
WOW! eBook
www.wowebook.org

MDX	with	Microsoft	SQL	Server	2016	Analysis
Services	Cookbook	Third	Edition

WOW! eBook
www.wowebook.org

Table	of	Contents

MDX	with	Microsoft	SQL	Server	2016	Analysis	Services	Cookbook	Third	Edition
Credits
About	the	Authors
About	the	Reviewer
www.PacktPub.com

Why	subscribe?
Preface

What	this	book	covers
What	you	need	for	this	book
Who	this	book	is	for
Sections

Getting	ready
How	to	do	it…
How	it	works…
There's	more…
See	also

Conventions
Reader	feedback
Customer	support

Downloading	the	example	code
Downloading	the	color	images	of	this	book	
Errata
Piracy
Questions

1.	Elementary	MDX	Techniques
Introduction
Putting	data	on	x	and	y	axes

Getting	ready
How	to	do	it...
How	it	works...
There's	more...

Putting	more	hierarchies	on	x	and	y	axes	with	cross	join
Skipping	axes

Getting	ready
How	to	do	it...
How	it	works...
There's	more...

The	idea	behind	it
Possible	workarounds	-	dummy	column

Using	a	WHERE	clause	to	filter	the	data	returned
Getting	ready

WOW! eBook
www.wowebook.org

How	to	do	it...
How	it	works...
There's	more...

Optimizing	MDX	queries	using	the	NonEmpty()	function
Getting	ready
How	to	do	it...
How	it	works...
There's	more...

NonEmpty()	versus	NON	EMPTY
Common	mistakes	and	useful	tips

Using	the	Properties()	function	to	retrieve	data	from	attribute	relationships
Getting	ready
How	to	do	it...
How	it	works...
There's	more...

Basic	sorting	and	ranking
Getting	ready
How	to	do	it...
How	it	works...
There's	more...

Handling	division	by	zero	errors
Getting	ready
How	to	do	it...
How	it	works...
There's	more...

Earlier	versions	of	SSAS
Setting	a	default	member	of	a	hierarchy	in	the	MDX	script

Getting	ready
How	to	do	it...
How	it	works...
There's	more...

Helpful	tips
2.	Working	with	Sets

Introduction
Implementing	the	NOT	IN	set	logic

Getting	ready
How	to	do	it...
How	it	works...
There's	more...
See	also

Implementing	the	logical	OR	on	members	from	different	hierarchies
Getting	ready
How	to	do	it...
How	it	works...

WOW! eBook
www.wowebook.org

There's	more...
A	special	case	of	a	non-aggregatable	dimension
A	very	complex	scenario

See	also
Iterating	on	a	set	to	reduce	it

Getting	ready
How	to	do	it...
How	it	works...
There's	more...

Hints	for	query	improvements
See	also

Iterating	on	a	set	to	create	a	new	one
Getting	ready
How	to	do	it...
How	it	works...
There's	more...
Did	you	know?
See	also

Iterating	on	a	set	using	recursion
Getting	ready
How	to	do	it...
How	it	works...
There's	more...

Earlier	versions	of	SSAS
See	also

Performing	complex	sorts
Getting	ready
How	to	do	it...
How	it	works...
There's	more...

Things	to	be	extra	careful	about
A	costly	operation

See	also
Dissecting	and	debugging	MDX	queries

Getting	ready
How	to	do	it...
How	it	works...
There's	more...

Useful	string	functions
See	also

Implementing	the	logical	AND	on	members	from	the	same	hierarchy
Getting	ready
How	to	do	it...
How	it	works...

WOW! eBook
www.wowebook.org

There's	more...
Where	to	put	what?
A	very	complex	scenario

See	also
3.	Working	with	Time

Introduction
Calculating	the	year-to-date	(YTD)	value

Getting	ready
How	to	do	it...
How	it	works...
There's	more...

Inception-To-Date	calculation
Using	the	argument	in	the	YTD()	function
Common	problems	and	how	to	avoid	them
YTD()	and	future	dates

See	also
Calculating	the	year-over-year	(YoY)	growth	(parallel	periods)

Getting	ready
How	to	do	it...
How	it	works...
There's	more...

ParallelPeriod	is	not	a	time-aware	function
See	also

Calculating	moving	averages
Getting	ready
How	to	do	it...
How	it	works...
There's	more...

Other	ways	to	calculate	the	moving	averages
Moving	averages	and	the	future	dates

Finding	the	last	date	with	data
Getting	ready
How	to	do	it...
How	it	works...
There's	more...
See	also

Getting	values	on	the	last	date	with	data
Getting	ready
How	to	do	it...
How	it	works...
There's	more...

Formatting	members	on	the	Date	dimension	properly
Optimizing	time-non-sensitive	calculations

Calculating	today's	date	using	the	string	functions
WOW! eBook

www.wowebook.org

Getting	ready
How	to	do	it...
How	it	works...
There's	more...

Relative	periods
Potential	problems

See	also
Calculating	today's	date	using	the	MemberValue	function

Getting	ready
How	to	do	it...
How	it	works...
There's	more...

Using	the	ValueColumn	property	in	the	Date	dimension
See	also

Calculating	today's	date	using	an	attribute	hierarchy
Getting	ready
How	to	do	it...
How	it	works...
There's	more...

The	Yes	member	as	a	default	member?
Other	approaches

See	also
Calculating	the	difference	between	two	dates

Getting	ready
How	to	do	it...
How	it	works...
There's	more...

Dates	in	other	scenarios
The	problem	of	non-consecutive	dates

See	also
Calculating	the	difference	between	two	times

Getting	ready
How	to	do	it...
How	it	works...
There's	more...

Formatting	the	duration
Examples	of	formatting	the	duration	on	the	Web
Counting	working	days	only

See	also
Calculating	parallel	periods	for	multiple	dates	in	a	set

Getting	ready
How	to	do	it...
How	it	works...
There's	more...

WOW! eBook
www.wowebook.org

Parameters
Reporting	covered	by	design

See	also
Calculating	parallel	periods	for	multiple	dates	in	a	slicer

Getting	ready
How	to	do	it...
How	it	works...
There's	more...
See	also

4.	Concise	Reporting
Introduction
Isolating	the	best	N	members	in	a	set

Getting	ready
How	to	do	it...
How	it	works...
There's	more...

The	top	N	members	is	evaluated	in	All	Periods,	not	in	the	context	of	the	opposite
query	axis

The	top	N	members	will	be	evaluated	in	the	context	of	the	slicer
Using	a	tuple	in	the	third	argument	of	the	TopCount()	function	to	overwrite	the

member	on	the	slicer
Testing	the	correctness	of	the	result
Multidimensional	sets
TopPercent()	and	TopSum()	functions

See	also
Isolating	the	worst	N	members	in	a	set

Getting	ready
How	to	do	it...
How	it	works...
There's	more...
See	also

Identifying	the	best/worst	members	for	each	member	of	another	hierarchy
Getting	ready
How	to	do	it...
How	it	works...
There's	more...

Support	for	the	relative	context	and	multidimensional	sets	in	SSAS	frontends
See	also

Displaying	a	few	important	members,	with	the	others	as	a	single	row,	and	the	total	at	the
end

Getting	ready
How	to	do	it...
How	it	works...
There's	more...

WOW! eBook
www.wowebook.org

Making	the	query	even	more	generic
See	also

Combining	two	hierarchies	into	one
Getting	ready
How	to	do	it...
How	it	works...
There's	more...

Use	it,	but	don't	abuse	it
Limitations

Finding	the	name	of	a	child	with	the	best/worst	value
Getting	ready
How	to	do	it...
How	it	works...
There's	more...

Variations	on	a	theme
Displaying	more	than	one	member's	caption

See	also
Highlighting	siblings	with	the	best/worst	values

Getting	ready
How	to	do	it...
How	it	works...
There's	more...

Troubleshooting
See	also

Implementing	bubble-up	exceptions
Getting	ready
How	to	do	it...
How	it	works...
There's	more...

Practical	value	of	bubble-up	exceptions
Potential	problems

See	also
5.	Navigation

Introduction
Detecting	a	particular	member	in	a	hierarchy

Getting	ready
How	to	do	it...
How	it	works...
There's	more...

Important	remarks
Comparing	members	versus	comparing	values
Detecting	complex	combinations	of	members

See	also
Detecting	the	root	member

WOW! eBook
www.wowebook.org

Getting	ready
How	to	do	it...
How	it	works...
There's	more...

The	scope-based	solution
See	also

Detecting	members	on	the	same	branch
Getting	ready
How	to	do	it...
How	it	works...
There's	more...

The	query-based	alternative
Children()	will	return	empty	sets	when	out	of	boundaries
Various	options	of	the	Descendants()	function

See	also
Finding	related	members	in	the	same	dimension

Getting	ready
How	to	do	it...
How	it	works...
There's	more...

Tips	and	trick	related	to	the	EXISTING	keyword
Filter()	versus	Exists(),	Existing(),	and	EXISTING
A	friendly	warning

See	also
Finding	related	members	in	another	dimension

Getting	ready
How	to	do	it...
How	it	works...
There's	more...

Leaf	and	non-leaf	calculations
See	also

Calculating	various	percentages
Getting	ready
How	to	do	it...
How	it	works...
There's	more...

Use	cases
The	alternative	syntax	for	the	root	member
The	case	of	the	nonexisting	[All]	level
The	percentage	of	leaf	member	values

See	also
Calculating	various	averages

Getting	ready
How	to	do	it...

WOW! eBook
www.wowebook.org

How	it	works...
There's	more...

Preserving	empty	rows
Other	specifics	of	average	calculations

See	also
Calculating	various	ranks

Getting	ready
How	to	do	it...
How	it	works...
There's	more...

Tie	in	ranks
Preserving	empty	rows
Ranks	in	multidimensional	sets
The	pluses	and	minuses	of	named	sets

See	also
6.	MDX	for	Reporting

Introduction
Creating	a	picklist

Getting	ready
How	to	do	it...
How	it	works...
There's	more...
See	also

Using	a	date	calendar
Getting	ready
How	to	do	it...
How	it	works...
There's	more...

Alternative	-	allowing	users	to	select	by	Date	hierarchies
See	also

Passing	parameters	to	an	MDX	query
Getting	ready
How	to	do	it...
How	it	works...
There's	more...

Getting	the	summary
Getting	ready
How	to	do	it...
How	it	works...
There's	more...

Getting	visual	totals	at	multiple	levels
Removing	empty	rows

Getting	ready
How	to	do	it...

WOW! eBook
www.wowebook.org

How	it	works...
Checking	empty	sets

There's	more...
Trouble	with	zeros

See	also
Getting	data	on	the	column

Getting	ready
How	to	do	it...
How	it	works...
There's	more...

Named	set	or	DIMENSION	PROPERTIES	has	no	effect	in	the	shape	of	the	reports
Creating	a	column	alias	in	MDX	queries	can	mean	data	duplication
Creating	a	column	alias	is	a	must	with	role-playing	dimensions
Avoiding	using	the	NON	EMPTY	keyword	on	the	COLUMNS	axis
Query	Editor	in	SSRS	only	allowing	measures	dimension	in	the	COLUMNS
A	few	more	words...

See	also
Sorting	data	by	dimensions

Getting	ready
How	to	do	it...
How	it	works...
There's	more...

Taking	advantage	of	hierarchical	sorting
Using	the	Date	type	to	sort	in	a	non-hierarchical	way
"Break	hierarchy"	-	sorting	a	set	in	a	non-hierarchical	way
Sorting	can	be	done	in	the	frontend	reporting	tool

See	also
7.	Business	Analyses

Introduction
Forecasting	using	linear	regression

Getting	ready
How	to	do	it...
How	it	works...
There's	more...

Tips	and	tricks
Where	to	find	more	information

See	also
Forecasting	using	periodic	cycles

Getting	ready
How	to	do	it...
How	it	works...
There's	more...

Other	approaches
See	also

WOW! eBook
www.wowebook.org

Allocating	non-allocated	company	expenses	to	departments
Getting	ready
How	to	do	it...
How	it	works...
There's	more...

Choosing	a	proper	allocation	scheme
Analyzing	the	fluctuation	of	customers

Getting	ready
How	to	do	it...
How	it	works...
There's	more...

Identifying	loyal	customers	in	a	period
More	complex	scenario
The	alternative	approach

Implementing	the	ABC	analysis
Getting	ready
How	to	do	it...
How	it	works...
There's	more...

Tips	and	tricks
See	also

8.	When	MDX	is	Not	Enough
Introduction
Using	a	new	attribute	to	separate	members	on	a	level

Getting	ready
How	to	do	it...
How	it	works...
There's	more...

So,	where's	the	MDX?
Typical	scenarios

Using	a	distinct	count	measure	to	implement	histograms	over	existing	hierarchies
Getting	ready
How	to	do	it...
How	it	works...
There's	more...
See	also

Using	a	dummy	dimension	to	implement	histograms	over	nonexisting	hierarchies
Getting	ready
How	to	do	it...
How	it	works...
There's	more...

DSV	or	DW?
More	calculations
Other	examples

WOW! eBook
www.wowebook.org

See	also
Creating	a	physical	measure	as	a	placeholder	for	MDX	assignments

Getting	ready
How	to	do	it...
How	it	works...
There's	more...

Associated	measure	group
See	also

Using	a	new	dimension	to	calculate	the	most	frequent	price
Getting	ready
How	to	do	it...
How	it	works...
There's	more...

Using	a	utility	dimension	to	implement	flexible	display	units
Getting	ready
How	to	do	it...
How	it	works...
There's	more...

Set-based	approach
Format	string	on	a	filtered	set	approach

Using	a	utility	dimension	to	implement	time-based	calculations
Getting	ready
How	to	do	it...
How	it	works...
There's	more...

Interesting	details
Fine-tuning	the	calculations
Other	approaches

See	also
9.	Metadata	-	Driven	Calculations

Introduction
Setting	up	the	environment

Getting	ready
How	to	do	it...
How	it	works...
There's	more...

Additional	information
Tips	and	tricks

See	also
Creating	a	reporting	dimension

Getting	ready
How	to	do	it...
How	it	works...
There's	more...

WOW! eBook
www.wowebook.org

See	also
Implementing	custom	rollups	using	MDX	formulas

Getting	ready
How	to	do	it...
How	it	works...
There's	more...

Why	not	a	built-in	feature?
Why	the	Sum()	function?
More	complex	formulas

See	also
Implementing	format	string,	multiplication	factor,	and	sort	order	features

Getting	ready
How	to	do	it...
How	it	works...
There's	more...

Tips	and	tricks
Additional	information

See	also
Implementing	unary	operators

Getting	ready
How	to	do	it...
How	it	works...
There's	more...
See	also

Referencing	reporting	dimension's	members	in	MDX	formulas
Getting	ready
How	to	do	it...
How	it	works...
There's	more...
See	also

Implementing	the	MDX	dictionary
Getting	ready
How	to	do	it...
How	it	works...
There's	more...

Additional	information
Tips	and	tricks

See	also
Implementing	metadata-driven	KPIs

Getting	ready
How	to	do	it...
How	it	works...
There's	more...

Additional	information
WOW! eBook

www.wowebook.org

Tips	and	tricks
See	also

10.	On	the	Edge
Introduction
Clearing	the	Analysis	Services	cache

Getting	ready
How	to	do	it...
How	it	works...
There's	more...

Objects	whose	cache	can	be	cleared
Additional	information
Tips	and	tricks

See	also
Using	Analysis	Services	stored	procedures

Getting	ready
How	to	do	it...
How	it	works...
There's	more...

Tips	and	tricks
Existing	assemblies
Additional	information

See	also
Executing	MDX	queries	in	T-SQL	environments

Getting	ready
How	to	do	it...
How	it	works...
There's	more...

Additional	information
Useful	tips
Accessing	Analysis	Services	2000	from	a	64-bit	environment
Troubleshooting	the	linked	server

See	also
Using	SSAS	Dynamic	Management	Views	(DMVs)	to	fast-document	a	cube

Getting	ready
How	to	do	it...
How	it	works...
There's	more...

Tips	and	tricks
Warning!
More	information

See	also
Using	SSAS	Dynamic	Management	Views	(DMVs)	to	monitor	activity	and	usage

Getting	ready
How	to	do	it...

WOW! eBook
www.wowebook.org

How	it	works...
There's	more...
See	also

Capturing	MDX	queries	generated	by	SSAS	frontends
Getting	ready
How	to	do	it...
How	it	works...
There's	more...

Alternative	solution
Tips	and	tricks

See	also
Performing	a	custom	drillthrough

Getting	ready
How	to	do	it...
How	it	works...
There's	more...

Allowed	functions	and	potential	problems
More	info
Other	examples

See	also

WOW! eBook
www.wowebook.org

MDX	with	Microsoft	SQL	Server	2016	Analysis
Services	Cookbook	Third	Edition

WOW! eBook
www.wowebook.org

MDX	with	Microsoft	SQL	Server	2016	Analysis
Services	Cookbook	Third	Edition
Copyright	©	2016	Packt	Publishing

All	rights	reserved.	No	part	of	this	book	may	be	reproduced,	stored	in	a	retrieval	system,	or
transmitted	in	any	form	or	by	any	means,	without	the	prior	written	permission	of	the
publisher,	except	in	the	case	of	brief	quotations	embedded	in	critical	articles	or	reviews.

Every	effort	has	been	made	in	the	preparation	of	this	book	to	ensure	the	accuracy	of	the
information	presented.	However,	the	information	contained	in	this	book	is	sold	without
warranty,	either	express	or	implied.	Neither	the	authors,	nor	Packt	Publishing,	and	its	dealers
and	distributors	will	be	held	liable	for	any	damages	caused	or	alleged	to	be	caused	directly	or
indirectly	by	this	book.

Packt	Publishing	has	endeavored	to	provide	trademark	information	about	all	of	the
companies	and	products	mentioned	in	this	book	by	the	appropriate	use	of	capitals.	However,
Packt	Publishing	cannot	guarantee	the	accuracy	of	this	information.

First	published:	August	2011

Second	edition:	August	2013

Third	edition:	November	2016	

Production	reference:	1241116

Published	by	Packt	Publishing	Ltd.

Livery	Place

35	Livery	Street

Birmingham	

B3	2PB,	UK.

ISBN	978-1-78646-099-8

www.packtpub.com

WOW! eBook
www.wowebook.org

http://www.packtpub.com

Credits

Authors

Tomislav	Piasevoli

Sherry	Li

Copy	Editor

Safis	Editing

Reviewers

Dave	Wentzel

Project	Coordinator

Shweta	H	Birwatkar	

Commissioning	Editor

Wilson	D'souza

Proofreader

Safis	Editing

Acquisition	Editor

Tushar	Gupta	

Indexer

Mariammal	Chettiyar	

Content	Development	Editor

Sumeet	Sawant

Graphics

Disha	Haria

Technical	Editor

Sneha	Hanchate

Production	Coordinator

Arvindkumar	Gupta

WOW! eBook
www.wowebook.org

About	the	Authors
Tomislav	Piasevoli	is	a	Business	Intelligence	(BI)	specialist	with	years	of	experience	working
with	Microsoft	SQL	Server	Analysis	Services	(SSAS).	He	successfully	implemented	many
still-in-use	BI	solutions,	helped	numerous	people	on	MSDN	forum,	achieved	the	highest
certification	for	SQL	Server	Analysis	Services	(SSAS	Maestro),	and	shared	his	expertise	in
form	of	MDX	cookbooks.

Tomislav	currently	works	as	a	consultant	at	Piasevoli	Analytics	company
(www.piasevoli.com)	together	with	his	brother	Hrvoje.	They	specialize	in	Microsoft	SQL
Server	Business	Intelligence	platform,	SSAS	primarily,	and	offer	their	BI	skills	worldwide.

In	addition	to	his	regular	work,	Tomislav	manages	to	find	the	time	to	present	at	local
conferences	or	to	write	an	article	or	two	for	local	magazines.	His	contribution	to	the
community	has	been	recognized	by	Microsoft	honoring	him	with	the	Most	Valuable
Professional	(MVP)	award	for	six	consecutive	years	(2009-2015).

A	large	portion	of	this	cookbook	is	present	in	all	editions,	therefore	I	feel	obliged	to	express
my	gratitude	once	again	to	all	the	people	that	influenced	its	contents	or	helped	making	it
better.	They	are:	Chris	Webb,	Greg	Galloway,	Marco	Russo,	Darren	Gosbell,	Deepak	Puri,
Hrvoje	Piasevoli,	Willfried	Färber,	Mosha	Pasumansky,	Teo	Lachev,	Jeffrey	Wang,	Jeremy
Kashel,	Vidas	Matelis,	Thomas	Kejser,	Jeff	Moden,	Michael	Coles,	Itzik	Ben-Gan,	Irina
Gorbach,	Vincent	Rainardi,	and	my	ex-colleagues	at	SoftPro	Tetral	company.	Next,	I
appreciate	Packt	Publishing	for	giving	me	a	chance	to	write	the	first	edition	of	this	book.	In
this	third	edition,	I	am	thankful	to	Sumeet	Sawant	and	Tushar	Gupta	for	their	help	and
patience.	Dave	Wentzel	deserves	a	big	thank	you	for	making	sure	the	recipes	make	sense	and
that	they	are	laid	out	in	an	understandable	and	clear	way.	A	huge	thank	you	goes	to	Sherry	Li,
my	dear	partner	in	this	project.	Her	friendly	attitude	and	willingness	to	help	meant	a	lot	to	me
while	I	was	struggling	with	some	recipes.	Speaking	of	recipes,	there	were	few	bright	people
that	took	significant	part	in	forcing	me	to	rethink	the	recipes	repeatedly	and,	in	that	way,
either	inspired	me	or	helped	me	make	them	better.	They	are:	Snježana	Škledar,	Aleš	Plavčak,
Hrvoje	Gabelica,	and	Philipp	Trannacher.	Thank	you,	guys!	Finally,	a	thank	you	goes	to	my
family,	close	friends,	business	partners,	and	clients	for	understanding	why	I	partially
neglected	you	while	working	on	the	book.	I	dedicate	this	book	to	my	children,	Petra,	Matko,
and	Nina.

Sherry	Li		is	an	Analytic	Consultant	who	works	for	a	major	financial	organization	with
responsibilities	in	implementing	data	warehousing,	Business	Intelligence,	and	business
reporting	solutions.	She	specializes	in	automation	and	optimization	of	data	gathering,	storing,
analyzing	and	providing	data	access	for	business	to	gain	data-driven	insights.	She	especially
enjoys	sharing	her	experience	and	knowledge	in	data	ETL	process,	database	design,
dimensional	modeling,	and	reporting	in	T-SQL	and	MDX.	She	has	co-authored	two	books,	the
MDX	with	SSAS	2012	Cookbook	and	MDX	with	Microsoft	SQL	Server	2016	Analysis
Services	Cookbook,	which	have	helped	many	data	professionals	advanced	their	MDX	skill	in

WOW! eBook
www.wowebook.org

http://www.piasevoli.com

a	very	short	time.	Sherry	Li	maintains	her	blog	at	bisherryli.com.

This	book	is	dedicated	to	readers	who	are	enthusiastic	about	Multidimensional	modeling	and
MDX	(Multi-Dimensional	eXpressions).	What	I	love	to	do	the	most	is	share	knowledge,	so	it	is
wonderful	knowing	that	the	MDX	Cookbook	is	a	popular	book!	Readers	who	want	to	become
proficient	in	MDX	have	given	tremendous	responses	to	the	first	two	editions	of	the	book.	There
is	nothing	that	satisfies	me	more	than	knowing	that	this	2016	edition	have	even	more	to	share
with	the	readers.	I	owe	tremendous	thanks	to	Packt	Publishing	for	giving	me	another
opportunity	to	write	this	edition	of	the	MDX	Cookbook.	Their	first-class	professionalism	in
book	designing,	editing,	publishing	and	collaboration	has	impressed	me	during	the	entire	book
project.	Special	thanks	to	Sumeet	Sawant	who	is	a	wonderful	content	editor,	and	Tushar	Gupta
who	initiated	the	project.

Three	years	ago	I	was	daring	enough	to	take	the	challenge	of	working	on	the	second	edition	of
the	MDX	Cookbook.	This	third	edition	has	brought	me	once	again	working	side-by-side	with
Tomislav	Piasevoli,	who	had	this	bold	idea	of	adding	two	new	chapters	with	contents	that	were
never	fully	presented	before	in	previous	MDX	books.	His	dedication	to	the	readers	and
attention	to	details	left	me	with	a	great	impression.	This	2016	edition	would	not	be	possible
without	his	leadership.	Thank	you	Tomislav	for	your	commitment	to	collaboration,
encouragement,	and	deep	knowledge	of	MDX	and	cube	design.	I	look	forward	to	future
collaboration.	To	Dave	Wentzel,	for	your	insight,	helpful	questioning,	(“Can	you	give	an
example	or	screenshot	of	this?	This	may	be	difficult	to	conceptually	follow	for	the	novice.”)
and	encouraging	comments	("Good	explanation.	Seems	important	enough	to	call	out	in	a	tip
box	or	something	else	to	visually	note	it	is	important.").

Thanks	to	all	my	friends,	especially	my	ACSE	(Association	of	Chinese-American	Scientists	and
Engineers)	friends	for	sharing	my	sense	of	accomplishment.	To	my	co-workers,	current	and
past,	for	their	earnest	encouragement,	enthusiasm,	and	feedbacks.	Last	and	foremost,	I	want	to
thank	my	husband	Jim	and	daughter	Shasha,	for	all	of	the	support	they	have	given	to	me.	All	of
the	MDX	Cookbook	work	occurred	on	weekends,	nights,	and	other	times	inconvenient	to	my
family.	To	my	daughter,	for	also	being	my	English	grammar	teacher.

To	my	dog	Atari,	for	always	sitting	by	my	feet	while	I	write	late	at	night.

WOW! eBook
www.wowebook.org

http://bisherryli.com

About	the	Reviewer
Dave	Wentzel	is	a	Data	Solutions	Architect	for	Microsoft.	He	helps	customers	with	their
Azure	Digital	Transformation,	focused	on	data	science,	big	data,	and	SQL	Server.	After
working	with	customers,	he	provides	feedback	and	learnings	to	the	product	groups	at
Microsoft	to	make	better	solutions.	Dave	has	been	working	with	SQL	Server	for	many	years,
and	with	MDX	and	SSAS	since	they	were	in	their	infancy.	Dave	shares	his	experiences	at
http://davewentzel.com.	He’s	always	looking	for	new	customers.	Would	you	like	to	engage?

WOW! eBook
www.wowebook.org

http://davewentzel.com

www.PacktPub.com
For	support	files	and	downloads	related	to	your	book,	please	visit	www.PacktPub.com.

Did	you	know	that	Packt	offers	eBook	versions	of	every	book	published,	with	PDF	and	ePub
files	available?	You	can	upgrade	to	the	eBook	version	at	www.PacktPub.com	and	as	a	print
book	customer,	you	are	entitled	to	a	discount	on	the	eBook	copy.	Get	in	touch	with	us
at	service@packtpub.com	for	more	details.

At	www.PacktPub.com,	you	can	also	read	a	collection	of	free	technical	articles,	sign	up	for	a
range	of	free	newsletters	and	receive	exclusive	discounts	and	offers	on	Packt	books	and
eBooks.

https://www.packtpub.com/mapt

Get	the	most	in-demand	software	skills	with	Mapt.	Mapt	gives	you	full	access	to	all	Packt
books	and	video	courses,	as	well	as	industry-leading	tools	to	help	you	plan	your	personal
development	and	advance	your	career.

WOW! eBook
www.wowebook.org

http://www.PacktPub.com
http://www.PacktPub.com
http://www.PacktPub.com
https://www.packtpub.com/mapt

Why	subscribe?
Fully	searchable	across	every	book	published	by	Packt
Copy	and	paste,	print,	and	bookmark	content
On	demand	and	accessible	via	a	web	browser

WOW! eBook
www.wowebook.org

Preface
Microsoft	SQL	Server	Analysis	is	one	of	the	keystones	of	Microsoft's	Business	Intelligence
(BI)	product	strategy.	It	is	the	most	widely	deployed	OLAP	server	around	the	world.	Many
organizations,	both	large	and	small,	have	adopted	it	to	provide	secure	and	high-performance
access	to	complex	analytics.

MDX	(for	Multi-Dimensional	eXpressions)	is	the	BI	industry	standard	for	multidimensional
calculations	and	queries,	and	is	the	most	widely	accepted	software	language	in
multidimensional	data	warehouse.	Proficiency	with	MDX	is	essential	for	any	professionals
who	work	with	multidimensional	cubes.	MDX	is	an	elegant	and	powerful	language,	but	also
has	a	steep	learning	curve.

SQL	Server	2012	Analysis	Services	has	introduced	a	new	BISM	tabular	model	and	a	new
formula	language,	Data	Analysis	Expressions	(DAX).	However,	for	the	multi-dimensional
model,	MDX	is	still	the	only	query	and	expression	language.	For	many	product	developers
and	report	developers,	MDX	still	is	and	will	be	the	preferred	language	for	both	the	tabular
model	and	the	multi-dimensional	model.

SQL	Server	2016	is	the	biggest	leap	forward	in	Microsoft’s	data	platform	history.	SQL	Server
2016	Analysis	Services	has	also	come	with	some	great	improvements	and	features	for
Multidimensional	model.	The	DirectQuery	mode	can	now	be	used	to	connect	directly	to	SQL
Server,	SQL	Server	Parallel	Data	Warehouse	(Microsoft	Analytics	Platform	System),	Oracle
and	Teradata.	The	DirectQuery	mode	has	also	significantly	improved	performance	compared
to	the	previous	version.	The	SQL	Server	2012	Management	Studio	(SSMS)	came	with	a
graphical	user	interface	to	configure	and	manage	Extended	Events	within	SQL	Server
Database	Engine.	Now	this	is	also	available	for	SQL	Server	2016	Analysis	Services.	The
Extended	Events	support	through	SSMS	GUI	allows	a	simplified	way	of	monitoring	your
Analysis	Services	2016	instances,	both	Tabular	and	Multidimensional.

Despite	its	popularity,	very	few	books	are	dedicated	to	MDX.	MDX-related	books	often	limit
their	content	to	explaining	the	concepts	of	multidimensional	cubes,	the	MDX	language
concept	and	its	functions,	and	other	specifics	related	to	working	with	Analysis	Services.

This	book	presents	MDX	solutions	for	business	requirements	that	can	be	found	in	the	real
business	world.	You	will	find	best	practices,	explanations	of	advanced	subjects	in	full	detail,
and	deep	knowledge	in	every	topic.	Organized	around	practical	MDX	solutions,	this	book
provides	full,	in-depth	treatment	of	each	topic,	sequenced	in	a	logical	progression	from
elementary	to	advanced	techniques.

This	book	is	written	in	a	cookbook	format.	You	can	browse	through	the	contents	and	look	for
solutions	to	a	particular	problem.	Each	recipe	is	relatively	short	and	grouped	by	relevancy,	so
you	can	find	solutions	to	related	issues	in	one	place.	Related	recipes	are	sequenced	in	a
logical	progression;	you	will	be	able	to	build	up	your	understanding	of	the	topic

WOW! eBook
www.wowebook.org

incrementally.

This	book	is	designed	for	both	beginners	and	experts	in	MDX.	If	you	are	a	beginner,	this
book	is	a	good	place	to	start.	Each	recipe	provides	you	with	best	practices	and	their
underlying	rationale,	detailed	sample	scripts,	and	options	you	need	to	know	to	make	good
choices.	If	you	are	an	expert,	you	will	be	able	to	use	this	book	as	a	reference.	Whenever	you
face	a	particular	challenge,	you	will	be	able	to	find	a	chapter	that	is	dedicated	to	the	topic.

We	hope	that	you	will	become	confident	not	only	in	using	the	sample	MDX	queries,	but	also
in	creating	your	own	solutions.	The	moment	you	start	creating	your	own	solutions	by
combining	techniques	presented	in	this	book,	our	goal	of	teaching	through	examples	is
accomplished.	We	want	to	hear	from	you	about	your	journey	to	MDX	proficiency.	Feel	free	to
contact	us.

WOW! eBook
www.wowebook.org

What	this	book	covers
We	added	two	new	chapters	to	this	edition	of	MDX	cookbook:	Chapter	6,	MDX	for	Reporting,
and	Chapter	9,	Metadata	-	Driven	Calculations.	We	also	decided	to	remove	Chapter	8,
Advanced	MDX	Topics	due	to	many	overlapping	and	redundant	recipes.

To	turn	ad-hoc	reports	into	parameterized	reports	is	a	challenging	task.	There	are	many
special	considerations	associated	with	the	dynamic	nature	of	the	reports	with	dynamic
parameters.	Through	carefully	thought-out	examples,	Chapter	6,	MDX	for
Reporting,	introduces	new	concepts	in	dynamic	reporting,	the	challenges	and	the	techniques
for	efficient	report	writing.

Once	a	cube	is	designed	and	implemented,	adding	more	calculations	is	a	common
requirement.	These	calculations	are	defined	not	by	the	data	of	the	cube,	but	by	expressions	that
can	reference	other	parts	of	the	cube.	MDX	calculations	that	are	metadata-driven	let	us	extend
the	capabilities	of	a	cube,	adding	flexibility	and	power	to	business	intelligence	solutions.	It
also	comes	with	challenges,	of	having	instead	complex	calculations.	Chapter	9,	Metadata-
driven	Calculations	will	cover	techniques	and	best	practices	that	have	never	been	fully
documented	in	any	MDX	books	before.

Here's	an	overview	of	chapters	and	their	contents.

Chapter	1,	Elementary	MDX	Techniques,	uses	simple	examples	to	demonstrate	the
fundamental	MDX	concepts,	features,	and	techniques	that	are	the	foundations	for	our	further
explorations	of	the	MDX	language.

Chapter	2,	Working	with	Sets,	focuses	on	the	challenges	of	performing	logic	operations,
NOT,	OR	and	AND,	on	manipulating	sets	in	general.

Chapter	3,	Working	with	Time,	presents	various	time-related	functions	in	MDX	that	are
designed	to	work	with	a	special	type	of	dimension	called	Time	and	its	typed	attributes.

Chapter	4,	Concise	Reporting,	focuses	on	techniques	that	you	can	employ	in	your	project	to
make	analytical	reports	more	compact	and	more	concise,	and	therefore,	more	efficient.

Chapter	5,	Navigation	,	shows	common	tasks	and	techniques	related	to	navigation	and	data
retrieval	relative	to	the	current	context.

Chapter	6,	MDX	for	Reporting,	covers	common	MDX	reporting	requirements	and	techniques
using	two	approaches:	parameterized	MDX	queries	and	dynamic	MDX	queries.

Chapter	7,	Business	Analytics,	focuses	on	performing	typical	business	analyses,	such	as
forecasting,	allocating	values,	and	calculating	the	number	of	days	from	the	last	sales	date.

Chapter	8,	When	MDX	is	Not	Enough,	teachers	you	that	MDX	calculations	are	not	always	the
WOW! eBook

www.wowebook.org

place	to	look	for	solutions.	It	illustrates	several	techniques	to	optimize	the	query	response
times	with	a	relatively	simple	change	in	cube	structure.

Chapter	9,	Metadata-driven	Calculations,	explores	the	concept	of	storing	and	maintaining
MDX	calculations	outside	the	cube	by	utilizing	reporting	dimension,	custom	aggregations,
scopes	and	assignments.

Chapter	10,	On	the	Edge,	presents	topics	that	will	expand	your	horizons,	such	as	clearing
cache	for	performance	tuning,	executing	MDX	queries	in	T-SQL	environment,	using	SSAS
Dynamic	Management	Views	(DMVs),	drill-through,	and	capturing	MDX	queries	using	SQL
Server	Profiler.

WOW! eBook
www.wowebook.org

What	you	need	for	this	book
A	Microsoft	SQL	Server	2016	full	installation	or	at	least	the	following	components	are
required:

SQL	Server	2016	Engine
Analysis	Services	2016
Microsoft	SQL	Server	Management	Studio
Microsoft	SQL	Server	Data	Tools

We	recommend	the	Developer,	Enterprise,	or	the	Trial	Edition	of	Microsoft	SQL	Server
2016.	Standard	Edition	is	not	recommended	because	it	does	not	support	all	the	features	and	a
few	examples	might	not	work	using	the	Standard	Edition.

The	Developer	Edition	has	the	full	capabilities	of	the	Enterprise	Edition	and	is	for
development	and	testing	only.	The	Developer	Edition	is	free	if	you	sign	up	for	the	free	Visual
Studio	Dev	Essentials	program.	To	download	the	SQL	Server	2016	Developer	Edition	free,
you	can	start	from	joining	or	accessing	the	Visual	Studio	Dev	Essentials	site:

https://www.visualstudio.com/dev-essentials/

You	can	also	access	it	from	this	tiny	url:

http://tinyurl.com/zzpzdwv

Microsoft	SQL	Server	2016	Trial	Edition	is	for	evaluation	only	and	is	valid	for	180	days.	Use
this	link	to	go	to	Microsoft	Evaluation	Center:

http://tinyurl.com/joap9rh

Both	the	relational	database	file	and	the	multidimensional	Adventure	Works	project	files	are
required:

AdventureWorks	Sample	Databases	and	Scripts	for	SQL	Server	2016:	this	is	the
relational	database;	use	this	link	to	download	the	AdventureWorks	databases	and	scripts:
http://tinyurl.com/z8k479p
AdventureWorks	Multidimensional	Model	SQL	Server	2012	or	2014	-	Enterprise
Edition:	SSAS	project	files.	The	2012	or	2014	tutorials	are	valid	for	SQL	Server	2016.

We	recommend	the	Enterprise	Edition	of	the	Multidimensional	Model	Adventure	Works	cube
project.	To	download	the	installation	files,	use	the	following	link	to	go	to	CodePlex:

http://tinyurl.com/AdventureWorks2012

For	the	2014	Multidimensional	Model	Adventure	Works	cube	project,	go	to	Adventure	Works
2014	Sample	Databases	on	CodePlex:

WOW! eBook
www.wowebook.org

https://www.visualstudio.com/dev-essentials/
http://tinyurl.com/zzpzdwv
http://tinyurl.com/joap9rh
http://tinyurl.com/z8k479p
http://tinyurl.com/AdventureWorks2012

http://tinyurl.com/otj8bxf

For	instructions	on	how	to	install	the	sample	Adventure	Works,	see	Install	Sample	Data	and
Projects	for	the	Analysis	Services	Multidimensional	Modeling	Tutorial	at	this	link:

http://tinyurl.com/jx6ghbm

Wide	World	Importers:	The	new	SQL	Server	sample	database

For	the	magnitude	of	SQL	Server	2016	Microsoft	has	released	a	new	sample	database,	the
Wide	World	Importers	database.

Both	the	2008	and	2012	edition	of	the	MDX	Cookbook	has	been	based	off	Adventure	Works,
which	has	been	around	since	the	SQL	Server	2005	days.	For	the	purpose	of	demonstrating
MDX	techniques	and	Analysis	Services	features,	the	Adventure	Works	sample	database	has
continued	to	be	a	good	choice	for	this	2016	edition.

For	Creating	PivotTable,	see	this	section:

Microsoft	Excel	2007	(or	newer)	with	PivotTable	is	required.

Most	of	the	examples	will	work	with	older	versions	of	Microsoft	SQL	Server	(2005	or	2008
or	2008	R2	or	2012).	However,	some	of	them	will	need	adjustments	because	the	Date
dimension	in	the	older	versions	of	the	Adventure	Works	database	has	a	different	set	of	years.
To	solve	that	problem,	simply	shift	the	date-specific	parts	of	the	queries	few	years	back	in
time,	for	example,	turn	the	year	2013	into	the	year	2002	and	Q3	of	the	year	2013	to	Q3	of
2003.

WOW! eBook
www.wowebook.org

http://tinyurl.com/otj8bxf
http://tinyurl.com/jx6ghbm

Who	this	book	is	for
This	is	a	book	for	multidimensional	cube	developers	and	multidimensional	database
administrators,	for	report	developers	who	write	MDX	queries	to	access	multidimensional
cubes,	for	power	users	and	experienced	business	analysts.	All	of	the	will	find	this	book
invaluable.

In	other	words,	this	book	is	for	anyone	who	works	with	multidimensional	cubes,	who	finds
himself	or	herself	in	situations	feeling	difficult	to	deliver	what	end	users	ask	for	or	who	are
interested	in	getting	more	out	of	their	multidimensional	cubes.	This	book	is	for	you	if	you
have	found	yourself	in	situations	where	it	is	difficult	to	deliver	what	your	users	want	and	you
are	interested	in	getting	more	information	out	of	your	multidimensional	cubes.

WOW! eBook
www.wowebook.org

Sections
In	this	book,	you	will	find	several	headings	that	appear	frequently	(Getting	ready,	How	to	do
it,	How	it	works,	There's	more,	and	See	also).

To	give	clear	instructions	on	how	to	complete	a	recipe,	we	use	these	sections	as	follows:

WOW! eBook
www.wowebook.org

Getting	ready
This	section	tells	you	what	to	expect	in	the	recipe,	and	describes	how	to	set	up	any	software	or
any	preliminary	settings	required	for	the	recipe.

WOW! eBook
www.wowebook.org

How	to	do	it…
This	section	contains	the	steps	required	to	follow	the	recipe.

WOW! eBook
www.wowebook.org

How	it	works…
This	section	usually	consists	of	a	detailed	explanation	of	what	happened	in	the	previous
section.

WOW! eBook
www.wowebook.org

There's	more…
This	section	consists	of	additional	information	about	the	recipe	in	order	to	make	the	reader
more	knowledgeable	about	the	recipe.

WOW! eBook
www.wowebook.org

See	also
This	section	provides	helpful	links	to	other	useful	information	for	the	recipe.

WOW! eBook
www.wowebook.org

Conventions
In	this	book,	you	will	find	a	number	of	styles	of	text	that	distinguish	between	different	kinds
of	information.	Here	are	some	examples	of	these	styles,	and	an	explanation	of	their	meaning.

When	shown	in	text,	code	words	NONEMPTY()	will	be	shown	as	follows:	"Optimizing	MDX
queries	using	the	NONEMPTY()	function."

A	block	of	code	is	set	as	follows:

SELECT

{	[Measures].[Reseller	Order	Quantity],

					[Measures].[Reseller	Order	Count]	}	ON	0,

			NON	EMPTY

			{	[Date].[Month	of	Year].MEMBERS	}	ON	1

FROM

			[Adventure	Works]

WHERE

			([Promotion].[Promotion	Type].&[New	Product])

When	we	wish	to	draw	your	attention	to	a	particular	part	of	a	code	block,	the	relevant	lines	or
items	are	set	in	bold:

SELECT

	{	[Measures].[Reseller	Sales	Amount]	}	ON	0,

	{	ParallelPeriod(

			[Geography].[Geography].[Country],

			2,

			[Geography].[Geography].[State-Province].&[CA]&[US]

)

	}	ON	1

FROM

	[Adventure	Works]

New	terms	and	important	words	are	shown	in	bold.	Words	that	you	see	on	the	screen,	in
menus	or	dialog	boxes	for	example,	appear	in	the	text	like	this:	"We	can	verify	this	by
browsing	the	Geography	user	hierarchy	in	the	Geography	dimension	in	SQL	Server
Management	Studio".

Note

Warnings	or	important	notes	appear	in	an	information	box	like	this.

Tip

Tips	and	tricks	appear	in	a	tip	box	like	this.

WOW! eBook
www.wowebook.org

Reader	feedback
Feedback	from	our	readers	is	always	welcome.	Let	us	know	what	you	think	about	this	book-
what	you	liked	or	disliked.	Reader	feedback	is	important	for	us	as	it	helps	us	develop	titles
that	you	will	really	get	the	most	out	of.

To	send	us	general	feedback,	simply	e-mail	feedback@packtpub.com,	and	mention	the	book's
title	in	the	subject	of	your	message.

If	there	is	a	topic	that	you	have	expertise	in	and	you	are	interested	in	either	writing	or
contributing	to	a	book,	see	our	author	guide	at	www.packtpub.com/authors	.

WOW! eBook
www.wowebook.org

http://www.packtpub.com/authors

Customer	support
Now	that	you	are	the	proud	owner	of	a	Packt	book,	we	have	a	number	of	things	to	help	you	to
get	the	most	from	your	purchase.

WOW! eBook
www.wowebook.org

Downloading	the	example	code
You	can	download	the	example	code	files	for	this	book	from	your	account	at
http://www.packtpub.com.	If	you	purchased	this	book	elsewhere,	you	can	visit
http://www.packtpub.com/support	and	register	to	have	the	files	e-mailed	directly	to	you.

You	can	download	the	code	files	by	following	these	steps:

1.	 Log	in	or	register	to	our	website	using	your	e-mail	address	and	password.
2.	 Hover	the	mouse	pointer	on	the	SUPPORT 	tab	at	the	top.
3.	 Click	on	Code	Downloads	&	Errata.
4.	 Enter	the	name	of	the	book	in	the	Search	box.
5.	 Select	the	book	for	which	you're	looking	to	download	the	code	files.
6.	 Choose	from	the	drop-down	menu	where	you	purchased	this	book	from.
7.	 Click	on	Code	Download.

You	can	also	download	the	code	files	by	clicking	on	the	Code	Files	button	on	the	book's
webpage	at	the	Packt	Publishing	website.	This	page	can	be	accessed	by	entering	the	book's
name	in	the	Search	box.	Please	note	that	you	need	to	be	logged	in	to	your	Packt	account.

Once	the	file	is	downloaded,	please	make	sure	that	you	unzip	or	extract	the	folder	using	the
latest	version	of:

WinRAR	/	7-Zip	for	Windows
Zipeg	/	iZip	/	UnRarX	for	Mac
7-Zip	/	PeaZip	for	Linux

The	code	bundle	for	the	book	is	also	hosted	on	GitHub	at
https://github.com/PacktPublishing/MDX-with-Microsoft-SQL-Server-2016-Analysis-
Services-Cookbook.	We	also	have	other	code	bundles	from	our	rich	catalog	of	books	and
videos	available	at	https://github.com/PacktPublishing/.	Check	them	out!

WOW! eBook
www.wowebook.org

http://www.packtpub.com
http://www.packtpub.com/support
https://github.com/PacktPublishing/MDX-with-Microsoft-SQL-Server-2016-Analysis-Services-Cookbook
https://github.com/PacktPublishing/

Downloading	the	color	images	of	this	book	
We	also	provide	you	with	a	PDF	file	that	has	color	images	of	the	screenshots/diagrams	used
in	this	book.	The	color	images	will	help	you	better	understand	the	changes	in	the	output.	You
can	download	this	file	from
https://www.packtpub.com/sites/default/files/downloads/MDXwithMicrosoftSQLServer2016AnalysisServicesCookbook_ColorImages.pdf

WOW! eBook
www.wowebook.org

https://www.packtpub.com/sites/default/files/downloads/MDXwithMicrosoftSQLServer2016AnalysisServicesCookbook_ColorImages.pdf

Errata
Although	we	have	taken	every	care	to	ensure	the	accuracy	of	our	content,	mistakes	do	happen.
If	you	find	a	mistake	in	one	of	our	books-maybe	a	mistake	in	the	text	or	the	code-we	would	be
grateful	if	you	could	report	this	to	us.	By	doing	so,	you	can	save	other	readers	from
frustration	and	help	us	improve	subsequent	versions	of	this	book.	If	you	find	any	errata,
please	report	them	by	visiting	http://www.packtpub.com/submit-errata,	selecting	your	book,
clicking	on	the	Errata	Submission	Form	link,	and	entering	the	details	of	your	errata.	Once
your	errata	are	verified,	your	submission	will	be	accepted	and	the	errata	will	be	uploaded	to
our	website	or	added	to	any	list	of	existing	errata	under	the	Errata	section	of	that	title.

To	view	the	previously	submitted	errata,	go	to
https://www.packtpub.com/books/content/support	and	enter	the	name	of	the	book	in	the	search
field.	The	required	information	will	appear	under	the	Errata	section.

WOW! eBook
www.wowebook.org

http://www.packtpub.com/submit-errata
https://www.packtpub.com/books/content/support

Piracy
Piracy	of	copyrighted	material	on	the	Internet	is	an	ongoing	problem	across	all	media.	At
Packt,	we	take	the	protection	of	our	copyright	and	licenses	very	seriously.	If	you	come	across
any	illegal	copies	of	our	works	in	any	form	on	the	Internet,	please	provide	us	with	the
location	address	or	website	name	immediately	so	that	we	can	pursue	a	remedy.

Please	contact	us	at	copyright@packtpub.com	with	a	link	to	the	suspected	pirated	material.

We	appreciate	your	help	in	protecting	our	authors	and	our	ability	to	bring	you	valuable
content.

WOW! eBook
www.wowebook.org

Questions
If	you	have	a	problem	with	any	aspect	of	this	book,	you	can	contact	us
at	questions@packtpub.com,	and	we	will	do	our	best	to	address	the	problem.

WOW! eBook
www.wowebook.org

Chapter	1.	Elementary	MDX	Techniques
In	this	chapter,	we	will	cover	the	following	recipes:

Putting	data	on	x	and	y	axes
Skipping	axes
Using	a	WHERE	clause	to	filter	the	data	returned
Optimizing	MDX	queries	using	the	NonEmpty()	function
Using	the	Properties()	function	to	retrieve	data	from	attribute	relationships
Basic	sorting	and	ranking
Handling	division	by	zero	errors
Setting	a	default	member	of	a	hierarchy	in	the	MDX	script

WOW! eBook
www.wowebook.org

Introduction
MDX	is	an	elegant	and	powerful	language,	but	also	has	a	steep	learning	curve.

The	goal	of	this	chapter	is	to	use	some	simple	examples	to	demonstrate	the	fundamental	MDX
concepts,	features,	and	techniques	that	are	the	foundations	for	further	exploration	of	the	MDX
language.

The	chapter	begins	with	several	basic	techniques:	putting	multi-dimensional	data	onto	query
axes,	cube	space	restriction,	empty	cell	removal,	and	the	important	concept	of	unique	names
for	members,	tuples,	and	sets.	From	there,	we	shall	turn	our	attention	to	a	few	more	advanced
features,	such	as	using	the	MDX	functions,	creating	calculations	in	the	cube	space,
manipulating	strings,	writing	parameterized	queries,	and	conditionally	formatting	cell
properties.	This	will	form	the	basis	for	the	rest	of	the	chapters	in	this	book.

SSAS	2016	provides	a	sample	Analysis	Services	database,	the	Multidimensional	Adventure
Works	DW.	All	the	MDX	queries	and	scripts	in	this	book	have	been	updated	for	Analysis
Services	2016,	and	verified	against	the	2016	Enterprise	Edition	of	the	Adventure	Works	DW
Analysis	Services	database.	The	majority	of	the	MDX	queries	and	scripts	should	also	run	and
have	been	tested	in	SSAS	2008	R2	and	also	SSAS2012.

The	Query	Editor	in	SQL	Server	Management	Studio	(SSMS)	is	our	choice	for	writing	and
testing	MDX	queries.	SQL	Server	2012	and	2016	come	with	a	free	tool:	SQL	Server	Data
Tools	(SSDT)	for	cube	developers.	Just	as	the	Business	Intelligence	Development	Studio
(BIDS)	was	the	tool	that	we	used	for	cube	design	and	MDX	scripting	in	SSAS	2008,	SSDT	is
the	tool	we	will	use	in	this	cookbook	for	cube	design	and	MDX	scripting	for	SSAS	2016.

WOW! eBook
www.wowebook.org

Putting	data	on	x	and	y	axes
Cube	space	in	SSAS	is	multi-dimensional.	MDX	allows	you	to	display	results	on	axes	from	0,
1,	and	2,	up	to	128.	The	first	five	axes	have	aliases:	COLUMNS,	ROWS,	PAGES,	SECTIONS,
and	CHAPTERS.	However,	the	frontend	tools	such	as	SQL	Server	Management	Studio
(SSMS)	or	other	applications	that	you	can	use	for	writing	and	executing	MDX	queries	only
have	two	axes,	the	x	and	y	axes,	or	COLUMNS	and	ROWS.

As	a	result,	we	have	two	tasks	to	do	when	trying	to	fit	the	multi-dimensional	data	onto	the
limited	axes	in	our	frontend	tool:

We	must	always	explicitly	specify	a	display	axis	for	all	elements	in	the	SELECT	list.	We
can	use	aliases	for	the	first	five	axes:	COLUMNS,	ROWS,	PAGES,	SECTIONS,	and
CHAPTERS.	We	are	also	allowed	to	use	integers,	0,	1,	2,	3,	and	so	on	but	we	are	not
allowed	to	skip	axes.	For	example,	the	first	axis	must	be	COLUMNS	(or	0).	ROWS	(or	1)
cannot	be	specified	unless	COLUMNS	(or	0)	has	been	specified	first.
Since	we	only	have	two	display	axes	to	show	our	data,	we	must	be	able	to	combine
multiple	hierarchies	into	one	query	axis.	In	MDX	and	other	query	language	terms,	we
call	it	crossjoin.

It	is	fair	to	say	that	your	job	of	writing	MDX	queries	is	mostly	trying	to	figure	out	how	to
project	multi-dimensional	data	onto	only	two	axes,	namely,	x	and	y.	We	will	start	by	putting
only	one	hierarchy	on	COLUMNS,	and	one	on	ROWS.	Then	we	will	use	the
Crossjoin()	function	to	combine	more	than	one	hierarchy	into	COLUMNS	and	ROWS.

WOW! eBook
www.wowebook.org

Getting	ready
Making	a	two–by–eight	table	(that	is	shown	following)	in	a	spreadsheet	is	quite	simple.
Writing	an	MDX	query	to	do	that	can	also	be	very	simple.	Putting	data	on	the	x	and	y	axes	is	a
matter	of	finding	the	right	expressions	for	each	axis:

Internet	Sales	Amount

Australia $9,061,000.58

Canada $1,977,844.86

France $2,644,017.71

Germany $2,894,312.34

NA (null)

United	Kingdom $3,391,712.21

United	States $9,389,789.51

All	we	need	are	three	things	from	our	cube:

The	name	of	the	cube
The	correct	expression	for	the	Internet	Sales	Amount	so	we	can	put	it	on	the	columns
The	correct	expression	of	the	sales	territory	so	we	can	put	it	on	the	rows

Once	we	have	the	preceding	three	things,	we	are	ready	to	plug	them	into	the	following	MDX
query,	and	the	cube	will	give	us	back	the	two–by–eight	table:

SELECT	

			[The	Sales	Expression]	ON	COLUMNS,	

			[The	Territory	Expression]	ON	ROWS	

FROM	

			[The	Cube	Name]	

The	MDX	engine	will	understand	it	perfectly,	if	we	replace	columns	with	0	and	rows	with	1.
Throughout	this	book,	we	will	use	the	number	0	for	columns,	which	is	the	x	axis,	and	1	for
rows,	which	is	the	y	axis.

WOW! eBook
www.wowebook.org

How	to	do	it...
We	are	going	to	use	the	Adventure	Works	2016	Multidimensional	Analysis	Service	database
enterprise	edition	in	our	cookbook.	If	you	open	the	Adventure	Works	cube,	and	hover	your
cursor	over	the	Internet	Sales	Amount	measure,	you	will	see	the	fully	qualified	expression,
[Measures].[Internet	Sales	Amount].	This	is	a	long	expression.	Drag	and	drop	in	SQL
Server	Management	Studio	works	perfectly	for	us	in	this	situation.

Tip

Long	expressions	are	a	fact	of	life	in	MDX.	Although	the	case	does	not	matter,	correct
spelling	is	required,	and	fully	qualified	and	unique	expressions	are	recommended	for	MDX
queries	to	work	properly.

Follow	these	two	steps	to	open	the	Query	Editor	in	SSMS:

1.	 Start	SQL	Server	Management	Studio	(SSMS)	and	connect	to	your	SQL	Server	Analysis
Services	(SSAS)	2016	instance	(localhost	or	servername\instancename).

2.	 Click	on	the	target	database	Adventure	Works	DW	2016,	and	then	right-click	on	the	New
Query	button.

Follow	these	steps	to	save	the	time	spent	for	typing	the	long	expressions:

1.	 Put	your	cursor	on	[Measures]	[Internet	Sales	Amount],	and	drag	and	drop	it	onto
AXIS(0).

2.	 To	get	the	proper	expression	for	the	sales	territory,	put	your	cursor	over	the	[Sales
Territory	Country]	under	the	Sales	Territory	|	Sales	Territory	Country.	Again,	this	is
a	long	expression.	Drag-and-drop	it	onto	AXIS(1).

3.	 For	the	name	of	the	cube,	the	drag-and-drop	should	work	too.	Just	point	your	cursor	to
the	cube	name,	and	drag-and-drop	it	in	your	FROM	clause.

															This	should	be	your	final	query:

						SELECT	

								[Measures].[Internet	Sales	Amount]	ON	0,	

								[Sales	Territory].[Sales	Territory	Country].[Sales	Territory									

									Country]	ON	1	

						FROM	

								[Adventure	Works]	

Tip

Downloading	the	example	code:

You	can	download	the	example	code	files	for	all	Packt	books	you	have	purchased	from	your
account	at	http://www.packtpub.com	.	If	you	purchased	this	book	elsewhere,	you	can	visit
http://www.packtpub.com/support	and	register	to	have	the	files	e-mailed	directly	to	you.

WOW! eBook
www.wowebook.org

http://www.packtpub.com
http://www.packtpub.com/support

When	you	execute	the	query,	you	should	get	a	two–by–eight	table,	the	same	as	in	the
following	screenshot:

WOW! eBook
www.wowebook.org

How	it	works...
We	have	chosen	to	put	Internet	Sales	Amount	on	the	AXIS(0),	and	all	members	of	Sales
Territory	Country	on	the	AXIS(1).	We	have	fully	qualified	the	measure	with	the	special
dimension	[Measures],	and	the	sales	territory	members	with	dimension	[Sales	Territory]
and	hierarchy	[Sales	Territory	Country].

You	might	have	expected	an	aggregate	function	such	as	SUM	somewhere	in	the	query.	We	do
not	need	to	have	any	aggregate	function	here	because	the	cube	understands	that	when	we	ask
for	the	sales	amount	for	Canada,	we	would	expect	the	sales	amount	to	come	from	all	the
provinces	and	territories	in	Canada.

WOW! eBook
www.wowebook.org

There's	more...
SSAS	cubes	are	perfectly	capable	of	storing	data	in	more	than	two	dimensions.	In	MDX,	we
can	use	the	technique	called	crossjoin	to	combine	multiple	hierarchies	into	one	query	axis.

Putting	more	hierarchies	on	x	and	y	axes	with	cross	join

In	an	MDX	query,	we	can	specify	how	multi-dimensions	from	our	SSAS	cube	lay	out	onto
only	two	x	and	y	axes.	Cross–joining	allows	us	to	get	every	possible	combination	of	two	lists
in	both	SQL	and	MDX.

We	wish	to	write	an	MDX	query	to	produce	the	following	table.	On	the	columns	axis,	we	want
to	see	both	Internet	Sales	Amount	and	Internet	Gross	Profit.	On	the	rows	axis,	we	want	to
see	all	the	sales	territory	countries,	and	all	the	products	sold	in	each	country:

Internet	Sales	Amount Internet	Gross	Profit

Australia Accessories $138,690.63 $86,820.10

Australia Bikes $8,852,050.00 $3,572,267.29

Australia Clothing $70,259.95 $26,767.68

Australia Components (null) (null)

Canada Accessories $103,377.85 $64,714.37

Canada Bikes $1,821,302.39 $741,451.22

Canada Clothing $53,164.62 $23,755.91

Canada Components (null) (null)

This	query	lays	two	measures	on	columns	from	the	same	dimension	[Measures],	and	two
different	hierarchies;	[Sales	Territory	Country]	and	[Product	Categories]	on	rows:

SELECT	

			{	[Measures].[Internet	Sales	Amount],	

					[Measures].[Internet	Gross	Profit]		

			}	ON	0,	

WOW! eBook
www.wowebook.org

			{	[Sales	Territory].[Sales	Territory	Country].[Sales	Territory		

					Country]	*	

					[Product].[Product	Categories].[Category]	

			}	ON	1	

FROM	

			[Adventure	Works]	

To	return	the	cross–product	of	two	sets,	we	can	use	either	of	the	following	two	syntaxes:

Standard	syntax:	Crossjoin(Set_Expression1,	Set_Expression2)	

Alternate	syntax:	Set_Expression1	*	Set_Expression2	

We	have	chosen	to	use	the	alternate	syntax	for	its	convenience.	The	result	from	the	previous
query	is	shown	as	follows:

WOW! eBook
www.wowebook.org

Skipping	axes
There	are	situations	where	we	want	to	display	just	a	list	of	members	with	no	data	associated
with	them.	Naturally,	we	expect	to	get	that	list	in	rows,	so	that	we	can	scroll	through	them
vertically	instead	of	horizontally.	However,	the	rules	of	MDX	say	that	we	can't	skip	the	axes.	If
we	want	something	on	rows	(which	is	AXIS(1)	by	the	way),	we	must	use	all	previous	axes	as
well	(columns	in	this	case,	which	is	also	known	as	AXIS(0)).

The	reason	why	we	want	the	list	to	appear	on	axis	1	and	not	axis	0	is	because	a	horizontal	list
is	not	as	easy	to	read	as	a	vertical	one.

Is	there	a	way	to	display	those	members	on	rows	and	have	nothing	on	columns?	Sure!	This
recipe	shows	how.

WOW! eBook
www.wowebook.org

Getting	ready
The	notation	for	an	empty	set	is	this:	{	}.	So	for	the	axis	0,	we	would	simply	do	this:

{	}	ON	0	

WOW! eBook
www.wowebook.org

How	to	do	it...
Follow	these	steps	to	open	the	Query	Editor	in	SQL	Server	Management	Studio	(SSMS):

1.	 Start	SQL	Server	Management	Studio	(SSMS)	and	connect	to	your	SQL	Server	Analysis
Services	(SSAS)	2012	instance.

2.	 Click	on	the	target	database,	Adventure	Works	DW	2016,	and	then	right-click	on	the	New
Query	button.

Follow	these	steps	to	get	a	one-dimensional	query	result	with	members	on	rows:

1.	 Put	an	empty	set	on	columns	(AXIS(0)).	The	notation	for	the	empty	set	is	this:	{}.
2.	 Put	some	hierarchy	on	rows	(AXIS(1)).	In	this	case,	we	used	the	largest	hierarchy

available	in	this	cube-customer	hierarchy	of	the	same	dimension.
3.	 Run	the	following	query:

						SELECT	

								{	}	ON	0,	

								{	[Customer].[Customer].[Customer].MEMBERS	}	ON	1	

						FROM	

								[Adventure	Works]	

WOW! eBook
www.wowebook.org

How	it	works...
Although	we	can't	skip	axes,	we	are	allowed	to	provide	an	empty	set	on	them.	This	trick
allows	us	to	get	what	we	need—nothing	on	columns	and	a	set	of	members	on	rows.

WOW! eBook
www.wowebook.org

There's	more...
Skipping	the	AXIS(0)	is	a	common	technique	to	create	a	list	for	report	parameters.	If	we	want
to	create	a	list	of	customers	whose	name	contains	John,	we	can	modify	the	preceding	base
query	to	use	two	functions	to	get	only	those	customers	whose	name	contains	the	phrase	John.
These	two	functions	are	Filter()	and	InStr():

SELECT	

			{	}	ON	0,	

			{	Filter(

											[Customer].[Customer].[Customer].MEMBERS,	

											InStr(

																	[Customer].[Customer].CurrentMember.Name,	

																'John'	

)	>	0	

)	

			}	ON	1	

FROM	

			[Adventure	Works]	

In	the	final	result,	you	will	notice	the	John	phrase	in	various	positions	in	member	names:

The	idea	behind	it

Instead	of	skipping	the	AXIS(0),	if	you	put	a	cube	measure	or	a	calculated	measure	with	a
non-constant	expression	on	axis	0,	you	will	slow	down	the	query.	The	slower	query	time	can
be	noticeable	if	there	are	a	large	number	of	members	from	the	specified	hierarchy.	For

WOW! eBook
www.wowebook.org

example,	if	you	put	the	Sales	Amount	measure	on	axis	0,	the	Sales	Amount	will	have	to	be
evaluated	for	each	member	in	the	rows.	Do	we	need	the	Sales	Amount?	No,	we	don't.	The	only
thing	we	need	is	a	list	of	members;	hence	we	have	used	an	empty	set	{}	on	AXIS(0).	That	way,
the	SSAS	engine	does	not	have	to	go	into	cube	space	to	evaluate	the	sales	amount	for	every
customer.	The	SSAS	engine	will	only	reside	in	dimension	space,	which	is	much	smaller,	and
the	query	is	therefore	more	efficient.

Possible	workarounds	-	dummy	column

Some	client	applications	might	have	issues	with	the	MDX	statement	skipping	axes	because
they	expect	something	on	columns,	and	will	not	work	with	an	empty	set	on	axis	0.	In	this	case,
we	can	define	a	constant	measure	(a	measure	returning	null,	0,	1,	or	any	other	constant)	and
place	it	on	columns.	In	MDX's	terms,	this	constant	measure	is	a	calculated	measure.	It	will	act
as	a	dummy	column.	It	might	not	be	as	efficient	as	an	empty	set,	but	it	is	a	much	better
solution	than	the	one	with	a	regular	(non-constant)	cube	measure	like	the	Sales	Amount
measure.

This	query	creates	a	dummy	value	on	columns:

WITH	

MEMBER	[Measures].[Dummy]	AS	NULL	

	

SELECT	

			{	[Measures].[Dummy]	}	ON	0,	

			{	[Customer].[Customer].[Customer].MEMBERS	}	ON	1	

FROM	

			[Adventure	Works]	

WOW! eBook
www.wowebook.org

Using	a	WHERE	clause	to	filter	the	data
returned
A	WHERE	clause	in	MDX	works	in	a	similar	way	as	the	other	query	languages.	It	acts	as	a	filter
and	restricts	the	data	returned	in	the	result	set.

Not	surprisingly,	however,	the	WHERE	clause	in	MDX	does	more	than	just	restricting	the	result
set.	It	also	establishes	the	query	context.

WOW! eBook
www.wowebook.org

Getting	ready
The	MDX	WHERE	clause	points	to	a	specific	intersection	of	cube	space.	We	use	tuple
expressions	to	represent	cells	in	cube	space.	Each	tuple	is	made	up	of	one	member,	and	only
one	member,	from	each	hierarchy.

The	following	tuple	points	to	one	year,	2013	and	one	measure,	the	[Internet	Sales	Amount]:

([Measures].[Internet	Sales	Amount],	

		[Date].[Calendar	Year].&[2013]	

)	

Using	a	tuple	in	an	MDX	WHERE	clause	is	called	slicing	the	cube.	This	feature	gives	the	WHERE
clause	another	name,	slicer.	If	we	put	the	previous	tuple	in	the	WHERE	clause,	in	MDX	terms,
we	are	saying,	show	me	some	data	from	the	cube	sliced	by	sales	and	the	year	2013.

That	is	what	we	are	going	to	do	next.

WOW! eBook
www.wowebook.org

How	to	do	it...
Open	the	Query	Editor	in	SSMS,	and	then	follow	these	steps	to	write	a	query	with	a	slicer	and
test	it:

1.	 Copy	this	initial	query	into	the	Query	Editor	and	run	the	query.	

						SELECT	

								{	[Customer].[Customer	Geography].[Country]	

								}	ON	0,	

								{	[Product].[Product	Categories].[Category]	}	ON	1	

						FROM	

								[Adventure	Works]

		You	will	see	the	following	result:

2.	 At	this	point,	we	should	ask	the	question,	What	are	the	cell	values?	The	cell	values	are
actually	the	[Measures].[Reseller	Sales	Amount],	which	is	the	default	member	on	the
Measures	dimension.

3.	 Add	the	previous	tuple	to	the	query	as	a	slicer.	Here	is	the	final	query:

						SELECT	

								{	[Customer].[Customer	Geography].[Country]	

								}	ON	0,	

								{	[Product].[Product	Categories].[Category]	}	ON	1	

						FROM	

								[Adventure	Works]	

						WHERE	

								([Measures].[Internet	Sales	Amount],	

										[Date].[Calendar	Year].&[2013]	

)	

4.	 The	result	should	be	as	shown	in	the	following	screenshot:

WOW! eBook
www.wowebook.org

5.	 Ask	the	question	again;	What	are	the	cell	values?	The	cell	values	are	now	the
[Measures].[Internet	Sales	Amount],	and	no	longer	the	default	measure.

WOW! eBook
www.wowebook.org

How	it	works...
We	can	slice	the	data	by	pointing	to	a	specific	intersection	of	cube	space.	We	can	achieve	this
by	putting	a	tuple	in	the	WHERE	clause.

In	the	preceding	example,	the	cube	space	is	sliced	by	sales	and	the	year	2008.	The	cell	values
are	the	Internet	Sales	Amount	for	each	country	and	each	product	category,	sliced	by	the
year	2008.

WOW! eBook
www.wowebook.org

There's	more...
Notice	that	the	data	returned	on	the	query	axes	can	be	completely	different	from	the	tuple	in
the	WHERE	clause.	The	tuples	in	the	slicer	will	only	affect	the	cell	values	in	the	intersection	of
rows	and	columns,	not	what	are	on	the	column	or	row	axes.

If	you	need	to	display	sales	and	year	2008	on	the	query	axes,	you	would	need	to	move	them	to
the	query	axes,	and	not	in	the	WHERE	clause.

This	query	has	moved	the	sales	to	the	columns	axis,	and	the	year	2008	to	the	rows	axis.	They
are	both	cross	joined	to	the	original	hierarchies	on	the	two	query	axes:

SELECT	

			{	[Measures].[Internet	Sales	Amount]	*	

					[Customer].[Customer	Geography].[Country]	

			}	ON	0,	

			{	[Date].[Calendar	Year].&[2013]	*	

					[Product].[Product	Categories].[Category]	

			}	ON	1	

FROM	

			[Adventure	Works]	

Run	the	query	and	you	will	get	the	following	result.	The	cell	values	are	the	same	as	before,
but	now	we	have	the	year	2013	on	the	rows	axis,	and	the	Internet	Sales	Amount	on	the
columns	axis:

WOW! eBook
www.wowebook.org

Optimizing	MDX	queries	using	the
NonEmpty()	function
The	NonEmpty()	function	is	a	very	powerful	MDX	function.	It	is	primarily	used	to	improve
query	performance	by	reducing	sets	before	the	result	is	returned.

Both	Customer	and	Date	dimensions	are	relatively	large	in	the	Adventure	Works	DW	2016
database.	Putting	the	cross	product	of	these	two	dimensions	on	the	query	axis	can	take	a	long
time.	In	this	recipe,	we	will	show	how	the	NonEmpty()	function	can	be	used	on	the	Customer
and	Date	dimensions	to	improve	the	query	performance.

WOW! eBook
www.wowebook.org

Getting	ready
Start	a	new	query	in	SSMS	and	make	sure	that	you	are	working	on	the	Adventure	Works	DW
2016	database.	Then	write	the	following	query	and	execute	it:

SELECT		

				{	[Measures].[Internet	Sales	Amount]	}	ON	0,	

				NON	EMPTY	

				Filter(

												{	[Customer].[Customer].[Customer].MEMBERS	}	*	

												{	[Date].[Date].[Date].MEMBERS	},	

												[Measures].[Internet	Sales	Amount]	>	1000	

)	ON	1	

FROM	

			[Adventure	Works]	

The	query	shows	the	sales	per	customer	and	dates	of	their	purchases,	and	isolates	only	those
combinations	where	the	purchase	was	over	1,000	USD.

On	a	typical	server,	it	will	take	more	than	a	minute	before	the	query	will	return	the	results.

Now	let	us	see	how	to	improve	the	execution	time	by	using	the	NonEmpty()	function.

WOW! eBook
www.wowebook.org

How	to	do	it...
Follow	these	steps	to	improve	the	query	performance	by	adding	the	NonEmpty()	function:

1.	 Wrap	NonEmpty()	function	around	the	cross	join	of	customers	and	dates	so	that	it
becomes	the	first	argument	of	that	function.

2.	 Use	the	measure	on	columns	as	the	second	argument	of	that	function.
3.	 This	is	what	the	MDX	query	should	look	like:

						SELECT		

								{	[Measures].[Internet	Sales	Amount]	}	ON	0,	

						NON	EMPTY	

								Filter(

										NonEmpty(

												{	[Customer].[Customer].[Customer].MEMBERS	}	*	

												{	[Date].[Date].[Date].MEMBERS	},	

												{	[Measures].[Internet	Sales	Amount]	}	

),	

										[Measures].[Internet	Sales	Amount]	>	1000	

)	ON	1	

						FROM		

								[Adventure	Works]	

4.	 Execute	that	query	and	observe	the	results	as	well	as	the	time	required	for	execution.	The
query	returned	the	same	results,	only	much	faster,	right?

WOW! eBook
www.wowebook.org

How	it	works...
Both	the	Customer	and	Date	dimensions	are	medium-sized	dimensions.	The	cross	product	of
these	two	dimensions	contains	several	million	combinations.	We	know	that,	typically,	the	cube
space	is	sparse;	therefore,	many	of	these	combinations	are	indeed	empty.	The	Filter()
operation	is	not	optimized	to	work	in	block	mode,	which	means	a	lot	of	calculations	will	have
to	be	performed	by	the	engine	to	evaluate	the	set	on	rows,	whether	the	combinations	are
empty	or	not.

This	is	because	the	Filter()	function	needs	to	iterate	over	the	complete	set	of	data	in	every
cell	in	order	to	isolate	a	single	cell.	For	this	reason,	the	Filter()	function	can	be	slow	when
operating	on	large	dimensions	or	cross–join	result	of	even	medium-sized	dimensions.

Tip

The	Filter()	operation	is	not	optimized	to	work	in	block	mode.	It	filters	a	specified	set
based	on	a	search	condition	by	iterating	through	each	tuple	in	the	specified	set.	It's	a	cell-by-
cell	operation	and	can	be	very	slow	when	operating	on	large	dimensions.	For	a	good
explanation	of	the	block	mode	versus	cell-by-cell	mode,	please	see	The	pluses	and	minuses	of
named	sets	section	of	Chapter	5,	Navigation.

Fortunately,	the	NonEmpty()	function	exists.	This	function	can	be	used	to	reduce	any	set,
especially	multidimensional	sets	that	are	the	result	of	a	crossjoin	operation.

The	NonEmpty()	function	removes	the	empty	combinations	of	the	two	sets	before	the	engine
starts	to	evaluate	the	sets	on	rows.	A	reduced	set	has	fewer	cells	to	be	calculated,	and	therefore
the	query	runs	much	faster.

WOW! eBook
www.wowebook.org

There's	more...
Regardless	of	the	benefits	that	were	shown	in	this	recipe,	the	NonEmpty()	function	should	be
used	with	caution.	Here	are	some	good	practices	regarding	the	NonEmpty()	function:

Use	it	with	sets,	such	as	named	sets	and	axes.
Use	it	in	the	functions	which	are	not	optimized	to	work	in	block	mode,	such	as	with	the
Filter()	function.
Avoid	using	it	in	aggregate	functions	such	as	Sum().	The	Sum()	function	and	other
aggregate	functions	are	optimized	to	run	in	block	mode.	If	you	pass	the	data	through	the
NonEmpty()	the	Sum()	function,	which	break	it	into	many	small	non-empty	chunks,	you
will	turn	this	optimization	off	and	those	functions	will	run	in	a	much	slower	cell-by-cell
mode.
Avoid	using	it	in	other	MDX	set	functions	that	are	optimized	to	work	in	block	mode.	The
use	of	the	NonEmpty()	function	inside	optimized	functions	will	prevent	them	from
evaluating	the	set	in	block	mode.	This	is	because	the	set	will	not	be	compact	once	it
passes	the	NonEmpty()	function.	The	function	will	break	it	into	many	small	non-empty
chunks,	and	each	of	these	chunks	will	have	to	be	evaluated	separately.	This	will	inevitably
increase	the	duration	of	the	query.	In	such	cases,	it	is	better	to	leave	the	original	set	intact,
no	matter	its	size.	The	engine	will	know	how	to	run	over	it	in	optimized	mode.

NonEmpty()	versus	NON	EMPTY

Both	the	NonEmpty()	function	and	the	NON	EMPTY	keyword	can	reduce	sets,	but	they	do	it	in	a
different	way.

The	NON	EMPTY	keyword	removes	empty	rows,	columns,	or	both,	depending	on	the	axis	on
which	that	keyword	is	used	in	the	query.	Therefore,	the	NON	EMPTY	operator	tries	to	push	the
evaluation	of	cells	to	an	early	stage	whenever	possible.	This	way,	the	set	on	axis	is	already
reduced	and	the	final	result	is	faster.

Take	a	look	at	the	initial	query	in	this	recipe,	remove	the	Filter()	function,	run	the	query,
and	notice	how	quickly	the	results	come,	although	the	multi–dimensional	set	again	counts
millions	of	tuples.	The	trick	is	that	the	NON	EMPTY	operator	uses	the	set	on	the	opposite	axis,
the	columns,	to	reduce	the	set	on	rows.	Therefore,	it	can	be	said	that	NON	EMPTY	is	highly
dependent	on	members	on	axes	and	their	values	in	columns	and	rows.

Contrary	to	the	NON	EMPTY	operator	found	only	on	axes,	the	NonEmpty()	function	can	be	used
anywhere	in	the	query.

The	NonEmpty()	function	removes	all	the	members	from	its	first	set,	where	the	value	of	one
or	more	measures	in	the	second	set	is	empty.	If	no	measure	is	specified,	the	function	is
evaluated	in	the	context	of	the	current	member.

In	other	words,	the	NonEmpty()	function	is	highly	dependent	on	members	in	the	second	set,
the	slicer,	or	the	current	coordinate,	in	general.

WOW! eBook
www.wowebook.org

Common	mistakes	and	useful	tips

If	a	second	set	in	the	NonEmpty()	function	is	not	provided,	the	expression	is	evaluated	in	the
context	of	the	current	measure	at	the	moment	of	evaluation,	and	current	members	of	attribute
hierarchies,	also	at	the	time	of	evaluation.	In	other	words,	if	you	are	defining	a	calculated
measure	and	you	forget	to	include	a	measure	in	the	second	set,	the	expression	is	evaluated	for
that	same	measure	which	leads	to	null,	a	default	initial	value	of	every	measure.	If	you	are
simply	evaluating	the	set	on	the	axis,	it	will	be	evaluated	in	the	context	of	the	current	measure,
the	default	measure	in	the	cube,	or	the	one	provided	in	the	slicer.	Again,	this	is	perhaps	not
something	you	expected.	In	order	to	prevent	these	problems,	always	include	a	measure	in	the
second	set.

The	NonEmpty()	function	reduces	sets,	just	like	a	few	other	functions,	namely	Filter()	and
Existing().	But	what's	special	about	NonEmpty()	function	is	that	it	reduces	sets	extremely
efficiently	and	quickly.	Because	of	that,	there	are	some	rules	about	where	to	position
NonEmpty()	function	in	calculations	made	by	the	composition	of	MDX	functions	(one
function	wrapping	the	other).	If	we	are	trying	to	detect	multi-select,	that	is,	multiple	members
in	the	slicer,	NonEmpty()	function	should	go	inside,	with	the	EXISTING	function/keyword
outside.	The	reason	is	that	although	they	both	shrink	sets	efficiently,	the	NonEmpty()	function
works	great	if	the	set	is	intact.	The	EXISTING	keyword	is	not	affected	by	the	order	of	members
or	compactness	of	the	set.	Therefore,	the	NonEmpty()	function	should	be	applied	earlier.

You	may	get	System.OutOfMemory	errors	if	you	use	the	CrossJoin()	operation	on	many	large
hierarchies	because	the	cross	join	generates	a	Cartesian	product	of	those	hierarchies.	In	that
case,	consider	using	the	NonEmpty()	function	to	reduce	the	space	to	a	smaller	subcube.	Also,
don't	forget	to	group	the	hierarchies	by	their	dimension	inside	the	cross	join.

WOW! eBook
www.wowebook.org

Using	the	Properties()	function	to	retrieve	data
from	attribute	relationships
Attribute	relationships	define	hierarchical	dependencies	between	attributes.	A	good	example	is
the	relationship	between	the	City	attribute	and	the	State	attribute.	If	we	know	the	current	city
is	Phoenix,	we	know	the	state	must	be	Arizona.	This	knowledge	of	the	relationship,	City/State,
can	be	used	by	the	Analysis	Services	engine	to	optimize	performance.

Analysis	Services	provides	the	Properties()	function	to	allow	us	to	retrieve	data	based	on
attribute	relationships.

WOW! eBook
www.wowebook.org

Getting	ready
We	will	start	with	a	classic	top	10	query	that	shows	the	top	10	customers.	Then	we	will	use	the
Properties()	function	to	retrieve	each	top	10	customer's	yearly	income.

This	table	shows	what	our	query	result	should	be	like:

Internet	Sales	Amount Yearly	Income

Nichole	Nara $13,295.38 100000	-	120000

Kaitlyn	J.	Henderson $13,294.27 100000	-	120000

Margaret	He $13,269.27 100000	-	120000

Randall	M.	Dominguez $13,265.99 80000	-	90000

Adriana	L.	Gonzalez $13,242.70 80000	-	90000

Rosa	K.	Hu $13,215.65 40000	-	70000

Brandi	D.	Gill $13,195.64 100000	-	120000

Brad	She $13,173.19 80000	-	90000

Francisco	A.	Sara $13,164.64 40000	-	70000

Maurice	M.	Shan $12,909.67 80000	-	90000

Once	we	get	only	the	top	10	customers,	it	is	easy	enough	to	place	the	customer	on	the	rows,
and	the	Internet	sales	amount	on	the	columns.	What	about	each	customer's	yearly	income?

The	Customer	Geography	is	a	user-defined	hierarchy	in	the	Customer	dimension.	In	SSMS,	if
you	start	a	new	query	against	the	Adventure	Works	DW	2016	database,	and	navigate	to
Customer	|	Customer	Geography	|	Customer	|	Member	Properties,	you	will	see	that	the
yearly	income	is	one	of	the	member	properties	for	the	Customer	attribute.	This	is	good	news,
because	now	we	can	surely	get	the	Yearly	Income	for	each	top	10	customer	using	the

WOW! eBook
www.wowebook.org

Properties()	function:

WOW! eBook
www.wowebook.org

How	to	do	it...
In	SSMS,	let	us	write	the	following	query	in	a	new	Query	Editor	against	the	Adventure	Works
DW	2016	database:

1.	 This	query	uses	the	TopCount()	function,	which	takes	three	parameters.	The	first
parameter	[Customer].[Customer	Geography].[Customer].MEMBERS	provides	the
members	that	will	be	evaluated	for	the	top	count,	the	second	integer,	10,	tells	it	to	return
only	ten	members	and	the	third	parameter,	[Measures].[Internet	Sales	Amount]],
provides	a	numeric	measure	as	the	evaluation	criterion:

						--	Properties():	Initial	

						SELECT	

								[Measures].[Internet	Sales	Amount]	on	0,	

								TopCount(

										[Customer].[Customer	Geography].[Customer].MEMBERS,	

										10,	

										[Measures].[Internet	Sales	Amount]	

)	ON	1	

						FROM	

								[Adventure	Works]	

2.	 Execute	the	preceding	query	and	we	should	get	only	ten	customers	back	with	their
Internet	Sales	Amount.	Also	notice	that	the	result	is	sorted	in	descending	order	of	the
numeric	measure.	Now	let's	add	a	calculated	measure,	like	this:

						[Customer].[Customer	Geography].currentmember.Properties("Yearly			

							Income")	

3.	 To	make	the	calculated	measure	dynamic,	we	must	use	a	member	function
.currentMember,	so	we	do	not	need	to	hardcode	any	specific	member	name	on	the
customer	dimension.	The	Properties()	function	is	also	a	member	function,	and	it	takes
another	attribute	name	as	a	parameter.	We	have	provided	Yearly	Income	as	the	name	for
the	attribute	we	are	interested	in.

4.	 Now	place	the	preceding	expression	in	the	WITH	clause,	and	give	it	a	name,	[Measures].
[Yearly	Income].	This	new	calculated	measure	is	now	ready	to	be	placed	on	the	columns
axis,	along	with	the	Internet	Sales	Amount.	Here	is	the	final	query:

						WITH	

						MEMBER	[Measures].[Yearly	Income]	AS	

								[Customer].[Customer	Geography].currentmember	

								.Properties("Yearly	Income")	

	

						SELECT	

								{	[Measures].[Internet	Sales	Amount],	

										[Measures].[Yearly	Income]	

								}	on	0,	

							TopCount(

									[Customer].[Customer	Geography].[Customer].MEMBERS,	

									10,	

									[Measures].[Internet	Sales	Amount]	

)	ON	1	

WOW! eBook
www.wowebook.org

						FROM	

								[Adventure	Works]	

5.	 Executing	the	query,	we	should	get	the	yearly	income	for	each	top	10	customer.	The
result	should	be	exactly	the	same	as	the	table	shown	at	the	beginning	of	our	recipe.

WOW! eBook
www.wowebook.org

How	it	works...
Attributes	correspond	to	columns	in	the	dimension	tables	in	our	data	warehouse.	Although	we
do	not	normally	define	the	relationship	between	them	in	the	relationship	database,	we	do	so	in
the	multidimensional	space.	This	knowledge	of	attribute	relationships	can	be	used	by	the
Analysis	Services	engine	to	optimize	the	performance.	MDX	has	provided	us	the
Properties()	function	to	allow	us	to	get	from	members	of	one	attribute	to	members	of
another	attribute.

In	this	recipe,	we	only	focus	on	one	type	of	member	property,	that	is,	the	user-defined
member	property.	Member	properties	can	also	be	the	member	properties	that	are	defined	by
Analysis	Services	itself,	such	as	NAME,	ID,	KEY,	or	CAPTION;	they	are	the	intrinsic	member
properties.

WOW! eBook
www.wowebook.org

There's	more...
The	Properties()	function	can	take	another	optional	parameter,	that	is	the	TYPED	flag.	When
the	TYPED	flag	is	used,	the	return	value	has	the	original	type	of	the	member.

The	preceding	example	does	not	use	the	TYPED	flag.	Without	the	TYPED	flag,	the	return	value	is
always	a	string.

In	most	business	analysis,	we	perform	arithmetical	operations	numerically.	In	the	next
example,	we	will	include	the	TYPED	flag	in	the	Properties()	function	to	make	sure	that	the
[Total	Children]	for	the	top	10	customers	are	numeric:

WITH	

MEMBER	[Measures].[Yearly	Income]	AS	

				[Customer].[Customer	Geography].currentmember.Properties("Yearly	Income")	

MEMBER	[Measures].[Total	Children]	AS	

				[Customer].[Customer	Geography].currentmember.Properties("Total	Children",	

TYPED)	

MEMBER	[Measures].[Is	Numeric]	AS	

				IIF(

							IsNumeric([Measures].[Total	Children]),	

							1,	

							NULL	

)	

	

SELECT	

				{	[Measures].[Internet	Sales	Amount],	

						[Measures].[Yearly	Income],	

						[Measures].[Total	Children],	

						[Measures].[Is	Numeric]	

				}	ON	0,	

				TopCount(

					[Customer].[Customer	Geography].[Customer].MEMBERS,	

					10,	

					[Measures].[Internet	Sales	Amount]	

)	ON	1	

FROM	

				[Adventure	Works]	

The	following	is	the	result:

WOW! eBook
www.wowebook.org

Attributes	can	be	simply	referenced	as	an	attribute	hierarchy,	that	is,	when	the	attribute	is
enabled	as	an	Attribute	Hierarchy.

In	SSAS,	there	is	one	situation	where	the	attribute	relationship	can	be	explored	only	by	using
the	Properties()	function,	that	is	when	its	AttributeHierarchyEnabled	property	is	set	to
False.

In	the	employee	dimension	in	the	Adventure	Works	cube,	employees'	SSN	numbers	are	not
enabled	as	an	Attribute	Hierarchy.	Its	AttributeHierarchyEnabled	property	is	set	to	False.
We	can	only	reference	the	SSN	number	in	the	Properties()	function	of	another	attribute	that
has	been	enabled	as	Attribute	Hierarchy,	such	as	the	Employee	attribute.

WOW! eBook
www.wowebook.org

Basic	sorting	and	ranking
Sorting	and	ranking	are	very	common	requirements	in	business	analysis,	and	MDX	provides
several	functions	for	this	purpose.	They	are:

TopCount	and	BottomCount
TopPercent	and	BottomPercent
*	TopSum	and	BottomSum
ORDER

Hierarchize
RANK

All	of	these	functions	operate	on	sets	of	tuples,	not	just	on	one-dimensional	sets	of	members.
They	all,	in	some	way,	involve	a	numeric	expression,	which	is	used	to	evaluate	the	sorting
and	the	ranking.

WOW! eBook
www.wowebook.org

Getting	ready
We	will	start	with	the	classic	top	five	(or	top-n)	example	using	the	TopCount()	function.	We
will	then	examine	how	the	result	is	already	pre-sorted,	followed	by	using	the	ORDER()
function	to	sort	the	result	explicitly.	Finally,	we	will	see	how	we	can	add	a	ranking	number	by
using	the	RANK()	function.

Here	is	the	classic	top	five	example	using	the	TopCount()	function:

TopCount	(

								[Product].[Subcategory].children,	

								5,	

								[Measures].[Internet	Sales	Amount]		

)	

It	operates	on	a	tuple;	([Product].[Subcategory].children,	[Measures].[Internet	Sales
Amount]).

The	result	is	the	five	[Subcategory]	that	have	the	highest	[Internet	Sales	Amount].

The	five	subcategory	members	will	be	returned	in	order	from	the	largest	[Internet	Sales
Amount]	to	the	smallest.

WOW! eBook
www.wowebook.org

How	to	do	it...
In	SSMS,	let	us	write	the	following	query	in	a	new	Query	Editor,	against	the	Adventure	Works
DW	2016	database.	Follow	these	steps	to	first	get	the	top-n	members:

1.	 We	simply	place	the	earlier	TopCount()	expression	on	the	rows	axis.
2.	 On	the	columns	axis,	we	are	showing	the	actual	Internet	Sales	Amount	for	each

product	subcategory.
3.	 In	the	slicer,	we	use	a	tuple	to	slice	the	result	for	the	year	2013	and	the	Southwest	only.
4.	 The	final	query	should	look	like	the	following	query:

						SELECT	

								[Measures].[Internet	Sales	Amount]	on	0,	

								TopCount	(

										[Product].[Subcategory].children,	

										5,	

										[Measures].[Internet	Sales	Amount]		

)	ON	1	

						FROM	

								[Adventure	Works]	

						WHERE	

								([Date].[Calendar].[Calendar	Quarter].&[2013]&[1],	

										[Sales	Territory].[Sales	Territory	Region].[Southwest]	

)	

5.	 Run	the	query.	The	following	screenshot	shows	the	top-n	result:

6.	 Notice	that	the	returned	members	are	in	order	from	the	largest	numeric	measure	to	the
smallest.

WOW! eBook
www.wowebook.org

Next,	in	SSMS,	follow	these	steps	to	explicitly	sort	the	result:

1.	 This	time,	we	will	put	the	TopCount()	expression	in	the	WITH	clause,	creating	it	as	a
Named	Set.	We	will	name	it	[Top	5	Subcategory].

2.	 On	the	rows	axis,	we	will	use	the	ORDER()	function,	which	takes	two	parameters:	which
members	we	want	to	return	and	what	value	we	want	to	evaluate	on	for	sorting.	The
named	set	[Top	5	Subcategory]	is	what	we	want	to	return,	so	we	will	pass	it	to	the
ORDER()	function	as	the	first	parameter.	The	.MemberValue	function	gives	us	the	product
subcategory	name,	so	we	will	pass	it	to	the	ORDER()	function	as	the	second	parameter.
Here	is	the	ORDER()	function	expression	we	would	use:

						ORDER	(

								[Top	5	Subcategory],	

								[Product].[Subcategory].MEMBERVALUE	

)	

						Here	is	the	final	query	for	sorting	the	result:	

								--	Order	members	with	MemberValue	

						WITH	

						SET	[Top	5	Subcategory]	as	

								TopCount	(

										[Product].[Subcategory].CHILDREN,	

										5,	

										[Measures].[Internet	Sales	Amount]	

)	

	

						SELECT	

								[Measures].[Internet	Sales	Amount]	on	0,	

								ORDER	(

										[Top	5	Subcategory],	

										[Product].[Subcategory].MEMBERVALUE	

)	ON	1	

						FROM	

								[Adventure	Works]	

						WHERE	

								([Date].[Calendar].[Calendar	Quarter].&[2013]&[1],	

										[Sales	Territory].[Sales	Territory		

											Region].[Southwest])	

3.	 Executing	the	preceding	query,	we	get	the	sorted	result	as	the	screenshot	shows:

WOW! eBook
www.wowebook.org

Finally,	in	SSMS,	follow	these	steps	to	add	ranking	numbers	to	the	top-n	result:

1.	 We	will	create	a	new	calculated	measure,	[Subcategory	Rank]	using	the	RANK()
function,	which	is	simply	putting	a	one-based	ordinal	position	of	each	tuple	in	the	set,
[Top	5	Subcategory].	Since	the	set	is	already	ordered,	the	ordinal	position	of	the	tuple
will	give	us	the	correct	ranking.	Here	is	the	expression	for	the	RANK()	function:

						RANK	(

								[Product].[Subcategory].CurrentMember,	

								[Top	5	Subcategory]	

)	

2.	 The	following	query	is	the	final	query.	It	is	built	on	top	of	the	first	query	in	this	recipe.
We	have	added	the	earlier	RANK()	function	and	created	a	calculated	measure	[Measures].
[Subcategory	Rank],	which	is	placed	on	the	columns	axis	along	with	the	Internet
Sales	Amount:

						WITH	

						SET	[Top	5	Subcategory]	AS	

								TopCount	(

										[Product].[Subcategory].children,	

										5,	

										[Measures].[Internet	Sales	Amount]		

)	

						MEMBER	[Measures].[Subcategory	Rank]	AS	

								RANK	(

										[Product].[Subcategory].CurrentMember,		

										[Top	5	Subcategory]	

)	

	

						SELECT	

										{	[Measures].[Internet	Sales	Amount],	

												[Measures].[Subcategory	Rank]	

WOW! eBook
www.wowebook.org

										}	ON	0,	

										[Top	5	Subcategory]	ON	1						

						FROM	

										[Adventure	Works]	

						WHERE	

										([Date].[Calendar].[Calendar	Quarter].&[2013]&[1],	

												[Sales	Territory].[Sales	Territory	Region].[Southwest])	

3.	 Run	the	preceding	query.	The	ranking	result	is	shown	in	the	following	screenshot:

WOW! eBook
www.wowebook.org

How	it	works...
Sorting	functions,	such	as	TopCount(),	TopPercent(),	and	TopSum(),	operate	on	sets	of	tuples.
These	tuples	are	evaluated	on	a	numeric	expression	and	returned	pre-sorted	in	the	order	of	a
numeric	expression.

Using	the	ORDER()	function,	we	can	sort	members	from	dimensions	explicitly	using	the
.MemberValue	function.

When	a	numeric	expression	is	not	specified,	the	RANK()	function	can	simply	be	used	to
display	the	one-based	ordinal	position	of	tuples	in	a	set.

WOW! eBook
www.wowebook.org

There's	more...
Like	the	other	MDX	sorting	functions,	the	RANK()	function,	however,	can	also	operate	on	a
numeric	expression.	If	a	numeric	expression	is	specified,	the	RANK()	function	assigns	the
same	rank	to	tuples	with	duplicate	values	in	the	set.

It	is	also	important	to	understand	that	the	RANK()	function	does	not	order	the	set.	Because	of
this	fact,	we	tend	to	do	the	ordering	and	ranking	at	the	same	time.	However,	in	the	last	query
of	this	recipe,	we	actually	used	the	ORDER()	function	to	first	order	the	set	of	members	of	the
subcategory.	This	way,	the	sorting	is	done	only	once	and	then	followed	by	a	linear	scan,
before	being	presented	in	sorted	order.

As	a	good	practice,	we	recommend	using	the	ORDER()	function	to	first	order	the	set	and	then
ranking	the	tuples	that	are	already	sorted.

WOW! eBook
www.wowebook.org

Handling	division	by	zero	errors
Handling	errors	is	a	common	task,	especially	the	handling	of	division	by	zero	type	errors.
This	recipe	offers	a	common	practice	to	handle	them.

WOW! eBook
www.wowebook.org

Getting	ready
Start	a	new	query	in	SQL	Server	Management	Studio	and	check	that	you're	working	on	the
Adventure	Works	database.	Then	write	and	execute	this	query:

WITH	

MEMBER	[Date].[Calendar	Year].[CY	2012	vs	2011	Bad]	AS	

			[Date].[Calendar	Year].[Calendar	Year].&[2012]	/	

			[Date].[Calendar	Year].[Calendar	Year].&[2011],	

			FORMAT_STRING	=	'Percent'	

SELECT	

			{	[Date].[Calendar	Year].[Calendar	Year].&[2012],	

					[Date].[Calendar	Year].[Calendar	Year].&[2011],	

					[Date].[Calendar	Year].[CY	2012	vs	2011	Bad]	}	*	

					[Measures].[Reseller	Sales	Amount]	ON	0,	

			{	[Sales	Territory].[Sales	Territory].[Country].MEMBERS	}	

			ON	1	

FROM	

			[Adventure	Works]	

This	query	returns	six	countries	on	the	rows	axis,	and	two	years	and	a	ratio	on	the	column
axis:

The	problem	is	that	we	get	1.#INF	on	some	ratio	cells.	1.#INF	is	the	formatted	value	of
infinity,	and	it	appears	whenever	the	denominator	CY	2011	is	null	and	the	nominator	CY	2012
is	not	null.

We	will	need	help	from	the	IIF()	function,	which	takes	three	arguments:	IFF(<condition>,
<then	branch>,	<else	branch>).	The	IIF()	function	is	a	Visual	Basic	for	Applications
(VBA)	function	and	has	a	native	implementation	in	MDX.	The	IIF()	function	will	allow	us	to
evaluate	the	condition	of	CY	2011,	then	decide	what	the	ratio	calculation	formula	should	be.

WOW! eBook
www.wowebook.org

How	to	do	it...
Follow	these	steps	to	handle	division	by	zero	errors:

1.	 Copy	the	calculated	member	and	paste	it	as	another	calculated	member.	During	that,
replace	the	term	Bad	with	Good	in	its	name,	just	to	differentiate	between	those	two
members.

2.	 Copy	the	denominator.
3.	 Wrap	the	expression	in	an	outer	IIF()	statement.
4.	 Paste	the	denominator	in	the	condition	part	of	the	IIF()	statement	and	compare	it	against

0.
5.	 Provide	null	value	for	the	true	part.
6.	 Your	initial	expression	should	be	in	the	false	part.
7.	 Don't	forget	to	include	the	new	member	on	columns	and	execute	the	query:

						WITH	

						MEMBER	[Date].[Calendar	Year].[CY	2012	vs	2011	Bad]	AS	

									[Date].[Calendar	Year].[Calendar	Year].&[2012]	/	

									[Date].[Calendar	Year].[Calendar	Year].&[2011],	

									FORMAT_STRING	=	'Percent'	

						MEMBER	[Date].[Calendar	Year].[CY	2012	vs	2011	Good]	AS	

									IIF([Date].[Calendar	Year].[Calendar	Year].&[2011]	=	0,	

													null,	

													[Date].[Calendar	Year].[Calendar	Year].&[2012]	/	

													[Date].[Calendar	Year].[Calendar	Year].&[2011]	

),	

									FORMAT_STRING	=	'Percent'	

						SELECT	

									{	[Date].[Calendar	Year].[Calendar	Year].&[2011],	

											[Date].[Calendar	Year].[Calendar	Year].&[2012],	

											[Date].[Calendar	Year].[CY	2012	vs	2011	Bad],	

											[Date].[Calendar	Year].[CY	2012	vs	2011	Good]	}	*	

											[Measures].[Reseller	Sales	Amount]	ON	0,	

									{	[Sales	Territory].[Sales	Territory].[Country].MEMBERS	}	

									ON	1	

						FROM	

									[Adventure	Works]	

The	result	shows	that	the	new	calculated	measure	has	corrected	the	problem.	The	last	column
[CY	2012	vs	2011	Good]	is	now	showing	(null)	correctly	when	the	denominator	CY	2011	is
null	and	the	nominator	CY	2012	is	not	null.

WOW! eBook
www.wowebook.org

WOW! eBook
www.wowebook.org

How	it	works...
A	division	by	zero	error	occurs	when	the	denominator	is	null	or	zero	and	the	numerator	is
not	null.	In	order	to	prevent	this	error,	we	must	test	the	denominator	before	the	division	and
handle	the	two	scenarios	in	the	two	branches	using	the	IIF()	statement.

In	the	condition	part	of	the	IIF	statement,	we've	used	a	simple	scalar	number	zero	to	determine
whether	[Measures].[Reseller	Sales	Amount]	in	the	following	slicer	is	zero	or	not.	If	it	is
zero,	then	it	will	be	true	and	the	calculated	member	will	be	NULL:

[Date].[Calendar	Year].[Calendar	Year].&[2011]	=	0	

What	about	the	NULL	condition?	It	turned	out	for	a	numerical	value;	we	do	not	need	to	test	the
NULL	condition	specifically.	It	is	enough	to	test	just	for	zero	because	null	=	0	returns	true.
However,	we	could	test	for	a	NULL	condition	if	we	want	to,	by	using	the	IsEmpty()	function.

For	the	calculated	member,	[CY	2012	vs	2011	Good]	we	could	wrap	the	member	with	the
IsEmpty()	function.	The	result	will	be	the	same:

MEMBER	[Date].[Calendar	Year].[CY	2012	vs	2011	Good]	AS	

			IIF(IsEmpty([Date].[Calendar	Year].[Calendar	Year].&[2011]),	

							null,	

							[Date].[Calendar	Year].[Calendar	Year].&[2012]	/	

							[Date].[Calendar	Year].[Calendar	Year].&[2011]	

),	

			FORMAT_STRING	=	'Percent'	

WOW! eBook
www.wowebook.org

There's	more...
SQLCAT's	SQL	Server	2008	Analysis	Services	Performance	Guide	has	a	lot	of	interesting
details	regarding	the	IIF()	function,	found	at	http://tinyurl.com/PerfGuide2008R2	.

Additionally,	you	may	find	the	blog	article	MDX	and	DAX	topics	by	Jeffrey	Wang,	explaining
the	details	of	the	IIF()	function,	found	at	http://tinyurl.com/IIFJeffrey	.

Earlier	versions	of	SSAS

If	you're	using	a	version	of	SSAS	prior	to	2008	(that	is,	2005),	the	performance	of	the	IIF()
function	will	not	be	as	good.	See	Mosha	Pasumansky's	article	for	more	information:
http://tinyurl.com/IIFMosha	.

WOW! eBook
www.wowebook.org

http://tinyurl.com/PerfGuide2008R2
http://tinyurl.com/IIFJeffrey
http://tinyurl.com/IIFMosha

Setting	a	default	member	of	a	hierarchy	in	the
MDX	script
Setting	a	default	member	is	a	tempting	option	which	looks	like	it	can	be	used	on	any
dimension	we	would	like.	The	truth	is	far	from	that.	Default	members	should	be	used	as
exceptions	and	not	as	a	general	rule	when	designing	dimensions.

The	reason	for	that	is	not	so	obvious.	The	feature	looks	self-explanatory,	and	it	is	hard	to
anticipate	what	could	go	wrong.	If	we	are	not	careful	enough,	our	calculations	can	become
unpredictable,	especially	on	complex	dimensions	with	many	relationships	among	attributes.

Default	members	can	be	defined	in	three	places.	The	easy-to-find	option	is	the	dimension
itself,	using	the	DefaultMember	property	found	on	every	attribute.	The	second	option	is	the
role,	on	the	Dimension	Data	tab.	Finally,	default	members	can	be	defined	in	the	MDX	script.
One	of	the	main	benefits	of	this	place	is	easy	maintenance	of	all	default	members	in	the	cube
because	everything	is	in	one	place,	and	in	the	form	of	easy-to-read	text.	That	is	also	the	only
way	to	define	the	default	member	of	a	role-playing	dimension.

In	this	recipe,	we	will	show	the	most	common	option,	that	is,	the	last	one,	or	how	to	set	a
default	member	of	a	hierarchy	in	the	MDX	script.	More	information	on	setting	the
DefaultMember	is	available	at	http://tinyurl.com/DefaultMember2012	.

WOW! eBook
www.wowebook.org

http://tinyurl.com/DefaultMember2012

Getting	ready
Follow	these	steps	to	set	up	the	environment	for	this	recipe:

1.	 Start	SSMS	and	connect	to	your	SSAS	2016	instance.
2.	 Click	on	the	New	Query	button	and	check	that	the	target	database	is	Adventure	Works

DW	2016.	Then	execute	the	following	query:

						WITH	

						MEMBER	[Measures].[Default	account]	AS	

											[Account].[Accounts].DefaultMember.Name	

						SELECT	

									{	[Measures].[Amount],	

											[Measures].[Default	account]	}	ON	0	

						FROM	

									[Adventure	Works]	

3.	 The	results	will	show	that	the	default	member	is	the	Net	Income	account	and	its	value	in
this	context	is	a	bit	more	than	12.6	million	USD.

4.	 Next,	open	Adventure	Works	DW	2016	solution	in	SSDT.
5.	 Double-click	on	the	Adventure	Works	cube	and	go	to	the	Calculations	tab.	Choose

Script	View.
6.	 Position	the	cursor	at	the	beginning	of	the	script,	just	beneath	the	CALCULATE

command.

WOW! eBook
www.wowebook.org

How	to	do	it...
Follow	these	steps	to	set	a	new	default	member:

1.	 Enter	the	following	expression	to	set	a	new	default	account:

						ALTER	CUBE	CurrentCube		

										UPDATE	DIMENSION	[Account].[Accounts],	

												Default_Member	=	[Account].[Accounts].&[48];	

																													//Operating	Profit	

2.	 Save	and	deploy	(or	just	press	the	Deploy	MDX	Script	icon	if	you're	using	BIDS	Helper
2012	or	2016	Preview	version).

3.	 Run	the	previous	query	again.
4.	 Notice	that	the	result	has	changed.	The	new	default	account	is	Operating	Profit,	the	one

we	specified	in	the	MDX	script	using	the	ALTER	CUBE	command.	The	value	changed	as
well	now:	it's	above	16.7	million	USD:

WOW! eBook
www.wowebook.org

How	it	works...
The	ALTER	CUBE	statement	changes	the	default	member	of	a	hierarchy	specified	in	the	UPDATE
DIMENSION	part	of	the	statement.	The	third	part	is	where	we	specify	which	member	should	be
the	default	member	of	that	hierarchy.

Don't	mind	that	it	says	UPDATE	DIMENSION.	SSAS	2016	interprets	that	as	a	hierarchy.

WOW! eBook
www.wowebook.org

There's	more...
Setting	the	default	member	on	a	dimension	with	multiple	hierarchies	can	lead	to	unexpected
results.	Due	to	attribute	relations,	related	attributes	are	implicitly	set	to	corresponding
members,	while	the	non-related	attributes	remain	on	their	default	members,	that	is,	the	All
member	(also	known	as	the	root	member).	Certain	combinations	of	members	from	all
available	hierarchies	can	result	in	a	non-existing	coordinate.	In	that	case,	the	query	will	return
no	data.	Other	times,	the	intersection	will	only	be	partial.	In	that	case,	the	query	will	return	the
data,	but	the	values	will	not	be	correct,	which	might	be	even	worse	than	no	data	at	all.

Enter	the	following	expression	in	the	MDX	script,	then	deploy	it:

ALTER	CUBE	CurrentCube		

				UPDATE	DIMENSION	[Date].[Calendar],	

						Default_Member	=	[Date].[Calendar]	

																						.[Calendar	Year].&[2012];	

																							--	year	2012	on	the	user	hierarchy	

The	expression	sets	the	year	2012	as	the	default	member	of	the	[Date].[Calendar]	user-
defined	hierarchy.

Let's	analyze	the	result	with	the	following	query:

SELECT		

		[Measures].[Sales	Amount]	ON	0,	

		[Date].[Fiscal].[Fiscal	Year]	ON	1	

FROM	

		[Adventure	Works]	

The	result	is	shown	in	the	following	screenshot:

WOW! eBook
www.wowebook.org

The	analysis	of	the	Sales	Amount	measure	for	each	fiscal	year	returns	empty	results	except	in
FY	2011	and	FY	2012.	They	are	empty	because	the	intersection	between	the	fiscal	year	and	the
calendar	year	2012	(the	latter	being	the	default	member	in	the	calendar	hierarchy)	is	a	non-
existing	combination,	except	FY	2011	and	FY	2012.	Remember,	the	calendar	year	2012
doesn't	get	overwritten	by	the	fiscal	year	2011	or	2012.	It	gets	combined	(open	the	Date
dimension	in	SSDT	and	observe	the	relationships	in	the	corresponding	tab).	Moreover,	when
you	put	the	fiscal	year	2011	or	2012	into	the	slicer,	you	only	get	a	portion	of	data;	the	portion
which	matches	the	intersection	of	the	calendar	and	the	fiscal	year.	That's	only	one	half	of	the
fiscal	year,	right?	In	short,	you	have	a	potential	problem	with	this	approach.

Can	we	fix	the	result?	Yes,	we	can.	The	correct	results	will	be	there	when	we	explicitly	select
the	All	member	from	the	Date.Calendar	hierarchy	in	the	slicer.	The	complete	MDX	is	shown
in	the	following	query.	Only	then	will	we	get	correct	results	using	fiscal	hierarchies.	The
question	is—will	the	end	users	remember	that	every	time?

SELECT	[Measures].[Sales	Amount]	ON	0,	

				[Date].[Calendar	Year].[All]	*	

				[Date].[Fiscal].[Fiscal	Year]	ON	1	

WOW! eBook
www.wowebook.org

FROM	

		[Adventure	Works]	

The	correct	results	from	this	query	can	be	seen	in	the	following	screenshot:

The	situation	is	similar	when	the	default	member	is	defined	on	an	attribute	hierarchy,	for
example,	on	the	[Date].[Calendar	Year]	hierarchy.	By	now,	you	should	be	able	to	modify
the	previous	expression	so	that	it	sets	the	year	2012	as	the	default	member	on	the	[Date].
[Calendar	Year].	Test	this	to	see	it	for	yourself.

Another	scenario	could	be	that	you	want	to	put	the	current	date	as	the	default	member	on	the
Date.Date	hierarchy.	Try	that	too,	and	see	that	when	you	use	the	year	2012	from	the	[Date].
[Calendar	Year]	hierarchy	in	the	slicer,	you	get	an	empty	result.	Again,	the	intersection
formed	a	non-existing	coordinate.

To	conclude,	you	should	avoid	defining	default	members	on	complex	dimensions.	Define
them	where	it	is	appropriate:	on	dimensions	with	a	single	non-aggregatable	attribute	(that	is,
when	you	set	the	IsAggregatable	property	of	an	attribute	to	False)	or	on	dimensions	with

WOW! eBook
www.wowebook.org

one	or	more	user	hierarchies	where	that	non-aggregatable	attribute	is	the	top	level	on	each
user	hierarchy,	and	where	all	relationships	are	well	defined.

The	Account	dimension	used	in	this	example	is	not	such	a	dimension.	In	order	to	correct	it,
two	visible	attributes	should	be	hidden	because	they	can	cause	empty	results	when	used	in	a
slicer.	Experimenting	with	a	scope	might	help	too,	but	that	adds	to	the	complexity	of	the
solution	and	hence	the	initial	advice	of	keeping	things	simple	when	using	default	members
should	prevail.

Take	a	look	at	other	dimensions	in	the	Adventure	Works	DW	2016	database.	There,	you	will
find	good	examples	of	using	default	members.

Helpful	tips

When	you're	defining	the	default	members	in	an	MDX	script,	do	it	at	the	beginning	of	the
script.	This	way,	the	calculations	that	follow	can	reference	them.

In	addition,	provide	a	comment	explaining	which	member	was	chosen	to	be	the	default
member,	and	perhaps	why.	Look	back	at	the	code	in	this	recipe	to	see	how	it	was	done.

WOW! eBook
www.wowebook.org

Chapter	2.	Working	with	Sets
In	this	chapter,	we	will	cover	the	following	recipes:

Implementing	the	NOT	IN	set	logic
Implementing	the	logical	OR	on	members	from	different	hierarchies
Iterating	on	a	set	to	reduce	it
Iterating	on	a	set	to	create	a	new	one
Iterating	on	a	set	using	recursion
Performing	complex	sorts
Dissecting	and	debugging	MDX	queries
Implementing	the	logical	AND	on	members	from	the	same	hierarchy

WOW! eBook
www.wowebook.org

Introduction
Sets	in	MDX	are	collections	of	tuples	with	the	same	dimensionality.	As	in	many	other
programming	languages,	the	basic	logical	operations,	NOT,	AND,	and	OR,	can	be	applied	on
them.

When	putting	two	tuples	together	to	form	a	set,	we	basically	ask	for	the	results	that	contain
any	of	those	tuples.	Therefore,	sets	in	MDX	naturally	imply	the	OR	logic.	The	first	part	of	the
chapter	focuses	on	the	challenges	and	solutions	of	performing	NOT	and	OR	logic	operations	on
sets.

Iterations	and	recursions	can	also	be	performed	on	sets.	The	middle	part	of	the	chapter
concentrates	on	those	actions	and	the	different	ways	to	perform	them.

The	final	part	of	the	chapter	explains	how	to	perform	complex	sorts,	how	to	apply	the
iteration	technique	to	dissect	and	debug	MDX	queries	and	calculations,	and	how	to	perform
the	logical	AND	operation	in	MDX.

WOW! eBook
www.wowebook.org

Implementing	the	NOT	IN	set	logic
There	are	times	when	we	want	to	exclude	some	members	from	the	result.	We	can	perform	this
operation	using	a	set	of	members	on	an	axis	or	using	a	set	of	members	in	a	slicer,	that	is,	the
WHERE	part	of	an	MDX	query.

This	recipe	shows	how	to	do	the	latter,	that	is,	how	to	exclude	some	members	from	a	set	in	a
slicer.	The	principle	is	the	same	for	any	part	of	an	MDX	query.

WOW! eBook
www.wowebook.org

Getting	ready
Start	a	new	query	in	SQL	Server	Management	Studio	(SSMS)	and	check	that	you	are	working
on	the	Adventure	Works	DW	2016	database.	Then	type	in	the	following	query	and	execute	it:

SELECT	

			{	[Measures].[Reseller	Order	Count]	}	ON	0,	

			NON	EMPTY	

			{	[Promotion].[Promotion].MEMBERS	}	

			DIMENSION	PROPERTIES	

					[Promotion].[Promotion].[Discount	Percent]		

			ON	1	

FROM	

			[Adventure	Works]	

The	preceding	query	returns	12	promotions	and	all	the	top-level	promotions	on	the	rows	axis.
The	DIMENSION	PROPERTIES	keyword	is	used	to	get	additional	information	about	members
each	promotion's	discount	percent.	However,	the	property	is	not	visible	on	either	of	the	query
axes	and	it	can	only	be	seen	by	double-clicking	each	promotion	member	on	the	rows:

Our	task	is	to	exclude	promotions	with	a	discount	percentage	of	0,	2,	and	5.

WOW! eBook
www.wowebook.org

How	to	do	it...
To	exclude	promotions	with	a	discount	percent	of	0,	2,	and	5	is	to	say	that	we	want	the
promotion	members	that	are	NOT	IN	the	discount	percent	(0,	2,	and	5).	Translating	the	NOT	IN
logic	into	the	WHERE	clause,	we	can	use	this	pseudo	code:

WHERE	

			(-	{	[member	of	Discount	Percent	0],	

									[member	of	Discount	Percent	2],	

									[member	of	Discount	Percent	5]	})	

All	we	need	to	do	now	is	to	find	the	three	fully	qualified	member	names.

Let	us	open	a	new	query	in	SSMS	against	the	Adventure	Works	DW	2016	database,	and	follow
these	steps:

1.	 Navigate	to	the	Promotion	dimension	and	expand	it.
2.	 Expand	the	Discount	Percent	hierarchy	and	its	level.
3.	 Take	the	first	three	members	(with	the	names	0,	2,	and	5)	and	drag	them	one	by	one

beneath	the	query,	and	then	form	a	set	of	them	using	curly	brackets.
4.	 Expand	the	query	by	adding	the	WHERE	part.
5.	 Add	the	set	with	those	three	members	using	a	minus	sign	in	front	of	the	set:

						SELECT	

								{	[Measures].[Reseller	Order	Count]	}	ON	0,	

								NON	EMPTY	

								{	[Promotion].[Promotion].MEMBERS	}	

								DIMENSION	PROPERTIES	

										[Promotion].[Promotion].[Discount	Percent]		

								ON	1	

						FROM	

								[Adventure	Works]	

						WHERE	

								(-	{	[Promotion].[Discount	Percent].&[0],	

														[Promotion].[Discount	Percent].&[2.E-2],	

														[Promotion].[Discount	Percent].&[5.E-2]	})	

6.	 Execute	the	query	and	see	how	the	results	change.	Double-click	each	promotion	and
verify	that	no	promotion	has	a	discount	percent	equal	to	0,	2,	or	anymore.

WOW! eBook
www.wowebook.org

How	it	works...
The	initial	query	is	not	sliced	by	discount	percentages.	We	can	think	of	it	as	if	all	the	members
of	that	hierarchy	exist	there	in	the	slicer:

WHERE	({	[Promotion].[Discount	Percent]	

																					.[Discount	Percent].MEMBERS	})	

Of	course,	we	don't	have	to	write	such	expressions;	the	SSAS	engine	takes	care	of	it	by
default.	In	other	words,	we're	fine	until	the	moment	we	want	to	change	the	slicer	by	either
isolating	or	removing	some	members	from	that	set.	That's	when	we	have	to	use	that	hierarchy
in	the	slicer.

Isolation	of	members	is	simply	done	by	enumerating	them	in	the	slicer.	Reduction,	the
opposite	operation,	is	performed	using	the	Except()	function:

WHERE	(Except({	[Promotion].[Discount	Percent]	

																													.[Discount	Percent].MEMBERS	},	

																{	[Promotion].[Discount	Percent].&[0],	

																		[Promotion].[Discount	Percent].&[2.E-2],	

																		[Promotion].[Discount	Percent].&[5.E-2]	}	

)	

)	

The	alternative	for	the	Except()	function	is	a	minus	sign,	which	brings	us	to	the	shorter
version	of	the	previous	expression,	the	version	that	was	used	in	this	recipe.

Notice	that	the	Except()	function	takes	two	sets,	and	the	minus	sign	in	our	example	has	only
one	set	after	it,	and	has	no	set	before	it.

When	a	minus	sign	is	used	between	two	sets,	it	performs	the	same	difference	operation
between	those	sets	as	Except()	does.	When	the	first	set	is	missing,	which	is	the	case	in	our
example,	all	the	members	of	the	second	set	are	implicitly	added	as	the	first	set.	The	difference
between	all	members	and	the	members	of	any	set	is	the	opposite	set	of	that	set.	This	is	how
you	can	perform	the	NOT	IN	logic	on	sets.	Both	variants	work,	but	the	one	with	the	minus	sign
in	front	of	the	set	is	hopefully	easier	to	remember.

WOW! eBook
www.wowebook.org

There's	more...
If	we	open	the	Promotion	dimension	inside	SQL	Server	Data	Tools	(SSDT),	we'll	notice	that
the	Discount	Percent	attribute	has	the	MemberValue	property	defined.	The	value	of	that
property	is	equal	to	a	discount	percentage	and	therefore,	in	this	case,	we	could	write	an
equivalent	syntax:

WHERE	

			({	Filter([Promotion].[Discount	Percent]	

																										.[Discount	Percent].MEMBERS,	

															[Promotion].[Discount	Percent]	

																										.CurrentMember.MemberValue	>=	0.1)	})	

The	advantage	of	this	expression	is	that	it	should	filter	out	additional	members	with	a
percentage	less	than	10	percent,	if	they	ever	appear	on	that	hierarchy.	If	we're	not	expecting
such	a	case	or	if	we	strictly	want	to	exclude	certain,	not	necessarily	consecutive,	members
from	the	hierarchy	(Unknown	Member,	NA	member,	and	so	on),	we	should	use	the	first
example:	the	one	with	explicit	members	in	the	set.

WOW! eBook
www.wowebook.org

See	also
The	next	recipe,	Implementing	the	logical	OR	on	members	from	different	hierarchies	is
based	on	a	similar	theme	to	this	recipe

WOW! eBook
www.wowebook.org

Implementing	the	logical	OR	on	members	from
different	hierarchies
If	we	need	to	slice	the	data	by	only	the	black	color	for	products,	we	would	put	the	Black
member	in	the	WHERE	clause,	like	this:

WHERE	

			([Product].[Color].&[Black])	

In	the	Adventure	Works	DW	2016	database,	by	putting	Reseller	Order	Quantity	and	Reseller
Order	Count	on	the	columns,	we	would	get	this	result:

Similarly,	to	get	only	the	products	whose	size	is	XL,	we	can	put	the	member	XL	in	the	slicer
as:

WHERE	

			([Product].[Size	Range].&[XL])	

What	if	we	want	to	get	the	products	whose	size	is	XL	in	the	same	result	set	as	the	result	set	for
black	only?

Somehow,	we	need	to	combine	the	black	member	with	the	XL	member.	Simply	by	putting
these	two	members	together,	it	would	not	work.	Putting	two	members	from	different
hierarchies	would	form	a	tuple;	a	tuple	implies	the	logical	AND	in	MDX,	not	the	logical	OR.

On	the	other	hand,	MDX	implies	a	logical	OR.	However,	we	cannot	simply	put	the	preceding
two	members	together	to	form	a	set.	Color	and	Size	Range	are	different	hierarchies.	Yes,	they
belong	to	the	same	Product	dimension,	but	only	items	from	the	same	hierarchy,	not
dimension,	can	form	a	set!

In	this	recipe,	we	will	focus	on	how	to	implement	a	logical	OR	on	members	from	different
WOW! eBook

www.wowebook.org

hierarchies.

WOW! eBook
www.wowebook.org

Getting	ready
Start	a	new	query	in	SSMS	and	check	that	you're	working	on	the	Adventure	Works	DW	2016
database.	We	will	start	with	slicing	by	the	black	color	first.	Type	in	the	following	query	and
execute	it:

SELECT	

			{	[Measures].[Reseller	Order	Quantity],	

					[Measures].[Reseller	Order	Count]	}	ON	0,	

			NON	EMPTY	

			{	[Product].[Subcategory].MEMBERS	}	ON	1	

FROM	

			[Adventure	Works]	

WHERE	

			([Product].[Color].&[Black])	

The	query	displays	10	product	subcategories	containing	all	the	black	products,	plus	one	row
on	the	top	level	[All	Products].

Next,	open	a	new	query	window	and	execute	the	following	query:

SELECT	

			{	[Measures].[Reseller	Order	Quantity],	

					[Measures].[Reseller	Order	Count]	}	ON	0,	

			NON	EMPTY	

			{	[Product].[Subcategory].MEMBERS	}	ON	1	

FROM	

			[Adventure	Works]	

WHERE	

			([Product].[Size	Range].&[XL])	

It	is	a	query	like	the	previous	one,	but	this	one	returns	only	product	subcategories	containing
XL	size	range	products.	There's	only	one	product	subcategory	in	the	result,	Jerseys.

Our	task	is	to	combine	these	queries	so	that	we	get	the	result	of	the	OR	operation	on	those	two
conditions,	in	a	single	query,	of	course.

WOW! eBook
www.wowebook.org

How	to	do	it...
Our	goal	is	to	combine	these	two	members	from	different	hierarchies	and	place	them	in	the
slicer:

[Product].[Color].&[Black]	

[Product].[Size	Range].&[XL]	

To	combine	members	from	different	hierarchies,	we	need	to	make	sure	that	they	have	the
same	dimensionality.	Here	is	our	solution:

1.	 We	need	to	form	two	tuples	that	have	the	same	dimensionality	and	then	combine	the	two
tuples	with	the	same	dimensionality	to	form	a	set.	To	form	two	tuples	that	have	the	same
dimensionality,	we	add	one	more	member	expression,	[Product].[Size	Range].[All
Products],	to	each	member,	separating	each	member	by	a	comma,	and	enclosing	the
tuple	with	a	pair	of	parentheses.	The	pair	of	curly	brackets	indicates	a	set;	each	tuple	in
the	set	is	separated	by	a	comma;	the	member	order	in	each	tuple	must	be	the	same:

						WHERE	

								(

										{	([Product].[Color].&[Black],	

														[Product].[Size	Range].[All	Products])	

												,	

												([Product].[Color].[All	Products],	

														[Product].[Size	Range].&[XL])	}	

)	

2.	 Here	is	the	final	query:

						SELECT	

								{	[Measures].[Reseller	Order	Quantity],	

										[Measures].[Reseller	Order	Count]	}	ON	0,	

								NON	EMPTY	

								{	[Product].[Subcategory].MEMBERS	}	ON	1	

						FROM	

								[Adventure	Works]	

						WHERE	

						(

								{	([Product].[Color].&[Black],	

												[Product].[Size	Range].[All	Products])	

										,	

										([Product].[Color].[All	Products],	

												[Product].[Size	Range].&[XL])	}	

)	

3.	 Executing	the	preceding	query,	we	would	get	the	result	as	shown	in	the	following
screenshot.	Jerseys	is	the	only	product	that	is	picked	up	by	the	XL	size	range.	Notice	that
the	cell	values	for	[All	Products]	are	also	properly	aggregated	for	all	12	products,
including	Jerseys:

WOW! eBook
www.wowebook.org

WOW! eBook
www.wowebook.org

How	it	works...
The	nature	of	a	multidimensional	database	and	its	underlying	structures	has	a	direct
consequence	on	how	we	should	write	the	combinations	of	members.	Some	combinations	are
there	by	design,	others	require	a	bit	of	imagination.

For	example,	a	set	of	two	members	of	the	same	hierarchy	(colors	black	and	white)	placed	in	a
slicer	automatically	applies	the	OR	logic	on	the	result.	This	means	that	the	result	will	have	data
where	the	first,	the	second,	or	both	members	(or	at	least	one	of	their	descendants,	to	be
precise)	occurred	in	the	underlying	fact	table.	In	other	words,	where	the	product	sold	was
either	black	or	white.	The	emphasis	is	on	two	things:	the	set	and	the	OR	word.	In	other	words,
the	OR	logic	manifests	in	sets.

The	other	example	is	a	tuple	formed	by	two	members	from	different	hierarchies	(that	is,	the
color	black	and	size	XL).	Once	placed	in	the	slicer,	this	tuple	guarantees	that	the	resulting
rows	will	have	data	on	that	exact	slice,	meaning,	on	both	members	(and	at	least	one	of	the
descendants	of	each,	to	be	precise).	Here,	the	emphasis	is	again	on	two	things:	the	tuple	and
the	AND	word.	In	other	words,	the	AND	logic	manifests	in	tuples.

Let's	summarize.	In	MDX,	a	set	is,	by	default,	the	equivalent	of	the	logical	OR	while	a	tuple	is,
by	default,	the	equivalent	of	the	logical	AND.	So	where's	the	problem?

The	problem	is	we	can	only	put	members	of	different	hierarchies	in	a	tuple	and	of	the	same
hierarchy	in	a	set.	Which	means	we're	missing	two	combinations:	different	hierarchies	using
OR	and	the	same	hierarchy	using	AND.

This	recipe	shows	how	to	implement	the	OR	logic	using	members	from	different	hierarchies.
The	next	recipe	in	this	chapter	shows	how	to	perform	the	AND	logic	using	members	from	the
same	hierarchy.	It	is	recommended	that	you	read	both	recipes.

Logical	OR	represents	a	set.	Since	we	have	members	of	different	dimensionalities,	we	must
first	convert	them	to	tuples	of	the	same	dimensionality.	That	is	done	by	expanding	each	with
the	other	one's	root	member	and	enclosing	the	expression	in	brackets	(which	is	how	we
convert	a	member	to	a	tuple).	Once	we	have	compatible	tuples,	we	can	convert	them	into	a	set
by	separating	them	with	a	comma	and	adding	curly	brackets	around	the	whole	expression.
This	is	the	standard	way	that	we	enumerate	members	in	single-dimensional	sets.	Multi-
dimensional	sets	are	no	different	except	it's	the	tuples	that	we're	enumerating	this	time.

WOW! eBook
www.wowebook.org

There's	more...
We	can	also	use	the	Union()	function	instead	of	enumerating	members	in	the	set.	The	Union()
function	has	an	extra	feature,	an	option	to	remove	or	preserve	duplicates	in	the	resulting	set.
While	that	feature	is	of	little	interest	when	the	slicer	is	concerned,	it	might	be	interesting	when
the	same	logic	is	applied	in	calculations.

A	special	case	of	a	non-aggregatable	dimension

In	the	event	that	your	dimension	has	no	root	member	(eliminated	by	setting	the	property
IsAggregatable	to	False),	use	its	default	member	instead.

A	very	complex	scenario

In	this	recipe,	we	used	two	hierarchies	of	the	same	dimension	because	this	is	often	the	case	in
real	life.	However,	the	solution	is	applicable	to	any	dimension	and	its	hierarchies.	For
example,	when	you	need	to	combine	three	different	hierarchies,	you	can	apply	the	same
solution,	thereby	expanding	each	member	into	a	tuple	with	N-1	root	members	(here	N=2)	and
creating	a	set	of	N	such	tuples.

In	case	you	need	to	combine	many	members	using	OR	logic,	sometimes	with	even	more	than
one	of	them	on	the	same	hierarchy	and	others	on	different	hierarchies,	you	need	to	apply	your
knowledge	about	dimensionality—members	of	the	same	hierarchy	should	be	enlisted	in	a	set,
and	members	of	different	dimensions	should	be	combined	with	root	members	of	other
hierarchies.	You	just	need	to	be	careful	with	the	various	brackets.	The	AsymmetricSet()
function	from	the	Analysis	Services	Stored	Procedure	Project	may	help	to	construct	complex
sets:	http://tinyurl.com/AsymmetricSet	.

WOW! eBook
www.wowebook.org

http://tinyurl.com/AsymmetricSet

See	also
The	Implementing	the	NOT	IN	set	operation	recipe	is	based	on	a	similar	theme	to	this
recipe
For	more	information	on	default	members,	take	a	look	at	the	Setting	a	default	member	of
a	hierarchy	in	MDX	script	recipe	in	Chapter	1,	Elementary	MDX	Techniques

WOW! eBook
www.wowebook.org

Iterating	on	a	set	to	reduce	it
Iteration	is	a	very	natural	way	of	thinking	for	us	humans.	We	set	a	starting	point,	we	step	into
a	loop,	and	we	end	when	a	condition	is	met.	While	we're	looping,	we	can	do	whatever	we
want:	check,	take,	leave,	and	modify	items	in	that	set.

In	this	recipe,	we	will	start	from	a	result	set	as	shown	in	the	following	table,	and	iterate
through	the	days	in	each	fiscal	month	to	count	the	number	of	days	for	which	the	growth	was
positive.	By	to	reduce,	we	mean	the	filtering	effect;	in	our	example,	we	need	to	filter	out	the
days	for	which	the	growth	was	not	positive.	Our	goal	is	still	to	only	display	the	fiscal	months
on	ROWS,	not	the	days:

Then	we	will	look	at	a	different	approach	that	takes	performance	advantage	of	the	block-
mode	calculation.

WOW! eBook
www.wowebook.org

Getting	ready
Start	a	new	query	in	SSMS	against	the	Adventure	Works	DW	2016	database.	Then	write	the
following	query:

SELECT	

			{	[Measures].[Customer	Count],	

					[Measures].[Growth	in	Customer	Base]	}	ON	0,	

			NON	EMPTY	

			{	[Date].[Fiscal].[Month].MEMBERS	}	ON	1	

FROM	

			[Adventure	Works]	

WHERE	

			([Product].[Product	Categories].[Subcategory].&[1])	

The	query	returns	fiscal	months	on	the	rows	and	two	measures:	a	count	of	customers,	and
their	growth	compared	to	the	previous	month.	Mountain	bikes	are	in	the	slicer.	The	first	few
rows	from	the	result	set	are	shown	in	the	preceding	table.

Now	let	us	see	how	we	can	get	the	number	of	days	the	growth	was	positive	for	each	period.

WOW! eBook
www.wowebook.org

How	to	do	it...
We	are	going	to	use	the	Filter()	function	to	loop	through	the	descendants	of	the	fiscal
month	on	leaves,	and	apply	the	Count()	function	to	get	the	count	of	days.	We	will	put	the
expression	in	the	WITH	clause	and	name	it	[Measures].[Positive	growth	days].	Finally,	we
will	place	this	new	calculated	member	on	the	columns:

1.	 The	final	query	is	as	follows:

						WITH				

						MEMBER	[Measures].[Positive	growth	days]	AS	

								Filter(

										Descendants([Date].[Fiscal].CurrentMember,	,				

																							leaves),	

										[Measures].[Growth	in	Customer	Base]	>	0		

).Count	

						SELECT	

								{	[Measures].[Customer	Count],	

										[Measures].[Growth	in	Customer	Base],	

										[Measures].[Positive	growth	days]	}	ON	0,	

								NON	EMPTY	

								{	[Date].[Fiscal].[Month].MEMBERS	}	ON	1	

						FROM	

								[Adventure	Works]	

						WHERE	

								([Product].[Product	Categories].[Subcategory].&[1])	

2.	 Run	the	preceding	query	and	observe	whether	the	results	match	the	following	screenshot:

WOW! eBook
www.wowebook.org

How	it	works...
Iteration	is	a	technique	that	steps	into	a	loop,	checks	or	modifies	items	in	the	set,	and	then	exits
the	loop	when	a	condition	is	met.

Our	goal	is	to	count	the	number	of	days	for	which	the	growth	was	positive.	Therefore,	it
might	seem	appropriate	to	perform	iteration	on	days	in	each	fiscal	month.	Iteration	can	be
performed	by	using	the	Filter()	function.

First,	since	we	do	not	want	to	have	the	days	on	the	rows,	we	must	use	the	Descendants()
function	to	get	all	dates	in	the	current	context.

Second,	to	get	the	number	of	items	that	came	up	when	filtering,	we	use	the	Count()	function.

Iteration	works	in	this	situation;	however,	if	there's	a	way	to	manipulate	the	collection	of
members	in	block	mode,	without	cutting	that	set	into	small	pieces	and	iterating	on	individual
members,	we	should	use	it.

WOW! eBook
www.wowebook.org

There's	more...
The	Filter()	function	is	an	iterative	function	which	doesn't	run	in	block	mode;	hence,	it	will
slow	down	the	query.

Let	us	see	if	we	can	find	a	way	to	work	in	block	mode.	A	keen	eye	will	notice	a	count	of
filtered	items	pattern	in	this	expression.	That	pattern	suggests	the	use	of	a	set-based	approach
in	the	form	of	a	SUM-IF	combination.	The	trick	is	to	provide	1	for	the	true	part	of	the
condition	taken	from	the	Filter()	statement	and	null	for	the	false	part.	The	sum	of	1	will	be
equivalent	to	the	count	of	filtered	items.

This	is	the	same	WITH	clause,	being	rewritten	by	using	the	SUM-IF	combination:

WITH				

MEMBER	[Measures].[Positive	growth	days]	AS	

			Sum(

								Descendants([Date].[Fiscal].CurrentMember,	,	leaves),	

								iif([Measures].[Growth	in	Customer	Base]	>	0,	1,	null)	

)	

Execute	the	query	using	the	new	definition.	Both	the	Sum()	and	the	iif()	functions	are
optimized	to	run	in	the	block	mode,	especially	when	one	of	the	branches	in	iif()	is	null.	In
this	example,	the	impact	on	performance	was	not	noticeable	because	the	set	of	rows	was
relatively	small.	Applying	this	technique	on	large	sets	will	result	in	drastic	performance
improvement	as	compared	with	the	FILTER-COUNT 	approach.

More	information	about	this	type	of	optimization	can	be	found	in	Mosha	Pasumansky's	blog,
at	http://tinyurl.com/SumIIF	.

Hints	for	query	improvements

There	are	several	ways	in	which	we	can	avoid	the	Filter()	function	to	improve
performance.

When	you	need	to	filter	by	non-numeric	values	(that	is,	properties	or	other	metadata),	you
should	consider	creating	an	attribute	hierarchy	for	often-searched	items	and	then	do	one	of
the	following:

Use	a	tuple	when	you	need	to	get	a	value	sliced	by	that	new	member
Use	the	Except()	function	when	you	need	to	negate	that	member	on	its	own	hierarchy
(NOT	or	<>)
Use	the	Exists()	function	when	you	need	to	limit	other	hierarchies	of	the	same
dimension	by	that	member
Use	the	NonEmpty()	function	when	you	need	to	operate	on	other	dimensions,	that	is,
subcubes	created	with	that	new	member
Use	the	three-argument	Exists()	function	instead	of	the	NonEmpty()	function,	if	you
also	want	to	get	combinations	with	nulls	in	the	corresponding	measure	group	(nulls	are

WOW! eBook
www.wowebook.org

http://tinyurl.com/SumIIF

available	only	when	the	NullProcessing	property	for	a	measure	is	set	to	Preserve)

When	you	need	to	filter	by	values	and	then	count	a	member	in	that	set,	you	should	consider
aggregate	functions	such	as	Sum()	with	the	iif()	part	in	its	expression,	as	described	earlier.

WOW! eBook
www.wowebook.org

See	also
The	next	recipes,	Iterating	on	a	set	to	create	a	new	one	and	Iterating	on	a	set	using
recursion,	deal	with	other	methods	of	iteration

WOW! eBook
www.wowebook.org

Iterating	on	a	set	to	create	a	new	one
There	are	situations	when	we	don't	want	to	eliminate	certain	members	from	a	set,	but	instead
execute	for	each	type	of	loop.	This	is	done	using	the	Generate()	function.	The	Generate()
function	applies	a	set	to	each	member	of	another	set,	and	then	joins	the	resulting	sets	by	union.
In	this	recipe,	we'll	show	you	how	to	create	a	new	set	of	members	from	the	existing	one.

WOW! eBook
www.wowebook.org

Getting	ready
Let's	start	a	new	query	in	SSMS	against	the	Adventure	Works	DW	2016	database.	Then	write
the	following	query:

SELECT	

			NON	EMPTY	

			{	[Date].[Calendar].[Calendar	Year].MEMBERS	*	

					[Measures].[Sales	Amount]	}	ON	0,	

			NON	EMPTY	

			{	[Sales	Territory].[Sales	Territory	Country].MEMBERS	}	

			ON	1	

FROM	

			[Adventure	Works]	

The	query	returns	four	years	on	the	columns	and	six	countries	plus	the	top	level,	All	Sales
Territories,	on	the	rows.	The	result	is	shown	as	follows:

Our	goal	is	to	get	a	set	of	best	months,	one	for	each	year.	We	will	use	the	Generate()	function
to	do	a	for-each	type	of	loop	to	apply	a	set	of	calendar	months	to	each	member	of	the
calendar	year,	and	to	get	the	best	month	for	each	year.

WOW! eBook
www.wowebook.org

How	to	do	it...
Follow	these	steps	to	create	a	new	set	from	the	initial	one:

1.	 Cut	the	years	from	the	columns	and	define	a	named	set	using	them.
2.	 Name	that	set	Best	month	per	year.
3.	 Wrap	that	set	in	the	Generate()	function	so	that	the	set	of	years	becomes	its	first

argument.
4.	 The	second	argument	should	be	the	TopCount()	function	which	uses	the	descendants	of

each	year	on	the	Month	level	and	finds	the	best	month	according	to	the	value	of	the
measure	Sales	Amount.

5.	 Put	the	name	of	the	new	set	on	columns.
6.	 The	final	query	should	look	as	follows:

						WITH				

						SET	[Best	month	per	year]	AS	

								Generate([Date].[Calendar].[Calendar	Year].MEMBERS,	

																		TopCount(

																		Descendants([Date].[Calendar].CurrentMember,	

																															[Date].[Calendar].[Month],	

																															SELF),	

																		1,	

																		[Measures].[Sales	Amount])	

)	

						SELECT	

								NON	EMPTY	

								{	[Best	month	per	year]	*	

										[Measures].[Sales	Amount]	}	ON	0,	

								NON	EMPTY	

								{	[Sales	Territory].[Sales	Territory	Country].MEMBERS	}	ON	1	

						FROM	

								[Adventure	Works]	

7.	 Execute	the	query.	Notice	that	each	year	is	replaced	with	a	single	month,	the	month	with
the	best	sales	result	in	that	year:

WOW! eBook
www.wowebook.org

How	it	works...
The	Generate()	function	can	be	thought	of	as	a	for-each	loop.	Its	syntax	is:

Generate(Set_Expression1	,		Set_Expression2	[,	ALL])	

This	means	that	we	can	iterate	through	each	member	of	the	first	set	and	assign	each	member
from	the	second	set.	This	second	set	can	have	zero,	one,	or	many	members	and	this	can	vary
during	the	iteration.	In	our	example,	we're	assigning	a	set	with	one	member	only,	the	best
month	in	each	year.	That	member	is	obtained	using	the	TopCount()	function	where	the	first
argument	is	months	of	the	current	year	in	iteration,	the	second	argument	is	1	(only	one
member	to	be	returned),	and	the	third	argument	is	the	Sales	Amount	measure	the	criterion	for
deciding	which	month	is	the	best.	Months	are	obtained	the	standard	way,	using	the
Descendants()	function.

Notice	that	a	different	best	month	is	displayed	for	each	year,	and	that	the	use	of	the	Generate()
function	is	the	only	way	to	get	this	result.	Simply	cross–joining	calendar	years	and	the	set	of
top	one	calendar	months	will	display	the	top	one	calendar	month	for	all	time,	repeated	for
each	year.	We	can	think	of	the	first	set	in	the	Generate()	function	as	the	context	of	the	looping.

WOW! eBook
www.wowebook.org

There's	more...
The	CurrentOrdinal	function	is	a	special	MDX	function	valid	only	in	iterations.	It	returns	the
position	of	the	current	member	(or	tuple,	to	be	precise)	in	the	set	in	iteration	(from	0	to	N,
where	N	is	the	total	number	of	members	in	a	set).	In	addition	to	that,	there's	also	the	Current
function.	The	Current	function	returns	the	current	tuple	in	a	set	being	iterated.	Again,	it's	only
applicable	during	iterations.

Both	of	these	functions	can	be	used	to	detect	the	current	tuple	and	to	create	various
calculations	with	the	current	tuple	and	other	tuples	in	that	set.	Reversing	any	initial	set	is	one
example	of	these	manipulations.	Comparing	the	value	of	the	current	tuple	with	the	value	of	the
previous	tuple	in	the	set	(or	any	one	before	or	after)	to	isolate	certain	tuples	is	another
example.

You	can	reverse	the	set	of	months	from	the	previous	example	as	shown	in	the	following
screenshot:

The	next	query	uses	the	CurrentOrdinal	function	and	reverses	the	order	of	the	months	on	the
columns:

SET	[Best	month	per	year	reversed]	AS	

			Generate([Date].[Calendar].[Calendar	Year].MEMBERS	

													AS	MySetAlias,	

													TopCount(

																Descendants(

																			MySetAlias.Item(MySetAlias.Count	-	

																																				MySetAlias.CurrentOrdinal		

																																				-	1).Item(0),	

																			[Date].[Calendar].[Month],	

																			SELF),	

													1,	

													[Measures].[Sales	Amount])	

)	

A	set	alias	(MySetAlias	in	this	example)	is	defined	for	the	initial	set.	That	set	alias	is	later	used
for	navigation.	The	combination	of	Count	and	CurrentOrdinal	gives	us	members	from	the

WOW! eBook
www.wowebook.org

end	of	the	set	to	its	beginning,	progressively,	while	the	Item()	function	serves	as	a	pointer	on
members	in	that	set.

Yes,	the	same	operation	could	be	done	simply	by	sorting	the	months	by	their	member	key,	in
descending	order.	Nevertheless,	the	idea	of	this	example	was	to	show	you	the	principle	which
can	be	applied	on	any	set,	especially	those	that	can't	be	ordered	easily.

The	CurrentOrdinal	function	can	also	be	used	in	the	Filter()	function.	There,	tuples	can	be
compared	with	each	other	progressively	to	see	which	one	has	a	value	higher	than	both	of	its
neighboring	members,	which	would	signal	that	the	current	member	is	a	relative	peak.	Or	the
opposite,	whatever	is	more	interesting	in	a	case.	However,	the	Filter()	function	doesn't	add
new	members;	it	only	limits	its	initial	set	and	for	that	reason,	it	is	out	of	the	scope	of	this
recipe.

To	summarize,	both	Current	and	CurrentOrdinal	are	powerful	functions	that	allow	us	to
perform	the	self-joining	type	of	operations	in	MDX	or	make	use	of	the	existing	relations
between	dimensions	and	measure	groups.	These	functions	are	useful	not	only	in	the
Generate()	function,	but	also	in	other	iterating	functions	as	well,	namely,	the	Filter()
function.

WOW! eBook
www.wowebook.org

Did	you	know?
In	MDX,	there's	no	concept	of	the	for	loop.	Iterations	cannot	be	based	on	numbers	(as	in	other
languages	or	on	other	systems).	They	must	always	be	based	on	a	set.	If	we	need	to	loop
exactly	N	times,	there	are	two	basic	ways	we	can	achieve	this.	One	is	with	the	existing	cube
structure;	the	other	is	by	expanding	a	cube	with	a	utility	dimension.	The	former	means	that	we
can	use	the	date	dimension	and	take	N	members	from	its	start.	Or	it	could	be	some	other
dimension,	if	it	has	enough	members	to	loop	on.	The	other	option	is	to	use	a	utility
dimension.

WOW! eBook
www.wowebook.org

See	also
The	Iterating	on	a	set	using	recursion	and	Iterating	on	a	set	to	reduce	it	recipes	show
other	methods	of	iteration
In	Chapter	8,	When	MDX	is	Not	Enough,	Using	a	dummy	dimension	to	implement
histograms	over	non-existing	hierarchies	recipe	shows	how	to	iterate	using	utility
dimension

WOW! eBook
www.wowebook.org

Iterating	on	a	set	using	recursion
Recursion	is	sometimes	the	best	way	to	iterate	a	collection.	Why?	Because	iterations	using	set
functions	(including	the	Generate()	function)	require	that	we	loop	through	the	whole	set.	But
what	if	that	set	is	big	and	we	only	need	to	find	something	specific	in	it?	Wouldn't	it	be	great	to
be	able	to	stop	the	process	when	we've	found	what	we	wanted?	Recursion	enables	just	that	to
stop	when	we're	done.

In	this	recipe,	we	are	going	to	see	how	to	calculate	the	average	of	an	average	using	recursion.

WOW! eBook
www.wowebook.org

Getting	ready
To	get	started,	start	a	new	query	in	SSMS	and	check	that	you're	working	in	the	right	database.
Then	write	the	following	query:

SELECT	

			{	[Measures].[Order	Count]	}	ON	0,	

			NON	EMPTY				

			{	Descendants([Date].[Fiscal	Weeks].[All	Periods],	

																		1	,	SELF_AND_BEFORE)	}	ON	1	

FROM	

			[Adventure	Works]	

It	returns	four	fiscal	years	and	their	total	on	top	for	the	Order	Count	measure.	Now	let's	see
how	to	calculate	the	average	daily	value	on	the	week	level	and	the	average	weekly	level	on	the
year	level,	which	is	based	on	the	week	level,	not	on	the	date	level.	In	other	words,	each	level
will	have	the	average	value	of	members	on	the	level	immediately	beneath.

WOW! eBook
www.wowebook.org

How	to	do	it...
Follow	these	steps	to	perform	recursion	over	a	set:

1.	 Define	a	new	calculated	measure	and	name	it	Average	of	an	average.
2.	 Use	the	iif()	function	and	specify	its	True	parameter	as	the	initial	measure	(Order

Count).
3.	 The	value	should	be	returned	for	the	leaf	level,	so	the	condition	in	iif()	should	test

exactly	that	using	the	IsLeaf()	function.
4.	 In	the	false	parameter,	we	should	provide	the	calculation	we	want	to	repeat	recursively.

In	this	case,	it	is	the	Avg()	function	used	on	the	children	of	the	current	member.
5.	 The	[Measures]	expression	inside	the	Avg()	function	should	be	the	measure	being

defined.
6.	 Check	whether	the	measure	is	defined	as	follows:

						WITH	

						MEMBER	[Measures].[Average	of	an	average]	AS	

								iif(IsLeaf([Date].[Fiscal	Weeks].CurrentMember),	

													[Measures].[Order	Count],	

														Avg([Date].[Fiscal	Weeks].CurrentMember.Children,	

																		[Measures].[Average	of	an	average])	

)		

								,	FORMAT_STRING	=	'#,#'	

7.	 Don't	forget	to	include	that	measure	as	the	second	measure	on	the	columns.
8.	 Run	the	query.	The	results	will	look	as	follows.	The	first	row,	the	one	with	the	All

Periods	member,	will	have	the	average	yearly	value	as	the	result,	that	is,
(49+72+236+479)/4=209.	In	turn,	every	year	will	have	the	average	weekly	value.	The
weekly	values	are	not	visible	in	this	screenshot,	but	we	can	divide	the	Order	Count
values	by	53,	which	is	the	number	of	weeks	per	year.	That	should	give	us	the	values	for
the	Average	of	an	average	measure	for	each	year	shown	in	the	second	column:

WOW! eBook
www.wowebook.org

How	it	works...
Recursions	are	the	most	difficult	iteration	concept	to	apply.	Their	logic	is	very	condensed.
However,	once	you	conquer	them,	you'll	appreciate	their	power	and	efficiency.	Let	us	see	how
that	solution	worked.

To	start	the	recursive	process,	we	have	to	specify	an	expression	that	uses	the	same	calculated
measure	we're	defining,	thereby	providing	a	different	input	parameter	than	the	one	which	was
being	used	in	the	current	pass	of	the	recursive	process.	To	stop	the	process,	we	must	have	a
branch	without	the	reference	to	that	measure.	On	top	of	all	that,	we	must	perform	some
operation	to	collect	values	on	the	way.	Complicated?	Let	us	analyze	our	query.

It	is	helpful	to	examine	the	[Fiscal	Weeks]	hierarchy.	In	SSMS,	starting	a	new	MDX	query,	in
the	cube	navigation	pane,	we	can	see	the	[Fiscal	Weeks]	hierarchy	on	the	date	dimension:

Notice	that	the	Fiscal	Year	on	the	rows	is	not	the	leaf	level	of	the	[Fiscal	Weeks]	user
hierarchy.	Therefore,	the	expression	inside	the	iif()	statement	evaluates	as	False.	This	leads
us	to	the	part	where	we	have	to	calculate	the	average	value	for	each	child	of	the	current
member.	With	a	small	detail,	the	calculation	should	be	performed	using	the	same	measure
we're	evaluating!

The	evaluation	for	the	current	year	member	cannot	be	completed	and	is	therefore	delayed
until	the	calculation	for	all	its	child	members	(weeks	in	this	case)	is	performed.	One	by	one,
each	week	of	the	year	in	context	is	passed	inside	the	definition	of	this	measure	and	evaluated.

In	the	case	of	a	leaf	member,	the	Order	Count	measure	would	be	evaluated	and	returned	to	the
outer	evaluation	context.	Otherwise,	another	turn	of	the	child	member's	evaluation	would
occur.	And	so	on	until	we	finally	hit	the	leaf-level	members.

In	this	example,	weeks	are	the	leaf	level	of	the	hierarchy	being	used	in	the	query.	They	would
be	evaluated	using	the	True	part	of	the	condition.	The	True	parameter	is	without	reference	to
the	measure	we're	calculating,	which	means	the	recursive	path	would	be	over.	The	value	of	the
Order	Count	measure	starting	from	the	Week	1	of	FY	2010	would	be	collected	and	saved	in	a
temporary	buffer.	The	same	process	would	be	repeated	for	all	weeks	of	that	year.	Only	then
would	the	average	of	them	be	calculated	and	returned	as	a	value	for	FY	2010,	after	which	the
process	would	repeat	for	subsequent	years	on	the	rows.

Let	us	also	mention	that	the	value	for	the	root	member	(All	years)	is	calculated	with	the

WOW! eBook
www.wowebook.org

recursion	depth	of	two,	meaning	each	year	it	is	first	evaluated	as	an	average	of	its	weeks	and
then	the	average	of	its	years	is	calculated	and	returned	as	the	final	result.

WOW! eBook
www.wowebook.org

There's	more...
You	might	be	wondering,	how	does	one	recognize	when	to	use	recursion	and	when	to	use
other	types	of	iteration?	Look	for	some	of	these	pointers:	relative	positions,	relative
granulation	for	calculation,	and	stop	logic.	If	there's	a	mention	of	going	back	or	forth	from
the	current	member	in	a	set,	but	there's	no	fixed	span,	then	that	might	be	a	good	lead	to	use
recursion.	If	there's	a	relative	stopping	point,	that's	another	sign.	Finally,	if	there's	no	explicit
requirement	to	loop	through	the	whole	set,	but	moreover	a	requirement	to	stop	at	some	point
in	the	process,	that's	a	definite	sign	to	try	to	apply	recursion	as	a	solution	to	the	problem.

In	case	no	such	signs	exist,	it's	perhaps	better	and	easier	to	use	the	simple	types	of	iterations
we	covered	in	previous	recipes.	The	other	case	when	you	should	consider	straightforward
iteration	is	when	the	recursion	would	span	over	more	than	half	of	the	members	on	a
hierarchy,	which	pushes	the	SSAS	engine	into	the	slow	cell-by-cell	mode.

Earlier	versions	of	SSAS

SSAS	2008	and	later	have	better	support	for	recursion	than	previous	versions	of	SSAS.
Optimizations	have	been	added	to	the	code	in	the	form	of	unlimited	recursion	depth.	Versions
prior	to	that	may	suffer	from	memory	limitations	in	some	extreme	cases.

WOW! eBook
www.wowebook.org

See	also
The	Iterating	on	a	set	to	create	a	new	one	and	Iterating	on	a	set	to	reduce	it	recipes
illustrate	other	ways	of	iteration

WOW! eBook
www.wowebook.org

Performing	complex	sorts
Sorting	is	one	of	those	often-requested	operations.	To	sort	a	hierarchy	by	a	measure	is	not	a
problem.	Neither	is	to	sort	a	hierarchy	using	its	member	properties.	The	MDX	language	has	a
designated	function	for	that	operation	and	a	straightforward	one	too.	Yes,	we're	talking	about
the	Order()	function.

Difficulties	appear	when	we	need	to	sort	two	or	more	hierarchies,	one	inside	the	other,	or
when	we	need	to	use	two	or	more	criteria.	Not	to	mention	the	confusion	when	one	of	the
members	on	the	columns	is	supposed	to	be	the	criteria	for	sorting	a	related	hierarchy	on	the
rows.	These	are	complex	sort	operations,	operations	we	will	cover	in	this	recipe.

Let	us	build	a	case	and	see	how	it	should	be	solved.

WOW! eBook
www.wowebook.org

Getting	ready
Start	SSMS	and	connect	to	your	SSAS	2016	instance.	Click	on	the	New	Query	button	and
check	that	the	target	database	is	Adventure	Works	DW	2016.

In	this	example,	we	are	going	to	use	the	Product	dimension,	the	Sales	Territory	dimension,
and	the	Date	dimension.	Here	is	the	query	we	will	start	from:

SELECT	

			NON	EMPTY	

			{	[Date].[Fiscal].[Fiscal	Year].MEMBERS	*	

					[Measures].[Sales	Amount]	}	ON	0,	

			NON	EMPTY	

			{	[Sales	Territory].[Sales	Territory	Country]	

																						.[Sales	Territory	Country].MEMBERS	*	

					[Product].[Color].[Color].MEMBERS	}	ON	1	

FROM	

			[Adventure	Works]	

Once	executed,	the	query	returns	54	country-color	combinations	on	the	rows,	four	fiscal
years	on	the	columns,	and	the	value	of	sales	shown	in	the	grid.	No	sort	operation	was	applied.
The	countries	and	colors	are	returned	in	their	default	order	alphabetically,	as	is	visible	in	the
following	screenshot:

WOW! eBook
www.wowebook.org

To	sort	the	rows	by	a	particular	value,	you	could	simply	wrap	the	Order()	function	around
them.	For	example,	to	sort	the	previous	result	by	the	Sales	Amount	in	FY	2013,	you	would
have	to	change	the	set	on	the	rows	like	this:

Order(

						[Sales	Territory].[Sales	Territory	Country]	

																							.[Sales	Territory	Country].MEMBERS	*	

						[Product].[Color].[Color].MEMBERS,	

						([Date].[Fiscal].[Fiscal	Year].&[2013],	

								[Measures].[Sales	Amount]),	

						BDESC)	

The	following	screenshot	shows	the	result	of	the	modified	query:

This	time	the	rows	are	returned	in	descending	order	in	respect	to	the	last	column,	highlighted
in	the	screenshot.	But,	notice	one	thing—countries	and	colors	are	mixed.	Breaking	their
sequence	like	that	will	rarely	be	asked	for.	More	often,	the	request	will	be	to	sort	one
hierarchy	inside	the	other,	the	rightmost	inside	those	on	its	left.	In	other	words,	we	will	try	to
sort	colors	inside	each	country.	Now	let	us	see	how	this	can	be	done.

WOW! eBook
www.wowebook.org

How	to	do	it...
Follow	these	steps	to	sort	hierarchies	on	the	rows,	one	inside	the	other:

1.	 Modify	the	set	on	the	rows	like	this:

						{	Generate(

									[Sales	Territory].[Sales	Territory	Country]	

																										.[Sales	Territory	Country].MEMBERS,	

									[Sales	Territory].[Sales	Territory	Country]	

																							.CurrentMember	*	

									Order([Product].[Color].[Color].MEMBERS,	

																([Date].[Fiscal].[Fiscal	Year].&[2009],	

																		[Measures].[Sales	Amount]),	

																BDESC	

)		

)	}	

2.	 Execute	the	query.	The	result	should	match	the	following	screenshot:

Notice	that	colors	are	ordered	this	time	in	descending	order	inside	each	country.	Notice	also
that	their	sequence	changes	from	country	to	country	(Blue	is	the	third	in	Australia,	Silver	is
the	third	in	Canada).

WOW! eBook
www.wowebook.org

How	it	works...
Do	you	remember	a	recipe	earlier	in	this	chapter	about	creating	a	new	set	from	the	old	one
using	iteration?	Yes,	Iterating	on	a	set	to	create	a	new	one	is	its	name.	The	function	used	in
that	recipe	is	the	same	one	used	in	this	recipe--the	Generate()	function,	which	takes	a	set
(single	or	multi-dimensional	one)	and	creates	a	new	set	the	way	we	specify	in	the	second
argument	of	that	function.

What	is	important	to	note	is	that	we	have	used	only	the	first	hierarchy	on	the	rows,	not	both.
The	Generate()	function	has	no	problem	in	creating	a	multi-dimensional	set	from	the	single-
dimensional	one.	In	fact,	that's	exactly	what	was	needed	in	this	case.	We	had	to	preserve	the
outer	hierarchy's	order.	We've	used	it	as	the	first	argument	of	the	Generate()	function	and
cross-joined	each	of	its	members	with	the	set	of	colors	ordered	by	the	required	criteria.	It
may	not	be	obvious,	but	the	criteria	also	implicitly	included	the	current	country.	That's
because	Generate()	is	a	loop	function	that	sets	its	own	context	instead	of	modifying	the
existing	one.	Consequently,	the	colors	came	ordered	differently	in	each	country.

WOW! eBook
www.wowebook.org

There's	more...
Sorting	the	rightmost	hierarchy	inside	the	one	on	the	left	is	fine,	but	what	if	we	also	need	to
sort	the	outer	one?	What	if	the	requirement	says,	return	the	countries	in	descending	order	by
the	same	criteria	and	then	only	return	colors	sorted	inside	each	country?	Can	we	deliver	that
as	well?	Yes,	and	here's	how.

Modify	the	set	on	the	rows	this	way:

{	Generate(

			Order([Sales	Territory].[Sales	Territory	Country]	

																											.[Sales	Territory	Country].MEMBERS,	

										([Date].[Fiscal].[Fiscal	Year].&[2009],	

												[Measures].[Sales	Amount]),	

										BDESC	

),	

			[Sales	Territory].[Sales	Territory	Country].CurrentMember	*	

			Order([Product].[Color].[Color].MEMBERS,	

										([Date].[Fiscal].[Fiscal	Year].&[2009],	

												[Measures].[Sales	Amount]),	

										BDESC	

)		

)	}	

If	you	take	a	close	look,	you	will	notice	not	much	has	changed.	All	that	we	have	done	extra
this	time	is	that	we	have	ordered	the	initial	set	in	the	Generate()	function	so	that	it	preserves
the	order	when	we	cross	join	its	members	with	the	other	set.

The	result	of	this	modification	is	shown	in	the	following	screenshot:

WOW! eBook
www.wowebook.org

Look	at	the	query	one	more	time	and	you	will	notice	there	are	two	criteria	in	it,	both	the	same.
It	does	not	take	a	lot	of	imagination	to	conclude	that	they	do	not	have	to	be	the	same.	Yes,	you
can	have	different	criteria;	simply	modify	any	of	them	and	test.	Having	learned	this	much
about	sorting,	you	can	confidently	perform	complex	sorts.

Things	to	be	extra	careful	about

Write	this	query,	but	do	not	execute	it	yet!

SELECT	

			NON	EMPTY	

			{	[Product].[Product	Line].[Product	Line].MEMBERS	*	

					[Measures].[Sales	Amount]	}	ON	0,	

			NON	EMPTY	

			{	Generate(

								[Sales	Territory].[Sales	Territory	Country]	

																									.[Sales	Territory	Country].MEMBERS,	

								[Sales	Territory].[Sales	Territory	Country]	

																									.CurrentMember	*	

								Order([Product].[Model	Name].[Model	Name].MEMBERS,	

															([Product].[Product	Line].&[M],	

															--		[Product].[Model	Name].CurrentMember,	

															[Measures].[Sales	Amount]),	

															BDESC)		

)	}	ON	1	

WOW! eBook
www.wowebook.org

FROM	

			[Adventure	Works]	

If	you	analyze	the	code,	you	will	notice	that	the	same	idea	is	used	to	sort	the	results	based	on
one	of	the	columns.	This	time,	however,	the	hierarchies	on	the	rows	and	columns	are	related.
The	Model	Name	and	the	Product	Line	attribute	hierarchies	can	be	found	in	the	Product	Model
Lines	user	hierarchy.	In	short,	models	are	grouped	by	the	product	lines.

Now,	run	the	query	and	observe	the	result:

Oops,	it	does	not	look	good;	there	is	no	trace	of	any	sort	in	it.	Now	uncomment	the
commented	line	and	run	it	again.	All	good,	the	result	is	ordered	by	the	middle	column,	the
Mountain	model:

WOW! eBook
www.wowebook.org

What's	going	on?

Remember	what	we	said	about	current	members	being	implicit	in	the	sort	criteria?	The	same
applies	here.	Both	the	country	and	the	model	are	in	the	tuple	that	determines	the	sort.

In	the	examples	we	started	this	recipe	with,	all	the	hierarchies	were	unrelated	and	no	problem
was	noticed.	This	time,	they	were	related	and	behaved	differently	because	related	hierarchies
interfere	with	each	other.	In	other	words,	the	Mountain	member	of	the	Product	Line	attribute
hierarchy	pushed	the	current	member	of	the	Model	Name	attribute	hierarchy	to	its	root
member.	The	relation	between	them	is	1:N;	the	models	are	below	the	product	lines.
Consequently,	all	models	evaluated	the	same	in	that	tuple,	as	the	value	of	the	Mountain	product
line	for	a	particular	country.	Sorting	members	by	a	constant	value	leaves	them	in	their
existing	order.	That	is	the	result	we	got	in	the	first	screenshot.

On	the	other	hand,	when	we	are	explicit	about	the	current	member	of	the	Model	Name	attribute
hierarchy	in	the	tuple	for	the	sort	criteria,	we	get	the	correct	result.

The	difference	is	that	this	time	we	have	specified	the	intersection	of	related	hierarchies.	In
other	words,	we	were	referring	to	the	individual	cells	found	in	the	intersection	of	the	models
and	the	product	lines.	Those	cells	are	exactly	what	we	needed,	each	different	from	another	and
hence	returning	results	sorted	the	way	we	wanted.

Remember	this	and	do	not	forget	to	force	the	coordinate	in	case	there	are	related	hierarchies,
when	the	hierarchy	on	the	columns	is	above	the	hierarchy	on	the	rows	in	terms	of	attribute

WOW! eBook
www.wowebook.org

paths.

A	costly	operation

Sorting	is	a	costly	operation.	If	you	have	large	dimensions,	always	look	for	an	alternative
solution.	For	example,	if	you	do	not	need	the	entire	set,	use	set-limiting	functions	such	as
NonEmpty(),	TopCount(),	and	others.

WOW! eBook
www.wowebook.org

See	also
Refresh	your	memory	about	the	Generate()	function	by	reading	the	Iterating	on	a	set	to
create	a	new	one	recipe

WOW! eBook
www.wowebook.org

Dissecting	and	debugging	MDX	queries
When	writing	a	query	involving	complex	calculations,	you	might	have	a	hard	time	trying	to
debug	it,	if	there	is	a	problem	inside	the	calculation.	But	there	is	a	way.	By	breaking	complex
sets	and	calculations	into	smaller	pieces	and/or	by	converting	those	sets	and	members	into
strings,	we	can	visually	represent	the	intermediate	results	and	thereby	isolate	the	problematic
part	of	the	query.

True,	there	is	no	real	debugger	in	the	sense	that	you	can	pause	the	calculation	process	of	the
query	and	evaluate	the	variables.	What	you	can	do	is	to	simulate	that	by	concatenating
intermediate	results	into	strings	for	visual	verification.

WOW! eBook
www.wowebook.org

Getting	ready
For	this	recipe,	we	will	use	the	final	query	in	the	previous	recipe,	Iterating	on	a	set	using
recursion.	We	have	chosen	this	as	our	example	because	it	is	a	relatively	complex	calculation
and	we	want	to	check	whether	we	are	doing	the	right	thing.

WOW! eBook
www.wowebook.org

How	to	do	it...
Follow	these	steps	to	create	a	calculated	measure	that	shows	the	evaluation	of	another
calculation:

1.	 Start	SSMS	and	execute	the	following	query:

						WITH	

						MEMBER	[Measures].[Average	of	an	average]	AS	

								iif(IsLeaf([Date].[Fiscal	Weeks].CurrentMember),	

													[Measures].[Order	Count],	

													Avg([Date].[Fiscal	Weeks].CurrentMember.Children,	

																		[Measures].[Average	of	an	average])	

)	

							,	FORMAT_STRING	=	'#,#'	

						SELECT	

								{	[Measures].[Order	Count],	

										[Measures].[Average	of	an	average]	}	ON	0,	

								NON	EMPTY						

								{	Descendants([Date].[Fiscal	Weeks].[All	Periods],	

																								1	,	SELF_AND_BEFORE)	}	ON	1	

						FROM	

								[Adventure	Works]	

2.	 Create	a	new	calculated	measure	and	name	it	Proof.
3.	 Copy	the	definition	of	the	[Average	of	an	average]	measure	and	paste	it	as	the

definition	of	the	new	calculated	measure	Proof.
4.	 Leave	the	True	part	as	it	is.
5.	 Modify	the	False	part	as	shown	in	the	next	step.
6.	 Finally,	wrap	the	whole	expression	with	one	iif()	statement	that	checks	whether	the

original	measure	is	empty.	The	definition	of	that	measure	should	look	like	this:

						MEMBER	[Measures].[Proof]	AS	

									iif(IsEmpty([Measures].[Order	Count]),	

														null,	

														iif(IsLeaf([Date].[Fiscal	Weeks].CurrentMember),	

																			[Measures].[Order	Count],	

																			'('	+	

																			Generate([Date].[Fiscal	Weeks]	

																																			.CurrentMember.Children,	

																													iif(IsEmpty([Measures]	

																																		.[Average	of	an	average]),	

																																		'(null)',	

																																		CStr(

																																				Round([Measures]	

																																							.[Average	of	an	average],	

																																									0))	

),	

																				'	+	')	+	

																				')	/	'	+	

																				CStr(NonEmpty([Date].[Fiscal	Weeks]	

																																				.CurrentMember.Children,	

																																				[Measures].[Order	Count]	

).Count)	

WOW! eBook
www.wowebook.org

)	

)	

7.	 Add	that	measure	onto	the	columns	and	execute	the	query.	The	result	will	look	like	this:

WOW! eBook
www.wowebook.org

How	it	works...
The	general	idea	of	debugging	MDX	queries	is	to	display	some	intermediate	results,	such	as
the	current	member	names,	their	properties,	positions	in	a	set,	their	descendants,	and
ancestors,	to	help	us	with	visual	verification.	At	other	times,	we	will	convert	the	complete	sets
that	we	are	operating	with	into	a	string,	just	to	see	the	members	inside,	and	their	order.	For
numeric	values,	if	they	are	formed	using	several	sub-calculations	like	in	this	example,	we	try
to	compose	that	evaluation	as	a	string	too.	In	short,	we're	displaying	textual	values	of	items
we	are	interested	in.

In	our	example,	the	main	part	that	we	want	to	verify	is	the	False	parameter	of	the	inner	iif()
function,	that	is,	when	the	fiscal	week	hierarchy	is	not	at	the	leaf	level.	Therefore,	that	is	the
place	where	we	are	building	a	concatenated	string	to	show	how	the	average	of	an	average	is
calculated.

The	preceding	screenshot	can	help	us	to	understand	how	the	measure	Proof	is	concatenated.	It
is	a	string	representation	of	all	individual	values	used	to	calculate	each	row	of	Average	of	an
average.	It	is	represented	as	a	sum	of	N	values,	where	N	is	the	number	of	children	of	the
current	member,	divided	by	their	count.	Additionally,	null	values	are	preserved	and	displayed
as	well	in	the	string,	but	the	count	omits	them.

Now,	the	calculation	for	the	measure	Proof	itself.	First,	there	is	an	open	bracket	in	the	form	of
a	string.	Then	the	Generate()	function	is	applied,	only	this	time	it	is	the	second	version	of	that
function,	the	one	that	returns	not	a	set	but	a	string.	More	information	about	it	can	be	found	at
http://tinyurl.com/MDXGenerate	.

The	Generate()	function	has	two	different	usages	with	two	different	syntaxes.	We	have	seen
its	first	usage	in	a	previous	recipe,	Iterating	on	a	set	to	create	a	new	one,	where	the
Generate()	function	is	used	to	evaluate	a	complex	set	expression,	such	as	TopCount(),	over	a
set	of	members.	In	this	recipe,	we	have	used	its	second	syntax,	in	which	a	string	expression	is
evaluated	over	a	set	of	members,	and	the	strings	are	eventually	concatenated	and	returned,
separated	by	a	delimiter	of	either	a	plus	sign	or	parentheses.	The	syntax	is	shown	as	follows:

Generate(Set_Expression1,	String_Expression,	Delimiter)	

Partial	strings	generated	during	iteration	need	to	be	concatenated.	For	that	reason,	the	third
argument	of	the	Generate()	function	was	used	with	the	value	+.

The	Generate()	function,	as	explained	in	the	Iterating	on	a	set	to	create	a	new	one	recipe,	is	a
type	of	loop.	In	this	case,	it	takes	each	child	of	a	current	member	of	the	Fiscal	Weeks	user
hierarchy	and	tests	whether	it	is	empty	or	not.	If	it	is,	a	constant	string	is	used	((null));	if	not,
the	value	of	the	measure	is	rounded	to	zero	decimals.

Which	measure?	That	same	measure	we	are	calculating	the	result	for.	Hence,	it	is	again	a	call
for	iteration,	this	time	using	each	child,	one	by	one,	because	they	are	in	the	context	at	the	time

WOW! eBook
www.wowebook.org

http://tinyurl.com/MDXGenerate

of	the	call.

In	the	new	pass,	those	members	will	be	leaf	members.	They	will	collect	the	value	of	the
measure	Order	Count	and	get	out	of	that	pass.

Once	all	the	children	are	evaluated,	the	individual	values	will	be	concatenated	using	a	+	sign
with	a	space	on	each	side	for	better	readability.

But	the	process	is	not	over;	only	the	recursion	is.

Next,	we	must	close	the	bracket	which	we	opened	in	the	beginning	of	the	process,	and	we	have
to	calculate	the	denominator.	Notice	the	measure	inside	the	denominator	is	not	calling	for
recursion.	To	get	the	count	of	members,	we	used	the	NonEmpty()	function	over	the	original
measure.	That	returns	the	members	which	have	values.

Finally,	we	have	not	mentioned	this	specifically	so	far,	but	the	outer	iif()	statement	checks
whether	we	are	on	a	member	that	has	no	result.	If	so,	we	can	skip	that	member.	Remember,	we
had	to	do	that	because	the	inner	part	of	the	Proof	measure	is	a	string	which	is	never	null.

WOW! eBook
www.wowebook.org

There's	more...
In	the	process	of	dissecting,	evaluating,	and	debugging	calculations	and	queries,	various
MDX	functions	can	be	used.	Some	of	them	are	mentioned	here.	However,	it	is	advised	that	you
look	for	additional	information	on	MSDN	and	other	sources:

String	functions,	namely	MemberToStr()	and	SetToStr(),	for	converting	members	and
sets	into	strings
Set	functions,	namely	the	Generate()	function	and	especially	its	string	variant,	which	is	a
very	powerful	method	for	iterating	on	a	set,	and	for	collecting	partial	calculations	in	the
form	of	strings
Metadata	functions	(also	known	as	hierarchy	and	level	functions),	for	collecting
information	about	members	and	their	hierarchies
Logical	functions,	for	testing	on	the	leaf	level	and	emptiness
VBA	functions,	for	handling	errors	(IsError())	and	string	manipulations

Tip

Don't	forget	to	use	the	AddCalculatedMembers()	function	if	you	need	to	include	calculated
members.

Useful	string	functions

A	list	of	VBA	functions	that	can	be	used	in	MDX	can	be	found	at:

http://tinyurl.com/MDXVBAFunction

A	list	of	MDX	functions	grouped	by	types	can	be	found	at:

http://tinyurl.com/MDXfunctions

WOW! eBook
www.wowebook.org

http://tinyurl.com/MDXVBAFunction
http://tinyurl.com/MDXfunctions

See	also
The	Optimizing	MDX	queries	using	the	NonEmpty()	function	recipe	in	Chapter	1,
Elementary	MDX	Techniques,	shows	how	to	keep	only	relevant	members	for	debugging
purposes	and	prevent	all	members	of	a	hierarchy	from	being	returned	as	the	result

WOW! eBook
www.wowebook.org

Implementing	the	logical	AND	on	members
from	the	same	hierarchy
This	recipe	shows	how	to	implement	the	AND	logic	using	members	from	the	same	hierarchy.

In	the	Adventure	Works	DW	2016	database,	there	are	two	members,	[New	Product]	and
[Excess	Inventory],	in	the	[Promotion	Type]	hierarchy:

[Promotion].[Promotion	Type].&[New	Product]	

[Promotion].[Promotion	Type].&[Excess	Inventory]	

These	two	promotion	types	have	reseller	orders,	but	the	only	two	months	in	which	they	both
have	reseller	orders	are	January	and	December.

The	idea	is	to	have	a	single	query	that	displays	the	reseller	orders,	where	both	promotion
types	occur	in	the	same	month.	In	other	words,	we	want	to	show	the	reseller	orders	for
January	and	December.

Our	goal	is	to	somehow	combine	these	two	members	from	the	same	hierarchy	so	that	we
perform	the	logical	AND	along	the	[Month	of	Year]	hierarchy	on	the	Date	dimension.

WOW! eBook
www.wowebook.org

Getting	ready
Start	a	new	query	in	SSMS	and	make	sure	that	you're	working	on	the	Adventure	Works	DW
2016	database.

Our	first	query	will	slice	the	cube	by	the	[New	Product]	promotion	type.	The	query	is	as
follows.	Let	us	execute	it:

SELECT	

			{	[Measures].[Reseller	Order	Quantity],	

					[Measures].[Reseller	Order	Count]	}	ON	0,	

			NON	EMPTY	

			{	[Date].[Month	of	Year].MEMBERS	}	ON	1	

FROM	

			[Adventure	Works]	

WHERE	

			([Promotion].[Promotion	Type].&[New	Product])	

The	query	displays	three	months	from	the	[Month	of	Year]	hierarchy	with	the	New	Product
promotion	type,	January,	February,	and	December,	with	the	top	level	[All	periods].	The
result	should	be	the	same	as	shown	in	the	following	screenshot.

For	[New	Product]:

Let	us	replace	the	new	product	with	the	Excess	Inventory	promotion	type;	we	will	get	one
month	less	with	only	January	and	December.	See	the	query	and	the	result	as	shown:

SELECT	

			{	[Measures].[Reseller	Order	Quantity],	

					[Measures].[Reseller	Order	Count]	}	ON	0,	

			NON	EMPTY	

			{	[Date].[Month	of	Year].MEMBERS	}	ON	1	

FROM	

			[Adventure	Works]	

WHERE	

			([Promotion].[Promotion	Type].&[Excess	Inventory])	

For	[Excess	Inventory]:

WOW! eBook
www.wowebook.org

The	idea	is	to	have	a	single	query	which	displays	the	result	where	both	of	these	promotion
types	occur	in	the	same	month.	In	other	words,	we	want	to	show	the	values	for	January	and
December.

We	have	several	ways	of	doing	it,	but	this	recipe	will	focus	on	the	slicer-subselect	solution.
Other	solutions	will	be	mentioned	in	further	sections	of	this	recipe.

Our	result	should	be	as	follows:

WOW! eBook
www.wowebook.org

How	to	do	it...
Our	goal	is	to	somehow	combine	these	two	members	from	the	same	hierarchy	so	that	we
perform	the	logical	AND	along	the	[Month	of	Year]	hierarchy	on	the	Date	dimension:

WHERE	

			([Promotion].[Promotion	Type].&[New	Product])	

WHERE	

			([Promotion].[Promotion	Type].&[Excess	Inventory])	

To	perform	an	AND	logic	on	different	members	from	the	same	hierarchy,	we	must	nest	our
conditions:

1.	 Here	is	our	innermost	condition,	where	we	are	using	the	Exists()	function	to	get	the
month	of	year	that	has	Reseller	Sales	for	Excess	Inventory.	Notice	that	Reseller
Sales	is	our	measure	group	of	interest.	The	Exists()	function	takes	two	set	expressions
and	one	measure	group,	and	returns	a	set	of	tuples	from	the	first	set	that	exist	with	one	or
more	tuples	in	the	second	set.	The	returned	set	of	tuples	must	be	associated	with	the
measure	group.	This	innermost	condition	will	return	January,	February,	and	December
in	our	example	because	they	are	the	only	three	months	that	have	reseller	sales	for	New
Product.

2.	 Also	notice	that	we	are	using	the	Month	of	Year	level	(not	hierarchy!)	as	the	first
parameter.	The	level	has	a	three-part	syntax;	hierarchy	has	a	two-part	syntax.	Do	not	omit
the	third	part,	otherwise	it	won't	work:

						Exists(

								{	[Date].[Month	of	Year].[Month	of	Year].MEMBERS	},	

								{	[Promotion].[Promotion	Type].&[New	Product]	},	

								"Reseller	Sales"	

)	

3.	 We	are	going	to	use	this	inner	condition	as	a	nested	condition,	and	wrap	it	with	another
Exists()	function.	The	outer	Exists()	function	also	takes	two	sets	and	one	measure
group.	With	the	first	set	being	January,	February,	and	December,	and	the	second	set	being
the	excess	inventory,	only	January	and	December	are	returned.	February	will	be	filtered
out	because	it	no	longer	has	reseller	sales	for	[Excess	Inventory]:

						WHERE	

									(

									Exists(

											Exists(

													{[Date].[Month	of	Year].[Month	of	Year].MEMBERS},	

													{[Promotion].[Promotion	Type].&[New	Product]},	

													"Reseller	Sales"	

),	

											{	[Promotion].[Promotion	Type].&[Excess	Inventory]	},	

											"Reseller	Sales"	

)	

)	

4.	 We	have	worked	out	of	the	slicer	so	far.	We	also	need	a	subselect	with	those	two
WOW! eBook

www.wowebook.org

members	[New	Product]	and	[Excess	Inventory]	inside	(see	the	subselect	that	follows):

						FROM	

						(

								SELECT		

											{	[Promotion].[Promotion	Type].&[New	Product],	

													[Promotion].[Promotion	Type].&[Excess	Inventory]	}	ON	0	

									FROM	

										[Adventure	Works]	

)	

5.	 Here	is	the	final	query.	Let's	run	it:

						SELECT	

									{	[Measures].[Reseller	Order	Quantity],	

											[Measures].[Reseller	Order	Count]	}	ON	0,	

									NON	EMPTY	

									{	[Promotion].[Promotion	Type].MEMBERS	}	ON	1	

						FROM	

									(

									SELECT		

											{	[Promotion].[Promotion	Type].&[New	Product],	

													[Promotion].[Promotion	Type].&[Excess	Inventory]	}		

														ON	0	

									FROM	

											[Adventure	Works]	

)	

						WHERE	

									(

										Exists(

													Exists(

													{	[Date].[Month	of	Year].[Month	of	Year].MEMBERS	},	

													{	[Promotion].[Promotion	Type].&[New	Product]	},	

													"Reseller	Sales"	

),	

											{	[Promotion].[Promotion	Type].&[Excess	Inventory]	},	

											"Reseller	Sales"	

)	

)	

6.	 The	result	of	the	query	shows	the	aggregate	for	January	and	December,	the	only	two
months	where	both	promotion	types	occur:

7.	 Compare	these	results	with	the	tables	at	the	beginning	of	this	recipe	(showing	a
combination	of	promotion	types	and	months)	and	you	will	notice	that	the	aggregates
match	the	sum	of	individual	values.

WOW! eBook
www.wowebook.org

How	it	works...
In	the	introduction,	we	stated	that	our	goal	is	to	have	a	single	query	that	displays	the	reseller
orders	where	both	of	these	promotion	types	occur	in	the	same	month.	Since	there	is	no	MDX
expression	that	would	work	and	return	the	logic	AND	result	using	two	members	from	the	same
hierarchy,	the	[Month	of	Year]	hierarchy	has	become	our	base	for	performing	the	AND	logic.

To	perform	the	AND	logic	on	the	same	hierarchy,	we	must	cascade	the	conditions	using	an
inner	set	and	an	outer	set.	The	inner	set	is	repeated	here:

Exists({	[Date].[Month	of	Year].[Month	of	Year].MEMBERS	},	

								{	[Promotion].[Promotion	Type].&[New	Product]	},	

								"Reseller	Sales"	

)	

This	inner	set	returns	all	the	months	that	have	the	New	Product	promotion	type	(three	months
as	seen	on	the	initial	screenshot).

The	outer	set	restricts	the	inner	set	even	more	by	filtering	out	all	months	that	don't	have	the
other	promotion	type	as	well.	That	leaves	only	two	months,	January	and	December.

We	have	chosen	the	[Month	of	Year]	hierarchy	as	our	base	to	perform	the	AND	logic.	In
practice,	we	will	need	to	decide	which	hierarchy	and	which	level	we	want	to	use	as	the	new
base	or	granularity	and	adhere	to	some	common	sense	rules.

Firstly,	the	relationship	between	the	new	hierarchy's	level	members	and	the	members	for
slicing	should	be	many-to-many.	This	is	always	so	in	case	of	different	dimensions	(Promotion
and	Date),	a	case	covered	in	this	example.	In	case	of	the	same	dimension,	the	solution	will
work	only	for	a	single	member	that	is	related	to	both	members	in	the	AND	operation.	Whether
that	will	be	something	other	than	the	All	member	depends	on	the	hierarchy	and	members
selected	for	the	AND	operation.	For	example,	two	promotion	types	used	in	this	example	share
only	one	ancestor-the	All	member,	which	can	be	verified	in	the	Promotion	user	hierarchy	of
that	dimension.

Secondly,	the	whole	idea	should	be	valid.	In	practice,	we	can	run	multiple	promotions	in	the
same	month.	Therefore,	on	the	granularity	of	the	month,	two	different	promotions	can	have
intersections	on	the	same	order,	and	our	idea	is	valid.

Which	hierarchy	to	use?	That	usually	becomes	obvious	once	we	ask	ourselves	the	question
behind	the	report.	For	example,	the	last	query,	as	seen	in	the	previous	screenshot,	returned	the
two	promotion	types	we	started	with	in	this	recipe,	promotion	types	that	come	together	on	a
monthly	basis.	Two	things	are	important	here:	together	and	basis.	The	term	together
represents	the	AND	logic.	The	term	monthly	basis	is	in	fact	the	new	granularity	for	the	report
(that	which	goes	in	the	slicer).

That	explains	the	slicer	part	of	the	solution.	What	about	the	subselect	part?	Why	is	it	there?
WOW! eBook

www.wowebook.org

The	subselect	part	serves	the	purpose	of	adjusting	the	results.	Without	it,	we	would	get	the
wrong	total.	Let	me	explain	this	in	more	detail.

If	you	remove	the	subselect	part	of	the	query	and	execute	it	again,	it	will	return	the	result
displayed	in	the	following	screenshot:

The	cell	numbers	for	New	Product	and	Excess	Inventory	on	this	screenshot	match	the
aggregated	values	displayed	in	the	previous	screenshot.

However,	the	query	returned	all	the	promotion	types	because	nothing	limited	them	in	the
query.	The	slicer	effectively	limits	the	months	only,	not	the	promotion	types.

There	are	two	things	we	can	do	to	correct	this,	that	is,	to	display	the	result	for	those	two
hierarchies	only.	One	is	to	put	them	in	the	slicer	so	that	they	cross-join	with	the	existing	slicer.
The	other	is	to	put	them	in	a	subselect.	I	prefer	the	second	option	because	this	way	we	can	still
have	them	on	a	query	axis.	Otherwise,	we	will	have	a	conflict	with	the	slicer	(a	hierarchy
cannot	appear	in	the	slicer	and	on	an	axis,	but	it	can	appear	in	the	subselect	and	also	on	an
axis).	That's	why	we	have	chosen	the	subselect.

The	subselect,	as	seen	before,	limits	the	promotion	types	that	appear	on	an	axis	and	adjusts
their	total	so	that	it	becomes	the	visual	total	for	those	two	members.	This	is	exactly	what	we
need,	the	value	for	individual	promotion	types	and	their	correct	total.

To	conclude,	to	implement	the	AND	logic,	we	have	done	two	things.	First,	we	have	established
a	new	granularity	in	the	slicer.	Second,	we	used	the	subselect	to	adjust	the	total.

WOW! eBook
www.wowebook.org

There's	more...
This	is	not	the	only	way	to	implement	the	AND	logic.	We	can	do	it	on	an	axis	as	well.	In	that
case,	all	we	should	do	is	put	a	construct	from	the	slicer	on	the	rows	and	leave	the	subselect	as
it	is.

Where	to	put	what?

Based	on	a	request,	the	AND	logic	can	be	implemented	on	the	rows	or	in	the	slicer.	If	there	is	a
request	to	hide	the	hierarchy	for	which	we	are	applying	the	AND	logic,	we	should	put	the
corresponding	MDX	expression	in	the	slicer.	On	the	other	hand,	if	there	is	an	explicit	request
to	show	members	on	the	rows,	we	must	put	the	construct	on	the	rows.	There,	we	can	crossjoin
it	with	additional	hierarchies	if	required.

A	very	complex	scenario

In	the	event	of	a	more	complex	scenario	where	three	different	hierarchies	need	to	be
combined,	we	can	apply	the	same	solution,	which,	in	a	general	case,	should	have	N	cascades
in	the	slicer	and	N	members	in	the	subselect.	The	N	is	the	number	of	members	from	the	same
hierarchy.

In	the	event	that	we	need	to	combine	many	members	using	the	AND	logic,	some	of	them
originating	from	different	hierarchies	and	some	from	the	same,	the	solution	becomes	very
complex.

You	are	advised	to	watch	out	for	the	order	in	the	cascades	and	dimensionality	of	the	potential
tuples.

WOW! eBook
www.wowebook.org

See	also
A	recipe	with	a	similar	theme	is	Implementing	the	logical	OR	on	members	from	different
hierarchies

WOW! eBook
www.wowebook.org

Chapter	3.	Working	with	Time
In	this	chapter,	we	will	cover	the	following	recipes:

Calculating	the	Year-To-Date	(YTD)	value
Calculating	the	Year-over-Year	(YoY)	growth	(parallel	periods)
Calculating	moving	averages
Finding	the	last	date	with	data
Getting	values	on	the	last	date	with	data
Calculating	today's	date	using	the	STRING	functions
Calculating	today's	date	using	the	MemberValue	function
Calculating	today's	date	using	an	attribute	hierarchy
Calculating	the	difference	between	two	dates
Calculating	the	difference	between	two	times
Calculating	parallel	periods	for	multiple	dates	in	a	set
Calculating	parallel	periods	for	multiple	dates	in	a	slicer

WOW! eBook
www.wowebook.org

Introduction
Time–handling	features	are	an	important	part	of	every	Business	Intelligence	(BI)	system.
Programming	languages,	database	systems,	they	all	incorporate	various	time-related
functions	and	Microsoft	SQL	Server	Analysis	Services	(SSAS)	is	no	exception	there.	In	fact,
that's	one	of	its	main	strengths.

The	MDX	language	has	various	time-related	functions	designed	to	work	with	a	special	type	of
dimension	called	Time	and	its	typed	attributes.	While	it's	true	that	some	of	those	functions
work	with	any	type	of	dimension,	their	usefulness	is	most	obvious	when	applied	to	time-type
dimensions.	An	additional	prerequisite	is	the	existence	of	multi-level	hierarchies,	also	known
as	user	hierarchies,	in	which	types	of	levels	must	be	set	correctly	or	some	of	the	time-related
functions	will	either	give	false	results	or	will	not	work	at	all.

Because	of	the	reasons	described	earlier,	and	the	fact	that	almost	every	cube	will	have	one	or
more	time	dimensions,	we've	decided	to	dedicate	a	whole	chapter	to	this	topic,	that	is,	for	time
calculations.	In	this	chapter,	we're	dealing	with	typical	operations,	such	as	year-to-date
calculations,	running	totals,	and	jumping	from	one	period	to	another.	We	go	into	detail	with
each	operation,	explaining	known	and	less	known	variants	and	pitfalls.

We	will	discuss	why	some	time	calculations	can	create	unnecessary	data	for	the	periods	that
should	not	have	data	at	all,	and	why	we	should	prevent	it	from	happening.	We	will	then	show
you	how	to	prevent	time	calculations	from	having	values	after	a	certain	point	in	time.

In	most	BI	projects,	there	are	always	reporting	requirements	to	show	measures	for	today,
yesterday,	month-to-date,	quarter-to-date,	year-to-date,	and	so	on.	We	have	three	recipes	to
explore	various	ways	to	calculate	today's	date,	and	how	to	turn	it	into	a	set	and	use	MDX's
powerful	set	operations	to	calculate	other	related	periods.

Calculating	date	and	time	spans	is	also	a	common	reporting	requirement.

The	chapter	ends	with	two	recipes	explaining	how	to	calculate	the	parallel	period	for	a	range
of	dates.

WOW! eBook
www.wowebook.org

Calculating	the	year-to-date	(YTD)	value
In	this	recipe,	we	will	look	at	how	to	calculate	the	YTD	value	of	a	measure,	that	is,	the
accumulated	value	of	all	dates	in	a	year	up	to	the	current	member	on	the	date	dimension.	An
MDX	function	YTD()	can	be	used	to	calculate	the	Year-To-Date	value,	but	not	without	its
constraints.

In	this	recipe,	we	will	discuss	the	constraints	when	using	the	YTD()	function	and	also	the
alternative	solutions.

WOW! eBook
www.wowebook.org

Getting	ready
Start	SSMS	and	connect	to	your	SQL	Server	Analysis	Services	(SSAS)	2016	instance.	Click
on	the	New	Query	button	and	check	that	the	target	database	is	Adventure	Works	DW	2016.

In	order	for	this	type	of	calculation	to	work,	we	need	a	dimension	marked	as	Time	in	the	Type
property,	in	the	Dimension	structure	tab	of	SQL	Server	Data	Tools	(SSDT).	That	should	not
be	a	problem	because	almost	every	database	contains	at	least	one	such	dimension	and
Adventure	Works	is	no	exception	here.	In	this	example,	we're	going	to	use	the	Date
Dimension.	We	can	verify	in	SSDT	that	the	Date	dimension's	Type	property	is	set	to	Time.
See	the	following	screenshot	from	SSDT:

Here's	the	query	we'll	start	from:

SELECT

			{	[Measures].[Reseller	Sales	Amount]	}	ON	0,

			{	[Date].[Calendar	Weeks].[Calendar	Week].MEMBERS	}	ON	1

FROM

			[Adventure	Works]

Once	executed,	the	preceding	query	returns	reseller	sales	values	for	every	week	in	the
database.

WOW! eBook
www.wowebook.org

How	to	do	it...
We	are	going	to	use	the	YTD()	function,	which	takes	only	one	member	expression,	and	returns
all	dates	in	the	year	up	to	the	specified	member.	Then	we	will	use	the	aggregation	function
Sum()	to	sum	up	the	Reseller	Sales	Amount.

Follow	these	steps	to	create	a	calculated	measure	with	YTD	calculation:

1.	 Add	the	WITH	block	of	the	query.
2.	 Create	a	new	calculated	measure	within	the	WITH	block	and	name	it	Reseller	Sales	YTD.
3.	 The	new	measure	should	return	the	sum	of	the	Reseller	Sales	Amount	measure	using

the	YTD()	function	and	the	current	date	member	of	the	hierarchy	of	interest.
4.	 Add	the	new	measure	on	axis	0	and	execute	the	complete	query:

						WITH	

						MEMBER	[Measures].[Reseller	Sales	YTD]	AS	

								Sum(YTD([Date].[Calendar	Weeks].CurrentMember),	

										[Measures].[Reseller	Sales	Amount])	

						SELECT	

								{	[Measures].[Reseller	Sales	Amount],	

										[Measures].[Reseller	Sales	YTD]	}	ON	0,	

								{	[Date].[Calendar	Weeks].[Calendar	Week].MEMBERS	}	ON	1	

						FROM	

								[Adventure	Works]	

5.	 The	result	will	include	the	second	column,	the	one	with	the	YTD	values.	Notice	how	the
values	in	the	second	column	increase	over	time:

WOW! eBook
www.wowebook.org

WOW! eBook
www.wowebook.org

How	it	works...
The	YTD()	function	returns	the	set	of	members	from	the	specified	date	hierarchy,	starting
from	the	first	date	of	the	year	and	ending	with	the	specified	member.	The	first	date	of	the	year
is	calculated	according	to	the	level	[Calendar	Year]	marked	as	Years	type	in	the	hierarchy
[Calendar	Weeks].	In	our	example,	the	YTD()	value	for	the	member	Week	11	CY	2013	is	a	set
of	members	starting	from	Week	1	CY	2013	and	going	up	to	that	member	because	the	upper
level	containing	years	is	of	the	Years	type.

The	set	is	then	summed	up	using	the	Sum()	function	and	the	Reseller	Sales	Amount	measure.
If	we	scroll	down,	we	will	see	that	the	cumulative	sum	resets	every	year,	which	means	that
YTD()	works	as	expected.

In	this	example,	we	used	the	most	common	aggregation	function,	Sum(),	in	order	to	aggregate
the	values	of	the	measure	throughout	the	calculated	set.	The	Sum()	function	was	used	because
the	aggregation	type	of	the	Reseller	Sales	Amount	measure	is	sum.	Alternatively,	we	could
have	used	the	Aggregate()	function	instead.	More	information	about	that	function	can	be
found	later	in	this	recipe.

WOW! eBook
www.wowebook.org

There's	more...
Sometimes	it	is	necessary	to	create	a	single	calculation	that	will	work	for	any	user	hierarchy
of	the	date	dimension.	In	that	case,	the	solution	is	to	prepare	several	YTD()	functions,	each
using	a	different	hierarchy,	crossjoin	them,	and	then	aggregate	that	set	using	a	proper
aggregation	function	(Sum,	Aggregate,	and	so	on).	However,	bear	in	mind	that	this	will	only
work	if	all	user	hierarchies	used	in	the	expression	share	the	same	year	level.	In	other	words,
this	will	only	work	if	there	is	no	offset	in	years	among	them	(such	as	exists	between	the	fiscal
and	calendar	hierarchies	in	the	Adventure	Works	cube	in	2008	R2).

Why	does	it	have	to	be	so?	Because	the	cross	join	produces	the	set	intersection	of	members
on	those	hierarchies.	Sets	are	generated	relative	to	the	position	when	the	year	starts.	If	there	is
offset	in	years,	it	is	possible	that	sets	won't	have	an	intersection.	In	that	case,	the	result	will	be
an	empty	space.	Now	let	us	continue	with	a	couple	of	working	examples.

Here	is	an	example	that	works	for	both	monthly	and	weekly	hierarchies:

WITH	

MEMBER	[Measures].[Reseller	Sales	YTD]	AS	

			Sum(YTD([Date].[Calendar	Weeks].CurrentMember)	*	

								YTD([Date].[Calendar].CurrentMember),	

								[Measures].[Reseller	Sales	Amount])	

SELECT	

			{	[Measures].[Reseller	Sales	Amount],	

					[Measures].[Reseller	Sales	YTD]	}	ON	0,	

			{	[Date].[Calendar	Weeks].[Calendar	Week].MEMBERS	}	ON	1	

FROM	

			[Adventure	Works]	

If	we	replace	[Date].[Calendar	Weeks].[Calendar	Week].MEMBERS	with	[Date].[Calendar].
[Month].MEMBERS,	the	calculation	will	continue	to	work.	Without	the	cross	join	part,	that
wouldn't	be	the	case.	Try	it	in	order	to	see	for	yourself!	Just	be	aware	that	if	you	slice	by
additional	attribute	hierarchies,	the	calculation	might	become	wrong.

In	short,	there	are	many	obstacles	to	getting	the	time-based	calculation	right.	It	partially
depends	on	the	design	of	the	time	dimension	(which	attributes	exist,	which	are	hidden,	how	the
relations	are	defined,	and	so	on),	and	partially	on	the	complexity	of	the	calculations	provided
and	their	ability	to	handle	various	scenarios.	A	better	place	to	define	time-based	calculation	is
the	MDX	script.	There,	we	can	define	scoped	assignments,	but	that's	a	separate	topic	that	will
be	covered	later	in	Chapter	9	,	Metadata-Driven	Calculations,	and	in	the	Using	utility
dimension	to	implement	time-based	calculations	recipe	in	Chapter	7	,	Business	Analytics.

In	the	meantime,	here	are	some	articles	related	to	that	topic:

http://tinyurl.com/MoshaDateCalcs

http://tinyurl.com/DateToolDim

WOW! eBook
www.wowebook.org

http://tinyurl.com/MoshaDateCalcs
http://tinyurl.com/DateToolDim

Inception-To-Date	calculation

A	similar	calculation	is	the	inception-to-date	calculation,	in	which	we	are	calculating	the	sum
of	all	dates	up	to	the	current	member,	that	is,	we	do	not	perform	a	reset	at	the	beginning	of
every	year.	In	that	case,	the	YTD()	part	of	the	expression	should	be	replaced	with	this:

Null	:	[Date].[Calendar	Weeks].CurrentMember	

Using	the	argument	in	the	YTD()	function

The	argument	of	the	YTD()	function	is	optional.	When	not	specified,	the	first	dimension	of	the
Time	type	in	the	measure	group	is	used.	More	precisely,	the	current	member	of	the	first	user
hierarchy	with	a	level	of	type	Years.

This	is	quite	convenient	in	the	case	of	a	simple	Date	dimension,	a	dimension	with	a	single
user	hierarchy.	In	the	case	of	multiple	hierarchies	or	a	role-playing	dimension,	the	YTD()
function	might	not	work,	if	we	forget	to	specify	the	hierarchy	for	which	we	expect	it	to	work.

This	can	be	easily	verified.	Omit	the	[Date].[Calendar	Weeks].CurrentMember	part	in	the
initial	query	and	see	that	both	columns	return	the	same	values.	The	YTD()	function	is	not
working	anymore.

Therefore,	it	is	best	to	always	use	the	argument	in	the	YTD()	function.

Common	problems	and	how	to	avoid	them

In	our	example,	we	used	the	[Date].[Calendar	Weeks]	user	hierarchy.	That	hierarchy	has	the
level	Calendar	Year	created	from	the	same	attribute.	The	type	of	attribute	is	Years,	which	can
be	verified	in	the	Properties	pane	of	SSDT:

WOW! eBook
www.wowebook.org

However,	the	Date	dimension	in	the	Adventure	Works	cube	has	fiscal	attributes	and	user
hierarchies	built	from	them	as	well.	The	fiscal	hierarchy	equivalent	to	[Date].[Calendar
Weeks]	hierarchy	is	the	[Date].[Fiscal	Weeks]	hierarchy.	There,	the	top	level	is	named
Fiscal	Year,	created	from	the	same	attribute.	This	time,	the	type	of	the	attribute	is	Fiscal	Year,
not	Year.	If	we	replace	the	[Date].[Calendar	Weeks]	hierarchy	by	the	[Date].[Fiscal
Weeks]	hierarchy	in	the	WITH	clause	in	our	example	query,	the	YTD()	function	will	not	work
on	the	new	hierarchy.	It	will	return	an	error:

WOW! eBook
www.wowebook.org

Hover	the	cursor	over	#Error,	and	you	will	see	the	following	error	message:

The	solution	is	the	PeriodsToDate()	function.

The	YTD()	function	is	in	fact	a	short	version	of	the	PeriodsToDate()	function,	which	works
only	if	the	Year	type	level	is	specified	in	a	user	hierarchy.	When	it	is	not	so	(that	is,	some	BI
developers	tend	to	forget	to	set	it	up	correctly	or	in	the	event	that	the	level	is	defined	as,	let	us
say,	Fiscal	Year	like	in	this	test),	we	can	use	the	PeriodsToDate()	function	as	follows:

MEMBER	[Measures].[Reseller	Sales	YTD]	AS	

			Sum(PeriodsToDate([Date].[Fiscal	Weeks].[Fiscal	Year],	

																							[Date].[Fiscal	Weeks].CurrentMember),	

								[Measures].[Reseller	Sales	Amount])	

The	PeriodsToDate()	function	might	therefore	be	used	as	a	safer	variant	of	the	YTD()
function.

YTD()	and	future	dates
WOW! eBook

www.wowebook.org

It	is	worth	noting	that	the	value	returned	by	a	SUM-YTD	combination	is	never	empty	once	a
value	is	encountered	in	a	particular	year.	Only	the	years	with	no	values	at	all	will	remain
completely	blank	for	all	their	descendants.	In	our	example	with	the	[Calendar	Weeks]
hierarchy,	scrolling	down	to	Week	48	CY	2013,	you	will	see	that	this	is	the	last	week	that	has
reseller	sales.	However,	the	Year-To-Date	value	is	not	empty	for	the	rest	of	the	weeks	for	year
2013,	as	shown	in	the	following	screenshot:

This	can	cause	problems	for	the	descendants	of	the	member	that	represents	the	current	year
(and	future	years	as	well).	The	NON	EMPTY	keyword	will	not	be	able	to	remove	empty	rows,
meaning	we	will	get	YTD	values	in	the	future.

We	might	be	tempted	to	use	the	NON_EMPTY_BEHAVIOR	operator	to	solve	this	problem,	but	it
wouldn't	help.	Moreover,	it	would	be	completely	wrong	to	use	it,	because	it	is	only	a	hint	to
the	engine,	which	may	or	may	not	be	used.	It	is	not	a	mechanism	for	removing	empty	values,
as	explained	in	the	previous	chapter.

In	short,	we	need	to	set	some	rows	to	null,	those	positioned	after	the	member	representing
today's	date.	We	will	cover	the	proper	approach	to	this	challenge	in	the	Finding	the	last	date
with	data	recipe.

WOW! eBook
www.wowebook.org

See	also
For	the	reasons	explained	in	the	last	section	of	this	recipe,	you	should	take	a	look	at	the
Finding	the	last	date	with	data	recipe

WOW! eBook
www.wowebook.org

Calculating	the	year-over-year	(YoY)	growth
(parallel	periods)
This	recipe	explains	how	to	calculate	the	value	in	a	parallel	period,	the	value	for	the	same
period	in	a	previous	year,	previous	quarter,	or	some	other	level	in	the	date	dimension.	We	are
going	to	cover	the	most	common	scenario—calculating	the	value	for	the	same	period	in	the
previous	year,	because	most	businesses	have	yearly	cycles.

A	ParallelPeriod()	is	a	function	that	is	closely	related	to	time	series.	It	returns	a	member
from	a	prior	period	in	the	same	relative	position	as	a	specified	member.	For	example,	if	we
specify	June	2012	as	the	member,	Year	as	the	level,	and	1	as	the	lag,	the	ParallelPeriod()
function	will	return	June	2013.

Once	we	have	the	measure	from	the	prior	parallel	period,	we	can	calculate	how	much	the
measure	in	the	current	period	has	increased	or	decreased	with	respect	to	the	parallel	period's
value.

WOW! eBook
www.wowebook.org

Getting	ready
Start	SSMS	and	connect	to	your	SSAS	2016	instance.	Click	on	the	New	Query	button,	and
check	that	the	target	database	is	Adventure	Works	DW	2016.

In	this	example,	we	are	going	to	use	the	Date	dimension.	Here	is	the	query	we	will	start	from:

SELECT	

			{	[Measures].[Reseller	Sales	Amount]	}	ON	0,	

			{	[Date].[Fiscal].[Month].MEMBERS	}	ON	1	

FROM	

			[Adventure	Works]	

Once	executed,	the	previous	query	returns	the	value	of	Reseller	Sales	Amount	for	all	fiscal
months.

WOW! eBook
www.wowebook.org

How	to	do	it...
Follow	these	steps	to	create	a	calculated	measure	with	the	YoY%	calculation:

1.	 Add	the	WITH	block	of	the	query.
2.	 Create	a	new	calculated	measure	there	and	name	it	Reseller	Sales	PP.
3.	 The	new	measure	should	return	the	value	of	the	Reseller	Sales	Amount	measure	using

the	ParallelPeriod()	function.	In	other	words,	the	definition	of	the	new	measure	should
be	as	follows:

						MEMBER	[Measures].[Reseller	Sales	PP]	As	

						([Measures].[Reseller	Sales	Amount],		

						ParallelPeriod([Date].[Fiscal].[Fiscal	Year],	1,		

						[Date].[Fiscal].CurrentMember))	

4.	 Specify	the	format	string	property	of	the	new	measure	to	match	the	format	of	the
original	measure.	In	this	case,	that	should	be	the	currency	format.

5.	 Create	the	second	calculated	measure	and	name	it	Reseller	Sales	YoY	%.
6.	 The	definition	of	that	measure	should	be	the	ratio	of	the	current	member's	value	against

the	parallel	period	member's	value.	Be	sure	to	handle	potential	division	by	zero	errors
(see	the	Handling	division	by	zero	errors	recipe	in	Chapter	1,	Elementary	MDX
Techniques).

7.	 Include	both	calculated	measures	on	axis	0	and	execute	the	query,	which	should	look	as
follows:

						WITH

						MEMBER	[Measures].[Reseller	Sales	PP]	As

									([Measures].[Reseller	Sales	Amount],

											ParallelPeriod([Date].[Fiscal].[Fiscal	Year],	1,

																											[Date].[Fiscal].CurrentMember))

									,	FORMAT_STRING	=	‘Currency’

						MEMBER	[Measures].[Reseller	Sales	YoY	%]	As

									iif([Measures].[Reseller	Sales	PP]	=	0,	null,

														([Measures].[Reseller	Sales	Amount]	/

																[Measures].[Reseller	Sales	PP]))

			,	FORMAT_STRING	=	‘Percent’					

						SELECT

									{	[Measures].[Reseller	Sales	Amount],

											[Measures].[Reseller	Sales	PP],

											[Measures].[Reseller	Sales	YoY	%]	}	ON	0,

									{	[Date].[Fiscal].[Month].MEMBERS	}	ON	1

						FROM

								[Adventure	Works]

8.	 The	result	will	include	two	additional	columns,	one	with	the	PP	values	and	the	other	with
the	YoY	change.	Notice	how	the	values	in	the	second	column	repeat	over	time	and	that	the
YoY	%	ratio	shows	the	growth	over	time:

WOW! eBook
www.wowebook.org

WOW! eBook
www.wowebook.org

How	it	works...
The	ParallelPeriod()	function	takes	three	arguments:	a	level	expression,	an	index,	and	a
member	expression,	and	all	three	arguments	are	optional.	The	first	argument	indicates	the
level	on	which	to	look	for	that	member's	ancestor,	typically	the	year	level,	like	in	this
example.	The	second	argument	indicates	how	many	members	to	go	back	on	the	ancestor's
level,	typically	one,	as	in	this	example.	The	last	argument	indicates	the	member	for	which	the
function	is	to	be	applied.

Given	the	right	combination	of	arguments,	the	function	returns	a	member	that	is	in	the	same
relative	position	as	a	specified	member,	under	a	new	ancestor.

The	value	for	the	parallel	period's	member	is	obtained	using	a	tuple,	which	is	formed	with	a
measure	and	the	new	member.	In	our	example,	this	represents	the	definition	of	the	PP
measure.

The	growth	is	calculated	as	the	ratio	of	the	current	member's	value	over	the	parallel	period
member's	value,	in	other	words,	as	a	ratio	of	two	measures.	In	our	example,	that	was	the	YoY
%	measure.

In	our	example,	we	have	also	taken	care	of	a	small	detail,	setting	the	FORMAT_STRING	to
Percent.

WOW! eBook
www.wowebook.org

There's	more...
The	ParallelPeriod()	function	is	very	closely	related	to	time	series,	and	it	is	typically	used
on	date	dimensions.	However,	it	can	be	used	on	any	type	of	dimension.	For	example,	this
query	is	perfectly	valid:

SELECT	

			{	[Measures].[Reseller	Sales	Amount]	}	ON	0,	

			{	ParallelPeriod([Geography].[Geography].[Country],	

																					2,	

																					[Geography].[Geography].[State-Province]	

																																.&[CA]&[US])	}	ON	1	

FROM	

			[Adventure	Works]	

The	query	returns	Hamburg	on	rows,	which	is	the	third	state-province	in	the	alphabetical	list
of	state-provinces	under	Germany.	Germany	is	two	countries	back	from	the	United	States,
whose	member	California,	used	in	this	query,	is	the	third	state-province	underneath	that
country	in	the	[Geography].[Geography]	user	hierarchy.

We	can	verify	this	by	browsing	the	Geography	user	hierarchy	in	the	Geography	dimension
in	SQL	Server	Management	Studio,	as	shown	in	the	following	screenshot.	The	United
Kingdom,	one	member	back	from	the	United	States,	has	only	one	state-province:	England.	If
we	change	the	second	argument	to	one	instead,	we	will	get	nothing	on	the	rows	because	there
is	no	third	state-province	under	the	United	Kingdom.	Feel	free	to	try	it:

WOW! eBook
www.wowebook.org

All	arguments	of	the	ParallelPeriod()	function	are	optional.	When	not	specified,	the	first

WOW! eBook
www.wowebook.org

dimension	of	the	Time	type	in	the	measure	group	is	used,	more	precisely,	the	previous
member	of	the	current	member's	parent.	This	can	lead	to	unexpected	results	as	discussed	in
the	previous	recipe.	Therefore,	it	is	recommended	that	you	use	all	the	arguments	of	the
ParallelPeriod()	function.

ParallelPeriod	is	not	a	time-aware	function

The	ParallelPeriod()	function	simply	looks	for	the	member	from	the	prior	period	based	on
its	relative	position	to	its	ancestor.	For	example,	if	your	hierarchy	is	missing	the	first	six
months	in	the	year	2012,	for	member	January	2013,	the	function	will	find	July	2012	as	its
parallel	period	(lagging	by	1	year)	because	July	is	indeed	the	first	month	in	the	year	2012.

This	is	exactly	the	case	in	Adventure	Works	DW	SSAS	prior	to	2012.

You	can	test	the	following	scenario	in	Adventure	Works	DW	SSAS	2008	R2.

In	our	example,	we	used	the	[Date].[Fiscal]	user	hierarchy.	That	hierarchy	has	all	12
months	in	every	year,	which	is	not	the	case	with	the	[Date].[Calendar]	user	hierarchy	where
there	is	only	6	months	in	the	first	year.	This	can	lead	to	strange	results.	For	example,	if	you
search-replace	the	word	Fiscal	with	the	word	Calendar	in	the	query	we	used	in	this	recipe,
you	will	get	this	as	the	result:

Notice	how	the	values	are	incorrect	for	the	year	2006.	That's	because	the	ParallelPeriod()
function	is	not	a	time-aware	function;	it	merely	does	what	it	is	designed	for,	taking	the
member	that	is	in	the	same	relative	position.	Gaps	in	your	time	dimension	are	another

WOW! eBook
www.wowebook.org

potential	problem.	Therefore,	always	make	the	complete	date	dimensions,	with	all	12	months
in	every	year	and	all	dates	in	them,	not	just	working	days	or	similar	shortcuts.	Remember,
Analysis	Services	isn't	doing	the	date	math.	It's	just	navigating	using	the	member's	relative
position.	Therefore,	make	sure	you	have	laid	a	good	foundation	for	that.

However,	that	is	not	always	possible.	There	is	an	offset	of	6	months	between	fiscal	and
calendar	years,	meaning	if	you	want	both	of	them	as	date	hierarchies,	you	have	a	problem;
one	of	them	will	not	have	all	of	the	months	in	the	first	year.

The	solution	is	to	test	the	current	member	in	the	calculation	and	to	provide	a	special	logic	for
the	first	year,	fiscal	or	calendar;	the	one	that	does	not	have	all	months	in	it.	This	is	most
efficiently	done	with	a	scope	statement	in	the	MDX	script.	This	edition	of	the	book	has	added
a	brand	new	Chapter	9,	Metadata-Driven	Calculations	that	provides	many	practical	examples
on	how	to	use	scope	statements	in	MDX	script.

Another	problem	in	calculating	the	YoY	value	is	leap	years.	One	possible	solution	for	that	is
presented	in	this	blog	article:	http://tinyurl.com/LeapYears.

WOW! eBook
www.wowebook.org

http://tinyurl.com/LeapYears

See	also
The	ParallelPeriod()	function	operates	on	a	single	member.	However,	there	are	times
when	we	will	need	to	calculate	the	parallel	period	for	a	set	of	members.	The	Calculating
parallel	periods	for	multiple	members	in	a	set	and	Calculating	parallel	periods	for
multiple	members	in	a	slicer	recipes	deal	with	this	more	complex	request.

WOW! eBook
www.wowebook.org

Calculating	moving	averages
The	moving	average,	also	known	as	the	rolling	average,	is	a	statistical	technique	often	used	in
events	with	unpredictable	short-term	fluctuations	in	order	to	smooth	their	curve	and	to
visualize	the	pattern	of	behavior.

The	key	to	get	the	moving	average	is	to	know	how	to	construct	a	set	of	members	up	to	and
including	a	specified	member,	and	to	get	the	average	value	over	the	number	of	members	in
the	set.

In	this	recipe,	we	are	going	to	look	at	two	different	ways	to	calculate	moving	averages	in
MDX.

WOW! eBook
www.wowebook.org

Getting	ready
Start	SQL	Server	Management	Studio	and	connect	to	your	SSAS	2016	instance.	Click	on	the
New	Query	button	and	check	that	the	target	database	is	Adventure	Works	DW	2016.

In	this	example,	we	are	going	to	use	the	Date	hierarchy	of	the	Date	dimension.	Here	is	the
query	we	will	start	from:

SELECT	

			{	[Measures].[Internet	Order	Count]	}	ON	0,	

			{	[Date].[Date].[Date].MEMBERS}	ON	1	

FROM	

			[Adventure	Works]	

Execute	it.	The	result	shows	the	count	of	Internet	orders	for	each	date	in	the	[Date].[Date]
attribute	hierarchy.	Our	task	is	to	calculate	the	simple	moving	average	(SMA)	for	dates	in	the
year	2008	based	on	the	count	of	orders	in	the	previous	30	days.

WOW! eBook
www.wowebook.org

How	to	do	it...
We	are	going	to	use	the	LastPeriods()	function	with	a	30	day	moving	window,	and	a	member
expression,	[Date].[Date].CurrentMember,	as	two	parameters,	and	also	the	Avg()	function,	to
calculate	the	moving	average	of	Internet	order	count	in	the	last	30	days.

Follow	these	steps	to	calculate	moving	averages:

1.	 Add	the	WHERE	part	of	the	query	and	put	the	year	2014	inside	using	any	available
hierarchy.

2.	 Add	the	WITH	part	and	define	a	new	calculated	measure.	Name	it	SMA	30.
3.	 Define	that	measure	using	the	Avg()	and	LastPeriods()	functions.
4.	 Test	to	see	whether	you	get	a	managed	query	similar	to	this.	If	so,	execute	it:

						WITH	

						MEMBER	[Measures].[SMA	30]	AS	

						Avg(LastPeriods(30,	[Date].[Date].CurrentMember),	

						[Measures].[Internet	Order	Count])	

						SELECT	

						{	[Measures].[Internet	Order	Count],	

						[Measures].[SMA	30]	}	ON	0,	

						{	[Date].[Date].[Date].MEMBERS	}	ON	1	

						FROM	

						[Adventure	Works]	

						WHERE	

						([Date].[Calendar	Year].&[2014])	

5.	 The	second	column	in	the	result	set	will	represent	the	simple	moving	average	based	on
the	last	30	days.

6.	 Our	final	result	will	look	like	the	following	screenshot:

WOW! eBook
www.wowebook.org

How	it	works...
The	moving	average	is	a	calculation	that	uses	the	moving	window	of	N	items	for	which	it
calculates	the	statistical	mean,	that	is,	the	average	value.	The	window	starts	with	the	first	item
and	then	progressively	shifts	to	the	next	one	until	the	whole	set	of	items	is	passed.

The	function	that	acts	as	the	moving	window	is	the	LastPeriods()	function.	It	returns	N	items;
in	this	example,	30	dates.	That	set	is	then	used	to	calculate	the	average	orders	using	the	Avg()
function.

Note	that	the	number	of	members	returned	by	the	LastPeriods()	function	is	equal	to	the	span,
30,	starting	with	the	member	that	lags	30-1	from	the	specified	member	expression,	and	ending
with	the	specified	member.

WOW! eBook
www.wowebook.org

There's	more...
Another	way	of	specifying	what	the	LastPeriods()	function	does	is	to	use	a	range	of
members	with	a	range-based	shortcut.	The	last	member	of	the	range	is	usually	the	current
member	of	the	hierarchy	on	an	axis.	The	first	member	is	the	N-1th	member	moving
backwards	on	the	same	level	in	that	hierarchy,	which	can	be	constructed	using	the	Lag(N-1)
function.

The	following	expression	employing	the	Lag()	function	and	a	range-based	shortcut	is
equivalent	to	the	LastPeriods()	function	in	the	preceding	example:

[Date].[Date].CurrentMember.Lag(29)	:	[Date].[Date].CurrentMember	

Note	that	the	members	returned	from	the	range-based	shortcut	are	inclusive	of	both	the
starting	member	and	the	ending	member.

We	can	easily	modify	the	moving	window	scope	to	fit	different	requirements.	For	example,	in
case	we	need	to	calculate	a	30-day	moving	average	up	to	the	previous	member,	we	can	use
this	syntax:

[Date].[Date].CurrentMember.Lag(30)	:	[Date].[Date].PrevMember	

Tip

The	LastPeriods()	function	is	not	on	the	list	of	optimized	functions	on	this	web	page:
http://tinyurl.com/Improved2008R2	.	However,	tests	show	no	difference	in	duration	with
respect	to	its	range	alternative.	Still,	if	you	come	across	a	situation	where	the	LastPeriods()
function	performs	slowly,	try	its	range	alternative.

Finally,	in	the	event	that	we	want	to	parameterize	the	expression	(for	example,	to	be	used	in
SQL	Server	Reporting	Services),	these	would	be	generic	forms	of	the	previous	expressions:

[Date].[Date].CurrentMember.Lag(@span	-	@offset)	:		

[Date].[Date].CurrentMember.Lag(@offset)	

And;

LastPeriods(@span,	[Date].[Date].CurrentMember.Lag(@offset))	

The	@span	parameter	is	a	positive	value	that	determines	the	size	of	the	window.	The	@offset
parameter	determines	how	much	the	right	side	of	the	window	has	moved	from	the	current
member's	position.	This	shift	can	be	either	a	positive	or	negative	value.	The	value	of	zero
means	there	is	no	shift	at	all,	the	most	common	scenario.

Other	ways	to	calculate	the	moving	averages

The	simple	moving	average	(SMA)	is	just	one	of	many	variants	of	calculating	the	moving
averages.	A	good	overview	of	a	possible	variant	can	be	found	in	Wikipedia:

WOW! eBook
www.wowebook.org

http://tinyurl.com/Improved2008R2

http://tinyurl.com/WikiMovingAvg	.

MDX	examples	of	other	variants	of	moving	averages	can	be	found	in	Mosha	Pasumansky's
blog	article:

http://tinyurl.com/MoshaMovingAvg.

Moving	averages	and	the	future	dates

It	is	worth	noting	that	the	value	returned	by	the	moving	average	calculation	is	not	empty	for
dates	in	the	future	because	the	window	is	looking	backwards,	so	that	there	will	always	be
values	for	future	dates.	This	can	be	easily	verified	by	scrolling	down	in	our	example	using	the
LastPeriods()	function,	as	shown	in	the	following	screenshot:

In	this	case,	the	NON	EMPTY	keyword	will	not	be	able	to	remove	empty	rows.

We	might	be	tempted	to	use	NON_EMPTY_BEHAVIOR	to	solve	this	problem	but	it	would	not	help.
Moreover,	it	would	be	completely	wrong,	as	explained	in	the	previous	chapter.	We	do	not
want	to	set	all	the	empty	rows	to	null,	but	only	those	positioned	after	the	member	representing
today's	date.	We	will	cover	the	proper	approach	to	this	challenge	in	the	following	recipes.

WOW! eBook
www.wowebook.org

http://tinyurl.com/WikiMovingAvg
http://tinyurl.com/MoshaMovingAvg

Finding	the	last	date	with	data
In	this	recipe,	we	are	going	to	learn	how	to	find	the	last	date	with	data	for	a	particular
combination	of	members	in	the	cube.	We	will	start	with	a	general	calculation,	not	dependent
on	the	time	context,	and	later	show	how	to	make	it	time-sensitive,	if	required.

WOW! eBook
www.wowebook.org

Getting	ready
Open	SQL	Server	Data	Tools	(SSDT)	and	then	open	Adventure	Works	DW	2016	solution.
Double-click	on	the	Date	dimension	found	in	the	Solution	Explorer.	Select	the	Date	attribute
and	locate	the	property	ValueColumn	at	the	bottom	of	the	Properties	pane:

There	is	a	value	in	that	property.	Column	FullDateAlternateKey,	of	the	DataType,	is
specified	as	the	ValueColumn	of	the	key	attribute	property,	the	Date	attribute.	This	check	is
important	because	without	that	property	filled	correctly,	this	recipe	won't	work.

Next,	start	SQL	Server	Management	Studio	and	connect	to	your	SSAS	2016	instance.	Click	on
the	New	Query	button	and	check	that	the	target	database	is	Adventure	Works	DW	2016.

In	this	example,	we're	going	to	use	the	Date	hierarchy	of	the	Date	dimension.	Here	is	the
query	we	will	start	from:

SELECT	

			{	[Measures].[Internet	Order	Count]	}	ON	0,	

			{	[Date].[Date].[Date].MEMBERS	}	ON	1	

FROM	

			[Adventure	Works]	

Execute	it,	and	then	scroll	down	to	the	end.	By	scrolling	up	again,	try	to	identify	the	last	date
with	data.	It	should	be	the	January	28,	2014	date,	as	highlighted	in	the	following	screenshot:

WOW! eBook
www.wowebook.org

Now	let's	see	how	we	can	get	this	automatically,	as	the	result	of	a	calculation.

WOW! eBook
www.wowebook.org

How	to	do	it...
Follow	these	steps	to	create	a	calculated	measure	that	returns	the	last	date	with	data:

1.	 Add	the	WITH	part	of	the	query.
2.	 Create	a	new	calculated	measure	there	and	name	it	Last	date.
3.	 Use	the	Max()	function	with	Date	attribute	members	as	its	first	argument.
4.	 The	second	argument	should	be	the	MemberValue()	function	applied	on	the	current

member	of	the	Date.Date.Date	hierarchy,	but	only	if	the	value	of	the	Internet	order
count	measure	is	not	empty	or	0.

5.	 Add	the	Last	date	measure	on	the	columns	axis.
6.	 Put	the	Promotion.Promotion	hierarchy	on	rows	instead.
7.	 Run	the	query,	which	should	look	as	follows:

						WITH	

						MEMBER	[Measures].[Last	date]	AS	

									Max([Date].[Date].[Date].MEMBERS,	

												iif([Measures].[Internet	Order	Count]	=	0,	

																	null,	

																	[Date].[Date].CurrentMember.MemberValue	

)	

)	

						SELECT	

									{	[Measures].[Internet	Order	Count],	

											[Measures].[Last	date]	}	ON	0,	

									{	[Promotion].[Promotion].MEMBERS	}	ON	1	

						FROM	

								[Adventure	Works]	

8.	 The	result	will	show	the	last	date	of	Internet	orders	for	each	promotion,	as	shown	in	the
following	screenshot:

WOW! eBook
www.wowebook.org

WOW! eBook
www.wowebook.org

How	it	works...
The	Date	dimension	in	the	Adventure	Works	DW	2016	database	is	designed	in	such	a	way	that
we	can	conveniently	use	the	MemberValue()	function	on	the	Date	attribute	in	order	to	get	the
date	value	for	each	member	in	that	hierarchy.	This	best	practice	act	allows	us	to	use	that	value
inside	the	Max()	function	and	hence	get	the	member	with	the	highest	value,	the	last	date.

The	other	thing	we	must	do	is	to	limit	the	search	only	to	dates	with	Internet	orders.	The	inner
iif()	statement,	which	provides	null	for	dates	with	no	Internet	orders,	not	only	takes	care	of
that,	but	also	makes	the	set	sparse	and	therefore	allows	for	block-mode	evaluation	of	the	outer
Max()	function.

Since	the	data	type	of	the	ValueColumn	property	is	defined	as	Date	for	the	Date	attribute,	the
result	of	the	MemberValue()	function	is	a	typed	value,	that	is,	a	date	type.	The	role	of	this	date
type	is	twofold	in	this	recipe.	One,	it	allows	us	to	use	the	member	value	inside	the	Max()
function,	which	returns	the	maximum	value	representing	the	last	date.	Two,	it	allows	the
calculated	measure,	[Last	date],	to	be	nicely	formatted	as	a	date	without	any	additional
coding.

Finally,	the	outer	Max()	function	evaluates	all	the	date	values	returned	from	the
MemberValue()	function	over	the	set	of	all	members	in	the	Date	hierarchy,	and	returns	the
maximum	date	value,	which	represents	the	last	date.

In	the	event	that	there	was	no	ValueColumn	property	defined	on	the	Date.Date	attribute,	we
could	use	the	Name,	Caption,	or	some	other	property	to	identify	the	last	date	or	to	use	it	in
further	calculations.

WOW! eBook
www.wowebook.org

There's	more...
In	the	previous	example,	the	Max()	function	was	used	on	all	dates	in	the	Date.Date	hierarchy.
As	such,	it	is	relatively	inflexible.	This	means	that	it	won't	react	to	other	hierarchies	of	the
same	dimension	on	axes,	which	would	normally	reduce	that	set	of	dates.	In	other	words,	there
are	situations	when	the	expression	has	to	be	made	context-sensitive	so	that	it	changes	in
respect	to	other	hierarchies	of	the	same	dimension.	How	do	we	achieve	that?	Using	the
EXISTING	operator	in	front	of	the	set!

For	example,	let's	run	the	following	query:

WITH	

MEMBER	[Measures].[Last	date]	AS	

			Max([Date].[Date].[Date].MEMBERS,	

								iif([Measures].[Internet	Order	Count]	=	0,	

													null,	

													[Date].[Date].CurrentMember.MemberValue	

)	

)	

MEMBER	[Measures].[Last	existing	date]	AS	

			Max(EXISTING	[Date].[Date].[Date].MEMBERS,	

								iif([Measures].[Internet	Order	Count]	=	0,	

													null,	

													[Date].[Date].CurrentMember.MemberValue	

)	

)	

SELECT	

			{	[Measures].[Internet	Order	Count],	

					[Measures].[Last	date],	

					[Measures].[Last	existing	date]	}	ON	0,	

			{	[Date].[Calendar	Year].MEMBERS	}	ON	1	

FROM	

			[Adventure	Works]	

WHERE	

([Sales	Territory].[Sales	Territory	Country].&[France])	

Now	values	in	the	second	column	(the	Last	date	measure)	will	all	be	the	same	showing
2014/01/26.	On	the	other	hand,	values	in	the	third	column	represent	the	last	date	for	which	we
have	Internet	orders	for	each	calendar	year	on	the	rows	axis,	and	therefore	will	differ,	as	seen
in	this	screenshot:

WOW! eBook
www.wowebook.org

Those	two	types	of	calculation	represent	different	things	and	should	be	used	in	the	right
context.	In	other	words,	if	there	is	a	need	to	get	the	last	date	no	matter	what,	then	that's	a
variant	without	the	EXISTING	part.	In	all	other	cases,	the	EXISTING	keywords	should	be	used.

One	thing	is	important	to	remember:	the	use	of	the	EXISTING	keyword	slows	down	the
performance	of	the	query.	That	is	the	cost	we	have	to	pay	for	having	flexible	calculations.

WOW! eBook
www.wowebook.org

See	also
The	next	recipe,	Getting	values	on	the	last	date	with	data,	is	relevant	for	this	recipe
because	it	shows	how	to	return	the	value	of	measures	on	the	last	date	with	data

WOW! eBook
www.wowebook.org

Getting	values	on	the	last	date	with	data
In	this	recipe	we	are	going	to	learn	how	to	get	the	value	of	a	measure	on	the	last	date	with
data.	If	you	haven't	read	the	previous	recipe,	do	so	before	reading	this	one	as	this	recipe
continues	where	the	previous	recipe	stopped.

WOW! eBook
www.wowebook.org

Getting	ready
Start	SQL	Server	Management	Studio	and	connect	to	your	SSAS	2016	instance.	Click	on	the
New	Query	button	and	check	that	the	target	database	is	Adventure	Works	DW	2016.

In	this	example,	we	are	going	to	use	the	simplified	version	of	the	query	from	the	previous
chapter,	simplified	in	the	sense	that	it	has	only	one	measure,	the	time-sensitive	measure:

WITH	

MEMBER	[Measures].[Last	existing	date]	AS	

			Max(EXISTING	[Date].[Date].[Date].MEMBERS,	

								iif([Measures].[Internet	Order	Count]	=	0,	

													null,	

													[Date].[Date].CurrentMember.MemberValue	

)	

)	

SELECT	

			{	[Measures].[Internet	Order	Count],	

					[Measures].[Last	existing	date]	}	ON	0,	

			{	[Date].[Calendar	Year].MEMBERS	}	ON	1	

FROM	

			[Adventure	Works]	

WHERE	

([Sales	Territory].[Sales	Territory	Country].&[France])	

The	following	screenshot	shows	the	result	of	query	execution:

Now,	let's	see	how	to	get	the	values	on	those	last	dates	with	data.

WOW! eBook
www.wowebook.org

How	to	do	it...
Follow	these	steps	to	get	a	measure's	value	on	the	last	date	with	data:

1.	 Remove	the	Last	existing	date	calculated	measure	from	the	WITH	part	of	the	query	and
from	the	columns	axis.

2.	 Define	a	new	calculated	measure	and	name	it	Value	N.
3.	 The	definition	of	this	new	measure	should	be	a	tuple	with	two	members,	members	we

will	identify	or	build	in	the	following	steps.
4.	 Use	the	Internet	Order	Count	measure	as	one	of	the	members	in	the	tuple.
5.	 The	other	part	of	the	tuple	should	be	an	expression,	which	in	its	inner	part	has	the

NonEmpty()	function	applied	over	members	of	the	Date.Date	hierarchy	and	the	Internet
Order	Count	measure.

6.	 Use	the	EXISTING	operator	in	front	of	the	NonEmpty()	function.
7.	 Extract	the	last	member	of	that	set	using	the	Tail()	function.
8.	 Convert	the	resulting	set	into	a	member	using	the	Item()	function.
9.	 The	final	query	should	look	as	follows:

						WITH	

						MEMBER	[Measures].[Value	N]	AS	

									(Tail(EXISTING		

																	NonEmpty([Date].[Date].[Date].MEMBERS,	

																											[Measures].[Internet	Order	Count]),	

																	1	

).Item(0),	

											[Measures].[Internet	Order	Count])	

						SELECT	

									{	[Measures].[Internet	Order	Count],	

											[Measures].[Value	N]	}	ON	0,	

									{	[Date].[Calendar	Year].MEMBERS	}	ON	1	

						FROM	

									[Adventure	Works]	

						WHERE	

						([Sales	Territory].[Sales	Territory	Country].&[France])	

10.	 Once	executed,	the	result	will	show	values	of	the	Internet	Order	Count	measure	on	the
last	dates	with	data,	as	visible	in	the	following	screenshot:

WOW! eBook
www.wowebook.org

WOW! eBook
www.wowebook.org

How	it	works...
The	value	of	the	last	date	with	data	is	calculated	from	scratch.	First,	we	have	isolated	dates
with	orders	using	the	NonEmpty()	function.	Then	we	have	applied	the	EXISTING	operator	in
order	to	get	dates	relevant	to	the	existing	context.	The	Tail()	function	was	used	to	isolate	the
last	date	in	that	set,	while	the	Item()	function	converts	that	one-member	set	into	a	member.

Once	we	have	the	last	date	with	data,	we	can	use	it	inside	the	tuple	with	the	measure	of	our
interest,	in	this	case,	the	Internet	Order	Count	measure,	to	get	the	value	in	that	coordinate.

WOW! eBook
www.wowebook.org

There's	more...
The	NonEmpty()	function	we	used	in	the	earlier	query	for	calculating	the	last	date	with	data	is
not	the	only	approach.	We	have	several	more	options	here,	all	of	which	make	use	of	the	Last
existing	date	calculated	measure	from	our	previous	recipe,	Finding	the	last	date	with	data,
in	which	we	have	defined	it	as:

MEMBER	[Measures].[Last	existing	date]	AS	

			Max(EXISTING	[Date].[Date].[Date].MEMBERS,	

										IIF([Measures].[Internet	Order	Count]	=	0,	

															null,	

															[Date].[Date].CurrentMember.MemberValue	

)	

)	

Let's	focus	on	a	couple	of	other	options	that	make	use	of	the	Last	existing	date	calculated
measure.

One	approach	is	to	use	the	Filter()	function	on	all	dates	in	order	to	find	the	one	that	has	the
same	MemberValue	as	calculated	in	the	Last	existing	date	measure.	However,	that	is	the
worst	approach,	the	slowest	one,	and	it	shouldn't	be	used.	The	reason	why	it's	slow	is	because
the	Filter()	function	needs	to	iterate	over	the	complete	set	of	dates	in	every	cell	in	order	to
isolate	a	single	date,	the	last	one	with	data.

Since	we	already	know	the	date	we	need,	that	is,	the	calculated	Last	existing	date	measure,
you	might	think	that	we	can	simply	form	a	tuple	by	putting	together	the	Last	existing	date
with	[Measures].[Internet	Order	Count].	This	will	not	work	because	Last	existing	date
is	a	value,	not	a	member.	We	cannot	simply	put	a	value	in	a	tuple;	we	need	a	member	because
tuples	are	formed	from	members,	not	values.

The	other	approach	is	based	on	the	idea	that	we	might	be	able	to	convert	that	value	into	a
member.	Conversion	can	be	done	using	the	StrToMember()	function,	with	the	CONSTRAINED
flag	provided	in	it	to	enable	faster	execution	of	that	function.	Here	are	two	expressions	that
work	for	the	Date	dimension	in	Adventure	Works;	they	return	the	same	result	as	shown	in	the
previous	screenshot:

MEMBER	[Measures].[Value	SN]	AS	

			iif(IsEmpty([Measures].[Last	existing	date]),	null,	

								(StrToMember('[Date].[Date].['	+	

										Format([Measures].[Last	existing	date],	

																		"MMMM	dd,	yyyy")	+	']',	CONSTRAINED),	

										[Measures].[Internet	Order	Count]))	

MEMBER	[Measures].[Value	SK]	AS	

			iif(IsEmpty([Measures].[Last	existing	date]),	null,	

								(StrToMember('[Date].[Date].&['	+	

										Format([Measures].[Last	existing	date],	

																		"yyyyMMdd")	+	']',	CONSTRAINED),	

										[Measures].[Internet	Order	Count]))	

WOW! eBook
www.wowebook.org

The	first	calculated	measure	(with	the	SN	suffix)	builds	the	member	using	its	name,	and	the
second	one	(with	the	SK	suffix)	using	its	key.	The	S	stands	for	string-based	solution;	the	N	in
the	first	solution	in	this	recipe	stands	for	nonempty-based	solution.

Both	expressions	make	use	of	the	Format()	function	and	apply	the	appropriate	format	for	the
date	returned	by	the	Last	existing	date	calculated	measure.

Since	there	might	not	be	any	date	in	a	particular	context,	the	IIF()	function	is	used	to	return
null	in	those	situations,	otherwise	the	appropriate	tuple	is	formed	and	its	value	is	returned	as
the	result	of	the	expression.

Formatting	members	on	the	Date	dimension	properly

If	you	drag	and	drop	any	member	from	the	Date.Date.Date	level	in	the	Query	Editor,	you
will	see	its	unique	name.	In	case	of	the	Adventure	Works	cube,	the	unique	name	will	look	as
follows:

[Date].[Date].&[20130701]	

This	is	the	key-based	unique	name	for	members	on	the	Date	dimension.	To	build	a	string,	all
you	have	to	do	is	replace	the	part	with	the	day,	month,	and	year	with	the	appropriate	tokens	in
the	format	string.	This	web	page	might	help	in	that:		http://tinyurl.com/FormatDate.

For	the	name-based	member	unique	names	you	need	to	analyze	the	name	of	the	member	in	the
cube	structure	and	match	it	with	appropriate	tokens	in	the	format	string.	For	the	preceding
key-based	date	member,	the	equivalent	name-based	member	unique	name	is:	[Date].[Date].
[July	1,	2013].

Optimizing	time-non-sensitive	calculations

Remember	that	in	the	event	that	you	do	not	need	a	time-sensitive	calculation,	a	calculation
which	evaluates	the	dates	in	each	context	(and	hence	is	naturally	slower	because	of	that),	you
can	use	the	same	expressions	provided	in	this	recipe.	Just	remove	the	EXISTING	operator	in
them.

WOW! eBook
www.wowebook.org

http://tinyurl.com/FormatDate

Calculating	today's	date	using	the	string
functions
Calculating	today's	date	is	one	of	those	problems	every	BI	developer	encounters	sooner	or
later.	It	is	also	a	repeatedly	asked	question	on	Internet	forums;	probably	because	books	do	not
cover	this	topic	at	all,	or	at	least,	not	with	concrete	examples.

The	Date	dimension	in	the	Adventure	Works	DW	2016	SSAS	database	has	dates	only	up	to
December	31,	2014.	If	we	are	creating	a	current	date	expression,	that	is,	after	December	31,
2014,	then	the	expression	will	not	be	valid.	To	overcome	this	little	inconvenience,	we	will	use
string	functions	to	only	get	the	day	and	month	of	the	current	date,	with	the	year	being	shifted
to	any	year	we	need	to.

In	fact,	this	approach	can	not	only	explain	the	concept	well,	but	also	is	generic	enough	so	that
you	can	apply	it	in	your	own	SSAS	database.

We	will	cover	this	intriguing	topic	in	three	recipes.

This	recipe	demonstrates	the	most	intuitive	technique	of	doing	it,	that	is,	generating	today's
date	as	a	string	and	then	converting	that	string	into	a	dimension	member.	The	other	two
recipes,	following	immediately	after	this	one,	show	some	not-so-intuitive,	but	nevertheless
perfectly	valid	and	often	better	ways	of	performing	the	same	thing.	You	are	advised	to	read
them	all	in	order	to	get	an	overview	of	the	possibilities.

WOW! eBook
www.wowebook.org

Getting	ready
Start	SQL	Server	Management	Studio	and	connect	to	your	SSAS	2016	instance.	Click	on	the
New	Query	button	and	check	that	the	target	database	is	Adventure	Works	DW	2016.

Execute	the	following	query:

SELECT	

			{	}	ON	0,	

			{	[Date].[Calendar].[Date].MEMBERS	}	ON	1	

FROM	

			[Adventure	Works]	

In	this	example,	we	are	using	the	Calendar	hierarchy	of	the	Date	dimension.	The	result
contains	all	the	dates	on	rows	and	nothing	on	the	columns.	We	have	explained	this	type	of
query	in	the	first	recipe	of	the	first	chapter.

Tip

Building	the	correct	string	for	an	Adventure	Works	cube	is	not	a	problem.	Building	the
correct	string	for	any	database	is	almost	impossible.	The	string	has	to	be	precise	or	it	won't
work.	That's	why	we'll	use	the	step-by-step	approach	here.	We'll	also	highlight	the	important
points	for	each	step.	Additionally,	a	step-by-step	way	is	much	easier	to	debug	by	visualizing
which	step	is	not	calculating	correctly.	Hence,	achieving	the	correct	string	for	today's	date
becomes	faster.

If	you	scroll	down	the	results,	you	will	notice	that	there	are	only	dates	up	to	and	including
December	2014	and	there	is	no	date	after	that.	As	the	last	year	that	has	sales	amounts	for	the
full	year	is	2013,	we're	going	to	build	the	current	date	for	that	year,	for	this	recipe	as	well	as
for	the	next	two	recipes.

We'll	also	include	a	switch	for	shifting	years,	which	will	allow	you	to	apply	the	same	recipe	in
any	database.

WOW! eBook
www.wowebook.org

How	to	do	it...
Follow	these	steps	to	calculate	today's	date	using	the	VBA	date	time	function	Now()	and	string
function	Format(),	and	then	finally	using	the	StrToMember()	function	to	convert	the	string	to	a
member	on	the	Date	dimension:

1.	 Add	the	WITH	part	in	the	query.
2.	 Define	a	new	calculated	measure	using	the	VBA	function	and	try	to	match	the	name	of

date	members.	In	the	case	of	the	Adventure	Works	cube,	the	required	definition	is	this:
Format(Now(),	'MMMM	dd,	yyyy')	.

3.	 Name	the	measure	Caption	for	Today	and	include	it	in	the	query.
4.	 Execute	the	query	and	see	how	you	matched	the	measure's	value	with	the	name	of	each

member	on	the	rows.	If	it	doesn't	match,	try	to	fix	the	format	to	fit	your	regional	settings.
This	link	provides	detailed	information	about	what	each	token	represents:
http://tinyurl.com/FormatDate

5.	 Add	the	second	calculated	measure	with	the	following	definition:	[Date].
[Calendar].CurrentMember.UniqueName

6.	 Name	it	Member's	Unique	Name	and	include	it	in	the	query.
7.	 Execute	the	query	and	notice	the	part	of	the	measure's	value	that	is	not	constant	and	that	is

changed	in	each	row.	Try	to	detect	what	the	part	is	built	from	in	terms	of	years,	months,
and	dates	or	how	it	relates	in	general	to	dates	on	rows.

8.	 Add	the	third	calculated	measure	by	formatting	the	result	of	the	Now()	function	based	on
the	discoveries	you	made	in	the	previous	step.	In	other	words,	this:	Format(Now(),
'yyyyMMdd'),	because	unique	names	are	built	using	the	yyyyMMdd	sequence.

9.	 Name	it	Key	for	Today	and	include	it	in	the	query.
10.	 Execute	the	query.	The	value	should	repeat	in	every	row,	giving	you	the	current	date

formatted	as	yyyyMMdd.
11.	 In	case	of	a	database	with	no	today's	date	in	the	Date	dimension,	such	is	the	case	here,	add

the	fourth	calculated	measure.	This	measure	should	replace	the	year	part	with	another
year,	already	present	in	the	Date	dimension.	That	should	be	the	year	with	all	dates;
otherwise,	you'll	get	an	error	in	subsequent	steps	of	this	recipe.	The	definition	of	that
measure	in	the	case	of	the	Adventure	Works	cube	is	this:	'2013'	+	Right([Measures].
[Key	for	Today],	4).

12.	 Name	it	Key	for	Today	(AW)	and	include	it	in	the	query.
13.	 Execute	the	query	and	find	the	row	where	that	same	key	can	be	found	as	a	part	of	the

measure	Member's	Unique	Name.	If	you	can,	that	means	you're	doing	everything	fine	so
far.

14.	 Add	the	fifth	calculated	measure,	name	it	Today	(string)	and	define	it	by	concatenating
the	fixed	part	of	the	unique	name	with	the	variable	part	defined	as	the	Key	for	Today	or
Key	for	Today	(AW)	measure,	depending	on	whether	you	have	or	don't	have	today's	date
in	your	Date	dimension.	In	this	example,	we'll	use	the	latter	because	Adventure	Works
doesn't	have	it.	This	is	the	definition	of	the	measure:	'[Date].[Calendar].[Date].&['	+
[Measures].[Key	for	Today	(AW)]	+	']'.

15.	 Include	that	fifth	measure	as	well	in	the	query	and	execute	it.	In	that	particular	row

WOW! eBook
www.wowebook.org

mentioned	earlier,	the	value	of	this	measure	should	match	completely	to	the	value	of	the
measure	Member's	Unique	Name.

16.	 Add	a	calculated	set.	Name	it	Today	and	define	it	using	the	StrToMember()	function	with
the	CONSTRAINED	flag.

17.	 Execute	the	query.	The	set	you	just	made	represents	today's	date	and	can	be	used	in	all
further	calculations	you	make.

18.	 The	final	query	is	as	follows:

						WITH	

						MEMBER	[Measures].[Caption	for	Today]	AS	

									Format(Now(),	'MMMM	dd,	yyyy')	

						MEMBER	[Measures].[Member's	Unique	Name]	AS	

									[Date].[Calendar].CurrentMember.UniqueName	

						MEMBER	[Measures].[Key	for	Today]	AS	

									Format(Now(),	'yyyyMMdd')	

						MEMBER	[Measures].[Key	for	Today	(AW)]	AS	

									'2013'	+	Right([Measures].[Key	for	Today],	4)	

						MEMBER	[Measures].[Today	(string)]	AS	

									'[Date].[Calendar].[Date].&['	+	

							[Measures].[Key	for	Today	(AW)]	+	']'	

						SET	[Today]	AS	

			StrToMember([Measures].[Today	(string)],	CONSTRAINED)	

						SELECT	

									{	[Measures].[Caption	for	Today],	

											[Measures].[Member's	Unique	Name],	

									--[Measures].[Key	for	Today],	

											[Measures].[Key	for	Today	(AW)],	

											[Measures].[Today	(string)]	}	ON	0,	

									{	[Date].[Calendar].[Date].MEMBERS	}	ON	1	

						FROM	

								[Adventure	Works]	

19.	 The	result	of	your	query	should	look	like	the	following	screenshot.	There	is	one	single
row	in	which	the	Today	(string)	measure	and	the	Member's	Unique	Name	measure
matches	exactly,	as	visible	in	the	screenshot.	This	row	will	differ	from	the	row	in	your
result	since	you	are	running	the	query	on	a	different	date.	But	you	should	nevertheless
have	such	a	row	if	you've	followed	the	instructions	carefully:

WOW! eBook
www.wowebook.org

WOW! eBook
www.wowebook.org

How	it	works...
Basically,	that's	the	query	you	get	by	following	the	step-by-step	instructions	from	the	earlier
example,	with	only	one	difference	the	Key	for	Today	measure	is	intentionally	left	out	of	the
query,	so	that	the	result	can	fit	the	book	size.	You	can	leave	it	as	is	in	your	query,
uncommented,	to	see	its	values.

The	Caption	for	Today	measure	is	there	only	to	make	you	practice	building	the	format
string	for	dates;	it	has	no	significance	for	the	final	calculation.	MMMM	displays	the	full	month
name	(that	is,	March),	dd	displays	the	date	using	two	digits	(that	is,	27),	and	yyyy	displays	the
four-digit	year.

The	Member's	Unique	Name	measure	is	here	to	show	how	the	unique	member's	name	is	built,
so	that	we	can	build	the	exact	string	using	today's	date	as	a	variable	part	of	that	name.	Again,	it
is	not	used	in	the	final	calculation;	it	is	here	just	to	help	build	the	correct	string.

The	Key	for	Today	(AW)	measure	is	the	one	that's	important.	It	is	showing	that	the	date
dimension's	key	is	an	integer	in	the	form	of	yyyyMMdd,	built	according	to	recommended	best
practice.	In	your	real	projects,	you	might	have	a	different	key	definition.	There	is	no	way	of
knowing	in	advance	what	the	correct	format	should	be	for	a	particular	Date	dimension.
Therefore,	the	second	measure,	Member's	Unique	Name,	is	here	to	enable	us	to	identify	the
variable	part	of	the	unique	name	and	to	conclude	how	to	build	that	part	using	date	parts	such
as	year,	month,	and	date.

The	measure	Today	(string)	is	the	main	part.	Here,	we	are	actually	building	the	final	string.
We	are	concatenating	the	fixed	part	of	the	unique	name	with	the	Key	for	Today	(AW)
measure.

Finally,	we	built	a	set	named	Today	from	that	final	string	using	the	StrToMember()	function.

The	CONSTRAINED	flag	is	used	for	two	reasons.	It	automatically	tells	us	if	we	have	made	a
mistake	in	the	string-building	process.	It	also	ensures	that	the	evaluation	is	faster	and	hence
the	query	performance	will	be	faster	as	well.

The	Today	set	can	now	be	placed	on	the	rows,	replacing	the	members	on	the	Date	level	of	the
Date.Calendar	hierarchy	in	the	previous	query:

WITH	

MEMBER	[Measures].[Key	for	Today]	AS	

			Format(Now(),	'yyyyMMdd')	

MEMBER	[Measures].[Key	for	Today	(AW)]	AS	

			'2007'	+	Right([Measures].[Key	for	Today],	4)	

MEMBER	[Measures].[Today	(string)]	AS	

			'[Date].[Calendar].[Date].&['	+	

	[Measures].[Key	for	Today	(AW)]	+	']'	

SET	[Today]	AS	

			StrToMember([Measures].[Today	(string)],	CONSTRAINED)	

WOW! eBook
www.wowebook.org

SELECT	

			{	[Measures].[Key	for	Today],	

					[Measures].[Key	for	Today	(AW)],	

					[Measures].[Today	(string)]	}	ON	0,	

			{	[Today]	}	ON	1	

FROM	

			[Adventure	Works]	

The	result	will	have	only	one	row.	The	member	on	the	row	will	be	today's	date	with	a	shifted
year.

WOW! eBook
www.wowebook.org

There's	more...
A	named	set,	contrary	to	a	calculated	member,	preserves	the	original	regular	member.
Regular	members	have	a	position	in	their	level	(also	known	as	their	ordinal),	and	they	can
have	descendants,	ancestors,	and	related	members	on	other	hierarchies	of	the	same
dimension.	Sets	can	be	placed	in	the	slicer	or	on	columns	or	rows	where	they	can	interact	with
other	dimensions.	Calculated	members	do	not	have	these	features.	They	are	placed	as	the	last
child	of	a	regular	member	they	are	defined	on	and	are	not	related	to	any	other	members
except	the	root	member	of	other	hierarchies	of	the	same	dimension.	The	idea	of	creating	a
named	set	for	today's	date,	not	a	calculated	member,	has	opened	up	a	lot	of	possibilities	for
us.

Note

Another	thing	worth	pointing	out	here	is	that	using	Now()	in	a	calculated	member	stops	the
use	of	a	formula	engine	cache.	See	here	for	more	info:
http://tinyurl.com/FormulaCacheChris.

The	conversion	from	a	set	made	of	a	single	member	to	a	member,	or	shall	we	say,	extraction
of	a	single	member	in	that	set,	is	made	relatively	easy	by	using:[Today].Item(0).	Actually,	we
should	specify	.Item(0).Item(0),	but	since	there's	only	one	hierarchy	in	the	tuple	forming
that	set,	one	.Item(0)	is	enough.

Defining	new	calculated	measures	is	also	easy.	Today's	sales	measure	would	be	defined	like
this:	([Today].Item(0),	[Measures].[Internet	Sales	Amount]).

Relative	periods

The	opportunity	does	not	stop	there.	Once	we	have	a	named	set,	Today,	for	today's	date,	all
other	relative	periods	follow	easily.	Here	are	some	examples.	Again,	we	are	defining	sets,	not
calculated	members:

SET	[Yesterday]	AS	[Today].Item(0).PrevMember	

SET	[This	Month]	AS	[Today].Item(0).Parent	

SET	[Prev	Month]	AS	[This	Month].Item(0).PrevMember	

SET	[This	Year]	AS	[Today].Item(0).Parent.Parent.parent.Parent	

SET	[Prev	Year]	AS	[This	Year].Item(0).PrevMember	

SET	[This	Month	Prev	Year]	AS	[This	Month].Item(0).Lag(12)	

Moreover,	you	can	anticipate	the	need	for	past	or	future	relative	periods	and	implement	sets
such	as	[Next	month],	[1-30	days	ahead],	[31-60	days	ahead],	and	so	on.

In	the	case	of	role-playing	dimensions,	you	can	build	independent	sets	for	each	role-playing
dimension,	that	is,	[Today]	and	[Due	Today]	sets,	each	pointing	to	today's	system	date	in	its
own	dimension	(and	hierarchy).

Note
WOW! eBook

www.wowebook.org

http://tinyurl.com/FormulaCacheChris

A	role-playing	dimension	is	a	dimension	that	is	used	in	a	cube	more	than	one	time,	each	time
for	a	different	purpose.	For	example,	you	have	a	Date	dimension,	and	you	want	to	link	it	to	a
measure	group	three	times	to	track	the	date	that	products	are	ordered,	shipped,	and	received.
Each	role-playing	dimension	is	joined	to	a	fact	table	on	a	different	foreign	key.

Potential	problems

Sets	have	many	features	that	calculated	members	do	not	have.	The	ideal	solution	would	be	to
construct	the	Today	set,	defining	other	relative	periods	as	sets	relative	to	the	Today	set.
However,	some	SSAS	frontend	tools	have	problems	working	with	sets.	For	example,	you
cannot	put	a	named	set	on	filters	in	an	Excel	2007	or	Excel	2010	PivotTable.	If	that's	the	case,
you	must	be	ready	to	make	compromises	by	defining	today's	date	instead	as	a	calculated
member,	as	explained	earlier.	You	might	also	read	the	following	recipes	to	find	alternative
solutions.

WOW! eBook
www.wowebook.org

See	also
The	Calculating	today's	date	using	the	MemberValue	function	and	Calculating	today's
date	using	an	attribute	hierarchy	recipes	provide	an	alternative	solution	to	calculating
today's	date.	You	should	read	all	of	them	in	order	to	understand	the	pros	and	cons	of	each
approach.

WOW! eBook
www.wowebook.org

Calculating	today's	date	using	the
MemberValue	function
The	second	way	to	calculate	today's	date	is	by	using	the	MemberValue()	function.	This	is
something	we've	already	used	in	the	Finding	the	last	date	with	data	recipe.	In	case	you	haven't
read	it	yet,	do	so	before	continuing	with	this	recipe,	at	least	the	part	that	shows	the
ValueColumn	property.

WOW! eBook
www.wowebook.org

Getting	ready
Open	SQL	Server	Data	Tools	(SSDT)	and	then	open	theAdventure	Works	DW	2016	solution.
Double-click	on	the	Date	dimension	found	in	the	Solution	Explorer.	Select	the	Date	attribute
and	locate	the	ValueColumn	property.	It	should	not	be	empty;	otherwise	this	recipe	won't	work.
It	should	have	the	Date	type	column	from	the	underlying	time	dimension	table.

WOW! eBook
www.wowebook.org

How	to	do	it...
Follow	these	steps	to	calculate	today's	date	using	the	MemberValue	function:

1.	 Write	and	execute	the	following	query	in	SQL	Server	Management	Studio	connected	to
the	same	cube	mentioned	earlier:

						WITH	

						MEMBER	[Measures].[Caption	for	Today]	AS	

									Format(Now(),	'MMMM	dd,	yyyy')	

						MEMBER	[Measures].[Member	Value]	AS	

									[Date].[Calendar].CurrentMember.MemberValue	

						MEMBER	[Measures].[MV	for	Today]	AS	

									Format(Now(),	'M/d/yyyy')	

						MEMBER	[Measures].[MV	for	Today	(AW)]	AS	

									CDate(Left([Measures].[MV	for	Today],	

																						Len([Measures].[MV	for	Today])	-	4)	+	'2013'	

)	

						SET	[Today]	AS	

									Filter([Date].[Calendar].[Date].MEMBERS,	

																	[Measures].[Member	Value]	=		

																	[Measures].[MV	for	Today	(AW)])	

						SELECT	

									{	[Measures].[Caption	for	Today],	

											[Measures].[Member	Value],	

											[Measures].[MV	for	Today],	

											[Measures].[MV	for	Today	(AW)]	}	ON	0,	

									{	[Date].[Calendar].[Date].MEMBERS	}	ON	1	

						FROM	

								[Adventure	Works]	

2.	 Then	use	this	query	to	test	the	Today	set:

						WITH	

						MEMBER	[Measures].[Member	Value]	AS	

									[Date].[Calendar].CurrentMember.MemberValue	

						MEMBER	[Measures].[MV	for	Today]	AS	

									Format(Now(),	'M/d/yyyy')	

						MEMBER	[Measures].[MV	for	Today	(AW)]	AS	

									CDate(Left([Measures].[MV	for	Today],	

																						Len([Measures].[MV	for	Today])	-	4)	+	'2013'	

)	

						SET	[Today]	AS	

									Filter([Date].[Calendar].[Date].MEMBERS,	

																	[Measures].[Member	Value]	=		

																	[Measures].[MV	for	Today	(AW)])	

						SELECT	

									{	[Measures].[Member	Value],	

											[Measures].[MV	for	Today],	

											[Measures].[MV	for	Today	(AW)]	}	ON	0,	

									{	[Today]	}	ON	1	

						FROM	

								[Adventure	Works]	

3.	 The	result	should	contain	only	a	single	row	with	today's	date:

WOW! eBook
www.wowebook.org

WOW! eBook
www.wowebook.org

How	it	works...
The	first	query	is	used	to	build	the	Today	set	in	a	step-by-step	fashion.	The	first	measure
Caption	for	Today	is	used	for	testing	the	behavior	of	various	date	part	tokens.	The	next
measure	Member	Value	is	used	to	extract	the	MemberValue	from	each	date	found	on	the	rows
and	is	later	used	in	the	Today's	set	definition.	The	third	measure,	MV	for	Today,	is	the	main
measure.	Its	definition	is	obtained	by	deducing	the	correct	format	for	the	MemberValue,	from
the	observations	made	by	analyzing	the	values	in	the	previous	measure	Member	Value.	The
step-by-step	process	is	explained	in	the	previous	recipe,	Calculating	today's	date	using	the
string	functions.

As	the	Adventure	Works	solution	doesn't	have	the	current	date,	we're	forced	to	shift	it	to	the
year	2013.	The	day	and	month	stay	the	same.	This	is	implemented	in	the	fourth	measure:	MV
for	Today	(AW).	Finally,	the	Today	set	is	defined	using	a	Filter()	function,	which	returns
only	one	member,	the	one	where	the	MemberValue	is	equal	to	the	MV	for	Today	(AW)
measure's	value.

The	second	query	is	here	to	verify	the	result.	It	consists	of	three	measures	relevant	to	the	set's
condition	and	the	Today	set	itself.

WOW! eBook
www.wowebook.org

There's	more...
The	Calculating	today's	date	using	the	string	functions	recipe	explains	how	to	enhance	the
cube	design	by	adding	relative	periods	in	the	form	of	additional	sets.	Look	for	the	related
periods	section	of	that	recipe,	which	is	also	applicable	to	this	recipe.

Using	the	ValueColumn	property	in	the	Date	dimension

Many	SSAS	frontends	use	the	so-called	Time	Intelligence	implementation.	That	means	they
enable	the	use	of	special	MDX	functions,	such	as	YTD(),	ParallelPeriod(),	and	others	in
their	GUI.	The	availability	of	those	functions	is	often	determined	by	dimension	type	(has	to	be
of	the	type	Date)	and	by	the	existence	of	the	ValueColumn	property	typed	as	Date	on	the	key
attribute	of	the	dimension,	or	both.	Specifically,	Excel	2007	and	Excel	2010	look	for	the	latter.
Be	sure	to	check	those	things	when	you're	working	on	your	date	dimension.

Here's	a	link	to	the	document	which	explains	how	to	design	cubes	for	Excel:
http://tinyurl.com/DesignCubesForExcel.

WOW! eBook
www.wowebook.org

http://tinyurl.com/DesignCubesForExcel

See	also
Calculating	today's	date	using	the	string	functions	and	Calculating	today's	date	using	an
attribute	hierarchy	are	the	recipes	that	provide	an	alternative	solution	to	calculating
today's	date.	You	should	read	both	of	them	in	order	to	understand	the	pros	and	cons	of
each	approach.

WOW! eBook
www.wowebook.org

Calculating	today's	date	using	an	attribute
hierarchy
The	third	way	to	calculate	today's	date	is	by	using	an	attribute	hierarchy.	This	is	potentially	the
best	way.

Instead	of	all	the	complexity	with	sets,	strings,	and	other	things	in	the	previous	two	recipes,
here	we	simply	add	a	new	column	to	the	Date	table	and	have	the	ETL	maintain	a	flag	for
today's	date.	Then	we	slice	by	that	attribute	instead	of	using	the	Now()	function	in	MDX.	Plus,
we	don't	have	to	wait	to	switch	to	tomorrow	in	MDX	queries	until	the	ETL	completes	and	the
cube	is	processed.

WOW! eBook
www.wowebook.org

Getting	ready
Open	the	Adventure	Works	DW	2016	solution	in	SSDT.	Double-click	on	the	Adventure	Works
DW	data	source	view.	Locate	the	Date	dimension	in	the	left	Tables	pane	and	click	on	it.

WOW! eBook
www.wowebook.org

How	to	do	it...
Follow	these	steps	to	calculate	today's	date	using	an	attribute	hierarchy:

1.	 Right-click	on	the	Date	table	and	select	New	Named	Calculation.
2.	 Enter	Today	for	Column	Name	and	the	following	for	the	expression:

						case	when	convert(varchar(8),	FullDateAlternateKey,	112)	=		

																convert(varchar(8),	GetDate(),	112)	

											then	'Yes'	

											else	'No'	

						end	

3.	 Close	the	dialog	and	explore	that	table.	No	record	will	have	Yes	in	the	last	column.
4.	 Since	we're	on	Adventure	Works,	which	doesn't	have	the	current	date,	we	have	to	adjust

the	calculation	by	shifting	it	to	the	year	2013.	Define	the	New	Named	Calculation	using
this	formula	and	name	it	Today	AW:

						case	when	convert(varchar(8),	FullDateAlternateKey,	112)	=		

															'2013'	+	

															right(convert(varchar(8),	GetDate(),	112),	4)	

											then	'Yes'	

											else	'No'	

						end	

5.	 Close	the	dialog	and	explore	that	table.	You	should	notice	that	this	time,	one	row	in	the
year	2013	has	Yes	in	the	last	column.	It	will	be	the	row	with	the	day	and	month	the	same
as	your	system's	day	and	month.

6.	 Save	and	close	data	source	view.
7.	 Double-click	on	the	Date	dimension	in	the	Solution	Explorer.
8.	 Drag	the	Today	AW	column	from	the	Date	dimension	table	to	the	list	of	attributes	on	the

left	side.	Leave	the	relation	to	the	key	attribute	as	it	is	flexible.	This	will	be	the	only
attribute	of	that	kind	in	this	dimension.	All	others	should	be	rigid.

9.	 Save,	deploy,	and	process	the	full	Date	dimension.
10.	 Double-click	on	the	Adventure	Works	cube	in	the	Solution	Explorer,	navigate	to	the

Browser	tab,	and	click	on	a	button	to	process	the	cube.
11.	 Once	it	is	processed,	click	on	the	Reconnect	button	and	drag	the	Internet	Sales	Amount

measure	in	the	data	part	of	the	browser.
12.	 Add	the	[Date].[Calendar]	hierarchy	onto	the	rows	and	expand	it	a	few	times.	Notice

that	all	the	dates	are	here.
13.	 Add	the	[Date].[Today	AW]	hierarchy	into	the	slicer	and	uncheck	the	No	member	in	it.

Notice	that	the	result	contains	only	the	current	date.	You	can	do	the	same	using	any	other
hierarchy	of	the	Date	dimension;	all	will	be	sliced	by	our	new	attribute.

WOW! eBook
www.wowebook.org

How	it	works...
This	recipe	depends	on	the	fact	that	SSAS	implements	the	so-called	auto-exists	algorithm.
The	main	characteristic	of	it	is	that	when	two	hierarchies	of	the	same	dimension	are	found	in
the	query,	the	one	in	the	slicer	automatically	reduces	the	other	on	the	axis	so	that	only	some	of
the	members	remain	there,	those	for	which	an	intersection	exists.

In	other	words,	if	we	put	the	Yes	member	into	the	slicer,	as	we	did	a	moment	ago,	only	those
years,	months,	quarters,	days	in	the	week,	and	so	on,	that	are	valid	for	today's	date	remain,
meaning	the	current	year,	month,	day	in	the	week,	and	so	on.	Only	one	member	from	each
hierarchy	will	remain.

The	same	query	will	give	different	results	each	day.	That	is	exactly	what	we	wanted	to	achieve.
The	usage	is	fairly	simple—dragging	the	Yes	member	into	the	slicer,	which	should	be
possible	in	any	SSAS	frontend.

The	beauty	of	this	solution	lies	not	only	in	the	elegance	of	creating	queries,	but	in	the	fact	that
it	is	the	fastest	method	for	implementing	the	logic	for	today's	date.	Attribute	relations	offer
better	performance	than	string-handling	functions	and	filtering.

WOW! eBook
www.wowebook.org

There's	more...
The	solution	doesn't	have	to	stop	with	the	[Date].[Today	AW]	hierarchy.	We	can	add	Today	as
a	set	in	the	MDX	script.	This	time,	however,	we'll	have	to	use	the	Exists()	function	in	order
to	get	the	related	members	of	other	hierarchies.	Later	on,	we	can	use	navigational	functions	to
take	the	right	part	of	the	hierarchy.

For	example,	Today	should	be	defined	as	follows:

SET	[Today]	AS	

			Exists([Date].[Calendar].[Date].MEMBERS,	

											[Date].[Today	AW].&[Yes])	

Once	we	have	the	Today	named	set,	other	variants	are	easy	to	derive	from	it.	We've	covered
some	of	them	in	the	Calculating	today's	date	using	the	string	functions	recipe.

However,	be	aware	that	named	sets,	when	used	inside	aggregating	functions	such	as	Sum()
function	and	others,	will	prevent	the	use	of	block	evaluation.	Here's	a	link	to	the	page	that
talks	about	which	things	are	improved	and	which	aren't	in	SQL	Server	2008	R2	Analysis
Services:	http://tinyurl.com/Improved2008R2	.

The	Yes	member	as	a	default	member?

Short	and	simple	-	DON'T!	This	might	cause	problems	when	other	hierarchies	of	the	Date
dimension	are	used	in	the	slicer.	That	is,	users	of	your	cube	might	accidentally	force	a
coordinate	which	does	not	exist.

For	example,	if	they	decide	to	put	January	in	the	slicer	when	the	default	Yes	member	implies
the	current	quarter	is	not	Q1,	but	let's	say	Q4,	they'll	get	an	empty	result	without	understanding
what	happened	and	why.

A	solution	exists,	though.	In	such	cases,	they	should	add	the	All	member	of	the	[Date].
[Today	AW]	hierarchy	in	the	slicer	as	well,	to	remove	restrictions	imposed	by	the	default
member.	The	question	is—will	you	be	able	to	explain	that	to	your	users?

A	better	way	is	to	instruct	them	to	explicitly	put	the	Yes	member	in	the	slicer	whenever
required.	Yes,	that's	extra	work	for	them,	but	this	way	they	will	have	control	over	the	context
and	not	be	surprised	by	it.

Other	approaches

There	is	another	method	and	that	is	using	many-to-many	relationships.	The	advantage	of
doing	this	over	creating	new	attributes	on	the	same	dimension	is	that	we	only	expose	a	single
new	hierarchy,	even	if	it	is	on	a	new	dimension.

WOW! eBook
www.wowebook.org

http://tinyurl.com/Improved2008R2

See	also
The	Calculating	today's	date	using	the	string	functions	and	Calculating	today's	date
using	the	MemberValue	function	recipes	are	the	ones	which	provide	an	alternative
solution	to	calculating	today's	date.	You	should	read	both	of	them	in	order	to	understand
the	pros	and	cons	of	each	approach.

WOW! eBook
www.wowebook.org

Calculating	the	difference	between	two	dates
This	recipe	shows	how	to	calculate	the	difference	between	two	dates.	We	are	going	to	use
promotions	as	an	example,	and	calculate	the	time	span	of	a	promotion,	from	the	start	date	to
the	end	date.

WOW! eBook
www.wowebook.org

Getting	ready
Start	SQL	Server	Management	Studio	and	connect	to	your	SSAS	2016	instance.	Click	on	the
New	Query	button	and	check	that	the	target	database	is	Adventure	Works	DW	2016.	Then
execute	the	following	query:

SELECT	

			{	[Measures].[Reseller	Order	Count]	}	ON	0,	

			{	[Promotion].[Start	Date].[Start	Date].MEMBERS	*	

					[Promotion].[End	Date].[End	Date].MEMBERS	}	ON	1							

FROM	

			[Adventure	Works]	

WHERE	

			([Promotion].[Promotion	Type].&[Discontinued	Product])	

The	query	shows	that	the	Discontinued	Product	promotion	appeared	twice	with	various	time
spans.	Our	task	is	to	calculate	how	many	days	it	lasted	each	time.

WOW! eBook
www.wowebook.org

How	to	do	it...
Follow	these	steps	to	calculate	the	difference	between	two	dates:

1.	 Add	the	WITH	part	of	the	query.
2.	 Define	two	calculated	measures	that	are	going	to	collect	the	ValueColumn	property	of	the

Start	Date	and	End	Date	hierarchies	of	the	Promotion	dimension.
3.	 Define	the	third	calculated	measure	as	Number	of	days	using	the	VBA	DateDiff()

function	and	the	two	helper-calculated	measures	defined	a	moment	ago.	Be	sure	to
increase	the	second	date	by	one	in	order	to	calculate	the	duration,	meaning	that	both	start
and	end	dates	will	count.

4.	 Include	all	three	calculated	measures	on	the	columns	and	run	the	query,	which	should
look	like	the	following:

						WITH	

						MEMBER	[Measures].[Start	Date]	AS	

									[Promotion].[Start	Date].CurrentMember.MemberValue	

						MEMBER	[Measures].[End	Date]	AS	

									[Promotion].[End	Date].CurrentMember.MemberValue	

						MEMBER	[Measures].[Number	of	days]	AS	

									DateDiff('d',	[Measures].[Start	Date],	

												[Measures].[End	Date]	+	1)	

						SELECT	

									{	[Measures].[Reseller	Order	Count],	

											[Measures].[Start	Date],	

											[Measures].[End	Date],	

											[Measures].[Number	of	days]	}	ON	0,	

									{	[Promotion].[Start	Date].[Start	Date].MEMBERS	*	

											[Promotion].[End	Date].[End	Date].MEMBERS	}	ON	1							

						FROM	

								[Adventure	Works]	

						WHERE	

									([Promotion].[Promotion	Type].&[Discontinued	Product])	

5.	 Check	your	result.	It	should	look	as	follows:

WOW! eBook
www.wowebook.org

How	it	works...
The	DateDiff()	is	a	VBA	function.	It	can	also	be	found	in	T-SQL.	What	we	have	to	do	is
specify	the	time	interval	in	which	we	would	like	the	difference	to	be	expressed.	In	our	case,
we	used	the	d	token	which	corresponds	to	the	day	interval.

The	duration	is	calculated	as	a	difference	plus	one	because	both	boundaries	must	be	included.
In	the	second	row,	it's	easy	to	see	that	the	31	days	in	May	and	30	days	in	June	must	equal	61.

WOW! eBook
www.wowebook.org

There's	more...
The	DateDiff()	function	expects	the	date	type	items	as	its	second	and	third	arguments.
Luckily,	we	had	exactly	the	required	type	in	the	ValueColumn	property.	This	can	be	checked	by
opening	SSDT	and	analyzing	the	Start	Date	and	End	Date	hierarchy	on	the	Promotion
dimension.	If	it	weren't	the	case,	we	would	have	to	convert	them	into	the	Date	type	and	use
them	in	the	DateDiff()	function.	Here	are	a	couple	of	working	examples	using	a	VBA
function	CDate()	to	convert	a	valid	date	expression	into	a	Date	type:

			CDate('2016-06-28')	

	

			CDate([Promotion].[Start	Date].CurrentMember.Name)	

Dates	in	other	scenarios

The	example	in	this	recipe	highlighted	a	case	where	the	two	dates	were	found	on	two	different
hierarchies.	That	will	not	always	be	so.	There	will	be	situations	when	you'll	only	have	a	single
date	hierarchy	or	no	dates	at	all.

There	are	two	ways	to	get	those	dates.	You	can	calculate	them	in	the	form	of	two	measures	as
we	did	in	this	recipe	or	locate	them	on	the	Date	hierarchy	of	your	Date	dimension.

The	example	illustrated	in	this	recipe	used	the	DateDiff()	function,	a	good	fit	for	the
approach	with	measures	since	the	two	dates	are	from	two	different	hierarchies.	We	should
convert	the	value	of	measures	(or	expressions)	to	an	appropriate	date	type	(if	it	isn't	already
so),	because	the	DateDiff()	function	requires	dates.

The	other	approach	is	to	locate	the	dates	on	one	single	Date	hierarchy.	For	example,	you	can
calculate	the	number	of	consecutive	days	with	no	change	in	quantity	of	products	in	the
warehouse	by	locating	a	range	of	members	on	the	Date	hierarchy.

In	that	case,	there	is	no	need	for	the	DateDiff()	function.	Simply	form	a	range	of	members
by	employing	the	range-based	shortcut,	specifying	the	first	date	followed	by	a	colon	and	then
the	second	date.	Finally,	count	the	members	in	that	set	using	the	Count()	function.	Here	is	a
working	example	of	using	the	range-based	shortcut	and	the	Count()	function:

Count([Date].[Date].&[20130101]:[Date].[Date].&[20130301])	

Actually,	the	use	of	the	Count()	function	might	turn	off	block	computation,	so	use	its	Sum()
alternative:

Sum({<member1>	:	<member2>	},	1)	

Here,	<member1>	and	<member2>	are	placeholders	for	the	range.

This	will	give	you	the	same	count	of	members	in	that	range,	but	the	Sum()	function	is
optimized	to	work	in	block	mode	while	Count()	over	a	range	is	not.

WOW! eBook
www.wowebook.org

When	the	members	in	that	range	are	dates	(which	will	typically	be	so),	counting	them	will
return	the	duration	in	days.	If	you	need	a	different	granularity	(let's	say	the	number	of	weeks,
hours,	or	minutes),	simply	multiply	the	duration	in	days	with	the	appropriate	factor	(1/7,	24,
or	24*60,	respectively).	Additionally,	for	the	DateDiff()	function,	you	can	provide	the
appropriate	first	argument.	See	here	for	options:	http://tinyurl.com/DateDiffExcel	.

The	problem	of	non-consecutive	dates

A	problem	will	arise	if	dates	are	not	consecutive,	that	is,	if	some	of	them	are	missing	in	your
Date	dimension.	Here	we	are	referring	to	weekends,	holidays,	and	others	which	are
sometimes	left	out	of	the	date	dimension	guided	by	the	thinking	that	there	is	no	data	in	them,
so	why	include	them	in	the	dimension?	You	should	know	that	such	a	design	is	not
recommended	and	the	solution	provided	in	this	recipe	will	not	work.	Moreover,	this	will	not
be	the	only	problem	you'll	encounter	with	this	bad	design.	Therefore,	consider	redesigning
your	date	dimension	or	look	for	alternative	solutions	listed	in	the	See	also	section	of	this
recipe.

Tip

Days	such	as	weekends	and	holidays	might	not	have	data	in	them.	However,	leaving	them	out
in	the	Date	dimension	is	not	recommended.

WOW! eBook
www.wowebook.org

http://tinyurl.com/DateDiffExcel

See	also
When	the	dates	are	close	to	one	another,	you	might	want	to	calculate	the	time	difference
instead.	This	is	described	in	the	following	recipe,	Calculating	the	difference	between	two
times.

WOW! eBook
www.wowebook.org

Calculating	the	difference	between	two	times
This	recipe	is	similar	to	the	previous	one,	but	here	we	will	show	how	to	calculate	the
difference	in	time	and	format	the	duration	appropriately.

By	time,	we	mean	everything	on	and	beneath	the	day	granularity.	What	is	specific	about	time
is	that	all	periods	are	proportionally	divided.	A	day	has	24	hours,	an	hour	has	60	minutes,	and
a	minute	has	60	seconds.	On	the	other	hand,	the	above-day	granularity	is	irregular	days	in	a
month	vary	throughout	the	year,	and	days	in	the	year	vary	on	leap	years.

The	nice	thing	about	having	proportional	periods	is	that	we	can	present	the	result	in	various
units.	For	example,	we	can	say	that	an	event	lasted	for	48	hours,	but	we	can	also	say	2	days.
On	the	other	hand,	we	can	say	2	days,	but	we	cannot	say	0.06	months	because	a	month	is	not	a
constant	unit	of	time.

This	ability	to	format	time	duration	in	various	units	will	be	demonstrated	in	the	following
example	as	well.

WOW! eBook
www.wowebook.org

Getting	ready
The	Adventure	Works	database	does	not	contain	any	attribute	or	measure	that	has	hours,
minutes,	or	seconds.	Hence,	we	will	create	two	calculated	measures,	one	representing	the	start
and	the	other	representing	the	end	of	an	event.	Here	are	those	measures:

WITH	

MEMBER	[Measures].[Start	Time]	AS	

			CDate('2013-09-18	00:40:00')	

MEMBER	[Measures].[End	Time]	AS	

			CDate('2013-09-21	10:27:00')	

SELECT	

			{	}	ON	0	

FROM	

			[Adventure	Works]	

WOW! eBook
www.wowebook.org

How	to	do	it...
Follow	these	steps	to	calculate	the	difference	between	two	times:

1.	 Define	a	new	calculated	measure	as	a	difference	of	two	initial	measures	introduced
earlier	and	name	it	Duration	in	days.

2.	 Put	that	new	measure	on	axis	0	as	a	single	measure	and	run	the	query,	which	should	look
as	follows:

						WITH	

						MEMBER	[Measures].[Start	Time]	AS	

									CDate('2013-09-18	00:40:00')	

						MEMBER	[Measures].[End	Time]	AS	

									CDate('2013-09-21	10:27:00')	

						MEMBER	[Measures].[Duration	in	days]	AS	

									[Measures].[End	Time]	-	[Measures].[Start	Time]	

						SELECT	

									{	[Measures].[Duration	in	days]	}	ON	0	

						FROM	

								[Adventure	Works]	

3.	 The	result	represents	the	number	of	days	between	those	two	events.

WOW! eBook
www.wowebook.org

How	it	works...
Each	event	has	a	starting	point	and	an	ending	point.	If	those	points	in	time	are	represented	as
dates,	being	the	date	type,	then	we	can	apply	the	simple	operation	of	subtraction	in	order	to
get	the	duration	of	that	event.	In	case	those	were	not	date	type	points,	we	should	convert	them
into	the	date	format,	as	shown	in	this	example	(string	to	date	conversion	using	the	CDate()
VBA	function).

WOW! eBook
www.wowebook.org

There's	more...
It	is	possible	to	shift	the	result	into	another	time	unit.	For	example,	we	can	calculate	the
duration	in	hours	by	multiplying	the	initial	expression	with	the	number	of	hours	in	a	day:

MEMBER	[Measures].[Duration	in	hours]	AS	

			([Measures].[End	Time]	-	[Measures].[Start	Time])	*	24	

			,	FORMAT_STRING	=	'#,##0.0'	

Add	this	member	into	the	initial	query	and	observe	the	results.

Likewise,	we	can	get	the	duration	in	minutes	and	seconds	if	required.	Multiplications	are	by
60	and	3,600,	respectively,	in	addition	to	the	24	already	there	for	the	number	of	hours.

Formatting	the	duration

Duration	values	can	be	formatted.	Here's	an	example	that	shows	how	the	original	Duration
in	days	calculation	can	be	formatted	so	that	the	decimal	part	becomes	displayed	in	a	well-
understood	hh:mm:ss	format,	where	hh	stands	for	hours,	mm	for	minutes,	and	ss	for	seconds:

MEMBER	[Measures].[My	Format]	AS	

			iif([Measures].[Duration	in	days]	>	1,	

								CStr(Int([Measures].[Duration	in	days]))	+	

	'"		"',	'"0		"')	

			+	'hh:mm:ss'	

	

MEMBER	[Measures].[Duration	d		hh:mm:ss]	AS	

			([Measures].[End	Time]	-	[Measures].[Start	Time])	

			,	FORMAT_STRING	=	[Measures].[My	Format]	

Add	this	member	into	the	initial	query	and	observe	the	results.

Here	is	the	screenshot	showing	all	three	calculated	measures:

Notice	that	we	have	wrapped	the	expression	for	FORMAT_STRING	in	a	separate	calculated
measure	My	Format.	The	reason	for	this	is	to	improve	the	performance	through	caching.	Only
cell	values	are	cached;	expressions	on	the	FORMAT_STRING	are	not	cached.	That	is	why	it	pays
off	to	define	them	in	separate	measures.

Examples	of	formatting	the	duration	on	the	Web

Here	are	a	couple	of	links	with	good	examples	of	formatting	the	duration	on	the	Web:
http://tinyurl.com/FormatDurationMosha

WOW! eBook
www.wowebook.org

http://tinyurl.com/FormatDurationMosha

http://tinyurl.com/FormatDurationVidas

Counting	working	days	only

In	case	you	are	interested	in	counting	working	days	only,	Marco	Russo,	one	of	the	reviewers
of	this	book,	presented	his	approach	to	this	problem	in	his	blog	post:
http://tinyurl.com/WorkingDaysMarco.

WOW! eBook
www.wowebook.org

http://tinyurl.com/FormatDurationVidas
http://tinyurl.com/WorkingDaysMarco

See	also
When	the	dates	are	far	from	each	other,	you	might	want	to	calculate	the	date	difference
instead.	This	is	described	in	the	previous	recipe,	Calculating	the	difference	between	two
dates.

WOW! eBook
www.wowebook.org

Calculating	parallel	periods	for	multiple	dates
in	a	set
In	the	Calculating	the	year-over-year	(YoY)	growth	(parallel	periods)	recipe,	we	have	shown
how	the	ParallelPeriod()	function	works	and	how	it	can	be	used	to	calculate	the	YoY
growth.	All	we	had	to	do	is	specify	a	member,	ancestor's	level,	and	an	offset,	and	the	parallel
member	was	returned	as	a	result.

Online	Analytical	Processing	(OLAP)	works	in	discrete	space	and	therefore	many	functions,
ParallelPeriod()	included,	expect	a	single	member	as	their	argument.	On	the	other	hand,
relational	reports	are	almost	always	designed	using	a	date	range,	with	Date1	and	Date2
parameters	for	many	relational	reports.	As	the	relational	reporting	has	a	longer	tradition	than
the	multidimensional,	people	are	used	to	thinking	in	ranges.	They	expect	many
multidimensional	reports	to	follow	the	same	logic.	However,	operating	on	a	range	is	neither
easy	nor	efficient.	A	cube	designed	with	best	practices	can	help,	by	eliminating	the	need	for
ranges	and	increasing	the	performance	of	the	cube.	A	well-designed	cube	should	have	various
attributes	on	the	time	dimension:	months,	weeks,	quarters,	and	so	on.	They	should	cover
common	ranges	and	should	be	used	instead	of	a	range	of	random	dates.

However,	there	are	times	when	the	cube	design	cannot	cover	all	the	combinations	and	the
request	for	reports	to	operate	on	a	range	is	quite	legitimate.	The	question	arises—can	we	do
the	same	in	OLAP	as	in	relational	reporting?	Can	we	calculate	the	growth	based	on	a	range	of
members	and	not	just	a	single	member?

Yes,	we	can.	The	solution	in	MDX	exists.	This	recipe	shows	how	to	calculate	parallel	periods
with	multiple	dates	defined	as	a	set.	The	next	recipe	shows	how	to	deal	with	a	more	complex
case—when	dates	are	present	in	the	slicer.

WOW! eBook
www.wowebook.org

Getting	ready
We	are	going	to	make	a	simple	query.	We	will	analyze	sales	by	colors	for	a	date	range	that
starts	in	December	and	ends	just	before	Christmas.	We	would	like	to	analyze	how	we	are
doing	in	respect	to	the	previous	year,	for	the	same	period.

Start	SQL	Server	Management	Studio	and	connect	to	your	SSAS	2016	instance.	Click	on	the
New	Query	button	and	check	that	the	target	database	is	Adventure	Works	DW	2016.	Then
execute	the	following	query:

WITH	

MEMBER	[Internet	Sales	CP]	AS	

			Sum({	[Date].[Calendar].[Date].&[20131201]	:	

										[Date].[Calendar].[Date].&[20131224]	},		

								[Measures].[Internet	Sales	Amount])										

SELECT	

			{	[Internet	Sales	CP]	}	ON	0,	

			{	[Product].[Color].MEMBERS	}	ON	1	

FROM	

			[Adventure	Works]	

The	query	has	a	date	range.	The	aggregate	of	that	range	in	the	form	of	a	sum	is	calculated	in	a
calculated	measure,	which	is	then	displayed	for	each	color,	and	the	total	is	included	as	the	first
row.	The	result	is	shown	in	the	following	screenshot:

The	calculated	measure	Internet	Sales	CP	tells	us	the	sales	for	each	product	color	during
December	just	before	Christmas	in	the	year	2013,	but	it	is	not	telling	us	how	much	better	or
worse	we	are	doing.	What	we	need	is	the	sales	during	the	same	December	date	range,	but	in
the	previous	year.	With	both	sales	during	the	same	date	range	in	two	different	years,	we	can
then	calculate	the	YoY	percent	values.

In	the	Calculating	the	year-over-year	(YoY)	growth	(parallel	periods)	recipe	in	this	chapter,	we
have	learned	about	the	ParallelPeriod()	function.	Our	first	attempt	would	be	to	write	an

WOW! eBook
www.wowebook.org

expression	such	as:

											(ParallelPeriod([Date].[Calendar].[Calendar	Year],	

																													1,		

																													[Date].[Calendar].CurrentMember),	

												[Measures].[Internet	Sales	Amount])	

This	expression	will	only	give	us	the	sales	for	one	date	at	a	time.	However,	we	have	more
than	just	one	date.	Our	challenge	in	this	recipe	is	to	sum	up	the	sales	during	all	the	dates	in	the
previous	year.

WOW! eBook
www.wowebook.org

How	to	do	it...
Follow	these	steps	to	calculate	parallel	periods	for	multiple	dates	in	a	set:

1.	 Define	a	new	calculated	measure,	which	returns	the	value	for	the	same	period,	but	in	the
previous	year.	Name	it	Internet	Sales	PP,	where	PP	stands	for	parallel	period.	The
expression	should	look	as	follows:

						MEMBER	[Internet	Sales	PP]	As	

									Sum({	[Date].[Calendar].[Date].&[20131201]	:	

															[Date].[Calendar].[Date].&[20131224]	},	

															(ParallelPeriod([Date].[Calendar].[Calendar	Year],	

																																	1,		

																																	[Date].[Calendar].CurrentMember),	

													[Measures].[Internet	Sales	Amount])	

)	

									,	FORMAT_STRING	=	'Currency'	

2.	 Define	another	measure,	Internet	Sales	YoY	%,	as	a	ratio	of	the	PP	measure	over	the	CP
measure.	The	expression	should	be	as	follows:

						MEMBER	[Internet	Sales	YoY	%]	As	

									iif([Internet	Sales	PP]	=	0,	null,	

														([Internet	Sales	CP]	/	[Internet	Sales	PP]))	

									,	FORMAT_STRING	=	'Percent'							

3.	 Add	both	calculated	measures	to	the	query	and	execute	it.	The	query	should	look	as
follows:

						WITH	

						MEMBER	[Internet	Sales	CP]	AS	

									Sum({	[Date].[Calendar].[Date].&[20131201]	:	

																[Date].[Calendar].[Date].&[20131224]	},	

														[Measures].[Internet	Sales	Amount])	

						MEMBER	[Internet	Sales	PP]	As	

									Sum({	[Date].[Calendar].[Date].&[20131201]	:	

															[Date].[Calendar].[Date].&[20131224]	},	

															(ParallelPeriod([Date].[Calendar].[Calendar	Year],	

																																	1,		

																																	[Date].[Calendar].CurrentMember),	

													[Measures].[Internet	Sales	Amount])	

)	

									,	FORMAT_STRING	=	'Currency'	

						MEMBER	[Internet	Sales	YoY	%]	As	

									iif([Internet	Sales	PP]	=	0,	null,	

														([Internet	Sales	CP]	/	[Internet	Sales	PP]))	

									,	FORMAT_STRING	=	'Percent'							

						SELECT	

									{	[Internet	Sales	PP],	

											[Internet	Sales	CP],				

											[Internet	Sales	YoY	%]	}	ON	0,	

									{	[Product].[Color].MEMBERS	}	ON	1	

						FROM	

								[Adventure	Works]	

WOW! eBook
www.wowebook.org

4.	 The	results	show	that	three	colors	had	better	results	than	before,	one	had	worse	(red),	but
the	overall	result	is	almost	three	times	better.	There	were	also	four	new	colors	in	the
current	season:

WOW! eBook
www.wowebook.org

How	it	works...
In	order	to	calculate	the	parallel	period's	value	for	a	set	of	members	(a	range	in	this	example),
we	apply	the	same	principle	we	use	when	calculating	the	value	for	the	current	season,
summarizing	the	value	of	a	measure	on	that	range	by	using	the	Sum()	function.

The	Sum()	function	takes	a	set	expression	and	a	numeric	expression.	The	calculation	for	the
previous	season	differs	only	in	the	numeric	expression.	There,	we	no	longer	use	a
measure,	[Internet	Sales	Amount],	but	instead	a	tuple.	That	tuple	is	formed	using	the
original	measure,	[Internet	Sales	Amount]	combined	with	the	parallel	period's	member.	In
other	words,	we	are	reaching	for	the	value	in	another	coordinate	and	summing	up	those
values.

The	calculation	for	the	YoY	%	ratio	is	very	straightforward.	We	check	the	division	by	zero	and
specify	the	appropriate	format	string.

WOW! eBook
www.wowebook.org

There's	more...
The	other	approach	is	to	calculate	another	set,	the	previous	season's	range,	and	then	apply	the
Sum()	function.	Here's	the	required	expression:

MEMBER	[Internet	Sales	PP]	As	

			Sum(

								Generate(

												{	[Date].[Calendar].[Date].&[20071201]	:	

														[Date].[Calendar].[Date].&[20071224]	},	

												{	ParallelPeriod([Date].[Calendar]	

																																				.[Calendar	Year],	

																														1,		

																														[Date].[Calendar]	

																																				.CurrentMember.Item(0))	

												}),	

								[Measures].[Internet	Sales	Amount])	

Here,	we	are	iterating	on	the	old	set	using	the	Generate()	function	in	order	to	shift	each
member	of	that	set	to	its	parallel	member.

Note	that	we	deliberately	skipped	defining	any	named	sets	for	this	scenario,	because	when
they	are	used	inside	aggregating	functions	such	as	Sum(),	they	prevent	the	block	evaluation.
We	should	put	the	sets	instead	of	named	sets	inside	those	functions.

One	more	thing:	for	measures	with	non-linear	aggregation	functions	(that	is,	the	Distinct
Count),	the	Aggregate()	function	should	be	used	instead	of	Sum().

Parameters

The	set	of	dates	defined	as	a	range	can	often	be	parameterized	as	follows:

			{	StrToMember(@Date1,	CONSTRAINED)	:	

					StrToMember(@Date2,	CONSTRAINED)	}	

This	way,	the	query	(or	SSRS	report)	becomes	equivalent	to	its	relational	reporting
counterpart.

Reporting	covered	by	design

We	mentioned	in	the	introduction	to	this	recipe	that	it	is	often	possible	to	improve	the
performance	of	the	queries	operating	on	a	range	of	members	by	modifying	the	cube	design.
How	it's	done	is	explained	in	more	detail	in	the	Using	a	new	attribute	to	separate	members	on
a	level	recipe	in	Chapter	8	,	When	MDX	Is	Not	Enough.

WOW! eBook
www.wowebook.org

See	also
The	Calculating	the	year-over-year	(YoY)	growth	(parallel	periods)	and	Calculating
parallel	periods	for	multiple	dates	in	a	slicer	recipes	deal	with	a	similar	topic
The	Generate()	function,	very	useful	here,	is	also	covered	in	the	Iterating	on	a	set	in
order	to	create	a	new	one	recipe	in	Chapter	2,	Working	with	Sets

WOW! eBook
www.wowebook.org

Calculating	parallel	periods	for	multiple	dates
in	a	slicer
In	the	Calculating	the	year-over-year	(YoY)	growth	(parallel	periods)	recipe,	we	have	shown
how	the	ParallelPeriod()	function	works	when	there	is	a	single	member	involved.	In
the	Calculating	parallel	periods	for	multiple	dates	in	a	set	recipe,	we	have	shown	how	to	do
the	same,	but	on	a	range	of	members	defined	in	a	set.	This	recipe	presents	the	solution	to	a
special	case	when	the	set	of	members	is	found	in	a	slicer.

WOW! eBook
www.wowebook.org

Getting	ready
We	will	use	the	same	case	as	in	the	previous	recipe;	we	will	calculate	the	growth	in	the	pre-
Christmas	season	for	each	color	of	our	products.

Start	SQL	Server	Management	Studio	and	connect	to	your	SSAS	2016	instance.	Click	on	the
New	Query	button	and	check	that	the	target	database	is	Adventure	Works	DW	2016.	Then
execute	the	following	query:

SELECT	

			{	[Internet	Sales	Amount]	}	ON	0,	

			{	[Product].[Color].MEMBERS	}	ON	1	

FROM	

			[Adventure	Works]	

WHERE	

			({	[Date].[Calendar].[Date].&[20131201]	:	

							[Date].[Calendar].[Date].&[20131224]	})	

The	query	returns	the	value	of	the	Internet	Sales	Amount	for	each	color.	Notice	that	when
the	range	is	provided	in	the	slicer,	there's	no	need	to	define	new	calculated	measure	as	in	the
previous	recipe;	the	SSAS	engine	automatically	aggregates	each	measures	using	its
aggregation	function.	Because	of	that,	this	is	the	preferred	approach	for	implementing
multiselect,	although	it	is	rarely	found	in	SSAS	frontends.

WOW! eBook
www.wowebook.org

How	to	do	it...
Follow	these	steps	to	calculate	parallel	periods	for	multiple	dates	in	a	slicer:

1.	 Define	a	new	calculated	member.	Name	it	Internet	Sales	PP.	The	definition	for	it
should	be	the	sum	of	the	parallel	period's	values	on	existing	dates	of	the	Date.Calendar
hierarchy:

						MEMBER	[Internet	Sales	PP]	As	

									Sum(EXISTING	[Date].[Calendar].[Date].MEMBERS,	

														(ParallelPeriod([Date].[Calendar].[Calendar	Year],	

																																1,		

																																[Date	Range].Current.Item(0)),	

														[Measures].[Internet	Sales	Amount])	

)	

									,	FORMAT_STRING	=	'Currency'	

2.	 Add	another	calculated	measure.	Name	it	Internet	Sales	YoY	%	and	define	it	as	a	ratio
of	the	original	Internet	Sales	Amount	measure	over	the	Internet	Sales	PP	measure.
Be	sure	to	implement	a	test	for	division	by	zero.

3.	 Add	both	calculated	measures	on	the	columns	axis.
4.	 The	final	query	should	look	as	follows:

						WITH	

						MEMBER	[Internet	Sales	PP]	As	

									Sum(EXISTING	[Date].[Calendar].[Date].MEMBERS,	

								(ParallelPeriod([Date].[Calendar].[Calendar	Year],	

																										1,		

																										[Date].[Calendar].CurrentMember),	

								[Measures].[Internet	Sales	Amount])	

)	

			,	FORMAT_STRING	=	'Currency'	

						MEMBER	[Internet	Sales	YoY	%]	As	

									iif([Internet	Sales	PP]	=	0,	null,	

														([Measures].[Internet	Sales	Amount]	/	

																[Internet	Sales	PP]))	

									,	FORMAT_STRING	=	'Percent'							

						SELECT	

									{	[Internet	Sales	PP],	

											[Internet	Sales	Amount],				

											[Internet	Sales	YoY	%]	}	ON	0,	

									{	[Product].[Color].MEMBERS	}	ON	1	

						FROM	

								[Adventure	Works]	

						WHERE	

									({	[Date].[Calendar].[Date].&[20131201]	:	

													[Date].[Calendar].[Date].&[20131224]	})	

5.	 Execute	it	and	observe	the	results.	They	should	match	the	results	in	the	previous	recipe
because	the	same	date	range	was	used	in	both	recipes:

WOW! eBook
www.wowebook.org

WOW! eBook
www.wowebook.org

How	it	works...
For	the	purpose	of	the	comparison	between	the	solution	in	this	recipe	and	that	of	the	previous
recipe,	Calculating	parallel	periods	for	multiple	dates	in	a	set,	we	are	repeating	the	calculated
members	here:

--	Sum	up	the	sales	over	a	set	of	dates	from	previous	year	

MEMBER	[Internet	Sales	PP]	As	

			Sum({	[Date].[Calendar].[Date].&[20131201]	:	

										[Date].[Calendar].[Date].&[20131224]	},	

										(ParallelPeriod([Date].[Calendar].[Calendar	Year],	

																													1,		

																												[Date].[Calendar].CurrentMember),	

												[Measures].[Internet	Sales	Amount])	

)	

	

--	Sum	up	the	sales	over	a	set	of	dates	from	previous	year	

--	when	the	set	of	dates	for	the	current	year	is	on	the	slicer	

MEMBER	[Internet	Sales	PP]	As	

			Sum(EXISTING	[Date].[Calendar].[Date].MEMBERS,	

										(ParallelPeriod([Date].[Calendar].[Calendar	Year],	

																														1,		

																												[Date].[Calendar].CurrentMember),	

											[Measures].[Internet	Sales	Amount])	

)	

Note	that	the	only	difference	is	in	the	set	expression	for	the	Sum()	function.	To	detect	the
multiple	members,	or	a	set,	in	the	slicer,	we	have	to	use	the	EXISTING	keyword.	The	EXISTING
keyword	forces	the	specified	set,	that	is,	the	dates	on	the	Calendar	hierarchy	to	be	evaluated
within	the	current	contexts	in	the	slicer.	It	serves	the	purpose	of	collecting	all	the	members	on
the	leaf	level,	the	Date	level	in	this	case,	that	are	valid	for	the	current	context.	Since	the	slicer
is	the	part	of	a	query	that	establishes	the	context,	this	is	a	way	in	which	we	can	detect	a
currently	selected	range	of	members	(or	any	current	member	on	axes	in	general).

Once	we	know	the	dates	from	the	slicer,	we	can	use	that	range	to	sum	the	values	of	the
measure	in	the	parallel	period.

Finally,	the	YoY	%	ratio	is	calculated	using	both	measures,	Internet	Sales	Amount	and
Internet	Sales	PP.

WOW! eBook
www.wowebook.org

There's	more...
We	can	never	know	exactly	what	was	in	the	slicer,	only	see	the	shadow	of	it.	Let's	see	why.

There	are	two	MDX	functions	that	serve	the	purpose	of	identifying	members	in	the	context.
The	first	is	the	CurrentMember	function.	The	function	undoubtedly	identifies	single	members,
but	it	cannot	be	used	for	detecting	multiple	members	in	context.	That's	what	the	Existing
function	does.	However,	that	one	is	not	so	precise.	In	other	words,	each	of	them	has	their
purpose,	advantages,	and	disadvantages.

Suppose	the	slicer	contains	the	city	New	York,	a	member	of	the	Geography.Geography	user
hierarchy.	Using	the	CurrentMember	function,	we	can	immediately	identify	the	exact	member
of	that	hierarchy.	We	know	that	the	slicer	contains	New	York	city,	not	anything	above,	below,
left,	or	right.

However,	if	there's	also	the	United	Kingdom	country	member,	the	use	of	CurrentMember	is
inappropriate;	it	will	result	in	an	error.

In	that	case,	we	must	use	the	Existing	function.	That	function	detects	members	of	a	level,	not
the	hierarchy,	which	makes	it	less	precise.	If	used	on	the	Country	level,	it	will	return	United
States	and	United	Kingdom	although	United	States	wasn't	in	the	slicer,	but	one	of	its
descendants	New	York	city.	If	used	on	a	state-province	level,	it	will	return	New	York	and	all
the	children	of	the	UK	member.

The	following	screenshot	can	shed	more	light	on	it.	It	shows	the	members	New	York,	United
Kingdom,	United	States,	and	their	relative	positions;	the	different	levels	they	are	on:

WOW! eBook
www.wowebook.org

The	problem	with	this	is	that	we	never	know	exactly	which	members	there	were.	The	only
way	to	calculate	this	correctly	is	to	use	the	leaf	level	of	a	hierarchy	because	only	then	can	we
be	sure	that	our	calculation	is	correct.	This	can	have	a	serious	impact	on	the	performance;
leaf	level	calculations	are	slow	in	OLAP.

The	other	problem	with	detecting	the	context	is	that	neither	the	Existing	function	nor	the
CurrentMember	function	detects	what's	in	the	subselect	part	of	the	query.	That	is	not	a	problem
per	se,	because	both	the	slicer	and	the	subselect	have	their	purpose.	The	subselect	doesn't	set
the	context	and	so	there's	no	need	to	know	what	was	in	there.	However,	Excel	2007	and	2010
use	subselect	in	many	situations	where	the	slicer	should	be	used	instead	and	that	makes	many
calculations	useless	because	they	can't	detect	the	context	and	adjust	to	it.	Make	sure	to	test
calculations	in	your	client	tool	of	choice	to	see	whether	it	also	uses	unnecessary	subselects.

Here's	a	blog	post	by	Mosha	Pasumansky	that	shows	how	to	use	dynamically	named	sets	to
detect	the	contents	of	subselect:	http://tinyurl.com/MoshaSubselect	.

The	difference	between	them	comes	from	the	fact	that	the	original	period	can	be	present	in
various	places	within	an	MDX	query	and	that	there	are	one	or	more	dates	the	parallel	period
should	be	calculated	for.	Based	on	that,	an	appropriate	recipe	should	be	applied.	Therefore,	in
order	to	understand	and	memorize	the	differences	between	them,	it	is	suggested	that	you	read
all	of	the	recipes	dealing	with	parallel	periods.

WOW! eBook
www.wowebook.org

http://tinyurl.com/MoshaSubselect

See	also
The	Calculating	the	year-over-year	(YoY)	growth	(parallel	periods)	and	Calculating
parallel	periods	for	multiple	dates	in	a	set	recipes,	deal	with	a	similar	topic,	how	to
calculate	the	set	of	dates	in	a	parallel	period

WOW! eBook
www.wowebook.org

Chapter	4.	Concise	Reporting
In	this	chapter,	we	will	cover	the	following	recipes:

Isolating	the	best	N	members	in	a	set
Isolating	the	worst	N	members	in	a	set
Identifying	the	best/worst	members	for	each	member	of	another	hierarchy
Displaying	a	few	important	members,	with	the	others	as	a	single	row,	and	the	total	at	the
end
Combining	two	hierarchies	into	one
Finding	the	name	of	a	child	with	the	best/worst	value
Highlighting	siblings	with	the	best/worst	values
Implementing	bubble-up	exceptions

WOW! eBook
www.wowebook.org

Introduction
A	crucial	part	of	report	design	is	determining	what	the	appropriate	level	of	information	will
be	presented	to	the	business	users.	The	appropriate	level	of	information	must	be	carefully
matched	to	any	business	requirements,	with	maximized	benefit	to	the	business	and	minimum
performance	impact.

Every	analytical	reporting	project	has	different	requirements.	In	this	chapter,	we	are	going	to
focus	on	techniques	that	you	can	employ	in	your	project	to	make	analytical	reports	more
compact	and	more	concise,	and	therefore	more	efficient.

Recipes	in	this	chapter	can	be	implemented	in	pivot	tables,	the	analytical	component	found	in
any	SSAS	frontend	in	one	form	or	another.	SQL	Server	Reporting	Services	(SSRS)	report
developers	will	also	find	these	recipes	very	useful	since	they	can	implement	these	methods
directly	in	an	SSRS	report.

The	problem	with	pivot	table-style	reports	is	that	they	tend	to	grow	very	large	very	quickly.
Including	several	hierarchies	on	rows,	and	some	on	columns,	will	result	in	a	very	large	table.

The	analysis	of	a	large	table	can	be	very	difficult.	Even	worse,	when	presenting	a	large
amount	of	data	in	a	chart,	it	might	not	be	very	readable	when	the	number	of	items	crosses	a
certain	threshold.

The	solution	is	to	make	reports	compact;	to	focus	on	what	is	important	to	business	users	in
your	project.	This	chapter	offers	several	techniques	for	reducing	the	amount	of	data	reported
without	losing	any	crucial	information.

We	will	start	with	several	recipes	dealing	with	the	isolation	of	important	members,	whether
they	are	from	only	one	hierarchy	or	from	multiple.

We	will	also	present	a	unique	way	of	presenting	data	in	one	single	report	that	includes	three
sections:	the	top	N	members,	the	other	members	as	a	single	row,	and	the	total	at	the	end.

This	chapter	also	includes	a	trick	for	combining	members	from	two	different	hierarchies	into
one	column.

In	the	last	three	recipes,	we	will	cover	techniques	for	presenting	data	at	a	higher	granular
level,	whilst	extracting	additional	information	at	the	lower	granular	level	and	color-coding
the	foreground	and/or	background	of	certain	important	cells.

WOW! eBook
www.wowebook.org

Isolating	the	best	N	members	in	a	set
Hierarchies	can	contain	a	lot	of	members.	In	this	recipe,	we	are	going	to	show	you	how	to
extract	only	the	significant	members:	ones	with	the	highest	value	for	a	certain	measure.

This	requirement	is	often	necessary	because	not	only	does	it	allow	end	users	to	focus	their
efforts	on	a	smaller	set	of	members,	but	it	also	makes	the	queries	much	faster.

We	will	base	our	example	on	the	TopCount()	function,	a	function	that	returns	the	exact
number	of	members	as	specified.	In	addition	to	that	function,	MDX	has	two	more	similar
functions,	namely	TopPercent()	and	TopSum().	Contrary	to	the	TopCount()	function,	these
functions	return	an	unknown	number	of	members.	In	other	words,	they	are	designed	to	return
a	set	of	members	based	on	their	contribution,	in	a	percentage	or	in	an	absolute	value,
respectively.

Further	similarities	and	differences	between	TopCount(),	TopSum(),	and	TopPercent()
functions	will	be	covered	in	later	sections	of	this	recipe.

WOW! eBook
www.wowebook.org

Getting	ready
Start	SQL	Server	Management	Studio	and	connect	to	your	SSAS	2016	instance.	Click	on	the
New	Query	button	and	check	that	the	target	database	is	Adventure	Works	DW	2016.

In	this	example,	we	are	going	to	use	the	Reseller	dimension.	Here	is	the	query	we	will	start
from:

WITH	

SET	[Ordered	Resellers]	AS	

				Order([Reseller].[Reseller].[Reseller].MEMBERS,	

											[Measures].[Reseller	Sales	Amount],	

											BDESC)	

SELECT	

			{	[Measures].[Reseller	Sales	Amount]	}	ON	0,	

			{	[Ordered	Resellers]	}	ON	1	

FROM	

			[Adventure	Works]	

Once	executed,	this	query	returns	reseller	sales	values	for	each	individual	reseller,	where	the
resellers	themselves	are	sorted	in	descending	order	of	Reseller	Sales	Amount.	Our	task	is	to
extract	only	five	of	them,	those	with	the	highest	sales	amount:

WOW! eBook
www.wowebook.org

How	to	do	it...
We	are	going	to	use	the	TopCount()	function	to	return	the	top	five	resellers	with	the	highest
sales	amount.

Follow	these	steps	to	create	a	named	set	with	the	TopCount()	function:

1.	 Create	a	new	calculated	set	and	name	it	Top	5	Resellers.
2.	 Define	it	using	the	TopCount()	function,	where	the	first	argument	is	the	set	of	reseller

members,	the	second	is	the	number	5,	and	the	third	is	the	measure	Reseller	Sales
Amount.

3.	 Remove	the	Ordered	Resellers	set	from	the	query	and	put	the	Top	5	Resellers	on	the
rows	instead.

4.	 The	query	should	look	as	follows.	Execute	it:

						WITH	

						SET	[Top	5	Resellers]	AS	

										TopCount([Reseller].[Reseller].[Reseller].MEMBERS,	

																				5,	

																				[Measures].[Reseller	Sales	Amount])	

						SELECT	

									{	[Measures].[Reseller	Sales	Amount]	}	ON	0,	

									{	[Top	5	Resellers]	}	ON	1	

						FROM	

								[Adventure	Works]	

5.	 Only	the	five	rows	with	the	highest	values	should	remain,	as	displayed	in	the	following
screenshot:

6.	 Compare	the	rows	returned	with	the	ones	from	the	initial	query	in	this	recipe.	They
should	be	the	same,	in	the	exact	same	order,	and	with	the	exact	same	values,	but	with	only
the	top	five	resellers	returned.

WOW! eBook
www.wowebook.org

How	it	works...
The	TopCount()	function	takes	three	arguments.	The	first	one	is	a	set	of	members	that	is	to	be
limited.	The	second	argument	is	the	number	of	members	to	be	returned.	The	third	argument	is
an	expression	to	be	used	for	determining	the	order	of	members.

In	this	example,	we	asked	for	the	five	resellers	with	the	highest	value	of	the	measure	Reseller
Sales	Amount.	Using	the	TopCount()	function,	we	got	exactly	that.

It's	worth	mentioning	that	the	TopCount()	function	always	sorts	the	returned	items	in
descending	order	of	the	measure.

WOW! eBook
www.wowebook.org

There's	more...
The	most	important	argument	of	the	TopCount()	function	is	the	third	argument.	That	is,	what
determines	how	the	members	will	be	sorted	internally	so	that	only	the	top	N	of	them	remain
afterwards.	As	mentioned	earlier,	the	argument	is	an	expression.	This	expression	can	be	a
single	measure,	an	expression	including	several	measures,	a	single	tuple,	multiple	tuples,	or
anything	that	evaluates	to	a	scalar	value.

The	top	N	members	is	evaluated	in	All	Periods,	not	in	the	context	of	the
opposite	query	axis

As	seen	in	the	previous	example,	returning	the	top	N	members	is	quite	easy	with	the
TopCount()	function.	However,	in	MDX,	it	is	also	relatively	easy	to	make	a	mistake	and	return
members	we	do	not	intend	to.

Here	is	one	scenario	in	which	that	can	happen.

We	position	a	member	of	another	hierarchy	(for	example,	the	year	2013	from	the	calendar
year	hierarchy)	on	the	opposite	query	axis	(on	columns),	expecting	the	TopCount()	function
to	include	that	in	its	third	argument.	In	the	following	query,	you	might	mistakenly	expect	that
the	TopCount()	function	will	return	the	top	N	members	in	the	single	year	2013.	It	will	not:

WITH				

SET	[Top	5	Resellers]	AS	

				TopCount([Reseller].[Reseller].[Reseller].MEMBERS,	

														5,	

														[Measures].[Reseller	Sales	Amount])	

SELECT	

			{	[Measures].[Reseller	Sales	Amount]	}	*	

			{	[Date].[Calendar	Year].&[2013]	}	ON	0,	

			{	[Top	5	Resellers]	}	ON	1	

FROM	

			[Adventure	Works]	

The	result	is	shown	in	the	following	screenshot.	The	question	is	-	what	does	it	represent?

The	result	contains	the	same	top	five	resellers	which	are	evaluated	in	the	context	of	all	years,
with	their	sales	amount	in	the	single	year	2013	displayed	on	the	columns.	In	other	words,	we

WOW! eBook
www.wowebook.org

got	the	best	N	members	in	all	years	but	then	displayed	their	sales	amount	for	a	single	year,
2013.

The	data	itself	is	correct,	but	the	result	is	not	what	we	intended.	Notice	that	the	sales	amount
for	the	year	2013	in	the	previous	screenshot	is	not	ordered	in	descending	order.	This	is	a	clue
that	we	have	made	a	mistake.

The	query	and	its	subsequent	result	should	also	confirm	that	we	have	made	a	mistake	in	the
previous	query.	In	the	following	query,	we	have	placed	the	All	Periods	in	the	slicer	and
queried	the	same	top	five	resellers,	which	are	evaluated	in	the	context	of	all	years.	We	then
displayed	their	sales	amount	for	each	year.	Notice	that	only	the	first	column	All	Periods	is
sorted	in	descending	order.	Also,	notice	that	the	column	CY	2013	shows	the	same	sales
amount	as	the	previous	screenshot:

WITH				

SET	[Top	5	Resellers]	AS	

				TopCount([Reseller].[Reseller].[Reseller].MEMBERS,	

														5,	

														[Measures].[Reseller	Sales	Amount])	

SELECT	

NON	EMPTY	

			{	[Measures].[Reseller	Sales	Amount]	}	*	

			{	[Date].[Calendar	Year].MEMBERS	}	ON	0,	

			{	[Top	5	Resellers]	}	ON	1	

FROM	

			[Adventure	Works]	

WHERE	

			([Date].[Calendar].[All	Periods])	

Is	it	possible	to	see	how	we	have	made	such	a	mistake?	Yes,	although	not	necessarily	every
time.

In	most	cases,	it	is	a	clue	that	something	went	wrong	with	the	calculation	when	the	results	are
not	shown	in	descending	order	or	when	the	number	of	rows	is	fewer	than	specified.

So,	what	is	the	reason	for	this	kind	of	behavior?

The	top	N	members	will	be	evaluated	in	the	context	of	the	slicer

WOW! eBook
www.wowebook.org

Axes	are	independent.	Only	the	members	in	the	slicer	are	implicitly	included	in	the	third
argument	of	the	TopCount()	function	(which	is	a	mechanism	known	as	Deep	Autoexists:
http://tinyurl.com/AutoExists).	To	be	precise,	any	outer	MDX	construct	also	sets	the	context,
but	here	we	didn't	have	such	a	case,	so	we	can	focus	on	the	slicer	and	axes	relation	only.	To
conclude,	only	when	the	year	2013	is	found	in	the	slicer	will	the	third	argument	then	be
expanded	into	a	tuple,	and	the	result	will	be	evaluated	as	the	top	N	members	in	the	year	2013.

Execute	the	following	query	and	compare	its	result	with	the	query	that	had	the	year	2013	on
the	opposite	axis	(visible	in	the	previous	screenshot):

WITH	

SET	[Top	5	Resellers]	AS	

				TopCount([Reseller].[Reseller].[Reseller].MEMBERS,	

														5,	

														[Measures].[Reseller	Sales	Amount])	

SELECT	

			{	[Measures].[Reseller	Sales	Amount]	}	ON	0,	

			{	[Top	5	Resellers]	}	ON	1	

FROM	

			[Adventure	Works]	

WHERE	

			([Date].[Calendar	Year].&[2013])	

Notice	that	the	members	on	the	rows	have	changed.	These	resellers	are	the	top	five	resellers
in	the	single	year	2013.	Also,	notice	that	their	values	are	shown	in	descending	order:

Using	a	tuple	in	the	third	argument	of	the	TopCount()	function	to	overwrite
the	member	on	the	slicer

Now,	let	us	take	a	look	at	another	type	of	mistake,	that	is,	when	we	want	to	override	the
context	on	the	slicer	but	forget	to	do	so	in	the	third	argument	of	the	TopCount()	function.	For
example,	when	the	year	2013	is	in	the	slicer,	we	want	to	get	the	top	N	members	from	the
previous	year,	2012.

Why	would	we	want	to	do	such	a	thing?	Because	we	want	to	analyze	how	last	year's	best
resellers	are	doing	this	year.

If	that	is	the	case,	we	must	provide	a	tuple	as	the	third	argument.	The	idea	of	the	tuple	is	to
overwrite	the	context	set	by	the	slicer	with	the	member	from	the	same	hierarchy	used	inside

WOW! eBook
www.wowebook.org

http://tinyurl.com/AutoExists

the	tuple.	Remember,	it	should	be	the	same	hierarchy	or	it	will	not	work.

Following	the	previous	example,	where	the	year	2013	is	on	the	slicer,	we	must	change	the
third	argument	of	the	TopCount()	function	to	include	a	tuple:

([Measures].[Reseller	Sales	Amount],	

		[Date].[Calendar	Year].&[2012])	

The	year	2012	is	in	the	tuple	to	overwrite	the	year	2013	in	the	slicer.

Here	is	the	final	query:

WITH				

SET	[Top	5	Resellers	in	2012]	AS	

				TopCount([Reseller].[Reseller].[Reseller].MEMBERS,	

														5,	

														([Measures].[Reseller	Sales	Amount],	

																[Date].[Calendar	Year].&[2012]))	

SELECT	

			{	[Measures].[Reseller	Sales	Amount]	}	ON	0,	

			{	[Top	5	Resellers	in	2012]	}	ON	1	

FROM	

			[Adventure	Works]	

WHERE	

			([Date].[Calendar	Year].&[2013])	

Develop	a	habit	of	naming	the	top	N	sets	that	use	tuples	appropriately	(see	earlier).	Remember
that	although	the	slicer	or	the	outer	MDX	construct	determines	the	context	for	the	values	to	be
displayed	and	for	the	functions	to	be	evaluated,	we	can	always	override	that	to	adjust	the	set
we're	after.

Testing	the	correctness	of	the	result

The	equivalent	syntax	of	the	TopCount()	function	is	this:

			Head(Order([Reseller].[Reseller].[Reseller].MEMBERS,	

																[Measures].[Reseller	Sales	Amount],	

																BDESC),	5)	

Although	this	construct	can	be	useful	for	testing	the	correctness	of	the	result,	TopCount()	is
the	preferred	way	of	implementing	the	requirement	of	isolating	the	best	N	members.	This	is
because	the	Order()	function	is	a	relatively	slow	MDX	function	because	it	materializes	the
set,	and	the	query	optimizer	may	not	be	successful	in	optimizing	the	query	by	recognizing	the
Head-Order	construct	as	a	TopCount()	function.

Multidimensional	sets

The	first	argument	in	the	TopCount()	function	takes	a	set	expression.	In	our	examples,	we
only	used	a	one-dimensional	set	that	has	only	one	hierarchy	reseller.	In	this	case,	the	second
argument	N	determines	the	number	of	members	from	the	one-dimensional	set	to	be	returned.

WOW! eBook
www.wowebook.org

In	the	case	of	multidimensional	sets	that	are	made	of	more	than	one	hierarchy,	the	second
argument	N	determines	the	number	of	tuples	to	be	returned.	The	returned	tuples	are	also
sorted	in	descending	order	of	the	numeric	expression.

TopPercent()	and	TopSum()	functions

As	we	said	in	the	introduction,	TopPercent()	and	TopSum()	are	two	functions	similar	to	the
TopCount()	function.	The	first	one	returns	an	unknown	number	of	members.	In
TopPercent(),	the	second	argument	determines	the	percentage	of	them	to	be	returned,	starting
from	the	ones	with	the	highest	values,	and	ending	when	the	total	value	of	the	members
included	compared	to	the	total	value	of	all	members	reaches	the	percentage	specified	in	that
function.	The	second	one	works	on	the	same	principle,	except	that	it	is	the	absolute	value	and
not	the	percentage	that	is	specified	and	compared.	For	example,	TopPercent()	with	80	means
that	we	want	the	top	members	who	form	80	percent	of	the	total	result.	TopSum()	with
1,000,000	means	that	we	want	members	whose	total	forms	that	value,	looking	from	the
member	with	the	highest	value	and	adding	all	of	them	below	until	that	value	is	reached.

The	same	principles,	ideas,	and	warnings	apply	to	all	top-something	functions.

WOW! eBook
www.wowebook.org

See	also
Refer	to	the	Isolating	the	worst	N	members	in	a	set	and	Identifying	the	best/worst
members	for	each	member	of	another	hierarchy	recipes	in	this	chapter

WOW! eBook
www.wowebook.org

Isolating	the	worst	N	members	in	a	set
In	the	previous	recipe,	we	showed	you	how	to	identify	members	with	the	highest	result.	In	this
recipe,	we	will	do	the	opposite	and	return	those	with	the	lowest	result.

WOW! eBook
www.wowebook.org

Getting	ready
Start	SQL	Server	Management	Studio	and	connect	to	your	SSAS	2016	instance.	Click	on	the
New	Query	button	and	check	that	the	target	database	is	Adventure	Works	DW	2016.

In	this	example,	we	are	going	to	use	the	Reseller	dimension.	Here	is	the	query	we	will	start
from:

WITH	

SET	[Ordered	Resellers]	AS	

				Order([Reseller].[Reseller].[Reseller].MEMBERS,	

											[Measures].[Reseller	Sales	Amount],	

											BASC)	

SELECT	

			{	[Measures].[Reseller	Sales	Amount]	}	ON	0,	

			{	[Ordered	Resellers]	}	ON	1	

FROM	

			[Adventure	Works]	

Once	executed,	that	query	returns	reseller	sales	values	for	every	individual	reseller,	where	the
resellers	themselves	are	sorted	in	ascending	order	of	the	sales	amount.	Our	task	is	to	extract
only	the	five	with	the	worst	sales	amount.

WOW! eBook
www.wowebook.org

How	to	do	it...
We	are	going	to	use	the	BottomCount()	function	to	return	the	bottom	five	resellers	with	the
worst	sales	amount.

Follow	these	steps	to	create	a	named	set	with	the	BottomCount()	function:

1.	 Create	a	new	calculated	set	and	name	it	Bottom	5	Resellers.
2.	 Define	it	using	the	BottomCount()	function,	where	the	first	argument	is	the	set	of	reseller

members,	the	second	is	the	number	5,	and	the	third	is	the	measure	Reseller	Sales
Amount.

3.	 Apply	the	NonEmpty()	function	over	the	set	specified	as	the	first	argument	using	the	same
measure	as	in	the	third	argument	of	the	BottomCount()	function:

						SET	[Bottom	5	Resellers]	AS	

						BottomCount(

									NonEmpty([Reseller].[Reseller].[Reseller].MEMBERS,	

																			{	[Measures].[Reseller	Sales	Amount]	}),	

																			5,	

																			[Measures].[Reseller	Sales	Amount]	

)	

4.	 Remove	the	Ordered	Resellers	set	from	the	query	and	put	the	Bottom	5	Resellers	on
rows	instead.

5.	 The	query	should	look	as	follows.	Execute	it:

						WITH	

						SET	[Bottom	5	Resellers]	AS	

						BottomCount(

									NonEmpty([Reseller].[Reseller].[Reseller].MEMBERS,	

																			[Measures].[Reseller	Sales	Amount]),	

																			5,	

																			[Measures].[Reseller	Sales	Amount]	

)	

						SELECT	

									{	[Measures].[Reseller	Sales	Amount]	}	ON	0,	

									{	[Bottom	5	Resellers]	}	ON	1	

						FROM	

								[Adventure	Works]	

6.	 Only	the	five	rows	with	the	lowest	values	should	remain,	as	displayed	in	the	following
screenshot:

WOW! eBook
www.wowebook.org

7.	 Compare	the	rows	returned	with	the	ones	from	the	initial	query	in	this	recipe.	If	we
ignore	the	empty	rows	from	the	initial	rows,	they	should	be	the	same,	in	the	exact	same
order,	and	with	the	exact	same	values;	only	the	new	query	returned	only	the	lowest	five
resellers.

WOW! eBook
www.wowebook.org

How	it	works...
The	BottomCount()	function	takes	three	arguments.	The	first	one	is	a	set	of	members	that	is
going	to	be	limited.	The	second	argument	is	the	number	of	members	to	be	returned.	The	third
argument	is	the	expression	for	determining	the	order	of	members.

In	this	example,	we	asked	for	the	five	resellers	with	the	lowest	value	of	the	measure	Reseller
Sales	Amount.	Using	the	BottomCount()	function	alone,	without	applying	the	inner
NonEmpty()	function	on	the	following	tuple,	we	would	get	five	rows	with	empty	values:

NonEmpty([Reseller].[Reseller].[Reseller].MEMBERS,	

										[Measures].[Reseller	Sales	Amount])	

We	can	think	of	values,	once	sorted,	as	being	separated	into	four	groups:	positive	values,	zero
values,	null	values,	and	negative	values.	Those	groups	appear	in	that	particular	order	once
sorted	in	descending	order,	and	in	the	reverse	order	once	sorted	in	ascending	order.

In	the	TopCount()	function	covered	in	the	previous	recipe,	we	didn't	experience	the	effect	of
null	values	because	the	results	were	all	positive.	In	the	BottomCount()	function,	this	is
something	that	needs	to	be	taken	care	of,	particularly	if	there	are	no	negative	values.	The
reason	we	want	to	get	rid	of	null	values	is	because,	from	a	business	perspective,	those	values
represent	no	activity.	What	we	are	interested	in	is	identifying	members	with	activity.

That's	the	reason	we	applied	the	NonEmpty()	function	in	the	third	step	of	this	recipe.	That
action	removed	all	members	with	a	null	value	in	that	particular	context,	leaving	only
members	with	activity	to	the	outer	BottomCount()	function.

It's	worth	mentioning	that	the	BottomCount()	function	always	sorts	the	rows	in	ascending
order.

WOW! eBook
www.wowebook.org

There's	more...
The	BottomPercent()	and	BottomSum()	are	two	functions	similar	to	the	BottomCount()
function.	They	are	the	opposite	functions	of	the	TopPercent()	and	TopSum()	functions
explained	in	the	last	section	of	the	previous	recipe.	The	same	principles,	ideas,	and	warnings
also	apply	here.

WOW! eBook
www.wowebook.org

See	also
Refer	to	the	Isolating	the	best	N	members	in	a	set	and	Identifying	the	best/worst	members
for	each	member	of	another	hierarchy	recipes	in	this	chapter

WOW! eBook
www.wowebook.org

Identifying	the	best/worst	members	for	each
member	of	another	hierarchy
Sales	territory	country	and	reseller	are	two	different	hierarchies	in	Adventure	Works	DW.	To
analyze	sales,	we	might	choose	not	to	look	at	every	reseller	in	every	country.	Instead,	we
often	only	need	to	look	for	the	top	or	bottom	N	resellers	per	country.

In	this	case,	we	can	view	the	country	as	the	outer	hierarchy,	and	the	reseller	as	the	inner
hierarchy.	Quite	often,	we	need	to	analyze	the	combination	of	hierarchies	in	a	way	that	the	top
or	bottom	N	members	of	the	inner	hierarchy	are	displayed	for	each	member	of	the	outer
hierarchy.

Displaying	only	the	top	or	bottom	N	members	of	the	inner	hierarchy	for	each	member	of	the
outer	hierarchy	is	sort	of	a	report	reduction,	where	we	preserve	the	important	combinations
of	members	and	leave	out	the	rest	of	the	cross	join.

This	recipe	shows	you	how	to	create	a	TopCount()	calculation	to	retrieve	the	top	N	resellers
in	each	sales	territory.

WOW! eBook
www.wowebook.org

Getting	ready
Start	SQL	Server	Management	Studio	and	connect	to	your	SSAS	2016	instance.	Click	on	the
New	Query	button	and	check	that	the	target	database	is	Adventure	Works	DW	2016.

In	this	example,	we	are	going	to	use	the	Sales	Territory	dimension	and	the	Reseller
dimension.	Here	is	the	query	we	will	start	from:

WITH	

SET	[Ordered	Resellers]	AS	

				Order([Reseller].[Reseller].[Reseller].MEMBERS,	

											[Measures].[Reseller	Sales	Amount]	,	

											BDESC)	

SELECT	

			{	[Measures].[Reseller	Sales	Amount]	}	ON	0,	

NON	EMPTY	

			{	[Sales	Territory].[Sales	Territory	Country].MEMBERS	*	

					[Ordered	Resellers]	}	ON	1	

FROM	

			[Adventure	Works]	

Once	executed,	the	earlier	query	returns	reseller	sales	values	for	every	individual	reseller	and
country,	where	the	resellers	themselves	are	sorted	in	descending	order	of	the	sales	amount	for
each	country:

Our	task	is	to	extract	the	five	resellers	with	the	best	sales	for	each	country.	We	would	expect	a
different	top	five	resellers	in	each	country.

WOW! eBook
www.wowebook.org

How	to	do	it...
We	are	going	to	use	the	Generate()	function	together	with	the	TopCount()	function	to	return
the	top	five	resellers	in	each	country.

Follow	these	steps	to	create	a	calculated	set	of	the	top	five	resellers	per	country:

1.	 Define	a	new	calculated	set;	name	it	Top	5	Resellers	per	Country.
2.	 Use	the	Generate()	function	as	a	way	of	performing	the	iteration.
3.	 Provide	the	set	of	countries	found	on	rows	as	the	first	argument	of	that	Generate()

function.
4.	 Provide	the	second	argument	of	that	function	in	the	form	of	a	cross	join	of	the	current

member	of	countries	hierarchy	and	the	TopCount()	function	applied	to	the	set	of
resellers.

5.	 Put	that	new	calculated	set	on	the	rows,	instead	of	having	everything	there.
6.	 Verify	that	the	query	looks	like	this	and	then	execute	it:

						WITH	

						SET	[Top	5	Resellers	per	Country]	AS	

						Generate(

												[Sales	Territory].[Sales	Territory	Country].MEMBERS,	

												{	[Sales	Territory].[Sales	Territory	Country]	

														.CurrentMember	}	*	

												TopCount([Reseller].[Reseller].[Reseller].MEMBERS,	

																						5,	

																						[Measures].[Reseller	Sales	Amount])	

)	

						SELECT	

									{	[Measures].[Reseller	Sales	Amount]	}	ON	0,	

						NON	EMPTY	

									{	[Top	5	Resellers	per	Country]	}	ON	1	

						FROM	

								[Adventure	Works]	

7.	 The	result	is	shown	in	the	following	screenshot.	It	returned	different	resellers	for	each
country;	they	are	the	top	five	resellers	relative	to	each	country:

WOW! eBook
www.wowebook.org

Notice	that	the	results	are	ordered	as	descending	inside	each	country.

WOW! eBook
www.wowebook.org

How	it	works...
The	Generate()	function	is	a	loop.	Using	that	function,	we	can	iterate	over	a	set	of	members
and	create	another	set	of	members,	as	explained	in	the	Iterating	on	a	set	to	create	a	new	one
recipe	in	Chapter	2	,	Working	with	Sets.

In	this	recipe,	we	used	it	to	iterate	over	a	set	of	countries	and	to	create	another	set,	a	set	that	is
formed	as	a	combination	of	the	current	country	in	the	loop	and	the	top	five	resellers	in	the
context	of	that	country.

Notice	that	we	simply	used	the	measure	[Reseller	Sales	Amount]	as	the	third	argument	for
the	TopCount()	function.	The	loop	sets	the	context;	that	is	why	we	do	not	need	to	expand	the
third	argument	of	the	TopCount()	function	into	a	tuple.	The	following	tuple	would	be
redundant:

([Sales	Territory].[Sales	Territory	Country].CurrentMember,	

		[Measures].[Reseller	Sales	Amount])	

That	current	member	is	already	implicitly	there	and	set	by	the	outer	loop,	the	Generate()
function.

To	display	each	country	and	its	top	five	resellers	on	rows,	we	had	to	build	a	multidimensional
set	in	advance	using	the	cross-production	of	two	sets,	as	shown:

			{	[Sales	Territory].[Sales	Territory	Country].CurrentMember	}	*	

			TopCount([Reseller].[Reseller].[Reseller].MEMBERS,	

													5,	

													[Measures].[Reseller	Sales	Amount])	

Because	of	the	outer	Generate()	function,	this	multidimensional	set	is	obtained	in	iteration,
where	the	top	five	resellers	are	identified	for	each	country.

WOW! eBook
www.wowebook.org

There's	more...
Was	it	really	necessary	to	define	such	a	complex	syntax?	Couldn't	we	have	done	something
simpler	instead?	Let's	see.

One	idea	would	be	to	define	Top	5	Resellers	as	we	did	in	the	first	recipe	of	this	chapter	and
use	it	on	rows:

WITH	

SET	[Top	5	Resellers]	AS	

TopCount([Reseller].[Reseller].[Reseller].MEMBERS,	

										5,	

										[Measures].[Reseller	Sales	Amount])	

SELECT	

			{	[Measures].[Reseller	Sales	Amount]	}	ON	0,	

NON	EMPTY	

			{	[Sales	Territory].[Sales	Territory	Country]	

					.[Sales	Territory	Country].MEMBERS	*	

					[Top	5	Resellers]	}	ON	1	

FROM	

			[Adventure	Works]	

When	this	query	is	run,	it	returns	the	total	of	five	rows,	as	seen	in	the	following	screenshot:

The	results	are	not	sorted	in	any	particular	order,	which	is	the	first	indicator	that	something	is
wrong.	The	number	of	returned	items	is	fewer	than	expected.	That	is	the	second	indicator.

To	see	what	went	wrong,	we	need	to	comment	out	the	NON	EMPTY	keyword	and	execute	the
same	query	again.	This	time,	we	can	see	more	clearly	what	is	going	on:

WOW! eBook
www.wowebook.org

Resellers	repeat	in	each	country.	The	group	of	resellers	marked	in	the	preceding	screenshot
can	be	found	preceding	and	following	that	country.

It	wouldn't	help	to	expand	the	third	argument	of	the	TopCount()	function	into	a	tuple	either.
The	following	tuple	would	not	help:

([Sales	Territory].[Sales	Territory	Country].CurrentMember,			

		[Measures].[Reseller	Sales	Amount])	

The	reason	why	this	doesn't	work	is	because	calculated	sets	are	evaluated	once	-	after	the
slicer	and	before	the	iteration	on	cells.	Therefore,	the	TopCount()	function	is	evaluated	in	the
context	of	the	default	country,	the	root	member,	and	not	within	the	context	of	each	country.
That	is	why	the	resellers	repeat	in	each	country.

While	calculated	sets	are	evaluated	only	once	before	each	cell	is	evaluated,	calculated
members,	on	the	other	hand,	are	evaluated	for	each	cell.	We	cannot	use	a	calculated	member
in	this	case,	because	we	need	a	set	of	five	members.	The	only	thing	that's	left	is	to	use	the
outer	Generate()	function	to	push	each	country	into	the	set.	By	having	everything	in	advance
before	the	iteration	on	the	cells	begins,	we	can	prepare	the	required	multidimensional	set	of
countries	and	their	best	resellers.

Support	for	the	relative	context	and	multidimensional	sets	in	SSAS
frontends

Frontends	perform	cross	join	operations	while	allowing	end	users	to	filter	and	isolate
members	of	hierarchies	to	limit	the	size	of	the	report.	Some	frontends	even	allow	functions,
such	as	the	TopCount()	function,	to	be	applied	visually,	without	editing	the	actual	MDX.	The
thing	they	rarely	do	is	to	allow	the	TopCount()	function	to	be	applied	relatively	to	another
hierarchy.

WOW! eBook
www.wowebook.org

As	we	have	seen,	without	the	relative	component,	the	top	N	members	are	calculated	in	the
context	of	another	hierarchy's	root	member,	not	individual	members	in	the	query.	The	only
solution	is	to	define	a	multidimensional	set	using	the	Generate()	function.	With	this	comes
another	problem	-	multidimensional	sets	(sets	that	contain	members	from	more	than	one
attribute)	are	not	supported	in	many	frontends.	Test	the	limitations	of	your	tool	to	know
whether	you	can	use	it	as	a	frontend	feature,	implement	it	in	a	cube	as	a	multidimensional	set,
or	write	an	MDX	query.

WOW! eBook
www.wowebook.org

See	also
Refer	to	the	Isolating	the	best	N	members	in	a	set	and	Isolating	the	worst	N	members	in	a
set	recipes	in	this	chapter

WOW! eBook
www.wowebook.org

Displaying	a	few	important	members,	with	the
others	as	a	single	row,	and	the	total	at	the	end
There	are	times	when	isolating	the	best	or	worst	members	is	not	enough.	In	addition	to	the
few	important	members,	business	users	often	want	to	see	the	total	of	all	the	other	not-so-
important	members,	as	well	as	a	single	row	representing	the	total	of	all	the	members.

An	example	of	this	type	of	reporting	requirement	is	shown	in	the	following	table:

Reseller	Sales	Amount

Top	1st	Reseller $877,107.19

Top	2nd	Reseller $853,849.18

Top	3rd	Reseller $841,908.77

Top	4th	Reseller $816,755.58

Top	5th	Reseller $799,277.90

Other	Resellers 					$76,261,698.37

All	Resellers 					$80,450,596.98

In	the	first	recipe	in	this	chapter,	Isolating	the	best	N	members	in	a	set,	we	learned	how	to
isolate	the	best	members	using	the	TopCount()	function.	The	challenge	in	this	recipe	is	to	get
only	one	row	for	the	total	of	all	Other	Resellers,	and	only	one	row	for	the	total	of	All
Resellers.	We	will	also	need	to	make	sure	that	Top	N	Resellers,	Other	Resellers	and	All
Resellers	are	all	combined	into	one	column.	This	recipe	shows	you	how	to	fulfill	this	type	of
reporting	requirement.

WOW! eBook
www.wowebook.org

Getting	ready
Start	SQL	Server	Management	Studio	and	connect	to	your	SSAS	2016	instance.	Click	on	the
New	Query	button	and	check	that	the	target	database	is	Adventure	Works	DW	2016.

In	this	example,	we're	going	to	use	the	Reseller	dimension.	Here's	the	query	we'll	start	from:

WITH	

SET	[Ordered	Resellers]	AS	

				Order([Reseller].[Reseller].[Reseller].MEMBERS,	

											[Measures].[Reseller	Sales	Amount],	

											BDESC)	

SELECT	

			{	[Measures].[Reseller	Sales	Amount]	}	ON	0,	

			{	[Ordered	Resellers]	}	ON	1	

FROM	

			[Adventure	Works]	

This	query	returns	values	of	the	Reseller	Sales	Amount	measure	for	every	single	reseller.
Notice	that	we	purposely	sorted	the	resellers	in	descending	order	of	the	sales	amount:

Our	goal	is	to	keep	only	the	top	five	resellers	highlighted	in	the	preceding	screenshot,	with
two	additional	rows.	One	of	the	additional	rows	is	for	other	resellers,	and	the	other	one	is	for
all	resellers.

WOW! eBook
www.wowebook.org

How	to	do	it...
Follow	these	steps	to	return	the	Top	5	Resellers,	followed	by	one	row	for	Other	Resellers
and	one	row	for	All	Resellers,	all	in	one	query:

1.	 Create	a	new	calculated	set	and	name	it	Top	5	Resellers.
2.	 Define	it	using	the	TopCount()	function,	where	the	first	argument	is	the	set	of	reseller

members,	the	second	is	the	number	5,	and	the	third	is	the	measure	Reseller	Sales
Amount.	In	short,	the	definition	should	be	this:

						SET	[Top	5	Resellers]	AS	

										TopCount([Reseller].[Reseller].[Reseller].MEMBERS,	

																				5,	

																				[Measures].[Reseller	Sales	Amount])	

3.	 Remove	the	Ordered	Resellers	set	from	the	query	and	put	the	Top	5	Resellers	on	the
rows	instead.

4.	 Execute	the	query.	Only	the	five	rows	with	the	highest	values	should	remain.
5.	 Next,	create	a	new	calculated	member	and	name	it	Other	Resellers.	Use	the	following

definition:

						MEMBER	[Reseller].[Reseller].[All].[Other	Resellers]	AS	

													Aggregate(-	[Top	5	Resellers])	

6.	 Include	that	member	on	the	rows,	next	to	the	set.
7.	 Finally,	include	the	root	member	of	the	Reseller.Reseller	hierarchy	in	a	more	generic

way	by	adding	its	[All]	level	as	the	last	set	on	the	rows	and	run	the	query:

						WITH				

						SET	[Top	5	Resellers]	AS	

						TopCount([Reseller].[Reseller].[Reseller].MEMBERS,	

																5,	

																[Measures].[Reseller	Sales	Amount])	

						MEMBER	[Reseller].[Reseller].[All].[Other	Resellers]	AS	

						Aggregate(-	[Top	5	Resellers])	

						SELECT	

									{	[Measures].[Reseller	Sales	Amount]	}	ON	0,	

									{	[Top	5	Resellers],	

											[Reseller].[Reseller].[All].[Other	Resellers],	

											[Reseller].[Reseller].[All]	}	ON	1	

						FROM	

								[Adventure	Works]	

8.	 The	result	will	display	seven	rows:	the	top	five	resellers,	the	other	resellers	in	a	single
row,	and	the	total	in	the	form	of	the	root	member:

WOW! eBook
www.wowebook.org

WOW! eBook
www.wowebook.org

How	it	works...
The	first	part	of	the	solution	is	to	isolate	the	top	N	members.	This	is	done	relatively	easily
using	the	TopCount()	function.	The	more	detailed	explanation	of	this	part	is	covered	in	the
first	recipe	of	this	chapter.

The	second	part	is	what	is	special	about	this	type	of	report.	All	other	members	are	obtained
using	the	negation	of	a	set,	which	is	written	as	a	minus	followed	by	that	set.	This	is	explained
in	the	Implementing	NOT	IN	set	logic	recipe	in	Chapter	2	,	Working	with	Sets.

Next,	that	negative	set	expression	is	wrapped	inside	the	Aggregate()	function,	which
compacts	that	set	into	a	single	calculated	member.	That	calculated	member	is	the	row	that
follows	the	top	N	members	in	the	result.

Finally,	the	root	member	of	that	hierarchy	comes	as	the	last	row,	which	acts	as	a	total	of	rows.
Here,	it's	worth	noting	that	we	didn't	use	the	root	member's	name	[All	Resellers];	we've
used	its	level	name	[All].	The	reason	for	this	is	explained	in	the	next	section.

WOW! eBook
www.wowebook.org

There's	more...
The	beauty	of	this	solution	is	that	the	initial	set,	in	this	case	Top	5	Resellers,	can	be	any	set.
For	example,	the	initial	set	can	be	the	bottom	N	members,	members	that	are	a	result	of	a
Filter()	function,	existing	members	for	the	current	context	-	pretty	much	anything.	It	does
not	matter	how	many	members	there	are	in	the	initial	set.	All	the	rest	will	be	aggregated	in	a
single	row.

If	we	go	one	step	further	and	use	a	report	parameter	in	the	place	of	the	Reseller.Reseller
hierarchy,	the	query	will	work	for	any	hierarchy	without	the	need	to	change	anything.

Another	thing	that	makes	this	query	generic	is	the	way	we	referred	to	the	root	member.	We
didn't	use	its	unique	name	(which	would	be	different	for	different	hierarchies)	[All
Resellers].	We	used	its	level	name	[All]	instead.	[All]	is	a	generic	level	name	for	every
attribute	hierarchy.

Notice	that	we	created	a	calculated	member	for	Other	Resellers,	but	not	for	All	Resellers.
All	resellers	became	the	header	for	the	last	total	row.	To	make	this	report	a	bit	more	user-
friendly,	we	could	change	the	header	to	Total.	We	will	need	to	create	a	calculated	member	for
the	root	member	to	change	the	header	for	the	last	total	row.

The	root	member,	found	in	the	[All]	level,	is	usually	named	as	All	or	All	Something.	In	our
example,	it's	All	Resellers.	The	following	calculated	member	is	named	Total,	which	is	an
alias	for	the	All	Resellers	member:

MEMBER	[Reseller].[Reseller].[All].[Total]	AS	

							[Reseller].[Reseller].[All]	

If	we	replace	[Reseller].[Reseller].[All]	with	this	calculated	member	on	rows,	the	header
for	the	last	total	row	will	be	changed	to	Total.

Making	the	query	even	more	generic

The	query	in	this	recipe	referred	to	the	Reseller.Reseller	hierarchy.	By	replacing	any
reference	to	that	hierarchy	with	a	report	parameter,	we	can	make	the	query	more	generic.	Of
course,	that	also	means	we	should	remove	the	word	Reseller	from	[Top	5	Resellers]	and
[Other	Resellers].

We	could	then	parameterize	the	whole	query	and	insert	any	hierarchy	and	its	level	in	it,	in
their	corresponding	places.	While	Reseller.Reseller	is	a	unique	name	for	a	hierarchy,
Reseller.Reseller.Reseller	is	the	unique	name	of	a	level	on	that	hierarchy.	Therefore,	any
reference	to	the	Reseller.Reseller	hierarchy	could	be	replaced	by	a	parameter,	say,
@HierarchyUniqueName,	and	any	reference	to	the	Reseller.Reseller.Reseller	level	could	be
replaced	by	a	parameter,	say,	@LevelUniqueName.	Once	such	a	query	is	built	as	a	template,	it
can	be	executed	as	a	regular	query	by	passing	dynamic	parameters	to	it.

WOW! eBook
www.wowebook.org

To	provide	meaningful	results	for	the	chosen	hierarchy	and	its	level,	we	can	also
parameterize	the	measure.

WOW! eBook
www.wowebook.org

See	also
Refer	to	the	Implementing	NOT	IN	set	logic,	Isolating	the	best	N	members	in	a	set,	and
Isolating	the	worst	N	members	in	a	set	recipes	in	this	chapter

WOW! eBook
www.wowebook.org

Combining	two	hierarchies	into	one
The	result	of	a	query	contains	as	many	metadata	columns	as	there	are	hierarchies	on	rows.
For	example,	if	we	put	two	hierarchies	on	rows,	the	color	and	size	of	products,	there	will	be
two	columns	of	metadata	information,	one	for	each	hierarchy.	In	the	first	column,	we	will
have	all	colors	and	in	the	second	column	we	will	have	all	sizes.	Depending	on	the	relationship
between	those	hierarchies,	we	will	get	either	a	full	cross	join	for	unrelated	hierarchies
(different	dimensions)	or	a	reduced	set	of	valid	combinations	(in	case	of	the	same
dimension).	In	any	case,	there	will	be	two	columns.

Reports	grow	large	very	quickly.	Once	you	put	several	hierarchies	either	on	rows	or	on
columns,	suddenly	you	don't	see	data;	all	you	see	is	metadata.	That	is,	column	and	row
headers.	Sure,	you	can	modify	the	layout	of	the	pivot	table,	but	still	the	report	is	not	clear.
Therefore,	it's	not	uncommon	that	business	users	want	to	reduce	a	report's	size,	especially	the
width,	by	combining	multiple	hierarchies	into	a	single	column.

The	question	is	-	can	this	be	achieved	in	MDX?	I	know	you've	already	guessed	it:	yes,	it	can.
This	recipe	shows	the	trick	of	how	to	make	a	report	compact	by	combining	two	hierarchies	in
a	single	metadata	column.

The	example	we	will	present	in	this	recipe	is	to	display	the	Month	of	Year	on	rows,	the
Reseller	Sales	Amount	on	columns,	and	then	append	only	the	Last	Week	sales	amount	to	the
end	of	the	report.

WOW! eBook
www.wowebook.org

Getting	ready
Start	SQL	Server	Management	Studio	and	connect	to	your	SSAS	2016	instance.	Click	on	the
New	Query	button	and	check	that	the	target	database	is	Adventure	Works	DW	2016.

In	this	example,	we're	going	to	use	the	Date	dimension	and	its	two	incompatible	hierarchies;
months	and	weeks.	We	are	going	to	show	you	how	to	create	a	report	that	contains	all	months
up	to	the	current	month	and	then	how	to	add	the	last	week	of	sales	in	the	same	column.

Here's	the	query	we'll	start	from:

SELECT	

			{	[Measures].[Reseller	Sales	Amount]	}	ON	0,	

NON	EMPTY	

			{	[Date].[Calendar].[Month].MEMBERS	}	ON	1	

FROM	

			[Adventure	Works]	

WHERE	

			([Date].[Calendar	Year].&[2013])	

Once	executed,	the	query	returns	the	values	of	the	Reseller	Sales	Amount	measure	for	11
months	of	the	year	2013:

The	data	in	the	Adventure	Works	cube	ends	with	November	2013,	which	is	the	reason	why	we
picked	this	example	to	simulate	the	current	month	in	a	year	situation.

Our	goal	is	to	append	one	more	row	to	the	result:	the	last	week's	sales	amount.

WOW! eBook
www.wowebook.org

How	to	do	it...
Follow	these	steps	to	create	a	calculated	member	Last	week	and	place	it	in	the	Month	of	Year
hierarchy,	so	Last	week	can	be	displayed	in	the	same	column	as	Month	of	Year:

1.	 Replace	the	user	hierarchy	on	rows	with	the	appropriate	attribute	hierarchy	to	avoid
problems	with	attribute	relations.	In	this	case,	that	would	be	the	[Date].[Month	of	Year]
hierarchy.

2.	 Create	a	new	calculated	member	in	the	[Date].[Month	of	Year]	hierarchy	and	name	it
Last	week.	The	definition	of	that	member	should	include	the	48th	week,	the	last	week
with	the	data,	like	this:

						MEMBER	[Date].[Month	of	Year].[All	Periods].[Last	week]	AS	

											([Date].[Calendar	Week	of	Year].&[48],	

													[Date].[Month	of	Year].[All	Periods])	

3.	 Include	that	member	in	rows	as	well	and	run	the	query,	which	should	look	like	this:

						WITH	

						MEMBER	[Date].[Month	of	Year].[All	Periods].[Last	week]	AS	

									([Date].[Calendar	Week	of	Year].&[48],	

											[Date].[Month	of	Year].[All	Periods])	

						SELECT	

									{	[Measures].[Reseller	Sales	Amount]	}	ON	0,	

						NON	EMPTY	

									{	[Date].[Month	of	Year].[Month	of	Year].MEMBERS,	

											[Date].[Month	of	Year].[All	Periods].[Last	week]	}	ON	1			

						FROM	

									[Adventure	Works]	

						WHERE	

									([Date].[Calendar	Year].&[2013])	

4.	 Verify	that	the	result	includes	the	new	calculated	member	in	the	last	row,	as	in	the
following	screenshot:

WOW! eBook
www.wowebook.org

WOW! eBook
www.wowebook.org

How	it	works...
Different	hierarchies	don't	add	up	in	columns,	they	cross	join	and	form	multiple	columns.	To
combine	members	from	different	hierarchies	into	the	same	column,	we	need	to	resolve	the
dimensionality	issue	first.	In	our	example,	we	have	chosen	to	display	the	top	five	months	from
the	[Date].[Month	of	Year]	hierarchy.	This	hierarchy	has	become	our	host	hierarchy.	Our
trick	is	to	create	a	calculated	member	in	this	host	hierarchy	that	points	to	a	member	in	another
hierarchy,	[Date].[Calendar	Week	of	Year].	We	named	this	new	calculated	member	[Last
week],	which	is	hosted	in	the	[Date].[Month	of	Year]	hierarchy,	off	the	root	member	[All
Periods].	Once	the	months	and	the	last	week	have	the	same	dimensionality,	we	can	now	have
a	single	column	for	the	result	because	we	are	only	using	one	hierarchy.

Choosing	a	host	hierarchy	and	forcing	all	the	members	into	the	same	dimensionality	is	our
first	task.	Notice	that	we	also	provided	a	tuple,	not	just	a	plain	reference	to	the	other
hierarchy's	member.	This	tuple,	repeated,	is	formed	using	the	root	member	of	the	"host"
hierarchy,	[All	Periods],	as	follows:

([Date].[Calendar	Week	of	Year].&[48],	

		[Date].[Month	of	Year].[All	Periods])	

Why	do	we	need	to	provide	a	tuple?	Every	expression	is	evaluated	in	its	context.	The	current
member	of	the	[Date].[Month	of	Year]	hierarchy	is	each	month	on	the	rows.	Each	single
month	of	the	year	has	no	intersection	with	the	48th	week	(or	any	other	week),	and	hence	the
result	of	the	expression	without	the	root	member	in	that	tuple	would	return	null.	By	forcing
the	root	member	into	the	tuple,	we	are	saying	we	do	not	want	the	members	from	the	month	of
the	year	to	interfere	in	the	context.	We	are	overriding	the	implicit	query	context	in	that
expression	with	an	explicit	reference	to	the	root	member	of	the	host	hierarchy.

We	need	to	validate	our	result	before	we	wrap	up	this	recipe.	We	have	noticed	that	the	result
for	the	Last	week	member	is	the	same	as	the	result	of	the	November	member.	Let	us	run	the
following	query	to	validate	this.	This	query	simply	cross	joins	two	hierarchies;	the	Date	and
the	Calendar	Week	of	Year	hierarchy.	It	shows	us	that	the	48th	week	started	on	November	24,
and	November	29	is	the	last	date	that	has	a	sales	amount.	No	wonder	the	month	November	and
the	last	week	have	the	same	result;	they	both	contain	only	that	week's	data	(which	can	be
verified	if	you	scroll	up	in	the	result	window	or	uncomment	the	NON	EMPTY	part	of	the	query):

SELECT	

			{	[Measures].[Reseller	Sales	Amount]	}	ON	0,	

--NON	EMPTY	

			{		[Date].[Date].[Date].MEMBERS	*	

						[Date].[Calendar	Week	of	Year]

												.[Calendar	Week	of	Year]	

												.MEMBERS	

			}	ON	1			

FROM	

			[Adventure	Works]	

WHERE	

			([Date].[Calendar	Year].&[2013])	

WOW! eBook
www.wowebook.org

WOW! eBook
www.wowebook.org

There's	more...
In	our	initial	query,	we	used	a	user	hierarchy:	the	[Calendar]	hierarchy.	However,	in	our	final
solution	query,	we	used	two	attribute	hierarchies:	the	[Month	of	Year]	and	the	[Calendar
Week	of	Year].	The	reason	is	that	we	need	to	take	advantage	of	the	attribute	relations.	The
Date	dimension	is	a	very	complex	dimension	with	many	related	and	unrelated	attributes.	It	is	a
very	challenging	task	to	provide	the	proper	tuple	when	the	user	hierarchy	[Calendar]	is	on
the	rows	in	the	original	query	because	of	all	the	relations	among	the	members	in	the	slicer,
members	on	query	axes,	and	the	calculated	member.	A	user	hierarchy	[Month	of	Year],	on
the	other	hand,	requires	that	we	use	its	root	member	only	inside	the	tuple.

You	should	always	look	for	a	way	to	combine	attribute	hierarchies,	not	user	hierarchies,
whenever	you	are	in	a	situation	that	requires	that	you	to	combine	two	hierarchies	in	one
column.	The	color	and	size	on	the	Product	dimension	is	another	example	of	two	attribute
hierarchies	that	we	can	combine	into	one	column	by	using	the	technique	in	this	recipe.

Use	it,	but	don't	abuse	it

If	it	has	been	explicitly	stated	that	the	report	should	combine	different	hierarchies	in	a	single
column,	we	can	reach	for	this	solution.	It's	a	rarity,	but	it	is	possible.	In	all	other	cases,	a	much
better	solution	is	to	have	each	hierarchy	in	its	own	column.

Limitations

Besides	the	aforementioned	limitation	with	user	hierarchies,	there	is	another	one.	When	more
than	one	member	should	be	hosted	in	the	other	hierarchy,	all	of	them	should	be	defined	as
calculated	members,	one	by	one.	This	can	be	an	administrative	burden	and	so	it	is	advised	that
this	solution	is	used	only	in	cases	with	a	few	members	to	be	projected	on	the	other	hierarchy.
Naturally,	the	hierarchy	with	more	elements	to	be	shown	in	the	report	should	be	the	hosting
one.

WOW! eBook
www.wowebook.org

Finding	the	name	of	a	child	with	the	best/worst
value
Sometimes,	there	is	a	need	to	perform	a	for-each	loop	to	get	the	top	or	bottom	members	in
the	inner	hierarchy	for	each	member	in	the	outer	hierarchy.	The	Identifying	the	best/worst
members	for	each	member	of	another	hierarchy	recipe	deals	with	exactly	that	kind	of	topic.

Following	the	theme	of	the	recipes	in	this	chapter	of	reducing	the	size	of	a	report	to	a
manageable	level,	in	this	recipe	we	will	show	you	another	possibility	of	how	to	reduce	the
size	of	the	result	–	by	showing	not	all	the	descendant	members,	but	only	the	best	child
member.	We	will	demonstrate	how	to	identify	the	member	with	the	best/worst	value,	only	this
time	the	member	is	not	just	from	any	other	hierarchy,	it	will	be	from	its	children.	We	do	not
need	the	best/worst	value	from	the	child,	and	we	are	only	going	to	return	the	name	of	the
child	in	a	calculated	measure.

In	our	example,	we	will	use	the	Product	dimension.	For	every	product	subcategory,	we	are
going	to	find	the	name	of	the	product	that	has	the	best	Internet	sales	amount.

WOW! eBook
www.wowebook.org

Getting	ready
Start	SQL	Server	Management	Studio	and	connect	to	your	SSAS	2016	instance.	Click	on	the
New	Query	button	and	check	that	the	target	database	is	Adventure	Works	DW	2016.

In	this	example,	we're	going	to	use	the	Product	dimension.	Here	is	the	query	we	will	start
from:

WITH	

MEMBER	[Measures].[Subcategory]	AS	

			iif(IsEmpty([Measures].[Internet	Sales	Amount]),	

								null,	

								[Product].[Product	Categories].CurrentMember.Parent.Name)	

SELECT	

			{	[Measures].[Subcategory],	

					[Measures].[Internet	Sales	Amount]	}	ON	0,	

NON	EMPTY	

			{	Descendants([Product].[Product	Categories].[Category],	

																		2,	SELF_AND_BEFORE)	}	ON	1	

FROM	

			[Adventure	Works]				

Once	executed,	the	query	returns	the	values	of	the	Internet	Sales	Amount	measure	for	every
Product	and	Subcategory.	Part	of	the	result	is	shown	in	the	following	screenshot.	The
measure	serves	as	a	validation	point	for	each	product	and	subcategory.	That	result	can	be	used
later	for	verification	purposes:

WOW! eBook
www.wowebook.org

How	to	do	it...
Follow	these	steps	to	return	the	best	product's	name	for	each	product	subcategory:

1.	 Modify	the	query	so	that	it	returns	only	subcategories	on	rows.	In	other	words,	specify	1
and	SELF	as	arguments	of	the	Descendants()	function.

2.	 Remove	the	first	calculated	measure	from	the	query.
3.	 Define	a	new	calculated	member	and	name	it	Best	child.	Its	definition	should	test

whether	we	are	on	a	leaf	member	or	not.	If	so,	we	should	provide	null.
4.	 If	not,	we	should	again	test	whether	the	Internet	Sales	Amount	is	null.	If	so,	we	should

provide	null.	Otherwise,	we	should	calculate	the	top	one	child	based	on	the	measure
Internet	Sales	Amount	and	return	the	name	of	that	child.

5.	 Include	that	calculated	measure	on	columns	as	the	second	measure.
6.	 The	final	query	should	look	like	this:

						WITH				

						MEMBER	[Measures].[Best	child]	AS	

									iif(IsLeaf([Product].[Product	Categories]	

																.CurrentMember),	

														null,	

														iif(IsEmpty([Measures].[Internet	Sales	Amount]),	

																			null,	

																			TopCount([Product].[Product	Categories]	

																													.CurrentMember.Children,	

																													1,	

																													[Measures].[Internet	Sales	Amount]		

).Item(0).Name	

)	

)	

						SELECT	

									{	[Measures].[Internet	Sales	Amount],	

											[Measures].[Best	child]	}	ON	0,	

						NON	EMPTY	

									{	Descendants([Product].[Product	Categories]	

																								.[Category],	1,	SELF)	}	ON	1	

						FROM	

									[Adventure	Works]	

7.	 The	results	will	look	like	this:

WOW! eBook
www.wowebook.org

WOW! eBook
www.wowebook.org

How	it	works...
Leaf	members	don't	have	children.	That's	why	we	provided	a	branch	in	the	definition	of	the
calculated	member	and	eliminated	them	from	the	start	by	returning	a	NULL	value.

In	the	case	of	a	non-leaf	member,	that	is,	a	subcategory,	a	single	child	product	with	the	highest
measure	is	returned	using	the	TopCount()	function.	We	only	returned	the	child's	name	by	first
retrieving	the	only	member	using	the	.Item(0)	function	and	then	using	the	.Name	function.

The	inner	iif()	function	took	care	of	empty	values	and	preserved	them	as	empty	whenever
the	initial	measure,	the	Internet	Sales	Amount	measure,	was	null.	This	way,	the	NON	EMPTY
operator	could	exclude	the	same	number	of	empty	rows	as	in	the	initial	query.

WOW! eBook
www.wowebook.org

There's	more...
Now	that	we	have	the	name	of	the	best	child,	we	can	include	additional	information.

For	example,	the	following	query	shows	how	to	display	the	child's	value	as	well	as	its
percentage:

WITH				

MEMBER	[Measures].[Best	child]	AS	

			iif(IsLeaf([Product].[Product	Categories]	

																.CurrentMember),	

								null,	

								iif(IsEmpty([Measures].[Internet	Sales	Amount]),	

													null,	

													TopCount([Product].[Product	Categories]	

																							.CurrentMember.Children,	

																							1,	[Measures].[Internet	Sales	Amount]		

).Item(0).Name	

)	

)	

MEMBER	[Measures].[Best	child	value]	AS	

			iif(IsLeaf([Product].[Product	Categories]	

																.CurrentMember),	

								null,	

								iif(IsEmpty([Measures].[Internet	Sales	Amount]),	

													null,	

													(TopCount([Product].[Product	Categories]	

																									.CurrentMember.Children,	

																									1,	[Measures].[Internet	Sales	Amount]		

).Item(0),	

															[Measures].[Internet	Sales	Amount])										

)	

)	

			,	FORMAT_STRING	=	'Currency'	

MEMBER	[Measures].[Best	child	%]	AS	

			[Measures].[Best	child	value]	

				/	

			[Measures].[Internet	Sales	Amount]	

			,	FORMAT_STRING	=	'Percent'	

SELECT	

			{	[Measures].[Internet	Sales	Amount],	

					[Measures].[Best	child],	

					[Measures].[Best	child	value],	

					[Measures].[Best	child	%]	}	ON	0,	

NON	EMPTY	

			{	Descendants([Product].[Product	Categories].[Category],	

																		1,	SELF)	}	ON	1	

FROM	

			[Adventure	Works]	

A	child's	value	is	obtained	on	the	same	principle	as	the	child's	name,	except	this	time	the	tuple
was	used	to	get	the	value	in	that	coordinate.

The	percentage	is	calculated	in	a	standard	way.
WOW! eBook

www.wowebook.org

Once	executed,	the	preceding	query	returns	this	result:

Variations	on	a	theme

Using	the	same	principle,	it	is	possible	to	get	the	member	with	the	worst	value.	We	have	to	be
careful	and	apply	NonEmpty()	first	to	ignore	empty	values,	as	explained	in	the	Isolating	the
worst	N	members	in	a	set	recipe.

Displaying	more	than	one	member's	caption

It	is	possible	to	display	several	names	inside	the	same	cell.	If	that	is	the	case,	we	must	use	the
Generate()	function	in	conjunction	with	its	third	syntax	to	start	the	iteration.	Once	the
iteration	is	in	place,	everything	else	remains	the	same.

WOW! eBook
www.wowebook.org

See	also
Refer	to	the	following	recipes	in	this	chapter:

Isolating	the	best	N	members	in	a	set
Isolating	the	worst	N	members	in	a	set
Identifying	the	best/worst	members	for	each	member	of	another	hierarchy
Displaying	a	few	important	members,	with	the	others	as	a	single	row,	and	the	total	at	the
end

WOW! eBook
www.wowebook.org

Highlighting	siblings	with	the	best/worst	values
Data	analysis	becomes	easier	once	we	provide	more	information	than	a	simple	black	and
white	grid	allows	us	to.	One	way	of	doing	this	is	to	color	code	some	cells.	In	this	recipe,	we
will	show	you	how	to	highlight	cells	with	the	minimum	and	the	maximum	values	among
siblings	and	how	to	color	code	them	based	on	their	values	relative	to	their	siblings'	values.

WOW! eBook
www.wowebook.org

Getting	ready
Start	SQL	Server	Management	Studio	and	connect	to	your	SSAS	2016	instance.	Click	on	the
New	Query	button	and	check	that	the	target	database	is	Adventure	Works	DW	2016.

In	this	example,	we	are	going	to	use	the	Product	dimension.	Here	is	the	query	we'll	start	from:

SELECT	

			{	[Measures].[Internet	Sales	Amount]	}	ON	0,	

NON	EMPTY	

			{	Descendants([Product].[Product	Categories].[Category],	

																			1,	SELF)	}	ON	1	

FROM	

			[Adventure	Works]	

Once	executed,	the	query	returns	the	value	of	the	Internet	Sales	Amount	measure	for	every
single	product	subcategory.	Part	of	the	result	is	shown	in	the	following	screenshot.	We	have
two	goals:	one	is	to	find	the	category	that	each	subcategory	belongs	to;	the	other	is	to	color
code	the	best	and	worst	subcategories	in	each	category:

WOW! eBook
www.wowebook.org

How	to	do	it...
Follow	these	steps	to	color	code	the	best	and	worst	subcategories	in	each	category:

1.	 Define	a	calculated	measure	that	will	show	the	name	of	the	parent	for	each	subcategory.
Name	it	Category.

2.	 Be	sure	to	provide	the	null	value	whenever	the	initial	measure	is	null	and	then	include
that	measure	on	columns	as	well,	as	with	the	first	of	the	two.

3.	 Define	a	cell	calculation	for	the	Internet	Sales	Amount	measure	and	name	it
Highlighted	Amount.

4.	 Define	the	BACK_COLOR	property	for	the	Highlighted	Amount	cell	calculation.	Use	an
expression	that	tests	whether	the	current	value	is	a	max/min	value.

5.	 Provide	the	adequate	RGB	values:	green	for	max,	red	for	min,	and	null	for	everything
else.

6.	 Include	the	CELL	PROPERTIES	required	to	display	the	color	information	of	a	cell	at	the
end	of	the	query.

7.	 When	everything	is	done,	the	query	should	look	like	this:

						WITH				

						MEMBER	[Measures].[Category]	AS	

									iif(IsEmpty([Measures].[Internet	Sales	Amount]),	

														null,	

														[Product].[Product	Categories]	

														.CurrentMember.Parent.Name)	

						CELL	CALCULATION	[Highlighted	Amount]	

						FOR	'{	[Measures].[Internet	Sales	Amount]	}'	AS	

													[Measures].[Internet	Sales	Amount]	

						,	BACK_COLOR	=		

								iif([Measures].CurrentMember	=	

													Max([Product].[Product	Categories]	

																		.CurrentMember.Siblings,	

																		[Measures].CurrentMember),	

													RGB(128,242,128),	//	green	

													iif([Measures].CurrentMember	=		

																		Min([Product].[Product	Categories]	

																							.CurrentMember.Siblings,	

																							[Measures].CurrentMember),	

																		RGB(242,128,128),	//	red	

																		null)	

)	

						SELECT	

									{	[Measures].[Category],	

											[Measures].[Internet	Sales	Amount]	}	ON	0,	

											NON	EMPTY	

									{	Descendants([Product].[Product	Categories]	

																								.[Category],	1,	SELF)	}	ON	1	

						FROM	

									[Adventure	Works]	

						CELL	PROPERTIES	

									VALUE,	

									FORMATTED_VALUE,	

									FORE_COLOR,	

WOW! eBook
www.wowebook.org

									BACK_COLOR	

8.	 Once	executed,	the	query	returns	the	result	presented	on	the	following	screenshot:

9.	 Notice	that	the	highest	value	in	a	category	is	highlighted	with	light	green	and	the	lowest
value	per	category	is	highlighted	with	light	red.	That's	the	visual	cue	we're	after.

WOW! eBook
www.wowebook.org

How	it	works...
Siblings	are	members	that	are	under	the	same	parent.	In	our	earlier	result,	the	first	eight
subcategories	are	all	siblings	that	are	under	one	category:	Accessories.	We	deliberately
created	a	calculated	measure	[Measures].[Category]	using	the	.Parent	function.	We	can	now
visually	identify	all	the	siblings	under	each	category,	and	can	validate	our	color-coding
calculation.

The	BACK_COLOR	property	controls	the	color	of	the	background	of	a	cell.	It	can	be	defined	as	a
constant	value,	but	it	can	also	be	an	expression.	In	this	case,	we	used	a	combination	-
conditional	formatting	using	fixed	values	for	two	colors:	light	green	and	light	red.

We	had	to	use	the	iif()	function	in	the	definition	of	the	calculated	measure	[Measures].
[Category]	because	a	calculated	measure	is	evaluated	as	a	string,	which	is	never	null.
Therefore,	we	have	bound	the	calculated	measure	to	the	original	measure	[Internet	Sales
Amount]	so	that	it	returns	values	only	for	rows	with	data.

In	the	BACK_COLOR	property	expression,	we	used	two	nested	iif()	functions,	with	the	Max()
function	in	the	outer	iif()	and	Min()	function	in	the	inner	iif().	The	Max()	and	Min()
functions	return	the	highest	and	the	lowest	value	in	the	specified	set	of	sibling	members.	The
current	measure's	value,	which	is	the	sales	amount	for	each	subcategory,	is	compared	to	the
maximum	and	minimum	values,	respectively.	In	case	of	a	match,	the	appropriate	color	is
chosen	(green	for	max	and	red	for	min	values).

Finally,	because	the	measure	Internet	Sales	Amount	already	existed,	we	used	the	CELL
CALCULATION	syntax	to	define	(or	overwrite)	additional	properties	for	it,	such	as	the
BACK_COLOR	property	in	this	example.	The	CELL	CALCULATION	is	one	of	the	three	elements	that
can	be	defined	in	the	WITH	part	of	the	query.	It	is	analogous	to	the	SCOPE	statement	inside	the
MDX	script.	In	other	words,	it	can	be	used	to	define	or	overwrite	a	value	inside	a	subcube	or
to	define	or	overwrite	cell	properties	such	as	BACK_COLOR.

WOW! eBook
www.wowebook.org

There's	more...
It	is	also	possible	to	color	code	any	measure	in	a	different	way.	For	example,	it	is	possible	to
provide	a	range	of	colors	so	that	the	cell	with	the	highest	value	has	one	color,	the	cell	with	the
lowest	value	another	color,	and	those	in	between	a	gradient	of	those	colors.	See	for	yourself
by	running	this	query	and	observing	the	result	afterwards:

WITH				

MEMBER	[Measures].[Category]	AS	

			iif(IsEmpty([Measures].[Internet	Sales	Amount]),	

								null,	

								[Product].[Product	Categories]	

								.CurrentMember.Parent.Name)	

MEMBER	[Measures].[Rank	in	siblings]	AS	

			iif(IsEmpty([Measures].[Internet	Sales	Amount]),	

								null,	

								Rank([Product].[Product	Categories].CurrentMember,	

														NonEmpty([Product].[Product	Categories]	

																								.CurrentMember.Siblings,	

																								[Measures].[Internet	Sales	Amount]),	

														[Measures].[Internet	Sales	Amount])	

)	

MEMBER	[Measures].[Count	of	siblings]	AS	

			Sum([Product].[Product	Categories]	

								.CurrentMember.Siblings,	

								iif(IsEmpty([Measures].[Internet	Sales	Amount]),	

													null,	1)	

)	

MEMBER	[Measures].[R]	AS	

			iif(IsEmpty([Measures].[Internet	Sales	Amount]),	

								null,	

								255	/	([Measures].[Count	of	siblings]	-	1)	*	

								([Measures].[Count	of	siblings]	-			

										[Measures].[Rank	in	siblings]))	--	all	shades	

			,	FORMAT_STRING	=	'#,#'					

			,	VISIBLE	=	1													

MEMBER	[Measures].[G]	AS	

			iif(IsEmpty([Measures].[Internet	Sales	Amount]),	

								null,	0)	--	fixed	dark	green	

			,	VISIBLE	=	1													

MEMBER	[Measures].[B]	AS	

			iif(IsEmpty([Measures].[Internet	Sales	Amount]),	

								null,	

								100	/	[Measures].[Count	of	siblings]	*	

								[Measures].[Rank	in	siblings])	--	dark	shades	

			,	FORMAT_STRING	=	'#,#'																	

			,	VISIBLE	=	1													

CELL	CALCULATION	[Highlighted	Amount]	

FOR	'{	[Measures].[Internet	Sales	Amount]	}'	AS	

			[Measures].[Internet	Sales	Amount]	

			,	BACK_COLOR	=	RGB([Measures].[R],	

																							[Measures].[G],	

																							[Measures].[B])	

			,	FORE_COLOR	=	RGB(255,	255,	255)	--	white	

WOW! eBook
www.wowebook.org

SELECT	

			{	[Measures].[Category],	

					[Measures].[Rank	in	siblings],	

					[Measures].[Internet	Sales	Amount],	

					[Measures].[R],	

					[Measures].[G],	

					[Measures].[B]	}	ON	0,	

NON	EMPTY	

			{	Descendants([Product].[Product	Categories].[Category],	

																		1,	SELF)	}	ON	1	

FROM	

			[Adventure	Works]	

CELL	PROPERTIES	

			VALUE,	

			FORMATTED_VALUE,	

			FORE_COLOR,	

			BACK_COLOR	

The	previous	query,	once	executed,	returns	the	result	presented	in	the	following	screenshot:

The	Category	calculated	measure	is	the	same	as	in	the	previous	query.

Rank	in	siblings	is	a	measure	that	returns	the	rank	of	an	individual	subcategory	when
compared	with	the	results	of	its	siblings.	This	measure	is	included	in	the	columns	so	that	the
verification	becomes	relatively	easy.

The	Count	of	siblings	is	a	measure	which	returns	the	number	of	sibling	members	and	is
used	to	establish	the	boundaries	as	well	as	the	increment	in	the	color	gradient.

The	R,	G,	and	B	values	are	calculated	measures	used	to	define	the	background	color	for	the
WOW! eBook

www.wowebook.org

Internet	Sales	Amount	measure.	The	gradient	is	calculated	using	the	combination	of	rank
and	count	measures	with	additional	offsets	so	that	the	colors	look	better	(keeping	them
relatively	dark).	In	addition	to	that,	the	FORE_COLOR	property	is	set	to	white	so	that	proper
contrast	is	preserved.	The	three	calculated	measures	are	displayed	last	in	the	result	just	to
show	how	the	values	change.	You	can	freely	hide	those	measures	and	remove	them	from	the
columns	axis.	The	VISIBLE	property	is	there	to	remind	you	about	that.

It's	worth	mentioning	that	one	component	of	the	color	should	decrease	as	the	other	increases.
Here,	it	is	implemented	with	the	rank	and	count-rank	expressions.	As	one	increases,	the	other
decreases.

For	more	complex	color-coding,	an	appropriate	stored	procedure	installed	on	the	SSAS
server	is	another	solution	-	unless	the	frontend	and	its	pivot	table	grid	already	supports	these
features.

Troubleshooting

Don't	forget	to	include	the	required	cell	properties,	namely	BACK_COLOR	and	FORE_COLOR,	or
the	recipe	solution	won't	work.	The	same	applies	for	the	frontend	you're	using.	If	you	don't
see	the	effect,	check	whether	there's	an	option	to	turn	those	cell	properties	on.

WOW! eBook
www.wowebook.org

See	also
Refer	to	the	Implementing	bubble-up	exceptions	recipe

WOW! eBook
www.wowebook.org

Implementing	bubble-up	exceptions
In	the	previous	recipe,	we	dealt	with	highlighting	cells	based	on	their	results	in	comparison
with	sibling	members,	which	can	be	visualized	in	a	horizontal	direction.	In	this	recipe,	we	will
take	a	look	at	how	to	do	the	same	but	in	a	vertical	direction,	using	the	descendants	of
members	in	the	report.

Bubble-up	exceptions	are	a	nice	way	of	visualizing	information	about	the	descendants	of	a
member	without	making	reports	too	big.	By	coding	the	information	about	the	result	of
descendants,	we	can	have	compact	reports	on	a	higher	level,	while	still	having	some	kind	of
information	about	what's	going	on	below.

The	information	we	are	going	to	bubble-up	will	be	presented	by	color-coding	the	cells.

WOW! eBook
www.wowebook.org

Getting	ready
Start	SQL	Server	Management	Studio	and	connect	to	your	SSAS	2016	instance.	Click	on	the
New	Query	button	and	check	that	the	target	database	is	Adventure	Works	DW	2016.

In	this	example,	we're	going	to	use	the	Product	dimension.	Here	is	the	query	we'll	start	from:

SELECT	

			{	[Measures].[Reseller	Sales	Amount],	

					[Measures].[Reseller	Gross	Profit	Margin]	}	ON	0,	

NON	EMPTY	

			{	Descendants([Product].[Product	Categories].[Category],	

																		1,	BEFORE)	}	ON	1	

FROM	

			[Adventure	Works]	

WHERE	

			([Date].[Fiscal].[Fiscal	Year].&[2013])				

Once	executed,	the	query	returns	the	value	of	the	Reseller	Sales	Amount	and	Reseller
Gross	Profit	Margin	measures	in	the	fiscal	year	2013	for	each	product	category.

We	are	going	to	analyze	the	product	subcategory,	which	is	the	descendant	of	the	product
category,	and	color-code	the	category	if	at	least	one	of	its	subcategories	has	a	negative	profit
margin.	We	will	do	this	in	one	query	without	displaying	the	subcategories.

WOW! eBook
www.wowebook.org

How	to	do	it...
Follow	these	steps	to	color	code	the	product	categories	if	at	least	one	of	its	subcategories	has
a	negative	profit	margin:

1.	 Create	a	new	calculated	measure	that	will	serve	as	an	alias	for	the	Reseller	Gross
Profit	Margin	measure.	Name	it	Margin	with	Bubble-up.

2.	 Define	the	FORE_COLOR	property	of	that	measure	so	that	it	turns	red	when	at	least	one
descendant	on	the	lower	level	has	negative	values	for	the	margin.

3.	 Include	that	new	measure	on	the	columns,	as	with	the	third	measure	there.
4.	 Include	the	CELL	PROPERTIES	part	of	the	query	and	enlist	the	FORE_COLOR	property	as	one

of	them	to	be	returned	by	the	query.
5.	 Execute	the	query,	which	should	look	like	this:

						WITH	

						MEMBER	[Measures].[Margin	with	Bubble-up]	AS	

									[Measures].[Reseller	Gross	Profit	Margin]	

									,	FORE_COLOR	=		

											iif(

															Min(Descendants([Product].[Product	Categories]	

																																	.CurrentMember,	

																																	1,	SELF),	

																				[Measures].CurrentMember)<	0,	

															RGB(255,	0,	0),	--	red	

															null	

)	

						SELECT	

									{	[Measures].[Reseller	Sales	Amount],	

											[Measures].[Reseller	Gross	Profit	Margin],	

											[Measures].[Margin	with	Bubble-up]	}	ON	0,	

						NON	EMPTY	

									{	Descendants([Product].[Product	Categories]	

																								.[Category],	1,	BEFORE)	}	ON	1	

						FROM	

									[Adventure	Works]	

						WHERE	

									([Date].[Fiscal].[Fiscal	Year].&[2013])	

						CELL	PROPERTIES	

									VALUE,	

									FORMATTED_VALUE,	

									FORE_COLOR,	

									BACK_COLOR				

6.	 Verify	that	the	new	measure	is	red	in	three	rows:	Bikes,	Clothing	and	Components:

WOW! eBook
www.wowebook.org

WOW! eBook
www.wowebook.org

How	it	works...
As	mentioned	earlier,	this	new	measure	is	just	an	alias	for	the	original	measure,	[Reseller
Gross	Profit	Margin];	there's	nothing	special	in	its	definition.	Its	real	value	is	in	the
additional	cell	property	expressions,	namely	the	FORE_COLOR	property	used	in	this	example.	It
could	have	been	the	BACK_COLOR	property	if	we	preferred	it;	what	matters	in	this	recipe	is	the
expression	we	used	in	the	conditional	color-coding	of	the	calculated	measure.

In	that	expression,	we	are	analyzing	descendants	of	the	current	member	and	extracting	only
the	ones	with	a	negative	result	for	the	current	measure:	the	Margin	with	Bubble-up	measure.
As	that	measure	is	an	alias	for	the	Reseller	Gross	Profit	Margin	measure,	we	are	actually
testing	the	latter	measure.

We	applied	the	Min()	function	to	the	tuple	and	used	the	outer	iif()	function	to	determine
whether	the	minimum	Reseller	Gross	Profit	Margin	is	a	negative	value.	If	that's	a	negative
number,	we	turn	the	color	to	red.	If	not,	we	leave	it	as	it	is.

The	red	color	for	the	three	rows,	Bikes,	Clothing	and	Components,	tells	us	that	at	least	one
of	the	subcategories	under	them	has	a	negative	profit	margin.	That	might	have	been	obvious
for	Bikes,	but	not	for	the	other	two	categories	since	their	margin	is	positive.

WOW! eBook
www.wowebook.org

There's	more...
On	the	query	axis	on	the	rows,	we	could	have	directly	used	the	level	[Category]	without	using
the	construct	Descendants([Product].[Product	Categories].[Category],	1,	BEFORE),
which	is	essentially	just	another	way	of	specifying	that	we	want	to	see	product	categories.
However,	the	advantage	of	this	construct	is	that	it	allows	us	to	make	a	small	change	in	the
query,	maybe	using	a	report	parameter,	and	to	be	able	to	drill	down	one	level	below.

The	part	that	needs	a	change	is	the	second	argument	of	the	Descendants()	function	on	the
rows.	The	value	of	that	argument	was	1,	signaling	that	we	want	only	product	categories	and
nothing	else.

If	we	change	that	argument	to	2,	we	will	get	the	result	as	displayed	in	the	following
screenshot:

WOW! eBook
www.wowebook.org

In	other	words,	now	the	query	includes	both	product	categories	and	product	subcategories	on
rows.

What's	good	about	this	is	that	our	measure	reacts	in	this	scenario	as	well.	Three
subcategories,	Bikes,	Clothing	and	Components,	remained	in	red.	The	change	also	captures
a	few	more	negative	values.	The	color-coding	calculation	not	only	captured	the	descendants
that	had	negative	values,	but	also	any	member	itself	that	was	negative.

The	reason	this	worked	is	because	our	color-coding	expression	for	our	calculated	measure
also	used	a	relative	depth	for	descendants.	The	Descendants	expression	is	repeated	here.	The
relative	depth	we	used	was	1:

Descendants([Product].[Product	Categories].CurrentMember,	

													1,	SELF)	

If	it	is	required,	we	can	specify	an	absolute	level,	not	a	relative	one.	We	would	do	this	by
specifying	the	name	of	a	particular	level	instead	of	the	number.	For	example,	if	we	want	our
expression	to	only	detect	negative	values	in	the	subcategories,	we	should	specify	it	like	this:

Descendants([Product].[Product	Categories].CurrentMember,	

													[Product].[Product	Categories].[Subcategory],	

													SELF)	

If	we	want	the	expression	to	work	on	only	the	lowest	level,	we	should	use	this	construct:

Descendants([Product].[Product	Categories].CurrentMember,	,	

													LEAVES)	

In	short,	there	are	a	lot	of	possibilities	and	you	are	free	to	experiment.

Practical	value	of	bubble-up	exceptions

Members	colored	in	red	signal	that	some	of	the	members	on	the	lower	level	have	negative
margins.	With	the	visual	indicator,	end	users	can	save	a	lot	of	their	precious	time	by	drilling
down	to	the	next	level	when	a	cell	gives	them	a	visual	clue.	On	the	other	hand,	without	the
visual	indicator,	they	might	miss	opportunities	if	data	at	a	more	granular	level	is	not
examined.

Potential	problems

On	very	large	hierarchies,	there	can	be	problems	with	performance	if	the	bubble-up
exceptions	are	set	at	a	granular	level	that	is	too	low.

WOW! eBook
www.wowebook.org

See	also
Refer	to	the	Highlighting	siblings	with	the	best/worst	values	recipe

WOW! eBook
www.wowebook.org

Chapter	5.	Navigation
In	this	chapter,	we	will	cover	the	following	recipes:

Detecting	a	particular	member	in	a	hierarchy
Detecting	the	root	member
Detecting	members	on	the	same	branch
Finding	related	members	in	the	same	dimension
Finding	related	members	in	another	dimension
Calculating	various	percentages
Calculating	various	averages
Calculating	various	ranks

WOW! eBook
www.wowebook.org

Introduction
One	of	the	advantages	of	multidimensional	cubes	is	their	rich	metadata	model	backed	up	with
a	significant	number	of	MDX	functions	that	enable	easy	navigation	and	data	retrieval	from
any	part	of	the	cube.	We	can	easily	navigate	through	levels,	hierarchies,	dimensions,	and
cubes.

The	goal	of	this	chapter	is	to	show	common	tasks	and	techniques	related	to	navigation	and
data	retrieval	relative	to	the	current	context.	We	will	show	how	to	take	control	of	and	finetune
the	query	context	and	how	to	achieve	query	optimization.

The	first	three	recipes	illustrate	how	to	test	whether	the	current	context	is	the	one	we're
expecting	or	not.

Then	we	will	continue	on	to	two	recipes	where	we	illustrate	how	to	find	related	members,
whether	the	related	members	are	on	different	hierarchies	in	the	same	dimension,	or	they	are
from	totally	different	dimensions.

Finally,	building	on	the	knowledge	of	detecting	specific	members	and	navigating	through	any
parts	of	the	cube,	we	will	run	a	series	of	relative	calculations	of	percentage,	average,	and
rank.	We	provide	examples	for	relative	calculations	that	take	the	current	context	and	compare
its	value	to	some	other	related	context,	such	as	parents,	children,	siblings,	members	on	the
same	level	or	same	hierarchy,	and	so	on.	Examples	of	such	calculations	are	percentage	of
parent,	percentage	of	total,	average	on	a	level,	average	on	leaves,	rank	among	siblings,	rank
on	a	level,	and	so	on.

Multidimensional	cubes	are	conceptually	enormous	structures	filled	with	empty	space,	with
no	data	at	all	in	all	but	a	few	combinations.	There	are	times	when	the	Analysis	Services	engine
takes	care	of	that	by	utilizing	various	algorithms	that	compact	the	cube	space,	but	there	are
times	when	we	have	to	do	that	by	ourselves.

The	MDX	language	incorporates	functions	that	enable	fast	retrieval	of	related	members,	to
move	from	one	hierarchy	to	another,	from	one	dimension	to	another,	and	to	get	only
members	valid	in	the	current	context.	This	technique	improves	query	performance	because
the	engine	is	not	forced	to	calculate	on	non-relevant	space.	There	are	several	recipes	in	this
chapter	covering	that	topic.

Let's	start!

WOW! eBook
www.wowebook.org

Detecting	a	particular	member	in	a	hierarchy
We	frequently	encounter	situations	where	we	need	to	include	or	exclude	a	certain	member	in	a
calculation.	Our	first	step	is	to	determine	whether	the	member	exists	in	a	hierarchy.

When	iterating	through	a	set	of	hierarchy	members,	at	each	step	in	the	iteration,	the	member
being	operated	upon	is	the	current	member.	This	recipe	shows	how	to	determine	whether	the
current	member	in	the	query	context	is	a	particular	member	that	we	are	interested	in.

WOW! eBook
www.wowebook.org

Getting	ready
Start	SQL	Server	Management	Studio	and	connect	to	your	SSAS	2012	instance.	Click	on	the
New	Query	button	and	check	that	the	target	database	is	Adventure	Works	DW	2012.

In	this	example,	we're	going	to	use	the	Product	dimension.	Here's	the	query	we'll	start	from:

SELECT	

			{	}	ON	0,	

			{	[Product].[Color].AllMembers	}	ON	1	

FROM	

			[Adventure	Works]	

Once	executed,	the	query	returns	all	product	colors,	including	the	root	member.	The
preceding	query	will	return	products	in	rows,	with	nothing	in	columns.	This	type	of	query	that
has	nothing	on	columns	is	explained	in	the	Skipping	axis	recipe	in	Chapter	1	,	Elementary
MDX	Techniques:

Our	task	is	to	detect	the	member	NA.	Once	the	specific	member	is	detected,	we	can	perform
calculations	that	either	include	this	member	or	exclude	this	member.	In	this	recipe,	we	are
focusing	only	on	how	to	perform	the	detection.

WOW! eBook
www.wowebook.org

How	to	do	it...
Follow	these	steps	to	detect	the	NA	member:

1.	 Add	the	WITH	block	of	the	query.
2.	 Create	a	new	calculated	measure	and	name	it	Member	is	detected.
3.	 Define	it	as	True	for	the	NA	member	and	null,	not	False,	in	all	other	cases.
4.	 Add	this	calculated	measure	on	axis	0.
5.	 Execute	the	query,	which	should	look	like	this:

						WITH	

						MEMBER	[Measures].[Member	is	detected]	AS	

									iif([Product].[Color].CurrentMember	Is	

														[Product].[Color].&[NA],	

														True,	

														null	

)	

						SELECT	

									{	[Measures].[Member	is	detected]	}	ON	0,	

									{	[Product].[Color].AllMembers	}	ON	1	

						FROM	

									[Adventure	Works]	

6.	 Verify	that	the	result	matches	the	following	screenshot:

WOW! eBook
www.wowebook.org

How	it	works...
When	an	MDX	query	is	executed,	part	of	the	standard	query	execution	is	iterating	through	a
set	of	hierarchy	members	on	query	axes.	The	current	member	changes	on	a	hierarchy	used	on
an	axis	in	a	query.	In	the	iteration	phase,	we	can	detect	the	current	context	on	an	axis	in	the
query	using	the	CurrentMember	function.	This	function	returns	the	member	of	the	hierarchy
on	the	query	axis	we	are	currently	operating	upon.

The	IS	operator	performs	a	logical	comparison	on	two	object	expressions,	and	is	often	used
to	determine	whether	two	tuples	or	members	are	exactly	equivalent.	By	comparing	the	current
member	with	a	particular	member	of	the	same	hierarchy,	we	can	know	when	we	have	hit	the
row	or	column	with	that	member	in	it.

WOW! eBook
www.wowebook.org

There's	more...
The	solution	presented	here	is	good	in	situations	when	there	is	a	temporary	need	to	isolate	a
particular	member	in	the	query.	The	emphasis	is	on	the	word	temporary.	Typical	examples	of
this	type	of	temporary	need	include	highlighting	the	rows	or	columns	of	a	report	or
providing	two	calculations	for	a	single	measure	based	on	the	context.

In	cases	where	the	required	behavior	has	a	more	permanent	characteristic,	defining	the
member	in	MDX	script	or	using	the	Scope()	statement	are	better	approaches.

Take	a	look	at	the	following	script,	which	can	be	added	in	the	MDX	script	of	the	Adventure
Works	cube:

Create	Member	CurrentCube.[Measures].[Member	is	detected]	

As	null;	

	

Scope(([Product].[Color].&[NA],	

									[Measures].[Member	is	detected]));	

				This	=	True;	

End	Scope;	

First,	the	measure	is	defined	as	null.	Then,	the	scope	is	applied	to	it	in	the	context	of	NA	color.
When	the	scope	becomes	active,	it	will	provide	True	as	the	result.	In	all	other	cases,	the	initial
definition	of	the	measure	null	will	prevail.

The	Scope()	statement	is	basically	doing	the	same	thing	as	the	iif()	statement	in	a	calculated
member,	with	one	important	difference--the	scope	statement	itself	is	evaluated	(resolved)	only
once,	when	the	first	user	connects	to	the	cube.	That	goes	for	named	sets	and	the	left	side	of
assignments	too,	which	can	easily	be	verified	by	observing	the	Execute	MDX	Script
Begin/End	events	in	SQL	Server	Profiler.	More	about	this	is	in	the	Capturing	MDX	queries
generated	by	SSAS	frontends	recipe	in	Chapter	10	,	On	the	Edge.

The	right	side	of	assignments	(here,	the	value	True)	is	evaluated	at	query	time	and	hence	it
makes	no	difference	whether	the	expression	on	that	side	was	used	in	an	MDX	script	or	in	a
query.	However,	as	the	scope	statement	gets	evaluated	only	once,	it	may	be	reasonable	to	put	a
complex	expression	in	the	scope	instead	of	the	iif()	function.

Important	remarks

The	earlier	Create	Member	statement	did	not	use	the	Boolean	value	False	as	the	result	of	the
negative	branch.	Instead,	the	value	of	null	was	provided	in	order	to	keep	the	calculation
sparse	and	hence	preserve	performance.	The	iif()	function	is	optimized	to	work	in	block
mode	if	one	of	the	branches	is	null.

Comparing	members	versus	comparing	values

We	have	used	the	Is	keyword	to	compare	the	current	member	on	the	[Color]	hierarchy	with

WOW! eBook
www.wowebook.org

[Product].[Color].&[NA],	which	is	a	key-based	fully	qualified	member	on	the	same
hierarchy.	It	is	important	to	differentiate	the	comparison	of	members	from	the	comparison	of
values.	The	first	is	performed	using	the	Is	keyword,	the	latter	using	the	=	sign.	It	is	essential
that	you	learn	and	understand	that	difference.	Otherwise,	you	will	not	get	correct	results	from
your	logical	comparison.

When	you	do	need	to	compare	values	using	the	=	sign,	try	to	compare	members	using	their
unique	names	whenever	you	can.	The	following	logical	comparison	using	the	member's
unique	name	is	equivalent	to	using	the	Is	keyword	to	compare	two	member	object
expressions:

[Product].[Color].CurrentMember.Uniquename	=	'[Product].[Color].&[NA]'	

We	should	avoid	comparing	member	properties	such	as	name.	The	following	logical
comparison	will	work,	but	it	will	not	give	you	the	best	possible	performance:

[Product].[Color].CurrentMember.Name	=			'NA'	

The	other	reason	you	should	avoid	comparing	names	is	that	names	can	repeat,	especially	in
multilevel	user	hierarchies.	For	example,	the	Geography.Geography	hierarchy	has	New	York
the	state	and	New	York	the	city.	Obviously,	using	the	following	code	to	compare	the	current
member	to	that	member	by	its	name	would	be	a	bad	choice:

[Geography].[Geography].CurrentMember.name	=	'New	York'	

Detecting	complex	combinations	of	members

When	the	business	logic	is	complex,	it	might	be	required	to	detect	several	members,	not	just
one	of	them.	In	that	case,	apply	the	same	principles	described	in	this	recipe.	Your	only
concern	in	that	case	is	to	handle	the	logic	correctly.	The	MDX	language	offers	various	logical
functions	for	that	scenario.

In	the	case	of	OR	logic,	here	are	a	few	additional	hints:

You	can	define	a	set	of	members	and	use	the	Intersect()	function	to	test	whether	the	set
formed	from	the	current	member	has	an	intersection	with	the	predefined	set.
In	cases	of	poor	performance,	you	might	want	to	consider	creating	a	new	attribute
hierarchy	based	on	a	Yes/No	value	in	the	field	derived	using	the	case	statement	in	your
DW/DSV,	as	explained	in	the	Using	a	new	attribute	to	separate	members	on	a	level	recipe
in	Chapter	8,	When	MDX	Is	Not	Enough.	This	way,	you	can	have	pre-aggregated	values
for	those	two	members.
In	cases	of	very	complex	logic,	you'd	be	better	off	defining	a	new	column	in	your	fact
table	and	creating	a	dimension	from	it.	That	way,	you	are	pushing	the	logic	in	DW	and
using	SSAS	cubes	for	what	they	do	best--slicing	and	aggregation	of	the	data.

WOW! eBook
www.wowebook.org

See	also
The	Detecting	the	root	member	recipe	covers	a	similar	topic,	but	in	a	much	more	narrow
case.	It	is	worth	reading	right	after	this	recipe	because	of	the	additional	insights	it
provides.

WOW! eBook
www.wowebook.org

Detecting	the	root	member
The	root	member	is	the	topmost	member	of	a	hierarchy.	It	is	present	in	all	hierarchies	(in	user
hierarchies	as	well	as	in	attributes	hierarchies)	as	long	as	the	IsAggregatable	property	is
enabled,	as	in	its	default	state.

The	root	member	represents	the	highest	level	of	granularity	within	a	hierarchy	the	data	can	be
aggregated	up	to.	When	calculating	the	percentage	of	a	total,	we	need	to	detect	whether	the
current	member	in	the	query	context	is	pointing	to	the	root	member	of	a	hierarchy	or	not.
Based	on	the	detection	result,	we	can	make	our	calculation	of	the	percentage	of	a	total
response	different	to	that	of	the	root	member.

Although	we	have	the	real-world	application	of	the	root	member	detection	in	mind,	this
recipe	shows	only	how	to	detect	the	root	member.

WOW! eBook
www.wowebook.org

Getting	ready
Start	SQL	Server	Management	Studio	and	connect	to	your	SSAS	2016	instance.	Click	on	the
New	Query	button	and	check	that	the	target	database	is	Adventure	Works	DW	2016.

In	this	example,	we're	going	to	use	the	same	Color	hierarchy	of	the	Product	dimension	as	in
the	previous	recipe,	Detecting	a	particular	member	in	a	hierarchy.	Here's	that	query:

SELECT	

			{	}	ON	0,	

			{	[Product].[Color].AllMembers	}	ON	1	

FROM	

			[Adventure	Works]	

Once	executed,	the	query	returns	all	product	colors,	including	the	root	member.	The
preceding	query	will	return	products	in	rows,	with	nothing	in	columns.	This	special	type	of
query	is	explained	in	the	Skipping	axis	recipe	in	Chapter	1	,	Elementary	MDX	Techniques.

In	the	previous	recipe,	Detecting	a	particular	member	in	a	hierarchy,	we	showed	you	how	to
detect	a	member	NA.	Our	task	in	this	recipe	is	to	detect	the	root	member	in	the	[Color]
hierarchy.

WOW! eBook
www.wowebook.org

How	to	do	it...
Follow	these	steps	to	create	a	calculated	member	that	detects	the	root	member:

1.	 Add	the	WITH	block	of	the	query.
2.	 Create	a	new	calculated	measure	and	name	it	Root	member	detected.
3.	 Define	it	as	True	for	the	branch	where	the	detection	occurs	and	null	for	the	other	part.
4.	 Add	this	measure	on	axis	0.
5.	 Execute	the	query,	which	should	look	like	this:

						WITH	

						MEMBER	[Measures].[Root	member	detected]	AS	

									iif([Product].[Color].CurrentMember	Is	

														[Product].[Color].[All	Products],	

														True,	

														null	

)	

						SELECT	

									{	[Measures].[Root	member	detected]	}	ON	0,	

									{	[Product].[Color].AllMembers	}	ON	1	

						FROM	

									[Adventure	Works]	

6.	 Verify	that	the	result	matches	the	following	screenshot:

WOW! eBook
www.wowebook.org

How	it	works...
The	CurrentMember	function	returns	the	member	we	are	currently	operating	on	in	a	particular
hierarchy.	We	then	compare	this	current	member	to	the	root	member	of	the	[Color]
hierarchy,	[Product].[Color].[All	Products],	to	detect	whether	the	current	member	on	the
query	axis	is	the	root	member.

The	condition	in	our	iif()	expression	evaluates	to	the	Boolean	value	True	when	the	root
member	is	detected.	In	all	other	cases,	the	returned	value	is	null.

WOW! eBook
www.wowebook.org

There's	more...
In	the	preceding	query,	we	have	hardcoded	the	root	member,	by	referencing	it	as	[Product].
[Color].[All	Products].	However,	the	name	of	the	root	member	can	change	over	time.	We
should	try	to	avoid	referencing	the	root	member	using	its	name.

Instead	of	using	the	reference	to	the	root	member,	we	can	use	the	reference	to	its	internal	alias
All.	The	calculated	measure	can	be	changed	to	this:

MEMBER	[Measures].[Root	member	detected]	AS	

			iif([Product].[Color].CurrentMember	Is	

								[Product].[Color].[All],	

								True,	

								null	

)	

With	the	changed	name	of	the	root	member	to	[Product].[Color].[All],	our	calculation	still
works.	That	is	because	the	internal	alias	name	[All]	for	the	root	member	works	the	same	way
as	the	actual	name	of	the	root	member.

[All]	is	the	internal	alias	for	the	root	member.	It	all	works	the	same	way	as	the	actual	name	of
the	root	member.	However,	anything	other	than	the	correct	name	of	the	root	member	and	its
alias	will	result	in	an	error.	Depending	on	a	particular	configuration	of	SSAS	cube,	the	error
will	be	reported	or	bypassed.	Mostly,	it	will	be	bypassed,	because	it	is	the	default	option	of
SSAS	cube.

This	trick	will	work	on	any	hierarchy,	but	may	not	work	in	future	SSAS	versions,	based	on
the	fact	that	it	isn't	documented	anywhere.

There	are,	of	course,	other	ways	to	detect	the	root	member.	One	is	to	test	the	level	of	a
hierarchy	by	retrieving	the	ordinal	number	of	the	current	member.	The	Ordinal	function
returns	a	zero-based	ordinal	value	associated	with	a	level.	The	calculated	measure	can	be
changed	to	this:

MEMBER	[Measures].[Root	member	detected]	AS	

			iif([Product].[Color].CurrentMember.Level.Ordinal	=	0,	

								True,	

								null	

)	

The	ordinal	value	of	a	level	in	a	hierarchy	can	be	from	0	to	n,	where	n	is	the	number	of
userdefined	levels	in	that	hierarchy.	An	ordinal	value	of	zero	represents	the	topmost	level,	the
root	member.

One	potential	problem	with	this	calculation	is	that	any	calculated	member	defined	on	the
hierarchy	itself	(not	on	another	regular	member)	will	also	be	positioned	on	the	topmost	level.
Its	level	ordinal	will	be	zero	too.	However,	if	you	exclude	calculated	members	in	our
calculation,	the	preceding	expression	will	work.

WOW! eBook
www.wowebook.org

To	avoid	hardcoding	the	name	of	a	root	member,	we	have	another	way	to	detect	the	topmost
regular	member	(as	opposed	to	calculated	members)	using	the	Root()	function.	The
calculated	measure	can	be	changed	to	this:

MEMBER	[Measures].[Root	member	detected]	AS	

			iif([Product].[Color].CurrentMember	Is	

								Extract(Root([Product]),	

[Product].[Color]).item(0),	

								True,	

								null	

)	

In	the	preceding	expression,	we	used	the	Root()	function,	which	takes	the	dimension
[Product]	as	the	argument	and	returns	a	tuple	that	contains	the	top-level	member	(or	the
default	member	if	the	All	member	does	not	exist)	from	each	attribute	hierarchy	in	the
[Product]	dimension	based	on	the	context	of	the	current	member.	Since	we	are	only
interested	in	the	attribute	hierarchy	[Color],	we	used	the	Extract()	function	to	isolate	the
single	hierarchy	and	its	members	in	that	tuple.	The	Item()	function	converts	the	set	of
members	into	a	single	member.	That's	the	topmost	regular	member	of	that	hierarchy	extracted
from	the	tuple.

The	scope-based	solution

All	the	calculations	for	[Root	member	detected]	so	far	are	query-based,	being	part	of	an
MDX	expression	in	MDX	queries.	In	cases	where	the	calculations	are	shared	by	many
different	users,	sessions,	and	applications,	we	should	define	the	calculation	in	MDX	script,
either	using	the	Scope()	statement	or	using	the	CREATE	MEMBER	statement	only	without	the
Scope()	statement.	This	scope-based	solution	is	a	better	approach	than	the	query-based	iif()
statement.

The	following	MDX	script	is	equivalent	to	the	query-based	calculation.	Define	it	in	the	MDX
script	of	the	Adventure	Works	cube	using	SSDT,	deploy,	and	then	verify	its	result	in	the	cube
browser	using	the	same	hierarchy	[Color]:

Create	Member	CurrentCube.[Measures].[Root	member	detected]	

As	null;	

	

Scope(([Product].[Color].[All],	

									[Measures].[Root	member	detected]));	

				This	=	True;	

End	Scope;	

One	more	thing:	detection	of	this	kind	is	usually	done	so	that	another	calculation	can	exploit
it.	In	MDX	script,	it	is	possible	to	directly	specify	the	scope	for	an	existing	measure,	such	as
[Internet	Sales	Amount],	and	to	provide	a	scope-based	calculation	for	it.	The	following
MDX	script	is	an	example	that	returns	the	average	[Internet	Sales	Amount]	for	all	colors	at
the	topmost	level	using	the	Scope()	statement	to	detect	the	All	level:

Scope(([Product].[Color].[All],	

WOW! eBook
www.wowebook.org

									[Measures].[Internet	Sales	Amount]));	

				This	=	Avg([Product].[Color].[All].Children,			

																[Measures].CurrentMember);	

End	Scope;	

WOW! eBook
www.wowebook.org

See	also
The	recipe	Detecting	a	particular	member	in	a	hierarchy
Chapter	9,		Metadata-driven	Calculations	recipe

WOW! eBook
www.wowebook.org

Detecting	members	on	the	same	branch
So	far,	we've	covered	cases	when	there	is	a	need	to	isolate	a	single	member	in	the	hierarchy,
whether	it	is	a	root	member	or	any	other	member	in	the	hierarchy.	This	recipe	deals	with
detecting	the	ascendants	or	descendants	of	a	member	in	a	hierarchy.	As	a	matter	of	fact,	the
detection	does	not	need	to	go	all	the	way	to	the	top	level	or	to	the	leaf	level;	it	can	detect	only
a	certain	cascading	branch	in	a	hierarchy.

Multilevels	are	often	found	in	user	hierarchies.	For	a	certain	member,	we	might	need	to	apply
certain	calculations	to	its	ascendants	only,	or	its	descendants	only,	or	to	only	part	of	a
cascading	branch	in	the	hierarchy.	Let's	illustrate	this	with	a	couple	of	examples.

Suppose	we	want	to	analyze	dates.	There's	a	concept	of	the	current	date,	but	since	that	date	is
usually	found	in	a	multilevel	user	hierarchy,	we	can	also	talk	about	the	current	month,	current
quarter,	current	year,	and	so	forth.	They	are	all	ascendants	of	the	current	date	member.	For	the
month	of	April	2013,	we	might	need	to	detect	all	its	parents,	Q2	CY	2013,	H1	CY	2013,	and
CY	2013,	and	apply	some	special	calculations	to	them.

Another	example	is	the	Customer	Geography	user	hierarchy.	There,	we	can	detect	whether	a
particular	customer	is	living	in	a	particular	city,	or	if	that	city	is	in	the	state	or	country	in	the
context.	In	other	words,	we	can	test	preceding	and	following	levels,	as	long	as	there	are	levels
to	be	detected	in	each	direction.

In	this	recipe,	we	are	going	to	use	the	Product	Categories	user	hierarchy	and	a	particular
member	Touring	Bikes	on	the	Subcategory	level.	The	reason	we	picked	the	subcategory
level	is	because	it	is	a	middle	level	in	the	Product	Categories	user	hierarchy.	We	want	to
demonstrate	how	to	check	whether	a	particular	member	in	a	middle	level	is	on	the	selected
drill-up/down	part	in	the	hierarchy.

WOW! eBook
www.wowebook.org

Getting	ready
Open	the	SQL	Server	Data	Tools	(SSDT)	and	then	open	the	Adventure	Works	DW	2016
solution.	Double-click	on	the	Adventure	Works	cube	and	go	to	the	Calculations	tab.	Choose
Script	View.	Position	the	cursor	at	the	end	of	the	script.

We'll	base	the	example	for	this	recipe	on	providing	a	special	calculation	for	Touring	Bikes.

WOW! eBook
www.wowebook.org

How	to	do	it...
Follow	these	steps	to	detect	members	on	the	same	branch:

1.	 Add	the	Scope()	statement.
2.	 Specify	that	you	want	Touring	Bikes	and	all	of	their	descendants	included	in	this	scope:

						Scope(Descendants(

																[Product].[Product	Categories].[Subcategory].&[3],	,	

																SELF_AND_AFTER	

)	

);	

										[Measures].[Internet	Sales	Amount]	=	1;	

						End	Scope;	

3.	 Save	and	deploy	the	script	(or	just	press	the	Deploy	MDX	Script	icon	if	you're	using
BIDS	Helper).

4.	 Go	to	the	Cube	Browser	tab	and	optionally	reconnect.
5.	 Click	on	the	icon	Analyze	in	Excel	on	top,	and	choose	the	Adventure	Works

perspective.	When	the	pivot	table	is	open,	select	the	measure	Internet	Sales	Amount
from	the	field	list.

6.	 Select	the	[Product	Categories]	user	hierarchy	from	the	field	list,	and	expand	it	until
you	see	all	the	touring	bikes,	as	displayed	in	the	following	screenshot:

WOW! eBook
www.wowebook.org

7.	 Verify	that	the	result	for	all	Touring	Bikes,	including	their	total,	is	1,	as	defined	in	the
scope	statement.

8.	 Bring	another	measure,	for	example,	Reseller	Sales	Amount	and	verify	that	this	measure
remains	intact;	the	scope	is	not	affecting	it.

WOW! eBook
www.wowebook.org

How	it	works...
The	Scope()	statement	is	used	to	isolate	a	particular	part	of	the	cube,	also	called	the	subcube,
in	order	to	provide	a	special	calculation	for	that	space.	It	starts	with	the	Scope	keyword
followed	by	the	subcube	and	ends	with	the	End	Scope	phrase.	Everything	inside	is	valid	only
for	that	particular	scope.

In	this	case,	we	formed	the	subcube	by	using	the	Descendants()	function	to	get	all	the
descendants	of	the	member	Touring	Bikes	and	the	member	Touring	Bikes	itself.	There	are
various	ways	that	we	can	collect	members	on	a	particular	branch	using	the	Ascendants()	and
Descendants()	function.	These	ways	will	be	covered	in	the	later	sections	of	this	recipe.

Once	we	have	set	our	subcube	correctly,	we	can	provide	various	assignments	inside	that
scope.	Here,	we	have	specified	that	the	value	for	the	Internet	Sales	Amount	measure	is	to	be
1	for	every	cell	in	that	subcube.

It	is	worth	noticing	that	the	Touring	Bikes	total	is	not	calculated	as	an	aggregate	of	its
children.	This	is	because	we	have	used	the	flag	SELF_AND_AFTER	in	the	Descendants()
function;	therefore,	the	member	representing	that	total	was	included	in	the	scope.	Therefore,	a
constant	value	of	1	has	been	assigned	to	it,	the	same	way	it	was	assigned	to	its	children.
Consequently,	the	Touring	Bikes	member	contributes	with	its	own	value,	1,	as	the	Touring
Bikes	total.

If	the	AFTER	flag	had	been	used	in	the	Descendants()	function,	the	Touring	Bikes	member
would	have	been	left	out	of	that	scope.	In	that	case,	its	value	would	be	equal	to	the	sum	of	its
children,	that	is,	22.	The	aggregate	value	of	22	would	be	used	as	its	contribution	to	the
Touring	Bikes	total.

It	is	worth	noting	that	regular	measures	roll	up	their	children's	values	using	aggregate
functions	(Sum,	Max,	Min,	and	others)	that	are	specified	in	the	measure	property
AggregateFunction.	Calculated	measures	do	not	roll	up.	They	are	calculated	by	evaluating
their	expression	for	every	single	member,	be	it	parent	or	child.

WOW! eBook
www.wowebook.org

There's	more...
The	earlier	example	showed	how	to	isolate	a	lower	part	of	a	hierarchy,	a	part	following	a
particular	member.	In	this	section,	we're	going	to	show	that	the	opposite	is	not	so	easy,	but
still	possible.

In	cases	where	we	need	to	scope	a	part	of	the	hierarchy	above	the	current	member,	we	might
be	tempted	to	do	the	obvious,	to	use	the	opposite	MDX	function,	the	Ascendants()	function.
However,	that	would	result	in	an	error	because	the	subcube	wouldn't	be	compact	any	more.
The	term	arbitrary	shape	represents	a	subcube	formed	by	two	or	more	smaller	subcubes	of
different	granularity,	something	that	is	not	allowed	in	the	scopes.	The	solution	is	to	break	the
bigger	subcube	into	many	smaller	ones,	so	that	each	can	be	considered	compact,	with	data	of
consistent	granularity.	More	about	which	shapes	are	arbitrary	and	which	are	not	can	be	found
in	the	Appendix	and	on	this	site:	http://tinyurl.com/ArbitraryShapes	.

Here's	an	example	for	the	Mountain	Bikes	member	in	which	we	show	how	to	set	the	value	to
2	for	all	of	its	ancestors:

Scope(Ancestors(

											[Product].[Product	Categories].[Subcategory].&[1],	

												1)	

);	

					[Measures].[Internet	Sales	Amount]	=	2;	

End	Scope;	

	

Scope(Ancestors(

									[Product].[Product	Categories].[Subcategory].&[1],	

												2)	

);	

					[Measures].[Internet	Sales	Amount]	=	2;	

End	Scope;	

This	is	the	result:

WOW! eBook
www.wowebook.org

http://tinyurl.com/ArbitraryShapes

The	value	1	for	Touring	Bikes	and	its	children	is	from	the	previous	scope	script.	But	notice
the	value	2	in	the	Bikes	Total	row.	The	same	value	can	be	seen	in	the	Grand	Total	row,
highlighted	in	the	bottom	of	the	image.	Both	the	Bikes	Total	and	Grand	Total	are	the
ancestors	of	member	Mountain	Bikes.	The	calculation	worked	as	expected.

The	query-based	alternative

These	two	scope-based	calculations	can	easily	be	turned	into	query-based	calculations	in
cases	where	the	calculation	is	not	required	to	persist	in	all	queries.

Here's	the	query	that	returns	exactly	the	same	thing	as	those	scope	statements	we've	covered
so	far,	one	in	the	initial	example	and	two	in	the	There's	more	section:

WITH	

MEMBER	[Measures].[Branch	detected	on	member	or	below]	AS	

			iif(IsAncestor(

								[Product].[Product	Categories].[Subcategory].&[3],	

								[Product].[Product	Categories].CurrentMember	

)	

								OR	

WOW! eBook
www.wowebook.org

								[Product].[Product	Categories].[Subcategory].&[3]	Is	

								[Product].[Product	Categories].CurrentMember,	

								True,	

								null	

)	

MEMBER	[Measures].[Branch	detected	on	member	or	above]	AS	

			iif(Intersect(

										Ascendants(

												[Product].[Product	Categories].[Subcategory].&[3]	

),	

												[Product].[Product	Categories].CurrentMember	

).Count	>	0,	

								True,	

								null	

)							

SELECT	

			{	[Measures].[Branch	detected	on	member	or	above],	

					[Measures].[Branch	detected	on	member	or	below]	}	ON	0,	

			NON	EMPTY	

			{	[Product].[Product	Categories].AllMembers	}	ON	1	

FROM	

			[Adventure	Works]	

The	first	calculated	measure	detects	ascendants	of	the	current	member.	It	uses	the
IsAncestor()	function	and	detects	whether	the	current	member	is	beneath	the	selected
member	in	the	hierarchy.	That	function	returns	False	for	the	member	itself.	Therefore,	we
have	to	incorporate	additional	logic	in	the	form	of	testing	for	the	presence	of	a	particular
member,	which	is	explained	in	the	first	recipe	of	this	chapter,	Detecting	a	particular	member
in	a	hierarchy.

The	second	calculation	detects	the	descendants	of	the	current	member.	It	uses	the
Ascendants()	function	to	get	all	the	members	above	and	including	the	selected	one.	When	that
set	is	obtained,	we	test	whether	the	current	member	is	in	the	set	of	ascendants.	The	test	is
performed	using	the	Intersect()	and	Count	functions.

Here's	another	query-based	alternative,	this	time	using	a	CELL	CALCULATION:

WITH	

CELL	CALCULATION	[Touring	Bikes]	

FOR	'([Measures].[Internet	Sales	Amount],	

							Descendants([Product].[Product	Categories]	

																													.[Subcategory].&[3],	,	

																				SELF_AND_AFTER	

)	

)'	

AS	1	

SELECT	

			{	[Measures].[Internet	Sales	Amount]	}	ON	0,	

			Descendants(

								[Product].[Product	Categories].[Subcategory].&[3],	,	

								SELF_AND_AFTER	

)	ON	1	

FROM	

WOW! eBook
www.wowebook.org

			[Adventure	Works]	

As	you	can	see,	a	cell	calculation	does	the	same	thing	a	Scope()	statement	does	in	MDX
script--it	provides	an	expression	for	a	particular	subcube.	A	CELL	CALCULATION	is	one	of	the
three	elements	that	can	be	defined	using	the	WITH	keyword	in	an	MDX	query.	Here's	more
information	about	it:	http://tinyurl.com/CellCalculations	.

Now,	what	happens	if	we	want	to	exclude	the	selected	member	in	those	calculations?

The	first	calculation	in	the	query	we	started	this	section	with	is	easy.	We	simply	have	to	omit
the	part	next	to	the	OR	statement,	keeping	only	the	IsAncestor()	part	of	the	expression.

The	second	calculation	is	a	bit	more	complex	but	it	can	also	be	done.	All	we	have	to	do	is
extract	the	selected	member	from	the	set	of	ascendants.	This	can	be	done	relatively	easily
using	the	Except()	function:

Except(

				Ascendants(

								[Product].[Product	Categories].[Subcategory].&[3]	

),	

				[Product].[Product	Categories].CurrentMember)	

Other	parts	of	the	calculation	remain	the	same.

In	the	query	with	the	CELL	CALCULATION,	we	have	to	change	the	SELF_AND_AFTER	flag	into	the
AFTER	flag.	We	don't	have	to	do	the	same	for	the	set	on	rows,	only	in	cell	calculation,	where
this	behavior	is	defined.

Children()	will	return	empty	sets	when	out	of	boundaries

Under	certain	conditions,	some	MDX	functions	generate	empty	sets	as	their	result;	others
always	return	a	non-empty	set.	It	is	therefore	good	to	know	which	one	is	preferred	in	which
scenario,	because	an	empty	set	will	result	in	an	empty	value	and	this	may	cause	problems	in
some	calculations.

The	Descendants()	function	will	almost	always	return	a	result.	If	there	are	no	children	under
the	member	or	the	set	defined	as	the	first	argument,	then	it	will	return	the	member	or	the	set
itself.	On	the	other	hand,	the	Children	()	function	will	return	an	empty	set	when	applied	to
members	on	the	leaf	level.

The	Ascendants()	function	behaves	pretty	much	the	same	as	the	Descendants()	function.	If
the	specified	member	is	at	the	top	level,	it	will	return	the	member	itself.	On	the	other	hand,	the
Parent	function	when	applied	to	the	root	member	or	a	top-level	calculated	member	returns	an
empty	set.	The	same	is	true	for	the	Ancestors()	and	the	Ancestor()	functions.	When	out	of
boundaries,	they	return	an	empty	set	as	well.

Based	on	how	you	want	your	calculation	to	react,	you	should	use	the	function	that	is	most

WOW! eBook
www.wowebook.org

http://tinyurl.com/CellCalculations

appropriate	in	a	particular	case.

Various	options	of	the	Descendants()	function

The	following	link	provides	more	information	about	the	Descendants()	function	and	how	to
use	its	arguments:	http://tinyurl.com/MDXDescendants	.

WOW! eBook
www.wowebook.org

http://tinyurl.com/MDXDescendants

See	also
The	recipes	Detecting	a	particular	member	of	a	hierarchy	and	Detecting	the	root	member
recipes	cover	a	similar	topic	and	are	worth	reading	because	of	the	additional	insights
they	provide.	
Chapter	9,	Metadata-driven	Calculations

WOW! eBook
www.wowebook.org

Finding	related	members	in	the	same	dimension
The	dimensionality	of	a	cube	equals	the	number	of	hierarchies	used	in	it.	This	encompasses
all	the	user	and	attribute	hierarchies,	including	a	special	hierarchy	Measures,	visible	or	not,	as
long	as	they	are	enabled.	A	cube	with	10	dimensions,	each	having	10	attribute	hierarchies,	is	a
101D	object!	Comparing	that	to	any	3D	objects	in	your	environment,	such	as	a	Rubik's	cube,
you	will	immediately	be	amazed	by	the	space	a	typical	SSAS	cube	forms.	The	number	of
coordinates,	or	shall	we	say	cells,	in	that	space	is	simply	beyond	our	imagination.

Fortunately,	a	great	deal	of	that	space	is	empty	and	the	SSAS	engine	has	ways	to	optimize	that.
It	even	exposes	some	of	the	optimization	features	to	us	through	several	MDX	functions	we
can	use	when	needed.

In	this	recipe,	we	are	going	to	look	at	two	hierarchies,	Color	and	Subcategory,	and	find	the
number	of	available	colors	in	each	of	the	product	subcategories.	Although	these	two
hierarchies	are	from	the	same	Product	dimension,	the	number	of	all	the	possible
combinations	of	Color	and	Subcategory	can	still	be	enormous.	Our	goal	is	to	find	only	the
existing	colors	for	each	product	subcategory.

Because	of	the	enormous	possible	combinations	of	the	hierarchies,	from	the	same	dimension
or	not,	in	a	typical	cube,	we	should	always	pay	attention	to	optimization.	In	this	recipe,	we	will
cover	a	type	of	optimization	that	is	related	to	combining	hierarchies	from	the	same
dimension.	In	the	next	recipe,	we	will	cover	a	type	of	optimization	that	is	related	to	optimizing
the	combination	of	hierarchies	from	different	dimensions.

WOW! eBook
www.wowebook.org

Getting	ready
Start	SQL	Server	Management	Studio	and	connect	to	your	SSAS	2016	instance.	Click	on	the
New	Query	button	and	check	that	the	target	database	is	Adventure	Works	DW	2016.

Here's	the	query	we'll	start	from:

SELECT	

			{	[Measures].[Internet	Order	Count]	}	ON	0,	

			{	[Product].[Subcategory].[Subcategory].Members	*	

					[Product].[Color].[Color].Members	}	ON	1	

FROM	

			[Adventure	Works]	

Once	executed,	the	query	returns	all	product	subcategories	cross-joined	with	product	colors.
Scroll	down	your	result	and	compare	it	with	the	following	screenshot:

It	is	worth	noticing	that	the	result	is	not	a	Cartesian	product	of	those	two	hierarchies.	With
over	30	different	subcategories	and	10	different	colors	in	the	Product	dimension,	a	Cartesian
product	of	these	two	hierarchies	would	return	over	300	different	combinations.	The	engine,
however,	has	automatically	reduced	the	two-dimensional	set	on	rows	to	a	set	of	existing
combinations	only.	The	reason	why	this	was	possible	follows.

The	two	hierarchies	Color	and	Subcategory	belong	to	the	same	dimension	Product.	A
dimension	originates	from	the	underlying	table	(or	a	set	of	them	in	a	snowflake	model).	The
columns	on	the	underlying	table	become	attribute	hierarchies.	There	are	only	a	finite	number
of	various	combinations	of	attributes,	and	that	number	is	almost	always	less	than	a	Cartesian

WOW! eBook
www.wowebook.org

product	of	those	attributes.	The	engine	merely	has	to	read	that	table	and	return	the	set	of
distinct	combinations	of	the	attributes	for	a	particular	case.

Of	course,	that	is	not	exactly	how	it	is	done,	but	you	get	a	good	idea	of	how	the
multidimensional	space	is	automatically	shrunk	whenever	possible.

Notice	also	that	this	is	not	a	result	of	the	NON	EMPTY	keyword	on	rows	because	we	didn't	put	it
there.	That	keyword	does	something	else:	it	removes	empty	fact	rows.	As	seen	in	the
preceding	screenshot,	we	have	many	rows	with	the	value	of	null	in	them.	We	deliberately
didn't	use	that	keyword	to	show	the	difference	between	what	is	known	as	the	auto-exists
algorithm	and	what	NON	EMPTY	does.

Now,	let's	get	back	to	the	solution	and	see	how	to	get	the	number	of	colors	per	subcategory
without	displaying	colors	on	the	query	axis.

WOW! eBook
www.wowebook.org

How	to	do	it...
Follow	these	steps	to	find	related	members	in	the	same	dimension:

1.	 Add	the	WITH	part	of	the	query.
2.	 Create	a	new	calculated	measure	and	name	it	Number	of	colors.
3.	 Remove	the	set	with	[Product].[Color]	hierarchy	from	rows	and	move	it	inside	the

definition	of	the	new	measure.	Only	product	subcategories	should	remain	on	rows.
4.	 Use	the	EXISTING	function	before	the	set	of	color	members	and	wrap	everything	in	the

Count()	function.
5.	 Add	this	calculated	measure	on	axis	0,	next	to	the	existing	measure.
6.	 Execute	the	query,	which	should	look	like	this:

						WITH	

						MEMBER	[Measures].[Number	of	colors]	AS	

									Count(EXISTING	[Product].[Color].[Color].Members)	

						SELECT	

									{	[Measures].[Internet	Order	Count],	

											[Measures].[Number	of	colors]	}	ON	0,	

									{	[Product].[Subcategory].[Subcategory].Members	

																								}	ON	1	

						FROM	

									[Adventure	Works]	

7.	 Scroll	down	to	the	end	and	verify	that	the	result	matches	the	following	screenshot:

WOW! eBook
www.wowebook.org

How	it	works...
By	default,	sets	are	evaluated	within	the	context	of	the	cube,	not	within	the	current	context.	The
EXISTING	keyword	forces	the	succeeding	set	to	be	evaluated	in	the	current	context.	Without	it,
the	current	context	would	be	ignored	and	for	each	subcategory	we	would	get	10	colors,	which
are	all	the	distinct	colors	on	the	Product	dimension	table.

After	that,	we	apply	the	Count()	function	in	order	to	get	the	dynamic	count	of	colors,	a	value
calculated	for	each	row	separately.

WOW! eBook
www.wowebook.org

There's	more...
There	might	be	situations	when	you'll	have	multiple	hierarchies	of	the	same	dimension	in	the
context,	but	you'll	only	want	some	of	them	to	have	an	impact	on	the	selected	set.	In	other
words,	there	could	have	been	sizes	from	the	[Size]	attribute	next	to	product	Subcategories	on
rows.	If	you	use	the	EXISTING	keyword	on	colors,	you'll	get	the	number	of	colors	for	each
combination	of	the	subcategory	and	the	site.	In	cases	where	you	need	your	calculation	to
ignore	the	current	size	member	and	get	the	number	of	colors	per	subcategory	only,	you	will
have	to	take	another	approach.	If	you're	wondering	why	you	would	do	such	a	thing,	just
imagine	you	need	an	indicator	which	gives	you	a	percentage	of	the	color	per	size	and
subcategory.	That	indicator	would	have	an	unusual	expression	in	its	denominator	and	the
usual	expression	in	its	numerator.

OK,	so	what's	the	solution	in	this	case	and	how	do	we	make	such	a	calculation?

The	Exists()	function	comes	to	the	rescue.	In	fact,	that	function	does	the	same	thing	as	the
EXISTING	keyword,	but	it	requires	a	second	argument	in	which	we	need	to	specify	the	context
for	the	evaluation.

Here's	an	example	query:

WITH	

MEMBER	[Measures].[Number	of	colors]	AS	

			Count(EXISTING	[Product].[Color].[Color].Members)	

MEMBER	[Measures].[Number	of	colors	per	subcategory]	AS	

			Count(Exists([Product].[Color].[Color].Members,	

																		{	[Product].[Subcategory].CurrentMember	})	

)	

SELECT	

			{	[Measures].[Internet	Order	Count],	

					[Measures].[Number	of	colors],	

					[Measures].[Number	of	colors	per	subcategory]	}	ON	0,	

			{	[Product].[Subcategory].[Subcategory].Members	*	

					[Product].[Size	Range].[Size	Range].Members	}	ON	1	

FROM	

			[Adventure	Works]	

Once	run,	this	query	returns	two	different	color-count	measures.	The	first	is	unique	to	each
row;	the	second	changes	by	subcategory	only.	Their	ratio,	not	present	but	easily	obtainable	in
the	query,	would	return	the	percentage	of	color	coverage.	For	example,	in	the	following
screenshot,	it	is	obvious	that	there's	only	33	percent	color	coverage	for	38-40	CM	Road
Bikes,	which	may	or	may	not	be	a	signal	to	fill	the	store	with	additional	colors	for	that
subcategory.	The	important	thing	is	that	we	were	able	to	control	the	context	and	fine-tune	it:

WOW! eBook
www.wowebook.org

We	can	also	turn	it	the	other	way	around.	The	EXISTING	keyword	is	in	fact	a	shortcut,	a
shorter	version	of	the	Exists()	function	which	says	take	everything	available	as	the	second
argument,	don't	force	me		to	specify	everything.	The	EXISTING	keyword	is	therefore	a	more
flexible,	generic	variant	which	handles	any	context.	When	we	want	to	take	control	over	the
context,	we	can	step	back	to	the	Exists()	function.

Tips	and	trick	related	to	the	EXISTING	keyword

Another	way	of	specifying	the	EXISTING	keyword	is	by	using	the	MDX	function	with	the	same
name.	The	following	expression	using	the	Existing()	function	is	the	same	as	using	the
EXISTING	keyword:

Existing([Product].[Color].[Color].Members)	

This	may	come	in	handy	with	cross-joins	because	the	cross-join	operator	*	has	precedence
over	the	EXISTING	keyword.	In	the	following	pseudo-expression,	the	EXISTING	keyword	will
be	applied	to	the	cross-joined	set,	and	not	the	first	set	in	the	cross-join:

EXISTING	set_expression1	*	set_expression2	

In	order	to	apply	EXISTING	to	the	first	set,	wrap	the	first	set	including	the	EXISTING	keyword
in	curly	brackets,	like	this:

{	EXISTING	set_expression1	}	*	set_expression2	

We	can	also	use	the	alternative	Existing()	function	for	the	first	set:

Existing	(set_expression1)	*	set_expression2	

Filter()	versus	Exists(),	Existing(),	and	EXISTING

WOW! eBook
www.wowebook.org

Never	iterate	on	a	set	unless	you	really	have	to,	because	iteration	is	slow.	Use	specialized
functions	which	operate	on	sets	whenever	possible.	They	are	designed	to	leverage	the	internal
structures	and	therefore	operate	much	faster.

A	Filter()	function	filters	a	specified	set	based	on	a	search	condition	by	iterating	through
each	tuple	in	the	specified	set.	This	recipe	hopefully	showed	there's	no	need	to	filter	a	set	of
members	if	that	set	is	related	to	the	current	context,	in	other	words,	that	it	belongs	to	the	same
dimension,	as	explained	in	the	introduction.	Exists(),	Existing(),	or	the	EXISTING	keyword
are	better	choices	because	they	are	functions	optimized	to	work	in	block	mode.

A	friendly	warning

After	reading	the	subsequent	recipe	about	finding	related	members	on	a	different	dimension,
you	might	be	tempted	to	use	the	technique	described	in	that	recipe	here	as	well.	The	idea	of
not	having	to	memorize	each	approach	separately	is	an	attractive	one.	A	unique,	all-purpose
way	of	finding	a	related	member	no	matter	where	it	is.

You	should	know	that,	although	it	would	work,	it	would	be	an	inefficient	solution.	The
performance	could	suffer	greatly.

The	reason	for	this	lies	in	the	fact	that	if	you	stick	with	the	solution	presented	in	this	recipe,
the	SSAS	engine	will	be	able	to	perform	a	fast	auto-exist	operation	on	a	single	dimension
table.	The	solution	presented	in	the	subsequent	chapter	relies	on	a	join	between	the	dimension
table	and	the	fact	table.	Now,	all	of	a	sudden,	the	engine	has	an	N	times	larger	table	to	scan.
That	could	be	a	very	costly	operation	if	the	engine	is	not	optimized	to	reduce	the	unnecessary
complexity	involved	here.	Such	complexity	is	not	needed	at	all	in	this	scenario!	Therefore,	try
to	make	a	difference	in	your	mind	between	finding	related	members	in	the	same	dimension
and	finding	related	members	in	another	dimension,	and	approach	each	case	using	a	different,
but	appropriate,	technique.

Tip

The	difference	between	this	recipe	and	the	next	recipe	is	finding	the	related	members	in	the
same	dimension	versus	related	members	from	two	different	dimensions.	The	solution
presented	in	this	recipe	for	finding	the	related	members	in	the	same	dimension	allows	SSAS
engine	to	perform	a	fast	auto-exist	operation	on	a	single	dimension	table.	The	solution
presented	in	the	next	recipe	relies	on	a	slow	join	between	a	dimension	table	and	a	fact	table,
forcing	the	engine	to	scan	a	data	set	that	is	N	times	larger	than	the	dimension	table	itself.

The	procedure	mentioned	earlier	serves	the	purpose	of	illustrating	the	concept;	it	doesn't
necessarily	represent	the	actual	implementation	in	the	engine.

WOW! eBook
www.wowebook.org

See	also
Other	aspects	of	the	EXISTING	keyword	are	covered	in	the	Optimizing	MDX	query	using
the	NonEmpty()	function	recipe	in	Chapter	1,	Elementary	MDX	Techniques.	You	may	gain
a	better	understanding	of	that	keyword	by	reading	that	recipe.
Also,	read	the	Finding	related	members	in	another	dimension	recipe	in	order	to
understand	the	difference	between	finding	related	members	in	the	same	dimension	and	in
different	dimensions.

WOW! eBook
www.wowebook.org

Finding	related	members	in	another	dimension
As	mentioned	in	the	introduction	of	the	previous	recipe,	Finding	related	members	in	the	same
dimension,	this	recipe	deals	with	a	slightly	different	scenario.	It	explains	how	to	find	the
related	members	from	two	or	more	different	dimensions.

Before	we	start,	please	keep	in	mind	that	when	we	say	a	dimension,	we	mean	any	hierarchy	in
that	dimension	from	now	on.

Dimensions,	unlike	hierarchies	of	the	same	dimension,	are	unrelated	and	therefore
independent	objects.	Without	a	third	table	in	the	form	of	a	third	fact	table,	they	are	unrelated,
at	least	in	the	dimensional	modeling	sense.	When	a	fact	table	is	inserted	among	them,	the
many-to-many	relationship	comes	into	existence.

There	are	two	different	types	of	combination	we	can	make	with	the	dimensions.	One	type	is
the	Cartesian	product	because	they	are	unrelated.	It	is	obtained	by	cross-joining	members	in
both	dimensions.	In	relational	terms,	that	would	represent	the	CROSSJOIN	of	two	tables.	Since
those	tables	are	two	independent	objects,	we	get	a	real	Cartesian	product.

The	other	combination	is	a	combination	of	a	fact	table	and	an	intermediate	table	for	two	or
more	dimensions.	This	fact	table	can	serve	as	a	filter.	We	can	use	it	to	get	members	in	the
second	dimension,	members	which	have	associated	records,	or	non-empty	values	in	the	fact
table	for	the	valid	members	in	the	first	dimension.	A	typical	example	would	be	find	me
products	that	are	available	on	a	particular	territory,	are	bought	by	a	particular	customer,	or
are	shipped	on	a	particular	date.	The	first	dimension	in	this	case	contains	the	territory,
customers,	and	dates	respectively;	the	second	one	is	the	product	dimension;	the	fact	table	or
the	measure	group	could	be	the	sales	orders	or	any	measure	group	of	interest	to	us.

The	previous	requirement	example	can	be	accomplished	by	cube	design	in	SSAS	alone.	All
we	have	to	do	is	position	the	selected	member	or	more	of	them	in	the	slicer,	turn	the	NON
EMPTY	keyword	on	rows,	and	provide	a	set	of	members	from	the	other	dimension	on	rows	and
a	measure	of	our	interest	on	columns.	The	result	would	meet	our	requirement.	This	type	of
operation	is	natural	for	any	SSAS	client,	and	it	is	available	for	ad	hoc	analysis.

However,	as	we've	learned	quite	a	few	times	throughout	this	book,	there	are	always	situations
when	we	need	to	have	a	control	over	certain	calculations,	and	the	controlled	calculations
might	need	to	get	not	all	but	only	the	related	members,	in	another	dimension.	Is	there	a	way	to
support	this?	Yes,	this	recipe	shows	how.

In	this	recipe,	we	are	going	to	use	the	Reseller	dimension	and	we	are	going	to	find	out	how
many	subcategories	each	of	the	top	100	resellers	is	ordering.

The	Reseller	and	Subcategory	are	two	hierarchies	from	two	different	dimensions.	Our	goal
is	to	find	their	combinations	that	have	associated	rows	in	the	fact	table	of	the	specified

WOW! eBook
www.wowebook.org

measure	group	Reseller	Orders.

WOW! eBook
www.wowebook.org

Getting	ready
Start	SQL	Server	Management	Studio	and	connect	to	your	SSAS	2016	instance.	Click	on	the
New	Query	button	and	check	that	the	target	database	is	Adventure	Works	DW	2016.

Here's	the	query	we'll	start	from:

SELECT	

			{	[Measures].[Reseller	Order	Count]	}	ON	0,	

			{	TopCount([Reseller].[Reseller].[Reseller].Members,	

																100,	

															[Measures].[Reseller	Order	Count])	*		

					[Product].[Subcategory].[Subcategory].Members	}	ON	1	

FROM	

			[Adventure	Works]	

Once	executed,	the	query	returns	the	top	100	resellers	based	on	their	ordering	frequency
combined	with	product	subcategories.	The	NON	EMPTY	keyword	is	omitted	intentionally	in
order	to	show	a	Cartesian	product	in	action.

Combining	100	customers	with	37	subcategories	makes	3,700	rows.	The	result	is	a	Cartesian
product	of	Reseller	and	Subcategory,	which	are	from	two	different	dimensions.

Scroll	down	to	the	last	row,	highlight	it,	and	check	the	status	bar	of	SSMS.	That	extra	row,	the
3,701st,	is	the	column	header	row.

It	is	easy	to	notice	that	many	combinations	of	Reseller	and	Subcategory	produce	a	NULL
reseller	order.	We	have	two	goals	in	this	recipe.	The	first	is	to	show	Reseller	only	on	the
rows.	The	second	is	to	count	the	number	of	Subcategory	for	each	Reseller	with	a	condition
that	the	combination	actually	has	associated	rows	in	the	reseller	order	fact	table.

The	key	part	of	the	solution	is	to	find	combinations	from	two	different	dimensions	that	have
associated	rows	in	the	fact	table	of	the	specified	measure	group:

WOW! eBook
www.wowebook.org

WOW! eBook
www.wowebook.org

How	to	do	it...
Follow	these	steps	to	find	related	members	from	Reseller	and	Subcategory	through	the	fact
table	of	the	measure	group	Reseller	Orders:

1.	 Add	the	WITH	part	of	the	query.
2.	 Create	a	new	calculated	measure	and	name	it	Count	of	SubCategory	-	Exists.
3.	 Remove	the	set	with	the	[Product].[Subcategory]	hierarchy	from	rows	and	move	it

inside	the	definition	of	the	new	measure.	Only	the	resellers	should	remain	on	rows.
4.	 Use	the	variant	of	the	Exists()	function	which	has	the	third	argument,	the	measure

group	name.	In	this	case,	you	should	use	the	measure	group	containing	the	measure
Reseller	Order	Count.	The	name	of	that	measure	group	is	Reseller	Orders.

5.	 Finally,	wrap	everything	with	the	Count()	function.
6.	 Add	this	calculated	measure	on	axis	0,	next	to	the	existing	measure.
7.	 Execute	the	query,	which	should	look	like	this:

						WITH	

						MEMBER	[Measures].[Count	of	SubCategory	-	Exists]	AS	

									Count(Exists(

																			[Product].[Subcategory].[Subcategory].Members,	,	

																			'Reseller	Orders'))	

						SELECT	

									{	[Measures].[Reseller	Order	Count],	

											[Measures].[Count	of	SubCategory	-	Exists]	}	ON	0,	

									{	TopCount([Reseller].[Reseller].[Reseller].Members,	

																					100,	

																					[Measures].[Reseller	Order	Count])	*		

											[Product].[Subcategory].[Subcategory].Members	}	ON	1	

						FROM	

									[Adventure	Works]	

8.	 Verify	that	the	result	matches	the	following	screenshot:

WOW! eBook
www.wowebook.org

How	it	works...
To	find	the	related	members	from	two	different	dimensions	through	a	fact	table,	we	used	the
Exists()	function.	The	Exists()	function	has	three	variants,	as	shown:

Exists(Set_Expression1,	Set_Expression2)	

Exists(Set_Expression1,	Set_Expression2,	MeasureGroupName)	

Exists(Set_Expression1,	,	MeasureGroupName)	

The	first	variant	without	the	third	argument	MeasureGroupName	is	useful	for	intersecting
related	attributes	from	the	same	dimension,	as	shown	in	the	previous	recipe,	Finding	related
members	in	the	same	dimension.	The	second	variant	with	the	third	argument
MeasureGroupName	is	ideal	for	combining	dimensions	across	a	fact	table.	In	SSAS,	a	measure
group	represents	a	fact	table.

The	third	variant	omits	the	second	argument	for	a	set	expression.	What	this	variant	does	is
instruct	the	engine	to	return	distinct	members	from	the	first	set	that	have	valid	combinations
with	the	current	member	in	context,	that	is,	the	combinations	have	associated	rows	in	the	fact
table	of	the	specified	measure	group.

In	our	example,	we	have	used	the	third	variant,	omitting	the	second	set	argument.	The	current
member	in	context	is	every	reseller	on	rows.	This	query	context	is	established	in	the
evaluation	phase	of	the	query.	There's	no	need	to	use	the	current	member	as	the	second	set;
that	member	will	be	there	implicitly.

Once	we	get	a	set	of	distinct	members	from	the	Subcategory	hierarchy,	all	we	have	to	do	is
count	them	using	the	Count()	function.

WOW! eBook
www.wowebook.org

There's	more...
The	alternative,	although	not	exactly	the	same	solution,	would	be	to	use	the	NonEmpty()
function.	Here's	the	query	which,	when	run,	shows	that	both	count	measures	return	the	same
results	for	each	reseller:

WITH	

MEMBER	[Measures].[Count	of	SubCategory	-	Exists]	AS	

			Count(Exists(

													[Product].[Subcategory].[Subcategory].Members,	,	

													'Reseller	Orders'))	

MEMBER	[Measures].[Count	of	SubCategory	-	NonEmpty]	AS	

			Count(NonEmpty(

													[Product].[Subcategory].[Subcategory].Members,	

													{	[Measures].[Reseller	Order	Count]	}))																			

SELECT	

			{	[Measures].[Reseller	Order	Count],	

					[Measures].[Count	of	SubCategory	-	Exists],	

					[Measures].[Count	of	SubCategory	-	NonEmpty]	}	ON	0,	

			{	TopCount([Reseller].[Reseller].[Reseller].Members,	

																100,	

															[Measures].[Reseller	Order	Count]	

)	}	ON	1	

FROM	

			[Adventure	Works]	

Since	we've	given	a	hint	that	this	alternative	of	using	NonEmpty()	function	is	not	exactly	the
same	as	the	solution	using	the	Exists(),	now's	the	time	to	shed	more	light	upon	that.

The	difference	between	the	third	variant	of	the	Exists()	function	and	the	NonEmpty()	function
is	subtle.	They	differ	only	on	measures	for	which	the	NullProcessing	property	is	set	to
Preserve.	NonEmpty()	is	a	more	destructive	function	in	this	case,	because	it	ignores	fact
records	with	nulls	while	Exists()	preserves	them.	In	cases	where	the	measure's
NullProcessing	property	is	set	to	Preserve,	we	can	have	two	different	counts	and	use	the	one
that	best	meets	our	reporting	requirements.	The	other	subtle	difference	is	that	the	Exists()
function	ignores	the	MDX	script	and	simply	does	a	storage	engine	query.	For	example,	if	the
MDX	script	nulls	out	a	measure,	the	Exists()	function	will	still	return	values.

The	queries	in	this	recipe	so	far	have	illustrated	the	concept	behind	the	Exists()	and
NonEmpty()	functions.	These	functions	can	be	used	to	isolate	related	members	on	other
dimensions.	However,	from	the	performance	perspective,	they	are	not	great	when	you	need	to
count	members	on	other	dimensions	because	the	count-exists	and	the	count-nonempty
combinations	are	not	optimized	to	run	in	block	mode.	The	sum-iif	combination,	on	the	other
hand,	is	optimized	to	run	in	block	mode.	Therefore,	whenever	you	need	to	do	something
more	than	simply	isolate	related	members	on	other	dimensions	(such	as	counting	and	so	on),
consider	using	a	combination	of	functions	that	you	know	run	in	block	mode.

Here's	the	query	that	outperforms	the	two	queries	shown	so	far	in	this	recipe:

WOW! eBook
www.wowebook.org

WITH	

MEMBER	[Measures].[Count	of	SubCategory	-	SumIIF]	AS	

			Sum([Product].[Subcategory].[Subcategory].MEMBERS,	

								iif(IsEmpty([Measures].[Reseller	Order	Count]),	

													null,	

													1)	

)	

SELECT	

			{	[Measures].[Count	of	SubCategory	-	SumIIF]	}	ON	0,	

			{	TopCount([Reseller].[Reseller].[Reseller].MEMBERS,	

															100,	

															[Measures].[Reseller	Order	Count])	*		

					[Product].[Subcategory].[Subcategory].MEMBERS	}	ON	1	

FROM	

			[Adventure	Works]	

Leaf	and	non-leaf	calculations

The	examples	in	this	and	the	previous	recipe	are	somewhat	complex	from	a	technical
perspective,	but	they	are	perfectly	valid	in	many	reporting	requirements.	From	an	analytical
perspective,	it	is	often	required	to	get	the	count	of	existing	members	on	a	non-leaf	level,	such
as	at	the	subcategory	level	in	our	example.

When	it's	required	to	get	the	count	of	members	on	a	leaf	level,	designing	a	distinct	count
measure	using	the	dimension	key	in	the	fact	table	might	be	a	better	option.	It	will	work	by	the
cube	design	in	SSAS;	there	is	no	code	maintenance	and	it's	much	faster	than	its	MDX
counterpart.	Therefore,	look	for	a	by-design	solution	whenever	possible;	don't	assume	that
things	should	be	handled	in	MDX	just	because	this	recipe	indicated	as	such.	Chapter	8	,	When
MDX	Is	Not	Enough	deals	with	that	in	more	detail.

When	it	is	required	to	get	the	count	on	a	non-leaf	attribute,	that's	the	time	when	MDX
calculations	and	relations	between	hierarchies	and	dimensions	come	into	play	as	valid
solutions.	Because	either	you	are	going	to	include	that	higher	granularity	attribute	in	your	fact
table	(not	likely,	especially	on	large	fact	tables)	and	then	build	a	distinct	count	measure	from
it,	or	you	can	build	a	new	measure	group	at	the	non-leaf	grain,	or	you	will	look	for	an	MDX
alternative	like	we	did	in	this	example	and	the	one	in	the	previous	chapter.	Additionally,	the
non-leaf	levels	will	typically,	although	not	always,	have	much	lower	cardinality	than	the	leaf
level,	which	means	that	MDX	calculations	will	perform	significantly	better	than	they	would
on	a	leaf	level.

This	section	serves	the	purpose	of	a	reminder	when	it	comes	to	the	choice	between	cube
design	and	MDX	calculations.	Knowing	the	pros	and	cons,	you	should	be	well	on	your	way	to
making	the	right	decision.

WOW! eBook
www.wowebook.org

See	also
Other	aspects	of	the	NonEmpty()	function	are	covered	in	the	Optimizing	MDX	queries
using	the	NonEmpty()	function	recipe	in	Chapter	1,	Elementary	MDX	Techniques.	You
may	gain	a	better	understanding	of	that	function	by	reading	that	recipe.
Also,	read	the	Finding	related	members	in	the	same	dimension	recipe	in	order	to
understand	the	difference	between	finding	related	members	in	the	same	dimension	and	in
different	dimensions.

WOW! eBook
www.wowebook.org

Calculating	various	percentages
This	recipe	and	the	next	two	recipes	show	how	to	calculate	relative	percentages,	averages,	and
ranks.	We	are	starting	with	percentages	in	this	recipe.

Having	a	ratio	of	a	current	member's	value	over	their	parent's	value	is	an	often-required
calculation.	It's	a	form	of	normalizing	the	hard-to-grasp	values	in	the	table.	When	the
individual	amounts	become	percentages,	it	immediately	becomes	clear	where	the	good	or	bad
values	are.

There	are	many	kinds	of	percentages	or	shares,	but	we'll	take	the	typical	three	and	present
them	in	this	recipe.	These	are:	percentage	of	the	parent's	value,	percentage	of	the	level's	total,
and	percentage	of	the	hierarchy's	total.

This	recipe	will	show	how	to	calculate	them	using	the	ragged	Sales	Territory	hierarchy	of
the	Sales	Territory	dimension.	Unlike	a	balanced	(or	standard)	hierarchy,	whose	branches
all	have	the	same	level	(or	depth)	with	each	member's	parent	being	at	the	level	immediately
above	the	member,	a	ragged	(or	unbalanced)	hierarchy	is	a	hierarchy	whose	branches	can
have	inconsistent	depths.	A	typical	example	of	a	ragged	hierarchy	is	an	organization	chart.
The	levels	within	the	organizational	structure	are	unbalanced,	with	some	branches	in	the
hierarchy	having	more	levels	than	others.

In	the	Adventure	Works	cube,	the	Sales	Territory	hierarchy	is	a	ragged	hierarchy.	This	can
be	seen	by	browsing	the	Sales	Territory	hierarchy	in	SQL	Server	Management	Studio,	as
shown	in	the	following	screenshot.	The	member	United	States	is	the	only	country	in	that
hierarchy	which	has	children,	the	regions.	No	other	country	in	that	hierarchy	has	them.	This
has	created	inconsistent	depths	in	the	hierarchy:

WOW! eBook
www.wowebook.org

So,	let's	start!

WOW! eBook
www.wowebook.org

Getting	ready
Start	SQL	Server	Management	Studio	and	connect	to	your	SSAS	2016	instance.	Click	on	the
New	Query	button	and	check	that	the	target	database	is	Adventure	Works	DW	2016.

Here's	the	query	we'll	start	from:

WITH	

MEMBER	[Measures].[Level]	AS	

			[Sales	Territory].[Sales	Territory]	

			.CurrentMember.Level.Ordinal	

SELECT	

			{	[Measures].[Level],	

					[Measures].[Reseller	Sales	Amount]	}	ON	0,	

			{	[Sales	Territory].[Sales	Territory].AllMembers	}	ON	1	

FROM	

			[Adventure	Works]	

Once	executed,	the	query	returns	the	hierarchized	territories	in	rows:

In	the	columns,	we	have	a	little	helper,	the	level	ordinal	displayed	in	the	form	of	a	measure.
This	level	ordinal	number	helps	us	to	see	how	the	members	are	arranged	and	ordered	in	a
hierarchy,	with	the	All	Sales	Territories	at	the	top,	followed	by	the	level	1	members	and	their
children	at	level	2.	We	can	also	observe	that	only	level	2	member	United	States	has	children
at	level	3.

Now	we	are	ready	to	calculate	three	percentages	for	the	Reseller	Sales	Amount	measure.	For
each	member	in	the	rows,	we	will	calculate	its	percentage	of	the	parent's	value,	percentage	of
the	level's	total,	and	percentage	of	the	hierarchy's	total.

WOW! eBook
www.wowebook.org

How	to	do	it...
Follow	these	steps	to	calculate	various	percentages:

1.	 Create	the	first	calculated	measure	for	the	percentage	of	the	parent's	value,	name	it
Parent	%,	and	provide	the	following	definition	for	it:

						MEMBER	[Measures].[Parent	%]	AS	

									iif([Sales	Territory].[Sales	Territory].CurrentMember	Is	

														[Sales	Territory].[Sales	Territory].[All],	

														1,	

														[Measures].[Reseller	Sales	Amount]	/	

														(

															[Measures].[Reseller	Sales	Amount],	

															[Sales	Territory].[Sales	Territory]	

															.CurrentMember.Parent	

)	

),	FORMAT_STRING	=	'Percent'	

2.	 Create	the	second	calculated	measure	for	the	percentage	of	the	level's	total	value,	name	it
Level	%,	and	provide	the	following	definition	for	it:

						MEMBER	[Measures].[Level	%]	AS	

														[Measures].[Reseller	Sales	Amount]	/	

									Aggregate([Sales	Territory].[Sales	Territory]	

						.CurrentMember.Level.Members,	

																									[Measures].[Reseller	Sales	Amount])	

										,	FORMAT_STRING	=	'Percent'	

3.	 Create	the	third	calculated	measure	for	the	percentage	of	the	hierarchy's	total	value,
name	it	Hierarchy	%,	and	provide	the	following	definition	for	it:

						MEMBER	[Measures].[Hierarchy	%]	AS	

														[Measures].[Reseller	Sales	Amount]	/	

															([Sales	Territory].[Sales	Territory].[All],	

																	[Measures].[Reseller	Sales	Amount])	

												,	FORMAT_STRING	=	'Percent'							

4.	 Include	all	three	calculated	measures	in	columns,	execute	the	query,	and	verify	that	the
result	matches	the	following	screenshot:

WOW! eBook
www.wowebook.org

WOW! eBook
www.wowebook.org

How	it	works...
The	Parent	%	measure	returns	the	ratio	of	the	current	member's	value	over	its	parent's	value.
The	parent's	value	is	calculated	relative	to	the	current	member,	using	the	following	tuple.	In
other	words,	the	ratio	returns	a	different	value	for	each	territory:

([Measures].[Reseller	Sales	Amount],	

		[Sales	Territory].[Sales	Territory].CurrentMember.Parent)	

One	additional	thing	we	have	to	take	care	of	is	handling	the	problem	of	the	nonexisting	parent
of	the	root	member.	There's	no	such	thing	as	the	parent	of	the	root	member,	meaning	the
calculation	would	result	in	an	error	for	that	cell.	In	order	to	take	care	of	that,	we've	wrapped
the	calculation	in	an	additional	iif()	statement.	In	it,	we've	provided	the	value	of	1	(100%
later)	when	the	root	member	becomes	the	current	member	during	the	iteration	phase	on	rows.

Similarly,	we've	defined	the	other	two	calculated	measures.

For	the	Level	%	measures,	we	have	used	the	following	tuple	to	get	the	aggregated	value	of	all
the	members	at	the	same	level	as	the	current	member	as	the	denominator	of	the	ratio:

Aggregate([Sales	Territory].[Sales	Territory].CurrentMember.Level.Members,	

														[Measures].[Reseller	Sales	Amount])	

For	the	Hierarchy	%	measures,	we	have	directly	used	the	coordinate	with	the	root	member
because	the	following	tuple	represents	the	total	value	of	the	hierarchy:

([Sales	Territory].[Sales	Territory].[All],	

					[Measures].[Reseller	Sales	Amount])	

It	is	easy	to	notice	that	the	Level	%	and	the	Hierarchy	%	measures	return	the	same	ratio	at	all
levels	except	at	level	3.	This	is	because	the	aggregate	of	level	0,	1,	or	2	would	be	practically
the	same	as	the	value	of	the	root	member.	If	you	add	up	the	sales	amount	for	all	level	1
members,	you	would	get	$80,450,596.98,	which	is	the	sales	amount	of	the	root	member.	It's
the	same	with	all	level	2	members.	However,	the	aggregated	sales	amount	for	the	members	on
the	third	level	is	only	$53,607,801.21.	This	is	because	other	level	2	members	do	not	have
children	except	the	member	United	States.

WOW! eBook
www.wowebook.org

There's	more...
The	examples	in	this	recipe	so	far	should	give	you	a	good	start	for	percentage	calculations.	If
you	have	reporting	requirements	for	other	types	of	percentage	calculation,	the	following
techniques	might	come	in	handy	for	you.

First,	you	can	use	the	SCOPE	statement	within	an	MDX	script	if	you	need	to	calculate	the
percentage	only	for	a	part	of	your	hierarchy.

Next,	if	you	need	only	a	single	member	in	a	denominator's	tuple,	use	the	Ancestor()	function
and	provide	the	appropriate	level.	Otherwise,	you	will	have	to	aggregate	the	set	of	members
using	the	Aggregate()	function,	as	shown	in	our	example	for	the	Level	%	calculation.

Finally,	remember	to	take	care	of	division	by	zero	problems	and	problems	related	to
nonexisting	members	in	the	hierarchy.	One	such	example	is	the	Parent	%	calculation,	where
we	were	detecting	the	root	member	because	that's	the	only	member	in	that	hierarchy	without	a
parent.

Use	cases

The	Parent	%	measure	is	the	most	requested	and	useful	one.	It	is	applicable	in	any	hierarchy
and	gives	an	easy	way	to	comprehend	information	about	members	in	the	hierarchy.

The	Hierarchy	%	calculation	is	useful	in	the	parent-child	hierarchy	to	calculate	the	individual
percentages	of	members	scattered	in	various	positions	and	levels	of	a	parent-child	hierarchy.
In	addition	to	that,	this	calculation	is	useful	in	user	hierarchies	when	there	is	a	need	to
calculate	the	percentage	of	members	in	lower	levels	with	respect	to	the	hierarchy's	total,
because	the	immediate	parents	and	ancestors	break	the	result	into	a	series	of	100%
contributions.

Finally,	the	Level	%	measure	is	also	useful	in	parent-child	hierarchies.

Besides	ragged	hierarchies,	the	difference	between	the	Level	%	and	the	Hierarchy	%	will
manifest	in	other	non-symmetrical	structures;	those	are	hierarchies	with	custom	roll-ups	and
special	scopes	applied	to	them.	Financial	structures	(dimensions)	such	as	P&L	and	balance
sheet	are	examples	of	these	special	types	of	hierarchies.	In	those	scenarios,	you	might	want	to
consider	having	both	percentages.

The	Hierarchy	%	calculated	measure	is	performance-wise	a	better	measure	because	it	picks	a
coordinate	in	the	cube	directly.	Moreover,	that	coordinate	is	the	coordinate	with	the	root
member,	something	we	can	expect	to	have	an	aggregate	for.	Unless	the	situation	really
requires	both	of	these	measures,	use	the	Hierarchy	%	measure	only.

The	alternative	syntax	for	the	root	member

We	have	used	the	All	level	to	get	the	root	member	in	our	example:
WOW! eBook

www.wowebook.org

[Sales	Territory].[Sales	Territory].[All]	

There	is	an	alternative	syntax	for	the	root,	and	it	is	safe	enough	that	we	do	not	need	to	worry
about	possible	errors.	That	definition	is	this:

Tail(

Ascendants(

								[Sales	Territory].[Sales	Territory].CurrentMember	

)	

).Item(0)	

The	expression	basically	says	take	the	last	of	the	ascendants	of	the	current	member	and
extract	it	from	that	set	as	a	member.

The	ascendants	are	always	arranged	in	a	hierarchy,	which	means	that	the	last	member	in	the
set	of	ascendants	is	the	root	we're	after.	Once	we	have	that	set,	we	can	use	the	Tail()	function
to	get	the	last	member	of	that	set.	If	we	omit	the	second	argument	of	the	Tail()	function,	the
value	of	1	is	implicitly	applied.

The	result	of	that	function	is	still	a	set	so	we	have	to	use	the	Item()	function	in	order	to
convert	that	single-member	set	into	as	a	member	object.	Only	then	can	we	use	it	in	our	tuple.

The	case	of	the	nonexisting	[All]	level

In	SSAS,	the	[All]	level	is	an	optional,	system-generated	level.	When	the	IsAggregatable
property	of	a	hierarchy	is	set	to	False,	the	hierarchy	will	have	no	(All)	level.	For	example,	in
the	Adventure	Works	cube,	the	Organizations	hierarchy	on	the	Organization	dimension	has
the	IsAggregatable	property	set	to	False.	In	this	case,	the	following	expression	for	the	root
member	using	the	[All]	level	will	return	an	empty	object:

[Organization].[Organizations].[All]	

However,	the	Tail-Ascendants	expression	in	this	case	will	correctly	return	the	top	level
member:

Tail(Ascendants([Organization].[Organizations].CurrentMember)).Item(0)	

The	percentage	of	leaf	member	values

The	percentage	on	leaves	is	the	fourth	type	of	the	percentage	we	can	calculate.	The	reason	we
haven't	is	that	an	aggregate	on	leaves	is	almost	always	the	same	value	as	the	value	in	the	root
member.	If	you	have	a	different	situation,	use	the	following	calculation:

MEMBER	[Measures].[Leaves	%]	AS	

				[Measures].[Reseller	Sales	Amount]	/	

				Aggregate(

								Descendants([Sales	Territory].[Sales	Territory]	

																																						.[All],	,	

																					leaves),	

								[Measures].[Reseller	Sales	Amount])	

WOW! eBook
www.wowebook.org

				,	FORMAT_STRING	=	'Percent'	

This	calculation	takes	all	leaf	members	and	then	applies	an	aggregate	of	them	in	respect	to	the
measure	provided.	Because	of	this,	it	might	be	significantly	slower.

WOW! eBook
www.wowebook.org

See	also
The	following	recipes	are	part	of	the	three-part	series	of	recipes	in	this	chapter	dealing
with	the	topic	of	relative	calculations:	Calculating	various	averages	and	Calculating
various	ranks.	It	is	recommended	that	you	read	all	of	them	in	order	to	get	a	more
thorough	picture.

WOW! eBook
www.wowebook.org

Calculating	various	averages
This	is	the	second	recipe	in	our	series	of	relative	calculations.	In	the	previous	recipe,
Calculating	various	percentages,	we	created	calculated	measures	for	Parent	%,	Level	%,
Hierarchy	%,	and	Leaves	%.	We	used	the	ragged	Sales	Territory	hierarchy	of	the	Sales
Territory	dimension.	There	is	a	good	introduction	to	ragged	hierarchies	in	the	previous
recipe.

In	this	recipe,	we	will	continue	to	use	the	ragged	Sales	Territory	hierarchy	of	the	Sales
Territory	dimension.	We	are	going	to	show	how	to	calculate	the	average	among	siblings,
average	in	the	level,	average	in	the	entire	hierarchy,	and	average	on	leaves.

WOW! eBook
www.wowebook.org

Getting	ready
Start	SQL	Server	Management	Studio	and	connect	to	your	SSAS	2016	instance.	Click	on	the
New	Query	button	and	check	that	the	target	database	is	Adventure	Works	DW	2016.

Here	is	the	same	initial	query	we	used	in	the	previous	recipe	for	calculating	various
percentages:

WITH	

MEMBER	[Measures].[Level]	AS	

			[Sales	Territory].[Sales	Territory]	

			.CurrentMember.Level.Ordinal	

SELECT	

			{	[Measures].[Level],	

					[Measures].[Reseller	Sales	Amount]	}	ON	0,	

			{	[Sales	Territory].[Sales	Territory].AllMembers	}	ON	1	

FROM	

			[Adventure	Works]	

Once	executed,	the	query	returns	hierarchized	territories	on	rows.	Please	refer	back	to	the
screenshot	in	the	previous	recipe.

On	columns,	we	have	a	little	helper,	the	level	ordinal	displayed	in	the	form	of	a	measure.	This
level	ordinal	number	helps	us	to	see	how	the	members	are	arranged	and	ordered	in	a
hierarchy,	with	the	All	Sales	Territories	at	the	top,	followed	by	the	level	1	members	and	their
children	at	level	2.	We	can	also	observe	that	only	the	level	2	member	United	States	has
children	at	level	3.

In	addition	to	the	ordinal	number	for	each	level,	we	also	have	the	main	measure,	the	Reseller
Sales	Amount	measure.	That's	the	measure	we'll	use	to	calculate	four	different	averages:
Siblings	AVG,	Level	AVG,	Hierarchy	AVG,	and	Leaves	AVG.

WOW! eBook
www.wowebook.org

How	to	do	it...
Follow	these	steps	to	calculate	these	averages:

1.	 Create	the	first	calculated	measure	for	the	average	among	the	siblings,	name	it	Siblings
AVG,	and	provide	the	definition	for	it	using	the	Avg()	function	and	the	Siblings	function:

						MEMBER	[Measures].[Siblings	AVG]	AS	

										Avg([Sales	Territory].[Sales	Territory]	

															.CurrentMember.Siblings,	

															[Measures].[Reseller	Sales	Amount])	

2.	 Create	the	second	calculated	measure	for	the	average	on	level,	name	it	Level	AVG,	and
provide	the	definition	for	it	using	the	Avg()	function	and	the	Level	function:

						MEMBER	[Measures].[Level	AVG]	AS	

										Avg([Sales	Territory].[Sales	Territory]	

															.CurrentMember.Level.Members,	

															[Measures].[Reseller	Sales	Amount])	

3.	 Create	the	third	calculated	measure	for	the	average	on	hierarchy,	name	it	Hierarchy	AVG,
and	provide	the	definition	for	it	using	the	Avg()	function:

						MEMBER	[Measures].[Hierarchy	AVG]	AS	

										Avg([Sales	Territory].[Sales	Territory].Members,	

															[Measures].[Reseller	Sales	Amount])	

4.	 Create	the	fourth	calculated	measure	for	the	average	on	leaves,	name	it	Leaves	AVG,	and
provide	the	definition	for	it	using	the	Avg()	function	and	the	version	of	the
Descendants()	function	which	returns	leaves:

						MEMBER	[Measures].[Leaves	AVG]	AS	

										Avg(Descendants([Sales	Territory].[Sales	Territory]	

																																													.[All],	,	

																												Leaves),	

															[Measures].[Reseller	Sales	Amount])	

5.	 Include	all	four	calculated	measures	on	columns,	execute	the	query,	and	verify	that	the
result	matches	the	following	screenshot:

WOW! eBook
www.wowebook.org

WOW! eBook
www.wowebook.org

How	it	works...
The	averages	are	calculated	using	the	standard	MDX	function	called	Avg().	That	function
takes	a	set	of	members	and	calculates	the	average	value	of	the	measure	provided	as	the	second
argument	of	that	function	throughout	that	set	of	members.	The	only	thing	we	have	to	take	care
of	is	to	provide	a	good	set	of	members,	the	one	we	need	the	average	to	be	calculated	on.

The	set	of	members	for	the	average	among	siblings	calculation	is	obtained	using	the
Siblings	function.	The	set	of	members	for	the	average	on	level	calculation	is	obtained	using
the	Level	function.	The	set	of	members	for	the	average	on	hierarchy	calculation	is	obtained
using	the	Members	function	only,	applied	directly	to	the	hierarchy,	not	an	individual	level.	That
construct	returns	all	members	in	that	hierarchy,	starting	from	the	root	member	and	ending
with	all	leaf	members.	Finally,	the	set	of	members	for	the	average	on	leaves	calculation	is
obtained	by	isolating	the	leaf	members	using	the	Descendants()	function.

WOW! eBook
www.wowebook.org

There's	more...
Most	of	these	average	measures	are	not	intended	to	be	displayed	in	a	grid	as	we've	done	here.
They	are	more	frequently	used	as	a	denominator	in	various	ratios	or	other	types	of
calculations.	For	example,	it	might	be	interesting	to	see	the	discrepancy	of	each	value	against
one	or	more	average	values.	That	way,	we	can	separate	members	performing	below	the
average	from	those	above	the	average,	particularly	if	we	apply	additional	conditional
formatting	to	the	foreground	or	the	background	colors	of	the	cells.

The	first	two	average	calculations,	Siblings	AVG	and	Level	AVG,	are	applicable	to	any
hierarchy.	The	Hierarchy	AVG	and	Leaves	AVG	measures	are	more	applicable	in	parent-child
hierarchies	and	other	types	of	non-symmetrical	hierarchies.	The	Employee.Employees
hierarchy	is	another	example	where	the	calculation	of	the	Hierarchy	AVG	and	Leaves	AVG
measures	makes	perfect	business	sense.

The	Employee.Employees	hierarchy	is	a	parent-child	hierarchy.	Employees	are	found	on	all
levels	in	that	hierarchy.	It	makes	sense	to	calculate	the	average	value	for	all	employees,	no
matter	which	level	they	are	found	at,	so	that	we	can	compare	each	employee's	individual	value
against	the	average	value	of	all	employees.	This	is	the	calculation	of	Hierarchy	AVG.

The	same	process	can	be	restricted	to	employees	that	have	no	one	underneath	them	in	the
corporate	hierarchy,	that	is,	employees	which	are	located	as	leaves	in	that	hierarchy.	It	makes
sense	to	calculate	their	individual	contribution	against	the	average	value	of	all	such	leaf
employees.	This	way,	we	could	notice	and	promote	those	above-average	employees	by	hiring
new	ones	as	their	subordinates.	This	is	the	calculation	of	Leaves	AVG.

Preserving	empty	rows

The	average	is	rarely	an	empty	value.	In	other	words,	it's	a	dense	type	of	calculation	in
general.

The	consequence	of	making	a	dense	calculation	is	that	we	need	to	identify	the	situations	where
it	makes	sense	to	set	it	to	the	null	value.

Take	a	look	at	the	screenshot	with	the	results	again	and	you'll	notice	there's	a	row	with	the	null
value	for	the	Reseller	Sales	Amount,	but	the	averages	are	not	null	themselves.	That's	what	a
dense	calculation	is.

We	normally	do	not	want	the	rows	where	the	original	measure	is	null.	We	generally	tend	to
use	the	NON	EMPTY	keyword	on	axes	in	order	to	remove	the	entire	empty	rows.	In	this
example,	we've	deliberately	omitted	that	keyword	in	order	to	demonstrate	this	issue,	but	in	a
real	situation,	we	would	have	applied	it	on	rows.

The	issue	we	have	is	that	NON	EMPTY	works	only	when	the	complete	row	is	empty.	Any
calculated	measures	that	come	from	the	dense	calculations	can	spoil	that.

WOW! eBook
www.wowebook.org

In	order	to	deal	with	this	issue,	we	can	wrap	all	calculations	for	averages	in	an	outer	iif()
statement	and	detect	an	empty	value	for	the	original	measure	there.	This	way,	we	will	be	able
to	return	null	when	the	original	measure	is	empty,	and	applying	the	NON	EMPTY	keyword	on
axes	will	remove	the	empty	rows.	As	mentioned	in	many	examples	in	this	book,	the	iif()
function	is	optimized	to	perform	well	when	one	of	the	branches	is	null.	To	detect	an	empty
value	for	the	original	measure,	we	will	use	the	IsEmpty()	function.

Here's	an	example	of	how	to	correct	previous	calculations:

MEMBER	[Measures].[Siblings	AVG]	AS	

			iif(IsEmpty([Measures].[Reseller	Sales	Amount]),	

								null,	

								Avg([Sales	Territory].[Sales	Territory]	

													.CurrentMember.Siblings,	

													[Measures].[Reseller	Sales	Amount]	

)	

)	

We	could	do	the	same	for	the	rest	of	the	calculated	measures,	including	the	Level	measure.

Other	specifics	of	average	calculations

The	Avg()	function	returns	the	average	value	of	non-empty	cells	only.	If	you	want	to	create
something	like	a	rolling	three-month	average	where	some	of	the	months	may	be	empty,	you
will	need	to	modify	or	adjust	your	calculation.

One	way	of	doing	this	is	to	break	the	calculation	in	two	so	that	the	numerator	calculates	the
sum	of	a	set	and	the	denominator	calculates	the	count	of	members	(or	tuples	in	general)	in
that	set.	The	Count()	function	counts	empty	cells	by	default.	But	you	can	always	set	its
optional	second	flag	to	INCLUDEEMPTY	to	count	all	members	in	a	set.

The	other	solution	is	to	modify	the	second	argument	in	the	Avg()	function	so	that	the
expression	is	never	null,	either	by	using	the	CoalesceEmpty()	function	or	by	using	a	dense
calculated	measure,	which	is	never	empty.	The	sum	over	count	approach	is	the	preferred
approach	because	it	preserves	the	format	of	measures.

Here,	you	can	find	more	information	about	the	MDX	functions	mentioned	in	this	section	and
their	specifics,	including	examples:	http://tinyurl.com/AvgInMDX	and
http://tinyurl.com/CountInMDX	and	http://tinyurl.com/CoalesceEmptyInMDX	.

The	Sum-Count	approach	is	also	the	best	approach	when	you	need	the	average	on
granularity,	when	you	need	an	aggregation	function	to	calculate	the	average	sales	amount,	or
similar.	Notice	there's	no	Avg	aggregation	function,	only	Sum,	Count,	Max,	Min,	DistinctCount,
and	those	semi-aggregable	functions	available	only	in	the	Enterprise	version	of	SQL	Server
Analysis	Services.	In	other	words,	the	average	aggregation	is	done	by	creating	two	regular
measures,	one	that	sums	the	value	and	another	one	that	counts	the	rows,	and	then	a	calculated
measure	as	their	ratio.

WOW! eBook
www.wowebook.org

http://tinyurl.com/AvgInMDX
http://tinyurl.com/CountInMDX
http://tinyurl.com/CoalesceEmptyInMDX

Tip

You	can	always	create	various	scope	statements	inside	the	MDX	script,	thereby	breaking	the
complexity	of	the	requested	functionality	into	a	subset	of	smaller,	more	compact	calculations.

WOW! eBook
www.wowebook.org

See	also
The	following	recipe	is	part	of	the	three-part	series	of	recipes	in	this	chapter	dealing
with	the	topic	of	relative	calculations:	Calculating	various	percentages	and	Calculating
various	ranks.	It	is	recommended	that	you	read	all	of	them	in	order	to	get	a	more
thorough	picture.
Chapter	9,	Metadata-driven	Calculations.

WOW! eBook
www.wowebook.org

Calculating	various	ranks
This	is	the	final	recipe	in	our	series	of	relative	calculations.	In	this	recipe,	we're	going	to
show	how	to	calculate	the	rank	among	siblings,	the	rank	on	a	level,	and	the	rank	in	the	entire
hierarchy.	A	good	introduction	is	given	in	the	first	recipe	of	this	series,	Calculating	various
percentages.	Therefore,	it	is	recommended	that	you	read	all	three	recipes	in	this	series	in
order	to	get	a	better	picture	of	the	possibilities	and	specifics	of	calculating	relative
percentages,	averages,	and	ranks.

WOW! eBook
www.wowebook.org

Getting	ready
Start	SQL	Server	Management	Studio	and	connect	to	your	SSAS	2016	instance.	Click	on	the
New	Query	button	and	check	that	the	target	database	is	Adventure	Works	DW	2016.

Here's	the	query	we'll	start	from:

WITH	

MEMBER	[Measures].[Level]	AS	

			[Sales	Territory].[Sales	Territory]	

			.CurrentMember.Level.Ordinal	

SELECT	

			{	[Measures].[Level],	

					[Measures].[Reseller	Sales	Amount]	}	ON	0,	

			{	[Sales	Territory].[Sales	Territory].AllMembers	}	ON	1	

FROM	

			[Adventure	Works]	

Once	executed,	the	query	returns	the	complete	[Sales	Territory].[Sales	Territory]	user
hierarchy	on	rows:

In	columns,	we	have	a	little	helper,	the	level	ordinal,	displayed	in	the	form	of	a	measure.	In
addition	to	that,	we	have	the	main	measure,	the	Reseller	Sales	Amount	measure.	That's	the
measure	we're	going	to	use	to	calculate	the	ranks.

This	is	the	same	initial	query	we	used	in	the	previous	two	recipes	in	this	series.	Please	refer
back	to	the	screenshot	in	the	previous	two	recipes.

We	are	going	to	calculate	three	different	ranks:	Siblings	Rank,	Level	Rank,	and	Hierarchy
WOW! eBook

www.wowebook.org

Rank.

WOW! eBook
www.wowebook.org

How	to	do	it...
Follow	these	steps	to	create	these	three	rank	calculations:

1.	 Create	the	first	calculated	measure,	name	it	Siblings	Rank,	and	provide	the	definition
for	it	using	the	Rank()	function	and	the	Siblings	function:

						MEMBER	[Measures].[Siblings	Rank]	AS	

										Rank([Sales	Territory].[Sales	Territory].CurrentMember,	

																[Sales	Territory].[Sales	Territory]	

																.CurrentMember.Siblings,	

																[Measures].[Reseller	Sales	Amount])	

2.	 Create	the	second	calculated	measure,	name	it	Level	Rank,	and	provide	the	definition	for
it	using	the	Rank()	function	and	the	Level	function:

						MEMBER	[Measures].[Level	Rank]	AS	

										Rank([Sales	Territory].[Sales	Territory].CurrentMember,	

																[Sales	Territory].[Sales	Territory]	

																.CurrentMember.Level.Members,	

																[Measures].[Reseller	Sales	Amount])	

3.	 Create	the	third	calculated	measure,	name	it	Hierarchy	Rank,	and	provide	the	definition
for	it	using	the	Rank()	function.	This	time,	use	a	named	set	for	the	second	argument.
Name	that	set	Hierarchy	Set:

						MEMBER	[Measures].[Hierarchy	Rank]	AS	

										Rank([Sales	Territory].[Sales	Territory].CurrentMember,	

																[Hierarchy	Set],	

																[Measures].[Reseller	Sales	Amount])	

4.	 Define	the	set	Hierarchy	Set	as	a	set	of	all	hierarchy	members:

						SET	[Hierarchy	Set]	AS	

									[Sales	Territory].[Sales	Territory].Members	

5.	 Include	all	three	calculated	measures	on	columns	and	execute	the	query.
6.	 Verify	that	the	result	matches	the	following	screenshot:

WOW! eBook
www.wowebook.org

WOW! eBook
www.wowebook.org

How	it	works...
The	Rank()	function	has	two	variants,	one	with	two	arguments,	and	one	with	a	third:

Rank(Member_Expression,	Set_Expression)	

Rank(Member_Expression,	Set_Expression,	Numeric	Expression)	

When	using	the	first	syntax,	where	a	numeric	expression	is	not	specified,	the	Rank()	function
simply	returns	the	one-based	ordinal	position	of	the	first	member	in	the	second	set	argument.

When	using	the	second	syntax,	where	a	third	numeric	expression	is	specified,	the	Rank()
function	determines	the	one-based	rank	for	the	specified	member	in	the	set	according	to	the
results	of	evaluating	the	specified	numeric	expression	against	the	member.

In	our	example,	we	have	used	the	second	syntax.	Let	us	discuss	some	specifics	of	the	second
syntax	and	how	we	used	it	in	our	example.

When	the	third	numeric	argument	is	supplied	to	the	Rank()	function,	the	Rank()	function
evaluates	the	numeric	expression	for	the	member	specified	as	the	first	argument	and
compares	it	to	the	members	of	the	set	specified	as	the	second	argument.	The	function	then
determines	the	1-based	rank	of	the	member	in	that	set	according	to	the	results.

All	three	ranks	are	for	the	current	member	on	the	rows.	Therefore,	we	have	used	the	same
member	expression	as	the	first	argument	to	the	Rank()	function:

[Sales	Territory].[Sales	Territory].CurrentMember	

We	have	also	provided	the	same	numeric	expression,	[Measures].[Reseller	Sales	Amount],
to	the	Rank()	function	as	the	third	argument.

The	only	difference	in	the	three	calculations	is	in	the	second	set	expression	we	provided	to	the
Rank()	function.

The	Siblings	Rank	is	calculated	against	the	current	member's	siblings,	or	children	of	the
same	parent.	This	is	the	set	expression	to	get	all	the	current	member's	siblings:

[Sales	Territory].[Sales	Territory].CurrentMember.Siblings	

The	Level	Rank	is	calculated	against	all	members	in	the	same	level	as	the	current	member's
level.	This	is	the	set	expression	to	get	all	members	at	the	current	member's	level:

[Sales	Territory].[Sales	Territory].CurrentMember.Level.Members	

Finally,	the	third	rank,	the	Hierarchy	Rank,	is	calculated	against	all	members	in	that
hierarchy.	This	is	the	set	expression	to	get	all	the	members	in	the	hierarchy:

[Sales	Territory].[Sales	Territory].Members	

WOW! eBook
www.wowebook.org

That	is	also	the	only	set	not	dependent	on	the	current	context.	Notice	that	we	have	created	a
named	set,	[Hierarchy	Set].	By	creating	a	named	set	that	is	independent	of	the	current
context,	we	have	essentially	moved	it	outside	the	iteration.	The	query	performance	has	been
improved.	Notice	that	we	did	not	do	this	for	the	Siblings	Rank	and	the	Level	Rank	because
we	couldn't.

The	rules	are	relatively	simple.	Whenever	there's	a	set	that	doesn't	depend	on	the	current
context,	it	is	better	to	extract	it	from	the	calculation	and	define	it	as	a	named	set.	That	way,	it
will	be	evaluated	only	once,	after	the	evaluation	of	the	subselect	and	slicer,	and	before	the
evaluation	of	axes.	During	the	process	of	cell	evaluation,	which	is	the	next	phase	in	the	query
execution,	such	a	set	acts	like	a	constant,	which	makes	the	calculations	run	faster.

On	the	other	hand,	when	the	set's	definition	references	the	current	context,	that	is,	current
members	of	the	hierarchies	on	columns	or	rows,	we	must	leave	the	set	inside	the	calculation,
or	else	our	calculation	will	not	be	dynamic.

WOW! eBook
www.wowebook.org

There's	more...
In	the	first	variant	of	the	Rank()	function,	where	the	third	numeric	expression	is	not	provided,
the	order	of	members	in	the	set	supplied	as	the	second	argument	plays	a	crucial	role.	The
function	returns	the	ordinal	position	of	the	first	member	in	the	second	set.

It	is	important	to	remember	that,	in	either	variant,	the	Rank()	function	will	not	do	the	sorting
for	us.	If	we	want	the	function	to	return	the	ranks	in	a	sorted	order,	then	it	is	up	to	us	to	supply
a	pre-sorted	set	of	members	and	use	it	as	the	second	argument.

Tie	in	ranks

While	the	three-argument	version	of	the	Rank()	function	can	produce	tied	ranks,	the	two-
argument	version	will	never	have	tied	ranks	because	the	two-argument	version	determines	the
ordinal	order	of	members	in	a	set	and	there's	never	a	tie	in	the	ordinal	order;	all	ordinal
positions	are	unique.	However,	in	the	three-argument	version,	the	rank	position	depends	on
the	value	of	the	numeric	expression.	Occasionally,	that	value	can	repeat	which	is	why	the	ties
exist.

For	example,	the	last	two	rows	of	the	Hierarchy	Rank	column	in	the	previous	screenshot	both
have	the	value	14	as	their	rank.	Consequently,	there's	no	rank	15	in	that	column;	the	sequence
continues	with	16.

Preserving	empty	rows

Ranks	are	never	null.	They	are	a	dense	type	of	calculation.	The	consequence	is	that	we	need	to
handle	rows	where	the	original	measure	is	empty.

Take	a	look	at	the	screenshot	with	the	results	again	and	you'll	notice	that	there	is	a	row	with
the	null	value	for	the	Reseller	Sales	Amount,	but	the	ranks	themselves	are	not	null.	This	is
something	we	need	to	take	care	of.

First,	we	can	use	the	iif()	statement	to	handle	empty	rows,	just	like	we	did	in	the	previous
recipe.	Here's	an	example	of	how	we	can	correct	rank	calculations	so	that	they	skip	rows	with
empty	values:

MEMBER	[Measures].[Siblings	Rank]	AS	

			iif(IsEmpty([Measures].[Reseller	Sales	Amount]),	

								null,	

								Rank([Sales	Territory].[Sales	Territory]	

														.CurrentMember,	

														[Sales	Territory].[Sales	Territory]	

														.CurrentMember.Siblings,	

														[Measures].[Reseller	Sales	Amount]	

)	

)	

This	extra	layer	in	our	calculation	does	indeed	eliminate	the	rows	where	the	original	measure
WOW! eBook

www.wowebook.org

is	empty,	making	it	a	good	approach.	The	problem	is	that	the	solution	is	still	not	a	good
enough	one.	Not	yet,	and	we're	about	to	find	out	why.

The	problem	lies	in	the	fact	that	ranks	can	have	holes;	they	might	not	be	consecutive.	A	subtle
surprise	we	may	not	notice	at	first,	but	a	perfectly	understandable	behavior	once	we	realize
that	ranks	are	actually	calculated	on	a	whole	set	of	members,	not	just	the	non-empty	ones.

While	calculating	the	rank	on	all	members	may	or	may	not	be	what	we	want,	it	is	more	often
that	we	do	not	want	that.	In	that	case,	there's	still	something	we	can	do.

We	can	make	the	set	in	the	second	argument	more	compact.	We	can	eliminate	all	extra
members	so	that	our	ranks	are	consecutive	and	our	calculation	is	faster,	because	it	will
operate	on	a	smaller	set.

The	magic	happens	in	the	NonEmpty()	function.	Here's	how	the	modified	query	could	look:

WITH	

SET	[Hierarchy	Set]	AS	

			NonEmpty([Sales	Territory].[Sales	Territory].Members,	

													{	[Measures].[Reseller	Sales	Amount]	})	

MEMBER	[Measures].[Level]	AS	

			iif(IsEmpty([Measures].[Reseller	Sales	Amount]),	

								null,	

								[Sales	Territory].[Sales	Territory]	

								.CurrentMember.Level.Ordinal				

)							

MEMBER	[Measures].[Siblings	Rank]	AS	

			iif(IsEmpty([Measures].[Reseller	Sales	Amount]),	

								null,	

								Rank([Sales	Territory].[Sales	Territory]	

														.CurrentMember,	

														NonEmpty([Sales	Territory].[Sales	Territory]	

																								.CurrentMember.Siblings,	

																								{	[Measures].[Reseller	Sales	Amount]	}		

),	

														[Measures].[Reseller	Sales	Amount])	

)							

MEMBER	[Measures].[Level	Rank]	AS	

			iif(IsEmpty([Measures].[Reseller	Sales	Amount]),	

								null,	

								Rank([Sales	Territory].[Sales	Territory]	

														.CurrentMember,	

														NonEmpty([Sales	Territory].[Sales	Territory]	

																								.CurrentMember.Level.Members,	

																								{	[Measures].[Reseller	Sales	Amount]	}		

),	

														[Measures].[Reseller	Sales	Amount])	

)							

MEMBER	[Measures].[Hierarchy	Rank]	AS	

			iif(IsEmpty([Measures].[Reseller	Sales	Amount]),	

								null,	

								Rank([Sales	Territory].[Sales	Territory]	

														.CurrentMember,	

WOW! eBook
www.wowebook.org

														[Hierarchy	Set],	

														[Measures].[Reseller	Sales	Amount])	

)							

SELECT	

			{	[Measures].[Level],	

					[Measures].[Reseller	Sales	Amount],	

					[Measures].[Siblings	Rank],	

					[Measures].[Level	Rank],	

					[Measures].[Hierarchy	Rank]	}	ON	0,	

			{	[Sales	Territory].[Sales	Territory].AllMembers	}	ON	1	

FROM	

			[Adventure	Works]	

From	the	preceding	query,	it's	evident	that	we've	added	the	outer	iif()	clause	in	each
calculated	member.	That's	the	part	that	handles	the	detection	of	empty	rows.

Additionally,	we	wrapped	all	sets	in	a	NonEmpty()	function,	specifying	that	the	second
argument	of	that	function	should	be	the	Reseller	Sales	Amount	measure.	Notice	that	we've
done	it	in	the	named	set	too,	not	just	for	inner	sets	in	Rank()	functions,	but	in	that	case,	we
applied	the	NonEmpty()	function	in	the	set,	not	inside	the	Rank()	function.	This	is	important
because,	as	we	said	before,	the	set	is	invariant	to	the	context	and	it	makes	sense	to	prepare	it	in
full	in	advance.

Now,	the	effect	of	the	NonEmpty()	function	may	not	be	visible	in	three-part	variants	of	the
Rank()	function,	especially	if	there	are	no	negative	values,	because	the	negative	values	come
after	the	zeros	and	nulls.	It	is	immediately	clear	when	we	have	discontinuous	ranks.
Therefore,	we're	going	to	make	another	example,	a	really	simple	example	using	the	product
colors.

Write	the	following	query:

WITH	

SET	[Color	Set]	AS	

			[Product].[Color].[Color].Members	

SET	[Color	Set	NonEmpty]	AS	

			NonEmpty([Product].[Color].[Color].Members,	

														{	[Measures].[Internet	Sales	Amount]	})	

MEMBER	[Measures].[Level	Rank]	AS	

			iif(IsEmpty([Measures].[Internet	Sales	Amount]),	

								null,	

								Rank([Product].[Color].CurrentMember,	

														[Color	Set])	

)							

MEMBER	[Measures].[Level	Rank	NonEmpty]	AS	

			iif(IsEmpty([Measures].[Internet	Sales	Amount]),	

								null,	

								Rank([Product].[Color].CurrentMember,	

														[Color	Set	NonEmpty])	

)							

SELECT	

			{	[Measures].[Internet	Sales	Amount],	

					[Measures].[Level	Rank],	

WOW! eBook
www.wowebook.org

					[Measures].[Level	Rank	NonEmpty]	}	ON	0,	

			{	[Product].[Color].[Color].Members	}	ON	1	

FROM	

			[Adventure	Works]	

This	query	displays	all	product	colors	and	their	corresponding	sales	values.	The	query	also
contains	two	named	sets,	one	having	all	product	colors,	the	other	having	only	the	colors	with
sales.	The	two	calculated	measures	return	ranks,	one	using	the	first	set	and	the	other	using	the
second	named	set.

Now	execute	that	query	and	observe	the	results:

In	the	preceding	screenshot,	the	highlighted	section	shows	the	adjusted	ranks.

The	left	rank	runs	from	1	to	10	and	occasionally	doesn't	display	the	result.	The	right	rank
runs	from	1	to	8	because	the	empty	rows	are	excluded	in	the	named	set	used	as	its	second
argument.

Now,	imagine	we	apply	the	NON	EMPTY	operator	to	rows.	That	action	would	eliminate	the	grey
and	silver/black	colors.	In	this	situation,	only	the	right	rank	would	return	the	results	as
expected	in	most	cases.	Now	you	know	how	to	make	the	rank	work	this	way,	so	do	it.

One	more	thing:	in	the	previous	query,	there	was	a	set	of	members	in	rows,	including	all
product	colors.	Notice	that	the	same	set	appears	in	both	named	sets.

The	first	named	set	is	defined	exactly	as	the	set	in	rows.	The	second	named	set	contains	non-
empty	colors	only.	That	definition	is	actually	the	equivalent	of	what	we	would	get	in	rows	if
the	NON	EMPTY	operator	was	applied.	In	short,	we	can	put	one	of	the	named	sets	in	rows	instead
and	have	a	more	manageable	code.

Ranks	in	multidimensional	sets

The	first	argument	of	the	Rank()	function	can	in	fact	be	a	tuple,	not	just	a	member,	which
enables	calculation	of	ranks	for	multidimensional	sets.

WOW! eBook
www.wowebook.org

What	we	need	to	be	extra	careful	about	in	this	case	is	the	dimensionality	of	the	first	two
arguments.	The	dimensionality	must	match.	In	other	words,	the	order	of	hierarchies	in	a	tuple
must	match	the	order	of	hierarchies	in	a	set.

Everything	that's	been	said	for	one-dimensional	sets	applies	here	too.

The	pluses	and	minuses	of	named	sets

When	named	sets	are	used	in	calculations,	the	performance	can	either	benefit	from	it	or	suffer
because	of	it.	The	latter	is	more	often	the	case.	However,	this	certainly	doesn't	classify	sets	in
MDX	as	bad	per	se,	quite	the	opposite:	sets	are	a	very	valuable	mechanism	in	MDX,	just	like
the	fire	in	our	ordinary	life.	If	you	learn	to	tell	the	difference	between	when	to	use	them	and
when	to	not,	you're	safe	with	named	sets	and	sets	in	general.

Currently,	the	SSAS	engine	is	not	optimized	to	run	in	block	computation	mode	when	sets
(named	sets	or	set	aliases,	that	is,	sets	defined	in	line	in	MDX	expressions)	are	used	as	an
argument	of	functions	that	perform	the	aggregation	of	values.	Typical	examples	are	the	Sum()
and	the	Count()	functions.	Those	functions	are	optimized	to	run	in	block	mode	but	if	you
provide	a	named	set	or	set	alias	as	their	argument,	you	will	turn	this	optimization	off	and
those	functions	will	run	in	a	much	slower	cell-by-cell	mode.	This	lack	of	support	may	change
in	future	releases	of	SSAS	but,	for	the	time	being,	you	should	avoid	using	named	sets	and	set
aliases	in	those	functions	unless	the	situation	really	requires	it.	This	requirement	will	rarely
be	mentioned	for	named	sets,	but	it	may	be	a	valid	scenario	for	set	aliases	if	you	need	to
achieve	very	flexible	and	dynamic	calculations	and	you're	ready	to	make	a	compromise	in
performance	as	a	trade-off.

On	the	other	hand,	other	functions	such	as	the	Rank()	function	can	profit	from	using	named
sets.	This	is	because	a	different	execution	pattern	is	applied	in	their	case.	Let's	illustrate	this
with	an	example.

Let's	suppose	that	the	Sum()	and	Count()	functions	iterate	along	a	vertical	line	in	cell-by-cell
mode	and	compress	that	line	in	a	dot	when	operating	in	the	block	mode.	Naturally,	returning	a
value	in	a	single	point	is	a	much	faster	operation	than	iterating	along	the	line.

The	rank	has	to	be	evaluated	for	each	cell;	it	does	not	run	in	block	mode.	In	other	words,	it
has	to	go	along	that	vertical	line	anyway.	Unfortunately,	that's	not	the	entire	issue.	Along	the
way,	the	Rank()	function	has	to	evaluate	the	set	on	which	to	perform	the	rank	operation,	a	set
which	can	be	visualized	as	yet	another	line,	this	time	a	horizontal	line.	The	problem	is	that	this
new	line	can	change	per	each	dot	on	the	vertical	line,	which	means	the	engine	can	anticipate
nothing	but	an	irregular	surface	on	which	to	calculate	rank	values.	This	is	slow	because	all	of
a	sudden	we	have	two	loops,	one	for	the	vertical	path	and	the	other	for	the	horizontal.	Could
this	be	optimized?	Yes,	by	removing	the	unnecessary	loop	again,	which,	in	this	case,	is	the
inner	loop.	Here's	how.

When	we	define	a	named	set	and	use	it	inside	the	Rank()	function,	we're	actually	telling	the

WOW! eBook
www.wowebook.org

SSAS	engine	that	this	set	is	invariant	to	the	current	context	and	as	such	can	be	treated	as
constant;	that	is,	we	declare	there's	a	rectangle,	not	an	irregular	surface.	This	way,	the	engine
can	traverse	the	vertical	line	and	not	bother	with	evaluating	the	horizontal	line,	which	is	a	kind
of	block	optimization	again.	In	other	words,	it	can	perform	much	better.

Another	situation	when	you	might	want	to	use	named	sets	is	when	you're	not	aggregating
values	but	instead	applying	set	operations	such	as	the	difference	or	intersection	of	sets.	In	that
situation,	sets	also	perform	well,	much	better	than	using	the	Filter()	function	to	do	the	same
thing,	for	example.

To	conclude,	named	sets	are	a	mixed	bag;	use	them,	but	with	caution.	Don't	forget	you	can
always	test	which	version	of	your	calculation	performs	better,	the	one	with	named	sets	or	the
one	without	them.	The	Capturing	MDX	queries	generated	by	SSAS	frontends	recipe	in	Chapter
10	,	On	the	Edge	will	show	you	how	to	test	that.

WOW! eBook
www.wowebook.org

See	also
The	two	recipes	prior	to	this	are	part	of	the	three-part	series	of	recipes	in	this	chapter
dealing	with	the	topic	of	relative	calculations:	Calculating	various	percentages	and
Calculating	various	averages.	It	is	recommended	that	you	read	all	of	them	in	order	to	get
a	more	thorough	picture.

WOW! eBook
www.wowebook.org

Chapter	6.	MDX	for	Reporting
In	this	chapter,	we	will	cover	the	following	recipes:

Creating	a	picklist
Using	a	date	calendar
Passing	parameters	to	an	MDX	query
Getting	the	summary
Removing	empty	rows
Getting	data	on	the	column
Sorting	data	by	dimensions

WOW! eBook
www.wowebook.org

Introduction
When	reporting	with	multi-dimensional	data	using	MDX	queries,	there	are	usually	two
approaches.	One	is	to	use	a	parameterized	MDX	query.	Another	is	to	use	a	concatenated
dynamic	MDX	query.	In	the	parameterized	MDX	query	approach,	only	the	values	of
parameters	are	passed	from	the	reporting	tool,	and	the	MDX	query	is	in	the	form	of
parameterized	query.	In	the	concatenated	dynamic	MDX	query	approach,	the	entire	query	is
constructed	in	the	reporting	tool	with	string	manipulation.

In	the	SQL	Reporting	Services	(SSRS),	both	the	parameterization	and	concatenation	dynamic
MDX	approaches	are	supported.	Most	report	writers	would	choose	the	parameterization
approach,	just	because	Reporting	Services	provide	a	better	user	interface	for	cube	browsing,
selecting	values	for	parameters,	and	for	testing.	But	this	does	not	mean	that	the	concatenation
dynamic	MDX	approach	is	in	some	way	bad.	As	a	matter	of	fact,	the	concatenation	dynamic
MDX	approach	is	often	more	flexible	because	report	writers	can	mix	the	parameters,	the
reporting	tool's	scripting	language,	and	MDX	expressions	together.

In	some	cases,	it's	the	only	choice	reporting	writers	have,	for	example,	when	a	customized
application	is	built	for	reporting.

There	is	another	situation	that	does	not	fit	well	into	either	definition	of	the	previous	two
approaches.	That	is	when	you	need	to	extract	multi-dimensional	data	out	from	a	cube	and	put
them	back	into	relational	SQL	tables.	The	data	extraction	is	often	done	during	an	automated
ETL	process.	If	the	front-end	tool	does	not	provide	user	interface	for	parameterization	and
MDX	queries	are	constructed	with	string	manipulation,	then	it	can	be	considered	a
concatenation	dynamic	MDX	approach.

Although	this	chapter	is	not	about	how	to	use	any	of	the	commercial	or	customized	MDX
reporting	tools,	it	is	necessary	to	understand	how	the	reporting	tools	support	these	two
different	approaches.	It	is	also	important	to	know	that	the	problems	we	are	trying	to	solve	in
each	recipe	are	relevant	to	reporting	in	general,	and	are	applicable	to	both	approaches.

No	matter	what	approach	we	are	taking,	turning	an	ad-hoc	report	into	a	dynamic	report	is	a
challenging	task.	There	are	many	special	considerations	associated	with	the	dynamic	nature	of
reports	with	dynamic	parameters.	Through	carefully	thought-out	examples,	this	chapter
introduces	new	concepts	in	dynamic	reporting,	and	the	challenges	and	the	techniques	for
efficient	report	writing.

The	purpose	of	this	chapter	is	to	call	out	issues	that	are	specific	to	reporting	without	repeating
and	overlapping	the	techniques	covered	in	other	chapters.	The	first	four	recipes	address	the
specific	issues	with	parameterization.	The	fifth	recipe,	Removing	empty	rows,	is	written	with
one	specific	reporting	issue	in	mind,	that	is,	when	a	calculated	measure	is	added	to	the
column,	NON	EMPTY	no	longer	works.	The	last	two	recipes,	Getting	data	in	the	column	and
Sorting	data	by	dimensions,	are	relevant	to	both	approaches.

WOW! eBook
www.wowebook.org

In	this	chapter,	we	will	still	use	SQL	Management	Studio	(SSMS)	for	executing	MDX	queries.
Optionally,	we	will	also	execute	some	of	the	queries	in	SQL	Reporting	Services	(SSRS),	in
the	Query	Editor's	design	mode.	If	you	have	no	access	to	SSRS,	you	can	still	go	through	all
the	recipes	without	missing	the	important	points.

WOW! eBook
www.wowebook.org

Creating	a	picklist
A	picklist	allows	users	to	select	available	parameters	that	can	be	later	passed	to	the	queries	for
the	report.	A	picklist	is	commonly	used	to	allow	users	to	select	parameters	and	then	pass	them
to	the	report's	MDX	query.	The	following	is	an	example	of	a	picklist	that	allows	users	to	pick
any	resellers:

A	picklist	serves	two	purposes:	to	visually	display	the	captions	and	to	bind	each	caption	to	a
unique	identifier	behind	the	scene.	It	is	this	unique	identifier	that	will	be	passed	to	the	report's
MDX	query.	For	the	reseller	name	A	Bike	Store,	for	example,	its	unique	member	name	can
be	either	one	of	the	following:

[Reseller].[Reseller].&[1]	

[Reseller].[Reseller].[A	Bike	Store]	

When	users	make	selections	in	the	picklist,	it	is	not	the	reseller	name	that	is	needed	to	pass	to
the	MDX	query	for	the	report.	Instead,	it	is	this	fully	qualified	unique	member	name	for	each
reseller	that	is	required	to	pass	to	the	query.

WOW! eBook
www.wowebook.org

Getting	ready
In	this	recipe	for	creating	a	picklist,	we	are	going	to	create	a	picklist	for	all	the	resellers.
When	we	are	writing	the	MDX	query	to	create	the	reseller	picklist,	we	want	to	achieve	the
following	three	goals:

To	not	show	any	resellers	that	never	have	any	sales
To	get	each	reseller's	name,	we	are	going	to	name	this	column	ParameterCaption
To	get	each	reseller's	unique	name,	we	are	going	to	name	this	column	ParameterValue

The	following	are	a	few	examples	of	the	resellers	in	Adventure	Works	and	the	values	of
ParameterCaption	and	ParameterValue:

ParameterValue ParameterCaption

A	Bike	Store [Reseller].[Reseller].&[1] A	Bike	Store

A	Great	Bicycle	Company [Reseller].[Reseller].&[238] A	Great	Bicycle	Company

A	Typical	Bike	Shop [Reseller].[Reseller].&[273] A	Typical	Bike	Shop

Acceptable	Sales	&	Service [Reseller].[Reseller].&[370] Acceptable	Sales	&	Service

Accessories	Network [Reseller].[Reseller].&[553] Accessories	Network

Acclaimed	Bicycle	Company [Reseller].[Reseller].&[351] Acclaimed	Bicycle	Company

WOW! eBook
www.wowebook.org

How	to	do	it...
Start	SQL	Server	Management	Studio	and	connect	to	your	SSAS	2016	instance.	Click	on	the
New	Query	button	and	check	that	the	target	database	is	Adventure	Works	DW	2016.

We	will	start	from	this	simple	MDX	query	that	shows	all	the	resellers	and	their	sales:

SELECT	

		[Measures].[Reseller	Sales	Amount]	ON	COLUMNS,	

		[Reseller].[Reseller].[Reseller]	ON	ROWS	

FROM	

		[Adventure	Works]	

This	query	does	not	meet	any	of	the	previous	requirements	yet.	Let's	follow	these	steps	to
achieve	the	three	goals:

1.	 In	order	to	not	show	any	resellers	that	have	no	sales,	we	are	going	to	use	the	NONEMPTY()
function	with	the	sales	amount	as	the	second	parameter.	On	the	ROWS	axis,	we	are	going	to
change	to	the	following:

						NONEMPTY	(

										[Reseller].[Reseller].[Reseller],	

										[Measures].[Reseller	Sales	Amount]	

)	ON	ROWS	

2.	 To	name	our	two	columns	as	ParameterCaption	and	ParameterValue,	we	will	need	to
use	WITH	MEMBER.	Using	the	WITH	clause,	let's	write	these	two	members	as	the	following:

						WITH		

								MEMBER	[Measures].[ParameterValue]	AS	

										[Reseller].[Reseller].Currentmember.UniqueName	

								MEMBER	[Measures].[ParameterCaption]	AS	

										[Reseller].[Reseller].Currentmember.Member_Name	

3.	 We	no	longer	need	the	reseller	sales	on	the	COLUMNS	axis.	We	will	replace	it	with
ParameterCaption	and	ParameterValue,	as	shown	in	the	following	code:

						{	[Measures].[ParameterValue],	

										[Measures].[ParameterCaption]	}	ON	COLUMNS	

4.	 This	should	be	your	final	query:

						WITH		

								MEMBER	[Measures].[ParameterValue]	AS	

										[Reseller].[Reseller].Currentmember.UniqueName	

								MEMBER	[Measures].[ParameterCaption]	AS	

										[Reseller].[Reseller].Currentmember.Member_Name	

	

						SELECT	

								{	[Measures].[ParameterValue],	

										[Measures].[ParameterCaption]	}	ON	COLUMNS,	

								NONEMPTY	(

										[Reseller].[Reseller].[Reseller],	

										[Measures].[Reseller	Sales	Amount]	

WOW! eBook
www.wowebook.org

)	ON	ROWS	

						FROM	

								[Adventure	Works]	

When	you	execute	the	query	in	SSMS,	you	should	get	the	same	result	as	in	the	following
screenshot:

WOW! eBook
www.wowebook.org

How	it	works...
The	WITH	clause	is	commonly	used	in	MDX	query	to	add	more	columns	to	the	results.	We
used	WITH	MEMBER	to	create	two	query-scoped	calculated	members,	ParameterValue	and
ParameterCaption,	and	put	them	on	the	COLUMNS	axis,	which	have	become	two	columns	in	the
results.

We	have	put	these	two	calculated	members	in	the	special	dimension	[Measures],	although	that
is	not	the	requirement	of	WITH	MEMBER.	In	some	front-end	reporting	tools,	such	as	the	SQL
Server	Reporting	Services	(SSRS),	the	special	dimension	[Measures]	is	the	only	dimension
that	is	allowed	on	the	COLUMNS	axis.

Another	important	function	we	used	in	the	calculation	is	the	CurrentMember	function.	It	is	an
important	function	that	makes	the	calculations	aware	of	the	context	of	the	query	they	are	being
used	in.	In	other	words,	CurrentMember	function	allows	us	to	write	dynamic	calculations
without	hard-coding	any	member	values.	In	our	example,	the	CurrentMember	function
identifies	each	reseller	on	the	ROWS	axis	and	uses	it	in	the	calculation	of	ParameterValue	and
ParameterCaption.

In	this	recipe,	we	cannot	replace	the	NonEmpty	()	function	with	the	NON	EMPTY	keyword.	The
NON	EMPTY	keyword	can	only	remove	empty	rows	when	all	the	values	on	the	COLUMNS	axis	are
NULL.	However,	neither	ParameterValue	nor	ParameterCaption	are	NULL.	Please	also	see	the
Removing	empty	rows	recipe	in	this	chapter	for	more	in	depth	discussion.

We've	also	noticed	that	we	did	not	do	any	explicit	sorting	when	creating	the	picklist.	This	is
because	the	resellers	are	already	sorted	in	alphabetical	order.	Please	also	see	the	Sorting	data
by	dimensions	recipe	in	this	chapter	for	more	in-depth	discussion	about	sorting	in	reports.

WOW! eBook
www.wowebook.org

There's	more...
We've	used	the	WITH	clause	to	create	two	columns:	ParameterValue	and	ParamterCaption.	If
we	execute	the	query	in	SSRS,	in	the	Query	Designer's	Design	Mode,	we	can	now	clearly	see
another	column,	Reseller,	which	shows	the	caption	of	resellers	and	is	the	same	as
ParamterCaption.	The	Reseller	column	comes	from	the	Reseller	attribute	hierarchy	on	the
ROWS	axis.	To	reduce	the	data	duplication,	we	can	use	the	Reseller	column	and	do	not	need
to	create	the	ParameterCaption	column.	However,	the	advantage	of	having	a	fixed
column,	ParameterCaption,	against	Reseller	is	that	a	generic	picklist	widget	can	be	designed
for	any	picklist	in	the	front-end	reporting	tool.	In	this	recipe,	we	have	also	used	it	for
demonstration	purposes.

WOW! eBook
www.wowebook.org

See	also
The	Sorting	data	by	dimensions	recipe	in	this	chapter	covers	topics	about	how	to	sort	by
non-numeric	dimensions.
The	Removing	empty	rows	recipe	in	this	chapter	covers	how	to	remove	empty	rows	in
reporting	in	more	depth.
The	Optimizing	MDX	queries	using	the	NonEmpty()	function	recipe	is	relevant	to	this
recipe.	It	shows	you	not	only	how	to	use	the	function,	but	also	the	difference	between
NonEmpty()	function	and	NON	EMPTY	keyword.

WOW! eBook
www.wowebook.org

Using	a	date	calendar
A	date	calendar	is	commonly	used	for	users	to	select	a	date	range.	A	calendar	widget	is
available	in	many	front-end	reporting	tools.	Many	reporting	writers	prefer	to	use	the	calendar
widget	because	it	is	easy	to	use	in	the	reporting	tool	and	report	users	are	familiar	with	it.

WOW! eBook
www.wowebook.org

Getting	ready
Dates	that	come	from	the	calendar	widget	are	typically	in	the	form	of	strings,	for	example,
7/29/2016,	which	might	or	might	not	be	a	valid	date	member	in	the	Date	dimension.

In	this	recipe,	we	will	show	you	how	to	format	the	dates	from	the	calendar	widget	in	the
reporting	tool	as	a	valid	date	member	and	then	create	an	MDX	query	to	take	the	formatted
date	as	a	parameter.

In	SSMS,	if	we	drag	any	date	from	the	Date	dimension,	we	will	see	that	a	fully	qualified	key-
based	date	member	has	the	following	format:

[Date].[Date].&[20130901]	

The	date	representation	of	20130901	tells	us	that	any	date	that	is	passed	into	this	query	needs
to	be	in	the	yyyyMMdd	format.

To	format	the	date	string	correctly	according	to	the	valid	format	in	the	Date	dimension,	in
SQL	Server	Reporting	Services	(SSRS)	you	use	this	code	snippet	to	convert	the	date	into	the
fully	qualified	key-based	date	member:

"[Date].[Date].&["	+	Format(CDate(Parameters!StartDate.Value),	"yyyyMMdd")	+	"]"	

The	CDate()	function	converts	the	string	that	represents	a	date	into	a	Date	type,	and	the
Format()	function	formats	the	date	as	yyyyMMdd.	The	CDate()	function	is	important,	because
without	it	the	Format()	function	would	fail.

Our	next	goal	is	to	create	an	MDX	query	to	take	the	formatted	date	as	a	parameter.

We	will	begin	with	this	simple	query	to	show	reseller	sales	for	each	date:

SELECT[Measures].[Reseller	Sales	Amount]	ON	COLUMNS,	

				NON	EMPTY		

				[Date].[Date].[Date]	*	

				[Reseller].[Reseller].[Reseller]		

					ON	ROWS	

FROM	

		[Adventure	Works]	

Note

Note	that	we	are	using	a	CROSSJOIN	to	get	the	combination	of	dates	and	resellers.	We	are	also
using	the	NON	EMPTY	keyword	on	the	ROWS	axis	to	remove	any	dates	on	which	no	reseller	sales
exist.

Also	note	that	in	Adventure	Works	DW	2016,	the	Date	dimension	is	the	ordering	date.	There
are	also	two	other	dimensions,	the	Ship	Date	and	the	Delivery	Date,	which	are	the	shipping
date	and	the	delivery	date,	respectively.

WOW! eBook
www.wowebook.org

How	to	do	it...
Follow	these	steps	to	open	the	Query	Editor	in	SQL	Server	Management	Studio	(SSMS):

1.	 Start	SQL	Server	Management	Studio	(SSMS)	and	connect	to	your	SQL	Server	Analysis
Services	(SSAS)	2016	instance.

2.	 Click	on	the	target	database	Adventure	WorksDW	2016	and	then	right-click	on	the	New
Query	button.

3.	 In	the	FROM	clause,	we	are	going	to	replace	the	cube	name	[Adventure	Works]	with	a	sub-
query.	In	the	sub-query,	we	only	need	to	select	a	date	range	in	the	COLUMNS	axis,	with	a
semicolon	(;)	to	separate	the	start	date	from	the	end	date.	Then,	we	enclose	the	sub-query
with	a	pair	of	parenthesis.	For	each	string	of	the	date	member,	we	will	wrap	them	with
the	STRTOMEMBER()	function	with	the	CONSTRAINED	flag.

						(SELECT	

								STRTOMEMBER('[Date].[Date].&[20130901]',	CONSTRAINED)	:										

STRTOMEMBER('[Date].[Date].&[20131224]',	CONSTRAINED)		ON	COLUMNS	

									FROM		

										[Adventure	Works])	

4.	 Run	the	final	query:

						SELECT[Measures].[Reseller	Sales	Amount]	ON	COLUMNS,	

										NON	EMPTY		

										[Date].[Date].[Date]	*	

										[Reseller].[Reseller].[Reseller]		

											ON	ROWS	

						FROM	

								(SELECT	

										STRTOMEMBER('[Date].[Date].&[20130901]',	CONSTRAINED)	:		

STRTOMEMBER('[Date].[Date].&[20131224]',	CONSTRAINED)		ON	COLUMNS	

									FROM		

										[Adventure	Works])	

5.	 Here	is	a	screenshot	of	the	query	result:

WOW! eBook
www.wowebook.org

6.	 We	have	hard-coded	the	date	range	for	testing	purposes.	Now	we	need	to	convert	our
hard-coded	date	range	into	dynamic	parameters	with	@StartDate	and	@EndDate:

						SELECT		[Measures].[Reseller	Sales	Amount]	ON	COLUMNS,	

										NON	EMPTY		

										[Date].[Date].[Date]	*	

										[Reseller].[Reseller].[Reseller]		

											ON	ROWS	

						FROM	

								(SELECT	

														STRTOMEMBER(@StartDate,	CONSTRAINED)	:	STRTOMEMBER(@EndDate,	

CONSTRAINED)			ON	COLUMNS	

									FROM		

										[Adventure	Works])	

WOW! eBook
www.wowebook.org

How	it	works...
The	important	function	we	used	is	the	STRTOMEMBER()	function.	Parameters	that	are	passed
into	an	MDX	query	are	either	literal	strings	or	numeric	values.	While	the	string	provided
contains	a	valid	MDX	member	expression,	it	is	not	an	MDX-qualified	member.	The	purpose
of	the	STRTOMEMBER()	function	is	to	resolve	the	string	to	an	MDX-qualified	member,	in	our
case,	a	Date	member

STRTOMEMBER('[Date].[Date].&[20130901]',	CONSTRAINED)	

STRTOMEMBER('[Date].[Date].&[20131224]',	CONSTRAINED)	

The	CONSTRAINED	flag	is	an	optional	flag.	When	it	is	used,	MDX	will	return	an	error	message
if	the	string	is	not	built	properly	and	resolved	to	an	invalid	member.	The	CONSTRAINED	flag	is
recommended,	because	it	ensures	that	the	evaluation	of	the	expression	is	faster	and	therefore
the	query	performance	will	be	faster	as	well.

Why	did	we	use	the	sub-query?	What	if	we	just	simply	add	the	date	range	directly	in	the	WHERE
clause?

SELECT		[Measures].[Reseller	Sales	Amount]	ON	COLUMNS,	

				NON	EMPTY		

				[Date].[Date].[Date]	*	

				[Reseller].[Reseller].[Reseller]		

					ON	ROWS	

FROM	

		[Adventure	Works]		

WHERE	

		STRTOMEMBER('[Date].[Date].&[20130901]',	CONSTRAINED)	:	STRTOMEMBER('[Date].

[Date].&[20131224]',	CONSTRAINED)	

It	will	cause	this	very	common	error	in	MDX:

The	Date	hierarchy	already	appears	in	the	Axis1	axis.	

To	avoid	this	error,	we	could	have	replaced	the	Date	attribute	hierarchy	in	the	ROWS	axis	with
the	Calendar	Date	hierarchy.	So,	this	query	is	also	valid:

SELECT		[Measures].[Reseller	Sales	Amount]	ON	COLUMNS,	

				NON	EMPTY		

				[Date].[Calendar	Date].[Date]	*	

				[Reseller].[Reseller].[Reseller]		

					ON	ROWS	

FROM	

		[Adventure	Works]		

WHERE	

		STRTOMEMBER('[Date].[Date].&[20130901]',	CONSTRAINED)	:	STRTOMEMBER('[Date].

[Date].&[20131224]',	CONSTRAINED)	

What	about	the	@	sign	in	the	parameter	name	@StartDate	and	@EndDate?	In	query	languages
such	as	SQL,	the	@	sign	is	reserved	for	parameters.	This	tradition	is	also	used	in	many
reporting	tools.	If	you	are	using	a	customized	front-end	reporting	tool,	a	parameter	name

WOW! eBook
www.wowebook.org

does	not	need	to	follow	this	tradition,	for	example,	you	can	use	[<StartDate>],	which	will	be
replaced	by	the	actual	value	of	the	start	date	during	the	query	execution.	The	point	is	that	the
dynamic	parameters'	names	need	to	follow	the	rules	and	traditions	of	the	reporting	tool,	and
not	the	rules	of	MDX	queries.

WOW! eBook
www.wowebook.org

There's	more...
Because	both	SSRS	and	MDX	use	VBA	functions	for	string	manipulation,	we	might	be	tempted
to	use	the	same	code	snippet	directly	in	MDX	to	format	the	date.	However,	this	will	not	work
because	CDATE()	is	not	supported	in	MDX.

When	the	CONSTRAINED	flag	is	used	in	the	STRTOMEMBER()	function,	MDX	will	return	an	error
message	similar	to	the	following	message	if	the	string	is	not	built	properly	and	resolved	to	an
invalid	member.	This	also	happened	when	a	date	that	is	not	in	the	Date	dimension	is	passed	as
a	parameter.	When	a	calendar	widget	is	used,	users	could	have	picked	a	future	date,	which	will
cause	MDX	to	return	an	error	message	similar	to	the	following.	To	avoid	this	situation,	an
alternative	in	the	next	section	can	be	considered.	Because	all	dates	for	users	to	pick	are	valid
members	on	the	Date	dimension,	we	avoid	showing	dates	in	the	future.

The	restrictions	imposed	by	the	CONSTRAINED	flag	in	the	STRTOMEMBER	function	

were	violated	

Alternative	-	allowing	users	to	select	by	Date	hierarchies

The	previous	recipe	has	shown	how	to	use	the	calendar	widget	in	the	reporting	tool	in
order	to	allow	users	to	pick	a	date	range	and	pass	them	as	date	parameters	to	an	MDX	query.
This	is	only	one	approach	for	doing	so,	though.

Another	way	is	to	make	use	of	the	user	hierarchies	in	the	Date	dimension.	Almost	every	cube
has	a	Date	dimension,	and	every	Date	dimension	has	some	user	hierarchies.	The	hierarchies,
such	as	the	Calendar	hierarchy	as	shown	in	the	following	screenshot,	in	the	Adventure
Works	DW	2016	Multidimensional-EE	allow	users	to	browse	the	cube	with	the	natural	roll-
up	relationship	among	Date,	Month,	Calendar	Quarter,	Calendar	Semester,	and	Calendar
Year.

WOW! eBook
www.wowebook.org

Cube	users	are	familiar	with	this	type	of	relationship	and	sometimes	prefer	to	pick	dates	by
the	different	levels	in	the	hierarchy.	For	example,	Month	is	one	of	the	levels	in	the	Calendar
hierarchy.	They	might	want	to	be	able	to	pick	from	the	available	months	in	the	Date
dimension.

WOW! eBook
www.wowebook.org

The	picklist	for	months	can	be	constructed	as	shown	in	the	following	screenshot:

WOW! eBook
www.wowebook.org

In	order	to	pass	the	months	as	valid	date	parameters	to	an	MDX	query,	we	would	also	need	to
have	the	fully	qualified	month	value.	For	example,	for	the	month	of	September	2014,	the	fully
qualified	date	member	is:

[Date].[Calendar].[Month].&[2014]&[9]

Although	it	is	not	difficult	to	use	MDX	queries	to	get	all	the	months	in	the	Date	dimension,
using	one	single	MDX	query	to	handle	all	the	possible	levels	in	the	hierarchy	can	be
challenging.

Using	an	SQL	query	or	stored	procedure	in	this	case	is	more	productive.	A	snippet	of	the	SQL
code	is	as	follows:

IF	@Reporting_Level	=	'Month'	

		SELECT	

				DISTINCT	'[Date].[Calendar].[Month].&['		

						+	CAST([CalendarYear]	AS	CHAR(4))	+	']&['		

						+	CAST([MonthNumberOfYear]	AS	VARCHAR(2))	+	']'	AS	ParameterValue	

		,		[EnglishMonthName]	+	Space(1)	+	CAST([CalendarYear]	AS	CHAR(4))	AS		

ParameterCaption	

		FROM	

				[dbo].[DimDate]	

		WHERE	

				[FullDateAlternateKey]	<=	GetDate()	

		ORDER	BY	1	DESC	

The	result	of	the	SQL	query	is	shown	in	the	following	screenshot:

It's	this	ParameterValue	field	that	will	be	used	to	pass	to	an	MDX	query.	The
ParameterCaption	is	used	to	display	in	the	picklist.

WOW! eBook
www.wowebook.org

See	also
The	previous	recipe,	Creating	a	picklist,	is	relevant	to	this	recipe.	It	shows	how	to	create
a	picklist	that	has	both	ParameterValue,	which	is	passed	as	a	parameter	to	an	MDX	query,
and	ParameterCaption,	which	is	displayed	in	the	picklist.
The	next	recipe,	Passing	parameters	to	an	MDX	Query,	is	also	relevant	to	this	recipe.	It
shows	how	to	use	STRTOSET()	function	to	pass	a	list	as	parameters	to	an	MDX	query.

WOW! eBook
www.wowebook.org

Passing	parameters	to	an	MDX	query
In	this	recipe,	we	will	consider	two	questions	when	passing	parameters	to	an	MDX	query.	One
is	the	location	of	the	parameters	in	the	query,	and	the	other	is	when	to	use	STRTOMEMBER()
function	and	when	to	use	STRTOSET()	function.

Where	should	we	put	the	parameter(s)	in	the	MDX	query?	We	actually	have	the	freedom	to	put
them	anywhere	-	in	the	WITH	clause,	on	the	COLUMNS	and	ROWS	axes,	in	the	WHERE	clause,	and	in
the	subquery.	In	the	previous	recipe,	Using	a	date	calendar,	we	decided	to	put	the	parameters
in	the	sub-query.	In	this	recipe,	we	are	going	to	expand	that	MDX	query	and	add	one	more
parameter	on	the	ROWS	axis.	We	will	also	move	the	date	member	parameter	from	the	subquery
to	the	WHERE	clause.

The	STRTOSET()	function	works	in	the	same	way	as	the	STRTOMEMBER()	function.	The	only
difference	is	that	the	STRTOSET()	function	resolves	the	string	into	a	set,	while	the	STRTOSET()
function	resolves	the	string	into	a	member.	In	this	recipe,	we	will	use	both	of	these	functions.

WOW! eBook
www.wowebook.org

Getting	ready
We	will	make	an	assumption	that	you	have	built	two	picklists	in	the	reporting	tool.	One	is	for
the	Date	dimension	and	another	one	is	for	the	Reseller	dimension.

We	are	going	to	name	the	date	parameter	@Month	and	the	reseller	parameter	@Reseller.	We
are	only	going	to	allow	one	month	to	be	selected	at	a	time,	but	we	will	allow	multiple
resellers	to	be	selected.	As	the	result	of	our	assumption,	the	@Month	parameter	will	be	a	string
that	contains	a	month	member	and	the	@Reseller	parameter	will	be	a	string	that	contains	a	set
of	reseller	members.	The	following	are	the	examples:

'[Date].[Calendar].[Month].&[2013]&[7]'	

'{[Reseller].[Reseller].&[157],	[Reseller].[Reseller].&[199]}'	

In	this	recipe,	we	are	going	to	use	the	preceding	two	parameters,	@Month	and	@Reseller,	in	an
MDX	query	to	generate	a	report,	as	shown	in	the	following	screenshot.

To	construct	the	MDX	query,	we	are	going	to	use	the	previous	examples	of	the	two
parameters	for	testing	purposes.

WOW! eBook
www.wowebook.org

How	to	do	it...
Start	SQL	Server	Management	Studio	and	connect	to	your	SSAS	2016	instance.	Click	on	the
New	Query	button	and	check	that	the	target	database	is	Adventure	Works	DW	2016.

Copy	the	previous	example	of	the	month	parameter	and	wrap	the	STRTOMEMBER()	function
around	it	with	the	CONSTRAINED	flag.	Then,	put	the	code	in	the	WHERE	clause.

WHERE	

STRTOMEMBER('[Date].[Calendar].[Month].&[2013]&[7]',	CONSTRAINED)	

1.	 Copy	the	previous	example	of	the	reseller	set	parameter	and	wrap	the	STRTOSET()
function	around	it	with	the	CONSTRAINED	flag.	Then	put	the	code	in	the	ROWS	axis	and	add
the	NON	EMPTY	keyword.

						NON	EMPTY		

						STRTOSET('{[Reseller].[Reseller].&[157],	[Reseller].[Reseller].&			

[199]}',	CONSTRAINED)	

						ON	ROWS	

2.	 Copy	the	previous	example	of	the	month	parameter	and	wrap	the	STRTOMEMBER()
function	around	it	with	the	CONSTRAINED	flag.	Then,	put	the	code	in	the	WHERE	clause.

						WHERE	

						STRTOMEMBER('[Date].[Calendar].[Month].&[2013]&[7]',	CONSTRAINED)	

	

3.	 Copy	the	previous	example	of	the	reseller	set	parameter	and	wrap	the	STRTOSET()
function	around	it	with	the	CONSTRAINED	flag.	Then,	put	the	code	in	the	ROWS	axis	and	add
the	NON	EMPTY	keyword.

						NON	EMPTY		

						STRTOSET('{[Reseller].[Reseller].&[157],	[Reseller].[Reseller].&

[199]}',	CONSTRAINED)	

						ON	ROWS	

4.	 Add	the	[Reseller	Sales	Amount]	measure	on	the	COLUMNS	axis.	Here	is	the	final	query:

						SELECT		[Measures].[Reseller	Sales	Amount]	ON	COLUMNS,	

										NON	EMPTY		

											STRTOSET('{[Reseller].[Reseller].&[157],	[Reseller].[Reseller].&

[199]}',	CONSTRAINED)	

											ON	ROWS	

						FROM		

								[Adventure	Works]	

						WHERE	

								STRTOMEMBER('[Date].[Calendar].[Month].&[2013]&[7]',	CONSTRAINED)	

5.	 The	result	should	be	as	shown	in	the	following	screenshot:

WOW! eBook
www.wowebook.org

6.	 We	have	hard-coded	the	parameters	for	testing	purposes.	Now	we	need	to	replace	them
with	@Month	and	@Reseller:

						SELECT		[Measures].[Reseller	Sales	Amount]	ON	COLUMNS,	

										NON	EMPTY		

										STRTOSET(@Reseller,	CONSTRAINED)	

										ON	ROWS	

						FROM		

								[Adventure	Works]	

						WHERE	

								STRTOMEMBER(@Month,	CONSTRAINED)	

WOW! eBook
www.wowebook.org

How	it	works...
Query	parameters	are	report	filters.	Just	as	filters	can	be	put	anywhere	in	an	MDX	query,	we
can	put	query	parameters	anywhere	in	an	MDX	query	too.	We	have	chosen	to	put	the
@Reseller	parameter	right	on	the	ROWS	axis,	because	reseller	is	a	data	point	that	we	need	to
show	in	the	report.	There	is	no	need	to	hide	it	in	the	slicer	or	in	the	sub-query.

On	the	other	hand,	the	@Month	parameter	is	purely	a	filter	and	not	a	data	point	in	the	report.
We	can	hide	it	either	in	the	slicer	or	in	the	sub-query,	or	include	it	in	both	places.	We	have
chosen	to	put	it	in	the	slicer	for	two	purposes.	One	is	to	just	demonstrate	that	parameters	can
be	in	any	place	in	an	MDX	query.	The	second	is	because	the	slicer	provides	query	context.

The	STRTOMEMBER()	and	STRTOSET()	functions	are	typically	used	when	an	MDX	query	is
parameterized.	Both	in	work	the	same	way	and	both	take	an	optional	CONSTRAINED	flag.	The
only	difference	is	that	the	STRTOSET()	function	resolves	the	string	into	a	set,	while	the
STRTOSET()	function	resolves	the	string	into	a	member.

Another	way	to	easily	remember	when	to	use	which	function	is	to	remember	that	the
STRTOMEMBER()	function	should	be	used	when	the	picklist	allows	only	one	choice	at	a	time,
and	the	STRTOSET()	function	should	be	used	when	the	picklist	allows	multi-selections.

WOW! eBook
www.wowebook.org

There's	more...
When	we	write	parameterized	MDX	queries,	constructing	and	testing	the	MDX	queries	should
really	be	in	the	same	step.

To	construct	parameterized	MDX	queries,	it	is	always	easier	to	use	the	Query	Editor	in	SSMS
and	hard-code	the	parameters	with	some	examples	first.	Then,	you	can	replace	the	hard-coded
values	with	@ParameterName.	However,	this	requires	you	to	find	good	parameters	values	for
testing.

Sometimes,	in	order	to	save	time	on	finding	specific	test	values,	we	can	directly	use	a
member	or	a	set	for	testing.	For	example,	the	following	RESELLER	set:

[Reseller].[Reseller].[Reseller]	

This	can	be	used	directly	in	the	MDX	for	testing	purposes,	rather	than	using:

STRTOSET('{[Reseller].[Reseller].&[157],	[Reseller].[Reseller].&[199]}',	

CONSTRAINED)							

But	at	the	end,	we	still	need	to	replace	it	with	the	STRTOSET()	or	STRTOMEMBER()	function	in
the	final	parameterized	query.

STRTOSET(@ParameterName,	CONSTRAINED)	

When	we	choose	to	use	a	sample	set	for	testing,	we	must	not	forget	that	the	set	string	must	be
a	valid	MDX-formatted	string.	For	a	set,	that	means	we	must	use	{}	to	wrap	around	the
expression.

The	following	code	will	work	as	expected:

STRTOSET('{[Reseller].[Reseller].&[157],	[Reseller].[Reseller].&[199]}',	

CONSTRAINED)							

The	following	code	will	not	work	without	the	{}	around	the	two	reseller	members:

STRTOSET('[Reseller].[Reseller].&[157],	[Reseller].[Reseller].&[199]',	

CONSTRAINED)							

We	have	stated	that	the	reporting	tools	will	pass	a	multi-selection	parameter,	such	as	the
reseller,	with	{}	around	the	list	of	resellers:

'{[Reseller].[Reseller].&[157],	[Reseller].[Reseller].&[199]}'	

Reporting	tools	such	as	SSRS	will	automatically	wrap	the	{}	around	a	multi-selection
parameter	if	the	data	source	is	an	Analysis	Services	database.	So	in	your	MDX	query,	you	can
safely	assume	that	they	contain	valid	set	expressions.	If	you	are	putting	strings	together	in	a
customized	reporting	tool,	you	have	to	make	sure	that	{}	is	not	missing.

WOW! eBook
www.wowebook.org

Getting	the	summary
The	advantages	of	a	multi-dimensional	cube	are	that	the	data	is	pre-aggregated	and	that	there
is	a	lot	of	metadata	that	we	can	use	for	calculations.	There	is	no	need	to	re-aggregate	data	at
the	query	time,	and	we	have	pre-defined	calculation	formulas	in	the	cube.	Not	to	mention	that
all	metrics	are	formatted	in	the	cube.	Reporting	tools	should	take	advantage	of	this	instead	of
reinventing	the	wheel.

It	is	always	a	good	idea	to	reply	on	MDX	queries	to	get	the	correct	aggregation	no	matter
what	tool	you	use,	so	that	the	need	to	aggregate	in	the	reporting	tool	is	eliminated.

Visual	totals	are	totals	at	the	end	of	a	column	or	row	that	add	up	all	of	the	items	visible	in	the
column	or	row.	By	default,	when	placing	the	All	member	in	the	query,	totals	including	both
visual	and	non-visual	items	will	be	displayed	for	most	pivot	tables.	For	MDX	queries	that	do
not	show	all	the	items,	this	default	behavior	is	misleading	because	we	only	want	the	totals	to
include	the	visual	items.

WOW! eBook
www.wowebook.org

Getting	ready
Let's	examine	this	simple	query	to	see	the	default	behavior.	Suppose	we	have	two	parameters,
@Month	and	@Product,	and	they	have	values	as	follows:

'[Date].[Calendar].[Month].&[2013]&[7]'

'{[Product].[Product	Categories].[Accessories],[Product].[Product	Categories].

[Clothing]}'	

Let's	wrap	the	STRTOMEMBER()	and	STRTOSET()	functions	around	the	parameters	with	the
CONSTRAINED	flag.	For	the	@Month	parameter,	let's	put	it	in	the	WHERE	clause.	For	the	@Product
parameter,	let's	add	[All	Products]	to	the	set	and	create	a	named	set,	[Visual	Total]:

Now,	let's	put	these	three	measures	on	the	COLUMNS.	The	amount	is	a	fully	additive	measure,
and	the	two	ratios	are	semi-additive	calculated	measures.

[Measures].[Internet	Sales	Amount]	

[Measures].[Internet	Ratio	to	All	Products]	

[Measures].[Internet	Ratio	to	Parent	Product]	

Here	is	the	final	MDX	query	we	put	together:

WITH	SET	[Visual	Total]	AS			

		{		[Product].[Product	Categories].[All	Products],	

				STRTOSET('{[Product].[Product	Categories].[Accessories],[Product].[Product	

Categories].[Clothing]}',	CONSTRAINED)	

		}	

	

SELECT	

		{	[Measures].[Internet	Sales	Amount],	

				[Measures].[Internet	Ratio	to	All	Products],	

				[Measures].[Internet	Ratio	to	Parent	Product]	}		ON	COLUMNS,	

		NON	EMPTY	[Visual	Total]		ON	ROWS	

FROM	

		[Adventure	Works]	

WHERE	

		STRTOMEMBER('[Date].[Calendar].[Month].&[2013]&[7]',	CONSTRAINED)	

When	executed	in	SSMS,	this	query	produces	the	following	result:

WOW! eBook
www.wowebook.org

It's	obvious	that	this	[All	Products]	member	we	added	to	the	set	gave	us	misleading	totals
that	include	both	the	visible	Accessories	and	Clothing,	and	also	other	invisible	product
categories.

In	this	recipe,	we	are	going	to	explore	the	VisualTotals()	function	to	see	how	it	can
aggregate	totals	that	only	include	the	visible	items.	The	word	visual	here	implies	that	the
aggregation	will	include	only	the	visible	items.

WOW! eBook
www.wowebook.org

How	to	do	it...
Start	SQL	Server	Management	Studio	and	connect	to	your	SSAS	2016	instance.	Click	on	the
New	Query	button	and	check	that	the	target	database	is	Adventure	Works	DW	2016.

Copy	the	MDX	query	from	the	Getting	ready	section	and	paste	into	the	query	window.

1.	 Let's	wrap	VisualTotals()	around	the	named	set	[Visual	Total]	and	add	a	naming
pattern	'Total	-	*'	for	the	visual	totals:

						WITH	SET	[Visual	Total]	AS			

						VisualTotals(

								{		[Product].[Product	Categories].[All	Products],	

										STRTOSET('{[Product].[Product	Categories].[Accessories],			

[Product].[Product	Categories].[Clothing]}',	CONSTRAINED)	

								},	

								'Total	-	*'	

)	

						This	is	the	final	query:	

	

						WITH	SET	[Visual	Total]	AS			

						VisualTotals(

								{		[Product].[Product	Categories].[All	Products],	

										STRTOSET('{[Product].[Product	Categories].[Accessories],				

[Product].[Product	Categories].[Clothing]}',	CONSTRAINED)	

								},	

								'Total	-	*'	

)	

	

						SELECT	

										{	[Measures].[Internet	Sales	Amount],	

												[Measures].[Internet	Ratio	to	All	Products],	

												[Measures].[Internet	Ratio	to	Parent	Product]	}		ON			COLUMNS,	

								NON	EMPTY	[Visual	Total]		ON	ROWS	

						FROM	

								[Adventure	Works]	

						WHERE	

								STRTOMEMBER('[Date].[Calendar].[Month].&[2013]&[7]',	CONSTRAINED)	

2.	 When	executed	in	SSMS,	the	query	produces	the	same	result	as	in	the	following
screenshot:

This	same	[All	Products]	member	now	gives	us	totals	that	include	only	the	visible
WOW! eBook

www.wowebook.org

Accessories	and	Clothing.	This	is	true	for	both	the	fully-additive	and	semi-additive	calculated
measures.	Notice	that	the	ratios	for	Accessories	and	Clothing	are	also	correctly	calculated
against	the	All,	that	is,	the	parent	product.

WOW! eBook
www.wowebook.org

How	it	works...
By	dynamically	totaling	child	members	in	a	specified	set,	the	VisualTotals()	function
returns	a	set	with	dynamic	totals.	Here	is	its	syntax:

VisualTotals(Set_Expression,Pattern)			

The	Pattern	is	an	optional	parameter	used	to	name	the	parent	member	in	the	result	set.	In	our
query,	we	used	'Total	-	*'.	Replacing	the	*	by	the	All	member	name	All	Products,	our
total	row	has	become	Total	-	All	Products.

We	used	a	set	expression	that	contains	members	at	the	Category	level	within	a	single	Product
dimension.	But	we	don't	need	to	limit	the	members	in	one	level.	As	shown	in	the	Getting
visual	totals	at	multiple	levels	section,	the	VisualTotals()	function	works	well	as	long	as	we
use	one	single	dimension	and	members	have	an	ancestor-descendant	relationship.

The	VisualTotals()	function	totals	the	values	of	child	members	in	the	specified	set	and
ignores	child	members	that	are	not	in	the	set	when	calculating	the	totals.	Totals	are	visually
totaled	for	the	sets	ordered	in	hierarchy	order.

WOW! eBook
www.wowebook.org

There's	more...
This	recipe	has	demonstrated	how	to	use	the	VisualTotals()	function	to	aggregate	metrics
that	are	either	fully-additive	or	semi-additive	to	include	only	the	visible	items	in	the	report.
This	doesn't	mean	that	there	will	never	be	cases	when	aggregations	should	also	include	non-
visual	items.	When	we	do	need	to	show	non-visual	totals,	we	can	use	the	NON	VISUAL	keyword.
The	NON	VISUAL	keyword	can	be	used	to	produce	non-visual	totals	on	rows	or	columns,	or
both.	An	MSDN	article	on	Visual	Totals	and	Non	Visual	Totals	can	be	viewed	at
http://tinyurl.com/zb2ojds	.

Getting	visual	totals	at	multiple	levels

We	have	kept	the	query	simple	by	showing	only	one	level	of	totals.	In	the	real	world,	we	often
have	to	group	and	aggregate	our	data	at	multiple	levels.	To	make	our	reports	more	visually
appealing	and	easy	to	read,	we	also	need	to	visually	differentiate	data	at	different	levels.

In	Adventure	Works	DW	2016	SSAS,	the	Product	dimension	has	a	Product	Categories
hierarchy	with	three	levels:	Category,	Subcategory,	and	Product.	In	order	to	produce	a	report,
such	as	the	following,	where	Total	-	All	Products,	Category,	and	Subcategory	are
highlighted	using	different	hues	of	color	grey	and	each	level	is	indented	according	to	its
level,	we	will	need	to	accomplish	two	more	tasks:

1.	 From	Category,	we	need	to	get	all	the	subcategories	and	all	the	products.
2.	 We	need	to	add	a	column,	Level,	to	the	report.

WOW! eBook
www.wowebook.org

http://tinyurl.com/zb2ojds

To	accomplish	the	first	task,	all	we	need	to	do	is	wrap	the	DESCENDANTS()	function	around	the
parameter:

DESCENDANTS(STRTOSET(@Parametername))	

To	accomplish	the	second	task,	we	can	use	the	Ordinal	function	on	each	member	of	the
hierarchy.

MEMBER	[Measures].[Level]	AS	

WOW! eBook
www.wowebook.org

		IIF(

				[Measures].[Internet	Sales	Amount]	=	0,		

				NULL,		

				[Product].[Product	Categories].CurrentMember.Level.Ordinal	

)	

We	will	also	wrap	it	around	an	IIF	statement	to	force	it	to	NULL	when	the	sales	amount	is	null.
This	will	allow	us	to	continue	to	use	the	NON	EMPTY	keyword	on	the	ROWS	to	remove	empty
rows.

Here	is	the	query	that	we	put	together	to	accomplish	the	two	tasks:

WITH		

SET	[Visual	Total]	AS	

		VisualTotals(

				{	[Product].[Product	Categories].[All	Products],	

						DESCENDANTS(STRTOSET('{[Product].[Product	Categories].[Accessories],

[Product].[Product	Categories].[Clothing]}'))	

				}	

				,	

				'Total	-	*'	

)	

MEMBER	[Measures].[Level]	AS	

		IIF([Measures].[Internet	Sales	Amount]	=	0,	NULL,	[Product].[Product	

Categories].CurrentMember.Level.Ordinal)	

		

SELECT	

		{	[Measures].[Internet	Sales	Amount],	

				[Measures].[Internet	Ratio	to	All	Products],	

				[Measures].[Internet	Ratio	to	Parent	Product],	

				[Measures].[Level]	}		ON	COLUMNS,	

		NON	EMPTY	[Visual	Total]		ON	ROWS	

FROM	

		[Adventure	Works]	

WHERE	

		STRTOMEMBER('[Date].[Calendar].[Month].&[2013]&[7]',	CONSTRAINED)	

How	the	report	is	created	with	visual	effect	is	totally	up	to	the	front-end	reporting	tool.	At	the
minimum,	the	MDX	query	provided	enough	information	to	the	frontend	tool.

WOW! eBook
www.wowebook.org

Removing	empty	rows
We	have	addressed	some	specific	issues	with	parameterized	MDX	queries	in	the	first	four
recipes.	This	recipe	is	written	with	one	specific	reporting	issue	in	mind,	that	is,	when	a
calculated	measure	is	added	to	the	column,	NON	EMPTY	no	longer	works.

Adding	query-scoped	calculated	measures	to	the	COLUMN	axis	is	one	way	to	place	more	data
points	and	more	headers	on	the	report.	However,	report	writers	often	find	that	empty	rows
start	to	pop	out	in	the	report	as	soon	as	the	calculated	measure	is	placed	on	the	COLUMN	axis.

Let's	start	with	a	query	to	see	the	problem	first.

WOW! eBook
www.wowebook.org

Getting	ready
Let's	start	from	this	query	with	these	two	filters:	the	subcategory	socks	and	a	date	range:

[Product].[Product	Categories].[Subcategory].[Socks]			

[Date].[Calendar].[Date].&[20130723]:[Date].[Calendar].[Date].&[20130731]	

The	following	query	is	displaying	three	profits	on	the	columns,	as	well	as	the	subcategory
and	the	date	on	the	rows.

WITH	SET	[Profit]	AS{	[Measures].[Internet	Gross	Profit],	

				[Measures].[Reseller	Gross	Profit],	

				[Measures].[Gross	Profit]	

		}	

	

SELECT	

		[Profit]	ON	0,	

		NON	EMPTY	

		[Product].[Product	Categories].[Subcategory].[Socks]	*	

		[Date].[Calendar].[Date]	ON	1	

FROM	

		(SELECT		

						[Date].[Calendar].[Date].&[20130723]:[Date].[Calendar].[Date].&[20130731]	

ON	0		

				FROM		

						[Adventure	Works]	

)

Note	that	we	are	not	wrapping	the	filters	in	STRTOMEMBER()	or	STRTOSET()	functions.	This	is
for	two	reasons.	The	first	is	that	we	do	not	want	to	repeat	what	has	already	been	covered	in
previous	recipes,	and	the	second	is	that	the	issue	in	this	recipe	is	common	in	both
parameterized	and	concatenated	dynamic	MDX	queries.

Another	thing	worth	noticing	is	that	we	used	a	named	set	[Profit],	which	is	created	with
reuse	in	mind.	For	reuse	purposes,	named	sets	are	commonly	created	either	in	the	cube's
MDX	script	or	in	MDX	queries.	In	this	recipe,	we	will	see	how	the	named	set	[Profit]	is
reused.

When	executed,	the	result	is	as	follows.	Notice	that	July	25,	2013	is	not	in	the	result	set.
This	is	because	July	25,	2013	has	no	profit	at	all;	the	NON	EMPTY	keyword	has	removed	it.

WOW! eBook
www.wowebook.org

Many	reports	have	a	drill-through	feature	that	allows	users	to	click	on	a	hyperlink	to	go	to
another	report	linked	by	a	key	value.	In	this	recipe,	we	are	going	to	assume	that	a	key	value
for	the	date	is	needed	for	the	report	so	that	users	can	go	to	another	report	that	is	linked	by	the
date.	For	example,	for	the	date	July	23,	2013,	a	key	value	of	20130723	is	needed.

The	common	way	to	do	this	is	to	create	the	date	key	value	as	a	calculated	measure	using
the	WITH	clause,	as	shown	in	the	following	code,	and	then	add	it	to	COLUMNS.

MEMBER	[Measures].[Date	Key]	AS

[Date].[Calendar].CurrentMember.Member_Key

Here	is	the	query	required	to	add	a	calculated	[Measures].[Date	Key]	to	COLUMNS:

WITH		

SET	[Profit]	AS	

		{	[Measures].[Internet	Gross	Profit],	

				[Measures].[Reseller	Gross	Profit],	

				[Measures].[Gross	Profit]	

		}	

MEMBER	[Measures].[Date	Key]	AS	

		[Date].[Calendar].CurrentMember.Member_Key	

	

SELECT	{	

		[Measures].[Date	Key],	

		[Profit]		}	ON	0,	

NON	EMPTY	

		[Product].[Product	Categories].[Subcategory].[Socks]	*	

		[Date].[Calendar].[Date]	ON	1	

FROM	

		(SELECT		

						[Date].[Calendar].[Date].&[20130723]:[Date].[Calendar].[Date].&[20130731]	

ON	0		

				FROM		

						[Adventure	Works]	

WOW! eBook
www.wowebook.org

)	

We	notice	that	as	soon	as	we	add	the	date	key,	the	empty	row	July	25,	2013	showed	up	in	the
report.	NON	EMPTY	no	longer	works	because	the	calculated	date	key	is	not	NULL	for	July	25,
2013.	The	calculated	date	key	has	a	value	for	every	date	regardless	if	the	date	has	profit	or
not.

Next,	we	are	going	to	modify	how	[Measures].[Date	Key]	is	calculated	in	order	to	continue
to	use	NON	EMPTY	to	remove	empty	rows.	Remember	that	we	will	also	see	how	the	named	set
[Profit]	is	reused.

WOW! eBook
www.wowebook.org

How	to	do	it...
Start	SQL	Server	Management	Studio	and	connect	to	your	SSAS	2016	instance.	Click	on	the
New	Query	button	and	check	that	the	target	database	is	Adventure	Works	DW	2016.

In	the	calculation	of	[Measures].[Date	Key],	we	are	going	to	add	an	IIF	condition:	COUNT(
[Profit],	EXCLUDEEMPTY).	If	this	condition	is	zero,	the	calculation	will	be	NULL;	otherwise,
use	the	original	formula.

MEMBER	[Measures].[Date	Key]	AS	

				IIF(COUNT([Profit],	EXCLUDEEMPTY)	=	0,	NULL,		

						[Date].[Calendar].CurrentMember.Member_Key	

)	

1.	 All	other	parts	of	the	query	will	remain	the	same,	including	the	NON	EMPTY	keyword.
Here	is	the	final	query:

						WITH		

						SET	[Profit]	AS	

								{	[Measures].[Internet	Gross	Profit],	

										[Measures].[Reseller	Gross	Profit],	

										[Measures].[Gross	Profit]	

								}	

						MEMBER	[Measures].[Date	Key]	AS	

										IIF(COUNT([Profit],	EXCLUDEEMPTY)	=	0,	NULL,		

												[Date].[Calendar].CurrentMember.Member_Key	

)	

	

						SELECT	{	

								[Measures].[Date	Key],	

								[Profit]		}	ON	0,	

						NON	EMPTY		

								[Product].[Product	Categories].[Subcategory].[Socks]	*	

								[Date].[Calendar].[Date]	

								ON	1	

						FROM	

								(SELECT		

												[Date].[Calendar].[Date].&[20130723]:[Date].[Calendar].[Date].&

[20130731]	ON	0		

										FROM		

												[Adventure	Works]	

)	

2.	 When	executed,	the	previous	query	should	remove	the	empty	row	July	25,	2013.	You
should	get	the	same	result	as	in	the	screenshot	from	the	Getting	ready	section.

WOW! eBook
www.wowebook.org

How	it	works...
The	IIF	condition	creates	two	branches	depending	on	the	condition.	We	used	it	to	set	one
branch	of	the	[Date	Key]	to	NULL	when	the	count	of	the	named	set	[Profit]	is	zero.	In	this
book,	we	have	discussed	in	several	places	the	importance	of	keeping	the	cube	space	sparse.
This	allows	the	empty	rows	to	be	removed	by	either	the	NON	EMPTY	keyword	or	the
NONEMPTY()	function.	When	adding	a	key	value	to	the	column	of	a	report	for	linking	to	a	sub-
report,	using	the	IIF	condition	to	set	one	branch	of	the	value	to	NULL	is	a	good	way	to	keep
the	key	value	sparse	too.

Another	unique	issue	in	many	MDX	reports	is	that	business	usually	groups	certain	measures,
either	calculated	or	regular,	into	related	categories.	In	this	recipe,	we	group	two	profit
measures	and	one	calculated	profit	into	a	named	set:	[Profit].	As	a	matter	of	fact,	the	named
set	should	be	defined	in	MDX	script	in	the	cube.	This	is	not	only	for	convenience,	but	also	for
consistency	across	different	reporting	tools	and	different	reports.

There	is	another	advantage	of	defining	these	three	profit	measures	as	a	named	set	-	we	no
longer	need	to	hard	code	the	name	of	each	measure.	This	also	gives	us	an	easy	way	to	check
if	all	the	profits	are	null	by	using	the	COUNT()	function.

Checking	empty	sets

Essentially,	we	have	turned	the	issue	of	removing	empty	rows	into	checking	and	removing
sets.	In	this	recipe,	we	have	used	the	COUNT()	function	to	check	empty	sets.	It	returned	zero
when	the	set	(all	three	profits)	is	empty,	otherwise	it	will	return	1,	2,	or	3,	depending	on	how
many	profit	measures	are	not	empty.

The	Count()	function	returns	the	number	of	cells	in	a	set.	It	has	a	standard	syntax	as	follows.
The	EXCLUDEEMPTY	or	INCLUDEEMPTY	flag	in	the	standard	syntax	is	optional.

Count(Set_Expression,	EXCLUDEEMPTY	|	INCLUDEEMPTY)	

It	also	has	an	alternate	syntax:

Set_Expression.Count			

The	important	thing	to	remember	about	the	Count()	function	is	that	we	must	use	the	standard
syntax	with	the	EXCLUDEEMPTY	flag	in	order	to	exclude	empty	cells.

WOW! eBook
www.wowebook.org

There's	more...
Checking	an	empty	set	is	not	the	only	way	to	remove	empty	rows	for	reports.	Another	way	is
to	replace	the	NON	EMPTY	keyword	with	the	NONEMPTY()	function,	as	shown	in	the	following
MDX	code:

NONEMPTY	(

		[Product].[Product	Categories].[Subcategory].[Socks]	*	

		[Date].[Calendar].[Date],	

		[Profit]	

)	

We	will	keep	the	date	key	calculation	without	using	the	IIF	condition.	Here	is	the	final	query:

WITH		

SET	[Profit]	AS	

		{	[Measures].[Internet	Gross	Profit],	

				[Measures].[Reseller	Gross	Profit],	

				[Measures].[Gross	Profit]	

		}	

MEMBER	[Measures].[Date	Key]	AS	

				[Date].[Calendar].CurrentMember.Member_Key	

	

SELECT	{	

		[Measures].[Date	Key],	

		[Profit]		}	ON	0,	

NONEMPTY	(

		[Product].[Product	Categories].[Subcategory].[Socks]	*	

		[Date].[Calendar].[Date],	

		[Profit]	

)	ON	1	

FROM	

		(SELECT		

						[Date].[Calendar].[Date].&[20130723]:[Date].[Calendar].[Date].&[20130731]	

ON	0		

				FROM		

						[Adventure	Works]	

)	

The	query	should	also	remove	the	empty	row	July	25,	2013	from	the	report.

Trouble	with	zeros

If	any	of	the	three	profit	measures	has	a	value	of	zero	instead	of	NULL,	neither	of	the	preceding
two	approaches	would	be	able	to	remove	it.	This	is	because	zero	is	not	considered	empty	by
the	COUNT()	function,	nor	by	the	NONEMPTY()	function.

We	can	add	an	IIF	condition	for	each	measure	in	the	set	to	turn	zero	into	a	NULL	value:

SET	[Profit]	AS	

		{	IIF([Measures].[Internet	Gross	Profit]	=	0,	NULL,	[Measures].[Internet	Gross	

Profit]),	

				IIF([Measures].[Reseller	Gross	Profit]	=	0,	NULL,	[Measures].[Reseller	Gross	

WOW! eBook
www.wowebook.org

Profit]),	

				IIF([Measures].[Gross	Profit]	=	0,	NULL,	[Measures].[Gross	Profit])	

		}	

If	we	define	this	set	in	the	MDX	script	in	the	cube,	no	changes	are	needed	in	the	reporting
writing,	and	either	the	COUNT()	function	or	the	NONEMPTY()	function	will	be	able	to	remove
empty	rows.	Again,	we	have	avoided	hard-coding	any	of	the	individual	measures.

WOW! eBook
www.wowebook.org

See	also
The	recipe	Optimizing	MDX	queries	using	the	NonEmpty()	function	is	relevant	to	this
recipe.	It	shows	not	only	how	to	use	the	function,	but	also	the	difference	between
the	NonEmpty()	function	and	the	NON	EMPTY	keyword.

WOW! eBook
www.wowebook.org

Getting	data	on	the	column
This	chapter	will	discuss	two	issues	about	getting	data	on	the	column.	By	this,	we	mean
controlling	the	data	shape	in	the	results.	One	issue	is	about	controlling	the	report	headers	in
the	results,	and	another	issue	is	with	how	to	physically	put	data	on	the	column.

Reports	are	essentially	one	dimensional	in	the	sense	that	both	COLUMNS	and	ROWS	axes	from	an
MDX	query	will	become	columns	or	headers	(columns	and	headers	are	used	interchangeably
in	this	chapter)	in	the	report.	Most	of	the	reporting	tools	require	the	report	shape	to	be	pre-
defined.	This	means	that	column	header	names	and	data	types	should	be	known	during	the
design	time.

On	the	other	hand,	MDX	queries	return	a	dataset	that	has	the	column	names	already	pre-
decided.	Let's	quickly	review	how	the	column	names	are	pre-determined	in	MDX	queries.

On	the	COLUMNS	axis,	the	name	of	the	measure	will	become	the	name	of	the	column.	For
example,	if	we	put	these	two	measures	on	the	COLUMNS	axis,	we	will	get	two	columns	with	the
names,	Internet	Sales	Amount	and	Internet	Gross	Profit.

[Measures].[Internet	Sales	Amount]	

[Measures].[Internet	Gross	Profit]	

Please	note	that	we	are	assuming	that	only	measures	will	be	put	on	the	COLUMNS	axis.	Please
refer	to	the	There	is	more...	section	to	see	why.

On	the	ROWS	axis,	the	name	of	the	attribute	from	a	dimension	will	become	the	name	of	the
column.	For	example,	if	we	put	the	CROSSJOIN	of	these	two	attributes	from	the	Product	and	the
Date	dimension	on	the	ROWS	axis,	we	will	get	two	columns	with	the	names,	SubCategory	and
Date.

[Product].[SubCategory].[SubCategory]	*	

		[Date].[Date].[Date]	

In	SSRS,	if	we	use	the	user	hierarchies	Product	Categories	and	Calendar,	instead	of	the
attributes,	we	will	get	the	name	of	each	level	in	the	user	hierarchy	as	the	names	of	the
columns.	In	addition	to	SubCategory,	we	will	also	get	a	column	with	the	name	Category,
because	Category	is	a	level	preceding	SubCategory	in	the	Product	Categories;	in	addition	to
Date,	we	will	also	get	four	more	columns	with	the	names	Calendar	Year,	Calendar	Semester,
Calendar	Quarter,	and	Month,	because	they	are	the	four	levels	above	to	the	Date	level	in	the
Calendar	hierarchy.

[Product].[Product	Categories].[SubCategory]	*	

		[Date].[Calendar].[Date]	

With	this	quick	review	of	how	reporting	tools	require	report	headers	known	in	design	time
and	how	MDX	queries	simply	use	measure,	attribute,	or	level	names	as	header	names,	we

WOW! eBook
www.wowebook.org

come	to	realize	that	there	is	a	need	to	create	column	aliases	in	MDX	queries.	A	common
scenario	is	when	the	cube	is	re-designed	and	measure,	attribute,	or	level	names	are	changed.
In	this	scenario,	migrating	existing	reports	that	are	stuck	with	the	old	headers	can	be	done	by
modifying	the	MDX	queries	to	add	column	aliases.

In	this	recipe,	we	will	look	at	ways	to	create	column	aliases	in	MDX	queries	so	that	we	can
control	the	headers	in	the	results.	We	will	also	look	at	how	to	physically	put	data	on	the
column	in	the	report.

WOW! eBook
www.wowebook.org

Getting	ready
In	this	recipe,	we	will	create	an	MDX	query	to	answer	this	question:	what	are	the	top	five
postal	codes	that	have	the	best	online	gross	profit	for	the	product	sub-category	Tires	and
Tubes	in	the	United	States	in	the	year	2013?	In	SSMS,	the	result	should	be	the	same	as	the
screenshot.	It	must	show	the	year,	date,	the	subcategory,	state,	city,	postal	code,	Internet	Sales
Amount,	and	Internet	Gross	Profit.	We	are	assuming	that	the	cube	has	been	re-designed	and
that	the	State	was	renamed	to	State-Province.	We	are	migrating	an	existing	report	in	which
the	header	is	State.	We	will	choose	the	option	to	create	a	column	alias	in	the	MDX	query	so
that	we	do	not	need	to	modify	the	existing	report.

WOW! eBook
www.wowebook.org

How	to	do	it...
Start	SQL	Server	Management	Studio	and	connect	to	your	SSAS	2016	instance.	Click	on	the
New	Query	button	and	check	that	the	target	database	is	Adventure	Works	DW	2016.

1.	 On	COLUMNS,	let's	put	these	two	measures:

						[Measures].[Internet	Sales	Amount]	

								[Measures].[Internet	Gross	Profit]	

2.	 On	ROWS,	let's	put	the	CROSSJOIN	of	these	sets:

							[Date].[Calendar	Year].&[2013]	*	

							[Date].[Date].[Date].Members	*	

							DESCENDANTS({[Product].[Product	Categories].[Subcategory].[Tires	and	

Tubes]})	*	

							DESCENDANTS([Customer].[Customer	Geography].[Country].&[United	

States],		

								[Customer].[Customer	Geography].[Postal	Code],	SELF)	

3.	 Let's	wrap	around	the	CROSSJOIN	sets	in	a	TOPCOUNT()	function:

						TopCount	

						(set_expression,	

								5,	

												[Measures].[Internet	Gross	Profit])	

4.	 Let's	use	WITH	MEMBER	to	create	a	query-scoped	calculated	measure.	This	should	create	a
column	alias,	[State],	for	[State-Province]:

						WITH	MEMBER	[Measures].[State]	AS	

								[Customer].[Customer									

Geography].CurrentMember.Parent.Parent.Member_Caption	

5.	 Add	this	column	alias	to	the	COLUMNS	axis.
6.	 Here	is	the	final	query.	Execute	it	in	SSMS;	you	should	have	the	same	result	as	shown	in

the	screenshot	in	the	Getting	ready	section.

						WITH	MEMBER	[Measures].[State]	AS	

								[Customer].[Customer		

Geography].CurrentMember.Parent.Parent.Member_Caption	

						SELECT	

								{	[Measures].[State],	

										[Measures].[Internet	Sales	Amount],	

										[Measures].[Internet	Gross	Profit]	}	ON	COLUMNS,	

	

								TopCount	

										(

										{[Date].[Calendar	Year].&[2013]}	*	

										[Date].[Date].[Date].Members	*	

										DESCENDANTS({[Product].[Product	Categories].[Subcategory].	[Tires	

and	Tubes]})	*	

										DESCENDANTS([Customer].[Customer	Geography].[Country].&		[United	

States],		

												[Customer].[Customer	Geography].[Postal	Code],	SELF),	

WOW! eBook
www.wowebook.org

										5,	

													[Measures].[Internet	Gross	Profit]	

)	ON	ROWS	

						FROM		

								[Adventure	Works]	

7.	 Optionally,	when	you	have	executed	it	in	SSRS	Query	Designer's	Design	mode,	you
should	have	the	same	result	as	shown	in	the	following	screenshot:

WOW! eBook
www.wowebook.org

How	it	works...
The	first	thing	we've	noticed	is	that	there	are	more	columns	in	SSRS	than	in	SSMS.	But	the
minimum	requirement	of	reporting	is	met	in	both	SSRS	and	SSMS.	The	following	discussion
is	applicable	to	any	reporting	in	general.	However,	the	reporting	shape	expansion	when	using
user	hierarchies	and	the	DESCENDANTS()	function	is	applicable	specifically	to	SSRS.

Based	on	the	reporting	requirement,	we	have	used	the	following	three	parameters	for	the
report:

[Date].[Calendar	Year].&[2013]	

[Product].[Product	Categories].[Subcategory].[Tires	and	Tubes]	

[Customer].[Customer	Geography].[Country].&[United	States]	

For	the	two	numeric	headers,	we	directly	put	the	following	two	measures	on	the	COLUMNS	axis:

[Measures].[Internet	Sales	Amount]	

		[Measures].[Internet	Gross	Profit]	

Also	notice	that	we	are	using	CROSSJOIN	to	create	the	cross	products	of	each	set.	The
CROSSJOIN	is	the	basic	way	to	get	data	on	the	column	in	the	results.

The	following	table	shows	where	each	report	header	is	from.

"Report
Headers From

Calendar	Year ROWS [Date].[Calendar	Year].&[2013]

Date ROWS [Date].[Date].[Date].Members

Category,
Subcategory ROWS DESCENDANTS({[Product].[Product	Categories].

[Subcategory].[Tires	and	Tubes]})

Country,	State-
Province,	City,
Postal	Code

ROWS
DESCENDANTS([Customer].[Customer	Geography].
[Country].and	[United	States],	[Customer].[Customer
Geography].[Postal	Code],	SELF)

State
WITH
MEMBER
COLUMNS

WITH	MEMBER	[Measures].[State]	AS	[Customer].
[Customer
Geography].CurrentMember.Parent.Parent.Member_Caption

WOW! eBook
www.wowebook.org

Internet	Sales
Amount

COLUMNS [Measures].[Internet	Sales	Amount]

Internet	Gross
Profit COLUMNS [Measures].[Internet	Gross	Profit]

The	Calendar	Year	and	Date	are	two	attributes	from	the	Date	dimension.	Both	attribute
names,	Calendar	Year	and	Date,	have	become	two	headers	in	the	results.

The	DESCENDANTS()	function	around	the	subcategory	member	[Tires	and	Tubes]	without	the
optional	flags	gave	two	columns,	Subcategory	and	Category,	in	the	results.	The
DESCENDANTS()	function	around	the	country	member	[United	States]	with	the	flags	of	level
Postal	Code	and	SELF	gave	four	columns,	Country,	State-Province,	City,	and	Postal	Code,
in	the	results.

In	order	to	have	the	header	State	in	the	result	set,	we	have	created	a	query-scoped	calculated
measure,	[Measures].[State],	and	have	put	it	on	the	COLUMNS	axis.	Because	State	is	two	levels
above	Postal	Code,	we	have	used	two	Parent	functions	to	navigate	up	from	the
CurrentMember	of	the	Postal	Code.

The	CROSSJOIN	operation	returns	the	cross	product	of	one	or	more	sets.	The	CROSSJOIN
operation	is	the	fundamental	way	of	getting	the	data	point	on	the	column	in	the	results.	If	you
use	attribute	hierarchies,	each	attribute	will	become	a	header	in	the	results.	If	you	use	user
hierarchies,	each	level,	from	the	specified	level	and	above,	will	become	a	header	in	the
results.	In	the	latter	case,	which	we	discussed	in	the	introduction	of	this	recipe,	your	report
shape	will	be	expanded	from	only	one	column	to	multiple	columns.

The	DESCENDANTS()	function	is	another	way	of	expanding	the	report	shape.

WOW! eBook
www.wowebook.org

There's	more...
We	have	used	the	TOPCOUNT()	function,	which	actually	hid	an	issue	with	using	the
DESCENDANTS()	function	in	reporting.

SELECT	

		{	[Measures].[Internet	Sales	Amount],	

				[Measures].[Internet	Gross	Profit]	}	ON	COLUMNS,	

NON	EMPTY	

				DESCENDANTS({[Product].[Product	Categories].[Subcategory].[Tires	and	

Tubes]})	

				ON	ROWS	

FROM		

		[Adventure	Works]	

Execute	the	preceding	query	in	SSRS	Query	Designer's	Design	mode;	you	will	get	the
following	result:

Notice	that	not	only	has	the	report	shape	been	expanded	to	include	all	three	levels	from	the
Product	Categories	hierarchy,	the	Product	column	also	has	a	(null)	row.	This	row
represents	the	total	of	all	the	products.	Unless	you	have	intended	to	have	the	total	row	in	the
results,	you	might	mistake	the	total	row	as	an	individual	product	member	row.	When	two	or
more	user	hierarchies	are	used	in	this	way,	the	results	will	soon	become	hard	to	read.

Using	attribute	hierarchies	gives	us	precise	control	of	the	report	shape.	Using	other	ways,
such	as	user	hierarchies	or	the	DESCENDANTS()	function,	helps	us	to	easily	expand	the	report
shape,	but	care	needs	to	be	taken	when	handling	the	summary	rows.

Other	navigational	functions	such	as	Ascendants()	can	also	expand	the	report	shape	by
including	all	the	levels	in	the	header	in	the	results.	If	you	execute	the	following	query	in	the
SSRS's	Query	Editor	in	the	Design	Mode,	you	will	see	that	all	the	levels,	Group	and	Country
and	Region	from	the	Sales	Territory	hierarchy,	have	become	the	headers	in	the	results,	and
also	that	a	total	row	has	been	included.

SELECT		

			Measures.[Reseller	Order	Count]	ON	COLUMNS,		

WOW! eBook
www.wowebook.org

			Ascendants(

								[Sales	Territory].[Sales	Territory].[Northwest]		

)	ON	ROWS		

FROM		

			[Adventure	Works]	

Named	set	or	DIMENSION	PROPERTIES	has	no	effect	in	the	shape	of	the
reports

To	be	clear,	creating	column	aliases	is	about	controlling	the	column	header	names	in	results.
This	is	different	to	using	aliases	inside	MDX	queries.	In,	previous	recipe,	Removing	empty
rows,	we	used	WITH	SET	to	create	a	set	alias,	[Profit]:

WITH	SET	[Profit]	AS	

		{	[Measures].[Internet	Gross	Profit],	

				[Measures].[Reseller	Gross	Profit],	

				[Measures].[Gross	Profit]	

		}	

This	set	alias	will	not	change	the	column	header	names	in	results.	If	we	put	[Profit]	on
COLUMNS,	the	column	headers	in	the	results	will	still	be	Internet	Gross	Profit,	Reseller
Gross	Profit,	and	Gross	Profit.

Although	a	query-scoped,	calculated	set,	or	a	named	set	defined	in	the	MDX	script	can	create
a	set	alias	for	reuse	in	an	MDX	query,	it	cannot	change	the	headers	in	results.

The	DIMENSION	PROPERTIES	clause	provides	additional	data,	but	cannot	cause	the	properties
to	display	in	the	pivot	result;	therefore,	it	has	no	effect	in	the	shape	of	the	reports	either.

Creating	a	column	alias	in	MDX	queries	can	mean	data	duplication

Renaming	measures	and	attributes	in	a	cube	is	common	when	the	cube	is	re-designed.	To
migrate	your	existing	reports,	you	can	choose	to	create	column	aliases	in	the	reporting	tool
or	in	your	MDX	queries.	A	reporting	tool	such	as	SSRS	has	the	capability	to	create	column
aliases.	In	this	case,	depending	on	your	preferences,	you	might	choose	to	do	it	in	the
reporting	tool	or	in	the	MDX	queries.	Since	your	cube	is	re-designed,	and	you	are	rewriting
most	likely	your	MDX	query	anyway,	creating	column	aliases	in	MDX	queries	might	be	more
productive.

WOW! eBook
www.wowebook.org

Creating	a	column	alias	is	a	must	with	role-playing	dimensions

Occasionally,	we	might	end	up	having	the	same	column	name	from	different	hierarchies.	The
Date	dimension,	which	has	a	role-playing	Shift	Date	dimension,	is	a	good	example.	If	we	put
the	CROSSJOIN	of	these	two	dimensions	Date	and	Shift	Date	on	the	ROWS	axis,	we	will	get	the
same	header,	Date,	for	both	the	order	date	and	the	shift	date.	In	this	case,	we	must	create
column	aliases	in	MDX	queries	to	distinguish	them.

[Date].[Date].[Date]	*	

[Ship	Date].[Date].[Date]	

Avoiding	using	the	NON	EMPTY	keyword	on	the	COLUMNS	axis

When	pulling	data	from	SSAS	using	MDX	queries	to	destinations	such	as	frontend	reporting
tools	or	SQL	tables,	we	should	consider	removing	the	NON	EMPTY	keyword	on	COLUMNS.

When	there	is	no	data	in	the	result	set,	the	NON	EMPTY	keyword	on	COLUMNS	will	not	return	any
columns.	You	will	get	an	object	has	no	columns	type	of	error	because	the	destination	of	either
a	pre-designed	report	or	an	SQL	table	expects	the	columns	in	the	results.

When	would	an	MDX	query	return	no	data	and	no	columns	in	the	result	set?	If	we	write	our
MDX	query	as	shown	in	the	following	templates,	and	the	measures	are	empty,	then	no	data
and	no	headers	will	return	from	the	query.	Dynamic	reports	can	have	unpredictable	results
due	to	the	dynamic	filtering	of	the	data,	and	situations	like	the	following	can	happen:

NON	EMPTY	{measures}	ON	COLUMNS	+	NON	EMPTY	({set_expression})	ON	ROWS	

	

NON	EMPTY	{measures}	ON	COLUMNS	+	NONEMPTY	({set_expression1},	{set_expression2})

ON	ROWS	

Unless	you	truly	want	the	reporting	or	the	process	to	fail,	consider	removing	the	NON	EMPTY
keyword	from	the	COLUMNS	axis.

Removing	the	NON	EMPTY	keyword	from	the	COLUMNS	axis	will	allow	the	MDX	to	return	the
columns	even	when	the	query	contains	no	data.

Query	Editor	in	SSRS	only	allowing	measures	dimension	in	the	COLUMNS

In	the	introduction	of	this	recipe,	we	made	an	assumption	that	only	measures	will	be	put	on	the
COLUMNS	axis.	This	is	because	in	SSRS,	the	Query	Editor	(and	the	graphical	Query	Designer)
expects	the	MDX	queries:

1.	 To	not	have	CROSSJOIN	in	the	COLUMNS	(or	0-axis).
2.	 And	to	only	have	the	Measures	dimension	in	the	COLUMNS	(or	0-axis).

If	you	are	using	a	third-party	frontend	reporting	tool,	it's	important	to	understand	the
restrictions	the	tool	places	on	how	the	MDX	queries	should	be	written.

WOW! eBook
www.wowebook.org

A	few	more	words...

Having	said	so	much	about	creating	column	aliases	in	MDX	queries,	it	is	also	important	to
understand	that	creating	column	aliases	in	MDX	queries	is	not	the	same	as	it	is	in	SQL.
Creating	column	aliases	in	MDX	queries	can	mean	data	duplication.	This	might	not	be	the	best
choice,	especially	with	too	much	data	duplication.	When	designing	reports,	consideration
should	be	given	to	the	most	efficient	way	in	terms	of	aligning	the	attribute	or	level	names	in
SSAS,	with	the	headers	in	the	results.

The	important	message	to	take	away	from	this	recipe	is	that	when	creating	reports	with
frontend	reporting	tools,	care	must	be	taken	when	handling	the	totals	row	and	controlling	the
headers	in	the	results.	It	is	also	important	to	pay	attention	to	whether	the	ALL	member	is
included	in	each	set.

WOW! eBook
www.wowebook.org

See	also
The	Concise	Reporting	recipe	in	Chapter	4	has	some	examples	of	the	DESCENDANTS()
function.
The	Getting	the	summary	recipe	is	relevant.	It	shows	how	the	VisualTotal()	function
can	be	used	to	get	the	total	row	from	the	visual	items	in	the	report	without	adding	more
headers	to	the	report,	and	therefore	without	expanding	the	report	shape.

WOW! eBook
www.wowebook.org

Sorting	data	by	dimensions
There	are	usually	two	types	of	sorting	requirements	in	reporting:	one	is	to	sort	by	numeric
measures	and	the	other	is	to	sort	by	dimension	members	alphabetically.

Data	from	SSAS	is	naturally	sorted	by	attributes	in	dimensions.	Members	in	an	attribute	can
be	sorted	by	its	own	key	or	name	value	or	sorted	by	another	attribute's	key	or	name	value.
The	two	properties	that	are	related	to	member	sorting	are	OrderBy	and	OrderByAttribute.

For	example,	if	we	put	all	members	from	the	Date	attribute	on	the	ROWS	axis,	the	results	will
already	be	sorted	in	ascending	order	of	the	date.	This	is	because	the	Date	attribute	is	sorted	by
its	key	value	in	the	cube.

[Date].[Date].[Date].MEMBERS	

If	we	CROSSJOIN	multiple	sets,	as	shown	in	the	following	code	snippet,	the	result	will	be	sorted
in	ascending	date	order,	then	by	customer	name,	and	then	by	subcategory.	In	this	case,	the
position	of	the	set	matters.	The	sorting	order	will	be	from	left	to	right	in	ascending	order.

[Date].[Date].[Date].MEMBERS	*	

[Customer].[Customer].[Customer]	*	

[Product].[Subcategory].[Subcategory]	

Because	SSAS	has	taken	care	of	the	sorting,	no	explicit	sorting	is	needed	in	MDX	queries	in
most	situations.

However,	there	are	a	few	cases	where	explicit	sorting	is	needed.	Let's	look	at	two	default
sorting	behaviors	in	SSAS	first.

By	default,	members	in	attributes	are	sorted	in	ascending	order.	This	default	behavior
sometime	needs	to	be	changed	to	descending	order.

By	default,	when	a	user	hierarchy	is	used	instead	of	an	attribute	hierarchy,	the	data	is	sorted
from	the	top	level	to	the	lower	level.	If	we	use	the	user	hierarchy	Product	Categories,	the
data	will	be	sorted	by	Category	and	then	by	Subcategory.	When	Category	is	not	even	shown	in
the	results,	this	default	behavior	can	be	very	confusing.

	[Product].[Product	Categories].[Subcategory]	

This	default	behavior	can	also	be	altered	so	that	we	bypass	the	Category	level,	and	directly
sort	by	the	Subcategory.

WOW! eBook
www.wowebook.org

Getting	ready
It	is	a	very	common	reporting	requirement	to	compare	data	across	several	months.	To	create
a	dynamic	report,	we	will	need	to	create	a	picklist	to	allow	users	to	select	any	month.	We	will
retrieve	all	the	months	from	the	Date	dimension.	It	also	makes	sense	to	display	the	months	in
descending	order.	In	this	recipe,	we	will	write	a	query	to	create	a	picklist	for	months	and	sort
it	in	descending	order.	The	following	screenshot	shows	what	we	want	to	achieve:

We	will	start	from	this	simple	query	that	displays	all	the	months	and	their	unique	name	values:
WOW! eBook

www.wowebook.org

WITH	MEMBER	[Measures].[ParameterValue]	AS	

		[Date].[Calendar].CurrentMember.uniquename	

	

SELECT	

		{[Measures].[ParameterValue]}	ON	COLUMNS,	

		[Date].[Calendar].[Month].MEMBERS	

		ON	ROWS	

FROM	

		[Adventure	Works]	

We	used	the	WITH	clause	to	create	a	column	alias	[ParameterValue]	to	show	each	month's
unique	name	value.	This	will	be	the	parameter	value	we	can	pass	to	a	parameterized	MDX
query.	The	result	will	have	two	headers,	ParameterValue	and	Month,	as	shown	in	the
following	screenshot:

The	data	is	already	sorted	in	ascending	order.	We	will	modify	this	query	so	that	the	picklist	is
explicitly	sorted	in	descending	order.

WOW! eBook
www.wowebook.org

How	to	do	it...
Start	SQL	Server	Management	Studio	and	connect	to	your	SSAS	2016	instance.	Click	on	the
New	Query	button	and	check	that	the	target	database	is	Adventure	Works	DW	2016.

1.	 In	the	WITH	clause,	define	a	column	alias	SortKey	using	the	MemberValue	for	the
CurrentMember	of	the	Calendar	hierarchy.

						MEMBER	[Measures].[SortKey]	AS	

								[Date].[Calendar].CurrentMember.MemberValue	

2.	 Add	the	column	alias	SortKey	to	the	COLUMNS	axis.
3.	 On	ROWS,	let's	sort	the	set	[Date].[Calendar].[Month].MEMBERS	by	the	[SortKey]	in

descending	order:

							ORDER	(

										[Date].[Calendar].[Month].MEMBERS,	

										[Measures].[SortKey],	

										DESC)	

4.	 Here	is	the	final	query.	Execute	it	in	SSMS;	you	should	have	the	same	result	as	shown	in
the	following	screenshot:

						WITH	MEMBER	[Measures].[SortKey]	AS	

								[Date].[Calendar].CurrentMember.membervalue	

						MEMBER	[Measures].[ParameterValue]	AS	

								[Date].[Calendar].CurrentMember.uniquename	

						SELECT	

								{[Measures].[ParameterValue],	[Measures].[SortKey]}	ON	COLUMNS,	

								ORDER	(

										[Date].[Calendar].[Month].MEMBERS,	

										[Measures].[SortKey],	

										DESC)	

								ON	ROWS	

						FROM	

								[Adventure	Works]	

WOW! eBook
www.wowebook.org

5.	 Optionally,	when	executing	it	in	SSRS	Query	Designer's	Design	mode,	you	should	have
the	same	result	as	shown	in	the	following	screenshot:

WOW! eBook
www.wowebook.org

How	it	works...
Let's	start	with	the	Order()	function.	It	has	two	syntaxes:

Order(Set_Expression,	Numeric_Expression,	Ordering_Option)				

			

Order(Set_Expression,	String_Expression,	Ordering_Option)				

The	ordering	option	can	be	any	of	these:	ASC,	DESC,	BASC,	BDESC,	with	ASC	for
ascending,	DESC	for	descending,	and	letter	B	standing	for	break	hierarchy.	The	sorting	is
hierarchical	when	ASC	or	DESC	is	used	or	non-hierarchical	when	BASC	or	BDESC	is	used.

The	Order()	function	is	a	very	confusing	function	when	a	user	hierarchy	is	used	in	the	set,	or
when	a	string	expression	is	used.

In	the	There's	more...	section,	we	will	discuss	the	non-hierarchical	sorting.	Here,	we	are	going
to	focus	on	the	string	expression	syntax.

We	wanted	to	sort	the	picklist	in	descending	order	of	the	months.	Month	is	not	a	numeric
expression	in	the	Adventure	Works	cube.	Let's	go	to	the	Adventure	Works	SSDT	Visual
Studio	project	and	open	the	dimension	designer	for	the	Date	dimension.

The	Month	Name	attribute	is	the	source	of	the	Month	level	in	the	Calendar	hierarchy.	Its	key	is	a
composite	key	consisting	of	both	the	year	and	month	number;	the	name	column	is	the
MonthName,	which	has	a	data	type	of	string;	and	the	value	column	is	the	MonthNameValue,	which
has	a	data	type	of	Date.	To	sort	the	month	correctly,	we	must	sort	by	the	date	value	of	each

WOW! eBook
www.wowebook.org

month,	not	by	the	alphabetical	order	of	the	month	name.

We	have	used	the	MemberValue	function	to	get	the	MonthNameValue	in	the	WITH	clause:

MEMBER	[Measures].[SortKey]	AS	

		[Date].[Calendar].CurrentMember.membervalue	

But	if	the	member	value	is	showing	as	12/1/2014	in	SSMS,	or	12/1/2014	12:00:00	AM	in
SSRS,	how	can	we	sort	it	correctly?	It	turns	out	that	the	displayed	value	is	only	the	tool's	own
formatting	of	the	date.	The	member	value	itself	has	a	data	type	of	Date,	which	is	why	we	can
use	it	for	sorting.

To	further	understand	that	MonthNameValue	has	a	data	type	of	Date,	you	can	go	to	the	data
source	view	of	Adventure	Works	DW.	You	should	see	that	MonthNameValue	is	defined	as	a
named	calculation:

CAST(

											CONVERT(CHAR(2),	MonthNumberOfYear)		

											+	'/	'	+		'1/'	+							

											CONVERT(CHAR(4),	CalendarYear)	AS	DATE	

)	

You	can	try	this	SQL	query	in	SSMS	to	see	that	the	sorting	by	this	MonthNameValue	of	Date
type	is	correct.

SELECT	DISTINCT		

		CAST(

											CONVERT(CHAR(2),	MonthNumberOfYear)		

											+	'/	'	+		'1/'	+	

											CONVERT(CHAR(4),	CalendarYear)	AS	DATE	

)	AS	MonthNameValue	

		FROM	[AdventureWorksDW2016].[dbo].[DimDate]	

		ORDER	BY		

		CAST(

											CONVERT(CHAR(2),	MonthNumberOfYear)		

											+	'/	'	+		'1/'	+	

											CONVERT(CHAR(4),	CalendarYear)	AS	DATE	

)	DESC	

WOW! eBook
www.wowebook.org

WOW! eBook
www.wowebook.org

There's	more...
We	have	used	the	MemberValue	function	to	get	MonthNameValue,	which	has	a	data	type	of	Date.
Using	it	to	sort	the	month	is	a	perfect	choice.

There	are	two	other	ways	to	sort	the	months	in	descending	order.	Let's	take	a	look	at	them.

Taking	advantage	of	hierarchical	sorting

When	creating	the	picklist,	we	need	the	ParameterValue	header.	It	turns	out	that	we	can	use	it
to	sort	the	months	without	the	SortKey,	that	is,	MonthNameValue.

WITH	MEMBER	[Measures].[ParameterValue]	AS	

		[Date].[Calendar].CurrentMember.uniquename	

	

SELECT	

		{[Measures].[ParameterValue]}	ON	COLUMNS,	

		ORDER	(

				[Date].[Calendar].[Month].MEMBERS,	

				[Measures].[ParameterValue],	

				DESC)	

		ON	ROWS	

FROM	

		[Adventure	Works]	

The	result	is	shown	in	the	following	screenshot.	The	months	are	sorted	correctly	in
descending	order.

From	the	result,	we	can	see	that	the	sorting	is	done	in	a	hierarchical	way	because	we	used	the
user	hierarchy	Calendar.	The	sorting	is	exactly	what	we	want	to	achieve.

Using	the	Date	type	to	sort	in	a	non-hierarchical	way
WOW! eBook

www.wowebook.org

On	the	other	hand,	if	we	use	attribute	hierarchy	Month	Name	instead	of	the	user	hierarchy
Calendar,	then	we	must	be	careful.	We	can	no	longer	use	UniqueName	to	sort;	instead,	we	must
use	MemberValue	to	sort.

WITH	MEMBER	[Measures].[SortKey]	AS	

		[Date].[Month	Name].CurrentMember.membervalue	

MEMBER	[Measures].[ParameterValue]	AS	

		[Date].[Month	Name].CurrentMember.uniquename	

SELECT	

		{[Measures].[ParameterValue],	[Measures].[SortKey]}	ON	COLUMNS,	

		ORDER	(

				[Date].[Month	Name].Children,	

				[Measures].[ParameterValue],	

				DESC)	

		ON	ROWS	

FROM	

		[Adventure	Works]	

The	preceding	query	will	not	sort	the	months	in	descending	order	correctly.	Notice	that	&[9]
comes	before	&[12],	because	9	is	bigger	than	12	as	a	string	type.

Simply	use	SortKey	to	replace	ParameterValue,	and	the	sorting	will	be	corrected.

WITH	MEMBER	[Measures].[SortKey]	AS	

		[Date].[Month	Name].CurrentMember.membervalue	

MEMBER	[Measures].[ParameterValue]	AS	

		[Date].[Month	Name].CurrentMember.uniquename	

SELECT	

WOW! eBook
www.wowebook.org

		{[Measures].[ParameterValue],	[Measures].[SortKey]}	ON	COLUMNS,	

		ORDER	(

				[Date].[Month	Name].Children,	

				[Measures].[SortKey],	

				DESC)	

		ON	ROWS	

FROM	

		[Adventure	Works]	

"Break	hierarchy"	-	sorting	a	set	in	a	non-hierarchical	way

The	ORDER()	function	can	be	very	confusing	when	a	user	hierarchy	is	used.

Let's	look	at	this	example	of	sorting	the	set	[Date].[Calendar].[Month].MEMBERS	with	a
numeric	measure	[Internet	Sales	Amount]	and	a	sorting	flag	of	DESC.

SELECT	

		{[Measures].[Internet	Sales	Amount]}	ON	COLUMNS,	

		ORDER	(

				[Date].[Calendar].[Month].MEMBERS,	

				[Measures].[Internet	Sales	Amount],	

				DESC)	

		ON	ROWS	

FROM	

		[Adventure	Works]	

The	result	is	shown	in	the	following	screenshot	in	SSMS.	The	ordering	isn't	exactly	correct.
The	internet	sales	number	for	June	2013	is	obviously	out	of	order.

WOW! eBook
www.wowebook.org

The	reason	is	unclear	until	you	execute	the	previous	query	in	the	SSRS	Query	Editor's	Design
Mode.	The	result	not	only	has	the	Month	header,	but	it	also	has	all	the	levels	preceding
Month	in	the	Calendar	user	hierarchy.	June	2013	is	under	Q2	CY	2013,	which	should	be
displayed	after	Q3	CY	2013	in	descending	order	of	the	hierarchy.	Therefore,	it	will	not	show
after	October	2013.

WOW! eBook
www.wowebook.org

This	is	when	the	break	hierarchy	comes	into	play.	By	using	the	BDESC	flag,	we	are	going	to
sort	the	set	in	a	non-hierarchical	way.	Replacing	the	ordering	part	with	the	following	code
with	the	BDESC	flag,	the	months	will	now	be	truly	sorted	by	the	Reseller	Sales	Amount	in
descending	order	in	both	SSMS	and	SSRS.

ORDER	(

				[Date].[Calendar].[Month].MEMBERS,	

				[Measures].[Internet	Sales	Amount],	

				BDESC)	

		ON	ROWS	

You	might	also	need	to	break	hierarchy	when	working	with	parent-child	dimensions.	In
Adventure	Works	DW,	the	Employee	dimension	is	a	parent-child	dimension.

SELECT	

		[Measures].[Reseller	Sales	Amount]	ON	COLUMNS,	

		NON	EMPTY	

		DESCENDANTS([Employee].[Employees].[Employee	Level	02],,LEAVES)	

		ON	ROWS	

FROM	

		[Adventure	Works]	

The	previous	query's	result	is	shown	in	the	following	screenshot:

WOW! eBook
www.wowebook.org

The	result	does	not	seem	to	be	sorted	in	any	noticeable	order,	until	you	realize	that	the
Employee	hierarchy	in	the	Employee	dimension	is	a	parent-child	hierarchy.

WOW! eBook
www.wowebook.org

David	R.	Campbell	comes	after	Jae	B.	Pak	because	his	manager	Stephen	Y.	Jiang	comes
after	Amy	E.	Alberts.

Using	the	ORDER()	function	with	the	[Employee].[Employees].MemberValue	and	BASC	flag	to
break	hierarchy	will	sort	the	employees	in	alphabetical	order.

Here	is	the	complete	query:

SELECT	

		[Measures].[Reseller	Sales	Amount]	ON	COLUMNS,	

		NON	EMPTY	

		ORDER	(

				DESCENDANTS([Employee].[Employees].[Employee	Level	02],,LEAVES),	

WOW! eBook
www.wowebook.org

				[Employee].[Employees].MemberValue,	

				BASC)	

		ON	ROWS	

FROM	

		[Adventure	Works]	

Sorting	can	be	done	in	the	frontend	reporting	tool

This	recipe	discusses	sorting	by	dimension	members	in	reporting.	However,	sorting	does	not
need	to	be	done	in	MDX	queries.	Sorting	can	be	done	in	the	frontend	reporting	tool.	You
might	not	want	to	do	sorting	in	an	MDX	query	when	the	sorting	requirement	is	complex	and
involves	grouping	at	many	levels,	or	when	you	need	to	provide	interactive	sorting	by	users	in
the	front-end	reporting	tool.

WOW! eBook
www.wowebook.org

See	also
The	Creating	picklist	recipe	in	this	chapter	discusses	how	to	create	a	picklist

WOW! eBook
www.wowebook.org

Chapter	7.	Business	Analyses
In	this	chapter,	we	will	cover	the	following	recipes:

Forecasting	using	linear	regression
Forecasting	using	periodic	cycles
Allocating	non-allocated	company	expenses	to	departments
Analyzing	the	fluctuation	of	customers
Implementing	the	ABC	analysis

WOW! eBook
www.wowebook.org

Introduction
In	the	first	part	of	this	chapter,	we	will	focus	on	how	to	perform	some	of	the	typical	business
analyses	such	as	forecasting,	allocating	values,	and	calculating	the	number	of	days	from	the
last	sale	date.

To	forecast	future	business,	we	frequently	use	linear	regression	to	calculate	the	trend	line,
which	can	tell	us	how	the	business	will	likely	be	doing	in	the	future,	if	everything	continues	in
the	same	direction.	Many	businesses	have	a	cyclic	behavior,	and	the	cycle	period	can	be	a
year,	a	month,	a	week,	and	so	on.	If	we	can	calculate	the	values	for	the	next	cycle	using	the
trend	line	from	a	previous	cycle,	we	will	have	a	better	approximation	of	the	future	results	than
we	would	be	able	to	get	from	simply	using	a	linear	trend.	We	will	learn	how	to	do	forecasting
using	both	linear	regression	and	periodic	cycles.

Businesses	can	have	unallocated	expenses,	such	as	operating	expenses	that	are	charged	to
corporates,	but	not	allocated	to	individual	departments.	The	key	to	allocating	these	expenses
to	individual	departments	is	to	calculate	a	percentage	of	an	expense	value	of	each	member
department	against	the	aggregate	of	all	the	other	sibling	departments.	This	percentage	can
then	be	used	to	spread	the	unallocated	expenses	to	individual	departments.	In	the	third	recipe
in	this	chapter,	we	will	learn	the	allocation	scheme	to	calculate	the	allocation	percentages
(ratios)	and	to	effectively	allocate	any	measures	to	any	coordinate.

The	second	half	of	this	chapter	shows	how	to	determine	the	behavior	of	individual	members.
These	are	the	last	two	recipes.

One	recipe	performs	analysis	on	customers	to	determine	new,	returning	(loyal),	and	lost
customers.	It	illustrates	an	approach	that	becomes	useful	when	we	need	to	track	fluctuations	in
periods.

In	the	last	recipe,	we	turn	our	focus	from	customer	analysis	to	item	grouping.	ABC	analysis	is
a	method	of	identifying	and	classifying	items,	based	on	their	contribution,	into	three	groups:
A,	B,	and	C.	In	our	example,	we	will	use	a	30/50/20	ratio	as	an	extension	to	the	80-20	rule,
putting	the	top	80	percent	of	product	members	into	two	segments	of	30	percent	and	50
percent.

Let's	start!

WOW! eBook
www.wowebook.org

Forecasting	using	linear	regression
This	recipe	illustrates	the	method	of	estimating	the	future	values	based	on	a	linear	trend.	The
linear	trend	is	calculated	using	the	least-square	distance,	a	statistical	method	of	determining
the	line	that	fits	the	best	through	the	set	of	values	in	the	chart,	as	displayed	in	the	following
figure:

Mathematically,	linear	regression	can	be	represented	by	a	regression	line,	y	=	ax	+	b,	where	y
is	the	value	of	the	y-intercept	for	a	value	of	x.

Linear	regression	is	often	used	in	a	way	that	x	is	a	period	and	y	is	the	value	in	a	particular
time,	for	example,	a	month.

Most	importantly,	the	regression	line	is	used	to	forecast	values	outside	the	initial	period.	For
example,	we	can	use	a	period	of	60	months	and	forecast	the	value	for	each	of	the	following
12	months.

This	recipe	shows	how	to	estimate	the	values	of	the	two	months	after	the	period	of	36	months
that	were	used	in	the	calculation.	The	screenshot	you	saw	in	the	introduction	of	this	recipe
shows	the	regression	line	and	forecasted	values	for	those	two	months.

WOW! eBook
www.wowebook.org

Getting	ready
Start	SQL	Server	Management	Studio	and	connect	to	your	SSAS	2016	instance.	Click	on	the
New	Query	button	and	check	that	the	target	database	is	Adventure	Works	DW	2016.

In	this	example,	we're	going	to	use	the	Date	dimension.	Here's	the	query	we'll	start	from:

SELECT	

			{	[Measures].[Sales	Amount]	}	ON	0,	

			{	[Date].[Calendar].[Month].MEMBERS	}	ON	1	

FROM	

			[Adventure	Works]	

Once	executed,	the	query	returns	120	months,	from	January	2005	to	December	2014,	with	no
gaps	in	between.	However,	not	every	month	has	a	sales	amount.	The	first	month	with	data	is
December	2010,	and	the	last	month	with	data	is	January	2014.

Note

The	Date	dimension	in	the	Adventure	Works	DW	2016	database	follows	the	best	practice
guideline,	which	says	that	all	months	should	be	consecutive	with	no	holes	inside	the	year.	If
you	are	working	on	earlier	versions	of	the	Adventure	Works	database,	such	as	the	2008R2
database,	you	might	have	noticed	that	this	best	practice	guideline	is	not	strictly	followed.	The
month	starts	from	July	2005	to	August	2008,	with	one	extra	month	in	the	year	2010
(November)	as	the	next	member	in	the	hierarchy,	which	is	in	fact	more	than	two	years	apart.

Our	task	will	be	to	forecast	the	sales	amount	beyond	those	three	years,	from	January	2014	to
December	2014,	all	based	on	the	sales	of	the	three	previous	calendar	years.	We	are	also	going
to	remove	periods	before	January	2011	from	our	analysis,	as	there	is	no	significant	sales	data
there	or	no	data	at	all.

On	the	other	side,	January	2014	has	data,	but	only	a	portion	of	it	(it	becomes	clear	by
comparing	it	with	previous	monthly	values	or	by	analyzing	the	cube	by	dates).	Therefore,	we
are	also	going	to	forecast	its	sales,	and	we'll	do	so	by	not	including	its	data	in	the	calculation.
In	other	words,	we'll	use	only	three	full	years	of	data	for	our	input.

As	explained	in	the	introduction,	we'll	use	the	linear	regression	method	in	this	recipe,	while
the	next	recipe	will	show	you	how	to	do	the	same	using	another	approach—the	method	of
periodic	cycles.

WOW! eBook
www.wowebook.org

How	to	do	it...
Follow	these	steps	to	add	the	linear	regression	code	to	your	MDX:

1.	 Add	the	WITH	part	of	the	query.
2.	 Create	a	named	set,	Full	Period.	The	definition	for	this	set	should	be	the	range	of

months	from	January	2011	to	December	2014.

						{		

								[Date].[Calendar].[Month].&[2011]&[1]	:	

								[Date].[Calendar].[Month].&[2014]&[12]	

						}	

3.	 Create	a	named	set,	Input	Period.	The	definition	for	this	set	should	be	the	range	of
months	from	January	2011	to	December	2013.

						{		

								[Date].[Calendar].[Month].&[2011]&[1]	:	

								[Date].[Calendar].[Month].&[2013]&[12]	

						}	

4.	 Create	several	calculated	members.	The	first,	Input	X,	is	a	measure	that	determines	the
rank	of	the	current	calendar	member	in	the	named	set	Input	Period.

5.	 The	second,	Input	Y,	is	a	measure	that	is	an	alias	for	the	Sales	Amount	measure.
6.	 The	third,	Output	X,	is	a	measure	like	Input	X,	only	this	time	we're	determining	the	rank

in	the	first	set,	Full	Period.
7.	 Finally,	the	fourth	calculated	member,	Forecast,	will	be	a	measure	that	contains	the

formula,	which	combines	all	the	previous	calculated	members	and	sets	and	calculates	the
regression	line	using	the	LinRegPoint()	function:

						LinRegPoint(

												[Measures].[Output	X],	

																	[Input	Period],	

												[Measures].[Input	Y],	

												[Measures].[Input	X]	

)	

8.	 Specify	$#,##0.00	as	a	format	string	of	the	Forecast	measure.
9.	 Add	the	Forecast	measure	on	axis	0,	next	to	the	Sales	Amount	measure.
10.	 Replace	the	set	on	axis	1	with	the	named	set	Full	Period	because	we	don't	want	to	see

previous	years	with	no	data	in	them.
11.	 Verify	that	your	query	looks	like	the	following	one.	Execute	it:

						WITH	

						SET	[Full	Period]	AS	

								{	[Date].[Calendar].[Month].&[2011]&[1]	:	

										[Date].[Calendar].[Month].&[2014]&[12]	}	

						SET	[Input	Period]	AS	

								{	[Date].[Calendar].[Month].&[2011]&[1]	:		

										[Date].[Calendar].[Month].&[2013]&[12]	}	

						MEMBER	[Measures].[Input	X]	AS	

								Rank([Date].[Calendar].CurrentMember,	

WOW! eBook
www.wowebook.org

														[Input	Period])				

						MEMBER	[Measures].[Input	Y]	AS	

								[Measures].[Sales	Amount]	

						MEMBER	[Measures].[Output	X]	AS	

								Rank([Date].[Calendar].CurrentMember,	

														[Full	Period])					

						MEMBER	[Measures].[Forecast]	AS	//	=	Output	Y	

								LinRegPoint(

																				[Measures].[Output	X],	

																				[Input	Period],	

																				[Measures].[Input	Y],	

																				[Measures].[Input	X]	

)	

										,	FORMAT_STRING	=	'$#,##0.00'	

						SELECT	

								{	[Measures].[Sales	Amount],	

										[Measures].[Forecast]	}	ON	0,	

								{	[Full	Period]	}	ON	1	

						FROM	

								[Adventure	Works]	

12.	 Verify	that	the	result	matches	the	following	screenshot.	The	highlighted	cells	contain	the
forecasted	values.

WOW! eBook
www.wowebook.org

How	it	works...
In	this	example,	we've	used	a	few	more	calculated	members	and	sets	than	necessary.	We've
defined	two	named	sets	and	three	calculated	members	before	we	came	to	the	main	part	of	the
query:	the	fourth	calculated	member,	which	contains	the	formula	for	forecasting	values	based
on	the	linear	trend.	We	did	this	extra	bit	of	work	to	have	a	simple	and	easy-to-memorize
expression	for	the	otherwise	complicated	LinRegPoint()	function,	and	because	not	all	years
had	data.

The	LinRegPoint()	function	has	four	parameters.	Names	used	in	this	example	suggest	what
these	parameters	represent.	The	key	to	using	this	function	is	to	provide	these	four	parameters
correctly.	So,	let's	repeat	the	function	and	the	four	parameters	from	our	previous	query:

			LinRegPoint(

															[Measures].[Output	X],	

															[Input	Period],	

															[Measures].[Input	Y],	

															[Measures].[Input	X]	

)	

As	the	names	suggest,	the	last	three	parameters	(Input	Period,	Input	X,	and	Input	Y)	are	all
inputs	used	to	determine	the	regression	line	y	=	a	∙	x	+	b.	Here,	we've	specified	a	set	of
members	(the	January	2011-December	2013	period),	their	ordinal	positions	in	that	set	(values
1	-	36	obtained	using	the	Rank()	function	on	that	period),	and	their	corresponding	values
(measuring	the	sales	amount).	We've	prefixed	all	of	them	with	Input	to	emphasize	that	these
parameters	are	used	as	the	input	for	the	calculation	of	the	regression	line.

Once	the	regression	line	is	calculated	internally,	it	is	used	in	combination	with	the	first
parameter,	Output	X.	This	two-step	process	is	a	composition	of	functions	where	the	result	of
the	inner	one	is	used	as	the	argument	in	the	outer	one.	This	is	what	makes	the	LinRegPoint()
function	difficult	to	understand	and	remember.	Hopefully,	by	making	a	distinction	between
parameters,	that	is,	prefixing	them	as	input	and	output	parameters,	the	function	becomes	less
difficult	to	understand.

Here	is	the	calculation	we	used	for	Input	X.	Notice	that	for	input,	we	have	included	only	the
periods	that	have	a	sale	amount.

Rank([Date].[Calendar].CurrentMember,	[Input	Period])	

Now	starts	the	second	phase,	the	invisible	outer	function.

The	first	parameter	(Output	X)	is	used	to	specify	the	ordinal	position	of	the	member	that	we
want	to	calculate	the	value	for.	Here	is	the	calculation	for	Output	X:

Rank([Date].[Calendar].CurrentMember,	[Full	Period])	

Notice	that	we've	used	[Full	Period],	which	is	a	different	set	than	what	we	used	for	the

WOW! eBook
www.wowebook.org

parameter	Input	X,	because	our	primary	need	was	to	get	the	value	for	members	whose
positions	are	beyond	December	2013.

Notice	also	that	the	measure	Forecast	represents	the	Output	Y	value	which	was	hinted	at	in	the
code.	In	other	words,	for	a	given	regression	line	(based	on	the	Input	parameters),	we	have
calculated	the	y	value	for	any	given	x,	including,	but	not	limited,	to	the	initial	set	of	members.
That	was	step	two	in	the	evaluation	of	the	LinRegPoint()	function.

WOW! eBook
www.wowebook.org

There's	more...
The	LinRegPoint()	is	not	the	only	MDX	function	which	can	be	used	to	calculate	the	values
based	on	the	regression	line.	Remember	we	said	this	function	evaluates	in	a	two-step	process.
The	result	of	the	inner	step	is	not	one	but	two	numbers.	One	is	the	slope;	the	other	the
intercept.	In	other	words,	the	a	and	b	in	the	y	=	a	∙	x	+	b	equation.

You	might	feel	more	comfortable	using	the	slope	(a)	and	the	intercept	(b)	to	forecast	a	value.
If	that's	the	case,	then	here's	the	add-on	to	the	previous	example.

Add	this	part	of	the	code	in	the	previous	query,	and	then	add	those	three	calculated	members
on	axis	0	and	run	the	query:

MEMBER	[Measures].[Slope]	AS	//	=	a	

			LinRegSlope(

																	[Input	Period],	

																	[Measures].[Input	Y],	

																	[Measures].[Input	X]	

)	

						,	FORMAT_STRING	=	'#,#'	

MEMBER	[Measures].[Intercept]	AS	//	=	b	

			LinRegIntercept(

																				[Input	Period],	

																				[Measures].[Input	Y],	

																				[Measures].[Input	X]	

)	

						,	FORMAT_STRING	=	'#,#'	

MEMBER	[Measures].[Verify	y	=	a	*	x	+	b]	AS	

			[Measures].[Slope]	*	[Measures].[Output	X]	+		

			[Measures].[Intercept]	

			//	y	=	a	*	x	+	b	

						,	FORMAT_STRING	=	'$#,##0.00'	

The	result	will	look	like	the	following	screenshot:

WOW! eBook
www.wowebook.org

The	three	extra	measures	were	the	Slope,	Intercept,	and	Verify	y	=	a	*	x	+	b	measures.
The	first	two	were	defined	using	the	LinRegSlope()	and	LinRegIntercept()	functions,
respectively.	The	same	last	three	parameters	were	used	here	as	in	the	LinRegPoint()	function.
What	LinRegPoint()	does	extra	is	that	it	takes	it	one	step	further	and	combines	those	two
values	with	an	additional	parameter	to	calculate	the	final	y.

From	the	previous	screenshot,	it	is	clear	that	LinRegSlope()	and	LinRegIntercept()	can	be
used	instead	of	the	LinRegPoint()	function,	as	the	values	are	exactly	the	same.	All	it	takes	is
to	combine	them	in	the	equation	y	=	a	∙	x	+	b.	Therefore,	it	is	up	to	you	to	choose	the
preferred	way	for	you	to	forecast	the	value	based	on	the	regression	line.

Tips	and	tricks

The	Rank()	function	is	used	to	determine	the	ordinal	position	of	a	member	in	a	set.	Here,
we've	used	it	twice:	to	calculate	the	position	of	members	in	the	Input	Period	set	and	to
calculate	the	position	of	members	in	the	Full	Period	set.

The	Rank()	function	performs	better	if	we	extract	the	set	used	as	the	second	argument	and
define	it	as	a	separate	named	set,	which	we	did.	This	is	because	in	that	case	the	set	is	evaluated
only	once	and	not	repeatedly	for	each	cell.

WOW! eBook
www.wowebook.org

Where	to	find	more	information

For	more	information,	please	refer	to	the	following	MSDN	links:

http://tinyurl.com/LinRegPoint

http://tinyurl.com/LinRegSlope

http://tinyurl.com/LinRegIntercept

Also,	Mosha	Pasumansky	also	has	a	blog	on	using	the	MDX	linear	regression	functions	for
forecasting:	http://tinyurl.com/MoshaLinReg.

WOW! eBook
www.wowebook.org

http://tinyurl.com/LinRegPoint
http://tinyurl.com/LinRegSlope
http://tinyurl.com/LinRegIntercept
http://tinyurl.com/MoshaLinReg

See	also
The	Forecasting	using	periodic	cycles	recipe	covers	a	similar	topic

WOW! eBook
www.wowebook.org

Forecasting	using	periodic	cycles
Linear	trend,	covered	in	the	recipe	Forecasting	using	linear	regression,	is	just	an	overview	of
how	the	business	is	going.	The	regression	line	serves	us	merely	as	an	indicator	of	where	we
will	be	in	the	future	if	everything	continues	in	the	same	way.	What	it	doesn't	tell	us,	at	least	not
well	enough,	is	what	the	individual	values	on	that	path	will	be.	The	values	that	method	returns
are	too	simplified,	too	imprecise.

Of	course,	there	are	other	ways	of	forecasting	the	future	values,	such	as	by	using	polynomial
curves	or	similar,	which,	generally	speaking,	will	fit	better	to	the	shape	of	achieved	business
values	and	therefore	represent	future	values	more	precisely.	However,	we	won't	make	an
example	using	them;	we	will	use	something	simple	but	effective	instead.

What	is	characteristic	of	many	businesses	is	that	events	tend	to	repeat	themselves	after	some
time.	In	other	words,	many	of	them	have	a	cyclic	behavior	-	whether	that	period	is	a	year,	a
month,	a	week,	a	day,	or	whatever.

The	simplification	can	be	summarized	like	this:	there's	an	envelope	of	events	taking	place
during	a	cycle	and	there	is	a	linear	trend	that	says	how	much	better	or	worse	the	next	period	is
going	to	be	compared	to	the	previous	one.	When	we	say	"the	envelope",	we	mean	a	shape	of
events	and	their	values.	For	example,	there	might	be	a	spike	in	the	curve	in	Spring/Autumn
when	people	buy	shoes,	there	might	be	a	spike	in	activity	at	the	end	of	the	month	when	people
need	to	finish	their	reports,	there	might	be	a	spike	in	the	middle	of	the	week	because	people
are	more	business-focused	in	that	part	of	the	week,	or	there	might	even	be	a	spike	in	the	early
morning	or	late	afternoon	because	that's	when	people	travel	to	and	from	work.	All	in	all,
things	are	not	flat,	and	moreover,	the	shape	of	their	non-flatness,	more	or	less,	looks	the	same
in	every	cycle.

If	we	calculate	the	values	for	the	next	cycle	using	the	trend	line	but	keep	the	shape	of	the
events	in	the	cycle,	we	will	have	a	better	approximation	and	estimation	of	the	future	results
than	if	we	simply	used	a	linear	trend.	It's	not	that	we'll	replace	it	with	something	else.	No,
we're	just	going	to	improve	it	by	adjusting	the	stiffness	of	the	regression	line.

WOW! eBook
www.wowebook.org

Getting	ready
Open	SQL	Server	Data	Tools	(SSDT)	and	then	open	the	Adventure	Works	DW	2016	solution.
Double-click	on	the	Adventure	Works	cube	and	go	to	the	Calculations	tab.	Choose	Script
View.	Position	the	cursor	at	the	end	of	the	script	where	you'll	create	a	calculated	measure,
Sales,	null,	by	default,	and	then	scope	that	measure	so	that	only	the	values	from	January
2011	up	to	June	2012	are	not	null.

Create	Member	CurrentCube.[Measures].[Sales]	As	null;	

	

Scope(({	[Date].[Calendar].[Month].&[2011]&[1]	:	

											[Date].[Calendar].[Month].&[2012]&[6]	},	

									[Measures].[Sales]));	

				This	=	[Measures].[Sales	Amount];	

End	Scope;	

We	are	going	to	use	this	measure	to	forecast	its	values	for	the	next	year.	We've	deliberately
used	a	calculated	measure	that	is	equal	to	the	original	measure,	Sales	Amount,	because	the
latter	one	already	has	values	in	that	period.	In	other	words,	we'll	be	able	to	test	how	good	our
forecasting	expression	is	by	comparing	it	to	the	actual	sales	data.

Once	you're	done,	deploy	the	changes	–		preferably	using	the	BIDS	Helper,	if	not	SSDT	itself.

Then,	start	SQL	Server	Management	Studio	and	connect	to	your	SSAS	2016	instance.	Click	on
the	New	Query	button	and	check	that	the	target	database	is	Adventure	Works	DW	2016.

Write	this	query:

SELECT	

			{	[Measures].[Sales]	}	ON	0,	

			{	Descendants([Date].[Calendar].[Calendar	Year].&[2012],	

																		[Date].[Calendar].[Month])	}	ON	1	

FROM	

			[Adventure	Works]	

Once	executed,	the	query	returns	12	months	of	the	year	2012.	Half	of	them	have	values;	the
other	half	are	blank:

WOW! eBook
www.wowebook.org

Now,	let's	see	if	we	can	predict	the	values	for	those	six	empty	months	based	on	the	previous
years	and	the	shape	of	the	curve	in	the	previous	year	on	a	monthly	granularity.

WOW! eBook
www.wowebook.org

How	to	do	it...
We're	going	to	define	six	calculated	measures	and	add	them	to	the	columns	axis:

1.	 Add	the	WITH	part	of	the	query.
2.	 Create	the	calculated	measure	Sales	PP	and	define	it	as	the	value	of	the	measure	Sales	in

the	parallel	period.
3.	 Create	the	calculated	measure	Sales	YTD	and	define	it	as	a	year-to-date	value	of	the	Sales

measure.
4.	 Create	the	calculated	measure	Sales	PP	YTD	and	define	it	as	a	year-to-date	value	of	the

Sales	measure	in	the	parallel	period.	The	YTD	value	should	only	be	calculated	up	to	the
parallel	period	of	the	last	month	with	the	data.	For	this,	you	might	need	some	help,	so
here's	the	syntax:

						Sum(

									PeriodsToDate([Date].[Fiscal].[Fiscal	Year],		

												ParallelPeriod([Date].[Fiscal].[Fiscal	Year],	1,		

															Tail(NonEmpty({	null	:		

																																	[Date].[Fiscal].CurrentMember		

																															},	

																															[Measures].[Sales]),	

																					1).Item(0))),	

									[Measures].[Sales])	

5.	 Define	a	calculated	measure	Ratio	that	is	equal	to	the	ratio	of	the	YTD	value	versus	the
PP	YTD	value.	Don't	forget	to	take	care	of	possible	division	by	zero	(using	the	iif()
function).

6.	 Define	a	calculated	measure	Forecast	that	is	equal	to	the	parallel	period's	value	of	the
measure	Sales	corrected	(multiplied)	by	the	measure	Ratio.

7.	 Define	a	calculated	measure	Forecast	YTD	that	is	equal	to	the	sum	of	year-to-date	values
of	the	measures	Sales	and	Forecast,	but	only	for	months	when	Sales	is	null.

8.	 Add	all	those	measures	on	the	columns	of	the	query	and	verify	that	your	query	looks	like
the	following	one:

						WITH	

						MEMBER	[Measures].[Sales	PP]	AS	

									(ParallelPeriod([Date].[Fiscal].[Fiscal	Year],	1,		

																											[Date].[Calendar].CurrentMember),	

											[Measures].[Sales])				

									,	FORMAT_STRING	=	'$#,##0.00'	

						MEMBER	[Measures].[Sales	YTD]	AS	

									Sum(

												PeriodsToDate([Date].[Calendar].[Calendar	Year],		

																											[Date].[Calendar].CurrentMember),	

												[Measures].[Sales])				

										,	FORMAT_STRING	=	'$#,##0.00'										

						MEMBER	[Measures].[Sales	PP	YTD]	AS	

									Sum(

												PeriodsToDate([Date].[Calendar].[Calendar	Year],		

															ParallelPeriod([Date].[Calendar].[Calendar	Year],		

																																1,		

WOW! eBook
www.wowebook.org

																		Tail(NonEmpty({	null	:	[Date].[Calendar]	

																																											.CurrentMember	},	

																																		[Measures].[Sales]),	

																								1).Item(0))),	

												[Measures].[Sales])				

									,	FORMAT_STRING	=	'$#,##0.00'							

						MEMBER	[Measures].[Ratio]	AS	

									iif([Measures].[Sales	PP	YTD]	=	0,	null,	

														[Measures].[Sales	YTD]	/	[Measures].[Sales	PP	YTD]		

)	

									,	FORMAT_STRING	=	'#,##0.00'	

						MEMBER	[Measures].[Forecast]	AS	

									iif(IsEmpty([Measures].[Sales]),		

														[Measures].[Ratio]	*	[Measures].[Sales	PP],	

														null)	

									,	FORMAT_STRING	=	'$#,##0.00'	

						MEMBER	[Measures].[Forecast	YTD]	AS	

									iif(IsEmpty([Measures].[Sales]),	

														Sum(

															PeriodsToDate([Date].[Calendar].[Calendar	Year],		

																														[Date].[Calendar].CurrentMember),	

															[Measures].[Sales]	+	

															[Measures].[Forecast]),	

														null)	

									,	FORMAT_STRING	=	'$#,##0.00'							

						SELECT	

									{	[Measures].[Sales],	

											[Measures].[Sales	PP],	

											[Measures].[Sales	YTD],	

											[Measures].[Sales	PP	YTD],	

											[Measures].[Ratio],	

											[Measures].[Forecast],	

											[Measures].[Forecast	YTD]	

									}	ON	0,	

								{	Descendants([Date].[Calendar].[Calendar	Year]	

																		.&[2012],	

																		[Date].[Calendar].[Month])	}	ON	1	

					FROM	

								[Adventure	Works]	

9.	 Execute	the	query.
10.	 Verify	that	the	result	matches	the	following	screenshot.	The	highlighted	cells	represent

the	forecasted	values:

WOW! eBook
www.wowebook.org

WOW! eBook
www.wowebook.org

How	it	works...
The	first	calculated	measure,	Sales	PP,	represents	a	value	of	the	measure,	Sales,	in	the
parallel	period—the	previous	year	in	this	case.	This	value	will	serve	as	a	basis	for	calculating
the	value	of	the	same	period	in	the	current	year	later.	Notice	that	the	measure,	Sales	PP,	has
values	in	each	month.

The	second	calculated	measure,	Sales	YTD,	is	used	as	one	of	the	values	in	the	Ratio	measure,
the	measure	which	determines	the	growth	rate	and	which	is	subsequently	used	to	correct	the
parallel	period	value	by	the	growth	ratio.	Notice	that	the	Sales	YTD	values	remain	constant
after	June	2012	because	the	values	of	the	measure	it	depends	on,	Sales,	are	empty	in	the
second	half	of	the	fiscal	year.

The	third	calculated	measure,	Sales	PP	YTD,	is	a	bit	more	complex.	It	depends	on	the	Sales
PP	measure	and	should	serve	as	the	denominator	in	the	growth	rate	calculation.	However,
values	of	the	Sales	PP	measure	are	not	empty	in	the	second	half	of	the	year,	which	means	that
the	cumulative	sum	would	continue	to	grow.	This	would	corrupt	the	ratio	because	the	ratio
represents	the	growth	rate	of	the	current	period	versus	the	previous	period,	the	year-to	date	of
each	period.	If	one	stops,	the	other	should	stop	too.	That's	why	there's	an	additional	part	in	the
definition	that	takes	care	of	finding	the	last	period	with	data	and	limits	the	parallel	period	to
the	exact	same	period.	This	was	achieved	using	the	Tail-NonEmpty-Item	combination,	where
the	NonEmpty()	function	looks	for	non-empty	members	up	to	the	current	period,	Tail()	takes
the	last	one,	and	the	Item()	function	converts	that	into	a	single	member.	Notice	in	the	previous
screenshot	that	it	works	exactly	as	planned.	Sales	PP	YTD	stops	growing	when	Sales	YTD
stops	increasing;	all	because	Sales	is	empty.

Once	we	have	that	fixed,	we	can	continue	and	build	the	Ratio	measure,	which	as	stated	earlier,
represents	the	growth	rate	between	all	the	periods	in	the	current	year	so	far	versus	the	same
periods	in	the	previous	year.	As	both	of	the	year-to-date	measures	become	constant	at	some
point	in	time,	the	ratio	also	becomes	constant,	as	visible	in	the	previous	screenshot.

The	Forecast	measure	is	where	we	take	the	value	of	the	same	period	in	the	previous	year	and
multiply	it	by	the	growth	rate	in	the	form	of	the	Ratio	measure.	That	means	we	get	to	preserve
the	shape	of	the	curve	from	the	previous	year	while	we	increase	or	decrease	the	value	of	it	by
an	appropriate	factor.	It	is	important	to	notice	that	the	ratio	is	not	constant,	it	changes	in	time,
and	it	adjusts	itself	based	on	all	the	year-to-date	values	–		if	they	exist.	When	there	aren't	any,	it
becomes	a	constant.

Finally,	the	last	calculated	measure,	Forecast	YTD,	is	here	to	show	what	would	have	happened
to	the	Sales	YTD	measure	if	there	were	values	in	the	last	six	months	of	that	year.	Of	course,	it
does	that	by	summing	the	year-to-date	values	of	both	the	Sales	and	Forecast	measures.

WOW! eBook
www.wowebook.org

There's	more...
The	following	figure	illustrates	the	principle	behind	the	periodic	cycles'	calculation	quite
easily:

The	Sales	Amount	series	(big	dots)	represents	values	of	the	original	measure,	the	one	we
used	in	the	scope.	The	SalesPP	series	(small	dots)	represents	the	values	of	the	Sales	Amount
measure	in	the	previous	year's	months.	The	Forecast	series	(broken	line)	follows	the	shape
of	the	Sales	PP	series	starting	from	July.	Finally,	the	Sales	+	Forecast	series	combines	sales
and	forecasts	in	a	way	that	it	switches	to	forecast	data	in	July	to	December.

The	previous	image	illustrates	that	the	forecasted	values	(broken	line	after	June)	are	not	the
same	as	the	actual	Sales	Amount	data	(big	dots	after	June).	Some	values	match	perfectly;	some
don't	at	all.

There's	certainly	a	possibility	of	improving	the	formula	for	the	ratio	calculation	in	a	way	that
incorporates	many	previous	periods	and	not	just	the	previous	year,	as	in	this	example,	in
addition	to	adding	more	weight	to	the	recent	years,	or	applying	the	moving	averages	to
smooth	the	curve.	You	are	encouraged	to	experiment	with	this	recipe	to	get	more	accurate
forecasts	of	the	data.

Other	approaches

The	technique	described	in	this	recipe	will	fail	to	achieve	good	values	when	applied	to	non-
periodic	business	processes,	or	processes	with	periodic	cycles	but	irregular	events	inside
them.	The	recipe	Calculating	moving	averages	in	Chapter	3	,	Working	with	Time,	might	be	a

WOW! eBook
www.wowebook.org

good	starting	point	in	those	situations.

If	you	find	this	recipe	interesting,	here's	another	variant	in	a	blog	article	by	Chris	Webb,	one
of	the	early	reviewers	of	this	book:	http://tinyurl.com/ChrisSeasonCalcs	.

Finally,	data	mining	and	its	Time	Series	algorithm	can	be	a	more	accurate	way	of	forecasting
future	values,	but	that's	outside	the	scope	of	this	book.	If	you're	interested	in	learning	more
about	it,	here	are	two	links	to	get	you	started	in	that	direction.	One	explains	what	the	Time
Series	algorithm	is	and	the	second	is	Chris	Webb's	application	of	it:
http://tinyurl.com/DataMiningTimeSeries

http://tinyurl.com/ChrisDataMiningForecast

WOW! eBook
www.wowebook.org

http://tinyurl.com/ChrisSeasonCalcs
http://tinyurl.com/DataMiningTimeSeries
http://tinyurl.com/ChrisDataMiningForecast

See	also
The	recipe	Forecasting	using	linear	regression	deals	with	a	similar	topic

WOW! eBook
www.wowebook.org

Allocating	non-allocated	company	expenses	to
departments
There	are	two	types	of	expenses;	direct	and	indirect.	It	is	relatively	easy	for	any	company	to
allocate	a	direct	expense	to	a	corresponding	department	because	it	actually	happens	in	that
department	and	is	in	no	way	associated	with	other	departments.	This	type	of	expense	is	usually
allocated	in	real	time	when	it	enters	the	system.	An	example	of	such	an	expense	is	salaries.

The	other	type	of	expense	is	an	indirect	expense,	for	example,	an	electricity	or	heating	bill.
These	expenses	are	usually	entered	in	the	system	using	a	special	department	like	the
corporation	itself,	a	common	expense	department,	or	simply	nothing	(a	null	value).	The
company,	to	have	a	clear	picture	of	how	each	department	is	doing,	usually	wants	to	allocate
these	expenses	to	all	departments.	Of	course,	there	are	many	ways	of	achieving	this	and	none
of	them	are	perfect.	Because	of	that,	the	allocation	is	usually	done	at	the	later	stage,	not	in	real
time.

For	example,	the	allocation	can	be	implemented	in	the	ETL	(Extract,	Transform,	Load)
phase.	In	that	case,	the	modified	data	enters	the	Data	Warehouse	(DW)	and	later	the	cube.	The
other	approach	is	to	leave	the	data	as	it	is	in	the	DW	and	use	the	MDX	script	in	the	cube	to
modify	it.	The	first	scenario	will	have	better	performance;	the	second	more	flexibility.

Flexibility	means	that	the	company	can	apply	several	calculations	and	choose	which	set	of
allocation	keys	fits	the	best	–	a	sort	of	what-if	analysis.	It	also	means	that	the	company	may
decide	to	use	multiple	allocation	schemes	at	the	same	time,	one	for	each	business	process.
However,	the	allocation	keys	can	change	in	time.	Maintaining	complex	scope	statements	can
become	difficult.	The	performance	of	such	scopes	will	degrade	too.	In	short,	each	approach
has	its	advantages	and	disadvantages.

In	this	recipe,	we'll	focus	on	the	second	scenario,	the	one	where	we	apply	MDX.	After	all,	this
is	a	book	about	MDX	and	its	applications.	Here,	you'll	learn	how	to	perform	the	scope	type
allocation	and	how	to	allocate	the	values	from	one	member	in	the	hierarchy	on	its	siblings	so
that	the	total	remains	the	same.	Once	you	learn	the	principle,	you	will	be	able	to	choose	any
set	of	allocation	keys	and	apply	them	whenever	and	wherever	required.

WOW! eBook
www.wowebook.org

Getting	ready
In	this	example,	we're	going	to	use	the	measure	Amount	and	two	related	dimensions,	Account
and	Department.

Open	SQL	Server	Data	Tools	(SSDT)	and	then	open	the	Adventure	Works	DW	2016	solution.
Double-click	on	the	Adventure	Works	cube.	Locate	the	measure	Amount	in	the	Financial
Reporting	measure	group.	Go	to	the	next	tab,	Dimension	Usage,	and	check	that	the	two
dimensions	mentioned	previously	are	related	to	this	measure	group.

Now,	go	to	the	Cube	Browser	tab	and	click	on	the	Analyze	in	Excel	button	on	top.	If	you	are
being	asked	about	the	perspective,	choose	Finance.	Then,	create	a	pivot	that	shows	accounts
and	departments	on	rows	and	the	value	of	the	measure	Amount	in	the	data	part.	Expand	the
accounts	until	the	member	Operating	Expenses	located	under	Net	Income	|	Operating
Profit	is	visible.	Expand	the	departments	until	all	of	them	are	visible.	Once	you're	done,
you'll	see	the	following	screenshot:

Notice	a	strange	thing	in	the	result?	The	total	for	the	Corporate	department	in	the	Operating
Expenses	account	(the	highlighted	27+	millions)	is	not	equal	to	the	sum	of	the	individual
departmental	values.	Roughly	12	million	is	missing.	Why	is	that?

Double-click	on	the	Department	dimension	in	the	Solution	Browser	pane.	Select	the	attribute
that	represents	the	parent	key	and	check	its	property,	MembersWithData,	found	under	the

WOW! eBook
www.wowebook.org

Parent-Child	group	of	properties.	Notice	that	it's	bold,	which	means	the	property	has	a	non-
default	value.	The	option	that	was	selected	is	NonLeafDataHidden.	That	means	this	parent-child
hierarchy	hides	members	that	represent	the	data	members	of	the	non-leaf	members.	In	this
case	there's	only	one,	the	Corporate	member,	found	on	the	first	level	in	that	hierarchy.

Change	the	value	of	this	property	to	NonLeafDataVisible	and	deploy	the	solution,	preferably
using	the	Deploy	Changes	Only	deployment	mode	(configurable	in	the	Project	Properties
form)	to	speed	up	the	process.

Now,	either	refresh	Excel	or	return	to	the	Cube	Browser	and	reconnect	to	the	cube	and	click
on	the	Analyze	in	Excel	button	on	top	to	create	a	pivot	again	in	Excel	(choose	the	Finance
perspective	again).

A	new	member	will	appear	on	the	second	level,	Corporate.	This	member	is	not	the	same	as
the	member	on	the	first	level.	It	is	a	special	member	representing	its	parent's	individual	value
that,	together	with	the	value	of	other	siblings,	goes	into	the	final	value	of	their	parent,	the
Corporate	member	on	the	first	level.	This	hidden	Corporate	member,	sometimes	called	the
DATAMEMBER,	has	a	value	of	12+	million,	which	is	now	clearly	visible	in	the	pivot.	The	exact
amount,	marked	in	the	following	screenshot,	was	missing	in	our	equation	a	moment	ago:

This	new	member	will	represent	the	unallocated	expenses	that	we	will	try	to	spread	to	other
departments.

WOW! eBook
www.wowebook.org

OK,	let's	start!

Double-click	on	the	Adventure	Works	cube	and	go	to	the	Calculations	tab.	Choose	Script
View.	Position	the	cursor	at	the	end	of	the	script	and	follow	the	steps	in	the	next	section.

WOW! eBook
www.wowebook.org

How	to	do	it...
The	solution	consists	of	one	calculated	measure,	two	scopes	one	inside	the	other,	and
modifications	of	the	previously	defined	calculated	measure	inside	each	scope:

1.	 Create	a	new	calculated	measure	in	the	MDX	script	named	Amount	alloc	and	set	it	equal
to	the	measure,	Amount.	Be	sure	to	specify	$#,##0.00	as	the	format	of	that	measure	and
place	it	in	the	same	measure	group	as	the	original	measure:

						Create	Member	CurrentCube.[Measures].[Amount	alloc]	

						As	[Measures].[Amount]	

						,	Format_String	=	'$#,##0.00'	

						,	Associated_Measure_Group	=	'Financial	Reporting'	

2.	 Create	a	scope	statement	in	which	you'll	specify	this	new	measure,	the	level	two
department	members,	the	Operating	Expenses	account,	and	all	of	its	descendants:

						Scope(([Measures].[Amount	alloc],	

															[Department].[Departments]	

																											.[Department	Level	02].MEMBERS,	

															Descendants([Account].[Accounts].&[58])));	

3.	 The	value	in	this	subcube	should	be	increased	by	a	percentage	of	the	value	of	the
Corporate	DATAMEMBER.	The	percentage	of	the	allocation	key	that	is	being	used	here	is
going	to	be	the	percentage	of	the	individual	department	in	respect	to	its	parents'	values.
Specify	this	using	the	following	expression:

				This	=	[Measures].[Amount]	+	

											([Department].[Departments].&[1].DATAMEMBER,	

													[Measures].[Amount])	*	

											([Department].[Departments].CurrentMember,	

													[Measures].[Amount])	/	

											Aggregate(

												Except([Department].[Departments]	

																																.[Department	Level	02]	

																																.MEMBERS,	

																				[Department].[Departments]	

																																.&[1].DATAMEMBER),		

												[Measures].[Amount]);	

4.	 Create	another	scope	statement,	in	which	you'll	specify	that	the	value	of	the
Corporate	DATAMEMBER	should	be	null	once	all	allocation	is	done:

				Scope([Department].[Departments].&[1].DATAMEMBER);	

								This	=	null;	

5.	 Provide	two	End	Scope	statements	to	close	the	scopes.
6.	 The	complete	code	should	look	like	this:

						Create	Member	CurrentCube.[Measures].[Amount	alloc]	

						As	[Measures].[Amount]	

						,	Format_String	=	'$#,##0.00'	

						,	Associated_Measure_Group	=	'Financial	Reporting';		

	

WOW! eBook
www.wowebook.org

						Scope(([Measures].[Amount	alloc],	

															[Department].[Departments]	

																											.[Department	Level	02].MEMBERS,	

															Descendants([Account].[Accounts].&[58])));	

										This	=	[Measures].[Amount]	+	

																	([Department].[Departments].&[1].DATAMEMBER,	

																			[Measures].[Amount])	*	

																	([Department].[Departments].CurrentMember,	

																			[Measures].[Amount])	/	

																	Aggregate(

																			Except([Department].[Departments]	

																																							.[Department	Level	02]	

																																							.MEMBERS,	

																											[Department].[Departments]	

																																							.&[1].DATAMEMBER),	

																			[Measures].[Amount]);	

										Scope([Department].[Departments].&[1].DATAMEMBER);	

														This	=	null;	

										End	Scope;	

						End	Scope;	

7.	 Go	to	the	Perspectives	tab,	find	the	Finance	measure	group	(in	columns)	and	the
Amount	alloc	measure	(in	rows,	bottom	one)	and	fill	the	checkbox	so	that	this	new
measure	appears	in	the	Finance	perspective	in	Excel.

8.	 Deploy	the	changes	using	the	BIDS	Helper	for	2016	or	SSDT	itself.
9.	 Go	to	the	Cube	Browser,	reconnect	and	add	the	new	measure	in	the	pivot	or	simply

refresh	the	existing	Excel	and	add	the	new	measure;	either	should	be	fine.
10.	 Verify	that	the	result	matches	the	following	screenshot.	The	highlighted	cells	are	the	cells

for	which	the	value	is	changed.	The	Corporate	member	has	no	value,	while	the
individual	members	are	increased	in	proportion	to	their	initial	value.	Beneath,	the	total
remains	the	same:

WOW! eBook
www.wowebook.org

WOW! eBook
www.wowebook.org

How	it	works...
The	new	calculated	measure	is	used	for	allocating	the	values;	the	original	measure	preserves
its	values.	This	is	not	the	only	way	of	performing	the	allocation,	but	it's	the	one	that	suits	us
now	because	it	allows	us	to	easily	compare	the	original	and	the	new	values.	If	you're
interested	in	the	other	approach,	skip	to	the	next	section,	which	illustrates	how	to	allocate
values	directly	in	the	original	measure.

The	new	calculated	measure	is	defined	to	be	an	alias	for	the	Amount	measure,	meaning	it	will
return	the	exact	same	value.

The	scope	statement	is	used	for	specifying	the	subcube	for	which	we	want	to	apply	a	different
evaluation	of	the	cells.	This	subcube	is	formed	using	the	new	measure,	the	Operating
Expenses	account	and	all	of	its	descendants,	and	finally	all	the	departments	in	level	two	of	the
Department.Departments	hierarchy.	Once	we	have	established	this	scope,	we	can	apply	the
new	calculation.

The	new	calculation	basically	says	this:	take	the	original	Amount	measure's	value	for	the
current	context	of	that	subcube	and	increase	it	by	a	percentage	of	the	Amount	measure's	value
of	the	corporate	DATAMEMBER.	The	sum	of	all	the	percentages	should	naturally	be	1	for	the
total	to	remain	the	same.

The	percentage	is	a	ratio	of	the	current	member's	value	versus	the	aggregated	value	of	all	its
siblings,	except	the	corporate	DATAMEMBER.	We're	skipping	that	member	because	that's	the
member	whose	value	we're	dividing	among	its	siblings.	We	don't	want	some	of	it	to	return	to
that	member	again.	Actually,	we're	not	deducing	its	value	by	this	expression;	we're	merely
evaluating	a	proper	percentage	of	it,	which	we	will	use	later	on	to	increase	the	value	of	each
sibling.	That's	why	there	was	a	need	for	the	last	statement	in	that	scope.	That	statement	resets
the	value	of	the	corporate		DATAMEMBER.

WOW! eBook
www.wowebook.org

There's	more...
The	other	way	around	this	is	to	use	an	existing	measure	while	keeping	the	original	value	in
the	separate	calculated	measure.	Here's	how	the	MDX	script	would	look	in	that	case:

Create	Member	CurrentCube.[Measures].[Amount	preserve]	

As	[Measures].[Amount]	

,	Format_String	=	'$#,##0.00'	

,	Associated_Measure_Group	=	'Financial	Reporting'	;		

	

Freeze(([Measures].[Amount	preserve]));	

	

Scope(([Measures].[Amount],	

									[Department].[Departments]	

																					.[Department	Level	02].MEMBERS,	

									Descendants([Account].[Accounts].&[58])));	

				This	=	[Measures].[Amount	preserve]	+	

											([Department].[Departments].&[1].DATAMEMBER,	

													[Measures].[Amount	preserve])	*	

											([Department].[Departments].CurrentMember,	

													[Measures].[Amount	preserve])	/	

											Aggregate(

													Except([Department].[Departments]	

																																	.[Department	Level	02].MEMBERS,	

																					[Department].[Departments]	

																																	.&[1].DATAMEMBER),		

													[Measures].[Amount	preserve]);	

				Scope([Department].[Departments].&[1].DATAMEMBER);	

								This	=	null;	

				End	Scope;	

End	Scope;	

At	first,	it	looks	like	the	regular	and	calculated	measures	have	just	switched	their	positions
inside	the	code.	However,	there's	more	to	it;	it's	not	that	simple.

A	calculated	measure	referring	to	another	measure	is	in	fact	a	pointer	to	that	measure's	value,
not	a	constant.	To	evaluate	its	expression,	the	referred	measure	has	to	be	evaluated	first.

The	assignment	inside	the	Scope()	statement	(the	first	This	part)	uses	the	calculated	measure,
which	requires	the	value	of	the	original	Amount	measure	to	be	evaluated.	However,	the	Amount
measure	is	used	in	the	very	same	scope	definition,	so	to	evaluate	the	Amount	measure,	the
engine	has	to	enter	the	scope	and	evaluate	the	calculated	measure	specified	in	the	assignment
in	that	scope.	Now	we're	in	the	same	position	we	started	from,	which	means	we've	run	into	an
infinite	recursion.	Seen	from	that	perspective,	it	becomes	obvious	we	should	change
something	in	the	script.

Just	before	the	Scope()	statement,	we	have	added	a	Freeze()	statement.	The	MDX	Freeze()
statement	locks	the	cell	value	of	the	Amount	so	that	changes	to	other	cells	in	the	subsequent
Scope()	statement	have	no	effect	on	the	Amount.	The	Freeze()	statement	takes	a	snapshot	of
the	subcube,	which	is	provided	as	its	argument,	and	the	snapshot	was	taken	at	a	particular

WOW! eBook
www.wowebook.org

position	in	the	MDX	script.	Using	Freeze(),	we	have	prevented	the	reevaluation	of	the
calculated	measure	in	all	subsequent	expressions.	Therefore,	the	Scope()	statement	will	not
end	up	in	infinite	recursion.	The	assignment	inside	the	scope	takes	the	snapshot	value	of	the
calculated	measure;	it	doesn't	trigger	its	reevaluation.	In	other	words,	there's	no	infinite
recursion	with	the	use	of	the	Freeze()	statement.

Here's	the	screenshot	of	the	Analyze	in	Excel	in	this	case:

By	looking	at	the	highlighted	rows,	it	looks	like	the	measures	have	switched	places,	but	now
we	know	the	required	expressions	in	the	MDX	script	are	not	done	that	way.	We	had	to	use	the
Freeze()	statement	because	of	the	difference	between	regular	and	calculated	measures	and
how	they	get	evaluated.

If	you	want	to	learn	more	about	the	Freeze()	statement,	here's	a	link	to	the	MSDN	site:
http://tinyurl.com/MDXFreeze

Note

Although	this	approach	allows	for	drill	through	(because	we're	not	using	a	calculated
measure),	the	values	returned	will	not	match	the	cube's	data.	This	is	because	allocations	have
been	implemented	in	the	MDX	script,	not	in	the	original	DW	data.

Choosing	a	proper	allocation	scheme

WOW! eBook
www.wowebook.org

http://tinyurl.com/MDXFreeze

This	recipe	showed	how	to	allocate	the	values	based	on	the	key,	which	is	calculated	as	a
percentage	of	the	value	of	each	member	against	the	aggregate	of	all	the	other	siblings	to	be
increased.	Two	things	are	important	here:	we've	used	the	same	measure,	Amount,	and	we've
used	the	same	coordinate,	Departments,	in	the	cube.	However,	this	doesn't	have	to	be	the	case.

We	can	choose	any	measure	we	want,	any	that	we	find	appropriate.	For	example,	we	might
have	allocated	the	values	based	on	the	Sales	Amount,	Total	Product	Cost,	Order	Count,	or
anything	similar.	We	might	have	also	taken	another	coordinate	for	the	allocation.	For
example,	there	is	a	Headcount	member	in	the	Account.Accounts	hierarchy.	We	could	have
allocated	Operating	Expense	per	the	number	of	headcounts.

To	conclude,	it	is	totally	up	to	you	to	choose	your	allocation	scheme	as	long	as	the	sum	of	the
allocation	percentages	(ratios)	remains	1.

WOW! eBook
www.wowebook.org

Analyzing	the	fluctuation	of	customers
Every	company	takes	care	of	its	customers,	or	at	least	it	should,	because	it	is	relatively	easy	to
lose	one	while	it's	much	harder	to	acquire	a	new	one.

There	are	many	ways	to	perform	analysis	on	customers.	In	this	recipe,	we	are	going	to
highlight	a	few	techniques	that	allow	us	to	get	some	easy-to-understand	indicators:

The	number	of	loyal	customers
The	number	of	new	customers
The	number	of	lost	customers
Which	customers	are	in	a	particular	group

The	idea	is	pretty	simple	to	understand,	so	let's	start.

WOW! eBook
www.wowebook.org

Getting	ready
Start	SQL	Server	Management	Studio	and	connect	to	your	SSAS	2016	instance.	Click	on	the
New	Query	button	and	check	that	the	target	database	is	Adventure	Works	DW	2016.

In	this	example,	we're	going	to	use	the	Customer	and	Date	dimensions	and	the	Customer	Count
measure,	which	can	be	found	in	the	Internet	Customers	measure	group.	Here's	the	query
we'll	start	from:

SELECT	

			{	[Measures].[Customer	Count]	}	ON	0,	

			{	[Date].[Calendar].[Calendar	Quarter].MEMBERS	}	ON	1	

FROM	

			[Adventure	Works]	

Once	executed,	the	query	returns	40	quarters	on	the	rows.

Our	task	in	this	recipe	is	to	make	the	necessary	calculation	to	have	indicators	of	customer
flow.	In	other	words,	our	task	is	to	get	the	count	of	new,	loyal,	and	lost	customers	as	an
expression	that	works	in	any	period	or	context	in	general.

WOW! eBook
www.wowebook.org

How	to	do	it...
The	solution	consists	of	five	calculated	measures	that	we	need	to	define	in	the	query	and	then
use	on	the	columns:

1.	 Add	the	WITH	part	of	the	query.
2.	 Create	the	first	calculated	measure,	name	it	Agg	TD	and	define	it	as	an	inception-to-date

calculation	of	the	measure	Customer	Count.
3.	 Create	the	second	calculated	measure,	name	it	Agg	TD	prev	and	define	it	similarly	to	the

previous	measure,	only	this	time	limit	the	time	range	to	the	member	that	is	previous	to
the	current	member.

4.	 Create	the	Lost	Customers	calculated	measure	and	define	it	as	the	difference	between	the
Agg	TD	measure	and	the	Customer	Count	measure.

5.	 Create	the	New	Customers	calculated	measure	and	define	it	as	the	difference	between	the
Agg	TD	measure	and	the	Agg	TD	prev	measure.

6.	 Create	the	Loyal	Customers	calculated	measure	and	define	it	as	the	difference	between
the	Customer	Count	measure	and	the	New	Customers	measure.

7.	 Include	all	the	calculated	measures	on	the	columns	axis	of	the	query.
8.	 Verify	that	the	query	looks	like	the	following:

						WITH	

						MEMBER	[Measures].[Agg	TD]	AS	

									Aggregate(null	:	[Date].[Calendar].CurrentMember,	

																				[Measures].[Customer	Count])	

						MEMBER	[Measures].[Agg	TD	prev]	AS	

									Aggregate(null	:	[Date].[Calendar].PrevMember,	

																				[Measures].[Customer	Count])	

						MEMBER	[Measures].[Lost	Customers]	AS	

									[Measures].[Agg	TD]	-	[Measures].[Customer	Count]	

						MEMBER	[Measures].[New	Customers]	AS	

									[Measures].[Agg	TD]	-	[Measures].[Agg	TD	prev]	

						MEMBER	[Measures].[Loyal	Customers]	AS	

									[Measures].[Customer	Count]	-	[Measures].[New	Customers]	

						SELECT	

									{	[Measures].[Customer	Count],	

											[Measures].[Agg	TD],	

											[Measures].[Agg	TD	prev],	

											[Measures].[Lost	Customers],	

											[Measures].[New	Customers],	

											[Measures].[Loyal	Customers]	}	ON	0,	

									{	[Date].[Calendar].[Calendar	Quarter].MEMBERS	}	ON	1	

						FROM	

									[Adventure	Works]	

9.	 Run	the	query	and	observe	the	results,	especially	the	last	three	calculated	measures.	It	is
obvious	that	in	the	initial	phase	of	this	company	there	was	a	problem	with	retaining
existing	customers.

WOW! eBook
www.wowebook.org

WOW! eBook
www.wowebook.org

How	it	works...
The	expressions	used	in	this	example	are	relatively	simple	expressions,	but	that	doesn't
necessarily	mean	that	they	are	easy	to	comprehend.	The	key	to	understanding	how	these
calculations	work	is	in	realizing	that	a	distinct	count	type	of	measure	was	used.	What's	special
about	that	type	of	aggregation	is	that	it	is	not	an	additive	aggregation.	The	measure,	Customer
Count,	is	a	distinct	type	of	measure.	You	can	verify	that	by	checking	the	AggregateFunction
property	of	the	measure,	which	is	DistinctCount,	as	shown	in	the	following	screenshot:

In	this	recipe,	we've	taken	advantage	of	non-additive	behavior	of	the	distinct	count
aggregation	and	managed	to	get	really	easy-to-memorize	formulas.

We're	starting	with	the	two	special	calculated	measures.	The	first	one	[Agg	TD]	calculates	the
inception-to-date	value	of	the	Customer	Count	measure.	An	ordinary	measure	with	Sum
aggregation	would	sum	all	the	values	up	to	the	current	point	in	time.	However,	a	non-additive
Distinct	Count	type	of	measure	behaves	differently.	It	returns	the	count	of	distinct	customers
up	to	the	current	point	in	time,	not	their	sum.	That	value	can	be	greater	or	equal	to	the	number
of	customers	who	have	Internet	orders	in	any	period	and	less	than	or	equal	to	the	total	number
of	customers.

The	second	calculated	measure	[Agg	TD	prev]	does	the	same	thing,	except	that	it	stops	in	the
previous	period.

Combining	those	two	measures	with	the	original	Customer	Count	measure	leads	to	the
solution	for	the	other	three	calculated	measures.

The	Lost	Customers	measure	gets	the	value	obtained	by	subtracting	the	count	of	customers	in
the	current	period	from	the	count	of	customers	so	far.	The	New	Customers	measure	gets	the
value	that	is	equal	to	the	difference	between	those	first	two	calculated	measures.	Again,	this
evaluates	to	the	number	of	customers	so	far	minus	the	number	of	customers	up	to	the
previous	period.	What's	left	are	those	that	were	acquired	in	the	current	time	period.

Finally,	the	Loyal	Customers	calculated	measure	is	defined	as	the	count	of	customers	in	the
WOW! eBook

www.wowebook.org

current	period	minus	the	new	customers;	everything	that's	in	the	current	period	is	either	a	new
or	a	loyal	customer.

The	two	special	calculated	measures	are	not	required	to	be	in	the	query	or	to	be	visible	at	all.
They	are	used	here	only	to	show	how	the	evaluation	takes	place.

WOW! eBook
www.wowebook.org

There's	more...
It	makes	sense	to	put	those	definitions	in	the	MDX	script	so	that	they	can	be	used	in	the
subsequent	calculations	by	all	users.	Here's	what	should	go	in	the	MDX	script:

Create	Member	CurrentCube.[Measures].[Agg	TD]	AS	

			Aggregate(null	:	[Date].[Calendar].CurrentMember,	

														[Measures].[Customer	Count])	

				,	Format_String	=	'#,#'	

				,	Visible	=	0	

				,	Associated_Measure_Group	=	'Internet	Customers';		

	

Create	Member	CurrentCube.[Measures].[Agg	TD	prev]	AS	

			Aggregate(null	:	[Date].[Calendar].PrevMember,	

														[Measures].[Customer	Count])	

				,	Format_String	=	'#,#'	

				,	Visible	=	0	

				,	Associated_Measure_Group	=	'Internet	Customers';		

	

Create	Member	CurrentCube.[Measures].[Lost	Customers]	AS	

			[Measures].[Agg	TD]	-	[Measures].[Customer	Count]	

				,	Format_String	=	'#,#'	

				,	Associated_Measure_Group	=	'Internet	Customers';		

	

Create	Member	CurrentCube.[Measures].[New	Customers]	AS	

			[Measures].[Agg	TD]	-	[Measures].[Agg	TD	prev]	

				,	Format_String	=	'#,#'	

				,	Associated_Measure_Group	=	'Internet	Customers';		

	

Create	Member	CurrentCube.[Measures].[Loyal	Customers]	AS	

			[Measures].[Customer	Count]	-	[Measures].[New	Customers]	

				,	Format_String	=	'#,#'	

				,	Associated_Measure_Group	=	'Internet	Customers';		

This	allows	us	to	identify	the	customers	in	those	statuses	(lost,	loyal,	and	new).

Identifying	loyal	customers	in	a	period

The	period	we'll	use	in	this	example	will	be	Q4	CY	2012.	We	want	to	find	out	wh0	were	our
first	loyal	customers.	Perhaps	we	want	to	reward	them	or	analyze	their	behavior	further	to
determine	what	made	them	stay	with	us.	We'll	choose	to	further	analyze	their	behavior.	We
have	prepared	the	following	query	to	gather	all	sorts	of	measures	about	those	customers:

WITH	

SET	[Loyal	Customers]	AS	

						NonEmpty([Customer].[Customer].[Customer].MEMBERS,	

																[Measures].[Customer	Count])	-	

			(

						NonEmpty([Customer].[Customer].[Customer].MEMBERS,	

																[Measures].[Agg	TD])	-	

						NonEmpty([Customer].[Customer].[Customer].MEMBERS,	

																[Measures].[Agg	TD	prev])	

)	

WOW! eBook
www.wowebook.org

SELECT	

			{	[Measures].[Internet	Order	Count],	

					[Measures].[Internet	Order	Quantity],	

					[Measures].[Internet	Sales	Amount],	

					[Measures].[Internet	Gross	Profit],	

					[Measures].[Internet	Gross	Profit	Margin],	

					[Measures].[Internet	Average	Sales	Amount],	

					[Measures].[Internet	Average	Unit	Price]	}	ON	0,	

			{	[Loyal	Customers]	}	ON	1	

FROM	

			[Adventure	Works]	

WHERE	

			([Date].[Calendar].[Calendar	Quarter].&[2012]&[4])	

The	previous	query	has	Q4	CY	2012	in	the	slicer	and	several	measures	on	the	columns.	The
set	on	the	rows	[Loyal	Customers]	is	defined	as	the	difference	among	the	three	sets.

The	expression	for	the	Loyal	Customers	set	is	in	the	form	of	Y	=	A	-	(B	-	C),	which	is
similar	to	how	we	calculate	the	Loyal	Customers	measure	in	our	initial	solution.

Here,	we	are	repeating	the	logic	we	used	in	the	initial	solution	for	calculating	the	Loyal
Customers	measure:

[Loyal	Customers]	=	[Customer	Count]	-	[New	Customers]	

[New	Customers]	=	[Customers	Inception-to-date	(Agg	TD)]	-	

[Customers	previous	to	the	current	member	(Agg	TD	prev)]	

The	logic	is	similar:	the	difference	is	that	we	are	now	doing	the	set	operation.	To	get	the	set
A,	B,	and	C,	we	used	the	NonEmpty()	function	and	the	following	three	calculated	measures	as
the	second	argument	of	the	NonEmpty()	function:

			[Measures].[Customer	Count]	

			[Measures].[Agg	TD]	

			[Measures].[Agg	TD	prev]	

Yes,	using	these	three	sets	we	got	40	loyal	customers.	Here's	the	screenshot	with	their	values:

WOW! eBook
www.wowebook.org

It's	worth	mentioning	that	you	can	build	several	dynamic	sets	in	the	MDX	script,	which	would
represent	the	customers	in	the	particular	status.	Here's	the	expression	for	the	dynamic	Loyal
Customers	set:

Create	Dynamic	Set	CurrentCube.[Loyal	Customers]	AS	

			NonEmpty([Customer].[Customer].[Customer].MEMBERS,	

													[Measures].[Customer	Count])	-	

			(

						NonEmpty([Customer].[Customer].[Customer].MEMBERS,	

																[Measures].[Agg	TD])	-	

						NonEmpty([Customer].[Customer].[Customer].MEMBERS,	

																[Measures].[Agg	TD	prev])	

);	

Note

If	you're	wondering	whether	this	only	applies	to	customer	analysis,	the	answer	is	no!	It	doesn't
have	to	be	a	customer	dimension;	it	can	be	any	dimension.	The	principles	apply	in	the	same
way.

More	complex	scenario

There	are	other	options	we	can	use	for		customer	analysis.	For	example,	we	might	want	to
combine	two	or	more	periods.

We	know	there	were	40	loyal	customers	in	the	last	quarter	of	the	year	2012.	A	perfectly
logical	question	arises--what	happened	to	them	afterwards?	Are	they	still	loyal	in	Q2	in	the

WOW! eBook
www.wowebook.org

following	year?	If	yes,	how	many	of	them?

Let's	find	out:

SELECT	

			{	[Measures].[Internet	Order	Count],	

					[Measures].[Internet	Order	Quantity],	

					[Measures].[Internet	Sales	Amount],	

					[Measures].[Internet	Gross	Profit],	

					[Measures].[Internet	Gross	Profit	Margin],	

					[Measures].[Internet	Average	Sales	Amount],	

					[Measures].[Internet	Average	Unit	Price]	}	ON	0,	

			{	Exists([Loyal	Customers	Set],	

													([Measures].[Customer	Count],	

															[Date].[Calendar].[Calendar	Quarter].&[2013]&[2]),	

															'Internet	Customers')	}	ON	1	

FROM	

			[Adventure	Works]	

WHERE	

			([Date].[Calendar].[Calendar	Quarter].&[2012]&[4])	

The	query	is	similar	to	the	previous	one,	except	here	we	have	an	extra	construct	using	the
Exists()	function,	the	variant	with	the	measure	group	name.	What	this	function	does	is	take
the	Loyal	Customers	Set	in	Q4	2012	and	reduces	it	to	a	set	of	members	who	also	have	values
in	the	following	year's	Q2.

The	result	shows	14	customers	out	of	40	are	identified	as	loyal	customers	also	in	Q2	2013:

The	alternative	approach

Chris	Webb	has	an	alternative	solution	for	customer	analysis	on	his	blog,	at:
WOW! eBook

www.wowebook.org

http://tinyurl.com/ChrisCountingCustomers	.

WOW! eBook
www.wowebook.org

http://tinyurl.com/ChrisCountingCustomers

Implementing	the	ABC	analysis
ABC	analysis	is	a	method	of	identifying	and	classifying	items,	based	on	their	impact,	into
three	regions:	A,	B,	and	C.	It's	an	extension	of	the	80-20	rule,	also	known	as	the	Pareto
principle,	which	states	that	for	many	events,	roughly	80	percent	of	the	effects	come	from	20
percent	of	the	causes.	In	one	definition	of	ABC	analysis,	the	top	20	percent	of	the	causes,	the
important	part,	are	further	divided	into	two	subgroups:	A	(the	top	5	percent)	and	B	(the
subsequent	15	percent),	and	the	80	percent	of	effects	they	contribute	to	into	segments	of	30
percent	and	50	percent.	These	are	the	ratios	we're	going	to	use	in	this	recipe.	There	are,	of
course,	other	definitions	like	10/20/70.	It	really	depends	on	the	user	needs	and	you're	free	to
change	it	and	experiment.

ABC	analysis	is	a	very	valuable	tool	that	can	be	found	mostly	in	highly-specialized
applications,	for	example,	in	an	inventory	management	application.	This	recipe	will
demonstrate	how	to	perform	ABC	analysis	on	the	cube.

WOW! eBook
www.wowebook.org

Getting	ready
Start	SQL	Server	Management	Studio	and	connect	to	your	SSAS	2016	instance.	Click	on	the
New	Query	button	and	check	that	the	target	database	is	Adventure	Works	DW	2016.

In	this	example,	we're	going	to	use	the	Product	dimension.	Here's	the	query	we'll	start	from:

SELECT	

			{	[Measures].[Internet	Gross	Profit]	}	ON	0,	

NON	EMPTY	

			{	[Product].[Product].[Product].MEMBERS	}	ON	1	

FROM	

			[Adventure	Works]	

WHERE	

			([Product].[Status].&[Current],	

					[Date].[Calendar	Year].&[2012])	

Once	executed,	the	query	returns	all	active	products	and	their	profit	in	Internet	sales	for	the
year	2012.	The	result	shows	63	active	products.

Now,	let's	see	how	we	can	classify	them.

WOW! eBook
www.wowebook.org

How	to	do	it...
The	solution	consists	of	two	calculated	measures	and	four	named	sets.	The	last	measure
returns	the	group	A,	B,	or	C.

1.	 Add	the	WITH	part	of	the	query.
2.	 Define	a	new	calculated	measure	as	an	alias	for	the	measure	on	the	columns	and	name	it

Measure	for	ABC.
3.	 Define	a	named	set,	Set	for	ABC,	which	returns	only	products	for	which	the	Internet

profit	is	not	null	using	the	previously-defined	alias	measure:

						NonEmpty([Product].[Product].[Product].MEMBERS,		

																[Measures].[Measure	for	ABC])	

4.	 Using	the	following	syntax,	define	three	named	sets:	A,	B,	and	C:

						SET	[A]	AS	

										TopPercent([Set	for	ABC],	30,	

																						[Measures].[Measure	for	ABC])	

						SET	[B]	AS	

										TopPercent([Set	for	ABC],	80,	

																						[Measures].[Measure	for	ABC])	-	[A]	

						SET	[C]	AS	

										[Set	for	ABC]	-	[A]	-	[B]	

5.	 Finally,	define	a	calculated	measure	ABC	group	that	returns	the	letter	A,	B,	or	C	based	on
the	contribution	of	each	product.	Use	the	following	expression:

						iif(IsEmpty([Measures].[Measure	for	ABC]),	null,	

											iif(Intersect([A],	

																											[Product].[Product].CurrentMember	

).Count	>	0,	

																'A',	

																iif(Intersect([B],		

																																[Product].[Product]	

																																									.CurrentMember	

).Count	>	0,	

																					'B',	

																					'C'	

)	

)	

)	

6.	 Add	that	last	calculated	measure	on	the	columns	and	replace	the	existing	measure	with
the	Measure	for	ABC	calculated	measure.

7.	 Run	the	query,	which	should	now	look	like:

						WITH	

						MEMBER	[Measures].[Measure	for	ABC]	AS	

									[Measures].[Internet	Gross	Profit]	

						SET	[Set	for	ABC]	AS	

									NonEmpty([Product].[Product].[Product].MEMBERS,		

																			[Measures].[Measure	for	ABC])	

						SET	[A]	AS	

WOW! eBook
www.wowebook.org

									TopPercent([Set	for	ABC],	30,		

																					[Measures].[Measure	for	ABC])	

						SET	[B]	AS	

									TopPercent([Set	for	ABC],	80,		

																					[Measures].[Measure	for	ABC])	-	

									[A]	

						SET	[C]	AS	

									[Set	for	ABC]	-	[A]	-	[B]	

						MEMBER	[Measures].[ABC	Group]	AS	

									iif(IsEmpty([Measures].[Measure	for	ABC]),	null,	

													iif(Intersect([A],	

																													[Product].[Product].CurrentMember	

).Count	>	0,	

																		'A',	

																		iif(Intersect([B],		

																																		[Product].[Product]	

																																											.CurrentMember	

).Count	>	0,	

																							'B',	

																							'C')))	

						SELECT	

									{	[Measures].[Measure	for	ABC],	

											[Measures].[ABC	Group]	}	ON	0,	

						NON	EMPTY	

									{	[Product].[Product].[Product].MEMBERS	}	ON	1	

						FROM	

									[Adventure	Works]	

						WHERE	

									([Product].[Status].&[Current],	

											[Date].[Calendar	Year].&[2012])	

8.	 Verify	that	the	result	matches	the	following	screenshot:

WOW! eBook
www.wowebook.org

WOW! eBook
www.wowebook.org

How	it	works...
The	alias	for	the	measure,	Internet	Gross	Profit,	in	the	form	of	the	calculated	measure,
Measure	for	ABC,	together	with	the	alias	for	the	set	on	the	rows,	Set	for	ABC,	enables	us	to
have	a	flexible	and	readable	query.	The	query	is	flexible	because	we	can	change	the	measure
in	a	single	spot	and	have	the	query	running	another	ABC	analysis.	For	example,	the	analysis
of	the	revenue	or	the	number	of	orders.	It	is	readable	because	we're	using	short	but
informative	names	in	it	instead	of	the	long	MDX	specific	names	for	members	and	levels.	In
addition,	we	are	keeping	the	syntax	short	by	not	having	to	repeat	some	expressions.	As	for	the
set	on	the	rows,	we're	not	making	the	query	completely	flexible;	there	are	still	some	parts	of
the	query	where	the	mention	of	a	specific	hierarchy	was	not	replaced	by	something	more
general.

Anyway,	let's	analyze	the	main	part	of	the	query:	sets	A,	B,	and	C	and	the	calculated	measure,
ABC	Group.

The	TopPercent()	function,	in	combination	with	a	set	and	a	measure,	returns	the	top	members
from	that	set.	The	threshold,	required	as	the	second	argument	of	that	function,	determines
which	members	are	returned.

That's	a	pretty	vague	description	of	what	this	function	does	because	it	is	not	clear	which
members	get	returned	or	how	many	top	members	will	be	returned.	Let's	see	the	more	detailed
explanation.

The	behavior	of	that	function	can	be	explained	using	the	list	of	members	sorted	in	descending
order.	We	don't	know	in	advance	how	many	of	them	the	function	will	return;	the	only	thing	we
know	is	that	it	will	stop	at	some	point.

The	members	are	included	up	to	the	point	where	the	ratio	(in	the	form	of	a	percentage)	of	the
cumulative	sum	versus	the	total	becomes	equal	to	the	value	provided	as	the	second	argument.
In	our	example,	we	had	two	such	values,	30	and	80;	80	because	the	second	segment	is	50	and
the	sum	of	30	and	50	is	80.	The	function	would	use	all	top	members	up	to	the	point	where
their	sum	reaches	30	percent	or	80	percent,	respectively,	of	the	total	value	of	the	set.

So,	set	A	will	contain	the	top	products	that	form	30	percent	of	the	total.

Set	B	gets	calculated	as	even	more:	80	percent	of	the	total.	However,	that	would	include	also
members	of	set	A.	That's	why	we	had	to	exclude	them.	Set	B	contains	the	next	50	percent	of	the
total.

Set	C	can	eventually	be	calculated	as	all	the	rest,	meaning	the	complete	set	of	members,
excluding	members	in	both	set	A	and	set	B.	Set	C	contains	the	bottom	20	percent	of	the	total.

The	calculated	measure,	ABC	Group,	basically	takes	the	current	member	on	the	rows	and
checks	in	which	set	of	three	named	sets	it	is.	This	is	done	using	a	combination	of	the

WOW! eBook
www.wowebook.org

Intersect()	function	and	the	Count()	function.	If	there's	an	intersection,	the	count	will	show
1.

When	the	iteration	on	the	cells	starts,	each	member	gets	classified	as	either	A,	B,	or	C,	based	on
its	score	and	in	which	of	the	three	predefined	groups	it	can	be	found.

WOW! eBook
www.wowebook.org

There's	more...
There	are	many	ways	to	calculate	A,	B,	or	C.	I'd	like	to	believe	I've	shown	you	the	fastest	one.

Here's	another	example	to	explain	what	I	meant	by	that.

Use	the	same	query	as	before,	but	replace	the	measure,	ABC	group,	with	these	two
calculations:

MEMBER	[Measures].[Rank	in	set]	AS	

			iif(IsEmpty([Measures].[Measure	for	ABC]),	null,	

								Rank([Product].[Product].CurrentMember,	

														[Set	for	ABC],	

														[Measures].[Measure	for	ABC]))	

			,	FORMAT_STRING	=	'#,#'	

	

MEMBER	[Measures].[ABC	Group]	AS	

			iif(IsEmpty([Measures].[Measure	for	ABC]),	null,	

								iif([Measures].[Rank	in	set]	<=	[A].Count,	

													'A',	

													iif([Measures].[Rank	in	set]	<=	{	[A]	+	[B]	}.Count,	

																		'B',	'C')))	

Run	the	query	and	observe	the	results.	They	should	match	the	results	from	the	previous	query.
What	changes	is	the	execution	time.

In	Adventure	Works,	that	change	in	time	is	not	so	obvious,	especially	in	the	context	of	this
query.	If	you	want	to	experience	a	more	noticeable	change,	use	the	reseller	dimensions.	There
you'll	see	a	small	difference.

Why	is	the	second	approach	slower?

The	initial	example	illustrates	a	classic	case	of	set-based	thinking.	First,	we've	defined	the	set
A,	then	we've	used	it	in	the	definition	of	set	B,	and	finally	we've	defined	the	third	set	using	the
previous	two.	Therefore,	we've	used	a	simple	and	effective	set	operation	-	the	difference
between	the	sets.

That's	not	all	there	is	to	it.	Something	else	is	important.	Sets	evaluate	before	the	iteration	on
the	cells	starts.	This	means	that	by	the	time	the	engine	starts	to	evaluate	the	expression	in	the
ABC	Group	measure,	sets	have	already	been	evaluated	and	therefore	are	sort	of	a	constant.
When	the	iteration	starts,	the	engine	compares	each	member	with	a	maximum	of	two	of	those
sets.	That	comparison	is	again	performed	using	a	fast	set	operation	-	the	intersection	of	two
sets.	In	short,	we	completely	avoided	any	iteration	in	this	approach.

Now	consider	the	second	example,	the	one	which	uses	the	Rank	function.

The	idea	is	to	have	a	rank	that	tells	us	how	good	each	member	was	-	what	position	it	took.	We
can	use	this	rank	and	compare	it	with	the	count	of	members	in	set	A	or	count	of	members	in

WOW! eBook
www.wowebook.org

both	sets	A	and	B.	If	the	rank	is	a	smaller	number,	we	get	a	match	and	the	member	gets	the
corresponding	class	because	of	the	calculation.

True,	sets	A,	B,	and	C	are	static	again,	pre-evaluated,	but	the	rank	operation,	together	with	the
process	of	counting	the	number	of	items	in	a	set,	takes	time.	Here,	we're	not	applying	the	set-
based	thinking;	we're	iterating,	although	internally,	on	a	set	to	get	the	rank	while	we	don't
really	need	that	rank	at	all.

Remember	to	always	look	for	a	set-based	alternative	if	you	catch	yourself	using	iteration.
Sometimes	it	will	be	possible;	sometimes	it	won't.	If	you	have	a	large	cube,	it's	certainly
worth	a	try.

Tips	and	tricks

Always	check	if	you	can	move	everything	that	was	on	an	axis	to	a	named	set.	Your
calculations	will	be	easier.

Consider	defining	everything	in	the	MDX	script	because	of	the	advantages	of	centrally-based
calculations	(speed,	cache,	and	availability).

WOW! eBook
www.wowebook.org

See	also
The	recipe	Isolating	the	best	N	members	in	a	set	in	Chapter	4,	Concise	Reporting,	covers
the	TopPercent()	function	in	more	detail

WOW! eBook
www.wowebook.org

Chapter	8.	When	MDX	is	Not	Enough
In	this	chapter,	we	will	cover	the	following	recipes:

Using	a	new	attribute	to	separate	members	on	a	level
Using	a	distinct	count	measure	to	implement	histograms	over	existing	hierarchies
Using	a	dummy	dimension	to	implement	histograms	over	nonexisting	hierarchies
Creating	a	physical	measure	as	a	placeholder	for	MDX	assignments
Using	a	new	dimension	to	calculate	the	most	frequent	price
Using	a	utility	dimension	to	implement	flexible	display	units
Using	a	utility	dimension	to	implement	time-based	calculations

WOW! eBook
www.wowebook.org

Introduction
So	far,	we've	been	through	the	basics	of	MDX	calculations.	We	learned	a	few	tricks	regarding
time	calculations,	practiced	making	concise	reports,	navigated	hierarchies,	and	analyzed	data
by	applying	typical	business	calculations.	Now,	we	will	discuss	special	topics.

This	is	a	book	that	follows	the	cookbook	approach,	the	main	topic	being	MDX.	In	this	chapter,
however,	we're	going	to	discover	that	MDX	calculations	are	not	always	the	best	solution.	It	is
only	one	of	the	possible	layers	we	can	start	from.	The	other	two	layers	are	the	cube	design
and	the	underlying	data	warehouse	(DW)	model.	Each	layer	depends	on	the	other.	A	good	data
model	will	enable	a	good	cube	design	which	in	turn	will	enable	simple	MDX	calculations.

Whenever	we	are	given	a	request	to	get	something	from	the	cube,	it	is	not	only	a	request	to
make	an	adequate	MDX	query	or	calculation	and	then	to	return	the	data,	it	is	something	much
deeper-a	challenge	to	our	cube	design	and	the	underlying	dimensional	model.	If	the	MDX
becomes	too	complex,	that's	a	potential	sign	there's	something	wrong	with	the	cube	design
and	that	they	can	also	be	improved.

This	chapter	illustrates	several	techniques	to	optimize	the	query	response	time	with	a
relatively	simple	change	in	the	cube	structure,	to	simplify	cube	maintenance	and	MDX
calculations,	to	enable	new	analysis	or	even	to	make	the	so-far	impossible	ones	possible.	The
types	of	changes	we're	talking	about	here	are	adding	new	measures	or	attributes,	and	even
adding	a	complete	dimension.

Calculations	are	performed	by	the	formula	engine	at	query	time.	Using	regular	measures	we
can	avoid	a	query-time	performance	decrease.	Regular	measures	have	other	advantages	over
the	calculated	ones	which	are	discussed	in	this	chapter.

Attributes	not	only	enhance	the	dimension	design	allowing	users	to	avoid	multi-select	and
problems	related	to	it,	they	are	a	potential	place	for	aggregations	and	therefore	a	candidate
for	optimization	of	reports.

Utility	dimensions	play	a	vital	role	in	providing	powerful	calculations	that	are	easy	to
maintain	in	contrast	to	potential	chaos	with	calculated	measures.	A	variant	of	the	utility
dimensions,	the	dummy	dimension,	is	a	convenient	structure	which	enables	iteration,
allocation,	and	other	useful	activities.

Finally,	if	you	find	yourself	running	a	lot	over	leaves	in	your	calculations,	you	should	know
that	cubes	are	not	designed	to	do	that.	Maybe	a	different	granularity	from	the	fact	table	should
be	applied	or	a	new	dimension	should	be	considered.

These	are	the	things	we'll	encounter	in	this	chapter.	If	you	can	create	the	calculations	in	the
DSV/DW	layer	or	prepare	data	there	without	compromising	the	cube's	flexibility,	do	it.	That
way,	whatever	you	implement	will	be	resolved	only	once,	during	processing,	instead	of

WOW! eBook
www.wowebook.org

during	every	query	execution.	The	idea	is	to	push	things	down	to	the	lower	layers	as	much	as
possible	so	that	queries	run	faster.

By	the	way,	don't	worry	about	MDX,	there's	still	plenty	of	it	here.	The	only	difference	is	that,
in	contrast	to	the	previous	chapters,	here	the	focus	is	on	other	aspects,	not	just	MDX.

Let's	start	slowly.

WOW! eBook
www.wowebook.org

Using	a	new	attribute	to	separate	members	on	a
level
In	reporting	and	analysis,	there	are	situations	when	a	certain	member	(often	named	NA,
unknown,	or	similar)	corrupts	the	analysis.	It	makes	it	hard	for	end	users	to	focus	on	the	rest
of	the	data.	It	distracts	them	by	making	them	think	about	what	this	member	represents,	why	it
is	here,	and	why	it	has	data	associated	to	it.	Other	times,	the	reason	may	be	that	the	end	users
need	a	total	without	that	member.	In	both	of	these	situations,	they	remove	that	member	from
the	result	which	generates	a	new	MDX	query.

It	is	true,	that	a	combination	of	a	named	set	without	that	member	and	a	calculated	member	as
an	aggregate	of	that	set	can	be	created	in	MDX	script	to	simplify	the	rest	of	the	calculations
and	the	usage	of	that	hierarchy	in	general.	However,	this	is	not	the	optimal	solution.

Is	there	a	better	way?	Yes,	but	it	requires	a	dimension	redesign.	If	that's	applicable	in	your
case,	read	on	because	this	recipe	shows	how	to	keep	your	cube	design	simple	and	effective,
all	at	the	price	of	a	bit	of	your	time	invested	in	the	preparation	of	data.

WOW! eBook
www.wowebook.org

Getting	ready
Open	the	SQL	Server	Data	Tools	(SSDT)	and	then	open	the	Adventure	Works	DW
2016	solution.	Once	it	loads,	double-click	on	the	Product	dimension,	the	dimension	where
the	problematic	member	will	be	in	this	example.

We're	going	to	use	the	Color	attribute	of	the	Product	dimension.	If	you	browse	the	dimension
in	the	Browser	tab,	you'll	see	there	are	ten	colors,	one	of	which	is	NA.	The	idea	is	to
somehow	exclude	this	color	from	the	list	of	colors	and	keep	it	separate.	To	do	this,	we'll	need
another	attribute	to	separate	colors	in	two	groups:	colors	with	the	exact	name	in	one	group
and	the	NA	color	in	another.

Attributes	are	built	from	one	or	more	columns	in	the	underlying	dimension	table	or	view.	The
preferred	place	for	introducing	this	change	is	the	data	warehouse	(DW),	a	view	that	represents
the	dimension	table	from	which	this	dimension	is	built.	Having	all	of	the	logic	in	one	place
increases	the	maintainability	of	the	overall	solution.	However,	in	order	to	keep	things	simple
and	focus	on	what's	important,	we're	going	to	disregard	the	best	practice	here	and	use	the	data
source	view	(DSV)	instead.

WOW! eBook
www.wowebook.org

How	to	do	it...
Follow	these	steps	to	add	a	new	attribute	that	will	be	used	to	separate	members	on	another
attribute.

1.	 Double-click	on	the	Adventure	Works	DW	data	source	view.
2.	 Locate	the	Product	dimension	in	the	Tables	pane	on	the	left,	then	right-click	and	select

New	Named	Calculation.
3.	 Enter	ColorGroupKey	for	the	Column	name	and	this	code	for	the	expression:

						CASE	Color	WHEN	'NA'	THEN	1	ELSE	0	END	

4.	 Close	the	dialog	and	repeat	the	process	for	another	column.	This	time,	name	it
ColorGroupName	and	use	the	following	definition:

						CASE	Color	WHEN	'NA'	THEN	'Unknown	colors'	ELSE	'Known	colors'	END	

5.	 Close	the	dialog	again	and	explore	the	Product	table	to	see	the	result	of	those	two	new
columns.	They	should	be	visible	at	the	end	of	the	table.	If	everything's	OK,	close	the
Explore	Product	Table	tab.

6.	 Now	return	to	the	Product	dimension	again;	you	should	see	two	new	calculated	columns
in	the	end	of	the	table	in	the	Data	Source	View	pane	on	the	right.

7.	 Drag	the	ColorGroupKey	column	to	the	left	and	drop	it	in	the	Attributes	pane.
8.	 Rename	it	to	Color	Group,	then	navigate	to	the	NameColumn	property	and	select	the

ColorGroupName	column	for	that.
9.	 Set	the	OrderBy	property	to	Key	in	order	to	preserve	the	order	by	key.
10.	 Drag	the	newly	created	Color	Group	attribute	to	the	Hierarchies	pane	followed	by	the

Color	attribute	underneath	it.	The	idea	is	to	create	a	new	user	hierarchy.
11.	 Name	the	hierarchy	Product	Colors	and	set	the	AllMemberName	in	the	Properties	pane	to

All	Products.	This	is	a	screenshot	of	the	hierarchy	Product	Colors.

12.	 Notice	the	yellow	warning	sign.	Go	to	the	Attributes	Relationships	tab	and	set	the
correct	relation	between	the	Color	and	Color	Group	attributes.	In	SSDT	for	SSAS	2012
and	2016,	you	can	click	on	the	New	Attribute	Relationship	icon	on	top.	If	you	are	using
BIDS	for	SSAS	2008	R2,	you	can	drag	the	Color	attribute	over	the	Color	Group	attribute
and	release	it.

WOW! eBook
www.wowebook.org

13.	 Select	the	arrow	that	points	to	the	Color	Group	attribute	and	change	the
RelationshipType	property	from	Flexible	to	Rigid	in	the	Properties	pane.	The	tip	of	the
arrow	should	turn	black,	just	like	in	the	following	figure:

14.	 Return	to	the	Dimension	Structure	tab	and	check	that	the	warning	sign	is	gone.
15.	 Select	the	Product	Colors	user	hierarchy	and	set	the	DisplayFolder	property	to

Stocking.
16.	 Select	the	Color	Group	attribute	and	set	its	visibility	to	False	using	the

AttributeHierarchyVisible	property.
17.	 Process	the	dimension.	When	it's	done,	go	to	the	Browser	tab,	reconnect,	and	verify	that

the	new	Product	Colors	user	hierarchy	works	as	expected,	so	that	colors	are	separated
in	two	new	nodes,	Known	colors	and	Unknown	colors,	as	shown	in	the	following
screenshot:

WOW! eBook
www.wowebook.org

18.	 Now	process	the	Adventure	Works	cube,	reconnect	and	go	to	the	Browser	tab	to	click	on
the	Analyze	in	Excel	icon	on	top	to	open	Excel	to	make	a	report	using	the	new	Product
Colors	user	hierarchy	which	you'll	find	under	the	Stocking	folder	of	the	Product
dimension.	All	the	four	measures	shown	in	the	following	screenshot	are	from	the	Sales

WOW! eBook
www.wowebook.org

Summary	measure	group.

WOW! eBook
www.wowebook.org

How	it	works...
The	new	attribute	Color	Group	plays	several	roles.	It	enables	natural,	by-design	subtotals,
easy	navigation,	easy	filtering,	and	keeps	further	MDX	calculations	simple	and	effective.

In	order	to	create	it,	we've	extended	the	Product	table	with	two	new	columns,	ColorGroupKey
and	ColorGroupName.	We	did	that	in	the	Data	Source	View	(DSV),	although	we	could	have
done	the	same	in	the	dimension	table	in	the	Data	Warehouse	(DW).	In	fact,	it	might	have
been	a	better	decision	to	go	to	the	DW.	However,	in	order	to	keep	things	the	way	the
Adventure	Works	database	is	done,	we	have	chosen	to	use	calculated	columns	in	the	DSV.	In
your	real	project,	you	should	add	those	calculated	columns	to	the	dimension	table	in	the	DW.

Why	did	we	use	the	key-name	pair	instead	of	using	the	name	field	alone?	We	have	designed
the	key-name	pair	for	a	good	reason.	By	carefully	planning	the	key	column	value,	and	setting
the	OrderBy	property	to	Key,	we	have	met	our	needs	for	ordering.	In	this	example,	we've
deliberately	placed	the	Known	colors	value	first	using	the	lower	key	value	and	ordered	the
attribute	by	key	instead	of	by	name.

In	the	process	of	dimension	redesign	we	did	one	extra	step.	We	created	a	natural	user
hierarchy,	Product	Colors.	A	natural	user	hierarchy	is	beneficial	from	the	perspective	of	both
performance	and	data	navigation.

We	also	did	something	else	that	is	important	and	should	not	be	forgotten-defining	relations
between	the	new	attribute,	Color	Group,	and	an	existing	one,	Color.	Attribute	relationships
define	hierarchical	dependencies	between	attributes.	These	relationships	between	attributes
can	be	used	by	the	Analysis	Services	engine	to	optimize	performance.

Other	things	we	did	were	more	or	less	cosmetic.

Dimensional	processing	was	required	because	the	structure	has	changed.	The	same	goes	for
the	cube.

You	should	also	consider	redesigning	your	aggregations.	The	new	attribute	has	only	two
members,	therefore	the	aggregation	wizard	may	look	for	and	include	it	in	many
combinations	with	other	hierarchies.	In	other	words,	with	the	same	amount	of	space	dedicated
for	aggregations,	a	low-cardinality	attribute	can	generate	more	aggregations	than	the	one
with	more	members	in	it.	The	more	aggregations,	the	greater	the	chance	of	hitting	one	of
them	in	queries	that	use	this	new	attribute.

WOW! eBook
www.wowebook.org

There's	more...
Notice	that	once	you	redesign	your	dimension	like	that,	you	can	do	many	things	relatively
easily.	One	of	those	things	we've	already	shown	is	using	natural	subtotals	and	ordering	of	the
members	in	the	user	hierarchy.	The	next	thing	is	the	filtering	of	members.

If	you	need	to	show	only	known	colors,	you	can	put	that	single	member	in	the	slicer.	Having	a
single	member	is	a	much	better	solution	than	using	multi-select.	Not	only	will	the
performance	be	better,	but	you	also	avoid	problems	with	tools	that	have	problems	with	multi-
select.	Therefore,	think	about	this	solution	in	a	much	broader	sense,	not	only	as	a	way	of
isolating	unwanted	members,	but	also	as	a	way	of	avoiding	problems	with	multi-select,	and	to
have	simple	MDX	calculations.

So,	when	should	we	consider	creating	a	new	attribute?

Well,	you	know	that	sometimes	a	modification	like	this	is	just	not	possible.	You	can't
anticipate	all	the	possible	multi-selects	that	users	may	want,	or	you	are	not	allowed	to	change
the	dimension	structure,	or	to	have	the	cube	down	for	a	certain	amount	of	time.	Yes,	this	can
be	handled,	but	your	current	configuration	may	be	preventing	you	from	doing	that	smoothly.

Redesigning	the	aggregations	could	be	beneficial,	but	it's	totally	optional.	It	doesn't	have	to
put	you	off	from	implementing	a	new	attribute.	The	existing	aggregations	on	the	Color
attribute	(if	any)	should	be	leveraged	because	of	the	established	attribute	relationships.

Nevertheless,	the	idea	of	this	recipe	was	to	show	you	how	to	do	it.	The	final	decision	of
whether	you'll	do	it	or	not,	in	the	end,	entirely	yours.	Weigh	the	pros	and	cons,	especially	if
you	have	a	development	environment	where	you	can	play,	and	make	a	decision	based	on	your
findings.

So,	where's	the	MDX?

There	isn't	any!	At	least	not	in	this	recipe.	Remember,	the	best	thing	is	to	keep	things	simple.
This	recipe	demonstrated	how	making	a	small	investment	in	the	redesign	of	your	dimension
pays	off	by	not	having	complex	MDX	calculations.	Even	better,	by	not	having	MDX	at	all
sometimes!

It	follows	the	main	idea	of	the	chapter	that	the	solution	isn't	to	make	the	best	possible	MDX
calculation	or	query.	Quite	often,	it	is	better	to	look	for	an	alternative	in	either	a
cube/dimension	design	or	even	further,	in	the	dimensional	model.	The	general	rule	of	thumb
is	to	always	prefer	a	built-in	Analysis	Services	feature	over	writing	MDX.	This	was	the	first
recipe	in	a	series	of	recipes	that	showed	how.	The	others	follow,	so	read	on.

Typical	scenarios

Every	time	you	catch	yourself	using	functions	such	as	Except()	or	Filter(),	too	often	in
your	calculations,	you	should	step	back	and	consider	whether	that's	a	repeating	behavior	and

WOW! eBook
www.wowebook.org

whether	it	would	pay	off	to	have	an	attribute	to	separate	the	data	you've	been	separating	using
MDX	calculations.	If	it	has	a	repeating	pattern	and	it's	not	something	unpredictable,	there's
your	candidate.

Once	you	have	a	member	(or	more)	separating	two	or	more	parts	of	the	set,	you	can	simply
use	them	in	the	calculations.	You	can	even	call	upon	their	children	or	other	descendants.	You
could	make	ratios	the	easier	way.	Everything	becomes	simplified.

WOW! eBook
www.wowebook.org

Using	a	distinct	count	measure	to	implement
histograms	over	existing	hierarchies
Histograms	are	an	important	tool	in	data	analysis.	They	represent	the	distribution	of
frequencies	of	an	entity	or	event.	In	OLAP,	those	terms	translate	to	dimensions	and	their
attributes.

This	recipe	illustrates	how	to	implement	a	histogram	over	an	attribute	Color.	The	histogram
needs	to	tell	us	the	product	count	for	each	Color	in	each	Fiscal	Year.

In	order	to	create	a	histogram,	we	need	a	measure	that	can	count	distinct	members	of	an
attribute	for	any	given	context.

There	are	two	solutions	to	this	problem.	One	is	to	use	a	calculated	measure;	the	other	is	to	use
a	regular	measure	with	the	distinct	count	type	of	the	aggregation.

Many	BI	developers	might	lean	towards	the	first	option.	The	calculated	measure	might	be	an
easy-to-implement	solution	because	deploying	the	MDX	script	doesn't	require	reprocessing
the	cube.

As	with	most	things	in	life,	a	shortcut	is	usually	not	an	optimal	solution.	Depending	on
various	factors	like	the	cube	and	dimension	sizes,	the	calculation	can	turn	out	to	be	slow	in
certain	scenarios	or	contexts.

The	second	option	of	creating	a	Distinct	count	type	of	measure	is	a	better	choice	in	terms	of
performance.	In	this	recipe,	we	will	discuss	how	to	implement	an	attribute-based	histogram
using	the	second	option,	that	is,	to	create	a	Distinct	count	type	of	measure	over	a	dimension
key	column	in	the	fact	table.

WOW! eBook
www.wowebook.org

Getting	ready
Open	the	SQL	Server	Data	Tools	(SSDT)	and	then	open	the	Adventure	Works	DW	2016
solution.	Once	it	loads,	double	click	on	the	Adventure	Works	cube.

In	this	example	we're	going	to	analyze	products	based	on	their	characteristics.	We're	going	to
show	how	many	red,	green,	and	blue	products	are	present	in	a	particular	subcube.

WOW! eBook
www.wowebook.org

How	to	do	it...
Follow	these	steps	to	create	a	Distinct	count	measure:

1.	 Create	a	new	Distinct	count	type	of	measure	using	the	column	ProductKey	in	the	Sales
Summary	Facts	table.	You	need	to	right-click	on	the	cube	name,	Adventure	Works,	and
then	choose	New	Measure...

2.	 Name	it	Product	Count	and	set	the	format	string	as	#,#	(without	quotes)	in	the
Properties	pane.

3.	 The	best	practice	for	distinct	count	measures	is	to	have	them	in	a	separate	measure
WOW! eBook

www.wowebook.org

group.	Notice	how	SSDT	ensures	this	is	done.	Name	the	new	measure	group	Sales
Products.

4.	 Process	the	cube.	Once	it's	done,	go	to	the	Cube	Browser	tab	and	reconnect.	Click	on	the
Analyze	in	Excel	icon	on	top	to	open	Excel.

5.	 Test	this	new	measure	using	any	attribute	of	the	Product	dimension	or	any	other
dimension;	for	example,	the	Date	dimension	as	seen	in	the	following	screenshot.	The
measure	aggregation	function	adjusts	itself	returning	the	distinct	number	of	products	in
each	cell:

WOW! eBook
www.wowebook.org

WOW! eBook
www.wowebook.org

How	it	works...
Attribute-based	histograms	are	relatively	easy	to	implement.	All	we	need	is	a	Distinct	count
type	of	measure	over	a	dimension	key	column	in	the	fact	table.	After	that,	everything	is	pretty
straightforward;	the	new	measure	reacts	to	every	attribute,	directly	or	indirectly	related	to	that
fact	table.

WOW! eBook
www.wowebook.org

There's	more...
Here's	the	calculation	that	can	produce	the	same	result	as	the	Distinct	count	type	of	measure
we	have	implemented	in	this	recipe:

Create	MEMBER	CurrentCube.[Measures].[Product	Count	calc	orig]	AS	

				Count(EXISTING		

											Exists([Product].[Product].[Product].MEMBERS,	,	

																			'Sales	Summary'))	

		,	Visible	=	0	

		,	Format_String	=	'#,#'	

		,	Associated_Measure_Group	=	'Sales	Summary'	

		,	Display_Folder	=	'Histograms'	

		;	

																		

Create	MEMBER	CurrentCube.[Measures].[Product	Count	calc]	AS	

				iif([Measures].[Product	Count	calc	orig]	=	0,	null,	

									[Measures].[Product	Count	calc	orig])	

		,	Format_String	=	'#,#'	

		,	Associated_Measure_Group	=	'Sales	Summary'	

		,	Display_Folder	=	'Histograms'	

		;	

What	we're	doing	here	is	creating	two	calculated	measures.	One,	hidden,	returns	the	count	of
products	relevant	to	the	existing	context	which	have	data	in	the	Sales	Summary	measure	group.
The	other,	visible,	converts	zeros	to	null	because	the	result	of	the	first	calculated	measure	is
never	null	and	we	don't	want	zeros	in	our	result.	We'd	like	to	keep	the	data	sparse.

As	we	have	mentioned	in	the	introduction,	a	calculated	measure	might	be	easy	to	implement,
but	a	regular	measure	offers	better	performance,	especially	in	very	large	dimensions.	In
scenarios	where	the	distinct	count	column	(ProductKey)	has	millions	of	distinct	values,	a
distinct	count	measure	may	be	a	much,	much	faster	solution	than	an	MDX	calculation.

We	should	also	keep	in	mind	that	an	additional	measure	does	come	at	the	cost	of	having	to
process	and	store	it.

In	scenarios	where	ProductKey	has	few	distinct	values	(that	is,	100,000	members	or	less),
another	good	approach	might	be	to	build	a	ProductKey	grain	measure	group	and	add	a
many-to-many	relationship	on	all	the	other	dimensions	in	the	Sales	Summary	measure	group.
Essentially,	any	distinct	count	can	be	reformulated	as	a	many-to-many	relationship	which	is
explained	in	detail	in	Marco	Russo's,	Many-to-Many	Dimensional	Modeling	paper:
http://tinyurl.com/M2Mpaper.

WOW! eBook
www.wowebook.org

http://tinyurl.com/M2Mpaper

See	also
The	next	recipe,	Using	a	dummy	dimension	to	implement	histograms	over	nonexisting
hierarchies,	covers	a	similar	topic

WOW! eBook
www.wowebook.org

Using	a	dummy	dimension	to	implement
histograms	over	nonexisting	hierarchies
As	seen	in	the	previous	recipe,	Analysis	Services	supports	attribute-based	histograms	by
design.	All	it	takes	is	a	distinct	count	measure	and	we're	good	to	go.

This	recipe	illustrates	how	to	implement	a	more	complex	type	of	histograms	over
nonexisting	hierarchies.

The	complexity	comes	from	the	fact	that	the	hierarchy	which	we'd	like	to	base	the	calculation
on	does	not	exist.	That's	a	big	issue	where	a	multidimensional	cube	is	concerned.

OLAP	cubes	operate	on	predetermined	structures.	It	is	not	possible	to	build	items	on	the	fly.	In
other	words,	it	is	not	possible	to	create	a	new	hierarchy	based	on	a	calculation	and	use	it	the
way	we	would	use	any	other	hierarchy.	In	OLAP,	every	hierarchy	must	be	prepared	in	advance
and	must	already	be	a	part	of	the	cube,	otherwise	it	can't	exist.

In	this	recipe,	we're	interested	in	the	fact	table.	The	fact	table	represents	a	series	of	events	that
are	taking	place	and	are	being	recorded	in	a	very	consistent	manner.	Every	row	tells	a	story
of	an	event.	Various	columns	in	that	row	represent	dimensions	related	to	those	events.

In	the	previous	recipe,	where	we	calculated	histograms	over	attributes,	we	created	a	measure
based	on	one	of	the	dimension	columns	in	the	fact	table.	That	measure	counted	distinct
dimension	member	keys	that	occur	in	a	part	of	the	fact	table,	the	part	determined	by	other
dimensions	in	context.	Those	other	dimensions	limit	the	size	of	the	fact	table,	acting	like	a
filter	to	it.

This	time	we're	interested	in	something	else.	We're	interested	in	combining	several
dimensions,	for	example	counting	the	number	of	the	distinct	members	of	one	of	those
dimensions	inside	the	other.

Let's	illustrate	this	with	an	example.	Take	resellers	and	their	orders.	We	might	be	interested	in
orders	only,	as	in	the	number	of	orders	a	particular	reseller	made	in	a	certain	period.	The
possible	values	are	0,	1,	2,	3,	and	so	on,	up	to	the	maximum	number	of	orders	a	single
reseller	ever	made.	If	we	want	to	analyze	that,	then	that's	a	measure,	the	Reseller	Order
Count	measure	in	the	Adventure	Works	cube,	to	be	precise.	Resellers	are	simply	a	dimension
we	want	to	use	on	an	axis	in	this	case.

But	what	if	we	want	to	analyze	both	the	resellers	and	the	orders	but	neither	of	them	are	in	the
rows	or	columns?	That's	a	different	story.	For	example,	we	want	to	know	how	many	resellers
made	0	orders	in	a	given	time	frame,	how	many	of	them	made	1,	2,	or	more.	That	sequence	of
numbers	(0,	1,	2,	and	so	on)	is	what	should	go	in	the	rows	(or	columns),	something	we	will
iterate	on.	The	measure	in	this	case	would	be	the	Reseller	Count	measure,	a	measure

WOW! eBook
www.wowebook.org

showing	the	distinct	count	of	resellers	in	a	particular	context.	The	only	problem	is,	neither
this	special	dimension	nor	the	distinct	count	measure	exists.	.

While	it	is	relatively	easy	to	make	a	distinct	count	type	of	measure,	either	using	a	calculated
measure	or	a	regular	measure	with	the	distinct	count	aggregation,	creating	a	dimension	takes
preparation	and	cannot	be	done	on	the	fly.

Now	that	we've	explained	the	problem,	let's	see	how	it	can	be	solved.

WOW! eBook
www.wowebook.org

Getting	ready
Open	the	SQL	Server	Data	Tools	(SSDT)	and	then	open	the	Adventure	Works	DW	2016
solution.	Once	it	loads,	double-click	on	the	Adventure	Works	DW	data	source	view.

In	this	example,	we're	going	to	analyze	resellers	based	on	the	frequency	of	their	orders.	In
other	words,	we're	going	to	show	how	many	resellers	made	zero,	one,	two,	three,	and	so	on
orders	in	a	given	time	frame	and	for	given	conditions.

WOW! eBook
www.wowebook.org

How	to	do	it...
Follow	these	steps	to	implement	the	histogram	over	the	hierarchy	that	doesn't	exist	in	the
cube:

1.	 Create	a	new	named	query	Reseller	Order	Frequency	with	the	following	definition:

						SELECT	0	AS	Interval	

						UNION	ALL	

						SELECT	

										TOP(

														SELECT	

																		MAX(Frequency)	AS	Interval	

														FROM	

																		(SELECT	

																						ResellerKey,	

																						COUNT(SalesOrderNumber)	AS	Frequency	

																				FROM	

																						(SELECT	

																												DISTINCT	

																												ResellerKey,	

																												SalesOrderNumber	

																								FROM	

																												dbo.FactResellerSales	

)	AS	t1	

																				GROUP	BY	

																						ResellerKey	

)	AS	t2	

)	ROW_NUMBER()	

													OVER	(ORDER	BY	ResellerKey)	AS	Interval	

						FROM	

										dbo.FactResellerSales	

2.	 Turn	off	the	Show/Hide	Diagram	Pane	and	Show/Hide	Grid	Pane	and	execute	the
previous	query	in	order	to	test	it.

Tip

An	error	might	pop	up	when	you	run	this	type	of	query	or	when	you	open	the	named
query	to	change	it.	The	error	basically	says	that	this	type	of	query	cannot	be	represented
visually	using	the	diagram	pane	because	it	contains	the	OVER	SQL	clause.	That's	the
reason	why	we've	turned	that	pane	off.	If,	for	whatever	reason,	you	see	that	error	anyway,
just	acknowledge	it	and	continue	with	the	recipe.	It	is	merely	information,	not	a	problem

3.	 Once	executed,	the	query	returns	13	rows	with	numbers,	the	first	one	being	zero	and	the
last	one	being	the	maximum	number	of	orders	for	a	customer	(here	12).

WOW! eBook
www.wowebook.org

4.	 Close	the	named	query	editor,	locate	the	Reseller	Order	Frequency	named	query,	and
mark	the	Interval	column	as	a	Logical	Primary	Key.

WOW! eBook
www.wowebook.org

5.	 Create	a	new	dimension	using	the	previously	defined	named	query	and	name	it	Reseller
Order	Frequency.

6.	 Use	the	Interval	column	for	both	the	KeyColumn	and	the	ValueColumn	properties:

7.	 Process	in	full	that	dimension.
8.	 Name	the	All	member	All	Intervals.
9.	 Open	the	Adventure	Works	cube	and	add	that	dimension	without	linking	it	to	any

measure	group.
10.	 Deploy	the	changes	by	right-clicking	on	the	project	name	(in	the	Solution	Explorer

pane)	and	by	choosing	Deploy	action.	Then	choose	the	Process	action	to	process	the
cube.

WOW! eBook
www.wowebook.org

11.	 Go	to	the	Calculations	tab	and	add	the	following	code	to	the	end	of	the	MDX	script:

						Create	MEMBER	CurrentCube.[Measures].[RO	Frequency]	AS	

											Sum(EXISTING	[Reseller].[Reseller].[Reseller].MEMBERS,	

																iif([Reseller	Order	Frequency].[Interval]	

																					.CurrentMember.MemberValue	=	

																					[Measures].[Reseller	Order	Count],	

																					1,	

																					null	

)	

)	

						,	Format_String	=	'#,#'	

						,	Associated_Measure_Group	=	'Reseller	Orders'	

						,	Display_Folder	=	'Histograms'	

						;		

	

						Scope(([Measures].[RO	Frequency],	

															[Reseller	Order	Frequency].[Interval].[All	Intervals]));	

										This	=	Sum([Reseller	Order	Frequency].[Interval]	

																						.[Interval].MEMBERS,	

																						[Measures].[RO	Frequency]	

);	

						End	Scope;	

12.	 Deploy	the	solution.
13.	 Go	to	the	Cube	Browser	tab	and	click	on	the	Analyze	in	Excel	icon	on	top	to	open	Excel

to	build	a	pivot	using	the	new	RO	Frequency	measure.	Then	place	the	Reseller	Order
Frequency	dimension	on	the	opposite	side	from	the	measures,	on	the	rows.	Finally,	add
another	dimension	to	the	columns,	the	Date	dimension,	to	test	if	the	calculation	works	for
hierarchies	on	both	axes.	As	seen	in	the	following	screenshot,	values	don't	repeat,	which
is	a	sign	that	our	calculation	works.	They	represent	the	number	of	resellers	who	in	a
particular	time	period	(years,	in	this	case)	made	as	many	orders	as	shown	in	the
hierarchy	on	the	rows.	The	distribution	of	customers	and	their	orders	is	in	fact	the
histogram	we've	been	looking	for:

WOW! eBook
www.wowebook.org

WOW! eBook
www.wowebook.org

How	it	works...
There	are	several	important	things	in	this	recipe.	We'll	explain	them	one	by	one.

The	solution	starts	with	a	particular	T-SQL	query	that	was	used	as	a	named	query	in	the	data
source	view.	The	purpose	of	that	query	is	to	return	the	maximum	number	of	orders	for	any
customer	and	all	the	integers	up	to	that	number,	starting	from	zero.

The	maximum	frequency	number	is	obtained	by	combining	the	distinct	occurrence	of	the
ResellerKey	and	SalesOrderNumber	columns	in	the	ResellerSales	fact	table	and	by	taking	the
count	of	the	orders	for	each	reseller.	That's	the	essence	of	that	query.

As	we	saw,	the	query	returns	13	rows,	with	numbers	starting	from	zero	and	ending	with	12.
Those	values	in	turn	become	members	of	a	new	dimension	which	we'll	build	afterwards.	The
dimension	is	in	no	way	associated	with	any	fact	table	or	dimension	in	that	cube.	What's	the
purpose	then?

We	should	remember	that	our	initial	goal	is	to	show	how	many	distinct	customers	fall	into
each	segment:	zero	orders,	one	order,	two	orders,	and	so	on.	That	requirement	is
contradictory	in	OLAP	terms	because	it	would	require	two	measures:	one	with	the	distinct
number	of	customers	and	the	other	with	the	distinct	number	of	orders,	both	somehow	used
one	against	the	other	in	a	pivot.	The	problem	is	that	OLAP	supports	measures	on	one	axis
only.	Actually,	that's	true	for	any	hierarchy.

So,	what's	the	solution?

The	idea	is	to	build	a	special	dimension	and	use	it	on	one	axis	while	we're	keeping	the	other
measure	on	another	axis.	The	only	thing	this	dimension	has	to	have	is	a	sequence	of	numbers
so	that	we	can	assign	values	to	them,	somehow.

Now	we've	come	to	the	calculations:	the	MDX	script.

The	first	part	of	the	calculation	is	the	main	part.	That's	where	the	assignment	takes	place.	The
idea	is	to	use	the	MemberValue	property	value	of	the	current	member	of	the	Reseller	Order
Frequency	dimension	and	increment	the	RO	Frequency	measure	only	when	MemberValue
equals	the	number	of	orders	a	particular	reseller	made	in	the	current	slice.	In	other	words,
we're	descending	to	the	granularity	of	the	resellers	where	we're	counting	how	many	of	them
are	equal	to	the	condition.	The	condition	says	that	the	number	of	orders	must	match	the	utility
dimension	member's	value	we're	currently	on.	That	way	each	reseller	is	thrown	in	one	of	the
buckets,	one	of	the	members	of	that	new	dimension.	Once	we're	done	with	the	process,	each
bucket	tells	us	how	many	resellers	made	that	many	orders.	In	other	words,	we	have	a	complex
histogram,	a	histogram	based	on	an	up-to-now	non-existent	dimension.

Each	member	of	the	utility	dimension	got	its	value	using	the	techniques	described	earlier
except	for	the	All	member.	No	value	was	assigned	to	it	because	the	calculation	operated	only

WOW! eBook
www.wowebook.org

on	individual	members.	That's	why	there	was	a	requirement	to	use	another	statement	where
we're	basically	saying,	Collect	all	the	individual	values	obtained	during	the	allocation	process
and	aggregate	them.

WOW! eBook
www.wowebook.org

There's	more...
The	example	presented	here	used	a	dedicated	utility	dimension	named	Reseller	Order
Frequency.	It	had	exactly	13	members.	However,	they	were	not	fixed;	they	were	the
consequence	of	the	data	in	the	fact	table.	This	means	that	the	number	of	members	can	grow
with	time.	It	will	always	be	a	sequence	of	natural	numbers	up	to	the	maximum	number	of
occurrences	for	the	entire	fact	table.

It	is	quite	reasonable	to	expect	multiple	event-based	histograms	in	the	same	cube.	One	way	to
handle	this	would	be	to	build	a	separate	named	query	for	each	combination	of	dimensions
we'd	like	to	analyze,	each	returning	different	number	of	rows	which	are	eventually	translated
to	dimension	members.	But	there's	another	approach	to	it.

It	is	possible	to	build	a	single	utility	dimension	which	contains	enough	members	so	that	it	can
cover	any,	or	most,	types	of	histograms.	The	idea	is	to	build	the	tally	table	-	a	table	with
numbers	starting	from	zero	and	ending	with	some	big	number.	How	big	depends	on	your
preference,	it	could	be	100,	1,000,	or	more.

The	name	of	the	corresponding	dimension	should	be	unique,	something	neutral	like	the
Frequency	dimension.

The	code	presented	in	this	recipe	applies,	but	it	must	be	modified	to	include	the	new
dimension	name.	It	can	be	repeated	many	times,	once	for	each	new	distinct	count	type
measure.

The	only	downside	is	that	we	have	more	members	now	than	before,	for	a	particular	distinct
count	type	measure.	The	query	results	and	charts	might	look	bad	because	of	this.	For	example,
if	the	dimension	contains	100	members	and	we	only	have	13	frequencies	like	in	the	example
presented	in	this	recipe,	most	of	the	cells	would	be	empty.

Turning	the	NON	EMPTY	switch	wouldn't	help	either.	It	would	only	do	damage	by	removing
some	of	the	members	in	the	range.	What	we	need	is	a	list	of	numbers	starting	from	zero	and
ending	with	the	maximum	value.	If	some	of	the	members	inside	that	range	are	empty,	they
must	be	preserved.	The	idea	is	to	show	the	full	range,	and	not	shrink	it	into	something	more
compact	by	removing	empty	values.

How	can	we	solve	this	problem?

There	are	several	solutions.	One	is	to	use	the	named	sets	defined	in	the	MDX	script	defined	as
a	range,	with	0	as	the	maximum.	Here's	an	example:

Create	SET	CurrentCube.[RO	Frequency	Set]	AS	

				{	null	:	Tail(NonEmpty([Frequency]	

																												.[Interval].[Interval].MEMBERS,	

																													[Measures].[RO	Frequency]),	

																			1).Item(0)	

WOW! eBook
www.wowebook.org

In	some	tools,	the	set	can	be	used	on	the	rows	or	columns	instead	of	the	complete	Frequency
dimension.

The	other	solution	is	to	provide	another	scope	in	which	you	would	convert	nulls	into	zeros
for	members	that	form	the	range.	Others	would	be	null.	That	solution	would	work	with	NON
EMPTY	then.

DSV	or	DW?

The	initial	T-SQL	query	could	have	been	implemented	in	the	relational	DW	database	instead.
After	all,	it	is	the	best	practice	to	keep	everything	related	to	business	logic	in	one	place	and
that	place	is	the	Data	Warehouse	(DW).	However,	the	concept	of	the	utility	dimension	is
purely	SSAS-related	and	hence	falls	in	the	domain	of	a	BI	developer,	not	a	DW	developer.
He's	the	one	who	creates	it,	knows	what	it's	for,	and	modifies	it	when	required.	That's	the
reason	we've	used	the	Data	Source	View	(DSV)	instead.	Does	it	have	to	be	DSV	then?	No,	it	is
up	to	you	to	decide	which	view	is	better	for	your	situation.	Just	be	consistent.

More	calculations

Here's	another	calculation	you	may	consider	helpful.	It	calculates	the	percentage	in	total:

Create	MEMBER	CurrentCube.[Measures].[RO	Frequency	Total]	AS	

					([Measures].[RO	Frequency],	

							[Reseller	Order	Frequency].[Interval].DefaultMember)	

		,	Visible	=	0	

		,	Format_String	=	'#,#'	

		,	Associated_Measure_Group	=	'Reseller	Orders'	

		,	Display_Folder	=	'Histograms'	

		;		

	

Create	MEMBER	CurrentCube.[Measures].[RO	Frequency	%]	AS	

				iif([Measures].[RO	Frequency	Total]	=	0,	

									null,	

									[Measures].[RO	Frequency]	/	

									[Measures].[RO	Frequency	Total]	

)	

		,	Format_String	=	'Percent'	

		,	Associated_Measure_Group	=	'Reseller	Orders'	

		,	Display_Folder	=	'Histograms'	

		;	

The	result	looks	like	this:

WOW! eBook
www.wowebook.org

As	you	can	see,	calculations	work	for	other	dimensions	as	long	as	they	are	related	to	the
measure	group	of	the	Reseller	Order	Count	measure,	the	measure	used	in	the	calculations.

Other	examples

The	following	is	a	link	to	a	page	describing	the	same	thing	in	another	way:
http://tinyurl.com/OLAPHistograms.

WOW! eBook
www.wowebook.org

http://tinyurl.com/OLAPHistograms

See	also
The	recipe	Using	a	distinct	count	measure	to	implement	histograms	over	existing
hierarchies	covers	a	similar	topic.	Creating	a	physical	measure	as	a	placeholder	for
MDX	assignments	is	directly	related	to	this	recipe	and	has	an	improved	version	of	MDX
assignments	presented	in	this	recipe.

WOW! eBook
www.wowebook.org

Creating	a	physical	measure	as	a	placeholder	for
MDX	assignments
There	can	be	many	problems	regarding	calculated	members.	First,	they	don't	aggregate	up
like	regular	members;	we	have	to	handle	that	by	ourselves.	Next,	the	drill	through	statements
and	security	restrictions	are	only	allowed	for	regular	members.	Not	to	mention	the	limited
support	for	them	in	various	client	tools,	such	as	Excel.	Finally,	regular	measures	often
noticeably	beat	their	calculate	measures	counterparts	in	terms	of	performance	or	the	ability	to
work	with	the	subselect.

On	the	other	hand,	calculated	members	can	be	defined	and/or	deployed	very	easily.	They	don't
require	any	drastic	change	of	the	cube	or	the	dimensions	and	therefore	are	good	for	testing,
debugging,	as	a	temporary	solution,	or	even	as	a	permanent	one.	Anything	goes	as	long	as
they	don't	become	a	serious	obstacle	in	any	of	the	ways	mentioned	earlier.	When	that	happens,
it's	time	to	look	for	an	alternative.

In	the	previous	recipe,	Using	a	dummy	dimension	to	implement	histograms	over	nonexisting
hierarchies,	we	used	the	EXISTING	operator	in	the	assignment	made	for	the	calculated	measure
RO	Frequency.	First,	that	expression	tends	to	evaluate	slowly	which	becomes	noticeable	on
large	dimensions.	The	Reseller	dimension	is	not	a	large	dimension	and	therefore,	the
provided	expression	will	not	cause	significant	performance	issues	there.	However,	the	second
problem	is	that	the	EXISTING	operator	will	not	react	to	the	subselect	and	will	therefore
evaluate	incorrectly	if	the	subselect	is	used.	That	might	become	an	issue	with	tools	like	Excel
that	extensively	use	the	subselect	whenever	multiple	members	are	selected	in	the	filter	area.

This	recipe	illustrates	the	alternative	approach.	It	shows	how	a	dummy	physical	measure	can
be	used	as	a	placeholder	for	calculations	assigned	to	a	calculated	measure.	In	other	words,
how	a	calculated	measure	can	be	turned	into	a	regular	measure	to	solve	a	particular	problem.
As	explained	a	moment	ago,	subselect	is	just	one	of	the	reasons	we	look	for	the	alternative,
which	means	the	idea	presented	in	this	recipe	can	be	applied	in	other	cases	too.

WOW! eBook
www.wowebook.org

Getting	ready
This	recipe	depends	heavily	on	the	previous	recipe;	therefore	you	should	implement	the
solution	it	presents.	If	you	have	read	and	practiced	the	recipes	sequentially,	you're	all	set.	If
not,	simply	read	and	implement	the	solution	explained	in	the	previous	recipe	in	order	to	be
able	to	continue	with	this	one.

Once	you	have	everything	set	up,	you're	ready	to	go	with	this	one.

WOW! eBook
www.wowebook.org

How	to	do	it...
Follow	these	steps	to	implement	a	physical	measure	as	a	placeholder	for	MDX	assignments:

1.	 Double-click	on	the	Adventure	Works	DW	data	source	view	in	the	Adventure	Works
DW	2016	solution	opened	in	the	SQL	Server	Data	Tools	(SSDT).

2.	 Locate	the	Reseller	Sales	Fact	table	in	the	pane	with	the	list	of	tables	on	the	left	side.
3.	 Right-click	it	and	add	a	new	column	by	selecting	the	New	Named	Calculation	option.
4.	 The	definition	of	the	column	should	be:

						CAST(null	AS	int)	

5.	 Name	the	column	NullMeasure.	Save	the	data	source	view.
6.	 Double-click	on	the	Adventure	Works	cube	and	locate	the	Reseller	Sales	measure

group.
7.	 Add	a	new	physical	measure	in	that	measure	group	using	the	newly-added	column	in	the

underlying	fact	table	and	name	it	RO	Frequency	DSV.
8.	 Specify	Histograms	for	its	DisplayFolder	property	and	provide	#,#	for	the

FormatString	property.
9.	 Use	the	Sum	for	the	AggregateFunction	and	set	the	NullProcessing	property	(available

inside	the	Source	property)	to	Preserve.
10.	 Deploy	the	changes.	Process	the	Adventure	Works	cube.
11.	 Go	to	the	Calculations	tab	and	provide	the	adequate	scope	statement	and	MDX

assignment	for	the	new	regular	measure:

						Scope([Measures].[RO	Frequency	DSV],	

													[Reseller	Order	Frequency].[Interval].[Interval].Members,	

													[Reseller].[Reseller].[Reseller].Members	

);	

										This	=	iif([Reseller	Order	Frequency].[Interval]	

																						.CurrentMember.MemberValue	=	

																						[Measures].[Reseller	Order	Count],	

																						1,	

																						null	

);	

						End	scope;	

12.	 The	Reseller	Order	Frequency	dimension	is	not	related	to	any	fact	table	and	automatic
aggregations	cannot	work.	Because	of	this,	we	have	to	perform	additional	steps,
including	providing	the	assignment	for	the	All	member	of	the	dummy	dimension
Reseller	Order	Frequency:

						Scope([Measures].[RO	Frequency	DSV],	

													[Reseller	Order	Frequency].[Interval].[All	Intervals]		

);	

										This	=	Sum([Reseller	Order	Frequency].[Interval]	

																						.[Interval].MEMBERS,	

																						[Measures].[RO	Frequency	DSV]	

);	

						End	Scope;	

WOW! eBook
www.wowebook.org

13.	 Deploy	the	changes	made	in	the	MDX	script.
14.	 Now,	go	to	the	Cube	Browser	tab.	Open	Excel	by	clicking	on	the	Analyze	in	Excel	icon

on	top	to	build	a	pivot	using	the	Reseller	Order	Frequency	dimension	on	the	rows	and
both	the	new	RO	Frequency	DSV	measure	and	the	old	one,	the	RO	Frequency	measure
on	the	columns:

15.	 As	you	can	see	in	the	preceding	screenshot,	the	calculation	works.
16.	 Now,	add	the	Business	Type	attribute	hierarchy	of	the	Reseller	dimension	in	the	report

filer	area,	and	select	Specialty	Bike	Shop	for	the	Filter	Expression	there.	The	following
screenshot	shows	how	to	select	the	filter:

WOW! eBook
www.wowebook.org

17.	 This	screenshot	shows	the	result	with	the	report	filter.

WOW! eBook
www.wowebook.org

18.	 Notice	that	the	values	for	both	the	RO	Frequency	DSV	measure	and	the	RO	Frequency
measure	adjusted	to	the	new	context.

19.	 Next,	we	are	going	to	write	a	MDX	query	with	explicit	subselect	to	prove	that	the	RO
Frequency	DSV	measure	will	adjust	to	the	new	context	and	the	RO	Frequency	measure
will	not.

20.	 In	the	following	MDX	query,	we	put	the	Business	Type	filter	in	the	subselect	on	purpose.
We	will	prove	that	calculated	measures	using	the	EXISTING	keyword	will	not	respond	to
subselect,	and	physical	measures	will	respond	to	subselect.

						SELECT	

									{	[Measures].[RO	Frequency],	

											[Measures].[RO	Frequency	DSV]		

									}		ON	0,	

WOW! eBook
www.wowebook.org

									[Reseller	Order	Frequency].[Interval].[Interval]	ON	1	

						FROM	

									(

																SELECT	

																						[Reseller].[Business	Type].&[Specialty	Bike	Shop]	ON	

0	

																FROM	

																						[Adventure	Works]	

)	

21.	 Execute	the	preceding	query,	and	the	result	should	look	like	the	following	screenshot:

WOW! eBook
www.wowebook.org

22.	 Notice	that	the	values	for	the	RO	Frequency	DSV	adjusted	to	the	new	context	in	subselect
while	the	values	of	the	RO	Frequency	measure	(highlighted	in	the	screenshot)	remained
unchanged.	The	alternative	approach	with	a	physical	measure	worked!

WOW! eBook
www.wowebook.org

How	it	works...
A	column,	defined	with	the	value	of	null,	is	created	in	the	fact	table	and	later	used	as	a	new
cube	measure.	By	default,	the	Analysis	Service	would	turn	the	value	of	null	into	zero;
however,	we	have	prevented	that	by	providing	the	Preserve	option	in	the	NullProcessing
property.	This	produced	a	regular	measure	that	is	always	null	in	any	context.

Now	let's	take	a	look	at	the	definition	of	the	measure	from	the	previous	recipe	and	see	how	it
changed	the	adequate	scope	statement.	We'll	repeat	them	here.

The	calculated	measure	from	the	previous	recipe	is	defined	like	this:

Create	MEMBER	CurrentCube.[Measures].[RO	Frequency]	AS	

					Sum(EXISTING	[Reseller].[Reseller].[Reseller].MEMBERS,	

										iif([Reseller	Order	Frequency].[Interval]	

															.CurrentMember.MemberValue	=	

															[Measures].[Reseller	Order	Count],	

															1,	

															null	

)	

)	

		,	Format_String	=	'#,#'	

		,	Associated_Measure_Group	=	'Reseller	Orders'	

		,	Display_Folder	=	'Histograms'	

		;		

The	new	measure	from	this	recipe	is	scoped	like	this:

Scope([Measures].[RO	Frequency	DSV],	

							[Reseller	Order	Frequency].[Interval].[Interval].Members,	

							[Reseller].[Reseller].[Reseller].Members	

);	

				This	=	iif([Reseller	Order	Frequency].[Interval]	

																.CurrentMember.MemberValue	=	

																[Measures].[Reseller	Order	Count],	

																1,	

																null	

);	

End	scope;	

Notice	the	important	difference	in	them.	In	our	new	physical	measure	implementation,	we	first
passed	the	burden	of	detecting	existing	resellers	to	the	server	by	adding	the	set	of	resellers
inside	the	definition	of	the	scope.	We	also	passed	the	burden	of	summarizing	the	values	across
the	existing	resellers	to	the	server.	In	other	words,	the	server	does	all	the	heavy	work	for	us.
Another	benefit	we	get	from	using	a	dummy	regular	measure	is	that	the	calculation	will	also
work	with	the	subselect,	as	shown	in	the	example.

WOW! eBook
www.wowebook.org

There's	more...
However,	the	improvement	comes	with	a	price.	In	this	case	it	is	manifested	in	the	form	of	all
the	modifications	you	have	to	perform	and	maintain	later,	as	well	as	the	increased	cube	size
because	of	the	new	measure.	Because	of	that,	it	is	up	to	you	to	decide	whether	it	pays	off	to
implement	this	alternative	or	not	in	your	particular	case.	Hopefully	you'll	have	the	chance	to
test	it	in	parallel	to	the	existing	solution	and	measure	the	costs/benefits	ratio	of	the	new
solution.

Additional	information	can	be	found	in	Teo	Lachev's	article:
http://tinyurl.com/TeoCalcAsRegular.

Associated	measure	group

The	same	format	string	and	display	folder	used	for	the	calculated	measure	can	be	specified	in
the	process	of	creating	the	new	measure.	The	only	exception	we	made	is	that	we	used	the
Reseller	Sales	measure	group.	That's	because	the	Reseller	Orders	measure	group,	the	one
which	the	calculated	measure	was	associated	with,	has	a	distinct	count	measure	and	distinct
count	measures	should	not	be	mixed	with	other	regular	measures.

We've	decided	to	put	the	calculated	measure	in	the	best	place	we	thought	it	should	be.	It	made
sense	to	put	it	in	the	same	measure	group	as	the	Reseller	Orders	Count	measure	because
they	both	count	something	related	to	resellers.	Just	for	the	record,	we	could	have	easily
defined	it	on	any	measure	group,	it	wouldn't	make	much	difference.

WOW! eBook
www.wowebook.org

http://tinyurl.com/TeoCalcAsRegular

See	also
Reading	and	implementing	the	recipe,	Using	a	distinct	count	measure	to	implement
histograms	over	existing	hierarchies	is	a	prerequisite	for	this	recipe

WOW! eBook
www.wowebook.org

Using	a	new	dimension	to	calculate	the	most
frequent	price
In	this	recipe,	we're	going	to	analyze	the	products	and	their	prices.	The	requirement	is	to	find
the	most	frequent	price,	or	Mode	Price,	in	any	context.

Finding	the	price	for	a	particular	product	doesn't	look	like	a	problem.	We	can	either	read	it	in
its	properties	if	the	price	is	available	as	a	product	member	property,	or	we	can	calculate	the
average	price	based	on	the	sales	amount	and	the	quantity	sold.

Member	properties	are	static	and	therefore	choosing	the	first	approach	would	be	wrong.	For
example,	the	price	in	the	form	of	the	member	property	doesn't	change	in	time	or	with	the
territory.	What	we	need	is	a	dynamic	expression.

The	other	option	is	to	calculate	the	average	price,	but	that's	also	not	good	enough.	We	need	to
know	the	exact	price	for	each	transaction,	not	the	average	value.

If	we	go	low	enough	with	the	granularity	of	the	query,	the	average	price	will	eventually
become	the	price	used	in	the	transaction;	however,	cubes	are	not	optimized	to	be	queried	on
the	leaf	level.	All	in	all,	it's	pretty	obvious	we	need	some	help	here.	This	can't	be	solved	in
MDX	alone.

The	solution	is	to	create	a	new	dimension	based	on	the	price	column	in	the	fact	table.	That
way	we	can	have	prices	as	an	object	we	can	use	and	manipulate	within	MDX	calculations.

In	addition	to	that,	we	need	a	measure	that	counts	rows,	but	that's	already	there	(or	can	be
easily	added)	in	every	measure	group	(as	long	it's	not	the	one	with	the	distinct	count	measure).
That	measure	can	be	used	to	isolate	the	price	with	the	maximum	number	of	rows	for	a	given
context.	After	that,	we	need	to	extract	this	price	member's	value	which	becomes	the	price
we're	after.

Let's	see	how	it's	done	in	this	recipe.

WOW! eBook
www.wowebook.org

Getting	ready
Open	the	SQL	Server	Data	Tools	(SSDT)	and	then	open	the	Adventure	Works	DW	2016
solution.	Once	it	loads,	double-click	on	the	Adventure	Works	DW	data	source	view.

WOW! eBook
www.wowebook.org

How	to	do	it...
Follow	these	steps	to	change	the	model	the	cube	is	built	from	which	in	turn	will	enable	simple
and	effective	MDX	calculations:

1.	 Create	a	new	named	query.	Name	it	Price	and	use	the	following	definition	for	it:

						SELECT	

									DISTINCT	

									UnitPrice	

						FROM	

									dbo.FactResellerSales	

2.	 Execute	the	query	in	order	to	test	it.	It	should	return	233	rows.
3.	 Make	sure	you've	selected	the	single	column	UnitPrice	in	that	table	and	then	mark	it	as	a

Logical	Primary	Key.
4.	 Locate	the	Reseller	Sales	diagram	in	the	Diagram	Organizer	pane.
5.	 Drag	and	drop	the	Price	named	query	in	the	free	area	of	that	diagram	and	link	the

Reseller	Sales	Facts	fact	table	to	it	using	the	UnitPrice	columns	in	both	objects.	The
following	screenshot	shows	the	relation	in	the	DSV.

6.	 Create	a	new	dimension	using	the	previously	defined	Price	named	query	and	name	it
Price.

7.	 Use	the	UnitPrice	column	for	the	KeyColumn.
WOW! eBook

www.wowebook.org

8.	 Name	the	attribute	Price.
9.	 Once	you	finish	with	the	wizard,	the	Dimension	Editor	will	look	like	the	following

screenshot:

10.	 Verify	that	the	OrderBy	property	is	set	to	Key.
11.	 Set	the	ValueColumn	to	UnitPrice	column.
12.	 Name	the	All	member	All	Prices.
13.	 Process	the	dimension	in	full.
14.	 When	it's	done,	verify	the	dimension	in	the	Browser	tab	of	the	Dimension	Editor.	The

prices	should	be	sorted	in	ascending	order.
15.	 Now,	open	the	Adventure	Works	cube	and	go	to	the	Dimension	Usage	tab	of	the	cube	to

add	the	Price	dimension.
16.	 Once	added,	the	dimension	will	be	automatically	related	to	two	measure	groups:

Reseller	Sales	and	Reseller	Orders.	Verify	that	and	then	set	its	Visible	property	to
False	in	the	Properties	pane.

17.	 Deploy	the	changes	and	process	the	cube.	When	the	processing	is	over,	you're	ready	to
write	calculations.

18.	 Go	to	the	Calculations	tab	and	position	the	cursor	in	the	end	of	the	MDX	script.
19.	 Enter	the	calculation	for	the	Mode	Price:

						Create	MEMBER	CurrentCube.[Measures].[Mode	Price]	AS	

										iif(IsEmpty([Measures].[Reseller	Transaction	Count]),	

															null,	

															TopCount([Price].[Price].[Price].MEMBERS,	

																									1,	

WOW! eBook
www.wowebook.org

																									[Measures].[Reseller	Transaction	Count]	

).Item(0).MemberValue	

)	

								,	Format_String	=	'Currency'	

								,	Display_Folder	=	'Statistics'	

								,	Associated_Measure_Group	=	'Reseller	Sales';	

20.	 Deploy	the	changes	in	the	MDX	script	and	then	go	to	the	Cube	Browser	tab.	Open	Excel
by	clicking	on	the	Analyze	in	Excel	icon	on	top.

21.	 A	comparison	of	the	Mode	Price	and	the	Reseller	Average	Unit	Price	measures	across
the	products	subcategories	can	be	seen	in	the	following	screenshot:

WOW! eBook
www.wowebook.org

WOW! eBook
www.wowebook.org

How	it	works...
By	counting	rows	in	the	original	fact	table	we're	basically	saying	we	want	to	know	how	many
times	the	current	price	occurred	in	the	context	of	other	dimensions.	That,	of	course,	demands
for	the	Price	dimension	which	we	have	made	in	the	initial	steps	of	the	solution	presented	in
this	recipe.

There's	something	else	to	it.	The	Price	dimension	is	kept	aside	all	the	time	by	being	invisible.
Its	only	purpose	is	to	spread	the	prices	so	that	we	can	pick	the	most	frequent	one.	The
evaluation	of	the	most	frequent	price	is	done	in	the	definition	of	the	calculated	measure,
where	we're	applying	the	TopCount()	function	over	all	prices	and	therefore	use	the	Reseller
Transaction	Count	measure	to	count	how	many	occurrences	each	price	had	in	the	given
context.	For	the	record,	the	Reseller	Transaction	Count	measure	is	also	invisible,	but	it	can
be	used	in	the	calculations.

If	you	want	to	verify	the	correctness	of	the	calculation,	make	both	the	Price	dimension	and
the	Reseller	Transaction	Count	measure	visible,	deploy	the	changes,	and	use	them	in	the
pivot.	The	price	with	the	highest	value	of	the	Reseller	Transaction	Count	measure	is
automatically	selected	as	the	Mode	Price.

In	the	end,	it's	worth	mentioning	that	once	we	had	the	most	frequent	price,	we	read	its	member
value	and	showed	it	as	the	result	of	the	calculation.

WOW! eBook
www.wowebook.org

There's	more...
It's	perfectly	normal	to	encounter	situations	where	two	or	more	prices	have	the	same
frequency,	the	same	rate	of	occurrence.	However,	the	calculation	we	made	can	take	only	a
single	one.	How	do	we	know	which	one?

Unlike	datasets	resulting	from	queries	in	the	relational	world,	the	default	behavior	of	sets	in
the	multidimensional	world	is	that	they	are	always	sorted	unless	explicitly	requested
otherwise.	The	order	is	determined	during	the	design	of	the	dimensions.	Each	attribute	has	a
property	for	that.	It	can	be	a	Key,	Name,	or	another	attribute.	The	point	is,	members	are	sorted
one	way	or	the	other.

Because	of	this,	in	the	case	of	a	tie,	the	order	of	members	determines	the	winner.	If	members
are	sorted	by	the	key,	a	member	with	the	lower	key	will	win.	If	members	are	sorted	by	a	name,
the	one	that	alphabetically	comes	sooner	wins.	If	you	need	the	opposite	order,	consider	using
another	attribute	or	switch	the	keys	to	their	negative	values.

WOW! eBook
www.wowebook.org

Using	a	utility	dimension	to	implement	flexible
display	units
Measures	are	sometimes	too	precise	for	reporting	needs.	Either	because	they	have	decimals
which	distract	us	or	because	the	numbers	are	very	large,	consisting	of	many	digits,	and
therefore	hard	to	memorize	or	compare	with	others.	The	phrase	can't	see	the	forest	for	the
trees	fits	perfectly	here.

Sometimes	users	like	to	see	measures	displayed	in	thousands	or	millions	for	ease	of
comparison.	One	way	to	accomplish	that	would	be	to	divide	those	measures	directly	in	the
fact	table	by,	let's	say	1,000	or	1,000,000.	We	would	of	course	have	to	specify	the	new	unit	in
the	title	of	the	measure.	However,	that	wouldn't	be	a	good	solution.	In	situations	where	we
need	the	results	to	be	as	precise	as	possible,	that	would	cause	problems.	As	said,	sometimes,
but	not	always,	there's	a	need	to	simplify	the	numbers.

The	other	way	would	be	to	generate	a	set	of	parallel	calculated	measures,	one	for	each	factor.
That	way	we	would	have	sales	amount,	then	sales	amount	(000),	and	finally	sales	amount
(000,000)	or	similar	markings.	Again,	this	is	not	a	very	good	approach.	End	users	would	have
a	hard	time	finding	the	right	measure	in	a	set	of	so	many	calculated	measures.

The	next	option	is	the	best,	although	it	can	have	its	specifics	that	may	demand	our	attention.
It's	the	case	of	building	a	separate	utility	dimension	to	display	values	in	thousands,	millions,
and	so	on.	This	way	we	can	preserve	the	simplicity	of	the	cube	design	while	enjoying	the
benefits	of	being	able	to	visualize	measures	in	another	metric.other	metrics.	This	recipe
shows	how	to	achieve	such	a	solution.	It	also	tackles	problems	specific	to	this	type	of	solution.

WOW! eBook
www.wowebook.org

Getting	ready
Open	the	SQL	Server	Data	Tools	(SSDT)	and	then	open	the	Adventure	Works	DW	2016
solution.	Once	it	loads,	double-click	on	the	Adventure	Works	DW	data	source	view.

WOW! eBook
www.wowebook.org

How	to	do	it...
Follow	these	steps	to	create	the	utility	dimension	which	displays	results	in	various	formats:

1.	 Create	a	new	named	query	Calculations	-	Display	Units	with	the	following	definition:

						SELECT								0	AS	UnitKey,	'As	is'	AS	UnitName	

						UNION	ALL	

						SELECT								1											,	'in	0'	

						UNION	ALL	

						SELECT								2											,	'in	00'	

						UNION	ALL	

						SELECT								3											,	'in	000'	

						UNION	ALL	

						SELECT								4											,	'in	0,000'	

						UNION	ALL	

						SELECT								5											,	'in	00,000'	

						UNION	ALL	

						SELECT								6											,	'in	000,000'	

						UNION	ALL	

						SELECT								7											,	'in	0,000,000'	

						UNION	ALL	

						SELECT								8											,	'in	00,000,000'	

						UNION	ALL	

						SELECT								9											,	'in	000,000,000'	

2.	 Execute	the	query	in	order	to	test	it.	It	should	return	10	rows.
3.	 Set	the	UnitKey	column	as	a	Logical	Primary	Key	column.	The	named	query

Calculations	-	Display	Units	should	be	like	the	following	screenshot:

4.	 Create	a	new	dimension	using	the	previously	defined	named	query	and	name	it
Calculations	-	Display	Units.

5.	 Use	the	UnitKey	column	for	the	KeyColumn	and	the	UnitName	column	for	the	NameColumn
properties.

6.	 Name	the	attribute	Display	Unit.
7.	 Set	the	IsAggregatable	property	of	the	attribute	to	False.
8.	 Set	the	OrderBy	property	to	Key.
9.	 Set	the	ValueColumn	to	UnitKey	column.

WOW! eBook
www.wowebook.org

10.	 Set	the	default	member	for	the	attribute	to	the	As	is	member.	The	expression	in	the
property	should	be	[Calculations	-	Display	Units].[Display	Unit].&[0]	once
you're	done.

11.	 Deploy	and	process	in	full	the	dimension.	Then	verify	in	the	Browser	tab	of	the
Dimension	Editor	that	your	new	utility	dimension	looks	like	the	following:

12.	 Open	the	Adventure	Works	cube	and	add	that	dimension	without	linking	it	to	any
measure	group.

13.	 Deploy	changes	by	right-clicking	on	the	project	name	(in	the	Solution	Explorer	pane)
and	choosing	the	Deploy	action.

14.	 Go	to	the	Calculations	tab	and	add	the	following	code	to	the	beginning	of	the	MDX
script:

						Create	Hidden	SET	CurrentCube.[Display	Units	Set]	AS	

									Except([Calculations	-	Display	Units].[Display	Unit].[Display		

Unit],	

																	[Calculations	-	Display	Units].[Display	Unit].&[0])	

						;		

						Scope([Display	Units	Set]);			

										This	=	[Calculations	-	Display	Units].[Display	Unit].&[0]	

																		/	

																	10	^	[Calculations	-	Display	Units].[Display	Unit]	

																						.CurrentMember.MemberValue;	

										Format_String(This)	=	'#,##0';	

						End	Scope;	

15.	 Deploy	the	solution.
16.	 Go	to	the	Cube	Browser	tab	and	build	a	pivot	using	the	new	dimension	on	the	columns

where	you	select	only	some	members,	for	example,	Display	in	thousands	and	As	is.	Put
WOW! eBook

www.wowebook.org

the	Gross	Profit,	the	Sales	Amount,	and	the	Ratio	to	Parent	Product	measures	in	the
data	area	and	the	product	categories	on	the	rows.	You	should	be	able	to	see	that	the	values
are	reduced	as	required	for	amounts,	but	not	for	the	percentages:

WOW! eBook
www.wowebook.org

How	it	works...
The	utility	dimension,	a	dimension	not	related	to	any	fact	table	of	the	cube,	can	be	understood
as	a	cube	parameter.	The	logic	we	have	implemented	using	the	scope	statement	in	the	MDX
script	acts	like	a	modification	of	the	cube.	The	scope	fires,	if	any	members	of	that	dimension
are	in	context.	The	calculation	specifies	that	the	value	of	the	measure	will	be	reduced	by	factor
10	to	the	power	of	the	member	value	of	the	current	member.	The	formula	can	be	so	elegant
because	we	used	the	MemberValue	property,	the	same	sequence	of	numbers	as	in	the	dimension
key.

The	definition	of	the	scope	says	that	the	value	of	any	measure	will	be	divided	by	10	to	the
power	of	N,	where	N	is	read	from	the	MemberValue	property	of	the	current	member	of	that
utility	dimension.

WOW! eBook
www.wowebook.org

There's	more...
Things	don't	run	that	smoothly.	There	are	potential	problems	with	this	approach.

One	is	that	we	lose	the	format	string	of	the	measure	(see	the	Sales	Amount	measure	in	the
previous	screenshot);	the	other	is	that	the	scope	is	applied	to	all	the	measures.	Let's	see	what
we	can	do	about	that.

Set-based	approach

We	can	expand	the	scope	and	specify	which	measures	we	want	in	it.	That	way	we	can	precisely
control	the	format	string	for	each	set	of	measures.

Here's	an	example	how	it	can	be	done.	Add	this	new	hidden	set	immediately	after	the
previously	defined	hidden	set	and	modify	the	scope	as	specified:

Create	Hidden	SET	CurrentCube.[Measures	Set]	AS	

			{	[Measures].[Extended	Amount],	

						[Measures].[Freight	Cost],	

						[Measures].[Sales	Amount],	

						[Measures].[Standard	Product	Cost],	

						[Measures].[Total	Product	Cost],	

						[Measures].[Tax	Amount]	}	

		;	

	

Scope([Display	Units	Set],	

							[Measures	Set]);	

				This	=	[Calculations	-	Display	Units].[Display	Unit].&[0]	

												/	

											10	^	[Calculations	-	Display	Units].[Display	Unit]	

																.CurrentMember.MemberValue;	

				Format_String(This)	=	'Currency';	

End	Scope;	

Here's	the	same	example	using	one	regular,	one	calculated,	and	one	ratio	measure	with	the
scope	applied	to	the	in	000	member:

WOW! eBook
www.wowebook.org

Only	regular	cube	measures	can	be	explicitly	specified	in	the	scope,	not	calculated	ones.	The
effect	will	manifest	in	all	subsequently	defined	calculated	measures	too	because	their
definition	is	dependent	on	the	values	of	regular	measures	and	since	the	regular	measures	will
be	reduced,	so	shall	the	calculated	measures.

The	scoped	set	solution	can	be	repeated	many	times.	We	can	group	measures	of	the	same	type
in	multiple	sets	and	use	an	explicit	format	string	for	each	of	those	sets.	However,	that's	not	too
practical	a	solution.	Moreover,	the	reduced	values	are	still	not	readable.	It	would	be	great	if
we	could	lose	decimals	and	currency	symbols	that	distract	us.

Format	string	on	a	filtered	set	approach

A	more	general	way	to	specify	various	measures	in	the	cube	without	having	to	list	them	all	in
the	scope	or	hidden	sets	heavily	depends	on	the	naming	convention	used	in	the	cube.	We	can
filter	all	measures,	regular	and	calculated	ones,	based	on	some	criteria	and	apply	the	format
only	to	those	measures	that	don't	have	the	words	Price,	Margin,	Ratio,	and	so	on	in	them.
Here's	an	example	for	that.

Modify	the	definition	of	the	Measures	Set	according	to	the	following	expression.	Modify	the
scope	statement,	but	move	it	to	the	end	of	the	MDX	script	this	time,	not	the	beginning.	Also,
make	sure	the	Display	Units	Set	is	still	available	in	the	MDX	script	since	the	scope	is
referring	to	it:

Create	Hidden	SET	CurrentCube.[Measures	Set]	AS	

			Filter(Measures.AllMembers,	

											--MeasureGroupMeasures('Sales	Summary'),	

											InStr(Measures.CurrentMember.Name,	'Price')	

											=	0	AND	

											InStr(Measures.CurrentMember.Name,	'Margin')	

											=	0	AND	

											InStr(Measures.CurrentMember.Name,	'Percentage')	

											=	0	AND	

											InStr(Measures.CurrentMember.Name,'Growth')	

											=	0	AND	

											InStr(Measures.CurrentMember.Name,	'Rate')	

											=	0	AND	

											InStr(Measures.CurrentMember.Name,	'Ratio')	

											=	0	

)	

		;	

	

Scope([Display	Units	Set]);	

				Format_String([Calculations	-	Display	Units].[Display	Unit].&[3]	

																			*	[Measures	Set])	=	'#,##0,';	

				Format_String([Calculations	-	Display	Units].[Display	Unit].&[6]		

																			*	[Measures	Set])	=	'#,##0,,';	

				Format_String([Calculations	-	Display	Units].[Display	Unit].&[9]		

																			*	[Measures	Set])	=	'#,##0,,,';	

End	Scope;	

WOW! eBook
www.wowebook.org

When	deployed,	this	solution	works	just	right.	Open	Excel	and	create	a	pivot;	you	can	see	that
the	amounts	are	formatted	as	numbers	in	1,000s	while	the	percentages	remain	as	percentages:

Tip

The	Gross	Profit	is	a	calculated	measure,	and	is	formatted	as	a	currency	in	the	MDX	script.
In	order	for	the	Format_String()	function	to	work	in	the	earlier	scope	statement,	you	need	to
remove	the	line	Format_String	=	"Currency"	from	the	Gross	Profit	calculation.

Notice	that	we	didn't	have	to	modify	the	actual	values	in	the	scope	statement;	we	only	changed
the	format	string	for	certain	measures.	This	makes	it	a	faster	approach.

The	other	thing	to	notice	is	that	we	were	able	to	use	both	calculated	and	regular	measures.
That	is	because	in	the	Format_String()	function	we	are	allowed	to	use	both	types	of
measures,	whereas	in	the	scope's	definition	we	are	not	allowed	to	use	calculated	measures.	By
carefully	constructing	our	expression,	we	were	able	to	achieve	the	goal.

The	only	downside	is	that	we	only	made	it	work	for	some	members	of	the	utility	dimension,
not	all	of	them.	However,	that	should	not	be	a	problem	because	those	members	are	used	most
of	the	time	anyway	(in	000,	in	000,000,	in	000,000,000,	and	so	on).	In	other	words,	if	we	stick
with	the	latest	solution,	we	can	remove	all	not-used	members	from	the	utility	dimension.

The	commented	part	of	the	scope	statement	shows	that	we	can	limit	the	filter	to	one	or	more
measure	groups.

WOW! eBook
www.wowebook.org

Using	a	utility	dimension	to	implement	time-
based	calculations
The	MDX	language	implemented	in	SQL	Server	Analysis	Services	offers	various	time-
related	functions.	Chapter	3	,	Working	with	Time,	showed	how	they	can	be	utilized	to	construct
useful	sets	and	calculations.	The	main	focus	there	was	to	show	how	to	make	OLAP	cubes
time-aware;	how	to	detect	the	member	that	represents	today's	date	and	then	create	related
calculations.

In	this	chapter,	we	meet	time	functions	again.	This	time	our	focus	is	to	generate	time-based
calculations	in	the	most	effective	way.	One	way	to	do	it	is	to	use	the	built-in	Time	Intelligence
Wizard,	but	that	path	is	known	to	be	problematic.	Best	practice	says	we	need	a	separate	utility
dimension	instead,	a	utility	dimension	with	members	representing	common	time-based
calculations	like	the	year-to-date,	year-over-year,	previous	period,	and	so	on.

The	idea	behind	the	utility	dimension	is	to	minimize	the	number	of	calculations	in	the	way	that
measures	are	combined	with	members	of	the	utility	dimension.	That	effectively	means	we
have	a	Cartesian	product	of	measures	and	their	possible	time-related	variants.	This	is	a	more
elegant	approach	than	having	many	calculated	measures	in	the	cube,	not	to	mention
maintaining	them	or	presenting	them	to	end	users.

Members	of	the	utility	dimension	have	more	or	less	complex	formulas.	However,	once	we	set
them	up	in	one	project,	we	can	use	them	in	future	ones.	As	long	as	we	keep	the	metadata	the
same	-	the	names	of	the	attributes	and	levels	of	the	date	dimension	and	this	utility
dimension	-	the	process	comes	down	to	copy/paste	and	is	done	in	a	minute.	Does	this	sound
tempting?

WOW! eBook
www.wowebook.org

Getting	ready
Open	the	SQL	Server	Data	Tools	(SSDT)	and	then	open	the	Adventure	Works	DW	2016
solution.	Once	it	loads,	double-click	on	the	Adventure	Works	DW	data	source	view.

Before	we	start,	I	should	inform	you	that	this	recipe	is	heavy	on	MDX.	Although	it	has	the
longest	code	in	the	whole	book,	it	is	a	very	useful	recipe.	Once	adjusted	to	your	date
dimension,	the	code	can	be	reused	in	every	project	that	has	the	same	date	dimension.	If	the
dimension	is	the	same	as	in	the	Adventure	Works	DW	database,	then	no	further	modification
is	needed.	I	am	by	no	means	saying	you	should	design	your	date	dimension	the	way	it	is	done
in	Adventure	Works.	You	shouldn't.	I'm	merely	saying	you	should	start	with	that,	read	the
explanations,	analyze	the	code,	and	then	adjust	it	to	your	needs.

WOW! eBook
www.wowebook.org

How	to	do	it...
Follow	these	steps	to	create	a	utility	dimension	with	relative	time	calculations:

1.	 Create	a	new	named	query	Time	Calcs	using	the	following	definition:

						SELECT	0	AS	ID,	'As	is'	AS	Name	

						UNION	ALL	

						SELECT	1						,	'YTD'	

						UNION	ALL	

						SELECT	2						,	'Prev	period'	

						UNION	ALL	

						SELECT	3						,	'Year	ago'	

						UNION	ALL	

						SELECT	4						,	'YTD	Year	ago'	

						UNION	ALL	

						SELECT	21					,	'Prev	period	i'	

						UNION	ALL	

						SELECT	22					,	'Prev	period	%'	

						UNION	ALL	

						SELECT	31					,	'Year	ago	i'	

						UNION	ALL	

						SELECT	32					,	'Year	ago	%'	

						UNION	ALL	

						SELECT	41					,	'YTD	Year	ago	i'	

						UNION	ALL	

						SELECT	42					,	'YTD	Year	ago	%'	

2.	 Execute	the	query	in	order	to	test	it.	It	should	return	11	rows.	Then	close	the	window.
3.	 Mark	the	ID	column	as	the	Logical	Primary	Key	column.
4.	 Create	a	new	dimension	using	the	previously	defined	named	query	and	name	it	Time

Calcs.
5.	 Use	the	ID	column	for	the	KeyColumn	and	the	Name	column	for	the	NameColumn

properties.
6.	 Name	the	attribute	Calc.
7.	 Once	you	finish	with	the	wizard	a	Dimension	Editor	will	show.
8.	 Set	the	IsAggregatable	property	of	the	attribute	to	False.
9.	 Set	the	OrderBy	property	to	Key.
10.	 Set	the	ValueColumn	to	ID	column.
11.	 Set	the	default	member	for	the	attribute	to	the	As	is	member.	The	expression	in	that

property	should	be	[Time	Calcs].[Calc].&[0]	once	you're	done.
12.	 Deploy	and	process	in	full	the	dimension.	Then	verify	the	dimension	in	the	Browser	tab

of	the	Dimension	Editor.

WOW! eBook
www.wowebook.org

13.	 Open	the	Adventure	Works	cube	and	add	that	dimension	without	linking	it	to	any
measure	group,	then	deploy.

14.	 Now	we're	ready	to	write	calculations.	Go	to	the	Calculations	tab	and	position	the	cursor
at	the	end	of	the	MDX	script.

15.	 Add	the	calculation	for	the	YTD	member.	In	the	case	of	Adventure	Works,	the	calculation
WOW! eBook

www.wowebook.org

should	consist	of	three	parts.	The	first	two	parts	handle	attribute	hierarchies	not	related	to
the	year	level	and	thus	enable	them	to	be	used	in	combination	with	the	YTD	member.	The
last	part	is	a	classic	YTD	calculation	expanded	to	work	for	all	visible	attribute
hierarchies	that	make	sense	to	be	used	directly	with	the	year	level.

						Scope([Time	Calcs].[Calc].[YTD]);	

													--	focus	on	anything	below	and	including	year	level	

										Scope([Date].[Date].MEMBERS,	

																	[Date].[Calendar	Year].[Calendar	Year].MEMBERS);	

																--	attribute	hierarchies	not	related	to	year	level	

																--	and	related	to	months	

																--	i.e.	day	of	month	

														Scope([Date].[Month	of	Year].[Month	of	Year].MEMBERS);	

																		This	=	Aggregate(

																										YTD([Date].[Calendar].CurrentMember)	*	

																										YTD([Date].[Calendar	Weeks].CurrentMember)	*	

																										{	null	:	[Date].[Month	of	Year].CurrentMember	}	*		

																										{	null	:	[Date].[Day	of	Month].CurrentMember	},	

																										[Time	Calcs].[Calc].&[0]	

);		

														End	Scope;	

																--	attribute	hierarchies	not	related	to	year	level	

																--	and	related	to	weeks	

																--	i.e.	day	of	week	&	day	name	

														Scope([Date].[Calendar	Week	of	Year]	

																											.[Calendar	Week	of	Year].MEMBERS);	

																		This	=	Aggregate(

																										YTD([Date].[Calendar].CurrentMember)	*	

																										YTD([Date].[Calendar	Weeks].CurrentMember)	*	

																										{	null	:	[Date].[Calendar	Week	of	Year]	

																																			.CurrentMember	}	*	

																										{	null	:	[Date].[Day	of	Week].CurrentMember	}	*	

																										{	null	:	[Date].[Day	Name].CurrentMember	},	

																										[Time	Calcs].[Calc].&[0]	

);		

														End	Scope;	

																--	user	hierarchies	

																--	and	attribute	hierarchies	related	to	year	level	

														This	=	Aggregate(

																										YTD([Date].[Calendar].CurrentMember)	*	

																										YTD([Date].[Calendar	Weeks].CurrentMember)	*	

																										{	null	:	[Date].[Calendar	Semester	of	Year]	

																																			.CurrentMember	}	*	

																										{	null	:	[Date].[Calendar	Quarter	of	Year]	

																																			.CurrentMember	}	*	

																										{	null	:	[Date].[Month	of	Year].CurrentMember	}	*		

																										{	null	:	[Date].[Calendar	Week	of	Year]	

																																			.CurrentMember	}	*	

																										{	null	:	[Date].[Day	of	Year].CurrentMember	}	*	

																										{	null	:	[Date].[Date].CurrentMember	},	

																										[Time	Calcs].[Calc].&[0]	

);		

										End	Scope;	

													--	performance	is	improved	if	we	preserve	empty	cells	

													--	remove	this	to	get	continuous	date	ranges	

WOW! eBook
www.wowebook.org

										This	=	iif(IsEmpty([Time	Calcs].[Calc].&[0]),	

																						null,	Measures.CurrentMember);	

						End	Scope;	

16.	 Notice	the	comments	inside	the	calculation.	They	are	there	to	help	you	understand	what's
going	on.

17.	 Add	the	calculation	for	the	Prev	period	member.	The	idea	is	to	allow	hierarchies	to
expand	by	one	member	to	the	left	to	include	the	previous	period,	apply	the	intersection,
and	then	deduct	the	value	in	the	current	context	from	it.	The	result	is	the	value	in	the
previous	period.	The	first	part	of	the	scope	should	handle	user	hierarchies;	the	second
one	is	dedicated	to	attribute	hierarchies.	Please	notice	that	our	generic	term	period	can	be
a	month,	a	week	or	anything	else	depending	on	what	we've	put	in	the	context.	In	order	to
expand	to	include	the	previous	period,	we	have	created	a	procedure	to	shift	members	in
the	circle.	We	will	explain	this	procedure	in	detail	later	in	the	There's	more	section.	When
the	intersection	subcube	contains	only	a	single	member,	the	circle	shift	procedure	should
produce	the	previous	period.	In	case	there	is	no	previous	year,	an	empty	value	should	be
returned.

						Scope([Time	Calcs].[Calc].[Prev	period]);	

													--	user	hierarchies,	complete	

										Scope([Date].[Calendar].MEMBERS,	

																	[Date].[Calendar	Weeks].MEMBERS);	

																--	previous	member	exists?	(null	for	"no")	

														This	=	iif(Count(LastPeriods(2,	[Date].[Calendar]	

																																																							.CurrentMember)	*	

																																	LastPeriods(2,	[Date].[Calendar	Weeks]	

																																																							.CurrentMember)	

)	<=	1,	

																										null,	

																											--	include	one	member	to	the	left	on	each		

																											--	hierarchy	and	see	what	comes	out	as	the	

																											--	intersection,	then	deduct	the	value	in	

																											--	the	current	context	from	it	

																										Aggregate(

																													LastPeriods(2,	[Date].[Calendar]	

																																																			.CurrentMember)	*	

																													LastPeriods(2,	[Date].[Calendar	Weeks]	

																																																			.CurrentMember),	

																													[Time	Calcs].[Calc].&[0]	

)	-	

																										[Time	Calcs].[Calc].&[0]	

);	

										End	Scope;	

													--	attribute	hierarchies	directly	related	to	year	level	

										Scope([Date].[Calendar	Year].[Calendar	Year].MEMBERS);	

																--	previous	member	exists?	(test	prev	year	for	"no")	

														This	=	iif(Count(

																							LastPeriods(2,	[Date].[Calendar	Semester	of	Year]	

																																													.CurrentMember)	*	

																							LastPeriods(2,	[Date].[Calendar	Quarter	of	Year]	

																																													.CurrentMember)	*	

																							LastPeriods(2,	[Date].[Month	of	Year]	

																																													.CurrentMember)	*	

WOW! eBook
www.wowebook.org

																							LastPeriods(2,	[Date].[Calendar	Week	of	Year]	

																																													.CurrentMember)	*	

																							LastPeriods(2,	[Date].[Day	of	Year]	

																																													.CurrentMember)	*	

																							LastPeriods(2,	[Date].[Date]	

																																													.CurrentMember))	<=	1,	

																									--	previous	year	exists?	(null	for	"no")	

																							iif(Count(LastPeriods(2,	[Date].[Calendar	Year]	

																																																									.CurrentMember)	

)	<=	1,	

																											null,	

																												--	members	shift	in	circle	

																												--	from	the	first	position	to	the	last	

																												--	hence	we	need	the	previous	year	

																										(

																											[Date].[Calendar	Year].PrevMember,	

																											[Date].[Calendar	Semester	of	Year].LastSibling,	

																											[Date].[Calendar	Quarter	of	Year].LastSibling,	

																											[Date].[Month	of	Year].LastSibling,	

																											[Date].[Calendar	Week	of	Year].LastSibling,	

																											[Date].[Day	of	Year].LastSibling,	

																											[Date].[Date].LastSibling,	

																											[Time	Calcs].[Calc].&[0]	

)	

),	

																							--	include	one	member	to	the	left	on	each		

																							--	hierarchy	and	see	what	comes	out	as	the	

																							--	intersection,	then	deduct	the	value	in	the	

																							--	current	context	from	it	

																						Aggregate(

																									LastPeriods(2,	[Date].[Calendar	Semester	of	Year]	

																																															.CurrentMember)	*	

																									LastPeriods(2,	[Date].[Calendar	Quarter	of	Year]	

																																															.CurrentMember)	*	

																									LastPeriods(2,	[Date].[Month	of	Year]	

																																															.CurrentMember)	*	

																									LastPeriods(2,	[Date].[Calendar	Week	of	Year]	

																																															.CurrentMember)	*	

																									LastPeriods(2,	[Date].[Day	of	Year]	

																																															.CurrentMember)	*	

																									LastPeriods(2,	[Date].[Date].CurrentMember),	

																									[Time	Calcs].[Calc].&[0]	

)	-	

																						[Time	Calcs].[Calc].&[0]	

);		

										End	Scope;	

						End	Scope;	

18.	 The	next	calculation	is	relatively	simple	compared	to	those	before.	Define	the	calculation
for	the	Year	ago	member,	a	member	that	returns	the	value	for	the	same	period	in	the
previous	year:

						Scope([Time	Calcs].[Calc].[Year	ago]);	

													--	focus	on	anything	below	and	including	year	level	

										Scope([Date].[Date].MEMBERS,	

																	[Date].[Calendar	Year].[Calendar	Year].MEMBERS);	

WOW! eBook
www.wowebook.org

																--	jump	one	year	back	on	both	user	hierarchies	

														This	=	(ParallelPeriod([Date].[Calendar].[Calendar	Year],	

																																								1,	

																																							[Date].[Calendar].CurrentMember),	

																							ParallelPeriod([Date].[Calendar	Weeks]	

																																													.[Calendar	Year],	

																																								1,	

																																							[Date].[Calendar	Weeks]	

																																													.CurrentMember),	

																							[Time	Calcs].[Calc].&[0]	

);		

										End	Scope;	

						End	Scope;	

19.	 Adding	the	YTD	variant	of	the	previous	calculation	is	also	easy.	To	define	the	YTD	Year
ago	member,	simply	use	the	YTD	member	of	the	utility	dimension	in	the	definition	used
for	the	Year	ago	member:

						Scope([Time	Calcs].[Calc].[YTD	Year	ago]);	

													--	focus	on	anything	below	and	including	year	level	

										Scope([Date].[Date].MEMBERS,	

																	[Date].[Calendar	Year].[Calendar	Year].MEMBERS);	

														This	=	(ParallelPeriod([Date].[Calendar].[Calendar	Year],	

																																							1,	

																																							[Date].[Calendar].CurrentMember),	

																							ParallelPeriod([Date].[Calendar	Weeks]	

																																													.[Calendar	Year],	

																																								1,	

																																							[Date].[Calendar	Weeks]	

																																													.CurrentMember),	

																								--	don't	forget	to	use	the	YTD	member	this	time	

																							[Time	Calcs].[Calc].[YTD]	

);		

						End	Scope;	

20.	 Now	that	we've	defined	the	main	calculations,	we're	ready	to	proceed	with	indexes	and
percentages.	The	first	indicator	(Prev	period	i)	determines	the	difference	from	a
previous	period,	the	second	one	(Year	ago	i)	from	a	year	ago	and	finally,	the	third	one
(YTD	Year	ago	i)	also	from	a	year	ago,	but	cumulatively	(YTD).	All	of	them	are
additionally	formatted	with	a	red	font	color	for	negative	values.	The	i	stands	for	index.

						Scope([Time	Calcs].[Calc].[Prev	period	i]);	

										This	=	[Time	Calcs].[Calc].&[0]	-	

																	[Time	Calcs].[Calc].[Prev	period];	

										Fore_Color(This)	=	Abs(Measures.CurrentMember	<	0)	*	255;	

						End	Scope;	

	

						Scope([Time	Calcs].[Calc].[Year	ago	i]);	

										This	=	[Time	Calcs].[Calc].&[0]	-	

																	[Time	Calcs].[Calc].[Year	ago];	

										Fore_Color(This)	=	Abs(Measures.CurrentMember	<	0)	*	255;	

						End	Scope;	

	

						Scope([Time	Calcs].[Calc].[YTD	Year	ago	i]);	

										This	=	[Time	Calcs].[Calc].[YTD]	-	

WOW! eBook
www.wowebook.org

																	[Time	Calcs].[Calc].[YTD	Year	ago];	

										Fore_Color(This)	=	Abs(Measures.CurrentMember	<	0)	*	255;	

						End	Scope;	

21.	 Add	the	code	for	three	indicators	in	the	form	of	percentages:	Prev	period	%,	Year	ago
%	and	YTD	Year	ago	%.	The	%	sign	stands	for	the	value	expressed	in	the	form	of	a
percentage:

						Scope([Time	Calcs].[Calc].[Prev	period	%]);	

										This	=	iif([Time	Calcs].[Calc].[Prev	period]	=	0,	null,	

																						[Time	Calcs].[Calc].&[0]	/	

																						[Time	Calcs].[Calc].[Prev	period]	-	1);	

										Format_String(This)	=	'Percent';	

										Fore_Color(This)	=	Abs(Measures.CurrentMember	<	0)	*	255;	

						End	Scope;	

	

						Scope([Time	Calcs].[Calc].[Year	ago	%]);	

										This	=	iif([Time	Calcs].[Calc].[Year	ago]	=	0,	null,	

																						[Time	Calcs].[Calc].&[0]	/	

																						[Time	Calcs].[Calc].[Year	ago]	-	1);	

										Format_String(This)	=	'Percent';	

										Fore_Color(This)	=	Abs(Measures.CurrentMember	<	0)	*	255;	

						End	Scope;	

	

						Scope([Time	Calcs].[Calc].[YTD	Year	ago	%]);	

										This	=	iif([Time	Calcs].[Calc].[YTD	Year	ago]	=	0,	null,	

																						[Time	Calcs].[Calc].[YTD]	/	

																						[Time	Calcs].[Calc].[YTD	Year	ago]	-	1);	

										Format_String(This)	=	'Percent';	

										Fore_Color(This)	=	Abs(Measures.CurrentMember	<	0)	*	255;	

						End	Scope;	

You're	done	with	calculations!	Now,	deploy	changes	in	the	MDX	script	and	test	the
solution	in	Excel	by	clicking	on	the	Analyze	in	Excel	icon	in	the	Cube	Browser	tab.

22.	 Calculations	should	work	correctly	no	matter	which	hierarchy	you	take	in	the	pivot,	as
long	as	you	don't	use	fiscal	hierarchies.	See	the	following	screenshot	with	two	attribute
hierarchies	on	the	rows,	years	and	months:

WOW! eBook
www.wowebook.org

WOW! eBook
www.wowebook.org

How	it	works...
The	solution	presented	in	this	recipe	is	a	long	one.	Therefore	we'll	break	the	explanation	into
several	phases.

The	first	phase	was	creating	the	utility	dimension.	We	created	the	utility	dimension	in	DSV.	It
can	also	be	created	in	DW.

The	process	of	creating	a	utility	dimension	is	pretty	straightforward.	The	first	member
becomes	the	default	member,	the	All	member	is	disabled.	Other	actions	help	but	are	not
mandatory.	I	do	suggest	you	make	them	though.

The	second	phase	started	when	we	defined	four	main	calculations	and	assigned	them	to
members	of	the	utility	dimension.	We	used	one	or	more	scope	statements	for	that,	to	precisely
determine	the	context	in	which	particular	assignments	should	be	applied.

The	first	of	these	calculations	defined	what	should	happen	when	the	YTD	member	gets	selected
in	the	utility	dimension.	To	remind	you,	this	was	done	in	step	16.

The	outer	scope	in	that	calculation	limits	the	cube	space	to	anything	including	and	below	the
year	level	which	is	exactly	the	subcube	that	YTD	calculation	should	be	applied	to.

The	first	thing	we	did	is	provide	the	assignments	for	two	attribute	hierarchies-the	Month	of
Year	and	the	Calendar	Week	of	Year	hierarchy.	This	is	not	a	mandatory	step	when	defining
YTD	calculations	and	you'll	rarely	see	it	made.	However,	it	pays	off	to	implement	it	because
those	additional	assignments	enable	the	usage	of	all	attribute	hierarchies	for	the	YTD
calculation.	In	other	words,	they	allow	us	to	combine	several	attribute	hierarchies	as	if	they
were	levels	of	a	natural	user	hierarchy.

Additional	assignments	like	these	come	with	a	prerequisite-our	guarantee	that	they	make
sense	in	the	particular	context.	This	is	defined	using	the	scope	subcube.

If	you	take	one	more	look	at	the	YTD	calculation,	you'll	notice	that	YTD	values	for	the	Day
of	Month	hierarchy	will	only	be	calculated	when	months	are	also	present	in	the	context.
Similarly,	it	makes	sense	to	calculate	the	YTD	values	for	Day	of	Week	and	Day	Name
hierarchies	too,	but	only	when	weeks	are	in	the	context.	This	is	how	the	invisible	time
sequence	gets	established.

The	third	assignment	in	that	calculation	is	the	one	made	for	the	user	hierarchies	and	all
attribute	hierarchies	that	make	sense	to	be	used	together	with	years.	Just	like	in	the	previous
assignments,	two	natural	user	hierarchies	are	used	to	collect	the	YTD	range	while	all	other
hierarchies	filter	that	context	by	interacting	with	it	in	the	form	of	intersections.	What	comes
out	of	that	intersection	is	a	subcube	that	represents	the	YTD	values	for	that	particular	context.

The	Prev	period	member	is	also	a	complex	one.	Again,	we	have	two	scopes:	one	for	user
WOW! eBook

www.wowebook.org

hierarchies	and	the	other	for	attribute	hierarchies.	In	order	to	keep	things	concise,	we'll
explain	the	logic	behind	this	calculation	by	focusing	on	the	main	intentions	here.

The	idea	behind	calculating	the	value	in	the	previous	period	is	to	extend	every	current
member	with	its	previous	member,	aggregate	that,	and	deduct	the	value	in	the	current	context
from	that.	What	comes	as	the	result	is	the	value	in	the	previous	period.

Notice	how	we	keep	using	the	generic	term	period.	It's	not	a	month,	it's	not	a	week;	it	can	be
anything	depending	on	what	we've	put	in	the	context.	The	shape	of	the	subcube	is	not	our
concern.	All	we	have	to	do	is	provide	a	potential	subcube	for	this	calculation.	In	the	case	of
the	Prev	period	member,	we	did	that	by	specifying	the	current	and	previous	member	for	each
relevant	hierarchy.	So,	the	idea	of	chasing	the	current	or	existing	members	of	every
hierarchy,	and	then	detecting	whether	they've	moved	or	not	is	not	the	way	to	go.	We	should
think	in	terms	of	sets	and	allow	the	engine	to	do	the	magic	by	intersecting	members	in	the
provided	subcube.

Two	additional	things	were	important	in	the	previous	period	calculation.	First,	counting	is	a
way	of	detecting	when	we're	on	the	first	member	of	a	hierarchy	when	multiple	hierarchies	are
involved.	When	we	encounter	the	first	member,	we	either	have	to	shift	the	year	by	minus	one
(by	referring	to	the	previous	member),	or	to	provide	null	because	there's	nowhere	to	go.
Second,	when	we	shift	the	year	to	the	previous	one,	we	also	need	to	move	other	attribute
hierarchies	to	their	last	member.	At	first,	this	may	seem	strange,	but	it's	actually	not.	It's
something	we	do	unconsciously	every	day.	Here's	an	example,	proving	that.

The	year	that	precedes	the	year	2000	is	the	year	1999.	In	order	to	evaluate	that,	we	do	the
following	procedure.	We	slice	the	year	by	its	digits	and	analyze	them.	We	then	realize	that	all
the	digits	on	the	right	are	the	first	digits	in	the	list	of	digits,	0	being	the	first	digit	in	the	decade
system	and	9	being	the	last.	Because	of	that,	we	change	the	2	into	its	preceding	digit,	the	digit
1.	At	the	same	time,	we	shift	all	other	digits	by	one	place,	as	if	0	and	9	were	connected	in	a
circle.	In	other	words,	all	other	digits	jump	from	the	first	digit,	0,	to	the	last	one,	the	9.	The
same	principle	was	applied	here,	the	year	hierarchy	being	the	leftmost	digit	2	and	the	other
hierarchies	being	digits	0	on	the	right.

But	what	will	happen	in	that	calculation?	Again,	we're	letting	the	current	members	decide	what
the	result	of	the	intersection	will	be.	If	any	of	them	is	on	the	root	member,	that	member	will
not	influence	the	intersection.	That's	a	single	member	on	its	level	which	means	the
LastSibling()	function,	used	to	shift	members	in	a	circle,	will	return	the	same	member.
When	another	member	is	active,	we'll	jump	to	the	last	member	of	that	level,	for	example	to
Q4,	December,	and	so	on.	Again,	the	most	selective	members	of	all	hierarchies	determine	the
final	subcube.

In	the	third	calculation,	the	Year	ago	member	is	calculated	using	two	user	hierarchies.	The
tuple	is	formed	using	two	ParallelPeriod()	functions	that	return	the	member	in	the	previous
year.	Naturally,	the	last	part	of	the	tuple	is	the	default	member	of	the	utility	dimension.

WOW! eBook
www.wowebook.org

As	this	was	a	relatively	easy	calculation,	let's	explain	what	the	default	member	of	the	utility
calculation	does	in	expressions.

The	cube	is	a	multidimensional	structure	which	means	every	time	we	make	a	reference	to	a
particular	subcube,	the	coordinate	of	that	subcube	is	also	multidimensional.	Fortunately,	we
don't	have	to	specify	all	of	the	hundreds	or	more	hierarchies	a	typical	cube	has;	the	server
does	that	for	us	by	implicitly	including	all	unmentioned	hierarchies	in	every	tuple	we	make.
The	term	tuple	is	just	another	word	for	the	coordinate	in	the	cube	space.

Implicit	hierarchies	are	included	using	their	current	members	at	the	time	of	the	evaluation	of
the	tuple.

In	the	case	of	the	calculations	presented	in	this	recipe,	now	it	becomes	clear	that	the	current
measure	is	already	there	implicitly	in	every	expression.	There's	no	reason	to	be	explicit	about
that.

What's	not	obvious	at	first	is	that	the	hierarchy	of	the	member	we're	defining	is	also	inside	the
tuple.	Yes,	the	utility	dimension.	Now,	guess	what	will	be	its	current	member	at	the	time	of	that
evaluation?	The	same	Year	ago	member	we're	defining.	That's	the	current	member	in	that
moment!	That	would	lead	to	an	empty	result	as	the	value	of	the	calculated	members	is	null	in
advance.	We	must	replace	it	and	the	only	way	to	do	that	is	to	be	explicit	and	specify	another
member	of	that	dimension	inside	the	tuple.	The	member	that	should	be	there	is	the	default
member	of	the	utility	dimension.	That's	our	As	is	member,	a	single	member	of	that
dimension	which	doesn't	modify	the	result	of	the	current	measure.	Remember,	the	dimension
is	in	no	way	related	to	the	cube	and	that	member	is	the	only	one	without	a	calculation	on	it.
Therefore,	it	preserves	the	results	of	the	cube	and	keeps	it	unmodified,	so	that	it	can	be	used
as	such	in	other	calculations.

By	placing	the	default	member	of	the	utility	dimension	inside	the	tuple	(actually,	in	all
calculations	so	far),	we're	basically	saying,	calculate	this	expression	using	the	unmodified
current	measure,	whatever	it	may	be.	In	the	beginning,	it	may	seem	a	bit	strange,	but	once	you
understand	the	concept	of	the	unrelated	utility	dimension,	it's	easy	to	read	expressions,
because	this	is	a	standard	way	of	writing	calculations	for	members	of	the	utility	dimension.

We're	progressing.	Let's	see	what	comes	next.

The	YTD	Year	ago	member	has	the	same	definition	like	the	Year	ago	member	except	for	a
small	detail	-	instead	of	the	default	As	is	member,	the	YTD	member	was	used	in	the
calculation.	How	come?

A	moment	ago	we	explained	the	purpose	of	the	As	is	member	and	its	behavior	in
calculations.	We	said	that	it's	there	to	force	the	unchanged	measure.	This	time,	however,	we'd
like	to	be	smart	and	apply	the	YTD	calculation	not	on	the	value	of	the	current	member,	but	on
the	value	of	the	member	in	the	previous	year	which	is	exactly	what	the	Year	ago	member
calculates.	It	jumps	to	the	previous	year	and	grabs	the	corresponding	value.

WOW! eBook
www.wowebook.org

Wouldn't	it	be	nice	to	combine	the	YTD	and	the	Year	ago	calculations?	Definitely,	and	it's	not
that	difficult.	All	we	have	to	do	is	make	the	composition	of	calculations.	The	result	of	the
inner	calculation	(the	value	of	the	Year	ago	member)	is	passed	as	an	argument	to	the	outer
one,	the	YTD	calculation.	That's	one	of	the	benefits	of	implementing	the	utility	dimension.

Slowly,	we	come	to	the	last	phase.	In	this	part,	six	more	calculations	are	created.	The	first
three	calculate	the	difference	between	previously	defined	members	of	the	utility	dimension.
The	other	three	express	that	difference	in	the	form	of	a	percentage.	All	six	calculations	are
relatively	simple	and	easy	to	comprehend	just	by	taking	a	look	at	them.	This	is	because,	again,
the	calculations	refer	to	other	members	of	the	utility	dimension.	In	other	words,	the
calculations	for	some	of	the	members	in	the	utility	dimension	are	rather	complex;	however,
all	subsequent	calculations	become	relatively	simple	and	easy.

Finally,	a	word	or	two	about	highlighting	the	negative	results.	When	the	value	of	True	gets
converted	to	a	number,	it	becomes	-1.	The	numeric	value	of	False	is	0.	The	Abs()	function
was	used	to	correct	the	negative	sign.

WOW! eBook
www.wowebook.org

There's	more...
This	section	contains	additional	information	regarding	the	concept	presented	in	this	recipe.

Interesting	details

It's	worth	mentioning	that	both	user	hierarchies	have	the	year	level	clearly	marked	as	the	Year
type.	This	way	we	had	no	problem	using	the	YTD()	function.	If	it	weren't	the	case,	the
alternative	would	be	to	use	the	PeriodsToDate()	function	and	to	manually	specify	the	year
level	in	it.

Next,	the	Adventure	Works	cube	has	a	date	dimension	that	starts	with	July.	Therefore,	the
values	of	the	Year	ago	calculations	appear	shifted	by	a	half	year.	Fortunately,	that	happens
only	in	the	second	year	and	only	when	user	hierarchies	are	used.	I	believe	your	date
dimension	follows	the	best	practice	and	has	the	complete	year	starting	from	January	and
ending	with	December.	In	that	case,	you	won't	experience	any	problems	with	these
calculations.

Another	interesting	thing	is	that	neither	of	the	calculations	uses	any	measures	in	the
assignments.	That's	a	feature	of	the	utility	dimension	and	how	we	make	assignments	using	it.
Any	time	we	need	to	reference	the	current	measure,	we	reference	the	default	member	of	the
utility	dimension	instead.	When	applicable,	we	can	also	refer	to	other	members	of	that
dimension,	for	example,	the	way	we	defined	the	calculation	for	the	YTD	Year	ago	member.

You	may	be	wondering	why	none	of	the	fiscal	hierarchies	were	included	in	the	calculation.
That's	because	they	are	not	compatible	with	calendar	hierarchies.	They	break	years	into	two.
The	proper	way	to	include	them	would	be	to	define	a	separate	YTD	member	on	the	same
utility	dimension	or	to	make	another	utility	dimension	just	for	fiscal	hierarchies.	Naturally,
that	would	allow	us	to	use	the	same	time	calculations	only	modified	to	fit	the	fiscal
hierarchies.

Here's	another	interesting	detail	about	the	YTD	calculation.	We	don't	have	to	know,	imagine,
or	visualize	the	result	of	the	intersection	that	happens	inside	the	Aggregate()	function
(although	it's	possible).	All	that	matters	is	that	we	provide	a	way	for	this	intersection	to
happen	and	we	did	that	by	specifying	all	attribute	hierarchies	there.	The	trick	with	that
expression	is	to	form	ranges	that	span	from	the	first	member	of	a	particular	hierarchy
(represented	using	null	in	the	code)	up	to	the	current	member	of	each	attribute	hierarchy.
That	way	each	attribute	hierarchy	has	the	potential	to	determine	the	subcube,	but	on	the	other
hand,	every	other	hierarchy	is	slicing	that	subcube	with	its	range	of	members.	The	result	is	the
smallest	common	subcube,	the	one	which	fits	all	hierarchies	in	the	Aggregate()	function.

This	concept	repeats,	with	few	modifications,	in	other	calculations.

Fine-tuning	the	calculations

WOW! eBook
www.wowebook.org

It	is	possible	to	add	a	couple	of	scope	statements	to	hide	values	on	future	dates,	as	explained	in
the	recipe	Hiding	calculations	values	on	future	dates	in	Chapter	3	,	Working	with	Time.	For
example,	this	is	how	one	of	those	scope	statements	would	look:

Scope({	Tail(NonEmpty([Date].[Date].[Date].MEMBERS,	

																									[Measures].[Transaction	Count]),	

															1).Item(0).NextMember	:	null	});	

				This	=	null;	

End	Scope;	

The	other	things	we	can	do	to	improve	the	solution	is	to	provide	a	scope	that	forces	the
default	member	of	the	utility	dimension	in	case	a	multi-select	is	made	in	the	slicer.	Here's	the
code	for	that:

Scope([Time	Calcs].[Calc].MEMBERS);	

				This	=	iif(Count(EXISTING	[Time	Calcs].[Calc].MEMBERS)	>	1,	

																[Time	Calcs].[Calc].&[0],	

																[Time	Calcs].[Calc].CurrentMember);	

End	Scope;	

Other	approaches

The	following	link	presents	another	implementation	of	the	time-based	utility	dimension,	the
DateTool	dimension	created	by	Marco	Russo:	http://tinyurl.com/MarcoDateTool.

Where	these	approaches	differ	from	each	other	is	that	the	one	presented	in	this	book	supports
multiple	hierarchies	and	doesn't	use	string	operations.	Because	of	that,	its	code	grew	much
bigger	and	became	more	complex.	Actually,	the	code	for	both	approaches	looks	difficult	to
understand,	if	you're	not	used	to	these	types	of	MDX	expressions,	with	lots	of	scopes	and
assignments	in	them.	However,	that	shouldn't	stop	you	from	experimenting	and	applying	them
in	your	solutions.

The	approaches	also	differ	in	the	use	of	single	or	multiple	hierarchies	of	the	utility
dimension.	This	is	just	a	matter	of	taste;	both	techniques	can	be	switched	to	the	other	style,
with	a	little	bit	of	coding	of	course.

WOW! eBook
www.wowebook.org

http://tinyurl.com/MarcoDateTool

See	also
The	recipes	Calculating	the	YTD	(Year-To-Date)	value	and	Calculating	the	YoY	(Year-
over-Year)	growth	(parallel	periods),	both	in	Chapter	3,	Working	with	Time,	show	the
additional	information	about	YTD	and	year	ago	calculations.	Actually,	the	complete
chapter	may	be	useful	because	the	majority	of	the	topics	in	that	chapter	are	time
calculations.

WOW! eBook
www.wowebook.org

Chapter	9.	Metadata	-	Driven	Calculations
In	this	chapter,	we	will	cover	the	following	recipes:

Setting	up	the	environment
Creating	a	reporting	dimension
Implementing	custom	rollups	using	MDX	formulas
Implementing	format	string,	multiplication	factor,	and	sort	order	features
Implementing	unary	operators
Referencing	reporting	dimension's	members	in	MDX	formulas
Implementing	the	MDX	dictionary
Implementing	metadata-driven	KPIs

WOW! eBook
www.wowebook.org

Introduction
Metadata-driven	approaches	have	been	studied,	found	useful,	and	applied	in	many	fields,	such
as	the	IT	industry,	manufacturing,	and	so	on.The	main	idea	is	to	avoid	hard-coding	or	use	it	as
little	as	possible.	Less	hard-coding	means	that	the	system	we	are	designing	becomes	more
complex	and	more	difficult	to	create.	So,	what	are	the	benefits?	Why	should	we	do	it	in	the
first	place?	We	should	do	it	because	later	there's	less	maintenance	for	those	who	create	such
systems	and	more	flexibility	for	users.	Is	that	a	good	enough	reason	to	start	moving	in	that
direction?	Definitely!

Here's	one	example	to	illustrate	this	principle	better.

Not	so	long	ago	mobile	phones	had	small	screens	and	numerous	buttons	(keypad).	The
buttons	were	preprogrammed	for	what	they	could	do.	Numbers	0-9	were	used	to	type	a	phone
number,	the	green	button	to	make	the	call,	and	the	red	button	to	hang	up	or	cancel	an
operation.	In	addition	to	that,	those	old	phones	had	two	to	three	extra	buttons,	empty	buttons,
under	the	screen.	They	did	various	things,	that	is,	they	could	be	used	to	go	up/down	in	the
menu,	open	the	calculator,	turn	on	the	camera,	and	so	on.	Interestingly,	they	could	be
reprogrammed	in	terms	of	what	they	do	on	the	home	screen.	Reprogramed	by	us,	the	end
users!	Other	than	that,	everything	was	static.

The	hardware	engineer	designed	the	old	phones	with	many	hard-coded	buttons	and	2-3	empty
ones,	not	knowing	in	advance	how	many	actions	the	phone	will	support.	The	result	of	that	is
that	the	phone's	usage	became	more	complex-a	menu	navigation	system	was	required	because
those	extra	buttons	were	not	used	to	simply	start	an	action;	they	were	used	to	find	an	action
among	the	many	actions	in	the	phone's	menu	and	then	start	it.

The	fact	that	not	every	button	had	a	hard-coded	functionality	was	a	great	flexibility	for	the
software	engineer.	The	software	engineer	could	program	many	actions,	as	many	as	it	was
required,	all	on	the	same	hardware	because	the	hardware	was	open	in	that	respect.	However,	in
some	respects	it	was	static,	predefined.	A	step	forward	in	providing	flexibility	for	those	who
came	next	in	the	chain,	phone	users,	was	the	moment	the	software	engineer	decided	to	allow
us	to	define	what	the	extra	buttons	would	do	(by	storing	this	information	somewhere	in	the
phone	and	loading	it	each	time	the	phone	started).

Today,	our	phones	are	touch-based,	with	big	screens,	and	few	buttons.	We	use	gestures	to
interact	not	only	with	the	buttons	that	appear	on	the	screen,	but	also	with	slide	bars,	zoom	in
on	areas,	such	as	pictures	and	maps,	and	so	on.	Only	a	few	things	remained	hard-coded:	the
standby	button,	the	volume	up/down	button,	and	buttons	at	the	bottom	of	the	phone.	The	rest
was	drawn	on	the	screen,	which	means	that	the	options	were	unlimited.	Again,	we	can
configure	what	appears	on	our	home	screen,	which	icons/tiles	are	there,	what	they	display,
what's	their	size,	skin,	action	behind,	and	so	on.	This	configuration	is	again	stored	somewhere
on	the	phone	and	loaded	every	time	we	turn	on	the	phone.	Probably	also	backed	up
somewhere	in	the	cloud	and	loaded	when	we	switch	from	one	device	to	another.

WOW! eBook
www.wowebook.org

Mobile	phones	are	metadata-driven.	A	part	of	their	functionality	and	appearance	is	in	the
users'	hands,	especially	in	modern	phones.	Users	can	tweak	them	and	this	information	is
saved,	and	they	can	change	things	any	time	they	want	to,	any	time	they	need	to.	There's	no
need	for	support.	Everything	is	in	the	users'	hands	and	they	like	that	flexibility!

Could	we	achieve	the	same	effect	in	SSAS	solutions?	Is	it	possible?	What	would	it	look	like?

Yes,	we	can!

SSAS	developers	can	create	cube	calculations	and	KPIs	using	MDX	expressions.	Those
calculations	and	KPIs	are	analyzed	by	business	users.	Every	time	a	business	user	needs	a	new
KPI	or	to	change	an	existing	calculation,	SSAS	developer	must	be	engaged.	This	chapter
shows	how	to	design	a	flexible	solution	where	end	users	can	define	calculations	using	a
special	reporting	dimension.	This	dimension	should	be	maintained	in	the	MDM	system
(Master	Data	Management	system,	see	http://tinyurl.com/wiki-MDM	and
http://tinyurl.com/why-MDM	for	more	info);	however,	to	keep	things	simple	we	will	use
Excel	and	a	linked	server	to	load	the	data	into	SQL	Server.

Once	we	have	the	environment	ready	and	the	Excel	file	is	filled	with	reporting	items,	we	will
take	a	step-by-step	approach	to	add	this	dimension	to	the	cube,	set	up	unary	operators	and
custom	rollups,	implement	various	properties,	such	as		format	string,	multiplication	factor,
and	apply	a	scope	statement	to	fine-tune	the	result.

There's	also	a	recipe	that	shows	how	to	make	the	solution	more	user-friendly.

The	last	recipe	in	this	chapter	shows	how	to	create	a	metadata-driven	KPI	solution	system.

WOW! eBook
www.wowebook.org

http://tinyurl.com/wiki-MDM
http://tinyurl.com/why-MDM

Setting	up	the	environment
As	explained	in	the	introduction,	the	proper	way	of	implementing	metadata-driven
calculations	in	the	cube	would	be	to	store	the	metadata	information	in	the	MDM	system.	For
explaining	the	concept,	we	will	simplify	things	and	use	a	common	Excel	file,	which	should	be
available	to	everyone.	The	data	in	that	Excel	file	needs	to	be	loaded	into	SQL	Server	first,	it
can't	go	straight	to	the	cube.	Therefore,	we	need	to	set	up	the	environment	that	enables	the	data
manipulation	and	loading	process.

WOW! eBook
www.wowebook.org

Getting	ready
Data	manipulation	will	be	done	in	Excel,	so	make	sure	you	have	it	installed	on	your	dev
machine,	where	you're	learning	and	testing	all	this	and	make	sure	it	is	a	64-bit	version	or	you
might	have	problems	with	the	driver	later.	SQL	Server,	Excel,	and	the	driver	must	be	of	the
same	version,	64-bit.

For	the	data	loading	process,	we	will	set	up	a	linked	server	connection	to	the	Excel	file	using
a	special	free	driver,	which	needs	to	be	downloaded	and	installed	first.	Once	we	have	the
driver	installed	we	will	set	up	a	view	as	a	layer	between	the	linked	server	and	our	SSAS
project.

WOW! eBook
www.wowebook.org

How	to	do	it...
Follow	these	steps	to	set	up	the	environment	for	the	subsequent	recipes	in	this	chapter:

1.	 Open	your	web	browser	and	navigate	to	the	following	site:	
http://tinyurl.com/MADE2010R	.

2.	 Once	there,	select	your	language	and	click	on	the	Download	button.	Download	the	64-bit
version	because	SQL	Server	2016	is	a	64-bit	software.

3.	 When	the	file	is	downloaded,	double-click	on	it	to	start	the	installation	process.	The
process	is	straightforward,	simply	follow	the	procedure.

4.	 When	the	installation	is	done,	start	the	SQL	Server	Management	Studio	and	connect	to
your	database	instance,	then	expand	the	Server	Objects	category,	Linked	Servers,	and
Providers.	A	new	provider	named	Microsoft.ACE.OLEDB.12.0	should	be	listed	under
the	Providers	folder,	as	shown	in	the	following	screenshot:

5.	 Click	on	the	New	Query	button,	then	execute	the	following	statements:

						EXEC	sp_MSset_oledb_prop	N'Microsoft.ACE.OLEDB.12.0',											

											N'AllowInProcess',	1	

						GO	

WOW! eBook
www.wowebook.org

http://tinyurl.com/MADE2010R

						EXEC	sp_MSset_oledb_prop	N'Microsoft.ACE.OLEDB.12.0',						

											N'DynamicParameters',	1	

						GO	

6.	 Verify	that	no	errors	have	occurred.
7.	 Next,	open	Windows	Explorer,	navigate	to	your	Cdisk,	and	create	the	Test	folder	there.

Here's	where	we	will	keep	our	Excel	file	with	metadata.	Of	course,	you	are	free	to
choose	another	folder	if	you	like,	just	make	sure	you	adjust	all	the	folder	references	in
subsequent	steps	to	the	folder	of	your	choice.

8.	 Start	Excel,	select	the	Blank	Workbook	template,	and	save	this	file	in	the	C:\Temp	folder
(or	the	folder	of	your	choice).	Name	it	Metadata.xlsx.	Don't	close	the	Excel	sheet	yet.

9.	 Rename	the	active	tab	as	Report_Items.
10.	 Type	the	following	table	headers	in	row	1	(or	copy-paste	these	items	transposed	into

Excel	by	copying	from	here,	pasting	in	cell	A2,	cutting	the	selection,	and	pasting	the
transposed	items	in	cell	A1):

	ID

	Name

	Description

	Sort_Order

	Parent_ID

	Reporting_Category

	Level_of_Importance

	Unary_Operator

	Multiplication_Factor

	Unit_of_Measure

	Format_String

	Calculation_Type

	Formula_Flag

	Formula_MDX

	Formula_User_Friendly

	Formula_Description

WOW! eBook
www.wowebook.org

	Is_Growth_Positive

	Target

	Status_Low

	Status_High

	Detailed_Report_URL
11.	 Format	this	table	using	the	My	table	has	headers	option.
12.	 Specify	the	Number	format	for	these	columns:	Sort_Order,	Level_of_Importance,

Multiplication_Factor,	Formula_Flag,	Threshold_Low,	and	Threshold_High.	Then
specify	the	Text	format	for	the	rest	of	the	columns	not	mentioned	in	this	step.

13.	 Save	the	workbook	and	close	it.
14.	 Return	to	the	SQL	Server	Management	Studio	and	configure	a	new	linked	server

targeting	our	Excel	file	by	executing	the	following	statement:

						EXEC	sp_addlinkedserver	

										@server	=	'MetadataExcel',	

										@srvproduct	=	'Excel',	

										@provider	=	'Microsoft.ACE.OLEDB.12.0',	

										@datasrc	=	'C:\Test\Metadata.xlsx',	

										@provstr	=	'Excel	12.0;IMEX=1;HDR=YES;'	

15.	 Click	the	Start	button	and	open	the	SQL	Server	Configuration	Manager.	If	you	can't
find	it	on	your	computer,	the	following	link	might	help:	http://tinyurl.com/find-SSCM	.

16.	 Locate	your	SQL	Server	database	instance.	If	the	instance	is	being	run	by	an	NT
Service\MSSQLSERVER	account,	you	might	experience	problems	using	linked	servers.
Change	it	to	a	built-in	Local	System	account	for	the	purpose	of	this	exercise.

WOW! eBook
www.wowebook.org

http://tinyurl.com/find-SSCM

17.	 Restart	the	service.	After	a	while,	verify	that	the	service	instance	is	now	running	under
the	Local	System	account.

18.	 Test	your	newly	created	linked	server	by	refreshing	the	Linked	Servers	folder	in	the
Management	Studio	and	expand	the	new	Metadata	Excel	server	until	you	reach
the	Report_Items$	table.	If	you	manage	to	do	this,	your	linked	server	is	configured
properly.	If	you	get	an	error,	try	to	find	out	what	went	wrong	in	the	preceding	steps	or
see	the	Additional	information	section	for	troubleshooting.

19.	 Create	a	select	statement	and	execute	it:

SELECT	*	FROM	OPENQUERY(MetadataExcel,	

																						'SELECT	*	FROM	[Report_Items$]')

20.	 Feel	free	to	replace	the	*	in	the	inner	select	with	the	column	names.	Creating	a	script
from	the	table	in	the	expanded	linked	MetadataExcel	server	will	help	you	get	the	list	of
columns.	This	is	done	by	right-clicking	on	the	table	name	(Report_Items$)	and	then
selecting	Script	Table	as,	SELECT	To,	and	New	Query	Editor	Window.

WOW! eBook
www.wowebook.org

21.	 Turn	this	into	a	view	named	[dbo].[vReportItems]	and	save	it	in	the	Adventure	Works
DW	2016	database	by	executing	it.	Verify	that	the	view	is	there	and	that	it	returns	results
without	any	errors.

22.	 Finally,	use	Management	Studio	to	execute	the	following	script,	which	corrects	the	dates
in	the	Adventure	Works	DW	2016	database:

						use	[AdventureWorksDW2016]	

						go	

	

						update	[dbo].[DimDate]	

						set	[FiscalQuarter]	=	

										case	when	[CalendarQuarter]	<	3	

															then	[CalendarQuarter]	+	2		

															else	[CalendarQuarter]	-	2	

										end,	

										[FiscalYear]	=		

										case	when	[CalendarSemester]	=	2	

															then	[CalendarYear]	+	1	

															else	[CalendarYear]	

										end,	

										[FiscalSemester]	=		

										case	when	[CalendarSemester]	=	2	

															then	1	

															else	2	

										end	

						go	

WOW! eBook
www.wowebook.org

How	it	works...
Creating	a	linked	server	targeting	Excel	file	is	one	of	the	methods	of	loading	the	data	from
Excel	files	into	SQL	Server.	The	other	is	using	SSIS	(Integration	Services).	Although	it	has	its
advantages	(see	the	There's	more...	section	if	you	failed	with	creating	the	linked	server	by
applying	the	previous	steps),	it	would	unnecessarily	complicate	things	in	this	recipe.
Therefore,	we	use	the	linked	server	option.

The	linked	server	option	requires	that	we	install	the	64-bit	driver	for	Excel,	so	we	did	that	in
the	first	part	of	this	recipe.

The	next	part	dealt	with	setting	up	the	parameters	for	the	provider,	so	that	it	can	function
properly.	The	other	way	of	doing	this	is	to	double-click	on	the	provider	and	enable	those
options	using	checkboxes.

Once	we	had	the	provider	configured,	we	created	an	Excel	file	with	empty	tables	but	with
headers	so	that	we	can	have	a	structure	that	the	query	will	return.

Then	we	created	a	new	linked	server	targeting	the	Excel	file.	In	this	process,	we	used	certain
parameters	in	order	to	avoid	common	errors	while	reading	data	from	Excel.	What	these
parameters	do	can	be	read	in	the	Tips	and	Tricks	section.

We	also	changed	the	account	that	is	used	to	run	the	database	engine	instance	of	your	SQL
Server	2016	to	avoid	problems	with	the	default	account.	After	the	change	we	were	ready	to
write	and	execute	the	query,	that	is,	to	test	the	connection	to	the	Excel	file.

The	query	was	written	using	the	OpenQuery()	method	because	that	allows	more	flexibility
than	simply	referring	to	the	linked	server	and	its	objects	(tables	in	this	case).

The	query	is	then	stored	in	our	database	as	a	view,	so	that	we	can	use	it	in	the	subsequent
chapters	to	load	the	data	into	a	new	dimension.

The	last	step	was	to	avoid	strange	results	in	the	following	recipes.	The	problem	is	that	the
Adventure	Works	DW	2016	database	has	bad	financial	dates	in	calendar	year	2011,	so	this	was
fixed	using	that	update	script.

WOW! eBook
www.wowebook.org

There's	more...
As	stated	in	the	previous	section,	the	other	method	of	getting	the	data	from	Excel	into	SSAS	is
to	load	it	via	a	SSIS	package.	The	difference	is	the	following:

The	SSIS	method	loads	the	data	into	a	table	and	therefore	the	package	should	be	executed
every	time	we	need	to	load	the	data
A	view	targeting	the	linked	server	is	merely	a	layer	on	top	of	Excel;	no	data	is	stored	in
SQL	Server	and	hence	this	option	is	better	for	testing	and	development	when	there's	lot
of	modifications
The	SSIS	method	works	in	mixed	environments,	that	is,	when	the	Excel	is	32-bit	and	SQL
Server	is	64-bit;	the	linked	server	doesn't	because	the	driver	had	to	match
Both	the	SSIS	and	linked	server	will	error	when	they	try	to	read	the	Excel	file	in	the
moment	when	it	is	opened	by	a	user;	however;	since	SSIS	loads	the	data	into	a	table	in
SQL	Server,	processing	or	any	data	load	in	SSAS	will	not	trigger	an	error	because	in
case	of	SSIS	the	data	is	loaded	from	a	table	and	only	briefly	refreshed	from	Excel	into	a
table	when	the	package	is	executed;	the	linked	server	is	more	prone	to	errors	because	it
reads	the	data	every	time	it's	referred	to
In	the	SSIS	package,	we	can	provide	additional	logic	for	testing	the	existence	of	the
Excel	file	and	its	availability,	making	it	a	more	bulletproof	solution	than	a	linked	server
on,	and	hence	more	suitable	for	a	production	environment

There	might	be	even	more	differences,	but	these	are	enough	to	understand	why	we	chose	the
linked	server	option	for	this	chapter	and	why	you	should	consider	the	SSIS	package	version
for	production.

The	same	is	with	the	MDM	system.	This	chapter	is	based	on	an	Excel	file,	while	in	production
you	should	consider	an	MDM-based	solution.	In	case	of	an	MDM,	the	linked	server	versus
SSIS	dilemma	drops	or,	to	put	it	differently,	moves	to	another	level.	Again,	we	would	use	a
view.	Now,	this	view	could	either	directly	target	the	MDM	database	or	another	database	where
the	data	is	transferred	using	SSIS:

Directly	targeting	MDM	means	that	we	can	refresh	the	SSAS	dimensions	instantly.
Transferring	data	means	we	will	have	a	delay,	we	must	create	the	SSIS	package	and
schedule	its	execution.
Opposite	to	Excel,	here	we	don't	have	the	locking	issue	of	someone	working	on	metadata
in	MDM.
There's	also	no	issue	with	32-bit	versus	64-bit	environments.
Either	the	SSAS	service	account	or	SSIS	service	account	should	have	read	access	to
MDM;	again,	not	much	difference	for	both	scenarios.

So,	based	on	this,	it	looks	like	it's	better	to	avoid	SSIS	in	case	of	MDM	because	that	allows	a
faster	refresh	of	SSAS	dimensions	based	on	MDM	data	and	you	can	also	see	why	it's	better	to
go	via	MDM	instead	of	Excel	files.

Additional	information
WOW! eBook

www.wowebook.org

The	focus	of	this	recipe	was	on	how	to	set	up	the	environment.	That	process	involved	shifting
through	several	applications	(web	browser,	Windows	Explorer,	Management	Studio,
Configuration	Manager,	Excel,	and	so	on).	That's	why	we	didn't	go	much	into	detail	of	how
linked	servers	behave;	if	you	want	to	find	out	more	or	troubleshoot	your	configuration,	read
the	Executing	MDX	queries	in	T-SQL	environments	recipe	in	Chapter	10,	On	the	Edge.

Another	place	where	you	can	get	a	good	overview	of	how	to	load	data	from	Excel	in	SQL
Server	is:	http://tinyurl.com/excel-sql	.

Tips	and	tricks

In	the	script	for	creating	a	linked	server,	for	an	Excel	file,	we	used	two	parameters.	Here's
what	they	are	for:

IMEX=1:	This	means	that	columns	can	have	mixed	data	types	(otherwise	Excel	makes	its
own	estimate	of	the	data	type	based	on	the	first	couple	of	rows	with	data,	which	you
should	generally	avoid)
HDR=YES:	This	means	that	column	headers	exist	(they	become	column	names)

Don't	forget	to	use	them	when	you	set	up	your	linked	servers	targeting	Excel	files.

WOW! eBook
www.wowebook.org

http://tinyurl.com/excel-sql

See	also
The	related	recipe	is	Executing	MDX	queries	in	T-SQL	environments	in	Chapter	10,	On
the	Edge

WOW! eBook
www.wowebook.org

Creating	a	reporting	dimension
Now	that	everything	is	set	up,	we	can	enter	the	metadata	in	the	Excel	file,	create	a	dimension
in	the	SSAS	database,	and	add	it	to	the	cube.

WOW! eBook
www.wowebook.org

Getting	ready
Open	the	Metadata.xlsx	file	that	you	saved	in	the	previous	recipe.	It's	time	to	put	some	data	in
it.

Add	the	following	data	in	the	corresponding	columns:

ID Name Description Parent_ID

S Sales	Indicators Placeholder

S01 #	of	Customers S

S05 #	of	Orders Internet	Orders	+	Reseller	Orders S

S06 #	of	Internet	Orders S05

S07 #	of	Reseller	Orders S05

S12 Reseller	Sales	(in	000) S

S16 Internet	Sales	(in	000) S

S18 Product	Sales	(in	000) S

I Internal	Indicators Placeholder

I01 Headcount Number	of	employees I

I02 Square	Footage	(in	000) I

Save	the	file	and	close	it.	Then	start	SQL	Server	Management	Studio	and	connect	to	your	SQL
Server	2016	database	engine	instance.	Click	on	the	New	Query	button,	set	the	database	to

WOW! eBook
www.wowebook.org

Adventure	Works	DW	2016,	and	check	that	the	view	you	created	in	the	previous	recipe	works
by	executing	the	following	statement:

SELECT	*	FROM	[dbo].[vReportItems]

If	the	query	returned	11	rows,	you're	ready	to	create	the	reporting	dimension.	If	there	was	an
error,	make	sure	that	the	Excel	file	is	closed,	is	in	the	right	place,	and	your	linked	server	is
working.	See	the	previous	recipe	for	more	info.

WOW! eBook
www.wowebook.org

How	to	do	it...
Follow	these	steps	to	create	a	reporting	dimension	and	add	it	to	the	Adventure	Workscube:

1.	 Open	SQL	Server	Data	Tools	(SSDT)	and	then	open	the	Adventure	Works	DW	2016
solution.

2.	 Double-click	on	the	Adventure	Works	DW	datasource	view	and	then	in	the	Tables	pane
(on	the	left)	right-click	in	the	empty	area	and	select	the	Add/Remove	Tables...	option.

3.	 Find	the	vReportItems	object	in	the	list	of	Available	objects	on	the	left	and	double-click
on	it	to	move	it	to	the	right	side,	in	the	Included	Objects.	Then	click	OK.

4.	 In	the	Solution	Explorer,	right-click	on	the	Dimensions	folder	and	select	the	New
Dimension...	option.

5.	 Click	Next	if	the	wizard	shows	the	introduction	page.	Then	click	Next	again	and	then
find	the	vReportItems	object	in	the	Main	table	drop-down	list.	It	should	be	at	the	end.

6.	 Specify	the	ID	column	for	the	Key	column	and	the	Name	column	for	the	Name	column
and	then	click	Next.

7.	 Mark	the	Description	and	Parent	ID	column	as	additional	attributes,	but	uncheck	the
Enable	Browsing	option	for	Description.	Rename	it	to	Report	Item	Description	and
then	click	on	Next.

8.	 Specify	Reporting	Dimension	for	the	name	of	this	dimension	and	click	on	Finish.
9.	 Now	it's	time	to	fine-tune	the	dimension	and	its	attributes.	Click	on	the	dimension	name

in	the	Attributes	pane,	then	fill	the	Language	and	Collation	properties	with	values	that
match	your	regional	settings,	that	is.	English	(United	States)	and	Latin	1_General,
Accent	sensitive.

10.	 Click	on	the	ID	attribute	and	type	Attributes	for	the	AttributeHierarchyDisplayFolder
property.	Set	the	OrderBy	property	to	Key.

11.	 Click	on	the	Parent	ID	attribute	and	rename	it	to	Hierarchy,	then	set	the	Usage	property
to	Parent.

12.	 Set	the	MembersWithData	property	to	NonLeafDataHidden.
13.	 Click	on	the	Naming	Template	property	and	type	in	this:	Level	1;Level	2;	Level	3;

Level	4;	Level	5.	The	other	option	is	to	click	on	a	small	button	for	dialog	and	entering
the	word	Level	and	a	corresponding	number	in	each	line.	Make	sure	you	start	with	1,	not
2	as	the	Level	column	shows.

14.	 Process	the	dimension.
15.	 Once	done,	click	on	the	Browser	tab	to	show	the	dimension	members.	Expand	them

completely.	It's	a	hierarchical	structure	with	three	levels	(not	counting	the	All	member	on
the	top).	Now,	turn	on	member	properties	by	clicking	on	the	button	with	that	name
(fourth	button	from	the	left),	as	shown:

WOW! eBook
www.wowebook.org

16.	 Double-click	on	the	Adventure	Works	cube	in	the	Solution	Explorer	and	go	to	the
Dimension	Usage	tab.

17.	 Click	on	the	Add	Cube	Dimension	button	(third	from	left),	select	the	Reporting
Dimension	in	the	dialog	that	opened,	and	then	click	on	OK.

18.	 Verify	that	the	dimension	is	successfully	added	to	the	cube,	save	it,	and	then	deploy	the
solution.

19.	 Finally,	note	that	the	Reporting	Dimension	is	not	connected	to	any	measure	group.	It	will
stay	like	that;	this	is	not	a	mistake.

WOW! eBook
www.wowebook.org

How	it	works...
The	process	of	creating	a	reporting	dimension	was	straightforward.	We	created	a	dimension
based	on	the	view	that	collects	data	from	the	Excel	file.	We	designed	it	to	be	a	parent-child
dimension	to	support	a,	most	probably,	ragged	(non-symetrical	in	depth)	structure	of	report
items.	We	included	the	description	so	that	we	can	have	more	information	about	a	report	item.

Report	items	in	Excel	have	additional	properties	that	we	skipped	in	this	recipe.	The	idea	is	to
make	things	simple	and	to	do	everything	step-by-step.	In	the	following	recipes,	we	will
include	those	additional	properties	and	make	use	of	them.

WOW! eBook
www.wowebook.org

There's	more...
The	default	storage	mode	for	dimension	is	MOLAP.	Would	it	make	more	sense	to	make	this	a
ROLAP	dimension?

There	are	advantages	and	disadvantages	in	making	the	reporting	a	ROLAP	dimension.	The
advantage	is	that	a	reporting	dimension	wouldn't	need	processing,	so	any	metadata	refreshes
would	instantly	appear	in	dimensions	when	the	result	is	refreshed	in	a	pivot	table	or	a	report.

The	disadvantage	is	the	same-instant	refresh.	Imagine	analyzing	some	data,	making	some
changes	in	the	pivot	table	and	results	suddenly	look	different	because	somebody	modified	the
metadata.

Processing	of	such	a	small	dimension	doesn't	take	much,	so	the	final	verdict	is	to	keep	it	as
MOLAP	and	control	who	can	process-update	it	and	when.	The	metadata,	on	the	other	hand,
can	change	many	times	between	two	processing	(that	is,	for	daily	or	hourly	load)	and	that
won't	interfere	the	results.	This	way	we	add	a	separation	between	working	on	metadata	and
working	on	the	cube.	Of	course,	you	may	disagree	and	implement	it	as	ROLAP,	if	you	think
that's	better	in	your	case.

WOW! eBook
www.wowebook.org

See	also
Related	recipes	that	follow	in	this	chapter

WOW! eBook
www.wowebook.org

Implementing	custom	rollups	using	MDX
formulas
The	reporting	dimension	created	in	the	previous	recipe	is	not	connected	to	any	measure
group.	That	means	it	can't	be	used	to	display	meaningful	data.	Yet.

Welcome	custom	rollups	using	MDX	formulas!

Custom	rollups	are	a	way	to	tell	dimension	members	what	data	to	show.	They	are	in	fact	MDX
expressions	that	return	a	value.	That	value	is	displayed	as	the	value	of	a	member	in	the
dimension.	Each	member	can	have	its	own	expression,	its	own	custom	rollup.	This
expression,	stored	in	a	column	in	the	relational	table	or	a	view,	can	be	specified	as	the	value
of	a	certain	property	of	any	parent-child	dimension.	However,	that	only	works	when	the
dimension	has	a	relationship	with	a	fact	table,	with	a	measure	group.	In	our	case,	it	is	not	so.
Our	reporting	dimension	is	completely	loose,	it	can	have	any	item	as	long	as	it	has	a	formula
for	it.	This	flexibility	comes	at	a	price.	We	can't	use	the	pre-build	functionality	of	custom
rollups,	we	have	to	invent	our	own.

This	recipe	shows	how	to	implement	custom	rollups	using	MDX	formulas.

WOW! eBook
www.wowebook.org

Getting	ready
Open	the	Metadata.xlsx	file	that	you	saved	in	the	previous	recipe	and	add	the	following	data
in	the	Formula_MDX	column.	The	ID	and	the	Name	are	just	for	the	reference	here:

ID Name Formula_MDX

S Sales	Indicators

S01 #	of	Customers [Measures].[Customer	Count]

S05 #	of	Orders [Measures].[Order	Count]

S06 #	of	Internet	Orders [Measures].[Internet	Order	Count]

S07 #	of	Reseller	Orders [Measures].[Reseller	Order	Count]

S12 Reseller	Sales	(in	000) [Measures].[Reseller	Sales	Amount]

S16 Internet	Sales	(in	000) [Measures].[Internet	Sales	Amount]

S18 Product	Sales	(in	000) [Measures].[Sales	Amount]

I Internal	Indicators

I01 Headcount ([Measures].[Amount],	[Account].[Accounts].&[96])

I02 Square	Footage	(in	000) ([Measures].[Amount],	[Account].[Accounts].&[99])

Save	the	file	and	close	it.	Then	start	SQL	Server	Management	Studio	and	connect	to	your	SQL
Server	2016	database	engine	instance.	Verify	that	the	[dbo].[vReportItems]	view	returns	11
rows	when	executed	and	that	these	new	column	entries	are	visible	in	it.

WOW! eBook
www.wowebook.org

How	to	do	it...
Follow	these	steps	to	implement	custom	rollups	in	the	reporting	dimension:

1.	 Open	SQL	Server	Data	Tools	(SSDT)	and	then	open	Adventure	Works	DW	2016
solution.

2.	 In	the	Solution	Explorer,	double-click	on	the	Reporting	Dimension	to	open	it.
3.	 Drag	the	Formula_MDX	column	from	the	vReportItems	table	in	the	Data	Source	View

pane	to	the	left,	in	the	Attributes	pane,	to	create	a	new	attribute	and	name	it	MDX
Formula.

4.	 Specify	its	AttributeHierarchyEnabled	property	as	False.
5.	 Process	the	dimension.
6.	 Once	done,	click	on	the	Browser	tab	to	show	the	dimension	members.	Expand	them

completely.	Turn	on	member	properties	as	well.

7.	 Now,	double-click	on	the	Adventure	Works	cube	in	the	Solution	Explorer	and	go	to	the
Calculations	tab.

8.	 Create	the	MDX	Formula	measure:

						Create	Member	CurrentCube.[Measures].[MDX	Formula]	

						As	

										[Reporting	Dimension].[Hierarchy].CurrentMember	

										.Properties('MDX	Formula')	

						,Visible	=	0	

						,Display_Folder	=	'Reporting	Measures';	

9.	 Create	the	Value	measure:

WOW! eBook
www.wowebook.org

						Create	Member	CurrentCube.[Measures].[Value]	

						As	

										null	

						,Visible	=	1	

						,Display_Folder	=	'Reporting	Measures';	

10.	 Create	the	scope	for	Reporting	Dimension	and	the	Value	measure:

						Scope([Measures].[Value]);	

							Scope([Reporting	Dimension].[Hierarchy].Members);	

														This	=	iif([Measures].[MDX	Formula]	=	'',	null,	

																										StrToValue(

														'	Sum([Reporting	Dimension].[Hierarchy].[All],	'	+	

																					[Reporting	Dimension].[Hierarchy]	

																					.CurrentMember.Properties('MDX	Formula')	+')'	

)	

);	

							End	Scope;	

						End	Scope;	

11.	 Now	process	the	Adventure	Works	cube	and	then	go	to	the	Cube	Browser,	start	Excel,
and	create	a	simple	pivot	table	using	Reporting	Dimension	and	Fiscal	Years.	The
report	should	look	similar	to	the	following	screenshot.Yes,	it's	far	from	perfect,	there
are	some	errors	inside,	but	the	important	thing	is	that	its	calculations	are	metadata-
driven!	We'll	deal	with	corrections	in	the	There's	more	...	section.

WOW! eBook
www.wowebook.org

How	it	works...
First,	we	specified	a	relatively	simple	MDX	expression	in	a	column	containing	MDX
formulas	in	our	Metadata	Excel	file.	Those	were	simple	references	to	existing	cube	measures
and	tuples,	to	make	things	more	interesting.

Once	Excel	was	done,	we	modified	the	reporting	dimension.	We	added	a	new	property,	named
it	MDX	Formula,	and	later	used	this	property	in	the	cube,	in	the	calculations,	and	to	get	the
value	of	that	property	for	each	report	item	in	that	dimension.

We	also	created	a	special	measure	and	named	it	the	Value	measure.	The	purpose	of	that
measure	is	to	display	the	value	for	each	member	of	our	reporting	dimension.

The	default	value	for	the	Value	measure	is	the	null	value,	which	is	specified	in	the	definition
of	the	measure.	Furthermore,	it	is	evaluated	for	items	with	formula	only.	A	part	of	the	scope
statement	evaluates	the	existence	of	the	formula.	In	case	there	is	no	formula,	we	don't	show
any	value.

The	scope	statement	specifies	what	happens	when	a	combination	of	the	Value	measure	and
report	item	occurs.	In	other	words,	we	are	restricting	all	the	features	to	a	very	specific	report.

In	the	end,	the	final	evaluation	of	the	expression	is	calculated	by	combining	the	StrToValue()
function	and	the	Sum()	function	with	the	initial	expression.

The	StrToValue()	function	is	a	standard	MDX	function	that	returns	the	value	of	a	string
expression	which,	of	course,	should	be	a	valid	MDX	expression.	It's	great	that	MDX	language
has	such	a	function,	because	that	is	what	makes	metadata-driven	calculations	possible	in	the
first	place.

The	Sum()function,	applied	this	way,	is	a	small	trick.	It's	not	that	we	need	to	summarize
anything.	This	function	is	there	to	override	the	current	report	item	with	the	All	member	of
that	hierarchy.	Remember,	the	reporting	dimension	is	not	related	to	any	measure	group.	In
other	words,	report	items	would	return	null	for	every	expression.	Only	the	root	member
contains	a	value,	the	value	that	we	would	like	to	get	with	the	expressions.	Therefore,	the	Sum()
function	forces	the	context	in	which	the	MDX	Formula	should	be	evaluated.

More	information	about	the	StrToValue()function	can	be	found	at:	http://tinyurl.com/mdx-
strtovalue	.

More	information	about	why	the	Sum()	function	was	used	and	not	ValidMeasure(),	or	simply
a	tuple	reference	with	the	All	member	can	be	found	in	the	following	sections	of	this	recipe.

WOW! eBook
www.wowebook.org

http://tinyurl.com/mdx-strtovalue

There's	more...
The	pivot	table	had	a	few	issues.	We'll	deal	with	them	in	this	section.

The	first	thing	we	notice	in	the	result	is	the	error	that	appears	in	the	Grand	Total	row.	That
error	appears	because	it	is	an	artificial	member	that	doesn't	exist	in	our	Metadata	Excel	file,
and	hence	doesn't	have	the	MDX	Function	property.	We	can	solve	this	problem	in	several
ways,	but	the	thing	is	that	we	don't	need	the	total;	we	just	need	the	report	items.	Therefore,	we
are	going	to	disable	it	using	an	additional	scope	statement.

The	same	is	true	for	the	total	for	the	columns.	Although	there	are	no	errors	in	that	column,	we
don't	need	that	total,	so	we	will	disable	it	too.

Here's	how	the	modified	scope	part	should	look	like	if	we	want	to	handle	those	issues:

Scope([Measures].[Value]);	

	Scope([Reporting	Dimension].[Hierarchy].Members);	

							This	=	iif([Measures].[MDX	Formula]	=	'',	null,	

																			StrToValue(

														'	Sum([Reporting	Dimension].[Hierarchy].[All],	'	+	

																					[Reporting	Dimension].[Hierarchy]	

																					.CurrentMember.Properties('MDX	Formula')	+	')'	

)	

);	

	End	Scope;	

	Scope(Root([Reporting	Dimension]));	

								This	=	null;	

	End	Scope;	

	Scope(Root([Date]));	

								This	=	null;	

	End	Scope;	

End	Scope;	

The	part	where	we	removed	grand	totals	is	the	part	with	the	Root()	function.	We	specified	that
we	don't	want	to	show	any	data	for	the	top	member	of	both	the	dimension	reporting	and	the
Date	dimension.

After	those	modifications	(and	deployment	of	the	cube)	the	pivot	looks	similar	to	the
following	screenshot.	Yes,	the	Grand	Total	is	still	there	(because	we	haven't	disabled	it	in
Excel	options),	but	no	values	are	shown	there.	It's	up	to	us	whether	we	want	to	hide	it	or	not,	in
Excel	pivot	table	options.

WOW! eBook
www.wowebook.org

True,	we	could	have	turned	off	grand	totals	in	Excel	immediately,	but	this	is	a	much	cleaner
solution,	it	will	work	in	all	subsequently	created	pivots	and	no	errors	are	shown	in	case	the
grand	total	is	turned	on.

Now	that	this	is	solved,	let's	see	how	else	we	can	fix	the	values	in	the	pivot.	The	next	chapter
deals	with	formatting	the	values,	applying	the	multiplication	factor,	and	similar	enhancements.

Why	not	a	built-in	feature?

Custom	rollups	are	usually	implemented	by	specifying	a	column	that	contains	MDX
expressions	in	the	CustomRollupColumn	property	of	the	parent	key	attribute.	As	explained	in
the	introduction	of	this	recipe,	this	wouldn't	work	because	the	dimension	is	not	related	to	any
measure	group.	That	is,	no	measure	can	be	used	to	automatically	display	report	items	values.

Try	to	implement	this	feature	using	the	preceding	property	and	by	removing	the	scope	part.
See	what	happens	when	you	reprocess	the	solution.	Do	you	see	any	values?	For	any	measure?

Why	the	Sum()	function?

Reporting	dimension	is	not	related	to	any	measure	group.	Somehow,	we	had	to	include	the
root	member	of	that	dimension	in	the	final	expression	to	be	evaluated.

One	option	was	to	use	the	tuple	expression.	For	example,	if	the	original	MDX	formula	was
[Measures].[Sales	Amount],	then	a	tuple	would	look	like	the	following	example:

([Reporting	Dimension].[Hierarchy].[All],	

		[Measures].[Sales	Amount])	

WOW! eBook
www.wowebook.org

However,	in	case	of	an	MDX	formula	containing	numerical	expression,	such	as	A+B,	where
A	and	B	are	two	measures,	members,	tuples,	or	whatever	is	valid	in	terms	of	MDX
expressions,	forming	a	tuple	on	top	of	it	would	result	in	an	error.	Tuples	don't	contain
numerical	expressions	(values),	they	reference	the	cube's	objects.	Which	means	that	we	can't
use	tuples	to	extend	the	original	MDX	formula	with	the	All	member.

The	other	option	was	to	use	the	ValidMeasure()MDX	function.	Again,	that	function	has	its
limitation	in	terms	of	arguments	that	it	accepts.	Numerical	expressions	are	again	not	allowed.

One	MDX	function	that	handles	both	tuples	and	numerical	expressions	is	the	Sum()	function!

Its	first	argument	is	a	set	(or	a	member)	and	its	second	is	a	value	(a	measure	or	a	numerical
expression).	The	first	argument	states	where	the	values	should	be	calculated,	over	what	to
perform	the	sum.	The	second	says	how	to	calculate	it,	what's	the	formula,	which	is	very
convenient.	We	can	use	an	MDX	formula	as	the	second	argument	and	at	the	same	time	instruct
the	Sum()	function	to	operate	on	the	All	member	only.	Since	it's	a	single	member,	performing
a	sum	over	it	is	like	saying	I	have	a	list	with	one	item	only	and	I	want	to	sum	all	the	items	I
have.	As	stated	before,	it's	a	trick	that	serves	the	purpose	of	establishing	the	context	where	the
original	MDX	formula	should	be	evaluated,	always	on	the	root	member	of	unrelated
dimension!

More	complex	formulas

Yes,	it's	possible	to	use	more	complex	formulas	for	MDX	expressions.	The	only	condition	is
that	those	expressions	evaluate	to	either	a	member,	a	tuple	value,	or	similar;	a	set	is	not
allowed	as	the	result.	They	are	allowed	as	an	intermediate	result	inside	the	formula,	which
then	must	be	shrunk	to	a	single	item,	using,	for	example,	a	Tail()	and	Item()	combination
function	to	get	the	last	member	in	a	set.

WOW! eBook
www.wowebook.org

See	also
Related	recipes	are	all	that	follow	and	precede	in	this	chapter.	One	of	them	in	particular-
referencing	reporting	dimension's	members	in	MDX	formulas

WOW! eBook
www.wowebook.org

Implementing	format	string,	multiplication
factor,	and	sort	order	features
In	this	recipe,	we're	going	to	learn	how	to	enhance	our	reporting	dimension.

Take	one	more	look	at	the	last	screenshot	in	the	previous	recipe.	You'll	see	that	the	values	are
not	formatted	at	all.	You	might	also	notice	that	the	sales	figures	were	supposed	to	be	in
thousands,	but	they're	not.	Finally,	we	might	have	wanted	to	put	the	sales	indicators	on	top	and
to	always	stick	with	the	Internet	and	then	Reseller	report	items,	using	the	same	order	(see
rows	8-11	in	Excel	in	the	screenshot).

Now	that	we	know	what	the	goal	is,	let's	see	how	to	do	it,	but	first-let's	put	some	entries	in	our
Report_Items	sheet.

WOW! eBook
www.wowebook.org

Getting	ready
Open	the	Metadata.xlsx	file	that	you	used	in	the	previous	recipes.	Fill	the	following	columns
in	it:	Sort_Order,Multiplication_Factor,	and	Format_String.

ID Name Sort_Order Multiplication_Factor Format_String

S Sales	Indicators 4 NA

S01 #	of	Customers 1 1 #,#

S05 #	of	Orders 2 1 #,#

S06 #	of	Internet	Orders 1 1 #,#

S07 #	of	Reseller	Orders 2 1 #,#

S12 Reseller	Sales	(in	000) 5 1000 #,##0

S16 Internet	Sales	(in	000) 4 1000 #,##0

S18 Product	Sales	(in	000) 7 1000 #,##0

I Internal	Indicators 5 NA

I01 Headcount 1 1 #,#

I02 Square	Footage	(in	000) 2 1000 #,#

Save	the	file	and	close	it.	Then	start	SQL	Server	Management	Studio	and	connect	to	your	SQL
Server	2016	database	engine	instance.	Verify	that	the	view	[dbo].[vReportItems]returns	11
rows	when	executed	and	that	these	new	column	entries	are	visible	in	it.

WOW! eBook
www.wowebook.org

How	to	do	it...
Follow	these	steps	to	implement	custom	rollups	in	the	reporting	dimension:

1.	 Open	SQL	Server	Data	Tools	(SSDT)	and	then	open	Adventure	Works	DW	2016
solution.

2.	 In	the	Solution	Explorer	double-click	on	the	Reporting	Dimension	to	open	it.
3.	 Drag	the	Format_String	column	from	the	vReportItems	table	in	the	Data	Source	View

pane	to	the	left,	in	the	Attributes	pane,	to	create	a	new	attribute	Format	String	(SSAS
automatically	removes	the	underline	in	the	name).

4.	 Do	the	same	for	these	columns	too:	Multiplication_Factor	and	Sort_Order.
5.	 Turn	both	the	Multiplication	Factor	and	Sort	Order	attributes	into	properties	by

changing	the	AttributeHierarchyEnabled	property	to	False.
6.	 Leave	the	Sort	Order	attribute	as	an	attribute,	but	make	it	invisible	by	changing	the

AttributeHierarchyVisible	property	to	False.
7.	 Set	the	OrderBy	property	for	the	Sort	Order	attribute	to	Key.
8.	 Now,	find	the	ID	attribute	and	set	its	OrderBy	property	to	AttributeKey.	Then	set	the

OrderByAttribute	property	to	the	Sort	Order	attribute.	The	OrderByAttribute	property
is	just	beneath	the	OrderBy	property.

9.	 Process	the	dimension.
10.	 Once	done,	click	on	the	Browser	tab	to	show	the	dimension	members.	Expand	them

completely.	Turn	on	new	member	properties.

11.	 Now,	double-click	on	the	Adventure	Works	cube	in	the	Solution	Explorer	and	go	to	the
Calculations	tab.

WOW! eBook
www.wowebook.org

12.	 Create	the	Format	String	measure	above	the	definition	of	the	Value	measure:

						Create	Member	CurrentCube.[Measures].[Format	String]	

						As	

										[Reporting	Dimension].[Hierarchy]	

										.CurrentMember.Properties('Format	String')	

						,Visible	=	0	

						,Display_Folder	=	'Reporting	Measures';	

13.	 Create	the	Multiplication	Factor	measure	below	the	Format	String	measure:

						Create	Member	CurrentCube.[Measures].[Multiplication	Factor]	

						As	

										[Reporting	Dimension].[Hierarchy]	

										.CurrentMember.Properties('Multiplication	Factor')	

						,Visible	=	0	

						,Display_Folder	=	'Reporting	Measures';	

14.	 Extend	the	scope	for	Reporting	Dimension	created	in	the	previous	recipe	with	a	few
additional	lines	of	code	that	set	the	format	string	and	divide	the	value	by	the
multiplication	factor:

						Scope([Measures].[Value]);	

							Scope([Reporting	Dimension].[Hierarchy].Members);	

														This	=	iif([Measures].[MDX	Formula]	=	'',	null,	

																										StrToValue(

														'	Sum([Reporting	Dimension].[Hierarchy].[All],	'	+	

																					[Reporting	Dimension].[Hierarchy]	

																					.CurrentMember.Properties('MDX	Formula')	+	')'	

)	

														/	

														iif([Measures].[Multiplication	Factor]	=	0,	1,	

																			[Measures].[Multiplication	Factor])	

);	

														Format_String(This)	=	[Measures].[Format	String];	

							End	Scope;	

						End	Scope;	

15.	 Process	the	Adventure	Works	cube	and	then	go	to	the	Cube	Browser,	start	Excel,	and
create	a	simple	pivot	table	using	Reporting	Dimension	and	Fiscal	Years	or	use	the	one
from	the	previous	recipe.

WOW! eBook
www.wowebook.org

16.	 Note	the	few	things	in	the	report.	First,	some	values	are	reduced	by	1000.	Next,	values
are	formatted	using	the	thousand	separators	and	there	are	no	decimals.	Finally,	report
items	are	sorted-Internet	Sales	comes	in	front	of	the	Reseller	Sales	and	the	report	starts
with	Sales	Indicators.	All	in	all,	the	report	looks	much	better	this	way.	It	looks	the	way
we	specified	in	our	Excel	file.	It's	completely	metadata-driven!

WOW! eBook
www.wowebook.org

How	it	works...
For	each	report	item	in	our	Metadata	Excel	file,	we	specified	format	string,	sort	order,	and
multiplication	factor	in	separate	columns.	Those	columns	were	later	used	either	as	properties
or	attributes	of	the	Reporting	dimension.

The	Sort	Order	attribute	was	hidden	and	then	used	to	sort	the	key	attribute.	Here	we've	simply
made	use	of	the	built-in	functionality	of	SSAS	that	enables	four	types	of	sorting	an	attribute,
one	of	them	being	the	one	we	used-by	another's	attribute	key.

Multiplication	factor	and	format	string	were	converted	to	properties	not	to	increase	the
dimensionality	of	the	cube.	Then,	in	the	cube,	each	of	them	was	converted	to	a	hidden
measure,	which	was	later	used	in	the	scope	statement,	to	fine-tune	the	value	being	shown.

Since,	multiplication	factor	can	be	null	or	0,	we	took	care	of	that,	making	the	expression	a	bit
more	complex,	but	still	easy	enough	to	understand.

In	the	end,	the	report	looked	the	way	we	specified	in	the	the	Excel.

WOW! eBook
www.wowebook.org

There's	more...
If	you	move	your	mouse	over	report	items	in	the	Reporting	Dimension,	a	hint	that	appears
will	show	you	all	the	attributes	and	properties	related	to	it.	It's	a	convenient	feature	of	Excel.
This	way	you	can	verify,	that	is,	the	MDX	formula	(in	case	you	made	an	error),	verify	the
format	string,	sort	order,	multiplication	factor,	or	read	the	description	of	the	item.	Everything
that	was	exposed	as	visible	in	the	dimension.

Tips	and	tricks

The	ID	or	the	Parent_ID	columns	are	not	shown	in	the	hint.	However,	that	can	be	solved
relatively	simple.	Add	those	columns	as	new	attributes	in	the	Reporting	Dimension,	rename
them	(because	they	were	already	added	in	the	dimension	before),	and	make	them	hidden.
Reprocess	the	dimension	and	the	cube	and	verify	that	they	are	displayed	in	the	hint.	This	trick
can	help	you	identify	items	with	errors	or	bad	results	quickly.

Additional	information

Metadata	Excel's	structure	has	many	columns.	We	will	use	some	of	them	in	the	following
recipes,	some	we	won't	because	this	chapter	would	become	huge	to	list	all	the	possible
examples.	Read	which	other	column	names	were	specified	there	and	feel	free	to	add	them	in
your	Reporting	Dimension	as	properties,	fill	them	with	values	in	Excel,	reprocess	the
dimension	and	the	cube,	and	verify	that	they	appear	in	the	hint	too.	It	might	give	you	an	idea
or	two	of	what	else	you	could	do	with	metadata.

WOW! eBook
www.wowebook.org

See	also
Related	recipes	and	all	that	follows	and	is	preceding	in	this	chapter

WOW! eBook
www.wowebook.org

Implementing	unary	operators
Unary	operators	are	a	way	to	bypass	custom	rollups	in	parent-child	dimensions.	Custom
rollups,	either	built-in	or	the	ones	we	created	one	recipe	before,	use	MDX	expressions	to
calculate	the	value	of	a	member	that	has	it	defined.	Unary	operators	use	a	simple	character,
most	commonly	a	+,	-,	or	~	sign	to	instruct	SSAS	how	that	member	aggregates	into	its	parent.
A	plus	means	it	is	added,	minus	subtracted,	and	~	means	it	doesn't	aggregate	at	all.

Look	at	the	last	screenshot	in	the	previous	recipe.	Item	#	of	Orders	is	the	aggregated	value	of
two	of	its	children.	However,	all	three	of	them,	that	item	and	its	children	have	MDX
expressions	that	tell	which	value	to	display.	We	can	simplify	this.	Instead	of	specifying	an
MDX	formula	for	#	of	Orders,	we	can	simply	put	+	unary	operator	for	its	children.

Let's	test	this!

WOW! eBook
www.wowebook.org

Getting	ready
Open	the	Metadata.xlsx	file	that	you	used	in	previous	recipes.	Fill	in	the
UnaryOperator	column	based	on	the	following	table:

ID Name Unary
Operator Formula_MDX

S Sales	Indicators ~

S01 #	of	Customers ~ [Measures].[Customer	Count]

S05 #	of	Orders ~

S06 #	of	Internet	Orders + [Measures].[Internet	Order	Count]

S07 #	of	Reseller	Orders + [Measures].[Reseller	Order	Count]

S12 Reseller	Sales	(in000)
~ [Measures].[Reseller	Sales	Amount]

S16 Internet	Sales	(in	000) ~ [Measures].[Internet	Sales	Amount]

S18 Product	Sales	(in	000) ~ [Measures].[Sales	Amount]

I Internal	Indicators ~

I01 Headcount ~ ([Measures].[Amount],	[Account].[Accounts].&
[96])

I02
Square	Footage	(in
000) ~

([Measures].[Amount],	[Account].[Accounts].&
[99])

WOW! eBook
www.wowebook.org

Additionally,	remove	the	expression	in	the	Formula_MDX	column	for	the	#	of	Orders	item.

Save	the	file	and	close	it.	Then	start	SQL	Server	Management	Studio	and	connect	to	your	SQL
Server	2016	database	engine	instance.	Verify	that	the	view	[dbo].[vReportItems]	returns	11
rows	when	executed	and	that	these	new	column	entries	are	visible	in	it.

WOW! eBook
www.wowebook.org

How	to	do	it...
Follow	these	steps	to	implement	custom	rollups	in	the	reporting	dimension:

1.	 Open	SQL	Server	Data	Tools	(SSDT)	and	then	open	Adventure	Works	DW	2016
solution.

2.	 In	the	Solution	Explorer,	double-click	the	Reporting	Dimension	to	open	it.
3.	 Find	the	Hierarchy	attribute	and	click	on	the	small	button	next	to	the

UnaryOperatorColumn	in	the	Properties	pane.
4.	 Select	the	UnaryOperator	column	in	the	dialog	that	appears,	then	click	on	OK.
5.	 Additionally,	drag	the	Unary_Operator	column	from	the	vReportItems	table	in	the

Data	Source	View	pane	to	the	left,	in	the	Attributes	pane,	to	create	a	new
attribute,	Unary	Operator.

6.	 Turn	the	Unary	Operator	attribute	into	a	property	by	changing	the
AttributeHierarchyEnabled	property	to	False.

7.	 Process	the	dimension.
8.	 Once	done,	click	on	the	Browser	tab	to	show	the	dimension	members.	Expand	them

completely	and	turn	on	member	properties.

9.	 Notice	that	each	member	has	a	small	icon,	which	tells	us	that	the	member	is	aggregated
into	its	parent.	The	same	can	be	read	from	the	Unary	Operator	property.

10.	 Process	the	Adventure	Works	cube	and	then	go	to	the	Cube	Browser,	start	the	Excel,
and	create	a	simple	pivot	table	using	Reporting	Dimension	and	Fiscal	Years,	or	use	the
one	from	the	previous	recipe.

WOW! eBook
www.wowebook.org

11.	 Note	that	the	#	of	Orders	item	is	missing	its	values.	The	reason	is	that	we	deleted	its
MDX	formula.

12.	 Now,	double-click	on	the	Adventure	Works	cube	in	the	Solution	Explorer	and	go	to	the
Calculations	tab.

13.	 Create	the	Unary	Operator	measure	above	the	definition	of	the	Value	measure:

						Create	Member	CurrentCube.[Measures].[Unary	Operator]	

						As	

										[Reporting	Dimension].[Hierarchy]	

										.CurrentMember.Properties('Unary	Operator')	

						,Visible	=	0	

						,Display_Folder	=	'Reporting	Measures';	

14.	 Extend	the	scope	for	Reporting	Dimension	created	in	the	previous	recipe	with	a	few
additional	lines	of	code	that	sets	the	rollup	(instead	of	null)	for	members	with	no
formula	defined:

						Scope([Measures].[Value]);	

							Scope([Reporting	Dimension].[Hierarchy].Members);	

														This	=	iif([Measures].[MDX	Formula]	=	'',	

																											RollupChildren(

														[Reporting	Dimension].[Hierarchy].CurrentMember,	

														[Measures].[Unary	Operator]	

),	

																											StrToValue(

														'	Sum([Reporting	Dimension].[Hierarchy].[All],	'	+	

																					[Reporting	Dimension].[Hierarchy]	

														.CurrentMember.Properties('MDX	Formula')	+	')'	

)	

														/	

														iif([Measures].[Multiplication	Factor]	=	0,	1,	

																			[Measures].[Multiplication	Factor])	

WOW! eBook
www.wowebook.org

);	

														Format_String(This)	=	[Measures].[Format	String];	

							End	Scope;	

						End	Scope;	

15.	 Process	the	Adventure	Works	cube	and	refresh	Excel.

16.	 Notice	that	the	#	of	Orders	item	again	has	its	value,	unchanged.

WOW! eBook
www.wowebook.org

How	it	works...
Unary	operators	were	specified	in	the	Metadata	Excel	file	and	as	such	used	as	a	new	hidden
property	of	our	Reporting	Dimension.	A	hidden	measure	was	created	in	the	cube	that	returns
this	unary	operator	for	each	report	item.	That	operator	was	used	as	a	dynamic	parameter	to
the	RollupChildren()	MDX	function.

The	RollupChildren()	function	was	used	for	report	items	without	formula.	Previously,	our
scope	statement	simply	returned	a	null	value	which	made	sense,	since	we	relied	only	on	MDX
formulas	to	calculate	items'	value.	With	the	introduction	of	unary	operators	this	had	to
change.

So,	instead	of	null	value,	we	calculated	a	member's	value	based	on	its	children	and	their	unary
operators.	Children	with	+	were	added,	children	with	~	were	skipped.	There	were	no	children
with	-,	but	if	we	had	those,	they	would	be	added	with	a	negative	value,	that	is	subtracted.

The	RollupChildren()	function	uses	two	arguments.	The	first	one	is	the	member	that	is
being	calculated.	The	second	one	is	the	unary	operator,	which,	as	in	this	case,	doesn't	have	to
be	a	constant	value.	It	can	be	an	MDX	expression	and	it	usually	is	if	we	are	referring	to
member's	children	or	navigate	elsewhere	in	the	parent-child	hierarchy.

WOW! eBook
www.wowebook.org

There's	more...
Steps	3	and	4	are	not	required.	They	show	how	to	specify	unary	operators	for	a	dimension
that	is	connected	to	a	measure	group	which	is	usually	the	case.	Since	our	Reporting
Dimension	is	not,	we	could	skip	those	two	steps	and	the	solution	would	still	work.	The	only
thing	that	would	change	are	the	icons	for	members	and	since	they	look	so	cool,	we	didn't	skip
those	steps.

Try	to	remove	that	UnaryOperatorColumn	property	on	the	Hierarchy	attribute	and	see	what
happens	when	you	reprocess	the	solution.

WOW! eBook
www.wowebook.org

See	also
Related	recipes	are	all	that	follow	and	precede	in	this	chapter

WOW! eBook
www.wowebook.org

Referencing	reporting	dimension's	members	in
MDX	formulas
MDX	formulas	that	were	used	in	previous	recipes	referred	to	either	existing	cube	measures
or	other	dimension's	members.	There	were	no	relations	between	report	items	themselves;
each	stood	alone	in	the	hierarchy.	That	is,	until	we	introduced	unary	operators	(in	the
previous	recipe)	and	showed	how	to	replace	simple	formulas	with	an	operator.

Still,	unary	operators	are	very	limited	in	what	they	support.	As	their	name	says,	they	are
operators,	not	expressions.	They	can	help	us	by	not	having	to	specify	every	formula	in	case
the	values	can	be	rolled	up	from	children.	And	that's	it.

The	other	way	to	enhance	the	reporting	dimension	is	to	allow	references	to	its	members	in
MDX	formulas.	It	makes	perfect	sense	to	do	so.	It	is	the	end	users	who	will	eventually	fill	the
metadata	in	Excel.	They	know	their	report	items	the	best.

They	might	not	know	much	about	the	cube	and	its	objects	(dimensions,	measures,	attributes,
and	so	on),	but	if	they	see	report	items	(in	the	MDM	system,	for	example),	they	could	create
formulas	based	on	the	existing	report	items,	whether	they	were	created	by	them	or	someone
else	in	IT.	They	know	how	to	calculate	one	from	the	others.

The	idea	of	this	recipe	is	to	show	what	needs	to	be	done	to	support	referencing	Reporting
Dimension's	members	in	MDX	formulas.

WOW! eBook
www.wowebook.org

Getting	ready
Open	the	Metadata.xlsx	file	that	you	saved	in	the	previous	recipe.	Add	one	extra	row	in	the
Report_Items	table	using	this	data:

ID S17

Name Reseller	vs	Internet	Sales	Ratio

Sort_Order 6

Parent_ID S

Reporting_Category Sales	Indicators

Unary_Operator ~

Multiplication_Factor 1

Format_String #,##0.0

Calculation_Type X

Formula_MDX
iif([Reporting	Dimension].[Hierarchy].&[S16]	=	0,	null,	[Reporting
Dimension].[Hierarchy].&[S12]	/	[Reporting	Dimension].
[Hierarchy].&[S16])

Note	that	the	formula	now	refers	to	reporting	dimension	members.

Save	the	file	and	close	it.	Then	start	SQL	Server	Management	Studio	and	connect	to	your	SQL
Server	2016	database	engine	instance.	Verify	that	the	view	[dbo].[vReportItems]now	returns
12	rows.

WOW! eBook
www.wowebook.org

How	to	do	it...
Follow	these	steps	to	implement	custom	rollups	in	the	reporting	dimension:

1.	 Open	SQL	Server	Data	Tools	(SSDT)	and	then	open	the	Adventure	Works	DW	2016
solution.

2.	 In	the	Solution	Explorer,	double-click	on	the	Reporting	Dimension	to	open	it.
3.	 Process	update	the	dimension.
4.	 Open	the	Adventure	Works	cube	and	go	to	the	Cube	Browser,	start	the	Excel,	and

create	a	simple	pivot	table	using	Reporting	Dimension	and	Fiscal	Years	or	use	the	one
from	the	previous	recipe.

5.	 Note	that	the	Reseller	vs	Internet	Sales	Ratio	item	has	errors.
6.	 Return	to	the	Reporting	Dimension.
7.	 Drag	the	Calculation_Type	column	from	the	vReportItems	table	in	the	Data	Source

View	pane	to	the	left,	in	the	Attributes	pane,	to	create	a	new	attribute,	Calculation	Type.
8.	 Turn	the	Calculation	Type	attribute	into	a	property	by	changing	the

AttributeHierarchyEnabled	property	to	False.
9.	 Process	the	dimension.
10.	 Go	back	to	the	Adventure	Works	cube,	Calculations	tab.
11.	 Create	the	Calculation	Type	measure	above	the	definition	of	the	Value	measure:

						Create	Member	CurrentCube.[Measures].[Calculation	Type]	

						As	

										[Reporting	Dimension].[Hierarchy]	

										.CurrentMember.Properties('Calculation	Type')	

						,Visible	=	0	

						,Display_Folder	=	'Reporting	Measures';	

12.	 Extend	the	scope	for	Reporting	Dimension	created	in	the	previous	recipe	with	a	few
additional	lines	of	code	that	fix	the	calculation	for	members	whose	formula	refers	to	the
reporting	dimension,	that	is,	which	have	calculation	type	X	defined	in	their	metadata:

						Scope([Measures].[Value]);	

WOW! eBook
www.wowebook.org

							Scope([Reporting	Dimension].[Hierarchy].Members);	

														This	=	iif([Measures].[MDX	Formula]	=	'',	

																											RollupChildren(

														[Reporting	Dimension].[Hierarchy].CurrentMember,	

														[Measures].[Unary	Operator]),	

														iif([Measures].[Calculation	Type]	=	'X',	

																			StrToValue(

																			[Reporting	Dimension].[Hierarchy]	

																			.CurrentMember.Properties('MDX	Formula')	

),	

																			StrToValue(

																			'	Sum([Reporting	Dimension].[Hierarchy].[All],	'	+	

																										[Reporting	Dimension].[Hierarchy]	

																										.CurrentMember.Properties('MDX	Formula')	+				

																							')'	

)	

)	

							/	

														iif([Measures].[Multiplication	Factor]	=	0,	1,	

																			[Measures].[Multiplication	Factor])	

);	

														Format_String(This)	=	[Measures].[Format	String];	

							End	Scope;	

							Scope(Root([Reporting	Dimension]));	

														This	=	null;	

							End	Scope;	

							Scope(Root([Date]));	

														This	=	null;	

							End	Scope;	

						End	Scope;	

13.	 Process	the	Adventure	Works	cube	and	refresh	the	Excel.

WOW! eBook
www.wowebook.org

14.	 Note	that	the	Reseller	vs	Internet	Sales	Ratio	has	values.

WOW! eBook
www.wowebook.org

How	it	works...
Reseller	vs	Internet	Sales	Ratio	is	the	first	measure	in	our	Metadata	Excel	file	that	has	an
MDX	formula	referencing	the	Reporting	Dimension	members.	Simply	adding	that	item	in	the
dimension	didn't	work,	the	Value	measure	returned	an	error.

The	trick	is	that	the	Sum()	function	is	an	overkill	here.	In	case	MDX	formula	has	references	to
reporting	dimension's	members,	the	sum	is	no	longer	needed.	It	interferes.	In	this	case,	we
don't	want	to	change	the	context.	We	want	to	calculate	the	value	of	a	report	item	based	on
some	already	evaluated	report	items.	No	reference	to	the	root	member	is	needed	here.

We	took	care	of	it	using	a	property	name	called	Calculation	Type,	and	we	used	X	in	a	signal
to	remove	the	Sum()	function.

The	initial	part	of	the	steps	was	the	same	as	in	previous	recipes,	adding	a	property	in	the
dimension.	It's	a	straightforward	and	easy	to	understand	process.

WOW! eBook
www.wowebook.org

There's	more...
Since	some	formulas	require	adding	the	root	member	to	adjust	the	context	(using	the	Sum()
function	and	some	don't),	a	general	advice	is	not	to	mix	them.	When	a	formula	references
report	items,	don't	add	other	dimensions	and	measures	in	that	expression.	Simply	create
another	row	in	the	Metadata	Excel	file	where	you'll	pre-calculate	the	other	part	that	deals
with	the	cube's	dimensions	and	measures,	name	it	adequately,	and	use	it	in	other	types	of
formulas,	those	referring	to	report	items	only.

This	principle	of	building	items	on	top	of	each	other	is	also	a	good	method	of	isolating
things	in	metadata.	As	mentioned	earlier,	IT	knows	cube's	measures	and	dimensions	better
than	the	end	users.	Let	them	create	intermediate	report	items	that	end	users	can	refer	to	in	their
formulas.	On	the	other	hand,	end	users	know	their	calculations	better	than	IT	and	it's	often
faster	for	them	to	implement	or	correct	them	by	themselves.	The	metadata-driven	calculations
approach	allows	fast	modification	of	calculations.	The	reprocessing	of	the	Reporting
Dimension	is	very	fast,	and	most	importantly,	there's	no	need	to	change	the	cube's	structure
for	new	report	items	and	their	properties.	Everything	is	based	on	metadata.	Which	is
something	both	the	IT	and	end	users	would	appreciate.

WOW! eBook
www.wowebook.org

See	also
Related	recipes	are	all	that	follow	and	precede	in	this	chapter

WOW! eBook
www.wowebook.org

Implementing	the	MDX	dictionary
MDX	expressions	become	complex	easily.	The	syntax	requires	precise	references	to	cube
objects.	Unique	member	names	are	long	and	tend	to	make	expressions	hard	to	follow.
Members	can	appear	in	multiple	hierarchies.	All	in	all,	it's	a	jungle	for	those	not	experienced
with	SSAS.

Additionally,	MDX	expressions	can	sometimes	return	a	wrong	value	if	the	context	is	not
established	properly.	It's	easy	to	know	something	went	wrong	when	they	throw	an	error	or
return	nulls,	like	in	previous	examples	in	this	chapter.	That's	because	the	reporting	dimension
was	not	related	to	any	measure	group.	But,	when	we	reference	a	dimension,	there	is	a	small
chance	we	are	missing	something	related	to	forcing	the	proper	context.	It's	normal.

It's	a	consequence	of	having	a	complex	analytical	system	that	can	answer	many	questions
relatively	simply,	using	an	expression	instead	of	having	to	write	a	procedure,	code,	or	report.
It	answers	many	queries	and	expressions	however	weird	they	are.	It's	up	to	us,	SSAS
professionals	who	write	MDX	expressions,	to	verify	their	correctness	and	to	make	them	good
enough	for	many	combinations	that	can	occur	in	the	pivot	tables	and	reports.

Metadata	Excel	uses	MDX	formulas	to	specify	how	report	items	should	be	calculated	and
evaluated.	Having	MDX	formulas	outside	of	the	cube	is	a	way	to	have	a	stable	cube	structure
that	requires	rare	modification	because	existing	calculations	can	be	changed	outside,	in	a	file
such	as	Metadata	Excel	or	in	an	MDM	(Master	Data	Management)	system	and	new
calculations	are	easily	added	as	new	rows.	Each	calculation	can	be	built	on	top	of	the	other.
All	in	all,	it's	a	very	interesting	concept.	So	interesting	that	it	makes	sense	to	open	it	to	end
users	and	let	them	manage	report	items,	their	properties,	and	calculations.	Because,	in	the	end,
it	is	them	who	will	use	that	in	their	reports	and	pivot	tables.

This	chapter	presents	an	idea	of	how	to	simplify	the	life	of	end	users	and	how	to	enable	them
to	enter	formulas	in	a	more	user-friendly	way.	The	answer	lies	in	establishing	the	MDX
dictionary!

WOW! eBook
www.wowebook.org

Getting	ready
Open	the	Metadata.xlsx	file.	Create	a	new	sheet	and	name	it	MDX_Dictionary,	then	enter	the
following	values	in	it	and	format	it	as	a	table	with	four	columns:

Token MDX_Expression Type Description

@current CurrentMember Function
Use	when
comparing
members

@meas [Measures] Dimension
Use	as	a
prefix	for	a
measure

@value [Measures].[Amount] Measure Financial
amount

@item [Reporting	Dimension].[Hierarchy] Hierarchy
Use	when
specifying
report	items

@fiscal [Date].[Fiscal] Hierarchy Fiscal	date
prefix

@acc_id [Account].[Accounts] Hierarchy Account	ID
reference

#is_acc_no
(Tail(Exists([Account].[Accounts].Members,
[Account].[Account	Number].&[#is_acc_no])).Item(0),
[Measures].[Amount])

Tuple

Account
book-
keeping
number
reference

#bs_acc_no
(Tail(Exists([Account].[Accounts].Members,
[Account].[Account	Number].&[#bs_acc_no])
).Item(0),	[Measures].[Amount])

Tuple

Account
book-
keeping
number
reference

WOW! eBook
www.wowebook.org

Then,	go	in	the	Report_Items	sheet	and	add	the	following	report	items	as	new	rows:

ID Name Sort_Order Formula_User_Friendly Formula_Description

IS Income
Statement

3

IS_Rev Revenue 1 #is_acc_no=4100 Net	Sales

IS_Exp Expenses 2 @item.&[IS_OPEX]	+
@item.&[IS_COGS]

IS_COGS COGS 3 #is_acc_no=5000 Total	Cost	of	Sales

IS_GrossP Gross	Profit 4 @item.&[IS_Rev]	-
@item.&[IS_Exp]

IS_OPEX OPEX 5 #is_acc_no=60 Operating	Expenses

IS_SGA SGA	Expenses 6 @item.&[IS_OPEX]	-
@item.&[IS_DA]

IS_DA DA 7 '#is_acc_no=680 Depreciation

IS_EBITDA EBITDA 8 @item.&[IS_EBIT]	+
@item.&[IS_DA]

IS_EBIT EBIT 9 #is_acc_no=40 Operating	Profit

IS_OtherIE Other	Incomes
and	Expenses

10 #is_acc_no=80 Other	Income	and
Expense

11 @item.&[IS_NetInc]	+
WOW! eBook

www.wowebook.org

IS_PBT Profit	before
Tax

@item.&[IS_Tax]

IS_Tax Tax 12 #is_acc_no=8500 Taxes

IS_NetInc Net	Income 13 #is_acc_no=4 Net	Income

Next,	fill	all	these	rows	except	the	first	one	(where	ID	=	IS)	with	these	values:

Format_String #,##0

Unary_Operator ~

Multiplication_Factor 1000

Parent_ID IS

Then	repeat	the	process	by	adding	these	rows	too:

ID Name Sort_Order Formula_User_Friendly
Formula_

Description

BS Balance	Sheet 4

BS_Assets Total	Assets 1 #bs_acc_no=10 Assets

BS_A_Curr Current	Assets 2 #bs_acc_no=110 Current	Assets

BS_A_Cash Cash 3 #bs_acc_no=1110 Cash

BS_A_AccRec
Accounts
Receivable 4 #bs_acc_no=1120 Receivables

WOW! eBook
www.wowebook.org

BS_A_Inv Inventory 5 #bs_acc_no=1160 Inventory

BS_A_Fixed Fixed	Assets 6 #bs_acc_no=1200 Property,	Plant,
Equipment

BS_Debt Total	Debt 7 #bs_acc_no=20 Liabilities	and
Owners	Equity

BS_Equity Total	Equity 8 #bs_acc_no=300 Owners	Equity

BS_L_Curr Current	Liabilities 9 #bs_acc_no=2200 Current	Liabilities

BS_L_LTerm Long	Term
Liabilities

10 #bs_acc_no=2400 Long	Term
Liabilities

Next,	fill	all	these	rows	except	the	first	one	(where	ID	=	BS)	with	these	values:

Format_String #,##0

Unary_Operator ~

Multiplication_Factor 1000

Parent_ID BS

Finally,	put	X	in	the	Calculation_Type	column	and	1	in	the	Multiplication_Factor	column
(yes,	replace	1000	with	1)	for	all	report	items	that	have	the	@item	reference	in	their
Formula_User_Friendly	column.	To	help	you	identify	them,	we	have	them	listed	here:

ID Name Multiplication_Factor Calculation_Type

IS_Exp Expenses 1 X

WOW! eBook
www.wowebook.org

IS_GrossP Gross	Profit 1 X

IS_SGA SGA	Expenses 1 X

IS_EBITDA EBITDA 1 X

IS_PBT Profit	before	Tax 1 X

Finally,	save	the	Metadata	Excel	file	and	close	it.

WOW! eBook
www.wowebook.org

How	to	do	it...
Follow	these	steps	to	combine	the	MDX	dictionary	with	metadata	in	the	Excel	file:

1.	 Start	SQL	Server	Management	Studio	and	connect	to	your	database	instance.
2.	 Locate	the	Adventure	Works	DW	2016	database,	click	on	it,	and	then	click	on	the	New

Query	button	to	open	the	Query	Editor.
3.	 Create	a	select	statement	and	execute	it:

						SELECT	*	FROM	OPENQUERY(MetadataExcel,		

																															'SELECT	*	FROM	[MDX_Dictionary$]')	

4.	 Replace	the	*	in	the	inner	select	with	the	column	names.	You	should	be	able	to	see	the
column	names	in	the	results.

5.	 Turn	this	into	a	view	named	[dbo].[vMDXDictionary]	and	save	it	in	the	Adventure
Works	DW	2016	database	by	executing	it.	Verify	that	the	view	is	there	and	that	it	returns
results	without	any	errors.

6.	 Then,	create	a	scalar-valued	function	in	Adventure	Works	DW	2016	database	that	does
the	translation	of	user-friendly	expression	into	valid	MDX	expression	using	the	MDX
dictionary	provided	in	the	Excel	file:

	

						USE	[AdventureWorksDW2016]	

						GO	

						CREATE	FUNCTION	[dbo].[TranslateToMDX]	

						(@expressionnvarchar(255))	

						RETURNS	nvarchar(255)	

						AS	

						BEGIN	

								SET	@expression	=	REPLACE(@expression,	'''',	'')	

								SELECT	@expression	=	

										CASE	

												WHEN	LEFT(@expression,	1)	=	'#'	THEN		

												CASE	

														WHEN	CHARINDEX('=',	@expression)	>	0	THEN	

														CASE	

																WHEN	LEFT(@expression,		

						CHARINDEX('=',	@expression)	-	1)	=	REPLACE(d.Token,	'''',	'')	

																THEN	

						REPLACE(d.MDX_Expression,	d.Token,	RIGHT(@expression,		

						LEN	(@expression)	-	CHARINDEX('=',	@expression)))	

																ELSE	@expression	

														END	

												END	

												ELSE	

								REPLACE(@expression,	d.Token,	d.MDX_Expression)	

										END	

								FROM	[dbo].[vMDXDictionary]	d;	

								RETURN	@expression	

						END	

						GO	

7.	 Execute	the	function	to	store	it	in	the	database.
WOW! eBook

www.wowebook.org

8.	 Then,	modify	the	existing	view	dbo.vReportItems,	so	that	it	calls	the	dbo.
[TranslateToMDX]	function	to	translate	what's	in	the	Formula_User_Friendly	column
when	the	MDX	formula	is	not	available.	The	intention	is	also	to	preserve	the	original
formula	just	in	case:

						ALTER	VIEW	[dbo].[vReportItems]	

						AS	

						SELECT	

							[ID]	

						,[Name]	

						,[Description]	

						,[Sort_Order]	

						,[Parent_ID]	

						,[Reporting_Category]	

						,[Level_of_Importance]	

						,[Unary_Operator]	

						,[Multiplication_Factor]	

						,[Unit_of_Measure]	

						,[Format_String]	

						,[Calculation_Type]	

						,[Formula_Flag]	

						,[Formula_MDX]	AS	[Formula_MDX_Original]	

						,CASE	

									WHEN	[Formula_MDX]	<>	''	THEN	[Formula_MDX]	

									ELSE	[dbo].[TranslateToMDX]([Formula_User_Friendly])	

								END										AS	[Formula_MDX]	

						,[Formula_User_Friendly]	

						,[Formula_Description]	

						,[Is_Growth_Positive]	

						,[Status_Low]	

						,[Status_High]	

						,[Detailed_Report_URL]	

						FROM	

						OPENQUERY	(MetadataExcel,	'SELECT	*	FROM	[Report_Items$]')	

9.	 Execute	the	alter	script	and	then	execute	the	view	to	see	how	it	works.	It	should	return	37
rows.	Verify	that	the	translation	works,	that	the	Formula_MDX	column	is	filled	with
MDX	expressions	for	many	rows.	For	all	rows	except	placeholders	and	those	with	unary
operator.

10.	 Now,	open	SQL	Server	Data	Tools	(SSDT)	and	in	it	the	Adventure	Works	DW	2016
solution.

11.	 Process	update	the	Reporting	Dimension.
12.	 Start	the	Excel.	Either	create	a	simple	pivot	table	using	Reporting	Dimension	and	Fiscal

Years	or	refresh	the	one	from	the	previous	recipes.
13.	 Note	that	the	Reporting	Dimension	displays	new	items	that	we	added	in	this	recipe	and

notice	that	although	they	didn't	have	any	real	MDX	formulas,	they	are	successfully
displaying	values.	MDX	translation	works!

WOW! eBook
www.wowebook.org

WOW! eBook
www.wowebook.org

How	it	works...
The	initial	steps	in	this	recipe	took	a	while.	It	is	because	we	were	trying	to	make	a	good	story
and	not	to	oversimplify	it	with	a	few	report	items	only.

One	thing	that	had	to	be	prepared	in	advance	is	the	MDX	dictionary.	Without	it	this	recipe
wouldn't	work.

Look	at	the	table	with	tokens	and	MDX	expressions	again.	We	provided	a	few	entries	to	show
the	idea	about	it.

In	it	there	are	two	types	of	tokens.	Of	course,	you	can	think	of	additional	types	of	tokens,	but
these	two	cover	pretty	much	everything	we	needed.	Tokens	starting	with	the	@	symbol	are	of
one	type,	tokens	starting	with	#	are	of	the	other.	@tokens	are	replaced	completely	with	the
expression	while	#	tokens	get	inserted	inside	the	expression.	To	see	this	in	action,	simply
open	the	dbo.vReportItems	view	and	observe	the	Formula_User_Friendly	and
Formula_MDX	columns.

The	Type	and	Description	columns	are	here	for	explanation	only,	no	logic	is	implemented
based	on	those	columns.

The	MDX	dictionary	is	something	a	SSAS	developer	would	prepare	based	on	the	types	of
expressions	end	users	need	when	writing	their	calculations.	End	users	should	be	familiar	with
the	idea	of	two	types	of	tokens	and	use	them	in	the	metadata	in	the	Formula_User_Friendly
column.

Now,	look	at	the	metadata	we	entered.	Balance	Sheet	items	had	only	one	type	of	tokens,	those
with	the	#	symbol.	There	you	can	see	that	immediately	after	the	token	there	is	a	=	symbol	and
the	value	that	goes	in	expression.	So,	for	tokens	with	#	end	users	need	to	specify	an	ID,	key,	or
similar,	nothing	else.	That's	very	convenient.	They	can	easily	observe	report	items	and	their
formulas	and	see	if	everything	is	fine	or	not.	The	complexity	of	the	real	MDX	formula	is
taken	away	from	them.	It's	in	the	dictionary.	The	SSAS	developer	created	such	an	expression
that	establishes	the	right	context	and	requires	only	a	simple	input	parameter,	which	is
something	the	end	users	specifies.

The	expression	for	the	Balance	Sheet	accounts	says	that	for	a	certain	business	key	(book-
keeping	account	number,	not	the	ID)	the	value	Amount	will	be	calculated.	A	simpler
expression	is	presented	in	the	previous	two	rows;	that	expression	uses	dimension	ID.	The
expression	is	simple,	but	knowing	which	ID	to	use	is	a	nightmare	for	end	users.	Moreover,	if
the	data	warehouse	is	reloaded	from	scratch,	the	IDs	might	not	match	the	previous	ones	and
all	formulas	would	be	wrong.	So,	SSAS	developers	took	more	effort	to	simplify	the	life	of
end	users	and	let	them	use	their	IDs,	that	is,	codes	they	are	familiar	with	and	codes	that	don't
change.	It's	a	similar	effort	the	software	designer	for	mobile	phones	took	to	enable
customization	and	configuration	of	various	settings	for	phone	users.	But	those	efforts	pay	off,
users	like	the	system	designed	that	way.	Hence	the	name	user-friendly.

WOW! eBook
www.wowebook.org

OK,	back	to	the	Income	Statement	items.	There	we	have	a	combination	of	#	and	@	tokens.	We
already	explained	the	#	tokens.	Let's	just	say	that	we	could	use	the	same	token	for	Balance
Sheet	and	Income	Statement,	but	we	decided	to	separate	it.	The	expression	is	the	same.

Tokens	with	@	are	shortcut	tokens.	They	replace	a	part	of	the	MDX	expression.	Instead	of
having	to	write	the	full	member	name	or	a	part	of	it,	we	can	specify	the	token	for	it.	We	can
combine	@	tokens	too,	for	example,	@item.@curr	would	be	translated	to	the	current	member
of	the	Reporting	dimension's	hierarchy:	[Reporting	Dimension].
[Hierarchy].CurrentMember.

Yes,	end	users	would	have	to	learn	how	to	use	tokens	and	some	basic	MDX	expressions:
forming	tuples	such	as	(x,	y,	z),	using	iif	for	branching	or	testing	for	nulls/zero,	and
comparing	with	the	Is	operator	instead	of	=.	But	that's	not	so	difficult	and	expression	in
metadata	would	suddenly	look	readable	and	easy	to	understand	for	them.	They	could	manage
them.	Look	how	simple	and	meaningful	the	expressions	for	Balance	Sheet	and	Income
Statement	items	are.	Now,	compare	that	with	our	first	metadata	examples	in	this	chapter.	The
expression	for	Headcount,	for	example.	It	refers	to	the	ID.	That	account	ID	=	96	doesn't	tell
much	what	that	expression	will	return,	right?	But	those	expressions	in	this	recipe	do,	because
they	use	business-related	codes.	MDX	dictionary	enabled	that!

So	much	has	been	said	about	the	MDX	dictionary.	By	now,	you	probably	understand	what	it's
for,	how	to	use	it,	and	what	extensibility	it	provides.

Once	the	metadata	and	MDX	dictionary	were	in	place,	we	created	a	view	targeting	the	MDX
dictionary.	The	view	for	report	items	already	existed,	but	we	had	to	modify	it	to	include	the
call	to	a	function.	That	function	takes	a	user-friendly	expression	with	tokens	and	processes	it
using	MDX	dictionary	so	that	in	the	end	an	MDX	expression	pops	out.

The	function	does	a	lot	of	string	comparison,	parsing,	and	replacements.	Excel's	cell
sometimes	have	the	'	symbol	at	their	beginning.	That	is	being	stripped	out	immediately	on	the
start.	Next,	we	are	evaluating	whether	we	have	a	#	token	or	not.	In	case	we	do,	we	replace	the
part	of	the	expression	with	what	comes	after	the	=	symbol.	For	@	tokens	we	simply	replace	the
token	with	the	corresponding	MDX	expression.

In	the	end,	it's	worth	mentioning	that	the	Report_Items	sheet	can	contain	values	in	both
Formula_User_Friendly	and	the	Formula_MDX	columns.	The	latter	one	takes	precedence,
which	is	handled	in	the	view.	In	other	words,	if	there	is	an	MDX	formula,	the	dictionary	is	not
used.	Only	when	the	MDX	formula	is	missing,	a	user-friendly	expression	is	translated	using
the	dictionary.	The	rationale	behind	this?	If	the	MDX	formula	is	there,	it's	there	for	reason.
Maybe	the	expression	is	very	complex	and	cannot	be	handled	using	tokens.	In	any	case,	end
users	can	delete	that	expression	and	write	their	friendly	formula	instead	anytime.

WOW! eBook
www.wowebook.org

There's	more...
All	report	items	have	the	same	format	string	with	no	decimals.	That	makes	the	report	value
readable.

A	few	items	in	Income	Statement	had	the	value	X	in	the	Calculation_Type	column.	Those
items	use	references	to	the	reporting	dimension,	and	therefore,	as	explained	in	the	previous
recipe,	they	have	to	be	marked	using	the	Calculation	Type	property	in	the	dimension.

Additionally,	those	items	take	already	reduced	values	(by	1000),	which	is	the	reason	their
Multiplication	Factor	is	1.

Next,	both	the	Income	Statement	items	and	Balance	Sheet	items	were	flattened	out.	If	that's
not	OK,	adjust	the	parent	IDs	so	that	you	can	redesign	the	structure.	That	is,	the	end	users	can
do	that	themselves.

As	you	saw,	all	report	items	have	~	for	a	unary	operator.	We	didn't	use	unary	operators	(~
means	not	used,	don't	aggregate	up).	Formulas	using	MDX	dictionary	are	simple,	but
powerful,	and	therefore	make	unary	operators	less	appealing	and	required.	The	other	thing	is
that	unary	operators	prevent	flattening	of	report	items	and	flat	report	looks	better	for	those
who	know	what	it	consists	of.

Finally,	the	numbers	used	in	user	formulas	are	alternate	keys	in	dimension.	Open	the
dbo.DimAccount	table	in	SSMS	and	open	the	Accounts	dimension	in	SSDT	to	verify	that.
Those	alternate	keys	are	codes	that	end	users	are	familiar	with.

Additional	information

The	beauty	of	MDX	dictionary	is	that	it's	not	hardcoded.	You	can	specify	your	own	shortcuts
and	phrases	with	parameters.	Making	sure	that	all	tokens	are	unique	and	that	one	cannot	be
overlapped	with	another.	That	is,	@acc	and	@acc_no	wouldn't	work	because	the	first	one	would
overwrite	the	second	one.	But	@acc_id	and	@acc_no	are	perfectly	fine.	Even	better,	prefixes
for	tokens	are	also	customizable.	@	and	#	were	used	here	as	an	example,	but	you	can
implement	your	own.	Finally,	if	the	MDX	expression	needs	improvement,	metadata	and	user
friendly	expressions	can	remain	as	is,	SSAS	developer	can	fix	things	under	the	hood,	that	is,
expressions	in	the	MDX	dictionary.

Any	modification	in	how	the	tokens	operate,	their	prefixes,	and	similar	requires	modification
of	the	scalar-valued	function	we	created.	Just	make	sure	you	don't	forget	that.

And	yes,	MDX	dictionary	belongs	to	the	Master	Data	Management	(MDM)	system	as	well.

Tips	and	tricks

Add	the	Formula_User_Friendly	column	as	a	property	in	your	dimension.	Add	the
Formula_Description	column	and	all	other	columns	that	would	make	sense.	Now,	end	users

WOW! eBook
www.wowebook.org

will	be	able	to	see	it	in	a	hint.

WOW! eBook
www.wowebook.org

See	also
All	recipes	in	this	chapter	are	related,	so	make	sure	you	read	the	whole	chapter

WOW! eBook
www.wowebook.org

Implementing	metadata-driven	KPIs
Metadata-driven	calculations	can	be	used	for	KPIs	too.	In	SSAS,	KPIs	are	like	measures,
except	that	each	consists	of	four	basic	calculations:	Value,	Goal,	Status,	and	Trend.

A	common	way	to	implement	them	is	to	define	the	name	for	a	KPI	and	then	those	four
calculations.	If	we	go	that	way,	we	can	have	funny	icons	for	Trend	and	Status	calculations:
traffic	light,	arrows,	symbols,	and	so	on.The	other	advantage	of	implementing	KPIs	using	the
built-in	functionality	of	the	cube	is	that	we	can	combine	them	in	a	parent-child	structure,
which	is	a	nice	feature.

Of	course,	there	is	always	the	option	to	use	normal	calculated	measures,	four	of	them.	In	our
case,	that	means	to	define	three	additional	measures	(since	we	already	have	the	Value
measure)	and	use	them	in	reports.	The	advantage	of	that	approach	is	that	we	can	use
properties	that	measures	have,	that	is,	background	color	and	font	color.	Additionally,	we	can
have	more	than	three	additional	measures,	we	are	limited	by	creativity	only	and	what	else	can
be	shown.	True,	we	lose	icons	and	parent-child	structure.

So,	each	approach	has	its	pluses	and	minuses.

In	the	main	part	of	this	recipe,	we	are	going	to	show	how	to	implement	metadata-driven	KPIs
using	the	built-in	functionality.	Other	sections	will	shortly	explain	how	to	do	it	via	regular
calculated	measures.

In	any	case,	implementing	metadata-driven	KPIs	is	an	interesting	concept	and	if	you	follow
the	recipe	through,	you	will	find	out	why.

WOW! eBook
www.wowebook.org

Getting	ready
Open	the	Metadata.xlsx	file,	select	the	Report_Items	sheet,	and	add	the	following	report
items	as	new	rows	in	the	existing	table:

ID Name Formula_User_Friendly Formula_Description

F Financial
Indicators

L Liquidity
Ratios

L1 Cash	Ratio iif(@item.&[BS_L_Curr]	=	0,	null,	@item.&
[BS_A_Cash]	/	@item.&[BS_L_Curr])

(Cash	+	Marketable
Securities)	/	Current
Liabilities

L2 Quick	Ratio
iif(@item.&[BS_L_Curr]	=	0,	null,	(@item.&
[BS_A_Curr]	-	@item.&[BS_A_Inv])	/	@item.&
[BS_L_Curr])

(Current	Assets	-
Inventory)	/	Current
Liabilities

L3 Current
Ratio

iif(@item.&[BS_L_Curr]	=	0,	null,	@item.&
[BS_A_Curr]	/	@item.&[BS_L_Curr])

Current	Assets	/
Current	Liabilities

AT
Asset
Turnover
Ratios

AT1 ReceivablesTurnover
iif(@item.&[BS_A_AccRec]	=	0,	null,	@item.&
[IS_Rev]	/	@item.&[BS_A_AccRec])

Annual	Credit	Sales	/
Accounts	Receivable

FL
Financial
Leverage
Ratios

FL1 Debt	Ratio
iif(@item.&[BS_Assets]	=	0,	null,	(@item.&
[BS_L_Curr]	+	@item.&[BS_L_LTerm])	/
@item.&[BS_Assets])

Total	Liabilities	/	Total
Assets

WOW! eBook
www.wowebook.org

FL2
Debt-to-
Equity
Ratio

iif(@item.&[BS_Equity]	=	0,	null,	@item.&
[BS_Debt]	/	@item.&[BS_Equity])

Total	Debt	/	Total
Equity

P Profitability
Ratios

P1
Gross
Profit
Margin

iif(@item.&[IS_Rev]	=	0,	null,	(@item.&
[IS_Rev]	-	@item.&[IS_COGS])	/	@item.&
[IS_Rev])

(Sales	-	COGS)	/
Sales

P2 ROA iif(@item.&[BS_Assets]	=	0,	null,	@item.&
[IS_NetInc]	/	@item.&[BS_Assets])

Net	Income	/	Total
Assets

P3 ROE iif(@item.&[BS_Equity]	=	0,	null,	@item.&
[IS_NetInc]	/	@item.&[BS_Equity])

Net	Income	/
Shareholder	Equity

Next,	fill	all	the	rows	containing	formula	with	these	values:

Format_String #,##0.00

Unary_Operator ~

Multiplication_Factor 1

Calculation_Type X

Finally,	fill	other	properties	too:

ID Name Sort_Order Parent_ID Is_Growth_Positive Status_Low Status_High

F Financial
Indicators

5

L Liquidity
WOW! eBook

www.wowebook.org

Ratios 1 F

L1 Cash	Ratio 1 L Yes 0.10 0.50

L2 Quick	Ratio 2 L Yes 0.90 1.00

L3 Current	Ratio 3 L Yes 1.50 2.00

AT
Asset
Turnover
Ratios

2 F

AT1 ReceivablesTurnover
1 AT Yes 0.60 1.00

FL
Financial
Leverage
Ratios

3 F

FL1 Debt	Ratio 1 FL No 0.50 0.25

FL2 Debt-to-
Equity	Ratio

2 FL No 5.00 1.50

P Profitability
Ratios 4 F

P1 Gross	Profit
Margin 1 P Yes 0.40 0.60

P2 ROA 2 P Yes 0.02 0.05

P3 ROE 3 P Yes 0.05 0.07

WOW! eBook
www.wowebook.org

Finally,	save	the	Metadata	Excel	file	and	close	it.

WOW! eBook
www.wowebook.org

How	to	do	it...
Follow	these	steps	to	implement	metadata-driven	KPIs	based	on	the	metadata	in	the	Excel	file:

1.	 Start	SQL	Server	Management	Studio	and	connect	to	your	database	instance.
2.	 Locate	the	Adventure	Works	DW	2016	database	and	then	alter	the	existing	view	[dbo].

[vReportItems]in	it,	so	that	a	few	columns	have	proper	data	types:

						ALTER	VIEW	[dbo].[vReportItems]	

						AS	

						SELECT	

							[ID]	

						,[Name]	

						,[Description]	

						,[Sort_Order]	

						,[Parent_ID]	

						,[Reporting_Category]	

						,[Level_of_Importance]	

						,[Unary_Operator]	

						,[Multiplication_Factor]	

						,[Unit_of_Measure]	

						,[Format_String]	

						,[Calculation_Type]	

						,[Formula_Flag]	

						,[Formula_MDX]	AS	[Formula_MDX_Original]	

						,CASE	

									WHEN	[Formula_MDX]	<>	''	THEN	[Formula_MDX]	

									ELSE	[dbo].[TranslateToMDX]([Formula_User_Friendly])	

													END					AS	[Formula_MDX]	

						,[Formula_User_Friendly]	

						,[Formula_Description]	

						,[Is_Growth_Positive]	

						,CONVERT(FLOAT,	[Status_Low])		AS	[Status_Low]	

						,CONVERT(FLOAT,	[Status_High])	AS	[Status_High]		,

						,[Detailed_Report_URL]	

						FROM	

						OPENQUERY	(MetadataExcel,	'SELECT	*	FROM	[Report_Items$]')	

3.	 Execute	the	alter	script	and	then	execute	the	view	to	see	if	it	works.	Verify	the	new	rows
that	appeared.

4.	 Now,	open	SQL	Server	Data	Tools	(SSDT)	and	in	it	the	Adventure	Works	DW	2016
solution,	then	double-click	the	Reporting	Dimension	to	open	it.

5.	 Drag	the	Is_Growth_Positive,	Status_High,	and	Status_Low	columns	from	the
[vReportItems]	table	in	the	Data	Source	View	pane	to	the	left,	in	the	Attributes	pane,	to
create	three	new	attributes:	Is	Growth	Positive,	Status	High	and	StatusLow.

6.	 Set	the	AttributeHierarchyEnabled	property	to	False	for	all	three	attributes.
7.	 Set	the	OrderBy	property	to	Key	for	those	three	attributes.
8.	 Verify	that	the	data	type	for	the	key	column	of	the	Status	High	and	Status	Low	attributes

is	Double.
9.	 Process	the	dimension.
10.	 Once	done,	click	on	the	Browser	tab	to	show	new	dimension	members.	Expand	them

WOW! eBook
www.wowebook.org

completely	and	turn	on	member	properties.

11.	 Note	that	new	member	properties	are	there,	as	well	as	the	formula	(translated	from	a
user-friendly	one).

12.	 Now,	go	back	to	the	Adventure	Works	cube,	Calculations	tab.
13.	 Create	three	new	measures	above	the	definition	of	the	Value	measure:

						Create	Member	CurrentCube.[Measures].[Is	Growth	Positive]	

						As	

										[Reporting	Dimension].[Hierarchy]	

										.CurrentMember.Properties('Is	Growth	Positive')	

						,Visible	=	0	

						,Display_Folder	=	'Reporting	Measures';	

	

						Create	Member	CurrentCube.[Measures].[Status	High]	

						As	

										[Reporting	Dimension].[Hierarchy]	

										.CurrentMember.Properties('Status	High')	

						,Visible	=	0	

						,Display_Folder	=	'Reporting	Measures';	

	

						Create	Member	CurrentCube.[Measures].[Status	Low]	

						As	

WOW! eBook
www.wowebook.org

										[Reporting	Dimension].[Hierarchy]	

										.CurrentMember.Properties('Status	Low')	

						,Visible	=	0	

						,Display_Folder	=	'Reporting	Measures';	

14.	 Create	three	additional	measures	in	the	end	of	the	MDX	script:	Value	Prev	Year,	Status,
Trend:

						Create	Member	CurrentCube.[Measures].[Value	Prev	Year]	

						As	

						iif([Date].[Fiscal].CurrentMember.Level.Ordinal	=	0,	null,	

						iif([Date].[Fiscal].CurrentMember.Level.Ordinal	=	1,	

											([Measures].[Value],		

													[Date].[Fiscal].CurrentMember.PrevMember),	

											([Measures].[Value],		

													ParallelPeriod([Date].[Fiscal].[Fiscal	Year],	

																														1,	[Date].[Fiscal].CurrentMember)							

)	

)	

)	

						,Visible	=	0	

						,Display_Folder	=	'Reporting	Measures';		

	

						Create	Member	CurrentCube.[Measures].[Status]	

						As	

						iif([Measures].[Value]	=	0,	null,	

						iif([Measures].[Is	Growth	Positive]	=	'Yes',	

												Case	

														When	[Measures].[Value]	-		

																CoalesceEmpty([Measures].[Status	High],	0)	>=	0	

														Then	1	

														When	[Measures].[Value]	-		

																CoalesceEmpty([Measures].[Status	Low],	0)	<	0	

														Then	-1	

														Else	0	

												End,	

												Case	

														When	[Measures].[Value]	-		

																CoalesceEmpty([Measures].[Status	High],	0)	<=	0	

														Then	1	

														When	[Measures].[Value]	-		

																CoalesceEmpty([Measures].[Status	Low],	0)	>	0	

														Then	-1	

														Else	0	

												End	

)	

)	

						,Visible	=	1	

						,Display_Folder	=	'Reporting	Measures';		

	

						Create	Member	CurrentCube.[Measures].[Trend]	

						As	

						iif([Measures].[Value	Prev	Year]	=	0	OR	

											IsEmpty([Measures].[Value]),	null,	

											iif([Measures].[Is	Growth	Positive]	=	'Yes',	

																Case	

WOW! eBook
www.wowebook.org

																		When	([Measures].[Value]	-	

																									[Measures].[Value	Prev	Year])											

																							/		

																									[Measures].[Value	Prev	Year]	>	0	

																		Then	1	

																		Else	-1	

																End,	

																Case	

																		When	([Measures].[Value]	-	

																									[Measures].[Value	Prev	Year])		

																									/		

																									[Measures].[Value	Prev	Year]	<	0	

																		Then	1	

																		Else	-1	

																End	

)	

)	

						,Visible	=	1	

						,Display_Folder	=	'Reporting	Measures';	

15.	 Process-full	the	cube.
16.	 Start	the	Excel.	Either	create	a	simple	pivot	table	using	Reporting	Dimension	and	Fiscal

Years	or	refresh	the	one	from	the	previous	recipes.
17.	 Notice	that	the	Reporting	Dimension	displays	new	items	that	we	added	in	this	recipe.

WOW! eBook
www.wowebook.org

18.	 Go	back	to	SQL	Server	Data	Tools	(SSDT)	and	in	the	KPIs	tab	of	the	cube's	designer
add	a	new	KPI	and	name	it	KPI	Value.

19.	 Specify	[Measures].[Value]	for	the	Value	expression.
20.	 Specify	Shapes	for	Status	indicator.	Specify	Standard	arrow	for	Trend	indicator.
21.	 Specify	[Measures].[Status]	for	Status	expression.
22.	 Specify	[Measures].[Trend]	for	Trend	expression.
23.	 Type	Metadata-driven	KPIs	for	Display	folder.
24.	 Deploy	cube	changes	and	refresh	the	Excel	file	with	pivot.
25.	 Then	locate	the	new	KPI	in	the	navigation	pane	and	click	on	both	Status	and	Trend

fields.

26.	 The	result	will	show	KPIs	and	their	status	and	trend	information	in	the	form	of	graphical
elements.	Optionally,	change	the	text	direction	for	Status	and	Trend	columns	to	shrink
the	table.

WOW! eBook
www.wowebook.org

WOW! eBook
www.wowebook.org

How	it	works...
First,	we	had	to	add	some	data	in	the	Metadata	Excel	file.	We	added	few	financial	indicators
whose	user-friendly	formulas	referred	to	existing	report	items,	those	defined	in	the	previous
recipe.	For	that	reason,	they	were	marked	X	in	the	Calculation_Type	column.

Beside	the	name,	each	item	had	a	description	roughly	specifying	how	to	calculate	it	and	how
to	define	its	user-friendly	formula.	That	helped	in	identifying	existing	report	items'	IDs	and
use	those	IDs	in	formulas.	Formulas	were	very	basic,	except	that	the	division	by	zero	was
taken	care	of	using	the	iif()	function.

Additionally,	there	were	three	new	columns:	Is_Growth_Positive,	Status_High,	and
Status_Low.	The	first	one	was	an	indicator	whether	an	increase	in	value	is	considered	good	or
not.	The	other	two	specified	a	range	for	bad	results	and	good	results	and	what's	left	in
between.	Notice	that	for	items	where	the	growth	is	not	appreciated,	high	and	low	values	are
swapped.

When	this	was	done,	the	metadata	was	ready	to	be	loaded	into	Reporting	Dimension.

Three	new	attributes	were	easily	added	as	properties	in	the	dimension,	but	before	this	was
done,	a	small	correction	in	the	view	took	care	of	data	types.

Next,	three	corresponding	measures	were	created	in	the	MDX	script,	to	be	able	to	use	them
later	in	the	calculations.

Additionally,	three	extra	measures	calculate	the	result	in	the	same	period	of	the	previous	year,
status	and	trend.

The	Status	is	a	measure	that	defines	whether	the	value	is	good	or	not.	The	Trend	defines
whether	there	is	a	positive	or	negative	change	compared	to	the	same	period	in	the	previous
year.

Both	measures	test	the	Is	Growth	Positive	measure	and	based	on	that	compare	the	values.
Comparison	for	status	is	done	based	on	metadata,	using	the	Status	High	and	Status	Low
measures.	Comparison	for	trend	is	done	based	on	the	measure	that	calculates	the	value	in	the
parallel	period.

On	the	KPIs	tab,	we	created	a	single	KPI	and	defined	the	name,	display	folder,	the	value,
status,	and	trend	calculations.	The	value	is	simply	pointing	to	our	Value	measure,	the
status	to	the	Status	measure,	and	trend	to	the	Trend	measure.	Big	expressions	are	specified
in	the	MDX	script	on	purpose	so	that	the	KPI	part	contains	only	simple	pointers	to	existing
calculated	measures.	That	way	all	the	complexity	is	either	in	a	Metadata	Excel	file	or	in	the
MDX	script.

Finally,	when	the	Value,	Status,	and	Trend	components	of	the	KPI	Value	KPI	were	added	in
WOW! eBook

www.wowebook.org

the	report	in	Excel,	the	result	appeared.

WOW! eBook
www.wowebook.org

There's	more...
The	other	option	to	create	KPIs	(in	a	way)	is	to	use	calculated	measures.

If	you	delete	the	KPI	you	created	in	this	recipe	(without	deleting	anything	in	the	MDX	script),
and	put	the	Value,	Status,	and	Trend	measures	again	in	the	pivot,	the	result	will	look	similar,
but	there	will	be	no	icons.	Instead,	values	-1,	0,	and	1	will	appear.	That's	because	formulas	are
designed	to	return	those	values.	However,	we	can	modify	the	formulas	to	return	something
better,	such	as	the	value	of	increase	or	decrease	over	time	(for	Trend)	or	the	difference
between	the	Status_High	and	the	actual	value	(absolute	or	relative).	Or,	we	can	use	those	-1,	0,
and	1	values	to	color	the	font,	that	is,	-1	being	red,	0	being	yellow,	and	1	being	green.	Finally,
we	can	use	-1,	0,	and	1	to	define	a	format	string,	that	is,	+	for	1,	-	for	-1,	=	for	the	same,	and
blank	for	the	rest.

We	will	now	give	an	example.

Extend	the	bottom	part	of	the	Trend	measure	to	include	the	format	string	as	well:

,Visible	=	1	

,Format_String	=	'"+";"-";"=";""'	

,Display_Folder	=	'Reporting	Measures';	

Next,	extend	the	scope	part	for	the	Value	measure	to	include	the	Fore_Color	and	Font_Flags
assignments:

Format_String(This)	=	[Measures].[Format	String];	

Fore_Color(This)	=	iif([Measures].[Status]	=	1,	

																								RGB(0,	165,	80),	

																								iif([Measures].[Status]	=	-1,	

																														RGB(230,	32,	32),	

																														RGB(0,	0,	0))		

);	

Font_Flags(This)	=	Abs([Measures].[Status]);	

Now,	deploy	the	changes,	refresh	the	Excel,	and	remove	the	Status	measure.	The	result	should
look	as	follows:

WOW! eBook
www.wowebook.org

As	you	can	see,	we	can	play	with	calculations	and	show	data	in	interesting	ways.	We	could
even	extend	the	metadata	file	to	include	colors	and	then	refer	to	them	in	the	calculations.	The
possibilities	are	endless.

Additional	information

The	Adventure	Works	2016	OLAP	database	has	several	KPIs.	They	are	hard-coded	in	the
solution.	What	this	recipe	showed	is	that	it	doesn't	have	to	be	like	that.	We	can	remodel	the
solution	and	pivot	it.	Instead	of	having	KPIs	defined	in	the	cube,	we	have	them	defined	outside
in	the	metadata	and	have	a	single	KPI	that	works	on	all	items.	This	way,	end	users	can	add	new
KPIs,	modify	the	existing	KPIs	and	change	their	properties	and	formulas	any	time	they	like
and	analyze	the	results	instantly.	This	is	an	added	value	for	them,	because	this	architecture
speeds	up	the	development	process	of	creating	KPIs,	maintaining	them,	and	working	with
them	in	general.

Sure,	you	can	have	multiple	KPIs	defined	in	the	KPIs	tab	of	the	cube	designer,	one	for	each
display	style.	That	is,	one	with	gauges,	the	other	with	traffic	lights,	and	so	on.	So,	the	user	can
choose	a	style	for	KPI,	though	all	of	them	would	return	the	same	value	since	all	of	them
would	have	exact	calculations,	only	their	properties	such	as	Trend	indicator	and	Status
indicator	would	change.

WOW! eBook
www.wowebook.org

Or,	you	can	stick	to	calculated	measures	and	have	nothing	in	the	KPIs	tab.	Simply	by
combining	various	calculated	measures	formatted	and	styled	in	an	adequate	way	you	could
get	interesting	reports.

It's	worth	mentioning	again,	the	update	process	is	very	simple.	If	there	are	new	or	modified
items	in	metadata,	a	ProcessUpdate	of	dimension	is	sufficient	and	that's	fast	on	such	a	small
dimension!	Not	even	that	is	required	if	its	storage	mode	is	ROLAP,	then	data	refresh	is
instantaneous.	However,	if	the	metadata	structure	is	modified	(that	is,	you	added	several	new
columns	and	you	need	them	in	the	dimension),	then	a	ProcessFull	is	required.

Tips	and	tricks

You	can	enhance	the	existing	metadata	KPI	calculations	to	include	an	area	of	tolerance	for
trends	(defined	in	metadata),	such	as	2%	plus	or	minus	that	is	not	considered	a	growth	or	a
fall	for	trend,	but	simply	an	oscillation.

You	can	define	additional	calculations	and	use	them	to	provide	more	information	on	each
report	item.	Here	are	a	few	examples:

Rolling	average	over	last	N	months
YTD,	MTD	value
Targets	(either	metadata-based	or	calculated	using	an	expression	from	the	rest	of	the
cube)
Differences,	both	absolute	and	relative	(to	target,	previous	periods,	...)
Warning	(for	crossing	over	metadata-based	thresholds)

WOW! eBook
www.wowebook.org

See	also
Related	recipes	are	all	previous	recipes	in	this	chapter

WOW! eBook
www.wowebook.org

Chapter	10.	On	the	Edge
In	this	chapter,	we	will	cover	the	following	recipes:

Clearing	the	Analysis	Services	cache
Using	Analysis	Services	stored	procedures
Executing	MDX	queries	in	T-SQL	environments
Using	SSAS	Dynamic	Management	Views	(DMVs)	to	fast-document	a	cube
Using	SSAS	Dynamic	Management	Views	(DMVs)	to	monitor	activity	and	usage
Capturing	MDX	queries	generated	by	SSAS	frontends
Performing	a	custom	drillthrough

WOW! eBook
www.wowebook.org

Introduction
The	last	chapter	in	this	book	is	very	special.	We're	going	to	talk	about	some	topics	that	didn't
fit	into	the	previous	chapters	topics,	where	MDX	mixes	with	other	areas,	such	as	performance
tuning,	executing	MDX	queries	in	a	T-SQL	environment,	using	SSAS	Dynamic	Management
Views	(DMVs)	to	query	metadata	of	a	cube,	and	SSAS's	internal	performance	and	resource.
These	areas	will	expand	our	horizon	and	motivate	us	to	explore	more.

We're	starting	with	clearing	the	cache.	Clearing	the	cache	is	an	important	technique	when
doing	performance	tuning;	queries	that	run	for	a	long	time	on	a	cold	cache	may	be	instant	on
a	warm	cache.	To	measure	the	effect	of	any	changes	you	make	to	your	cube	or	MDX
calculations,	having	the	same	initial	conditions	is	a	must.	The	first	recipe	covers	two
techniques	for	clearing	the	cube	cache,	executing	an	XMLA	command,	and	using	a	stored
procedure	from	the	Analysis	Services	Stored	Procedure	Project	(ASSP).	The	procedure
from	the	ASSP	project	can	clear	both	the	Analysis	Services	cache	and	the	Windows	filesystem
cache.

Stored	procedures	are	another	interesting	area.	Whether	you	have	developer	skills	or	not,
there	are	cool	stored	procedures	available	in	the	community	assemblies,	which	means	you're
only	a	step	away	from	exploring	the	benefits	that	they	bring	to	your	project.	The	second
recipe	introduces	the	Analysis	Services	Stored	Procedure	Project	(ASSP),	which	is	an	open
source	software	project	hosted	on	CodePlex.

Using	the	technique	of	distributed	queries,	you	can	execute	MDX	queries	inside	the	relational
database	environment.	The	third	recipe,	Executing	MDX	queries	in	T-SQL	environments,
explains	the	procedure	and	settings	that	enable	the	SQL	Server	to	run	distributed	queries	with
or	without	a	linked	server.

Dynamic	Management	Views	(DMVs)	are	another	interesting	area	that	is	not	yet	thoroughly
explored.	They	can	be	used	to	query	the	metadata	of	a	cube,	and	SSAS's	internal	performance
and	resources.	Everything	is	there	in	tabular	format	so	that	you	can	use	it	with	great	ease.	Two
recipes	cover	that	topic,	although	there	are	plenty	of	useful	examples	to	be	explored	by
yourself	once	you	get	the	initial	boost.

When	client	tools	generate	MDX	queries	for	you,	you	might	want	to	know	what	these	MDX
queries	look	like.	SQL	Server	Profiler	is	a	tool	that	can	be	used	to	capture	the	exact	MDX
queries	your	users	are	running	against	the	cube.	These	captured	MDX	queries	are	often	used
for	troubleshooting	and	performance	tuning	purposes.	We	dedicate	one	recipe	in	this	chapter
to	showing	you	how	to	use	the	SQL	Server	Profiler	to	capture	the	exact	MDX	queries	that	a
client	application	is	sending	to	the	cube.

Drillthrough	is	a	mechanism	in	SSAS	that	allows	end	users	to	select	a	single	cell	from	a	cube
and	retrieve	a	result	set	from	the	multidimensional	model	for	that	cell	to	get	more	detailed
information.	The	Drillthrough	mechanism	allows	us	to	explore	the	data	stored	in	an	SSAS

WOW! eBook
www.wowebook.org

cube	regardless	of	the	relational	engine.	Finally,	the	last	recipe	covers	how	to	create	an	MDX
query	with	DRILLTHROUGH	capability.

Remember,	these	recipes	are	here	to	encourage	you	to	explore	further	and	go	over	the	edge.

WOW! eBook
www.wowebook.org

Clearing	the	Analysis	Services	cache
If	you	have	a	poorly	performing	query,	you	will	review	both	the	design	of	your	cube	and	the
MDX	query,	and	test	the	performance	of	different	scenarios.	Having	the	same	initial
conditions	for	every	test	is	a	must.	Only	then	can	you	truly	measure	the	effect	of	any	changes
you	make.

The	problem	in	preserving	the	initial	condition	lies	in	the	fact	that	Analysis	Services	caches
the	result	of	each	query,	making	every	subsequent	query	potentially	run	faster	than	it	normally
would.

Normally,	caching	is	a	great	thing.	Hitting	a	cached	value	is	a	goal	we're	trying	to	achieve	in
our	everyday	cube	usage	because	it	speeds	up	the	result.	Here,	however,	we're	trying	to	do	the
opposite	-	we're	clearing	the	cache	on	purpose	to	have	the	same	conditions	for	every	query.

This	recipe	introduces	the	process	of	clearing	the	cache.	It	begins	by	showing	the	standard
way	of	clearing	the	Analysis	Services	cache	and	then	continues	by	pointing	out	a	way	to	also
clear	the	Windows	filesystem	cache.

WOW! eBook
www.wowebook.org

Getting	ready
Start	the	SQL	Server	Management	Studio	and	connect	to	your	SSAS	2016	instance;	then	click
on	the	New	XMLA	Query	button.

Expand	the	Databases	item	in	the	Object	Explorer	so	that	you	can	see	the	Adventure	Works
DW	2016	database	and	its	Adventure	Works	cube.

In	this	example,	we're	going	to	show	how	to	clear	the	cache	for	that	cube.

WOW! eBook
www.wowebook.org

How	to	do	it...
Follow	these	steps	to	clear	the	Analysis	Services	cube	cache:

1.	 Write	the	following	XMLA	query:

						<Batch	xmlns	=		

								"http://schemas.microsoft.com/analysisservices/2003/engine">	

								<ClearCache>	

										<Object>	

												<DatabaseID></DatabaseID>	

												<CubeID></CubeID>	

										</Object>	

								</ClearCache>	

						</Batch>	

2.	 Right-click	on	the	Adventure	Works	DW	2016	database	in	the	Object	Explorer	and
select	Properties:

3.	 Notice	the	ID	property	highlighted	in	the	previous	screenshot.	Copy	the	value,	close	the
Database	Properties	window,	and	paste	it	inside	the	DatabaseID	tags:

												<DatabaseID>Adventure	Works	DW	2016</DatabaseID>	

4.	 Now	right-click	on	the	Adventure	Works	cube	in	the	Object	Explorer	and	select
Properties:

WOW! eBook
www.wowebook.org

5.	 Again,	notice	the	ID	property	highlighted	in	the	previous	screenshot.	Copy	the	value,
close	the	Cube	Properties	window,	and	paste	it	inside	the	CubeID	tags:

												<CubeID>Adventure	Works</CubeID>	

6.	 To	run	the	XMLA	query,	right-click	on	the	Adventure	Works	DW	2016	database;	then
choose	New	Query	and	then	XMLA.	If	everything	goes	fine,	you	should	see	the	result	as
shown	in	the	following	screenshot.	The	cube	cache	is	successfully	cleared.

WOW! eBook
www.wowebook.org

How	it	works...
The	ClearCache	command	clears	the	Analysis	Services	cache	for	the	object	specified	in	the
command.

Several	objects	can	be	used	inside	that	command.	A	common	scenario	is	to	use	the	cube
object,	as	in	this	example.	Other	objects	can	be	also	specified.	We	will	discuss	that	later	in	this
recipe.

Inside	the	ClearCache	command,	we	had	to	specify	the	object's	ID,	a	property	that	uniquely
identifies	the	object	(among	its	sibling	objects	only,	not	on	the	entire	SSAS	instance).	The	ID
is	not	visible	in	the	Object	Explorer,	only	the	object's	name.	When	we	need	the	ID,	we	have	to
open	the	Properties	window	for	that	object.

The	uniqueness	of	the	object	on	the	entire	SSAS	instance	is	enforced	by	the	requirement	to
specify	all	parent	objects	up	to	the	database	object	and	include	the	object	itself.	That's	why	we
had	to	specify	both	DatabaseID	and	the	CubeID	in	this	example.

If	the	query	returns	no	errors,	this	means	that	it	has	successfully	cleared	the	Analysis	Services
cache	for	that	object.

WOW! eBook
www.wowebook.org

There's	more...
Clearing	the	Analysis	Services	cache	is	not	enough	to	guarantee	the	same	performance	testing
conditions.	There's	also	the	filesystem	cache,	which	in	turn	consists	of	the	Active	Cache	and
the	Standby	Cache.	To	test	MDX	query	performance	on	a	true	cold	cache,	we	have	to	either
reboot	the	server	or	clear	those	caches.	Greg	Galloway,	one	of	the	reviewers	of	this	book,
wrote	a	breakthrough	article	about	it,	which	can	be	found	at
http://tinyurl.com/GregClearCache	.

There	are	several	ways,	according	to	that	article,	on	how	you	can	clear	those	caches.	One	of
them	(and	probably	the	most	convenient	one)	is	by	using	the	ClearAllCaches	stored
procedure	from	the	Analysis	Services	Stored	Procedure	Project	(ASSP).

The	next	recipe	shows	how	to	register	an	assembly	and	use	its	stored	procedures	on	the
Analysis	Services	server.	The	example	will	feature	the	ClearAllCaches	stored	procedure	of
the	Analysis	Services	Stored	Procedure	Project,	a	procedure	which	clears	both	the	Analysis
Services	cache	and	the	filesystem	cache	(Active	and	Standby).	Here's	a	link	to	that	site:	

http://tinyurl.com/ASSPCodePlex.

Once	you	register	ASSP.dll	on	your	server	(or	database),	call	the	procedure	(in	the	MDX
query	window)	as	follows:

call	ASSP.ClearAllCaches()	

There	can	be	permission	issues	with	clearing	the	cache	depending	on	the	identity	of	the	caller.
It	is	well	documented	on	the	ASSP	site.

Note

If	you	get	a	permission	error,	you	can	close	SSMS	and	start	it	again	with	the	Run	as
Administrator	option.	Then	calling	the	ClearAllCaches()	function	should	work	without
problems,	if	the	administrator	has	the	appropriate	permissions	to	the	Adventure	Works	DW
2016	database.

Objects	whose	cache	can	be	cleared

Cube	is	just	one	of	the	four	objects	whose	cache	can	be	cleared.	The	other	objects	are
database,	measure	group,	and	dimension.	The	appropriate	commands	are	as	follows:

Database:

						<Batch	xmlns	=																														

"http://schemas.microsoft.com/analysisservices/2003/engine">	

								<ClearCache>	

										<Object>	

												<DatabaseID>Adventure	Works	DW	2016</DatabaseID>	

										</Object>	

WOW! eBook
www.wowebook.org

http://tinyurl.com/GregClearCache
http://tinyurl.com/ASSPCodePlex

								</ClearCache>	

						</Batch>	

Measure	group:

						<Batch	xmlns	=		

								"http://schemas.microsoft.com/analysisservices/2003/engine">	

								<ClearCache>	

										<Object>	

												<DatabaseID>Adventure	Works	DW	2016</DatabaseID>	

												<CubeID>Adventure	Works</CubeID>	

												<MeasureGroupID>Sales	Summary</MeasureGroupID>	

										</Object>	

								</ClearCache>	

						</Batch>	

Dimension:

						<Batch	xmlns	=		

								"http://schemas.microsoft.com/analysisservices/2003/engine">	

								<ClearCache>	

										<Object>	

												<DatabaseID>Adventure	Works	DW	2016</DatabaseID>	

												<DimensionID>Dim	Product</DimensionID>	

										</Object>	

								</ClearCache>	

						</Batch>	

Simply	insert	the	ID	of	the	object	between	its	tags.	All	the	IDs	can	be	found	in	the	Properties
windows	for	only	those	objects,	except	for	the	measure	groups'	object.	The	Properties
window	is	not	implemented	for	them.	Luckily,	that's	the	only	object	where	it	is	allowed	to	use
both	the	name	and	the	ID	without	getting	an	error.

If	you	still	want	to	use	the	ID	for	measure	groups,	right-click	on	the	measure	group	in	the
Object	Explorer	and	go	to	Script	Measure	Group	As	|	DELETE	To	|	New	Query	Editor
Window.	There,	you'll	find	the	ID	for	that	measure	group:	Fact	Sales	Summary.

Use	the	CREATE	To	or	ALTER	To	option	instead	of	the	DELETE	To	option	and	you'll	wait
a	bit	longer	for	the	script	to	appear.

You	can	use	this	trick	for	any	object.	Just	make	sure	you	don't	run	the	DELETE	query!

Or,	play	it	safe	by	sticking	to	the	Properties	window	as	explained	earlier.

Additional	information

The	following	MDX	query	is	recommended	as	the	next	step	immediately	after	you	clear	the
cache:

SELECT	{}	ON	0	

FROM	[Adventure	Works]	

WOW! eBook
www.wowebook.org

It	forces	the	loading	of	the	MDX	script	of	the	cube	specified	in	the	query.	It	also	means	that	no
data	is	loaded	in	the	cache	unless	the	MDX	script	has	named	sets,	which,	to	be	evaluated,
require	evaluation	of	measures.	In	that	case,	some	data	could	be	loaded	into	the	cache.

Tips	and	tricks

In	this	recipe,	we	have	chosen	to	execute	the	XMLA	command	in	the	XMLA	Query	Editor	in
SSMS.	In	fact,	the	XMLA	command	can	also	be	executed	from	the	MDX	Query	Editor	in
SSMS.

Like	any	other	XML	editor,	the	XMLA	Query	Editor	will	color-code	the	script	using	a	color
scheme	and	allow	you	to	collapse	nested	elements	and	expand	other	ones.	That's	why	we've
used	the	XMLA	Query	Editor	in	this	example.

This	is	also	applicable	to	stored	procedures.

WOW! eBook
www.wowebook.org

See	also
The	related	recipe	is	Using	Analysis	Services	stored	procedures

WOW! eBook
www.wowebook.org

Using	Analysis	Services	stored	procedures
Analysis	Services	supports	both	COM	and	CLR	assemblies	(DLL	files)	as	an	extension	of	its
engine,	in	which	developers	can	write	custom	code.	Once	written	and	compiled,	assemblies
can	be	deployed	to	an	Analysis	Services	instance.

Though	the	process	of	creating	the	assemblies	is	outside	the	scope	of	this	book,	using	them	is
not,	because	of	the	benefits	they	bring	you.	The	stored	procedures	implemented	in	those
assemblies	can	be	called	from	MDX	queries,	used	in	calculations,	or	triggered	when	an	event
occurs	on	the	server.

If	you	haven't	already	read	the	previous	recipe,	do	it	now,	because	this	recipe	picks	up	where
the	previous	one	ended.	It	shows	you	how	to	register	a	popular	open	source	assembly	from
the	Analysis	Services	Stored	Procedure	Project	(ASSP).

The	first	part	of	this	recipe	focuses	on	the	ClearAllCaches()	function	stored	procedure	which
clears	both	the	Analysis	Services	cache	and	the	filesystem	cache,	therefore	allowing	BI
developers	and	testers	to	perform	an	accurate	query	tuning.

For	those	of	you	who	want	to	learn	more	about	how	to	include	ASSP	stored	procedures	as
part	of	an	MDX	query,	we	will	also	illustrate	this	type	of	stored	procedure	in	the	later	sections
of	this	recipe.

Are	you	ready	to	learn	more?	Then	read	on!

WOW! eBook
www.wowebook.org

Getting	ready
Start	the	SQL	Server	Management	Studio	and	connect	to	your	SSAS	2016	instance.

Expand	the	Databases	item	in	the	Object	Explorer	so	that	you	can	see	the	Adventure	Works
DW	2016	database.	Expand	the	database	and	its	Assemblies	folder.	It	should	be	empty.	No
assemblies	are	registered	there.

Now,	expand	the	Assemblies	folder	of	the	server	as	displayed	in	the	following	screenshot:

These	assemblies,	deployed	and	registered	on	the	server	during	the	installation,	are	available
to	the	entire	SSAS	instance.

Let's	see	how	to	register	a	new	assembly	on	this	server.

As	mentioned	in	the	introduction,	we're	going	to	use	the	Analysis	Services	Stored	Procedure
Project	assembly,	which	can	be	downloaded	from	http://tinyurl.com/ASSPCodePlex	.

Currently,	the	Analysis	Services	Stored	Procedure	Project	has	only	a	beta	version	for	SSAS
2016	-	the	1.4.0	release.	We	are	going	to	use	this	version.	You,	on	the	other	hand,	are	invited
to	try	the	stable	release	for	SSAS	2016	if	it	exists.

Download	and	save	the	XMLA	file	somewhere	on	your	server	(for	example,	to	a	folder	such
as	C:\SSAS_Assemblies).

WOW! eBook
www.wowebook.org

http://tinyurl.com/ASSPCodePlex

You're	now	ready	to	begin.

WOW! eBook
www.wowebook.org

How	to	do	it...
Follow	these	steps	to	add	a	custom	assembly	to	the	Analysis	Services	instance:

1.	 Load	the	downloaded	XMLA	file	in	SQL	Server	Management	Studio	by	either	double-
clicking	on	it	or	loading	it	using	the	File	|	Open	|	File...	menu	option.

2.	 If	you're	being	asked	about	the	instance,	choose	your	SSAS	2016	instance	and	click	on
the	OK	button.

3.	 Once	the	XMLA	file	is	loaded	into	SSMS,	click	on	the	Execute	button	so	that	the	XMLA
script	executes.

4.	 If	everything	goes	well,	you	should	see	a	screen	like	this:

5.	 The	assembly	will	be	visible	in	the	list	of	server	assemblies	when	you	refresh	it,	which
means	you're	ready	to	use	it:

WOW! eBook
www.wowebook.org

6.	 Now	start	a	new	MDX	query	by	right-clicking	on	the	Adventure	Works	DW	2016
database	in	the	Object	Explorer	and	selecting	the	New	Query	button	and	then	MDX.

7.	 Type	this	and	then	execute	it:

						call	ASSP.ClearAllCaches()	

Note

Execution	of	the	managed	stored	procedure	ClearAllCaches	failed	with	the	following
error:	Exception	has	been	thrown	by	the	target	of	an	invocation.
NtSetSystemInformation	(SYSTEMCACHEINFORMATION)	error.

Tip

Not	all	privileges	or	groups	referenced	are	assigned	to	the	caller.

Tip

If	you	get	this	error,	you	can	close	SSMS	and	start	it	again	with	the	Run	as
Administrator	option.	Then,	calling	the	ClearAllCaches	function	should	work	without
problems	if	the	administrator	has	the	appropriate	permissions	to	the	Adventure	Works
DW	2016	database.

8.	 The	query	might	take	a	while	to	complete.	Once	it	finishes,	the	result	should	say	that	the
run	is	complete.

9.	 You're	done!	You	have	successfully	registered	a	custom	assembly	and	tested	it,	proving
that	it	works	by	clearing	all	caches,	that	is,	both	the	Analysis	Services	cache	and	the

WOW! eBook
www.wowebook.org

filesystem	cache.

WOW! eBook
www.wowebook.org

How	it	works...
An	Analysis	Services	assembly	can	be	registered	two	ways.

If	the	source	file	is	an	XMLA	file	as	in	this	example,	you	simply	load	it	into	SSMS	and
execute	it;	then	verify	that	it	is	successfully	registered	in	the	list	of	assemblies	and	optionally
set	up	its	properties	there.

The	other	option	is	to	register	the	dll	file.	The	dll	files	are	registered	by	clicking	on	the
Assemblies	folder	and	selecting	the	New	Assembly...	option.	There	you	click	on	the	button
next	to	the	File	Name	box	and	navigate	to	the	file.	Make	sure	the	file	is	unblocked	(see	the
properties	of	the	dll	file	in	Windows	Explorer).	Once	the	file	is	selected,	you	can	change	the
name	of	the	assembly	or	its	properties,	for	example,	set	the	Permission	option	to
Unrestricted	if	the	company	policy	allows	you	to.	Otherwise,	some	functions	will	be
unavailable.	The	ASSP	home	page	on	CodePlex	lists	the	permissions	that	are	required	by	each
of	the	functions.	Optionally,	add	a	description	for	this	assembly	so	that	you	know	what	it	does.
Once	you're	done,	you're	ready	to	use	the	assembly	and	the	procedures	that	it	implements.

The	assembly	can	be	registered	as	a	server-based	assembly	or	as	a	database-specific
assembly.	Stored	procedures	in	the	server-based	assembly	can	be	used	in	any	database	on	that
SSAS	instance.	Database-specific	assemblies	can	be	used	only	in	the	database	they've	been
registered	at.

Some	procedures	can	be	activated	using	the	call	method,	and	others	as	part	of	a	query	or
calculation,	depending	on	the	result	they	return.	In	this	recipe,	we've	used	a	procedure	that
executes	a	specific	task;	that's	why	we	used	the	call	method.	In	the	following	section,	we'll
show	how	to	use	stored	procedures	as	part	of	the	query.

WOW! eBook
www.wowebook.org

There's	more...
Here's	an	MDX	query;	actually,	there	are	two	of	them	separated	with	a	GO	statement.	Run	them
in	SSMS:

WITH	

MEMBER	[Measures].[Sales	Amount	$]	AS	

			[Measures].[Sales	Amount],	

			BACK_COLOR	=	RGB(255,	255,	200)	

SELECT	

			NON	EMPTY	

			{	[Date].[Fiscal].[Fiscal	Year].MEMBERS	}	*	

			{	[Measures].[Sales	Amount	$],	

					[Measures].[Gross	Profit	Margin]	}	ON	0,	

			NON	EMPTY	

			{	[Sales	Territory].[Sales	Territory	Country]	

				.[Sales	Territory	Country].MEMBERS	}	ON	1	

FROM	

			[Adventure	Works]	

CELL	PROPERTIES				

			VALUE,	

			FORMATTED_VALUE,	

			BACK_COLOR	

				

GO	

	

WITH	

MEMBER	[Measures].[Sales	Amount	$]	AS	

			[Measures].[Sales	Amount],	

			BACK_COLOR	=	RGB(255,	255,	200)	

SELECT	

			NON	EMPTY	

			Hierarchize(

						ASSP.InverseHierarchility(

			{	[Date].[Fiscal].[Fiscal	Year].MEMBERS	}	*	

			{	[Measures].[Sales	Amount	$],	

					[Measures].[Gross	Profit	Margin]	}))	ON	0,	

			NON	EMPTY	

			{	[Sales	Territory].[Sales	Territory	Country]	

				.[Sales	Territory	Country].MEMBERS	}	ON	1	

FROM	

			[Adventure	Works]	

CELL	PROPERTIES				

			VALUE,	

			FORMATTED_VALUE,	

			BACK_COLOR	

The	first	MDX	query	contains	a	cross	join	of	fiscal	years	and	measures.	In	the	second,	the
cross	join	is	reversed	using	the	ASSP.InverseHierarchility()	stored	procedure.	This
function	reverses	the	order	of	the	members	within	each	tuple	in	the	set,	while	keeping	the
order	of	the	set	unchanged.	Now	we	have	the	measures	displayed	first	in	columns,	and	the
fiscal	years	after	the	measures.

WOW! eBook
www.wowebook.org

The	result	is	still	not	appealing	enough	in	this	case.	We	want	to	group	measures	so	that	Gross
Profit	Margin	and	Sales	Amount	$	are	displayed	separately	for	all	fiscal	years.	We	achieved
this	by	applying	the	MDX	Hierarchize()	function.	This	MDX	function	orders	the	members
of	a	set	in	a	hierarchy.	Finally,	the	columns	are	organized	by	Gross	Profit	Margin	and	Sales
Amount	$:

This	example	showed	you	how	to	use	a	stored	procedure	inside	an	MDX	query.	We	can	apply
it	directly	on	a	set	or	an	axis,	or	use	other	functions	on	top	of	it.	The	same	is	true	for	using
procedures	in	MDX	calculations.	Try	it!

Tips	and	tricks

A	good	practice	in	creating	custom	SSAS	assemblies	is	to	create	a	procedure	that	returns	all
the	available	stored	procedures	in	that	assembly,	if	there	are	many	of	them.	This	way	you
don't	have	to	look	at	the	documentation,	as	it	is	right	there	in	front	of	you.

The	ASSP	assembly	incorporates	such	a	procedure.	It	should	be	called	as	follows:

Call	ASSP.ListFunctions()	

Tip

If	the	ListFunctions()	is	called	with	no	parameters,	it	will	return	the	functions	available	in
all	the	.NET	assemblies	located	at	the	server	level.

Tip

If	you	need	all	the	assemblies	located	in	a	specific	database,	you	can	call	the	function	with	the
name	of	the	specific	database.,	for	example,	CALL	ListFunctions("Adventure	Works	DW")").

WOW! eBook
www.wowebook.org

The	output	should	be	as	follows:

Existing	assemblies

Analysis	Services	also	supports	Microsoft	Visual	Basic	for	Applications	(VBA)	COM
Assemblies.	VBA	COM	Assemblies	are	registered	automatically.

It's	worth	repeating	one	more	time--that	VBA	functions	are	available	to	any	cube	once	the
SSAS	instance	is	started.

VBA	functions	evaluate	much	more	slowly	than	regular	MDX	functions.	The	SSAS	team
assessed	the	often-used	VBA	functions	and	implemented	them	as	part	of	the	SSAS	code	base.
These	functions	have	better	performance	than	the	other	functions,	and	hence	can	be
considered	as	internal	VBA	functions.

SSAS-supported	VBA	functions	are	listed	in	VBA	functions	in	MDX	and	DAX	(
http://tinyurl.com/VBAinMDX).

Excel	functions,	although	registered,	are	unavailable	unless	Excel	is	installed	on	the	server.
Only	when	Excel	is	installed	do	they	become	valid	and	applicable.

There	are	other	existing	assemblies	that	are	automatically	registered.	System	assembly	is	one
of	them.	It	contains	data	mining	functions.

These	existing	assemblies	don't	have	a	procedure	that	lists	the	functionality	provided.
However,	there	are	certain	DMV	queries	that	can	return	the	same.	DMVs	are	covered	later	in
this	chapter.

Additional	information
WOW! eBook

www.wowebook.org

http://tinyurl.com/VBAinMDX

Chapter	14	of	the	book	Microsoft	SQL	Server	2008	Analysis	Services	Unleashed	contains
additional	information	about	stored	procedures,	as	well	as	Chapter	7	of	Professional
Microsoft	SQL	Server	Analysis	Services	2012	with	MDX.	Finally,	here's	the	MSDN	reference
for	stored	procedures:	http://tinyurl.com/SSASStoredProcedures	.

If	you	are	interested	in	extending	the	functionality	of	SSAS	and	MDX	by	writing	.NET	stored
procedures	or	user-defined	functions,	see	ADOMD.NET	server	programming	at
http://tinyurl.com/ADOMDNET	.

WOW! eBook
www.wowebook.org

http://tinyurl.com/SSASStoredProcedures
http://tinyurl.com/ADOMDNET

See	also
The	Clearing	Analysis	Services	cache	recipe	is	related	to	this	recipe

WOW! eBook
www.wowebook.org

Executing	MDX	queries	in	T-SQL	environments
Throughout	this	book,	numerous	recipes	showed	how	to	create	various	calculations,	either
directly	in	MDX	queries	or	inside	the	MDX	script.	Prior	to	writing	and	running	the	queries,
you	naturally	had	to	establish	the	connection	to	your	Analysis	Services	server	instance	and
click	on	the	New	Query	icon,	which	opened	the	SQL	Server	Management	Studio's	built-in
MDX	editor.	The	other	option	for	running	those	queries,	which	we	didn't	show	in	this	book,
was	to	use	the	other	Analysis	Services	frontend	tool	that	allows	writing	and	executing	MDX
queries.

To	connect	to	data	sources	such	as	Analysis	Services,	applications	use	providers.	A	relational
database	environment,	on	the	other	hand,	allows	us	to	use	those	providers	to	run	distributed
queries,	also	known	as	pass-through	queries.	This	feature	opens	the	window	of	possibilities
for	us.	We	can	combine	results	from	the	cube	with	those	in	the	data	warehouse	or	simply	get
the	flattened	result	of	an	MDX	query	and	use	it	like	any	other	result	of	T-SQL	queries.	True,
we	won't	have	a	nice	pane	with	the	cube	structure	on	our	left	to	help	us	write	MDX	queries,
but	nothing	stops	us	from	writing	them	in	MDX	editor	and	then	copy-pasting	the	working
MDX	queries	inside	the	pass-through	T-SQL	queries.

Let's	see	how	it's	done.

WOW! eBook
www.wowebook.org

Getting	ready
Start	SQL	Server	Management	Studio	and	connect	to	your	SQL	Server	2016	database	engine
instance.

Start	a	new	query	by	clicking	on	the	New	Query	button.

Expand	the	Server	Objects	item	in	the	Object	Explorer.	Expand	the	Linked	Servers	item	and
then	the	Providers	item.	Verify	that	the	MSOLAP	provider	is	there:

It	should	be	there	if	you	have	installed	at	least	the	client	connectivity	for	Analysis	Services	on
your	computer.	If	not,	then	you	need	to	install	it	from	the	Microsoft®	SQL	Server®	2016
Feature	Pack	found	at	http://tinyurl.com/OLEDBproviderSSAS2016	.	Look	for	the	OLE	DB
provider	for	SSAS	there	and	choose	the	version	of	the	provider	(32-bit	or	64-bit)	that	matches
your	computer's	OS.

Next,	double-click	on	the	MSOLAP	provider	and	make	sure	that	the	Allow	inprocess	option
is	checked.	Optionally	check	the	Dynamic	parameter	option,	and	close	the	window.

WOW! eBook
www.wowebook.org

http://tinyurl.com/OLEDBproviderSSAS2016

Now	you're	ready	to	query	your	SSAS	servers.

WOW! eBook
www.wowebook.org

How	to	do	it...
Follow	these	steps	to	perform	a	SQL	Server	distributed	query	with	your	SSAS	instance:

1.	 Register	your	SSAS	instance	as	a	linked	server	by	running	the	following	command:

						EXEC	sp_addlinkedserver		

						@server='local_SSAS',	

						@srvproduct='',		

						@provider='MSOLAP',	

						@datasrc='.',	

						@catalog='Adventure	Works	DW	2016'

2.	 Refresh	the	Linked	Servers	item	in	the	Object	Explorer	by	right-clicking	on	it	and
selecting	Refresh.

3.	 If	everything	is	successful,	you	should	see	your	linked	server	there.	You	should	also	be
able	to	navigate	to	that	server	and	through	its	tables,	as	shown	in	the	following
screenshot:

4.	 Run	your	MDX	query	as	a	distributed	query:

						Select	*	From	OpenQuery(local_SSAS,	

						'	

						SELECT	

									NON	EMPTY	

WOW! eBook
www.wowebook.org

									{	[Measures].[Sales	Amount],	

											[Measures].[Gross	Profit	Margin]	}	*	

									{	[Product].[Category].MEMBERS	}	ON	0,	

									NON	EMPTY	

									{	[Product].[Color].MEMBERS	}	ON	1	

						FROM	

									[Adventure	Works]	

						WHERE	

									([Date].[Calendar].[Calendar	Year].&[2014])	

						')				

5.	 The	result	will	look	like	this:

6.	 You've	successfully	executed	your	MDX	query	against	your	SSAS	server	from	the
database	engine	environment,	and	the	server	returned	the	result	set	in	tabular	format.	The
specifics	of	this	output	will	be	discussed	in	later	sections	of	this	recipe.

WOW! eBook
www.wowebook.org

How	it	works...
The	best	way	to	use	an	SSAS	server	in	the	database	engine	environment	is	to	register	it	as	a
linked	server.	That	can	be	done	either	by	running	the	sp_addlinkedserver	stored	procedure,
as	we	did	in	this	example,	or	by	manually	registering	the	server	using	the	New	Linked
Server...	option	on	the	Linked	Servers	item.	Of	course,	you	should	right-click	on	the	item
first	to	see	that	option.

Registration	is	a	one-time	process;	it	requires	the	following	information:

The	name	for	the	linked	server--the	way	it	will	be	referred	to	later	in	the	code	(here
we've	named	it	local_SSAS)
The	provider	for	the	server	(in	this	case,	it's	always	the	MSOLAP	provider)
The	SSAS	server	and	the	instance	(here	we've	used	the	local	server	with	the	default
instance,	which	can	be	specified	as	(dot),	localhost,	local,	(local),	or	simply	the	name
of	the	computer)
The	SSAS	database	we	want	to	connect	to	(here,	we	use	the	Adventure	Works	DW	2016
database,	the	one	we've	used	throughout	this	book)

If	you	enter	the	information	correctly	and	have	the	correct	MSOLAP	provider	on	your
computer,	then	you	should	be	able	to	see	and	browse	the	new	linked	server.	The	idea	of
browsing	is	merely	a	test	to	see	whether	everything	works	as	expected	with	the	registered
linked	server.

The	MDX	that	goes	into	the	OpenQuery	command	should	be	created	and	tested	in	a	separate
query,	the	one	that	connects	to	the	SSAS	instance,	not	the	relational	database	instance.	The
MDX	should	then	be	copy-pasted	as	the	second	argument	of	the	OpenQuery	command.	To	keep
the	recipe	short,	we	skipped	that	part	and	wrote	the	MDX	query	directly.

The	result	of	the	OpenQuery	over	MSOLAP	provider	is	a	bit	different	from	the	result	returned
by	the	same	query	executed	against	the	SSAS	instance	directly.	The	All	member	is	specified
only	for	hierarchies	on	columns	(see	the	second	column	in	the	previous	screenshot;	that's	the
All	Products	member	of	the	Category	hierarchy).	In	rows,	it	is	returned	as	a	NULL	value	(see
the	first	column	in	the	previous	screenshot;	that's	the	All	Products	member	of	the	Color
hierarchy).

Next,	notice	that	values	are	flattened	to	fit	the	relational	form.	The	columns	are	a	combination
(a	tuple)	of	a	measure	and	a	dimension.	With	respect	to	that,	here	are	some	optimization	tips.

Try	to	put	the	measures	on	columns	and	everything	else	on	rows,	just	like	Reporting	Services
expects	it	when	it	uses	SSAS	as	a	data	source.	In	this	example,	we've	deliberately	made	a	bad
type	of	query	to	show	you	what	happens	if	you	put	more	hierarchies	on	columns	(notice	the
names	of	the	columns,	such	as	[Measures].[Sales	Amount].[Product].[Category].[All
Products]).

WOW! eBook
www.wowebook.org

Formats	for	numeric	values	are	not	preserved,	but	you	can	always	convert	column	values	to
database	types	that	suit	you.	Naturally,	you	would	do	that	in	the	outer	T-SQL	query,	not	in	the
inner	MDX	query.

What's	important	is	that	you	could	get	the	data	from	your	cube	in	another	environment.	In
case	you	need	to	bring	the	data	back	to,	let's	say	Data	Warehouse,	now	you	know	you	can	do
it.

WOW! eBook
www.wowebook.org

There's	more...
If	you	don't	want	to	register	a	linked	server,	you	must	configure	some	of	the	server	options	to
be	able	to	query	the	SSAS	instance.	This	can	be	done	either	visually	by	changing	some	of	the
server	and	provider	options,	or	by	using	the	script.	We'll	show	both	options,	in	that	order.

Right-click	on	the	server	in	the	Object	Explorer	pane,	and	then	choose	Facets.	In	the	Facet
dropdown,	select	the	last	item,	Surface	Area	Configuration.	Then	change	the	first	property,
AdHocRemoteQueriesEnabled,	to	True.	This	enables	the	SQL	Server	to	run	distributed	queries
without	a	linked	server.

Close	the	window	using	the	OK	button.

The	visual	option	presented	earlier	is	relatively	easy	to	remember.	For	those	of	you	who	need
or	prefer	the	script	version,	here's	the	alternative:

USE	[master]	

GO	

sp_configure	'Show	Advanced	Options',	1	

GO	

RECONFIGURE	WITH	OverRide	

GO	

sp_configure	'Ad	Hoc	Distributed	Queries',	1	

GO	

RECONFIGURE	WITH	OverRide	

GO	

EXEC	master.dbo.sp_MSset_oledb_prop	

		'MSOLAP',	

		'AllowInProcess',	1	

GO	

EXEC	master.dbo.sp_MSset_oledb_prop	

		'MSOLAP',	

		'DynamicParameters',	1	

GO	

Now	you	can	query	your	SSAS	instance	using	the	OpenRowset	syntax:

Select	*	From	OpenRowset('MSOLAP',	

		'Data	Source=.;Initial	Catalog=Adventure	Works	DW	2016;',	

		'SELECT	[Measures].DefaultMember	ON	0	

			FROM	[Adventure	Works]')	

Additional	information

Here	are	useful	links	regarding	the	OpenQuery	and	OpenRowset	commands,	linked	servers,	and
other	terms	mentioned	inside	this	recipe:

Accessing	external	data:	Available	at	http://tinyurl.com/ExternalData
Adding	a	linked	server:	Available	at	http://tinyurl.com/sp-addlinkedserver
Linked	server	properties:	Available	at	http://tinyurl.com/LinkedServerProperties
OpenQuery:	Available	at	http://tinyurl.com/OpenQueryTSQL

WOW! eBook
www.wowebook.org

http://tinyurl.com/ExternalData
http://tinyurl.com/sp-addlinkedserver
http://tinyurl.com/LinkedServerProperties
http://tinyurl.com/OpenQueryTSQL

OpenRowset:	Available	at	http://tinyurl.com/OpenRowsetTSQL
Ad	hoc	distributed	queries:	Available	at	http://tinyurl.com/DistributedQueryOptions

Useful	tips

Removing	a	linked	server	is	easy.	Just	right-click	on	that	linked	server	in	the	Object	Explorer
and	choose	the	Delete	option.	Confirm	and	you're	done.

You	can	also	script	the	linked	server	for	future	use	by	using	the	Script	Linked	Server	as...
option.	This	feature	is	available	in	the	context	menu	(by	right-clicking	on	the	linked	server).

Accessing	Analysis	Services	2000	from	a	64-bit	environment

The	technique	presented	in	this	recipe	can	also	be	useful	to	make	the	SSAS	2000	server
accessible	from	a	64-bit	server.	The	32-bit	SQL	Server	2005	or	later	can	be	used	as	a	gateway
by	using	a	linked	server.

Troubleshooting	the	linked	server

If	you	have	trouble	accessing	an	SSAS	linked	server,	here	are	the	things	that	you	should
check:

Are	you	using	the	correct	MSOLAP	provider	to	connect	to	your	server?
Have	you	entered	the	correct	SSAS	instance?
Have	you	used	the	correct	database?
Do	you	have	all	the	necessary	server	options	enabled	for	the	type	of	the	query	you're
trying	to	make?
Is	the	SSAS	database	processed?
Do	you	have	permissions	to	connect	and	use	that	database?

You	can	eliminate	these	questions	one	by	one	by	verifying	them,	that	is,	using	SSMS	to
connect	to	the	SSAS	database,	opening	configuration	dialogs,	and	so	on.	This	way	you	will
narrow	down	the	potential	causes	and	soon	be	able	to	focus	on	solving	the	rest	of	the	items.

WOW! eBook
www.wowebook.org

http://tinyurl.com/OpenRowsetTSQL
http://tinyurl.com/DistributedQueryOptions

See	also
The	Using	SSAS	Dynamic	Management	Views	(DMVs)	to	fast-document	a	cube	recipe	for
fast	documenting	of	a	cube	is	related	to	this	recipe	because	it	shows	the	opposite-how	to
run	SQL-like	queries	in	an	MDX	query	environment

WOW! eBook
www.wowebook.org

Using	SSAS	Dynamic	Management	Views
(DMVs)	to	fast-document	a	cube
Dynamic	Management	Views	(DMV)	are	Analysis	Services	schema	rowsets	(XML/A
metadata)	exposed	as	tables,	which	can	be	queried	with	SELECT	statements.

DMVs	expose	information	about	local	Analysis	Services	server	metadata	and	server
operations.	For	most	DMV	queries,	you	use	a	SELECT	statement	and	the	$System	schema	with
an	XML/A	schema	rowset:

SELECT	*	FROM	$System.<schemaRowset>	

The	query	engine	for	DMVs	is	the	Data	Mining	parser.	The	DMV	query	syntax	is	based	on	the
SELECT	(DMX)	statement.	To	execute	DMV	queries,	you	can	use	any	client	application	that
supports	MDX	or	DMX	(Data	Mining)	queries,	including	SQL	Server	Management	Studio,	a
Reporting	Services	Report,	or	a	Performance	Point	Dashboard.	In	this	recipe	and	the	next
recipe,	we	use	the	MDX	query	window	in	SSMS.

It	is	also	worth	mentioning	that	although	DMV	query	syntax	is	based	on	a	SQL	SELECT
statement,	it	does	not	support	the	full	syntax	of	a	SELECT	statement.	Notably,	JOIN,	GROUP	BY,
LIKE,	CAST,	and	CONVERT	are	not	supported.

There	are	four	collections	in	DMVs	and	they	are:	DBSCHEMA,	MDSCHEMA	(Multi-dimensional),
DISCOVER,	and	DMSCHEMA	(Data	Mining).

The	first	collection	of	DMVs	is	the	DBSCHEMA	collection,	which	consists	of	four	DMVs.	Its
purpose	is	to	provide	various	metadata	about	tables	and	other	relational	objects	that	SSAS
databases	are	built	from.	For	example,	DBSCHEMA_COLUMNS	can	provide	a	list	of	columns	in
dimension	tables	in	DSV.

The	second	collection	is	the	MDSCHEMA	collection.	This	collection	exposes	various	metadata
about	objects	in	SSAS	databases.	For	example,	we	can	find	information	about	the	cubes,
dimensions,	measures,	levels,	members,	actions,	and	so	on	defined	in	the	current	database.

The	third	collection	is	the	DMSCHEMA	collection,	which	is	dedicated	to	data	mining.	For
example,	the	DMSCHEMA_MINING_STRUCTURES	schema	rowset	can	provide	you	a	list	of	all
mining	structures	in	the	current	SSAS	database.

Lastly,	the	biggest	collection	is	the	DISCOVER	collection.	It	tells	us	how	many	active
connections	the	server	has,	which	queries	are	running	now,	which	sessions	are	active,	and
various	pieces	of	information	about	the	memory,	CPU	usage,	and	other	server	resources.

DMVs	can	be	very	useful	for	documenting	SSAS	databases,	monitoring	usage	and	activity,
being	the	source	for	operational	monitoring	reports,	and	other	purposes.	In	short,	they	are

WOW! eBook
www.wowebook.org

important	enough	to	be	covered	in	a	recipe.	In	fact,	we	dedicate	two	recipes	to	DMVs.	This
recipe	shows	how	to	use	them	to	document	the	cube.	The	next	one	deals	with	monitoring	the
activity	and	usage.

WOW! eBook
www.wowebook.org

Getting	ready
Start	SQL	Server	Management	Studio	and	connect	to	your	SSAS	2016	instance.	Click	on	the
New	Query	button	and	check	that	the	target	database	is	Adventure	Works	DW	2016.

As	we	mentioned	in	the	introduction,	we	can	use	either	the	MDX	query	window	or	the	DMX
query	window	in	SSMS	to	execute	DMV	queries,	but	we	choose	to	use	the	MDX	query
window.	This	is	the	query	window	where	you	normally	write	MDX	queries.	The	SSAS	server
recognizes	the	DMV	queries	and	will	redirect	them	to	the	Data	Mining	parser,	which	is	the
query	engine	for	DMVs.

Here's	the	first	query	we're	going	to	run:

select	*	from	$system.Discover_Schema_Rowsets	

This	query	returns	all	available	schema	rowsets.	It	can	be	a	good	starting	point	to	use	other
DMVs	because	it	lists	all	of	them	and	their	restrictions.

In	this	recipe,	we're	going	to	use	the	MDSCHEMA	collection,	starting	with	the
MDSCHEMA_LEVELS	DMVs,	which	list	all	the	attributes	in	a	cube.

WOW! eBook
www.wowebook.org

How	to	do	it...
Follow	these	steps	to	get	detailed	information	about	attributes	in	an	SSAS	database,	cube,	or
dimension	depending	upon	how	you	set	the	restrictions:

1.	 In	the	MDX	query	window,	execute	the	following	query:

						SELECT	

									*	

						FROM	

									$system.MDSCHEMA_LEVELS	

						WHERE	

									[CATALOG_NAME]	=	'Adventure	Works	DW	2016'	

									AND	LEFT(CUBE_NAME,	1)	<>	'$'	--	avoid	dimension	cubes	

									AND	[LEVEL_TYPE]	<>	1	--	avoid	root	levels	

									AND	LEVEL_IS_VISIBLE	--	avoid	hidden	levels	

2.	 A	table	with	many	columns	and	rows	is	returned.	This	represents	detailed	information
about	the	attributes	visible	in	the	Adventure	Works	DW	2016	database	and	its	cube	and
dimensions:

3.	 Scroll	the	table	in	both	directions	to	familiarize	yourself	with	the	contents	of	that	table.
4.	 Right-click	on	the	result,	Select	All,	copy	the	content,	and	paste	it	somewhere	where	you

will	assemble	this	data	into	documentation.
5.	 Repeat	the	process	with	the	other	MDSCHEMA	DMVs.	To	remove	the	conditions	that

don't	fit,	run	the	query	with	no	restrictions	and	then	add	those	restrictions	that	you	think
will	help	you	get	the	result	you	need.	Skip	MEMBERS	DMV;	it	might	be	huge	and	it's

WOW! eBook
www.wowebook.org

not	like	you	will	need	it	in	the	documentation.

WOW! eBook
www.wowebook.org

How	it	works...
Running	a	query	with	a	DMV	inside	it	is	simple.	The	biggest	challenge	is	to	find	out,	or
remember,	which	schema	rowsets	can	be	used.	The	good	thing	is	that	you	need	to	memorize
only	a	single	DMV;	the	$system.Discover_Schema_Rowsets	DMV.

The	$system	schema	is	common	to	all	DMVs,	so	that	shouldn't	be	hard	to	remember.	The
Discover_Schema_Rowsets	is	the	phrase	we	need	to	memorize	to	use	DMVs	without	the
documentation.	Running	this	DMV	returns	the	names	and	restrictions	for	all	other	DMVs.

As	we	said	in	the	introduction,	there	are	four	collections	of	DMVs.	In	this	recipe,	we've	used
MDSCHEMA,	which	is	a	shortcut	for	multidimensional	schema.	This	collection	tells	us
everything	about	SSAS	databases	and	their	objects.	By	repeatedly	collecting	results	from
DMVs	in	that	collection,	which	are	important	to	us,	we	can	assemble	the	documentation
quickly	and	relatively	easily.

Conditions	applied	to	a	particular	DMV	serve	the	purpose	of	limiting	the	result	to	only	those
rows	that	we	need.	For	example,	in	this	recipe	we've	deliberately	removed	dimension	cubes,
cubes	starting	with	the	$	prefix.	We've	also	focused	on	a	single	database	and	excluded	all
root	and	hidden	levels	so	that	our	documentation	becomes	smaller	and	less	distracting.	It	is	up
to	you	whether	you'll	use	the	same	conditions	or	not.

Conditions	for	other	DMVs	can	be	set	after	each	of	them	is	run	without	any	conditions	and	by
analyzing	which	of	them	can	be	applied	in	a	particular	case.

The	good	thing	is	that	once	you	make	a	set	of	MDSCHEMA	DMV	queries	that	suits	your
needs,	you	can	use	them	on	any	SSAS	database.	In	other	words,	it's	all	about	preparation.	This
recipe	showed	you	how	to	do	this.

WOW! eBook
www.wowebook.org

There's	more...
You	can	execute	queries	with	DMVs	as	distributed	queries	(see	previous	recipe).	All	you
should	do	is	either	register	a	linked	server	or	enable	the	Ad	Hoc	Distributed	Queries	option
using	the	T-SQL	script	presented	in	the	previous	recipe,	and	then	run	an	OpenQuery	or
OpenRowset	query.

Here's	the	query	that	uses	the	linked	server	defined	in	the	previous	recipe	and	returns	lots	of
information	about	dimensions	in	the	Adventure	Works	DW	2012	database:

Select	*	From	OpenQuery(local_SSAS,	

'	

SELECT	*	

FROM	

			$system.mdschema_DIMENSIONS	

WHERE	

			[CATALOG_NAME]	=	''Adventure	Works	DW	2016''	

			AND	LEFT(CUBE_NAME,	1)	<>	''$''	--	avoid	dimension	cubes	

			AND	DIMENSION_IS_VISIBLE	--	avoid	hidden	dimensions	

			AND	DIMENSION_TYPE	<>	2	--	avoid	measures	

')	

Notice	that	you	should	use	double	quotes	around	the	database	name	and	the	$	sign	because	the
MDX	query	is	one	big	string	now.	We	don't	want	to	terminate	it;	we	want	to	emphasize	that
there's	a	quote	inside	and	the	way	we	do	it	is	by	using	another	quote	next	to	it.

This	is	what	you	get	when	you	run	the	query:

WOW! eBook
www.wowebook.org

Again,	only	a	small	portion	of	information	is	visible	in	this	screenshot.	You	will	be	able	to
scroll	in	both	directions	and	see	what	else	is	available.

Tips	and	tricks

When	you	run	the	$system.Discover_Schema_Rowsets	DMV,	you	can	expand	the	Restrictions
item	for	a	particular	DMV	to	find	out	which	columns	can	be	used	to	set	the	filter	for	that
particular	DMV.

You	can	also	use	column	names	instead	of	*	to	avoid	empty	columns.

You	can't	convert	data	types	directly	in	DMVs,	but	you	can	do	that	in	the	outer	part	of	the
OpenQuery	query.	Remember	that	for	certain	joins,	you	will	need	to	convert	the	ntext	data
type	to	nvarchar(max)	data	type.

You	can	join	multiple	DMVs	using	the	OpenQuery	statement	and	create	interesting	reports.

As	we	mentioned	in	the	introduction,	DMV	query	syntax	does	not	support	JOIN,	GROUP	BY,
LIKE,	CAST,	and	CONVERT.	However,	we	can	bypass	this	inconvenience	by	running	the	DMV
queries	as	distributed	queries	in	the	T-SQL	environment.

Warning!

The	connection	determines	the	context!

In	other	words,	when	you	connect	to,	let's	say,	the	Adventure	Works	DW	2016	Standard
Edition	database,	the	DMVs	will	return	metadata	about	that	database	only.

Always	make	sure	you	are	connected	to	the	right	database	when	you	query	DMVs.

If	you	run	into	a	permission	issue	when	querying	DMVs,	you	need	to	make	sure	that	you	have
system	administrator	permissions	on	the	SSAS	instance.

More	information
The	MSDN	library	contains	more	information	about	DMVs	and	the	columns	they	return:
http://tinyurl.com/MSDN-DMVs
Vincent	Rainardi	has	a	good	overview	of	DMVs	here:	http://tinyurl.com/VincentDMVs
Vidas	Matelis	aggregates	DMV-based	articles	on	his	SSAS-Info	portal	here:
http://www.ssas-info.com/tags/68-dmv

Finally,	there	are	a	few	interesting	DMV-related	community	samples	at	Codeplex	(see
everything	related	to	monitoring	or	DMVs):

http://tinyurl.com/SSASCodePlex

WOW! eBook
www.wowebook.org

http://tinyurl.com/MSDN-DMVs
http://tinyurl.com/VincentDMVs
http://www.ssas-info.com/tags/68-dmv
http://tinyurl.com/SSASCodePlex

See	also
The	Using	SSAS	Dynamic	Management	Views	(DMVs)	to	monitor	activity	and	usage
recipe	is	related	to	this	recipe	as	well	as	the	Executing	MDX	queries	in	T-SQL
environments	recipe

WOW! eBook
www.wowebook.org

Using	SSAS	Dynamic	Management	Views
(DMVs)	to	monitor	activity	and	usage
The	previous	recipe	explained	what	DMVs	are	and	illustrated	how	they	can	be	used	to	get
information	about	SSAS	objects	using	the	MDSCHEMA	collection	of	DMVs.

In	this	recipe,	we're	shifting	focus	to	another	collection	of	DMVs,	the	DISCOVER	collection.
This	is	the	largest	collection	of	DMVs.	DMVs	in	this	collection	can	be	used	to	monitor	the
usage	of	the	cube	in	all	its	aspects.

WOW! eBook
www.wowebook.org

Getting	ready
Start	SQL	Server	Management	Studio	and	connect	to	your	SSAS	2016	instance.	Click	on	the
New	Query	button	and	check	that	the	target	database	is	Adventure	Works	DW	2016.

As	explained	in	the	previous	recipe,	the	MDX	query	window	supports	DMV	queries.	Let's	run
a	query	to	verify	that:

select	*	from	$system.Discover_Schema_Rowsets	

When	run,	this	query	returns	all	available	schema	rowsets.	As	mentioned	in	the	previous
recipe,	this	can	be	a	good	starting	point	for	using	other	DMVs	because	it	lists	them	and	their
restrictions.

Now,	scroll	through	that	list	and	notice	the	names	of	the	DMVs	from	the	DISCOVER
collection.	As	a	matter	of	fact,	why	not	show	another	query	that	we	can	write	to	isolate	DMVs
in	that	schema:

select	*	from	$system.Discover_Schema_Rowsets	

where	left(SchemaName,	8)	=	'DISCOVER'	

order	by	SchemaName	

The	previous	query	lists	all	DMVs	in	that	schema.	The	list	is	big,	so	only	a	portion	of	it	is
shown	in	the	next	screenshot,	but	it	should	be	enough	to	give	you	an	idea	of	what	you	can	get
using	the	DMVs	in	this	collection:

WOW! eBook
www.wowebook.org

OK,	let's	see	some	of	the	most	interesting	ones	in	action.

WOW! eBook
www.wowebook.org

How	to	do	it...
Follow	these	steps	to	see	information	about	the	activity	on	your	SSAS	server.	The	queries	will
return	unique	results	based	on	your	activity	on	the	server.	Therefore,	only	the	queries	are
presented;	there	are	no	screenshots:

1.	 Execute	this	query	to	see	the	list	of	connections:

						select	*	from	$system.DISCOVER_CONNECTIONS	

2.	 Execute	the	following	query	to	see	the	list	of	sessions.	You	can	additionally	limit	it	using
a	particular	connection:

						select	*	from	$system.DISCOVER_SESSIONS	

3.	 Execute	this	to	see	the	list	of	commands.	You	can	additionally	limit	the	list	using	a
particular	session:

						select	*	from	$system.DISCOVER_COMMANDS

4.	 Execute	the	following	query	to	see	the	accumulated	results	of	users'	activity	since	the	last
restart	of	the	service.	Here,	for	example,	you	can	order	the	query	to	see	which
aggregations	and	objects	are	hit	or	missed	the	most,	as	well	as	the	CPU	activity	spent	on
each	object	so	far	(since	the	restart	of	the	SSAS	service):

						select	*	from	$system.DISCOVER_OBJECT_ACTIVITY	

5.	 Execute	the	following	query	to	see	the	detailed	list	of	memory	usage	per	object:

						select	*	from	$system.DISCOVER_MEMORYUSAGE	

6.	 Execute	this	query	to	see	the	spread	of	shrinkable	and	non-shrinkable	memory	usage	per
object:

						select	*	from	$system.DISCOVER_OBJECT_MEMORY_USAGE	

7.	 Explore	the	other	DMVs	in	the	DISCOVER	collection,	to	see	what	they	return,	and	if	you
can	benefit	from	that	information	in	the	monitoring	solution	you	plan	to	build.	If	you
encounter	an	error,	skip	that	DMV.	The	explanation	will	be	covered	in	later	sections	of
this	recipe.

WOW! eBook
www.wowebook.org

How	it	works...
Querying	the	DISCOVER	collection	in	DMVs	is	easy	when	you	know	what	they	represent	and
how	are	they	related.	Until	then,	you	might	be	a	little	lost.

Unlike	the	MDSCHEMA	DMVs,	which	follow	the	natural	path	of	objects	and	their
descending	objects	(for	example,	the	database,	dimensions	and	cubes,	hierarchies	of
dimensions,	levels	of	hierarchies,	and	so	on),	here	we	have	several	entry	points	and	each
entry	point	leads	to	more	detailed	DMVs.

We	started	the	example	with	the	list	of	connections	returned	by	the	DISCOVER_CONNECTIONS
DMV.	Connections	have	sessions;	therefore,	the	next	DMV	we	covered	was	the
DISCOVER_SESSIONS	DMV.	Naturally,	we	can	create	a	query	that	joins	those	two	results	into
one	if	we	want	to,	and	this	can	be	done	using	the	OpenQuery	statement	(joins	will	be	covered	in
later	sections	of	this	recipe).

The	DISCOVER_COMMANDS	DMV	is	here	to	give	us	more	details	about	the	queries	running	in
each	session.

The	DISCOVER_OBJECT_ACTIVITY	DMV	is	great	for	performance	tuning	your	cube.	It	includes
information	about	aggregation	hits,	aggregation	misses,	object	hits	and	misses,	CPU	time
spent	so	far	(from	the	restart	of	SSAS	service)	on	a	particular	object,	and	so	on.	Monitoring
this	DMV	on	a	regular	basis	can	give	you	valuable	information,	such	as	whether	there's	a
place	for	improving	your	cube	by	building	additional	aggregations	or	by	warming	up	the
cache.

The	last	two	DMVs	covered	in	this	recipe	were	DMVs	that	inform	us	about	the	memory	usage
in	case	we	want	to	fine-tune	SSAS	settings	regarding	memory	consumption	and	its	limits.

WOW! eBook
www.wowebook.org

There's	more...
Some	DMVs	require	restrictions.	You	must	use	the	SystemRestrictSchema	function	to	run
them.	Here	is	the	list	of	some	DMVs	that	require	restrictions	and	that	are	part	of	the	DISCOVER
collection:

$system.DISCOVER_DIMENSION_STAT

$system.DISCOVER_INSTANCES

$system.DISCOVER_PARTITION_DIMENSION_STAT

$system.DISCOVER_PARTITION_STAT

$system.DISCOVER_PERFORMANCE_COUNTERS

$system.DISCOVER_XML_METADATA

Here's	the	error	we	get	when	we	run	the	first	DMV	in	that	list:

Executing	the	query...

Errors	from	the	SQL	query	module:	The	DIMENSION_NAME	restriction	is	required	but	is
missing	from	the	request.	Consider	using	SYSTEMRESTRICTSCHEMA	to	provide	restrictions.

Run	complete

The	list	of	parameters	for	restrictions	is	visible	under	the	Restrictions	column,	when	you	run
the	DISCOVER_SCHEMA_ROWSETS	DMV,	the	first	one	we	mentioned	in	this	and	the	previous
recipe.	Yes,	that's	the	starting	DMV,	the	one	that	tells	you	which	DMVs	are	available	in	the
system.

The	usage	is	as	follows:

We	need	to	wrap	the	DMV	and	its	required	parameters	inside	the	SystemRestrictSchema
function.	Here's	how:

select	*	from		

SystemRestrictSchema(

									$system.DISCOVER_DIMENSION_STAT,	

									DATABASE_NAME='Adventure	Works	DW	2016',	

									DIMENSION_NAME='Customer')		

order	by	ATTRIBUTE_NAME	

This	query	returns	all	attributes	in	the	Customer	dimension,	real	attributes	and	properties.
Additionally,	the	cardinality	of	each	attribute	is	displayed.

You	would	think	that	this	type	of	DMV	fits	better	in	the	MDSCHEMA,	not	the	DISCOVER
schema.	There,	in	MDSCHEMA,	we	have	two	similar	DMVs,	but	neither	of	them	is	the	same
as	this	DMV.	MDSCHEMA_LEVELS	returns	real	attributes	and	their	cardinality	(and	a	bunch	of
other	information),	but	it	doesn't	return	the	properties.	On	the	other	hand,	they	can	be	returned
together	with	real	attributes	in	another	MDSCHEMA	DMV,	the	MDSCHEMA_PROPERTIES	DMV.

WOW! eBook
www.wowebook.org

However,	here	we	don't	have	any	cardinality.

To	summarize,	some	DMVs	overlap.	Look	for	the	DMV	that	returns	the	exact	information
you	need.	In	case	none	of	them	do,	see	if	you	can	join	them,	and	then	take	whatever	you	need.

Speaking	of	joins,	here's	how	you	would	do	that.

You	can	execute	DMV	queries	as	pass-through	queries	(see	the	Executing	MDX	queries	in	T-
SQL	environments	recipe)	from	the	T-SQL	environment.	All	you	have	to	do	is	either	register	a
linked	server	or	enable	the	Ad	Hoc	Distributed	Queries	option	using	the	T-SQL	script	shown
in	that	recipe,	and	then	run	an	OpenQuery	or	OpenRowset	query.

Here's	the	query	that	uses	the	linked	server	defined	in	the	recipe	Executing	MDX	queries	in	T-
SQL	environments.	Don't	forget	to	run	it	in	the	Database	Engine	Query	window,	not	the
Analysis	Services	MDX	Query	window:

Select	*	from	OpenQuery(local_SSAS,	

									'select	*	from	$system.DISCOVER_CONNECTIONS')	c	

	

inner	join	OpenQuery(local_SSAS,	

									'select	*	from	$system.DISCOVER_SESSIONS')	s	

	

									on	s.SESSION_CONNECTION_ID	=	c.CONNECTION_ID	

													

inner	join	OpenQuery(local_SSAS,	

									'select	*	from	$system.DISCOVER_COMMANDS')	co	

	

									on	co.SESSION_SPID	=	s.SESSION_SPID	

The	result	will	be	unique	to	the	usage	pattern	of	your	cube	and	will	show	information	about
objects	that	have	recently	been	queried.

WOW! eBook
www.wowebook.org

See	also
The	Using	SSAS	Dynamic	Management	Views	(DMVs)	to	fast-document	a	cube	recipe	is
related	to	this	recipe	as	well	as	the	Executing	MDX	queries	in	T-SQL	environments	recipe

WOW! eBook
www.wowebook.org

Capturing	MDX	queries	generated	by	SSAS
frontends
Some	tools	allow	you	to	write	your	own	MDX	queries;	others	generate	them	for	you.	If	you
want	to	know	what	these	other	MDX	queries	look	like,	you	need	to	use	another	tool	that	will
tell	you	that.	One	such	tool	is	the	SQL	Server	Profiler,	which	comes	as	a	part	of	the	SQL
Server	installation.	Others	might	come	as	add-ins	to	the	application	that	generates	MDX
queries.

In	this	recipe,	we're	going	to	show	how	to	capture	the	MDX	query	that	has	been	sent	by	an
application	to	the	server	using	SQL	Server	Profiler.

WOW! eBook
www.wowebook.org

Getting	ready
In	Microsoft	SQL	Server	Management	Studio	for	SQL	Server	2016,	SQL	Server	Profiler
can	be	found	in	the	Tools	menu:

If	after	starting	the	Profiler	a	window	appears	offering	us	to	select	the	connection,	press	ESC
for	now.	This	time	we	will	start	from	scratch.

We	will	start	a	new	template	by	clicking	on	the	File	menu,	followed	by	Templates,	and	then
choosing	the	New	Template...	item.

Select	Microsoft	SQL	Server	2016	Analysis	Services	for	the	Server	Type.	Provide	the	name
for	the	template:	MDX	queries.	If	you	rarely	perform	other	activities	in	the	Profiler,	you	can
optionally	make	this	template	the	default	template	by	selecting	the	appropriate	checkbox	in
that	window.

Next,	go	to	the	other	tab	in	this	window,	the	Events	Selection	tab.	Expand	Queries	Events	and
select	all	items	there.	If	you	want	to	know	more	internal	details	about	how	the	query	performs,
select	items	in	the	Query	Processing	category.	See	Using	SQL	Profiler	in	the	MSDN	library
by	clicking	on	the	Help	button	if	you	need	additional	information.

Finally	click	on	the	Save	button.	The	template	is	now	saved	and	ready	to	be	used	every	time
we	need	it	in	the	future.

Before	we	can	see	how	it	would	go,	we	should	prepare	something	else.	We	need	to	simulate	a
working	environment,	where	users	are	browsing	the	cubes,	and	analyze	the	data	in	their
frontends,	which	in	turn	generate	MDX	queries	we	can	capture.	Since	we're	not	in	this
situation,	we're	going	to	simulate	it	using	the	Excel	PivotTable.	Start	Excel,	click	on	the	Data
menu,	find	From	Other	Sources	on	the	ribbon	and	choose	From	Analysis	Serves.	In	Data
Connection	Wizard,	provide	server	name	and	choose	Use	Windows	Authentication	as	log-
on	credentials.	Next,	choose	the	Adventure	Works	DW	2016	database	and	the	Adventure
Works	cube.

WOW! eBook
www.wowebook.org

The	next	step	is	to	save	the	data	connection	file	and	click	on	Finish.	In	the	next	Import	Data
window,	make	sure	that	you	choose	PivotTable	Report	to	view	the	cube	data.

Now	we're	ready	to	go.

WOW! eBook
www.wowebook.org

How	to	do	it...
Follow	these	steps	to	capture	the	MDX	query	sent	to	a	cube	on	an	Analysis	Services	instance:

1.	 In	SQL	Server	Profiler,	click	on	the	File	menu	and	then	choose	the	New	Trace...	item.
2.	 Verify	that	the	server	type	is	set	to	Analysis	Services	(or	change	it	if	it's	not)	and	verify

the	name	of	the	server	you're	connecting	to.	Then	click	on	the	Connect	button.
3.	 In	the	Trace	Properties	window	select	your	MDX	queries	template	and	name	the	trace

appropriately,	for	example,	Trace	MDX	1.
4.	 Optionally,	you	can	choose	to	save	the	trace	results	in	a	file	or	a	table	by	selecting	the

appropriate	option	in	the	General	tab	of	this	window.	Pay	attention	to	performance	when
you	write	log	information	into	a	table.

5.	 In	the	Events	Selection	tab,	you	can	change	the	events	you're	planning	to	track	by
selecting	the	Show	all	events	option	(and	the	Show	all	columns	option,	for	more
customization	of	this	trace).	We	are	going	to	leave	it	as	it	is	this	time	and	then	click	on
Run.

6.	 Maximize	the	inner	window	to	see	the	results	better.
7.	 If	you're	alone	on	this	server,	nothing	will	happen.	That's	why	we're	going	to	use	Excel

and	its	PivotTable	Report	to	simulate	users	querying	the	cube.	If	on	the	other	hand,
you're	tracking	an	active	server,	you'll	see	events	appearing	in	your	running	trace.

8.	 Expand	the	Measures	item	in	Excel's	PivotTabel	Field	List	pane	(if	not	already
expanded)	and	drag	the	Sales	Amount	measure,	found	under	the	Sales	Summary	folder,
and	drop	it	in	the	Values	area.

9.	 There	are	new	events	captured	in	your	trace,	as	displayed	in	this	screenshot.	It	looks	like
there	is	one	query	issued:

10.	 Expand	the	Product	dimension	in	Excel.	Drag	and	drop	the	Product	Categories	user
WOW! eBook

www.wowebook.org

hierarchy	on	the	Row	Labels	area.
11.	 There	are	new	trace	events.	If	you	want	to	see	them	together,	select	those	rows	like	the

following	screenshot	shows:

12.	 Now,	expand	the	Date	dimension	and	drag	and	drop	the	Day	of	Week	attribute	on	the
Row	Labels	area	again.

13.	 We	have	six	trace	events	altogether	which	means	three	queries:

WOW! eBook
www.wowebook.org

14.	 The	process	can	continue	as	long	as	you	want	or	need,	but	this	is	where	we'll	stop	with
the	trace.	Click	on	the	Stop	Selected	Trace	button	in	the	toolbar.

15.	 Congratulations!	You've	managed	to	capture	all	MDX	queries	sent	to	your	server	in	a
given	time	period.

16.	 Finally,	save	the	trace	if	you	want	to	preserve	its	contents.	Otherwise,	simply	close	the
trace	and	the	Profiler	after	it.

WOW! eBook
www.wowebook.org

How	it	works...
The	Profiler	is	a	tool	that	captures	a	lot	of	events	regarding	the	SQL	Server.	In	this	case,	we
were	interested	in	the	SSAS-related	events,	more	precisely,	the	MDX	query	events.

There	are	two	events	in	that	group	of	events:	Query	Begin	and	Query	End	events.	We	tracked
them	both	because	it	allowed	us	to	see	the	start,	and	the	duration	of	captured	queries.	In
practice,	you	can	choose	to	track	only	the	Query	End	event,	the	one	which	has	the	information
about	the	duration	of	queries.

Multi-selection	of	events	allowed	us	to	merge	queries	in	one	pane.

As	seen	in	this	example,	one	user	action	can	lead	to	one	or	many	MDX	queries	generated	in
the	background	by	an	application.	This	can	cause	problems	to	special	context-sensitive
calculations	presented	in	Chapter	8	,	When	MDX	is	Not	Enough,	because	those	calculations
depend	on	each	report	being	a	single	MDX	statement.	In	fact,	this	is	how	you	would	debug
what's	wrong	with	your	calculations	-	you	could	see	what	an	application	did	with	them	and
how	they	were	used	in	the	query.	In	short,	it	benefits	knowing	that	you	can	capture	and	later
analyze	any	query	that's	in	the	background	of	an	analytical	report	created	in	an	application.

WOW! eBook
www.wowebook.org

There's	more...
There	is	much	more	information	you	can	capture	regarding	MDX	queries,	but	this	goes	out
of	the	scope	of	this	book.	For	more	information,	see	the	book	Expert	Cube	Development	with
SSAS	Multidimensional	Models	or	SQLCAT's	white	paper	Identifying	and	Resolving	MDX
Query	Performance	Bottlenecks	in	SQL	Server	2005	Analysis	Services.

Alternative	solution

There	are	add-ins	for	some	SSAS	frontends	which	enable	you	to	see	the	MDX	right	inside	the
add-in,	without	the	need	to	use	Profiler.	One	such	popular	add-in	is	the	Excel	add-in	which	can
be	downloaded	from	here:	http://tinyurl.com/PivotTableExtensions.

The	site	also	contains	instructions	for	its	usage.	Other	add-ins	might	be	available	too,	so	make
sure	you've	searched	the	Internet	and	found	the	one	that's	right	for	you.

In	Analysis	Services	2016,	both	the	Cube	Browser	in	SSMS	and	SSDT	are	now	replaced	by	a
Query	Design	Wizard.	By	toggling	between	the	graphic	mode	and	the	design	mode,	you	can
see	the	MDX	query.

Tips	and	tricks

You	can	create	several	templates	in	the	Profiler	and	use	each	in	the	appropriate	situation.	That
way	you	will	work	faster	without	having	to	worry	about	selecting	the	right	events	manually
every	time.

WOW! eBook
www.wowebook.org

http://tinyurl.com/PivotTableExtensions

See	also
The	next	recipe,	Performing	a	custom	drillthrough,	is	related	to	this	recipe

WOW! eBook
www.wowebook.org

Performing	a	custom	drillthrough
Multidimensional	database	systems	like	Analysis	Services	naturally	support	the	top-down
analysis	approach.	Data	can	be	browsed	using	multilevel	hierarchies,	starting	from	the	top
level	and	descending	to	the	levels	we	need	to.	This	cube	data	is	typically	aggregated	at
different	levels.

There	is	another	side	to	the	story.	Users	occasionally	want	to	see	every	single	detail	about	an
aggregated	value	represented	in	a	single	cell	in	pivot.	This	information	originates	from	a
series	of	fact	tables	or	individual	transactions	in	the	relational	database.	So,	we	might	think
that	if	we	want	to	see	the	transactions	that	give	a	certain	measure,	we	would	look	for	them	in
the	relational	data	warehouse.	However,	we	can	find	these	details	right	inside	the	SSAS	model
itself,	and	we	can	extract	these	details	regardless	of	the	relational	engine.	The	mechanism	that
supports	this	is	the	drillthrough.

Drillthrough	can	either	be	issued	as	a	standalone	command,	or	it	can	be	predefined	as	a	cube-
based	action	of	that	type.	This	recipe	focuses	on	the	first.	It	shows	you	how	you	can	issue	your
own	drillthrough	command,	whenever	you	need	to	analyze	the	data	behind	a	certain	cell.
Having	a	predefined	action	is	nice,	but	if	you	don't	want	to	use	a	predefined	action	and	want	to
test	the	drillthrough	or	simply	customize	it	the	way	you	need,	all	it	takes	is	to	create	a
DRILLTHROUGH	type	of	MDX	query	and	execute	it	in	any	tool	that	supports	MDX	queries,	for
example,	the	SQL	Server	Management	Studio.	Let's	see	how	this	can	be	done.

WOW! eBook
www.wowebook.org

Getting	ready
Start	SQL	Server	Management	Studio	and	connect	to	your	SSAS	2016	instance.	Click	on	the
New	Query	button	and	check	that	the	target	database	is	Adventure	Works	DW	2016.

Suppose	this	is	the	pivot	that	we	want	to	create:

The	highlighted	cell	is	the	cell	for	which	we	want	to	get	more	detailed	information.	We	want
to	see	the	data	from	the	table	rows	that	were	evaluated	to	calculate	the	value	of	the	selected
cube	cell.

The	solution	is	to	issue	a	drillthrough	statement.	Before	we	do	so,	let's	see	the	MDX	behind
this	pivot:

SELECT	

			{	[Scenario].[Scenario].[Scenario].ALLMEMBERS	}	*	

			{	[Measures].[Amount]	}	ON	0,	

			{	[Department].[Departments].MEMBERS	}	ON	1	

FROM	

			[Adventure	Works]				

WHERE	

			([Date].[Calendar].[Calendar	Year].&[2011])	

CELL	PROPERTIES	

			VALUE,	

			FORMATTED_VALUE,	

			FORE_COLOR,	

			BACK_COLOR	

The	coordinates	for	the	highlighted	cell	are	Year	=	2011,	Scenario	=	Actual,	Department	=
Research	and	Development,	and	Measure	=	Amount.

We	cannot	perform	a	DRILLTHROUGH	command	on	a	calculated	member,	which,	in	this	case,	is
the	budget	variance	scenario.	Therefore,	we're	going	to	bypass	that	member	in	the	coordinate
and	execute	the	drillthrough	query	using	regular	members	only,	in	this	case,	the	Actual

WOW! eBook
www.wowebook.org

member.

WOW! eBook
www.wowebook.org

How	to	do	it...
Follow	these	steps	to	execute	a	drillthrough	query	against	a	cube	on	an	Analysis	Services
instance:

1.	 Execute	the	following	MDX	query:

						DRILLTHROUGH	

						--MAXROWS	10	

						SELECT	

						FROM	

									[Adventure	Works]		

						WHERE	

									([Date].[Calendar].[Calendar	Year].&[2011],	

											[Department].[Departments].&[6],	

											[Scenario].[Scenario].&[1],	

											[Measures].[Amount])	

2.	 The	previous	query	returns	all	rows	in	the	underlying	Financial	Reporting	table.	Notice
the	column	names.	They	will	be	explained	in	the	next	section.

3.	 Notice	the	commented	part	of	the	query.	Uncomment	it	and	then	run	the	query	again.	This
time	it	returns	only	10	rows,	just	like	we've	specified	using	the	MAXROWS	keyword.

WOW! eBook
www.wowebook.org

How	it	works...
The	DRILLTHROUGH	command	can	be	issued	on	a	single	cell	only.	That	cell	must	not	have
calculated	members	or	an	error	will	occur.

We	can	limit	the	number	of	rows	to	be	returned	by	this	type	of	query	using	the	MAXROWS
keyword.	In	case	we	don't,	the	server-based	setting	OLAP	\	Query	\
DefaultDrillthroughMaxRows	determines	the	limit.	This	setting	is	set	to	10000	by	default
which	is	visible	amongst	the	advanced	settings	of	the	server,	where	you	can	change	it.

Column	names	tell	us	the	origin	of	that	column.	Names	starting	with	$	denote	a	dimension
table.	Others	can	come	from	a	single	fact	table	(measure	group)	only.	The	simple	form	of	a
drillthrough	query	returns	all	measures	in	that	fact	table	along	with	all	the	dimension	keys.
Besides	the	fact	columns,	all	columns	that	represent	the	coordinate	for	the	drillthrough	are
also	returned.

The	custom	type	of	drillthrough	query,	the	one	that	returns	only	the	specified	columns,	is
explained	in	the	next	section.

WOW! eBook
www.wowebook.org

There's	more...
It	is	possible	to	change	the	columns	that	a	drillthrough	command	returns.	This	type	of
drillthrough	is	a	custom	drillthrough.

Using	the	RETURN	keyword,	we	can	specify	which	columns	we	want	to	get	as	the	result	of	a
drillthrough	query.	In	addition	to	that,	we	can	use	nine	functions	dedicated	to	extract	more
metadata	from	the	available	columns.	Here's	an	example	to	illustrate	that:

DRILLTHROUGH	

SELECT	

FROM	

			[Adventure	Works]		

WHERE	

			([Date].[Calendar].[Calendar	Year].&[2011],	

					[Department].[Departments].&[6],	

					[Scenario].[Scenario].&[1],	

					[Measures].[Amount])	

RETURN	

			[$Date].[Date],	

			MemberValue([$Date].[Date]),	

			[$Organization].[Organizations],	

			UnaryOperator([$Account].[Account]),	

			[Financial	Reporting].[Amount],	

			[$Scenario].[Scenario],	

			[$Department].[Department],	

			[$Destination	Currency].[Destination	Currency	Code],	

			[$Account].[Accounts]	

This	query	differs	from	the	one	in	the	previous	section	in	several	ways.	First,	it	uses	a	specific
set	of	columns	to	be	returned.	Next,	it	uses	two	functions:	MemberValue()	and
UnaryOperator().

The	result	of	the	query	looks	like	this:

WOW! eBook
www.wowebook.org

The	UnaryOperator()	function	returns	the	sign	for	the	amount,	the	way	it	aggregates	upwards.
MemberValue()	returns	the	date	in	the	datetime	format;	normally,	member	names	are	strings
(for	example,	the	first	column).	Sometimes	it's	good	to	have	original	data	types.	This	is	how
you	do	it.

You	can	also	wrap	the	drillthrough	query	in	the	OpenQuery	statement	and	use	it	in	the
relational	environment.	That	way	you	can	change	the	names	it	returns.	However,	there	are
some	issues	with	duplicate	names	that	OpenQuery/OpenRowset	doesn't	tolerate.	Notice	the	first
two	columns	in	the	previous	screenshot.	They	both	have	the	same	column	name,	[$Date].
[Date].	The	second	column	comes	from	the	MemberValue()	function,	which	preserved	the
data	type.	You	will	need	to	remove	one	of	them.	Another	duplicate	column	is	[$Account].
[Account],	one	of	which	is	returned	by	the	UnaryOperator()	function.	Now	you	should
choose	between	the	unary	operator	and	the	value	of	the	account.

Allowed	functions	and	potential	problems

The	eight	functions	mentioned	earlier	can	be	found	here:

		http://tinyurl.com/Drillthrough	.

For	the	reasons	explained	a	moment	ago,	the	use	of	the	DRILLTHROUGH	command	is	limited	in
distributed	queries	because	of	the	issue	with	duplicate	names	in	the	relational	environment.

More	info

Drillthrough-related	problems	are	covered	in	depth	in	the	book	Expert	Cube	Development
with	SSAS	Multidimensional	Models.

Other	examples

The	Analysis	Services	Stored	Procedure	Project	assembly	has	an	interesting	drillthrough	class
that	can	bypass	some	of	the	restrictions	imposed	on	the	usage	of	the	DRILLTHROUGH
	command.	As	mentioned	earlier	in	this	chapter,	this	assembly	can	be	downloaded	from	here:	
http://tinyurl.com/ASSPCodePlex	.

WOW! eBook
www.wowebook.org

http://tinyurl.com/Drillthrough
http://tinyurl.com/ASSPCodePlex

See	also
The	Capturing	MDX	queries	generated	by	SSAS	frontends	recipe	is	related	to	this	recipe

WOW! eBook
www.wowebook.org

	MDX with Microsoft SQL Server 2016 Analysis Services Cookbook Third Edition
	Credits
	About the Authors
	About the Reviewer
	www.PacktPub.com
	Why subscribe?
	Preface
	What this book covers
	What you need for this book
	Who this book is for
	Sections
	Getting ready
	How to do it…
	How it works…
	There's more…
	See also
	Conventions
	Reader feedback
	Customer support
	Downloading the example code
	Downloading the color images of this book
	Errata
	Piracy
	Questions
	1. Elementary MDX Techniques
	Introduction
	Putting data on x and y axes
	Getting ready
	How to do it...
	How it works...
	There's more...
	Putting more hierarchies on x and y axes with cross join
	Skipping axes
	Getting ready
	How to do it...
	How it works...
	There's more...
	The idea behind it
	Possible workarounds - dummy column
	Using a WHERE clause to filter the data returned
	Getting ready
	How to do it...
	How it works...
	There's more...
	Optimizing MDX queries using the NonEmpty() function
	Getting ready
	How to do it...
	How it works...
	There's more...
	NonEmpty() versus NON EMPTY
	Common mistakes and useful tips
	Using the Properties() function to retrieve data from attribute relationships
	Getting ready
	How to do it...
	How it works...
	There's more...
	Basic sorting and ranking
	Getting ready
	How to do it...
	How it works...
	There's more...
	Handling division by zero errors
	Getting ready
	How to do it...
	How it works...
	There's more...
	Earlier versions of SSAS
	Setting a default member of a hierarchy in the MDX script
	Getting ready
	How to do it...
	How it works...
	There's more...
	Helpful tips
	2. Working with Sets
	Introduction
	Implementing the NOT IN set logic
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also
	Implementing the logical OR on members from different hierarchies
	Getting ready
	How to do it...
	How it works...
	There's more...
	A special case of a non-aggregatable dimension
	A very complex scenario
	See also
	Iterating on a set to reduce it
	Getting ready
	How to do it...
	How it works...
	There's more...
	Hints for query improvements
	See also
	Iterating on a set to create a new one
	Getting ready
	How to do it...
	How it works...
	There's more...
	Did you know?
	See also
	Iterating on a set using recursion
	Getting ready
	How to do it...
	How it works...
	There's more...
	Earlier versions of SSAS
	See also
	Performing complex sorts
	Getting ready
	How to do it...
	How it works...
	There's more...
	Things to be extra careful about
	A costly operation
	See also
	Dissecting and debugging MDX queries
	Getting ready
	How to do it...
	How it works...
	There's more...
	Useful string functions
	See also
	Implementing the logical AND on members from the same hierarchy
	Getting ready
	How to do it...
	How it works...
	There's more...
	Where to put what?
	A very complex scenario
	See also
	3. Working with Time
	Introduction
	Calculating the year-to-date (YTD) value
	Getting ready
	How to do it...
	How it works...
	There's more...
	Inception-To-Date calculation
	Using the argument in the YTD() function
	Common problems and how to avoid them
	YTD() and future dates
	See also
	Calculating the year-over-year (YoY) growth (parallel periods)
	Getting ready
	How to do it...
	How it works...
	There's more...
	ParallelPeriod is not a time-aware function
	See also
	Calculating moving averages
	Getting ready
	How to do it...
	How it works...
	There's more...
	Other ways to calculate the moving averages
	Moving averages and the future dates
	Finding the last date with data
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also
	Getting values on the last date with data
	Getting ready
	How to do it...
	How it works...
	There's more...
	Formatting members on the Date dimension properly
	Optimizing time-non-sensitive calculations
	Calculating today's date using the string functions
	Getting ready
	How to do it...
	How it works...
	There's more...
	Relative periods
	Potential problems
	See also
	Calculating today's date using the MemberValue function
	Getting ready
	How to do it...
	How it works...
	There's more...
	Using the ValueColumn property in the Date dimension
	See also
	Calculating today's date using an attribute hierarchy
	Getting ready
	How to do it...
	How it works...
	There's more...
	The Yes member as a default member?
	Other approaches
	See also
	Calculating the difference between two dates
	Getting ready
	How to do it...
	How it works...
	There's more...
	Dates in other scenarios
	The problem of non-consecutive dates
	See also
	Calculating the difference between two times
	Getting ready
	How to do it...
	How it works...
	There's more...
	Formatting the duration
	Examples of formatting the duration on the Web
	Counting working days only
	See also
	Calculating parallel periods for multiple dates in a set
	Getting ready
	How to do it...
	How it works...
	There's more...
	Parameters
	Reporting covered by design
	See also
	Calculating parallel periods for multiple dates in a slicer
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also
	4. Concise Reporting
	Introduction
	Isolating the best N members in a set
	Getting ready
	How to do it...
	How it works...
	There's more...
	The top N members is evaluated in All Periods, not in the context of the opposite query axis
	The top N members will be evaluated in the context of the slicer
	Using a tuple in the third argument of the TopCount() function to overwrite the member on the slicer
	Testing the correctness of the result
	Multidimensional sets
	TopPercent() and TopSum() functions
	See also
	Isolating the worst N members in a set
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also
	Identifying the best/worst members for each member of another hierarchy
	Getting ready
	How to do it...
	How it works...
	There's more...
	Support for the relative context and multidimensional sets in SSAS frontends
	See also
	Displaying a few important members, with the others as a single row, and the total at the end
	Getting ready
	How to do it...
	How it works...
	There's more...
	Making the query even more generic
	See also
	Combining two hierarchies into one
	Getting ready
	How to do it...
	How it works...
	There's more...
	Use it, but don't abuse it
	Limitations
	Finding the name of a child with the best/worst value
	Getting ready
	How to do it...
	How it works...
	There's more...
	Variations on a theme
	Displaying more than one member's caption
	See also
	Highlighting siblings with the best/worst values
	Getting ready
	How to do it...
	How it works...
	There's more...
	Troubleshooting
	See also
	Implementing bubble-up exceptions
	Getting ready
	How to do it...
	How it works...
	There's more...
	Practical value of bubble-up exceptions
	Potential problems
	See also
	5. Navigation
	Introduction
	Detecting a particular member in a hierarchy
	Getting ready
	How to do it...
	How it works...
	There's more...
	Important remarks
	Comparing members versus comparing values
	Detecting complex combinations of members
	See also
	Detecting the root member
	Getting ready
	How to do it...
	How it works...
	There's more...
	The scope-based solution
	See also
	Detecting members on the same branch
	Getting ready
	How to do it...
	How it works...
	There's more...
	The query-based alternative
	Children() will return empty sets when out of boundaries
	Various options of the Descendants() function
	See also
	Finding related members in the same dimension
	Getting ready
	How to do it...
	How it works...
	There's more...
	Tips and trick related to the EXISTING keyword
	Filter() versus Exists(), Existing(), and EXISTING
	A friendly warning
	See also
	Finding related members in another dimension
	Getting ready
	How to do it...
	How it works...
	There's more...
	Leaf and non-leaf calculations
	See also
	Calculating various percentages
	Getting ready
	How to do it...
	How it works...
	There's more...
	Use cases
	The alternative syntax for the root member
	The case of the nonexisting [All] level
	The percentage of leaf member values
	See also
	Calculating various averages
	Getting ready
	How to do it...
	How it works...
	There's more...
	Preserving empty rows
	Other specifics of average calculations
	See also
	Calculating various ranks
	Getting ready
	How to do it...
	How it works...
	There's more...
	Tie in ranks
	Preserving empty rows
	Ranks in multidimensional sets
	The pluses and minuses of named sets
	See also
	6. MDX for Reporting
	Introduction
	Creating a picklist
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also
	Using a date calendar
	Getting ready
	How to do it...
	How it works...
	There's more...
	Alternative - allowing users to select by Date hierarchies
	See also
	Passing parameters to an MDX query
	Getting ready
	How to do it...
	How it works...
	There's more...
	Getting the summary
	Getting ready
	How to do it...
	How it works...
	There's more...
	Getting visual totals at multiple levels
	Removing empty rows
	Getting ready
	How to do it...
	How it works...
	Checking empty sets
	There's more...
	Trouble with zeros
	See also
	Getting data on the column
	Getting ready
	How to do it...
	How it works...
	There's more...
	Named set or DIMENSION PROPERTIES has no effect in the shape of the reports
	Creating a column alias in MDX queries can mean data duplication
	Creating a column alias is a must with role-playing dimensions
	Avoiding using the NON EMPTY keyword on the COLUMNS axis
	Query Editor in SSRS only allowing measures dimension in the COLUMNS
	A few more words...
	See also
	Sorting data by dimensions
	Getting ready
	How to do it...
	How it works...
	There's more...
	Taking advantage of hierarchical sorting
	Using the Date type to sort in a non-hierarchical way
	"Break hierarchy" - sorting a set in a non-hierarchical way
	Sorting can be done in the frontend reporting tool
	See also
	7. Business Analyses
	Introduction
	Forecasting using linear regression
	Getting ready
	How to do it...
	How it works...
	There's more...
	Tips and tricks
	Where to find more information
	See also
	Forecasting using periodic cycles
	Getting ready
	How to do it...
	How it works...
	There's more...
	Other approaches
	See also
	Allocating non-allocated company expenses to departments
	Getting ready
	How to do it...
	How it works...
	There's more...
	Choosing a proper allocation scheme
	Analyzing the fluctuation of customers
	Getting ready
	How to do it...
	How it works...
	There's more...
	Identifying loyal customers in a period
	More complex scenario
	The alternative approach
	Implementing the ABC analysis
	Getting ready
	How to do it...
	How it works...
	There's more...
	Tips and tricks
	See also
	8. When MDX is Not Enough
	Introduction
	Using a new attribute to separate members on a level
	Getting ready
	How to do it...
	How it works...
	There's more...
	So, where's the MDX?
	Typical scenarios
	Using a distinct count measure to implement histograms over existing hierarchies
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also
	Using a dummy dimension to implement histograms over nonexisting hierarchies
	Getting ready
	How to do it...
	How it works...
	There's more...
	DSV or DW?
	More calculations
	Other examples
	See also
	Creating a physical measure as a placeholder for MDX assignments
	Getting ready
	How to do it...
	How it works...
	There's more...
	Associated measure group
	See also
	Using a new dimension to calculate the most frequent price
	Getting ready
	How to do it...
	How it works...
	There's more...
	Using a utility dimension to implement flexible display units
	Getting ready
	How to do it...
	How it works...
	There's more...
	Set-based approach
	Format string on a filtered set approach
	Using a utility dimension to implement time-based calculations
	Getting ready
	How to do it...
	How it works...
	There's more...
	Interesting details
	Fine-tuning the calculations
	Other approaches
	See also
	9. Metadata - Driven Calculations
	Introduction
	Setting up the environment
	Getting ready
	How to do it...
	How it works...
	There's more...
	Additional information
	Tips and tricks
	See also
	Creating a reporting dimension
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also
	Implementing custom rollups using MDX formulas
	Getting ready
	How to do it...
	How it works...
	There's more...
	Why not a built-in feature?
	Why the Sum() function?
	More complex formulas
	See also
	Implementing format string, multiplication factor, and sort order features
	Getting ready
	How to do it...
	How it works...
	There's more...
	Tips and tricks
	Additional information
	See also
	Implementing unary operators
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also
	Referencing reporting dimension's members in MDX formulas
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also
	Implementing the MDX dictionary
	Getting ready
	How to do it...
	How it works...
	There's more...
	Additional information
	Tips and tricks
	See also
	Implementing metadata-driven KPIs
	Getting ready
	How to do it...
	How it works...
	There's more...
	Additional information
	Tips and tricks
	See also
	10. On the Edge
	Introduction
	Clearing the Analysis Services cache
	Getting ready
	How to do it...
	How it works...
	There's more...
	Objects whose cache can be cleared
	Additional information
	Tips and tricks
	See also
	Using Analysis Services stored procedures
	Getting ready
	How to do it...
	How it works...
	There's more...
	Tips and tricks
	Existing assemblies
	Additional information
	See also
	Executing MDX queries in T-SQL environments
	Getting ready
	How to do it...
	How it works...
	There's more...
	Additional information
	Useful tips
	Accessing Analysis Services 2000 from a 64-bit environment
	Troubleshooting the linked server
	See also
	Using SSAS Dynamic Management Views (DMVs) to fast-document a cube
	Getting ready
	How to do it...
	How it works...
	There's more...
	Tips and tricks
	Warning!
	More information
	See also
	Using SSAS Dynamic Management Views (DMVs) to monitor activity and usage
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also
	Capturing MDX queries generated by SSAS frontends
	Getting ready
	How to do it...
	How it works...
	There's more...
	Alternative solution
	Tips and tricks
	See also
	Performing a custom drillthrough
	Getting ready
	How to do it...
	How it works...
	There's more...
	Allowed functions and potential problems
	More info
	Other examples
	See also

