’s worth
arguing and pushing. Let’s hope your executive sponsor
can carry this battle forward.

You need to ensure that only authorized users can access
the DW/BI system, and limit everyone’s view of data as
appropriate. There are as many ways to do this as there are
possible configurations for your DW/BI system. This is
especially true if you’re using non-Microsoft software in
your system. The bulk of this chapter is devoted to
discussing the most common configurations. The SQL
Server documentation in Books Online does a good job of
discussing security for Reporting Services, the relational
database engine, and Analysis Services. Figuring out how

884

these components work together is harder, so that’s where
we’ve focused our attention.

After reading this chapter, you should be able to answer
the following questions:

• How do you secure the hardware and operating systems for
all the servers in your DW/BI system?

• What kinds of security will you need for different kinds of
user access, from running reports to ad hoc query and
analysis?

• How should you implement and test security features in the
various components of your DW/BI system?

• How can you monitor your customers’ usage of the DW/BI
system?

Identifying the Security Manager

The first thing you must do is to explicitly identify a team
member who’s responsible for the security of the DW/BI
system. If no one owns the problem, it won’t be addressed.
Define the role in the organizational context: What
security is the security manager responsible for? What
tasks does the security manager do, and what tasks does he
or she direct others to do? The security manager has to be
involved in the architecture design and in verifying the
actual setup and use of the DW/BI system. Every new
component, upgrade, user group, indeed any system
change, needs to be examined from a security perspective
to make sure it doesn’t compromise the system. Many
organizations require a mandatory signoff by the security
manager as part of the change deployment process.

885

We recommend that the security manager be part of the
DW/BI team. The DW/BI security manager should have a
formal relationship with any enterprise security office or
Internal Audit. But to be effective, the security manager
must be intimately familiar with the DW/BI system. In
small organizations, the DW/BI team lead may play the
role of the security manager. In any case, it needs to be
someone fairly senior, with a broad understanding of the
end-to-end system.

Securing the Hardware and Operating System

The most direct way to steal access to the valuable
information in the DW/BI system is to gain physical access
to the computers on which the system is running. You
absolutely must implement the following simple but
essential recommendations for your production system,
and should think very seriously about doing so for the
development and test servers as well.

• Place the server computers in a locked room with restricted
access.

• Disable the option to boot from the CD-ROM drive.
Consider removing access to the USB ports.

• Consider creating a power-on password, and protect the
motherboard’s settings with a CMOS-access password.

• Consider using a computer case that supports intrusion
detection and can be locked. Don’t leave the key dangling
from the computer.

Securing the Operating System

The second most direct way to access the DW/BI system is
by way of the operating system. You should implement the

886

following procedures for all the servers in your
development, test, and production systems:

• Restrict login access. No business user needs to log on to the
servers. Most DW/BI team members don’t need to log in, as
their tools work remotely. Only system administrators need
to log in; others can access services across the network.

• Restrict network access. This includes preventing
anonymous sessions and disabling unneeded services.

• Ensure data folders are secure. By default, the SQL Server
relational database and Analysis Services databases store
data in file structures that are appropriately protected. Other
sensitive information includes backups and trace logs, and
Integration Services packages. Ensure all information is
appropriately protected.

• Keep up-to-date with security patches for the operating
system. Keep up-to-date with service packs for the SQL
Server components.

• Secure backup media. Backup files or tapes are more
portable than the underlying databases; make sure these are
protected as well.

Using Windows Integrated Security

Microsoft SQL Server uses Windows Integrated Security
as its primary security mechanism. Set up Windows users
and groups in the Windows environment — this is usually
a task for system administrators rather than someone on
the DW team. Then in Management Studio, create a set of
roles. Grant or deny permissions to database objects for
each role. Then assign the Windows groups to the
appropriate roles. In a large enterprise, users will be
assigned to several groups and roles. Use this same general
approach for the relational database, Analysis Services,
and Reporting Services.

887

NOTE

Don’t assign a Windows user directly to a
SQL Server role. This creates a
maintenance problem if that user leaves the
organization. Use the level of indirection
provided by the Windows group construct,
even if you create a group with only one
member.

In a Microsoft-centric enterprise, the users and some or all
of the groups will be defined on the domain in Active
Directory. In a heterogeneous environment, someone will
need to integrate Active Directory into your environment.
This is a job for a system administrator rather than a DW/
BI expert, so we won’t go into any details here. Buy a
book or hire a consultant to help you with this project.

It’s possible to connect to Reporting Services, Analysis
Services, and the database engine through mechanisms
other than Windows Integrated Security. These options are
less secure than truly Integrated Security, so you should
consider this approach only if you can’t possibly make
Integrated Security work in your environment. Even if you
use these alternative authentication mechanisms, you’ll
still need to create Windows users and groups on the
database servers, and grant privileges to those groups.

888

NOTE

The SQL Server database engine supports
database security, where you define users
and groups within the SQL Server
relational database. Those of us who’ve
been building databases for a long time
find this security model familiar and
comfortable, but it’s inherently less secure
than Integrated Security and should be
avoided.

In this chapter, when we talk about users and groups, we
mean Windows Integrated Security users and groups
unless we explicitly say otherwise.

Securing the Development Environment

It’s quite common for development teams to have fairly
loose standards — or no standards at all — for
management of the development environment. The
development environment and servers should be managed
professionally, although usually not to the same standards
as the test and production systems. The data on the
development servers is often sensitive, as it’s drawn from
the production source systems. You certainly should
secure the hardware and operating system as we’ve just
described, within reason. You should have a policy
against, or strict procedures for, granting access to
development servers to anyone outside the development
portion of the organization.

889

To ease deployment, make the development machines’
security environment similar to the production systems. On
the other hand, you don’t want to lock down the systems
so tightly that the developers will have problems getting
their work done.

A common approach is to manage shared development
resources fairly well, yet allow developers to create private
databases. Institute a change control process for the shared
resources, like the relational data warehouse data model.
Once other team members depend on a data model, allow
changes only weekly and require 24 hours advance notice.

Once you’ve instituted change control on the shared
resources, you’ll see private databases popping up. That’s
because some team members, in a sensitive part of their
development cycle, really need an unchanging database, or
they need to change it more frequently. Changes to the
shared database can, at times, be incredibly annoying.
Because the SQL Server database software is easy to
install on a desktop machine, it’s hard to prevent private
databases from cropping up. If you can’t, or don’t want to,
forbid private databases, make it easy for your team
members to secure them. Develop a policy for private
databases, including system security procedures — usually
the same procedures that you implement for your shared
development resources. Better yet, write a lockdown script
— probably a combination of a document script and a
batch file — to perform basic lockdown.

Developers should use read-only access to the source
transaction systems. This is especially true for the DBAs
and ETL developers, who may be creating and deleting

890

database objects in the relational data warehouse database.
It’s not impossible to imagine that they could be careless
and inadvertently execute a destructive statement against a
transaction system. (If you’ve ever accidentally created a
table in the Master database, you know what we’re talking
about.)

It’s safest to use only the minimum privileges necessary to
get the job done. In the case of DW/BI system
development, that should mean read-only access to the
source databases. In a large corporation, this is unlikely to
be an issue: the DW/BI team will not have write privileges
into a transaction system. In a small company where
people wear many hats, it’s not uncommon for a DW/BI
developer to have high privileges on a production system.

Securing the Data

Now that we’ve done the basics, we come to the most
interesting part of the security plan: securing the data while
making it available for users to query.

Providing Open Access for Internal Users

We strongly encourage you to develop a data access policy
that is fairly open for corporate users. The best approach is
to start from the position that all data should be available
to internal users; any exceptions should be justified.

We’ve worked with organizations that approach the
problem from the other direction. Even internally, these
folks’ natural reaction is to make data available only on a
“need to know” basis. They say that the sales manager in

891

one region cannot see sales numbers for other regions. The
problem with this mindset should be obvious: A sales
manager can’t assess her region’s performance outside the
context of the rest of the company. She may think a 10
percent growth in sales is a great number, until she realizes
that all other regions saw 15 percent. The more
information you hide, the less valuable your DW/BI
system is going to be.

Regardless of who has permission to access the data, it’s a
good idea to have a written data access policy. Depending
on your organization, the data access policy doesn’t have
to be a long statement. A reasonable statement would say
something like:

Open access to administrative information is provided to
employees for the support of corporate functions.
Inappropriate use of information is a violation of your
employment agreement. Default access is: Open Access to
all employees, except for data elements on the Restricted
Access list. Restricted Access is a designation applied to
certain data elements, and limits access because of legal,
ethical, or privacy issues. Access to elements so designated
can be obtained with the approval of the designated data
trustee. Any request to restrict employee access must be
documented to Data Administration by the designated data
trustee. Any employee denied access may appeal the denial
to Data Administration.

Unexpected Value of Open Access

892

One of our clients had an enlightened data access
policy — or perhaps, as a tech startup, they hadn’t
gotten around to drafting a more restrictive policy.
At any rate, they experienced the power of open
access. A Customer Care agent — a kid just out of
high school — was poking around the data and
uncovered a trend. A certain kind of trouble ticket
was associated with a specific supplier’s hardware,
hardware which, as it turned out, was not
manufactured to specification. Our client wrung
several million dollars out of the supplier, and
averted unsatisfactory user experiences for many
customers. This for a startup, for whom several
million dollars and customer satisfaction were
tremendously important.

Many organizations would say a Customer Care
agent has no business getting a global view of the
data. It sounds reasonable to limit an agent’s view
only to specific tickets. The upside is unknowable
in advance, but we’ve seen it happen often. The
doomsday scenarios are easier to see, but many
people have a tendency to overstate both the
likelihood and potential financial downside of data
getting out of the hands of those who “need to
know.”

The ideal situation is to have very little truly sensitive
information, like credit card numbers or Social Security
numbers, in the DW/BI system. Just don’t bring it in. In

893

most organizations, any data around employee
compensation is highly sensitive. In a health care
environment, details about an individual patient are
extremely sensitive, and access is highly regulated as well.
We’re not saying that you should make such sensitive
information widely available. Rather, identify the
information that’s sensitive and document it as an
exception to the general rule of data availability.

NOTE

There are cases where you can solve a data
sensitivity problem by applying a hashing
algorithm to the data. For example, it may
be important for some business users to
know that a customer’s credit card number
has changed, without necessarily knowing
what that credit card number is. In this case
the ETL system would hash the credit card
number on the way into the data
warehouse.

For an open access policy to work, you must:

• Gain executive sponsorship for the approach. You can’t
change corporate culture on your own. Many healthcare and
law enforcement organizations are hopelessly — and
justifiably — paranoid about data security.

• Develop a system use policy statement, which users must
sign before gaining access. Set up a mechanism for ensuring
users sign this document before accessing the DW/BI

894

system. We generally require people to apply for access and
include the policy on the application form.

• Confirm that executives are willing to carry out any
sanctions against security violations implied in the policy
statement.

• Gain executive agreement on the list of sensitive data
elements.

• Review the security policy at the beginning of every training
class.

• Publish (on the BI portal) the detailed security policy,
including the list of sensitive data elements.

RESOURCES

You can get a good starting draft for a
complete data access policy from the
internet. Many universities and government
agencies post their policies online. Search
for “data access policy.”

Itemizing Sensitive Data

Whether you approach the problem from a mindset of
“most data is available” or “most data is sensitive,” you
need to document what data is hidden (or available), and to
whom. As you’re developing your data sensitivity
document, remember that the vast majority of system use
is at aggregated levels, where sensitivity is usually less.

Our primary concern is read-only access to data. Any
writing activities, like developing forecasts and budgets,
should be securely managed by an application. Specify the
level at which aggregated information becomes available.

895

For example, most people can’t see sales by salesperson,
but anyone can see aggregated sales at the region or
district level, and corporate-wide.

DOWNLOADS

You can find a sample data sensitivity
document on the book’s website.

There is a subtlety associated with allowing data access at
aggregate levels, but not at the detailed level. Returning to
our discussion of sales by salesperson, what if we allow
aggregate reporting at the district level, by gender? That
can be an interesting question, but what if a district has
only one saleswoman? Anyone in the company can infer
her sales figures. There’s no easy answer to the inferred
data member problem, although we discuss this issue again
in the upcoming sections.

Securing Various Types of Data Access

The more restricted data you have, the more difficult it is
to provide ad hoc access to the DW/BI system. Look back
at your data sensitivity document and think about how to
implement open access at aggregate levels and restricted
access at detailed levels. The easiest way to do that is
through an application like a report. Define aggregate-level
reports that everyone can see, and limit access to reports
that contain sensitive information.

896

If you allow direct ad hoc access to the information, you
may need to apply complex access rules in the database.
This is difficult in the relational database, as we discuss in
the section “Relational DW Security.” This is a place
where Analysis Services really shines: It’s possible — and
really not that difficult — to meet a wide range of access
scenarios by using Analysis Services permissions. In
particular, the tool addresses the difficult problem of
hiding detailed data but publishing aggregated data for ad
hoc access.

Reporting Services and most third-party tools like
Business Objects, Cognos, and Analysis Services–specific
tools like Panorama all contain security features. You
should carefully examine the security features of any client
tool before you decide to rely on those features. If a user
has login privileges to the underlying database (Analysis
Services or relational), the security must be applied to the
database objects. Otherwise, users can simply use Excel or
any other client tool to create an ad hoc connection, log on,
and browse restricted data.

Many front-end tools, including Reporting Services, can
— or even must — be configured to use a shared report
execution service account for access to the database server.
If your front-end tool manages user security this way, you
typically don’t even grant database login access to the
users. This is very secure, assuming you’re exceptionally
careful not to compromise the password to the report
execution service account.

897

WARNING

If a user is not allowed to see certain data,
then he must either be:

• Denied logon privileges to the database
containing that data, or

• Denied read privileges to the data table,
columns, or rows.

Security through obfuscation is not
security.

External reports bring an additional layer of security
issues. An external report is a report from your DW/BI
system that’s available to people outside your
organization. For example, you may let your suppliers see
your inventory of their products, or see how well their
products are selling.

The easiest way to meet the security requirements for
standard external reporting is to use a push model: Email
reports to your partners. The data-driven subscription
feature of Reporting Services (Enterprise Edition) should
meet the majority of external reporting requirements. This
is a preferred approach because you don’t need to provide
any access into your system, and you’re completely
controlling when the report is run and to whom it’s
delivered.

Data-driven subscriptions don’t meet all external access
requirements. You probably don’t want to send a daily

898

email to millions of customers about their account status.
We’re tempted to call this operational reporting, and wash
our hands of the problem. Indeed, you should think
seriously about whether you want external users accessing
the same system that your employees are using to run the
business. Most often you’ll decide to spin out a data mart,
and associated reporting portal, dedicated to this
application. You’ll need to figure out how to authenticate
those external users to allow them into the portal. These
users will typically access only filtered reports, using the
same techniques we’ve already discussed.

It’s unusual for a company to provide ad hoc access to
external people. Those who do are generally in the
Information Provider business. You can use SQL Server
and other Microsoft technologies to develop a robust
Information Provision system, but this topic is beyond the
scope of this book.

Most implementations have a variety of security
requirements. Some reports are available for anyone in the
company, some have limited access to the complete report,
and some filtered reports return a different result
depending on who runs the report. Beyond reporting, you
need to support some ad hoc access as well. You need to
define some security in Reporting Services as well as the
relational database and Analysis Services, to cover all
these contingencies. Each component has several kinds of
security options, which means you can probably figure out
a way to do anything you want. But it also means that it’s
hard to know where to begin. We begin by looking at how
you use SQL Server’s components together to deliver the
different levels of access.

899

Securing the Components of the DW/BI System

There are so many security features, and combinations of
security features, that it seems overwhelming. The first
items to knock off the list are predefined reports.
Reporting Services handles these very well and easily,
whether the report is sourced from the relational database
or Analysis Services. Next, we turn our attention to
describing how to implement security in the various
components of the DW/BI system, including Analysis
Services, the relational database, and even Integration
Services.

Reporting Services Security

Reporting Services can source reports from the relational
data warehouse, other relational and even non-relational
sources, and from Analysis Services. Reporting Services is
a client of the databases, but a special kind of client: one
that is also a server, and that contains its own security
features.

Administrative Roles for Reporting Services

Reporting Services is installed with a set of predefined
roles for administrative and business users. You can
modify these roles, or replace them with custom roles. But
most organizations will simply assign these predefined
roles to various people who are performing administrative
tasks.

The relational database and Analysis Services have
administrative roles that are clearly the purview of the

900

DW/BI team, and only the DW/BI team. By contrast, your
configuration and use of Reporting Services may distribute
the administrative workload out to the business units. You
may have some business users who need an administrative
role.

The predefined administrative roles include:

• System Administrator. Set server level features and security,
and manage jobs. Clearly this highly privileged role should
be granted to only one or two members of the DW/BI team.

• Content Manager. Manage report folders and items within
those folders, including security on those items. Content
management permissions are not necessarily system-wide. In
other words, you can have one person be the content
manager for one set of reports like marketing and a different
person manage sales reports.

• Publisher. Publish content, like a report, to a report server.
Some organizations will tightly control publishing rights,
linking this role with Content Manager. Others will let
anyone publish a report to the enterprise. We recommend
being careful about who has publishing rights.

Everyone involved with administering the reporting
system should understand that securing folders is the most
common way to manage user security. Security is inherited
through the folder structure, so you can simplify the
administrative burden by grouping reports in folders
according to how confidential those reports are. When you
restrict a folder, you are by default restricting all the items
in the folder.

One sensible use of a highly restricted folder is a place to
hold reports that are being tested. Testing report definitions
and layouts straddles the line between an administrative

901

function and a user function. Often, you want a business
person to sign off on the report before it’s published more
broadly. Using roles and a designated test folder, you can
make it easy for the testers to find the reports under
development, yet hide those reports from the rest of your
organization.

Remember that the security assigned to a folder is the
default security setting for any item, like a report, that’s
created inside that folder. You can change an individual
report’s settings, but that’s a second step that you (or the
distributed Content Managers) may forget to take.

You can use either Management Studio or the Report
Manager web application to manage permissions. The
DW/BI team might use Management Studio; business
users who are Content Managers will almost certainly use
Report Manager.

User Roles for Reporting Services

When a user connects to Reporting Services, the report list
shows only the reports that user is allowed to see. When a
report is executed on demand, it’s usually executed not
with the user’s credentials, but instead with a reporting
service account used only to execute reports. In this
scenario, users do not have login privileges to the
underlying database.

Most of your reports will be standard reports: predefined
reports that are available to some or all DW/BI system
users. These reports are simply secured through Reporting
Services or SharePoint Reporting Services Integrated

902

Security. Reporting Services’ security model is perfectly
targeted for standard reports. It’s very easy to set
permissions on folders and reports. You may have a Data
Administration team manage this function, or you can
distribute some administration out to the departments who
design and develop the reports.

Some of your reports will be filtered reports, which return
a different result set depending on who runs the report.
Filtered reports require some security infrastructure in the
underlying database. You have several options, most of
which require some sort of permissions table in the
underlying database:

• Use a stored procedure as the source query for the filtered
report. This technique works if the source database is the
relational database. You can pass the username as an input
parameter to the stored procedure.

• Pass the user’s credentials to the database. This technique
works with either SQL Server or Analysis Services serving
the query.

NOTE

If you pass the user’s credentials to the
underlying database, you may face the
“two hop” problem. Typically, when a user
connects from one computer to another,
Windows credentials work for only one
connection. If you need to connect to a
second computer, for example to use the
user’s credentials to log in to a database

903

server, you must use one of the following
strategies:

• Enable Kerberos. Implementing Kerberos
is a project for system administrators, and
is not usually a task that the DW/BI team
would tackle.

• Use SQL Server authentication. This
technique works only for the relational
database, not Analysis Services. And in
general we recommend that you avoid
using SQL Server authentication as it’s less
secure than Integrated Security.

Reporting Services in SharePoint Integrated Mode

A popular configuration for Reporting Services is
integrated with SharePoint. As we describe in Chapter 12,
this configuration can be a bit complicated to set up. One
of those points of complication is the security model.
Reporting Services and SharePoint have different security
structures, which are largely but not entirely compatible
with each other.

You have three choices for setting up security with
SharePoint in integrated mode:

• Windows authentication with Kerberos: This supports
passing the user’s Windows credentials to the data
warehouse database (such as for the filtered reports
described previously).

• Windows authentication without Kerberos: This works with
any authentication protocol, but does not support passing the
user’s credentials to the underlying database. The users will

904

have to authenticate a second time in order use their own
credentials to execute a filtered report.

• Forms authentication: This has the same advantages and
disadvantages as Windows authentication without Kerberos.

Windows authentication with Kerberos is the
recommended strategy, if it fits within your IT
environment.

You can set permissions on report definitions, models, and
connections from SharePoint. These permissions are
integrated with Reporting Services. The security truly is
integrated, and can be managed in either place.

Analysis Services Security

When you install Analysis Services, all members of the
Administrators local group are granted access to the server
and all databases and data. Until you set up roles and
explicitly grant access, no other users can even connect to
the Analysis Services instance, much less browse data.

Administrative Roles for Analysis Services

First, set up an administrative role for each Analysis
Services database. A database administrator has full
control over the database, including processing,
aggregation design, and security. Analysis Services
database administrator is a highly privileged role, but it
doesn’t require system administrative privileges on the
server. If your Analysis Services server contains multiple
databases, create a database administrator role for each.

905

The easiest way to create a role, including an
administrative role, is within Management Studio. While
you’re logged in with server administration privileges, use
the Object Browser to navigate down to a database, then to
Roles within that database. Right-click to create a new
role.

The person who administers security needs unrestricted
access to the cube’s data. That’s because the security
administrator will need to test the roles and permissions.
With Analysis Services, the security administrator must
have Full Control (Administrator) permissions to the
database. This is more permission than a security
administrator needs — a security administrator shouldn’t
be able to process the database or modify aggregations —
but it’s as fine grained as you can get.

NOTE

Management Studio is the only tool that
Microsoft provides for managing Analysis
Services security. This is troubling,
because the person who’s creating and
testing roles, and mapping roles to groups,
must have database administration
privileges. If the security manager is
careless, she can inadvertently damage the
database.

906

We recommend that you limit this risk in
one of two ways:

• Write a tool that provides the same security
management functionality as in
Management Studio, but no other
functionality. We’re surprised that we
haven’t been able to find such a tool in the
market or on Codeplex.

• Develop and modify roles on the test
system and script the deployment to the
production system. This is always a good
idea, whether or not you’re worried about
the security manager’s administrative
privileges.

User Roles for Analysis Services

Now that you understand how to administer security, it’s
time for the more interesting topic of how to define users’
permissions. Use the Role Designer dialog box to define
and test Analysis Services roles on your test server. You
can find the Role Designer under the Roles node in the
Object Explorer pane of Management Studio.

The Roles Designer dialog box, illustrated in Figure 14-1,
contains eight pages, of which only a few are interesting:

• General. Use the General page to name the role.
• Membership. Use the Membership page to assign Active

Directory groups to the role. When you first set up a role,
you don’t need to assign any groups to that role. Although
you might think that the first step in defining a user role is to
assign users to the role, that assignment is actually the last
step.

907

• Data Sources. This page is seldom used. The Data Source is
the source of the Analysis Services database’s data, usually a
SQL Server relational database. The database and cube
definition place a layer between the user and that source;
very few users need access to the Data Source. The
exception is that if the Analysis Services database includes a
data mining model, users may need access to a data source in
order to perform a predictive query.

• Cubes. Use the Cubes page to grant user access to the cubes
within the database. You must grant access to a cube; users
are not automatically granted cube access. If you simply
grant access to a cube and immediately save the role, you’ve
created a role with full access to all the data in the cube. If
that’s not what you want to do, continue through the pages
of the Role Designer to set the appropriate cell and
dimension limits for the role.

• Cell Data. Use the Cell Data page to grant user access to a
subset of numbers in the cube. Cell security acts by
replacing some of the cube’s numbers (facts) with #N/A.
Cell security is discussed in greater detail below.

• Dimensions. You can use the Dimensions page to deny
access to a complete dimension.

• Dimension Data. Use the Dimension Data page to grant or
deny access to a portion of a dimension. Dimension security
acts by making the cube look smaller by hiding some
dimension members. Dimension security is discussed in
greater detail below.

• Mining Structures. Use the Mining Structures page to grant
access to data mining models.

Figure 14-1: The Analysis Services Role Designer dialog
box

908

Before you launch into the process of designing cell and
dimension security rules, map out the strategy for this role.
Remember that dimension security makes a report grid
smaller: It limits the display of dimension attributes. Cell
security doesn’t change the row or column headers of a
report; instead, it replaces some numbers inside the body
of the report with #N/A. It’s easiest to envision dimension
versus cell security in the context of a tabular report, but of
course the security holds no matter how you’re viewing the
results of a query.

If you want to hide descriptive information about an
employee, like his Social Security number, you use the
Dimension Data page. If you want to hide quantitative
information, like a salesperson’s sales quota, you use the
Cell Data page. Think of cell security as security on facts.

Remember that a user or group can have multiple roles: A
user can be in both the Marketing role and the Executive
role. When Analysis Services combines multiple roles, it
does so additively, with a union operation. If a user
belongs to two roles, one forbidding access to a data

909

element but the other allowing it, the user will have access
to that data element.

There’s one quasi-violation of this union rule. If a user has
roles with both cell security and dimension security, the
dimension security trumps the cell security. In other
words, even if a role is permitted to see every fact cell in
the cube, that data won’t show up if the role can’t see the
dimension or dimension member. This is just what you’d
expect to happen because the dimension security would
forbid dimension members from showing up as row and
column headers.

When you’re testing your role definitions, you will really
come to appreciate the role impersonation feature of the
cube browser in Management Studio. Figure 14-2
illustrates cube browsing with a different role’s
credentials. Note that you can switch users (or roles) by
clicking the Change Users icon in the upper left of the
browser window, highlighted by the tooltip in Figure 14-2.
You can test multiple roles overlaid on top of each other.
When you’re working on security, you’ll quickly get in the
habit of looking at the message near the top of the window,
informing you of which role or roles you’re impersonating.

Figure 14-2: Test role definitions by impersonating
credentials

910

Dimension Security

There are two basic approaches to defining dimension
security on a dimension attribute: Specify the members
that are allowed (all others are excluded), or specify the
members that are denied (all others are accessible). In most
cases, your choice of whether to specify the allowed set or
denied set depends on the relative size of the included and
excluded sets of members. There’s a second order problem
that can be really important: if a new member is added to
the dimension, should it be accessible or excluded by
default? The safest thing is to specify the members the role
is allowed to see. Then when new members are added,
they won’t be visible to restricted roles until the role
definition is explicitly changed.

Figure 14-3 illustrates a simple definition of dimension
security on a dimension attribute. In this case, we’re using

911

the Deselect all members option to explicitly define the
allowed set. Any new members will be excluded.

Figure 14-3: Defining basic dimension security

We’ve introduced the problem of new dimension members
joining the dimension. If this happens rarely, it’s not too
big a burden to redefine the roles to account for the new
member. If the dimension changes rapidly — for example
a customer dimension — you’ll want to take a different
approach.

One of the neatest solutions is to use MDX to define the
included (or excluded) set of members. Under the covers
you’re always using MDX: The pick list illustrated in

912

Figure 14-3 is simply a user interface that generates an
MDX expression. In this case, the expression is a list of
members. You can see this expression by switching over to
the Advanced tab on the Dimension Data page.

A common MDX security expression will include (or
exclude) all the children of a parent. For example, imagine
you want to create a role that can see all the product
categories (Bikes, Clothing, Accessories, and
Components), cannot see any of the subcategories under
Bikes, but can see all the subcategories for the other three
categories. Instead of listing the products that are in the
brand today, define the MDX expression for the
subcategory attribute of the product dimension as
illustrated in Figure 14-4.

MDX expressions can be a lot more complicated than this,
but the Exists function illustrated here, and its close friend
the Except function, cover most cases. Books Online has
more examples under the topic “Granting Custom Access
to Dimension Data.” For more complex examples, you
should look at a reference book on MDX. Chapter 8 lists
several MDX references.

Figure 14-4: Using MDX expressions to define dimension
security

913

There are a few wrinkles associated with dimension
security. The first is the behavior of related attributes; the
second issue is referred to as Visual Totals.

We introduced related attributes in Chapter 8. One of the
common uses of related attributes is to define a natural
hierarchy, like product category to subcategory to brand.
Related attributes have an implication for the way
dimension security works for denied sets. If you deny
access to a specific product category, then you’re also
denying access to its children (subcategories and brands).
This behavior doesn’t come from the definition of a
hierarchy between these three attributes. Instead, the
behavior is driven by the definition of the relationships
between the attributes — which is what makes it a natural
hierarchy.

914

TIP

It really feels like the hierarchy definition
should be the thing that drives the security
relationship, not the related attribute
definition that users never see. To help
keep it straight, think of the hierarchy
merely as a drilldown path for the user
interface; it’s the underlying related
attribute definitions that are really
important. A product attribute like color
that has no related attribute to the item
you’re securing (product category in our
example) will not be affected by the
security definition. Which, after all, makes
perfect sense.

The second complexity with dimension security is the
notion of Visual Totals, which you can see as a checkbox
at bottom of the Advanced tab of the Dimension Data page
in Figure 14-4. Imagine a role that grants permission only
to a single product and doesn’t restrict the brand level.
What should be the subtotal by brand, for the brand
containing the one product the role can see? Should the
subtotal be the real subtotal for the brand? Or should it be
the subtotal for the visible product? The answer depends
on your business user requirements. The default behavior
is to not use Visual Totals: Subtotals reflect both visible
and invisible cells.

915

TIP

This is a difficult concept with a mediocre
name. Visual Totals refers to what you
would expect the total to be if you were
looking at a report, and added all the
numbers you’re allowed to see on the
report.

We usually prefer the default behavior for several reasons.
First, the server has to work harder to support Visual
Totals. It makes much less use of predefined aggregates.
More important, with Visual Totals turned on, you’re
sowing confusion among your business users. Two people
running the same report would come up with different
totals at the brand level. This is a situation you’ve built
your DW/BI system to avoid.

A downside of using the default behavior is that users may
be able to infer a piece of hidden information. The simplest
example is if you’re hiding only one product, and showing
the true brand total. Any user can calculate the hidden
product’s sales as the difference between the brand total
and the sum of the accessible products’ sales.

Cell Security

Cell security affects which numbers or facts are displayed
in the grid of a report, and which are blanked out (or
replaced with #N/A or some other display element). Cell
security, like dimension security, uses MDX expressions to

916

define the cells that are accessible or hidden. Unlike
dimension security, the Cell Data page of the Role
Designer doesn’t have any user interface other than
entering MDX expressions. Cell security is so flexible that
the best available UI is the MDX editor window.

Figure 14-5 illustrates the Cell Data page of the Role
Designer. We’ve started by granting read privileges to one
node of data in the product dimension: those data elements
that roll up to the “Bikes” category. Data for other
categories will display #N/A.

Figure 14-5: Defining cell-level security

NOTE

917

Users in the United States are familiar with
the use of #N/A to mean Not Available
because that’s the convention in Microsoft
Excel. If you don’t like #N/A, your client
application may be able to translate this
abbreviation for you. Or, you can specify a
different value for the Secured Cell

Value property in the user’s connection
string.

The expression in Figure 14-5 refers to the product
dimension. Data along other dimensions in the cube is
currently unrestricted. You can build up an MDX
expression that refers to multiple dimensions, with clauses
connected by ANDs and ORs. We recommend you start
simply and build up the expression piece by piece, testing
after each addition.

RESOURCES

The Books Online topic “Granting Custom
Access to Cell Data” contains a nice set of
increasingly complicated cell security
definitions.

Look back at Figure 14-5, and notice the option to enable
read-contingent permissions. This is an advanced option
that most applications will not need. Read contingency is
relevant for permissions on derived cells. The definition of

918

read-contingent permissions is the same as for read
permissions, but the behavior is different. Read-contingent
permission will show a derived cell only if the role has
access to all the data that goes into that derived cell. For
example, if you have a derived measure for contribution to
margin, the role can see that measure only if the
underlying data to calculate contribution to margin is also
accessible to that role. The rationale for this feature is
similar to the Visual Totals discussion under dimension
security: A smart user may be able to infer information
that you don’t want him to have. We advise caution with
implementing read-contingent security. No doubt there are
cases where this finesse is important, but it’s more likely to
leave everyone confused.

Return to Figure 14-5, and notice the third place to enter
an MDX expression for read/write permissions. Write
permissions have to do with Analysis Services databases
that support data writeback. These are typically financial
applications like budgeting and forecasting. This book
doesn’t address this kind of application, but not because
it’s uninteresting or because it’s not part of business
intelligence. Rather, it’s a huge topic worthy of a paper or
book of its own. Within the context of our security
discussion, assigning write permission to a portion of the
cell data uses exactly the same kind of MDX expression
we’ve already discussed. Most organizations should steer
clear of developing write-enabled cubes, and instead look
to purchase packaged budgeting and forecasting software
that is implemented on Analysis Services.

919

WARNING

Be careful about checking the Read
Contingent or Read/Write checkboxes
without adding an MDX expression to
focus the permission. If you check the
Read/Write checkbox but don’t add an
expression, you’re giving the role Read/
Write privileges to the entire cube.
Similarly for Read Contingent. This is
unlikely to be what you intended.

Dynamic Security

You can use the dimension and cell security features to
implement complex security rules. However, a large
organization with individualized security may find that
maintaining the MDX for many groups to be burdensome.
Consider the scenario where you plan to deploy ad hoc
Analysis Services access to a thousand users, and each
user must be allowed to see a personalized part of the
cube, such as their own accounts or employees. You can
be in the position of creating, testing, and maintaining
hundreds or thousands of roles.

An alternative approach is to use dynamic or data-driven
security. This technique builds security into the structure
of the cube, by creating a user dimension and a
relationship fact table that describes what data elements
each user is allowed to see. The UserName MDX function
is your secret weapon. Creative definition of calculations

920

can dynamically hide access to most detailed data (except
your own), and still reveal aggregated data across the
enterprise.

Dynamic security is more expensive at query time than
standard security implementations. We’d be cautious about
using the technique for terabyte-scale data volumes. The
good news is that most of the dynamic security scenarios
we’ve encountered, such as financial or personnel data, are
good candidates for the technique.

RESOURCES

The book SQL Server 2008 MDX Step by
Step (Microsoft Press, 2009), by Bryan
Smith and Ryan Clay has more information
on how to implement dynamic security.
You can also find many alternative
techniques on the web by searching
“Analysis Services dynamic security.”

PowerPivot Security

As we describe in Chapter 11, the PowerPivot
functionality that’s new in SQL Server 2008 R2 is
basically a reporting and analysis Excel add-in. The user
who’s creating a new PowerPivot model is subject to the
security rules of the databases from which he’s sourcing
the data (usually Analysis Services and the relational data
warehouse). Once a PowerPivot model is created, it can be
secured at an overall level, like any other Excel document.

921

There is no functionality for securing a portion of the data
in a PowerPivot model.

Relational DW Security

If the only access to the relational data warehouse comes
through Analysis Services cubes and Reporting Services,
then the relational security model is simple. If you’ll allow
ad hoc access into the relational data warehouse, especially
if you have requirements for filtering data (also known as
row-level security), the relational security model grows
increasingly complex.

No matter how users access the relational data warehouse,
begin by thinking about the roles necessary for
administering the relational database. After securing the
operations, we’ll discuss issues around users’ security.

Administrative Roles for the Relational Database

The SQL Server database engine has predefined server and
database roles. These roles work the same for a DW/BI
system as for any other SQL Server database application.
Compared to the administrative roles for Analysis
Services, the database engine has fine-grained permissions.

There are a great many server and database roles for the
SQL Server relational database. There’s nothing
particularly unusual about a data warehouse. You should
find it easy to create server and database roles for your
team members that provide exactly the permissions you
want.

922

It’s always good practice to grant people, even people on
the DW/BI team, as few privileges as they need to get their
jobs done. Occasionally people are malicious, but more
often they’re just careless.

The processing account that runs the Integration Services
packages needs to have high privileges. You should always
run production operations, like the ETL system, under a
service account that’s not associated with a person’s login.

It’s common for the DW/BI team members to all have high
privileges on the development system. The test system
should be set up the same way as production. One of the
things you need to test before moving into production is
whether the permissions are set correctly. This is a very
common task to overlook.

SQL Server uses the ANSI-standard concept of a schema.
Object names are fully qualified as
server.database.schema.object. We usually create the data
warehouse tables under a single schema, but we’ve seen
people use schemas to segregate dimension, fact, utility,
and metadata tables.

NOTE

For maximum database security, consider
using the Enterprise Edition transparent
database encryption feature. Transparent
database encryption, or TDE, encrypts the

923

entire database, much as if you encrypted
the file system or drives. TDE protects the
entire database, and as its name implies it’s
transparent to users and applications. It
places a modest demand on the database
(around 5 percent for most data warehouse
databases). TDE is most appropriate to
meet regulatory or compliance
requirements, in tandem with the
user-oriented security discussed in the
upcoming section.

User Roles for the Relational Database

There are two main kinds of accounts that issue relational
queries in a DW/BI system: reporting accounts used by
Reporting Services, and business user accounts. You’re
likely to have one or several reporting accounts.
Depending on your business requirements, you may have
business user accounts for individual users that can log in
to the relational database.

Reporting Account Permissions

Depending on how users access the DW/BI system, you
may have only a few user roles to worry about. If you’re
using Reporting Services, you should expect to create and
manage a reporting query account. Like the ETL
processing account, the reporting query account should not
be associated with a person. If you’re using Analysis
Services, you should create a separate Analysis Services

924

processing account. This account may have the same
privileges as the reporting account, but it’s foolish to
assume they’ll always be the same.

We have already said several times that all users should
access the relational data warehouse through views, rather
than directly querying tables. There are several reasons for
this:

• Views let you insulate the user experience from the physical
database. It’s amazing how much the view layer lets you
restructure the database with minimal disruption to the user.

• Views let you hide or rename columns to suit users. You can
remove the prefixes (like Dim and Fact, which we use in
MDWT_AdventureWorksDW) from the view names.

• Views let you define role playing dimensions with
meaningful column names, such as Ship_Year and
Order_Year.

• Views let you add row-level security seamlessly.

Create a view on every user-accessible table, even if the
view simply selects all columns from the table. Grant user
access to the views, not to the tables. This includes the
reporting account and the Analysis Services processing
account. Both of these service accounts should use views
rather than the underlying tables.

NOTE

Create all user-oriented views and stored
procedures under a single schema, and
have that schema own no other objects.

925

This makes it easier for you to find these
objects when it comes time to assign
permissions.

The reporting account should have read access to the
appropriate views, possibly all the views. As we discussed
previously in this chapter, Reporting Services secures the
reports, so the reporting account will have greater read
privileges than any individual user would. Some reports
will use a stored procedure to deliver up the rowset. If so,
the reporting account will need execution privileges on
those stored procedures. The reporting account should
never have write privileges on any table or view.

We can’t think of a technical way for the encrypted
reporting account credentials to be stolen. But the most
likely way for those credentials to get out is the obvious
one: Someone — presumably on the DW team — tells
someone else. There’s no point in tempting fate. This is
especially true for any custom reporting front-end or
non-Microsoft query software that might use a reporting
account. Microsoft is very careful about security these
days — don’t laugh, they really are. You should
thoroughly investigate the security mechanisms of any
software on your system.

The Analysis Services processing account should have
read access to the appropriate views, possibly all the
views. The Analysis Services users should not need any
direct privileges in the relational database.

926

Business User Roles

Business users will need login privileges into the relational
data warehouse database if they need to perform ad hoc
analyses. In this scenario, you’ll need to grant them only
the appropriate permissions. This means read-only
permission on the appropriate views, columns, and stored
procedures. You can use the Management Studio user
interface to administer security, or write SQL scripts.

NOTE

What if you want to hide a few columns,
like Social Security number, from some
users but not others? One approach is to
define two views on the table, one with all
public information and the other with all
public and private information.

The best approach is to encrypt the
columns containing private information and
distribute decryption keys only to the
appropriate users.

Create new roles that grant permissions to objects for the
subset of people who can access that object. For example,
say you protected the employee dimension from BIPublic,
but you want everyone in human resources to have access
to it. Create a new role for HR, granting access to the
appropriate views. Roles are additive, so if you have a user

927

who’s a member of both BIPublic and HR, that user can
see the employee view.

Row-Level or Filtering Security

You may need to build row-level or filtering security into
your relational data warehouse. What we mean by
row-level security is that users’ views of sensitive data
differ not at the column level, as we discussed in the
preceding text, but by rows. One person should see a
different set of rows than another person.

There’s no row-level security feature of SQL Server, but
the classic solution is not difficult to implement. First,
create a table that lists users’ IDs and the identifiers for the
rows they’re allowed to see. For example, secure the
FactOrders table from MDWT_AdventureWorksDW to
limit a user’s view of the data only to a specific set of
salespeople (identified by SalesRepKey).

Listing 14-1 shows some DDL for this permissions table,
beginning with the code to create the table:

Listing 14-1: Data definition for the UserPermissions_SalesRep table

IF OBJECT_ID ('[dbo].[UserPermissions_SalesRep]', 'U') IS NOT NULL

DROP TABLE [dbo].[UserPermissions_SalesRep];

CREATE TABLE [dbo].[UserPermissions_SalesRep](

UserPermissions_SalesRepKey int IDENTITY NOT NULL,

[UserName] sysname NOT NULL,

928

[EmployeeKey] int NOT NULL

CONSTRAINT [PK_UserPermisssions_SalesRep]

PRIMARY KEY CLUSTERED ([UserPermissions_SalesRepKey] ASC)

);

Next, insert some rows into this table. Let’s say that the
user Joy is allowed to see only information for employees
272 and 281. Listing 14-2 inserts two rows that identify the
sales reps that Joy can see:

Listing 14-2: Insert rows that define which employees Joy can see

INSERT UserPermissions_SalesRep VALUES ('KimballGroup\Joy', 272);

INSERT UserPermissions_SalesRep VALUES ('KimballGroup\Joy', 281);

In the case of Listing 14-2, you’re using Windows
Integrated Security, and Joy is a user on the KimballGroup
domain.

The final step is to create a view definition that joins the
fact table to this new permissions table, as illustrated in
Listing 14-3:

Listing 14-3: Define a view to provide row-level security

IF OBJECT_ID ('OrdersSecure', 'V') IS NOT NULL

DROP VIEW OrdersSecure;

GO

CREATE VIEW OrdersSecure

AS

SELECT f.* FROM FactOrders f

929

INNER JOIN UserPermissions_SalesRep u

ON (f.SalesRepKey = u.EmployeeKey)

WHERE u.UserName=SYSTEM_USER;

GO

As you can see by looking at the view definition, the trick
is to limit the view to only those rows where the user name
in the permissions table is the same user name as the
person issuing the query. If you maintain the permissions
table, many people can access this OrdersSecure table
and see only the appropriate set of rows.

This solution is not as satisfactory as the dimension and
cell security that you can define in Analysis Services.
You’ve safely protected the detailed data, but no one can
use this view to see company-wide sales. You need to
create a second view, simply called Orders, that drops the
SalesRepKey. The BIPublic role can query the Orders

view and use that for most queries about sales volumes.
The dual views create a usability problem for ad hoc
business users, but it’s the best solution the relational
database offers.

Note that the row-level view is useful not just for ad hoc
querying. You can also set up Reporting Services filtering
reports that use the view. When you define that report, you
need to pass credentials from the user into the database.

If you need to support filtering reports and row-level
security, you should consider building an applet to help
maintain the UserPermissions tables. For performance
reasons, you want the UserPermissions tables to use the

930

warehouse surrogate keys. But your requirements are
probably phrased along the lines of granting permission to
all the employees in a department or sales reps in a region.
A simple applet can help the security administrator be
more effective than writing INSERT statements, and can
greatly reduce errors.

Testing Relational Security

Even though relational security isn’t as complicated as
Analysis Services security, it’s still plenty complicated.
You must thoroughly test all the roles and the
combinations of roles.

You can impersonate a user and then run a query. Compare
the results of the queries before and after impersonation to
evaluate whether the security definitions are correct.
Listing 14-4 shows you how. The script assumes you’ve
created the OrdersSecure view described previously, and
also that you created a role BIPublic to which you granted
access to OrdersSecure. We further assume that when you
run this script, you have sufficiently high privileges that
you can create logins and users. Sysadmin would work just
fine.

Listing 14-4: Create a temporary user to test security roles

--Create a temporary login and user

CREATE LOGIN LoginBIPublic WITH PASSWORD = 'J345#$)thb';

GO

CREATE USER UserBIPublic FOR LOGIN LoginBIPublic;

GO

931

--Display current execution context. This should come back as you.

SELECT SUSER_NAME(), USER_NAME();

--As a simple, not very accurate test, how many rows can you see?

SELECT COUNT(*) FROM OrdersSecure

--Set the execution context to LoginBIPublic.

EXECUTE AS USER = 'UserBIPublic';

--Verify the execution context is now 'UserBIPublic'.

SELECT SUSER_NAME(), USER_NAME();

--Select from the view. You should get a permissions error

SELECT COUNT(*) FROM OrdersSecure

--Revert back to yourself and add the user to the BIPublic role

REVERT;

EXEC
sp_addrolemember @rolename='BIPublic', @membername='UserBIPublic'

GO

--Now select from the view as UserBIPublic. We expect to see zero rows

--because UserBIPublic is not in the UserPermissions table.

EXECUTE AS USER='UserBIPublic';

SELECT COUNT(*) FROM OrdersSecure

--Revert back to yourself

REVERT;

--Remove temporary login and user

932

DROP LOGIN LoginBIPublic;

DROP USER UserBIPublic;

GO

With our security hats on, we recommend that you always
run impersonation tests from a script, and bracket the
script with CREATE and DROP login and user, as we
illustrated here.

Integration Services Security

Integration Services is a back-room operation, so its
security story is simple. First, make sure the packages are
secure, so no one can mess with package contents. You
don’t want anyone to replace the package that performs an
incremental load of the data warehouse with one that
deletes all the data. This is a pretty far-fetched scenario.
More likely someone on the team is careless and does
something wrong.

Packages can be stored in the file system as XML, or in
SQL Server. You should secure the package location.
Packages stored in SQL Server are stored in the msdb
database, in the table called sysssispackages. Simply
use the database engine’s security to grant limited
permissions to msdb, and the package contents are
automatically secured. If you store the package on the file
system, use Windows security to limit access.

In addition to this basic security, you can sign or encrypt
packages. Digitally sign the package and set the package’s
CheckSignatureOnLoad property to True to prevent

933

anyone from modifying a package’s contents. More
accurately, what you’re doing is telling the package to
check for a signature before it runs. If the package has
been modified unintentionally, it wouldn’t have been
signed. If someone maliciously modified the package, they
should not be able to sign it.

Packages contain sensitive information within them,
including the connection information to an account that,
usually, has very high privileges in the data warehouse
database. Integration Services automatically encrypts all
connection information for you, but you can go farther and
encrypt more of the package contents. There are several
encryption options, but they come down to requiring a
password before anyone can view the package.

The “Relational DW Security” section earlier in this
chapter provides guidance on the kinds of relational
database permissions you’ll need to provide for the
connections from your Integration Services packages to the
data warehouse database.

Usage Monitoring

A secure DW/BI system will have usage monitoring in
place. In an increasingly regulated world, it’s extremely
valuable to know who is connected to the system and what
they’re doing.

In Chapter 17 we talk about how to set up usage
monitoring on Analysis Services, Reporting Services, and
the relational engine. For some organizations it’s sufficient
simply to collect logons: who’s accessing the database and

934

when? Other organizations need to know exactly who is
accessing which information.

Reporting Services collects usage information by default.
In addition, Reporting Services provides an option to copy
the usage logs from the Reporting Services catalog into a
separate database. This option provides a target relational
database, Integration Services packages to move the data,
and a starter set of reports. This database should suffice for
the majority of usage reporting requirements from
Reporting Services.

Usage monitoring provides other valuable benefits. It’s a
valuable tool for performance tuning. Spending a bit of
time analyzing how business users are accessing data is
very valuable for understanding how to improve your DW/
BI system.

If you set up a usage monitoring system — as we strongly
recommend — you should inform your business users of
what you’re doing, why, and how the information will be
used.

Summary

The goal of this chapter is to highlight the most important
security issues for a DW/BI system and to help you figure
out where and when to secure data. We cannot possibly
cover all the security features of SQL Server or all the
details of how to implement those features. We hope we
have provided you with the tools to develop a security plan
and security test plan.

935

One of the most important steps you can take for a secure
DW/BI system is to identify which DW/BI team member
is in charge of security. That security manager drives the
development and implementation of the security plan.

The easiest pieces of the security plan have to do with
physical security and operating system security. There’s
lots of information available about how to secure servers
and the Windows operating system. You just have to
commit to doing it.

The harder question, and the one to which we devoted
most of this chapter, has to do with securing the data. As
we described, securing predefined reports in Reporting
Services is easy, painless, and effective. Securing data for
ad hoc analysis is a harder problem. You’ll definitely find
it easier, and the user experience much better, to define
security rules in Analysis Services than in the relational
database. Analysis Services’ security features make this a
fairly straightforward task for a wide range of
requirements. And because security rules are defined in
MDX, even very complicated scenarios are feasible.

Finally, we struggled with how to set up the relational
database security to support direct ad hoc access. It’s
possible — people have been doing it for years — but it’s
hardly as easy or satisfactory as we’d like.

The SQL Server documentation in Books Online has a
strong emphasis on security features. But the security
documentation is scattered across the different
components, and it isn’t always easy to find the
information you need. You might be able to cut corners in

936

some aspects of system development, especially if your
data volumes are small, but everyone needs to be careful
about security.

937

Chapter 15

Metadata Plan

The Bermuda Triangle of data warehousing.

Metadata is a vast, relatively uncharted region of the DW/
BI system. Some teams sail into it full speed ahead, never
to be heard from again. Most teams try to avoid the
problem by sailing around it. Unfortunately, the metadata
region is smack in the middle of your path to the great new
world of business value, and you need to figure out how to
navigate it successfully.

One of the first metadata challenges is figuring out what
metadata is. We begin this chapter with a brief definition
and description of the three major categories of metadata
found in a DW/BI system: business, technical, and process
metadata.

With a common terminology in place, your next challenge
is to figure out what metadata you have and where it
comes from. We explore the various sources and uses of
metadata across the SQL Server toolset. Every component
of the toolset is metadata-driven. The problem is the
metadata is kept in different locations and different
formats, so finding and managing the metadata is
challenging. Finally, we describe a basic, practical
approach for dealing with the most important and broadly
used metadata elements.

938

Metadata creation and management can be a tangled topic.
What we present here is a starting point. Many of you, and
certainly those of you in larger organizations, will need to
expand on our recommendations and customize them to
your environment.

In this chapter, you will learn:

• What we mean by metadata and why you need it.
• What metadata features are included in SQL Server 2008

R2.
• How to implement an effective metadata strategy with the

tools available.

Metadata Basics

One of the most common definitions of metadata is
“Metadata is data about data.” This is vague to the point of
uselessness. It doesn’t help you understand what metadata
is or why you should care. We think about metadata as all
the information that defines and describes the contents,
structures, and operations of the DW/BI system. Metadata
describes the contents of the warehouse and defines the
structures that hold those contents and the processes that
brought those contents into being. In this section, we talk
about the purpose of metadata, describe the common types
of metadata found in the DW/BI environment, and discuss
the concept of the metadata catalog.

The Purpose of Metadata

Metadata serves two main purposes: defining and
describing the objects and processes in a system.

939

Some metadata is used to define a process, object, or
behavior. When you change the metadata, you change the
process. A simple example is the start time of a SQL
Server Agent job. Change the value of the start time
element and you change the start time of the process. This
idea of using metadata to define a process outside the code
was an early, practical use of metadata. Separating a
program’s code from its parameters and definitions allows
the developer (and in some cases, the user) to change the
parameters and definitions without having to edit and
recompile the code. This concept has been around for
decades in forms like table-driven programs and
configuration files.

Other metadata is used to describe an object or process.
This kind of descriptive metadata is essentially
documentation. If you change the process, but don’t
change the description, the process itself still works, but
your understanding of the process based on its description
is now incorrect. Some of the common properties of an
object, like its name or description, do not affect its
appearance or behavior; they simply describe it in some
way. It’s this idea of describing that leads to metadata as
documentation.

Metadata Categories

The DW/BI industry often refers to two main categories of
metadata: technical and business. We’ve added a third
category called process metadata. As you’ll see in the
descriptions of these categories that follow, technical
metadata is primarily definitional, while business and

940

process metadata are primarily descriptive. There is some
overlap between these categories.

• Technical metadata defines the objects and processes that
make up the warehouse itself from a technical perspective.
This includes the system metadata that defines the data
structures, like tables, columns, data types, dimensions,
measures, data mining models, and partitions in the
databases. In the ETL process, technical metadata defines
the sources and targets for a particular task, the
transformations, and so on. This description of technical
metadata is cause for some confusion, because some of this
technical metadata can also be used as business metadata.
For example, tables and columns, security rules, and
occasionally even ETL rules are of interest to some users.

• Business metadata describes the contents of the data
warehouse in more accessible terms. It tells us what data we
have, where it comes from, what it means, and what its
relationship is to other data in the warehouse. The name and
description fields in Analysis Services are good examples of
business metadata. Business metadata often serves as
documentation for the data warehouse. As such, it may
include additional layers of categorization that simplify the
user’s view by subsetting tables into business-oriented
groups, or omitting certain columns or tables. When users
browse the metadata to see what’s in the warehouse, they are
primarily viewing business metadata.

• Process metadata describes the results of various operations
in the warehouse. In the ETL process, each task logs key
data about its execution, like start time, end time, rows
processed, and so on. Similar process metadata is generated
when users query the warehouse. This data is initially
valuable for troubleshooting the ETL or query process. After
people begin using the system, this data is a critical input to
the performance monitoring and improvement process.

The Metadata Repository

941

All of these metadata elements need a place to live.
Ideally, each tool would keep its metadata in a shared
repository where it can be easily reused by other tools and
integrated for reporting and analysis purposes. This shared
repository would follow standards for how metadata is
stored so the repository can be easily accessed by any tool
that needs metadata, and new tools can easily replace old
tools by simply reading in their metadata.

For example, suppose you had a shared, centralized
repository in your DW/BI system. When you use your
ETL tool to design a package to load your dimensions, the
ETL tool would save that package in the repository in a set
of structures that at least allow inquiry into the content and
structure of the package. If you wanted to know what
transforms were applied to the data in a given dimension
table, you could query the repository.

Unfortunately, this wonderful, integrated, shared
repository is rare in the DW/BI world today, and when it
does exist, it must be built and maintained with significant
effort. Most DW/BI systems are like the Tower of Babel,
and Microsoft SQL Server is no exception. Each
component keeps its own metadata in its own structures
and formats.

It may provide some comfort to know that managing
metadata is a challenge that is not unique to the Microsoft
platform. For decades, people in the software industry
have realized that managing metadata is a problem. There
have been, and continue to be, major efforts within many
companies to build a central metadata repository. At best,
these are unstable successes. The amount of effort it takes

942

to build and maintain the central repository ends up being
more than most companies are willing to pay. At the same
time, several major software companies have tried to
address the problem from a product perspective. Most of
these products are large-scale, enterprise repositories that
are built to handle every kind of system complexity.
Implementers have a hard time navigating the product
complexity, so most of the functionality remains unused.
The cost and effort often bring the project stumbling to its
knees. We’ve often seen initial success at implementation
followed by a slow (or rapid) divergence from reality until
the repository falls into complete disuse.

Metadata Standards

While projects to build an enterprise repository are often
less than successful, the effort continues because there are
at least four good reasons to have a standard, shared
repository for metadata:

• When tools exchange metadata, you can reuse existing
metadata to help define each new step in the implementation
process. Column names and descriptions captured in the data
model design step can be used to build the relational tables,
reused to populate the OLAP engine, and used again to
populate the front-end tool’s metadata layer.

• If the metadata is in a standard form, your investment in
defining objects and processes is protected — you are not
locked in to a particular tool. For example, Reporting
Services Report Definition Language (RDL) is a language
standard that describes a report. If all your reports are stored
in RDL, you can potentially switch to a new front-end tool
and still be able to use your existing report library. (This
benefit is not particularly popular with tool vendors.)

943

• A central repository gives you a single, common
understanding of the contents and structure of the data
warehouse — it’s the best documentation you can have. To
the extent that this shared repository holds the official, active
metadata for each tool, you know it’s the current version and
not a copy that may be out of date.

• An integrated metadata repository allows you to more easily
assess changes through impact and lineage analysis. The two
concepts are essentially like looking down the same pipe
from either end. In impact analysis, you want to know what
downstream elements will be affected as a result of a
potential change, like dropping a table. In lineage analysis,
you want to know how a certain element came into being —
what sources and transformations it went through to get to
where it is.

You’d like to have a standard repository for metadata in
the DW/BI environment. The tools would write their
metadata to the repository during the design phase and
read it back in during the execution phase. In theory, any
tool can write to and read from the standard model.

There is a published standard framework for data
warehouse metadata, called the Common Warehouse
Metamodel (CWM). That standard was published in 2001,
but it is not maintained and seems to be dead. At the time
of this writing, there appears to be no effective, active,
independent data warehouse metadata framework.

SQL Server 2008 R2 Metadata

The good news is that the SQL Server toolset is metadata
driven. The relational engine has a slew of system tables
and views that define and describe the data structures,
activity monitoring, security, and other functions along
with a set of stored procedures to manage them. Other

944

components, like Analysis Services and Integration
Services, are based on similar metadata, stored in an
object-oriented structure in XML files. Much, if not all, of
the property based metadata in SQL Server can be
accessed through the various object models.

The bad news is that every major component of SQL
Server keeps its metadata in independent structures, from
database tables to XML files, which have their own access
methods, from SQL Management Objects (SMO) and
Analysis Management Objects (AMO) to stored
procedures to APIs. Not only do the tools manage their
own metadata, but the metadata they use is not integrated
across the tools.

As we describe in the next section, the first step in every
metadata strategy is to assess the situation. You need to
conduct a detailed inventory of what metadata structures
are available, which ones are actually being used, what
tools you have to view the metadata, and what tools you
have to manage it. Table 15-1 provides a convenient
summary of the various metadata sources and stores across
the SQL Server BI platform, and identifies various tools
for accessing and viewing them. The remainder of this
section describes the major components in Table 15-1.

Cross-Tool Components

Several metadata components in SQL Server support more
than one tool in the system. We decided to list those once
rather than repeating them under each heading:

945

• SQL Server Agent is the job scheduler of the SQL Server
world. It contains information about jobs, job steps, and
schedules. SQL Server Agent metadata can be accessed
through a set of stored procedures, system tables, SQL
Management Objects (SMO), and SQL Server Management
Studio.

• SQL Server Profiler is SQL Server’s activity monitoring
tool. You define a trace to track the occurrences of specific
events, like Audit Logon, and have those occurrences written
out to a table or file. SQL Server Profiler can be used
interactively from the Profiler tool, or initiated
programmatically using stored procedures. Chapter 17
describes using SQL Server Profiler to create an audit log of
DW/BI system usage.

• BIDS Helper is a nice Visual Studio.NET add-in that extends
BI Development Studio (BIDS). It has functionality for
Analysis Services, Integration Services, and Reporting
Services, including design warnings and health checks,
synchronizing descriptions, and project cleanups.

• SQL Server Metadata Toolkit provides a hint of what a
future metadata tool might look like. The Toolkit will read
your SSIS packages and Analysis Services cubes, put the
information into a metadata database, and provide some
tools for seeing the chain of relationships between packages
and cubes.

Table 15-1: Metadata sources and stores in the SQL
Server 2008 DW/BI platform

946

947

Relational Engine Metadata

The SQL Server relational engine itself has system tables
that can be accessed through a set of system catalog views
or system stored procedures designed to report on the
system table contents and, in some cases, to edit the
contents. Alternatively, they can be accessed
programmatically through SQL Server Management
Objects (SMO).

Business metadata can be stored along with the table and
column definitions by using the extended properties
function. This allows the developer to append any number
of additional descriptive metadata elements onto the
database objects. The dimensional model design
spreadsheet described in Chapter 2 makes use of extended
properties to store several metadata columns like
description, comments, example values, and ETL rules.
The names of these extended properties must be part of
your naming convention so programs and queries can find
them.

Process metadata for the relational engine can be captured
through the SQL Server Profiler component described
earlier in this section. You can use the Management Data
Warehouse feature of SQL Server to configure Profiler and
other tools to collect and report on the key elements of
ongoing database activity. Chapter 17 describes a
performance monitoring log for the relational engine.

Analysis Services

948

Analysis Services’ object model has all the same kinds of
metadata that the relational engine has and more. From the
definitions of the databases, cubes, dimensions, facts, and
attributes to the KPIs, calculated columns, and hierarchy
structures, not to mention the data mining models — all
are available through the object model. The first and
obvious access tools for the developer are the BI
Development Studio and the SQL Server Management
Studio. Beyond these, you can build custom .NET based
applications that use Analysis Management Objects
(AMO) to access the Analysis Services object model. In
addition, there are Dynamic Management Views that use
SQL syntax to access the Analysis Services object model.
Your DBAs can use these DMVs to monitor activity and
processes in the Analysis Services database, the same way
they use system views to monitor the relational database.

Analysis Services process metadata can be captured
through the SQL Server Profiler component described
earlier in this section. Chapter 17 describes a performance
monitoring log for Analysis Services.

Analysis Services PowerPivot is the Excel-based cube
development and analysis functionality added in SQL
Server 2008 R2. There must be metadata associated with
PowerPivot, but its object model is not exposed in its
initial release. We must await a future release of SQL
Server to develop a coherent metadata story for a DW/BI
architecture that includes PowerPivot.

Integration Services

949

As one might expect, SQL Server Integration Services has
its own object model. Integration Services is essentially a
visual programming environment, as opposed to a
structured database environment like the relational engine
or Analysis Services. SSIS packages can be incredibly
complex and do not follow a common structure. In fact,
much of what might be considered Integration Services
metadata will actually be the result of defining and using
standard naming conventions for packages and tasks.
Another challenge with Integration Services metadata is its
time-dependent nature. At any point in time, it is difficult
to tell which package was used to execute which load. One
day, a certain ETL process can be run from a package
saved in the file system. The next day, the ETL developer
changes the SQL Agent task to point to another package
stored in the database that uses different logic and business
rules. While the packages will have distinct GUIDs, the
names will be the same. Keeping track of this obviously
requires a clear set of development process rules, naming
standards, discipline, and monitoring.

Regardless of where a package comes from, it can and
should be set up to create its own process metadata. As we
describe in Chapter 17, you should turn on logging at the
package level, and select from a long list of events to log.
Table 15-1 references some example Reporting Services
reports on CodePlex that demonstrate how to access the
log data and use it to track the execution and performance
of your SSIS packages.

In addition to this base process-level logging, the data
warehouse audit system described in Chapter 7 ties the
process metadata back to the actual data that was loaded in

950

a given ETL package. This metadata surfaces in the user
interface in the form of an audit dimension and associated
audit tables that allow the user to get a sense for where the
data came from and how it was loaded.

Reporting Services

Reporting Services is entirely metadata driven. The
contents, operation, usage, and security are all described in
a set of metadata tables in the ReportServer database. It is
possible to query these tables directly to see how
Reporting Services works. However, rather than build
reports on top of the production database, which can
impact performance and potentially break when Microsoft
changes the database, it makes sense to extract the process
metadata into a separate reporting and analysis schema.
Microsoft has included a couple of SQL scripts that create
this schema and update it on a scheduled basis, along with
a few example reports written against the schema. A
similar tool, called SCRUBS, is available on CodePlex.
The Reporting Services database is also surfaced through
an object model that itself is accessible through a web
service.

Like many front-end tools, one of the Report Builder query
designers uses metadata to define the objects, attributes,
join paths, and calculations that it needs to formulate a
query. This metadata set is called a Report Builder model
and is created using the BI Development Studio. The
relational version is built on top of its own Data Source
View and is kept in the Reporting Services database.
Report Builder models used to access Analysis Services
are built directly from the Analysis Services cube.

951

Master Data Services

Like the other components of SQL Server, Master Data
Services is metadata driven, and its services and
components are available through a rich object model.
There are also stored procedures installed in each master
data services database. You can use these stored
procedures to interrogate the model, load data, and verify
business rules.

SharePoint

SharePoint keeps its metadata in several relational
databases which it sets up and manages in SQL Server.
This metadata is programmatically accessible through
SharePoint’s object model which includes both client and
server components.

SharePoint is a content management system at its heart. It
supports the capture of metadata in lists and provides the
ability to define shared taxonomies and terms in a
managed metadata service. Most of this metadata is not
relevant to the DW/BI system, but the tools can be used to
keep track of your business metadata.

External Metadata Sources

Several useful metadata sources exist in the broader
computing environment. Chief among these are the System
Monitor tool and Active Directory. If you use a source
control tool like Team Foundation Server, you may also
consider that tool’s data as a metadata source.

952

System Monitor

The Windows System Monitor performance tool is
familiar to anyone who has done system performance
troubleshooting in Windows. It works at the operating
system level much like SQL Server Profiler does at the
SQL Server level. You can define traces for a whole range
of system activities and measures across the BI toolset and
in the operating system itself. These traces can be defined
to run in the background and to write to log files. If
necessary, these logs can be tied back to SQL Profiler logs
to help understand the possible causes of any problems.
Chapter 17 describes which System Performance
indicators are most important to log during regular
operations.

Active Directory

Active Directory is Microsoft’s network based user logon
management facility. It is a directory structure that can
hold user, group, security, and other organizational
information. Depending on how your organization is using
Active Directory, it can be a source for security-related
information. It can also be the system of record for some
of the descriptive attributes of the employee and
organization dimensions. This is another example of where
the line between metadata and data can get fuzzy.

Looking to the Future

Clearly the SQL Server development team understands the
importance of metadata from a development point of view.
However, even though SQL Server has lots of metadata,

953

that metadata is not integrated. Careful metadata
integration and active metadata management has not been
a top priority for the core SQL Server product. In the past,
Microsoft has been a leader on metadata issues, so we
continue to hope that upcoming releases of SQL Server
address the problem of metadata integration and
management in a serious way.

A Practical Metadata Approach

This brings us to the question you’ve all been asking:
What do we do about metadata to support data
warehousing and business intelligence in the SQL Server
2008 R2 environment? In the long term, we expect
Microsoft to tackle the metadata management problem.
Meanwhile, you have to figure out what you are going to
do about metadata in the short to medium term. It’s easy to
get trapped in the metadata morass (as the authors can
certainly attest). It’s a major effort to figure out what
metadata to capture, where to capture it, how to integrate
it, how it should be used in the warehouse processes, and
how to keep it synchronized and maintained. Vendors have
been building metadata repositories and maintenance
utilities for decades, and companies (some companies)
have been trying to use these tools, or tools of their own
creation, to tame the metadata beast for just as long. Even
so, there are very few examples of large-scale, robust,
successful metadata systems. It’s a really hard problem.

Again you ask, “So what am I supposed to do?” First you
need to appoint someone on the team to the role of
metadata manager. If no one owns the problem, it will not
be addressed. The metadata manager is responsible for

954

creating and implementing the metadata strategy. The ideal
candidate has to know everything. No joke. If one person
has to do the whole thing, he or she will need to have SQL
and DBA skills. The metadata manager needs to know
how to program in the Visual Studio environment and how
to create and publish reports, and needs to understand the
business, at a detailed level.

Creating the Metadata Strategy

We believe the following approach is a good compromise
between having little or no managed metadata and building
an enterprise metadata system. Our main recommendation
is to concentrate on business metadata first. Make sure it is
correct, complete, maintained, and accessible to the
business users. Once that’s done, provide a way to view
the other major metadata stores. We often see a tendency
to over-engineer metadata. The key to making this strategy
work is to not overdo it. Here’s the basic outline:

1. Survey the landscape to identify the various locations,
formats, and uses of metadata in SQL Server. The
previous section and Table 15-1 give you a starting
point. Use the tools described to explore the system for
metadata locations. Where there aren’t any tools, you
will need to create query or programmatic access to the
rest of the sources so you can explore and track them.
Create a list of the metadata elements you find,
including where they are, where they came from, who
owns them, how you view and change them, and where
and how you might use them.

955

2. Identify or define metadata that needs to be captured
and managed. These are the elements you’ll use more
broadly and therefore need to keep updated and
distributed throughout the system. What you need to
manage depends on a lot of factors: your organizational
commitment to data stewardship and predisposition to
actively manage metadata, the level of support for
actively managing metadata on the DW/BI team and by
the user community, and the resources available to
address the problem. At the very least, you must manage
a basic level of business metadata. We will describe
alternative approaches to this later in this section.

3. While you’re at it, decide on the definitive location
for each metadata element to be managed. This is the
location where the element will be stored and edited. It
is the source for any copies that are needed by other
parts of the system. It might be in the relational database
for some elements, in Analysis Services for others, and
so on. For some elements, you might decide to keep it in
a third-party tool. In the Adventure Works example, we
are using extended properties in the relational database
to capture several useful metadata fields.

4. Create systems to capture any business or process
metadata that does not have a home. Try to use all
available pre-existing metadata structures, like
description fields, before you add your own metadata
tables. However, you will likely identify many fields
that need a place to live; the comment field in the data
model spreadsheet and the data warehouse usage history
table are good examples of this. If the users are the
owners of these elements, they should be responsible for

956

maintaining them. Many of our clients have created a
separate metadata database that holds these metadata
tables along with any value-added content tables that are
maintained by the business users. It’s not too difficult to
create a .NET front end to let users manage the contents
of these tables. Or, you may consider creating a Master
Data Services system just to manage business metadata.

5. Create programs or tools to share and synchronize
metadata as needed. This primarily involves copying the
metadata from its master location to whatever subsystem
needs it. Fill in the description fields, the source fields,
and the business name fields in all the tables, extended
properties, and object models from the initial database
all the way out to the front-end tools. If these are
populated right from the start as part of the design and
development process, they will be easier to maintain on
an ongoing basis.

6. Educate the DW/BI team and key business users
about the importance of metadata and the metadata
strategy. Assign metadata creation and updating
responsibilities. Your business sponsor’s support is vital
for elevating the importance of data governance
throughout your organization.

7. Design and implement the delivery approach for
getting business metadata out to the user community.
Typically, this involves creating metadata access tools,
like reports and browsers. Often, you need to create a
simple metadata repository for business metadata and
provide users with a way to browse the repository to
find out what’s available in the BI system. We describe

957

a simple business metadata catalog in the next section.
While you may actually use several reporting tools to
provide access to the various metadata sources, this
should appear as seamless as possible to the users. The
different metadata access tools can all be linked to form
a single page in the BI Portal.

8. Manage the metadata and monitor usage and
compliance. Make sure people know the information is
out there and are able to use it. Make sure the metadata
is complete and current. Being able to view the metadata
is the hardest part of monitoring — especially in the
SQL Server environment — because there are a lot of
different metadata sources. A large part of the baseline
metadata effort is spent building reports and browsers to
provide access to the metadata. Monitoring means you
have to actually look at those reports on a regular basis.

Even though this is the balanced strategy between nothing
and too much, it is still a fair amount of work. Make sure
you include time in your project plan in all development
tasks to capture and manage metadata, and that you
include separate tasks for the preceding steps.

Business Metadata Reporting

Business metadata is the most important area to address
because it supports the largest and most important segment
of BI stakeholders — the users — who can’t get this
information any other way. In other words, the technical
folks can usually dig around and find the information they
need in order to understand the contents of the data
warehouse. The user community, for the most part, doesn’t

958

have this skill set. You must provide them with an easy,
accessible way to explore the contents of the DW/BI
system if you want them to know what’s available. We’ll
approach the task of providing business metadata to the
users from the best case to the worst case.

Analysis Services as Primary Query Platform

If your organization’s data and analytic needs are such that
Analysis Services can meet them, and you have chosen
Analysis Services as your primary user access platform,
delivering basic business metadata can be relatively easy.
Start with your front-end tool. See what kind of metadata
layer it offers. The major front-end tool vendors offer rich
metadata layers that can serve as the business metadata
catalog.

Most of the major front-end tools pull directly from the
metadata fields found in Analysis Services. This includes
the descriptions of cubes, dimensions, and attributes, often
shown to the user right in the tool’s interface. Therefore,
filling in the few metadata fields found in Analysis
Services is a critical first step to improving users’
understanding of the database contents.

Perhaps you’ve decided your query and reporting tool
doesn’t do an adequate job of publishing Analysis Services
metadata. There are several approaches to bridging this
gap; some are more work than others. If Analysis Services
is your primary user database, the easiest approach is to
build a simple browser that allows the user to navigate the
Analysis Services object model. The SQL Server Product
Samples available on CodePlex include a program called

959

the AMO Browser, shown in Figure 15-1, which allows
the user to browse the Analysis Services object model.

This sample program illustrates how to retrieve the
properties of various Analysis Services objects. It would
be fairly easy for a C# programmer to modify (or a VB
programmer to replicate) this program to limit its output to
strictly those objects and properties, like name and
description, that are interesting to business users. Because
this approach is based on the actual Analysis Services
database and its contents, it has the advantage of never
being out of sync with what users will see in their tools.
This makes Analysis Services the system of record for
these few metadata elements. However, it is limited to the
metadata properties provided in Analysis Services: name,
friendly name, description, display folders, and
perspective.

Figure 15-1: The sample Analysis Management Objects
browser

960

Relational Engine Extended Properties

If your primary user access platform is the relational
engine, or if you feel the Analysis Services properties are
too limiting, you can always go back to the relational
model and provide a simple set of reports that allows users
to explore the metadata in the extended properties that was
created from the original business process dimensional
modeling spreadsheet back in Chapter 2.

The problem with this approach is that it’s limited to the
relational structures as defined in the relational system
tables. There’s no intermediate layer that lets you group
subsets of tables into business process dimensional models
and no display folders to group similar attributes to
simplify the user view. And, it doesn’t include any other
user access platforms like Analysis Services.

961

DOWNLOADS

On the book’s website, we have provided a
simple Reporting Services report that
presents the extended properties for each
column in a table. This report queries the
system views in the relational database.

Business Metadata Schema

If the extended properties browser still isn’t enough, you
can create a simple business metadata schema that will
support both relational and Analysis Services databases,
accommodate multiple subject areas, and allow for
additional metadata fields that may not exist elsewhere.
Figure 15-2 shows a basic business metadata schema.

Figure 15-2: An example business metadata schema

962

NOTE

The metadata schema is essentially a
transaction model meant to keep track of
the relationships among the various data
elements in the warehouse, and to allow
maintaining and updating that data. This is
not a dimensional model.

The schema is a hierarchy that starts at the database level
in the upper-left corner (with servers and instances
collapsed into the database table). Each database can
contain zero to many subject areas, each of which contains
zero to many objects, each of which contains zero to many
attributes. Subject areas are groupings of objects, like
business process dimensional models or Analysis Services
perspectives or measure groups. The three contents tables
allow you to map the same subject areas into several
databases, the same objects into several subject areas, and
the same attributes (or columns) into several objects. Your
product dimension will probably participate in several
subject areas, like sales, customer care, and returns.

Once you populate this metadata schema, it is easy to
report on the subject areas in a database, the contents of a
subject area, and the detailed attributes of a dimension or
fact table (or cube). These reports constitute a simple
analytic application: the metadata browser. Like any
analytic application, creating the reports so they flow well
and formatting them so they communicate well is a learned
skill. Test your efforts on some of the users. Get their

963

feedback on what works and what might be improved. A
good metadata browser can help users learn faster and thus
accelerate the overall acceptance of the BI system.

DOWNLOADS

We have done a lot of this work for you.
Look under Chapter 15 on the Tools page
of the book’s website to find the metadata
schema scripts:

• The script to create a business metadata
relational database illustrated in Figure
15-2.

• Scripts to populate the metadata database
from the system tables and table and
column extended properties.

• Scripts to populate the metadata database
from the Analysis Services database.

• A set of linked reports for users to browse
the business metadata catalog.

The business metadata schema is generally as far as we go
in terms of creating, managing, and providing access to
business metadata and it is meant to be a Pretty Good
Practice. We believe the metadata schema is a great
example of the 80-20 rule: you get 80 percent of the value
of a sophisticated metadata management system with 20
percent of the effort. The four levels in this schema can be
used to accommodate a range of designs, platforms, and
product editions. There are plenty of enhancements that
would make it more detailed and flexible. There are
probably a few additional enhancements that will be

964

important for your environment, but beyond that, the
return on increased sophistication is pretty low.

Process Metadata Reporting

There is more metadata work to do beyond business
metadata. You will need to create a suite of reports to
provide quick, easy insight into what’s going on across the
BI system right now, and how it is changing over time.
These process metadata reports often serve as a starting
point for technical folks to assess the status of the system
and investigate any problems. Savvy business users want
to see if their queries are running and why the system is so
slow. We’ve seen users use these reports to identify the
culprit amongst their co-workers and call them up and
request that they kill their queries. The data warehouse
team and the DBAs will most likely turn to more
sophisticated tools, like SQL Server Management Data
Warehouse, to get a better sense of what’s really
happening and to be able to respond to the situation
appropriately.

The process metadata reports include:

• Reports on active processes in SQL Server: You can report
information on current user activity directly from the SQL
Server system views or system stored procedures. You can
also set up SQL Profiler trace logs to capture current activity
and create a historical log, as described in Chapter 17.

• Reports on active processes in Analysis Services: You can
also set up SQL Profiler trace logs to capture current activity
and create a historical log. Or, use the Dynamic
Management Views to report on current activity.

965

• Reports on currently running and historical ETL processes:
These can be based on log files and audit tables as described
in Table 15-1. You can also view current Integration
Services activity in the SQL Server Management Studio.

• Reports on Reporting Services activity: You can view
history using the Reporting Services execution log schema
described in Table 15-1. You can monitor current activity by
adding Reporting Services events to the Performance tool.

Publish these reports on the BI portal for all to see. This
supports the idea of a single place to go for business
information, even for the DW/BI team.

What’s interesting in the here-and-now is even more
interesting over time. Each of these “real-time” monitoring
tools has a historical counterpart. The data warehouse team
should set up systems to capture performance and usage
data over time, as we describe in Chapter 17. These logs
are the input data to warehouse management, performance
tuning, long-term capacity planning, and educating
management about the use and prevalence of the BI
system.

Technical Metadata Reporting

Technical metadata reporting is not the first priority for the
warehouse team because most of the development tools are
already built with the technical user in mind. That is, they
provide the developer or operations person with direct
access to the technical metadata. Much of the functionality
of SQL Server Management Studio is essentially creating,
browsing, and managing technical metadata. The SQL
Server team has also created some add-on tools that
provide extended metadata browsing capabilities. These

966

are listed in Table 15-1 and were discussed earlier in this
chapter.

Ongoing Metadata Management

A metadata system is more than just a set of table or cube
definitions — it is also a set of processes that allow you to
manage those tables and cubes, obtain and distribute their
contents, and keep them current. If you build a separate
metadata repository, nightly refreshes of the metadata are
typically acceptable. The safest approach would be to
trigger a refresh whenever any of the metadata values is
changed.

You will also need to build processes to extract key
metadata values from the systems of record and copy them
to wherever they are needed. These targets can be the
business metadata schema, Analysis Services cubes, or
even a Report Builder model.

You will need to implement ongoing data governance that
includes business users in the process of maintaining
business metadata. For user participation to be successful,
you must create an interface for users to edit the business
metadata values. This then ties in with assigning
maintenance responsibility and monitoring and notification
reports. Bottom line, you are building a data stewardship
system, not just filling in a few columns as part of the
initial data load.

Summary

967

Metadata is a fuzzy, complex subject. In this chapter, we
defined metadata as information that defines and describes
the contents, structures, and operations of the DW/BI
system. We described business, technical, and process
metadata. Next, we described the various sources and
access methods for SQL Server metadata. The rest of the
chapter was dedicated to our recommended approach for
creating and managing metadata in your DW/BI system.
Our approach begins with the requirement that the DW/BI
team must assign the role of metadata manager to one of
the team members. We then provide the metadata manager
with nine steps to develop a metadata strategy. These steps
are:

1. Work with the data stewards to help them learn their
metadata roles and responsibilities.

2. Conduct a metadata inventory.

3. Identify key metadata elements that you will actively
use and manage.

4. Identify the definitive location (system of record) for
each element.

5. Create tools to capture and store any needed elements
that do not exist in the SQL Server system.

6. Create tools to synchronize and share metadata as
needed.

968

7. Educate the DW/BI team and key business users
about metadata and their metadata roles and
responsibilities.

8. Determine and build the metadata delivery approach,
especially for business metadata.

9. Manage the metadata system and monitor usage and
compliance.

The education step is critical to long-term metadata
success. Everyone must view the creation and maintenance
of metadata as being of equal importance as any other
DW/BI task.

Keep in mind that metadata can evolve into an
overwhelming enterprise project that will suck all the
energy and enthusiasm out of anyone who gets trapped in
its clutches. We described our approach as a Pretty Good
Practice. It requires about 10 percent of the effort involved
in a major metadata initiative, but returns a much greater
percentage of the value. Use the business value measuring
stick to determine how far you need to go down the
metadata path.

969

Chapter 16

Deployment

“Great occasions do not make heroes or cowards; they
simply unveil them to the eyes of men.”

— Brooke Foss Wescott

As you see in Figure 16-1, the deployment step in the
Kimball Lifecycle is where the three parallel development
tracks come back together. This is the great unveiling of
the DW/BI system to the business community. The quality
of this first impression will strongly influence the
acceptance of the system — and you get only one shot at
it. Like any big event, a lot of details must fall into place in
order for the show to be successful.

Figure 16-1: The deployment step in the Kimball
Lifecycle

970

Most systems professionals think of deployment as moving
code from development to test to production. As far as it
goes, they’re correct: Deploying code and data to the
production servers is a fundamental part of providing end
user access. But the system deployment is only part of the
deployment story. The deployment step includes
pre-deployment testing, as well as all the pieces needed to
give the business users access to the information. To be
effective, the deployment effort should begin early in the
Lifecycle. While you’re creating the architecture and
building the data warehouse and the BI applications, you
must also be defining and running tests, creating
documentation, preparing training, and organizing the user
support processes. All these services need to be in place
before the curtain goes up for the first time.

This chapter is split into two parts: The first concentrates
on the system testing and deployment process and the
second spotlights all the other critical but less technical
activities needed to ensure a successful deployment.

In this chapter, you will learn:

• What kinds of testing need to be performed for a new DW/
BI system or changes to an existing system.

• How to effectively set up test environments to test
continuously.

• How to deploy the various components of the SQL Server
DW/BI system into production.

• Various strategies for deploying changes to a system already
in production.

• What steps you need to take to ensure your user community
is ready for the roll out of the new DW/BI system.

971

Setting Up the Environments

Although deployment is one of the final steps in a project’s
lifecycle, you must plan for deployment from the outset.
Many deployment tasks are painful if you wait until the
last minute. But as with most things, a bit of planning will
minimize that pain.

For your initial project deployment of a brand new DW/BI
system, you may be able to get by with two environments:
development and test. You can have one very easy
technical deployment by building out and testing in the test
environment, and then simply declaring it to be
production. But that technique only works once. To
manage changes to a system already in production, you
need multiple environments:

• Development: The development environment includes
development server(s) and developer workstations. The
development server environment should mimic production
with respect to:

• CPU architecture. Do yourself a favor: don’t use
an old 32-bit machine as your development
database server. Drivers and connectivity are
different in the 64-bit environment, and finding the
best new drivers can be tedious. This is
particularly true if you will be connecting to
databases other than SQL Server.

• Disk layout. Ideally, development will have the
same number of drives and addresses as
production, though of course much smaller.

• Server topology. Ideally, have as many
development servers as you plan in production.
Place the various server components (relational,
Integration Services, Analysis Services, Reporting
Services) as you plan to do on production.

972

• Virtual machines may be helpful.
• Security. At the very least, use service accounts to

administer the server components. Ideally, use the
same service accounts that you’ll use in
production.

• Operating system and other software versions
should be identical, although it’s fine to use SQL
Server Developer Edition.

• Primary Test: The primary test environment is used to test
the DW/BI system changes that are soon to go into
production. The primary test system must mimic production
in all particulars. We recommend that the primary test
servers and environment be identical to production. This is
particularly true if you will conduct performance tests. Of
course, this is an ideal configuration, and many installations
fall short of purchasing a second high powered server just
for testing. However, the primary test environment must
contain a complete copy of the data warehouse, or at least a
complete copy of the portion of the data warehouse that’s
under development or change. How can you possibly test
data quality unless you have all the data? Pay particular
attention to:

• Disk layout and server topology.
• Software versions.
• Security: the service accounts must be the same as

in production, or you are guaranteed a rocky
deployment.

• User Acceptance Test (UAT): If you are outsourcing the
development of your DW/BI system, you should require a
complete UAT system in addition to the vendor’s internal
test system.

• Deployment Test: As we will discuss, one of your
pre-deployment tests is to confirm that the deployment
scripts and processes will work. You need a copy of the
production system, usually with significantly scaled down
data volumes, on which you can test the deployment process.
Often, the deployment test server can be a virtual machine.

973

• Other test environments: Depending on the complexity of
your environment, you may need additional test systems.
Multiple projects may be working on the DW/BI system, and
each may need slightly different flavors of an early test
environment. For example, you may be working on a project
to move to a different version of SQL Server at the same
time a new subject area is being added to the DW. Often,
these other test environments can use a scaled down
database. It may be possible to use virtual machines.

There are several additional considerations for the
development environment.

• Install SQL Server Developer Edition on the development
database servers.

• Install SQL Server Business Intelligence Development
Studio (BIDS) on the ETL development server, which is
usually the same server as the relational data warehouse
database. ETL developers typically use remote desktop to
access this server while working on SSIS packages.
Otherwise, SSIS will run on the developers’ desktops as they
develop and debug packages.

• Install BIDSHelper on the ETL development server.
• Install BIDSHelper on the workstation of each Analysis

Services developer.

NOTE

BIDSHelper is an add-on to BI
Development Studio (BIDS). It’s available
from CodePlex, and has been developed
and maintained since the SQL Server 2005
era. Although we hate to recommend that
development teams depend on third-party
software, we do so in this case.

974

• BIDSHelper affects the development
experience, not the final database structure.

• It is an open source Visual Studio.Net
add-in, with source code available if
necessary.

• Among its many valuable features is
SmartDiff, which compares two SSIS
packages or Analysis Services (SSAS)
databases, to identify changes. We know of
no other usable tool for performing this
vital action.

Your organization should already have change
management processes and applications in place to help
manage any development project. These include:

• Version control, also called source control
• Work item tracking, also called bug tracking
• Test case creation, scripting, and test execution tracking

Visual Studio 2010 and its companion server Team
Foundation Server 2010 are the current Microsoft products
to provide this functionality. They do a really nice job, and
the server is far easier to install than it used to be. Older
versions of Visual Studio, or other Microsoft or third-party
software, are perfectly acceptable as well.

Figure 16-2 illustrates source control integration with
BIDS. In Figure 16-2, an entire SSIS project has been
placed under source control. In the Solution Explorer on
the right, you can see the locked sign by most of the
packages. You can check in a package directly from the
Solution Explorer. Note that the dropdown menu has new
options for checking in and checking out. There’s also a

975

new Pending Checkins window, displayed in the bottom
left.

Figure 16-2: Source control integration with BIDS

NOTE

Visual Studio 2010 was released at almost
the same time as SQL Server 2008 R2, and
as a result the two products are not fully
integrated. SQL Server BIDS is based on
Visual Studio 2008. It may seem that with
a simultaneous release, there’s a better
opportunity to fully integrate the two

976

products, but that’s true only if they were
originally planned to release together.

Testing

Before you start deploying your system, you should
perform extensive testing. Throughout the development
process, you should have been conducting unit tests to
confirm that components have been written properly. As
we discuss in the next section, you need to perform
extensive end-to-end testing, too.

The less time you spend on testing, the harder the
deployment process will be. If you don’t perform
end-to-end testing before you deploy to production, you’re
guaranteed to find problems on production. If you don’t
rigorously check data quality, your business users will do
it for you, and lose confidence in the DW/BI system at the
same time. If you don’t check performance and tune the
system in advance, you’ll have to do it while trying to
avoid disrupting business users.

If you test, tune, and adjust the system before you begin
deployment, the move to production will be fairly
straightforward. This is especially true if this is a new
system. Moving incremental changes into production while
minimizing end-user impact can be a delicate dance.

To successfully deploy a new DW/BI system, or changes
to an existing system, plan ahead and test repeatedly until
you’ve completed:

977

• Development testing: The developers test as they develop the
ETL system. This is also called unit testing.

• System testing: The databases load and process correctly,
from start to finish. Cubes are processed, automated reports
are run, and downstream BI application processes are
launched.

• Data quality assurance testing: The data is accurate and
complete, both for the historical load and for ongoing
incremental loads.

• Performance testing: The system performs well both for
loads and for queries and reports, with live data rather than a
smaller development data set.

• Usability testing: Business users can find what they need
and accomplish necessary tasks.

• Deployment testing: Deployment scripts are solid and have
been rehearsed.

The following section covers each of these testing areas in
greater detail.

Development Testing

The first phase of testing is performed in concert with all
development activities, especially the development of the
SSIS packages for the ETL system. Development testing is
almost always performed by the developer, and is often
called unit testing.

Testing for a DW/BI system is no different in theory than
testing for any other kind of system development.
Developers need to create and run tests throughout the
development process. Tests should be additive: run all old
tests every night, rather than testing only new
functionality. Test results should be logged and reported
on.

978

In practice, DW/BI testing is difficult. There are plenty of
methodologies and tools available to help build test cases
into code, but the SSIS developer doesn’t write much code.
Instead, SSIS developers manipulate the user interface in
BIDS to create a package. Of course, a package is a unit of
code, but the developer doesn’t have the same level of
control over it as, say, a C# module or a stored procedure.

As a developer creates functionality in the package, he
should create a test for that functionality. Developers
create these unit tests as a natural part of the development
process, and the tests should be documented and
formalized. Expect developers to create a lot of tests; even
a simple package will have dozens, and a complex package
can easily have several hundred.

NOTE

Your organization should already have test
management software and processes in
place for documenting tests. The key
metadata about a test is:

• Who created it, and when.
• Description of what condition is being

tested, for example, “Surrogate key lookup
failure between orders fact and currency
dimension.”

• Part of the system the test applies to, for
example, “Data flow task of the
orders_xform.dtsx package.”

• How to run the test.

979

Testing begins from a known, unchanging test source
database: a subset of the real transaction database. A
realistic test source database will include all sorts of data
problems, so many unit tests can work directly on that
source. Other tests — the most obvious kind being a test of
the incremental extract process — require that the test
source database be modified. Each developer should
maintain a script for modifying the test source database to
“cook in” test cases.

Creating a Source Test Database

In order to develop consistent unit tests, you must
start from a known, unchanging source. We
recommend that you take the time to develop a
source database that replicates the schema from the
source transaction system. This test database will
be used to test the functionality of the system,
primarily the ETL system. It’s not used to check
data quality or performance.

The source test database should have the following
characteristics:

• Static: Once it’s developed and in use, it shouldn’t be
changed. Changes can invalidate existing tests, so any
change should be managed and thoroughly
communicated to the entire team.
• Small: In most cases, you want a small but not

tiny set of data, on the order of 50,000 to 100,000
rows.

• Consistent: More accurately, as consistent as the
source system allows. If the source system has

980

referential integrity in place between two tables,
maintained via foreign key relationships, so
should the test database.

• Representative: Grab data from the entire history
that will be loaded into the data warehouse, not
just the most recent month.

Copy small tables in their entirety. There’s usually
an obvious driver table — often Customer — that
you can use to subset the transactional data. Pull a
random subset of perhaps 5,000 customers, and all
the transactions associated with them.

If it’s important that developers not have access to
real data, you can transform the data in the test
database. There are programs that will generate test
data for you, but they’re not very useful for testing
ETL, because real data is never so well behaved.

If your development project spans multiple source
systems, you should develop consistent test
databases for each.

Each developer should also maintain a script for
performing the tests. Most often, these scripts involve
counting rows in the test source and the test target (the data
warehouse or staging database). Sums and hashes are also
used to confirm that data was not corrupted or modified.
Of course, each test should log its results.

We have found it effective to execute many unit tests
together in a single test group. Begin with a script to
modify the test source database; run the package or

981

packages; and then run a script to test the results. You may
be able to group hundreds of unit tests together; remember
that many test cases will be covered by the data in the
static test database, without need for modification.

NOTE

The recommendation of grouping unit tests
runs counter to most testing methodology
best practices, which would have you make
a small change, run the test, clean up, and
run the next test. We prefer to group tests
to avoid running the packages hundreds of
times.

An alternative, and arguably better,
approach would be to bind the source
database changes and the SSIS package
execution into a single transaction. The
script would make (but not commit)
modifications in the test source database,
run the package and record the results, then
rollback the transaction.

You will need to invest in a little infrastructure to make
consistent, ongoing unit testing be effective. It has to be
easy for the developers, or they’ll constantly put off
writing formal tests.

Today, many ETL developers keep their own data sets,
containing the malformed data used in unit tests. Instead,

982

have developers keep the script to make those
modifications to the test source database, rather than keep
the data itself.

The execution of a group of tests consists of the following
steps:

• Test initialization: Set up the test environment by restoring a
copy of the static test source database and target relational
DW. The restored database is uniquely named (auto-name it
by adding a timestamp to the name, or tag it with the
developer’s name). Alternatively, clone a virtual machine
with the test environment.

• Test setup: Run a script or SSIS package to modify the test
environment, for example to apply inserts, updates, and
deletes to data in the test source systems. This step can
include multiple data modifications to cover multiple unit
tests.

• Test execution: Run the SSIS package(s).
• Test result verification: Evaluate whether the test passed or

failed. Many tests are verified simply, by counting rows in
the source and target. Other tests look for the existence of an
error file. Results should be logged to a tracking table, which
is probably the same test results tracking table you use
elsewhere in your test environment.

• Test cleanup: Drop the test databases and clean up any
operating system artifacts. If you’re using a virtual machine,
simply delete it.

Every time a developer checks in a package, he should
annotate the checkin with a reference to the unit test run
results. Alternatively, the check-in process can
automatically launch the test runs. All unit tests should run
every night on all checked in code. If a new failure pops
up, it will be much easier for the developers to diagnose
and fix it.

983

Using Integration Services Configurations

In order to test SSIS packages, you’ll need to
modify some characteristics of the package,
including:

• Connection information for both source and target
systems.

• Extract date range.
• Data quality limits built into the package, such as a

minimum number of rows to extract, below which
threshold processing is halted. Generally you’d want
to lower this threshold if you are testing with smaller
data sets.

These characteristics can easily be modified at
runtime by using SSIS package configurations.

Integration Services configurations are a powerful
tool for modifying the way a package behaves at
runtime, without editing the package. This
capability is very important for controlling package
contents and quality: Once a package’s quality has
been assured, it should be locked down and not
edited again. But some things about a package may
have to change. This is particularly true of
connectivity information, which almost always
changes as you move a package from development
to test to production.

You can pull out almost any characteristic of a task
or connection into a configuration file. At the time

984

the package is executed, SSIS reads the
configuration files, overwriting the default value of
a parameter or variable with its value from the
configuration file. You can have many
configuration files, and even overwrite the same
parameter multiple times. The last configuration
file in order will “win.”

Some applications, especially those built as
shrink-wrapped systems, will make extensive use
of configurations. Even the simplest application
will probably use them at least twice:

• To pass parameter values from a master package to
its child packages

• To modify package connection information as
packages move from development to test and
production

When you create a package configuration in BIDS,
the product will create a template XML file
structure for you containing the elements you’ve
chosen to configure. You should script the
modification of the configuration files. For
example, the nightly load process would
automatically set the extract date range variables to
yesterday’s date.

There is nothing magic about SSIS configurations.
If you’re more comfortable keeping parameter
values and connection information in a database

985

table, and reading them into your packages via an
Execute SQL task, that’s perfectly fine.

System Testing

System testing ensures the system is complete, and the
requirements (as documented) have been met. These are
not only functional requirements, but also quality
requirements like performance and security. Data quality
can be considered part of system testing, but it’s so central
to the data warehouse that we discuss it separately.

The system tester must not be a developer. Even if you’re
a tiny organization with a one-person development “team,”
you should recruit someone else to evaluate the operation
of the system. A developer is simply too tied in to the way
things are. You need a second set of eyes.

The system tester should design her tests from the system
specifications. In the all too common absence of a formal
specification document, work with the DW/BI team lead to
understand detailed requirements.

The goal of system testing is to ensure the periodic
(usually nightly) load process works smoothly and
completely. It takes place on the test server, beginning
with a copy of the source and target databases. The last
system tests, just before the system goes into production,
should use live feeds if possible. Typically, the one-time
historical load is not subject to rigorous system tests. The

986

one-time historical load is subject to extensive data quality
tests, as we discuss in the next section.

The system testing will test the following major categories:

• Job environment setup
• Setting up variables and connection strings.
• Creating a clean copy of the source environments

if necessary.
• Job startup

• Waiting for any startup conditions, such as files
showing up in a directory or another signal that a
source process has finished.

• Launching the master package with the correct
configuration file.

• Handling correctly any startup problems (it’s 4
a.m. and the source system process still hasn’t
completed).

• ETL job execution
• With correctly formed input data, the ETL job runs

to completion.
• Error rows are handled appropriately.
• If the input data violates any conditions built into

the ETL job stream (such as a minimum number of
extracted rows), the ETL job terminates smoothly.

• Automated data quality checking
• Rowcounts, sums, and hashes that are built into the

ETL process are checked and errors reported
appropriately.

• Analysis Services cube processing
• Completed without error.
• Provides accurate data (run the same query in

SSAS and the relational database).
• Automatic report execution and distribution.
• Data mining and other BI application execution.

987

• Job environment clean-up, including copying, deleting, or
renaming files or other objects as needed.

If you’ve followed our advice in the preceding section, to
set up development unit tests to run automatically,
continuously, even obsessively, then you’ll find most of
system testing to be straightforward. Setting up the system
tests requires little new testing infrastructure beyond what
you set up for the development tests.

Ideally, system testing begins as soon as there is even a
single SSIS package checked in. More precisely: two
packages, a master package and a child package.
Implement tests for all components of the final system,
even if you know those tests will fail now. For example,
you can add a test for the accurate incremental processing
of the SSAS database even before that database is created.

Start running system tests as soon as possible. The test
process will mature in tandem with development. Long
before you’re really interested in the results of the system
tests, the details of how to test should have been worked
out. The system tester should start testing against the test
data, rather than waiting for the live data to come online.
This will mean that the system tester will need to generate
some transaction data. They can talk to the developers and
look at their unit tests, but should create their own scripts
for inserting, updating, and deleting data in the test source
system. One of the many advantages of starting system
testing against test data is that you can cook in data
problems, such as a referential integrity violation, that
might not surface in the real data during the period on
which you’re performing live testing.

988

While there are potentially dozens of infrastructure-related
problems that surface during system testing, you’ll almost
inevitably stumble over security issues. As we described in
Chapter 14, system operations should use system accounts
that are independent of any individual user ID. System
testing must use the same security roles and accounts as
production.

System Testing for SQL Server Standard
Edition

Most organizations use Developer Edition for their
development and testing environments. The best
practice is to use the same edition as production for
your final system testing on live data. This is
especially true if you’re deploying to Standard
Edition, because Developer Edition contains all the
functionality in Enterprise Edition.

Data Quality Assurance Testing

We can’t overemphasize the importance of testing the
quality of the data in your DW/BI system. The data needs
to be checked very carefully before the system goes live.
Develop subsystems and procedures for continuing to
check data accuracy after deployment. Delivering bad data
is much worse than delivering no data at all.

Data quality testing, at its heart, consists of running a
query or report from the source system or systems, running
the corresponding query or report from the DW/BI system,

989

and comparing results. The magic comes in knowing the
corresponding query or report. You may need significant
business knowledge to match up the multiple systems,
applied transformations, and business rules. For this reason
and for buy-in from the business community, you must
include the business users in the data quality assurance
process. Hopefully, you already have some data stewards
from the user community identified as subject area data
quality experts.

NOTE

Even in the unusual case in which you’re
completely outsourcing your DW/BI
system design development, your
organization — and your business user
community — must take ownership of data
quality test definition. Your vendor should
provide a framework for running those tests
and folding them into the ETL process, but
only those with deep business knowledge
can confirm that the data is accurate.

The vendor user acceptance testing (UAT)
process is far too late for you to start
testing data quality. By the time you’re in
UAT, there’s going to be huge political
pressure, from both your management and
the vendor, to accept the system and move
into production. This is especially true if

990

the DW/BI system is an add-on to a new
source system that’s also part of the UAT.
Any significant data quality problem can
easily require large re-work, leading to
delays of weeks or months.

Make sure you can reproduce existing reports to the penny.
Sometimes we find during DW/BI system development
that existing reports have long been in error. This makes it
harder to verify the new reports, but you absolutely must
audit them and document any discrepancies. If you have an
Internal Audit group, enlist their assistance in this process.

We’ve often been asked to recommend tools to help test
data quality. We don’t know of any tools that help with the
hard part of testing: determining what data needs to be
tested and how to do so. At the very least, the data quality
testing reports should include row counts, grand totals, and
subtotals along major dimensions, hierarchies, and by
time.

Your Analysis Services database may include some
complex calculations and KPIs. You should have someone
test the calculations externally — usually in Excel — to
confirm that the MDX expressions are correct.

Report definitions sometimes include calculations as well.
Check everything: in a budget variance report that displays
budgets, actuals, and variance, confirm that the variance is
truly the difference between the other columns. Even in
this trivial case you may see a penny difference due to

991

rounding. Discuss that rounding with your business users
and get a decision from them on how to handle it.

As with other kinds of tests, automate data quality tests as
much as possible. During testing and deployment, you’ll
typically run the data quality tests at least three times:

• Test the outcome of running the primary test data set: This
static data set is small, and is easy to check thoroughly.

• Test the historical load: Perform extensive data quality
checks on the one-time historical load. Get a handful of
business users involved. Not only are they the ones who
know the data, but you can leverage their reputation among
the user community.

• Test the live data: Once you start running live data through
your test system, continue testing the validity of that data.
Often the data stewards are granted permissions into the
system while it’s still in test.

Any automated data quality tests that you developed for
the deployment phase should eventually be folded into the
ETL process. Develop processes for logging the results of
the ongoing data quality tests, and publish data quality
reports to the business community.

RESOURCES

The management of data quality is a whole
topic unto itself and beyond the scope of
this book. Beginning with a data profiling
tool, data anomalies need to be identified,
and checks or filters need to be built to
catch those data problems that cannot be

992

fixed in the source transaction-processing
system. The Kimball Group’s
recommended architecture includes many
data quality screens inserted into the data
flows coming from the source systems and
leading to the final presentation schemas
used by the BI tools. Each time one of
these screens detects a data quality
problem, a record is written to an error
event schema. This back room dimensional
structure is the primary source for
managing data quality issues. This
architecture is discussed in detail in a
Kimball Group white paper, “An
Architecture for Data Quality,” published
in 2007, which can be found in the Kimball
Group article archive at
http://www.kimballgroup.com/html/articles.html.

Performance Testing

The larger and more complex your system is, and the more
users — especially ad hoc users — you have, the more
important it is for you to conduct rigorous performance
testing before you go into production. You want to launch
your system with the best performance possible, and you
certainly want to be confident that you can perform all
processing within the necessary load windows.

You may have several goals for conducting performance
tests. The most common are:

993

• System tuning: How can you tweak the system to deliver the
best possible performance?

• Confirmation of service levels: Will you meet your uptime
and query performance requirements?

• Headroom analysis: How long will today’s system and
hardware meet your requirements, as the DW/BI system
continues to grow?

As with everything else associated with systems, the
performance testing process is best begun with some
planning. Specify the goals from your testing process, and
develop tests to address those goals.

Rather than thinking about performance testing as
associated with each of the components of SQL Server
(RDBMS, Analysis Services, and so on), we prefer a more
integrated approach. Test processing performance as a
whole: ETL to cube processing to standard report
generation. Test query performance as a whole, including
ad hoc queries being executed at the same time as standard
reports are being run.

Service Level Confirmation

Increasingly, DW/BI teams are entering into Service Level
Agreements with the user community. These agreements
cover data latency, and system availability often user query
performance.

If you have such an agreement in place, then you surely
must test that your system is likely to conform to the
agreement. This is often a first step that leads to more
extensive performance testing for tuning work, or even
alternative system sizing and configuration efforts. But if

994

you’ve cleverly made an agreement with pretty low
minimum standards, you may simply need to confirm that
you’re above those standards.

NOTE

Service Level Agreements (SLAs) are a
valuable tool for focusing management
attention on important issues. But don’t let
your SLA drive you to deliver mediocrity
by striving only to meet the stated
requirements. Under-promise and
over-deliver. Never promise more than
your clients are requesting, but always try
to deliver more than they’ve imagined
possible.

Be very careful in negotiating Service
Level Agreements that include metrics for
ad hoc query performance. Don’t let
yourself agree to an absolute ceiling for ad
hoc query times, like all queries complete
in 10 seconds. You’d be much better off
agreeing that 90 percent of queries would
complete in 5 seconds. In a system of any
size and complexity, it’s always possible to
write an ad hoc query that exceeds any
reasonable maximum.

995

Clearly specify in the SLA what you mean
by important terms, like query completion.
Does this mean on the server side, or does
it also include the transport (over a
potentially low bandwidth WAN) to the
client? The SLA is, basically, a contract
between you and your users. You probably
don’t need to include Legal on this
contract, but you should take it seriously.
Your management will take it seriously if
you don’t maintain service levels.

Processing Performance: Getting Data In

Performance testing for the data processing side of the
problem is fairly straightforward. The live testing that we
described earlier in this chapter is the basis for the
processing performance tests.

The simplest approach to building a processing system is
to serialize the major components. All ETL work to the
RDBMS finishes before you begin cube processing, and
that completes before you start generating reports. Such a
serialized system is easy to performance test and diagnose,
because the units of work are isolated. You can test and
tune each unit separately. Unless your load window is very
small or your latency requirements approach real time,
you’ll probably start off with serialized processing.

You may be able to design your processing system so that
work is parallelized. You need to process shared

996

dimensions first, but you should be able to start the work
on one fact table while a second fact table is still loading.
You can make significant improvements in the overall
loading time by parallelizing some activities, but this is a
much harder system to design and tune. Your performance
tests must run on the integrated processing system. All
parts of the DW/BI system compete for resources. You
can’t test each component separately and sum their
processing times. This is true even if the different
components are distributed across multiple servers because
there’s always some burden placed on the upstream
servers.

Another issue to consider is confirming that changes made
to improve the performance of one part of the system don’t
negatively impact another part of the system. The classic
problem is index and aggregation design. You may want
lots of indexes and aggregations for queries to run quickly.
But these structures must be maintained, which can place
an intolerable burden on the processing performance.
Every time a change is considered, evaluate the effects on
a complete test system before deploying to production.

Query Performance: Getting Data Out

Testing query performance, especially ad hoc query
performance, is much harder than testing processing
performance. The fundamental problem is that you don’t
know what your users are going to want to do. You can ask
them and get some ideas, but those ideas are going to bear,
at best, only a resemblance to reality.

997

Standard reports are either pre-run and cached, or run on
demand. Pre-run reports are executed at the end of the ETL
processing. You can set up Reporting Services to email the
results of a pre-run report to the users; doing so shifts the
entire burden of report generation to a scheduled time.
Alternatively, users might access the pre-run report from
the BI portal, in which case there’s a modest on-demand
element associated with displaying the report. A solid
performance test of pre-run standard reports uses estimated
usage patterns for accessing the pre-run reports. For
example, 500 people will access the report at random times
between 8 a.m. and 9:30 a.m. The relational database
where the Reporting Services catalog is stored, the
Reporting Services engine, and the web servers are all
involved with serving pre-stored reports.

A standard report that’s executed on demand involves
more work. The first demand is on the database upon
which the report is defined, to serve up the basic data for
the report. Then, Reporting Services works on that result
set to render the report. Finally, the report is distributed,
usually across the web to the user’s browser window.
On-demand reports are often used for parameterized
reports, for infrequently accessed reports that don’t
warrant pre-executing and storing the results, and for
reports with low latency. A good performance test for
on-demand reports includes a realistic estimate of who is
running the reports, when, and with what parameters.
Reports can be cached in memory, which is great for
performance. In the absence of real-world data about how
users are running reports, it’s very difficult to accurately
estimate the use of the report cache.

998

Finally, laboratory testing of the performance of ad hoc
queries is fiendishly difficult. The first problem is to know
what users are going to want to do. You know your
predefined reports and other BI applications, but ad hoc is,
well, ad hoc. You have to return to your business
requirements document to extract information about
analyses. Watch (by collecting query text) what the early
business users and testers are doing with the system. Of
course, if you’re testing a system that’s already in
production, you should collect a broad range of queries
from the system logs that we discuss in Chapter 17.

Usability Testing

Unless you’ve developed custom user-oriented software as
part of your DW/BI solution, usability testing will not be a
huge burden. In large part this is because, with
shrink-wrapped front-end tools, there are relatively few
things you can change. You can typically change the
names of things (columns, tables, and reports) and the way
they are organized.

Nonetheless, perform some usability testing with actual
business users. As with all usability tests, you need to find
fresh minds: people who have not been intimately
associated with the project. Walk a few people through the
BI portal and the reports, and see what trips them up.

Earlier in the system development process, when you start
working on the Analysis Services database and defining
reports, you should show a draft of the object names to
business users. Rely on them to tell you what objects
should be called in the interfaces they see. You tried to get

999

object names correct when you were designing the
dimensional model. But often business users change their
minds about names when the system gets closer to reality.
We let business user names diverge from the physical
names, if it helps the business users understand the system.
Because there’s always at least one layer between the
physical relational database and the business user — be it
relational views, Analysis Services cubes, Reporting
Services Report Models, or all of these layers — you can
change names that business users see without messing up
your ETL system development. But you do need to get the
names right for Analysis Services and the reporting
metadata layers.

NOTE

Another issue to think about early on is the
hierarchies within dimensions. Dimension
hierarchies become dropdown lists for ad
hoc queries and parameterized reports.
During the database design sessions you
should think about the user experience
associated with large, flat hierarchies. What
will the user experience be if they are
trying to navigate a dropdown list and you
populate a list with 100,000 items? This is
a common problem, and not one that’s
easily fixed at the last minute, just before
rollout.

1000

Before your new system goes live, you must have
implemented and tested security at the user, role, report,
and database levels, as we described in Chapter 14. If users
don’t have the correct security permissions, the system is
— from their point of view — completely unusable.

Testing Summary

Our main advice with respect to testing your DW/BI
system is to test early, often, and thoroughly. Visual Studio
or other testing tools can help by providing a central
environment in which to define tests and log their results.
Write reports on test logs so that they highlight changes,
especially tests that worked yesterday but not today.

NOTE

Visual Studio Team Foundation Server
comes with a project data warehouse,
which includes an Analysis Services cube
and Reporting Services reports on work
items, bugs, and so on. It is really fun to
use.

The biggest challenge of DW/BI testing is that the project
is, by its nature, about integration. So standard test
methodologies and tools aren’t a perfect fit for our world.
Begin by investing in some infrastructure:

• A static test source database

1001

• A development testing environment that begins from that
known source, and makes it trivially easy for developers to
run automated tests every night

Throughout the development cycle, developers must
maintain a script to modify the test source databases, and a
second script to execute the tests. This isn’t fundamentally
different from what most developers do anyway, you’re
just asking them to manage the process, and commit to
running tests repeatedly.

Fairly early in the development cycle, after the kinks have
been ironed out of the daily development testing process,
begin system testing. The system tester, who should not be
a developer, defines tests that cover the entire DW/BI
process, from data extract, transformation, and loading to
cube processing, report delivery, and downstream BI
applications. Begin system testing on the test databases.
There are several reasons for this recommendation:

• Iron out problems with the system testing process early
before you’re pressured to go live in two weeks.

• Some system tests of unusual data conditions might not be
encountered during normal live testing.

• In the absence of perfect specifications, the system tester(s)
will have more time to identify and develop tests.

• The developers will have more time to respond to faults
found in the system testing process.

Once the testing infrastructure is in place, the system tester
will need to devote a significant amount of time
developing tests. The time required ranges from a few
weeks of full-time effort to significantly more than that,
depending on the quality of the system specifications.
After the tests are defined, the system tester can spend

1002

perhaps a day a week on system testing, until it’s time to
move to live testing and the run up to deployment.

Data quality testing primarily consists of tests of
rowcounts, sums, and hashes. A key component of data
quality testing is to match reports from the source system.
Some of this work can begin early in the development
cycle as well, but the first big milestone for data quality
testing is the one-time load of historical data. This data set
should be extensively tested. It some cases it’s possible to
match old reports exactly. If not, write an audit report that
describes exactly why the new reports are different. A
small number of highly regarded business users must
participate in data quality testing. These business users
should be the subject area data stewards, who are part of
the overall data governance program.

Finally, once development is largely complete, you’ll hook
up the ETL process to live data. At this point, the real
system testing is under way. You can also perform
performance tests, both of the processing steps, and the
queries. If you’ve been running all tests nightly, you
should be in great shape for getting through the testing
period with minimal pain. The next big step: deployment!

Deploying to Production

Once your system is fully tested and accepted by the data
stewards, it’s time actually to deploy. Whether you’re a
tiny team or a large organization with deployment
specialists on staff, you need to think through all of the
issues before the actual day arrives.

1003

If you’re implementing a new system on new hardware,
your deployment procedures can be somewhat casual. It’s
common to use the production system for testing and even
user training, before the new system goes live. You can
think of the deployment process in this simple case as via
email — send a message when the system has passed all
tests and is ready to go live.

After that first free deployment, it gets a lot harder. Any
modifications to the system — and there are always
modifications — should be accomplished with minimal
disruption to the business user community. The only way
to do this is to:

• Perform testing on a test system that’s as identical to the
production system as possible.

• Use scripts rather than clicking through a user interface. Any
time you need to open a tool and especially to click through
a wizard, you open the possibility of doing the wrong thing.

• Develop a deployment process playbook that describes
exactly what to do and in what order. This is especially vital
if you can’t run a script but instead must do something
within a tool. It’s tempting during development to think you
can remember all the little steps of deployment, but after you
have been away from the system for a few weeks or months,
you will be very glad you made a detailed playbook. If you
create a really awesome playbook, you will be surprised that
it contains a hundred steps or more.

• Test the playbook on a test system before trying it on
production.

Relational Database Deployment

Perhaps the simplest way to deploy changes in the
relational database is to back up and restore the test
database to the production environment. The standard data

1004

warehouse environment, with nightly loads, enables this
technique on a moderately large data warehouse. You just
need to bring the DW/BI system down for several hours or
a day, back up the database(s) from the test system, and
restore them on production.

Backup and restore is a relatively uncommon approach to
deploying changes. In many projects, the database is either
too large for this approach to be comfortable, or the test
system includes only the portion of the DW/BI system
currently under modification. Instead, most deployment
projects script the changes to conform the test and
production databases.

In the old days, it was the job of the development DBA to
keep track of schema and data changes, and maintain
scripts for modifying the production database. That’s still
true, but the job is much easier now that there are tools
available to automate the comparison of two schemas.
Visual Studio 2010 includes this schema comparison
functionality in both its Premium and Ultimate versions.

In Figure 16-3 we illustrate the results of running a
SchemaCompare on two versions of a database. The
schema on the left is the new database. We’ve added a new
column (NewColumn) to the StageSpecialOffer table.
In the top panel of the window is the list of tables in the
schema. The schema compare process has correctly
identified the table and column that are different. In the
bottom panel is a small snippet of the deployment script
that Visual Studio has generated.

1005

When you run the schema compare process, you have fine
control over the details to compare, including security,
extended properties, filespaces, and so on.

NOTE

The schema compare feature is part of
Visual Studio 2010. It’s also available in
several earlier versions of Visual Studio.
It’s not a feature of BIDS.

There are third-party tools that perform the
same function.

Figure 16-3: Creating a database deployment script

1006

Visual Studio contains a second, related feature to compare
data between two identically structured tables. Visual
Studio will generate a script to insert, update, or delete
rows in the target. This functionality is very useful for
most dimension tables, and other reasonably sized tables in
the environment. Fact tables and extremely large
dimension tables should be excluded, as you’ll want to
update their data in bulk. For large tables, build a simple
Integration Services package to copy the data from test to
production.

All deployment scripts should be tested before being
applied to the real production system.

1007

NOTE

The Deployment Playbook for deploying a
new relational database or modifications to
an existing database should include the
following:

• If your test database structure doesn’t
mirror production, include any edits to
make to SQL scripts (like editing file
locations or database names). It’s far safer
to parameterize these changes, but writing
the scripts is a lot more complicated if you
do so.

• A mechanism for verifying that any
necessary edits were done correctly. At the
very least, advise the operator to search for
specific phrases that should have been
changed during the editing process.

• DML scripts to insert and update data in
the new database. This data can include
small dimension tables, configuration data,
metadata, SSIS configurations, or global
variables. And don’t forget to populate any
new static dimensions.

• Integration Services packages to run that
will load data into the fact tables.

• The run command for any scripts, like SQL
scripts, including any parameters used in
the script execution.

• A script or instructions to verify that all
completed correctly.

Integration Services Package Deployment

The process of deploying a package from development to
test to production is straightforward. Fundamentally, you

1008

copy the packages into the production environment.
Production packages should be locked down in source
control.

There are tools to help with package deployment. The first
tool is Integration Services configurations, which we
discussed earlier in this chapter. Configurations let you
change at runtime the characteristics of an Integration
Services package, like the connection string to sources, the
location of file folders, a parameter, or a variable value.
Changing values at runtime is valuable because it lets you
modify the way a package executes without opening and
editing the package.

The second feature of Integration Services that simplifies
deployment is the aptly named deployment utility. Launch
the deployment utility by choosing Deploy from the
Solution Explorer in BIDS. The deployment utility bundles
into a deployment folder all the components associated
with a set of packages, including any configuration files,
code libraries, or other files that you included in your
project. You can copy the deployment folder from one
server to another, and then open the deployment folder to
launch a simple wizard to install the packages.

NOTE

During the development process, you
probably discovered that you don’t need
the Deployment Wizard and Installation

1009

Wizard. You can easily copy SSIS package
and configuration files, and they work just
fine on the new server. The deployment
and Package Installation Wizards are a
convenience.

Some organizations are deeply opposed to using a wizard
for deploying to production. Scripts can be fully tested and
automated in advance. If you use a wizard with a user
interface, like the Package Installation Wizard, you run the
risk of someone clicking the wrong box or making a typo
during the deployment process. If your organization is
adamant about not using wizards, you can write a batch
script that calls dtexec. Dtexec is a command-line utility
that is used mainly to execute packages in test and
production. But with different parameters, dtexec will
copy, delete, encrypt, or deploy a package into SQL Server
or a file folder. If your deployment folder includes
multiple packages, you’d need to call dtexec multiple
times to install them one by one. In addition, if your
deployment folder contains configuration or other files,
your script would also need to move them to the
appropriate places.

As part of the pre-deployment testing and code review
process, it’s extremely helpful to be able to identify the
changes between two versions of an SSIS package. SSIS
packages are XML documents, but simply comparing the
two versions isn’t very effective. A minor change in the
physical layout of objects in the package can have a large
effect on the XML document. However, the recommended

1010

add-on BIDSHelper has a SmartDiff SSIS utility, which
you can execute from BIDS. It strips out formatting
information and regularizes the layout of the SSIS
package, to highlight real changes. It’s a valuable addition
to your change management procedures.

NOTE

The Deployment Playbook for deploying a
package should include the following:

• The location of the deployment folder to be
copied to the production server.

• Where to copy the deployment folder to.
• Instructions for running the Package

Installation Wizard, including all choices to
make in the dialog boxes. Alternatively, the
command script to run that calls dtexec to
install the packages, and which copies
other necessary files to the appropriate
destinations. Don’t forget the configuration
files and code libraries.

• Instructions for creating any Windows
global variables that the package uses.

• A script or instructions to verify that all
completed correctly.

Analysis Services Database Deployment

As with the other software components of the Microsoft
DW/BI solution, there are several ways to deploy a new
Analysis Services database or to make modifications to an
existing database. These are included in Table 16-1.

1011

Table 16-1: Methods for deploying changes to an SSAS
database

Method Comments Good
choice
for…

Backup/
restore

If the full SSAS database exists on your test
system, fully processed with all data, then you
can back it up and restore it on the production
server. SSAS backup and restore work at the
database level only, and can be fully scripted.

Initial
deployment
or a
significant
structural
change.
Scenarios
where you
don’t need
to minimize
downtime.

Deployment
Wizard

The Deployment Wizard is a standalone utility.
It creates a script to deploy the metadata of the
entire SSAS database. Then, either now or at a
future time, you kick off processing of the entire
SSAS database on the production server.

Moving
from
development
to test.

Synchronize
Database

Synchronize Database also works at the database
level. It copies the metadata of the entire SSAS
database. It also copies the data files from source
to target. Synchronization’s data copy is a much
less expensive operation than full processing of
the database. Synchronization creates a shadow
copy of the existing database on the target
server, so users can continue to access the
database during the synchronization. Users are
automatically shifted to the new version when
the synchronization is complete. Note that this
means you’ll need twice the disk space on your
production server.
Synchronization is launched from Management
Studio and can be scripted.

Moving
from test
(staging) to
production.
Scenarios
where you
must
minimize
downtime.

XMLA
script

An XMLA (XML for Analysis) script is the
closest thing to DDL constructs familiar from
the relational database. But they are in the form

Changing
calculations.
Making

1012

Method Comments Good
choice
for…

of XML syntax rather than something like
TSQL. You can write or generate an XMLA
script to create the new structure of an SSAS
database. Most often, it’s used to make relatively
minor changes to an existing structure.
You can write and execute XMLA scripts in
Management Studio.

minor
changes to
an existing
system.

AMO code
You can write to the AMO (Analysis
Management Objects) object model to create or
modify SSAS databases.

Packaged BI
solution
vendor.

The biggest problem with SSAS system deployments is
that the easiest methods work at the database level:
backup/restore, deployment, and synchronization. This is
fine if your SSAS database is of modest size, but can be
quite problematic at the terabyte scale.

The only way to deploy incremental changes is to write
some code: XMLA code, which is analogous to T-SQL in
the relational database, or AMO code. Most organizations
use XMLA rather than AMO.

Incremental deployment of changes is a good choice for
modifications that don’t affect data storage. These include:

• The MDX script for all cube calculations such as calculated
measures

• Definitions of Actions and KPIs
• Security definitions

The XMLA specification is complete, and you can write
an XMLA script to implement any modification in the
production database. However, you must understand that

1013

many modifications will result in significant database
reprocessing. Some changes to a core conformed
dimension that’s used throughout the database will
effectively result in the need to reprocess much of that
database — all the fact tables that subscribe to the
dimension. For this reason, many organizations use XMLA
scripts only for the calculated information described
earlier. Any more significant change is made by one of the
other methods, usually database synchronization.

If your SSAS database is extremely large, you may want to
invest in the XMLA skills to perform more incremental
modifications.

NOTE

The easiest way to generate the XMLA
script for changes in calculations is to use
the Deploy MDX Script feature of
BIDSHelper. You should never deploy an
MDX script from BIDS directly into
production, but you can do so into a test
server. Use SQL Server Profiler to monitor
the test server; it will pick up the text of the
XMLA script. You can copy that script and
move it into your deployment script library.
Chapter 17 describes Profiler in more
detail.

As part of your change management and deployment
procedures, you should thoroughly document the changes

1014

to a system in production. There’s no built-in tool to help
with that, but BIDSHelper provides the same kind of
assistance described previously. The BIDSHelper feature
SmartDiff for Analysis Services lets you compare the full
database definitions for two SSAS databases, highlighting
the differences in a reasonably useful way.

NOTE

We certainly look forward to the day when
Microsoft provides the same kinds of
management and tools for Analysis
Services as exist for the relational database.

Reporting Services Report Deployment

Deploying a new report is generally a lot easier and less
exciting than deploying or changing a database or package.
When you launch a new DW/BI system or add a business
process dimensional model, you will probably begin the
development of the initial suite of reports on a test server,
ideally against a complete set of data. As soon as the
production server is populated, migrate any existing
reports, and continue report development on the
production server. If you use shared data sources for
Reporting Services reports, it’s a simple task to point the
reports to the production databases.

You will modify and create reports far more often than
you’ll modify the underlying databases. All reports should
be tested before they’re released to the user community.

1015

The most important tests are to ensure the report
definitions are accurate. Complex reports that access a lot
of data, especially if the reports are run by a lot of people,
should be tested for performance. You may find that you
need to write a stored procedure to generate the report’s
data set as efficiently as possible.

Report Deployment Process

Complete the following steps to safely deploy a
new or changed report on the production system:

• Identify the business users who will test and verify
the new or changed report.
• Create a Reporting Services role named

ReportTest that includes the DW/BI team and the
business users who’ll test the report. You may
need several report testing roles, if there are a lot
of report development projects going on at once.

• Set up a TestFolder folder structure in the BI
portal that’s accessible only to the ReportTest
role.

• Develop the new report in BI Studio or Report
Builder and deploy it to TestFolder.

• Notify the testers that the report’s available, and
when you expect to hear back from them about it.
Your organization may have formal user
acceptance procedures for you to rely on here. If
you are using SharePoint, you can set up the
TestFolder to automatically generate an approval
workflow.

• When the relevant people have signed off on the
report, redeploy it to its appropriate place in the
BI portal with the appropriate security.

1016

Most companies will develop and test new reports in a
private area of the production report server, rather than set
up a completely separate test instance of Reporting
Services. Standard reports don’t change data, so you don’t
need to worry about damaging the databases. All you need
is to insulate most users from the test area, which is easy to
do with the Reporting Services security settings discussed
in Chapter 14.

As you may expect, the hardest part of deploying reports
isn’t technical but political. The greatest challenge is to
create policies and procedures that enable your business
community to contribute new reports and analyses, while
maintaining the appropriate level of control over published
reports. You should develop a quality assurance process,
and procedures for publishing reports to a broad audience.
This is particularly important for highly regulated
companies.

NOTE

Sometimes, changes to the underlying
databases require existing reports to be
modified. Earlier in this chapter, we
stressed the importance of end-to-end
testing for any significant modifications to
the DW/BI system. The standard report
suite must be tested before database
changes are moved into production. It’s
usually easy to fix reports in response to a

1017

schema change, but if you forget this step,
the user experience is the same as if you
messed up the underlying data. From their
point of view, the DW/BI system is broken.
Also, any change that breaks a standard
report will likely break user reports, too. If
you’re implementing these kinds of
changes, notify your users early on and
discuss what they’ll need to do to deal with
the changes. You may want to set up a user
report migration project to help rewrite
some of the key user reports.

Master Data Services Deployment

Master Data Services applications are easy to deploy. The
main characteristic that simplifies their deployment is that
they typically include small volumes of data — dimension
data — rather than the large fact tables in the full DW/BI
system.

MDS has two features that you can use for deployment.
Within any one MDS implementation, an MDS model (for
example, for the customer dimension) can have multiple
versions. You can theoretically have a single server, and a
single implementation of MDS, supporting a production
version of the model at the same time as a development
and/or test version. A version cannot be validated and
committed unless all the data conforms to the structure and
business rules that have been defined.

1018

We don’t want to suggest that maintaining development
and test versions on the same server as production is a best
practice; we always want to isolate production systems.
However, it’s a matter of just a few mouse clicks in the
management console to package up a model, including the
structure, the business rules, and all existing data. Copy the
deployment package to the production environment,
launch the management console, and deploy.

Data Warehouse and BI Documentation

We all seem to skimp on documentation in the run up to
system deployment. It seems as though the business should
be able to use the system without a ton of documentation.
After all, we spent a lot of time and trouble organizing and
naming things in a sensible way. The bad news here is that
the team needs to do a lot of documentation of the system
in order to offer a complete solution to the users. The good
news is most of the documentation is really metadata
dressed up in presentable clothes. If you’ve been capturing
metadata all along, much of the job now is to create a nice
front end for users to access that metadata. If you’ve been
ignoring the metadata issue, you’ve got a lot of work ahead
of you.

As we detail in Chapter 12, the BI portal is the
organization’s single source for reporting and analysis and
associated information. The main content of the BI portal
will be the navigation hierarchy and the standard reports
contained therein. Around the edges of the main BI portal
page, users should find links to all the documentation and
tools described here.

1019

Core Descriptions

The first things to document are the data: the business
process subject areas including facts and dimensions, and
the tables, columns, calculations, and other rules that make
up those subject areas. Standard reports and other BI
applications should also be documented, though their
documentation is often integrated with the reports
themselves.

Business Process Dimensional Model Descriptions

The BI documentation begins with the dimensional model.
The DW/BI team must write a clear, succinct description
of each dimensional model in the warehouse. This
document will be the starting point for anyone who wants
to understand what’s in the DW/BI system. If orders was
the initial row selected on the bus matrix, write a document
that describes the orders dimensional model. Recall that a
business process dimensional model usually consists of a
small number of related fact tables (1–3), and their
associated dimension tables. The document answers such
questions as:

• What’s the nature of the business process captured in this
data?

• What are the salient business rules?
• What’s the grain of each fact table?
• What date range is included in each fact table?
• What data has been left out (and why)?
• What dimensions participate in this business process? Many

of the dimensions will need their own descriptive documents
that this document can link to.

1020

This document should have a few screen captures that
show the target dimensional model in a graphical form,
some example values, and a few reports to demonstrate the
kinds of business questions it can address. The graphic of
the dimensional model can be derived directly from a data
model, or it can be a simple drawing as illustrated in
Figure 16-4. Remember that the purpose of the picture is to
communicate to the user community. It helps to start at a
high level as illustrated here, and then to drill down to
greater levels of detail. Don’t overwhelm users with the
details of a 200-table data model without providing
context.

Figure 16-4: High level graphic of a dimensional model

Table and Column Descriptions

Once people have a general understanding of a particular
schema, they need to be able to drill down into the details
table by table and column by column. This is where the
descriptive metadata you captured when you were building

1021

the initial target model comes back into service. Refer
back to Chapter 15 for the details of this metadata.

DOWNLOADS

As you may recall from Chapter 15, we
have provided tools to populate a metadata
database with much of the descriptive
information that you captured when you
created the data model. On the book’s
website you will find the metadata schema
scripts:

• The script to create a business metadata
relational database.

• Scripts to populate the metadata database
from the system tables and table and
column extended properties.

• A set of linked reports for users to browse
the business metadata catalog.

Report Descriptions

Each report must have a base set of descriptive information
as part of the standard template described in Chapter 10.
Some of this information, like the report title and
description, can be written out to the Reporting Services
metadata structures when the reports are built or updated.
Other information will need to be captured in the metadata
repository described in Chapter 15. The navigation
framework described in Chapter 10, and the assignment of
individual reports to categories and groups, help people
understand what information is available. These category

1022

assignments should follow the same organizing framework
used to present the reports in the BI portal. In fact, this
metadata can be used to dynamically create the portal
interface.

Additional Documentation

Data and report documentation are certainly the most
commonly used, but other documentation is also
important. The most valuable additional documentation
comes in the form of online tutorials, support guides, and a
list of colleagues who use the system and may be able to
help.

As we discuss later in this chapter, you should develop and
deliver training to the business users. This training should
be mandatory for business users who’ll be creating ad hoc
queries, but it’s useful for everyone. Realistically, not all
users will come to a class. Even if you do have 100 percent
attendance, users can benefit from online tutorials and
class materials. These may be as simple as an annotated
version of the classroom materials made available on the
website.

A support guide will help your business users know whom
to call when they have a problem. You should list the
escalation hierarchy with contact names, emails, and phone
numbers. You may get significant leverage out of
publishing a list of frequently asked questions and
answers. We discuss user support issues later in this
chapter.

1023

Cheat sheets are brief summaries of common commands,
processes, terminology, constraint lists, and so on —
whatever people use or do on a regular basis that might be
hard to remember. A cheat sheet is a single-page
document, often meant to be folded into a tri-fold format
for easy access and storage. In some ways, these cheat
sheets are marketing brochures for the DW/BI system.
They will be prominently displayed in your users’ offices,
so make them look professional. The cheat sheets should
also be part of the BI portal content.

Publish a current list of users on the BI portal, with an
indicator showing which users are designated analytic
support people and which users have at least had ad hoc
tool training. Include a simple report showing query
activity by user in the last month or so, sorted from most to
least active.

Your BI portal should incorporate additional functionality,
including:

• Metadata browser: The metadata browser is the reporting
and navigation front end for the metadata repository.
Chapter 15 describes a metadata schema that should be
accessible from the BI portal.

• Search function: The BI portal should include the ability to
search the contents of the warehouse, and especially the
report descriptions. Chapter 12 describes how to set up your
SharePoint BI portal to include search (which is not as trivial
as it sounds).

• Warehouse activity monitors: Power users and the DW/BI
team always want to know what’s going on in the DW/BI
system right now. You might hear this question in slightly
different forms, like “Who’s on the system?” or “Why is the
report so slow?” Develop a few reports that execute against

1024

the SQL Server system tables or Analysis Services database.
We discuss activity monitoring in greater detail in Chapter
17.

User Training

One of the main purposes of the BI applications is to
provide information for the 80 percent of the organization
who’ll never learn to access the data directly.
Unfortunately, the remaining 20 percent will never learn
either, unless you teach them. Offer classes that will help
ad hoc users climb the learning curve to master both the ad
hoc tool and the underlying data.

It’s hard to know when to start developing user training.
You need to start after the database is stable and the
front-end ad hoc tool has been selected, but long enough
before the actual rollout begins to be able to create and test
a solid set of course materials. Training development
breaks down into two primary tasks: design and
development of the course materials. Beyond these, the
DW/BI educator might also need to create supporting
materials and a training database.

After the system has been in use for a few months, you
may add an advanced techniques class for ad hoc users.
You may also provide a separate, data-centric class for
each new business process dimensional model added to the
DW/BI system.

Part of the design process includes outlining each class.
The sidebar titled “Introductory One-Day Ad Hoc Query
Course Outline” shows a typical outline. The outline will
evolve during development, testing, and delivery of the

1025

class based on the reality of what it takes to teach people,
and how long it takes them to learn.

Introductory One-Day Ad Hoc Query Course
Outline

Introduction (gain attention) [30min]

• DW/BI system overview (goals, data, status, and
players)

• Goals of the class
• Student expectations for the class

Tool Overview (Demo) [15]

• Basic elements and user interface
• The query building process

Exercise 1 — Simple query [45]

Break [15]

Querying orders from the orders fact table (Demo)
[15]

Exercise 2 — Simple multi-table query [45]

Review and questions [15]

Lunch [60]

Working with query templates (Demo) [15]

1026

Exercise 3 — Sales over time [60]

Exercise 3 review (Demo) [15]

Break [15]

Saving, scheduling, and sharing reports (Demo)
[15]

Exercise 4 — Saving and scheduling reports [30]

Overall review and next steps [15]

Exercise 5 — Self-paced problem set [75]

Creating the course materials for hands-on training
requires a good sense for computer-based education. Many
of the classic communications principles apply. Each
module should be short enough to finish within the average
adult attention span of 45 minutes to an hour. Each module
should follow the same structure, beginning with a
summary of the lesson and the key points the student
should learn from the module. The body of the module
should use a relevant business problem as the motivation
for working through the material. Learning how to count
the number of customers who responded to a new
promotion would be more interesting than learning how to
count the number of rows in the TABLES system table,
even if the two exercises teach exactly the same concept.
The exercises should be well illustrated with screen

1027

captures that look exactly like what the students will see
on their computers.

RESOURCES

Much of the instructional design approach
we follow is based on the work of Robert
Gagné. His influential books, The
Conditions of Learning and Theory of
Instruction (Harcourt Brace College
Publishers; 4th edition, 1985), and his more
practical Principles of Instructional Design
(Gagné, et.al., Wadsworth Publishing; 5th
edition, June 15, 2004), take an approach
based on cognitive psychology and
information-processing theory. These
theories posit that there are internal mental
processes involved in learning that are
influenced by external events.

Gagné uses this relationship by viewing
instruction as the arrangement of external
events to activate and support the internal
processes of learning. There is a lot more to
creating effective training materials than
just writing down a list of “click here”
steps.

The modules should become progressively more complex,
with the early ones providing step-by-step instructions and
the later ones offering higher-level guidance. Include

1028

bonus exercises at the end of each module to keep the
quick learners occupied.

Include time to test the training materials as part of the
course development plan. Test each module on a few
people from your team, and then test the whole package on
a few of your friendly end users.

The Training Database

Most organizations that create ad hoc training
materials also create a training database. The
training database contains the same schema as the
real DW/BI system, but it is scaled down and
doesn’t require security. It’s typically derived from
the static test database used in the development
process.

Although it’s nice to have real, up-to-the-minute
data in training, you also need users to be able to
see on their screens the exact image that’s in the
training book. A static database that doesn’t require
security filters is the easiest way to make that
happen.

Creating a good class takes a lot of work. Count on at least
eight hours of work to create an hour of class materials. A
one-day class will take about a week and a half to two
weeks of hard work for someone with experience
developing course materials. If this is your first time,
double the estimate to give you more time to research

1029

other examples of good materials, and to test the materials
you create.

Keep hands-on classes for ad hoc users relatively small —
10 to 20 people at a time. Have an assistant in the
classroom to help answer individual questions during the
exercises. Plan to have one assistant for every 10 students.

User Support

A well-designed and well-implemented DW/BI system is
much easier to use than any alternative, but it’s still not
that easy. The DW/BI team will need to provide ongoing
support to its user community. We recommend a
three-tiered approach to providing user support. The first
tier is the website and self-service support, the second tier
is your power users in business units, and the third tier is
the front-end people on DW/BI team (the BI part of the
group).

• Tier 1, the Website: We’ve already discussed the
support-related contents of the website in the documentation
section. Having great content and the tools to find it
(navigation, search, and metadata browser) is fundamental to
providing support through the website.

• Tier 2, the Expert Users: If someone needs help creating an
ad hoc query, or needs a specific report that doesn’t already
exist, they need to talk to someone with the skills to help. Set
the expectation that this initial contact should be with
someone who is based in the business, preferably in the
person’s department.

• Tier 3, the DW/BI Team: When the website and local experts
are unable to solve the problem, the DW/BI team must offer
a support resource of last resort. This front-end team actually
has responsibilities across all support tiers. They own the BI

1030

portal site and must maintain and enhance its content
including the BI applications. They own the relationships
with and the training of the expert users. And, they provide
direct support to the users when needed. This list of
responsibilities represents a significant amount of work. Plan
to have more people on the DW/BI team dedicated to these
front-room tasks than to the back room — in an eight-person
DW/BI team, for example, at least four people will be
dedicated to front-room responsibilities.

NOTE

In some organizations, the BI portion of the
DW/BI team gets split off to become its
own entity. While there are probably good
reasons to do this, we believe the DW/BI
system is so closely tied to the business that
splitting the two is like what happens when
a cartoon character gets cut in half. The
bottom half can’t see where it’s going, and
the top half has lost its mobility. It’s
important to dedicate people to the
front-end responsibilities, but separating
them into their own organization is
generally not productive in the long run.

The BI applications should be self-supporting, with
pulldown menus, pick lists, and help screens. The DW/BI
team will need to monitor their usage, maintain them as the
data and data structures change, and extend and enhance
them as additional data becomes available. Provide a
means for users to give feedback on existing BI
applications and request new ones.

1031

Many IT organizations began building their DW/BI
systems with the goal of letting users create their own
reports. The real goal was a bit more self-serving — the IT
folks wanted to get off the report generation treadmill.
Unfortunately, while this treadmill may slow down a bit, it
never goes away. Even though accessing data is easier, the
majority of knowledge workers don’t have the time or
interest to learn how to meet their own information needs
from scratch. Often, these people can be found at senior
levels in the organization, so meeting their needs is
particularly important. The DW/BI team will need to
include creating custom reports in its responsibilities list,
and to make sure there are resources available to meet the
most important requests. The good news is that these
custom reports can almost always be turned into
(parameterized) standard reports and integrated into the
existing BI application set.

Desktop Readiness and Configuration

The initial deployment must consider issues across the
entire information chain, from the source systems to the
user’s computer screen. Most PCs can handle the rigors of
querying, reporting, and analysis. They already support
large spreadsheets and Access databases. In some ways,
the DW/BI system should reduce the strain on the user’s
PC by moving most of the data management back to the
servers. Don’t assume that everything will work fine at the
user desktop. Test this assumption well before users attend
training.

Before you inspect the situation, decide how much
capability a user’s desktop machine will need to have.

1032

Create a minimum configuration based on the front-end
tools, the amount of data typically returned, and the
complexity of the BI applications. This minimum
configuration includes CPU speed, memory, disk space,
and monitor size. It should also indicate the base computer
type and operating system supported, and browser version
requirements. We’ve been in organizations that insist on
supporting multiple operating systems on users’ desktops:
Windows, Apple, Linux, and UNIX. Obviously, this
diversity has a big impact on the architecture and tool
selection steps, long before you get to deployment. Let’s
hope those who are implementing a Microsoft DW/BI
system are less interested in supporting multiple types of
operating systems, but there are still many flavors of
Windows.

When you go out into the user community, consider the
following issues.

• Connectivity: Connectivity is not usually an issue in today’s
workplaces, but there can be a problem getting from one part of
the organization to another. For example, a remote field office
may not have the appropriate network configuration to get to the
DW/BI server. Bandwidth to the desktop is usually not an issue
either, but it’s worth verifying, especially for a mobile
workforce.

NOTE

Windows Remote Desktop can be a good,
inexpensive solution for bandwidth
problems. It works very well across even

1033

fairly slow connections. We use it all the
time over a virtual private network to
shared servers. Many of our clients have
reported great success in increasing user
satisfaction — especially for salespeople
and others who are often on the road.

• Installation: Some front-end tools are desktop-based and need
to have software installed on the user’s machine. PowerPivot,
for example, requires Excel 2010 plus the actual PowerPivot
add-in for Excel. Even browser-based tools may require a later
version of Internet Explorer than your organization supports.
Test the installation process from a selection of user machines
and document any problems. If the installation process is
anything more than clicking a button on the BI portal, make sure
you document it clearly and use it to create a set of installation
instructions.

Summary

The goal of this chapter is to highlight the most important
issues to think about when deploying a DW/BI system.
Deploying a system safely and successfully requires a lot
of work and planning. You need the entire DW/BI team
and help from business experts.

The DW/BI team has to focus on developing solid
operations and performance tests. Equally important, these
back-room folks should concentrate on building and
testing a playbook for the actual deployment process. The
deployment playbook is vitally important when you’re
adding new functionality to an existing system, while
minimizing end user impact. The goal for the playbook

1034

should be to write instructions so clear and simple that
anyone can follow them. System deployment is no time to
be thinking!

The front-room team focuses on queries, reports, and user
interactions. During the deployment process, this team
concentrates on running quality assurance tests on the data
and reports. You have to rely heavily on the business
experts for this testing work too. They’re the ones who will
confirm the data’s accuracy. The front-room team also
needs to develop system documentation, tools for
searching and viewing that documentation, and training for
the business users. Unless you’ve done documentation and
training development before, you’ll be surprised at how
much time it takes to do this “soft” stuff well.

In our experience, problems with deploying a system
almost always derive from incomplete testing. Test early
and often. Test everything: your procedures, operations,
and performance. Test the upgrade scripts. Check the
results. Don’t approach the actual rollout date with an
attitude that says, “This should work.” The right attitude is
“We’ve tested this every way we can think of, and it will
work.”

When you do finally roll out the system, with no wrinkles
at all, take a break. You’ve earned it! Then turn on your
usage-monitoring tools, sit back, and watch what the
business users are doing with their great new system.

1035

Chapter 17

Operations and Maintenance

“To administer is to govern: to govern is to reign.”

— Honor Gabriel Riquet

We’ve seen too many DW/BI teams postpone thinking
about how to operate their new system until it’s nearly in
production. When deadlines are looming and users are
clamoring for data and reports, it’s too late to start
designing your operating procedures. You’ll be making
stuff up as you go along, and you’ll make mistakes.

There are two major sets of issues to think about with
respect to the ongoing operations of your system. The first
set of issues revolves around communicating with,
training, and supporting the users. Of course you’ll be
publishing reports to them about the business, but you also
need to communicate with them about the DW/BI system
itself.

The second set of issues focuses on technical systems
management. You need to think, long before you go into
production, about a host of issues. Your decisions about
these operational issues will affect your system
configuration and design. These issues include monitoring
performance and usage, automating operations, and
managing resources for ad hoc use.

1036

At launch your system’s performance might be great, but
with increased data volumes and user load, performance
might degrade. A solid monitoring plan, implemented from
the start, is your best weapon for identifying and solving
bottlenecks. With the right information you can
continuously tune the system so bottlenecks are solved
before users even notice them.

Finally — but very important — you need to plan for,
implement, and test your backup and recovery strategy.

The now-familiar Business Dimensional Lifecycle diagram
(see Figure 17-1) places operational issues at the end of the
Lifecycle where you loop back around on the next
iteration. Operationally that’s accurate, but as we discuss
throughout this chapter, you need to be planning for safe
operations from the outset.

Figure 17-1: The Business Dimensional Lifecycle

In this chapter, you’ll find answers to the following
questions:

1037

• What do you need to worry about with respect to
maintaining and extending the BI portal and BI applications?

• How do you monitor the system? What kinds of counters
and events should you track? How can you see what users
are doing right now, and kill bad queries?

• How do you conduct performance tuning of a DW/BI
system?

• What data do you need to back up and how often? How
should you perform backup and recovery?

• How do you execute Integration Services packages in
production?

Providing User Support

The design and development of your DW/BI system has
focused on building a system that’s easy to use, intuitive,
and performs well. You’ve built BI applications, be they
canned reports, a dashboard portal, a closed loop data
mining application, or a combination of all. You’ve trained
the users on the data and applications. What’s left to do? A
lot.

The business user community will grow and change. Some
users will learn the new tools immediately. Others will
require some hand-holding and retraining. Even if your
system is perfect and the business users catch on
immediately, you’ll need to train new employees. On an
ongoing basis, it’s common to have the same number of
people involved with supporting the business users as
initially developed the system.

The user-facing part of the DW/BI team engages in the
following activities:

• BI portal maintenance and enhancement

1038

• BI application specification and development
• BI Help Desk support and training, discussed in Chapter 16

We’ve seen the user-facing side of the DW/BI team range
in size from dozens of people for large companies with a
centralized DW/BI system, to a single person. The smallest
organizations often have a single-person shop, but it’s
really hard for that person to handle the back-room
maintenance while communicating effectively with the
business users. Ongoing, it’s hard to see how you can get
by with fewer than two people: one for the back room, and
one for the front room.

NOTE

Many CIOs and IT managers imagine that
the DW is like a normal project: heavily
staffed during development, but requiring
only 1–2 people once it’s in operation. Not
so! The front room team, often called the
BI team, requires a lot of resources. So
often we see technically sound DW/BI
systems that are underutilized because the
ongoing BI team is too small to be
effective. A good rule of thumb is to expect
the overall DW/BI team to be as large in
production as in development, but
resources shift from back room
development (DW) to front room user
support (BI).

1039

Although we refer to an integrated DW/BI
team throughout this book, the BI team
sometimes reports in to the business. We
generally prefer a single team, because the
simpler organizational structure ensures
better communication between the front
room and the back room. There are,
however, advantages to having the BI team
report to the business. Their presence
embedded in the user community increases
user buy-in and improves DW credibility,
as long as the two teams communicate as if
they were a single virtual team.

Maintaining the BI Portal

Even the smallest DW/BI team should maintain an intranet
site where users get information about the system. In
Chapter 12 we discussed how to create a portal to host the
reports from Chapter 10; in Chapter 15 we described the
metadata that should be published on the portal; and in
Chapter 16 we talked about documentation and training
materials that should be hosted on the site.

Here we briefly present an additional set of information
that should go on the portal, having to do with operations
and maintenance:

• System status — what is the most recent day of data in each
business process dimensional model

• Schedules of planned outages

1040

• Honest and complete status of any unplanned outages or data
quality problems

• The system’s current operational status, including:
• How many queries have been answered in the last

hour or day
• How many reports were generated
• Current number of active users
• On-demand report of active queries, how long

they’ve been running, and who’s running them
• Proof points about the system’s capacity, to foster user

confidence in the system:
• How long the last data load took
• How big the largest data load was, and how long it

took
• Maximum count of simultaneous users

Every 12 to 18 months, you should review the entire DW/
BI system. Evaluate what’s working well for the users, and
what should change. Remember, change is inevitable, and
is a sign of a healthy system. As part of this periodic
evaluation, consider refreshing the look, layout, and
content of the BI portal.

Extending the BI Applications

The initial reports and BI applications for a new business
process dimensional model will soon be modified and
augmented. Users don’t always know what reports and
analyses they want until you show them something fairly
close. Then they’ll tell you what they don’t want — the
report you just created — and, let’s hope, give you clearer
information about what they now think they need.

The cycle repeats as business imperatives change.

1041

Data mining applications, and other kinds of closed loop
systems, are seldom implemented in the first phase of a
DW/BI system. First, the basic data is brought online.
Then, business users and DW/BI team members build ad
hoc models and analyses. This analytic work has
tremendous value to the business, for example by
improving their understanding of customers, or providing
mechanisms for reducing costs. The next step, beyond
improving understanding, is to systematize the knowledge
gained from ad hoc analysis by building a closed loop
system. In our experience, ad hoc analyses are usually
valuable enough to provide a positive ROI on the DW/BI
investment, and many implementations stop there. Those
DW/BI teams that go on to build data mining applications
and other kinds of closed loop systems usually reap greatly
increased ROI.

The process of developing a closed loop BI system
requires close partnership between the business people,
who can effectively develop the business rules and analytic
models, and the DW/BI team, who will write the system
specifications and formalize the models. The majority of
the application development effort requires a fairly
standard development skill set, which is often met by the
same developers who work on the operational systems.
The developer needs a relatively small amount of
specialized knowledge — for example, of the Analysis
Services object models — in order to implement the calls
into the databases or data mining model.

System Management

1042

Most of this chapter focuses on the back-room
requirements for managing your DW/BI system in
production. Although we’ve separated these operational
issues into this chapter, you need to think ahead during
design and development to ensure you build a
maintainable system.

There are several components of the back-room system
management:

• Monitoring resources and usage
• Managing data growth and disk space
• Performance tuning
• Managing partitioning
• Data quality monitoring
• Backup and recovery
• Generating statistics for the BI portal
• Executing and monitoring the ETL system

The more automated you can make your systems
management, the better. At the very least, automate
backups and launching the ETL packages. SQL Server
provides enough tools that the basics are easy, and there’s
no excuse for not implementing some system automation.

Unlike many issues where we’ve talked about how small
teams might cut corners, organizations of any size benefit
from system automation. Indeed, the smallest
organizations are perhaps least equipped to apply human
resources to a problem that can be automated. It’s hard to
imagine how a DW/BI team of one to three people could
possibly operate without significant automation.

1043

The ideal management system requires no human
intervention except for the occasional troubleshooting.
Such a system automatically adds and drops partitions,
checks for disk space, reports on performance problems or
unusual usage, and corrects the vast majority of data
oddities during the ETL process.

No matter how automated your operations are, you must
have a plan. Like all plans, your operations plan should be
written down.

Governing the DW/BI System

How does the DW/BI system administrator know what’s
going on in the DW/BI system right now? What tools are
available to manage and maintain the DW/BI system on a
day-to-day basis?

As you might expect, Microsoft and SQL Server provide a
wide range of tools, solutions, and approaches. Some of
the technologies, notably the relational engine, are richly
instrumented and easy to manage. Others are not as well
instrumented, but can be fairly well managed by using a
combination of third-party software, free downloads, and
custom scripting.

Identifying and Terminating User Sessions

The most basic question for ongoing administration of a
DW/BI system is who’s logged in and issuing queries right
now. The immediate second question is how to kill a
query. No matter how well we design the DW/BI system to
support ad hoc use, and train our user community, there’s

1044

inevitably a need to kill the occasional query that’s using
too many system resources.

Relational Database

The relational engine has very nice tools for real-time
analysis and management of server activity. As you might
expect, there are several alternative methods for
identifying and terminating user sessions. The main two
are T-SQL and Activity Monitor.

For decades, DBAs have used T-SQL commands such as
sp_who to identify user sessions, and the kill command
to terminate those sessions. Activity Monitor is a tool
hosted within SQL Server Management Studio (SSMS) to
provide information about user sessions, queries, and other
processes. As you can see in Figure 17-2, Activity Monitor
presents a summary display and detailed information about
active processes, resource usage, I/O, and recent queries.
The Processes section is used most frequently, and you can
right-click a process to terminate it. Activity Monitor runs
for the entire instance of SQL Server, although you can
filter down the view to focus on a single database.

Figure 17-2: Relational database Activity Monitor

1045

Alternatively you could use SQL Server Profiler to see all
the activity on the server. Profiler is launched from the
Tools menu in SSMS, and captures a broad and
configurable set of information about user processes. But
since Profiler is read only, you’d need to switch over to
Activity Monitor or a query window to actually kill a
query.

Analysis Services Database

There are similar tools for Analysis Services to identify
active sessions and queries, but these tools are not as nice
as for the relational engine. The “old fashioned” way to
identify users is to execute a DMX statement with familiar
SQL syntax, such as:

1046

select * from $system.discover_connections

We call this old fashioned because it’s similar to the
old-fashioned way to view activity in the relational
database. But this functionality, called Dynamic
Management Views, was new in SSAS 2008.

To list currently executing queries, you can type:

select * from $system.discover_commands

Within SSMS, you do not execute these statements in a
normal SQL query window. Instead, you open a DMX or
MDX window, as illustrated in Figure 17-3.

Figure 17-3: Executing a command to see active SSAS
queries

1047

NOTE

The DMX window was originally designed
for executing data mining commands.
When you open a DMX window, a browser
pops up that lets you choose the data
mining model you want. This is perplexing
the first time you try to execute a Dynamic
Management View command for Analysis
Services. To be honest, it continues to be
perplexing, but you’ll ignore it after a
while.

Alternatively, you can use the MDX
window to execute Dynamic Management
View commands. This doesn’t make sense
either (since the DMX language is not the
same as MDX, despite containing the same
letters in its name).

Unfortunately, you can use the Dynamic Management
Views only to identify problem queries. There’s no kill
command that you can execute from the same DMX
window. In order to kill a query from within SSMS, you
must execute an XMLA script.

The best solution is to download the Analysis Services
Activity Viewer tool from CodePlex. This tool, illustrated
in Figure 17-4, shows active sessions and queries. You can
use it to kill a specific query by clicking the button in the

1048

lower right. Most systems use the Activity Viewer rather
than DMX and XMLA.

Figure 17-4: Using the SSAS Activity Viewer to kill a
query

Reporting Services

You may occasionally want to cancel a specific report
execution in Reporting Services. In SSMS, you can view
currently executing reports in the Jobs folder of a
Reporting Services instance. Right-click the offending
report to find the option to cancel it.

1049

Canceling a Reporting Services job cancels only the
Reporting Services activity, notably the work involved in
rendering output into the display format. If the problem
report is spending all its time in the database query, you’ll
need to go to the underlying database (relational or
Analysis Services) to cancel the query as a separate step.

Resource Governance

The ability to find and kill a specific user query is useful,
but no one wants to sit at a monitor all day, zapping the
occasional query. Instead, the DBA would like to automate
the ongoing allocation of resources to users and other
processes. He may even want to set up a process to
automatically kill extremely long-running queries.

Relational Database

The SQL Server relational engine has a nice feature called
Resource Governor. As you might expect from the name,
Resource Governor is the right tool for the job of ongoing
management of CPU and memory resources. Resource
Governor doesn’t help you manage I/O.

First, you can define multiple workload groups. You may
want to create separate groups for:

• Integration Services jobs
• Reporting Services report execution
• DW/BI team members
• Most ad hoc users
• Vice presidents
• That guy in accounting who keeps trying to download half

the data warehouse into Excel

1050

You can define resource pools and policies for each
workgroup, as illustrated in Figure 17-5.

Figure 17-5: Defining pools and groups in Resource
Governor

You must write a T-SQL function to classify requests into
groups. The classification is typically based on usernames
and the name of the application (such as Excel) that’s
submitting the request. Any request that’s not explicitly
classified into a workload group will fall into the default
group.

Resource Governor will limit the resources for a query
only if there’s resource contention. In other words, if a
user with low priority kicks off a query in the middle of
the night, she may use all the server’s resources if there’s
no other activity on the server at that time.

1051

REFERENCE

Books Online has adequate documentation
for the Resource Governor, starting with
the topic “Managing SQL Server
Workloads with Resource Governor.” The
topic “Considerations for Writing a
Classifier Function” is also useful.

If a query exceeds the maximum CPU defined for its
workload group, Resource Governor will throw a CPU
Threshold Exceeded event. You can use SQL Server
Profiler to monitor for this event. Usually it’s sufficient for
the DBA simply to view the logs generated by Profiler, in
order to determine if the maximum CPU level is set
appropriately.

Whether or not you’re using Resource Governor, you can
set up an alert in SQL Server Agent to notify the DBA of
long running queries. Although it’s possible to set up a
response in SQL Server Agent to automatically kill
queries, we recommend keeping a person in the loop, at
least during the work day.

Analysis Services Database

The SSAS Activity Viewer can define alerts and actions.
You can easily set up Activity Viewer to alert you when a
query has been running for more than 30 minutes, or even
to kill that query. You can even eliminate special people
(such as yourself!) from the rule.

1052

Performance Monitoring

You need to implement and understand two types of
monitoring. First, what’s going on in your system? What
system resources like memory are being used, when, and
by what processes? If you can’t monitor system events and
resource usage, you’ll never be able to troubleshoot and
tune your system. The other kind of monitoring focuses on
the users: Who’s accessing the system, and when? What
queries are they running and how much time are those
queries taking? If you don’t know what your users are
doing, you’ll never be able to satisfy them.

The good news: this is all easy to set up. There are a
handful of underlying tools, including:

• System Monitor is an operating system tool to collect and
view real-time performance data in the form of counters, for
server resources such as processor and memory use. The
usage of many SQL Server resources is exposed as System
Monitor counters.

• SQL Server Profiler tracks an instance of the relational
engine or Analysis Services. Profiler is a tool with a simple
user interface for defining a trace to track activities of
interest, such as user logins or query executions. Profiler can
be set up to capture query text for both Analysis Services
and the relational engine.

• Event Viewer is an operating system tool that collects
information about system events, such as Analysis Services
shutting down unexpectedly.

It’s useful to know about these underlying tools, and you
certainly could use them directly to monitor your DW/BI
system. However, most organizations can rely on a
packaged monitoring configuration supplied by Microsoft,

1053

known as Management Data Warehouse. As we discuss
next, Management Data Warehouse is useful out of the
box for monitoring the relational database. And you can
extend it to capture information about Analysis Services as
well.

Relational Database

The easiest way to set up comprehensive monitoring for
the relational data warehouse is to install Management
Data Warehouse (MDW). You can do this by
right-clicking on Data Collection in the Management
folder in SSMS. MDW sets up monitoring on a wide range
of counters and SQL Server events, including:

• CPU usage
• Memory usage
• Disk I/O usage
• Logins, logouts, and connections
• Queries, including query SQL

In addition, the MDW configuration performs the
following tasks:

• Sets up the SQL Profiler traces as needed (for example, to
capture query SQL)

• Sets up the System Monitor logging to capture information
from the operating system (for example, CPU usage)

• Creates a database to store the collected information
• Sets up SQL Agent jobs to collect and upload logged

information, including a few SSIS packages
• Installs and schedules stored procedures to periodically

purge aged logs
• Installs a starter set of reports on the collected data

1054

Each set of information has a schedule for collection and
upload into the MDW. For example, server usage statistics
are collected every minute, and uploaded every 15
minutes. The information about queries is logged first to a
file, then scheduled to be moved into the MDW daily.
These schedules are easy to modify.

NOTE

Although you can install Management Data
Warehouse on the same server that it’s
monitoring, it’s generally recommended to
host it on a separate server. You can
monitor multiple servers from a central
MDW location.

Figure 17-6 illustrates one of the sample MDW reports, on
server activity. You can execute the report from SQL
Server Management Studio. The reports are associated
with the MDW database and also in the Management
section of SSMS, under the Data Collection heading. As
you can see, it’s a dashboard-style report that presents a
rich set of information on the operations of your database
server. The underlying tables and views are available for
you to query, should you want to develop a custom report.

Figure 17-6: Sample Management Data Warehouse report

1055

The MDW logic does not store the SQL for every query
executed against the system. Instead, during each snapshot
(default is 15 minutes), the system chooses the top three
most expensive queries by each of six metrics (elapsed
time, execution count, and so on). After eliminating
parameters and literals, the logic identifies unique queries
within that set, and then adds them to the list of “notable”
queries in the MDW. It’s a good practice to minimize the
number of queries for which you’re capturing and storing
the SQL, as that one piece of information alone is larger
than the rest of the logging combined. It’s possible, but not
advised, to modify that logic.

The collection, upload, and purge schedules are easy to
modify. By default, SQL for notable queries is retained for

1056

14 days, but we recommend extending that to 30 or 60
days. Note that by so doing, your MDW database will
grow substantially larger! But a data warehouse that
supports ad hoc queries should have a long time series of
query text available for performance testing purposes.
Figure 17-7 illustrates how to change the schedule for the
query statistics information. You manage this information
in SSMS, under Management ⇒ Data Collection.

Figure 17-7: Changing the retention policy for query
statistics and the text of SQL queries

Analysis Services Database

1057

The kinds of things that we want to monitor for the core
Analysis Services database are the same as for the
relational database. We want to know what resources are
being used (CPU, disk, memory); we want to know who’s
logging in and what queries they’re issuing. The
underlying tools — System Monitor counters and Profiler
traces — work for Analysis Services, and can be
configured to monitor similar information as for the
relational database.

In theory, Analysis Services monitoring should be as
simple to set up as for the relational database. That’s not
entirely true in practice: although similar components
exist, the installation procedure is not as smooth as for the
relational engine.

The Analysis Services Management Data Warehouse
components are not included with the installation media.
Instead, you can find them on CodePlex. To be honest, it
looks like these components were supposed to be a feature
of SQL Server 2008 or 2008 R2 but just didn’t get finished
in time. Although they’re not as polished as the relational
system components, they get the job done.

DOWNLOADS

You can find the CodePlex project for
Analysis Services monitoring at
http://sqlsrvanalysissrvcs.codeplex.com/. It’s
called “A Solution for Collecting Analysis

1058

Services Performance Data for
Performance Analysis.” In addition to the
scripts to set up MDW to collect
information from Analysis Services, the
CodePlex project includes two white
papers, one eponymously titled “A Solution
for Collecting Analysis Services
Performance Data for Performance
Analysis,” and the other is the “Analysis
Services Performance Guide.” Both
documents are highly recommended.

Once you’ve successfully completed the installation as
described in the “Solution” document, you’ll have
extended MDW to collect performance information from
Analysis Services as well as the relational database.
However, the Analysis Services solution does not
automatically purge old performance data, so you’ll have
to manage that process yourself.

On the plus side, the solution does come with a dozen
predefined reports for examining the performance of your
core Analysis Services database.

The MDW solution collects the MDX text of queries,
which is tremendously valuable for the performance tuning
process. The query text will become the script for testing
any proposed changes in the Analysis Services physical
design. There is a second related reason to collect
information about the queries: to feed the process that
designs usage-based performance aggregations. Usage

1059

based aggregations are one of your most effective weapons
for improving query performance of your Analysis
Services database.

If you do not use the MDW monitoring solution, you
should nonetheless capture the information needed to feed
the usage-based aggregation design wizard. Turn on the
query log for usage-based aggregations within SSMS, by
changing the Query Log property of the server.

If you do use the MDW monitoring solution, you should
turn off the query log for usage-based optimization. That’s
because the MDW solution includes a process for
converting the normal query logs, which are stored in
human-readable MDX, into the proprietary format of the
usage-based optimization logs. This way, you only need to
log usage one time, then periodically convert the
information to the other format.

Analysis Services aggregation design and the usage-based
optimization wizard were discussed in Chapter 8.

Reporting Services

During the course of its operation, Reporting Services
stores most of the information useful for performance and
operations monitoring in its ReportServer database.
However, you shouldn’t report directly from ReportServer.
These tables are part of the Reporting Services operational
system, and reporting directly from them is analogous to
reporting directly from any other transaction system.

1060

The ReportServer catalog is just like any other transaction
system. It will lose history when its transaction logs are
truncated. It will lose referential integrity when reports are
deleted that have been run in the past, or when users are
removed who have used the system in the past. Definitions
of the tables and columns may change over time, breaking
the existing library of usage reports. It is not easy to query
directly because it uses codes instead of descriptions for
most of the attributes. Most important, even a simple
interactive query could place read locks on the running
system, dramatically reducing system performance. For all
these reasons, it makes sense to build a simple database
that tracks the process of generating reports. As you can
probably guess, the solution to these problems is in a
CodePlex project.

REFERENCE

The relevant files are part of the SQL
Server product code samples found at
sqlserversamples.codeplex.com. Once you
install the samples, look for the Execution
Log Sample Reports directory. It contains a
database definition for a simple star schema
built from the ReportServer catalog, plus
an Integration Services package for moving
data from one database to the other. Of
course, sample reports are also provided.

Integration Services

1061

The primary goal for monitoring Integration Services
package execution on the production system is to help you
evaluate whether and how to improve processing
performance. You also want to be able to tie the audit
dimension, discussed in Chapter 7, to information about
the package’s execution.

The most important tools for monitoring Integration
Services are System Monitor and Integration Services
Logging. The SSIS System Monitor counters are not as
useful as you’d hope because they track information at a
high level. What you really want to see is how much
memory each step of a data flow is using; instead, you can
see how much memory Integration Services is using.

Nonetheless, the following SQL Server: SSIS Pipeline
counters are somewhat useful:

• Buffer Memory: How much memory is Integration Services
using? If this number is larger than the physical memory
available to Integration Services, some data is being spooled
to disk during processing.

• Rows Read: The total number of rows read from source
adapters.

• Rows Written: The total number of rows written to
destination adapters.

The logging that’s generated by Integration Services
packages is akin to the SQL Server tracing and profiling
functionality that we discussed previously. Like Profiler, it
tracks events. The kind of events that can be tracked and
logged will be familiar to anyone who’s run an Integration
Services package: It’s exactly the same kind of

1062

information that you can see in the Execution Results tab
every time you execute a package in BIDS.

You seldom want to store all those package execution
results permanently. Define package logging so that you
store information about interesting events only. Most
often, you’d set up the packages on your production
system so they log to a SQL Server database, though you
have several choices.

For every task, and for the overall package, you can track
many events, of which the most useful are:

• OnPreExecute: Logs a row when execution begins
• OnPostExecute: Logs a row when execution ends
• OnWarning: Logs a row when the task issues a warning
• OnError: Logs a row when the task issues an error

Unfortunately, the data flow task is like a black box to the
logging system. There are multiple steps and
transformations within a data flow task, and ideally you’d
like to know how long each step takes. This is simply
impossible with the logging framework as it exists. In
order to get this kind of information, you need to hand
craft logging into your packages, by writing row counts
and timestamps at various points within the data flow task
of the package.

Set up logging by editing the package in BIDS. Choose
SSIS ? Logging, and specify where the logs will be stored.
Note that SQL Profiler is one of the options. Logging to
Profiler makes it easier to interleave package events with
database events, and is especially useful during testing.
However, most people log to a SQL Server table in

1063

production. You can direct SSIS logs to the MDW
database, but you should create a separate schema for your
own logged information. Integration Services will
automatically create its logging table.

As we described in Chapter 7, you should build your
packages to collect information about package execution
times, rows inserted into target tables, and possibly other
information like the sum of amounts. This metadata is
stored in the audit dimension and, at your discretion, is
available to business users for querying. You may choose
to pick up additional information from logging, to include
with the audit system.

Finally, you may want to set up package logging to log
errors to the application event log, accessible from the
Event Viewer. This application event may still be written
even if Something Really Bad happens on the database
server, which would prevent the standard logging from
working properly.

PowerPivot

A PowerPivot workbook by itself presents no monitoring
challenges, because it’s unmanaged and there’s really
nothing we can monitor. However, if your organization has
implemented PowerPivot for SharePoint, your power users
will be uploading their PowerPivot workbooks to
SharePoint. The rest of the user community will access
these analytic workbooks via SharePoint.

Once you’ve set up PowerPivot to work with SharePoint,
the two products work together to collect useful

1064

information. The basic performance monitoring
information is collected for you, and is available within the
PowerPivot Management Dashboard as we saw in Chapter
11. You can access the dashboard from the SharePoint
Central Administration site. Performance information
includes CPU and memory usage on the PowerPivot
SharePoint server, as well as counts and timings of queries.

The dashboard contains some useful reports, and you can
always write your own. Logged information is stored in
SQL Server, in the PowerPivot database with a name that
begins DefaultPowerPivotServiceApplication. There are
about a dozen tables in the Usage schema, which hold the
logged information. For performance monitoring, the most
useful table is Usage.Health. By default, the usage logging
information is moved into the PowerPivot database every
night. The management dashboard is a web part page, so
you can customize it with additional web parts showing the
reports that you have created.

Usage Monitoring

The usage of your DW/BI system has a huge impact on its
performance. Our discussion of performance monitoring
suggested that you collect information about usage,
including the text of notable queries. You should always
be collecting counts of queries run and rows returned, by
type of application.

You should also log information about user logins and
attempted connections. For the relational database, set up a
trace in Profiler, capturing the following events:

1065

• Audit Security: Audit Login
• Audit Security: Audit Logout

Take a look through the many additional Audit Security
events to see if any strikes your fancy.

Similarly, set up an Analysis Services trace for logins and
logouts.

You can send the results of both traces either to a file or
directly to a table. For a DW/BI system, we usually have a
relatively modest number of logins so you can log them
directly to a database table. It’s appealing to use the MDW
database for this purpose, but you should separate out your
trace tables into their own schema.

Reporting System usage is captured in the ReportServer
database. If you’ve implemented the reporting
management solution described in the previous section,
that information will be moved nightly to a separate
database appropriate for reporting. Every report execution
is logged, along with the chosen parameters.

PowerPivot for SharePoint usage is captured by SharePoint
and moved nightly to the PowerPivot SQL database, as
described in the previous section. Usage logging is an
extremely valuable feature of PowerPivot for SharePoint.
The collected information and predefined reports make it
easy to see who’s using the system, which PowerPivot
workbooks they’re accessing, and which PowerPivot
workbooks are most popular overall. By monitoring the
changing popularity of PowerPivot workbooks, you can
proactively manage your system.

1066

An example of the PowerPivot Management Dashboard
activity report is illustrated in Figure 17-8.

Figure 17-8: PowerPivot activity report

Your BI portal website should devote a small amount of
screen real estate to reporting on system usage. VPs and
Directors are often very interested in how much their staff
members are using your system. They tend to be
competitive people, and simply seeing another department
using the DW/BI system has been known to spur a VP to
encourage his or her staff to use the system more. A time
series of reporting and ad hoc use by department is a really
good report to publish.

Managing Disk Space

One of the most common reasons for ETL job failure is
one of the easiest to prevent: running out of disk space.

1067

At the very minimum, set up a System Monitor counter
and alert to warn when free space on each disk falls below
a certain threshold. The relevant counter is Logical Disk:
Free Megabytes. Set up two alerts: one to warn when
you’re within a month of running out of disk space, and
one to blare stridently when you’re about a week away.
Anyone — even someone who’s never seen System
Monitor before — should be able to set up a simple alert
on disk space. An alternative, equally effective approach is
to set up an alert in SQL Agent.

The Management Data Warehouse for the relational
database includes a very nice sparkline report that shows
how your database’s disk usage has been changing. This
disk usage report is illustrated in Figure 17-9.

The incremental disk space you’ll be using each month
goes to fact data storage, whether in the file system,
relational database, or Analysis Services database. Most
dimensions are relatively small and static in size, at least
compared to fact tables.

Figure 17-9: Disk Usage sparkline report

1068

When you set up a relational database, you can specify an
initial size, an automatic growth factor like 10 percent, and
a maximum file size. We recommend that you enable
automatic growth as a failsafe, but monitor free space so
that you extend database space on your own schedule. This
is classic relational database management. There are tons
of books available on the subject, and there’s nothing
particularly unusual for the data warehouse environment

1069

— except the overall size of the system and the (usually)
batch nature of inserts and updates.

You could get a lot fancier than the simple mechanism
we’ve described here. If your data volumes are
accelerating, you should write a little program to look at
the sizes of your staging files and Analysis Services
databases. Forecast next month’s disk requirements based
on the recent trend. You could write this program as a
Script Task from within Integration Services, and schedule
it using SQL Agent. You could go so far as to
automatically allocate more disk space for the RDBMS,
staging area, or Analysis Services. But do the basics at
least: You should be embarrassed if you actually run out of
disk space on your production system.

Service and Availability Management

The DW/BI team is responsible for ensuring that the
system, including data, reports, and other applications, is
available to end users. The level of availability required,
measured as the amount of acceptable down time, depends
on the business impact of the system’s unavailability. You
should work with the business users to develop a service
level agreement (SLA), and build a plan for meeting that
specified service level.

When you develop your availability plan, consider the
components of the DW/BI system within the context of
your entire IT infrastructure. Let’s hope your IT team
already has plans and procedures for managing hardware,
software, software installation media and product keys,
and usernames and passwords — all necessary for

1070

rebuilding or restoring a system as quickly as possible.
Assess the following issues:

• Do any parts of the DW/BI system need continuous,
24-hour-a-day query access? Analysis Services? The
relational data warehouse? If so, how do you process new
data without compromising availability?

• If continuous query access is not required, how do you
ensure that processing fits within the nightly processing
window?

• How do you handle situations that require an entire Analysis
Services cube to be reprocessed? As discussed in Chapter 8,
this can happen if an attribute declared to be unchanging
does in fact change, among other reasons.

• How do you recover from a system failure during Integration
Services processing? How do you restart a process
mid-stream?

• How is the DW/BI system protected against failure of one or
more components on the server(s)?

• How is the DW/BI system and data protected against failure
within the enterprise, like source system outages, or serious
problems with the Active Directory servers?

Develop a plan for addressing these issues to achieve the
necessary availability. Test each element of the plan. A
well-trained staff that is prepared to handle any
contingency is an essential part of any disaster recovery
plan.

Your availability plan must explicitly state how you’ll
detect a problem with a service. Maybe you want to wait
for the VP of Marketing to call, but you probably want to
be a bit more proactive.

Your Windows system administrators should already have
procedures in place for identifying service outages. These

1071

procedures probably use System Monitor, Windows
Events, or both. Use those same techniques to identify
whether the components of your DW/BI system are
currently available. If your organization doesn’t already
use Service Center Operations Manager, you should
consider purchasing it or a third-party operations manager
like Tivoli. Any operations management product will be
looking at standard Windows logs like System Monitor
and Windows Events, and SQL Server Profiler.

The SLA should be explicit about the availability that’s
required for each component of the DW/BI system. For
Analysis Services, it’s particularly important to distinguish
between the SLA for unavailability and the SLA for query
performance. In many cases, Analysis Services
incremental processing can occur in the background, with
user access to the cubes undisturbed. During this period,
however, query performance may degrade significantly.
You need to help your business users understand these
tradeoffs, so they can help make the case for a different
architecture if needed to meet their availability and
performance requirements.

The same issues of availability versus query performance
are relevant for the relational data warehouse. Many
organizations simply close access to the DW/BI system
during ETL processing. Others, with higher availability
requirements, will perform the bulk of processing in the
background or on a remote server. User query performance
on the relational data warehouse usually suffers during
ETL processing on the same server, perhaps intolerably so.
A careful consideration of these issues, and good

1072

communication with the users, will help you design a
cost-effective architecture that meets your requirements.

Performance Tuning the DW/BI System

The system operations plan should include strategies for
periodic performance tuning of all system components.
The performance monitoring that we described earlier in
the chapter provides the base information you’ll need to
determine how to improve system performance. If
performance is degrading, you need to identify which
operations are causing the problem, and whether the
primary bottleneck is in memory, disk, or processing
power. All the BI components love memory, so it’s a good
bet to check memory usage first.

The best way to solve resource contention may be to
distribute your DW/BI system across multiple servers. A
lot of DW/BI teams will try to build an all-in-one system,
with the four major BI components (relational database,
Integration Services, Analysis Services, and Reporting
Services) on a single server. As we discussed in Chapter 4,
it’s often sensible to distribute across multiple servers.
There’s no hard and fast rule about which components to
group together, although most often we see the relational
database and Integration Services on the same box.

Look to see if your system is memory-bound. Although
there are circumstances where you can redesign your DW/
BI system components to use less memory, it’s usually far
cheaper simply to buy more memory. It feels intellectually
lazy to recommend a hardware upgrade to solve
performance problems, but if you’ve done a good job on

1073

your system design it’s often the easiest — if not the only
— degree of freedom.

The query performance of your relational data warehouse
database may be improved by adding or changing:

• Fact table partitioning
• Indexes and indexed views
• Filtered indexes, especially for the common scenario where

many queries are limited to the most recent data (filter on
date)

• Statistics, including filtered statistics. Everyone knows that
statistics are associated with each index you build. But you
can also create standalone statistics, which at times can
greatly assist the query optimizer in determining the correct
query plan. Statistics aren’t free to build, but they are much
cheaper to build and store than the corresponding index.

For Analysis Services, your two big weapons for
improving query performance are:

• Adding or increasing partitioning. Especially helpful is to
partition by multiple dimensions.

• Adding or changing your aggregation design. Use the usage
based aggregation wizard.

REFERENCE

There is a very nice performance guide
available for download from
http://download.microsoft.com, called
“SQL Server 2008 White Paper: Analysis
Services Performance Guide.” Though

1074

written for Analysis Services 2008, it
remains relevant for 2008 R2.

No matter what you’re doing to improve performance, it’s
really important to follow good change management and
tuning techniques:

• Work on the test system, and script any changes to
production.

• Document baseline performance.
• Change one thing at a time.
• Document changes to performance.
• Test all the changes together before moving to production.

Backup and Recovery

No matter what the availability requirements are on your
system, you need a backup and recovery plan. This seems
like an intuitively obvious statement, but we’ve seen any
number of DW/BI systems that purported to be in
production, but which had no backup plan.

It’s as important to have a recovery plan as it is to have a
backup plan. And it’s equally important to test these
procedures. When the inevitable emergency happens, you
want to be ready, practiced, and calm. Your test system is
an ideal platform for testing these procedures. If you
haven’t fully tested your recovery procedures, you’re lying
to yourself and your management that you have a real
backup and recovery plan.

1075

In the DW/BI world, you can experience the same kinds of
emergencies as transaction systems, from server outages
and disk failures to earthquakes and floods. Plan for your
daily or monthly load cycle to break down occasionally.
Develop your ETL system so that failure is fairly unlikely.
But let’s face it: The DW/BI system is at the end of a long
train of data flows over which you have no control. Only a
foolish manager would neglect to plan for backing out a
bad load. The auditing system described in Chapter 7 lays
the foundation for identifying the rows that were changed
during a specific load process.

Relational Databases

The relational databases are usually the most vital sets of
information to back up regularly. Ideally, back up the
following databases after each load:

• Relational data warehouse databases
• Staging databases and files
• Metadata databases
• ReportServer

Other databases should be backed up on a regular
schedule, though perhaps not daily. These include:

• Msdb, which contains SQL Agent job definitions and any
SSIS packages that are stored in SQL Server.

• Logging databases, including MDW and the Reporting
Services logging database.

Your backup and recovery strategies are intertwined with
each database’s recovery model. The Simple recovery
model lets you restore only to the point of a backup. The
transaction log is not backed up. This works fine for many

1076

relational data warehouses, where data flows in nightly,
weekly, or monthly. The Simple recovery model is
appropriately named; it’s faster and simpler to manage
than the Full recovery model. Nonetheless, as your DW/BI
system moves closer to real time, the Full recovery model
becomes increasingly appropriate.

REFERENCE

See the Books Online topics “Overview of
the Recovery Models,” “Restore and
Recovery Overview,” and “Selecting a
Recovery Model” for more information.

Most systems use the standard SQL Server backup
facilities for relational backup and recovery. The relational
data warehouse database is usually quite large, and so it’s
often challenging to run a backup at the end of each
(nightly) load cycle. There are several alternatives:

• Store the database on a Storage Area Network (SAN), and
use the SAN software to perform the backup. The SAN
backup techniques are high performance, and this approach
has been a common practice for very large databases with
SQL Server 2000.

• Partition the large fact tables, and set aged partitions to be
read-only. Perform occasional full backups, but rely
primarily on a strategy of filegroup and partial differential
backups. Under the Simple recovery model, partial backups
back up the primary filegroup and all the read-write
filegroups. Read-only partitions are backed up when they’re
filled and converted to read-only status. The innovation of
read-only partitions greatly improves your ability to quickly

1077

back up the changed portions of the relational data
warehouse. However, if you have late-arriving fact data,
you’ll need to partition by load date in order to take greatest
advantage of fast partition table backups. If instead you are
partitioning a very large fact table by transaction date and
have late-arriving fact data, you’ll need to plan for SAN
backups.

REFERENCE

See the Books Online topics “Partial
Backups” and “Differential Partial
Backups” for more details.

The logging database is written to constantly. Some DW/
BI teams think the logging data is vitally important, and
implement a very strong backup strategy. Other teams are
sanguine about the notion of losing a week’s worth of
logging data, and manage the database far more loosely.
Obviously, if your logging data contains usage data
necessary for regulatory compliance, you need to develop
a serious backup and recovery strategy. Use Full recovery
mode and a backup strategy appropriate for a transaction
database. Books Online, and any number of SQL Server
books, are filled with information about backup strategies
for transaction databases.

Approaches differ on backup and recovery strategies for
the staging databases. Many DW/BI teams think of the
data in the staging tables as ephemeral, and back up only
the table CREATE scripts. On the other hand, most staging
databases contain only data for the most recent loads —

1078

for example, the last seven days — so a full database
backup is really fast.

You may have built a simple application for business users
to manipulate custom hierarchies or other attributes of a
dimension. Such an application is a transaction system,
however small scale. Typically you want the application to
write directly to a different database than the data
warehouse, one with Full recovery mode and log backups.
Similarly, the metadata database should also be treated
more like a transactional database than the large data
warehouse database.

The msdb system database may include your Integration
Services packages. It will certainly include any SQL Agent
job definitions and schedules, and other information used
by Management Studio, including information about which
databases were backed up. For that reason, the msdb
database should always be backed up immediately after
any other backup operation. Use Full recovery mode for
msdb.

Integration Services

The most important information to back up for Integration
Services is the package definitions themselves. Packages
can be stored in SQL Server, in the file system, or in a
managed mode in the file system called the Package Store.

If the package definitions are stored in SQL Server, they’re
located in the msdb system database, which as we’ve
already discussed should be backed up religiously.

1079

If the packages are stored in the file system or the Package
Store, simply use a file system backup utility like
Windows Backup to back up the package definitions,
configuration files, and associated information. Of course,
package definitions should be under source control, and
that source control database should be backed up too.

As we discussed in Chapter 7, you may be staging or
storing data in the file system. Use Windows Backup or
another copy utility to back up staged data. This is
especially vital if you’re relying on re-running staged
extracts to bring your data warehouse database up-to-date.

Analysis Services

Throughout this book we’ve encouraged you to think of
the Analysis Services database as ephemeral — a database
that may need to be fully reprocessed at some point. That’s
necessary because Analysis Services doesn’t support the
full level of data manageability, notably updates and
deletes, as the relational database. The great benefits
provided by Analysis Services in query performance,
complex security, a calculation engine, and easy user
navigation come at a cost. You need a plan for being able
to fully reprocess the dimensional database; never throw
away the relational data.

You absolutely must back up the definition of the Analysis
Services database: the information that enables you to fully
process the database. You might think that, because you
have the database definition on your development server
and checked into source control, you’re safe. You could
always re-deploy and re-process the Analysis Services

1080

database. That’s largely true, but you’ve probably
modified aggregation design and partition strategy on the
production database; these changes are not reflected in the
version on the development server.

You won’t find a formal command or utility for backing
up the database’s definition. The most straightforward
approach is to generate a complete CREATE script for the
database, and back up that script.

The recommended method for backing up the Analysis
Services database is to use the Analysis Services backup
and restore facility in Management Studio. The greatest
drawback of Analysis Services backup is that it works only
at the database level. On the plus side, you can launch the
Backup and Restore wizards from Management Studio.
From within the wizard, you can script the commands for
automated operations. Schedule the backup from SQL
Agent or launch it from an Integration Services package.

The Analysis Services Backup facility backs up all
metadata, but only data that’s stored in MOLAP format.
This includes all data and aggregations for MOLAP
partitions, and aggregations only for HOLAP partitions.
Data stored in the relational data warehouse should be
backed up using relational backup techniques. Plan for
your Analysis Services backups to take about as much
space as the database itself. Analysis Services databases
are stored so efficiently that we see very little additional
compression upon backup.

If your Analysis Services database is small, in the tens of
gigabytes, the simplest approach is to perform a full

1081

backup every load cycle, or whenever you make a
metadata change. No matter how efficient the backup
utility might be, if your Analysis Services database is
multiple terabytes, it might not be practical to perform
daily full backups.

NOTE

If you have a Storage Area Network
(SAN), frequent full backups are more
practical, with very limited downtime and
minimal pressure on server resources. You
can circumvent the backup utility and
create a static copy of the files directly:

• Create a mirror set and wait for it to fully
synchronize.

• Stop Analysis Services; break the mirror;
restart Analysis Services.

• Mount the mirrored image as a separate
drive and perform a file level backup of the
entire data folder (Program
Files\Microsoft SQL
Server\MSSQL\OLAP\Data).

Our recommended practice is to back up the database
whenever the metadata changes. Metadata changes include
redesigning aggregations, adding a partition, or changing
security groups and permissions. If you just can’t do a full
backup every time the metadata changes, you must capture
the complete database definition scripts.

Reporting Services

1082

All of your Reporting Services report definitions and
schedules are in the ReportServer database. This database
should use Full recovery mode, and be backed up like any
transactional database.

Recovery

It is as important to document and test your recovery plan
as it is to perform backups. During an emergency is not the
time to test out your recovery procedures. We could regale
you with sad tales of daily backups to corrupt media that
were never tested until too late. Despite the fact that this is
kindergarten-level system administration, we are past
being astonished at finding people who don’t know if their
recovery procedures will work.

NOTE

We’ve said it several times already, but
once more: Backup without verification is
meaningless and a waste of time. You’re
better off not even doing the backup, and
not kidding yourself that you’re protected.
Good intentions don’t count.

Verification doesn’t mean checking the
checkbox in the utility, which verifies the
physical media. That’s a good thing to do;
it’s just not what we’re talking about.
We’re talking about testing the full

1083

recovery process, including the BI
applications, to make sure everything really
works. And it’s not just that the scripts
work. You need to confirm, by testing, that
your staff knows what steps to take to
successfully restore the system.

Executing the ETL Packages

During development, you design and execute Integration
Services packages within BI Development Studio (BIDS).
In the development environment, you can set breakpoints,
examine variables’ values and status, watch the movement
of data through a data flow task, and explore the data with
data viewers. All of these tools are valuable during
development, but are of no interest in production. You
want the ETL system to execute, upon a schedule, with no
human intervention.

Integration Services packages are easy to schedule. SQL
Server ships the tools you need: dtexec and SQL Server
Agent. You should already be familiar with dtexec and its
friend dtexecui, from the process of testing the
Integration Services packages. Dtexec and dtexecui

execute a package from the command line. They are
basically the same, except that dtexecui brings up a user
interface that helps you construct the command by
choosing which package to run and picking various
options like logging levels and connection information.

1084

Once you’ve set up the package execution options, you can
create a SQL Agent job to run the package, and then
schedule that job. SQL Agent is a standard feature of the
SQL Server database.

REFERENCE

The dtexec utility is well documented in
the Books Online topics “dtexec Utility”
and “How to: Run a Package Using the
DTExec Utility.”

Once you’ve set up your SQL Agent job step, schedule it
to run on the appropriate schedule. In most cases, you’ll
define one or a small number of SQL Agent jobs for your
ETL system. Each job calls a master Integration Services
package, which in turn calls subpackages in the correct
order. Build logic flow and dependencies into the master
package, and use SQL Agent only to kick off the main job.

Some organizations have standardized on enterprise-wide
job management software like Autosys. SQL Agent is
nothing special; if your organization uses such software,
by all means conform to the corporate standard. The job
management software simply calls dtexec on the
computer running Integration Services.

Summary

Most of us find it more fun to think about designing and
developing, than operating and maintaining. But there’s no

1085

point in undertaking the design activities if you’re not
confident your system can operate smoothly, efficiently,
and with good performance. And it’s important to think
about these issues early, during the design and
development phases of the system. Good operating
procedures are cooked into the system, not tacked on at the
end.

This chapter talked about two kinds of operational
procedures: front-room operations and back-room
operations. Front-room operations, from maintaining the
BI portal to extending BI applications and educating users,
requires a continuing commitment to meeting the needs of
the business. It requires a significant number of ongoing
staff, usually as many, if not more, as were involved with
the initial development of the DW/BI system.

Most of the chapter was devoted to a discussion of
back-room operations. We described the tools available to
easily monitor your system and usage. We introduced
some of the issues you will need to consider in order to
meet availability and performance SLAs. And we
discussed the most important factors to consider when
tuning your DW/BI system for excellent performance.

The last section of this chapter discussed issues around
backing up and restoring your databases and other
components of your system. We’ll take one last
opportunity to remind you to take backup and recovery
seriously, or don’t do it at all.

1086

Chapter 18

Present Imperatives and Future Outlook

The endless loop.

This final chapter is a mix of topics. We begin with a brief
guide to growing your DW/BI system after you have
completed your first Lifecycle iteration. Next, we review
the overall Lifecycle process, including some of the most
common problems of each phase. Finally, we conclude
with some of our likes and dislikes of the Microsoft DW/
BI toolset and a brief wish list of how we hope to see the
Microsoft BI product strategy and toolset evolve over the
next few years.

Growing the DW/BI System

The DW/BI system is not a single one-time project; it is an
ongoing, never-ending program. Once you complete an
iteration of the Lifecycle, it’s time to go back and do it
again with the next top priority set of data on the bus
matrix. If you’ve done the first pass right, you will have
some happy users and evidence that you have provided
real business value. It’s always a good idea to verify the
opportunity priority list with senior management before
you start in on the next row of the bus matrix. It has
probably been six to nine months or more, especially if this
was your first round, and priorities may have changed.
Checking in again helps ensure you’re working on the
most valuable data set, and it also reminds the business

1087

folks how focused you are on business value. They will be
impressed!

At the same time you are focused on building the second
and subsequent iterations, you need to be outwardly
focused on the connections between the data warehouse
and the rest of the organization. Marketing is probably the
wrong term to use for this task because marketing has a
bad reputation with most technical folks; although not as
bad as its evil twin, sales. (Just kidding — some of our
best friends are in sales.) It may be more appealing to view
the activities in this section as educational efforts. But call
it what you will — in this “what have you done for me
lately” world, you must actively and constantly market the
BI system.

From an educational perspective, your goal is to make sure
everyone knows what they need to know about the BI
system. Management needs to know how their investment
is going. Specifically, they need to know how it is being
used to generate value for the organization. It also helps
them to see how it is being used in different parts of the
company. Analysts and other knowledge workers need to
know how they can use the DW/BI system more
effectively and why it’s important to them. The IT
organization needs to know what’s going on with the DW/
BI system. You need close working relationships with the
source system managers on the input side of the data
warehouse, and with other information-driven systems on
the output side of the DW/BI system.

Fortunately, you have some quantitative and qualitative
tools to help educate all these groups. On the quantitative

1088

side, you can turn to your report and query usage
monitoring systems. You should be able to generate some
reports from these systems that show how DW/BI system
usage is growing over time, in terms of the number of
users you support, the number of departments they come
from, and the number of queries they generate on a daily
basis.

Qualitative measures are a bit harder to come by. You need
to go out and talk to your users to find out what kinds of
analyses they’ve done and what impact it has had on the
organization. We like to describe impact in specific terms,
such as a dollar increase in revenue, or dollars of expense
reduction.

At the risk of sounding like a scratched CD, your
long-term success will largely be determined by how well
you identify specific, high-value business opportunities
and then deliver them.

RESOURCES

For additional guidance on marketing your
DW/BI system, search the KimballGroup.com
website for the following: “Educate
management.”

Lifecycle Review with Common Problems

We can’t resist showing you the Kimball Lifecycle
drawing one last time. This time, we’ve grouped the

1089

Lifecycle task boxes into phases that are slightly different
from the major sections of the book. These phases are:

• Requirements, realities, architecture, and design
• Setting up the hardware and software, and developing the

databases
• Developing the BI applications and portal environment
• Deploying and managing the DW/BI system

These phases (see Figure 18-1) are essentially linear, with
each phase building on the previous one. As we review
each phase, we’ll list the most common errors made by
DW/BI teams.

Figure 18-1: The four phases of the Kimball Lifecycle

Phase I — Requirements, Realities, Plans, and Designs

Phase I involves understanding and prioritizing the
business requirements, creating the system architecture,

1090

and designing the business process dimensional model
needed to meet the top-priority requirements. The BI
applications specification step is also part of this design
phase, although we didn’t actually describe it until Chapter
10.

The biggest problem we see in the projects we get called
into is that the DW/BI team essentially skipped Phase I.
Other than doing some project planning around system
development tasks, they dove right into developing the
databases. This haste leads to unnecessary pain and
suffering and is often fatal to the project. A good way to
tell if you’re headed in the wrong direction is that the
technology involved in Phase I should be limited to a
project management tool, a word processor, a presentation
tool, a modeling tool, and a spreadsheet. If you’re
installing server machines or SQL Server at this point,
you’re getting ahead of yourself. The only reason to do this
is if you need to work through the tutorials.

After skipping the requirements step, the next most
common problems in Phase I are failing to secure business
sponsorship, and failing to take responsibility for the full
solution, including the BI applications and portal. We hope
that a business sponsor has been a member of your team
from the very beginning. Ideally this sponsor should be a
sophisticated observer of the development process along
with you and should appreciate the need to do midcourse
corrections and frequent recalibrations of how well the
system addresses critical business issues.

Other oversights that will raise their ugly heads later,
during the ETL development task, are the failure to

1091

identify and investigate data quality issues, and the related
failure to set up a data governance program to work with
the source system organizations and deal with any
problems early on.

Finally, a problem that arises when implementing the
second and subsequent data sources in the DW/BI system
is the need to provide integration, especially in the form of
conformed dimensions.

Phase II — Developing the Databases

Phase II is the hard, systems-oriented work of designing
and developing the ETL systems, the DW/BI relational
databases, and the Analysis Services databases. This is the
comfort zone for most DW/BI teams. It’s where you
wrestle with the tough technical issues, such as how to
handle changes in various attributes, or how to re-create
historical facts. Every decision, every design tradeoff in
Phase II, must weigh the development effort against the
business requirements identified in Phase I. Without those
requirements, the design decisions are based on technical
expediency. Statements like “The eight-character Product
description is fine — it’s always worked in the source
system and it will save a lot of space,” and “We’ll save a
lot of time if we include only the base numbers; the users
can create any calculations they like on the fly” are
warning flags that your developers are making decisions
that will undermine the ultimate acceptance and success of
the system. These statements are much harder to make
when the primary goal of the DW/BI team is to meet a set
of clearly defined user requirements.

1092

The most common problem we see in Phase II involves
underestimating the effort required to extract, clean,
transform, and load the required data. This is typically the
result of not identifying a high priority business
opportunity that narrowly bounds the Lifecycle iteration.
Another common cause is doing a poor job of digging into
the dimensional model design, and not uncovering data
quality problems early on. If your requirements and design
phase is light, the development phase will always be worse
than it initially appeared.

It’s also not unusual for a DW/BI team to think of Phase II
as the complete project. These teams are doomed to fail
because they don’t do the upfront planning and design
work in Phase I, or provide the user access tools in Phase
III. Although Phase II is where the hard technical
challenges are met and overcome, these technical
challenges are seldom the point of failure. Missing the
underlying business requirements, and therefore not
delivering real value to the organization, is the root cause
of almost every DW/BI system failure.

Phase III — Developing the BI Applications and Portal
Environment

Building the BI applications is the fun part of the Lifecycle
(well, for some of us, it’s all fun). You get to play with the
data, building reports and other applications that you can
show to the business users and get immediate feedback on.
The technology is pretty easy and straightforward —
although not without its frustrations — and the
development process usually goes quite swiftly if you did a
good job in Phase I. Even if you need to develop complex

1093

analytic applications, perhaps including data mining
technology, this is generally easier and more fun than
slogging through the mountains of bad data that you
uncover when building the ETL system.

It’s also common for a team to omit the BI applications
from its project. This is a bad idea. First of all, why cut out
the fun and rewarding piece of the project? Second and
most important, if you don’t pave the path to the door of
the data warehouse, only a few hardy souls will make the
trek. The other risk is to start designing the BI applications
too late, or without involving the business users. Getting
early user input on the BI applications will help you
validate your design and allow you to make relatively
minor adjustments to the DW/BI system that can really
please the business users.

Phase IV — Deploying and Managing the DW/BI System

The efforts in Phase IV revolve around the testing,
training, and support needed to reach an all-systems-are-go
state. This involves making sure the system works as
promised, the data is correct, the users are properly trained
and prepared, the system is documented, the standard
reports are working and are correct, support is available,
and deployment and maintenance procedures and scripts
are in place and tested.

The biggest problem in Phase IV comes when the team
views its primary goal as delivering technology rather than
a solution. In this case, most of the user-oriented work in
Phase IV is seen as “not our job” or unnecessary. The team
defines success as making the database available. But if

1094

the goal is to meet the business requirements, all of the
pieces in Phase IV are crucial links in the chain. Omit any
piece and the chain will break. The team must view
success as delivering real, measurable, substantial business
value.

Another common problem in Phase IV is associated with
underestimating the effort required to fully test and
maintain the DW/BI system, and to start the planning for
ongoing operations too late in the development cycle. For
example, your strategy for backing up each day’s extract is
inextricably linked to the ETL system. If you don’t think
about this issue until the system is developed and ready for
deployment, your maintenance plan may be awkward or
weak.

One of the challenges in Phase IV is correctly estimating
the effort required to build out a full solution, including the
documentation, support, and delivery portal.
Quality-assuring the data in the DW/BI system is often
another issue, and it takes a lot of time to do right. If you
haven’t already gotten the business users involved with
this data governance process, you need to do it now. They
need to have full confidence in the data, and what better
way than to have helped with the testing? Besides,
sometimes deep business knowledge is needed to
determine what the business rules should be, and whether
the data truly is accurate.

Iteration and Growth

Extending the DW/BI system is about adding new business
process dimensional models to the databases, adding new

1095

users, and adding new BI applications. In short, it’s about
going back through the Lifecycle again and again,
incrementally filling in the bus matrix to build a solid,
robust enterprise information infrastructure. One or more
of these new business process dimensional models may
require data that’s near real-time. As we discussed in
Chapter 9, including real-time data in the DW/BI system
presents some interesting technical and design challenges.

The two main challenges in growing the DW/BI system
present an interesting paradox. Often, the success of the
first round leads to too much demand and the DW/BI team
must carefully balance these demands and maintain an
achievable scope based on prioritized business
requirements. This may also involve securing additional
resources and revisiting priorities with senior management.

At the same time, the DW/BI team must begin an ongoing
education program to make sure the organization
understands and takes advantage of the incredible asset
that is the DW/BI system. In the age of what have you
done for me lately, the DW/BI team needs to have a
detailed, compelling, ongoing answer.

What We Like in the Microsoft BI Toolset

The appeal of a single source technology provider, like
Microsoft with SQL Server, is that it makes the process of
building a DW/BI system easier in several ways. First,
many elements of the architecture are predefined. The
major technology issues you need to tackle involve data
sizing, server configurations, and performance, rather than
which products to buy and whether they work well

1096

together. Some organizations may need to develop or buy
functionality to meet specific business requirements, such
as large-scale consumer name and address matching. Many
organizations will also want to add one or more
third-party, user-oriented query and reporting tools to the
mix.

The Microsoft toolset includes credible versions of all the
tools you need to build and deliver a solid, viable data
warehouse and business intelligence system. Some
components of the SQL Server architecture are more than
credible: Analysis Services, for example, is one of the top
OLAP engines available.

Many of the tools are designed specifically to support
dimensional data warehouses. For example, Integration
Services has the Slowly Changing Dimension transform,
and Analysis Services is built with dimensional constructs
from the ground up. Even the relational database offers
star join optimization as an Enterprise Edition feature.

The tools are open and programmable. If you want to build
a heterogeneous DW/BI solution, you can swap out any
component. If you want to build a fully automated DW/BI
management system, you can script any operation in
practically any programming language you wish.

The overall Microsoft BI toolset includes software beyond
SQL Server. This book focuses mostly on SQL Server
because it provides the core DW/BI components. But BI
functionality is spreading rapidly across the Microsoft
product line. At the desktop level, Excel is extremely
popular for accessing, manipulating, and presenting data.

1097

This popularity continues to grow with each release of
Office, and with additional tools such as PowerPivot for
Excel. Business users love Excel, and that’s where they
want their data to end up. Even Reporting Services makes
it easy for a business user to save a report to Excel.

Beyond Office, SharePoint has its roots in the web portal
space, but is becoming the applications delivery platform
for the Microsoft-based enterprise. This adds a new layer
of functionality and complexity to the Microsoft BI story.

Future Directions: Room for Improvement

There are organizations dedicated to trying to figure out
what Microsoft is going to do next. We have no interest in
playing that game, so rather than trying to predict the
future, we’ll highlight a few of the areas we’d like to see
Microsoft improve on, starting with tools and
functionality, and ending with direction and strategy.

Query Tools

Excel, despite being the most popular data tool on the
market, is not the ideal query and reporting tool. There are
several problems, the most troubling of which is that Excel
is fundamentally a two-dimensional grid. It’s hard for us to
imagine how the Excel team will address this issue without
creating a whole new product, or breaking the existing
(hugely valuable) product. Lucky for us, this isn’t our
problem.

The existing query interfaces for Excel are imperfect, too.
Queries from Excel into the Analysis Services database are

1098

limited. The mechanism for specifying a relational query
within Excel is archaic. We detested it in the early 1990s
when we first saw it, and it hasn’t improved since then.
PowerPivot’s use of the PivotTable construct with the
added ability to define calculated fields is a leap forward in
terms of creating reports with flexible content in the Excel
environment. Unfortunately, it brings with it the need to
create a PowerPivot database along with the report.

Report Builder 3.0 is a big step forward in terms of ad hoc
query capabilities for the relational engine. It has
reasonable display functionality, including mapping, and a
crude but manageable interface for defining data sets. It’s
still a rudimentary query tool in terms of defining more
real-world queries and reports. Many relatively simple
questions require you to drop out of the GUI and write
your own SQL statements; this is what we did 25 years
ago. It feels like we should be able to expect a bit more at
this point.

We were disappointed with Microsoft’s treatment of the
ProClarity query tool for Analysis Services. Some
components, such as the decomposition tree, have found
their way into other tools, but the desktop query tool is
dying a slow, painful death. Analysis Services needs a
strong desktop query and report definition tool that allows
users to build ad hoc queries directly against an Analysis
Services database. It needs to offer a decent user interface,
good flexibility, and generate well-formed MDX. And, it
needs to be part of the core SQL Server toolset. Customers
should not have to go buy the equivalent of a steering
wheel from a third-party company after they bought the
rest of the DW/BI car from Microsoft.

1099

Metadata

Microsoft’s SQL Server metadata management story
hasn’t changed since the first edition of this book came out
with SQL Server 2005. The Microsoft toolset is full of
metadata, as we discussed in Chapter 15. But the metadata
systems don’t talk to each other: It’s a bunch of metadata
islands with a few tenuous bridges thrown across between
them. At the time of this writing, it’s your job to build or
buy a coherent metadata bridge.

The lack of integrated metadata hasn’t prevented
Microsoft’s past customers from successfully
implementing a DW/BI system — or else they’d have
demanded a solution in this version of the toolset. Indeed,
through the years we’ve seen very few good metadata
implementations on any platform. But because Microsoft
owns the entire toolset, they should find it easier to provide
an innovative, interesting, and valuable solution for
managing and integrating metadata than is possible with a
heterogeneous architecture. We hope they decide to
leverage this opportunity soon. We hear the next release is
going to be great.

Relational Database Engine

The relational database engine is primarily designed to
support a transaction load. We can’t comment on its
advantages and disadvantages in that role. From a DW/BI
point of view, we find several things puzzling or
frustrating.

1100

Ad hoc query optimization is inconsistent. Mostly, the
query optimizer does a good job with ad hoc queries
against a dimensional model, and the relational database
engine performs extremely well. But its performance is
variable. For some queries, the optimizer takes a path that
is clearly suboptimal. And the nature of ad hoc queries
makes adding optimizer hints a nonviable solution. There
are times, for example, when you will get better
performance by directly constraining the date field in the
fact table rather than constraining the date dimension. The
Analysis Services query optimizer does a much more
consistent job of resolving dimensional queries, even if
you strip away its advantage of pre-computed
aggregations. Why can’t the relational database engine
perform at the same level?

We’re thrilled to have true partitioning in the relational
engine, so we don’t want to seem like complainers, but
managing relational partitions is a headache, especially
when you have a rolling set of partitions to maintain over
time. In Chapter 5 we walked through the periodic process
of managing partitions. All the tools are there, but it should
be an order of magnitude easier to manage partitions than
it is.

Analysis Services

Analysis Services can be a bit overwhelming. The wizards
are helpful, but they still leave you with a lot of hand work
to do in an environment that’s necessarily complex. We
certainly wouldn’t expect any but the most intrepid power
users to succeed at developing their own cubes from
scratch. Granted, Analysis Services is targeted not at this

1101

market but at the enterprise DW/BI system. PowerPivot is
an implicit acknowledgement of this cube building
complexity. PowerPivot does allow analysts to throw
together a cube in order to explore a specific analytic
problem, but those cubes are too simple to capture the data
complexities found in most organizations. Plus, the
resulting PowerPivot cubes are not standard Analysis
Services cubes, and cannot be directly queried from across
the DW/BI environment except in a crude way through
SharePoint.

The other big flaw we see in Analysis Services is its
inability to respond to SQL queries. It can handle only the
very simplest SQL — syntax too simple to be useful.
Although MDX is superior to SQL for analytics, people
with expertise and investment in SQL and SQL-based
tools are reluctant to move to Analysis Services. It seems
unrealistic to expect the world to move to MDX-based
tools in order to take advantage of even the most basic
Analysis Services functionality.

Master Data Services

Master Data Services, described in Chapter 6, is an
interesting addition to the SQL Server toolset. Its focus
and use cases are a bit fuzzy in SQL Server 2008 R2,
which is its first release. Is it a grown-up master data
management toolset, designed to integrate and
inter-operate with your transaction systems? Or is it a tool
to help you build a system to help your data stewards
implement good data governance procedures? Currently,
the tool appears to be trying to meet both needs, without
complete success.

1102

The master data management scenario seems to get most
of the focus of the documentation and white papers. But so
much is missing from the documentation that it’s hard to
imagine anyone attempting to use the tool in that way
without significant participation from Microsoft.

The data governance tack is a much simpler problem, and
it seems to be well addressed by the structure and features
of MDS. Of course, the user interface in this first version is
awkward, but we can be reasonably confident that
Microsoft knows how to fix that problem. The
documentation is probably the greatest barrier to the
success of MDS. It really is very difficult for someone to
walk up to the tool and figure out what to do with it.

Integration

The greatest problem with the Microsoft BI toolset,
underlying the criticisms we’ve already discussed, is
integration — or, more accurately, the lack of integration.
The various components of even the SQL Server BI tools
— the relational database, Analysis Services, Integration
Services, and Reporting Services — are clearly built by
different groups. And other Microsoft technologies outside
that core set, like Office and SharePoint, appear to be
developed by different companies. This results in the same
class of functionality being developed with different
paradigms and interfaces to solve the same problem in
multiple places. The various versions of a query interface
are a good example of this. The six or more different ways
you can define a data model in SQL Studio, Visual Studio,
Analysis Services, Report Builder, Visio, Access, and
PowerPivot are another good example.

1103

We understand why this situation occurs; it is essentially a
political and organizational problem. However, we believe
it is past time for a more holistic view of business
intelligence at Microsoft. We’re not holding our breath on
its resolution.

Customer Focus

Microsoft has brought DW/BI to the small to medium
sized businesses that have long been its primary customer
base. In order to grow, Microsoft has worked to gain
credibility with larger organizations by focusing on key
features that are important to scale up the system and play
with the big players. Microsoft is caught between a rock
and a hard place on this issue. This fundamental shift in
the nature of the product is making it more complex, and
more expensive. This may be acceptable to the major
corporations, but it’s tough for the small to medium sized
organizations out there. Deciding how to allocate features
and limitations to editions, and how to price those editions,
must be a difficult task. We encourage Microsoft to make
sure it does not squeeze out the smaller organizations that
may need these capabilities, but cannot afford enterprise
edition prices. After all, it’s these organizations that helped
make Microsoft successful.

Conclusion

There you have it. We’ve done our best to teach you how
to build a successful business intelligence system and its
underlying data warehouse using the Microsoft SQL
Server product set. Now it’s up to you to get out there and
do the work of actually making it happen.

1104

As fun as it is to criticize Microsoft, its SQL Server DW/
BI toolset contains the features necessary to build a
complete DW/BI system. The tools are relatively easy to
use, and will scale from small operations like the
hypothetical Adventure Works Cycles to large enterprises
with significant data volumes. The smaller
implementations can rely heavily on wizards, and not
worry too much about all the technical details. Large
systems may use the wizards to get started, but will need to
dig far deeper into the products.

Microsoft is delivering the technology you need, but you
are the ones who will put that technology to use. If you can
maintain your focus on the needs of the business users and
on adding business value, you should be able to build a
great DW/BI system.

Good luck!

1105

Index

Symbols

<> (angle brackets), SSRS mock-ups

<<>> (angle brackets-double), SSRS mock-ups

\\ \\ (back slashes), SSRS mock-ups

{ } (curly brackets), SSRS mock-ups

() (parentheses), SSRS mock-ups

+ (plus sign), ETL schematics

[] (square brackets), SSRS mock-ups

A

accumulating snapshots

ETL

fact providers

fact table

partitions

SSAS cubes

actions

1106

Active Directory

metadata

SharePoint

BI portal

security

SSAS

Windows Integrated Security

Activity Monitor

Activity Viewer

ad hoc reporting

Excel

PivotTable

Add Business Intelligence Wizard

additivity

ADO.NET

SSIS

SSRS

1107

Adventure Works Cycles

bus matrix

data mining

dimensions

attributes

dimensional model

SCDs

enterprise-level business requirements documentation

facts

interview documentation

preparation

prioritization grid

project planning

SharePoint BI portal

SSRS template

subcategory tables

affinity grouping

1108

aggregates

dimensional model

ETL

fact providers

fact table

MDX

OLAP

SSAS

tables, relational databases

usage complexity

aggregate dimensions

dimensional model

ETL

SSAS

Aggregation Design Wizard

aggregations

cubes

1109

performance

real-time

SSAS OLAP

query performance

SSAS OLAP

agile software development

algorithms

business tasks

classification

clustering

data mining

estimation

hashing

All()

allocations

ALTER DATABASE

ALTER PARTITION FUNCTION

1110

alternate access mapping

Analysis Management Objects (AMO)

data mining

.NET

SSAS

Analysis Services. See SQL Server Analysis Services

analytics

application developer

bus matrix

business requirements

mashup

PowerPivot

SSRS

announcements

anomaly detection

architecture

data mining

1111

dimensional model

NUMA

PowerPivot

SharePoint BI portal

SQL Server data mining

SSIS packages

SSRS

archiving

data extraction

ETL

ASP.NET

association

atomic level

attributes

conformed

degenerate dimensions

dimensions

1112

Adventure Works Cycles

dimensional model

surrogate keys

domains

ETL dimension manager

freeform

incomplete

junk dimensions

MDS

properties

SCDs

SSAS OLAP

standard dimensions

audit columns

ETL

source systems

audit dimension

1113

ETL

FK

master packages

SSIS packages

audit keys

authentication

Kerberos

SharePoint BI portal

SQL Server

Windows Integrated Security

B

backups

compression

deployment

ETL

planning

relational databases

1114

SSAS

SSIS

SSRS

Bayesian method

BCG. See Boston Consulting Group

Berry, Michael J.A.

BETWEEN

BETWEEN RowStartDate and RowEndDate

BI applications

Business Dimensional Lifecycle

extending

SSRS

value

BI portal

announcements

architecture

building

1115

Business Dimensional Lifecycle

business processes

calendars

completing

feedback

forum

hierarchies

HTML

maintenance

metadata

personalization

planning

search

SharePoint

Active Directory

announcements

architecture

1116

authentication

building

business processes

calendars

feedback

forum

hierarchies

HTML

metadata

personalization

planning

product keys

search

SharePoint

templates

testing

versions

1117

BIDS. See Business Intelligence Development Studio

BIDS Helper

SSAS

Boston Consulting Group (BCG)

bridge tables

business processes

dimensions

multi-valued dimensions, ETL

SSIS

Browser, Dimension Designer

bubble charts

bulk loads

bus matrix

Adventure Works Cycles

analytics

business processes

dimensional model

1118

enterprise-level business requirements

Business Dimensional Lifecycle

BI applications

BI portal

business requirements

databases

deployment

phases

problems

SSAS

Business Intelligence Development Studio (BIDS)

BIDS Helper

SSAS

hierarchies

Preview tab

Report Designer

SSAS

1119

SSIS

SSRS

Visual Studio

Business Intelligence Wizard

business keys

business metadata

Business Objects

business phase, data mining

business processes

bridge tables

bus matrix

business requirements document

dimensional model

interviews

Kimball Lifecycle

prioritization

SharePoint BI portal

1120

summary

business requirements

analytics

Business Dimensional Lifecycle

data profiling

dimensional model

documentation

enterprise-level

ETL

executive dashboard

group sessions

interviews

Kimball Lifecycle

prioritization

project planning

scorecards

sponsorship

1121

SSRS

strategic goals

value

business review, data mining

business rules

error tables

screens

business task summary

bXtrctOK

C

cache

PowerPivot

proactive

uncached lookups

CALCULATE()

calculations

cubes

1122

MDX

PivotTable

PowerPivot

SSAS OLAP

Calculations tab, Cube Designer

calendars

Cascading Lookups

derived column transforms

late arriving data handler

surrogate key pipeline

case

case sets

cast

CDC. See change data capture

cell security

Census Bureau

Central Administration

1123

change data capture (CDC)

ETL

replication

Change Tracking

ETL

char

eckSignatureOnLoad

child packages

audit keys

classification

algorithm

data mining

classification matrix

Clay, Ryan

cleaning. See data cleaning

closed loop applications

SSRS

1124

clustering

COBOL

Cognos

columns. See also specific column types

DSV

error tables

extended properties

PivotTable databases

PK

relational databases

renaming

sorting, dimension tables

column screens

transforms

Command Line Actions

Command transform, OLE DB

Common Warehouse Metamodel (CWM)

1125

compliance

compression. See data compression

computed columns, PivotTable databases

concatenated keys

conditional formatting

Excel

SSRS

The Conditions of Learning and Theory of Instruction
(Gagné)

Configuration Manager

SQL Server

SSRS

conformed attributes

conformed dimensions

dimensional model

master data

shrunken dimensions

conformed facts

1126

conforming. See data conforming

consolidated requirements

constraints, relational databases

Content Manager

continuous variables

control flow precedence arrows

CoSort

COUNT()

COUNTA()

COUNTROWS()

CRC. See cyclic redundancy checksum

CREATE

CREATE PARTITION FUNCTION

CREATE TABLE

credentials

CRISP. See Cross Industry Standard Process for Data
Mining

1127

Cross Industry Standard Process for Data Mining (CRISP)

Cross Validation

CSV

cubes

aggregations

calculations

dimensions

ETL

OLAP

measures

OLAP

ETL

SSAS

PowerPivot

properties

SSAS

accumulating snapshots

1128

OLAP

Cube Designer

Calculations tab

Partitions and Aggregations tab

Cube Wizard

customer segmentation

CWM. See Common Warehouse Metamodel

cyclic redundancy checksum (CRC)

D

dashboards

Excel

executive

Management Dashboard

SSRS

Data Analysis Expressions (DAX)

data auditing. See data profiling

Data Center Edition

1129

data cleaning

data flows

data mining

data type conversions

database joins

ETL

fact table

halting package execution

nulls

SSIS transforms

surrogate keys

data compression

backups

pages

relational databases

rows

SQL Server

1130

data conforming

data mining

dimensions

drill across

ETL

fact table

SSIS packages

surrogate keys

data definition language (DDL)

indexes

permissions

data destinations

data extensions

data extraction

archiving

data flow

ETL

1131

packages

push model

transforms

data flow

data cleaning

data destinations

data extraction

data sources

halting package execution

packages

pipelines, 195– 197

ETL

quality screens

SSIS performance

pseudo-partitions

SSIS

transforms

1132

SSIS

data governance

data integration. See also SQL Server Integration Services

master data

data latency

ETL

MOLAP

real-time

data loading. See also extract, transform, and load

error flows

ETL

data mining

Adventure Works Cycles

affinity grouping

algorithms

AMO

anomaly detection

1133

association

business phase

business review

business task summary

business uses

case study

classification

classification matrix

clustering

data cleaning

data conforming

data mining phase

defined

description and profiling

directed

environment

examples

1134

Excel

exploratory

extensibility

external variables

metadata

model

model developer

operations phase

opportunity

phase

prediction

preparation

process

regression

sequence clustering

SQL Server

SSAS

1135

SSIS

SSRS

stored procedures

terminology

usage complexity

user-defined functions

validation

Data Mining Designer

Data Mining Extensions (DMX)

Data Mining Techniques: For Marketing, Sales, and
Customer Relationship Management (Berry and Linoff)

Data Mining Wizard

data modelers

data pipeline

data presentation

data profiling

business requirements

data sources

1136

dimensional model

ETL

project planning

source systems

SQL Server Profiler

SSIS

SSRS

data propagation manager

data quality

ETL

testing

data security

data sensitivity

hashing algorithm

itemizing

Data Source View (DSV)

Mining Structure

1137

SSAS OLAP

data sources

data flow

data profiling

lookups

PowerPivot

SSAS

SSRS

data storage

relational databases

SAN

SSAS

SSIS

system setup

data track

data types

casting

1138

conversions

error tables

data validation

BI applications

dimensional model

data volume

Database Diagram

databases. See also relational databases

Business Dimensional Lifecycle

engines

in-memory, column-store

joins

data cleaning

late arriving data handler

surrogate key pipeline

PivotTable columns

PowerPivot

1139

recovery model, SQL Server

SCD

server

SharePoint

SSAS OLAP

structures, MDS

training

datasets

Report Builder

SSRS

Date

date and time dimensions

DateCalendarYear

dates

dimensional model

PowerPivot

surrogate keys

1140

DAX. See Data Analysis Expressions

DDL. See data definition language

debriefing

Decision Trees

deduplication

faultBufferMaxRows

DefaultBufferSize

definition step

degenerate dimensions

Adventure Works Cycles dimensional model

attributes

dimensional model

DELETE FROM

deletes

denormalization

dimensions

ETL

1141

SSAS OLAP standard dimensions

dependencies

dimension tables

ETL

Dependency Network

dependent variables

deployment

backups

Business Dimensional Lifecycle

desktop readiness

documentation

environment

Kimball Lifecycle

MDS

relational databases

SSAS

SSIS packages

1142

SSRS

testing

training

user support

Visual Studio

Deployment Wizard

derived columns

transforms, Cascading Lookups

derived facts

Description

design surfaces

Design tab, Report Designer

Destination Editor

Developer Edition

development environment. See environment

developmental testing

deviation

1143

dictionary compression

dimensions. See also specific dimension types

Adventure Works Cycles

attributes

attributes

Adventure Works Cycles

dimensional model

real-time

surrogate keys

bridge tables

cubes

data conforming

date and time

denormalization

dimensional model

ETL

facts

1144

Analysis Services

dimensional model

RI

fact table

FK

hierarchies

indexes

junk

lookups

many-to-many

master data

measure groups

normalization

occurrences

page compression

PK

properties

1145

re-using

security

SSAS OLAP

surrogate keys

Time and Account

updates

late arriving data handler

SSAS OLAP

Dimension Designer

dimension manager

dimension members

dimension tables

dependencies

DSV

ETL

fact table, FK

partitions

1146

PK

RI

sorting columns

updates, ETL fact providers

Dimension Usage

dimensional model

Adventure Works Cycles

SCDs

aggregates

aggregate dimensions

architecture

building

bus matrix

business processes

business requirements

concepts

conformed dimensions

1147

data profiling

dates

degenerate dimensions

detail development

dimensions

dimensions, attributes

drill across

environment

ETL

facts

measures

fact table

hierarchies

junk dimensions

Kimball Lifecycle

many-to-many

naming conventions

1148

participants

PowerPivot

preparation

process

review

RI

roles

SCDs

simplicity

snowflaking

source systems

surrogate keys

testing

validation

directed data mining

discrete variables

disk drive. See also Redundant Array of Independent Disks

1149

performance

space

DISTINCT()

Distinct

DMX. See Data Mining Extensions

DNS. See Domain Name Server

documentation

business requirements

deployment

enterprise-level business requirements

Adventure Works Cycles

interviews

SSRS

Domain Name Server (DNS)

domains, attributes

double-hop problem

DQ Continue

1150

drill across

data conforming

dimensional model

fact table

SELECT

drill-down

DSV. See Data Source View

Dynamic Management Views

dynamic security

E

Einstein, Albert

EM. See Expectation-Maximization

ENDOFYEAR()

EngineThreads

Enterprise Edition

Enterprise Resource Planning (ERP)

enterprise-level business requirements

1151

Adventure Works Cycles

bus matrix

definition step

flow chart

documentation

Adventure Works Cycles

interviews

preparation

prioritization

project scope

Entity Data Model

entity integrity

environment

data mining

deployment

dimensional model

ETL

1152

PowerPivot

security

SharePoint

SSRS

ERP. See Enterprise Resource Planning

error event

ETL

logging

schema

error flows

data loading

OLE DB

SSIS

error levels

error tables

error types

ER/Studio

1153

ERwin

estimation algorithms

ETL. See extract, transform, and load

Event Viewer

events

error event schema, ETL

source systems

Excel

ad hoc reporting

conditional formatting

dashboards

data mining

hierarchies

macros

PowerPivot

report designer

SSAS

1154

SSRS

Execute SQL task

Execution Log

executive dashboard

Expectation-Maximization (EM)

exploratory data mining

export

MDS

SSRS

extended properties

extensibility

external reports

external variables

extract, transform, and load (ETL)

accumulating snapshots fact table

aggregates

aggregate dimensions

1155

archiving

audit columns

audit dimension

available skills

backups

bulk loads

business needs

CDC

Change Tracking

compliance

cubes

data cleaning

data conforming

data extraction

data flow pipelines

data latency

data loading

1156

data presentation

data profiling

data propagation manager

data quality

data volume

deduplication

denormalization

dependencies

dimensions

dimension manager

dimension tables

dimensional model

directed data mining

environment

error event schema

fact providers

fact table

1157

full diff

hierarchies

job scheduler

late arriving data handler

lights-out

lineage

Metadata Repository Manager

multi-valued dimensions bridge tables

non SQL Server techniques

nulls

OLAP cubes

packages

parallelizing

partitions

periodic snapshot fact table

pipelines

error event schema

1158

planning

problem escalation

recovery and restart

relational databases

replication

requirements

SCDs

schematics

security

snowflaking

sorting

special dimensions manager

SSIS

scripts

SSRS

staging tables

subsystems

1159

surrogate keys

generator

pipeline

system developer

triggers

versions

workflow monitor

extraction. See data extraction

F

facts

additivity

Adventure Works Cycles

conformed

derived

dimensions

Analysis Services

dimensional model

1160

RI

late arriving data handler

measures, dimensional model

real-time

semi-additive

MDX

SSAS partitions

updates

fact providers, ETL

fact table

accumulating snapshots, ETL

aggregates

Cube Wizard

data cleaning

data conforming

dimensions

dimension tables

1161

dimensional model

drill across

ETL

fact providers

factless

FK

RI

granularity

transactions

indexes

intermediate

ledgered

measure groups

nulls

packages

RI

SSAS

1162

page compression

partitions

periodic snapshot

ETL

table partitions

PK

PK index

surrogate key pipeline

transaction

transaction granularity

types

updates, ETL fact providers

factless fact table

farms, SharePoint

feedback

BI applications

SharePoint BI portal

1163

files. See also flat files; raw files

partitions

relational databases

SQL Server

file groups

partitions

relational databases

SQL Server

<filegroups>

filtered reports

filtering security

fixed hierarchies

FK. See foreign keys

flat files

error tables

PowerPivot

foreign keys (FK)

1164

audit dimensions

dimensions

dimension tables

DSV

error tables

fact table

RI

relational databases

forms authentication

forums

freeform attributes

frequently changing hierarchies

full diff

full processing

Fuzzy Grouping

Fuzzy Lookup

G

1165

Gagné, Robert

granularity

fact table

measure groups

shrunken dimensions

group sessions

GUID

SSIS

surrogate keys

H

hard deletes

hashing algorithm

Health Analyzer

hierarchies

BIDS

dimensions

dimensional model

1166

ETL

Excel

fixed

frequently changing

Master Data Manager

MDS

one-to-many

parent-child, SSRS

ragged

RI

security

SharePoint BI portal

SSAS

OLAP

SSRS, parent-child

variable-depth

web applications

1167

high availability

Hist

HOLAP. See Hybrid OLAP

housekeeping columns

HTML

scripts

SharePoint BI portal

SSRS

HTTP

Hybrid OLAP (HOLAP)

I

ICD-10. See International Classification of Diseases -
Tenth Modification

IDENTITY

IIS. See Internet Information Services

impact analysis

import

INCLUDE

1168

incomplete attributes

Incr

incremental processing

PowerPivot

independent variables

indexes

DDL

dimensions

fact table

partitions

PK

relational databases

SQL Server

SSAS

statistics

views

Information Provision system

1169

in-memory, column-store database

INSERT

insert streams

Installation Wizard

integers

integration. See data integration; SQL Server Integration
Services

Integration Services. See SQL Server Integration Services

interaction list

Interactive Sorting

intermediate fact table

International Classification of Diseases Tenth Modification
(ICD-10)

Internet Information Services (IIS)

interviews

business processes

business requirements

debriefing

1170

documentation

Adventure Works Cycles

enterprise-level business requirements

project planning

relationships

source systems

project planning

ISEMPTY

isnull

IsRowCurrent

issues list

J

job scheduler

joins

database

data cleaning

late arriving data handler

1171

surrogate key pipeline

outer

star join optimization

tables

transforms

junk dimensions

attributes

dimensional model

rows

SSAS

K

KDD. See Knowledge Discovery and Data Mining

Kerberos

authentication

keys. See specific key types

Key Performance Indicators (KPIs)

MDX

1172

SSAS

Kimball Bus Matrix

Kimball Lifecycle

business processes

business requirements

deployment

dimensional model

SSAS

SSRS

system setup

Kimball Method

metadata

SCD

Knowledge Discovery and Data Mining (KDD)

KPIs. See Key Performance Indicators

L

late arriving data handler

1173

database joins

dimensions

members

updates

ETL

fact providers

facts

SSAS

Union All transform

latency. See data latency

LazyAggregations

ledgered fact table

libraries

lifestyle types

lights-out ETL

lineage

analysis

1174

ETL

transparency

Linoff, Gordon S.

lists

loading. See data loading; extract, transform, and load

Log Analyzer, SSIS

log scraper tools

lookups. See also Cascading Lookups

data sources

dimensions

outer joins

RI

surrogate key pipeline

uncached

violation errors

Lookup transform

M

1175

macros

Manage Relationships

Management Dashboard

Management Data Warehouse (MDW)

Management Studio

permissions

relational databases

SSAS

many-to-many

dimensions

dimensional model

fact table and dimensions

PK

SSAS

OLAP

surrogate keys

market basket analysis

1176

mashup

massively parallel processing (MPP)

master data

conformed dimensions

data integration

dimensions

incomplete attributes

master reference data

system integration

Master Data Manager

hierarchies

MDS

user interface

Master Data Services (MDS)

application creation

attributes

database structures

1177

deduplication

deployment

export

hierarchies

import

Master Data Manager

metadata

nulls

RI

security

SharePoint

SQL Server

staging tables

subcategories

updates

user interface

master packages

1178

master reference data

matrix. See also bus matrix

classification

Kimball Bus Matrix

two-by-two

mdm.tblStgMemberAttributes

MDS. See Master Data Services

MDW. See Management Data Warehouse

MDX. See Multidimensional Expressions

measures

cubes

dimensional model

PivotTable

PowerPivot

SSAS OLAP

measure groups

dimensions

1179

fact table

granularity

partitions

SSAS

tables

memory

in-memory, column-store database

NUMA

SSAS

MERGE

MERGE RANGE

metadata

Active Directory

categories

data mining

Kimball Method

Master Data Services

1180

ongoing management

purpose

RDL

relational databases

relational engine

Report Builder

repository

SharePoint

BI portal

SQL Server

SSAS

OLAP

SSIS

SSRS

standards

System Monitor

user-oriented

1181

Metadata Repository Manager

mini-dimensions

mining. See data mining

Mining Accuracy Chart

Cross Validation

Data Mining Designer

Mining Model Prediction

Mining Model Viewer

Mining Structure

mixed granularity partitions

mock-ups

MOLAP. See Multidimensional OLAP

monitoring

performance

PowerPivot

relational databases

SSAS

1182

SSIS

SSRS

security

usage

MPP. See massively parallel processing

Multidimensional Expressions (MDX)

aggregates

calculations

ISEMPTY

KPIs

RANK

security

semi-additive facts

SSRS

UserName

Multidimensional OLAP (MOLAP)

data latency

1183

data volume

multi-valued dimensions

bridge tables, ETL

SSAS OLAP

N

Naïve Bayes

naming conventions

dimensional model

PowerPivot

natural keys

navigation framework

.NET

AMO

data extraction

Neural Network

Nielsen Claritas

non SQL Server techniques, ETL

1184

non-uniform memory architecture (NUMA)

normalization

dimensions

SSAS OLAP standard dimensions

North American Industrial Classification System

NOT nulls

NSort

NTLM

nulls

data cleaning

MDS

quality screens

relational databases

surrogate keys

NUMA. See non-uniform memory architecture

O

occurrences

1185

OLAP. See OnLine Analytic Processing

OLE DB

Command transform

data extraction

error flows

fact table

SSRS

one-to-many

OnLine Analytic Processing (OLAP)

aggregates

cubes

HOLAP

MOLAP

data latency

data volume

ROLAP

SSAS

1186

aggregations

calculations

cubes

measures

metadata

performance

planning

query performance

Report Builder

Reporting Services

security

structure design

usage complexity

open access

operating systems

security

operations phase, data mining

1187

opportunity, data mining

optimizer

Oracle

OrderDateKey

outer joins

outrigger tables

P

packages

child

data cleaning

data extraction

data flows

ETL

fact table

RI

SSAS

master

1188

raw files

security

SSIS

architecture

audit dimension

data conforming

deployment

variables

page compression

parallel structures

parallelizing

parameterized labeling

parent-child

SSAS

SSAS OLAP

SSRS

partitions

1189

accumulating snapshots

CREATE PARTITION FUNCTION

dimension tables

ETL

fact table

files

file groups

indexes

measure groups

mixed granularity

parallel structures

pseudo-partitions

relational databases

scheme

SSAS

facts

OLAP

1190

tables

dropping old data

limitations

management

periodic snapshot fact table

Partitions and Aggregations tab, Cube Designer

<PartitionScheme>

PDF

performance

aggregations

real-time

SSAS OLAP

disk drives

monitoring

PowerPivot

relational databases

SSAS

1191

SSIS

SSRS

OLAP

SSAS

query

aggregations

BI applications

SSAS OLAP

testing

SCD

SSAS OLAP

SSIS data flow pipelines

SSRS

testing

tuning

Performance tool, System Monitor

periodic snapshot fact table

1192

ETL

table partitions

permissions

DDL

Management Studio

Report Manager

SSAS

Perspective

pipelines, See also surrogate key pipeline

data flow

ETL

quality screens

SSIS performance

ETL

error event schema

PivotTable

ad hoc reporting

1193

calculations

database columns

measures

PowerPivot

PK. See primary key

placeholders

planning. See also project planning

Adventure Works Cycles

backups

business requirements

data profiling

ERP

ETL

interviews

preparation

SharePoint BI portal

source systems interviews

1194

SSAS OLAP

SSRS

policy statements

portals. See also BI portal

reporting portal developer

SSRS

PowerDesigner

PowerPivot

analytics

architecture

cache

calculations

cubes

data sources

databases

dates

dimensional model

1195

environment

Excel

flat files

incremental processing

Manage Relationships

Management Dashboard

measures

naming conventions

performance monitoring

PivotTable

relational databases

relationships

report designer

security

SharePoint

monitoring and management

SSAS

1196

standard reports

tables

workbook publishing

preparation

Adventure Works Cycles

data mining

dimensional model

enterprise-level business requirements

project planning

SSRS

Preview tab, BIDS

PREVIOUSYEAR()

primary key (PK)

columns

dimensions

dimension tables

DSV

1197

fact table

indexes

many-to-many

relational databases

tables

primary testing environment

prioritization

business processes

business requirements

enterprise-level business requirements

two-by-two matrix

PRIZM

proactive caching

process metadata

ProcessingMode

processors

ProClarity

1198

ProdCount

ProdLowLimit

product keys

profiling. See data profiling

project planning

Adventure Works Cycles

business requirements

data profiling

interviews

preparation

source systems interviews

promotion response rate

properties

attributes

cubes

dimensions

extended

1199

pseudo-partitions

data flows

standalone tables

Publisher

pull model

push model

data extraction

Report Manager

Q

quality screens

data flow pipelines

nulls

Query Designer

query language

query performance

aggregations

BI applications

1200

SSAS OLAP

testing

R

ragged hierarchies

RAID. See Redundant Array of Independent Disks

RANK

raw files

error tables

packages

SSIS

RC-Xtrct

RDL. See Report Definition Language

real-time

data latency

facts

performance aggregations

relational databases

1201

scenarios and solutions

SSAS

SSIS

recovery. See backups

recursive subroutines

Redundant Array of Independent Disks (RAID)

operating systems

SQL Server

SSAS

system setup

reference dimensions

referential integrity (RI)

dimensions

dimension tables

dimensional model

error tables

facts

1202

fact table

FK

packages

hierarchies

lookups

MDS

placeholders

relational databases

rows

surrogate key pipeline

regression

relational databases. See also SQL Server

aggregate tables

backups

columns

constraints

CREATE TABLE

1203

creating

data compression

data storage

deployment

entity integrity

ETL

extended properties

files

file groups

FK

housekeeping columns

indexes

Management Studio

metadata

nulls

object names

partitions

1204

performance monitoring

physical design

PK

PowerPivot

real-time

RI

roles

SQL Server

security

SSAS

string columns

surrogate keys

system management

tables

partitions

views

unknown member row

1205

views

relational engine

metadata

Resource Governor

Relational OLAP (ROLAP)

relational security

testing

relational stores

rendering

replication

Report Builder

datasets

metadata

SSAS OLAP

SSRS

Report Definition Language (RDL)

metadata

1206

Report Designer

BIDS

Design tab

Report Manager

permissions

push model

SSRS

Report Part Gallery

Report Server

Report Wizard

resilience

Resource Governor

resource pools

Response_Likelihood

restart points

Restricted Access

RI. See referential integrity

1207

ROLAP. See Relational OLAP

roles

dimensional model

relational databases

SSAS

SSRS

role-playing dimensions

rows

compression

ETL dimension manager

junk dimensions

RI

security

RowChangeReason

RowEndDate

RowIsCurrent

S

1208

SAMEPERIODLASTYEAR()

SAN. See storage area networks

SAS. See Statistical Analysis System

scalability

SCDs. See slowly changing dimensions

scheduled processing

SchemaCompare

scorecards

scripts

ETL SSIS

HTML

testing

SCRUBS

search

second level business processes

security

cells

1209

data

dimensions

dynamic

environment

ETL

external reports

filtering

hierarchies

manager

MDS

MDX

monitoring

open access

operating systems

packages

PowerPivot

relational

1210

rows

SharePoint

sponsorship

SQL Server relational databases

SSAS

OLAP

SSIS

SSRS

subscriptions

Windows Integrated Security

SELECT

drill across

SELECT DISTINCT

self-referencing tables

semi-additive facts

MDX

sequence clustering

1211

service application

Service Level Agreements (SLAs)

SharePoint

BI portal

Active Directory

announcements

architecture

authentication

building

business processes

calendars

feedback

forum

hierarchies

HTML

metadata

personalization

1212

planning

product keys

search

SharePoint

templates

testing

versions

Central Administration

databases

environment

farms

Health Analyzer

installation

MDS

metadata

PowerPivot

monitoring and management

1213

security

SharePoint BI portal

SSIS standard reports

SSRS

security

terminology

SharePoint Server

shrunken dimensions

Silverlight

simultaneous users

sites

site collections

SLAs. See Service Level Agreements

slowly changing dimensions (SCDs)

Adventure Works Cycles dimensional model

attributes

customization

1214

databases

dimensional model

ETL

Kimball Method

performance

resilience

SSIS

TableDifference

wizard

small static dimensions

SmartDiff

Smith, Bryan

SMO. See SQL Management Objects

SMP. See symmetric multiprocessing

snapshots. See accumulating snapshots; periodic snapshot
fact table

snowflaking

dimensional model

1215

ETL

SSAS

views

SOAP

AMO

Report Manager

software. See also specific programs

installation/configuration, system setup

operating systems

testing

Solid-state drives (SSDs)

Solution Explorer

sorting

dimension table columns

ETL

Interactive Sorting, SSRS

source systems

1216

audit columns

data profiling

dimensional model

events

full diff

interviews

project planning

surrogate keys

special dimensions manager

sp_estimate_data_compression_savings

SPLIT RANGE

sponsorship

business requirements

security

SPSS. See Statistical Package for the Social Sciences

SQL Management Objects (SMO)

SQL Server

1217

authentication

Configuration Manager

data compression

data mining

database designer

database recovery model

DMX

Fast Track Data Warehouse

files

file groups

indexes

MDS

metadata

RAID

relational databases

security

system setup

1218

views

SQL Server 2008 MDX Step by Step (Smith and Clay)

SQL Server Agent

SQL Server Analysis Services (SSAS)

actions

Active Directory

Activity Viewer

aggregates

aggregate dimensions

backups

BIDS

Business Dimensional Lifecycle

cubes

data mining

data sources

data storage

data volume

1219

deployment

disadvantages

Dynamic Management Views

Excel

fact dimensions

fact table packages

hierarchies

indexes

junk dimensions

Kimball Lifecycle

KPIs

late arriving data handler

Management Studio

many-to-many

MDW

measure groups

memory

1220

metadata

object model

OLAP

aggregations

attributes

calculations

cube content

cube granularity

cube usage

cubes

databases

dimensions

dimension updates

DSV

hierarchies

many-to-many

measures

1221

metadata

multi-valued dimensions

partitions

performance

performance aggregations

physical design

planning

query performance

Report Builder

Reporting Services

role-playing dimensions

security

standard dimensions

structure design

views

parent-child

partitions

1222

facts

performance monitoring

permissions

Perspective

PowerPivot

RAID

real-time

relational databases

report designer

roles

security

snowflaking

string columns

synonyms

system management

system setup

translations

1223

usage complexity

views

Windows Integrated Security

SQL Server Integration Services (SSIS)

ADO.NET

backups

BIDS

bridge tables

data flow

pipelines

transforms

data mining

data profiling

design surfaces

Destination Editor

error flows

ETL

1224

scripts

GUID

Log Analyzer

Management Studio

metadata

packages

architecture

audit dimension

data conforming

deployment

testing

performance monitoring

raw files

real-time

SCD

security

SharePoint, standard reports

1225

string columns

surrogate key pipeline

system setup

Term Extraction

transaction grain fact table

transforms, data cleaning

XML

SQL Server Management Studio (SSMS)

Activity Monitor

Database Diagram

SQL Server Metadata Toolkit

SQL Server Profiler

SQL Server Reporting Services (SSRS)

ad hoc reporting

ADO.NET

architecture

assessment

1226

backups

BI applications

BIDS

browsers

build

business requirements

conditional formatting

Configuration Manager

data extensions

data profiling

data sources

datasets

delivery

deployment

design

development

documentation

1227

environment

ETL

Execution Log

export

interaction list

Interactive Sorting

Kimball Lifecycle

Management Studio

MDX

metadata

mock-ups

navigation framework

navigation portal

OLE DB

parameterized labeling

parent-child hierarchies

performance

1228

monitoring

planning

preparation

rendering

Report Builder

report creation

Report Manager

report model

report parts

roles

security

SharePoint

security

SSAS OLAP

as standard reporting tool

subscriptions

system management

1229

system setup

templates

testing

usage complexity

user review

Windows Integrated Security

workarounds

XML

SSAS. See SQL Server Analysis Services

SSDs. See Solid-state drives

SSIS. See SQL Server Integration Services

SSMS. See SQL Server Management Studio

SSRS. See SQL Server Reporting Services

SSRS template, Adventure Works Cycles

StageProduct

staging tables

standalone tables

1230

standard dimensions

Standard Edition

standard reports

PowerPivot

security

SharePoint SSIS

SSRS

star join optimization

star schema

STARTOFMONTH()

Statistical Analysis System (SAS)

Statistical Package for the Social Sciences (SPSS)

storage. See data storage

storage area networks (SAN)

stored procedures

string columns

structure screens

1231

subcategories

MDS

tables

Adventure Works Cycles

subscriptions

security

SSRS

sub-sites

subsystems, ETL

SUM

summary tables. See aggregates

surrogate keys

data cleaning

data conforming

dates

dimensions

attributes

1232

dimensional model

ETL

dimension manager

generator

GUID

IDENTITY

integers

many-to-many

nulls

relational databases

source systems

surrogate key pipeline

Cascading Lookups

database joins

ETL

fact table

lookups

1233

RI

SSIS

symmetric multiprocessing (SMP)

SyncSort

synonyms

sysssispackages

System Administrator

system management

relational databases

SSAS

SSRS

System Monitor

metadata

Performance tool

system setup

configuration

data pipeline

1234

data storage

data volume

disk drive performance

high availability

Kimball Lifecycle

processors

RAID

SAN

simultaneous users

size

software installation/configuration

SQL Server

SSAS

SSIS

SSRS

system availability requirements

usage complexity

1235

system testing

Systems Center

T

tables. See also specific table types

aggregates, relational databases

DSV

extended properties

joins

measure groups

partitions

dropping old data

limitations

management

periodic snapshot fact table

PK

PowerPivot

staging

1236

subcategories

views

Table Description

TableDifference

tblStgMember

tblStgMemberAttribute

tblSTGRelationship

TDE. See transparent database encryption

technical metadata

templates

SharePoint BI portal

SSRS

Term Extraction

testing

data quality

deployment

developmental

1237

dimensional model

performance

query performance

relational security

scripts

SharePoint BI portal

software

SSIS packages

SSRS

system

usability

text mining

Thoreau, Henry David

TIFF

Time and Account

Time Series

toolset

1238

BIDS

ETL

MDS

relational stores

SQL Server

SSAS

top assemblies

training

databases

deployment

transaction fact table

transaction granularity, fact table

transforms. See also extract, transform, and load; slowly
changing dimensions

column screens

data extraction

data flow

SSIS

1239

derived columns, Cascading Lookups

joins

SSIS

structure screens

translations

transparency

transparent database encryption (TDE)

triggers

two-by-two matrix

U

UAT. See User Acceptance Test

uncached lookups

Unicode

Union All transform

unit testing. See testing

unknown member row

UPDATE

1240

updates

dimensions

late arriving data handler

dimension tables, ETL fact providers

facts

fact table, ETL fact providers

MDS

usability testing

User Acceptance Test (UAT)

user interface

Master Data Manager

MDS

user support

deployment

user-defined functions

UserName

user-oriented metadata

1241

V

validation

BI applications

Cross Validation

data mining model

dimensional model

varchar

variables

external

packages

variable-depth hierarchies

versions

ETL

SharePoint BI portal

VertiPaq

views

Dynamic Management Views

1242

indexes

SQL Server

relational databases

SharePoint

snowflaking

SSAS

OLAP

tables

violation errors

virtual machines

Visual Studio

BIDS

deployment

Visual Totals

W

web applications

hierarchies

1243

Web Front End (WFE)

Web Parts

WFE. See Web Front End

WHERE

Windows Integrated Security

WMI

workflow monitor

World Health Organization

X

XML

SSIS

SSRS

XML for Analysis (XMLA)

XMLA. See XML for Analysis

XtrctLowLimit

1244

1245

1246

	Cover
	Title Page
	Copyright
	About the Authors
	Credits
	Acknowledgments
	Foreword
	Introduction
	The Data Warehouse and Business Intelligence System
	The Kimball Lifecycle
	How This Book Is Organized
	Additional Information
	On the Website

	Part 1: Requirements, Realities, and Architecture
	Chapter 1: Defining Business Requirements
	The Most Important Determinant of Long-Term Success
	Adventure Works Cycles Introduction
	Uncovering Business Value
	Prioritizing the Business Requirements
	Revisiting the Project Planning
	Gathering Project-Level Requirements
	Summary

	Chapter 2: Designing the Business Process Dimensional Model
	Dimensional Modeling Concepts and Terminology
	Additional Design Concepts and Techniques
	The Dimensional Modeling Process
	Case Study: The Adventure Works Cycles Orders Dimensional Model
	Summary

	Chapter 3: The Toolset
	The Microsoft DW/BI Toolset
	Why Use the Microsoft Toolset?
	Architecture of a Microsoft DW/BI System
	Overview of the Microsoft Tools
	Summary

	Chapter 4: System Setup
	System Sizing Considerations
	System Configuration Considerations
	Software Installation and Configuration
	Summary

	Part 2: Building and Populating the Databases
	Chapter 5: Creating the Relational Data Warehouse
	Getting Started
	Complete the Physical Design
	Define Storage and Create Constraints and Supporting Objects
	Partitioned Tables
	Finishing Up
	Summary

	Chapter 6: Master Data Management
	Managing Master Reference Data
	Introducing SQL Server Master Data Services
	Creating a Simple Application
	Summary

	Chapter 7: Designing and Developing the ETL System
	Round Up the Requirements
	Develop the ETL Plan
	Introducing SQL Server Integration Services
	The Major Subsystems of ETL
	Extracting Data
	Cleaning and Conforming Data
	Delivering Data for Presentation
	Managing the ETL Environment
	Summary

	Chapter 8: The Core Analysis Services OLAP Database
	Overview of Analysis Services OLAP
	Designing the OLAP Structure
	Physical Design Considerations
	Summary

	Chapter 9: Design Requirements for Real-Time BI
	Real-Time Triage
	Scenarios and Solutions
	Summary

	Part 3: Developing the BI Applications
	Chapter 10: Building BI Applications in Reporting Services
	A Brief Overview of BI Applications
	A High-Level Architecture for Reporting
	The Reporting System Design and Development Process
	Building and Delivering Reports
	Ad Hoc Reporting Options
	Summary

	Chapter 11: PowerPivot and Excel
	Using Excel for Analysis and Reporting
	The PowerPivot Architecture: Excel on Steroids
	Creating and Using PowerPivot Databases
	PowerPivot for SharePoint
	PowerPivot’s Role in a Managed DW/BI Environment
	Summary

	Chapter 12: The BI Portal and SharePoint
	The BI Portal
	Planning the BI Portal
	Using SharePoint as the BI Portal
	Summary

	Chapter 13: Incorporating Data Mining
	Defining Data Mining
	SQL Server Data Mining Architecture Overview
	Microsoft Data Mining Algorithms
	The Data Mining Process
	Data Mining Examples
	Summary

	Part 4: Deploying and Managing the DW/BI System
	Chapter 14: Designing and Implementing Security
	Identifying the Security Manager
	Securing the Hardware and Operating System
	Securing the Development Environment
	Securing the Data
	Securing the Components of the DW/BI System
	Usage Monitoring
	Summary

	Chapter 15: Metadata Plan
	Metadata Basics
	Metadata Standards
	SQL Server 2008 R2 Metadata
	A Practical Metadata Approach
	Summary

	Chapter 16: Deployment
	Setting Up the Environments
	Testing
	Deploying to Production
	Data Warehouse and BI Documentation
	User Training
	User Support
	Desktop Readiness and Configuration
	Summary

	Chapter 17: Operations and Maintenance
	Providing User Support
	System Management
	Summary

	Chapter 18: Present Imperatives and Future Outlook
	Growing the DW/BI System
	Lifecycle Review with Common Problems
	What We Like in the Microsoft BI Toolset
	Future Directions: Room for Improvement
	Conclusion

	Index
	Advertisements

