Tomislav Piasevoli, Sherry Li

MDX with Microsoft
SQL Server 2016
Analysis Services

COOKDOOK

Over 70 practical recipes to analyze multi-dimensional
datain SQL Server 2016 Analysis Services cubes

L1 Packt>

MDX with Microsoft SQL Server 2016 Analysis
Services Cookbook Third Edition

WOW! eBook
www.wowebook.org

Table of Contents

MDX with Microsoft SQL Server 2016 Analysis Services Cookbook Third Edition
Credits
About the Authors
About the Reviewer
www.PacktPub.com
Why subscribe?
Preface
What this book covers
What you need for this book
Who this book is for
Sections
Getting ready
How to do it...
How it works...
There's more...
See also
Conventions
Reader feedback

Customer support

Downloading the example code
Downloading the color images of this book

Errata
Piracy
Questions

1. Elementary MDX Techniques
Introduction

Putting data on x and y axes
Getting ready
How to do it...
How it works...
There's more...
Putting more hierarchies on x and y axes with cross join
Skipping axes

Getting ready
How to do it...

How it works...
There's more...
The idea behind it

Possible workarounds - dummy column
Using a WHERE clause to filter the data returned

Getting ready

WOW! eBook
www.wowebook.org

How to do it...
How it works...
There's more...
Optimizing MDX queries using the NonEm function
Getting ready
How to do it...
How it works...
There's more...

NonEmpty() versus NON EMPTY
Common mistakes and useful tips
Using the Properties() function to retrieve data from attribute relationships
Getting ready
How to do it...
How it works...
There's more...

Basic sorting and ranking

Getting ready
How to do it...

How it works...
There's more...
Handling division by zero errors
Getting ready
How to do it...
How it works...
There's more...
Earlier versions of SSAS
Setting a default member of a hierarchy in the MDX script
Getting ready
How to do it...
How it works...
There's more...
Helpful tips
2. Working with Sets
Introduction
Implementing the NOT IN set logic
Getting ready
How to do it...
How it works...
There's more...
See also
Implementing the logical OR on members from different hierarchies
Getting ready
How to do it...
How it works...

WOW! eBook
www.wowebook.org

There's more...
A special case of a non-aggregatable dimension
A very complex scenario
See also
Iterating on a set to reduce it
Getting ready
How to do it...
How it works...
There's more...
Hints for query improvements
See also
Iterating on a set to create a new one
Getting ready
How to do it...
How it works...
There's more...
Did you know?
See also
Iterating on a set using recursion
Getting ready
How to do it...
How it works...
There's more...
Earlier versions of SSAS
See also

Performing complex sorts

Getting ready
How to do it...

How it works...

There's more...
Things to be extra careful about
A costly operation

See also
Dissecting and debugging MDX queries
Getting ready

How to do it...

How it works...

There's more...

Useful string functions
See also
Implementing the logical AND on members from the same hierarchy

Getting ready

How to do it...

How it works...

WOW! eBook
www.wowebook.org

There's more...
Where to put what?
A very complex scenario
See also
3. Working with Time
Introduction
Calculating the year-to-date (YTD) value
Getting ready
How to do it...
How it works...
There's more...
Inception-To-Date calculation
Using the argument in the YTD() function

Common problems and how to avoid them
YTD() and future dates

See also
Calculating the year-over-year (YoY) growth (parallel periods)
Getting ready

How to do it...
How it works...
There's more...
ParallelPeriod is not a time-aware function

See also
Calculating moving averages
Getting ready

How to do it...
How it works...
There's more...
Other ways to calculate the moving averages
Moving averages and the future dates
Finding the last date with data
Getting ready
How to do it...
How it works...
There's more...
See also
Getting values on the last date with data
Getting ready
How to do it...
How it works...
There's more...
Formatting members on the Date dimension properly
Optimizing time-non-sensitive calculations
Calculating today's date using the string functions

WOW! eBook
www.wowebook.org

Getting ready
How to do it...

How it works...
There's more...
Relative periods
Potential problems
See also
Calculating today's date using the Member Value function
Getting ready
How to do it...
How it works...
There's more...
Using the ValueColumn property in the Date dimension
See also
Calculating today's date using an attribute hierarchy
Getting ready
How to do it...
How it works...
There's more...
The Yes member as a default member?
Other approaches
See also
Calculating the difference between two dates
Getting ready
How to do it...
How it works...
There's more...
Dates in other scenarios
The problem of non-consecutive dates
See also
Calculating the difference between two times
Getting ready
How to do it...
How it works...
There's more...
Formatting the duration
Examples of formatting the duration on the Web
Counting working days only
See also
Calculating parallel periods for multiple dates in a set
Getting ready
How to do it...
How it works...
There's more...

WOW! eBook
www.wowebook.org

Parameters
Reporting covered by design
See also
Calculating parallel periods for multiple dates in a slicer
Getting ready
How to do it...
How it works...
There's more...
See also
4. Concise Reporting
Introduction
Isolating the best N members in a set
Getting ready
How to do it...
How it works...
There's more...
The top N members is evaluated in All Periods, not in the context of the opposite
query axis
The top N members will be evaluated in the context of the slicer
Using a tuple in the third argument of the TopCount() function to overwrite the
member on the slicer
Testing the correctness of the result
Multidimensional sets
TopPercent() and TopSum() functions
See also
Isolating the worst N members in a set
Getting ready
How to do it...
How it works...
There's more...
See also
Identifying the best/worst members for each member of another hierarchy
Getting ready
How to do it...
How it works...
There's more...
Support for the relative context and multidimensional sets in SSAS frontends
See also
Displaying a few important members, with the others as a single row, and the total at the
end

Getting ready
How to do it...

How it works...
There's more...

WOW! eBook
www.wowebook.org

Making the query even more generic
See also
Combining two hierarchies into one
Getting ready
How to do it...
How it works...
There's more...
Use it, but don't abuse it
Limitations

Finding the name of a child with the best/worst value

Getting ready
How to do it...

How it works...
There's more...
Variations on a theme
Displaying more than one member's caption
See also
Highlighting siblings with the best/worst values
Getting ready
How to do it...
How it works...
There's more...
Troubleshooting
See also

Implementing bubble-up exceptions

Getting ready
How to do it...

How it works...
There's more...
Practical value of bubble-up exceptions
Potential problems
See also
5. Navigation
Introduction
Detecting a particular member in a hierarchy
Getting ready
How to do it...
How it works...
There's more...
Important remarks
Comparing members versus comparing values
Detecting complex combinations of members
See also
Detecting the root member

WOW! eBook
www.wowebook.org

Getting ready
How to do it...

How it works...
There's more...
The scope-based solution
See also
Detecting members on the same branch
Getting ready
How to do it...
How it works...
There's more...
The query-based alternative
Children() will return empty sets when out of boundaries
Various options of the Descendants() function
See also

Finding related members in the same dimension

Getting ready
How to do it...

How it works...
There's more...
Tips and trick related to the EXISTING keyword
Filter() versus Exists(), Existing(), and EXISTING
A friendly warning
See also
Finding related members in another dimension

Getting ready
How to do it...

How it works...
There's more...
Leaf and non-leaf calculations

See also
Calculating various percentages
Getting ready

How to do it...
How it works...
There's more...
Use cases
The alternative syntax for the root member
The case of the nonexisting [All] level
The percentage of leaf member values

See also
Calculating various averages
Getting ready

How to do it...

WOW! eBook
www.wowebook.org

How it works...

There's more...
Preserving empty rows
Other specifics of average calculations

See also

Calculating various ranks

Getting ready

How to do it...

How it works...

There's more...

Tie in ranks

Preserving empty rows

Ranks in multidimensional sets
The pluses and minuses of named sets
See also
6. MDX for Reporting
Introduction

Creating a picklist

Getting ready
How to do it...

How it works...
There's more...
See also
Using a date calendar
Getting ready
How to do it...
How it works...
There's more...
Alternative - allowing users to select by Date hierarchies
See also
Passing parameters to an MDX query
Getting ready
How to do it...
How it works...
There's more...

Getting the summary

Getting ready
How to do it...

How it works...
There's more...
Getting visual totals at multiple levels

Removing empty rows

Getting ready
How to do it...

WOW! eBook
www.wowebook.org

How it works...
Checking empty sets
There's more...
Trouble with zeros
See also

Getting data on the column

Getting ready
How to do it...

How it works...
There's more...
Named set or DIMENSION PROPERTIES has no effect in the shape of the reports

Creating a column alias in MDX queries can mean data duplication

Creating a column alias is a must with role-playing dimensions
Avoiding using the NON EMPTY keyword on the COLUMNS axis

Query Editor in SSRS only allowing measures dimension in the COLUMNS
A few more words...
See also

Sorting data by dimensions

Getting ready
How to do it...

How it works...

There's more...
Taking advantage of hierarchical sorting
Using the Date type to sort in a non-hierarchical way
"Break hierarchy" - sorting a set in a non-hierarchical way
Sorting can be done in the frontend reporting tool

See also

7. Business Analyses
Introduction

Forecasting using linear regression

Getting ready
How to do it...

How it works...
There's more...

Tips and tricks
Where to find more information

See also
Forecasting using periodic cycles
Getting ready

How to do it...
How it works...
There's more...

Other approaches
See also

WOW! eBook
www.wowebook.org

Allocating non-allocated company expenses to departments

Getting ready
How to do it...

How it works...
There's more...

Choosing a proper allocation scheme
Analyzing the fluctuation of customers

Getting ready
How to do it...
How it works...
There's more...
Identifying loyal customers in a period
More complex scenario
The alternative approach
Implementing the ABC analysis
Getting ready
How to do it...
How it works...
There's more...
Tips and tricks
See also
8. When MDX is Not Enough
Introduction
Using a new attribute to separate members on a level
Getting ready
How to do it...
How it works...
There's more...
So, where's the MDX?

Typical scenarios
Using a distinct count measure to implement histograms over existing hierarchies

Getting ready
How to do it...
How it works...
There's more...
See also

Using a dummy dimension to implement histograms over nonexisting hierarchies

Getting ready
How to do it...

How it works...
There's more...
DSV or DW?
More calculations

Other examples

WOW! eBook
www.wowebook.org

See also
Creating a physical measure as a placeholder for MDX assignments

Getting ready

How to do it...

How it works...

There's more...

Associated measure group
See also

Using a new dimension to calculate the most frequent price

Getting ready
How to do it...

How it works...
There's more...

Using a utility dimension to implement flexible display units

Getting ready
How to do it...

How it works...
There's more...

Set-based approach
Format string on a filtered set approach
Using a utility dimension to implement time-based calculations

Getting ready
How to do it...

How it works...
There's more...

Interesting details
Fine-tuning the calculations

Other approaches
See also
9. Metadata - Driven Calculations
Introduction

Setting up the environment

Getting ready
How to do it...

How it works...
There's more...
Additional information
Tips and tricks
See also
Creating a reporting dimension

Getting ready
How to do it...

How it works...
There's more...

WOW! eBook
www.wowebook.org

See also

Implementing custom rollups using MDX formulas

Getting ready
How to do it...

How it works...
There's more...
Why not a built-in feature?
Why the Sum() function?
More complex formulas
See also
Implementing format string, multiplication factor, and sort order features
Getting ready
How to do it...
How it works...
There's more...
Tips and tricks
Additional information
See also

Implementing unary operators

Getting ready
How to do it...

How it works...
There's more...
See also

Referencing reporting dimension's members in MDX formulas

Getting ready
How to do it...

How it works...
There's more...
See also
Implementing the MDX dictionary
Getting ready
How to do it...
How it works...
There's more...
Additional information
Tips and tricks
See also
Implementing metadata-driven KPIs
Getting ready
How to do it...
How it works...
There's more...
Additional information

WOW! eBook
www.wowebook.org

Tips and tricks
See also

10. On the Edge

Introduction
Clearing the Analysis Services cache
Getting ready
How to do it...
How it works...
There's more...
Objects whose cache can be cleared
Additional information
Tips and tricks
See also
Using Analysis Services stored procedures
Getting ready
How to do it...
How it works...
There's more...

Tips and tricks

Existing assemblies
Additional information

See also

Executing MDX queries in T-SQL environments

Getting ready
How to do it...

How it works...
There's more...
Additional information

Useful tips

Accessing Analysis Services 2000 from a 64-bit environment
Troubleshooting the linked server

See also
Using SSAS Dynamic Management Views (DMVs) to fast-document a cube
Getting ready
How to do it...
How it works...
There's more...

Tips and tricks

Warning!
More information

See also
Using SSAS Dynamic Management Views (DMVs) to monitor activity and usage

Getting ready
How to do it...

WOW! eBook
www.wowebook.org

How it works...
There's more...
See also
Capturing MDX queries generated by SSAS frontends
Getting ready
How to do it...
How it works...
There's more...
Alternative solution
Tips and tricks
See also
Performing a custom drillthrough
Getting ready
How to do it...
How it works...
There's more...
Allowed functions and potential problems
More info

Other examples
See also

WOW! eBook
www.wowebook.org

MDX with Microsoft SQL Server 2016 Analysis
Services Cookbook Third Edition

WOW! eBook
www.wowebook.org

MDX with Microsoft SQL Server 2016 Analysis
Services Cookbook Third Edition

Copyright © 2016 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or
transmitted in any form or by any means, without the prior written permission of the
publisher, except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the
information presented. However, the information contained in this book is sold without
warranty, either express or implied. Neither the authors, nor Packt Publishing, and its dealers
and distributors will be held liable for any damages caused or alleged to be caused directly or
indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals. However,
Packt Publishing cannot guarantee the accuracy of this information.

First published: August 2011
Second edition: August 2013
Third edition: November 2016
Production reference: 1241116
Published by Packt Publishing Ltd.
Livery Place

35 Livery Street

Birmingham

B3 2PB, UK.

ISBN 978-1-78646-099-8

www.packtpub.com

WOW! eBook
www.wowebook.org

http://www.packtpub.com

Credits

Authors

Copy Editor
Tomislav Piasevoli

Safis Editing

Sherry Li

Reviewers Project Coordinator
Dave Wentzel Shweta H Birwatkar
Wilson D'souza Safis Editing
Acquisition Editor Indexer

Tushar Gupta Mariammal Chettiyar

Commissioning Editor Proofreader |
Content Development Editor|Graphics |

Sumeet Sawant Disha Haria
Technical Editor Production Coordinator
Sneha Hanchate Arvindkumar Gupta

WOW! eBook

www.wowebook.org

About the Authors

Tomislav Piasevoli is a Business Intelligence (BI) specialist with years of experience working
with Microsoft SQL Server Analysis Services (SSAS). He successfully implemented many
still-in-use BI solutions, helped numerous people on MSDN forum, achieved the highest
certification for SQL Server Analysis Services (SSAS Maestro), and shared his expertise in
form of MDX cookbooks.

Tomislav currently works as a consultant at Piasevoli Analytics company
(www.piasevoli.com) together with his brother Hrvoje. They specialize in Microsoft SQL
Server Business Intelligence platform, SSAS primarily, and offer their BI skills worldwide.

In addition to his regular work, Tomislav manages to find the time to present at local
conferences or to write an article or two for local magazines. His contribution to the
community has been recognized by Microsoft honoring him with the Most Valuable
Professional (MVP) award for six consecutive years (2009-2015).

A large portion of this cookbook is present in all editions, therefore I feel obliged to express
my gratitude once again to all the people that influenced its contents or helped making it
better. They are: Chris Webb, Greg Galloway, Marco Russo, Darren Gosbell, Deepak Puri,
Hrvoje Piasevoli, Willfried Fdrber, Mosha Pasumansky, Teo Lachev, Jeffrey Wang, Jeremy
Kashel, Vidas Matelis, Thomas Kejser, Jeff Moden, Michael Coles, Itzik Ben-Gan, Irina
Gorbach, Vincent Rainardi, and my ex-colleagues at SoftPro Tetral company. Next, I
appreciate Packt Publishing for giving me a chance to write the first edition of this book. In
this third edition, I am thankful to Sumeet Sawant and Tushar Gupta for their help and
patience. Dave Wentzel deserves a big thank you for making sure the recipes make sense and
that they are laid out in an understandable and clear way. A huge thank you goes to Sherry Li,
my dear partner in this project. Her friendly attitude and willingness to help meant a lot to me
while I was struggling with some recipes. Speaking of recipes, there were few bright people
that took significant part in forcing me to rethink the recipes repeatedly and, in that way,
either inspired me or helped me make them better. They are: Snjezana Skledar, Ales Plavcak,
Hrvoje Gabelica, and Philipp Trannacher. Thank you, guys! Finally, a thank you goes to my
family, close friends, business partners, and clients for understanding why I partially
neglected you while working on the book. I dedicate this book to my children, Petra, Matko,
and Nina.

Sherry Li is an Analytic Consultant who works for a major financial organization with
responsibilities in implementing data warehousing, Business Intelligence, and business
reporting solutions. She specializes in automation and optimization of data gathering, storing,
analyzing and providing data access for business to gain data-driven insights. She especially
enjoys sharing her experience and knowledge in data ETL process, database design,
dimensional modeling, and reporting in T-SQL and MDX. She has co-authored two books, the
MDX with SSAS 2012 Cookbook and MDX with Microsoft SQL Server 2016 Analysis
Services Cookbook, which have helped many data professionals advanced their MDX skill in

WOW! eBook
www.wowebook.org

http://www.piasevoli.com

a very short time. Sherry Li maintains her blog at bisherryli.com.

This book is dedicated to readers who are enthusiastic about Multidimensional modeling and
MDX (Multi-Dimensional eXpressions). What I love to do the most is share knowledge, so it is
wonderful knowing that the MDX Cookbook is a popular book! Readers who want to become
proficient in MDX have given tremendous responses to the first two editions of the book. There
is nothing that satisfies me more than knowing that this 2016 edition have even more to share
with the readers. I owe tremendous thanks to Packt Publishing for giving me another
opportunity to write this edition of the MDX Cookbook. Their first-class professionalism in
book designing, editing, publishing and collaboration has impressed me during the entire book
project. Special thanks to Sumeet Sawant who is a wonderful content editor, and Tushar Gupta
who initiated the project.

Three years ago I was daring enough to take the challenge of working on the second edition of
the MDX Cookbook. This third edition has brought me once again working side-by-side with
Tomislav Piasevoli, who had this bold idea of adding two new chapters with contents that were
never fully presented before in previous MDX books. His dedication to the readers and
attention to details left me with a great impression. This 2016 edition would not be possible
without his leadership. Thank you Tomislav for your commitment to collaboration,
encouragement, and deep knowledge of MDX and cube design. I look forward to future
collaboration. To Dave Wentzel, for your insight, helpful questioning, (“Can you give an
example or screenshot of this? This may be difficult to conceptually follow for the novice.”)
and encouraging comments ("Good explanation. Seems important enough to call out in a tip
box or something else to visually note it is important.”).

Thanks to all my friends, especially my ACSE (Association of Chinese-American Scientists and
Engineers) friends for sharing my sense of accomplishment. To my co-workers, current and
past, for their earnest encouragement, enthusiasm, and feedbacks. Last and foremost, I want to
thank my husband Jim and daughter Shasha, for all of the support they have given to me. All of
the MDX Cookbook work occurred on weekends, nights, and other times inconvenient to my
family. To my daughter, for also being my English grammar teacher.

To my dog Atari, for always sitting by my feet while I write late at night.

WOW! eBook
www.wowebook.org

http://bisherryli.com

About the Reviewer

Dave Wentzel is a Data Solutions Architect for Microsoft. He helps customers with their
Azure Digital Transformation, focused on data science, big data, and SQL Server. After
working with customers, he provides feedback and learnings to the product groups at
Microsoft to make better solutions. Dave has been working with SQL Server for many years,
and with MDX and SSAS since they were in their infancy. Dave shares his experiences at
http://davewentzel.com. He’s always looking for new customers. Would you like to engage?

WOW! eBook
www.wowebook.org

http://davewentzel.com

www.PacktPub.com

For support files and downloads related to your book, please visit www.PacktPub.com.

Did you know that Packt offers eBook versions of every book published, with PDF and ePub
files available? You can upgrade to the eBook version at www.PacktPub.com and as a print
book customer, you are entitled to a discount on the eBook copy. Get in touch with us

at service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up for a
range of free newsletters and receive exclusive discounts and offers on Packt books and

A Mapt

https://www.packtpub.com/mapt

Get the most in-demand software skills with Mapt. Mapt gives you full access to all Packt
books and video courses, as well as industry-leading tools to help you plan your personal
development and advance your career.

WOW! eBook
www.wowebook.org

http://www.PacktPub.com
http://www.PacktPub.com
http://www.PacktPub.com
https://www.packtpub.com/mapt

Why subscribe?

e Fully searchable across every book published by Packt
e Copy and paste, print, and bookmark content
¢ On demand and accessible via a web browser

WOW! eBook
www.wowebook.org

Preface

Microsoft SQL Server Analysis is one of the keystones of Microsoft's Business Intelligence
(BI) product strategy. It is the most widely deployed OLAP server around the world. Many
organizations, both large and small, have adopted it to provide secure and high-performance
access to complex analytics.

MDX (for Multi-Dimensional eXpressions) is the BI industry standard for multidimensional
calculations and queries, and is the most widely accepted software language in
multidimensional data warehouse. Proficiency with MDX is essential for any professionals
who work with multidimensional cubes. MDX is an elegant and powerful language, but also
has a steep learning curve.

SQL Server 2012 Analysis Services has introduced a new BISM tabular model and a new
formula language, Data Analysis Expressions (DAX). However, for the multi-dimensional
model, MDX is still the only query and expression language. For many product developers
and report developers, MDX still is and will be the preferred language for both the tabular
model and the multi-dimensional model.

SQL Server 2016 is the biggest leap forward in Microsoft’s data platform history. SQL Server
2016 Analysis Services has also come with some great improvements and features for
Multidimensional model. The DirectQuery mode can now be used to connect directly to SQL
Server, SQL Server Parallel Data Warehouse (Microsoft Analytics Platform System), Oracle
and Teradata. The DirectQuery mode has also significantly improved performance compared
to the previous version. The SQL Server 2012 Management Studio (SSMS) came with a
graphical user interface to configure and manage Extended Events within SQL Server
Database Engine. Now this is also available for SQL Server 2016 Analysis Services. The
Extended Events support through SSMS GUI allows a simplified way of monitoring your
Analysis Services 2016 instances, both Tabular and Multidimensional.

Despite its popularity, very few books are dedicated to MDX. MDX-related books often limit
their content to explaining the concepts of multidimensional cubes, the MDX language
concept and its functions, and other specifics related to working with Analysis Services.

This book presents MDX solutions for business requirements that can be found in the real
business world. You will find best practices, explanations of advanced subjects in full detail,
and deep knowledge in every topic. Organized around practical MDX solutions, this book
provides full, in-depth treatment of each topic, sequenced in a logical progression from
elementary to advanced techniques.

This book is written in a cookbook format. You can browse through the contents and look for
solutions to a particular problem. Each recipe is relatively short and grouped by relevancy, so
you can find solutions to related issues in one place. Related recipes are sequenced in a
logical progression; you will be able to build up your understanding of the topic

WOW! eBook
www.wowebook.org

incrementally.

This book is designed for both beginners and experts in MDX. If you are a beginner, this
book is a good place to start. Each recipe provides you with best practices and their
underlying rationale, detailed sample scripts, and options you need to know to make good
choices. If you are an expert, you will be able to use this book as a reference. Whenever you
face a particular challenge, you will be able to find a chapter that is dedicated to the topic.

We hope that you will become confident not only in using the sample MDX queries, but also
in creating your own solutions. The moment you start creating your own solutions by
combining techniques presented in this book, our goal of teaching through examples is
accomplished. We want to hear from you about your journey to MDX proficiency. Feel free to
contact us.

WOW! eBook
www.wowebook.org

What this book covers

We added two new chapters to this edition of MDX cookbook: Chapter 6, MDX for Reporting,
and Chapter 9, Metadata - Driven Calculations. We also decided to remove Chapter 8,
Advanced MDX Topics due to many overlapping and redundant recipes.

To turn ad-hoc reports into parameterized reports is a challenging task. There are many
special considerations associated with the dynamic nature of the reports with dynamic
parameters. Through carefully thought-out examples, Chapter 6, MDX for

Reporting, introduces new concepts in dynamic reporting, the challenges and the techniques
for efficient report writing.

Once a cube is designed and implemented, adding more calculations is a common
requirement. These calculations are defined not by the data of the cube, but by expressions that
can reference other parts of the cube. MDX calculations that are metadata-driven let us extend
the capabilities of a cube, adding flexibility and power to business intelligence solutions. It
also comes with challenges, of having instead complex calculations. Chapter 9, Metadata-
driven Calculations will cover techniques and best practices that have never been fully
documented in any MDX books before.

Here's an overview of chapters and their contents.

Chapter 1, Elementary MDX Techniques, uses simple examples to demonstrate the
fundamental MDX concepts, features, and techniques that are the foundations for our further
explorations of the MDX language.

Chapter 2, Working with Sets, focuses on the challenges of performing logic operations,
NOT, OR and AND, on manipulating sets in general.

Chapter 3, Working with Time, presents various time-related functions in MDX that are
designed to work with a special type of dimension called Time and its typed attributes.

Chapter 4, Concise Reporting, focuses on techniques that you can employ in your project to
make analytical reports more compact and more concise, and therefore, more efficient.

Chapter 5, Navigation , shows common tasks and techniques related to navigation and data
retrieval relative to the current context.

Chapter 6, MDX for Reporting, covers common MDX reporting requirements and techniques
using two approaches: parameterized MDX queries and dynamic MDX queries.

Chapter 7, Business Analytics, focuses on performing typical business analyses, such as
forecasting, allocating values, and calculating the number of days from the last sales date.

Chapter 8, When MDX is Not Enough, teachers you that MDX calculations are not always the

WOW! eBook
www.wowebook.org

place to look for solutions. It illustrates several techniques to optimize the query response
times with a relatively simple change in cube structure.

Chapter 9, Metadata-driven Calculations, explores the concept of storing and maintaining
MDX calculations outside the cube by utilizing reporting dimension, custom aggregations,
scopes and assignments.

Chapter 10, On the Edge, presents topics that will expand your horizons, such as clearing
cache for performance tuning, executing MDX queries in T-SQL environment, using SSAS
Dynamic Management Views (DMVs), drill-through, and capturing MDX queries using SQL
Server Profiler.

WOW! eBook
www.wowebook.org

What you need for this book

A Microsoft SQL Server 2016 full installation or at least the following components are
required:

SQL Server 2016 Engine

Analysis Services 2016

Microsoft SQL Server Management Studio
Microsoft SQL Server Data Tools

We recommend the Developer, Enterprise, or the Trial Edition of Microsoft SQL Server
2016. Standard Edition is not recommended because it does not support all the features and a
few examples might not work using the Standard Edition.

The Developer Edition has the full capabilities of the Enterprise Edition and is for
development and testing only. The Developer Edition is free if you sign up for the free Visual
Studio Dev Essentials program. To download the SQL Server 2016 Developer Edition free,
you can start from joining or accessing the Visual Studio Dev Essentials site:

https://www.visualstudio.com/dev-essentials/

You can also access it from this tiny url:

http://tinyurl.com/zzpzdwv

Microsoft SQL Server 2016 Trial Edition is for evaluation only and is valid for 180 days. Use
this link to go to Microsoft Evaluation Center:

http://tinyurl.com/joap9rh

Both the relational database file and the multidimensional Adventure Works project files are
required:

e AdventureWorks Sample Databases and Scripts for SQL Server 2016: this is the
relational database; use this link to download the AdventureWorks databases and scripts:
http://tinyurl.com/z8k479p

e AdventureWorks Multidimensional Model SQL Server 2012 or 2014 - Enterprise
Edition: SSAS project files. The 2012 or 2014 tutorials are valid for SQL Server 2016.

We recommend the Enterprise Edition of the Multidimensional Model Adventure Works cube
project. To download the installation files, use the following link to go to CodePlex:

http://tinyurl.com/AdventureWorks2012

For the 2014 Multidimensional Model Adventure Works cube project, go to Adventure Works
2014 Sample Databases on CodePlex:

WOW! eBook
www.wowebook.org

https://www.visualstudio.com/dev-essentials/
http://tinyurl.com/zzpzdwv
http://tinyurl.com/joap9rh
http://tinyurl.com/z8k479p
http://tinyurl.com/AdventureWorks2012

http://tinyurl.com/otj8bxf

For instructions on how to install the sample Adventure Works, see Install Sample Data and
Projects for the Analysis Services Multidimensional Modeling Tutorial at this link:

http://tinyurl.com/jx6ghbm

Wide World Importers: The new SQL Server sample database

For the magnitude of SQL Server 2016 Microsoft has released a new sample database, the
Wide World Importers database.

Both the 2008 and 2012 edition of the MDX Cookbook has been based off Adventure Works,
which has been around since the SQL Server 2005 days. For the purpose of demonstrating
MDX techniques and Analysis Services features, the Adventure Works sample database has
continued to be a good choice for this 2016 edition.

For Creating PivotTable, see this section:
Microsoft Excel 2007 (or newer) with PivotTable is required.

Most of the examples will work with older versions of Microsoft SQL Server (2005 or 2008
or 2008 R2 or 2012). However, some of them will need adjustments because the Date
dimension in the older versions of the Adventure Works database has a different set of years.
To solve that problem, simply shift the date-specific parts of the queries few years back in
time, for example, turn the year 2013 into the year 2002 and Q3 of the year 2013 to Q3 of
2003.

WOW! eBook
www.wowebook.org

http://tinyurl.com/otj8bxf
http://tinyurl.com/jx6ghbm

Who this book is for

This is a book for multidimensional cube developers and multidimensional database
administrators, for report developers who write MDX queries to access multidimensional
cubes, for power users and experienced business analysts. All of the will find this book
invaluable.

In other words, this book is for anyone who works with multidimensional cubes, who finds
himself or herself in situations feeling difficult to deliver what end users ask for or who are
interested in getting more out of their multidimensional cubes. This book is for you if you
have found yourself in situations where it is difficult to deliver what your users want and you
are interested in getting more information out of your multidimensional cubes.

WOW! eBook
www.wowebook.org

Sections

In this book, you will find several headings that appear frequently (Getting ready, How to do
it, How it works, There's more, and See also).

To give clear instructions on how to complete a recipe, we use these sections as follows:

WOW! eBook
www.wowebook.org

Getting ready

This section tells you what to expect in the recipe, and describes how to set up any software or
any preliminary settings required for the recipe.

WOW! eBook
www.wowebook.org

How to do it...

This section contains the steps required to follow the recipe.

WOW! eBook
www.wowebook.org

How it works...

This section usually consists of a detailed explanation of what happened in the previous
section.

WOW! eBook
www.wowebook.org

There's more...

This section consists of additional information about the recipe in order to make the reader
more knowledgeable about the recipe.

WOW! eBook
www.wowebook.org

See also

This section provides helpful links to other useful information for the recipe.

WOW! eBook
www.wowebook.org

Conventions

In this book, you will find a number of styles of text that distinguish between different kinds
of information. Here are some examples of these styles, and an explanation of their meaning.

When shown in text, code words NONEMPTY() will be shown as follows: "Optimizing MDX
queries using the NONEMPTY() function.”

A block of code is set as follows:

SELECT
{ [Measures].[Reseller Order Quantity],
[Measures].[Reseller Order Count] } ON O,
NON EMPTY
{ [Date].[Month of Year].MEMBERS } ON 1
FROM
[Adventure Works]
WHERE
([Promotion].[Promotion Type].&[New Product])

When we wish to draw your attention to a particular part of a code block, the relevant lines or
items are set in bold:

SELECT
{ [Measures].[Reseller Sales Amount] } ON O,
{ ParallelPeriod(
[Geography].[Geography].[Country],
2,
[Geography].[Geography].[State-Province].&[CA]&[US]
)

} ON 1

FROM
[Adventure Works]

New terms and important words are shown in bold. Words that you see on the screen, in
menus or dialog boxes for example, appear in the text like this: "We can verify this by
browsing the Geography user hierarchy in the Geography dimension in SQL Server
Management Studio".

Note

Warnings or important notes appear in an information box like this.
Tip

Tips and tricks appear in a tip box like this.

WOW! eBook
www.wowebook.org

Reader feedback

Feedback from our readers is always welcome. Let us know what you think about this book-
what you liked or disliked. Reader feedback is important for us as it helps us develop titles
that you will really get the most out of.

To send us general feedback, simply e-mail feedback@packtpub.com, and mention the book's
title in the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing or
contributing to a book, see our author guide at www.packtpub.com/authors .

WOW! eBook
www.wowebook.org

http://www.packtpub.com/authors

Customer support

Now that you are the proud owner of a Packt book, we have a number of things to help you to
get the most from your purchase.

WOW! eBook
www.wowebook.org

Downloading the example code

You can download the example code files for this book from your account at
http://www.packtpub.com. If you purchased this book elsewhere, you can visit
http://www.packtpub.com/support and register to have the files e-mailed directly to you.

You can download the code files by following these steps:

1. Log in or register to our website using your e-mail address and password.
Hover the mouse pointer on the SUPPORT tab at the top.

Click on Code Downloads & Errata.

Enter the name of the book in the Search box.

Select the book for which you're looking to download the code files.
Choose from the drop-down menu where you purchased this book from.
Click on Code Download.

Nk wLnN

You can also download the code files by clicking on the Code Files button on the book's
webpage at the Packt Publishing website. This page can be accessed by entering the book's
name in the Search box. Please note that you need to be logged in to your Packt account.

Once the file is downloaded, please make sure that you unzip or extract the folder using the
latest version of:

e WinRAR / 7-Zip for Windows
e Zipeg /iZip / UnRarX for Mac
e 7-Zip / PeaZip for Linux

The code bundle for the book is also hosted on GitHub at
https://github.com/PacktPublishing/MDX-with-Microsoft-SQL-Server-2016-Analysis-
Services-Cookbook. We also have other code bundles from our rich catalog of books and
videos available at https://github.com/PacktPublishing/. Check them out!

WOW! eBook
www.wowebook.org

http://www.packtpub.com
http://www.packtpub.com/support
https://github.com/PacktPublishing/MDX-with-Microsoft-SQL-Server-2016-Analysis-Services-Cookbook
https://github.com/PacktPublishing/

Downloading the color images of this book

We also provide you with a PDF file that has color images of the screenshots/diagrams used
in this book. The color images will help you better understand the changes in the output. You
can download this file from
https://www.packtpub.com/sites/default/files/downloads/MDXwithMicrosoftSQLServer2016As

WOW! eBook
www.wowebook.org

https://www.packtpub.com/sites/default/files/downloads/MDXwithMicrosoftSQLServer2016AnalysisServicesCookbook_ColorImages.pdf

Errata

Although we have taken every care to ensure the accuracy of our content, mistakes do happen.
If you find a mistake in one of our books-maybe a mistake in the text or the code-we would be
grateful if you could report this to us. By doing so, you can save other readers from
frustration and help us improve subsequent versions of this book. If you find any errata,
please report them by visiting http://www.packtpub.com/submit-errata, selecting your book,
clicking on the Errata Submission Form link, and entering the details of your errata. Once
your errata are verified, your submission will be accepted and the errata will be uploaded to
our website or added to any list of existing errata under the Errata section of that title.

To view the previously submitted errata, go to
https://www.packtpub.com/books/content/support and enter the name of the book in the search
field. The required information will appear under the Errata section.

WOW! eBook
www.wowebook.org

http://www.packtpub.com/submit-errata
https://www.packtpub.com/books/content/support

Piracy

Piracy of copyrighted material on the Internet is an ongoing problem across all media. At
Packt, we take the protection of our copyright and licenses very seriously. If you come across
any illegal copies of our works in any form on the Internet, please provide us with the
location address or website name immediately so that we can pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected pirated material.

We appreciate your help in protecting our authors and our ability to bring you valuable
content.

WOW! eBook
www.wowebook.org

Questions

If you have a problem with any aspect of this book, you can contact us
at questions@packtpub.com, and we will do our best to address the problem.

WOW! eBook
www.wowebook.org

Chapter 1. Elementary MDX Techniques

In this chapter, we will cover the following recipes:

Putting data on x and y axes

Skipping axes

Using a WHERE clause to filter the data returned

Optimizing MDX queries using the NonEmpty() function

Using the Properties() function to retrieve data from attribute relationships
Basic sorting and ranking

Handling division by zero errors

Setting a default member of a hierarchy in the MDX script

WOW! eBook
www.wowebook.org

Introduction

MDX is an elegant and powerful language, but also has a steep learning curve.

The goal of this chapter is to use some simple examples to demonstrate the fundamental MDX
concepts, features, and techniques that are the foundations for further exploration of the MDX
language.

The chapter begins with several basic techniques: putting multi-dimensional data onto query
axes, cube space restriction, empty cell removal, and the important concept of unique names
for members, tuples, and sets. From there, we shall turn our attention to a few more advanced
features, such as using the MDX functions, creating calculations in the cube space,
manipulating strings, writing parameterized queries, and conditionally formatting cell
properties. This will form the basis for the rest of the chapters in this book.

SSAS 2016 provides a sample Analysis Services database, the Multidimensional Adventure
Works DW. All the MDX queries and scripts in this book have been updated for Analysis
Services 2016, and verified against the 2016 Enterprise Edition of the Adventure Works DW
Analysis Services database. The majority of the MDX queries and scripts should also run and
have been tested in SSAS 2008 R2 and also SSAS2012.

The Query Editor in SQL Server Management Studio (SSMS) is our choice for writing and
testing MDX queries. SQL Server 2012 and 2016 come with a free tool: SQL Server Data
Tools (SSDT) for cube developers. Just as the Business Intelligence Development Studio
(BIDS) was the tool that we used for cube design and MDX scripting in SSAS 2008, SSDT is
the tool we will use in this cookbook for cube design and MDX scripting for SSAS 2016.

WOW! eBook
www.wowebook.org

Putting data on x and y axes

Cube space in SSAS is multi-dimensional. MDX allows you to display results on axes from 0,
1, and 2, up to 128. The first five axes have aliases: COLUMNS, ROWS, PAGES, SECTIONS,
and CHAPTERS. However, the frontend tools such as SQL Server Management Studio
(SSMS) or other applications that you can use for writing and executing MDX queries only
have two axes, the x and y axes, or COLUMNS and ROWS.

As a result, we have two tasks to do when trying to fit the multi-dimensional data onto the
limited axes in our frontend tool:

e We must always explicitly specify a display axis for all elements in the SELECT list. We
can use aliases for the first five axes: COLUMNS, ROWS, PAGES, SECTIONS, and
CHAPTERS. We are also allowed to use integers, 0, 1, 2, 3, and so on but we are not
allowed to skip axes. For example, the first axis must be COLUMNS (or 0). ROWS (or 1)
cannot be specified unless COLUMNS (or 0) has been specified first.

e Since we only have two display axes to show our data, we must be able to combine
multiple hierarchies into one query axis. In MDX and other query language terms, we
call it crossjoin.

It is fair to say that your job of writing MDX queries is mostly trying to figure out how to
project multi-dimensional data onto only two axes, namely, x and y. We will start by putting
only one hierarchy on COLUMNS, and one on ROWS. Then we will use the

crossjoin() function to combine more than one hierarchy into COLUMNS and ROWS.

WOW! eBook
www.wowebook.org

Getting ready

Making a two—by—eight table (that is shown following) in a spreadsheet is quite simple.
Writing an MDX query to do that can also be very simple. Putting data on the x and y axes is a
matter of finding the right expressions for each axis:

Internet Sales Amount

$9,061,000.58 ‘

Australia

Canada $1,977,844.86 ‘
France $2,644,017.71

Germany $2,894,312.34

NA (null)

United Kingdom||$3,391,712.21

United States $9,389,789.51

All we need are three things from our cube:

e The name of the cube
e The correct expression for the Internet Sales Amount so we can put it on the columns
e The correct expression of the sales territory so we can put it on the rows

Once we have the preceding three things, we are ready to plug them into the following MDX
query, and the cube will give us back the two—by—eight table:

SELECT
[The Sales Expression] ON COLUMNS,
[The Territory Expression] ON ROWS
FROM
[The Cube Name]

The MDX engine will understand it perfectly, if we replace columns with 0 and rows with 1.
Throughout this book, we will use the number 0 for columns, which is the x axis, and 1 for
rows, which is the y axis.

WOW! eBook
www.wowebook.org

How to do it...

We are going to use the Adventure Works 2016 Multidimensional Analysis Service database
enterprise edition in our cookbook. If you open the Adventure Works cube, and hover your
cursor over the Internet Sales Amount measure, you will see the fully qualified expression,
[Measures].[Internet Sales Amount]. This is a long expression. Drag and drop in SQL
Server Management Studio works perfectly for us in this situation.

Tip

Long expressions are a fact of life in MDX. Although the case does not matter, correct
spelling is required, and fully qualified and unique expressions are recommended for MDX
queries to work properly.

Follow these two steps to open the Query Editor in SSMS:

1. Start SQL Server Management Studio (SSMS) and connect to your SQL Server Analysis
Services (SSAS) 2016 instance (localhost or servername\instancename).

2. Click on the target database Adventure Works DW 2016, and then right-click on the New
Query button.

Follow these steps to save the time spent for typing the long expressions:

1. Put your cursor on [Measures] [Internet Sales Amount], and drag and drop it onto
AXIS(0).

2. To get the proper expression for the sales territory, put your cursor over the [Sales
Territory Country] under the Sales Territory | Sales Territory Country. Again, this is
a long expression. Drag-and-drop it onto AXIS(1).

3. For the name of the cube, the drag-and-drop should work too. Just point your cursor to
the cube name, and drag-and-drop it in your FROM clause.

This should be your final query:

SELECT
[Measures].[Internet Sales Amount] ON O,
[Sales Territory].[Sales Territory Country].[Sales Territory
Country] ON 1
FROM
[Adventure Works]

Tip
Downloading the example code:

You can download the example code files for all Packt books you have purchased from your
account at http://www.packtpub.com . If you purchased this book elsewhere, you can visit
http://www.packtpub.com/support and register to have the files e-mailed directly to you.

WOW! eBook
www.wowebook.org

http://www.packtpub.com
http://www.packtpub.com/support

When you execute the query, you should get a two—by—eight table, the same as in the
following screenshot:

Intemet Sales Amount

Australia $9.061,000.58
Canada $1.977.844 86
France $2.644 017.71
Gemany $2.894 312 34
NA {null)

United Kingdom $3.391,712.21
United States $9,389,789.51

www.wowebook.org

How it works...

We have chosen to put Internet Sales Amount on the AXIS(0), and all members of Sales
Territory Country on the AXIS(1). We have fully qualified the measure with the special
dimension [Measures], and the sales territory members with dimension [Sales Territory]
and hierarchy [Sales Territory Country].

You might have expected an aggregate function such as SUM somewhere in the query. We do
not need to have any aggregate function here because the cube understands that when we ask
for the sales amount for Canada, we would expect the sales amount to come from all the
provinces and territories in Canada.

WOW! eBook
www.wowebook.org

There's more...

SSAS cubes are perfectly capable of storing data in more than two dimensions. In MDX, we
can use the technique called crossjoin to combine multiple hierarchies into one query axis.

Putting more hierarchies on x and y axes with cross join

In an MDX query, we can specify how multi-dimensions from our SSAS cube lay out onto
only two x and y axes. Cross—joining allows us to get every possible combination of two lists
in both SQL and MDX.

We wish to write an MDX query to produce the following table. On the columns axis, we want
to see both Internet Sales Amount and Internet Gross Profit. On the rows axis, we want to
see all the sales territory countries, and all the products sold in each country:

Internet Sales Amount|/Internet Gross Profit

AustraliafAccessories [|$138,690.63 $86,820.10
Australia||Bikes $8,852,050.00 $3,572,267.29 ‘
Australiaf|Clothing $70,259.95 $26,767.68
AustralialfComponents|j(null) (null)

Canada [|Accessories [[$103,377.85 $64,714.37 ‘
Canada [[Bikes $1,821,302.39 $741,451.22

Canada [[Clothing $53,164.62 $23,755.91

Canada [|Componentsf(null) (null) ‘

This query lays two measures on columns from the same dimension [Measures], and two
different hierarchies; [Sales Territory Country] and [Product Categories] onrows:

SELECT
{ [Measures].[Internet Sales Amount],
[Measures].[Internet Gross Profit]
} ON O,

WOW! eBook
www.wowebook.org

{ [Sales Territory].[Sales Territory Country].[Sales Territory
Country] *
[Product].[Product Categories].[Category]
} ON 1
FROM
[Adventure Works]

To return the cross—product of two sets, we can use either of the following two syntaxes:

Standard syntax: Crossjoin(Set_Expressionl, Set_Expression2)
Alternate syntax: Set_Expressionl * Set_Expression2

We have chosen to use the alternate syntax for its convenience. The result from the previous
query is shown as follows:

Intemet Sales Amount = Intemet Gross Profit =~
Australia Accessories $138.690.63 $86.820.10
Australia Bikes $8.852,050.00 $3.572.267.29
Australia Clothing $70,259.95 $26,767.68
Australia Components {rull) {rull)
Canada Accessories $103.377.85 $64,714.37
Canada Bikes $1.821,302.39 $741,451.22
Canada Clothing $53,164.62 $23,755.91 i
WOW! eBook

www.wowebook.org

Skipping axes

There are situations where we want to display just a list of members with no data associated
with them. Naturally, we expect to get that list in rows, so that we can scroll through them
vertically instead of horizontally. However, the rules of MDX say that we can't skip the axes. If
we want something on rows (which is AXIS(1) by the way), we must use all previous axes as
well (columns in this case, which is also known as AXIS(0)).

The reason why we want the list to appear on axis 1 and not axis 0 is because a horizontal list
is not as easy to read as a vertical one.

Is there a way to display those members on rows and have nothing on columns? Sure! This
recipe shows how.

WOW! eBook
www.wowebook.org

Getting ready

The notation for an empty set is this: { }. So for the axis 8, we would simply do this:

{3} ONO

WOW! eBook
www.wowebook.org

How to do it...

Follow these steps to open the Query Editor in SQL Server Management Studio (SSMS):

1. Start SQL Server Management Studio (SSMS) and connect to your SQL Server Analysis
Services (SSAS) 2012 instance.

2. Click on the target database, Adventure Works DW 2016, and then right-click on the New
Query button.

Follow these steps to get a one-dimensional query result with members on rows:

1. Put an empty set on columns (AXIS(0)). The notation for the empty set is this: {3}.

2. Put some hierarchy on rows (AX1S(1)). In this case, we used the largest hierarchy
available in this cube-customer hierarchy of the same dimension.

3. Run the following query:

SELECT

{1} ON O,

{ [Customer].[Customer].[Customer].MEMBERS } ON 1
FROM

[Adventure Works]

WOW! eBook
www.wowebook.org

How it works...

Although we can't skip axes, we are allowed to provide an empty set on them. This trick
allows us to get what we need—nothing on columns and a set of members on rows.

WOW! eBook
www.wowebook.org

There's more...

Skipping the AXIS(0) is a common technique to create a list for report parameters. If we want
to create a list of customers whose name contains John, we can modify the preceding base
query to use two functions to get only those customers whose name contains the phrase John.
These two functions are Filter () and InStr():

SELECT
{ } ON O,
{ Filter(
[Customer].[Customer].[Customer].MEMBERS,
InStr(
[Customer].[Customer].CurrentMember .Name,
"John'
) >0
)
} ON 1
FROM
[Adventure Works]

In the final result, you will notice the John phrase in various positions in member names:

Abigail Johnson -
Alexander M. Johnson
Alexandra J. Johnson

Alexis J. Johnson

Alyssa K. Johnson

Andrew F. Johnson

Anna Johnson

Anthony D. Johnson i

The idea behind it

Instead of skipping the AXIS(0), if you put a cube measure or a calculated measure with a
non-constant expression on axis 0, you will slow down the query. The slower query time can
be noticeable if there are a large number of members from the specified hierarchy. For

WOW! eBook
www.wowebook.org

example, if you put the Sales Amount measure on axis 0, the Sales Amount will have to be
evaluated for each member in the rows. Do we need the Sales Amount? No, we don't. The only
thing we need is a list of members; hence we have used an empty set {} on AXIS(0). That way,
the SSAS engine does not have to go into cube space to evaluate the sales amount for every
customer. The SSAS engine will only reside in dimension space, which is much smaller, and
the query is therefore more efficient.

Possible workarounds - dummy column

Some client applications might have issues with the MDX statement skipping axes because
they expect something on columns, and will not work with an empty set on axis 0. In this case,
we can define a constant measure (a measure returning null, 0, 1, or any other constant) and
place it on columns. In MDX's terms, this constant measure is a calculated measure. It will act
as a dummy column. It might not be as efficient as an empty set, but it is a much better
solution than the one with a regular (non-constant) cube measure like the Sales Amount
measure.

This query creates a dummy value on columns:

WITH
MEMBER [Measures].[Dummy] AS NULL

SELECT

{ [Measures].[Dummy] } ON O,

{ [Customer].[Customer].[Customer].MEMBERS } ON 1
FROM

[Adventure Works]

WOW! eBook
www.wowebook.org

Using a WHERE clause to filter the data
returned

A WHERE clause in MDX works in a similar way as the other query languages. It acts as a filter
and restricts the data returned in the result set.

Not surprisingly, however, the WHERE clause in MDX does more than just restricting the result
set. It also establishes the query context.

WOW! eBook
www.wowebook.org

Getting ready

The MDX WHERE clause points to a specific intersection of cube space. We use tuple
expressions to represent cells in cube space. Each tuple is made up of one member, and only
one member, from each hierarchy.

The following tuple points to one year, 2013 and one measure, the [Internet Sales Amount]:

([Measures].[Internet Sales Amount],
[Date].[Calendar Year].&[2013]
)

Using a tuple in an MDX WHERE clause is called slicing the cube. This feature gives the WHERE
clause another name, slicer. If we put the previous tuple in the WHERE clause, in MDX terms,
we are saying, show me some data from the cube sliced by sales and the year 2013.

That is what we are going to do next.

WOW! eBook
www.wowebook.org

How to do it...

Open the Query Editor in SSMS, and then follow these steps to write a query with a slicer and
test it:

1. Copy this initial query into the Query Editor and run the query.

SELECT

{ [Customer].[Customer Geography].[Country]

} ON O,

{ [Product].[Product Categories].[Category] } ON 1
FROM

[Adventure Works]

You will see the following result:

Australia Canada France Gemany
Accessories §571,297.93 $571,297.93 $571,297.93 $571,297.93
Bikes $66,302,381.56 $66,302,381.56 $66,302,381.56 $66,302,381.56
Clothing $1.77784084 8177784084 8177784084 $1,777840.84
Components | $11.799.076.66 $11.799.076.66 $11,799.076.66 $11,799.076.66
4 b

2. At this point, we should ask the question, What are the cell values? The cell values are

actually the [Measures].[Reseller Sales Amount], which is the default member on the
Measures dimension.

3. Add the previous tuple to the query as a slicer. Here is the final query:

SELECT

{ [Customer].[Customer Geography].[Country]
} ON O,

{ [Product].[Product Categories].[Category] } ON 1
FROM

[Adventure Works]
WHERE

([Measures].[Internet Sales Amount],
[Date].[Calendar Year].&[2013]
)

4. The result should be as shown in the following screenshot:

WOW! eBook
www.wowebook.org

Australia Canada France Gemany Unit
Accessories | $13276321 $9692204 $60.599.81 $59,388.39 §
Bikes $4139.72096 $93865476 $149172496 $1679.89232 2.
Clothing $66.959.21 $50,05585 $26,187.03 $2259565 $:
Components)) rull) null)
4

4

5. Ask the question again; What are the cell values? The cell values are now the
[Measures].[Internet Sales Amount], and no longer the default measure.

WOW! eBook
www.wowebook.org

How it works...

We can slice the data by pointing to a specific intersection of cube space. We can achieve this
by putting a tuple in the WHERE clause.

In the preceding example, the cube space is sliced by sales and the year 2008. The cell values

are the Internet Sales Amount for each country and each product category, sliced by the
year 2008.

WOW! eBook
www.wowebook.org

There's more...

Notice that the data returned on the query axes can be completely different from the tuple in
the WHERE clause. The tuples in the slicer will only affect the cell values in the intersection of
rows and columns, not what are on the column or row axes.

If you need to display sales and year 2008 on the query axes, you would need to move them to
the query axes, and not in the WHERE clause.

This query has moved the sales to the columns axis, and the year 2008 to the rows axis. They
are both cross joined to the original hierarchies on the two query axes:

SELECT
{ [Measures].[Internet Sales Amount] *
[Customer].[Customer Geography].[Country]
} ON O,
{ [Date].[Calendar Year].&[2013] *
[Product].[Product Categories].[Category]
} ON 1
FROM
[Adventure Works]

Run the query and you will get the following result. The cell values are the same as before,
but now we have the year 2013 on the rows axis, and the Internet Sales Amount on the
columns axis:

Intemet Sales Amount Intemet Sales Amount Intemet Sales Amount |
Australia Canada France
CY 2013 Accessories £132.763.21 $96.922.04 $60.599.81
CY 2013 Bikes $4.1359.720.96 $5938.654.76 $1,491,724 96
CY 2013 Clothing $66,959.21 $50.055.85 $26,187.03
CY 2013 Components {rull) {null) {rull)
4 o
WOW! eBook

www.wowebook.org

Optimizing MDX queries using the
NonEmpty() function

The NonEmpty () function is a very powerful MDX function. It is primarily used to improve
query performance by reducing sets before the result is returned.

Both customer and Date dimensions are relatively large in the Adventure Works DW 2016
database. Putting the cross product of these two dimensions on the query axis can take a long
time. In this recipe, we will show how the NonEmpty () function can be used on the Customer
and Date dimensions to improve the query performance.

WOW! eBook
www.wowebook.org

Getting ready

Start a new query in SSMS and make sure that you are working on the Adventure Works DW
2016 database. Then write the following query and execute it:

SELECT

{ [Measures].[Internet Sales Amount] } ON O,

NON EMPTY

Filter(

{ [Customer].[Customer].[Customer].MEMBERS } *
{ [Date].[Date].[Date].MEMBERS },
[Measures].[Internet Sales Amount] > 1000
) ON 1

FROM

[Adventure Works]

The query shows the sales per customer and dates of their purchases, and isolates only those
combinations where the purchase was over 1,000 USD.

On a typical server, it will take more than a minute before the query will return the results.

Now let us see how to improve the execution time by using the NonEmpty () function.

WOW! eBook
www.wowebook.org

How to do it...

Follow these steps to improve the query performance by adding the NonEmpty () function:

1. Wrap NonEmpty () function around the cross join of customers and dates so that it
becomes the first argument of that function.

2. Use the measure on columns as the second argument of that function.

3. This is what the MDX query should look like:

SELECT
{ [Measures].[Internet Sales Amount] } ON O,
NON EMPTY
Filter(
NonEmpty (
{ [Customer].[Customer].[Customer].MEMBERS } *
{ [Date].[Date].[Date].MEMBERS 1},
{ [Measures].[Internet Sales Amount] }
)
[Measures].[Internet Sales Amount] > 1000
) ON 1
FROM
[Adventure Works]

4. Execute that query and observe the results as well as the time required for execution. The
query returned the same results, only much faster, right?

WOW! eBook
www.wowebook.org

How it works...

Both the customer and Date dimensions are medium-sized dimensions. The cross product of
these two dimensions contains several million combinations. We know that, typically, the cube
space is sparse; therefore, many of these combinations are indeed empty. The Filter()
operation is not optimized to work in block mode, which means a lot of calculations will have
to be performed by the engine to evaluate the set on rows, whether the combinations are
empty or not.

This is because the Filter () function needs to iterate over the complete set of data in every
cell in order to isolate a single cell. For this reason, the Filter () function can be slow when
operating on large dimensions or cross—join result of even medium-sized dimensions.

Tip

The Filter () operation is not optimized to work in block mode. It filters a specified set
based on a search condition by iterating through each tuple in the specified set. It's a cell-by-
cell operation and can be very slow when operating on large dimensions. For a good
explanation of the block mode versus cell-by-cell mode, please see The pluses and minuses of
named sets section of Chapter 5, Navigation.

Fortunately, the NonEmpty () function exists. This function can be used to reduce any set,
especially multidimensional sets that are the result of a crossjoin operation.

The NonEmpty () function removes the empty combinations of the two sets before the engine
starts to evaluate the sets on rows. A reduced set has fewer cells to be calculated, and therefore
the query runs much faster.

WOW! eBook
www.wowebook.org

There's more...

Regardless of the benefits that were shown in this recipe, the NonEmpty () function should be
used with caution. Here are some good practices regarding the NonEmpty () function:

e Use it with sets, such as named sets and axes.

e Use it in the functions which are not optimized to work in block mode, such as with the
Filter() function.

e Avoid using it in aggregate functions such as Sum(). The sum() function and other
aggregate functions are optimized to run in block mode. If you pass the data through the
NonEmpty () the sum() function, which break it into many small non-empty chunks, you
will turn this optimization off and those functions will run in a much slower cell-by-cell
mode.

e Avoid using it in other MDX set functions that are optimized to work in block mode. The
use of the NonEmpty () function inside optimized functions will prevent them from
evaluating the set in block mode. This is because the set will not be compact once it
passes the NonEmpty () function. The function will break it into many small non-empty
chunks, and each of these chunks will have to be evaluated separately. This will inevitably
increase the duration of the query. In such cases, it is better to leave the original set intact,
no matter its size. The engine will know how to run over it in optimized mode.

NonEmpty() versus NON EMPTY

Both the NonEmpty () function and the NON EMPTY keyword can reduce sets, but they do itin a
different way.

The NON EMPTY keyword removes empty rows, columns, or both, depending on the axis on
which that keyword is used in the query. Therefore, the NON EMPTY operator tries to push the
evaluation of cells to an early stage whenever possible. This way, the set on axis is already
reduced and the final result is faster.

Take a look at the initial query in this recipe, remove the Filter () function, run the query,
and notice how quickly the results come, although the multi—dimensional set again counts
millions of tuples. The trick is that the NON EMPTY operator uses the set on the opposite axis,
the columns, to reduce the set on rows. Therefore, it can be said that NON EMPTY is highly
dependent on members on axes and their values in columns and rows.

Contrary to the NON EMPTY operator found only on axes, the NonEmpty () function can be used
anywhere in the query.

The NonEmpty () function removes all the members from its first set, where the value of one
or more measures in the second set is empty. If no measure is specified, the function is
evaluated in the context of the current member.

In other words, the NonEmpty () function is highly dependent on members in the second set,
the slicer, or the current coordinate, in general.

WOW! eBook
www.wowebook.org

Common mistakes and useful tips

If a second set in the NonEmpty () function is not provided, the expression is evaluated in the
context of the current measure at the moment of evaluation, and current members of attribute
hierarchies, also at the time of evaluation. In other words, if you are defining a calculated
measure and you forget to include a measure in the second set, the expression is evaluated for
that same measure which leads to null, a default initial value of every measure. If you are
simply evaluating the set on the axis, it will be evaluated in the context of the current measure,
the default measure in the cube, or the one provided in the slicer. Again, this is perhaps not
something you expected. In order to prevent these problems, always include a measure in the
second set.

The NonEmpty () function reduces sets, just like a few other functions, namely Filter () and
Existing(). But what's special about NonEmpty () function is that it reduces sets extremely
efficiently and quickly. Because of that, there are some rules about where to position
NonEmpty () function in calculations made by the composition of MDX functions (one
function wrapping the other). If we are trying to detect multi-select, that is, multiple members
in the slicer, NonEmpty () function should go inside, with the EXISTING function/keyword
outside. The reason is that although they both shrink sets efficiently, the NonEmpty () function
works great if the set is intact. The EXISTING keyword is not affected by the order of members
or compactness of the set. Therefore, the NonEmpty () function should be applied earlier.

You may get System.outOfMemory errors if you use the CrossJoin() operation on many large
hierarchies because the cross join generates a Cartesian product of those hierarchies. In that
case, consider using the NonEmpty () function to reduce the space to a smaller subcube. Also,
don't forget to group the hierarchies by their dimension inside the cross join.

WOW! eBook
www.wowebook.org

Using the Properties() function to retrieve data
from attribute relationships

Attribute relationships define hierarchical dependencies between attributes. A good example is
the relationship between the City attribute and the State attribute. If we know the current city
is Phoenix, we know the state must be Arizona. This knowledge of the relationship, City/State,
can be used by the Analysis Services engine to optimize performance.

Analysis Services provides the Properties() function to allow us to retrieve data based on
attribute relationships.

WOW! eBook
www.wowebook.org

Getting ready

We will start with a classic top 10 query that shows the top 10 customers. Then we will use the
Properties() function to retrieve each top 10 customer's yearly income.

This table shows what our query result should be like:

Internet Sales Amount|{Yearly Income
Nichole Nara $13,295.38 100000 - 120000
Kaitlyn J. Henderson [[$13,294.27 100000 - 120000
Margaret He $13,269.27 100000 - 120000
Randall M. Dominguez|[$13,265.99 80000 - 90000
Adriana L. Gonzalez [|$13,242.70 80000 - 90000
Rosa K. Hu $13,215.65 40000 - 70000
Brandi D. Gill $13,195.64 100000 - 120000
Brad She $13,173.19 80000 - 90000
Francisco A. Sara $13,164.64 40000 - 70000
Maurice M. Shan $12,909.67 80000 - 90000

Once we get only the top 10 customers, it is easy enough to place the customer on the rows,
and the Internet sales amount on the columns. What about each customer's yearly income?

The Customer Geography is a user-defined hierarchy in the customer dimension. In SSMS, if
you start a new query against the Adventure Works DW 2016 database, and navigate to
Customer | Customer Geography | Customer | Member Properties, you will see that the
yearly income is one of the member properties for the Customer attribute. This is good news,
because now we can surely get the Yearly Income for each top 10 customer using the

WOW! eBook
www.wowebook.org

Properties() function:

=

UFHEBBERB R

Customer Geography

G Members

* Country

» State-Province

2 Postal Code

wes Customer

= dml Member Properties
¢9 Address
J9 Birth Date
¢@ Commute Distance
¢9 Date of First Purchase
y9 Education
y9 Email Address
J@ Gender
¢@ Home Owner
¢@ Marital Status
J@ Number of Cars Owned
¢@ Number of Children At Home
¢@ Occupation
J@ Phone
y9 Postal Code
@ Total Children

J9 Yeary Income

WOW! eBook
www.wowebook.org

How to do it...

In SSMS, let us write the following query in a new Query Editor against the Adventure Works
DW 2016 database:

1. This query uses the TopCount () function, which takes three parameters. The first
parameter [Customer].[Customer Geography].[Customer].MEMBERS provides the
members that will be evaluated for the top count, the second integer, 10, tells it to return
only ten members and the third parameter, [Measures].[Internet Sales Amount]],
provides a numeric measure as the evaluation criterion:

-- Properties(): Initial
SELECT
[Measures].[Internet Sales Amount] on 0,
TopCount(
[Customer].[Customer Geography].[Customer].MEMBERS,
10,
[Measures].[Internet Sales Amount]
) ON 1
FROM
[Adventure Works]

2. Execute the preceding query and we should get only ten customers back with their
Internet Sales Amount. Also notice that the result is sorted in descending order of the
numeric measure. Now let's add a calculated measure, like this:

[Customer].[Customer Geography].currentmember.Properties("Yearly
Income")

3. To make the calculated measure dynamic, we must use a member function
.currentMember, so we do not need to hardcode any specific member name on the
customer dimension. The Properties() function is also a member function, and it takes
another attribute name as a parameter. We have provided Yearly Income as the name for
the attribute we are interested in.

4. Now place the preceding expression in the WITH clause, and give it a name, [Measures].
[Yearly Income].This new calculated measure is now ready to be placed on the columns
axis, along with the Internet Sales Amount. Here is the final query:

WITH

MEMBER [Measures].[Yearly Income] AS
[Customer].[Customer Geography].currentmember
.Properties("Yearly Income")

SELECT
{ [Measures].[Internet Sales Amount],
[Measures].[Yearly Income]
} on 0O,
TopCount(
[Customer].[Customer Geography].[Customer].MEMBERS,
10,
[Measures].[Internet Sales Amount]
) ON 1

WOW! eBook
www.wowebook.org

FROM
[Adventure Works]

5. Executing the query, we should get the yearly income for each top 10 customer. The
result should be exactly the same as the table shown at the beginning of our recipe.

WOW! eBook
www.wowebook.org

How it works...

Attributes correspond to columns in the dimension tables in our data warehouse. Although we
do not normally define the relationship between them in the relationship database, we do so in
the multidimensional space. This knowledge of attribute relationships can be used by the
Analysis Services engine to optimize the performance. MDX has provided us the
Properties() function to allow us to get from members of one attribute to members of
another attribute.

In this recipe, we only focus on one type of member property, that is, the user-defined
member property. Member properties can also be the member properties that are defined by
Analysis Services itself, such as NAME, ID, KEY, or CAPTION; they are the intrinsic member
properties.

WOW! eBook
www.wowebook.org

There's more...

The Properties() function can take another optional parameter, that is the TYPED flag. When
the TYPED flag is used, the return value has the original type of the member.

The preceding example does not use the TYPED flag. Without the TYPED flag, the return value is
always a string.

In most business analysis, we perform arithmetical operations numerically. In the next
example, we will include the TYPED flag in the Properties() function to make sure that the
[Total children] for the top 10 customers are numeric:

WITH
MEMBER [Measures].[Yearly Income] AS
[Customer].[Customer Geography].currentmember.Properties("Yearly Income")
MEMBER [Measures].[Total Children] AS
[Customer].[Customer Geography].currentmember.Properties("Total Children",
TYPED)
MEMBER [Measures].[Is Numeric] AS
IIF(
IsNumeric([Measures].[Total Children]),
1,
NULL
)

SELECT
{ [Measures].[Internet Sales Amount],
[Measures].[Yearly Income],
[Measures].[Total Children],
[Measures].[Is Numeric]
} ON O,
TopCount (
[Customer].[Customer Geography].[Customer].MEMBERS,
10,
[Measures].[Internet Sales Amount]
) ON 1
FROM
[Adventure Works]

The following is the result:

WOW! eBook
www.wowebook.org

Intemet Sales Amount =~ Yeary Income Total Children | Is Numeric
Nichole Nara $13,295.38 100000 - 120000 2 1
Kaitlyn J. Henderson $13.294 27 100000 - 120000 3 1
Margaret He $13.269.27 100000 - 120000 3 1
Randall M. Dominguez $13.265.99 80000 - 90000 2 1
Adrana L. Gonzalez $13.242.70 80000 - 90000 5 1
Rosa K. Hu $13.215.65 40000 - 70000 5 1
Brandi D. Gill $13,195.64 100000 - 120000 2 1
Brad She $13.173.19 80000 - 50000 4 1
Francisco A. Sara §13.164 64 40000 - 70000 5 1
Maurice M. Shan $12.909.67 80000 - 50000 5 1

Attributes can be simply referenced as an attribute hierarchy, that is, when the attribute is
enabled as an Attribute Hierarchy.

In SSAS, there is one situation where the attribute relationship can be explored only by using
the Properties() function, that is when its AttributeHierarchyEnabled property is set to
False.

In the employee dimension in the Adventure Works cube, employees' SSN numbers are not
enabled as an Attribute Hierarchy. Its AttributeHierarchyEnabled property is set to False.
We can only reference the SSN number in the Properties() function of another attribute that
has been enabled as Attribute Hierarchy, such as the Employee attribute.

WOW! eBook
www.wowebook.org

Basic sorting and ranking

Sorting and ranking are very common requirements in business analysis, and MDX provides
several functions for this purpose. They are:

e TopCount and BottomCount

L TopPercent and BottomPercent

e * TopSum and BottomSum

® ORDER

e Hierarchize

® RANK

All of these functions operate on sets of tuples, not just on one-dimensional sets of members.
They all, in some way, involve a numeric expression, which is used to evaluate the sorting
and the ranking.

WOW! eBook
www.wowebook.org

Getting ready

We will start with the classic top five (or top-n) example using the TopCount() function. We
will then examine how the result is already pre-sorted, followed by using the ORDER()
function to sort the result explicitly. Finally, we will see how we can add a ranking number by
using the RANK () function.

Here is the classic top five example using the TopCount () function:

TopCount (
[Product].[Subcategory].children,
S5,

[Measures].[Internet Sales Amount]

)

It operates on a tuple; ([Product].[Subcategory].children, [Measures].[Internet Sales
Amount]).

The result is the five [Subcategory] that have the highest [Internet Sales Amount].

The five subcategory members will be returned in order from the largest [Internet Sales
Amount] to the smallest.

WOW! eBook
www.wowebook.org

How to do it...

In SSMS, let us write the following query in a new Query Editor, against the Adventure Works
DW 2016 database. Follow these steps to first get the top-n members:

1. We simply place the earlier TopCount() expression on the rows axis.
2. On the columns axis, we are showing the actual Internet Sales Amount for each

product subcategory.
3. In the slicer, we use a tuple to slice the result for the year 2013 and the Southwest only.

4. The final query should look like the following query:

SELECT
[Measures].[Internet Sales Amount] on O,
TopCount (
[Product].[Subcategory].children,
S5,
[Measures].[Internet Sales Amount]
) ON 1
FROM
[Adventure Works]
WHERE
([Date].[Calendar].[Calendar Quarter].&[2013]&[1],
[Sales Territory].[Sales Territory Region].[Southwest]

)
5. Run the query. The following screenshot shows the top-n result:

Intemet Sales Amount
Mountain Bikes $261,459.11
Road Bikes $138.047.52
Touring Bikes $99.980.73
Tires and Tubes $8.184.57
Helmets §7277.92

6. Notice that the returned members are in order from the largest numeric measure to the
smallest.

WOW! eBook
www.wowebook.org

Next, in SSMS, follow these steps to explicitly sort the result:

1. This time, we will put the TopCount () expression in the WITH clause, creating it as a

Named Set. We will name it [Top 5 Subcategory].

2. On the rows axis, we will use the ORDER() function, which takes two parameters: which
members we want to return and what value we want to evaluate on for sorting. The
named set [Top 5 Subcategory] is what we want to return, so we will pass it to the
ORDER() function as the first parameter. The .Membervalue function gives us the product
subcategory name, so we will pass it to the ORDER() function as the second parameter.

Here is the ORDER () function expression we would use:

ORDER (
[Top 5 Subcategory],
[Product].[Subcategory].MEMBERVALUE
)

Here is the final query for sorting the result:
-- Order members with MemberValue

WITH
SET [Top 5 Subcategory] as
TopCount (
[Product].[Subcategory].CHILDREN,
S,
[Measures].[Internet Sales Amount]
)
SELECT
[Measures].[Internet Sales Amount] on 0,
ORDER (

[Top 5 Subcategory],
[Product].[Subcategory].MEMBERVALUE
) ON 1
FROM
[Adventure Works]
WHERE

([Date].[Calendar].[Calendar Quarter].&[2013]&[1],

[Sales Territory].[Sales Territory
Region].[Southwest])

3. Executing the preceding query, we get the sorted result as the screenshot shows:

WOW! eBook
www.wowebook.org

Intemet Sales Amount
Helmets $§7277.92
Mountain Bikes §261.459.11
Road Bikes $138,047.52
Tires and Tubes $8.184.57
Touring Bikes $99.980.73

Finally, in SSMS, follow these steps to add ranking numbers to the top-n result:

1. We will create a new calculated measure, [Subcategory Rank] using the RANK()
function, which is simply putting a one-based ordinal position of each tuple in the set,
[Top 5 Subcategory]. Since the set is already ordered, the ordinal position of the tuple
will give us the correct ranking. Here is the expression for the RANK () function:

RANK (
[Product].[Subcategory].CurrentMember,
[Top 5 Subcategory]

)

2. The following query is the final query. It is built on top of the first query in this recipe.
We have added the earlier RANK () function and created a calculated measure [Measures].
[Subcategory Rank], which is placed on the columns axis along with the Internet
Sales Amount:

WITH
SET [Top 5 Subcategory] AS
TopCount (
[Product].[Subcategory].children,
S,
[Measures].[Internet Sales Amount]
)
MEMBER [Measures].[Subcategory Rank] AS
RANK (

[Product].[Subcategory].CurrentMember,
[Top 5 Subcategory]

)

SELECT
{ [Measures].[Internet Sales Amount],
[Measures].[Subcategory Rank]
WOW! eBook
www.wowebook.org

} ON O,
[Top 5 Subcategory] ON 1
FROM
[Adventure Works]
WHERE
([Date].[Calendar].[Calendar Quarter].&[2013]&[1],
[Sales Territory].[Sales Territory Region].[Southwest])

3. Run the preceding query. The ranking result is shown in the following screenshot:

Intemet Sales Amount ~ Subcategory Rank
Mountain Bikes $261.459.11 1
Road Bikes $138.047.52 2
Touring Bikes $99,980.73 3
Tires and Tubes $8.184 57 4
Helmets $7277.92 5
WOW! eBook

www.wowebook.org

How it works...

Sorting functions, such as TopCount (), TopPercent(), and TopSum(), operate on sets of tuples.
These tuples are evaluated on a numeric expression and returned pre-sorted in the order of a
numeric expression.

Using the oRDER() function, we can sort members from dimensions explicitly using the
.MemberValue function.

When a numeric expression is not specified, the RANK () function can simply be used to
display the one-based ordinal position of tuples in a set.

WOW! eBook
www.wowebook.org

There's more...

Like the other MDX sorting functions, the RANK () function, however, can also operate on a
numeric expression. If a numeric expression is specified, the RANK() function assigns the
same rank to tuples with duplicate values in the set.

It is also important to understand that the RANK () function does not order the set. Because of
this fact, we tend to do the ordering and ranking at the same time. However, in the last query
of this recipe, we actually used the ORDER () function to first order the set of members of the
subcategory. This way, the sorting is done only once and then followed by a linear scan,
before being presented in sorted order.

As a good practice, we recommend using the ORDER () function to first order the set and then
ranking the tuples that are already sorted.

WOW! eBook
www.wowebook.org

Handling division by zero errors

Handling errors is a common task, especially the handling of division by zero type errors.
This recipe offers a common practice to handle them.

WOW! eBook
www.wowebook.org

Getting ready

Start a new query in SQL Server Management Studio and check that you're working on the
Adventure Works database. Then write and execute this query:

WITH
MEMBER [Date].[Calendar Year].[CY 2012 vs 2011 Bad] AS
[Date].[Calendar Year].[Calendar Year].&[2012] /
[Date].[Calendar Year].[Calendar Year].&[2011],
FORMAT_STRING = 'Percent'
SELECT
{ [Date].[Calendar Year].[Calendar Year].&[2012],
[Date].[Calendar Year].[Calendar Year].&[2011],
[Date].[Calendar Year].[CY 2012 vs 2011 Bad] } *
[Measures].[Reseller Sales Amount] ON O,
{ [Sales Territory].[Sales Territory].[Country].MEMBERS }
ON 1
FROM
[Adventure Works]

This query returns six countries on the rows axis, and two years and a ratio on the column
axis:

CY 2012 CY 2011 CY 2012 vs 2011 Bad
Reseller Sales Amount Reseller Sales Amount Reseller Sales Amount
France $1.385,989.49 £97.456.29 1421.58%
Gemany $180.040.57 {null) 1.#INF
United Kingdom $1.478,289.76 $80.686.69 1832.14%
Canada $5.478.100.19 $3.602,561.12 152.06%
United States £19.621,386.81 $14,412,058 .61 136.15%
Australia $49824 71 {null) 1.8INF

The problem is that we get 1.#INF on some ratio cells. 1.#INF is the formatted value of
infinity, and it appears whenever the denominator CY 2011 is null and the nominator CY 2012
is not null.

We will need help from the 11F () function, which takes three arguments: IFF (<condition>,
<then branch>, <else branch>).The IIF() function is a Visual Basic for Applications
(VBA) function and has a native implementation in MDX. The 11F () function will allow us to
evaluate the condition of CY 2011, then decide what the ratio calculation formula should be.

WOW! eBook
www.wowebook.org

How to do it...

Follow these steps to handle division by zero errors:

1. Copy the calculated member and paste it as another calculated member. During that,
replace the term Bad with Good in its name, just to differentiate between those two
members.

2. Copy the denominator.

Wrap the expression in an outer IIF() statement.

4. Paste the denominator in the condition part of the IIF() statement and compare it against

0.

Provide null value for the true part.

Your initial expression should be in the false part.

7. Don't forget to include the new member on columns and execute the query:

w

o o

WITH
MEMBER [Date].[Calendar Year].[CY 2012 vs 2011 Bad] AS
[Date].[Calendar Year].[Calendar Year].&[2012] /
[Date].[Calendar Year].[Calendar Year].&[2011],
FORMAT_STRING = 'Percent'
MEMBER [Date].[Calendar Year].[CY 2012 vs 2011 Good] AS
IIF([Date].[Calendar Year].[Calendar Year].&[2011] = 0,
null,
[Date].[Calendar Year].[Calendar Year].&[2012] /
[Date].[Calendar Year].[Calendar Year].&[2011]
)
FORMAT_STRING = 'Percent'
SELECT
{ [Date].[Calendar Year].[Calendar Year].&[2011],
[Date].[Calendar Year].[Calendar Year].&[2012],
[Date].[Calendar Year].[CY 2012 vs 2011 Bad],
[Date].[Calendar Year].[CY 2012 vs 2011 Good] } *
[Measures].[Reseller Sales Amount] ON O,
{ [Sales Territory].[Sales Territory].[Country].MEMBERS }
ON 1
FROM
[Adventure Works]

The result shows that the new calculated measure has corrected the problem. The last column
[CY 2012 vs 2011 Good] is now showing (null) correctly when the denominator CY 2011 is
null and the nominator CY 2012 is not null.

WOW! eBook
www.wowebook.org

I CY 2012 I cY20m CY2012vs 2011 Bad || CY 2012 vs 2011 Good |

' Reseller Sales Amourt | Reseller Sales Amourt Reseller Sales Amount Reseller Sales Amount

France | $1,385,989.49 $97,496.29 1421.58% 142158%

Germany | $180,040.57 rull) 1.#INF full)

Unted Kingdom | $1.478,289.76 $80,686.69 1832.14% 1832.14%

Canada | $5.478,100.19 $3,602,561.12 152.06% 152.06%

Unted States | $19.621,386.81 $14.412,058 61 136.15% 136.15%

Australia | $49,824 71 () 1.4INF full)
WOW! eBook

www.wowebook.org

How it works...

A division by zero error occurs when the denominator is null or zero and the numerator is
not null. In order to prevent this error, we must test the denominator before the division and
handle the two scenarios in the two branches using the IIF() statement.

In the condition part of the IIF statement, we've used a simple scalar number zero to determine
whether [Measures].[Reseller Sales Amount] in the following slicer is zero or not. If it is
zero, then it will be true and the calculated member will be NULL:

[Date].[Calendar Year].[Calendar Year].&[2011] = 0

What about the NULL condition? It turned out for a numerical value; we do not need to test the
NULL condition specifically. It is enough to test just for zero because null = 0 returns true.
However, we could test for a NULL condition if we want to, by using the IsEmpty () function.

For the calculated member, [CY 2012 vs 2011 Good] we could wrap the member with the
Isempty () function. The result will be the same:

MEMBER [Date].[Calendar Year].[CY 2012 vs 2011 Good] AS
ITF(IsEmpty([Date].[Calendar Year].[Calendar Year].&[2011]),
null,
[Date].[Calendar Year].[Calendar Year].&[2012] /
[Date].[Calendar Year].[Calendar Year].&[2011]

),
FORMAT_STRING = 'Percent'

WOW! eBook
www.wowebook.org

There's more...

SQLCAT's SQL Server 2008 Analysis Services Performance Guide has a lot of interesting
details regarding the IIF() function, found at http://tinyurl.com/PerfGuide2008R2 .

Additionally, you may find the blog article MDX and DAX topics by Jeffrey Wang, explaining
the details of the 1IF() function, found at http://tinyurl.com/IlFJeffrey .

Earlier versions of SSAS

If you're using a version of SSAS prior to 2008 (that is, 2005), the performance of the IIF()
function will not be as good. See Mosha Pasumansky's article for more information:
http://tinyurl.com/ITFMosha .

WOW! eBook
www.wowebook.org

http://tinyurl.com/PerfGuide2008R2
http://tinyurl.com/IIFJeffrey
http://tinyurl.com/IIFMosha

Setting a default member of a hierarchy in the
MDX script

Setting a default member is a tempting option which looks like it can be used on any
dimension we would like. The truth is far from that. Default members should be used as
exceptions and not as a general rule when designing dimensions.

The reason for that is not so obvious. The feature looks self-explanatory, and it is hard to
anticipate what could go wrong. If we are not careful enough, our calculations can become
unpredictable, especially on complex dimensions with many relationships among attributes.

Default members can be defined in three places. The easy-to-find option is the dimension
itself, using the DefaultMember property found on every attribute. The second option is the
role, on the Dimension Data tab. Finally, default members can be defined in the MDX script.
One of the main benefits of this place is easy maintenance of all default members in the cube
because everything is in one place, and in the form of easy-to-read text. That is also the only
way to define the default member of a role-playing dimension.

In this recipe, we will show the most common option, that is, the last one, or how to set a
default member of a hierarchy in the MDX script. More information on setting the
DefaultMember is available at http://tinyurl.com/DefaultMember2012 .

WOW! eBook
www.wowebook.org

http://tinyurl.com/DefaultMember2012

Getting ready

Follow these steps to set up the environment for this recipe:

1.
2.

i

Start SSMS and connect to your SSAS 2016 instance.
Click on the New Query button and check that the target database is Adventure Works
DW 2016. Then execute the following query:

WITH
MEMBER [Measures].[Default account] AS
[Account].[Accounts].DefaultMember .Name
SELECT
{ [Measures].[Amount],
[Measures].[Default account] } ON ©
FROM
[Adventure Works]

The results will show that the default member is the Net Income account and its value in
this context is a bit more than 12.6 million USD.

Next, open Adventure Works DW 2016 solution in SSDT.

Double-click on the Adventure Works cube and go to the Calculations tab. Choose
Script View.

Position the cursor at the beginning of the script, just beneath the CALCULATE
command.

WOW! eBook
www.wowebook.org

How to do it...

Follow these steps to set a new default member:

1. Enter the following expression to set a new default account:

ALTER CUBE CurrentCube
UPDATE DIMENSION [Account].[Accounts],
Default_Member = [Account].[Accounts].&[48];
//0perating Profit

2. Save and deploy (or just press the Deploy MDX Script icon if you're using BIDS Helper

2012 or 2016 Preview version).

Run the previous query again.
4. Notice that the result has changed. The new default account is Operating Profit, the one

we specified in the MDX script using the ALTER CUBE command. The value changed as
well now: it's above 16.7 million USD:

W

Amount Default account
$16.728.23450 Operating Profit

WOW! eBook
www.wowebook.org

How it works...

The ALTER CUBE statement changes the default member of a hierarchy specified in the UPDATE
DIMENSION part of the statement. The third part is where we specify which member should be
the default member of that hierarchy.

Don't mind that it says UPDATE DIMENSION. SSAS 2016 interprets that as a hierarchy.

WOW! eBook
www.wowebook.org

There's more...

Setting the default member on a dimension with multiple hierarchies can lead to unexpected
results. Due to attribute relations, related attributes are implicitly set to corresponding
members, while the non-related attributes remain on their default members, that is, the All
member (also known as the root member). Certain combinations of members from all
available hierarchies can result in a non-existing coordinate. In that case, the query will return
no data. Other times, the intersection will only be partial. In that case, the query will return the
data, but the values will not be correct, which might be even worse than no data at all.

Enter the following expression in the MDX script, then deploy it:

ALTER CUBE CurrentCube
UPDATE DIMENSION [Date].[Calendar],
Default_Member = [Date].[Calendar]
.[Calendar Year].&[2012];
-- year 2012 on the user hierarchy

The expression sets the year 2012 as the default member of the [Date].[Calendar] user-
defined hierarchy.

Let's analyze the result with the following query:

SELECT
[Measures].[Sales Amount] ON O,
[Date].[Fiscal].[Fiscal Year] ON 1
FROM
[Adventure Works]

The result is shown in the following screenshot:

WOW! eBook
www.wowebook.org

Sales Amount
FY 2005 (null)
FY 2006 (null)
FY 2007 (null)
FY 2008 (null)
FY 2009 (null)
FY 2010 (null)
FY 2011 | $1753549047
FY 2012 | $16,500,626.26
FY 2013 (null)
FY 2014 (null)

The analysis of the sales Amount measure for each fiscal year returns empty results except in
FY 2011 and FY 2012. They are empty because the intersection between the fiscal year and the
calendar year 2012 (the latter being the default member in the calendar hierarchy) is a non-
existing combination, except FY 2011 and FY 2012. Remember, the calendar year 2012
doesn't get overwritten by the fiscal year 2011 or 2012. It gets combined (open the Date
dimension in SSDT and observe the relationships in the corresponding tab). Moreover, when
you put the fiscal year 2011 or 2012 into the slicer, you only get a portion of data; the portion
which matches the intersection of the calendar and the fiscal year. That's only one half of the
fiscal year, right? In short, you have a potential problem with this approach.

Can we fix the result? Yes, we can. The correct results will be there when we explicitly select
the All member from the Date.Calendar hierarchy in the slicer. The complete MDX is shown
in the following query. Only then will we get correct results using fiscal hierarchies. The
question is—will the end users remember that every time?

SELECT [Measures].[Sales Amount] ON O,
[Date].[Calendar Year].[All] *
[Date].[Fiscal].[Fiscal Year] ON 1

WOW! eBook
www.wowebook.org

FROM
[Adventure Works]

The correct results from this query can be seen in the following screenshot:

Sales Amount
Al Periods FY 2005 (null)
All Periods @ FY 2006 (null)
Al Periods FY 2007 (null)
All Periods = FY 2008 (null)
Al Periods FY 2009 (null)
Al Periods | FY 2010 $10,799.059.35
Al Periods |[FY 2011 @ $32,537,509.38
All Periods | FY 2012 $42 35268466
Al Periods | FY 2013 @ $24,120,020.81
Al Periods FY 2014 (null)

The situation is similar when the default member is defined on an attribute hierarchy, for
example, on the [Date].[Calendar Year] hierarchy. By now, you should be able to modify
the previous expression so that it sets the year 2012 as the default member on the [Date].
[Calendar Year]. Test this to see it for yourself.

Another scenario could be that you want to put the current date as the default member on the
Date.Date hierarchy. Try that too, and see that when you use the year 2012 from the [Date].
[Calendar Year] hierarchy in the slicer, you get an empty result. Again, the intersection
formed a non-existing coordinate.

To conclude, you should avoid defining default members on complex dimensions. Define
them where it is appropriate: on dimensions with a single non-aggregatable attribute (that is,

when you set the IsAggregatable property of an attribute to False) or on dimensions with

WOW! eBook
www.wowebook.org

one or more user hierarchies where that non-aggregatable attribute is the top level on each
user hierarchy, and where all relationships are well defined.

The Account dimension used in this example is not such a dimension. In order to correct it,
two visible attributes should be hidden because they can cause empty results when used in a
slicer. Experimenting with a scope might help too, but that adds to the complexity of the
solution and hence the initial advice of keeping things simple when using default members
should prevail.

Take a look at other dimensions in the Adventure Works DW 2016 database. There, you will
find good examples of using default members.

Helpful tips

When you're defining the default members in an MDX script, do it at the beginning of the
script. This way, the calculations that follow can reference them.

In addition, provide a comment explaining which member was chosen to be the default
member, and perhaps why. Look back at the code in this recipe to see how it was done.

WOW! eBook
www.wowebook.org

Chapter 2. Working with Sets

In this chapter, we will cover the following recipes:

Implementing the NOT IN set logic

Implementing the logical OR on members from different hierarchies
Iterating on a set to reduce it

Iterating on a set to create a new one

Iterating on a set using recursion

Performing complex sorts

Dissecting and debugging MDX queries

Implementing the logical AND on members from the same hierarchy

WOW! eBook
www.wowebook.org

Introduction

Sets in MDX are collections of tuples with the same dimensionality. As in many other
programming languages, the basic logical operations, NOT, AND, and OR, can be applied on
them.

When putting two tuples together to form a set, we basically ask for the results that contain
any of those tuples. Therefore, sets in MDX naturally imply the orR logic. The first part of the
chapter focuses on the challenges and solutions of performing NOT and OR logic operations on
sets.

Iterations and recursions can also be performed on sets. The middle part of the chapter
concentrates on those actions and the different ways to perform them.

The final part of the chapter explains how to perform complex sorts, how to apply the
iteration technique to dissect and debug MDX queries and calculations, and how to perform
the logical AND operation in MDX.

WOW! eBook
www.wowebook.org

Implementing the NOT IN set logic

There are times when we want to exclude some members from the result. We can perform this
operation using a set of members on an axis or using a set of members in a slicer, that is, the
WHERE part of an MDX query.

This recipe shows how to do the latter, that is, how to exclude some members from a set in a
slicer. The principle is the same for any part of an MDX query.

WOW! eBook
www.wowebook.org

Getting ready

Start a new query in SQL Server Management Studio (SSMS) and check that you are working
on the Adventure Works DW 2016 database. Then type in the following query and execute it:

SELECT
{ [Measures].[Reseller Order Count] } ON O,
NON EMPTY
{ [Promotion].[Promotion].MEMBERS }
DIMENSION PROPERTIES

[Promotion].[Promotion].[Discount Percent]

ON 1

FROM
[Adventure Works]

The preceding query returns 12 promotions and all the top-level promotions on the rows axis.
The DIMENSION PROPERTIES keyword is used to get additional information about members
each promotion's discount percent. However, the property is not visible on either of the query
axes and it can only be seen by double-clicking each promotion member on the rows:

Reseller Order Count

All Prometions 3,796
Mo Discourt 3,782
Wolume Discount 11to 14 570
Wolume Discount 15to 24 M7
Wolume Discount 25to 40 i
Wolume Discount 41 to 60 2
Mountain-100 Clearance Sale 24
Sport Helmet Discount-2002 36
Road-650 Overstock 61
Sport Helmet Discount-2003 30
Touring-3000 Promation 11
Touring-1000 Promation 101
Mountain-500 Silver Clearance Sale 62

Our task is to exclude promotions with a discount percentage of 0, 2, and 5.

WOW! eBook
www.wowebook.org

How to do it...

To exclude promotions with a discount percent of 0, 2, and 5 is to say that we want the
promotion members that are NOT IN the discount percent (0, 2, and 5). Translating the NOT IN
logic into the WHERE clause, we can use this pseudo code:

WHERE
(- { [member of Discount Percent 0],
[member of Discount Percent 2],
[member of Discount Percent 5] })

All we need to do now is to find the three fully qualified member names.

Let us open a new query in SSMS against the Adventure Works DW 2016 database, and follow
these steps:

1. Navigate to the Promotion dimension and expand it.

2. Expand the Discount Percent hierarchy and its level.

3. Take the first three members (with the names 0, 2, and 5) and drag them one by one
beneath the query, and then form a set of them using curly brackets.

4. Expand the query by adding the WHERE part.

Add the set with those three members using a minus sign in front of the set:

v

SELECT
{ [Measures].[Reseller Order Count] } ON O,
NON EMPTY
{ [Promotion].[Promotion].MEMBERS }
DIMENSION PROPERTIES
[Promotion].[Promotion].[Discount Percent]
ON 1
FROM
[Adventure Works]
WHERE
(- { [Promotion].[Discount Percent].&[0],
[Promotion].[Discount Percent].&[2.E-2],
[Promotion].[Discount Percent].&[5.E-2] })

6. Execute the query and see how the results change. Double-click each promotion and
verify that no promotion has a discount percent equal to 0, 2, or anymore.

WOW! eBook
www.wowebook.org

How it works...

The initial query is not sliced by discount percentages. We can think of it as if all the members
of that hierarchy exist there in the slicer:

WHERE ({ [Promotion].[Discount Percent]
.[Discount Percent].MEMBERS })

Of course, we don't have to write such expressions; the SSAS engine takes care of it by
default. In other words, we're fine until the moment we want to change the slicer by either
isolating or removing some members from that set. That's when we have to use that hierarchy
in the slicer.

Isolation of members is simply done by enumerating them in the slicer. Reduction, the
opposite operation, is performed using the Except () function:

WHERE (Except({ [Promotion].[Discount Percent]
.[Discount Percent].MEMBERS },
{ [Promotion].[Discount Percent].&[0],
[Promotion].[Discount Percent].&[2.E-2],
[Promotion].[Discount Percent].&[5.E-2] }

)

The alternative for the Except() function is a minus sign, which brings us to the shorter
version of the previous expression, the version that was used in this recipe.

Notice that the Except() function takes two sets, and the minus sign in our example has only
one set after it, and has no set before it.

When a minus sign is used between two sets, it performs the same difference operation
between those sets as Except () does. When the first set is missing, which is the case in our
example, all the members of the second set are implicitly added as the first set. The difference
between all members and the members of any set is the opposite set of that set. This is how
you can perform the NOT IN logic on sets. Both variants work, but the one with the minus sign
in front of the set is hopefully easier to remember.

WOW! eBook
www.wowebook.org

There's more...

If we open the Promotion dimension inside SQL Server Data Tools (SSDT), we'll notice that
the Discount Percent attribute has the Membervalue property defined. The value of that
property is equal to a discount percentage and therefore, in this case, we could write an
equivalent syntax:

WHERE
({ Filter([Promotion].[Discount Percent]
.[Discount Percent].MEMBERS,
[Promotion].[Discount Percent]
.CurrentMember .MemberValue >= 0.1) })

The advantage of this expression is that it should filter out additional members with a
percentage less than 10 percent, if they ever appear on that hierarchy. If we're not expecting
such a case or if we strictly want to exclude certain, not necessarily consecutive, members
from the hierarchy (Unknown Member, NA member, and so on), we should use the first
example: the one with explicit members in the set.

WOW! eBook
www.wowebook.org

See also

e The next recipe, Implementing the logical OR on members from different hierarchies is
based on a similar theme to this recipe

WOW! eBook
www.wowebook.org

Implementing the logical OR on members from
different hierarchies

If we need to slice the data by only the black color for products, we would put the Black
member in the WHERE clause, like this:

WHERE
([Product].[Color].&[Black])

In the Adventure Works DW 2016 database, by putting Reseller Order Quantity and Reseller
Order Count on the columns, we would get this result:

Reseller Order Quantity || Reseller Order Court
All Products 72013 2570
Crankzets 1.107 261
Gloves 11,553 991
Helmets 4447 922
Mountain Bikes 12,71 1219
Mourtain Frames 5604 736
Road Bikes 14,304 1.237
Road Frames 3.456 i)
Shorts 8.546 758
Tights 4562 470
Wheels h.263 716

Similarly, to get only the products whose size is XL, we can put the member XL in the slicer
as:

WHERE
([Product].[Size Range].&[XL])

What if we want to get the products whose size is XL in the same result set as the result set for
black only?

Somehow, we need to combine the black member with the XL. member. Simply by putting
these two members together, it would not work. Putting two members from different
hierarchies would form a tuple; a tuple implies the logical AND in MDX, not the logical oR.

On the other hand, MDX implies a logical or. However, we cannot simply put the preceding
two members together to form a set. Color and Size Range are different hierarchies. Yes, they
belong to the same Product dimension, but only items from the same hierarchy, not
dimension, can form a set!

In this recipe, we will focus on how to implement a logical 0R on members from different

WOW! eBook
www.wowebook.org

hierarchies.

WOW! eBook
www.wowebook.org

Getting ready

Start a new query in SSMS and check that you're working on the Adventure Works DW 2016
database. We will start with slicing by the black color first. Type in the following query and
execute it:

SELECT
{ [Measures].[Reseller Order Quantity],
[Measures].[Reseller Order Count] } ON O,

NON EMPTY

{ [Product].[Subcategory].MEMBERS } ON 1
FROM

[Adventure Works]
WHERE

([Product].[Color].&[Black])

The query displays 10 product subcategories containing all the black products, plus one row
on the top level [A1l Products].

Next, open a new query window and execute the following query:
SELECT

{ [Measures].[Reseller Order Quantity],
[Measures].[Reseller Order Count] } ON O,

NON EMPTY

{ [Product].[Subcategory].MEMBERS } ON 1
FROM

[Adventure Works]
WHERE

([Product].[Size Range].&[XL])

It is a query like the previous one, but this one returns only product subcategories containing
XL size range products. There's only one product subcategory in the result, Jerseys.

Our task is to combine these queries so that we get the result of the OrR operation on those two
conditions, in a single query, of course.

WOW! eBook
www.wowebook.org

How to do it...

Our goal is to combine these two members from different hierarchies and place them in the
slicer:

[Product].[Color].&[Black]
[Product].[Size Range].&[XL]

To combine members from different hierarchies, we need to make sure that they have the
same dimensionality. Here is our solution:

1. We need to form two tuples that have the same dimensionality and then combine the two
tuples with the same dimensionality to form a set. To form two tuples that have the same
dimensionality, we add one more member expression, [Product].[Size Range].[All
Products], to each member, separating each member by a comma, and enclosing the
tuple with a pair of parentheses. The pair of curly brackets indicates a set; each tuple in
the set is separated by a comma; the member order in each tuple must be the same:

WHERE

(
{ ([Product].[Color].&[Black],

[Product].[Size Range].[All Products])

,([Product].[Color].[All Products],
[Product].[Size Range].&[XL]) }
)

2. Here is the final query:

SELECT
{ [Measures].[Reseller Order Quantity],
[Measures].[Reseller Order Count] } ON O,

NON EMPTY

{ [Product].[Subcategory].MEMBERS } ON 1
FROM

[Adventure Works]
WHERE

(
{ ([Product].[Color].&[Black],
[Product].[Size Range].[All Products])

,([Product].[Color].[All Products],
[Product].[Size Range].&[XL]) }
)

3. Executing the preceding query, we would get the result as shown in the following
screenshot. Jerseys is the only product that is picked up by the XL size range. Notice that
the cell values for [A11 Products] are also properly aggregated for all 12 products,
including Jerseys:

WOW! eBook
www.wowebook.org

Reseller Order Quantity || Reseller Order Court
All Products 78.035 m7
Crankzets 1.107 261
Gloves 11,553 991
Helmets 4447 922
Jerseys 6.022 5967
Mountain Bikes 12,71 La19
Mourtain Frames h.604 736
Road Bikes 14,304 1,237
Road Frames 3.456 769
Shorts 8.546 758
Tights 4562 470
Wheels 5263 716

WOW! eBook
www.wowebook.org

How it works...

The nature of a multidimensional database and its underlying structures has a direct
consequence on how we should write the combinations of members. Some combinations are
there by design, others require a bit of imagination.

For example, a set of two members of the same hierarchy (colors black and white) placed in a
slicer automatically applies the orR logic on the result. This means that the result will have data
where the first, the second, or both members (or at least one of their descendants, to be
precise) occurred in the underlying fact table. In other words, where the product sold was
either black or white. The emphasis is on two things: the set and the 0rR word. In other words,
the OR logic manifests in sets.

The other example is a tuple formed by two members from different hierarchies (that is, the
color black and size XL). Once placed in the slicer, this tuple guarantees that the resulting
rows will have data on that exact slice, meaning, on both members (and at least one of the
descendants of each, to be precise). Here, the emphasis is again on two things: the tuple and
the AND word. In other words, the AND logic manifests in tuples.

Let's summarize. In MDX, a set is, by default, the equivalent of the logical orR while a tuple is,
by default, the equivalent of the logical AND. So where's the problem?

The problem is we can only put members of different hierarchies in a tuple and of the same
hierarchy in a set. Which means we're missing two combinations: different hierarchies using
OR and the same hierarchy using AND.

This recipe shows how to implement the 0R logic using members from different hierarchies.
The next recipe in this chapter shows how to perform the AND logic using members from the
same hierarchy. It is recommended that you read both recipes.

Logical oR represents a set. Since we have members of different dimensionalities, we must
first convert them to tuples of the same dimensionality. That is done by expanding each with
the other one's root member and enclosing the expression in brackets (which is how we
convert a member to a tuple). Once we have compatible tuples, we can convert them into a set
by separating them with a comma and adding curly brackets around the whole expression.
This is the standard way that we enumerate members in single-dimensional sets. Multi-
dimensional sets are no different except it's the tuples that we're enumerating this time.

WOW! eBook
www.wowebook.org

There's more...

We can also use the Union () function instead of enumerating members in the set. The Union()
function has an extra feature, an option to remove or preserve duplicates in the resulting set.
While that feature is of little interest when the slicer is concerned, it might be interesting when
the same logic is applied in calculations.

A special case of a non-aggregatable dimension

In the event that your dimension has no root member (eliminated by setting the property
IsAggregatable to False), use its default member instead.

A very complex scenario

In this recipe, we used two hierarchies of the same dimension because this is often the case in
real life. However, the solution is applicable to any dimension and its hierarchies. For
example, when you need to combine three different hierarchies, you can apply the same
solution, thereby expanding each member into a tuple with N-1 root members (here N=2) and
creating a set of N such tuples.

In case you need to combine many members using OR logic, sometimes with even more than
one of them on the same hierarchy and others on different hierarchies, you need to apply your
knowledge about dimensionality—members of the same hierarchy should be enlisted in a set,
and members of different dimensions should be combined with root members of other
hierarchies. You just need to be careful with the various brackets. The AsymmetricSet()
function from the Analysis Services Stored Procedure Project may help to construct complex

sets: http://tinyurl.com/AsymmetricSet .

WOW! eBook
www.wowebook.org

http://tinyurl.com/AsymmetricSet

See also

e The Implementing the NOT IN set operation recipe is based on a similar theme to this
recipe

e For more information on default members, take a look at the Setting a default member of
a hierarchy in MDX script recipe in Chapter 1, Elementary MDX Techniques

WOW! eBook
www.wowebook.org

Iterating on a set to reduce it

Iteration is a very natural way of thinking for us humans. We set a starting point, we step into
a loop, and we end when a condition is met. While we're looping, we can do whatever we
want: check, take, leave, and modify items in that set.

In this recipe, we will start from a result set as shown in the following table, and iterate
through the days in each fiscal month to count the number of days for which the growth was
positive. By to reduce, we mean the filtering effect; in our example, we need to filter out the
days for which the growth was not positive. Our goal is still to only display the fiscal months
on ROWS, not the days:

Customer Count || Growth in Customer Base
Februany 2013 152 -20.00%
March 2013 222 46.05%
April 2013 208 £.31%
May 2013 260 25.00%
June 2013 350 H 62
Juby 2013 293 -16.25%
August 2013 3 8.53%
September 2013 310 -252%
October 2013 351 13.23%
Mowvember 2013 397 13.11%
December 2013 41 6.05%
January 2014 (rually -100.00%

Then we will look at a different approach that takes performance advantage of the block-
mode calculation.

WOW! eBook
www.wowebook.org

Getting ready

Start a new query in SSMS against the Adventure Works DW 2016 database. Then write the
following query:

SELECT
{ [Measures].[Customer Count],
[Measures].[Growth in Customer Base] } ON O,
NON EMPTY
{ [Date].[Fiscal].[Month].MEMBERS } ON 1
FROM
[Adventure Works]
WHERE
([Product].[Product Categories].[Subcategory].&[1])

The query returns fiscal months on the rows and two measures: a count of customers, and
their growth compared to the previous month. Mountain bikes are in the slicer. The first few
rows from the result set are shown in the preceding table.

Now let us see how we can get the number of days the growth was positive for each period.

WOW! eBook
www.wowebook.org

How to do it...

We are going to use the Filter () function to loop through the descendants of the fiscal
month on leaves, and apply the Count () function to get the count of days. We will put the
expression in the WITH clause and name it [Measures].[Positive growth days]. Finally, we
will place this new calculated member on the columns:

1. The final query is as follows:

WITH
MEMBER [Measures].[Positive growth days] AS
Filter(
Descendants([Date].[Fiscal].CurrentMember, ,
leaves),
[Measures].[Growth in Customer Base] > 0
) .Count
SELECT
{ [Measures].[Customer Count],
[Measures].[Growth in Customer Base],
[Measures].[Positive growth days] } ON 0,
NON EMPTY
{ [Date].[Fiscal].[Month].MEMBERS } ON 1
FROM
[Adventure Works]
WHERE
([Product].[Product Categories].[Subcategory].&[1])

2. Run the preceding query and observe whether the results match the following screenshot:

Customer Count || Growth in Customer Base || Positive growth days
Juby 2012 95 -13.64% 12
August 2012 114 20.00% 9
September 2012 105 -785% 12
October 2012 119 13.33% 13
Mowvember 2012 127 6720 2]
December 2012 145 17.32% 14
January 2013 150 IR A 14
Februany 2013 152 -20.00% 12
March 2013 222 46.05% 15
April 2013 208 £.31% 14
May 2013 260 25.00% 15
June 2013 350 ME2% 12
Juby 2013 293 -16.25% 16
August 2013 Kb 8.53% 14
September 2013 310 -2.h2% 13
October 2013 351 13.23% 12
Meowvember 2013 397 1311% 12
December 2013 41 6.05% 14
January 2014 (rually -100.00% 0
WOW! eBook

www.wowebook.org

How it works...

Iteration is a technique that steps into a loop, checks or modifies items in the set, and then exits
the loop when a condition is met.

Our goal is to count the number of days for which the growth was positive. Therefore, it
might seem appropriate to perform iteration on days in each fiscal month. Iteration can be
performed by using the Filter () function.

First, since we do not want to have the days on the rows, we must use the Descendants()
function to get all dates in the current context.

Second, to get the number of items that came up when filtering, we use the Count() function.

Iteration works in this situation; however, if there's a way to manipulate the collection of
members in block mode, without cutting that set into small pieces and iterating on individual
members, we should use it.

WOW! eBook
www.wowebook.org

There's more...

The Filter () function is an iterative function which doesn't run in block mode; hence, it will
slow down the query.

Let us see if we can find a way to work in block mode. A keen eye will notice a count of
filtered items pattern in this expression. That pattern suggests the use of a set-based approach
in the form of a SUM-IF combination. The trick is to provide 1 for the true part of the
condition taken from the Filter () statement and null for the false part. The sum of 1 will be
equivalent to the count of filtered items.

This is the same WITH clause, being rewritten by using the SUM-IF combination:

WITH
MEMBER [Measures].[Positive growth days] AS
Sum(
Descendants([Date].[Fiscal].CurrentMember, , leaves),
iif([Measures].[Growth in Customer Base] > 0, 1, null)

)

Execute the query using the new definition. Both the sum() and the iif () functions are
optimized to run in the block mode, especially when one of the branches in iif () is null. In
this example, the impact on performance was not noticeable because the set of rows was
relatively small. Applying this technique on large sets will result in drastic performance
improvement as compared with the FILTER-COUNT approach.

More information about this type of optimization can be found in Mosha Pasumansky's blog,
at http://tinyurl.com/SumlIF .

Hints for query improvements

There are several ways in which we can avoid the Filter () function to improve
performance.

When you need to filter by non-numeric values (that is, properties or other metadata), you
should consider creating an attribute hierarchy for often-searched items and then do one of
the following:

e Use a tuple when you need to get a value sliced by that new member

e Use the Except() function when you need to negate that member on its own hierarchy
(NOT or <>)

e Use the Exists() function when you need to limit other hierarchies of the same
dimension by that member

e Use the NonEmpty () function when you need to operate on other dimensions, that is,
subcubes created with that new member

e Use the three-argument Exists() function instead of the NonEmpty () function, if you
also want to get combinations with nulls in the corresponding measure group (nulls are

WOW! eBook
www.wowebook.org

http://tinyurl.com/SumIIF

available only when the NullProcessing property for a measure is set to Preserve)

When you need to filter by values and then count a member in that set, you should consider
aggregate functions such as sum() with the iif () partin its expression, as described earlier.

WOW! eBook
www.wowebook.org

See also

e The nextrecipes, Iterating on a set to create a new one and Iterating on a set using
recursion, deal with other methods of iteration

WOW! eBook
www.wowebook.org

Iterating on a set to create a new one

There are situations when we don't want to eliminate certain members from a set, but instead
execute for each type of loop. This is done using the Generate() function. The Generate()
function applies a set to each member of another set, and then joins the resulting sets by union.
In this recipe, we'll show you how to create a new set of members from the existing one.

WOW! eBook
www.wowebook.org

Getting ready

Let's start a new query in SSMS against the Adventure Works DW 2016 database. Then write
the following query:

SELECT
NON EMPTY
{ [Date].[Calendar].[Calendar Year].MEMBERS *
[Measures].[Sales Amount] } ON O,
NON EMPTY
{ [Sales Territory].[Sales Territory Country].MEMBERS }
ON 1
FROM
[Adventure Works]

The query returns four years on the columns and six countries plus the top level, All Sales
Territories, on the rows. The result is shown as follows:

CY 2010 CY 2011 CY 2012 CY 2013 CY 2014
Sales Amourt || Sales Amourt Sales Amourt Sales Amourt || Sales Amount
All Sales Temtories | £532,74962 52526832864 83403611673 54552638450 24565472
Australia £20.509.78 §256373225 5217823217 §5883554.04 885077
Canada £11853917 8417413252 55785704 11 £6,267.536.04 £9.457 62
France £3.359.59 £508,341 62 203405503 $4.702563.95 £3.195.06
Gemany (nully £520.500.16 £788.6598 55 £3.565,823.83 8327783
United Kingdom £655.10 £631,277 51 £2.190590.72 5434403967 8371364
United States §383.80158 $16587034378 52106843554 $2466246657 51754285

Our goal is to get a set of best months, one for each year. We will use the Generate() function
to do a for-each type of loop to apply a set of calendar months to each member of the
calendar year, and to get the best month for each year.

WOW! eBook
www.wowebook.org

How to do it...

Follow these steps to create a new set from the initial one:

1. Cut the years from the columns and define a named set using them.

2. Name that set Best month per year.

3. Wrap that set in the Generate() function so that the set of years becomes its first
argument.

4. The second argument should be the TopCount() function which uses the descendants of

each year on the Month level and finds the best month according to the value of the

measure Sales Amount.

Put the name of the new set on columns.

6. The final query should look as follows:

v

WITH
SET [Best month per year] AS
Generate([Date].[Calendar].[Calendar Year].MEMBERS,
TopCount(
Descendants([Date].[Calendar].CurrentMember,
[Date].[Calendar].[Month],
SELF),
1,
[Measures].[Sales Amount])

)

SELECT

NON EMPTY

{ [Best month per year] *

[Measures].[Sales Amount] } ON O,

NON EMPTY

{ [Sales Territory].[Sales Territory Country].MEMBERS } ON 1
FROM

[Adventure Works]

7. Execute the query. Notice that each year is replaced with a single month, the month with
the best sales result in that year:

December 2010 May 2011 January 2012 || Movember 2013 || January 2014
Sales Amourt Sales Amourt || Sales Amourt Sales Amourt || Sales Amount
All Sales Temtories 8532 749 62 §4 58876182 54096556484 5515715491 845,654 72
Australia £20.509.78 £217.636.82 81237721 2642 381.00 88,5077
Canada £118,539.17 £670.315.44 &710.213.75 §721.444 34 29,457 62
France £3.359.59 240,377 61 £305,273 53 £273.799.14 £3.195.06
Gemany (nully £43.356.04 £35.346 35 8332 627 82 8327783
United Kingdom £655.10 £26,966.50 822517653 £626,859.86 8371364
United States £388.801 58 £3590.069.01 $269277207 5260004276 §17542 85
WOW! eBook

www.wowebook.org

How it works...

The Generate() function can be thought of as a for-each loop. Its syntax is:

Generate(Set_Expressionl , Set_Expression2 [, ALL])

This means that we can iterate through each member of the first set and assign each member
from the second set. This second set can have zero, one, or many members and this can vary
during the iteration. In our example, we're assigning a set with one member only, the best
month in each year. That member is obtained using the TopCount () function where the first
argument is months of the current year in iteration, the second argument is 1 (only one
member to be returned), and the third argument is the Sales Amount measure the criterion for
deciding which month is the best. Months are obtained the standard way, using the
Descendants() function.

Notice that a different best month is displayed for each year, and that the use of the Generate()
function is the only way to get this result. Simply cross—joining calendar years and the set of
top one calendar months will display the top one calendar month for all time, repeated for
each year. We can think of the first set in the Generate() function as the context of the looping.

WOW! eBook
www.wowebook.org

There's more...

The currentordinal function is a special MDX function valid only in iterations. It returns the
position of the current member (or tuple, to be precise) in the set in iteration (from 0 to N,
where N is the total number of members in a set). In addition to that, there's also the current
function. The current function returns the current tuple in a set being iterated. Again, it's only
applicable during iterations.

Both of these functions can be used to detect the current tuple and to create various
calculations with the current tuple and other tuples in that set. Reversing any initial set is one
example of these manipulations. Comparing the value of the current tuple with the value of the
previous tuple in the set (or any one before or after) to isolate certain tuples is another
example.

You can reverse the set of months from the previous example as shown in the following
screenshot:

Movember 2013 || Januany 2012 May 2011 December 2010
Sales Amount Sales Amount || Sales Amourt Sales Amount
All Sales Temtores £5.157.15491 5409650484 5458876182 £h32 745 62

Australia £642,331.00 $123.772.1 $217,636.32 £20,909.73
Canada 572144434 §$710.213.75 £670,315.44 £113,933.17
France $273.799.14 $305.273.53 £40.377.61 £3.399.99
Gemary $332.627.32 $35.346.35 54329604 {rually
United Kingdom £626,850.36 £229,176.93 £26,966.90 569910
United States 5260004276 8263277207 £3.590.069.01 £333.801.58

The next query uses the Currentordinal function and reverses the order of the months on the
columns:

SET [Best month per year reversed] AS
Generate([Date].[Calendar].[Calendar Year].MEMBERS
AS MySetAlias,
TopCount(
Descendants(
MySetAlias.Item(MySetAlias.Count -
MySetAlias.CurrentOrdinal
-1).Item(0),
[Date].[Calendar].[Month],
SELF),
1,
[Measures].[Sales Amount])
)

A set alias (MySetAlias in this example) is defined for the initial set. That set alias is later used
for navigation. The combination of Count and Currentordinal gives us members from the

WOW! eBook
www.wowebook.org

end of the set to its beginning, progressively, while the Item() function serves as a pointer on
members in that set.

Yes, the same operation could be done simply by sorting the months by their member key, in
descending order. Nevertheless, the idea of this example was to show you the principle which
can be applied on any set, especially those that can't be ordered easily.

The Ccurrentordinal function can also be used in the Filter () function. There, tuples can be
compared with each other progressively to see which one has a value higher than both of its
neighboring members, which would signal that the current member is a relative peak. Or the
opposite, whatever is more interesting in a case. However, the Filter () function doesn't add
new members; it only limits its initial set and for that reason, it is out of the scope of this
recipe.

To summarize, both current and Currentordinal are powerful functions that allow us to
perform the self-joining type of operations in MDX or make use of the existing relations
between dimensions and measure groups. These functions are useful not only in the
Generate() function, but also in other iterating functions as well, namely, the Filter ()
function.

WOW! eBook
www.wowebook.org

Did you know?

In MDX, there's no concept of the for loop. Iterations cannot be based on numbers (as in other
languages or on other systems). They must always be based on a set. If we need to loop
exactly N times, there are two basic ways we can achieve this. One is with the existing cube
structure; the other is by expanding a cube with a utility dimension. The former means that we
can use the date dimension and take N members from its start. Or it could be some other
dimension, if it has enough members to loop on. The other option is to use a utility
dimension.

WOW! eBook
www.wowebook.org

See also

e The Iterating on a set using recursion and Iterating on a set to reduce it recipes show
other methods of iteration

e In Chapter 8, When MDX is Not Enough, Using a dummy dimension to implement

histograms over non-existing hierarchies recipe shows how to iterate using utility
dimension

WOW! eBook
www.wowebook.org

Iterating on a set using recursion

Recursion is sometimes the best way to iterate a collection. Why? Because iterations using set
functions (including the Generate() function) require that we loop through the whole set. But
what if that set is big and we only need to find something specific in it? Wouldn't it be great to
be able to stop the process when we've found what we wanted? Recursion enables just that to
stop when we're done.

In this recipe, we are going to see how to calculate the average of an average using recursion.

WOW! eBook
www.wowebook.org

Getting ready

To get started, start a new query in SSMS and check that you're working in the right database.
Then write the following query:

SELECT
{ [Measures].[Order Count] } ON O,
NON EMPTY
{ Descendants([Date].[Fiscal Weeks].[All Periods],
1 , SELF_AND_BEFORE) } ON 1
FROM
[Adventure Works]

It returns four fiscal years and their total on top for the order Count measure. Now let's see
how to calculate the average daily value on the week level and the average weekly level on the
year level, which is based on the week level, not on the date level. In other words, each level
will have the average value of members on the level immediately beneath.

WOW! eBook
www.wowebook.org

How to do it...

Follow these steps to perform recursion over a set:

1.
2.

N

Define a new calculated measure and name it Average of an average.

Use the iif () function and specify its True parameter as the initial measure (0order
Count).

The value should be returned for the leaf level, so the condition in iif () should test
exactly that using the IsLeaf () function.

In the false parameter, we should provide the calculation we want to repeat recursively.
In this case, it is the Avg() function used on the children of the current member.

The [Measures] expression inside the Avg() function should be the measure being
defined.

Check whether the measure is defined as follows:

WITH
MEMBER [Measures].[Average of an average] AS
iif(IsLeaf([Date].[Fiscal Weeks].CurrentMember),
[Measures].[Order Count],
Avg([Date].[Fiscal Weeks].CurrentMember.Children,
[Measures].[Average of an average])
)

, FORMAT_STRING = '#,#'

Don't forget to include that measure as the second measure on the columns.

Run the query. The results will look as follows. The first row, the one with the All
Periods member, will have the average yearly value as the result, that is,
(49+72+236+479)/4=209. In turn, every year will have the average weekly value. The
weekly values are not visible in this screenshot, but we can divide the Order Count
values by 53, which is the number of weeks per year. That should give us the values for
the Average of an average measure for each year shown in the second column:

Al Periods 30,504 209
FY 2010 1327 43
P 2011 3817 7.

P 2012 12,505 236
Ff 2013 12,935 479

Order Count || Average of an average

WOW! eBook
www.wowebook.org

How it works...

Recursions are the most difficult iteration concept to apply. Their logic is very condensed.
However, once you conquer them, you'll appreciate their power and efficiency. Let us see how
that solution worked.

To start the recursive process, we have to specify an expression that uses the same calculated
measure we're defining, thereby providing a different input parameter than the one which was
being used in the current pass of the recursive process. To stop the process, we must have a
branch without the reference to that measure. On top of all that, we must perform some
operation to collect values on the way. Complicated? Let us analyze our query.

It is helpful to examine the [Fiscal Weeks] hierarchy. In SSMS, starting a new MDX query, in
the cube navigation pane, we can see the [Fiscal Weeks] hierarchy on the date dimension:

- mn Date Fiscal Wesks
+ G Members
4 = Fiscal Year
4 == Figcal Week

Notice that the Fiscal Year on the rows is not the leaf level of the [Fiscal Weeks] user
hierarchy. Therefore, the expression inside the iif () statement evaluates as False. This leads
us to the part where we have to calculate the average value for each child of the current
member. With a small detail, the calculation should be performed using the same measure
we're evaluating!

The evaluation for the current year member cannot be completed and is therefore delayed
until the calculation for all its child members (weeks in this case) is performed. One by one,
each week of the year in context is passed inside the definition of this measure and evaluated.

In the case of a leaf member, the order Count measure would be evaluated and returned to the
outer evaluation context. Otherwise, another turn of the child member's evaluation would
occur. And so on until we finally hit the leaf-level members.

In this example, weeks are the leaf level of the hierarchy being used in the query. They would
be evaluated using the True part of the condition. The True parameter is without reference to
the measure we're calculating, which means the recursive path would be over. The value of the
order Count measure starting from the Week 1 of FY 2010 would be collected and saved in a
temporary buffer. The same process would be repeated for all weeks of that year. Only then
would the average of them be calculated and returned as a value for FY 2010, after which the
process would repeat for subsequent years on the rows.

Let us also mention that the value for the root member (A1l years) is calculated with the

WOW! eBook
www.wowebook.org

recursion depth of two, meaning each year it is first evaluated as an average of its weeks and
then the average of its years is calculated and returned as the final result.

WOW! eBook
www.wowebook.org

There's more...

You might be wondering, how does one recognize when to use recursion and when to use
other types of iteration? Look for some of these pointers: relative positions, relative
granulation for calculation, and stop logic. If there's a mention of going back or forth from
the current member in a set, but there's no fixed span, then that might be a good lead to use
recursion. If there's a relative stopping point, that's another sign. Finally, if there's no explicit
requirement to loop through the whole set, but moreover a requirement to stop at some point
in the process, that's a definite sign to try to apply recursion as a solution to the problem.

In case no such signs exist, it's perhaps better and easier to use the simple types of iterations
we covered in previous recipes. The other case when you should consider straightforward
iteration is when the recursion would span over more than half of the members on a
hierarchy, which pushes the SSAS engine into the slow cell-by-cell mode.

Earlier versions of SSAS

SSAS 2008 and later have better support for recursion than previous versions of SSAS.
Optimizations have been added to the code in the form of unlimited recursion depth. Versions
prior to that may suffer from memory limitations in some extreme cases.

WOW! eBook
www.wowebook.org

See also

e The Iterating on a set to create a new one and Iterating on a set to reduce it recipes
illustrate other ways of iteration

WOW! eBook
www.wowebook.org

Performing complex sorts

Sorting is one of those often-requested operations. To sort a hierarchy by a measure is not a
problem. Neither is to sort a hierarchy using its member properties. The MDX language has a
designated function for that operation and a straightforward one too. Yes, we're talking about
the order () function.

Difficulties appear when we need to sort two or more hierarchies, one inside the other, or
when we need to use two or more criteria. Not to mention the confusion when one of the
members on the columns is supposed to be the criteria for sorting a related hierarchy on the
rows. These are complex sort operations, operations we will cover in this recipe.

Let us build a case and see how it should be solved.

WOW! eBook
www.wowebook.org

Getting ready

Start SSMS and connect to your SSAS 2016 instance. Click on the New Query button and
check that the target database is Adventure Works DW 2016.

In this example, we are going to use the Product dimension, the Sales Territory dimension,
and the Date dimension. Here is the query we will start from:

SELECT
NON EMPTY
{ [Date].[Fiscal].[Fiscal Year].MEMBERS *
[Measures].[Sales Amount] } ON O,
NON EMPTY
{ [Sales Territory].[Sales Territory Country]
.[Sales Territory Country].MEMBERS *
[Product].[Color].[Color].MEMBERS } ON 1
FROM
[Adventure Works]

Once executed, the query returns 54 country-color combinations on the rows, four fiscal
years on the columns, and the value of sales shown in the grid. No sort operation was applied.
The countries and colors are returned in their default order alphabetically, as is visible in the
following screenshot:

FY 2010 FY 2011 Fy 2012 FY 2013 i

Sales Amount || Sales Amourt || Sales Amount || Sales Amount
Australia Black $173.064 59 863369758 8137861860 SBH6G55.35
Australia Blue (rully {nully £658,150.93 £671,130.58
Australia Mutti {rully (rully $11.45738 £10,724 39
Australia MNA {rully (ully £45153.06 £56,913.52
Australia Red £985.87321 S$120662799 538635404 £102 469 55
Australia Silver £129.199.62 £307.258 91 £661,887.33 2423 867 64
Australia Silver/Black (roall} (ruall} 8136223 3015
Australia White (nully (nully 2485 46 §521 .42
Australia Yellow {ully £31.01356 580470858 5111371549
Canada Black §53453482 $231652843 5233543309 532647355
Canada Blue 51,554 36 £6.888.33 &576,863 52 5450794 22
Canada Multi 26659817 &58.457.12 £53.139.51 £21.186.05
Canada NA (nully £37.526.51 £53,508 52 266,364 22
Canada Red 868522356 8214128010 S688.856.88 554,052 45
Canada Silver 2308.760.13 £924117656 $1.06611581 §559.14213
Canada Silver/Black (roall} (ruall} 159,288 62 £8.953.38
Canada White £479.05 £531.60 216135 8137452
Canada Yellow {rully £33330030 5132812066 533865563
France Black £23.74543 556477067 8114275783 558943501
France Blue {rully £1.23138 £547 64830 £431,220.30
France Multi (nully £13.305.09 82012813 £11.998.05
France MNA (rully §7.73450 £45711.81 £36.103.16
France Red £146,626.25 &hB4 37777 £323.332 81 S26.67745 =

WOW! eBook

www.wowebook.org

To sort the rows by a particular value, you could simply wrap the order () function around
them. For example, to sort the previous result by the Sales Amount in FY 2013, you would
have to change the set on the rows like this:

Order (
[Sales Territory].[Sales Territory Country]
.[Sales Territory Country].MEMBERS *
[Product].[Color].[Color].MEMBERS,
([Date].[Fiscal].[Fiscal Year].&[2013],
[Measures].[Sales Amount]),
BDESC)

The following screenshot shows the result of the modified query:

FY 2010 FY 2011 Fy 2012 Fr2m3 ¢ i
Sales Amount || Sales Amourt || Sales Amount || Sales Amount |
United States Yellow {nully $1.089546.79 5502427644 5354391387
United States Black £242474618 $B76027331 SB55204155 5340703853
United States Silver £2013.05852 5354742983 5406435202 52264 78385
United States Blue 24 85362 §£19.02258 5239965732 5185526252
Australia Yellow (nully £31.01356 530470858 %1.113.719.49
Australia Black £173.064 59 8633697598 5137361860 585669535
Canada Yellow (rully £33330030 $1.32812066 $83B65563
Canada Black §53453482 $2316592843 5233543309 582647855
France Yellow {nully £105,888.41 &§793170.77 £795.255 57
United Kingdom || Yellow {ully £75.050.11 E782105.48 724 709 .91
United Kingdom | Black £24 565.03 863017251 $1.24633558 §697303.17
Australia Blue {rully (nully £658,150 53 £671,130.58
France Black §23.74543 £564.77067 5114275783 558943500
Gemany Yellow {rully $16.007.00 £693.250 56 £567.821 68
Canada Silver £308.760.13 892411765 5106611581 = §559.14213
Gemarny Blue (roall} (ruall} £571.904.12 2468 267 52
United Kingdom || Blue {rully 8132222 2465187 65 $467.850.70
Canada Blue £1,554 36 £6,888.33 £576,863 52 §450.794 22
France Blue {rull) £1.231.38 2547 648 30 £431.220 .30
Australia Silver £125,159.62 £307.298. 91 £661,887.33 £473 BET B4
Gemany Black 8232177 £136,627.85 £453,99417 £417 657 66
United Kingdom || Silver £37.359.89 £256,707.02 8627 542 86 412 72611

This time the rows are returned in descending order in respect to the last column, highlighted
in the screenshot. But, notice one thing—countries and colors are mixed. Breaking their
sequence like that will rarely be asked for. More often, the request will be to sort one
hierarchy inside the other, the rightmost inside those on its left. In other words, we will try to
sort colors inside each country. Now let us see how this can be done.

WOW! eBook
www.wowebook.org

How to do it...

Follow these steps to sort hierarchies on the rows, one inside the other:
1. Modify the set on the rows like this:

{ Generate(
[Sales Territory].[Sales Territory Country]
.[Sales Territory Country].MEMBERS,
[Sales Territory].[Sales Territory Country]
.CurrentMember *
Order([Product].[Color].[Color].MEMBERS,
([Date].[Fiscal].[Fiscal Year].&[2009],

2. Execute the query. The result should match the following screenshot:

[Measures].[Sales Amount]),

BDESC

) }

)

FY 2010 FY 2011 FY 2012 FY 2013
Sales Amount || Sales Amourt Sales Amount || Sales Amourt
Australia Yellow) $31.01356 $804.70858 | §1,113,719.49
Australia Black $17306459 S633E9798 S137861860 S856.69535
Australia Blue (rually (rwally £658.150.593 £671,130.58
Australia Silver $129,199.62 $30729891 $661,887.33 $423.86764
Australia Red $985.87321 $120662799 $386.35404 $102.46955
Australia NA fnull) inull) $49,15305 $56.91352
Australia Mutti) inull) $11457.38 §10.724.39
Australia White {rull) (rully 2485 46 £h21 42
Australia Silver/Black) inull) $1.362.23 $340.15
Canada Yellow inull) $33330030 §1,328,12066 $838.65563
Canada Black $53453482 $231692843 $233543309 $B26.478.55
Canada Silver $308.760.13 $924,11765 $1.066.11581 $559,142.13
Canada Blue $1.554.36 $6.39833 $576.86352 $450.794.22
Canada NA fnull) $3752691 $9350892 $66.364.22
Canada Red $689.22356 $2141280.10 $638.956.98 $54.052.45
Canada Multi $6.698.17 $58457.12 $53.13951 §21.136.05
Canada Silver/Black) inull) $19,288.62 $8,953.39
Canada White $479.05 53160 $2.161.39 $1.374.92
France Yellow il $105.888.41 $793170.77 $795.25557
France Black §2374543 S564.77067 114275783 $589.435.01
France Blue inull) $1231.38 $547.64830 $431.220.30
France Silver $6.799.9¢ S164.85474 $52324B80 $362.534.81

Notice that colors are ordered this time in descending order inside each country. Notice also
that their sequence changes from country to country (Blue is the third in Australia, Silver is
the third in Canada).

WOW! eBook
www.wowebook.org

How it works...

Do you remember a recipe earlier in this chapter about creating a new set from the old one
using iteration? Yes, Iterating on a set to create a new one is its name. The function used in
that recipe is the same one used in this recipe--the Generate() function, which takes a set
(single or multi-dimensional one) and creates a new set the way we specify in the second
argument of that function.

What is important to note is that we have used only the first hierarchy on the rows, not both.
The Generate() function has no problem in creating a multi-dimensional set from the single-
dimensional one. In fact, that's exactly what was needed in this case. We had to preserve the
outer hierarchy's order. We've used it as the first argument of the Generate() function and
cross-joined each of its members with the set of colors ordered by the required criteria. It
may not be obvious, but the criteria also implicitly included the current country. That's
because Generate() is a loop function that sets its own context instead of modifying the
existing one. Consequently, the colors came ordered differently in each country.

WOW! eBook
www.wowebook.org

There's more...

Sorting the rightmost hierarchy inside the one on the left is fine, but what if we also need to
sort the outer one? What if the requirement says, return the countries in descending order by
the same criteria and then only return colors sorted inside each country? Can we deliver that
as well? Yes, and here's how.

Modify the set on the rows this way:

{ Generate(
Order([Sales Territory].[Sales Territory Country]
.[Sales Territory Country].MEMBERS,
([Date].[Fiscal].[Fiscal Year].&[2009],
[Measures].[Sales Amount]),
BDESC
)/
[Sales Territory].[Sales Territory Country].CurrentMember *
Order([Product].[Color].[Color].MEMBERS,
([Date].[Fiscal].[Fiscal Year].&[2009],
[Measures].[Sales Amount]),
BDESC
)
)

If you take a close look, you will notice not much has changed. All that we have done extra
this time is that we have ordered the initial set in the Generate() function so that it preserves
the order when we cross join its members with the other set.

The result of this modification is shown in the following screenshot:

WOW! eBook
www.wowebook.org

FY 2010 FY 2011 FY 2012 FY 2013

Sales Amourt || Sales Amourt || Sales Amount || Sales Amount
United States Yellow {rully 5108554679 55024226 44 E
United States Black 5242474618 $B76027331 5859204159 | £3.407.032.93
United States Silver £2013.05852 5354742983 406435202 5226478385
United States Blue &4 85362 £19,022 58 £2.399,657.32 @ 51,855,262 52
United States Red §2796.80103 S7D4621847 5248743823 | $227 32011
United States MNA (nully £1059.652.09 £274076.93 £165,149.69
United States Muti 82161422 £153.444.10 £142 208 54 £50.219.02
United States Silver/Black {rually (rually §h9,254 72 8322176
United States White §2709.75 £2.853.00 £5,333.96 £6,191.53
Australia Yellow {nully £31.01356 580470858 $1.113.719.49
Australia Black £173.064 59 8633697598 8137861860 SB56655.35
Australia Blue (ully (nully £658,150.593 £671,130.52
Australia Silver £125,159.62 £307.298.91 £661,887 33 8423 867 64
Australia Red £985.87321 S$120662799 538635404 $102 469 55
Australia MNA {rully (null) £45,153.06 £56.913.52
Australia Muti {rually (ully £11,457.38 £10.724 39
Australia White {rully (rully 2485 46 252142
Australia Silver/Black {ruall} {ruall} 8136223 £340.15
Canada Yellow {nully £33330030 $1.32812066 $83B.65563
Canada Black §534534 82 231652843 5233543309 532647355
Canada Silver £308,760.13 £92411765 $1.06611581 $559.14213
Canada Blue 51554 36 £6,288.33 £576.863 52 £450,794 22

Look at the query one more time and you will notice there are two criteria in it, both the same.
It does not take a lot of imagination to conclude that they do not have to be the same. Yes, you
can have different criteria; simply modify any of them and test. Having learned this much
about sorting, you can confidently perform complex sorts.

Things to be extra careful about

Write this query, but do not execute it yet!

SELECT
NON EMPTY
{ [Product].[Product Line].[Product Line].MEMBERS *
[Measures].[Sales Amount] } ON O,
NON EMPTY
{ Generate(
[Sales Territory].[Sales Territory Country]
.[Sales Territory Country].MEMBERS,
[Sales Territory].[Sales Territory Country]
.CurrentMember *
[Product].[Model Name].[Model Name].MEMBERS,
([Product].[Product Line].&[M],
-- [Product].[Model Name].CurrentMember,
[Measures].[Sales Amount]),
BDESC)
) } ON 1

Order (

WOW! eBook
www.wowebook.org

FROM
[Adventure Works]

If you analyze the code, you will notice that the same idea is used to sort the results based on
one of the columns. This time, however, the hierarchies on the rows and columns are related.
The Model Name and the Product Line attribute hierarchies can be found in the Product Model

Lines user hierarchy. In short, models are grouped by the product lines.

Now, run the query and observe the result:

ACCEssory Companents Mourtain Road Touring
Sales Amount Sales Amount | Sales Amount Sales Amount | Sales Amount
Australia All-Purpose Bike Stand frall} fruall} $10.335.00 fruall} fruall}
Australia Bilkee Wash $2.2B6.42 fruall) fraall} fruall} frually
Australia Chain [l £850.08 frull) il full)
Australia Classic Vest §21,065.62 frwll))) frwll)
Australia Cycling Cap 84,828 75 frull) rull) il il
Australia Fender Set - Mountain [rull} frually $7.143.50 frally frully
Australia Front Brakes [l £3.770.10 frwll) frwll) frwll)
Australia Front Deradleur {rall) §5.214.93 rull) frull) il
Australia Half-Finger Gloves £3.771.75 ol frull) full) ol
Australia Hitch Rack - 4-Bke §18.406.70 frwll) frwll) frwll) frull)
Australia HL Bottom Bracket {rull) §3.426.02 frull) rull))
Australia HL Crankset) £13.36467 full) [l foull)
Australia HL Mountain Frame (null) fruall) £21.997 62 frually frually
Australia HL Mourtain Handlebars {rll) il §72.16 frll) il
Australia HL Mourtain Pedal {rull} frull) §777.50 frull) il
Australia HL Mourtain Seat/Saddle 2 il frwll) §189.50 frwll) full)
Australia HL Mourtain Tire (i)) §8.400.00 . frl}
Australia HL Road Tire il frull) ol 5444 20 full)
Australia HL Touring Frame (rwll) frually frually frwally 2104427 52

Oops, it does not look good; there is no trace of any sort in it. Now uncomment the
commented line and run it again. All good, the result is ordered by the middle column, the

Mountain model:

WOW! eBook
www.wowebook.org

Accessory Companents Maurtain Foad Tourng -
Sales Amount = Sales Amount Sales Amount Sales Amourt || Sales Amount
Australia Mountzin-200 frull) frull) £2.171,361.25 (sl (rowalfy
Australia Mourtain-100 frually fruall) 8670.458.02 (roual) (raall)
Australia Mountain-400-W frll) irwll} §77.718.49 (rll) {rll)
Australia Mountzin-500 frually frul) §$93.177.24 (ol {roually
Australia HL Mountain Frame frull}) frull) 52195762 {roull) {roually
Australia Women's Mountain Shorts frall) {ruall) 51564576 (ol {rall)
Australia All-Purpose Bike Stand frull) frull) $10,335.00 {rudl) {rall)
Austalia HL Mountain Tire fruall} frall} £3.400.00 {rouall) (ol
Australia LL Mountain Frame frally fruall) £7.600.51 (roul) {rwall)
Australia Fender Set - Mountain frull) frull) 5714350 {rodl) {reull)
Australia ML Mountain Tire frull) frually £5,538 02 (sl (roually
Australia ML Mountain Frame-¥W frall} frall) £5.898 26 (rull) (i)
Australia LL Mountain Tire frull) irll) §5.297.28 {rull) (rull)
Australia Mountain Botte Cage frwlly full} 8271728 {rouall) {rwll}
Austalia Mountain Tire Tube fruall} fruall}) &2 564 86 (roull) (rwll)
Australia HL Mountain Pedal frull}) frually §77750 (roull) (rwll)
Australia ML Mourtain Handliebars fruall) fruall) $631.58 (ol (rwall)
Australia LL Mountain Handlebars fruall) fruall) £32069 (rouall) (rwall)
Australia ML Mountain Seat/Saddle 2 frually frull} £305.29 (roual) (il v

What's going on?

Remember what we said about current members being implicit in the sort criteria? The same
applies here. Both the country and the model are in the tuple that determines the sort.

In the examples we started this recipe with, all the hierarchies were unrelated and no problem
was noticed. This time, they were related and behaved differently because related hierarchies
interfere with each other. In other words, the Mountain member of the Product Line attribute
hierarchy pushed the current member of the Model Name attribute hierarchy to its root
member. The relation between them is 1:N; the models are below the product lines.
Consequently, all models evaluated the same in that tuple, as the value of the Mountain product
line for a particular country. Sorting members by a constant value leaves them in their
existing order. That is the result we got in the first screenshot.

On the other hand, when we are explicit about the current member of the Model Name attribute
hierarchy in the tuple for the sort criteria, we get the correct result.

The difference is that this time we have specified the intersection of related hierarchies. In
other words, we were referring to the individual cells found in the intersection of the models
and the product lines. Those cells are exactly what we needed, each different from another and
hence returning results sorted the way we wanted.

Remember this and do not forget to force the coordinate in case there are related hierarchies,
when the hierarchy on the columns is above the hierarchy on the rows in terms of attribute

WOW! eBook
www.wowebook.org

paths.

A costly operation

Sorting is a costly operation. If you have large dimensions, always look for an alternative
solution. For example, if you do not need the entire set, use set-limiting functions such as
NonEmpty (), TopCount(), and others.

WOW! eBook
www.wowebook.org

See also

e Refresh your memory about the Generate() function by reading the Iterating on a set to
create a new one recipe

WOW! eBook
www.wowebook.org

Dissecting and debugging MDX queries

When writing a query involving complex calculations, you might have a hard time trying to
debug it, if there is a problem inside the calculation. But there is a way. By breaking complex
sets and calculations into smaller pieces and/or by converting those sets and members into
strings, we can visually represent the intermediate results and thereby isolate the problematic
part of the query.

True, there is no real debugger in the sense that you can pause the calculation process of the
query and evaluate the variables. What you can do is to simulate that by concatenating
intermediate results into strings for visual verification.

WOW! eBook
www.wowebook.org

Getting ready

For this recipe, we will use the final query in the previous recipe, Iterating on a set using
recursion. We have chosen this as our example because it is a relatively complex calculation
and we want to check whether we are doing the right thing.

WOW! eBook
www.wowebook.org

How to do it...

Follow these steps to create a calculated measure that shows the evaluation of another
calculation:

1. Start SSMS and execute the following query:

WITH
MEMBER [Measures].[Average of an average] AS
iif(IsLeaf([Date].[Fiscal Weeks].CurrentMember),
[Measures].[Order Count],
Avg([Date].[Fiscal Weeks].CurrentMember.Children,
[Measures].[Average of an average])
)

, FORMAT_STRING = '#,#'
SELECT
{ [Measures].[Order Count],
[Measures].[Average of an average] } ON O,
NON EMPTY
{ Descendants([Date].[Fiscal Weeks].[All Periods],
1 , SELF_AND_BEFORE) } ON 1
FROM
[Adventure Works]

2. Create a new calculated measure and name it Proof.

3. Copy the definition of the [Average of an average] measure and paste it as the
definition of the new calculated measure Proof.

4. Leave the True part as it is.

5. Modify the False part as shown in the next step.

6. Finally, wrap the whole expression with one iif () statement that checks whether the
original measure is empty. The definition of that measure should look like this:

MEMBER [Measures].[Proof] AS
iif(IsEmpty([Measures].[Order Count]),
null,
iif(IsLeaf([Date].[Fiscal Weeks].CurrentMember),
[Measures].[Order Count],
l(l+
Generate([Date].[Fiscal Weeks]
.CurrentMember .Children,
iif(IsEmpty([Measures]
.[Average of an average]),
"(null)',
CStr(
Round([Measures]
.[Average of an average],
o))
) s
Y+ ')+
l)/l+
CStr(NonEmpty([Date].[Fiscal Weeks]
.CurrentMember .Children,
[Measures].[Order Count]
) .Count)

WOW! eBook
www.wowebook.org

)
7. Add that measure onto the columns and execute the query. The result will look like this:
Order Count Proaf Awerage of an average
Al Periods 30,584 { frwall) + frull) + o) + (rall) + foull) + 49 + 72 + 236 + 479 + frull)) / 4 208
FY 2010 1327 (36 + (null) + fruall) + {rouall) + fruall) + (roall) + frall) + (ool + fruall) + (ool + null) + jool) + 0. 45
Fr 2011 3817 (49 +39+86+45+ 42+ 120+ 45+ 34+ 45+ 111+ 482+ 49+ 44+ 76+ 39+ 54 + 45, ., I
FY 2012 12,505 (193 +62+54 +51 +200+65+72+T0+ 166 +66 + 64 + 46+ 145+ 66 + 6B + 60 + ... 236
Y2013 12,935 (344 +431 + 443 + 15+ 604 + 445 + 457 + 444 + 606 + 446 + 423 + 456 + 430 + 579... 475
WOW! eBook

www.wowebook.org

How it works...

The general idea of debugging MDX queries is to display some intermediate results, such as
the current member names, their properties, positions in a set, their descendants, and
ancestors, to help us with visual verification. At other times, we will convert the complete sets
that we are operating with into a string, just to see the members inside, and their order. For
numeric values, if they are formed using several sub-calculations like in this example, we try
to compose that evaluation as a string too. In short, we're displaying textual values of items
we are interested in.

In our example, the main part that we want to verify is the False parameter of the inner iif()
function, that is, when the fiscal week hierarchy is not at the leaf level. Therefore, that is the
place where we are building a concatenated string to show how the average of an average is
calculated.

The preceding screenshot can help us to understand how the measure Proof is concatenated. It
is a string representation of all individual values used to calculate each row of Average of an
average. It is represented as a sum of N values, where N is the number of children of the
current member, divided by their count. Additionally, null values are preserved and displayed
as well in the string, but the count omits them.

Now, the calculation for the measure Proof itself. First, there is an open bracket in the form of
a string. Then the Generate() function is applied, only this time it is the second version of that
function, the one that returns not a set but a string. More information about it can be found at
http://tinyurl.com/MDXGenerate .

The Generate() function has two different usages with two different syntaxes. We have seen
its first usage in a previous recipe, Iterating on a set to create a new one, where the
Generate() function is used to evaluate a complex set expression, such as TopCount(), over a
set of members. In this recipe, we have used its second syntax, in which a string expression is
evaluated over a set of members, and the strings are eventually concatenated and returned,
separated by a delimiter of either a plus sign or parentheses. The syntax is shown as follows:

Generate(Set_Expressionl, String_Expression, Delimiter)

Partial strings generated during iteration need to be concatenated. For that reason, the third
argument of the Generate() function was used with the value +.

The Generate() function, as explained in the Iterating on a set to create a new one recipe, is a
type of loop. In this case, it takes each child of a current member of the Fiscal Weeks user
hierarchy and tests whether it is empty or not. If it is, a constant string is used ((null)); if not,
the value of the measure is rounded to zero decimals.

Which measure? That same measure we are calculating the result for. Hence, it is again a call
for iteration, this time using each child, one by one, because they are in the context at the time

WOW! eBook
www.wowebook.org

http://tinyurl.com/MDXGenerate

of the call.

In the new pass, those members will be leaf members. They will collect the value of the
measure Order Count and get out of that pass.

Once all the children are evaluated, the individual values will be concatenated using a + sign
with a space on each side for better readability.

But the process is not over; only the recursion is.

Next, we must close the bracket which we opened in the beginning of the process, and we have
to calculate the denominator. Notice the measure inside the denominator is not calling for
recursion. To get the count of members, we used the NonEmpty () function over the original
measure. That returns the members which have values.

Finally, we have not mentioned this specifically so far, but the outer iif () statement checks
whether we are on a member that has no result. If so, we can skip that member. Remember, we
had to do that because the inner part of the Proof measure is a string which is never null.

WOW! eBook
www.wowebook.org

There's more...

In the process of dissecting, evaluating, and debugging calculations and queries, various
MDX functions can be used. Some of them are mentioned here. However, it is advised that you
look for additional information on MSDN and other sources:

Tip

String functions, namely MemberToStr () and SetToStr (), for converting members and
sets into strings

Set functions, namely the Generate() function and especially its string variant, which is a
very powerful method for iterating on a set, and for collecting partial calculations in the
form of strings

Metadata functions (also known as hierarchy and level functions), for collecting
information about members and their hierarchies

Logical functions, for testing on the leaf level and emptiness

VBA functions, for handling errors (IsError()) and string manipulations

Don't forget to use the AddCalculatedMembers() function if you need to include calculated
members.

Useful string functions

A list of VBA functions that can be used in MDX can be found at:

http://tinyurl.com/MDXVBAFunction

A list of MDX functions grouped by types can be found at:

http://tinyurl.com/MDXfunctions

WOW! eBook
www.wowebook.org

http://tinyurl.com/MDXVBAFunction
http://tinyurl.com/MDXfunctions

See also

e The Optimizing MDX queries using the NonEmpty() function recipe in Chapter 1,
Elementary MDX Techniques, shows how to keep only relevant members for debugging
purposes and prevent all members of a hierarchy from being returned as the result

WOW! eBook
www.wowebook.org

Implementing the logical AND on members
from the same hierarchy

This recipe shows how to implement the AND logic using members from the same hierarchy.

In the Adventure Works DW 2016 database, there are two members, [New Product] and
[Excess Inventory], inthe [Promotion Type] hierarchy:

[Promotion].[Promotion Type].&[New Product]
[Promotion].[Promotion Type].&[Excess Inventory]

These two promotion types have reseller orders, but the only two months in which they both
have reseller orders are January and December.

The idea is to have a single query that displays the reseller orders, where both promotion
types occur in the same month. In other words, we want to show the reseller orders for
January and December.

Our goal is to somehow combine these two members from the same hierarchy so that we
perform the logical AND along the [Month of Year] hierarchy on the bate dimension.

WOW! eBook
www.wowebook.org

Getting ready

Start a new query in SSMS and make sure that you're working on the Adventure Works DW
2016 database.

Our first query will slice the cube by the [New Product] promotion type. The query is as
follows. Let us execute it:

SELECT
{ [Measures].[Reseller Order Quantity],
[Measures].[Reseller Order Count] } ON O,
NON EMPTY
{ [Date].[Month of Year].MEMBERS } ON 1
FROM
[Adventure Works]
WHERE
([Promotion].[Promotion Type].&[New Product])

The query displays three months from the [Month of Year] hierarchy with the New Product
promotion type, January, February, and December, with the top level [A11 periods]. The
result should be the same as shown in the following screenshot.

For [New Product]:

Reseller Order Quantity || Reseller Order Court
All Periods 2323 116
January 211 35
Februany 595 h3
December 513 24

Let us replace the new product with the Excess Inventory promotion type; we will get one
month less with only January and December. See the query and the result as shown:

SELECT
{ [Measures].[Reseller Order Quantity],
[Measures].[Reseller Order Count] } ON O,
NON EMPTY
{ [Date].[Month of Year].MEMBERS } ON 1
FROM
[Adventure Works]
WHERE
([Promotion].[Promotion Type].&[Excess Inventory])

For [Excess Inventory]:

WOW! eBook
www.wowebook.org

Reseller Order Quantity || Reseller Order Court

All Periods 304 &1
January 165 37
December 135 24

The idea is to have a single query which displays the result where both of these promotion
types occur in the same month. In other words, we want to show the values for January and
December.

We have several ways of doing it, but this recipe will focus on the slicer-subselect solution.
Other solutions will be mentioned in further sections of this recipe.

Our result should be as follows:

Reseller Order Quantity || Reseller Order Court

All Promotions 1,628 124
Excess Inventary 304 61
Mew Product 1324 63

WOW! eBook
www.wowebook.org

How to do it...

Our goal is to somehow combine these two members from the same hierarchy so that we
perform the logical AND along the [Month of Year] hierarchy on the bate dimension:

WHERE

([Promotion].[Promotion Type].&[New Product])
WHERE

([Promotion].[Promotion Type].&[Excess Inventory])

To perform an AND logic on different members from the same hierarchy, we must nest our
conditions:

1. Here is our innermost condition, where we are using the Exists() function to get the
month of year that has Reseller Sales for Excess Inventory. Notice that Reseller
Sales is our measure group of interest. The Exists() function takes two set expressions
and one measure group, and returns a set of tuples from the first set that exist with one or
more tuples in the second set. The returned set of tuples must be associated with the
measure group. This innermost condition will return January, February, and December
in our example because they are the only three months that have reseller sales for New
Product.

2. Also notice that we are using the Month of Year level (not hierarchy!) as the first
parameter. The level has a three-part syntax; hierarchy has a two-part syntax. Do not omit
the third part, otherwise it won't work:

Exists(
{ [Date].[Month of Year].[Month of Year].MEMBERS },
{ [Promotion].[Promotion Type].&[New Product] },
"Reseller Sales"

)

3. We are going to use this inner condition as a nested condition, and wrap it with another
Exists() function. The outer Exists() function also takes two sets and one measure
group. With the first set being January, February, and December, and the second set being
the excess inventory, only January and December are returned. February will be filtered
out because it no longer has reseller sales for [Excess Inventory]:

WHERE
(
Exists(
Exists(
{[Date].[Month of Year].[Month of Year].MEMBERS},
{[Promotion].[Promotion Type].&[New Product]},
"Reseller Sales"
)
{ [Promotion].[Promotion Type].&[Excess Inventory] },
"Reseller Sales"

)
)
4. We have worked out of the slicer so far. We also need a subselect with those two

WOW! eBook
www.wowebook.org

members [New Product] and [Excess Inventory] inside (see the subselect that follows):

FROM
(
SELECT
{ [Promotion].[Promotion Type].&[New Product],

[Promotion].[Promotion Type].&[Excess Inventory] } ON O
FROM

[Adventure Works]
)

5. Here is the final query. Let's run it:

SELECT

{ [Measures].[Reseller Order Quantity],
[Measures].[Reseller Order Count] } ON O,
NON EMPTY

{ [Promotion].[Promotion Type].MEMBERS } ON 1
FROM

(
SELECT
{ [Promotion].[Promotion Type].&[New Product],

[Promotion].[Promotion Type].&[Excess Inventory] }
ON O
FROM

[Adventure Works]
)

WHERE
(
Exists(
Exists(
{ [Date].[Month of Year].[Month of Year].MEMBERS },

{ [Promotion].[Promotion Type].&[New Product] },
"Reseller Sales"

)

{ [Promotion].[Promotion Type].&[Excess Inventory] },
"Reseller Sales"

)
)

6. The result of the query shows the aggregate for January and December, the only two
months where both promotion types occur:

Reseller Order Quantity || Reseller Order Court
All Prometions 1,628 124
Excess Inventary 304 61
Mew Product 1,324 63

7. Compare these results with the tables at the beginning of this recipe (showing a

combination of promotion types and months) and you will notice that the aggregates
match the sum of individual values.

WOW! eBook
www.wowebook.org

How it works...

In the introduction, we stated that our goal is to have a single query that displays the reseller
orders where both of these promotion types occur in the same month. Since there is no MDX
expression that would work and return the logic AND result using two members from the same
hierarchy, the [Month of Year] hierarchy has become our base for performing the AND logic.

To perform the AND logic on the same hierarchy, we must cascade the conditions using an
inner set and an outer set. The inner set is repeated here:

Exists({ [Date].[Month of Year].[Month of Year].MEMBERS },
{ [Promotion].[Promotion Type].&[New Product] },
"Reseller Sales"

)

This inner set returns all the months that have the New Product promotion type (three months
as seen on the initial screenshot).

The outer set restricts the inner set even more by filtering out all months that don't have the
other promotion type as well. That leaves only two months, January and December.

We have chosen the [Month of Year] hierarchy as our base to perform the AND logic. In
practice, we will need to decide which hierarchy and which level we want to use as the new
base or granularity and adhere to some common sense rules.

Firstly, the relationship between the new hierarchy's level members and the members for
slicing should be many-to-many. This is always so in case of different dimensions (Promotion
and Date), a case covered in this example. In case of the same dimension, the solution will
work only for a single member that is related to both members in the AND operation. Whether
that will be something other than the A11 member depends on the hierarchy and members
selected for the AND operation. For example, two promotion types used in this example share
only one ancestor-the A11 member, which can be verified in the Promotion user hierarchy of
that dimension.

Secondly, the whole idea should be valid. In practice, we can run multiple promotions in the
same month. Therefore, on the granularity of the month, two different promotions can have
intersections on the same order, and our idea is valid.

Which hierarchy to use? That usually becomes obvious once we ask ourselves the question
behind the report. For example, the last query, as seen in the previous screenshot, returned the
two promotion types we started with in this recipe, promotion types that come together on a
monthly basis. Two things are important here: together and basis. The term together
represents the AND logic. The term monthly basis is in fact the new granularity for the report
(that which goes in the slicer).

That explains the slicer part of the solution. What about the subselect part? Why is it there?

WOW! eBook
www.wowebook.org

The subselect part serves the purpose of adjusting the results. Without it, we would get the
wrong total. Let me explain this in more detail.

If you remove the subselect part of the query and execute it again, it will return the result
displayed in the following screenshot:

Reseller Order Quantity || Reseller Order Court
All Prometions 46,429 603
Excess Inventary 304 &1
Mew Product 1,324 63
Mo Discourt 35,096 h96
Seaszonal Discourt 1,172 66
Wolume Discount 8.533 158

The cell numbers for New Product and Excess Inventory on this screenshot match the
aggregated values displayed in the previous screenshot.

However, the query returned all the promotion types because nothing limited them in the
query. The slicer effectively limits the months only, not the promotion types.

There are two things we can do to correct this, that is, to display the result for those two
hierarchies only. One is to put them in the slicer so that they cross-join with the existing slicer.
The other is to put them in a subselect. I prefer the second option because this way we can still
have them on a query axis. Otherwise, we will have a conflict with the slicer (a hierarchy
cannot appear in the slicer and on an axis, but it can appear in the subselect and also on an
axis). That's why we have chosen the subselect.

The subselect, as seen before, limits the promotion types that appear on an axis and adjusts
their total so that it becomes the visual total for those two members. This is exactly what we
need, the value for individual promotion types and their correct total.

To conclude, to implement the AND logic, we have done two things. First, we have established
a new granularity in the slicer. Second, we used the subselect to adjust the total.

WOW! eBook
www.wowebook.org

There's more...

This is not the only way to implement the AND logic. We can do it on an axis as well. In that
case, all we should do is put a construct from the slicer on the rows and leave the subselect as
itis.

Where to put what?

Based on a request, the AND logic can be implemented on the rows or in the slicer. If there is a
request to hide the hierarchy for which we are applying the AND logic, we should put the
corresponding MDX expression in the slicer. On the other hand, if there is an explicit request
to show members on the rows, we must put the construct on the rows. There, we can crossjoin
it with additional hierarchies if required.

A very complex scenario

In the event of a more complex scenario where three different hierarchies need to be
combined, we can apply the same solution, which, in a general case, should have N cascades
in the slicer and N members in the subselect. The N is the number of members from the same
hierarchy.

In the event that we need to combine many members using the AND logic, some of them
originating from different hierarchies and some from the same, the solution becomes very
complex.

You are advised to watch out for the order in the cascades and dimensionality of the potential
tuples.

WOW! eBook
www.wowebook.org

See also

e Arecipe with a similar theme is Implementing the logical OR on members from different
hierarchies

WOW! eBook
www.wowebook.org

Chapter 3. Working with Time

In this chapter, we will cover the following recipes:

Calculating the Year-To-Date (YTD) value

Calculating the Year-over-Year (YoY) growth (parallel periods)
Calculating moving averages

Finding the last date with data

Getting values on the last date with data

Calculating today's date using the STRING functions
Calculating today's date using the Member Value function
Calculating today's date using an attribute hierarchy
Calculating the difference between two dates

Calculating the difference between two times

Calculating parallel periods for multiple dates in a set
Calculating parallel periods for multiple dates in a slicer

WOW! eBook
www.wowebook.org

Introduction

Time—handling features are an important part of every Business Intelligence (BI) system.
Programming languages, database systems, they all incorporate various time-related
functions and Microsoft SQL Server Analysis Services (SSAS) is no exception there. In fact,
that's one of its main strengths.

The MDX language has various time-related functions designed to work with a special type of
dimension called Time and its typed attributes. While it's true that some of those functions
work with any type of dimension, their usefulness is most obvious when applied to time-type
dimensions. An additional prerequisite is the existence of multi-level hierarchies, also known
as user hierarchies, in which types of levels must be set correctly or some of the time-related
functions will either give false results or will not work at all.

Because of the reasons described earlier, and the fact that almost every cube will have one or
more time dimensions, we've decided to dedicate a whole chapter to this topic, that is, for time
calculations. In this chapter, we're dealing with typical operations, such as year-to-date
calculations, running totals, and jumping from one period to another. We go into detail with
each operation, explaining known and less known variants and pitfalls.

We will discuss why some time calculations can create unnecessary data for the periods that
should not have data at all, and why we should prevent it from happening. We will then show
you how to prevent time calculations from having values after a certain point in time.

In most BI projects, there are always reporting requirements to show measures for today,

yesterday, month-to-date, quarter-to-date, year-to-date, and so on. We have three recipes to
explore various ways to calculate today's date, and how to turn it into a set and use MDX's

powerful set operations to calculate other related periods.

Calculating date and time spans is also a common reporting requirement.

The chapter ends with two recipes explaining how to calculate the parallel period for a range
of dates.

WOW! eBook
www.wowebook.org

Calculating the year-to-date (YTD) value

In this recipe, we will look at how to calculate the YTD value of a measure, that is, the
accumulated value of all dates in a year up to the current member on the date dimension. An
MDX function YTD() can be used to calculate the Year-To-Date value, but not without its

constraints.

In this recipe, we will discuss the constraints when using the YTD () function and also the
alternative solutions.

WOW! eBook
www.wowebook.org

Getting ready

Start SSMS and connect to your SQL Server Analysis Services (SSAS) 2016 instance. Click
on the New Query button and check that the target database is Adventure Works DW 2016.

In order for this type of calculation to work, we need a dimension marked as Time in the Type
property, in the Dimension structure tab of SQL Server Data Tools (SSDT). That should not
be a problem because almost every database contains at least one such dimension and
Adventure Works is no exception here. In this example, we're going to use the Date
Dimension. We can verify in SSDT that the Date dimension's Type property is set to Time.
See the following screenshot from SSDT:

Date Dimension v
o= By S
Description -
ID Dim Time
Name Date
Type Time V| w

Here's the query we'll start from:

SELECT

{ [Measures].[Reseller Sales Amount] } ON O,

{ [Date].[Calendar Weeks].[Calendar Week].MEMBERS } ON 1
FROM

[Adventure Works]

Once executed, the preceding query returns reseller sales values for every week in the
database.

WOW! eBook
www.wowebook.org

How to do it...

We are going to use the YTD() function, which takes only one member expression, and returns
all dates in the year up to the specified member. Then we will use the aggregation function
Sum() to sum up the Reseller Sales Amount.

Follow these steps to create a calculated measure with YTD calculation:

1. Add the wITH block of the query.

2. Create a new calculated measure within the WITH block and name it Reseller Sales YTD.

3. The new measure should return the sum of the Reseller Sales Amount measure using
the YTD () function and the current date member of the hierarchy of interest.

4. Add the new measure on axis 0 and execute the complete query:

WITH
MEMBER [Measures].[Reseller Sales YTD] AS
Sum(YTD([Date].[Calendar Weeks].CurrentMember),
[Measures].[Reseller Sales Amount])
SELECT
{ [Measures].[Reseller Sales Amount],
[Measures].[Reseller Sales YTD] } ON O,
{ [Date].[Calendar Weeks].[Calendar Week].MEMBERS } ON 1
FROM
[Adventure Works]

5. The result will include the second column, the one with the YTD values. Notice how the
values in the second column increase over time:

WOW! eBook
www.wowebook.org

Reseller Sales Amourt ~ Reseller Sales YTD
Week 1 CY 2013 (null) (null)
Week 2 CY 2013 (ull) (ull)
Week 3 CY 2013 rull) (rull)
‘Week 4 CY 2013 (ull) (ull)
Week 5 CY2013 | $4.212.971.51 $4,212.971.51
Week 6 CY 2013 {null) $4,212,971.51
Week 7 CY 2013 {null) $4,212.971.51
Week 8 CY 2013 | (null) $4,212,.971.51
Week 9 CY 2013 $4,047.574.04 $8.260,545.55
Week 10CY 2013 (ull) $8,260,545.55
Week 11CY 2013 | (null) $8,260,545.55

4

WOW! eBook

www.wowebook.org

How it works...

The YTD() function returns the set of members from the specified date hierarchy, starting
from the first date of the year and ending with the specified member. The first date of the year
is calculated according to the level [Calendar Year] marked as Years type in the hierarchy
[Calendar Weeks].In our example, the YTD() value for the member Week 11 CY 2013 is a set
of members starting from Week 1 CY 2013 and going up to that member because the upper
level containing years is of the Years type.

The set is then summed up using the sum() function and the Reseller Sales Amount measure.
If we scroll down, we will see that the cumulative sum resets every year, which means that
YTD() works as expected.

In this example, we used the most common aggregation function, Sum(), in order to aggregate
the values of the measure throughout the calculated set. The sum() function was used because
the aggregation type of the Reseller Sales Amount measure is sum. Alternatively, we could
have used the Aggregate() function instead. More information about that function can be
found later in this recipe.

WOW! eBook
www.wowebook.org

There's more...

Sometimes it is necessary to create a single calculation that will work for any user hierarchy
of the date dimension. In that case, the solution is to prepare several YTD() functions, each
using a different hierarchy, crossjoin them, and then aggregate that set using a proper
aggregation function (Sum, Aggregate, and so on). However, bear in mind that this will only
work if all user hierarchies used in the expression share the same year level. In other words,
this will only work if there is no offset in years among them (such as exists between the fiscal
and calendar hierarchies in the Adventure Works cube in 2008 R2).

Why does it have to be so? Because the cross join produces the set intersection of members
on those hierarchies. Sets are generated relative to the position when the year starts. If there is
offset in years, it is possible that sets won't have an intersection. In that case, the result will be
an empty space. Now let us continue with a couple of working examples.

Here is an example that works for both monthly and weekly hierarchies:

WITH
MEMBER [Measures].[Reseller Sales YTD] AS
Sum(YTD([Date].[Calendar Weeks].CurrentMember) *
YTD([Date].[Calendar].CurrentMember),
[Measures].[Reseller Sales Amount])
SELECT
{ [Measures].[Reseller Sales Amount],
[Measures].[Reseller Sales YTD] } ON O,
{ [Date].[Calendar Weeks].[Calendar Week].MEMBERS } ON 1
FROM
[Adventure Works]

If we replace [Date].[Calendar Weeks].[Calendar Week].MEMBERS with [Date].[Calendar].
[Month].MEMBERS, the calculation will continue to work. Without the cross join part, that
wouldn't be the case. Try it in order to see for yourself! Just be aware that if you slice by
additional attribute hierarchies, the calculation might become wrong.

In short, there are many obstacles to getting the time-based calculation right. It partially
depends on the design of the time dimension (which attributes exist, which are hidden, how the
relations are defined, and so on), and partially on the complexity of the calculations provided
and their ability to handle various scenarios. A better place to define time-based calculation is
the MDX script. There, we can define scoped assignments, but that's a separate topic that will
be covered later in Chapter 9 , Metadata-Driven Calculations, and in the Using utility
dimension to implement time-based calculations recipe in Chapter 7 , Business Analytics.

In the meantime, here are some articles related to that topic:

http://tinyurl.com/MoshaDateCalcs

http://tinyurl.com/DateToolDim

WOW! eBook
www.wowebook.org

http://tinyurl.com/MoshaDateCalcs
http://tinyurl.com/DateToolDim

Inception-To-Date calculation

A similar calculation is the inception-to-date calculation, in which we are calculating the sum
of all dates up to the current member, that is, we do not perform a reset at the beginning of
every year. In that case, the YTD () part of the expression should be replaced with this:

Null : [Date].[Calendar Weeks].CurrentMember

Using the argument in the YTD() function

The argument of the YTD() function is optional. When not specified, the first dimension of the
Time type in the measure group is used. More precisely, the current member of the first user
hierarchy with a level of type Years.

This is quite convenient in the case of a simple Date dimension, a dimension with a single
user hierarchy. In the case of multiple hierarchies or a role-playing dimension, the YTD()
function might not work, if we forget to specify the hierarchy for which we expect it to work.

This can be easily verified. Omit the [Date].[Calendar Weeks].CurrentMember partin the
initial query and see that both columns return the same values. The YTD() function is not
working anymore.

Therefore, it is best to always use the argument in the YTD () function.

Common problems and how to avoid them

In our example, we used the [Date].[Calendar Weeks] user hierarchy. That hierarchy has the
level Calendar Year created from the same attribute. The type of attribute is Years, which can
be verified in the Properties pane of SSDT:

WOW! eBook
www.wowebook.org

Calendar Year DimensionAttribute v
oz |
1D CalendarYear -
Name Calendar Year
Type Years i
Usage I TenDayOfYear A
= Misc TenDays
AttributeHierarchyOrdere TrimesterOfYear
ExtendedType Trimesters
GroupingBehavior [WeekOfYear
InstanceSelection I Weeks
MemberNamesUnique | Years
VisualizationProperties +Fiscal
= Parent-Child “General v
Type +1SO v
Specifies the type of informeé&x e.

However, the Date dimension in the Adventure Works cube has fiscal attributes and user
hierarchies built from them as well. The fiscal hierarchy equivalent to [Date].[Calendar
Weeks] hierarchy is the [Date].[Fiscal Weeks] hierarchy. There, the top level is named
Fiscal Year, created from the same attribute. This time, the type of the attribute is Fiscal Year,
not Year. If we replace the [Date].[Calendar Weeks] hierarchy by the [Date].[Fiscal
wWeeks] hierarchy in the WITH clause in our example query, the YTD () function will not work
on the new hierarchy. It will return an error:

WOW! eBook
www.wowebook.org

Reseller Sales Amount ~ Reseller Sales YTD »
Week 1 CY 2013 {null) HEmor
Week 2 CY 2013 {null) HEmor
Week 3 CY 2013 {null) #Emor
Week 4 CY 2013 {null) REmor
Week 5 CY 2013 $4,212.971.51 HEmor
Week 6 CY 2013 {null) #Emor
Week 7 CY 2013 {rull) REmor
Week 8 CY 2013 (rull) #Emor
Week 9 CY 2013 $4,047 57404 #Emor
Week 10CY 2013 (null) HEmor
Week 11 CY 2013 {null) HEmor -

Hover the cursor over #Error, and you will see the following error message:

Query (3, 9) By default, a year level was expected. No such level was found in the cube,

The solution is the PeriodsToDate() function.

The YTD() function is in fact a short version of the PeriodsTobate() function, which works
only if the Yyear type level is specified in a user hierarchy. When it is not so (that is, some BI
developers tend to forget to set it up correctly or in the event that the level is defined as, let us
say, Fiscal Year like in this test), we can use the PeriodsToDate() function as follows:

MEMBER [Measures].[Reseller Sales YTD] AS
Sum(PeriodsToDate([Date].[Fiscal Weeks].[Fiscal Year],
[Date].[Fiscal Weeks].CurrentMember),
[Measures].[Reseller Sales Amount])

The PeriodsTobate() function might therefore be used as a safer variant of the YTD()
function.

YTD() and future dates

WOW! eBook
www.wowebook.org

It is worth noting that the value returned by a SUM-YTD combination is never empty once a
value is encountered in a particular year. Only the years with no values at all will remain
completely blank for all their descendants. In our example with the [Calendar Weeks]
hierarchy, scrolling down to Week 48 CY 2013, you will see that this is the last week that has
reseller sales. However, the Year-To-Date value is not empty for the rest of the weeks for year
2013, as shown in the following screenshot:

Reseller Sales Amount Reseller Sales YTD =~

Week 43CY 2013 (null) $26,843,998.52
Week 44 CY 2013 $3.314,600.78 $30,158,599.30
Week 45CY 2013 (null) $30,158,599.30
Week 46 CY 2013 (null) $30,158,599.30
Week 47CY 2013 (null) $30,158,599.30
Week 48 CY 2013 $3.416,234 85 $33,574,834.16
Week 45CY 2013 (null) $33,574.834.16
Week 50CY 2013 (null) $33,574834.16
Week 51CY 2013 (null) $33574.834.16
Week 52 CY 2013 (null) §33,574,834.16
Week 53 CY 2013 (null) $3357483416

This can cause problems for the descendants of the member that represents the current year
(and future years as well). The NON EMPTY keyword will not be able to remove empty rows,
meaning we will get YTD values in the future.

We might be tempted to use the NON_EMPTY_BEHAVIOR operator to solve this problem, but it
wouldn't help. Moreover, it would be completely wrong to use it, because it is only a hint to
the engine, which may or may not be used. It is not a mechanism for removing empty values,
as explained in the previous chapter.

In short, we need to set some rows to null, those positioned after the member representing
today's date. We will cover the proper approach to this challenge in the Finding the last date
with data recipe.

WOW! eBook
www.wowebook.org

See also

e For the reasons explained in the last section of this recipe, you should take a look at the
Finding the last date with data recipe

WOW! eBook
www.wowebook.org

Calculating the year-over-year (YoY) growth
(parallel periods)

This recipe explains how to calculate the value in a parallel period, the value for the same
period in a previous year, previous quarter, or some other level in the date dimension. We are
going to cover the most common scenario—calculating the value for the same period in the
previous year, because most businesses have yearly cycles.

A ParallelPeriod() is a function that is closely related to time series. It returns a member
from a prior period in the same relative position as a specified member. For example, if we
specify June 2012 as the member, Year as the level, and 1 as the lag, the ParallelPeriod()
function will return June 2013.

Once we have the measure from the prior parallel period, we can calculate how much the
measure in the current period has increased or decreased with respect to the parallel period's
value.

WOW! eBook
www.wowebook.org

Getting ready

Start SSMS and connect to your SSAS 2016 instance. Click on the New Query button, and
check that the target database is Adventure Works DW 2016.

In this example, we are going to use the Date dimension. Here is the query we will start from:

SELECT
{ [Measures].[Reseller Sales Amount] } ON O,
{ [Date].[Fiscal].[Month].MEMBERS } ON 1
FROM
[Adventure Works]

Once executed, the previous query returns the value of Reseller Sales Amount for all fiscal
months.

WOW! eBook
www.wowebook.org

How to do it...

Follow these steps to create a calculated measure with the YoY% calculation:

1. Add the wITH block of the query.

2. Create a new calculated measure there and name it Reseller Sales PP.

3. The new measure should return the value of the Reseller Sales Amount measure using
the ParallelPeriod() function. In other words, the definition of the new measure should
be as follows:

MEMBER [Measures].[Reseller Sales PP] As

([Measures].[Reseller Sales Amount],
ParallelPeriod([Date].[Fiscal].[Fiscal Year], 1,
[Date].[Fiscal].CurrentMember))

4. Specify the format string property of the new measure to match the format of the

original measure. In this case, that should be the currency format.

Create the second calculated measure and name it Reseller Sales YoY %.

6. The definition of that measure should be the ratio of the current member's value against
the parallel period member's value. Be sure to handle potential division by zero errors
(see the Handling division by zero errors recipe in Chapter 1, Elementary MDX
Techniques).

7. Include both calculated measures on axis 0 and execute the query, which should look as
follows:

v

WITH
MEMBER [Measures].[Reseller Sales PP] As
([Measures].[Reseller Sales Amount],
ParallelPeriod([Date].[Fiscal].[Fiscal Year], 1,
[Date].[Fiscal].CurrentMember))
, FORMAT_STRING = ‘Currency’
MEMBER [Measures].[Reseller Sales YoY %] As
iif([Measures].[Reseller Sales PP] = 0, null,
([Measures].[Reseller Sales Amount] /
[Measures].[Reseller Sales PP]))
, FORMAT_STRING = ‘Percent’
SELECT
{ [Measures].[Reseller Sales Amount],
[Measures].[Reseller Sales PP],
[Measures].[Reseller Sales YoY %] } ON O,
{ [Date].[Fiscal].[Month].MEMBERS } ON 1
FROM
[Adventure Works]

8. The result will include two additional columns, one with the PP values and the other with
the YoY change. Notice how the values in the second column repeat over time and that the
YoY % ratio shows the growth over time:

WOW! eBook
www.wowebook.org

' Reseller Sales Amount ~ Reseller Sales PP Reseller Sales YoY %

‘January 2013

February 2013

March 2013

Aprl 2013

May 2013

June 2013

July 2013

iI
|
|
|
|
1_
|

August 2013

September 2013 |

'October 2013

]

‘November 2013

‘December 2013

$4.212,971.51
$4,047574.04
$2.282,115.88
$3.483,161.40
$3.510,948.73
$1.662,547.32
$2.699.300.79
$2,738,653.62
$2,206,725.22
$3.314,600.78
$3.416,234.85
(ull)

$3.601,190.71
$2,885,359.20
$1.802.154.21
$3.053,816.33
$2,185,213.21
$1.317.541.83
$2,384,846.59
$1,563,955.08
$1.865.278.43
$2,880,752.68
$1,987.872.1
$2,665,650.54

116.99%
140.28%
126.63%
114.06%
160.67%
126.19%
113.19%
175.11%
118.31%
115.06%
171.85%

(ul)

WOW! eBook
www.wowebook.org

How it works...

The ParallelPeriod() function takes three arguments: a level expression, an index, and a
member expression, and all three arguments are optional. The first argument indicates the
level on which to look for that member's ancestor, typically the year level, like in this
example. The second argument indicates how many members to go back on the ancestor's
level, typically one, as in this example. The last argument indicates the member for which the
function is to be applied.

Given the right combination of arguments, the function returns a member that is in the same
relative position as a specified member, under a new ancestor.

The value for the parallel period's member is obtained using a tuple, which is formed with a
measure and the new member. In our example, this represents the definition of the PP
measure.

The growth is calculated as the ratio of the current member's value over the parallel period
member's value, in other words, as a ratio of two measures. In our example, that was the YoY
% measure.

In our example, we have also taken care of a small detail, setting the FORMAT_STRING to
Percent.

WOW! eBook
www.wowebook.org

There's more...

The ParallelPeriod() function is very closely related to time series, and it is typically used
on date dimensions. However, it can be used on any type of dimension. For example, this
query is perfectly valid:

SELECT
{ [Measures].[Reseller Sales Amount] } ON O,
{ ParallelPeriod([Geography].[Geography].[Country],
2,
[Geography].[Geography].[State-Province]
.&[CAJ&[US]) } ON 1
FROM
[Adventure Works]

The query returns Hamburg on rows, which is the third state-province in the alphabetical list
of state-provinces under Germany. Germany is two countries back from the United States,
whose member California, used in this query, is the third state-province underneath that
country in the [Geography].[Geography] user hierarchy.

We can verify this by browsing the Geography user hierarchy in the Geography dimension
in SQL Server Management Studio, as shown in the following screenshot. The United
Kingdom, one member back from the United States, has only one state-province: England. If
we change the second argument to one instead, we will get nothing on the rows because there
is no third state-province under the United Kingdom. Feel free to try it:

WOW! eBook
www.wowebook.org

Geography [Browse] # X -
IEoR-R-Y LW 1

Hierarchy: | -~ Geography
Language: Default v

Currentlevel: o
o -
+ o Australia
(@ Canada
+ @ France
= @ Germany
£3) ° Bayern
(@) Brandenburg
(@ Hamburg
(# o Hessen
@) Nordrhein-Westfalen
Q saarland
® o United Kingdom
= @ United States
@ Alabama
Q Arizona
@ California
@ Colorado
@ Connecticut
(@ Florida
+ @ Georgia v

+

All arguments of the ParallelPeriod() function are optional. When not specified, the first

WOW! eBook
www.wowebook.org

dimension of the Time type in the measure group is used, more precisely, the previous
member of the current member's parent. This can lead to unexpected results as discussed in
the previous recipe. Therefore, it is recommended that you use all the arguments of the
ParallelPeriod() function.

ParallelPeriod is not a time-aware function

The ParallelPeriod() function simply looks for the member from the prior period based on
its relative position to its ancestor. For example, if your hierarchy is missing the first six
months in the year 2012, for member January 2013, the function will find July 2012 as its
parallel period (lagging by 1 year) because July is indeed the first month in the year 2012.

This is exactly the case in Adventure Works DW SSAS prior to 2012.
You can test the following scenario in Adventure Works DW SSAS 2008 R2.

In our example, we used the [Date].[Fiscal] user hierarchy. That hierarchy has all 12
months in every year, which is not the case with the [Date].[Calendar] user hierarchy where
there is only 6 months in the first year. This can lead to strange results. For example, if you
search-replace the word Fiscal with the word Calendar in the query we used in this recipe,
you will get this as the result:

| i Messages | [Resuts |

[|[Intemet Sales Amount || Intemet Sales PP || Intemet Sales Yo¥ % | =
[July 2005 5473388 16 fruall) frual)

(August 2005 | $506,191.69 full) frull)
(September 2005 | $473,343.03 frull) full)

§513,329.47 fnull) fnull) L
(November 2005 | $543,933.41 frul) frull) |
(December 2005 | $755527.89 i frull)

January 2006 559674656 126.06%

February 2006] $550.81669 S506.13169 108.82%

(March 2006 | 564413520 $473,943.03 135.91%

(April 2006 | $663,692.29 $513,329.47 129.29%
(May2006 | s673556.20 $543,993.41 123.82%

June 2006 $676.763.65 §755,527.89 89.57%

July 2006 | £500,365.16 frull) frll)

August 2006 $546,001.47 frull) frull)
(September 2006 | $350.466.99 frull) {ull)

(October 2006 | $415330.23 full) il
(November 2006 | $335.095.09 frally {rull)
(December 2006 | $577.314.00 full) full) -

Notice how the values are incorrect for the year 2006. That's because the ParallelPeriod()
function is not a time-aware function; it merely does what it is designed for, taking the

member that is in the same relative position. Gaps in your time dimension are another
WOW! eBook
www.wowebook.org

potential problem. Therefore, always make the complete date dimensions, with all 12 months
in every year and all dates in them, not just working days or similar shortcuts. Remember,
Analysis Services isn't doing the date math. It's just navigating using the member's relative
position. Therefore, make sure you have laid a good foundation for that.

However, that is not always possible. There is an offset of 6 months between fiscal and
calendar years, meaning if you want both of them as date hierarchies, you have a problem;
one of them will not have all of the months in the first year.

The solution is to test the current member in the calculation and to provide a special logic for
the first year, fiscal or calendar; the one that does not have all months in it. This is most
efficiently done with a scope statement in the MDX script. This edition of the book has added
a brand new Chapter 9, Metadata-Driven Calculations that provides many practical examples
on how to use scope statements in MDX script.

Another problem in calculating the YoY value is leap years. One possible solution for that is
presented in this blog article: http://tinyurl.com/L.eapYears.

WOW! eBook
www.wowebook.org

http://tinyurl.com/LeapYears

See also
e The ParallelPeriod() function operates on a single member. However, there are times
when we will need to calculate the parallel period for a set of members. The Calculating
parallel periods for multiple members in a set and Calculating parallel periods for
multiple members in a slicer recipes deal with this more complex request.

WOW! eBook
www.wowebook.org

Calculating moving averages

The moving average, also known as the rolling average, is a statistical technique often used in
events with unpredictable short-term fluctuations in order to smooth their curve and to
visualize the pattern of behavior.

The key to get the moving average is to know how to construct a set of members up to and
including a specified member, and to get the average value over the number of members in
the set.

In this recipe, we are going to look at two different ways to calculate moving averages in
MDX.

WOW! eBook
www.wowebook.org

Getting ready

Start SQL Server Management Studio and connect to your SSAS 2016 instance. Click on the
New Query button and check that the target database is Adventure Works DW 2016.

In this example, we are going to use the Date hierarchy of the Date dimension. Here is the
query we will start from:

SELECT
{ [Measures].[Internet Order Count] } ON O,
{ [Date].[Date].[Date].MEMBERS} ON 1

FROM
[Adventure Works]

Execute it. The result shows the count of Internet orders for each date in the [Date].[Date]
attribute hierarchy. Our task is to calculate the simple moving average (SMA) for dates in the
year 2008 based on the count of orders in the previous 30 days.

WOW! eBook
www.wowebook.org

How to do it...

We are going to use the LastPeriods() function with a 30 day moving window, and a member
expression, [Date].[Date].CurrentMember, as two parameters, and also the Avg() function, to
calculate the moving average of Internet order count in the last 30 days.

Follow these steps to calculate moving averages:

1. Add the wHERE part of the query and put the year 2014 inside using any available
hierarchy.

2. Add the wiTH part and define a new calculated measure. Name it SMA 30.

Define that measure using the Avg() and LastPeriods() functions.

4. Test to see whether you get a managed query similar to this. If so, execute it:

w

WITH

MEMBER [Measures].[SMA 30] AS

Avg(LastPeriods(30, [Date].[Date].CurrentMember),
[Measures].[Internet Order Count])
SELECT

{ [Measures].[Internet Order Count],
[Measures].[SMA 30] } ON 0,

{ [Date].[Date].[Date].MEMBERS } ON 1
FROM

[Adventure Works]

WHERE

([Date].[Calendar Year].&[2014])

5. The second column in the result set will represent the simple moving average based on
the last 30 days.
6. Our final result will look like the following screenshot:

Intemet Order Count || SMA 30 | =
January 1, 2014 24 70
January 2, 2014 29 68
January 3, 2014 30 65
January 4, 2014 29 64
January 5, 2014 A 63
January &, 2014 25 62
January 7, 2014 28 &1
January 8, 2014 33 B9
January 9, 2014 30 it
January 10, 2014 15 7
January 11, 2014 33 hd
January 12, 2014 H A3
January 13, 2014 32 hZ
January 14, 2014 35 h0
January 15, 2014 25 45 -

WOW! eBook
www.wowebook.org

How it works...

The moving average is a calculation that uses the moving window of N items for which it
calculates the statistical mean, that is, the average value. The window starts with the first item
and then progressively shifts to the next one until the whole set of items is passed.

The function that acts as the moving window is the LastPeriods() function. It returns N items;
in this example, 30 dates. That set is then used to calculate the average orders using the Avg()
function.

Note that the number of members returned by the LastPeriods() function is equal to the span,
30, starting with the member that lags 30-1 from the specified member expression, and ending
with the specified member.

WOW! eBook
www.wowebook.org

There's more...

Another way of specifying what the LastPeriods() function does is to use a range of
members with a range-based shortcut. The last member of the range is usually the current
member of the hierarchy on an axis. The first member is the N-1th member moving
backwards on the same level in that hierarchy, which can be constructed using the Lag(N-1)
function.

The following expression employing the Lag() function and a range-based shortcut is
equivalent to the LastPeriods() function in the preceding example:
[Date].[Date].CurrentMember.Lag(29) : [Date].[Date].CurrentMember

Note that the members returned from the range-based shortcut are inclusive of both the
starting member and the ending member.

We can easily modify the moving window scope to fit different requirements. For example, in
case we need to calculate a 30-day moving average up to the previous member, we can use
this syntax:

[Date].[Date].CurrentMember.Lag(30) : [Date].[Date].PrevMember
Tip

The LastPeriods() function is not on the list of optimized functions on this web page:
http://tinyurl.com/Improved2008R2 . However, tests show no difference in duration with
respect to its range alternative. Still, if you come across a situation where the LastPeriods()
function performs slowly, try its range alternative.

Finally, in the event that we want to parameterize the expression (for example, to be used in
SQL Server Reporting Services), these would be generic forms of the previous expressions:

[Date].[Date].CurrentMember.Lag(@span - @offset)
[Date].[Date].CurrentMember.Lag(@offset)

And;

LastPeriods(@span, [Date].[Date].CurrentMember.Lag(@offset))

The @span parameter is a positive value that determines the size of the window. The @of fset
parameter determines how much the right side of the window has moved from the current
member's position. This shift can be either a positive or negative value. The value of zero
means there is no shift at all, the most common scenario.

Other ways to calculate the moving averages

The simple moving average (SMA) is just one of many variants of calculating the moving
averages. A good overview of a possible variant can be found in Wikipedia:

WOW! eBook
www.wowebook.org

http://tinyurl.com/Improved2008R2

http://tinyurl.com/WikiMoving Avg .

MDX examples of other variants of moving averages can be found in Mosha Pasumansky's
blog article:

http://tinyurl.com/MoshaMoving Avg.

Moving averages and the future dates

It is worth noting that the value returned by the moving average calculation is not empty for
dates in the future because the window is looking backwards, so that there will always be
values for future dates. This can be easily verified by scrolling down in our example using the
LastPeriods() function, as shown in the following screenshot:

Intemet Order Count || SMA30 | =
January 24, 2014 25 35
January 25, 2014 32 33
January 26, 2014 3 32
January 27, 2014 23 3
January 28, 2014 40 3
January 29, 2014 (rually 31
January 30, 2014 (ruall} 3
January 31, 2014 (ruall} 3
February 1, 2014 (ruall} 3
February 2, 2014 (ruall} 32 o

In this case, the NON EMPTY keyword will not be able to remove empty rows.

We might be tempted to use NON_EMPTY_BEHAVIOR to solve this problem but it would not help.
Moreover, it would be completely wrong, as explained in the previous chapter. We do not
want to set all the empty rows to null, but only those positioned after the member representing
today's date. We will cover the proper approach to this challenge in the following recipes.

WOW! eBook
www.wowebook.org

http://tinyurl.com/WikiMovingAvg
http://tinyurl.com/MoshaMovingAvg

Finding the last date with data

In this recipe, we are going to learn how to find the last date with data for a particular
combination of members in the cube. We will start with a general calculation, not dependent
on the time context, and later show how to make it time-sensitive, if required.

WOW! eBook
www.wowebook.org

Getting ready

Open SQL Server Data Tools (SSDT) and then open Adventure Works DW 2016 solution.
Double-click on the Date dimension found in the Solution Explorer. Select the Date attribute
and locate the property ValueColumn at the bottom of the Properties pane:

Properties * 1 X
Date Dimensionittribute -
o TV |

CustomRollupPre (none) -

KeyColumns Date.Datekey (Integer)
MameCelumn DateSimpleDate (WChar)
B ValueColumn Date.Date (Date)
B Source Date.Date
TablelD Date

LG FullDateAlternateKey o

DataType Date -

There is a value in that property. Column FullDateAlternateKey, of the DataType, is
specified as the ValueColumn of the key attribute property, the Date attribute. This check is
important because without that property filled correctly, this recipe won't work.

Next, start SQL Server Management Studio and connect to your SSAS 2016 instance. Click on
the New Query button and check that the target database is Adventure Works DW 2016.

In this example, we're going to use the Date hierarchy of the bate dimension. Here is the
query we will start from:

SELECT
{ [Measures].[Internet Order Count] } ON O,
{ [Date].[Date].[Date].MEMBERS } ON 1

FROM
[Adventure Works]

Execute it, and then scroll down to the end. By scrolling up again, try to identify the last date
with data. It should be the January 28, 2014 date, as highlighted in the following screenshot:

WOW! eBook
www.wowebook.org

Intemet Order Count |
January 23, 2014 32
January 24, 2014 29
January 25, 2014 32
January 26, 2014 3
January 27, 2014 23
January 28, 2014 40
January 29, 2014 (rually
January 30, 2014 (ruall}
January 31, 2014 (ruall} -

Now let's see how we can get this automatically, as the result of a calculation.

WOW! eBook
www.wowebook.org

How to do it...

Follow these steps to create a calculated measure that returns the last date with data:

1. Add the wITH part of the query.

2. Create a new calculated measure there and name it Last date.

3. Use the Max () function with Date attribute members as its first argument.

4. The second argument should be the Membervalue() function applied on the current
member of the Date.Date.Date hierarchy, but only if the value of the Internet order
count measure is not empty or 0.

. Add the Last date measure on the columns axis.

. Put the Promotion.Promotion hierarchy on rows instead.

. Run the query, which should look as follows:

N O Ul

WITH
MEMBER [Measures].[Last date] AS
Max([Date].[Date].[Date].MEMBERS,
1if([Measures].[Internet Order Count] = 0,
null,
[Date].[Date].CurrentMember .MemberValue
)

)
SELECT

{ [Measures].[Internet Order Count],
[Measures].[Last date] } ON O,
{ [Promotion].[Promotion].MEMBERS } ON 1
FROM
[Adventure Works]

8. The result will show the last date of Internet orders for each promotion, as shown in the
following screenshot:

Intemet Order Court Last date
All Fromotions 27 659 2014/01528
Mo Discount 27119 2014/01/28
Wolume Discount 11to 14 2,075 201312728
Yolume Discount 1510 24 (ruall} (ruall}
Yolume Discount 25to 40 (rually (ruall}
Yolume Discount 41 to 60 (rually (roall}
Volume Discount over 60 (roally (roally
Mourtain-100 Clearance Sale (ruall} (rually
Sport Helmet Discount-2002 (ruall} (roally
Road-650 Cverstock (ruall} (rually
Mountain Tire Sale (roally (ruall}
Sport Helmet Discount-2003 (rually (ruall}
LL Road Frame Sale (rually (ruall}
Touring-3000 Promation 20 2013/037°27
Touring-1000 Promation 13 2013/037°22
Half-Price Pedal Sale (ruall} (rually
Mourtain-500 Silver Clearance Sale (rually (roall}
WOW! eBook

www.wowebook.org

WOW! eBook
www.wowebook.org

How it works...

The Date dimension in the Adventure Works DW 2016 database is designed in such a way that
we can conveniently use the Membervalue() function on the Date attribute in order to get the
date value for each member in that hierarchy. This best practice act allows us to use that value
inside the Max () function and hence get the member with the highest value, the last date.

The other thing we must do is to limit the search only to dates with Internet orders. The inner
iif() statement, which provides null for dates with no Internet orders, not only takes care of
that, but also makes the set sparse and therefore allows for block-mode evaluation of the outer
Max () function.

Since the data type of the valueColumn property is defined as Date for the Date attribute, the
result of the Membervalue() function is a typed value, that is, a date type. The role of this date
type is twofold in this recipe. One, it allows us to use the member value inside the Max ()
function, which returns the maximum value representing the last date. Two, it allows the
calculated measure, [Last date], to be nicely formatted as a date without any additional
coding.

Finally, the outer Max () function evaluates all the date values returned from the
MemberValue() function over the set of all members in the Date hierarchy, and returns the
maximum date value, which represents the last date.

In the event that there was no valueColumn property defined on the Date.Date attribute, we
could use the Name, Caption, or some other property to identify the last date or to use it in
further calculations.

WOW! eBook
www.wowebook.org

There's more...

In the previous example, the Max () function was used on all dates in the Date.Date hierarchy.
As such, it is relatively inflexible. This means that it won't react to other hierarchies of the
same dimension on axes, which would normally reduce that set of dates. In other words, there
are situations when the expression has to be made context-sensitive so that it changes in
respect to other hierarchies of the same dimension. How do we achieve that? Using the
EXISTING operator in front of the set!

For example, let's run the following query:

WITH
MEMBER [Measures].[Last date] AS
Max([Date].[Date].[Date].MEMBERS,
iif([Measures].[Internet Order Count] = 0,
null,
[Date].[Date].CurrentMember .MemberValue
)
)
MEMBER [Measures].[Last existing date] AS
Max(EXISTING [Date].[Date].[Date].MEMBERS,
iif([Measures].[Internet Order Count] = O,

null,
[Date].[Date].CurrentMember .MemberValue
)

)
SELECT
{ [Measures].[Internet Order Count],
[Measures].[Last date],
[Measures].[Last existing date] } ON O,
{ [Date].[Calendar Year].MEMBERS } ON 1
FROM
[Adventure Works]
WHERE
([Sales Territory].[Sales Territory Country].&[France])

Now values in the second column (the Last date measure) will all be the same showing
2014/01/26. On the other hand, values in the third column represent the last date for which we
have Internet orders for each calendar year on the rows axis, and therefore will differ, as seen
in this screenshot:

WOW! eBook
www.wowebook.org

Intemet Order Court Last date Last existing date
All Periods 2434 2014/01/26 2014/01/26
CY 2005 (nully 2014/01/26 (nully
CY 2006 (nully 2014/01526 (ully
CY 2007 (nully 2014/01/26 (nully
CY 20038 (nully 2014/01526 (nully
CY 2009 (ully 2014/01526 (nully
CY 2010 1 201401526 201012429
Cy 2011 140 2014/01526 201112528
CY 2012 359 201401526 201212431
CY 2013 1517 2014/01526 201312431
CY 2014 7 2014/01/26 2014/01526

Those two types of calculation represent different things and should be used in the right
context. In other words, if there is a need to get the last date no matter what, then that's a
variant without the EXISTING part. In all other cases, the EXISTING keywords should be used.

One thing is important to remember: the use of the EXISTING keyword slows down the
performance of the query. That is the cost we have to pay for having flexible calculations.

WOW! eBook
www.wowebook.org

See also

e The nextrecipe, Getting values on the last date with data, is relevant for this recipe
because it shows how to return the value of measures on the last date with data

WOW! eBook
www.wowebook.org

Getting values on the last date with data

In this recipe we are going to learn how to get the value of a measure on the last date with
data. If you haven't read the previous recipe, do so before reading this one as this recipe
continues where the previous recipe stopped.

WOW! eBook
www.wowebook.org

Getting ready

Start SQL Server Management Studio and connect to your SSAS 2016 instance. Click on the
New Query button and check that the target database is Adventure Works DW 2016.

In this example, we are going to use the simplified version of the query from the previous
chapter, simplified in the sense that it has only one measure, the time-sensitive measure:

WITH
MEMBER [Measures].[Last existing date] AS
Max (EXISTING [Date].[Date].[Date].MEMBERS,
iif([Measures].[Internet Order Count] = 0,
null,
[Date].[Date].CurrentMember .MemberValue

)

)
SELECT

{ [Measures].[Internet Order Count],
[Measures].[Last existing date] } ON O,
{ [Date].[Calendar Year].MEMBERS } ON 1
FROM
[Adventure Works]
WHERE
([Sales Territory].[Sales Territory Country].&[France])

The following screenshot shows the result of query execution:

Intemet Order Count || Last existing date
All Periods 2434 2014/01526
CY 2005 (nully (nully
CY 2006 (nully (nully
CY 2007 (nully (nully
CY 20038 (nully (nully
CY 2009 (ully (nully
CY 2010 1 201012529
Cy 2011 140 2011/12528
CY 2012 359 201212431
CY 2013 1517 201312431
CY 2014 7 2014/01526

Now, let's see how to get the values on those last dates with data.

WOW! eBook
www.wowebook.org

How to do it...

Follow these steps to get a measure's value on the last date with data:

1.

L ooN

10.

Remove the Last existing date calculated measure from the WITH part of the query and
from the columns axis.

Define a new calculated measure and name it value N.

The definition of this new measure should be a tuple with two members, members we
will identify or build in the following steps.

Use the Internet Order Count measure as one of the members in the tuple.

The other part of the tuple should be an expression, which in its inner part has the
NonEmpty () function applied over members of the Date.Date hierarchy and the Internet
Order Count measure.

Use the EXISTING operator in front of the NonEmpty () function.

Extract the last member of that set using the Tail() function.

Convert the resulting set into a member using the Item() function.

The final query should look as follows:

WITH
MEMBER [Measures].[Value N] AS
(Tail(EXISTING
NonEmpty([Date].[Date].[Date].MEMBERS,
[Measures].[Internet Order Count]),
1
).Item(0),
[Measures].[Internet Order Count])
SELECT
{ [Measures].[Internet Order Count],
[Measures].[Value N] } ON O,
{ [Date].[Calendar Year].MEMBERS } ON 1
FROM
[Adventure Works]
WHERE
([Sales Territory].[Sales Territory Country].&[France])

Once executed, the result will show values of the Internet Order Count measure on the
last dates with data, as visible in the following screenshot:

Intemet Order Court || Value N
All Periods 2434 1
CY 2005 (nully (nully
CY 2006 (nully (ully
CY 2007 (nully (nully
CY 20038 (nully (nully
CY 2009 (ully (nully
CY 2010 1 1
Cy 2011 140 1
CY 2012 359 3
CY 2013 1517 1
CY 2014 7 1

WOW! eBook
www.wowebook.org

WOW! eBook
www.wowebook.org

How it works...

The value of the last date with data is calculated from scratch. First, we have isolated dates
with orders using the NonEmpty () function. Then we have applied the EXISTING operator in
order to get dates relevant to the existing context. The Tail() function was used to isolate the
last date in that set, while the Item() function converts that one-member set into a member.

Once we have the last date with data, we can use it inside the tuple with the measure of our
interest, in this case, the Internet Order Count measure, to get the value in that coordinate.

WOW! eBook
www.wowebook.org

There's more...

The NonEmpty () function we used in the earlier query for calculating the last date with data is
not the only approach. We have several more options here, all of which make use of the Last
existing date calculated measure from our previous recipe, Finding the last date with data,
in which we have defined it as:

MEMBER [Measures].[Last existing date] AS
Max (EXISTING [Date].[Date].[Date].MEMBERS,
ITF([Measures].[Internet Order Count] = 0O,
null,
[Date].[Date].CurrentMember .MemberValue

)
)

Let's focus on a couple of other options that make use of the Last existing date calculated
measure.

One approach is to use the Filter () function on all dates in order to find the one that has the
same MemberValue as calculated in the Last existing date measure. However, that is the
worst approach, the slowest one, and it shouldn't be used. The reason why it's slow is because
the Filter () function needs to iterate over the complete set of dates in every cell in order to
isolate a single date, the last one with data.

Since we already know the date we need, that is, the calculated Last existing date measure,
you might think that we can simply form a tuple by putting together the Last existing date
with [Measures].[Internet Order Count].This will not work because Last existing date
is a value, not a member. We cannot simply put a value in a tuple; we need a member because
tuples are formed from members, not values.

The other approach is based on the idea that we might be able to convert that value into a
member. Conversion can be done using the StrToMember () function, with the CONSTRAINED
flag provided in it to enable faster execution of that function. Here are two expressions that
work for the Date dimension in Adventure Works; they return the same result as shown in the
previous screenshot:

MEMBER [Measures].[Value SN] AS
iif(IsEmpty([Measures].[Last existing date]), null,
(StrToMember('[Date].[Date].[' +
Format([Measures].[Last existing date],
"MMMM dd, yyyy") + ']', CONSTRAINED),
[Measures].[Internet Order Count]))
MEMBER [Measures].[Value SK] AS
iif(IsEmpty([Measures].[Last existing date]), null,
(StrToMember('[Date].[Date].&[' +
Format([Measures].[Last existing date],
"yyyyMMdd") + ']', CONSTRAINED),
[Measures].[Internet Order Count]))

WOW! eBook
www.wowebook.org

The first calculated measure (with the SN suffix) builds the member using its name, and the
second one (with the SK suffix) using its key. The S stands for string-based solution; the N in
the first solution in this recipe stands for nonempty-based solution.

Both expressions make use of the Format () function and apply the appropriate format for the
date returned by the Last existing date calculated measure.

Since there might not be any date in a particular context, the IIF () function is used to return
null in those situations, otherwise the appropriate tuple is formed and its value is returned as
the result of the expression.

Formatting members on the Date dimension properly

If you drag and drop any member from the Date.Date.Date level in the Query Editor, you
will see its unique name. In case of the Adventure Works cube, the unique name will look as
follows:

[Date].[Date].&[20130701]
This is the key-based unique name for members on the Date dimension. To build a string, all

you have to do is replace the part with the day, month, and year with the appropriate tokens in
the format string. This web page might help in that: http://tinyurl.com/FormatDate.

For the name-based member unique names you need to analyze the name of the member in the
cube structure and match it with appropriate tokens in the format string. For the preceding
key-based date member, the equivalent name-based member unique name is: [Date].[Date].
[July 1, 2013].

Optimizing time-non-sensitive calculations

Remember that in the event that you do not need a time-sensitive calculation, a calculation
which evaluates the dates in each context (and hence is naturally slower because of that), you

can use the same expressions provided in this recipe. Just remove the EXISTING operator in
them.

WOW! eBook
www.wowebook.org

http://tinyurl.com/FormatDate

Calculating today's date using the string
functions

Calculating today's date is one of those problems every BI developer encounters sooner or
later. It is also a repeatedly asked question on Internet forums; probably because books do not
cover this topic at all, or at least, not with concrete examples.

The Date dimension in the Adventure Works DW 2016 SSAS database has dates only up to
December 31, 2014. If we are creating a current date expression, that is, after December 31,
2014, then the expression will not be valid. To overcome this little inconvenience, we will use
string functions to only get the day and month of the current date, with the year being shifted
to any year we need to.

In fact, this approach can not only explain the concept well, but also is generic enough so that
you can apply it in your own SSAS database.

We will cover this intriguing topic in three recipes.

This recipe demonstrates the most intuitive technique of doing it, that is, generating today's
date as a string and then converting that string into a dimension member. The other two
recipes, following immediately after this one, show some not-so-intuitive, but nevertheless
perfectly valid and often better ways of performing the same thing. You are advised to read
them all in order to get an overview of the possibilities.

WOW! eBook
www.wowebook.org

Getting ready

Start SQL Server Management Studio and connect to your SSAS 2016 instance. Click on the
New Query button and check that the target database is Adventure Works DW 2016.

Execute the following query:

SELECT

{} ON O,

{ [Date].[Calendar].[Date].MEMBERS } ON 1
FROM

[Adventure Works]

In this example, we are using the calendar hierarchy of the bate dimension. The result
contains all the dates on rows and nothing on the columns. We have explained this type of
query in the first recipe of the first chapter.

Tip

Building the correct string for an Adventure Works cube is not a problem. Building the
correct string for any database is almost impossible. The string has to be precise or it won't
work. That's why we'll use the step-by-step approach here. We'll also highlight the important
points for each step. Additionally, a step-by-step way is much easier to debug by visualizing
which step is not calculating correctly. Hence, achieving the correct string for today's date
becomes faster.

If you scroll down the results, you will notice that there are only dates up to and including
December 2014 and there is no date after that. As the last year that has sales amounts for the
full year is 2013, we're going to build the current date for that year, for this recipe as well as
for the next two recipes.

We'll also include a switch for shifting years, which will allow you to apply the same recipe in
any database.

WOW! eBook
www.wowebook.org

How to do it...

Follow these steps to calculate today's date using the VBA date time function Now() and string
function Format(), and then finally using the strToMember () function to convert the string to a
member on the Date dimension:

1.
2.

w

11.

12.
13.

14.

15.

Add the WITH part in the query.

Define a new calculated measure using the VBA function and try to match the name of
date members. In the case of the Adventure Works cube, the required definition is this:
Format(Now(), 'MMMM dd, yyyy').

Name the measure Caption for Today and include it in the query.

Execute the query and see how you matched the measure's value with the name of each
member on the rows. If it doesn't match, try to fix the format to fit your regional settings.
This link provides detailed information about what each token represents:
http://tinyurl.com/FormatDate

Add the second calculated measure with the following definition: [Date].
[Calendar].CurrentMember .UniqueName

Name it Member 's Unique Name and include it in the query.

Execute the query and notice the part of the measure's value that is not constant and that is
changed in each row. Try to detect what the part is built from in terms of years, months,
and dates or how it relates in general to dates on rows.

Add the third calculated measure by formatting the result of the Now() function based on
the discoveries you made in the previous step. In other words, this: Format (Now(),
'yyyyMMdd '), because unique names are built using the yyyyMMdd sequence.

Name it Key for Today and include it in the query.

. Execute the query. The value should repeat in every row, giving you the current date

formatted as yyyymmdd.

In case of a database with no today's date in the Date dimension, such is the case here, add
the fourth calculated measure. This measure should replace the year part with another
year, already present in the Date dimension. That should be the year with all dates;
otherwise, you'll get an error in subsequent steps of this recipe. The definition of that
measure in the case of the Adventure Works cube is this: '2013' + Right([Measures].
[Key for Today], 4).

Name it Key for Today (AW) and include itin the query.

Execute the query and find the row where that same key can be found as a part of the
measure Member's Unique Name. If you can, that means you're doing everything fine so
far.

Add the fifth calculated measure, name it Today (string) and define it by concatenating
the fixed part of the unique name with the variable part defined as the Key for Today or
Key for Today (Aw) measure, depending on whether you have or don't have today's date
in your Date dimension. In this example, we'll use the latter because Adventure Works
doesn't have it. This is the definition of the measure: '[Date].[Calendar].[Date].&[' +
[Measures].[Key for Today (AwW)] + ']'.

Include that fifth measure as well in the query and execute it. In that particular row

WOW! eBook
www.wowebook.org

mentioned earlier, the value of this measure should match completely to the value of the
measure Member's Unique Name.

16. Add a calculated set. Name it Today and define it using the StrToMember () function with
the CONSTRAINED flag.

17. Execute the query. The set you just made represents today's date and can be used in all
further calculations you make.

18. The final query is as follows:

WITH
MEMBER [Measures].[Caption for Today] AS
Format(Now(), 'MMMM dd, yyyy')
MEMBER [Measures].[Member's Unique Name] AS
[Date].[Calendar].CurrentMember .UniqueName
MEMBER [Measures].[Key for Today] AS
Format(Now(), 'yyyyMMdd')
MEMBER [Measures].[Key for Today (AW)] AS
'2013' + Right([Measures].[Key for Today], 4)
MEMBER [Measures].[Today (string)] AS
'[Date].[Calendar].[Date].&["' +
[Measures].[Key for Today (AW)] + ']'
SET [Today] AS
StrToMember ([Measures].[Today (string)], CONSTRAINED)
SELECT
{ [Measures].[Caption for Today],
[Measures].[Member's Unique Name],
--[Measures].[Key for Today],
[Measures].[Key for Today (AW)],
[Measures].[Today (string)] } ON O,
{ [Date].[Calendar].[Date].MEMBERS } ON 1
FROM
[Adventure Works]

19. The result of your query should look like the following screenshot. There is one single
row in which the Today (string) measure and the Member's Unique Name measure
matches exactly, as visible in the screenshot. This row will differ from the row in your
result since you are running the query on a different date. But you should nevertheless
have such a row if you've followed the instructions carefully:

Caption for Today Member's Unique Name Key for Today (AW) Today (siring) -
July 2. 2013 July 04,2016 [Date] Calendar] [Date] 4120130702] 20130704 [Date] [Calendar] [Date] 4(20130704]
July 3, 2013 July 04,2016 [Date] Calendar] [Date] A20130703] 20130704 [Date] [Calendar] [Date] 420130704]
Fuy4,2013 © Juy(04,2016 [Date]fCalendar][Datel8[20130704] 20130704 [Date][Calendar)[Date] 4[20130704]
Juy 52013 July 04,2016 [Date] Calendar] [Date] 4]20130705] 20130704 [Date] [Calendar] [Date] 420130704]
July 6, 2013 July 04,2016 [Date] KCalendar] [Date] 412013070 20130704 [Date] [Calendar] [Date] 420130704]
July 7. 2013 July 04,2016 [Date] [Calendar] [Date] &[20130707 20130704 [Date] [Calendar] [Date] 420130704]
July 8, 2013 July 04,2016 [Date] ICalendar] [Date] 4]20130708] 20130704 [Date] [Calendar] [Date] 420130704]
July 9, 2013 July 04,2016 [Date] ICalendar] [Date] 4]20130709] 20130704 [Date] [Calendar] [Date] 420130704]
July 10, 2013 July 04,2016 [Date] ICalendsar] [Date] 4120130710] 20130704 [Date] [Calendar] [Date] 4[20130704]
July 11, 2013 July 04,2016 [Date] ICalendar] [Date] 420130711] 20130704 [Date] [Calendar] [Date] 4(20130704]

July 12. 2013 July 04,2016 [Date] [Calendar] [Date] 4[20130712] 20130704 [Date] [Calendar] [Date] A[20130704]

WOW! eBook

www.wowebook.org

WOW! eBook
www.wowebook.org

How it works...

Basically, that's the query you get by following the step-by-step instructions from the earlier
example, with only one difference the Key for Today measure is intentionally left out of the
query, so that the result can fit the book size. You can leave it as is in your query,
uncommented, to see its values.

The caption for Today measure is there only to make you practice building the format
string for dates; it has no significance for the final calculation. MMMM displays the full month
name (that is, March), dd displays the date using two digits (that is, 27), and yyyy displays the
four-digit year.

The Member's Unique Name measure is here to show how the unique member's name is built,
so that we can build the exact string using today's date as a variable part of that name. Again, it
is not used in the final calculation; it is here just to help build the correct string.

The Key for Today (AW) measure is the one that's important. It is showing that the date
dimension's key is an integer in the form of yyyyMMdd, built according to recommended best
practice. In your real projects, you might have a different key definition. There is no way of
knowing in advance what the correct format should be for a particular bate dimension.
Therefore, the second measure, Member's Unique Name, is here to enable us to identify the
variable part of the unique name and to conclude how to build that part using date parts such
as year, month, and date.

The measure Today (string) is the main part. Here, we are actually building the final string.
We are concatenating the fixed part of the unique name with the Key for Today (AW)
measure.

Finally, we built a set named Today from that final string using the StrToMember () function.

The CONSTRAINED flag is used for two reasons. It automatically tells us if we have made a
mistake in the string-building process. It also ensures that the evaluation is faster and hence
the query performance will be faster as well.

The Today set can now be placed on the rows, replacing the members on the Date level of the
Date.Calendar hierarchy in the previous query:

WITH

MEMBER [Measures].[Key for Today] AS
Format(Now(), 'yyyyMMdd')

MEMBER [Measures].[Key for Today (AW)] AS
'2007' + Right([Measures].[Key for Today], 4)

MEMBER [Measures].[Today (string)] AS
'[Date].[Calendar].[Date].&["' +

[Measures].[Key for Today (AwW)] + ']'

SET [Today] AS

StrToMember ([Measures].[Today (string)], CONSTRAINED)

WOW! eBook
www.wowebook.org

SELECT
{ [Measures].[Key for Today],
[Measures].[Key for Today (AW)],
[Measures].[Today (string)] } ON O,
{ [Today] } ON 1
FROM
[Adventure Works]

The result will have only one row. The member on the row will be today's date with a shifted
year.

Key for Today || Key for Today (AW) Today (string)
July 4, 2013 20160704 20130704 [Date].[Calendar].[Date] &[20130704]
WOW! eBook

www.wowebook.org

There's more...

A named set, contrary to a calculated member, preserves the original regular member.
Regular members have a position in their level (also known as their ordinal), and they can
have descendants, ancestors, and related members on other hierarchies of the same
dimension. Sets can be placed in the slicer or on columns or rows where they can interact with
other dimensions. Calculated members do not have these features. They are placed as the last
child of a regular member they are defined on and are not related to any other members
except the root member of other hierarchies of the same dimension. The idea of creating a
named set for today's date, not a calculated member, has opened up a lot of possibilities for
us.

Note
Another thing worth pointing out here is that using Now() in a calculated member stops the

use of a formula engine cache. See here for more info:
http://tinyurl.com/FormulaCacheChris.

The conversion from a set made of a single member to a member, or shall we say, extraction
of a single member in that set, is made relatively easy by using:[Today].Item(0). Actually, we
should specify .1tem(0).Item(0), but since there's only one hierarchy in the tuple forming
that set, one .Item(0) is enough.

Defining new calculated measures is also easy. Today's sales measure would be defined like
this: ([Today].Item(®), [Measures].[Internet Sales Amount]).

Relative periods

The opportunity does not stop there. Once we have a named set, Today, for today's date, all
other relative periods follow easily. Here are some examples. Again, we are defining sets, not
calculated members:

SET [Yesterday] AS [Today].Item(O).PrevMember

SET [This Month] AS [Today].Item(0).Parent

SET [Prev Month] AS [This Month].Item(0).PrevMember

SET [This Year] AS [Today].Item(0Q).Parent.Parent.parent.Parent
SET [Prev Year] AS [This Year].Item(0O).PrevMember

SET [This Month Prev Year] AS [This Month].Item(©).Lag(12)

Moreover, you can anticipate the need for past or future relative periods and implement sets
such as [Next month], [1-30 days ahead], [31-60 days ahead], and so on.

In the case of role-playing dimensions, you can build independent sets for each role-playing
dimension, that is, [Today] and [Due Today] sets, each pointing to today's system date in its
own dimension (and hierarchy).

Note

WOW! eBook
www.wowebook.org

http://tinyurl.com/FormulaCacheChris

Arole-playing dimension is a dimension that is used in a cube more than one time, each time
for a different purpose. For example, you have a Date dimension, and you want to link it to a
measure group three times to track the date that products are ordered, shipped, and received.
Each role-playing dimension is joined to a fact table on a different foreign key.

Potential problems

Sets have many features that calculated members do not have. The ideal solution would be to
construct the Today set, defining other relative periods as sets relative to the Today set.
However, some SSAS frontend tools have problems working with sets. For example, you
cannot put a named set on filters in an Excel 2007 or Excel 2010 PivotTable. If that's the case,
you must be ready to make compromises by defining today's date instead as a calculated
member, as explained earlier. You might also read the following recipes to find alternative
solutions.

WOW! eBook
www.wowebook.org

See also

e The Calculating today's date using the MemberValue function and Calculating today's
date using an attribute hierarchy recipes provide an alternative solution to calculating
today's date. You should read all of them in order to understand the pros and cons of each
approach.

WOW! eBook
www.wowebook.org

Calculating today's date using the
MemberValue function

The second way to calculate today's date is by using the Membervalue() function. This is
something we've already used in the Finding the last date with data recipe. In case you haven't
read it yet, do so before continuing with this recipe, at least the part that shows the

ValueColumn property.

WOW! eBook
www.wowebook.org

Getting ready

Open SQL Server Data Tools (SSDT) and then open theAdventure Works DW 2016 solution.
Double-click on the Date dimension found in the Solution Explorer. Select the Date attribute
and locate the valueColumn property. It should not be empty; otherwise this recipe won't work.
It should have the Date type column from the underlying time dimension table.

WOW! eBook
www.wowebook.org

How to do it...

Follow these steps to calculate today's date using the Membervalue function:

1. Write and execute the following query in SQL Server Management Studio connected to
the same cube mentioned earlier:

WITH
MEMBER [Measures].[Caption for Today] AS
Format(Now(), 'MMMM dd, yyyy')
MEMBER [Measures].[Member Value] AS
[Date].[Calendar].CurrentMember .MemberValue
MEMBER [Measures].[MV for Today] AS
Format(Now(), 'M/d/yyyy')
MEMBER [Measures].[MV for Today (AW)] AS
CDate(Left([Measures].[MV for Today],
Len([Measures].[MV for Today]) - 4) + '2013'

)
SET [Today] AS
Filter([Date].[Calendar].[Date].MEMBERS,
[Measures].[Member Value] =
[Measures].[MV for Today (AW)])
SELECT
{ [Measures].[Caption for Today],
[Measures].[Member Value],
[Measures].[MV for Today],
[Measures].[MvV for Today (AW)] } ON O,
{ [Date].[Calendar].[Date].MEMBERS } ON 1
FROM
[Adventure Works]

2. Then use this query to test the Today set:

WITH
MEMBER [Measures].[Member Value] AS
[Date].[Calendar].CurrentMember .MemberValue
MEMBER [Measures].[MV for Today] AS
Format(Now(), 'M/d/yyyy')
MEMBER [Measures].[MV for Today (AW)] AS
CDate(Left([Measures].[MV for Today],
Len([Measures].[MV for Today]) - 4) + '2013'

)
SET [Today] AS
Filter([Date].[Calendar].[Date].MEMBERS,
[Measures].[Member Value] =
[Measures].[MV for Today (AW)])
SELECT
{ [Measures].[Member Value],
[Measures].[MV for Today],
[Measures].[MV for Today (AW)] } ON O,
{ [Today] } ON 1
FROM
[Adventure Works]

3. The result should contain only a single row with today's date:

WOW! eBook
www.wowebook.org

Juby 4, 2013

Member Value
2013/07/04

MY for Today || MV for Today (AW)

74206

2013707704

WOW! eBook
www.wowebook.org

How it works...

The first query is used to build the Today set in a step-by-step fashion. The first measure
Caption for Today is used for testing the behavior of various date part tokens. The next
measure Member Value is used to extract the Membervalue from each date found on the rows
and is later used in the Today 's set definition. The third measure, M\v for Today, is the main
measure. Its definition is obtained by deducing the correct format for the Membervalue, from
the observations made by analyzing the values in the previous measure Member Vvalue. The
step-by-step process is explained in the previous recipe, Calculating today's date using the
string functions.

As the Adventure Works solution doesn't have the current date, we're forced to shift it to the
year 2013. The day and month stay the same. This is implemented in the fourth measure: Mv
for Today (AW).Finally, the Today set is defined using a Filter () function, which returns
only one member, the one where the Membervalue is equal to the Mv for Today (AW)
measure's value.

The second query is here to verify the result. It consists of three measures relevant to the set's
condition and the Today set itself.

WOW! eBook
www.wowebook.org

There's more...

The Calculating today's date using the string functions recipe explains how to enhance the
cube design by adding relative periods in the form of additional sets. Look for the related
periods section of that recipe, which is also applicable to this recipe.

Using the ValueColumn property in the Date dimension

Many SSAS frontends use the so-called Time Intelligence implementation. That means they
enable the use of special MDX functions, such as YTD(), ParallelPeriod(), and others in
their GULI. The availability of those functions is often determined by dimension type (has to be
of the type Date) and by the existence of the valueColumn property typed as Date on the key
attribute of the dimension, or both. Specifically, Excel 2007 and Excel 2010 look for the latter.
Be sure to check those things when you're working on your date dimension.

Here's a link to the document which explains how to design cubes for Excel:
http://tinyurl.com/DesignCubesForExcel.

WOW! eBook
www.wowebook.org

http://tinyurl.com/DesignCubesForExcel

See also

e Calculating today's date using the string functions and Calculating today's date using an
attribute hierarchy are the recipes that provide an alternative solution to calculating
today's date. You should read both of them in order to understand the pros and cons of

each approach.

WOW! eBook
www.wowebook.org

Calculating today's date using an attribute
hierarchy

The third way to calculate today's date is by using an attribute hierarchy. This is potentially the
best way.

Instead of all the complexity with sets, strings, and other things in the previous two recipes,
here we simply add a new column to the Date table and have the ETL maintain a flag for
today's date. Then we slice by that attribute instead of using the Now() function in MDX. Plus,
we don't have to wait to switch to tomorrow in MDX queries until the ETL completes and the

cube is processed.

WOW! eBook
www.wowebook.org

Getting ready

Open the Adventure Works DW 2016 solution in SSDT. Double-click on the Adventure Works
DW data source view. Locate the Date dimension in the left Tables pane and click on it.

WOW! eBook
www.wowebook.org

How to do it...

Follow these steps to calculate today's date using an attribute hierarchy:

1.
2.

W

11.

12.

13.

Right-click on the Date table and select New Named Calculation.
Enter Today for Column Name and the following for the expression:

case when convert(varchar(8), FullDateAlternateKey, 112) =
convert(varchar(8), GetDate(), 112)
then 'Yes'
else 'No'
end

Close the dialog and explore that table. No record will have Yes in the last column.
Since we're on Adventure Works, which doesn't have the current date, we have to adjust
the calculation by shifting it to the year 2013. Define the New Named Calculation using
this formula and name it Today Aw:

case when convert(varchar(8), FullDateAlternateKey, 112) =

'2013"' +

right(convert(varchar(8), GetDate(), 112), 4)
then 'Yes'
else 'No'

end

Close the dialog and explore that table. You should notice that this time, one row in the
year 2013 has Yes in the last column. It will be the row with the day and month the same
as your system's day and month.

Save and close data source view.

Double-click on the Date dimension in the Solution Explorer.

Drag the Today AW column from the Date dimension table to the list of attributes on the
left side. Leave the relation to the key attribute as it is flexible. This will be the only
attribute of that kind in this dimension. All others should be rigid.

Save, deploy, and process the full Date dimension.

. Double-click on the Adventure Works cube in the Solution Explorer, navigate to the

Browser tab, and click on a button to process the cube.

Once it is processed, click on the Reconnect button and drag the Internet Sales Amount
measure in the data part of the browser.

Add the [Date].[Calendar] hierarchy onto the rows and expand it a few times. Notice
that all the dates are here.

Add the [Date].[Today Aw] hierarchy into the slicer and uncheck the No member in it.
Notice that the result contains only the current date. You can do the same using any other
hierarchy of the Date dimension; all will be sliced by our new attribute.

WOW! eBook
www.wowebook.org

How it works...

This recipe depends on the fact that SSAS implements the so-called auto-exists algorithm.
The main characteristic of it is that when two hierarchies of the same dimension are found in
the query, the one in the slicer automatically reduces the other on the axis so that only some of
the members remain there, those for which an intersection exists.

In other words, if we put the Yes member into the slicer, as we did a moment ago, only those
years, months, quarters, days in the week, and so on, that are valid for today's date remain,
meaning the current year, month, day in the week, and so on. Only one member from each
hierarchy will remain.

The same query will give different results each day. That is exactly what we wanted to achieve.
The usage is fairly simple—dragging the Yes member into the slicer, which should be
possible in any SSAS frontend.

The beauty of this solution lies not only in the elegance of creating queries, but in the fact that
it is the fastest method for implementing the logic for today's date. Attribute relations offer
better performance than string-handling functions and filtering.

WOW! eBook
www.wowebook.org

There's more...

The solution doesn't have to stop with the [Date].[Today AW] hierarchy. We can add Today as
a set in the MDX script. This time, however, we'll have to use the Exists() function in order
to get the related members of other hierarchies. Later on, we can use navigational functions to
take the right part of the hierarchy.

For example, Today should be defined as follows:

SET [Today] AS
Exists([Date].[Calendar].[Date].MEMBERS,
[Date].[Today AW].&[Yes])

Once we have the Today named set, other variants are easy to derive from it. We've covered
some of them in the Calculating today's date using the string functions recipe.

However, be aware that named sets, when used inside aggregating functions such as Sum()
function and others, will prevent the use of block evaluation. Here's a link to the page that
talks about which things are improved and which aren't in SQL Server 2008 R2 Analysis
Services: http://tinyurl.com/Improved2008R2 .

The Yes member as a default member?

Short and simple - DON'T! This might cause problems when other hierarchies of the Date
dimension are used in the slicer. That is, users of your cube might accidentally force a
coordinate which does not exist.

For example, if they decide to put January in the slicer when the default Yes member implies
the current quarter is not Q1, but let's say Q4, they'll get an empty result without understanding
what happened and why.

A solution exists, though. In such cases, they should add the A11 member of the [Date].
[Today Aw] hierarchy in the slicer as well, to remove restrictions imposed by the default
member. The question is—will you be able to explain that to your users?

A better way is to instruct them to explicitly put the Yes member in the slicer whenever
required. Yes, that's extra work for them, but this way they will have control over the context
and not be surprised by it.

Other approaches

There is another method and that is using many-to-many relationships. The advantage of
doing this over creating new attributes on the same dimension is that we only expose a single
new hierarchy, even if it is on a new dimension.

WOW! eBook
www.wowebook.org

http://tinyurl.com/Improved2008R2

See also

e The Calculating today's date using the string functions and Calculating today's date
using the MemberValue function recipes are the ones which provide an alternative
solution to calculating today's date. You should read both of them in order to understand
the pros and cons of each approach.

WOW! eBook
www.wowebook.org

Calculating the difference between two dates

This recipe shows how to calculate the difference between two dates. We are going to use
promotions as an example, and calculate the time span of a promotion, from the start date to

the end date.

WOW! eBook
www.wowebook.org

Getting ready

Start SQL Server Management Studio and connect to your SSAS 2016 instance. Click on the
New Query button and check that the target database is Adventure Works DW 2016. Then
execute the following query:

SELECT
{ [Measures].[Reseller Order Count] } ON O,
{ [Promotion].[Start Date].[Start Date].MEMBERS *
[Promotion].[End Date].[End Date].MEMBERS } ON 1
FROM
[Adventure Works]
WHERE
([Promotion].[Promotion Type].&[Discontinued Product])

The query shows that the Discontinued Product promotion appeared twice with various time
spans. Our task is to calculate how many days it lasted each time.

WOW! eBook
www.wowebook.org

How to do it...

Follow these steps to calculate the difference between two dates:

1. Add the wITH part of the query.

2. Define two calculated measures that are going to collect the ValueColumn property of the
Start Date and End Date hierarchies of the Promotion dimension.

3. Define the third calculated measure as Number of days using the VBA DateDiff ()
function and the two helper-calculated measures defined a moment ago. Be sure to

increase the second date by one in order to calculate the duration, meaning that both start
and end dates will count.

4. Include all three calculated measures on the columns and run the query, which should
look like the following:

WITH
MEMBER [Measures].[Start Date] AS
[Promotion].[Start Date].CurrentMember .MemberValue
MEMBER [Measures].[End Date] AS
[Promotion].[End Date].CurrentMember .MemberValue
MEMBER [Measures].[Number of days] AS
DateDiff('d', [Measures].[Start Date],
[Measures].[End Date] + 1)
SELECT
{ [Measures].[Reseller Order Count],
[Measures].[Start Date],
[Measures].[End Date],
[Measures].[Number of days] } ON 0,
{ [Promotion].[Start Date].[Start Date].MEMBERS *

[Promotion].[End Date].[End Date].MEMBERS } ON 1
FROM

[Adventure Works]
WHERE

([Promotion].[Promotion Type].&[Discontinued Product])

5. Check your result. It should look as follows:

Reseller Order Count || Start Date End Date Mumber of days
Movember 12, 2011 || December 28, 2011 24 201111412 201112428 47
October 25, 2013 December 28, 2013 62 2013410729 2013412728 61
WOW! eBook

www.wowebook.org

How it works...

The pateDiff () is a VBA function. It can also be found in T-SQL. What we have to do is
specify the time interval in which we would like the difference to be expressed. In our case,
we used the d token which corresponds to the day interval.

The duration is calculated as a difference plus one because both boundaries must be included.
In the second row, it's easy to see that the 31 days in May and 30 days in June must equal 61.

WOW! eBook
www.wowebook.org

There's more...

The pateDiff () function expects the date type items as its second and third arguments.
Luckily, we had exactly the required type in the ValueColumn property. This can be checked by
opening SSDT and analyzing the Start Date and End Date hierarchy on the Promotion
dimension. If it weren't the case, we would have to convert them into the Date type and use
them in the DateDiff () function. Here are a couple of working examples using a VBA
function cbate() to convert a valid date expression into a Date type:

CDhate('2016-06-28')
CDate([Promotion].[Start Date].CurrentMember .Name)

Dates in other scenarios

The example in this recipe highlighted a case where the two dates were found on two different
hierarchies. That will not always be so. There will be situations when you'll only have a single
date hierarchy or no dates at all.

There are two ways to get those dates. You can calculate them in the form of two measures as
we did in this recipe or locate them on the Date hierarchy of your bate dimension.

The example illustrated in this recipe used the bDatepiff () function, a good fit for the
approach with measures since the two dates are from two different hierarchies. We should
convert the value of measures (or expressions) to an appropriate date type (if it isn't already
s0), because the DateDiff () function requires dates.

The other approach is to locate the dates on one single Date hierarchy. For example, you can
calculate the number of consecutive days with no change in quantity of products in the
warehouse by locating a range of members on the Date hierarchy.

In that case, there is no need for the bateDiff () function. Simply form a range of members
by employing the range-based shortcut, specifying the first date followed by a colon and then
the second date. Finally, count the members in that set using the Count () function. Here is a
working example of using the range-based shortcut and the count() function:

Count([Date].[Date].&[20130101]:[Date].[Date].&[20130301])
Actually, the use of the count() function might turn off block computation, so use its Sum()
alternative:

sum({<memberl> : <member2> }, 1)
Here, <member1> and <member2> are placeholders for the range.

This will give you the same count of members in that range, but the sum() function is
optimized to work in block mode while Count() over a range is not.

WOW! eBook
www.wowebook.org

When the members in that range are dates (which will typically be so), counting them will
return the duration in days. If you need a different granularity (let's say the number of weeks,
hours, or minutes), simply multiply the duration in days with the appropriate factor (1/7, 24,
or 24*60, respectively). Additionally, for the DateDiff () function, you can provide the
appropriate first argument. See here for options: http://tinyurl.com/DateDiffExcel .

The problem of non-consecutive dates

A problem will arise if dates are not consecutive, that is, if some of them are missing in your
Date dimension. Here we are referring to weekends, holidays, and others which are
sometimes left out of the date dimension guided by the thinking that there is no data in them,
so why include them in the dimension? You should know that such a design is not
recommended and the solution provided in this recipe will not work. Moreover, this will not
be the only problem you'll encounter with this bad design. Therefore, consider redesigning
your date dimension or look for alternative solutions listed in the See also section of this
recipe.

Tip

Days such as weekends and holidays might not have data in them. However, leaving them out
in the Date dimension is not recommended.

WOW! eBook
www.wowebook.org

http://tinyurl.com/DateDiffExcel

See also

e When the dates are close to one another, you might want to calculate the time difference
instead. This is described in the following recipe, Calculating the difference between two
times.

WOW! eBook
www.wowebook.org

Calculating the difference between two times

This recipe is similar to the previous one, but here we will show how to calculate the
difference in time and format the duration appropriately.

By time, we mean everything on and beneath the day granularity. What is specific about time
is that all periods are proportionally divided. A day has 24 hours, an hour has 60 minutes, and
a minute has 60 seconds. On the other hand, the above-day granularity is irregular days in a
month vary throughout the year, and days in the year vary on leap years.

The nice thing about having proportional periods is that we can present the result in various
units. For example, we can say that an event lasted for 48 hours, but we can also say 2 days.
On the other hand, we can say 2 days, but we cannot say 0.06 months because a month is not a
constant unit of time.

This ability to format time duration in various units will be demonstrated in the following
example as well.

WOW! eBook
www.wowebook.org

Getting ready

The Adventure Works database does not contain any attribute or measure that has hours,
minutes, or seconds. Hence, we will create two calculated measures, one representing the start
and the other representing the end of an event. Here are those measures:

WITH
MEMBER [Measures].[Start Time] AS
CDate('2013-09-18 00:40:00")
MEMBER [Measures].[End Time] AS
CDate('2013-09-21 10:27:00")
SELECT
{1} ONO
FROM
[Adventure Works]

WOW! eBook
www.wowebook.org

How to do it...

Follow these steps to calculate the difference between two times:

1. Define a new calculated measure as a difference of two initial measures introduced
earlier and name it Duration in days.

2. Put that new measure on axis 0 as a single measure and run the query, which should look
as follows:

WITH

MEMBER [Measures].[Start Time] AS
CDate('2013-09-18 00:40:00"')

MEMBER [Measures].[End Time] AS
CDate('2013-09-21 10:27:00")

MEMBER [Measures].[Duration in days] AS

[Measures].[End Time] - [Measures].[Start Time]
SELECT

{ [Measures].[Duration in days] } ON O
FROM

[Adventure Works]

3. The result represents the number of days between those two events.

WOW! eBook
www.wowebook.org

How it works...

Each event has a starting point and an ending point. If those points in time are represented as
dates, being the date type, then we can apply the simple operation of subtraction in order to
get the duration of that event. In case those were not date type points, we should convert them
into the date format, as shown in this example (string to date conversion using the cbate()
VBA function).

WOW! eBook
www.wowebook.org

There's more...

It is possible to shift the result into another time unit. For example, we can calculate the
duration in hours by multiplying the initial expression with the number of hours in a day:

MEMBER [Measures].[Duration in hours] AS
([Measures].[End Time] - [Measures].[Start Time]) * 24
, FORMAT_STRING = '#,##0.0'

Add this member into the initial query and observe the results.

Likewise, we can get the duration in minutes and seconds if required. Multiplications are by
60 and 3,600, respectively, in addition to the 24 already there for the number of hours.

Formatting the duration

Duration values can be formatted. Here's an example that shows how the original buration
in days calculation can be formatted so that the decimal part becomes displayed in a well-
understood hh :mm:ss format, where hh stands for hours, mm for minutes, and ss for seconds:

MEMBER [Measures].[My Format] AS
iif([Measures].[Duration in days] > 1,
CStr(Int([Measures].[Duration in days])) +
mrn IlI’ '"G) Ill)
+ 'hh:mm:ss'

MEMBER [Measures].[Duration d hh:mm:ss] AS
([Measures].[End Time] - [Measures].[Start Time])
, FORMAT_STRING = [Measures].[My Format]

Add this member into the initial query and observe the results.

Here is the screenshot showing all three calculated measures:

Duration in days Duration in hours || Duration d hh:mm:ss
3.40763888888614 g81.8 3 09:47.00

Notice that we have wrapped the expression for FORMAT_STRING in a separate calculated
measure My Format. The reason for this is to improve the performance through caching. Only
cell values are cached; expressions on the FORMAT_STRING are not cached. That is why it pays
off to define them in separate measures.

Examples of formatting the duration on the Web

Here are a couple of links with good examples of formatting the duration on the Web:
http://tinyurl.com/FormatDurationMosha

WOW! eBook
www.wowebook.org

http://tinyurl.com/FormatDurationMosha

http://tinyurl.com/FormatDurationVidas

Counting working days only

In case you are interested in counting working days only, Marco Russo, one of the reviewers
of this book, presented his approach to this problem in his blog post:
http://tinyurl.com/Working DaysMarco.

WOW! eBook
www.wowebook.org

http://tinyurl.com/FormatDurationVidas
http://tinyurl.com/WorkingDaysMarco

See also

e When the dates are far from each other, you might want to calculate the date difference
instead. This is described in the previous recipe, Calculating the difference between two
dates.

WOW! eBook
www.wowebook.org

Calculating parallel periods for multiple dates
in a set

In the Calculating the year-over-year (YoY) growth (parallel periods) recipe, we have shown
how the ParallelPeriod() function works and how it can be used to calculate the YoY
growth. All we had to do is specify a member, ancestor's level, and an offset, and the parallel
member was returned as a result.

Online Analytical Processing (OLAP) works in discrete space and therefore many functions,
ParallelPeriod() included, expect a single member as their argument. On the other hand,
relational reports are almost always designed using a date range, with Date1 and Date2
parameters for many relational reports. As the relational reporting has a longer tradition than
the multidimensional, people are used to thinking in ranges. They expect many
multidimensional reports to follow the same logic. However, operating on a range is neither
easy nor efficient. A cube designed with best practices can help, by eliminating the need for
ranges and increasing the performance of the cube. A well-designed cube should have various
attributes on the time dimension: months, weeks, quarters, and so on. They should cover
common ranges and should be used instead of a range of random dates.

However, there are times when the cube design cannot cover all the combinations and the
request for reports to operate on a range is quite legitimate. The question arises—can we do
the same in OLAP as in relational reporting? Can we calculate the growth based on a range of
members and not just a single member?

Yes, we can. The solution in MDX exists. This recipe shows how to calculate parallel periods
with multiple dates defined as a set. The next recipe shows how to deal with a more complex
case—when dates are present in the slicer.

WOW! eBook
www.wowebook.org

Getting ready

We are going to make a simple query. We will analyze sales by colors for a date range that
starts in December and ends just before Christmas. We would like to analyze how we are
doing in respect to the previous year, for the same period.

Start SQL Server Management Studio and connect to your SSAS 2016 instance. Click on the
New Query button and check that the target database is Adventure Works DW 2016. Then
execute the following query:

WITH
MEMBER [Internet Sales CP] AS
Sum({ [Date].[Calendar].[Date].&[20131201]
[Date].[Calendar].[Date].&[20131224] },
[Measures].[Internet Sales Amount])
SELECT
{ [Internet Sales CP] } ON O,
{ [Product].[Color].MEMBERS } ON 1
FROM
[Adventure Works]

The query has a date range. The aggregate of that range in the form of a sum is calculated in a
calculated measure, which is then displayed for each color, and the total is included as the first
row. The result is shown in the following screenshot:

Intemet Sales CP
All Products £1,622.851.50
Black 2457 768 45
Blue £232531.00
Grey (ruall}
Multi £8.669.65
MNA £31.455.78
Red £20.783.35
Silver £360,631.70
Silver/Black (ruall}
White $413.54
Yellow £510,598.43

The calculated measure Internet Sales CP tells us the sales for each product color during
December just before Christmas in the year 2013, but it is not telling us how much better or
worse we are doing. What we need is the sales during the same December date range, but in
the previous year. With both sales during the same date range in two different years, we can
then calculate the YoY percent values.

In the Calculating the year-over-year (YoY) growth (parallel periods) recipe in this chapter, we
have learned about the ParallelPeriod() function. Our first attempt would be to write an

WOW! eBook
www.wowebook.org

expression such as:

(ParallelPeriod([Date].[Calendar].[Calendar Year],
1,
[Date].[Calendar].CurrentMember),
[Measures].[Internet Sales Amount])

This expression will only give us the sales for one date at a time. However, we have more
than just one date. Our challenge in this recipe is to sum up the sales during all the dates in the
previous year.

WOW! eBook
www.wowebook.org

How to do it...

Follow these steps to calculate parallel periods for multiple dates in a set:

1. Define a new calculated measure, which returns the value for the same period, but in the
previous year. Name it Internet Sales PP, where PP stands for parallel period. The
expression should look as follows:

MEMBER [Internet Sales PP] As
Sum({ [Date].[Calendar].[Date].&[20131201]
[Date].[Calendar].[Date].&[20131224] },
(ParallelPeriod([Date].[Calendar].[Calendar Year],
1,
[Date].[Calendar].CurrentMember),
[Measures].[Internet Sales Amount])

)
, FORMAT_STRING = 'Currency'

2. Define another measure, Internet Sales YoY %, as a ratio of the PP measure over the CP
measure. The expression should be as follows:

MEMBER [Internet Sales YoY %] As
iif([Internet Sales PP] = 0, null,
([Internet Sales CP] / [Internet Sales PP]))
, FORMAT_STRING = 'Percent'

3. Add both calculated measures to the query and execute it. The query should look as
follows:

WITH
MEMBER [Internet Sales CP] AS
Sum({ [Date].[Calendar].[Date].&[20131201] :
[Date].[Calendar].[Date].&[20131224] },
[Measures].[Internet Sales Amount])
MEMBER [Internet Sales PP] As
Sum({ [Date].[Calendar].[Date].&[20131201]
[Date].[Calendar].[Date].&[20131224] },
(ParallelPeriod([Date].[Calendar].[Calendar Year],
1,
[Date].[Calendar].CurrentMember),
[Measures].[Internet Sales Amount])
)
, FORMAT_STRING = 'Currency'
MEMBER [Internet Sales YoY %] As
iif([Internet Sales PP] = 0, null,
([Internet Sales CP] / [Internet Sales PP]))
, FORMAT_STRING = 'Percent'
SELECT
{ [Internet Sales PP],
[Internet Sales CP],
[Internet Sales YoY %] } ON 0,
{ [Product].[Color].MEMBERS } ON 1
FROM
[Adventure Works]

WOW! eBook
www.wowebook.org

4. The results show that three colors had better results than before, one had worse (red), but
the overall result is almost three times better. There were also four new colors in the

current season:

Intemet Sales PP || Intemet Sales CP || Intemet Sales Yo %

All Products 2447 563 58 £1,622.851.50 366.37%
Black £186,775.23 2457 768 45 245.05%

Blue (nully £232.531.00 (nully

Grey (ruall} (rually (ruall}

Multi (ully 2866965 (nully

MNA (nully £31.455.78 (nully

Red £99.960.12 £20.783.35 20.759%

Silver 812221376 £360,631.70 25956.08%
Silver/Black (ruall} (rually (ruall}

White (nully 541354 (nully

Yellow 234,014 88 £510,598.43 1501.10%

WOW! eBook

www.wowebook.org

How it works...

In order to calculate the parallel period's value for a set of members (a range in this example),
we apply the same principle we use when calculating the value for the current season,
summarizing the value of a measure on that range by using the sum() function.

The sum() function takes a set expression and a numeric expression. The calculation for the
previous season differs only in the numeric expression. There, we no longer use a

measure, [Internet Sales Amount], but instead a tuple. That tuple is formed using the
original measure, [Internet Sales Amount] combined with the parallel period's member. In
other words, we are reaching for the value in another coordinate and summing up those
values.

The calculation for the Yoy %ratio is very straightforward. We check the division by zero and
specify the appropriate format string.

WOW! eBook
www.wowebook.org

There's more...

The other approach is to calculate another set, the previous season's range, and then apply the
sum() function. Here's the required expression:

MEMBER [Internet Sales PP] As
Sum(
Generate(
{ [Date].[Calendar].[Date].&[20071201]
[Date].[Calendar].[Date].&[20071224] },
{ ParallelPeriod([Date].[Calendar]
.[Calendar Year],
1,
[Date].[Calendar]
.CurrentMember .Item(0))

)

[Measures].[Internet Sales Amount])

Here, we are iterating on the old set using the Generate() function in order to shift each
member of that set to its parallel member.

Note that we deliberately skipped defining any named sets for this scenario, because when
they are used inside aggregating functions such as Sum(), they prevent the block evaluation.
We should put the sets instead of named sets inside those functions.

One more thing: for measures with non-linear aggregation functions (that is, the bistinct

Count), the Aggregate() function should be used instead of sum().

Parameters

The set of dates defined as a range can often be parameterized as follows:

{ StrToMember(@Datel, CONSTRAINED)
StrToMember (@Date2, CONSTRAINED) }

This way, the query (or SSRS report) becomes equivalent to its relational reporting
counterpart.

Reporting covered by design

We mentioned in the introduction to this recipe that it is often possible to improve the
performance of the queries operating on a range of members by modifying the cube design.
How it's done is explained in more detail in the Using a new attribute to separate members on
a level recipe in Chapter 8 , When MDX Is Not Enough.

WOW! eBook
www.wowebook.org

See also

e The Calculating the year-over-year (YoY) growth (parallel periods) and Calculating
parallel periods for multiple dates in a slicer recipes deal with a similar topic

e The Generate() function, very useful here, is also covered in the Iterating on a set in
order to create a new one recipe in Chapter 2, Working with Sets

WOW! eBook
www.wowebook.org

Calculating parallel periods for multiple dates
in a slicer

In the Calculating the year-over-year (YoY) growth (parallel periods) recipe, we have shown
how the ParallelPeriod() function works when there is a single member involved. In

the Calculating parallel periods for multiple dates in a set recipe, we have shown how to do
the same, but on a range of members defined in a set. This recipe presents the solution to a
special case when the set of members is found in a slicer.

WOW! eBook
www.wowebook.org

Getting ready

We will use the same case as in the previous recipe; we will calculate the growth in the pre-
Christmas season for each color of our products.

Start SQL Server Management Studio and connect to your SSAS 2016 instance. Click on the
New Query button and check that the target database is Adventure Works DW 2016. Then
execute the following query:

SELECT
{ [Internet Sales Amount] } ON O,
{ [Product].[Color].MEMBERS } ON 1
FROM
[Adventure Works]
WHERE
({ [Date].[Calendar].[Date].&[20131201]
[Date].[Calendar].[Date].&[20131224] })

The query returns the value of the Internet Sales Amount for each color. Notice that when
the range is provided in the slicer, there's no need to define new calculated measure as in the
previous recipe; the SSAS engine automatically aggregates each measures using its
aggregation function. Because of that, this is the preferred approach for implementing
multiselect, although it is rarely found in SSAS frontends.

WOW! eBook
www.wowebook.org

How to do it...

Follow these steps to calculate parallel periods for multiple dates in a slicer:

1. Define a new calculated member. Name it Internet Sales PP.The definition for it
should be the sum of the parallel period's values on existing dates of the Date.Calendar
hierarchy:

MEMBER [Internet Sales PP] As
Sum(EXISTING [Date].[Calendar].[Date].MEMBERS,
(ParallelPeriod([Date].[Calendar].[Calendar Year],
1,
[Date Range].Current.Item(0)),
[Measures].[Internet Sales Amount])

)
, FORMAT_STRING = 'Currency'

2. Add another calculated measure. Name it Internet Sales YoY % and define it as a ratio
of the original Internet Sales Amount measure over the Internet Sales PP measure.
Be sure to implement a test for division by zero.

Add both calculated measures on the columns axis.

4. The final query should look as follows:

w

WITH
MEMBER [Internet Sales PP] As
Sum(EXISTING [Date].[Calendar].[Date].MEMBERS,
(ParallelPeriod([Date].[Calendar].[Calendar Year],
1,
[Date].[Calendar].CurrentMember),
[Measures].[Internet Sales Amount])
)
, FORMAT_STRING = 'Currency'
MEMBER [Internet Sales YoY %] As
iif([Internet Sales PP] = 0, null,
([Measures].[Internet Sales Amount] /
[Internet Sales PP]))
, FORMAT_STRING = 'Percent'
SELECT
{ [Internet Sales PP],
[Internet Sales Amount],
[Internet Sales YoY %] } ON O,
{ [Product].[Color].MEMBERS } ON 1
FROM
[Adventure Works]
WHERE
({ [Date].[Calendar].[Date].&[20131201]
[Date].[Calendar].[Date].&[20131224] })

5. Execute it and observe the results. They should match the results in the previous recipe
because the same date range was used in both recipes:

WOW! eBook
www.wowebook.org

Intemet Sales PP || Intemet Sales Amount || Intemet Sales Yot %
All Products 2447 563 58 £1,622,851.50 36637
Black £186,775.23 2457 768 45 245.09%
Blue (nully £232531.00 (nully
Grey (ruall} (ruall} {rually
Multi (ully £8.669.65 {rully
MNA (nully £31.455.78 (nully
Red £99.960.12 £20,783.35 20.759%
Silver 812221376 £360,631.70 2596.08%
Silver/Black (ruall} (ruall} {rually
White (nully §413.54 (nully
Yellow 234,014 88 £510,598 43 1501.10%

WOW! eBook

www.wowebook.org

How it works...

For the purpose of the comparison between the solution in this recipe and that of the previous
recipe, Calculating parallel periods for multiple dates in a set, we are repeating the calculated
members here:

-- Sum up the sales over a set of dates from previous year
MEMBER [Internet Sales PP] As
Sum({ [Date].[Calendar].[Date].&[20131201]
[Date].[Calendar].[Date].&[20131224] },
(ParallelPeriod([Date].[Calendar].[Calendar Year],
1,
[Date].[Calendar].CurrentMember),
[Measures].[Internet Sales Amount])

)

-- Sum up the sales over a set of dates from previous year
-- when the set of dates for the current year is on the slicer
MEMBER [Internet Sales PP] As
Sum(EXISTING [Date].[Calendar].[Date].MEMBERS,
(ParallelPeriod([Date].[Calendar].[Calendar Year],
1,
[Date].[Calendar].CurrentMember),
[Measures].[Internet Sales Amount])

)

Note that the only difference is in the set expression for the sum() function. To detect the
multiple members, or a set, in the slicer, we have to use the EXISTING keyword. The EXISTING
keyword forces the specified set, that is, the dates on the calendar hierarchy to be evaluated
within the current contexts in the slicer. It serves the purpose of collecting all the members on
the leaf level, the Date level in this case, that are valid for the current context. Since the slicer
is the part of a query that establishes the context, this is a way in which we can detect a
currently selected range of members (or any current member on axes in general).

Once we know the dates from the slicer, we can use that range to sum the values of the
measure in the parallel period.

Finally, the YoY % ratio is calculated using both measures, Internet Sales Amount and
Internet Sales PP.

WOW! eBook
www.wowebook.org

There's more...

We can never know exactly what was in the slicer, only see the shadow of it. Let's see why.

There are two MDX functions that serve the purpose of identifying members in the context.
The first is the currentMember function. The function undoubtedly identifies single members,
but it cannot be used for detecting multiple members in context. That's what the Existing
function does. However, that one is not so precise. In other words, each of them has their
purpose, advantages, and disadvantages.

Suppose the slicer contains the city New York, a member of the Geography .Geography user
hierarchy. Using the CurrentMember function, we can immediately identify the exact member
of that hierarchy. We know that the slicer contains New York city, not anything above, below,
left, or right.

However, if there's also the United Kingdom country member, the use of CurrentMember is
inappropriate; it will result in an error.

In that case, we must use the Existing function. That function detects members of a level, not
the hierarchy, which makes it less precise. If used on the Country level, it will return United
States and United Kingdom although United States wasn't in the slicer, but one of its
descendants New York city. If used on a state-province level, it will return New York and all
the children of the UK member.

The following screenshot can shed more light on it. It shows the members New York, United
Kingdom, United States, and their relative positions; the different levels they are on:

=l & Al Geogrephiss

+ @ Ausiraies
o Cenada
& Frarce
o Germany
& nited Kingdom
o nited Stetes
@ Alebema
o Arizons
@ Caifornia
& Cooredo
o Comnecticut
@ Forid=
& Ceorgia
@ Id=ha
@ Tlinois
t W Indiana
1 Kenbucky
1 Manz
1 Maryland
i W Massachusetts
t| o Michigan
t i Minnesota
1 Mississiop
tl il Missouri
t o Montona
t| MNevada
t| @ Mew Hampshire
il New Mesico

WOW! eBook
www.wowebook.org

The problem with this is that we never know exactly which members there were. The only
way to calculate this correctly is to use the leaf level of a hierarchy because only then can we
be sure that our calculation is correct. This can have a serious impact on the performance;
leaf level calculations are slow in OLAP.

The other problem with detecting the context is that neither the Existing function nor the
CurrentMember function detects what's in the subselect part of the query. That is not a problem
per se, because both the slicer and the subselect have their purpose. The subselect doesn't set
the context and so there's no need to know what was in there. However, Excel 2007 and 2010
use subselect in many situations where the slicer should be used instead and that makes many
calculations useless because they can't detect the context and adjust to it. Make sure to test
calculations in your client tool of choice to see whether it also uses unnecessary subselects.

Here's a blog post by Mosha Pasumansky that shows how to use dynamically named sets to
detect the contents of subselect: http://tinyurl.com/MoshaSubselect .

The difference between them comes from the fact that the original period can be present in
various places within an MDX query and that there are one or more dates the parallel period
should be calculated for. Based on that, an appropriate recipe should be applied. Therefore, in
order to understand and memorize the differences between them, it is suggested that you read
all of the recipes dealing with parallel periods.

WOW! eBook
www.wowebook.org

http://tinyurl.com/MoshaSubselect

See also

e The Calculating the year-over-year (YoY) growth (parallel periods) and Calculating
parallel periods for multiple dates in a set recipes, deal with a similar topic, how to
calculate the set of dates in a parallel period

WOW! eBook
www.wowebook.org

Chapter 4. Concise Reporting

In this chapter, we will cover the following recipes:

Isolating the best N members in a set

Isolating the worst N members in a set

Identifying the best/worst members for each member of another hierarchy

Displaying a few important members, with the others as a single row, and the total at the
end

Combining two hierarchies into one

Finding the name of a child with the best/worst value

Highlighting siblings with the best/worst values

Implementing bubble-up exceptions

WOW! eBook
www.wowebook.org

Introduction

A crucial part of report design is determining what the appropriate level of information will
be presented to the business users. The appropriate level of information must be carefully
matched to any business requirements, with maximized benefit to the business and minimum
performance impact.

Every analytical reporting project has different requirements. In this chapter, we are going to
focus on techniques that you can employ in your project to make analytical reports more
compact and more concise, and therefore more efficient.

Recipes in this chapter can be implemented in pivot tables, the analytical component found in
any SSAS frontend in one form or another. SQL Server Reporting Services (SSRS) report
developers will also find these recipes very useful since they can implement these methods
directly in an SSRS report.

The problem with pivot table-style reports is that they tend to grow very large very quickly.
Including several hierarchies on rows, and some on columns, will result in a very large table.

The analysis of a large table can be very difficult. Even worse, when presenting a large
amount of data in a chart, it might not be very readable when the number of items crosses a
certain threshold.

The solution is to make reports compact; to focus on what is important to business users in
your project. This chapter offers several techniques for reducing the amount of data reported
without losing any crucial information.

We will start with several recipes dealing with the isolation of important members, whether
they are from only one hierarchy or from multiple.

We will also present a unique way of presenting data in one single report that includes three
sections: the top N members, the other members as a single row, and the total at the end.

This chapter also includes a trick for combining members from two different hierarchies into
one column.

In the last three recipes, we will cover techniques for presenting data at a higher granular
level, whilst extracting additional information at the lower granular level and color-coding
the foreground and/or background of certain important cells.

WOW! eBook
www.wowebook.org

Isolating the best N members in a set

Hierarchies can contain a lot of members. In this recipe, we are going to show you how to
extract only the significant members: ones with the highest value for a certain measure.

This requirement is often necessary because not only does it allow end users to focus their
efforts on a smaller set of members, but it also makes the queries much faster.

We will base our example on the TopCount () function, a function that returns the exact
number of members as specified. In addition to that function, MDX has two more similar
functions, namely TopPercent() and TopSum(). Contrary to the TopCount() function, these
functions return an unknown number of members. In other words, they are designed to return
a set of members based on their contribution, in a percentage or in an absolute value,
respectively.

Further similarities and differences between TopCount (), TopSum(), and TopPercent()
functions will be covered in later sections of this recipe.

WOW! eBook
www.wowebook.org

Getting ready

Start SQL Server Management Studio and connect to your SSAS 2016 instance. Click on the
New Query button and check that the target database is Adventure Works DW 2016.

In this example, we are going to use the Reseller dimension. Here is the query we will start
from:

WITH
SET [Ordered Resellers] AS
Order([Reseller].[Reseller].[Reseller].MEMBERS,
[Measures].[Reseller Sales Amount],
BDESC)
SELECT
{ [Measures].[Reseller Sales Amount] } ON O,
{ [Ordered Resellers] } ON 1
FROM
[Adventure Works]

Once executed, this query returns reseller sales values for each individual reseller, where the
resellers themselves are sorted in descending order of Reseller Sales Amount. Our task is to
extract only five of them, those with the highest sales amount:

Reseller Sales Amount -
Brakes and Gears 887710719
Excellent Riding Supplies 585384518
Vigorous Exercise Company £841.508.77
Totes & Baskets Company £816,755 58
Retail Mall £799.277 50
Comer Bicycle Supply 878V 77304
Outdoor Equipment Store 8746 31753
Thorough Parts and Repair Services £740,585.83
Health Spa, Limited £730,798.71
Fitness Toy Store 87T T2 6R
Latest Sports Equipment §724 299 64
First Bilee Store £711.864 76
Great Bikes £700.803.79
Farthermost Bike Shop 693,502 49
Field Trip Store £671,618.03 -
WOW! eBook

www.wowebook.org

How to do it...

We are going to use the TopCount () function to return the top five resellers with the highest
sales amount.

Follow these steps to create a named set with the TopCount () function:

1. Create a new calculated set and name it Top 5 Resellers.
2. Define it using the TopCount () function, where the first argument is the set of reseller
members, the second is the number 5, and the third is the measure Reseller Sales

Amount.
3. Remove the ordered Resellers set from the query and put the Top 5 Resellers on the

rows instead.
4. The query should look as follows. Execute it:

WITH
SET [Top 5 Resellers] AS
TopCount([Reseller].[Reseller].[Reseller].MEMBERS,
S,
[Measures].[Reseller Sales Amount])
SELECT
{ [Measures].[Reseller Sales Amount] } ON O,
{ [Top 5 Resellers] } ON 1
FROM
[Adventure Works]

5. Only the five rows with the highest values should remain, as displayed in the following

screenshot:
Reseller Sales Amount
Brakes and Gears 887710719
Excellent Riding Supplies 585384518
Vigorous Exercise Comp... £841.508.77
Totes & Baskets Company %816,755 .58
Retail Mall £799.277 50

6. Compare the rows returned with the ones from the initial query in this recipe. They
should be the same, in the exact same order, and with the exact same values, but with only
the top five resellers returned.

WOW! eBook
www.wowebook.org

How it works...

The TopCount () function takes three arguments. The first one is a set of members that is to be
limited. The second argument is the number of members to be returned. The third argument is
an expression to be used for determining the order of members.

In this example, we asked for the five resellers with the highest value of the measure Reseller
Sales Amount. Using the TopCount() function, we got exactly that.

It's worth mentioning that the TopCount () function always sorts the returned items in
descending order of the measure.

WOW! eBook
www.wowebook.org

There's more...

The most important argument of the TopCount () function is the third argument. That is, what
determines how the members will be sorted internally so that only the top N of them remain
afterwards. As mentioned earlier, the argument is an expression. This expression can be a
single measure, an expression including several measures, a single tuple, multiple tuples, or
anything that evaluates to a scalar value.

The top N members is evaluated in All Periods, not in the context of the
opposite query axis

As seen in the previous example, returning the top N members is quite easy with the
TopCount() function. However, in MDX, it is also relatively easy to make a mistake and return
members we do not intend to.

Here is one scenario in which that can happen.

We position a member of another hierarchy (for example, the year 2013 from the calendar
year hierarchy) on the opposite query axis (on columns), expecting the TopCount () function
to include that in its third argument. In the following query, you might mistakenly expect that
the TopCount () function will return the top N members in the single year 2013. It will not:

WITH
SET [Top 5 Resellers] AS

TopCount([Reseller].[Reseller].[Reseller].MEMBERS,

S,

[Measures].[Reseller Sales Amount])
SELECT

{ [Measures].[Reseller Sales Amount] } *

{ [Date].[Calendar Year].&[2013] } ON O,

{ [Top 5 Resellers] } ON 1
FROM

[Adventure Works]

The result is shown in the following screenshot. The question is - what does it represent?

Reseller Sales Amount
CY 2013
Brakes and Gears 835723724
Excellent Riding Supplies 827672943
Vigorous Exercise Comp... 255,750 52
Totes & Baskets Company 828977750
Retail Mall £159,23527

The result contains the same top five resellers which are evaluated in the context of all years,

with their sales amount in the single year 2013 displayed on the columns. In other words, we
WOW! eBook
www.wowebook.org

got the best N members in all years but then displayed their sales amount for a single year,
2013.

The data itself is correct, but the result is not what we intended. Notice that the sales amount
for the year 2013 in the previous screenshot is not ordered in descending order. This is a clue
that we have made a mistake.

The query and its subsequent result should also confirm that we have made a mistake in the
previous query. In the following query, we have placed the A11 Periods in the slicer and
queried the same top five resellers, which are evaluated in the context of all years. We then
displayed their sales amount for each year. Notice that only the first column A11 Periods is
sorted in descending order. Also, notice that the column CY 2013 shows the same sales
amount as the previous screenshot:

WITH
SET [Top 5 Resellers] AS

TopCount([Reseller].[Reseller].[Reseller].MEMBERS,

S,

[Measures].[Reseller Sales Amount])
SELECT
NON EMPTY

{ [Measures].[Reseller Sales Amount] } *

{ [Date].[Calendar Year].MEMBERS } ON O,

{ [Top 5 Resellers] } ON 1

FROM
[Adventure Works]
WHERE
([Date].[Calendar].[All Periods])
Reseller Sales Amount | Reseller Sales Amourt | Rasaller Sales Amount | Heseber Sales Amourt | Reseler Sales Amourd
All Perinds Cy 2010 Cr 20m Cr 2012 CY 2013
Brakes and Gears $477.107.19 (ol $185,995.56 $293.874.39 $397.237 24
Excebent Riding Supplies $853,849.18 {raull $180.664.82 §3%6.454 53 §276.729.43
Vigorous Exercize Company £841,908.77 (ol £300.525.66 §285632 59 £255.750.52
Totes & Baskets Compamy $816,755.58 (ot} $167.106.04 $359.872.04 $289.77750
Retail Mall §799,277.50 §35544 16 $303.068 51 $301.029.95 $159.235 27

Is it possible to see how we have made such a mistake? Yes, although not necessarily every
time.

In most cases, it is a clue that something went wrong with the calculation when the results are
not shown in descending order or when the number of rows is fewer than specified.

So, what is the reason for this kind of behavior?

The top N members will be evaluated in the context of the slicer

WOW! eBook
www.wowebook.org

Axes are independent. Only the members in the slicer are implicitly included in the third
argument of the TopCount() function (which is a mechanism known as Deep Autoexists:
http://tinyurl.com/AutoExists). To be precise, any outer MDX construct also sets the context,
but here we didn't have such a case, so we can focus on the slicer and axes relation only. To
conclude, only when the year 2013 is found in the slicer will the third argument then be
expanded into a tuple, and the result will be evaluated as the top N members in the year 2013.

Execute the following query and compare its result with the query that had the year 2013 on
the opposite axis (visible in the previous screenshot):

WITH
SET [Top 5 Resellers] AS

TopCount([Reseller].[Reseller].[Reseller].MEMBERS,

S,

[Measures].[Reseller Sales Amount])
SELECT

{ [Measures].[Reseller Sales Amount] } ON O,

{ [Top 5 Resellers] } ON 1
FROM

[Adventure Works]
WHERE

([Date].[Calendar Year].&[2013])

Notice that the members on the rows have changed. These resellers are the top five resellers
in the single year 2013. Also, notice that their values are shown in descending order:

Reseller Sales Amount
Foadway Bicycle Supphy 8436.521.66
Field Trip Store 842730559
Brakes and Gears 8397237 24
Perdect Toys £391,040 59
Thorough Parts and Repair Services £386.958.15

Using a tuple in the third argument of the TopCount() function to overwrite
the member on the slicer

Now, let us take a look at another type of mistake, that is, when we want to override the
context on the slicer but forget to do so in the third argument of the TopCount () function. For
example, when the year 2013 is in the slicer, we want to get the top N members from the
previous year, 2012.

Why would we want to do such a thing? Because we want to analyze how last year's best
resellers are doing this year.

If that is the case, we must provide a tuple as the third argument. The idea of the tuple is to

overwrite the context set by the slicer with the member from the same hierarchy used inside

WOW! eBook
www.wowebook.org

http://tinyurl.com/AutoExists

the tuple. Remember, it should be the same hierarchy or it will not work.

Following the previous example, where the year 2013 is on the slicer, we must change the
third argument of the TopCount () function to include a tuple:

([Measures].[Reseller Sales Amount],
[Date].[Calendar Year].&[2012])

The year 2012 is in the tuple to overwrite the year 2013 in the slicer.

Here is the final query:

WITH
SET [Top 5 Resellers in 2012] AS
TopCount([Reseller].[Reseller].[Reseller].MEMBERS,
S,
([Measures].[Reseller Sales Amount],
[Date].[Calendar Year].&[2012]))
SELECT
{ [Measures].[Reseller Sales Amount] } ON O,
{ [Top 5 Resellers in 2012] } ON 1
FROM
[Adventure Works]
WHERE
([Date].[Calendar Year].&[2013])

Develop a habit of naming the top N sets that use tuples appropriately (see earlier). Remember
that although the slicer or the outer MDX construct determines the context for the values to be
displayed and for the functions to be evaluated, we can always override that to adjust the set
we're after.

Testing the correctness of the result

The equivalent syntax of the TopCount () function is this:

Head(Order([Reseller].[Reseller].[Reseller].MEMBERS,
[Measures].[Reseller Sales Amount],
BDESC), 5)

Although this construct can be useful for testing the correctness of the result, TopCount() is
the preferred way of implementing the requirement of isolating the best N members. This is
because the order () function is a relatively slow MDX function because it materializes the
set, and the query optimizer may not be successful in optimizing the query by recognizing the
Head-Order construct as a TopCount() function.

Multidimensional sets

The first argument in the TopCount () function takes a set expression. In our examples, we
only used a one-dimensional set that has only one hierarchy reseller. In this case, the second
argument N determines the number of members from the one-dimensional set to be returned.

WOW! eBook
www.wowebook.org

In the case of multidimensional sets that are made of more than one hierarchy, the second
argument N determines the number of tuples to be returned. The returned tuples are also
sorted in descending order of the numeric expression.

TopPercent() and TopSum() functions

As we said in the introduction, TopPercent() and TopSum() are two functions similar to the
TopCount () function. The first one returns an unknown number of members. In

TopPercent(), the second argument determines the percentage of them to be returned, starting
from the ones with the highest values, and ending when the total value of the members
included compared to the total value of all members reaches the percentage specified in that
function. The second one works on the same principle, except that it is the absolute value and
not the percentage that is specified and compared. For example, TopPercent() with 80 means
that we want the top members who form 80 percent of the total result. TopSum() with
1,000,000 means that we want members whose total forms that value, looking from the
member with the highest value and adding all of them below until that value is reached.

The same principles, ideas, and warnings apply to all top-something functions.

WOW! eBook
www.wowebook.org

See also

e Refer to the Isolating the worst N members in a set and Identifying the best/worst
members for each member of another hierarchy recipes in this chapter

WOW! eBook
www.wowebook.org

Isolating the worst N members in a set

In the previous recipe, we showed you how to identify members with the highest result. In this
recipe, we will do the opposite and return those with the lowest result.

WOW! eBook
www.wowebook.org

Getting ready

Start SQL Server Management Studio and connect to your SSAS 2016 instance. Click on the
New Query button and check that the target database is Adventure Works DW 2016.

In this example, we are going to use the Reseller dimension. Here is the query we will start
from:

WITH
SET [Ordered Resellers] AS
Order([Reseller].[Reseller].[Reseller].MEMBERS,
[Measures].[Reseller Sales Amount],
BASC)
SELECT
{ [Measures].[Reseller Sales Amount] } ON O,
{ [Ordered Resellers] } ON 1
FROM
[Adventure Works]

Once executed, that query returns reseller sales values for every individual reseller, where the
resellers themselves are sorted in ascending order of the sales amount. Our task is to extract
only the five with the worst sales amount.

WOW! eBook
www.wowebook.org

How to do it...

We are going to use the BottomCount () function to return the bottom five resellers with the
worst sales amount.

Follow these steps to create a named set with the BottomCount () function:

1. Create a new calculated set and name it Bottom 5 Resellers.

2. Define it using the BottomCount () function, where the first argument is the set of reseller
members, the second is the number 5, and the third is the measure Reseller Sales
Amount.

3. Apply the NonEmpty () function over the set specified as the first argument using the same
measure as in the third argument of the BottomCount () function:

SET [Bottom 5 Resellers] AS
BottomCount(
NonEmpty([Reseller].[Reseller].[Reseller].MEMBERS,
{ [Measures].[Reseller Sales Amount] }),
S,
[Measures].[Reseller Sales Amount]

)

4. Remove the ordered Resellers set from the query and put the Bottom 5 Resellers on
rows instead.
5. The query should look as follows. Execute it:

WITH
SET [Bottom 5 Resellers] AS
BottomCount(
NonEmpty([Reseller].[Reseller].[Reseller].MEMBERS,
[Measures].[Reseller Sales Amount]),
S,
[Measures].[Reseller Sales Amount]

)
SELECT
{ [Measures].[Reseller Sales Amount] } ON O,
{ [Bottom 5 Resellers] } ON 1
FROM
[Adventure Works]

6. Only the five rows with the lowest values should remain, as displayed in the following

screenshot:
Reseller Sales Amount
Mobile Outlet £1.37
Parts Shop 82425
Eleventh Bike Store 5768
Large Bike Shop &h8.07
Essential Bike Worlks £50.33

WOW! eBook
www.wowebook.org

7. Compare the rows returned with the ones from the initial query in this recipe. If we
ignore the empty rows from the initial rows, they should be the same, in the exact same
order, and with the exact same values; only the new query returned only the lowest five
resellers.

WOW! eBook
www.wowebook.org

How it works...

The BottomCount() function takes three arguments. The first one is a set of members that is
going to be limited. The second argument is the number of members to be returned. The third
argument is the expression for determining the order of members.

In this example, we asked for the five resellers with the lowest value of the measure Reseller
Sales Amount. Using the BottomCount () function alone, without applying the inner
NonEmpty () function on the following tuple, we would get five rows with empty values:

NonEmpty([Reseller].[Reseller].[Reseller].MEMBERS,
[Measures].[Reseller Sales Amount])

We can think of values, once sorted, as being separated into four groups: positive values, zero
values, null values, and negative values. Those groups appear in that particular order once
sorted in descending order, and in the reverse order once sorted in ascending order.

In the TopCount () function covered in the previous recipe, we didn't experience the effect of
null values because the results were all positive. In the BottomCount () function, this is
something that needs to be taken care of, particularly if there are no negative values. The
reason we want to get rid of null values is because, from a business perspective, those values
represent no activity. What we are interested in is identifying members with activity.

That's the reason we applied the NonEmpty () function in the third step of this recipe. That
action removed all members with a null value in that particular context, leaving only
members with activity to the outer BottomCount () function.

It's worth mentioning that the BottomCount () function always sorts the rows in ascending
order.

WOW! eBook
www.wowebook.org

There's more...

The BottomPercent() and BottomSum() are two functions similar to the BottomCount ()
function. They are the opposite functions of the TopPercent() and TopSum() functions
explained in the last section of the previous recipe. The same principles, ideas, and warnings
also apply here.

WOW! eBook
www.wowebook.org

See also

e Refer to the Isolating the best N members in a set and Identifying the best/worst members
for each member of another hierarchy recipes in this chapter

WOW! eBook
www.wowebook.org

Identifying the best/worst members for each
member of another hierarchy

Sales territory country and reseller are two different hierarchies in Adventure Works DW. To
analyze sales, we might choose not to look at every reseller in every country. Instead, we
often only need to look for the top or bottom N resellers per country.

In this case, we can view the country as the outer hierarchy, and the reseller as the inner
hierarchy. Quite often, we need to analyze the combination of hierarchies in a way that the top
or bottom N members of the inner hierarchy are displayed for each member of the outer
hierarchy.

Displaying only the top or bottom N members of the inner hierarchy for each member of the
outer hierarchy is sort of a report reduction, where we preserve the important combinations
of members and leave out the rest of the cross join.

This recipe shows you how to create a TopCount () calculation to retrieve the top N resellers
in each sales territory.

WOW! eBook
www.wowebook.org

Getting ready

Start SQL Server Management Studio and connect to your SSAS 2016 instance. Click on the
New Query button and check that the target database is Adventure Works DW 2016.

In this example, we are going to use the Sales Territory dimension and the Reseller
dimension. Here is the query we will start from:

WITH
SET [Ordered Resellers] AS
Order([Reseller].[Reseller].[Reseller].MEMBERS,
[Measures].[Reseller Sales Amount] ,

BDESC)
SELECT
{ [Measures].[Reseller Sales Amount] } ON O,
NON EMPTY

{ [Sales Territory].[Sales Territory Country].MEMBERS *
[Ordered Resellers] } ON 1
FROM
[Adventure Works]

Once executed, the earlier query returns reseller sales values for every individual reseller and
country, where the resellers themselves are sorted in descending order of the sales amount for
each country:

Reseller Sales Amount -
All Sales Temtaries || Hometown Riding Supplies £144.00
All Sales Temtories | | Retail Cycle Shop 85118
All Sales Temtories | | BExtras Sporting Goods 86754
All Sales Temitories || Essertial Bike Works £50.33
All Sales Temtories | | Lange Bike Shop &h8.07
All Sales Temitories || Eleventh Bike Store 5768
All Sales Temtories | | Parts Shop 82425
All Sales Temtories || Mobile Outlet 9137
Australia Mationwide Supphy 822116978
Australia Rich Department Store £148,596.51
Australia (Gears and Parts Company £145.407 7
Australia Budget Toy Store £145,380.13
Australia Helmets and Cycles %116,300.95
Australia Cycle Parts and Accessories $115,085.64
Australia Helpful Sales and Repair Service £106.761.05
Australia Popular Bike Lines £105,590.13 =

Our task is to extract the five resellers with the best sales for each country. We would expect a
different top five resellers in each country.

WOW! eBook
www.wowebook.org

How to do it...

We are going to use the Generate() function together with the TopCount() function to return
the top five resellers in each country.

Follow these steps to create a calculated set of the top five resellers per country:

1. Define a new calculated set; name it Top 5 Resellers per Country.

2. Use the Generate() function as a way of performing the iteration.

3. Provide the set of countries found on rows as the first argument of that Generate()
function.

4. Provide the second argument of that function in the form of a cross join of the current

member of countries hierarchy and the TopCount() function applied to the set of

resellers.

Put that new calculated set on the rows, instead of having everything there.

6. Verify that the query looks like this and then execute it:

v

WITH
SET [Top 5 Resellers per Country] AS
Generate(
[Sales Territory].[Sales Territory Country].MEMBERS,
{ [Sales Territory].[Sales Territory Country]
.CurrentMember } *
TopCount([Reseller].[Reseller].[Reseller].MEMBERS,
S,
[Measures].[Reseller Sales Amount])

)
SELECT
{ [Measures].[Reseller Sales Amount] } ON O,
NON EMPTY
{ [Top 5 Resellers per Country] } ON 1
FROM
[Adventure Works]

7. The result is shown in the following screenshot. It returned different resellers for each
country; they are the top five resellers relative to each country:

WOW! eBook
www.wowebook.org

Reseller Sales Amount .
All Sales Temtories || Brakes and Gears 887710719
All Sales Temtories || Excellent Riding Supplies £853.84518
All Sales Temtories | | Vigorous Exercise Company £841.508.77
All Sales Temtoriezs || Totes & Baskets Company £816,755 .58
All Sales Temtories || Retail Mall £799.277.90
Australia Nationwide Supply . 522116978
Australia Rich Department Store £148.996 .51
Australia Gears and Parts Company $145407 74
Australia Budaet Toy Store $145.380.13
Australia Helmets and Cycles £116,300 .95
Canada Vigorous Exercise Company £841.508.77
Canada Retail Mall $799.277.90
Canada Comer Bicycle Supply 87V 77304
Canada Health Spa, Limited &730,758. 71
Canada Top Sports Supphy 2602 5559 39
France Metropolitan Equipment 2643745 50
France Registered Cycle Store £h80.222 33 —

Notice that the results are ordered as descending inside each country.

WOW! eBook

www.wowebook.org

How it works...

The Generate() function is a loop. Using that function, we can iterate over a set of members
and create another set of members, as explained in the Iterating on a set to create a new one
recipe in Chapter 2 , Working with Sets.

In this recipe, we used it to iterate over a set of countries and to create another set, a set that is
formed as a combination of the current country in the loop and the top five resellers in the
context of that country.

Notice that we simply used the measure [Reseller Sales Amount] as the third argument for
the TopCount () function. The loop sets the context; that is why we do not need to expand the
third argument of the TopCount () function into a tuple. The following tuple would be
redundant:

([Sales Territory].[Sales Territory Country].CurrentMember,
[Measures].[Reseller Sales Amount])

That current member is already implicitly there and set by the outer loop, the Generate()
function.

To display each country and its top five resellers on rows, we had to build a multidimensional
set in advance using the cross-production of two sets, as shown:

{ [Sales Territory].[Sales Territory Country].CurrentMember } *
TopCount([Reseller].[Reseller].[Reseller].MEMBERS,

S,
[Measures].[Reseller Sales Amount])

Because of the outer Generate() function, this multidimensional set is obtained in iteration,
where the top five resellers are identified for each country.

WOW! eBook
www.wowebook.org

There's more...

Was it really necessary to define such a complex syntax? Couldn't we have done something
simpler instead? Let's see.

One idea would be to define Top 5 Resellers as we did in the first recipe of this chapter and
use it on rows:

WITH
SET [Top 5 Resellers] AS
TopCount([Reseller].[Reseller].[Reseller].MEMBERS,
S5,
[Measures].[Reseller Sales Amount])
SELECT
{ [Measures].[Reseller Sales Amount] } ON O,
NON EMPTY
{ [Sales Territory].[Sales Territory Country]
.[Sales Territory Country].MEMBERS *
[Top 5 Resellers] } ON 1
FROM
[Adventure Works]

When this query is run, it returns the total of five rows, as seen in the following screenshot:

Reseller Sales Amount
Canada Vigorous Exercise Company £841.508.77
Canada Retail Mall £799.277.90
United States | | Brakes and Gears 887710719
United States || Bxcellent Riding Supplies 285384518
United States || Totes & Baskets Company %816,755.58

The results are not sorted in any particular order, which is the first indicator that something is
wrong. The number of returned items is fewer than expected. That is the second indicator.

To see what went wrong, we need to comment out the NON EMPTY keyword and execute the
same query again. This time, we can see more clearly what is going on:

WOW! eBook
www.wowebook.org

Reseller Sales Amount

Australia Brakes and Gears (ruall}
Australia Excellent Riding Supplies (ruall}
Australia Vigorous Exercise Company (ruall}
Australia Totes & Baskets Company (ruall}
Australia Retail Mall (ruall}
Canada Brakes and Gears {rually

Canada Excellent Riding Supplies {rually

Canada Vigorous Exercise Company £841.9508.77
Canada Totes & Baskets Company {rually

Canada Retail Mall £799.277.90
France Brakes and Gears (ruall}

France Excellent Riding Supplies (ruall}

France Vigorous Exercise Company (ruall}

France Totes & Baskets Company (ruall} -

Resellers repeat in each country. The group of resellers marked in the preceding screenshot
can be found preceding and following that country.

It wouldn't help to expand the third argument of the TopCount () function into a tuple either.
The following tuple would not help:

([Sales Territory].[Sales Territory Country].CurrentMember,
[Measures].[Reseller Sales Amount])

The reason why this doesn't work is because calculated sets are evaluated once - after the
slicer and before the iteration on cells. Therefore, the TopCount() function is evaluated in the
context of the default country, the root member, and not within the context of each country.
That is why the resellers repeat in each country.

While calculated sets are evaluated only once before each cell is evaluated, calculated
members, on the other hand, are evaluated for each cell. We cannot use a calculated member
in this case, because we need a set of five members. The only thing that's left is to use the
outer Generate() function to push each country into the set. By having everything in advance
before the iteration on the cells begins, we can prepare the required multidimensional set of
countries and their best resellers.

Support for the relative context and multidimensional sets in SSAS
frontends

Frontends perform cross join operations while allowing end users to filter and isolate
members of hierarchies to limit the size of the report. Some frontends even allow functions,
such as the TopCount() function, to be applied visually, without editing the actual MDX. The
thing they rarely do is to allow the TopCount() function to be applied relatively to another
hierarchy.

WOW! eBook
www.wowebook.org

As we have seen, without the relative component, the top N members are calculated in the
context of another hierarchy's root member, not individual members in the query. The only
solution is to define a multidimensional set using the Generate() function. With this comes
another problem - multidimensional sets (sets that contain members from more than one
attribute) are not supported in many frontends. Test the limitations of your tool to know
whether you can use it as a frontend feature, implement it in a cube as a multidimensional set,
or write an MDX query.

WOW! eBook
www.wowebook.org

See also

e Refer to the Isolating the best N members in a set and Isolating the worst N members in a
set recipes in this chapter

WOW! eBook
www.wowebook.org

Displaying a few important members, with the
others as a single row, and the total at the end

There are times when isolating the best or worst members is not enough. In addition to the
few important members, business users often want to see the total of all the other not-so-
important members, as well as a single row representing the total of all the members.

An example of this type of reporting requirement is shown in the following table:

Reseller Sales Amount

Top 1st Reseller [[$877,107.19

Top 2nd Reseller{$853,849.18

Top 3rd Reseller [[$841,908.77

Top 4th Reseller

Top 5th Reseller [[$799,277.90

Other Resellers $76,261,698.37

$816,755.58 ‘
$80,450,596.98 ‘

All Resellers ‘

In the first recipe in this chapter, Isolating the best N members in a set, we learned how to
isolate the best members using the TopCount() function. The challenge in this recipe is to get
only one row for the total of all Other Resellers, and only one row for the total of All
Resellers. We will also need to make sure that Top N Resellers, Other Resellers and All
Resellers are all combined into one column. This recipe shows you how to fulfill this type of
reporting requirement.

WOW! eBook
www.wowebook.org

Getting ready

Start SQL Server Management Studio and connect to your SSAS 2016 instance. Click on the
New Query button and check that the target database is Adventure Works DW 2016.

In this example, we're going to use the Reseller dimension. Here's the query we'll start from:

WITH
SET [Ordered Resellers] AS
Order([Reseller].[Reseller].[Reseller].MEMBERS,
[Measures].[Reseller Sales Amount],
BDESC)
SELECT
{ [Measures].[Reseller Sales Amount] } ON O,
{ [Ordered Resellers] } ON 1
FROM
[Adventure Works]

This query returns values of the Reseller Sales Amount measure for every single reseller.
Notice that we purposely sorted the resellers in descending order of the sales amount:

Reseller Sales Amount -
Brakes and Gears . $877.107.19
Excellent Riding Supplies £853.845138
Vigorous Exercise Company £841.908.77
Totes & Baskets Company £816,755.58
Retail Mall £799.277 50
Comer Bicycle Supply 87V 77304
Outdoor Equipment Store §746.317 53
Thorough Parts and Repair Services £740,585.83
Health Spa, Limited £730,798.71 -

Our goal is to keep only the top five resellers highlighted in the preceding screenshot, with
two additional rows. One of the additional rows is for other resellers, and the other one is for
all resellers.

WOW! eBook
www.wowebook.org

How to do it...

Follow these steps to return the Top 5 Resellers, followed by one row for other Resellers
and one row for A11 Resellers, all in one query:

1. Create a new calculated set and name it Top 5 Resellers.

2. Define it using the TopCount () function, where the first argument is the set of reseller
members, the second is the number 5, and the third is the measure Reseller Sales
Amount. In short, the definition should be this:

SET [Top 5 Resellers] AS
TopCount([Reseller].[Reseller].[Reseller].MEMBERS,
S,
[Measures].[Reseller Sales Amount])

3. Remove the ordered Resellers set from the query and put the Top 5 Resellers on the
rows instead.

4. Execute the query. Only the five rows with the highest values should remain.

Next, create a new calculated member and name it other Resellers. Use the following

definition:

v

MEMBER [Reseller].[Reseller].[All].[Other Resellers] AS
Aggregate(- [Top 5 Resellers])

6. Include that member on the rows, next to the set.
7. Finally, include the root member of the Reseller .Reseller hierarchy in a more generic
way by adding its [A11] level as the last set on the rows and run the query:

WITH
SET [Top 5 Resellers] AS
TopCount([Reseller].[Reseller].[Reseller].MEMBERS,
S,
[Measures].[Reseller Sales Amount])
MEMBER [Reseller].[Reseller].[All].[Other Resellers] AS
Aggregate(- [Top 5 Resellers])
SELECT

{ [Measures].[Reseller Sales Amount] } ON O,

{ [Top 5 Resellers],
[Reseller].[Reseller].[All].[Other Resellers],
[Reseller].[Reseller].[Al1] } ON 1

FROM
[Adventure Works]

8. The result will display seven rows: the top five resellers, the other resellers in a single
row, and the total in the form of the root member:

WOW! eBook
www.wowebook.org

Brakes and Gears

Excellent Riding Supplies
Vigorous Exercise Company
Totes & Baskets Company
Retail Mall

Cther Resellers

All Resellers

Reseller Sales Amount
887710715
£853.8459.18
£841.508.77
£816,755.58
£799.277 50

£76,261 658 .37
£380.450,556.98

WOW! eBook
www.wowebook.org

How it works...

The first part of the solution is to isolate the top N members. This is done relatively easily
using the TopCount() function. The more detailed explanation of this part is covered in the
first recipe of this chapter.

The second part is what is special about this type of report. All other members are obtained
using the negation of a set, which is written as a minus followed by that set. This is explained
in the Implementing NOT IN set logic recipe in Chapter 2 , Working with Sets.

Next, that negative set expression is wrapped inside the Aggregate() function, which
compacts that set into a single calculated member. That calculated member is the row that
follows the top N members in the result.

Finally, the root member of that hierarchy comes as the last row, which acts as a total of rows.
Here, it's worth noting that we didn't use the root member's name [Al11l Resellers]; we've
used its level name [A11]. The reason for this is explained in the next section.

WOW! eBook
www.wowebook.org

There's more...

The beauty of this solution is that the initial set, in this case Top 5 Resellers, can be any set.
For example, the initial set can be the bottom N members, members that are a result of a
Filter () function, existing members for the current context - pretty much anything. It does
not matter how many members there are in the initial set. All the rest will be aggregated in a
single row.

If we go one step further and use a report parameter in the place of the Reseller .Reseller
hierarchy, the query will work for any hierarchy without the need to change anything.

Another thing that makes this query generic is the way we referred to the root member. We
didn't use its unique name (which would be different for different hierarchies) [A11
Resellers]. We used its level name [Al1l] instead. [A11] is a generic level name for every
attribute hierarchy.

Notice that we created a calculated member for other Resellers, but not for A11 Resellers.
All resellers became the header for the last total row. To make this report a bit more user-
friendly, we could change the header to Total. We will need to create a calculated member for
the root member to change the header for the last total row.

The root member, found in the [A11] level, is usually named as A11 or A11 Something. In our
example, it's A11 Resellers. The following calculated member is named Total, which is an
alias for the A11 Resellers member:

MEMBER [Reseller].[Reseller].[All].[Total] AS
[Reseller].[Reseller].[All]

If we replace [Reseller].[Reseller].[Al1] with this calculated member on rows, the header
for the last total row will be changed to Total.

Making the query even more generic

The query in this recipe referred to the Reseller .Reseller hierarchy. By replacing any
reference to that hierarchy with a report parameter, we can make the query more generic. Of
course, that also means we should remove the word Reseller from [Top 5 Resellers] and
[Other Resellers].

We could then parameterize the whole query and insert any hierarchy and its level in it, in
their corresponding places. While Reseller.Reseller is a unique name for a hierarchy,
Reseller .Reseller .Reseller is the unique name of a level on that hierarchy. Therefore, any
reference to the Reseller .Reseller hierarchy could be replaced by a parameter, say,
@HierarchyUniqueName, and any reference to the Reseller .Reseller .Reseller level could be
replaced by a parameter, say, @LevelUniqueName. Once such a query is built as a template, it
can be executed as a regular query by passing dynamic parameters to it.

WOW! eBook
www.wowebook.org

To provide meaningful results for the chosen hierarchy and its level, we can also
parameterize the measure.

WOW! eBook
www.wowebook.org

See also

e Refer to the Implementing NOT IN set logic, Isolating the best N members in a set, and
Isolating the worst N members in a set recipes in this chapter

WOW! eBook
www.wowebook.org

Combining two hierarchies into one

The result of a query contains as many metadata columns as there are hierarchies on rows.
For example, if we put two hierarchies on rows, the color and size of products, there will be
two columns of metadata information, one for each hierarchy. In the first column, we will
have all colors and in the second column we will have all sizes. Depending on the relationship
between those hierarchies, we will get either a full cross join for unrelated hierarchies
(different dimensions) or a reduced set of valid combinations (in case of the same
dimension). In any case, there will be two columns.

Reports grow large very quickly. Once you put several hierarchies either on rows or on
columns, suddenly you don't see data; all you see is metadata. That is, column and row
headers. Sure, you can modify the layout of the pivot table, but still the report is not clear.
Therefore, it's not uncommon that business users want to reduce a report's size, especially the
width, by combining multiple hierarchies into a single column.

The question is - can this be achieved in MDX? I know you've already guessed it: yes, it can.
This recipe shows the trick of how to make a report compact by combining two hierarchies in
a single metadata column.

The example we will present in this recipe is to display the Month of Year on rows, the
Reseller Sales Amount on columns, and then append only the Last Week sales amount to the
end of the report.

WOW! eBook
www.wowebook.org

Getting ready

Start SQL Server Management Studio and connect to your SSAS 2016 instance. Click on the
New Query button and check that the target database is Adventure Works DW 2016.

In this example, we're going to use the Date dimension and its two incompatible hierarchies;
months and weeks. We are going to show you how to create a report that contains all months
up to the current month and then how to add the last week of sales in the same column.

Here's the query we'll start from:

SELECT

{ [Measures].[Reseller Sales Amount] } ON O,
NON EMPTY

{ [Date].[Calendar].[Month].MEMBERS } ON 1
FROM

[Adventure Works]
WHERE

([Date].[Calendar Year].&[2013])

Once executed, the query returns the values of the Reseller Sales Amount measure for 11
months of the year 2013:

Reseller Sales Amount
January 2013 &4, 212 571.51
Februany 2013 54,047 574.04
March 2013 £2.282115.88
April 2013 £3.483.161.40
May 2013 £3.510548.73
June 2013 21,662 54732
Juby 2013 £2.699,300.79
August 2013 £2, 73865362
September 2013 §2.206.725.22
October 2013 £3.314.600.73
Mowvember 2013 £3416,234 85

The data in the Adventure Works cube ends with November 2013, which is the reason why we
picked this example to simulate the current month in a year situation.

Our goal is to append one more row to the result: the last week's sales amount.

WOW! eBook
www.wowebook.org

How to do it...

Follow these steps to create a calculated member Last week and place it in the Month of Year
hierarchy, so Last week can be displayed in the same column as Month of Year:

1. Replace the user hierarchy on rows with the appropriate attribute hierarchy to avoid
problems with attribute relations. In this case, that would be the [Date].[Month of Year]

hierarc

2. Create a new calculated member in the [Date].[Month of Year] hierarchy and name it
Last week. The definition of that member should include the 48th week, the last week

hy.

with the data, like this:

3. Include that member in rows as well and run the query, which should look like this:

4. Verify that the result includes the new calculated member in the last row, as in the

MEMBER [Date].[Month of Year].[All Periods].[Last week] AS
([Date].[Calendar Week of Year].&[48],
[Date].[Month of Year].[All Periods])

WITH

MEMBER [Date].[Month of Year].[All Periods].[Last week] AS
([Date].[Calendar Week of Year].&[48],
[Date].[Month of Year].[All Periods])

SELECT

{ [Measures].[Reseller Sales Amount] } ON O,

NON EMPTY

{ [Date].[Month of Year].[Month of Year].MEMBERS,
[Date].[Month of Year].[All Periods].[Last week] } ON 1

FROM

[Adventure Works]

WHERE

([Date].[Calendar Year].&[2013])

following screenshot:

January
Februany
March
April

May

June

Juby
August
September
October
Mowvember
Last week

Reseller Sales Amount
84,212 571.51
84,047 574.04
£2282115.88
£3.483,161.40
£3.510,548.73
81,662 54732
£2.699,300.79
£2. 73865362
£2.206,725.22
£3.314,600.73
£3.416.234.85
£3.416.234.85

WOW! eBook
www.wowebook.org

WOW! eBook
www.wowebook.org

How it works...

Different hierarchies don't add up in columns, they cross join and form multiple columns. To
combine members from different hierarchies into the same column, we need to resolve the
dimensionality issue first. In our example, we have chosen to display the top five months from
the [Date].[Month of Year] hierarchy. This hierarchy has become our host hierarchy. Our
trick is to create a calculated member in this host hierarchy that points to a member in another
hierarchy, [Date].[Calendar Week of Year]. We named this new calculated member [Last
week], which is hosted in the [Date].[Month of Year] hierarchy, off the root member [All
Periods]. Once the months and the last week have the same dimensionality, we can now have
a single column for the result because we are only using one hierarchy.

Choosing a host hierarchy and forcing all the members into the same dimensionality is our
first task. Notice that we also provided a tuple, not just a plain reference to the other
hierarchy's member. This tuple, repeated, is formed using the root member of the "host"
hierarchy, [A11 Periods], as follows:

([Date].[Calendar Week of Year].&[48],
[Date].[Month of Year].[All Periods])

Why do we need to provide a tuple? Every expression is evaluated in its context. The current
member of the [Date].[Month of Year] hierarchy is each month on the rows. Each single
month of the year has no intersection with the 48th week (or any other week), and hence the
result of the expression without the root member in that tuple would return null. By forcing
the root member into the tuple, we are saying we do not want the members from the month of
the year to interfere in the context. We are overriding the implicit query context in that
expression with an explicit reference to the root member of the host hierarchy.

We need to validate our result before we wrap up this recipe. We have noticed that the result
for the Last week member is the same as the result of the November member. Let us run the
following query to validate this. This query simply cross joins two hierarchies; the Date and
the calendar Week of Year hierarchy. It shows us that the 48th week started on November 24,
and November 29 is the last date that has a sales amount. No wonder the month November and
the last week have the same result; they both contain only that week's data (which can be
verified if you scroll up in the result window or uncomment the NON EMPTY part of the query):

SELECT
{ [Measures].[Reseller Sales Amount] } ON O,
--NON EMPTY
{ [Date].[Date].[Date].MEMBERS *
[Date].[Calendar Week of Year]
.[Calendar Week of Year]
.MEMBERS
} ON 1
FROM
[Adventure Works]
WHERE
([Date].[Calendar Year].&[2013])

WOW! eBook
www.wowebook.org

Mowvember 24, 2013
Meovember 25, 2013
Movember 26, 2013
MNeovember 27, 2013
Movember 28, 2013

. November 23, 2013

Meowvember 30, 2013
December 1, 2013
December 2, 2013
December 3, 2013
December 4, 2013

CY Week 48
CY Week 48
CY Week 48
CY Week 43
CY Week 48

| CY Week 48

CY Week 48
CY Week 43
CY Week 43
CY Week 43
CY Week 43

Reseller Sales Amount
{rually
{rually
{rually
(rually

&755.78
£3.415479.07
(ruall}

(rually
{rually
(rually
{rually

WOW! eBook
www.wowebook.org

There's more...

In our initial query, we used a user hierarchy: the [Calendar] hierarchy. However, in our final
solution query, we used two attribute hierarchies: the [Month of Year] and the [Calendar
week of Year].The reason is that we need to take advantage of the attribute relations. The
Date dimension is a very complex dimension with many related and unrelated attributes. It is a
very challenging task to provide the proper tuple when the user hierarchy [Calendar] is on
the rows in the original query because of all the relations among the members in the slicer,
members on query axes, and the calculated member. A user hierarchy [Month of Year], on
the other hand, requires that we use its root member only inside the tuple.

You should always look for a way to combine attribute hierarchies, not user hierarchies,
whenever you are in a situation that requires that you to combine two hierarchies in one
column. The color and size on the Product dimension is another example of two attribute
hierarchies that we can combine into one column by using the technique in this recipe.

Use it, but don't abuse it

If it has been explicitly stated that the report should combine different hierarchies in a single
column, we can reach for this solution. It's a rarity, but it is possible. In all other cases, a much
better solution is to have each hierarchy in its own column.

Limitations

Besides the aforementioned limitation with user hierarchies, there is another one. When more
than one member should be hosted in the other hierarchy, all of them should be defined as
calculated members, one by one. This can be an administrative burden and so it is advised that
this solution is used only in cases with a few members to be projected on the other hierarchy.
Naturally, the hierarchy with more elements to be shown in the report should be the hosting
one.

WOW! eBook
www.wowebook.org

Finding the name of a child with the best/worst
value

Sometimes, there is a need to perform a for-each loop to get the top or bottom members in
the inner hierarchy for each member in the outer hierarchy. The Identifying the best/worst
members for each member of another hierarchy recipe deals with exactly that kind of topic.

Following the theme of the recipes in this chapter of reducing the size of a reportto a
manageable level, in this recipe we will show you another possibility of how to reduce the
size of the result — by showing not all the descendant members, but only the best child
member. We will demonstrate how to identify the member with the best/worst value, only this
time the member is not just from any other hierarchy, it will be from its children. We do not
need the best/worst value from the child, and we are only going to return the name of the
child in a calculated measure.

In our example, we will use the Product dimension. For every product subcategory, we are
going to find the name of the product that has the best Internet sales amount.

WOW! eBook
www.wowebook.org

Getting ready

Start SQL Server Management Studio and connect to your SSAS 2016 instance. Click on the
New Query button and check that the target database is Adventure Works DW 2016.

In this example, we're going to use the Product dimension. Here is the query we will start
from:

WITH
MEMBER [Measures].[Subcategory] AS
iif(IsEmpty([Measures].[Internet Sales Amount]),
null,

[Product].[Product Categories].CurrentMember .Parent.Name)
SELECT

{ [Measures].[Subcategory],
[Measures].[Internet Sales Amount] } ON O,
NON EMPTY
{ Descendants([Product].[Product Categories].[Category],
2, SELF_AND_BEFORE) } ON 1
FROM
[Adventure Works]

Once executed, the query returns the values of the Internet Sales Amount measure for every
Product and Subcategory. Part of the result is shown in the following screenshot. The
measure serves as a validation point for each product and subcategory. That result can be used
later for verification purposes:

Subcategony Intemet Sales Amount | &~
Accessories All Products £700,759.96
Bike Racks Accessories £35,360.00
Hitch Rack - 4-Bike Bike Racks £39,360.00
Bike Stands Accessories £39.,591.00
All-Purpose Bike Stand Bike Stands £39,591.00
Bottles and Cages Accessories 2h6,798.19
Mountain Bottle Cage Bottles and Cages £20,.229.75
Fioad Bottle Cage Bottles and Cages £15,350.88
Water Bottle - 30 oz. Bottles and Cages 82117756
Cleaners Accessories £7.213.60
Bilee Wash - Dissolver Cleaners £7.2113.60 -
WOW! eBook

www.wowebook.org

How to do it...

Follow these steps to return the best product's name for each product subcategory:

1. Modify the query so that it returns only subcategories on rows. In other words, specify 1
and SELF as arguments of the Descendants() function.

2. Remove the first calculated measure from the query.

3. Define a new calculated member and name it Best child. Its definition should test
whether we are on a leaf member or not. If so, we should provide null.

4. If not, we should again test whether the Internet Sales Amount is null. If so, we should

provide null. Otherwise, we should calculate the top one child based on the measure

Internet Sales Amount and return the name of that child.

Include that calculated measure on columns as the second measure.

6. The final query should look like this:

v

WITH
MEMBER [Measures].[Best child] AS
iif(IsLeaf([Product].[Product Categories]
.CurrentMember),
null,
iif(IsEmpty([Measures].[Internet Sales Amount]),
null,
TopCount([Product].[Product Categories]
.CurrentMember .Children,
1,
[Measures].[Internet Sales Amount]
) .Item(0) .Name
)
)
SELECT
{ [Measures].[Internet Sales Amount],
[Measures].[Best child] } ON O,
NON EMPTY
{ Descendants([Product].[Product Categories]
.[Category], 1, SELF) } ON 1
FROM
[Adventure Works]

7. The results will look like this:

WOW! eBook
www.wowebook.org

Intemet Sales Amount Best child
Bilee Racks £39.360.00 Hitch Rack - 4-Bike
Bike Stands £39.,591.00 All-Purpose Bike Stand
Bottles and Cages &h6,798.19 Water Bottle - 30 oz.
Cleaners £7.213.60 Bilee Wash - Dissolver
Fenders £46,619.58 Fender Set - Mountain
Helmets §225.335.60 Sport-100 Helmet, Red
Hydration Packs 540,307 67 Hydration Pack - 70 oz.
Tires and Tubes £245,529.32 HL Mourtain Tire
Mountain Bikes £9,952 759.56 Mourtain-200 Black, 42
Road Bikes £14,520,584.04 Road-150 Red, 48
Touring Bikes %3.844.801.05 Touring-1000 Blue, 46
Caps £15,688.10 AWC Logo Cap
Gloves £35,0:20.70 Half-Finger Gloves, M
Jerseys 8172550 68 Long-Sleeve Logo Jersey, L
Shorts £71.319.81 Women's Mountain Shorts, L
Socks £5,106.32 Racing Socks, M
Vests £35,637.00 Classic Vest, M

WOW! eBook

www.wowebook.org

How it works...

Leaf members don't have children. That's why we provided a branch in the definition of the
calculated member and eliminated them from the start by returning a NULL value.

In the case of a non-leaf member, that is, a subcategory, a single child product with the highest
measure is returned using the TopCount () function. We only returned the child's name by first
retrieving the only member using the .I1tem(0) function and then using the .Name function.

The inner iif () function took care of empty values and preserved them as empty whenever
the initial measure, the Internet Sales Amount measure, was null. This way, the NON EMPTY
operator could exclude the same number of empty rows as in the initial query.

WOW! eBook
www.wowebook.org

There's more...
Now that we have the name of the best child, we can include additional information.

For example, the following query shows how to display the child's value as well as its
percentage:

WITH
MEMBER [Measures].[Best child] AS
iif(IsLeaf([Product].[Product Categories]
.CurrentMember),
null,
iif(IsEmpty([Measures].[Internet Sales Amount]),
null,
TopCount([Product].[Product Categories]
.CurrentMember .Children,
1, [Measures].[Internet Sales Amount]
) .Item(0) .Name
)
)
MEMBER [Measures].[Best child value] AS
iif(IsLeaf([Product].[Product Categories]
.CurrentMember),
null,
iif(IsEmpty([Measures].[Internet Sales Amount]),
null,
(TopCount([Product].[Product Categories]
.CurrentMember .Children,
1, [Measures].[Internet Sales Amount]
).Item(0),
[Measures].[Internet Sales Amount])
)
)
, FORMAT_STRING = 'Currency'
MEMBER [Measures].[Best child %] AS
[Measures].[Best child value]

[Measures].[Internet Sales Amount]
, FORMAT_STRING = 'Percent'
SELECT
{ [Measures].[Internet Sales Amount],
[Measures].[Best child],
[Measures].[Best child value],
[Measures].[Best child %] } ON O,
NON EMPTY
{ Descendants([Product].[Product Categories].[Category],
1, SELF) } ON 1
FROM
[Adventure Works]

A child's value is obtained on the same principle as the child's name, except this time the tuple
was used to get the value in that coordinate.

The percentage is calculated in a standard way.
WOW! eBook
www.wowebook.org

Once executed, the preceding query returns this result:

Intemet Sales Amourt Best child Best child value || Best child %

Bilee Racks £39.360.00 Hitch Rack - 4-Bike £35,360.00 100.00%
Bikke Stands %35.,591.00 All-Purpose Bike Stand £39.551.00 100.00%
Bottles and Cages &h6,798.19 Water Bottle - 30 oz. 82117756 37.29%
Cleaners £7.2113.60 Bikee Wash - Dissolver £7.213.60 100.00%
Fenders 246,619 58 Fender Set - Mountain 246 619.58 100.00%
Helmets £225,335.60 Sport-100 Helmet, Red 78,0277 3 B3%
Hydration Packs 840,307 67 Hydration Pack - 70 oz. 40,307 67 100.00%
Tires and Tubes £245529 32 HL Mountain Tire £48.260.00 19.90%
Mountain Bilees £9,952,759.56 Mourtain-200 Black, 42 £575,560.73 5.85%

Road Bikes £14,520,584.04 Road-150 Red, 48 £1,205.876.59 8.30%

Touring Bikes %3.844 801.05 Touring-1000 Blue, 46 £421,980.359 10.598%
Caps £15,688.10 AWC Logo Cap £19,633.10 100.00%
Gloves £35.0:20.70 Half-Finger Gloves, M 81222051 H.50%
Jerseys 8172550 68 Long-Sleeve Logo Jersey, L £22 505 48 13.06%
Shorts £71.319.81 Women's Mountain Shorts, L £25406.37 35.62%
Socks h,106.32 Racing Socks, M £2679.02 b2 6%
ests £35,687.00 Classic Vest, M £12,636.50 4%

Variations on a theme

Using the same principle, it is possible to get the member with the worst value. We have to be
careful and apply NonEmpty () first to ignore empty values, as explained in the Isolating the
worst N members in a set recipe.

Displaying more than one member's caption

It is possible to display several names inside the same cell. If that is the case, we must use the
Generate() function in conjunction with its third syntax to start the iteration. Once the
iteration is in place, everything else remains the same.

WOW! eBook
www.wowebook.org

See also

Refer to the following recipes in this chapter:

e [solating the best N members in a set

e [solating the worst N members in a set

e Identifying the best/worst members for each member of another hierarchy

e Displaying a few important members, with the others as a single row, and the total at the
end

WOW! eBook
www.wowebook.org

Highlighting siblings with the best/worst values

Data analysis becomes easier once we provide more information than a simple black and
white grid allows us to. One way of doing this is to color code some cells. In this recipe, we
will show you how to highlight cells with the minimum and the maximum values among
siblings and how to color code them based on their values relative to their siblings' values.

WOW! eBook
www.wowebook.org

Getting ready

Start SQL Server Management Studio and connect to your SSAS 2016 instance. Click on the
New Query button and check that the target database is Adventure Works DW 2016.

In this example, we are going to use the Product dimension. Here is the query we'll start from:

SELECT
{ [Measures].[Internet Sales Amount] } ON O,
NON EMPTY
{ Descendants([Product].[Product Categories].[Category],
1, SELF) } ON 1
FROM
[Adventure Works]

Once executed, the query returns the value of the Internet Sales Amount measure for every
single product subcategory. Part of the result is shown in the following screenshot. We have
two goals: one is to find the category that each subcategory belongs to; the other is to color
code the best and worst subcategories in each category:

Intemet Sales Amount

Bilee Racks £39.360.00
Bike Stands £39.551.00
Bottles and Cages &h6,798.19
Cleaners £7.213.60
Fenders £46,619.58
Helmets £225,335.60
Hydration Packs 540,307 67
Tires and Tubes £245,529.32
Mountain Bikes £9,952 759.56
Road Bikes £14,520,584.04
Touring Bikes %3.844.801.05
Caps £19,688.10
Gloves £35.020.70
Jerseys £172 550 68
Shorts £71.319.81
Socks £5.106.32
ests £35,687.00

WOW! eBook
www.wowebook.org

How to do it...

Follow these steps to color code the best and worst subcategories in each category:

1.

Define a calculated measure that will show the name of the parent for each subcategory.
Name it Category.

. Be sure to provide the null value whenever the initial measure is null and then include

that measure on columns as well, as with the first of the two.

Define a cell calculation for the Internet Sales Amount measure and name it
Highlighted Amount.

Define the BACK_COLOR property for the Highlighted Amount cell calculation. Use an
expression that tests whether the current value is a max/min value.

Provide the adequate RGB values: green for max, red for min, and null for everything
else.

Include the CELL PROPERTIES required to display the color information of a cell at the
end of the query.

When everything is done, the query should look like this:

WITH
MEMBER [Measures].[Category] AS
iif(IsEmpty([Measures].[Internet Sales Amount]),
null,
[Product].[Product Categories]
.CurrentMember .Parent.Name)
CELL CALCULATION [Highlighted Amount]
FOR '{ [Measures].[Internet Sales Amount] }' AS
[Measures].[Internet Sales Amount]
, BACK_COLOR =
iif([Measures].CurrentMember =
Max([Product].[Product Categories]
.CurrentMember .Siblings,
[Measures].CurrentMember),
RGB(128,242,128), // green
iif([Measures].CurrentMember =
Min([Product].[Product Categories]
.CurrentMember .Siblings,
[Measures].CurrentMember),
RGB(242,128,128), // red
null)
)
SELECT
{ [Measures].[Category],
[Measures].[Internet Sales Amount] } ON O,
NON EMPTY
{ Descendants([Product].[Product Categories]
.[Category], 1, SELF) } ON 1
FROM
[Adventure Works]
CELL PROPERTIES
VALUE,
FORMATTED_VALUE,
FORE_COLOR,

WOW! eBook
www.wowebook.org

BACK_COLOR

8. Once executed, the query returns the result presented on the following screenshot:

Categony Intemet Sales Amourt

Bike Racks Accessories £39,360.00
Bike Stands Accessories £39,591.00
Bottles and Cages | Accessories £h6,798.19
Cleaners Accessories £7.213.60
Fenders Accessories £46,619.58
Helmets Accessories £225,335.60
Hydration Packs Accessories 40,307 67
Tires and Tubes Accessories £245529.32
Mountain Bikes Bikes £9,952 759.56
Road Bikes Bikes $14 52058404
Touring Bikes Bikes %£3.844.801.05
Caps Clathing £15,688.10
Gloves Clothing £35,0:20.70
Jerseys Clothing §172,550 68
Shorts Clothing £71.319.81
Socks Clothing £5.106.32
Vests Clothing %£35,687.00

9. Notice that the highest value in a category is highlighted with light green and the lowest
value per category is highlighted with light red. That's the visual cue we're after.

WOW! eBook
www.wowebook.org

How it works...

Siblings are members that are under the same parent. In our earlier result, the first eight
subcategories are all siblings that are under one category: Accessories. We deliberately
created a calculated measure [Measures].[Category] using the .Parent function. We can now
visually identify all the siblings under each category, and can validate our color-coding
calculation.

The BACK_COLOR property controls the color of the background of a cell. It can be defined as a
constant value, but it can also be an expression. In this case, we used a combination -
conditional formatting using fixed values for two colors: light green and light red.

We had to use the iif () function in the definition of the calculated measure [Measures].
[Category] because a calculated measure is evaluated as a string, which is never null.
Therefore, we have bound the calculated measure to the original measure [Internet Sales
Amount] so that it returns values only for rows with data.

In the BACK_COLOR property expression, we used two nested iif () functions, with the Max ()
function in the outer iif () and Min() function in the inner iif (). The Max () and Min()
functions return the highest and the lowest value in the specified set of sibling members. The
current measure's value, which is the sales amount for each subcategory, is compared to the
maximum and minimum values, respectively. In case of a match, the appropriate color is
chosen (green for max and red for min values).

Finally, because the measure Internet Sales Amount already existed, we used the CELL
CALCULATION syntax to define (or overwrite) additional properties for it, such as the
BACK_COLOR property in this example. The CELL CALCULATION is one of the three elements that
can be defined in the WITH part of the query. It is analogous to the SCOPE statement inside the
MDX script. In other words, it can be used to define or overwrite a value inside a subcube or
to define or overwrite cell properties such as BACK_COLOR.

WOW! eBook
www.wowebook.org

There's more...

It is also possible to color code any measure in a different way. For example, it is possible to
provide a range of colors so that the cell with the highest value has one color, the cell with the
lowest value another color, and those in between a gradient of those colors. See for yourself
by running this query and observing the result afterwards:

WITH
MEMBER [Measures].[Category] AS
iif(IsEmpty([Measures].[Internet Sales Amount]),
null,
[Product].[Product Categories]
.CurrentMember .Parent.Name)
MEMBER [Measures].[Rank in siblings] AS
iif(IsEmpty([Measures].[Internet Sales Amount]),
null,
Rank([Product].[Product Categories].CurrentMember,
NonEmpty([Product].[Product Categories]
.CurrentMember .Siblings,
[Measures].[Internet Sales Amount]),
[Measures].[Internet Sales Amount])
)
MEMBER [Measures].[Count of siblings] AS
Sum([Product].[Product Categories]
.CurrentMember .Siblings,
iif(IsEmpty([Measures].[Internet Sales Amount]),
null, 1)
)

MEMBER [Measures].[R] AS
iif(IsEmpty([Measures].[Internet Sales Amount]),
null,
255 / ([Measures].[Count of siblings] - 1) *
([Measures].[Count of siblings] -
[Measures].[Rank in siblings])) -- all shades
, FORMAT_STRING = '#,#'
, VISIBLE = 1
MEMBER [Measures].[G] AS
iif(IsEmpty([Measures].[Internet Sales Amount]),
null, 0) -- fixed dark green
, VISIBLE = 1
MEMBER [Measures].[B] AS
iif(IsEmpty([Measures].[Internet Sales Amount]),

null,
100 / [Measures].[Count of siblings] *
[Measures].[Rank in siblings]) -- dark shades

, FORMAT_STRING = '#,#'
, VISIBLE = 1
CELL CALCULATION [Highlighted Amount]
FOR '{ [Measures].[Internet Sales Amount] }' AS
[Measures].[Internet Sales Amount]
, BACK_COLOR = RGB([Measures].[R],
[Measures].[G],
[Measures].[B])
, FORE_COLOR = RGB(255, 255, 255) -- white

WOW! eBook
www.wowebook.org

SELECT
{ [Measures].[Category],
[Measures].[Rank in siblings],
[Measures].[Internet Sales Amount],
[Measures].[R],
[Measures].[G],
[Measures].[B] } ON O,
NON EMPTY
{ Descendants([Product].[Product Categories].[Category],
1, SELF) } ON 1
FROM
[Adventure Works]
CELL PROPERTIES
VALUE,
FORMATTED_VALUE,
FORE_COLOR,
BACK_COLOR

The previous query, once executed, returns the result presented in the following screenshot:

Categony Rank in siblings || Intemet Sales Amount R G B
Bike Racks Accessories 7 36 0 a8
Bike Stands Accessories & 7 x| =
Bottles and Cages | Accessories 3 : 132 0 38
Cleaners Accessories 2 &7, B (ull) O 100
Fenders Accessories 4 146 0 50
Helmets Accessories 2 22533560 219 0 25
Hydration Packs Accessories 3] $40,307 67 M 0 63
Tires and Tubes Accessories 1 256 || 93
Mourtain Bikes Bikes 2 £9.,952 759 56 122 0 7
Road Bikes Bikes 1 = K
Touring Bikes Bilkes 3 £3.844 801 .05 (rully 0 100
Caps Clothing 5 5 0 83
Gloves Clothing 4 02 0 67
Jerseys Clothing 1 £172 950 68 255 0 17
Shorts Clothing 2 £71.319.81 24 0 33
Socks Clathing & (ull) O 100
Yests Clathing 3 %3 0 50

The category calculated measure is the same as in the previous query.

Rank in siblings is a measure that returns the rank of an individual subcategory when
compared with the results of its siblings. This measure is included in the columns so that the
verification becomes relatively easy.

The Count of siblings is a measure which returns the number of sibling members and is
used to establish the boundaries as well as the increment in the color gradient.

The R, G, and B values are calculated measures used to define the background color for the

WOW! eBook
www.wowebook.org

Internet Sales Amount measure. The gradient is calculated using the combination of rank
and count measures with additional offsets so that the colors look better (keeping them
relatively dark). In addition to that, the FORE_COLOR property is set to white so that proper
contrast is preserved. The three calculated measures are displayed last in the result just to
show how the values change. You can freely hide those measures and remove them from the
columns axis. The VISIBLE property is there to remind you about that.

It's worth mentioning that one component of the color should decrease as the other increases.
Here, it is implemented with the rank and count-rank expressions. As one increases, the other
decreases.

For more complex color-coding, an appropriate stored procedure installed on the SSAS
server is another solution - unless the frontend and its pivot table grid already supports these
features.

Troubleshooting

Don't forget to include the required cell properties, namely BACK_COLOR and FORE_COLOR, Or
the recipe solution won't work. The same applies for the frontend you're using. If you don't
see the effect, check whether there's an option to turn those cell properties on.

WOW! eBook
www.wowebook.org

See also

e Refer to the Implementing bubble-up exceptions recipe

WOW! eBook
www.wowebook.org

Implementing bubble-up exceptions

In the previous recipe, we dealt with highlighting cells based on their results in comparison
with sibling members, which can be visualized in a horizontal direction. In this recipe, we will
take a look at how to do the same but in a vertical direction, using the descendants of
members in the report.

Bubble-up exceptions are a nice way of visualizing information about the descendants of a
member without making reports too big. By coding the information about the result of
descendants, we can have compact reports on a higher level, while still having some kind of
information about what's going on below.

The information we are going to bubble-up will be presented by color-coding the cells.

WOW! eBook
www.wowebook.org

Getting ready

Start SQL Server Management Studio and connect to your SSAS 2016 instance. Click on the
New Query button and check that the target database is Adventure Works DW 2016.

In this example, we're going to use the Product dimension. Here is the query we'll start from:

SELECT
{ [Measures].[Reseller Sales Amount],
[Measures].[Reseller Gross Profit Margin] } ON O,
NON EMPTY
{ Descendants([Product].[Product Categories].[Category],
1, BEFORE) } ON 1
FROM
[Adventure Works]
WHERE
([Date].[Fiscal].[Fiscal Year].&[2013])

Once executed, the query returns the value of the Reseller Sales Amount and Reseller
Gross Profit Margin measures in the fiscal year 2013 for each product category.

We are going to analyze the product subcategory, which is the descendant of the product
category, and color-code the category if at least one of its subcategories has a negative profit
margin. We will do this in one query without displaying the subcategories.

WOW! eBook
www.wowebook.org

How to do it...

Follow these steps to color code the product categories if at least one of its subcategories has
a negative profit margin:

1. Create a new calculated measure that will serve as an alias for the Reseller Gross
Profit Margin measure. Name it Margin with Bubble-up.

2. Define the FORE_COLOR property of that measure so that it turns red when at least one

descendant on the lower level has negative values for the margin.

Include that new measure on the columns, as with the third measure there.

4. Include the CELL PROPERTIES part of the query and enlist the FORE_COLOR property as one
of them to be returned by the query.

5. Execute the query, which should look like this:

w

WITH

MEMBER [Measures].[Margin with Bubble-up] AS
[Measures].[Reseller Gross Profit Margin]
, FORE_COLOR =

1if(

Min(Descendants([Product].[Product Categories]
.CurrentMember,
1, SELF),

[Measures].CurrentMember)< 0,

RGB(255, 0, 0), -- red

null

)

SELECT

{ [Measures].[Reseller Sales Amount],
[Measures].[Reseller Gross Profit Margin],
[Measures].[Margin with Bubble-up] } ON O,

NON EMPTY
{ Descendants([Product].[Product Categories]
.[Category], 1, BEFORE) } ON 1
FROM
[Adventure Works]
WHERE
([Date].[Fiscal].[Fiscal Year].&[2013])
CELL PROPERTIES

VALUE,

FORMATTED_VALUE,

FORE_COLOR,

BACK_COLOR

6. Verify that the new measure is red in three rows: Bikes, Clothing and Components:

Reseller Sales Amount || Reseller Gross Profit Margin || Margin with Bubble-up
Accessories £145,072.26 36.64% 36.64%
Bikes £11,946,118.47 -1.52% -1.592%
Clothing £341.439.51 8.83% 8.83%
Components %1942 885.03 6.55% 6.59%
WOW! eBook

www.wowebook.org

WOW! eBook
www.wowebook.org

How it works...

As mentioned earlier, this new measure is just an alias for the original measure, [Reseller
Gross Profit Margin]; there's nothing special in its definition. Its real value is in the
additional cell property expressions, namely the FORE_COLOR property used in this example. It
could have been the BACK_COLOR property if we preferred it; what matters in this recipe is the
expression we used in the conditional color-coding of the calculated measure.

In that expression, we are analyzing descendants of the current member and extracting only
the ones with a negative result for the current measure: the Margin with Bubble-up measure.
As that measure is an alias for the Reseller Gross Profit Margin measure, we are actually
testing the latter measure.

We applied the Min () function to the tuple and used the outer iif () function to determine
whether the minimum Reseller Gross Profit Margin is a negative value. If that's a negative
number, we turn the color to red. If not, we leave it as it is.

The red color for the three rows, Bikes, Clothing and Components, tells us that at least one
of the subcategories under them has a negative profit margin. That might have been obvious
for Bikes, but not for the other two categories since their margin is positive.

WOW! eBook
www.wowebook.org

There's more...

On the query axis on the rows, we could have directly used the level [Category] without using
the construct Descendants([Product].[Product Categories].[Category], 1, BEFORE),
which is essentially just another way of specifying that we want to see product categories.
However, the advantage of this construct is that it allows us to make a small change in the
query, maybe using a report parameter, and to be able to drill down one level below.

The part that needs a change is the second argument of the Descendants() function on the
rows. The value of that argument was 1, signaling that we want only product categories and
nothing else.

If we change that argument to 2, we will get the result as displayed in the following
screenshot:

Reseller Sales Amount || Reseller Gross Profit Margin | Margin with Bubble-up
Accessories £145072.26 36647 36.64%
Bile Racks £70.955.69 36.69% 36.69%
Bottles and Cages 8261204 36.48% 36.48%
Cleaners £3.352 42 36.457% 36.457%
Helmets £45 546.01 36.56% 36.56%
Hydration Facks 82177615 36.72% 36720
Tires and Tubes £285.91 37.6R% 376675
Bikes £11,546,118.47 -1.52% 1.52
Mourtain Bikes £3.474 83539 5.86% h.B6%
Road Bikes £3.914.756.73 -655% 6.55%
Touring Bilkes 84 556,526.35 -3.87% 3.87%
Clothing £341.439.51 8.83% 8.83%
Caps g5.016.64 -31.058% -31.097
Gloves £14,730.3 37.45% 37.45%
Jerseys £131,884 54 -30.36% 30.36
Shorts 101,757 63 3.43% 34.43%
Socks £6,559.12 35.50% 35.50%
\ests £81.410.86 35.38% 35.38%
Components %1942 88503 6.559% 6.59
Bottom Brackets £15.23410 26.00% 26.00%
Brakes £19.170.00 26.00% 26.00%
Chains £3.400.32 26.00% 26.00%
Crankzets §7274374 26.00% 26.00%
Derzilleurs £23.967.07 25.88% 25.88%
Handlebars £26.857 54 26.00% 26.00%
Mourtain Frames £812.331.04 8.73% 8.73%
Pedals £45.824 313 25591% 25591%
Road Frames £333.091.284 -1.13% -1.13%
Saddles £16.840.18 25.56% 2556%
Touring Frames £hed 834 87 0.10% 0.10%
WOW! eBook

www.wowebook.org

In other words, now the query includes both product categories and product subcategories on
rOWS.

What's good about this is that our measure reacts in this scenario as well. Three
subcategories, Bikes, Clothing and Components, remained in red. The change also captures
a few more negative values. The color-coding calculation not only captured the descendants
that had negative values, but also any member itself that was negative.

The reason this worked is because our color-coding expression for our calculated measure
also used a relative depth for descendants. The Descendants expression is repeated here. The
relative depth we used was 1:

Descendants([Product].[Product Categories].CurrentMember,
1, SELF)

If it is required, we can specify an absolute level, not a relative one. We would do this by
specifying the name of a particular level instead of the number. For example, if we want our
expression to only detect negative values in the subcategories, we should specify it like this:

Descendants([Product].[Product Categories].CurrentMember,

[Product].[Product Categories].[Subcategory],
SELF)

If we want the expression to work on only the lowest level, we should use this construct:

Descendants([Product].[Product Categories].CurrentMember, ,
LEAVES)

In short, there are a lot of possibilities and you are free to experiment.

Practical value of bubble-up exceptions

Members colored in red signal that some of the members on the lower level have negative
margins. With the visual indicator, end users can save a lot of their precious time by drilling
down to the next level when a cell gives them a visual clue. On the other hand, without the
visual indicator, they might miss opportunities if data at a more granular level is not
examined.

Potential problems

On very large hierarchies, there can be problems with performance if the bubble-up
exceptions are set at a granular level that is too low.

WOW! eBook
www.wowebook.org

See also

e Refer to the Highlighting siblings with the best/worst values recipe

WOW! eBook
www.wowebook.org

Chapter 5. Navigation

In this chapter, we will cover the following recipes:

Detecting a particular member in a hierarchy
Detecting the root member

Detecting members on the same branch

Finding related members in the same dimension
Finding related members in another dimension
Calculating various percentages

Calculating various averages

Calculating various ranks

WOW! eBook
www.wowebook.org

Introduction

One of the advantages of multidimensional cubes is their rich metadata model backed up with
a significant number of MDX functions that enable easy navigation and data retrieval from
any part of the cube. We can easily navigate through levels, hierarchies, dimensions, and
cubes.

The goal of this chapter is to show common tasks and techniques related to navigation and
data retrieval relative to the current context. We will show how to take control of and finetune
the query context and how to achieve query optimization.

The first three recipes illustrate how to test whether the current context is the one we're
expecting or not.

Then we will continue on to two recipes where we illustrate how to find related members,
whether the related members are on different hierarchies in the same dimension, or they are
from totally different dimensions.

Finally, building on the knowledge of detecting specific members and navigating through any
parts of the cube, we will run a series of relative calculations of percentage, average, and
rank. We provide examples for relative calculations that take the current context and compare
its value to some other related context, such as parents, children, siblings, members on the
same level or same hierarchy, and so on. Examples of such calculations are percentage of
parent, percentage of total, average on a level, average on leaves, rank among siblings, rank
on a level, and so on.

Multidimensional cubes are conceptually enormous structures filled with empty space, with
no data at all in all but a few combinations. There are times when the Analysis Services engine
takes care of that by utilizing various algorithms that compact the cube space, but there are
times when we have to do that by ourselves.

The MDX language incorporates functions that enable fast retrieval of related members, to
move from one hierarchy to another, from one dimension to another, and to get only
members valid in the current context. This technique improves query performance because
the engine is not forced to calculate on non-relevant space. There are several recipes in this
chapter covering that topic.

Let's start!

WOW! eBook
www.wowebook.org

Detecting a particular member in a hierarchy

We frequently encounter situations where we need to include or exclude a certain member in a
calculation. Our first step is to determine whether the member exists in a hierarchy.

When iterating through a set of hierarchy members, at each step in the iteration, the member
being operated upon is the current member. This recipe shows how to determine whether the
current member in the query context is a particular member that we are interested in.

WOW! eBook
www.wowebook.org

Getting ready

Start SQL Server Management Studio and connect to your SSAS 2012 instance. Click on the
New Query button and check that the target database is Adventure Works DW 2012.

In this example, we're going to use the Product dimension. Here's the query we'll start from:

SELECT

{2} ON o,

{ [Product].[Color].Al1lMembers } ON 1
FROM

[Adventure Works]

Once executed, the query returns all product colors, including the root member. The
preceding query will return products in rows, with nothing in columns. This type of query that
has nothing on columns is explained in the Skipping axis recipe in Chapter 1, Elementary
MDX Techniques:

All Products
Black

Blue

Grey

Mutti

MNA

Red

Silver
Silver/Black
White

Yellow

Our task is to detect the member NA. Once the specific member is detected, we can perform
calculations that either include this member or exclude this member. In this recipe, we are
focusing only on how to perform the detection.

WOW! eBook
www.wowebook.org

How to do it...

Follow these steps to detect the NA member:

1. Add the wITH block of the query.

Create a new calculated measure and name it Member is detected.

Define it as True for the NA member and null, not False, in all other cases.
Add this calculated measure on axis 0.

Execute the query, which should look like this:

kW

WITH
MEMBER [Measures].[Member is detected] AS
iif([Product].[Color].CurrentMember Is
[Product].[Color].&[NA],
True,
null

)
SELECT
{ [Measures].[Member is detected] } ON O,
{ [Product].[Color].AllMembers } ON 1
FROM
[Adventure Works]

6. Verify that the result matches the following screenshot:

Member is detected
All Products (ruall}
Black (ruall}
Blue (roall}
Grey (ruall}
Multi (rually
MA True
Red (ruall}
Silver (ruall}
Silver/Black (ruall}
White (rually
Yellow (roally

WOW! eBook
www.wowebook.org

How it works...

When an MDX query is executed, part of the standard query execution is iterating through a
set of hierarchy members on query axes. The current member changes on a hierarchy used on
an axis in a query. In the iteration phase, we can detect the current context on an axis in the
query using the currentMember function. This function returns the member of the hierarchy
on the query axis we are currently operating upon.

The 1S operator performs a logical comparison on two object expressions, and is often used
to determine whether two tuples or members are exactly equivalent. By comparing the current
member with a particular member of the same hierarchy, we can know when we have hit the
row or column with that member in it.

WOW! eBook
www.wowebook.org

There's more...

The solution presented here is good in situations when there is a temporary need to isolate a
particular member in the query. The emphasis is on the word temporary. Typical examples of
this type of temporary need include highlighting the rows or columns of a report or
providing two calculations for a single measure based on the context.

In cases where the required behavior has a more permanent characteristic, defining the
member in MDX script or using the Scope() statement are better approaches.

Take a look at the following script, which can be added in the MDX script of the Adventure
Works cube:

Create Member CurrentCube.[Measures].[Member is detected]
As null;

Scope(([Product].[Color].&[NA],
[Measures].[Member is detected]));
This = True;
End Scope;

First, the measure is defined as null. Then, the scope is applied to it in the context of NA color.
When the scope becomes active, it will provide True as the result. In all other cases, the initial
definition of the measure null will prevail.

The Scope() statement is basically doing the same thing as the iif () statement in a calculated
member, with one important difference--the scope statement itself is evaluated (resolved) only
once, when the first user connects to the cube. That goes for named sets and the left side of
assignments too, which can easily be verified by observing the Execute MDX Script
Begin/End events in SQL Server Profiler. More about this is in the Capturing MDX queries
generated by SSAS frontends recipe in Chapter 10, On the Edge.

The right side of assignments (here, the value True) is evaluated at query time and hence it
makes no difference whether the expression on that side was used in an MDX script or in a
query. However, as the scope statement gets evaluated only once, it may be reasonable to put a
complex expression in the scope instead of the iif () function.

Important remarks
The earlier Create Member statement did not use the Boolean value False as the result of the
negative branch. Instead, the value of null was provided in order to keep the calculation

sparse and hence preserve performance. The iif () function is optimized to work in block
mode if one of the branches is null.

Comparing members versus comparing values

We have used the Is keyword to compare the current member on the [Color] hierarchy with

WOW! eBook
www.wowebook.org

[Product].[Color].&[NA], which is a key-based fully qualified member on the same
hierarchy. It is important to differentiate the comparison of members from the comparison of
values. The first is performed using the Is keyword, the latter using the = sign. It is essential
that you learn and understand that difference. Otherwise, you will not get correct results from
your logical comparison.

When you do need to compare values using the = sign, try to compare members using their
unique names whenever you can. The following logical comparison using the member's
unique name is equivalent to using the Is keyword to compare two member object
expressions:

[Product].[Color].CurrentMember.Uniquename = '[Product].[Color].&[NA]'

We should avoid comparing member properties such as name. The following logical
comparison will work, but it will not give you the best possible performance:

[Product].[Color].CurrentMember .Name = 'NA'

The other reason you should avoid comparing names is that names can repeat, especially in
multilevel user hierarchies. For example, the Geography .Geography hierarchy has New York
the state and New York the city. Obviously, using the following code to compare the current
member to that member by its name would be a bad choice:

[Geography].[Geography].CurrentMember.name = 'New York'

Detecting complex combinations of members

When the business logic is complex, it might be required to detect several members, not just
one of them. In that case, apply the same principles described in this recipe. Your only
concern in that case is to handle the logic correctly. The MDX language offers various logical
functions for that scenario.

In the case of 0R logic, here are a few additional hints:

¢ You can define a set of members and use the Intersect() function to test whether the set
formed from the current member has an intersection with the predefined set.

¢ In cases of poor performance, you might want to consider creating a new attribute
hierarchy based on a Yes/No value in the field derived using the case statement in your
DW/DSY, as explained in the Using a new attribute to separate members on a level recipe
in Chapter 8, When MDX Is Not Enough. This way, you can have pre-aggregated values
for those two members.

¢ In cases of very complex logic, you'd be better off defining a new column in your fact
table and creating a dimension from it. That way, you are pushing the logic in DW and
using SSAS cubes for what they do best--slicing and aggregation of the data.

WOW! eBook
www.wowebook.org

See also

e The Detecting the root member recipe covers a similar topic, but in a much more narrow
case. It is worth reading right after this recipe because of the additional insights it
provides.

WOW! eBook
www.wowebook.org

Detecting the root member

The root member is the topmost member of a hierarchy. It is present in all hierarchies (in user
hierarchies as well as in attributes hierarchies) as long as the IsAggregatable property is
enabled, as in its default state.

The root member represents the highest level of granularity within a hierarchy the data can be
aggregated up to. When calculating the percentage of a total, we need to detect whether the
current member in the query context is pointing to the root member of a hierarchy or not.
Based on the detection result, we can make our calculation of the percentage of a total
response different to that of the root member.

Although we have the real-world application of the root member detection in mind, this
recipe shows only how to detect the root member.

WOW! eBook
www.wowebook.org

Getting ready

Start SQL Server Management Studio and connect to your SSAS 2016 instance. Click on the
New Query button and check that the target database is Adventure Works DW 2016.

In this example, we're going to use the same Color hierarchy of the Product dimension as in
the previous recipe, Detecting a particular member in a hierarchy. Here's that query:

SELECT

{ } ON O,

{ [Product].[Color].AllMembers } ON 1
FROM

[Adventure Works]

Once executed, the query returns all product colors, including the root member. The
preceding query will return products in rows, with nothing in columns. This special type of
query is explained in the Skipping axis recipe in Chapter 1, Elementary MDX Techniques.

In the previous recipe, Detecting a particular member in a hierarchy, we showed you how to
detect a member NA. Our task in this recipe is to detect the root member in the [Color]
hierarchy.

WOW! eBook
www.wowebook.org

How to do it...

Follow these steps to create a calculated member that detects the root member:
1. Add the wITH block of the query.

Gk

Create a new calculated measure and name it Root member detected.

Define it as True for the branch where the detection occurs and null for the other part.
Add this measure on axis 0.

Execute the query, which should look like this:

WITH
MEMBER [Measures].[Root member detected] AS
iif([Product].[Color].CurrentMember Is
[Product].[Color].[All Products],
True,
null

)
SELECT
{ [Measures].[Root member detected] } ON O,
{ [Product].[Color].AllMembers } ON 1
FROM
[Adventure Works]

6. Verify that the result matches the following screenshot:

All Products
Black

Blue

Grey

Mutti

MNA

Red

Silver
Silver/Black
White

Yellow

Root member detected
True
(roall}
(ruall}
(ruall}
(ruall}
(ruall}
(ruall}
(ruall}
(ruall}
(ruall}

(ruall}

WOW! eBook
www.wowebook.org

How it works...

The currentMember function returns the member we are currently operating on in a particular
hierarchy. We then compare this current member to the root member of the [Color]
hierarchy, [Product].[Color].[All Products], to detect whether the current member on the
query axis is the root member.

The condition in our iif () expression evaluates to the Boolean value True when the root
member is detected. In all other cases, the returned value is null.

WOW! eBook
www.wowebook.org

There's more...

In the preceding query, we have hardcoded the root member, by referencing it as [Product].
[Color].[All Products]. However, the name of the root member can change over time. We
should try to avoid referencing the root member using its name.

Instead of using the reference to the root member, we can use the reference to its internal alias
All. The calculated measure can be changed to this:

MEMBER [Measures].[Root member detected] AS
iif([Product].[Color].CurrentMember Is
[Product].[Color].[All],
True,
null

)

With the changed name of the root member to [Product].[Color].[All], our calculation still
works. That is because the internal alias name [A11] for the root member works the same way
as the actual name of the root member.

[Al1] is the internal alias for the root member. It all works the same way as the actual name of
the root member. However, anything other than the correct name of the root member and its
alias will result in an error. Depending on a particular configuration of SSAS cube, the error
will be reported or bypassed. Mostly, it will be bypassed, because it is the default option of
SSAS cube.

This trick will work on any hierarchy, but may not work in future SSAS versions, based on
the fact that it isn't documented anywhere.

There are, of course, other ways to detect the root member. One is to test the level of a
hierarchy by retrieving the ordinal number of the current member. The ordinal function
returns a zero-based ordinal value associated with a level. The calculated measure can be
changed to this:

MEMBER [Measures].[Root member detected] AS
iif([Product].[Color].CurrentMember.Level.Ordinal = 0,
True,
null

)

The ordinal value of a level in a hierarchy can be from o to n, where n is the number of
userdefined levels in that hierarchy. An ordinal value of zero represents the topmost level, the
root member.

One potential problem with this calculation is that any calculated member defined on the
hierarchy itself (not on another regular member) will also be positioned on the topmost level.
Its level ordinal will be zero too. However, if you exclude calculated members in our

calculation, the preceding expression will work.

WOW! eBook
www.wowebook.org

To avoid hardcoding the name of a root member, we have another way to detect the topmost
regular member (as opposed to calculated members) using the Root () function. The
calculated measure can be changed to this:

MEMBER [Measures].[Root member detected] AS
iif([Product].[Color].CurrentMember Is
Extract(Root([Product]),
[Product].[Color]).item(0),
True,
null

)

In the preceding expression, we used the Root () function, which takes the dimension
[Product] as the argument and returns a tuple that contains the top-level member (or the
default member if the A11 member does not exist) from each attribute hierarchy in the
[Product] dimension based on the context of the current member. Since we are only
interested in the attribute hierarchy [Color], we used the Extract() function to isolate the
single hierarchy and its members in that tuple. The Item() function converts the set of
members into a single member. That's the topmost regular member of that hierarchy extracted
from the tuple.

The scope-based solution

All the calculations for [Root member detected] so far are query-based, being part of an
MDX expression in MDX queries. In cases where the calculations are shared by many
different users, sessions, and applications, we should define the calculation in MDX script,
either using the Scope() statement or using the CREATE MEMBER statement only without the
Scope() statement. This scope-based solution is a better approach than the query-based iif ()
statement.

The following MDX script is equivalent to the query-based calculation. Define it in the MDX
script of the Adventure Works cube using SSDT, deploy, and then verify its result in the cube
browser using the same hierarchy [Color]:

Create Member CurrentCube.[Measures].[Root member detected]
As null;

Scope(([Product].[Color].[All],
[Measures].[Root member detected]));
This = True;
End Scope;

One more thing: detection of this kind is usually done so that another calculation can exploit
it. In MDX script, it is possible to directly specify the scope for an existing measure, such as
[Internet Sales Amount], and to provide a scope-based calculation for it. The following
MDX script is an example that returns the average [Internet Sales Amount] for all colors at
the topmost level using the Scope() statement to detect the A11 level:

Scope(([Product].[Color].[All],

WOW! eBook
www.wowebook.org

[Measures].[Internet Sales Amount]));
This = Avg([Product].[Color].[All].Children,
[Measures].CurrentMember);
End Scope;

WOW! eBook
www.wowebook.org

See also

e The recipe Detecting a particular member in a hierarchy
e Chapter 9, Metadata-driven Calculations recipe

WOW! eBook
www.wowebook.org

Detecting members on the same branch

So far, we've covered cases when there is a need to isolate a single member in the hierarchy,
whether it is a root member or any other member in the hierarchy. This recipe deals with
detecting the ascendants or descendants of a member in a hierarchy. As a matter of fact, the
detection does not need to go all the way to the top level or to the leaf level; it can detect only
a certain cascading branch in a hierarchy.

Multilevels are often found in user hierarchies. For a certain member, we might need to apply
certain calculations to its ascendants only, or its descendants only, or to only part of a
cascading branch in the hierarchy. Let's illustrate this with a couple of examples.

Suppose we want to analyze dates. There's a concept of the current date, but since that date is
usually found in a multilevel user hierarchy, we can also talk about the current month, current
quarter, current year, and so forth. They are all ascendants of the current date member. For the
month of April 2013, we might need to detect all its parents, Q2 CY 2013, H1 CY 2013, and
CY 2013, and apply some special calculations to them.

Another example is the Customer Geography user hierarchy. There, we can detect whether a
particular customer is living in a particular city, or if that city is in the state or country in the
context. In other words, we can test preceding and following levels, as long as there are levels
to be detected in each direction.

In this recipe, we are going to use the Product Categories user hierarchy and a particular
member Touring Bikes on the Subcategory level. The reason we picked the subcategory
level is because it is a middle level in the Product Categories user hierarchy. We want to
demonstrate how to check whether a particular member in a middle level is on the selected
drill-up/down part in the hierarchy.

WOW! eBook
www.wowebook.org

Getting ready

Open the SQL Server Data Tools (SSDT) and then open the Adventure Works DW 2016
solution. Double-click on the Adventure Works cube and go to the Calculations tab. Choose
Script View. Position the cursor at the end of the script.

We'll base the example for this recipe on providing a special calculation for Touring Bikes.

WOW! eBook
www.wowebook.org

How to do it...

Follow these steps to detect members on the same branch:

1. Add the Scope() statement.
2. Specify that you want Touring Bikes and all of their descendants included in this scope:

Scope(Descendants(
[Product].[Product Categories].[Subcategory].&[3], ,
SELF_AND_AFTER

)
);
[Measures].[Internet Sales Amount] = 1;
End Scope;

3. Save and deploy the script (or just press the Deploy MDX Script icon if you're using
BIDS Helper).

4. Go to the Cube Browser tab and optionally reconnect.

Click on the icon Analyze in Excel on top, and choose the Adventure Works

perspective. When the pivot table is open, select the measure Internet Sales Amount

from the field list.

6. Select the [Product Categories] user hierarchy from the field list, and expand it until
you see all the touring bikes, as displayed in the following screenshot:

i

WOW! eBook
www.wowebook.org

A B

1 |Row Labels * | Internet Sales Amount

2 | Accessories $700,759.96
3 | =Bikes 524,473,344.60
4 | # Mountain Bikes %9,952,759.56
5 + Road Bikes $14,520,584.04
o = Touring Bikes l 1
T Touring-1000 Blue, 46 1
8 Touring-1000 Blue, 50 1
2] Touring-1000 Blue, 54 1
10 | Touring-1000 Blue, 60 1
11 | Touring-1000 Yellow, 46 1
12 | Touring-1000 Yellow, 50 1
13 | Touring-1000 Yellow, 54 1
14 | Touring-1000 Yellow, 60 1
15 | Touring-2000 Blue, 46 1
16 | Touring-2000 Blue, 50 1
17 | Touring-2000 Blue, 54 1
18 | Touring-2000 Blue, 60 1
19 | Touring-3000 Blue, 44 1
20 | Touring-3000 Blue, 50 1
21 | Touring-3000 Blue, 54 1
22 Touring-3000 Blue, 58 1
23 | Touring-3000 Blue, 62 1
24 | Touring-3000 Yellow, 44 1
25 | Touring-3000 Yellow, 50 1
26 | Touring-3000 Yellow, 54 1
27 | Touring-3000 Yellow, 58 1
28 | Touring-3000 Yellow, 62 1
29 | # Clothing %330,772.61
30 |Grand Total $25,513,877.17

. Verify that the result for all Touring Bikes, including their total, is 1, as defined in the
scope statement.

Bring another measure, for example, Reseller Sales Amount and verify that this measure
remains intact; the scope is not affecting it.

WOW! eBook
www.wowebook.org

How it works...

The Scope() statement is used to isolate a particular part of the cube, also called the subcube,
in order to provide a special calculation for that space. It starts with the Scope keyword
followed by the subcube and ends with the End Scope phrase. Everything inside is valid only
for that particular scope.

In this case, we formed the subcube by using the Descendants() function to get all the
descendants of the member Touring Bikes and the member Touring Bikes itself. There are
various ways that we can collect members on a particular branch using the Ascendants() and
Descendants() function. These ways will be covered in the later sections of this recipe.

Once we have set our subcube correctly, we can provide various assignments inside that
scope. Here, we have specified that the value for the Internet Sales Amount measure is to be
1 for every cell in that subcube.

It is worth noticing that the Touring Bikes total is not calculated as an aggregate of its
children. This is because we have used the flag SELF_AND_AFTER in the Descendants()
function; therefore, the member representing that total was included in the scope. Therefore, a
constant value of 1 has been assigned to it, the same way it was assigned to its children.
Consequently, the Touring Bikes member contributes with its own value, 1, as the Touring
Bikes total.

If the AFTER flag had been used in the Descendants() function, the Touring Bikes member
would have been left out of that scope. In that case, its value would be equal to the sum of its
children, that is, 22. The aggregate value of 22 would be used as its contribution to the
Touring Bikes total.

It is worth noting that regular measures roll up their children's values using aggregate
functions (sum, Max, Min, and others) that are specified in the measure property
AggregateFunction. Calculated measures do not roll up. They are calculated by evaluating
their expression for every single member, be it parent or child.

WOW! eBook
www.wowebook.org

There's more...

The earlier example showed how to isolate a lower part of a hierarchy, a part following a
particular member. In this section, we're going to show that the opposite is not so easy, but
still possible.

In cases where we need to scope a part of the hierarchy above the current member, we might
be tempted to do the obvious, to use the opposite MDX function, the Ascendants() function.
However, that would result in an error because the subcube wouldn't be compact any more.
The term arbitrary shape represents a subcube formed by two or more smaller subcubes of
different granularity, something that is not allowed in the scopes. The solution is to break the
bigger subcube into many smaller ones, so that each can be considered compact, with data of
consistent granularity. More about which shapes are arbitrary and which are not can be found
in the Appendix and on this site: http://tinyurl.com/ArbitraryShapes .

Here's an example for the Mountain Bikes member in which we show how to set the value to
2 for all of its ancestors:

Scope(Ancestors(
[Product].[Product Categories].[Subcategory].&[1],
1)
);
[Measures].[Internet Sales Amount] = 2;
End Scope;

Scope(Ancestors(
[Product].[Product Categories].[Subcategory].&[1],
2)
);
[Measures].[Internet Sales Amount] = 2;
End Scope;

This is the result:

WOW! eBook
www.wowebook.org

http://tinyurl.com/ArbitraryShapes

A B
1 |Row Labels ¥ | Internet Sales Amount
2 |+ Accessories 4700,759.96
3 | = Bikes | 2
4 + Mountain Bikes %9,952,759.56
5 + Road Bikes $14,520,584.04
] = Touring Bikes 1
i Touring-1000 Blue, 46 1
a Touring-1000 Blue, 50 1
g Touring-1000 Blue, 54 1
10 Touring-1000 Blue, 60 1
11 Touring-1000 Yellow, 46 1
12 Touring-1000 Yellow, 50 1
13 Touring-1000 Yellow, 54 1
14 Touring-1000 Yellow, 60 1
15 Touring-2000 Blue, 46 1
16 Touring-2000 Blue, 50 1
17 Touring-2000 Blue, 54 1
18 | Touring-2000 Blue, 60 1
19 Touring-3000 Blue, 44 1
20 Touring-3000 Blue, 50 1
21 Touring-3000 Blue, 54 1
22 Touring-3000 Blue, 58 1
23 Touring-3000 Blue, 62 1
24 Touring-3000 Yellow, 44 1
25 Touring-3000 Yellow, 50 1
26 Touring-3000 Yellow, 54 1
Al Touring-3000 Yellow, 58 1
28 Touring-3000 Yellow, 62 1
29 | # Clothing $339,772.61
30 | Grand Total 2

The value 1 for Touring Bikes and its children is from the previous scope script. But notice
the value 2 in the Bikes Total row. The same value can be seen in the Grand Total row,
highlighted in the bottom of the image. Both the Bikes Total and Grand Total are the
ancestors of member Mountain Bikes. The calculation worked as expected.

The query-based alternative

These two scope-based calculations can easily be turned into query-based calculations in
cases where the calculation is not required to persist in all queries.

Here's the query that returns exactly the same thing as those scope statements we've covered
so far, one in the initial example and two in the There's more section:

WITH
MEMBER [Measures].[Branch detected on member or below] AS
1iif(IsAncestor (
[Product].[Product Categories].[Subcategory].&[3],
[Product].[Product Categories].CurrentMember

)
OR

WOW! eBook
www.wowebook.org

[Product].[Product Categories].[Subcategory].&[3] Is

[Product].[Product Categories].CurrentMember,

True,

null

)
MEMBER [Measures].[Branch detected on member or above] AS
1if(Intersect(
Ascendants(
[Product].[Product Categories].[Subcategory].&[3]
)/
[Product].[Product Categories].CurrentMember
).Count > 0,
True,
null

)
SELECT
{ [Measures].[Branch detected on member or above],
[Measures].[Branch detected on member or below] } ON O,
NON EMPTY
{ [Product].[Product Categories].AllMembers } ON 1
FROM
[Adventure Works]

The first calculated measure detects ascendants of the current member. It uses the
IsAncestor () function and detects whether the current member is beneath the selected
member in the hierarchy. That function returns False for the member itself. Therefore, we
have to incorporate additional logic in the form of testing for the presence of a particular
member, which is explained in the first recipe of this chapter, Detecting a particular member
in a hierarchy.

The second calculation detects the descendants of the current member. It uses the
Ascendants() function to get all the members above and including the selected one. When that
set is obtained, we test whether the current member is in the set of ascendants. The test is
performed using the Intersect() and Count functions.

Here's another query-based alternative, this time using a CELL CALCULATION:

WITH
CELL CALCULATION [Touring Bikes]
FOR '([Measures].[Internet Sales Amount],
Descendants([Product].[Product Categories]
.[Subcategory].&[3], ,
SELF_AND_AFTER

)
) 1
AS 1
SELECT
{ [Measures].[Internet Sales Amount] } ON O,
Descendants(
[Product].[Product Categories].[Subcategory].&[3], ,
SELF_AND_AFTER
) ON 1
FROM

WOW! eBook
www.wowebook.org

[Adventure Works]

As you can see, a cell calculation does the same thing a Scope() statement does in MDX
script--it provides an expression for a particular subcube. A CELL CALCULATION is one of the
three elements that can be defined using the WwITH keyword in an MDX query. Here's more
information about it: http://tinyurl.com/CellCalculations .

Now, what happens if we want to exclude the selected member in those calculations?

The first calculation in the query we started this section with is easy. We simply have to omit
the part next to the OR statement, keeping only the IsAncestor () part of the expression.

The second calculation is a bit more complex but it can also be done. All we have to do is
extract the selected member from the set of ascendants. This can be done relatively easily
using the Except() function:

Except(
Ascendants(
[Product].[Product Categories].[Subcategory].&[3]

4
[Product].[Product Categories].CurrentMember)
Other parts of the calculation remain the same.

In the query with the CELL CALCULATION, we have to change the SELF_AND_AFTER flag into the
AFTER flag. We don't have to do the same for the set on rows, only in cell calculation, where
this behavior is defined.

Children() will return empty sets when out of boundaries

Under certain conditions, some MDX functions generate empty sets as their result; others
always return a non-empty set. It is therefore good to know which one is preferred in which
scenario, because an empty set will result in an empty value and this may cause problems in
some calculations.

The Descendants() function will almost always return a result. If there are no children under
the member or the set defined as the first argument, then it will return the member or the set
itself. On the other hand, the children () function will return an empty set when applied to
members on the leaf level.

The Ascendants() function behaves pretty much the same as the Descendants() function. If
the specified member is at the top level, it will return the member itself. On the other hand, the
Parent function when applied to the root member or a top-level calculated member returns an
empty set. The same is true for the Ancestors() and the Ancestor () functions. When out of
boundaries, they return an empty set as well.

Based on how you want your calculation to react, you should use the function that is most

WOW! eBook
www.wowebook.org

http://tinyurl.com/CellCalculations

appropriate in a particular case.

Various options of the Descendants() function

The following link provides more information about the bescendants() function and how to
use its arguments: http://tinyurl.com/MDXDescendants .

WOW! eBook
www.wowebook.org

http://tinyurl.com/MDXDescendants

See also

e The recipes Detecting a particular member of a hierarchy and Detecting the root member
recipes cover a similar topic and are worth reading because of the additional insights
they provide.

e Chapter 9, Metadata-driven Calculations

WOW! eBook
www.wowebook.org

Finding related members in the same dimension

The dimensionality of a cube equals the number of hierarchies used in it. This encompasses
all the user and attribute hierarchies, including a special hierarchy Measures, visible or not, as
long as they are enabled. A cube with 10 dimensions, each having 10 attribute hierarchies, is a
101D object! Comparing that to any 3D objects in your environment, such as a Rubik's cube,
you will immediately be amazed by the space a typical SSAS cube forms. The number of
coordinates, or shall we say cells, in that space is simply beyond our imagination.

Fortunately, a great deal of that space is empty and the SSAS engine has ways to optimize that.
It even exposes some of the optimization features to us through several MDX functions we
can use when needed.

In this recipe, we are going to look at two hierarchies, color and Subcategory, and find the
number of available colors in each of the product subcategories. Although these two
hierarchies are from the same Product dimension, the number of all the possible
combinations of Color and Subcategory can still be enormous. Our goal is to find only the
existing colors for each product subcategory.

Because of the enormous possible combinations of the hierarchies, from the same dimension
or not, in a typical cube, we should always pay attention to optimization. In this recipe, we will
cover a type of optimization that is related to combining hierarchies from the same
dimension. In the next recipe, we will cover a type of optimization that is related to optimizing
the combination of hierarchies from different dimensions.

WOW! eBook
www.wowebook.org

Getting ready

Start SQL Server Management Studio and connect to your SSAS 2016 instance. Click on the
New Query button and check that the target database is Adventure Works DW 2016.

Here's the query we'll start from:

SELECT
{ [Measures].[Internet Order Count] } ON O,
{ [Product].[Subcategory].[Subcategory].Members *
[Product].[Color].[Color].Members } ON 1
FROM
[Adventure Works]

Once executed, the query returns all product subcategories cross-joined with product colors.
Scroll down your result and compare it with the following screenshot:

Intemet Order Court |
Road Bikes Black 3.030
Foad Bikes Red 2,719
Road Bikes ellow 2319
Foad Frames Black (ruall}
Foad Frames Red (ruall}
Fioad Frames Yellow (ruall}
Saddles MA (rually
Sharts Black 1.019
Socks White h6d
Tights Black (rually
Tires and Tubes MA 5,867
Touring Bikes Blue 1,283
Touring Bikes Yellow g84
Touring Frames Blue (rually
Touring Frames Yellow (ruall}
Vests Blue h62
Wheels Black (ruall}

b

It is worth noticing that the result is not a Cartesian product of those two hierarchies. With
over 30 different subcategories and 10 different colors in the Product dimension, a Cartesian
product of these two hierarchies would return over 300 different combinations. The engine,
however, has automatically reduced the two-dimensional set on rows to a set of existing
combinations only. The reason why this was possible follows.

The two hierarchies Color and Subcategory belong to the same dimension Product. A

dimension originates from the underlying table (or a set of them in a snowflake model). The
columns on the underlying table become attribute hierarchies. There are only a finite number
of various combinations of attributes, and that number is almost always less than a Cartesian

WOW! eBook
www.wowebook.org

product of those attributes. The engine merely has to read that table and return the set of
distinct combinations of the attributes for a particular case.

Of course, that is not exactly how it is done, but you get a good idea of how the
multidimensional space is automatically shrunk whenever possible.

Notice also that this is not a result of the NON EMPTY keyword on rows because we didn't put it
there. That keyword does something else: it removes empty fact rows. As seen in the
preceding screenshot, we have many rows with the value of null in them. We deliberately
didn't use that keyword to show the difference between what is known as the auto-exists
algorithm and what NON EMPTY does.

Now, let's get back to the solution and see how to get the number of colors per subcategory
without displaying colors on the query axis.

WOW! eBook
www.wowebook.org

How to do it...

Follow these steps to find related members in the same dimension:

1.
2.
3.

v

Add the WITH part of the query.

Create a new calculated measure and name it Number of colors.

Remove the set with [Product].[Color] hierarchy from rows and move it inside the
definition of the new measure. Only product subcategories should remain on rows.
Use the EXISTING function before the set of color members and wrap everything in the
Count() function.

Add this calculated measure on axis 0, next to the existing measure.

Execute the query, which should look like this:

WITH
MEMBER [Measures].[Number of colors] AS

Count(EXISTING [Product].[Color].[Color].Members)
SELECT

{ [Measures].[Internet Order Count],

[Measures].[Number of colors] } ON O,
{ [Product].[Subcategory].[Subcategory].Members
} ON 1

FROM

[Adventure Works]

7. Scroll down to the end and verify that the result matches the following screenshot:

Intemet Order Count || Mumber of colors | =
Road Bikes 2,068 3
Fioad Frames (rually 3
Saddles (ruall} 1
Shorts 1.019 1
Socks h62 1
Tights (ruall} 1
Tires and Tubes 5,867 1
Touring Bikes 2167 2
Touring Frames (roall} 2
Vests h62 1
Wheels (rually 1 =

WOW! eBook
www.wowebook.org

How it works...

By default, sets are evaluated within the context of the cube, not within the current context. The
EXISTING keyword forces the succeeding set to be evaluated in the current context. Without it,
the current context would be ignored and for each subcategory we would get 10 colors, which
are all the distinct colors on the Product dimension table.

After that, we apply the count() function in order to get the dynamic count of colors, a value
calculated for each row separately.

WOW! eBook
www.wowebook.org

There's more...

There might be situations when you'll have multiple hierarchies of the same dimension in the
context, but you'll only want some of them to have an impact on the selected set. In other
words, there could have been sizes from the [Size] attribute next to product Subcategories on
rows. If you use the EXISTING keyword on colors, you'll get the number of colors for each
combination of the subcategory and the site. In cases where you need your calculation to
ignore the current size member and get the number of colors per subcategory only, you will
have to take another approach. If you're wondering why you would do such a thing, just
imagine you need an indicator which gives you a percentage of the color per size and
subcategory. That indicator would have an unusual expression in its denominator and the
usual expression in its numerator.

OK, so what's the solution in this case and how do we make such a calculation?

The Exists() function comes to the rescue. In fact, that function does the same thing as the
EXISTING keyword, but it requires a second argument in which we need to specify the context
for the evaluation.

Here's an example query:

WITH
MEMBER [Measures].[Number of colors] AS
Count(EXISTING [Product].[Color].[Color].Members)
MEMBER [Measures].[Number of colors per subcategory] AS
Count(Exists([Product].[Color].[Color].Members,
{ [Product].[Subcategory].CurrentMember })
)
SELECT

{ [Measures].[Internet Order Count],
[Measures].[Number of colors],
[Measures].[Number of colors per subcategory] } ON O,
{ [Product].[Subcategory].[Subcategory].Members *
[Product].[Size Range].[Size Range].Members } ON 1
FROM
[Adventure Works]

Once run, this query returns two different color-count measures. The first is unique to each
row; the second changes by subcategory only. Their ratio, not present but easily obtainable in
the query, would return the percentage of color coverage. For example, in the following
screenshot, it is obvious that there's only 33 percent color coverage for 38-40 CM Road
Bikes, which may or may not be a signal to fill the store with additional colors for that
subcategory. The important thing is that we were able to control the context and fine-tune it:

WOW! eBook
www.wowebook.org

Intemet Order Count || Mumber of colors || Mumber of colors per subcategaory
Pedals MA (ruall} 1 1
Pumps MA (ruall} 1 1
- Road Bikes | 38-40CM 782 1 3
Road Bikes 472-46 CM 2235 3 3
Road Bikes 458-52 CM 3.091 3 3
Road Bikes F4-BECM 1.355 2 3
Road Bikes 6062 CM 605 2 3
Foad Frames 3840 CM (rually 1 3
Foad Frames 4246 CM (ruall} 3 3
Foad Frames 43-52 CM (ruall} 3 3
Foad Frames h4-58 CM (ruall} 2 3
Foad Frames &0-62 CM (rually 2 3
Saddles MA (ruall} 1 1
Shorts L 363 1 1

We can also turn it the other way around. The EXISTING keyword is in fact a shortcut, a
shorter version of the Exists() function which says take everything available as the second
argument, don't force me to specify everything. The EXISTING keyword is therefore a more
flexible, generic variant which handles any context. When we want to take control over the
context, we can step back to the Exists() function.

Tips and trick related to the EXISTING keyword
Another way of specifying the EXISTING keyword is by using the MDX function with the same

name. The following expression using the Existing() function is the same as using the
EXISTING keyword:

Existing([Product].[Color].[Color].Members)

This may come in handy with cross-joins because the cross-join operator * has precedence
over the EXISTING keyword. In the following pseudo-expression, the EXISTING keyword will
be applied to the cross-joined set, and not the first set in the cross-join:

EXISTING set_expressionl * set_expression2

In order to apply EXISTING to the first set, wrap the first set including the EXISTING keyword
in curly brackets, like this:

{ EXISTING set_expressionl } * set_expression2

We can also use the alternative Existing() function for the first set:

Existing (set_expressionl) * set_expression2

Filter() versus Exists(), Existing(), and EXISTING

WOW! eBook
www.wowebook.org

Never iterate on a set unless you really have to, because iteration is slow. Use specialized
functions which operate on sets whenever possible. They are designed to leverage the internal
structures and therefore operate much faster.

A Filter () function filters a specified set based on a search condition by iterating through
each tuple in the specified set. This recipe hopefully showed there's no need to filter a set of
members if that set is related to the current context, in other words, that it belongs to the same
dimension, as explained in the introduction. Exists(), Existing(), or the EXISTING keyword
are better choices because they are functions optimized to work in block mode.

A friendly warning

After reading the subsequent recipe about finding related members on a different dimension,
you might be tempted to use the technique described in that recipe here as well. The idea of
not having to memorize each approach separately is an attractive one. A unique, all-purpose
way of finding a related member no matter where it is.

You should know that, although it would work, it would be an inefficient solution. The
performance could suffer greatly.

The reason for this lies in the fact that if you stick with the solution presented in this recipe,
the SSAS engine will be able to perform a fast auto-exist operation on a single dimension
table. The solution presented in the subsequent chapter relies on a join between the dimension
table and the fact table. Now, all of a sudden, the engine has an N times larger table to scan.
That could be a very costly operation if the engine is not optimized to reduce the unnecessary
complexity involved here. Such complexity is not needed at all in this scenario! Therefore, try
to make a difference in your mind between finding related members in the same dimension
and finding related members in another dimension, and approach each case using a different,
but appropriate, technique.

Tip

The difference between this recipe and the next recipe is finding the related members in the
same dimension versus related members from two different dimensions. The solution
presented in this recipe for finding the related members in the same dimension allows SSAS
engine to perform a fast auto-exist operation on a single dimension table. The solution
presented in the next recipe relies on a slow join between a dimension table and a fact table,
forcing the engine to scan a data set that is N times larger than the dimension table itself.

The procedure mentioned earlier serves the purpose of illustrating the concept; it doesn't
necessarily represent the actual implementation in the engine.

WOW! eBook
www.wowebook.org

See also

e Other aspects of the EXISTING keyword are covered in the Optimizing MDX query using
the NonEmpty() function recipe in Chapter 1, Elementary MDX Techniques. You may gain
a better understanding of that keyword by reading that recipe.

e Also, read the Finding related members in another dimension recipe in order to
understand the difference between finding related members in the same dimension and in
different dimensions.

WOW! eBook
www.wowebook.org

Finding related members in another dimension

As mentioned in the introduction of the previous recipe, Finding related members in the same
dimension, this recipe deals with a slightly different scenario. It explains how to find the
related members from two or more different dimensions.

Before we start, please keep in mind that when we say a dimension, we mean any hierarchy in
that dimension from now on.

Dimensions, unlike hierarchies of the same dimension, are unrelated and therefore
independent objects. Without a third table in the form of a third fact table, they are unrelated,
at least in the dimensional modeling sense. When a fact table is inserted among them, the
many-to-many relationship comes into existence.

There are two different types of combination we can make with the dimensions. One type is
the Cartesian product because they are unrelated. It is obtained by cross-joining members in
both dimensions. In relational terms, that would represent the CROSSJOIN of two tables. Since
those tables are two independent objects, we get a real Cartesian product.

The other combination is a combination of a fact table and an intermediate table for two or
more dimensions. This fact table can serve as a filter. We can use it to get members in the
second dimension, members which have associated records, or non-empty values in the fact
table for the valid members in the first dimension. A typical example would be find me
products that are available on a particular territory, are bought by a particular customer, or
are shipped on a particular date. The first dimension in this case contains the territory,
customers, and dates respectively; the second one is the product dimension; the fact table or
the measure group could be the sales orders or any measure group of interest to us.

The previous requirement example can be accomplished by cube design in SSAS alone. All
we have to do is position the selected member or more of them in the slicer, turn the NON
EMPTY keyword on rows, and provide a set of members from the other dimension on rows and
a measure of our interest on columns. The result would meet our requirement. This type of
operation is natural for any SSAS client, and it is available for ad hoc analysis.

However, as we've learned quite a few times throughout this book, there are always situations
when we need to have a control over certain calculations, and the controlled calculations
might need to get not all but only the related members, in another dimension. Is there a way to
support this? Yes, this recipe shows how.

In this recipe, we are going to use the Reseller dimension and we are going to find out how
many subcategories each of the top 100 resellers is ordering.

The Reseller and Subcategory are two hierarchies from two different dimensions. Our goal
is to find their combinations that have associated rows in the fact table of the specified

WOW! eBook
www.wowebook.org

measure group Reseller Orders.

WOW! eBook
www.wowebook.org

Getting ready

Start SQL Server Management Studio and connect to your SSAS 2016 instance. Click on the
New Query button and check that the target database is Adventure Works DW 2016.

Here's the query we'll start from:

SELECT
{ [Measures].[Reseller Order Count] } ON O,
{ TopCount([Reseller].[Reseller].[Reseller].Members,
100,
[Measures].[Reseller Order Count]) *
[Product].[Subcategory].[Subcategory].Members } ON 1
FROM
[Adventure Works]

Once executed, the query returns the top 100 resellers based on their ordering frequency
combined with product subcategories. The NON EMPTY keyword is omitted intentionally in
order to show a Cartesian product in action.

Combining 100 customers with 37 subcategories makes 3,700 rows. The result is a Cartesian
product of Reseller and Subcategory, which are from two different dimensions.

Scroll down to the last row, highlight it, and check the status bar of SSMS. That extra row, the
3,701st, is the column header row.

It is easy to notice that many combinations of Reseller and Subcategory produce a NULL
reseller order. We have two goals in this recipe. The first is to show Reseller only on the
rows. The second is to count the number of Subcategory for each Reseller with a condition
that the combination actually has associated rows in the reseller order fact table.

The key part of the solution is to find combinations from two different dimensions that have
associated rows in the fact table of the specified measure group:

Reseller Order Court .
Big-Time Bike Store Fioad Bikes 3
Big-Time Bike Store Foad Frames 2
Big-Time Bike Store Saddles 2
Big-Time Bike Store Shorts (ruall}
Big-Time Bike Store Socks 1
Big-Time Bike Store Tights (ruall}
Big-Time Bike Store Tires and Tubes (ruall}
Big-Time Bike Store Touring Bikes (ruall}
Big-Time Bike Store Touring Frames (ruall}
Big-Time Bike Store Wests (ruall}
Big-Time Bike Store Wheels 3
WOW! eBook

www.wowebook.org

WOW! eBook
www.wowebook.org

How to do it...

Follow these steps to find related members from Reseller and Subcategory through the fact
table of the measure group Reseller Orders:

1. Add the wITH part of the query.

2. Create a new calculated measure and name it Count of SubCategory - Exists.

3. Remove the set with the [Product].[Subcategory] hierarchy from rows and move it
inside the definition of the new measure. Only the resellers should remain on rows.

4. Use the variant of the Exists() function which has the third argument, the measure

group name. In this case, you should use the measure group containing the measure

Reseller Order Count.The name of that measure group is Reseller Orders.

Finally, wrap everything with the Count() function.

Add this calculated measure on axis 0, next to the existing measure.

7. Execute the query, which should look like this:

oo

WITH
MEMBER [Measures].[Count of SubCategory - Exists] AS
Count(Exists(
[Product].[Subcategory].[Subcategory].Members, ,
'Reseller Orders'))
SELECT
{ [Measures].[Reseller Order Count],
[Measures].[Count of SubCategory - Exists] } ON O,
{ TopCount([Reseller].[Reseller].[Reseller].Members,
100,
[Measures].[Reseller Order Count]) *
[Product].[Subcategory].[Subcategory].Members } ON 1
FROM
[Adventure Works]

8. Verify that the result matches the following screenshot:

Reseller Order Count || Court of SubCateqgory - Exists o
Advanced Bike Components 12 X2
Area Bike Accessories 12 19
Basic Sports Equipment 12 18
Better Bike Shop 12 21
Bike Dealers Association 12 2
Bike Goods 12
Brakes and Gears 12 13
Brightwars Compary 12 17 o
WOW! eBook

www.wowebook.org

How it works...

To find the related members from two different dimensions through a fact table, we used the
Exists() function. The Exists() function has three variants, as shown:

Exists(Set_Expressionl, Set_Expression2)
Exists(Set_Expressionl, Set_Expression2, MeasureGroupName)
Exists(Set_Expressionl, , MeasureGroupName)

The first variant without the third argument MeasureGroupName is useful for intersecting
related attributes from the same dimension, as shown in the previous recipe, Finding related
members in the same dimension. The second variant with the third argument
MeasureGroupName is ideal for combining dimensions across a fact table. In SSAS, a measure
group represents a fact table.

The third variant omits the second argument for a set expression. What this variant does is
instruct the engine to return distinct members from the first set that have valid combinations
with the current member in context, that is, the combinations have associated rows in the fact
table of the specified measure group.

In our example, we have used the third variant, omitting the second set argument. The current
member in context is every reseller on rows. This query context is established in the
evaluation phase of the query. There's no need to use the current member as the second set;
that member will be there implicitly.

Once we get a set of distinct members from the Subcategory hierarchy, all we have to do is
count them using the Count () function.

WOW! eBook
www.wowebook.org

There's more...

The alternative, although not exactly the same solution, would be to use the NonEmpty ()
function. Here's the query which, when run, shows that both count measures return the same
results for each reseller:

WITH
MEMBER [Measures].[Count of SubCategory - Exists] AS
Count(Exists(
[Product].[Subcategory].[Subcategory].Members, ,
'Reseller Orders'))
MEMBER [Measures].[Count of SubCategory - NonEmpty] AS
Count(NonEmpty (
[Product].[Subcategory].[Subcategory].Members,
{ [Measures].[Reseller Order Count] }))
SELECT
{ [Measures].[Reseller Order Count],
[Measures].[Count of SubCategory - Exists],
[Measures].[Count of SubCategory - NonEmpty] } ON O,
{ TopCount([Reseller].[Reseller].[Reseller].Members,
100,
[Measures].[Reseller Order Count]
) } ON 1
FROM
[Adventure Works]

Since we've given a hint that this alternative of using NonEmpty () function is not exactly the
same as the solution using the Exists(), now's the time to shed more light upon that.

The difference between the third variant of the Exists() function and the NonEmpty () function
is subtle. They differ only on measures for which the Nul1lProcessing property is set to
Preserve. NonEmpty () is a more destructive function in this case, because it ignores fact
records with nulls while Exists() preserves them. In cases where the measure's
NullProcessing property is setto Preserve, we can have two different counts and use the one
that best meets our reporting requirements. The other subtle difference is that the Exists()
function ignores the MDX script and simply does a storage engine query. For example, if the
MDX script nulls out a measure, the Exists() function will still return values.

The queries in this recipe so far have illustrated the concept behind the Exists() and
NonEmpty () functions. These functions can be used to isolate related members on other
dimensions. However, from the performance perspective, they are not great when you need to
count members on other dimensions because the count-exists and the count-nonempty
combinations are not optimized to run in block mode. The sum-iif combination, on the other
hand, is optimized to run in block mode. Therefore, whenever you need to do something
more than simply isolate related members on other dimensions (such as counting and so on),
consider using a combination of functions that you know run in block mode.

Here's the query that outperforms the two queries shown so far in this recipe:

WOW! eBook
www.wowebook.org

WITH
MEMBER [Measures].[Count of SubCategory - SumIIF] AS
Sum([Product].[Subcategory].[Subcategory].MEMBERS,
iif(IsEmpty([Measures].[Reseller Order Count]),
null,
1)

)
SELECT
{ [Measures].[Count of SubCategory - SumIIF] } ON O,
{ TopCount([Reseller].[Reseller].[Reseller].MEMBERS,
100,
[Measures].[Reseller Order Count]) *
[Product].[Subcategory].[Subcategory] .MEMBERS } ON 1
FROM
[Adventure Works]

Leaf and non-leaf calculations

The examples in this and the previous recipe are somewhat complex from a technical
perspective, but they are perfectly valid in many reporting requirements. From an analytical
perspective, it is often required to get the count of existing members on a non-leaf level, such
as at the subcategory level in our example.

When it's required to get the count of members on a leaf level, designing a distinct count
measure using the dimension key in the fact table might be a better option. It will work by the
cube design in SSAS; there is no code maintenance and it's much faster than its MDX
counterpart. Therefore, look for a by-design solution whenever possible; don't assume that
things should be handled in MDX just because this recipe indicated as such. Chapter 8 , When
MDX Is Not Enough deals with that in more detail.

When it is required to get the count on a non-leaf attribute, that's the time when MDX
calculations and relations between hierarchies and dimensions come into play as valid
solutions. Because either you are going to include that higher granularity attribute in your fact
table (not likely, especially on large fact tables) and then build a distinct count measure from
it, or you can build a new measure group at the non-leaf grain, or you will look for an MDX
alternative like we did in this example and the one in the previous chapter. Additionally, the
non-leaf levels will typically, although not always, have much lower cardinality than the leaf
level, which means that MDX calculations will perform significantly better than they would
on a leaf level.

This section serves the purpose of a reminder when it comes to the choice between cube
design and MDX calculations. Knowing the pros and cons, you should be well on your way to
making the right decision.

WOW! eBook
www.wowebook.org

See also

e Other aspects of the NonEmpty () function are covered in the Optimizing MDX queries
using the NonEmpty() function recipe in Chapter 1, Elementary MDX Techniques. You
may gain a better understanding of that function by reading that recipe.

e Also, read the Finding related members in the same dimension recipe in order to
understand the difference between finding related members in the same dimension and in
different dimensions.

WOW! eBook
www.wowebook.org

Calculating various percentages

This recipe and the next two recipes show how to calculate relative percentages, averages, and
ranks. We are starting with percentages in this recipe.

Having a ratio of a current member's value over their parent's value is an often-required
calculation. It's a form of normalizing the hard-to-grasp values in the table. When the
individual amounts become percentages, it immediately becomes clear where the good or bad
values are.

There are many kinds of percentages or shares, but we'll take the typical three and present
them in this recipe. These are: percentage of the parent's value, percentage of the level's total,
and percentage of the hierarchy's total.

This recipe will show how to calculate them using the ragged Sales Territory hierarchy of
the Sales Territory dimension. Unlike a balanced (or standard) hierarchy, whose branches
all have the same level (or depth) with each member's parent being at the level immediately
above the member, a ragged (or unbalanced) hierarchy is a hierarchy whose branches can
have inconsistent depths. A typical example of a ragged hierarchy is an organization chart.
The levels within the organizational structure are unbalanced, with some branches in the
hierarchy having more levels than others.

In the Adventure Works cube, the sales Territory hierarchy is a ragged hierarchy. This can
be seen by browsing the Sales Territory hierarchy in SQL Server Management Studio, as
shown in the following screenshot. The member United States is the only country in that
hierarchy which has children, the regions. No other country in that hierarchy has them. This
has created inconsistent depths in the hierarchy:

WOW! eBook
www.wowebook.org

L1 O G

Sales Territory [Browse] + X_

Hierarchy: | Sales Territory

e |

Language: |Default

Currentlevel: o (all)
SN = Al Sales Territories
= o Europe
o France
o Germany
@ United Kingdom
Q na
= @@ Morth America
Q Canada
= @ United States
Q cCentral
@ Northeast
@ Morthwest
@ Southeast
@ southwest
= @@ Padfic
Q Australia

So, let's start!

WOW! eBook
www.wowebook.org

Getting ready

Start SQL Server Management Studio and connect to your SSAS 2016 instance. Click on the
New Query button and check that the target database is Adventure Works DW 2016.

Here's the query we'll start from:

WITH
MEMBER [Measures].[Level] AS

[Sales Territory].[Sales Territory]

.CurrentMember .Level.Ordinal
SELECT

{ [Measures].[Level],

[Measures].[Reseller Sales Amount] } ON O,

{ [Sales Territory].[Sales Territory].AllMembers } ON 1
FROM

[Adventure Works]

Once executed, the query returns the hierarchized territories in rows:

Level | Reseller Sales Amount

All Sales Temitories 0 £80.450,596.98
Europe 1 £10.870,534.30
France 2 24607537594
Gemarny 2 £1.5983.,588.04
United Kingdom 2 &4 275,008.83
MNA 1 (nully
Morth America 1 £67.985,726.81
Canada 2 £14,377 52560
United States 2 £53,607.801.21
Central 3 £7.506.0028.18
Mortheast 3 £6.932.842.01
MNorthwest 3 £12.435.076.00
Southeast 3 7,867 41623
Southwest 3 £18,466, 45879
Pacific 1 £1,594,335.38
Australia 2 £1,594,335.38

In the columns, we have a little helper, the level ordinal displayed in the form of a measure.
This level ordinal number helps us to see how the members are arranged and ordered in a
hierarchy, with the All Sales Territories at the top, followed by the level 1 members and their
children at level 2. We can also observe that only level 2 member United States has children
at level 3.

Now we are ready to calculate three percentages for the Reseller Sales Amount measure. For
each member in the rows, we will calculate its percentage of the parent's value, percentage of
the level's total, and percentage of the hierarchy's total.

WOW! eBook
www.wowebook.org

How to do it...

Follow these steps to calculate various percentages:

1. Create the first calculated measure for the percentage of the parent's value, name it
Parent %, and provide the following definition for it:

MEMBER [Measures].[Parent %] AS
iif([Sales Territory].[Sales Territory].CurrentMember Is
[Sales Territory].[Sales Territory].[All],
1,
[Measures].[Reseller Sales Amount] /
(
[Measures].[Reseller Sales Amount],
[Sales Territory].[Sales Territory]
.CurrentMember .Parent

)
), FORMAT_STRING = 'Percent'

2. Create the second calculated measure for the percentage of the level's total value, name it
Level %, and provide the following definition for it:

MEMBER [Measures].[Level %] AS
[Measures].[Reseller Sales Amount] /
Aggregate([Sales Territory].[Sales Territory]
.CurrentMember .Level .Members,
[Measures].[Reseller Sales Amount])
, FORMAT_STRING = 'Percent'

3. Create the third calculated measure for the percentage of the hierarchy's total value,
name it Hierarchy %, and provide the following definition for it:

MEMBER [Measures].[Hierarchy %] AS
[Measures].[Reseller Sales Amount] /
([Sales Territory].[Sales Territory].[All],
[Measures].[Reseller Sales Amount])
, FORMAT_STRING = 'Percent'

4. Include all three calculated measures in columns, execute the query, and verify that the
result matches the following screenshot:

WOW! eBook
www.wowebook.org

Level || Reseller Sales Amount || Parent % || Level % Hierarchy %

All Sales Temitories 0 580,450,596.98 100.00% 100.00% 100.00%
Europe 1 $10,870.534.80 1351% 1351% 13.51%
France 2 54 607.537.94 4239% 573% 5.73%
Gemany 2 51,383,988.04 1825% 247% 247%
United Kingdom 2 54,279,008.83 39.36% 537% 5.32%
MA 1 {rually {rually {ruall} {ruall}
North America 1 567,985,726.81 B451% 8451% 2451%
Canada 2 514,377,525.60 21.15% 17.87% 17.87%
United States 2 $53,607.801.21 78.85% 66.63% 66.63%
Central 3 57,506,008.18 1475% 14.75% 3.83%
Northeast 3 56,932,842.01 1293% 12.93% B.62%
Northwest 3 512,435,076.00 23200 2320% 15.46%
Southeast 3 57.867.416.23 14.68% 1468% 9.78%
Southwest 3 518,466,458.79 34.45% 3445% 22.95%
Pacific 1 51,594,335.38 198% 198% 1.98%
Australia 2 51,594,335.38 100.00% 198% 1.98%
WOW! eBook

www.wowebook.org

How it works...

The Parent % measure returns the ratio of the current member's value over its parent's value.
The parent's value is calculated relative to the current member, using the following tuple. In
other words, the ratio returns a different value for each territory:

([Measures].[Reseller Sales Amount],
[Sales Territory].[Sales Territory].CurrentMember .Parent)

One additional thing we have to take care of is handling the problem of the nonexisting parent
of the root member. There's no such thing as the parent of the root member, meaning the
calculation would result in an error for that cell. In order to take care of that, we've wrapped
the calculation in an additional iif () statement. In it, we've provided the value of 1 (100%
later) when the root member becomes the current member during the iteration phase on rows.

Similarly, we've defined the other two calculated measures.

For the Level % measures, we have used the following tuple to get the aggregated value of all
the members at the same level as the current member as the denominator of the ratio:

Aggregate([Sales Territory].[Sales Territory].CurrentMember.Level.Members,
[Measures].[Reseller Sales Amount])

For the Hierarchy % measures, we have directly used the coordinate with the root member
because the following tuple represents the total value of the hierarchy:

([Sales Territory].[Sales Territory].[All],
[Measures].[Reseller Sales Amount])

It is easy to notice that the Level % and the Hierarchy % measures return the same ratio at all
levels except at level 3. This is because the aggregate of level 0, 1, or 2 would be practically
the same as the value of the root member. If you add up the sales amount for all level 1
members, you would get $80,450,596.98, which is the sales amount of the root member. It's
the same with all level 2 members. However, the aggregated sales amount for the members on
the third level is only $53,607,801.21. This is because other level 2 members do not have
children except the member United States.

WOW! eBook
www.wowebook.org

There's more...

The examples in this recipe so far should give you a good start for percentage calculations. If
you have reporting requirements for other types of percentage calculation, the following
techniques might come in handy for you.

First, you can use the SCOPE statement within an MDX script if you need to calculate the
percentage only for a part of your hierarchy.

Next, if you need only a single member in a denominator's tuple, use the Ancestor () function
and provide the appropriate level. Otherwise, you will have to aggregate the set of members
using the Aggregate() function, as shown in our example for the Level % calculation.

Finally, remember to take care of division by zero problems and problems related to
nonexisting members in the hierarchy. One such example is the Parent % calculation, where
we were detecting the root member because that's the only member in that hierarchy without a
parent.

Use cases

The Parent % measure is the most requested and useful one. It is applicable in any hierarchy
and gives an easy way to comprehend information about members in the hierarchy.

The Hierarchy % calculation is useful in the parent-child hierarchy to calculate the individual
percentages of members scattered in various positions and levels of a parent-child hierarchy.
In addition to that, this calculation is useful in user hierarchies when there is a need to
calculate the percentage of members in lower levels with respect to the hierarchy's total,
because the immediate parents and ancestors break the result into a series of 100%
contributions.

Finally, the Level % measure is also useful in parent-child hierarchies.

Besides ragged hierarchies, the difference between the Level % and the Hierarchy % will
manifest in other non-symmetrical structures; those are hierarchies with custom roll-ups and
special scopes applied to them. Financial structures (dimensions) such as P&L and balance
sheet are examples of these special types of hierarchies. In those scenarios, you might want to
consider having both percentages.

The Hierarchy % calculated measure is performance-wise a better measure because it picks a
coordinate in the cube directly. Moreover, that coordinate is the coordinate with the root
member, something we can expect to have an aggregate for. Unless the situation really
requires both of these measures, use the Hierarchy % measure only.

The alternative syntax for the root member

We have used the A11 level to get the root member in our example:

WOW! eBook
www.wowebook.org

[Sales Territory].[Sales Territory].[All]

There is an alternative syntax for the root, and it is safe enough that we do not need to worry
about possible errors. That definition is this:

Tail(
Ascendants(
[Sales Territory].[Sales Territory].CurrentMember

).Item(0)

The expression basically says take the last of the ascendants of the current member and
extract it from that set as a member.

The ascendants are always arranged in a hierarchy, which means that the last member in the
set of ascendants is the root we're after. Once we have that set, we can use the Tail() function
to get the last member of that set. If we omit the second argument of the Tail() function, the
value of 1 is implicitly applied.

The result of that function is still a set so we have to use the I1tem() function in order to
convert that single-member set into as a member object. Only then can we use it in our tuple.

The case of the nonexisting [All] level

In SSAS, the [A11] level is an optional, system-generated level. When the IsAggregatable
property of a hierarchy is set to False, the hierarchy will have no (A11) level. For example, in
the Adventure Works cube, the organizations hierarchy on the organization dimension has
the IsAggregatable property set to False. In this case, the following expression for the root
member using the [A11] level will return an empty object:

[Organization].[Organizations].[All]

However, the Tail-Ascendants expression in this case will correctly return the top level
member:

Tail(Ascendants([Organization].[Organizations].CurrentMember)).Item(0Q)

The percentage of leaf member values

The percentage on leaves is the fourth type of the percentage we can calculate. The reason we
haven't is that an aggregate on leaves is almost always the same value as the value in the root
member. If you have a different situation, use the following calculation:

MEMBER [Measures].[Leaves %] AS
[Measures].[Reseller Sales Amount] /
Aggregate(
Descendants([Sales Territory].[Sales Territory]
[All], ,
leaves),
[Measures].[Reseller Sales Amount])

WOW! eBook
www.wowebook.org

, FORMAT_STRING = 'Percent'

This calculation takes all leaf members and then applies an aggregate of them in respect to the
measure provided. Because of this, it might be significantly slower.

WOW! eBook
www.wowebook.org

See also

e The following recipes are part of the three-part series of recipes in this chapter dealing
with the topic of relative calculations: Calculating various averages and Calculating
various ranks. It is recommended that you read all of them in order to get a more
thorough picture.

WOW! eBook
www.wowebook.org

Calculating various averages

This is the second recipe in our series of relative calculations. In the previous recipe,
Calculating various percentages, we created calculated measures for Parent %, Level %,
Hierarchy %, and Leaves %. We used the ragged Sales Territory hierarchy of the Sales
Territory dimension. There is a good introduction to ragged hierarchies in the previous
recipe.

In this recipe, we will continue to use the ragged Sales Territory hierarchy of the sales
Territory dimension. We are going to show how to calculate the average among siblings,
average in the level, average in the entire hierarchy, and average on leaves.

WOW! eBook
www.wowebook.org

Getting ready

Start SQL Server Management Studio and connect to your SSAS 2016 instance. Click on the
New Query button and check that the target database is Adventure Works DW 2016.

Here is the same initial query we used in the previous recipe for calculating various
percentages:

WITH
MEMBER [Measures].[Level] AS

[Sales Territory].[Sales Territory]

.CurrentMember .Level.Ordinal
SELECT

{ [Measures].[Level],

[Measures].[Reseller Sales Amount] } ON O,

{ [Sales Territory].[Sales Territory].AllMembers } ON 1
FROM

[Adventure Works]

Once executed, the query returns hierarchized territories on rows. Please refer back to the
screenshot in the previous recipe.

On columns, we have a little helper, the level ordinal displayed in the form of a measure. This
level ordinal number helps us to see how the members are arranged and ordered in a
hierarchy, with the All Sales Territories at the top, followed by the level 1 members and their
children at level 2. We can also observe that only the level 2 member United States has
children at level 3.

In addition to the ordinal number for each level, we also have the main measure, the Reseller
Sales Amount measure. That's the measure we'll use to calculate four different averages:
Siblings AVG, Level AVG, Hierarchy AVG, and Leaves AVG.

WOW! eBook
www.wowebook.org

How to do it...

Follow these steps to calculate these averages:

1.

Create the first calculated measure for the average among the siblings, name it Siblings
AVG, and provide the definition for it using the Avg() function and the Siblings function:

MEMBER [Measures].[Siblings AVG] AS
Avg([Sales Territory].[Sales Territory]
.CurrentMember .Siblings,
[Measures].[Reseller Sales Amount])

. Create the second calculated measure for the average on level, name it Level AVG, and

provide the definition for it using the Avg() function and the Level function:

MEMBER [Measures].[Level AVG] AS
Avg([Sales Territory].[Sales Territory]
.CurrentMember .Level .Members,
[Measures].[Reseller Sales Amount])

Create the third calculated measure for the average on hierarchy, name it Hierarchy AVG,
and provide the definition for it using the Avg() function:

MEMBER [Measures].[Hierarchy AVG] AS
Avg([Sales Territory].[Sales Territory].Members,
[Measures].[Reseller Sales Amount])

Create the fourth calculated measure for the average on leaves, name it Leaves AVG, and
provide the definition for it using the Avg() function and the version of the
Descendants() function which returns leaves:

MEMBER [Measures].[Leaves AVG] AS
Avg(Descendants([Sales Territory].[Sales Territory]
[ALl], ,
Leaves),
[Measures].[Reseller Sales Amount])

Include all four calculated measures on columns, execute the query, and verify that the
result matches the following screenshot:

WOW! eBook
www.wowebook.org

www.wowebook.org

Level || Reseller Sales Amourt || Siblings AVG Level AVG Hierarchy AVG || Leaves AVG
All Sales Temtories | 0 580,450,596.98 58045059698 58045059698 519.663.972.81 58,045,059.70
Europe 1 $10.870,534.80 52681686566 S26.816865.66 S19.663,972.81 B8,045,059.70
France 2 $4,607,537.94 $362351160 $13.40843283 $19.663.972.81 $B8,045,059.70
| Gemany 2 51,383,988.04 5362351160 51340843283 519.663.972.81 58,045,059.70
United Kingdom 2 54,279,008.83 5362351160 51340843283 $19.663.972.81 58,045,059.70
NA 1 fnull} 52681686566 52681686566 51966397281 5804505370
North America 1 567,985,726.81 $2681686566 S$26B168656F S$1966397281 SR.045059.70
Canada 2 $14,377.925.60 $33992.863.40 $13.40843283 $19.663,972.81 B8,045,059.70
United States 2 $53,607.801.21 $33.99286340 51340843283 51966397281 $8.045059.70
Central 3 $7.906,008.18 51072156024 51072156024 $19.663.972.81 58,045,059.70
Northeast 3 $6,932,842.01 $10.721560.24 $10,721560.24 $19.663972.81 §B8.045.059.70
| Northwest 3 $12.435,076.00 51072156024 51072156024 519.663.972.81 58,045,059.70
Southeast 3 $7.867,416.23 $10.72156024 $10.721560.24 $19.663.972.81 §B8.045,059.70
Southwest 3 $18.466,458.79 $10.72156024 $10.721560.24 $19.663.972.81 $8.045,059.70
Pacific 1 $1,594,335.38 $2681686566 S26.01686566 $19.66397281 $8.045059.70
Australia 2 51,594,335.38 $159433538 §13.40843283 $19.663.972.81 §B8,045,059.70

WOW! eBook

How it works...

The averages are calculated using the standard MDX function called Avg (). That function
takes a set of members and calculates the average value of the measure provided as the second
argument of that function throughout that set of members. The only thing we have to take care
of is to provide a good set of members, the one we