
with Microsoft Azure Machine
Learning and Python

Stephen F. Elston

Data Science
in the Cloud

http://oreil.ly/1T0KbBh

Stephen F. Elston

Data Science in the Cloud
with Microsoft Azure

Machine Learning
and Python

978-1-491-93631-3

[LSI]

Data Science in the Cloud with Microsoft Azure Machine Learning and Python
by Stephen F. Elston

Copyright © 2016 O’Reilly Media, Inc. All rights reserved.

Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA
95472.

O’Reilly books may be purchased for educational, business, or sales promotional use.
Online editions are also available for most titles (http://safaribooksonline.com). For
more information, contact our corporate/institutional sales department:
800-998-9938 or corporate@oreilly.com.

Editor: Shannon Cutt
Production Editor: Colleen Lobner
Proofreader: Marta Justak

Interior Designer: David Futato
Cover Designer: Randy Comer
Illustrator: Rebecca Demarest

January 2016: First Edition

Revision History for the First Edition
2016-01-04: First Release

The O’Reilly logo is a registered trademark of O’Reilly Media, Inc. Data Science in
the Cloud with Microsoft Azure Machine Learning and Python, the cover image, and
related trade dress are trademarks of O’Reilly Media, Inc.

While the publisher and the author have used good faith efforts to ensure that the
information and instructions contained in this work are accurate, the publisher and
the author disclaim all responsibility for errors or omissions, including without limi‐
tation responsibility for damages resulting from the use of or reliance on this work.
Use of the information and instructions contained in this work is at your own risk. If
any code samples or other technology this work contains or describes is subject to
open source licenses or the intellectual property rights of others, it is your responsi‐
bility to ensure that your use thereof complies with such licenses and/or rights.

http://safaribooksonline.com

Table of Contents

Data Science in the Cloud with Microsoft Azure Machine Learning
and Python. 1

Introduction 1
Overview of Azure ML 3
A Regression Example 9
Improving the Model and Transformations 37
Improving Model Parameter Selection in Azure ML 42
Cross Validation 45
Some Possible Next Steps 47
Publishing a Model as a Web Service 48
Using Jupyter Notebooks with Azure ML 53
Summary 55

v

Data Science in the Cloud
with Microsoft Azure Machine

Learning and Python

Introduction
This report covers the basics of manipulating data, constructing
models, and evaluating models on the Microsoft Azure Machine
Learning platform (Azure ML). The Azure ML platform has greatly
simplified the development and deployment of machine learning
models, with easy-to-use and powerful cloud-based data transfor‐
mation and machine learning tools.

We’ll explore extending Azure ML with the Python language. A
companion report explores extending Azure ML using the R lan‐
guage.

All of the concepts we will cover are illustrated with a data science
example, using a bicycle rental demand dataset. We’ll perform the
required data manipulation, or data munging. Then we will con‐
struct and evaluate regression models for the dataset.

You can follow along by downloading the code and data provided in
the next section. Later in the report, we’ll discuss publishing your
trained models as web services in the Azure cloud.

Before we get started, let’s review a few of the benefits Azure ML
provides for machine learning solutions:

• Solutions can be quickly and easily deployed as web services.
• Models run in a highly scalable, secure cloud environment.

1

http://bit.ly/azure-ml-r-2015

• Azure ML is integrated with the Microsoft Cortana Analytics
Suite, which includes massive storage and processing capabili‐
ties. It can read data from, and write data to, Cortana storage at
significant volume. Azure ML can be employed as the analytics
engine for other components of the Cortana Analytics Suite.

• Machine learning algorithms and data transformations are
extendable using the Python or R languages for solution-
specific functionality.

• Rapidly operationalized analytics are written in the R and
Python languages.

• Code and data are maintained in a secure cloud environment.

Downloads
For our example, we will be using the Bike Rental UCI dataset avail‐
able in Azure ML. This data is preloaded into Azure ML; you can
also download this data as a .csv file from the UCI website.
The reference for this data is Fanaee-T, Hadi, and Gama, Joao,
“Event labeling combining ensemble detectors and background knowl‐
edge,” Progress in Artificial Intelligence (2013): pp. 1-15, Springer Ber‐
lin Heidelberg.

The Python code for our example can be found on GitHub.

Working Between Azure ML and Spyder
Azure ML uses the Anaconda Python 2.7 distribution. You should
perform your development and testing of Python code in the same
environment to simplify the process.

Azure ML is a production environment. It is ideally suited to pub‐
lishing machine learning models. However, it’s not a particularly
good code development environment.

In general, you will find it easier to perform preliminary editing,
testing, and debugging in an integrated development environment
(IDE). The Anaconda Python distribution includes the Spyder IDE.
In this way, you take advantage of the powerful development resour‐
ces and perform your final testing in Azure ML. Downloads for the
Anaconda Python 2.7 distribution are available for Windows, Mac,
and Linux. Do not use the Python 3.X versions, as the code created
is not compatible with Azure ML.

2 | Data Science in the Cloud with Microsoft Azure Machine Learning and Python

http://bit.ly/uci-bike
http://bit.ly/azureml-regression
https://www.continuum.io/downloads

If you prefer using Jupyter notebooks, you can certainly do your code
development in this environment. We will discuss this later in
“Using Jupyter Notebooks with Azure ML” on page 53.

This report assumes the reader is familiar with the basics of Python.
If you are not familiar with Python in Azure ML, the following short
tutorial will be useful: Execute Python machine learning scripts in
Azure Machine Learning Studio.

The Python source code for the data science example in this report
can be run in either Azure ML, in Spyder, or in IPython. Read the
comments in the source files to see the changes required to work
between these two environments.

Overview of Azure ML
This section provides a short overview of Azure Machine Learning.
You can find more detail and specifics, including tutorials, at the
Microsoft Azure web page. Additional learning resources can be
found on the Azure Machine Learning documentation site.

For deeper and broader introductions, I have created two video
courses:

• Data Science with Microsoft Azure and R: Working with Cloud-
based Predictive Analytics and Modeling (O’Reilly) provides an
in-depth exploration of doing data science with Azure ML
and R.

• Data Science and Machine Learning Essentials, an edX course
by myself and Cynthia Rudin, provides a broad introduction to
data science using Azure ML, R, and Python.

As we work through our data science example in subsequent sec‐
tions, we include specific examples of the concepts presented here.
We encourage you to go to the Microsoft Azure Machine Learning
site to create your own free-tier account and try these examples on
your own.

Azure ML Studio
Azure ML models are built and tested in the web-based Azure ML
Studio. Figure 1 shows an example of the Azure ML Studio.

Overview of Azure ML | 3

http://bit.ly/azureml-py
http://bit.ly/azureml-py
http://bit.ly/azure_ml
http://bit.ly/azurelml-docs
http://bit.ly/data-sci-azure-r
http://bit.ly/data-sci-azure-r
http://bit.ly/datasci-ml-course
http://bit.ly/azureml_login
http://bit.ly/azureml_login
https://studio.azureml.net/
https://studio.azureml.net/

Figure 1. Azure ML Studio

A workflow of the model appears in the center of the studio window.
A dataset and an Execute Python Script module are on the canvas.
On the left side of the Studio display, you see datasets and a series of
tabs containing various types of modules. Properties of whichever
dataset or module has been selected can be seen in the right panel.
In this case, you see the Python code contained in the Execute
Python Script module.

Build your own experiment
Building your own experiment in Azure ML is quite simple. Click
the + symbol in the lower lefthand corner of the studio window. You
will see a display resembling Figure 2. Select either a blank experi‐
ment or one of the sample experiments.

If you choose a blank experiment, start dragging and dropping
modules and datasets onto your canvas. Connect the module out‐
puts to inputs to build an experiment.

4 | Data Science in the Cloud with Microsoft Azure Machine Learning and Python

Figure 2. Creating a New Azure ML Experiment

Getting Data In and Out of Azure ML
Azure ML supports several data I/O options, including:

• Web services
• HTTP connections
• Azure SQL tables
• Azure Blob storage
• Azure Tables; noSQL key-value tables
• Hive queries

These data I/O capabilities enable interaction with either external
applications and other components of the Cortana Analytics Suite.

We will investigate web service publishing in “Publish‐
ing a Model as a Web Service” on page 48.

Data I/O at scale is supported by the Azure ML Reader and Writer
modules. The Reader and Writer modules provide interface with
Cortana data storage components. Figure 3 shows an example of
configuring the Reader module to read data from a hypothetical

Overview of Azure ML | 5

Azure SQL table. Similar capabilities are available in the Writer
module for outputting data at volume.

Figure 3. Configuring the Reader Module for an Azure SQL Query

Modules and Datasets
Mixing native modules and Python in Azure ML
Azure ML provides a wide range of modules for data transforma‐
tion, machine learning, and model evaluation. Most native (built-in)
Azure ML modules are computationally-efficient and scalable. As a
general rule, these native modules should be your first choice.

The deep and powerful Python language extends Azure ML to meet
the requirements of specific data science problems. For example,
solution-specific data transformation and cleaning can be coded in
Python. Python language scripts contained in Execute Python Script
modules can be run inline with native Azure ML modules. Addi‐
tionally, the Python language gives Azure ML powerful data visuali‐
zation capabilities. You can also use the many available analytics
algorithms packages such as scikit-learn and StatsModels.

As we work through the examples, you will see how to mix native
Azure ML modules and Execute Python Script modules to create a
complete solution.

6 | Data Science in the Cloud with Microsoft Azure Machine Learning and Python

http://scikit-learn.org/stable/
http://statsmodels.sourceforge.net/

Execute Python Script Module I/O
In the Azure ML Studio, input ports are located at the top of module
icons, and output ports are located below module icons.

If you move your mouse over the ports of a module,
you will see a “tool tip” that shows the type of data for
that port.

The Execute Python Script module has five ports:

• The Dataset1 and Dataset2 ports are inputs for rectangular
Azure data tables, and they produce a Pandas data frame in
Python.

• The Script bundle port accepts a zipped Python modules (.py
files) or dataset files.

• The Result dataset output port produces an Azure rectangular
data table from a Pandas data frame.

• The Python device port produces output of text or graphics
from R.

Within experiments, workflows are created by connecting the
appropriate ports between modules—output port to input port.
Connections are made by dragging your mouse from the output port
of one module to the input port of another module.

Some tips for using Python in Azure ML can be found in the docu‐
mentation.

Azure ML Workflows
Model training workflow
Figure 4 shows a generalized workflow for training, scoring, and
evaluating a machine learning model in Azure ML. This general
workflow is the same for most regression and classification algo‐
rithms. The model definition can be a native Azure ML module or,
in some cases, Python code.

Overview of Azure ML | 7

http://pandas.pydata.org/
http://bit.ly/azureml-py
http://bit.ly/azureml-py

Figure 4. A generalized model training workflow for Azure ML models

Key points on the model training workflow:

• Data input can come from a variety of interfaces, including web
services, HTTP connections, Azure SQL, and Hive Query.
These data sources can be within the Cortana suite or external
to it. In most cases, for training and testing models, you will use
a saved dataset.

• Transformations of the data can be performed using a combina‐
tion of native Azure ML modules and the Python language.

• A Model Definition module defines the model type and proper‐
ties. On the lefthand pane of the Studio, you will see numerous
choices for models. The parameters of the model are set in the
properties pane.

• The Training module trains the model. Training of the model is
scored in the Score module, and performance summary statis‐
tics are computed in the Evaluate module.

The following sections include specific examples of each of the steps
illustrated in Figure 4.

Publishing a model as a web service
Once you have developed and evaluated a satisfactory model, you
can publish it as a web service. You will need to create streamlined
workflow for promotion to production. A schematic view is shown
in Figure 5.

8 | Data Science in the Cloud with Microsoft Azure Machine Learning and Python

Figure 5. Workflow for an Azure ML model published as a web service

Some key points of the workflow for publishing a web service are:

• Typically, you will use transformations you created and saved
when you were training the model. These include saved trans‐
formations from the various Azure ML data transformation
modules and modified Python transformation code.

• The product of the training processes (discussed previously) is
the trained model.

• You can apply transformations to results produced by the
model. Examples of transformations include deleting unneeded
columns and converting units of numerical results.

A Regression Example
Problem and Data Overview
Demand and inventory forecasting are fundamental business pro‐
cesses. Forecasting is used for supply chain management, staff level
management, production management, power production manage‐
ment, and many other applications.

In this example, we will construct and test models to forecast hourly
demand for a bicycle rental system. The ability to forecast demand is
important for the effective operation of this system. If insufficient
bikes are available, regular users will be inconvenienced. The users
become reluctant to use the system, lacking confidence that bikes

A Regression Example | 9

will be available when needed. If too many bikes are available, oper‐
ating costs increase unnecessarily.

In data science problems, it is always important to gain an under‐
standing of the objectives of the end-users. In this case, having a rea‐
sonable number of extra bikes on-hand is far less of an issue than
having an insufficient inventory. Keep this fact in mind as we are
evaluating models.

For this example, we’ll use a dataset containing a time series of
demand information for the bicycle rental system. These data con‐
tain hourly demand figures over a two-year period, for both regis‐
tered and casual users. There are nine features, also know as predic‐
tor, or independent, variables. The dataset contains a total of 17,379
rows or cases.

The first and possibly most important task in creating effective pre‐
dictive analytics models is determining the feature set. Feature selec‐
tion is usually more important than the specific choice of machine
learning model. Feature candidates include variables in the dataset,
transformed or filtered values of these variables, or new variables
computed from the variables in the dataset. The process of creating
the feature set is sometimes known as feature selection and feature
engineering.

In addition to feature engineering, data cleaning and editing are
critical in most situations. Filters can be applied to both the predic‐
tor and response variables.

The dataset is available in the Azure ML sample datasets. You can
also download it as a .csv file either from Azure ML or from the Uni‐
versity of California Machine Learning Repository.

A First Set of Transformations
For our first step, we’ll perform some transformations on the raw
input data using the code from the transform.py file, shown next, in
an Azure ML Execute Python Script module:

The main function with a single argument, a Pandas dataframe
from the first input port of the Execute Python Script mod
ule.
def azureml_main(BikeShare):
 import pandas as pd
 from sklearn import preprocessing
 import utilities as ut

10 | Data Science in the Cloud with Microsoft Azure Machine Learning and Python

http://bit.ly/uci-bike
http://bit.ly/uci-bike

 import numpy as np
 import os

If not in the Azure environment, read the data from a csv
file for testing purposes.
 Azure = False
 if(Azure == False):
 pathName = "C:/Users/Steve/GIT/Quantia-Analytics/
AzureML-Regression-Example/Python files"
 fileName = "BikeSharing.csv"
 filePath = os.path.join(pathName, fileName)
 BikeShare = pd.read_csv(filePath)

 ## Drop the columns we do not need
 BikeShare = BikeShare.drop(['instant',
 'instant',
 'atemp',
 'casual',
 'registered'], 1)

 ## Normalize the numeric columns
 scale_cols = ['temp', 'hum', 'windspeed']
 arry = BikeShare[scale_cols].as_matrix()
 BikeShare[scale_cols] = preprocessing.scale(arry)

 ## Create a new column to indicate if the day is a working
day or not.
 work_day = BikeShare['workingday'].as_matrix()
 holiday = BikeShare['holiday'].as_matrix()
 BikeShare['isWorking'] = np.where(np.logical_and(work_day
== 1, holiday == 0), 1, 0)

 ## Compute a new column with the count of months from
 ## the start of the series which can be used to model
 ## trend
 BikeShare['monthCount'] = ut.mnth_cnt(BikeShare)

 ## Shift the order of the hour variable so that it is
smoothly
 ## "humped over 24 hours.## Add a column of the count of
months which could
 hr = BikeShare.hr.as_matrix()
 BikeShare['xformHr'] = np.where(hr > 4, hr - 5, hr + 19)

 ## Add a variable with unique values for time of day for
working
 ## and nonworking days.
 isWorking = BikeShare['isWorking'].as_matrix()
 BikeShare['xformWorkHr'] = np.where(isWorking,
 BikeShare.xformHr,
 BikeShare.xformHr +

A Regression Example | 11

24.0)

 BikeShare['dayCount'] = pd.Series(range(Bike
Share.shape[0]))/24

 return BikeShare

The main function in an Execute Python Script module is called
azureml_main. The arguments to this function are one or two
Python Pandas dataframes input from the Dataset1 and Dataset2
input ports. In this case, the single argument is named frame1.

Notice the conditional statement near the beginning of this code
listing. When the logical variable Azure is set to False, the data
frame is read from the .csv file.

The rest of this code performs some filtering and feature engineer‐
ing. The filtering includes removing unnecessary columns and scal‐
ing the numeric features.

The term feature engineering refers to transformations applied to the
dataset to create new predictive features. In this case, we create four
new columns, or features. As we explore the data and construct
the model, we will determine if any of these features actually
improves our model performance. These new columns include the
following information:

• Indicate if it is a workday or not
• Count of the number of months from the beginning of the time

series
• Transformed time of day for working and nonworking days by

shifting by 5 hours
• A count of days from the start of the time series

The utilities.py file contains a utility function used in the transfor‐
mations. The listing of this function is shown here:

def mnth_cnt(df):
 '''
 Compute the count of months from the start of
 the time series.
 '''
 import itertools
 yr = df['yr'].tolist()
 mnth = df['mnth'].tolist()
 out = [0] * df.shape[0]

12 | Data Science in the Cloud with Microsoft Azure Machine Learning and Python

 indx = 0
 for x, y in itertools.izip(mnth, yr):
 out[indx] = x + 12 * y
 indx += 1
 return out

This file is a Python module. The module is packaged into a .zip file,
and uploaded into Azure ML Studio. The Python code in the zip file
is then available, in any Execute Python Script module in the experi‐
ment connected to the zip.

Exploring the data
Let’s have a first look at the data by walking through a series of
exploratory plots. An additional Execute Python Script module with
the visualization code is added to the experiment. At this point, our
Azure ML experiment looks like Figure 6. The first Execute Python
Script module, titled “Transform Data,” contains the code shown in
the previous code listing.

Figure 6. The Azure ML experiment in Studio

The Execute Python Script module, shown at the bottom of this
experiment, runs code for exploring the data, using output from the
Execute Python Script module that transforms the data. The new
Execute Python Script module contains the visualization code con‐
tained in the visualize.py file.

In this section, we will explore the dataset step by step, discussing
each section of code and the resulting charts. Normally, the entire
set of code would be run at one time, including a return statement at
the end. You can add to this code a step at a time as long as you have
a return statement at the end.

A Regression Example | 13

The first section of the code is shown here. This code creates two
plots of the correlation matrix between each of the features and the
features and the label (count of bikes rented).

def azureml_main(BikeShare):
 import matplotlib
 matplotlib.use('agg') # Set backend
 matplotlib.rcParams.update({'font.size': 20})

 from sklearn import preprocessing
 from sklearn import linear_model
 import numpy as np
 import matplotlib.pyplot as plt
 import statsmodels.graphics.correlation as pltcor
 import statsmodels.nonparametric.smoothers_lowess as lw

 Azure = False

 ## Sort the data frame based on the dayCount
 BikeShare.sort('dayCount', axis = 0, inplace = True)

 ## De-trend the bike demand with time.
 nrow = BikeShare.shape[0]
 X = BikeShare.dayCount.as_matrix().reshape((nrow,1))
 Y = BikeShare.cnt.as_matrix()
 ## Compute the linear model.
 clf = linear_model.LinearRegression()
 bike_lm = clf.fit(X, Y)
 ## Remove the trend
 BikeShare.cnt = BikeShare.cnt - bike_lm.predict(X)

 ## Compute the correlation matrix and set the diagonal
 ## elements to 0.
 arry = BikeShare.drop('dteday', axis = 1).as_matrix()
 arry = preprocessing.scale(arry, axis = 1)
 corrs = np.corrcoef(arry, rowvar = 0)
 np.fill_diagonal(corrs, 0)

 col_nms = list(BikeShare)[1:]
 fig = plt.figure(figsize = (9,9))
 ax = fig.gca()
 pltcor.plot_corr(corrs, xnames = col_nms, ax = ax)
 plt.show()
 if(Azure == True): fig.savefig('cor1.png')

 ## Compute and plot the correlation matrix with
 ## a smaller subset of columns.
 cols = ['yr', 'mnth', 'isWorking', 'xformWorkHr', 'day
Count',
 'temp', 'hum', 'windspeed', 'cnt']
 arry = BikeShare[cols].as_matrix()

14 | Data Science in the Cloud with Microsoft Azure Machine Learning and Python

 arry = preprocessing.scale(arry, axis = 1)
 corrs = np.corrcoef(arry, rowvar = 0)
 np.fill_diagonal(corrs, 0)

 fig = plt.figure(figsize = (9,9))
 ax = fig.gca()
 pltcor.plot_corr(corrs, xnames = cols, ax = ax)
 plt.show()
 if(Azure == True): fig.savefig('cor2.png')

This code creates a number of charts that we will subsequently dis‐
cuss. The code takes the following steps:

• The first two lines import matplotlib and configure a backend
for Azure ML to use. This configuration must be done before
any other graphics libraries are imported or used.

• The dataframe is sorted into time order. Sorting ensures that
time series plots appear in the correct order.

• Bike demand (cnt) is de-trended using a linear model from the
scikit-learn package. De-trending removes a source of bias in
the correlation estimates. We are particularly interested in the
correlation of the features (predictor variables) with this de-
trended label (response).

The selected columns of the Pandas dataframe
have been coerced to NumPy arrays, with the
as_matrix method.

• The correlation matrix is computed using the NumPy package.
The values along the diagonal are set to zero.

The data in the Pandas dataframe have been
coerced to a NumPy array with the as_matrix
method.

• The correlation matrix is plotted using statsmodels.graph
ics.correlation.plot_corr.

• If Azure = True, the plot object is saved to a file with a unique
name. The contents of this file will be displayed at the Python
device port of the Execute Python Script module. If the plot is
not saved to a file with a unique name, it will not be displayed.
The resulting plot is shown in Figure 7.

A Regression Example | 15

http://pandas.pydata.org/
http://pandas.pydata.org/

• The last code computes and plots a correlation matrix for a
reduced set of features, shown in Figure 8.

To run this code in Azure ML, make sure you set
Azure = True.

Figure 7. Plot of correlation matrix

The first correlation matrix is shown in Figure 7. This plot is domi‐
nated by the strong correlations between many of the features. For
example, date-time features are correlated, as are weather features.
There is also some significant correlation between date-time and
weather features. This correlation results from seasonal variation
(annual, daily, etc.) in weather conditions. There is also strong posi‐
tive correlation between the feature (cnt) and several other features.
It is clear that many of these features are redundant with each other,
and some significant pruning of this dataset is in order.

To get a better look at the correlations, Figure 8 shows a plot using a
reduced feature set.

16 | Data Science in the Cloud with Microsoft Azure Machine Learning and Python

Figure 8. Plot of correlation matrix without dayWeek variable

The patterns revealed in this plot are much the same as those seen in
Figure 6. The patterns in correlation support the hypothesis that
many of the features are redundant.

You should always keep in mind the pitfalls in the
interpretation of correlation. First, and most impor‐
tantly, correlation should never be confused with cau‐
sation. A highly correlated variable may or may not
imply causation. Second, any particular feature highly
correlated, or uncorrelated, with the label may, or may
not, be a good predictor. The variable may be nearly
collinear with some other predictor, or the relationship
with the response may be nonlinear.

Next, time series plots for selected hours of the day are created,
using the following code:

Make time series plots of bike demand by times of the day.
 times = [7, 9, 12, 15, 18, 20, 22]
 for tm in times:
 fig = plt.figure(figsize=(8, 6))

A Regression Example | 17

 fig.clf()
 ax = fig.gca()
 BikeShare[BikeShare.hr == tm].plot(kind = 'line',
 x = 'dayCount', y =
'cnt',
 ax = ax)
 plt.xlabel("Days from start of plot")
 plt.ylabel("Count of bikes rented")
 plt.title("Bikes rented by days for hour = " + str(tm))
 plt.show()
 if(Azure == True): fig.savefig('tsplot' + str(tm) +
'.png')

This code loops over a list of hours of the day. For each hour, a time
series plot object is created and saved to a file with a unique name.
The contents of these files will be displayed at the Python device
port of the Execute Python Script module.

Two examples of the time series plots for two specific hours of the
day are shown in Figures 9 and 10. Recall that these time series have
had the linear trend removed.

Figure 9. Time series plot of bike demand for the 0700 hour

18 | Data Science in the Cloud with Microsoft Azure Machine Learning and Python

Figure 10. Time series plot of bike demand for the 1800 hour

Notice the differences in the shape of these curves at the two differ‐
ent hours. Also, note the outliers at the low side of demand. These
outliers can be a source of bias when training machine learning
models.

Next, we will create some box plots to explore the relationship
between the categorical features and the label (cnt). The following
code shows the box plots.

Boxplots for the predictor values vs the demand for bikes.
 BikeShare = set_day(BikeShare)
 labels = ["Box plots of hourly bike demand",
 "Box plots of monthly bike demand",
 "Box plots of bike demand by weather factor",
 "Box plots of bike demand by workday vs. holiday",
 "Box plots of bike demand by day of the week",
 "Box plots by transformed work hour of the day"]
 xAxes = ["hr", "mnth", "weathersit",
 "isWorking", "dayWeek", "xformWorkHr"]
 for lab, xaxs in zip(labels, xAxes):
 fig = plt.figure(figsize=(10, 6))
 fig.clf()
 ax = fig.gca()
 BikeShare.boxplot(column = ['cnt'], by = [xaxs], ax =
ax)
 plt.xlabel('')
 plt.ylabel('Number of bikes')
 plt.show()

A Regression Example | 19

 if(Azure == True): fig.savefig('boxplot' + xaxs +
'.png')

This code executes the following steps:

1. The set_day function is called (see the following code).
2. A list of figure captions is created.
3. A list of column names for the features is defined.
4. A for loop iterates over the list of captions and columns, creat‐

ing a box plot of each specified feature.
5. For each hour, a time series object plot is created and saved to a

file with a unique name. The contents of these files will be dis‐
played at the Python device port of the Execute Python Script
module.

This code requires one function, defined in the visualise.py file.

def set_day(df):
 '''
 This function assigns day names to each of the
 rows in the dataset. The function needs to account
 for the fact that some days are missing and there
 may be some missing hours as well.
 '''
 ## Assumes the first day of the dataset is Saturday
 days = ["Sat", "Sun", "Mon", "Tue", "Wed",
 "Thr", "Fri"]
 temp = ['d']*df.shape[0]
 i = 0
 indx = 0
 cur_day = df.dteday[0]
 for day in df.dteday:
 if(cur_day != day):
 cur_day = day
 if(i == 6): i = 0
 else: i += 1
 temp[indx] = days[i]
 indx += 1
 df['dayWeek'] = temp
 return df

This function creates a new feature showing the day of the week,
using day names that make the plots easier to understand.

Three of the resulting box plots are shown in Figures 11, 12, and 13.

20 | Data Science in the Cloud with Microsoft Azure Machine Learning and Python

Figure 11. Box plots showing the relationship between bike demand
and hour of the day

Figure 12. Box plots showing the relationship between bike demand
and weather situation

From these plots, you can see differences in the likely predictive
power of these three features.

Significant and complex variation in hourly bike demand can be
seen in Figure 11 (this behavior may prove difficult to model). In
contrast, it looks doubtful that weather situation (weathersit) is
going to be very helpful in predicting bike demand, despite the rela‐
tively high correlation value observed.

A Regression Example | 21

Figure 13. Box plots showing the relationship between bike demand
and day of the week

The result shown in Figure 13 is surprising—we expected bike
demand to depend on the day of the week.

Once again, the outliers at the low end of bike demand can be seen
in the box plots.

Finally, we’ll create some scatter plots to explore the continuous
variables, using the following code:

Make scatter plot of bike demand vs. various features.
 labels = ["Bike demand vs temperature",
 "Bike demand vs humidity",
 "Bike demand vs windspeed",
 "Bike demand vs hr",
 "Bike demand vs xformHr",
 "Bike demand vs xformWorkHr"]
 xAxes = ["temp", "hum", "windspeed", "hr",
 "xformHr", "xformWorkHr"]
 for lab, xaxs in zip(labels, xAxes):
 ## first compute a lowess fit to the data
 los = lw.lowess(BikeShare['cnt'], BikeShare[xaxs],
frac = 0.2)

 ## Now make the plots
 fig = plt.figure(figsize=(8, 6))
 fig.clf()
 ax = fig.gca()
 BikeShare.plot(kind = 'scatter', x = xaxs, y = 'cnt',
ax = ax, alpha = 0.05)
 plt.plot(los[:, 0], los[:, 1], axes = ax, color =

22 | Data Science in the Cloud with Microsoft Azure Machine Learning and Python

'red')
 plt.show()
 if(Azure == True): fig.savefig('scatterplot' + xaxs +
'.png')

This code is quite similar to the code used for the box plots. We have
included a lowess smoothed line on each of these plots using stats‐
models.nonparametric.smoothers_lowess.lowess. Also, note that we
increased the point transparency (small value of alpha), so we get a
feel for the number of overlapping data points.

When plotting a large number of points, “over-
plotting” is a significant problem. Overplotting makes
it difficult to tell the actual point density as points lie
on top of each other. Methods like color scales, point
transparency, and hexbinning can all be applied to sit‐
uations with significant overplotting.

The lowess method is quite memory intensive.
Depending on how much memory you have on your
local machine, you may or may not be able to run this
code. Fortunately, Azure ML runs on servers with 60
GB of RAM, which is more than up to the job.

The resulting scatter plots are shown in Figures 14 and 15.

Figure 14. Scatter plot of bike demand versus humidity

A Regression Example | 23

Figure 14 shows a clear trend of generally-decreasing bike demand
with increased humidity. However, at the low end of humidity, the
data is sparse and the trend is less certain. We will need to proceed
with care.

Figure 15. Scatter plot of bike demand versus temperature

Figure 15 shows the scatter plot of bike demand versus temperature.
Note the complex behavior exhibited by the “lowess” smoother; this
is a warning that we may have trouble modeling this feature.

Once again, in both scatter plots, we see the prevalence of outliers at
the low end of bike demand.

Exploring a Potential Interaction
Perhaps there is an interaction between the time of day of working
and nonworking days. A day of week effect is not apparent from Fig‐
ure 13, but we may need to look in more detail. This idea is easy to
explore. Adding the following code creates box plots for peak
demand hours of working and nonworking days:

Explore bike demand for certain times on working and nonwork
ing days
 labels = ["Boxplots of bike demand at 0900 \n\n",
 "Boxplots of bike demand at 1800 \n\n"]
 times = [8, 17]
 for lab, tms in zip(labels, times):

24 | Data Science in the Cloud with Microsoft Azure Machine Learning and Python

 temp = BikeShare[BikeShare.hr == tms]
 fig = plt.figure(figsize=(8, 6))
 fig.clf()
 ax = fig.gca()
 temp.boxplot(column = ['cnt'], by = ['isWorking'], ax
= ax)
 plt.xlabel('')
 plt.ylabel('Number of bikes')
 plt.title(lab)
 plt.show()
 if(Azure == True): fig.savefig('timeplot' + str(tms) +
'.png')

 return BikeShare

This code is nearly identical to the code we already discussed for
creating box plots. The only difference is the use of the by argument
to create a separate box plot for working and nonworking days.

Note the return statement at the end—Python functions require a
return statement.

The result of running this code can be seen in Figures 16 and 17.

Figure 16. Box plots of bike demand at 0900 for working and non‐
working days

A Regression Example | 25

Figure 17. Box plots of bike demand at 1800 for working and non‐
working days

Now we clearly see what we were missing in the initial set plots.
There is a difference in demand between working and nonworking
days at peak demand hours.

Investigating a New Feature
We need a new feature that differentiates the time of the day by
working and nonworking days. The feature we created, xform‐
WorkHr, does just this.

We created a new variable using working versus non‐
working days. This leads to 48 levels (2 × 24) in this
variable. We could have used the day of the week, but
this approach would have created 168 levels (7 × 24).
Reducing the number of levels reduces complexity and
the chance of overfitting—generally leading to a better
model.

The complex hour-to-hour variation bike demand, shown in Fig‐
ure 11, may be difficult for some models to deal with. A shift in the

26 | Data Science in the Cloud with Microsoft Azure Machine Learning and Python

time axis creates a new feature where demand is closer to a simple
hump shape.

The resulting new feature is both time-shifted and grouped by
working and nonworking hours, as shown in Figure 18.

This plot shows a clear pattern of bike demand by the working (0–
23) and nonworking (24–47) hour of the day. The pattern of
demand is fairly complex. There are two humps corresponding to
peak commute times in the working hours. One fairly smooth hump
characterizes nonworking hour demand.

Figure 18. Bike demand by transformed workTime

The question is now: Will these new features improve the perfor‐
mance of any of the models?

A First Model
Now that we have some basic data transformations and a first look
at the data, it’s time to create our first model. Given the complex
relationships seen in the data, we will use a nonlinear regression
model. In particular, we will try the Decision Forest Regression
model.

Figure 19 shows our Azure ML Studio canvas with all of the mod‐
ules in place.

A Regression Example | 27

Figure 19. Azure ML Studio with first bike demand model

There are quite a few new modules on the canvas at this point.

We added a Split module after the Transform Data Execute Python
Script module. The sub-selected data are then sampled into training
and test (evaluation) sets with a 70%/30% split. Later, we will intro‐
duce a second split to separate testing the model from evaluation.
The test dataset is used for performing model parameter tuning and
feature selection.

Pruning features
There are a large number of apparently redundant features in this
dataset. As we have seen, many of these features are highly correla‐
ted with each other. In all likelihood, models created with the full
dataset will be overparameterized.

28 | Data Science in the Cloud with Microsoft Azure Machine Learning and Python

The selection of a minimal feature set is of critical
importance. The danger of overparameterizing or
overfitting a model is always present. While decision
forest algorithms are known to be fairly insensitive to
this problem, we ignore it at our peril. Dropping fea‐
tures that do little to improve model performance is
always a good idea. Features that are highly correlated
with other features are especially good candidates for
removal.

The model shown in Figure 19 includes a Permutation Feature
Importance module. The output of this module lists feature impor‐
tance measures in order from highest to lowest. One, or a few, fea‐
tures with the lowest absolute value of importance are pruned from
the dataset. The experiment is run again, and the next feature or a
few features are pruned. Continue this process until the perfor‐
mance metrics produced by the Evaluate Model module become
noticeably worse. A feature or few features may need to be restored
to the dataset. At this point, we conclude that only essential features
are in the dataset. Figure 20 shows the final importance measures
for the puned bike sharing dataset. Note that the importance of
these features is over a range of about an order of magnitude.

Figure 20. Importance of final feature selection

We placed the Project Columns module after the Split module, in
order to prune the features we’re using without affecting the model
evaluation. Use the Project Columns module to select the following
columns of transformed data for the model:

• cnt
• xformHr

A Regression Example | 29

• temp
• dteday

We have gone from 17 features to just 3 with very little change in the
model performance metrics. The pruned feature set shows a signifi‐
cant reduction in complexity.

The Decision Forest Model
Now that we have the feature set selected, let’s investigate the Deci‐
sion Forest Model and its performance.

For the Decision Forest Regression module, we have set the follow‐
ing parameters:

• Resampling method: Bagging
• Number of decision trees: 40
• Maximum depth: 32
• Number of random splits: 128
• Minimum number of samples per leaf: 10

The model is scored by the Score Model module, which provides
predicted values for the module from the evaluation data. Figure 21
shows the performance summary statistics from the Evaluate Model
module.

Figure 21. Performance statistics for the model

These results are interesting, but a bit abstract.

Now, we include another Execute Python Script module in our
experiment. The Python code in the visualizeresids.py file creates
charts for evaluating the performance of this model in more detail.
As we did before, we will discuss this code and the charts it pro‐
duces one step at a time. (As before, there must be a return state‐
ment at the end of any Python function.)

30 | Data Science in the Cloud with Microsoft Azure Machine Learning and Python

For the first step of this evaluation, we will compare the actual and
predicted values. The following code creates a scatter plot of the
residuals (errors) versus bike demand:

def azureml_main(BikeShare):
 import matplotlib
 matplotlib.use('agg') # Set backend
 matplotlib.rcParams.update({'font.size': 20})

 import matplotlib.pyplot as plt
 import statsmodels.api as sm

 Azure = False

Compute the residuals.
 BikeShare['Resids'] = BikeShare['Scored Label Mean'] -
BikeShare['cnt']

Plot the residuals vs the label, the count of rented bikes.
 fig = plt.figure(figsize=(8, 6))
 fig.clf()
 ax = fig.gca()
PLot the residuals.
 BikeShare.plot(kind = 'scatter', x = 'cnt', y = 'Resids',
 alpha = 0.05, color = 'red', ax = ax)
 plt.xlabel("Days from start")
 plt.ylabel("Residual")
 plt.title("Residuals vs time")
 plt.show()
 if(Azure == True): fig.savefig('scatter1.png')

This code does the following:

• Sorts the data frame into time order.
• Computes a new column in the Pandas dataframe, containing

the residuals.
• Creates a scatter plot of the residuals versus bike demand (cnt),

which is shown in Figure 22.

In Figure 22, you can see that most residuals are close to zero. There
is a skew of the residuals toward the downside. In addition, there are
some significant outliers. The largest outliers occur where demand
has been overestimated at the low end of bike demand. There are
also some notable outliers where bike demand has been underesti‐
mated at higher levels of bike demand. As discussed previously,
underestimation is generally more of a problem than overestima‐
tion, unless the latter is extreme.

A Regression Example | 31

Figure 22. Model residuals versus bike demand

To run this code in Azure ML, make sure you set
Azure = True.

Next, we will create some time series plots of both actual bike
demand and the forecasted demand using the following code:

Make time series plots of actual bike demand and
predicted demand by times of the day.
 times = [7, 9, 12, 15, 18, 20, 22]
 for tm in times:
 fig = plt.figure(figsize=(8, 6))
 fig.clf()
 ax = fig.gca()
 BikeShare[BikeShare.hr == tm].plot(kind = 'line',
 x = 'dayCount', y =
'cnt',
 ax = ax)
 BikeShare[BikeShare.hr == tm].plot(kind = 'line',
 x = 'dayCount', y =
'Scored Label Mean',
 color = 'red', ax =
ax)
 plt.xlabel("Days from start of plot")
 plt.ylabel("Count of bikes rented")
 plt.title("Bikes rented by days for hour = " + str(tm))
 plt.show()

32 | Data Science in the Cloud with Microsoft Azure Machine Learning and Python

 if(Azure == True): fig.savefig('tsplot' + str(tm) +
'.png')

This code executes the following steps:

1. Creates a list of times.
2. A for loop iterates over these times.
3. Line plots are created for the actual and predicted bike demand

(Scored Label Mean).
4. Saves the plot objects to files with unique names.

Some results of running this code are shown in Figures 23 and 24.

By examining these time series plots, you see that the model
produces a reasonably good fit to the evaluation data. However,
there are quite a few cases where the actual demand exceeds the pre‐
dicted demand.

Figure 23. Time series plot of actual and predicted bike demand
at 0900

A Regression Example | 33

Figure 24. Time series plot of actual and predicted bike demand at
1800

Let’s have a closer look at the residuals. The following code creates
box plots of the residuals, by hour and by the 48-hour workTime
scale:

Boxplots for the residuals by hour and transformed hour.
 labels = ["Box plots of residuals by hour of the day \n\n",
 "Box plots of residuals by transformed hour of the
day \n\n"]
 xAxes = ["hr", "xformWorkHr"]
 for lab, xaxs in zip(labels, xAxes):
 fig = plt.figure(figsize=(12, 6))
 fig.clf()
 ax = fig.gca()
 BikeShare.boxplot(column = ['Resids'], by = [xaxs], ax
= ax)
 plt.xlabel('')
 plt.ylabel('Residuals')
 plt.show()
 if(Azure == True): fig.savefig('boxplot' + xaxs +
'.png')

This code executes the following steps:

1. Creates a list of figure captions.
2. Creates a list of column names.

34 | Data Science in the Cloud with Microsoft Azure Machine Learning and Python

3. The for loop iterates over the captions and column names.
4. A box plot of the residuals is grouped by the column values.
5. Saves the plot object to a unique filename.

The results of running this code can be seen in Figures 25 and 26.

Figure 25. Box plots of residuals between actual and predicted values
by hour

Figure 26. Box plots of residuals between actual and predicted values
by transformed hour

Studying these plots, we see there are significant residuals at peak
demand hours. The model consistently underestimates demand at
both 0900 and 1800—peak commuting hours on working days.
Clearly, to be useful, a bike sharing system should meet demand at

A Regression Example | 35

these peak hours. And there are significant negative residuals at
midday on nonwork days.

Finally, we create a Q-Q Normal plot and a histogram using the fol‐
lowing code:

QQ Normal plot of residuals
 fig = plt.figure(figsize = (6,6))
 fig.clf()
 ax = fig.gca()
 sm.qqplot(BikeShare['Resids'], ax = ax)
 ax.set_title('QQ Normal plot of residuals')
 if(Azure == True): fig.savefig('QQ.png')
 if(Azure == True): fig.savefig('QQ1.png')

Histograms of the residuals
 fig = plt.figure(figsize = (8,6))
 fig.clf()
 fig.clf()
 ax = fig.gca()
 ax.hist(BikeShare['Resids'].as_matrix(), bins = 40)
 ax.set_xlabel("Residuals")
 ax.set_ylabel("Density")
 ax.set_title("Histogram of residuals")
 if(Azure == True): fig.savefig('hist.png')

 return BikeShare

This code performs the following steps:

1. Creates a Q-Q (quantile-quantile) Normal plot of the residuals.
2. Saves the plot object to a unique filename.
3. Creates a histogram of the residuals.
4. Saves the plot object to a unique filename.

The plots created are shown in Figures 27 and 28.

Ideally, the residuals should have a small range and compact distri‐
bution. Both of these plots show significant outliers in the residuals.

The Q-Q Normal plot shows the quantiles of the residuals against
the quantiles of a theoretical normal distribution. If the residuals
were in fact normal and without any outliers, the points would lie
on a straight line. In this case, the line shows significant curvature
indicating non-Normal behavior and the presence of outliers. The
histogram shows another view of the residuals. Once again, the out‐
liers in the residuals are clearly visible.

36 | Data Science in the Cloud with Microsoft Azure Machine Learning and Python

Figure 27. Q-Q Normal plot of the model residuals

Figure 28. Histogram of the model residuals

Improving the Model and Transformations
The question is now: How can we improve these model results? It is
possible that improvements in the choice of model parameters, or

Improving the Model and Transformations | 37

an alternative model, might give better results. However, it is often
the case that improved feature engineering and data cleaning leads
to greater improvements in results, rather than small model
improvements.

In this section, we will try several ideas for improvement: better
data cleaning, alternative models, and better selection of model
parameters.

Looking at the residuals in Figures 22, 25, 26, 27, and 28, as well as
differences in the time series plots in Figures 23 and 24, you can see
outliers in demand on the low side. These outliers may well be a
source of bias leading to the model underestimating demand in a
fair number of cases.

Filtering with SQLite
We can create a filter using the SQLite dialect of SQL in the Apply
SQL transformation module. The experiment with the apply SQL
transformation module is shown in Figure 29.

Figure 29. Experiment with Apply SQL Transformation module

In this case, we use a simple SQL script to trim small values from the
training data.

select * from t1
where cnt > 100;

38 | Data Science in the Cloud with Microsoft Azure Machine Learning and Python

This filter reduces the number of rows in the training dataset from
about 12,000 to about 7,000.

This filter is a rather blunt approach. Those versed in SQL can create
more complex and precise queries to filter these data. In this report,
we will turn our attention to creating a more precise filter using
Python.

Another Data Transformation
Let’s try another data transformation—filtering out the low-end out‐
liers. To wit, we’ve added the highlighted Execute Python Script
module, as shown in Figure 30. The code in this module will filter-
out downside outliers in the training data.

Figure 30. Updated experiment with new Execute Python Script to
trim outliers

We only want to apply this filter to the training data, and not to the
evaluation data. When using the predictive model in production, we

Improving the Model and Transformations | 39

are computing an estimate of the response, and will not have the
actual response values to trim. Consequently, the new Execute
Python Script module is placed after the Split module.

The code for this new Execute Python Script module is in the filter‐
data.py file and is shown here:

def azureml_main(BikeShare):
 import pandas as pd

 ## Save the original names of the DataFrame.
 in_names = list(BikeShare)

 ## Compute the lower quantile of the number of biked grou
ped by
 ## Date and time values.
 quantiles = BikeShare.groupby(['yr', 'mnth', 'xform
WorkHr']).cnt.quantile(q = 0.2)

 ## Join (merge) quantiles as a DataFrame to BikeShare
 quantiles = pd.DataFrame(quantiles)
 BikeShare = pd.merge(BikeShare, quantiles,
 left_on = ['yr', 'mnth', 'xformWorkHr'],
 right_index = True,
 how = 'inner')

 ## Filter rows where the count of bikes is less than the
lower quantile.
 BikeShare = BikeShare.ix[BikeShare.cnt_x > BikeShare.cnt_y]

 ## Remove the unneeded column and restore the original col
umn names.
 BikeShare.drop('cnt_y', axis = 1, inplace = True)
 BikeShare.columns = in_names

 ## Sort the data frame based on the dayCount
 BikeShare.sort('dayCount', axis = 0, inplace = True)

 return BikeShare

This code uses the following steps to find and remove downside
outliers:

1. Saves the original column names in a list.
2. Computes the lower 20% quantile of the data grouped by the yr,

mnth, and xformWorkHour columns.
3. Filters any rows where the total number of bikes (cnt) is less

than the 20% quantile.

40 | Data Science in the Cloud with Microsoft Azure Machine Learning and Python

4. Removes the extraneous column and restores the column
names.

5. Sorts the data frame in time order.

Evaluating the Improved Model
Let’s look at the results of using this filter. As a first step, the sum‐
mary statistics produced by the Evaluate module are shown in Fig‐
ure 31.

Figure 31. Performance statistics for the model with outliers trimmed
in the training data

When compared with the performance statistics shown in Figure 18,
these figures are a bit worse. However, keep in mind that our goal is
to limit the number of times we underestimate bike demand. This
process will cause some degradation in the aggregate performance
statistics, as bias is introduced.

Let’s look in depth and see if we can make sense of these results. Fig‐
ures 32 and 33 show box plots of the residuals by hour of the day
and by xformedWorkTime.

Figure 32. Residuals by hour with outliers trimmed in the training
data

Improving the Model and Transformations | 41

Figure 33. Residuals by workTime with outliers trimmed in the train‐
ing data

If you compare these residual plots with Figures 25 and 26, you will
notice that the residuals are now biased to the positive—this is
exactly what we hoped. It is better for users if the bike share system
has a slight excess of inventory rather than a shortage.

By now, you probably realize that careful study of
residuals is absolutely essential to understanding and
improving model performance. It is also essential to
understand the business requirements when interpret‐
ing and improving predictive models.

Improving Model Parameter Selection in
Azure ML
We can try improving the model’s performance by searching the
parameter space with the Sweep module. Up until now, all of our
results have been based on initial guesses of the model parameters.

The Sweep module searches the parameter space for the best combi‐
nation. The Sweep module has three input ports: one for the model,
one for a training dataset, and one for a test dataset. Another Split
module is required to resample the original training dataset. As
before, we only want to prune the outliers in the training data.

42 | Data Science in the Cloud with Microsoft Azure Machine Learning and Python

The updated project, with the new module shown in the box, is
shown in Figure 34.

Figure 34. Experiment with new Split and Sweep modules added

The parameters for the Sweep module are as follows:

• Specify parameter sweeping mode: Random Sweep
• Maximum number of runs: 50
• Selected column: cnt
• Metric for measuring performance: Coefficient of determination

The Split module provides a 60%/40% split of the data.

Improving Model Parameter Selection in Azure ML | 43

Before using the Sweep Parameters module, you must
configure the machine learning module to enable mul‐
tiple choices of values for the parameters. If the
machine learning module is not configured with
multiple parameter value choices, sweeping will have
no effect.

The Create trainer mode on the properties pane of the Decision For‐
est Regression module is set to Parameter Range. In this case, we
accept the default parameter value choices. The Range Builder tools
allow you to configure different parameter value choices.

After running the experiment, we see the results displayed in Fig‐
ure 35.

Figure 35. Performance statistics produced by sweeping the model
parameters

The box plots of the residuals by hour of the day and by xform‐
WorkTime are shown in Figures 36 and 37.

Figure 36. Box plots of residuals by hour after sweeping parameters

44 | Data Science in the Cloud with Microsoft Azure Machine Learning and Python

Figure 37. Box plots of residuals by workTime after sweeping parame‐
ters

These results are marginally better than before. The plot of the
residuals is virtually indistinguishable from Figures 32 and 33.

Cross Validation
Let’s test the performance of our better model in depth. We’ll use the
Azure ML Cross Validation module. In summary, cross validation
resamples the dataset multiple times into nonoverlapping folds. The
model is recomputed and rescored for each fold. This procedure
provides multiple estimates of model performance. These estimates
are averaged to produce a more reliable performance estimate. Dis‐
persion measures of the performance metrics provide some insight
into how well the model will generalize in production.

The updated experiment is shown in Figure 38. Note the addition of
the Cross Validate Model module. The dataset used by the model
comes from the output of the Project Columns model, to ensure the
same features are used for model training and cross validation.

After running the experiment, the output of the Evaluation Results
by Fold is shown in Figure 39.

These results are encouraging.

The two leftmost columns in the box are Relative Squared Error and
Coefficient of Determination. The fold number is in the rightmost
column.

Cross Validation | 45

Figure 38. Experiment with Cross Validation module added

Examine the bottom two rows, showing the Mean and Standard
Deviation of the performance metrics. The mean values of these
metrics are better than those achieved previously, which is a bit sur‐
prising. However, keep in mind that we are only using a subset of
the data for the cross validation.

Finally, notice the consistency of the metrics across the folds. The
values of each metric are in a narrow range. Additionally, the stan‐
dard deviations of the metrics are significantly smaller than the
means. These figures indicate that the model produces consistent
results across the folds, and should generalize well in production.

46 | Data Science in the Cloud with Microsoft Azure Machine Learning and Python

Figure 39. The results by fold of the model cross validation

Some Possible Next Steps
It is always possible to do more when refining a predictive model.
The question must always be: Is it worth the effort for the possible
improvement? The median performance of the decision forest
regression model is fairly good. However, there are some significant
outliers in the residuals. Thus, some additional effort is probably
justified before either model is put into production.

There is a lot to think about when trying to improve the results. We
could consider several possible next steps, including the following:

Understand the source of the residual outliers
We have not investigated if there are systematic sources of these
outliers. Are there certain ranges of predictor variable values
that give these erroneous results? Do the outliers correspond to
exogenous events, such as parades and festivals, failures of other
public transit, holidays that are not indicated as nonworking
days, etc.? Such an investigation will require additional data.

Perform additional feature engineering
We have tried a few obvious new features with some success,
but there is no reason to think this process has run its course.
Perhaps another time axis transformation, which orders the

Some Possible Next Steps | 47

hour-to-hour variation in demand would perform better. Some
moving averages might reduce the effects of the outliers.

Prune features to prevent overfitting
Overfitting is a major source of poor model performance. As
noted earlier, we have pruned some features. Perhaps, a differ‐
ent pruning of the features would give a better result.

Change the quantile of the outlier filter
We arbitrarily chose the 0.20 quantile, but it could easily be the
case that another value might give better performance. It is also
possible that some other type of filter might help.

Try some other models
Azure ML has a number of other nonlinear regression modules.
Further, we have tried only one of many possible Python scikit-
learn models we could try.

Publishing a Model as a Web Service
Now that we have a reasonably good model, we can publish it as a
web service. A schematic view has been presented in Figure 5.

Publishing an Azure ML experiment as a web service is remarkably
easy.

As illustrated in Figure 40, simply push the Setup Web Service but‐
ton on the righthand side of the tool bar at the bottom of the studio
window. Then select Predictive Web Service.

A Predictive Experiment is automatically created, as illustrated in
Figure 41. Unnecessary modules have been pruned and the web
services input and output models are added automatically.

A Project Columns module has been manually added to this experi‐
ment, just before the Web services output module. This module is
used to select just the Scored Label Mean and Scored Label Standard
Deviation columns. This filtering prevents all of the other columns
in the input schema from being duplicated in the response to a web
services request.

48 | Data Science in the Cloud with Microsoft Azure Machine Learning and Python

Figure 40. The Setup web services button in Azure ML studio

The predictive experiment should be run to test it. By clicking on
the Deploy Web Services icon on the left side of the studio canvas, a
page showing a list of published web services appears. Click on the
line for the web bicycle demand forecasting service and the display
shown in Figure 42 appears.

Publishing a Model as a Web Service | 49

Figure 41. The scoring experiment with web services input and output
modules

Figure 42. Web service page for bike demand forecasting

50 | Data Science in the Cloud with Microsoft Azure Machine Learning and Python

On this page, you can see a number of properties and tools:

• An API key, used by external applications to access this predic‐
tive model. To ensure security, manage the distribution of this
key carefully!

• A link to a page which describes the request-response REST
API. This document includes sample code in C#, Python, and R.

• A link to a page which describes the batch API. This document
includes sample code in C#, Python, and R.

• A test button for manually testing the web service.
• An Excel download.

Let’s start an Excel workbook and test the Azure ML web service
API. In this case, we will use Excel Online.

Once a blank workbook is opened, download the Azure ML plug-in
following these steps:

1. From the Insert menu, select More Features, Add-ins.
2. In the dialog, select Store and search for Azure Machine Learn‐

ing.
3. Download the plug-in, select Trust it.
4. Select + Web service.
5. Copy and paste the Request/Response Link Address URL (not

the URL of the web services properties page) and the API key.
6. Click Add.
7. Click on Use Sample Data on the plug-in.

After clicking on Use Sample Data on the plug-in, the workbook
appears as shown in Figure 43. Note: the column names of the input
schema appear.

We can now compute predicted label and label standard deviation
values using the Azure ML web service, by following these steps:

1. Copy a few rows of data from the original dataset and paste
them into the appropriate cells of the workbook containing the
plug-in.

2. Select the range of input data cells, making sure to include the
header row and that it is selected as the Input for the plug-in.

Publishing a Model as a Web Service | 51

3. Select the first output cell (for the header row) as the Output.
4. Click the Predict button.

The result can be seen in Figure 44.

Figure 43. Excel workbook with Azure ML plug-in configured

Figure 44. Workbook with input data and predicted values

The label values (cnt) and the predicted values (Scored Label Mean)
are shown in the highlight. You can see that the newly computed
predicted values are reasonably close to the actual values.

Publishing machine learning models as web services make the
results available to a wide audience. The Predictive Experiment runs
in the highly scalable and secure Azure cloud. The API key is
encrypted in the plug-in, allowing wide distribution of the work‐
book.

With very few steps, we have created a machine learning web service
and tested it from an Excel workbook. The Training Experiment and

52 | Data Science in the Cloud with Microsoft Azure Machine Learning and Python

Predictive Experiment can be updated at any time. As long as the
input and output schema remains constant, updates to the models
are transparent to users of the web service.

Using Jupyter Notebooks with Azure ML
Python users can interact with data in the Azure Machine Learning
environment using Jupyter notebooks. Notebooks provide a highly
interactive environment for the exploration and modeling of data.
Jupyter notebooks can be shared with colleagues as a reproducible
document showing your analyses. You can find more information
on the Jupyter project, including tutorials, at the jupyter.org website.

As of the release date for this report, the Azure ML Jupyter note‐
book capability is in preview release. Here is a tutorial for Jupyter
with Azure ML.

In Azure ML, any dataset in the form of a .csv file can be exported to
a Jupyter notebook. Figure 45 shows our experiment with a Convert
to csv module added. The Jupyter notebook using Python 2 is
opened from the output of this new module.

Figure 45. Opening a Jupyter notebook from an experiment

Using Jupyter Notebooks with Azure ML | 53

http://jupyter.org/
http://bit.ly/azureml-jupyter
http://bit.ly/azureml-jupyter

Figure 46 shows the new Jupyter notebook open in a browser win‐
dow. The autogenerated code connects the notebook to the Python
kernel running on the Azure ML backend. The Workspace ID and
Authorization Token are blank in this example.

Figure 46. Open Jupyter notebook

Using some markdown to anotate the analysis steps and adding
some Python code from the visualizeresids.py file, we can plot the
residuals of the model versus bike demand. The result is shown in
Figure 47.

Figure 47. Creating a plot interactively in a Jupyter notebook

54 | Data Science in the Cloud with Microsoft Azure Machine Learning and Python

Clearly, there is a lot more you can do with these notebooks for
analysis and modeling of datasets.

Summary
To summarize our discussion:

• Azure ML is an easy-to-use environment for the creation and
cloud deployment of powerful machine learning solutions.

• Analytics written in Python can be rapidly operationalized as
web services using Azure ML.

• Python code is readily integrated into the Azure ML workflow.
• Understanding business goals and requirements is essential to

the creation of a valuable analytic solution.
• Careful development, selection, and filtering of features is the

key to creating successful data science solutions.
• A clear understanding of residuals is essential to the evaluation

and improvement of machine learning model performance.
• You can create and test an Azure ML web service with just a few

point-and-click operations; the resulting notebook can be
widely distributed to end users.

• Jupyter notebook allows you to interactively analyze data in a
reproducible environment, with the Python kernel running on
the Azure ML platform.

Summary | 55

About the Author
Stephen F. Elston, Managing Director of Quantia Analytics, LLC, is
a big data geek and data scientist, with over two decades of experi‐
ence with predictive analytics, machine learning, and R and S/
SPLUS. He leads architecture, development, sales, and support for
predictive analytics and machine learning solutions. Steve started
using S, the predecessor of R, in the mid-1980s. Steve led R&D for
the SPLUS companies, who were pioneers in introducing the S lan‐
guage into the market. He is a cofounder of FinAnalytica, Inc. Steve
holds a PhD in Geophysics from Princeton University.

	Copyright
	Table of Contents
	Chapter 1. Data Science in the Cloud with Microsoft Azure Machine Learning and Python
	Introduction
	Downloads
	Working Between Azure ML and Spyder

	Overview of Azure ML
	Azure ML Studio
	Getting Data In and Out of Azure ML
	Modules and Datasets
	Azure ML Workflows

	A Regression Example
	Problem and Data Overview
	A First Set of Transformations
	Exploring a Potential Interaction
	Investigating a New Feature
	A First Model

	Improving the Model and Transformations
	Filtering with SQLite
	Another Data Transformation
	Evaluating the Improved Model

	Improving Model Parameter Selection in Azure ML
	Cross Validation
	Some Possible Next Steps
	Publishing a Model as a Web Service
	Using Jupyter Notebooks with Azure ML
	Summary

